1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, S_IRUGO); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, S_IRUGO); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1512 HV_X64_MSR_RESET, 1513 HV_X64_MSR_VP_INDEX, 1514 HV_X64_MSR_VP_RUNTIME, 1515 HV_X64_MSR_SCONTROL, 1516 HV_X64_MSR_STIMER0_CONFIG, 1517 HV_X64_MSR_VP_ASSIST_PAGE, 1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1520 HV_X64_MSR_SYNDBG_OPTIONS, 1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1624 1625 static u64 kvm_get_arch_capabilities(void) 1626 { 1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1628 1629 /* 1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1631 * the nested hypervisor runs with NX huge pages. If it is not, 1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1633 * L1 guests, so it need not worry about its own (L2) guests. 1634 */ 1635 data |= ARCH_CAP_PSCHANGE_MC_NO; 1636 1637 /* 1638 * If we're doing cache flushes (either "always" or "cond") 1639 * we will do one whenever the guest does a vmlaunch/vmresume. 1640 * If an outer hypervisor is doing the cache flush for us 1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1642 * capability to the guest too, and if EPT is disabled we're not 1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1644 * require a nested hypervisor to do a flush of its own. 1645 */ 1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1648 1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1650 data |= ARCH_CAP_RDCL_NO; 1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1652 data |= ARCH_CAP_SSB_NO; 1653 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1654 data |= ARCH_CAP_MDS_NO; 1655 1656 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1657 /* 1658 * If RTM=0 because the kernel has disabled TSX, the host might 1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1660 * and therefore knows that there cannot be TAA) but keep 1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1662 * and we want to allow migrating those guests to tsx=off hosts. 1663 */ 1664 data &= ~ARCH_CAP_TAA_NO; 1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1666 data |= ARCH_CAP_TAA_NO; 1667 } else { 1668 /* 1669 * Nothing to do here; we emulate TSX_CTRL if present on the 1670 * host so the guest can choose between disabling TSX or 1671 * using VERW to clear CPU buffers. 1672 */ 1673 } 1674 1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1676 data |= ARCH_CAP_GDS_NO; 1677 1678 return data; 1679 } 1680 1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1682 { 1683 switch (msr->index) { 1684 case MSR_IA32_ARCH_CAPABILITIES: 1685 msr->data = kvm_get_arch_capabilities(); 1686 break; 1687 case MSR_IA32_PERF_CAPABILITIES: 1688 msr->data = kvm_caps.supported_perf_cap; 1689 break; 1690 case MSR_IA32_UCODE_REV: 1691 rdmsrl_safe(msr->index, &msr->data); 1692 break; 1693 default: 1694 return static_call(kvm_x86_get_msr_feature)(msr); 1695 } 1696 return 0; 1697 } 1698 1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1700 { 1701 struct kvm_msr_entry msr; 1702 int r; 1703 1704 msr.index = index; 1705 r = kvm_get_msr_feature(&msr); 1706 1707 if (r == KVM_MSR_RET_INVALID) { 1708 /* Unconditionally clear the output for simplicity */ 1709 *data = 0; 1710 if (kvm_msr_ignored_check(index, 0, false)) 1711 r = 0; 1712 } 1713 1714 if (r) 1715 return r; 1716 1717 *data = msr.data; 1718 1719 return 0; 1720 } 1721 1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1723 { 1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1725 return false; 1726 1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1728 return false; 1729 1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1731 return false; 1732 1733 if (efer & (EFER_LME | EFER_LMA) && 1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1735 return false; 1736 1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1738 return false; 1739 1740 return true; 1741 1742 } 1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1744 { 1745 if (efer & efer_reserved_bits) 1746 return false; 1747 1748 return __kvm_valid_efer(vcpu, efer); 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1751 1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1753 { 1754 u64 old_efer = vcpu->arch.efer; 1755 u64 efer = msr_info->data; 1756 int r; 1757 1758 if (efer & efer_reserved_bits) 1759 return 1; 1760 1761 if (!msr_info->host_initiated) { 1762 if (!__kvm_valid_efer(vcpu, efer)) 1763 return 1; 1764 1765 if (is_paging(vcpu) && 1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1767 return 1; 1768 } 1769 1770 efer &= ~EFER_LMA; 1771 efer |= vcpu->arch.efer & EFER_LMA; 1772 1773 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1774 if (r) { 1775 WARN_ON(r > 0); 1776 return r; 1777 } 1778 1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1780 kvm_mmu_reset_context(vcpu); 1781 1782 return 0; 1783 } 1784 1785 void kvm_enable_efer_bits(u64 mask) 1786 { 1787 efer_reserved_bits &= ~mask; 1788 } 1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1790 1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1792 { 1793 struct kvm_x86_msr_filter *msr_filter; 1794 struct msr_bitmap_range *ranges; 1795 struct kvm *kvm = vcpu->kvm; 1796 bool allowed; 1797 int idx; 1798 u32 i; 1799 1800 /* x2APIC MSRs do not support filtering. */ 1801 if (index >= 0x800 && index <= 0x8ff) 1802 return true; 1803 1804 idx = srcu_read_lock(&kvm->srcu); 1805 1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1807 if (!msr_filter) { 1808 allowed = true; 1809 goto out; 1810 } 1811 1812 allowed = msr_filter->default_allow; 1813 ranges = msr_filter->ranges; 1814 1815 for (i = 0; i < msr_filter->count; i++) { 1816 u32 start = ranges[i].base; 1817 u32 end = start + ranges[i].nmsrs; 1818 u32 flags = ranges[i].flags; 1819 unsigned long *bitmap = ranges[i].bitmap; 1820 1821 if ((index >= start) && (index < end) && (flags & type)) { 1822 allowed = test_bit(index - start, bitmap); 1823 break; 1824 } 1825 } 1826 1827 out: 1828 srcu_read_unlock(&kvm->srcu, idx); 1829 1830 return allowed; 1831 } 1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1833 1834 /* 1835 * Write @data into the MSR specified by @index. Select MSR specific fault 1836 * checks are bypassed if @host_initiated is %true. 1837 * Returns 0 on success, non-0 otherwise. 1838 * Assumes vcpu_load() was already called. 1839 */ 1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1841 bool host_initiated) 1842 { 1843 struct msr_data msr; 1844 1845 switch (index) { 1846 case MSR_FS_BASE: 1847 case MSR_GS_BASE: 1848 case MSR_KERNEL_GS_BASE: 1849 case MSR_CSTAR: 1850 case MSR_LSTAR: 1851 if (is_noncanonical_address(data, vcpu)) 1852 return 1; 1853 break; 1854 case MSR_IA32_SYSENTER_EIP: 1855 case MSR_IA32_SYSENTER_ESP: 1856 /* 1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1858 * non-canonical address is written on Intel but not on 1859 * AMD (which ignores the top 32-bits, because it does 1860 * not implement 64-bit SYSENTER). 1861 * 1862 * 64-bit code should hence be able to write a non-canonical 1863 * value on AMD. Making the address canonical ensures that 1864 * vmentry does not fail on Intel after writing a non-canonical 1865 * value, and that something deterministic happens if the guest 1866 * invokes 64-bit SYSENTER. 1867 */ 1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1869 break; 1870 case MSR_TSC_AUX: 1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1872 return 1; 1873 1874 if (!host_initiated && 1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1877 return 1; 1878 1879 /* 1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1881 * incomplete and conflicting architectural behavior. Current 1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1883 * reserved and always read as zeros. Enforce Intel's reserved 1884 * bits check if and only if the guest CPU is Intel, and clear 1885 * the bits in all other cases. This ensures cross-vendor 1886 * migration will provide consistent behavior for the guest. 1887 */ 1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1889 return 1; 1890 1891 data = (u32)data; 1892 break; 1893 } 1894 1895 msr.data = data; 1896 msr.index = index; 1897 msr.host_initiated = host_initiated; 1898 1899 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1900 } 1901 1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1903 u32 index, u64 data, bool host_initiated) 1904 { 1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1906 1907 if (ret == KVM_MSR_RET_INVALID) 1908 if (kvm_msr_ignored_check(index, data, true)) 1909 ret = 0; 1910 1911 return ret; 1912 } 1913 1914 /* 1915 * Read the MSR specified by @index into @data. Select MSR specific fault 1916 * checks are bypassed if @host_initiated is %true. 1917 * Returns 0 on success, non-0 otherwise. 1918 * Assumes vcpu_load() was already called. 1919 */ 1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1921 bool host_initiated) 1922 { 1923 struct msr_data msr; 1924 int ret; 1925 1926 switch (index) { 1927 case MSR_TSC_AUX: 1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1929 return 1; 1930 1931 if (!host_initiated && 1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1934 return 1; 1935 break; 1936 } 1937 1938 msr.index = index; 1939 msr.host_initiated = host_initiated; 1940 1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1942 if (!ret) 1943 *data = msr.data; 1944 return ret; 1945 } 1946 1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1948 u32 index, u64 *data, bool host_initiated) 1949 { 1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1951 1952 if (ret == KVM_MSR_RET_INVALID) { 1953 /* Unconditionally clear *data for simplicity */ 1954 *data = 0; 1955 if (kvm_msr_ignored_check(index, 0, false)) 1956 ret = 0; 1957 } 1958 1959 return ret; 1960 } 1961 1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1963 { 1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1965 return KVM_MSR_RET_FILTERED; 1966 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1967 } 1968 1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1970 { 1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1972 return KVM_MSR_RET_FILTERED; 1973 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1977 { 1978 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 EXPORT_SYMBOL_GPL(kvm_get_msr); 1981 1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1983 { 1984 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_set_msr); 1987 1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1989 { 1990 if (!vcpu->run->msr.error) { 1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1993 } 1994 } 1995 1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1997 { 1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1999 } 2000 2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2002 { 2003 complete_userspace_rdmsr(vcpu); 2004 return complete_emulated_msr_access(vcpu); 2005 } 2006 2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2008 { 2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2010 } 2011 2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2013 { 2014 complete_userspace_rdmsr(vcpu); 2015 return complete_fast_msr_access(vcpu); 2016 } 2017 2018 static u64 kvm_msr_reason(int r) 2019 { 2020 switch (r) { 2021 case KVM_MSR_RET_INVALID: 2022 return KVM_MSR_EXIT_REASON_UNKNOWN; 2023 case KVM_MSR_RET_FILTERED: 2024 return KVM_MSR_EXIT_REASON_FILTER; 2025 default: 2026 return KVM_MSR_EXIT_REASON_INVAL; 2027 } 2028 } 2029 2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2031 u32 exit_reason, u64 data, 2032 int (*completion)(struct kvm_vcpu *vcpu), 2033 int r) 2034 { 2035 u64 msr_reason = kvm_msr_reason(r); 2036 2037 /* Check if the user wanted to know about this MSR fault */ 2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2039 return 0; 2040 2041 vcpu->run->exit_reason = exit_reason; 2042 vcpu->run->msr.error = 0; 2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2044 vcpu->run->msr.reason = msr_reason; 2045 vcpu->run->msr.index = index; 2046 vcpu->run->msr.data = data; 2047 vcpu->arch.complete_userspace_io = completion; 2048 2049 return 1; 2050 } 2051 2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2053 { 2054 u32 ecx = kvm_rcx_read(vcpu); 2055 u64 data; 2056 int r; 2057 2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2059 2060 if (!r) { 2061 trace_kvm_msr_read(ecx, data); 2062 2063 kvm_rax_write(vcpu, data & -1u); 2064 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2065 } else { 2066 /* MSR read failed? See if we should ask user space */ 2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2068 complete_fast_rdmsr, r)) 2069 return 0; 2070 trace_kvm_msr_read_ex(ecx); 2071 } 2072 2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2076 2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2078 { 2079 u32 ecx = kvm_rcx_read(vcpu); 2080 u64 data = kvm_read_edx_eax(vcpu); 2081 int r; 2082 2083 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2084 2085 if (!r) { 2086 trace_kvm_msr_write(ecx, data); 2087 } else { 2088 /* MSR write failed? See if we should ask user space */ 2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2090 complete_fast_msr_access, r)) 2091 return 0; 2092 /* Signal all other negative errors to userspace */ 2093 if (r < 0) 2094 return r; 2095 trace_kvm_msr_write_ex(ecx, data); 2096 } 2097 2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2101 2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2103 { 2104 return kvm_skip_emulated_instruction(vcpu); 2105 } 2106 2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2108 { 2109 /* Treat an INVD instruction as a NOP and just skip it. */ 2110 return kvm_emulate_as_nop(vcpu); 2111 } 2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2113 2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2115 { 2116 kvm_queue_exception(vcpu, UD_VECTOR); 2117 return 1; 2118 } 2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2120 2121 2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2123 { 2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2126 return kvm_handle_invalid_op(vcpu); 2127 2128 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2129 return kvm_emulate_as_nop(vcpu); 2130 } 2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2132 { 2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2134 } 2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2136 2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2138 { 2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2140 } 2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2142 2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2144 { 2145 xfer_to_guest_mode_prepare(); 2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2147 xfer_to_guest_mode_work_pending(); 2148 } 2149 2150 /* 2151 * The fast path for frequent and performance sensitive wrmsr emulation, 2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2155 * other cases which must be called after interrupts are enabled on the host. 2156 */ 2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2158 { 2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2160 return 1; 2161 2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2165 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2167 2168 return 1; 2169 } 2170 2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2172 { 2173 if (!kvm_can_use_hv_timer(vcpu)) 2174 return 1; 2175 2176 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2177 return 0; 2178 } 2179 2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2181 { 2182 u32 msr = kvm_rcx_read(vcpu); 2183 u64 data; 2184 fastpath_t ret = EXIT_FASTPATH_NONE; 2185 2186 kvm_vcpu_srcu_read_lock(vcpu); 2187 2188 switch (msr) { 2189 case APIC_BASE_MSR + (APIC_ICR >> 4): 2190 data = kvm_read_edx_eax(vcpu); 2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2192 kvm_skip_emulated_instruction(vcpu); 2193 ret = EXIT_FASTPATH_EXIT_HANDLED; 2194 } 2195 break; 2196 case MSR_IA32_TSC_DEADLINE: 2197 data = kvm_read_edx_eax(vcpu); 2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2199 kvm_skip_emulated_instruction(vcpu); 2200 ret = EXIT_FASTPATH_REENTER_GUEST; 2201 } 2202 break; 2203 default: 2204 break; 2205 } 2206 2207 if (ret != EXIT_FASTPATH_NONE) 2208 trace_kvm_msr_write(msr, data); 2209 2210 kvm_vcpu_srcu_read_unlock(vcpu); 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2215 2216 /* 2217 * Adapt set_msr() to msr_io()'s calling convention 2218 */ 2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2220 { 2221 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2222 } 2223 2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2225 { 2226 u64 val; 2227 2228 /* 2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2230 * not support modifying the guest vCPU model on the fly, e.g. changing 2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2232 * writes of the same value, e.g. to allow userspace to blindly stuff 2233 * all MSRs when emulating RESET. 2234 */ 2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2236 if (do_get_msr(vcpu, index, &val) || *data != val) 2237 return -EINVAL; 2238 2239 return 0; 2240 } 2241 2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2243 } 2244 2245 #ifdef CONFIG_X86_64 2246 struct pvclock_clock { 2247 int vclock_mode; 2248 u64 cycle_last; 2249 u64 mask; 2250 u32 mult; 2251 u32 shift; 2252 u64 base_cycles; 2253 u64 offset; 2254 }; 2255 2256 struct pvclock_gtod_data { 2257 seqcount_t seq; 2258 2259 struct pvclock_clock clock; /* extract of a clocksource struct */ 2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2261 2262 ktime_t offs_boot; 2263 u64 wall_time_sec; 2264 }; 2265 2266 static struct pvclock_gtod_data pvclock_gtod_data; 2267 2268 static void update_pvclock_gtod(struct timekeeper *tk) 2269 { 2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2271 2272 write_seqcount_begin(&vdata->seq); 2273 2274 /* copy pvclock gtod data */ 2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2277 vdata->clock.mask = tk->tkr_mono.mask; 2278 vdata->clock.mult = tk->tkr_mono.mult; 2279 vdata->clock.shift = tk->tkr_mono.shift; 2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2281 vdata->clock.offset = tk->tkr_mono.base; 2282 2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2285 vdata->raw_clock.mask = tk->tkr_raw.mask; 2286 vdata->raw_clock.mult = tk->tkr_raw.mult; 2287 vdata->raw_clock.shift = tk->tkr_raw.shift; 2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2289 vdata->raw_clock.offset = tk->tkr_raw.base; 2290 2291 vdata->wall_time_sec = tk->xtime_sec; 2292 2293 vdata->offs_boot = tk->offs_boot; 2294 2295 write_seqcount_end(&vdata->seq); 2296 } 2297 2298 static s64 get_kvmclock_base_ns(void) 2299 { 2300 /* Count up from boot time, but with the frequency of the raw clock. */ 2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2302 } 2303 #else 2304 static s64 get_kvmclock_base_ns(void) 2305 { 2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2307 return ktime_get_boottime_ns(); 2308 } 2309 #endif 2310 2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2312 { 2313 int version; 2314 int r; 2315 struct pvclock_wall_clock wc; 2316 u32 wc_sec_hi; 2317 u64 wall_nsec; 2318 2319 if (!wall_clock) 2320 return; 2321 2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2323 if (r) 2324 return; 2325 2326 if (version & 1) 2327 ++version; /* first time write, random junk */ 2328 2329 ++version; 2330 2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2332 return; 2333 2334 /* 2335 * The guest calculates current wall clock time by adding 2336 * system time (updated by kvm_guest_time_update below) to the 2337 * wall clock specified here. We do the reverse here. 2338 */ 2339 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2340 2341 wc.nsec = do_div(wall_nsec, 1000000000); 2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2343 wc.version = version; 2344 2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2346 2347 if (sec_hi_ofs) { 2348 wc_sec_hi = wall_nsec >> 32; 2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2350 &wc_sec_hi, sizeof(wc_sec_hi)); 2351 } 2352 2353 version++; 2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2355 } 2356 2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2358 bool old_msr, bool host_initiated) 2359 { 2360 struct kvm_arch *ka = &vcpu->kvm->arch; 2361 2362 if (vcpu->vcpu_id == 0 && !host_initiated) { 2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2365 2366 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2367 } 2368 2369 vcpu->arch.time = system_time; 2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2371 2372 /* we verify if the enable bit is set... */ 2373 if (system_time & 1) 2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2375 sizeof(struct pvclock_vcpu_time_info)); 2376 else 2377 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2378 2379 return; 2380 } 2381 2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2383 { 2384 do_shl32_div32(dividend, divisor); 2385 return dividend; 2386 } 2387 2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2389 s8 *pshift, u32 *pmultiplier) 2390 { 2391 uint64_t scaled64; 2392 int32_t shift = 0; 2393 uint64_t tps64; 2394 uint32_t tps32; 2395 2396 tps64 = base_hz; 2397 scaled64 = scaled_hz; 2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2399 tps64 >>= 1; 2400 shift--; 2401 } 2402 2403 tps32 = (uint32_t)tps64; 2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2406 scaled64 >>= 1; 2407 else 2408 tps32 <<= 1; 2409 shift++; 2410 } 2411 2412 *pshift = shift; 2413 *pmultiplier = div_frac(scaled64, tps32); 2414 } 2415 2416 #ifdef CONFIG_X86_64 2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2418 #endif 2419 2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2421 static unsigned long max_tsc_khz; 2422 2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2424 { 2425 u64 v = (u64)khz * (1000000 + ppm); 2426 do_div(v, 1000000); 2427 return v; 2428 } 2429 2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2431 2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2433 { 2434 u64 ratio; 2435 2436 /* Guest TSC same frequency as host TSC? */ 2437 if (!scale) { 2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2439 return 0; 2440 } 2441 2442 /* TSC scaling supported? */ 2443 if (!kvm_caps.has_tsc_control) { 2444 if (user_tsc_khz > tsc_khz) { 2445 vcpu->arch.tsc_catchup = 1; 2446 vcpu->arch.tsc_always_catchup = 1; 2447 return 0; 2448 } else { 2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2450 return -1; 2451 } 2452 } 2453 2454 /* TSC scaling required - calculate ratio */ 2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2456 user_tsc_khz, tsc_khz); 2457 2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2460 user_tsc_khz); 2461 return -1; 2462 } 2463 2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2465 return 0; 2466 } 2467 2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2469 { 2470 u32 thresh_lo, thresh_hi; 2471 int use_scaling = 0; 2472 2473 /* tsc_khz can be zero if TSC calibration fails */ 2474 if (user_tsc_khz == 0) { 2475 /* set tsc_scaling_ratio to a safe value */ 2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2477 return -1; 2478 } 2479 2480 /* Compute a scale to convert nanoseconds in TSC cycles */ 2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2482 &vcpu->arch.virtual_tsc_shift, 2483 &vcpu->arch.virtual_tsc_mult); 2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2485 2486 /* 2487 * Compute the variation in TSC rate which is acceptable 2488 * within the range of tolerance and decide if the 2489 * rate being applied is within that bounds of the hardware 2490 * rate. If so, no scaling or compensation need be done. 2491 */ 2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2496 user_tsc_khz, thresh_lo, thresh_hi); 2497 use_scaling = 1; 2498 } 2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2500 } 2501 2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2503 { 2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2505 vcpu->arch.virtual_tsc_mult, 2506 vcpu->arch.virtual_tsc_shift); 2507 tsc += vcpu->arch.this_tsc_write; 2508 return tsc; 2509 } 2510 2511 #ifdef CONFIG_X86_64 2512 static inline int gtod_is_based_on_tsc(int mode) 2513 { 2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2515 } 2516 #endif 2517 2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2519 { 2520 #ifdef CONFIG_X86_64 2521 bool vcpus_matched; 2522 struct kvm_arch *ka = &vcpu->kvm->arch; 2523 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2524 2525 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2526 atomic_read(&vcpu->kvm->online_vcpus)); 2527 2528 /* 2529 * Once the masterclock is enabled, always perform request in 2530 * order to update it. 2531 * 2532 * In order to enable masterclock, the host clocksource must be TSC 2533 * and the vcpus need to have matched TSCs. When that happens, 2534 * perform request to enable masterclock. 2535 */ 2536 if (ka->use_master_clock || 2537 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2718 { 2719 struct kvm *kvm = vcpu->kvm; 2720 u64 offset, ns, elapsed; 2721 unsigned long flags; 2722 bool matched = false; 2723 bool synchronizing = false; 2724 2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2726 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2727 ns = get_kvmclock_base_ns(); 2728 elapsed = ns - kvm->arch.last_tsc_nsec; 2729 2730 if (vcpu->arch.virtual_tsc_khz) { 2731 if (data == 0) { 2732 /* 2733 * detection of vcpu initialization -- need to sync 2734 * with other vCPUs. This particularly helps to keep 2735 * kvm_clock stable after CPU hotplug 2736 */ 2737 synchronizing = true; 2738 } else { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Special case: TSC write with a small delta (1 second) 2744 * of virtual cycle time against real time is 2745 * interpreted as an attempt to synchronize the CPU. 2746 */ 2747 synchronizing = data < tsc_exp + tsc_hz && 2748 data + tsc_hz > tsc_exp; 2749 } 2750 } 2751 2752 /* 2753 * For a reliable TSC, we can match TSC offsets, and for an unstable 2754 * TSC, we add elapsed time in this computation. We could let the 2755 * compensation code attempt to catch up if we fall behind, but 2756 * it's better to try to match offsets from the beginning. 2757 */ 2758 if (synchronizing && 2759 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2760 if (!kvm_check_tsc_unstable()) { 2761 offset = kvm->arch.cur_tsc_offset; 2762 } else { 2763 u64 delta = nsec_to_cycles(vcpu, elapsed); 2764 data += delta; 2765 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2766 } 2767 matched = true; 2768 } 2769 2770 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2771 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2772 } 2773 2774 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2775 s64 adjustment) 2776 { 2777 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2778 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2779 } 2780 2781 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2782 { 2783 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2784 WARN_ON(adjustment < 0); 2785 adjustment = kvm_scale_tsc((u64) adjustment, 2786 vcpu->arch.l1_tsc_scaling_ratio); 2787 adjust_tsc_offset_guest(vcpu, adjustment); 2788 } 2789 2790 #ifdef CONFIG_X86_64 2791 2792 static u64 read_tsc(void) 2793 { 2794 u64 ret = (u64)rdtsc_ordered(); 2795 u64 last = pvclock_gtod_data.clock.cycle_last; 2796 2797 if (likely(ret >= last)) 2798 return ret; 2799 2800 /* 2801 * GCC likes to generate cmov here, but this branch is extremely 2802 * predictable (it's just a function of time and the likely is 2803 * very likely) and there's a data dependence, so force GCC 2804 * to generate a branch instead. I don't barrier() because 2805 * we don't actually need a barrier, and if this function 2806 * ever gets inlined it will generate worse code. 2807 */ 2808 asm volatile (""); 2809 return last; 2810 } 2811 2812 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2813 int *mode) 2814 { 2815 u64 tsc_pg_val; 2816 long v; 2817 2818 switch (clock->vclock_mode) { 2819 case VDSO_CLOCKMODE_HVCLOCK: 2820 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2821 tsc_timestamp, &tsc_pg_val)) { 2822 /* TSC page valid */ 2823 *mode = VDSO_CLOCKMODE_HVCLOCK; 2824 v = (tsc_pg_val - clock->cycle_last) & 2825 clock->mask; 2826 } else { 2827 /* TSC page invalid */ 2828 *mode = VDSO_CLOCKMODE_NONE; 2829 } 2830 break; 2831 case VDSO_CLOCKMODE_TSC: 2832 *mode = VDSO_CLOCKMODE_TSC; 2833 *tsc_timestamp = read_tsc(); 2834 v = (*tsc_timestamp - clock->cycle_last) & 2835 clock->mask; 2836 break; 2837 default: 2838 *mode = VDSO_CLOCKMODE_NONE; 2839 } 2840 2841 if (*mode == VDSO_CLOCKMODE_NONE) 2842 *tsc_timestamp = v = 0; 2843 2844 return v * clock->mult; 2845 } 2846 2847 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2848 { 2849 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2850 unsigned long seq; 2851 int mode; 2852 u64 ns; 2853 2854 do { 2855 seq = read_seqcount_begin(>od->seq); 2856 ns = gtod->raw_clock.base_cycles; 2857 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2858 ns >>= gtod->raw_clock.shift; 2859 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2860 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2861 *t = ns; 2862 2863 return mode; 2864 } 2865 2866 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2867 { 2868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2869 unsigned long seq; 2870 int mode; 2871 u64 ns; 2872 2873 do { 2874 seq = read_seqcount_begin(>od->seq); 2875 ts->tv_sec = gtod->wall_time_sec; 2876 ns = gtod->clock.base_cycles; 2877 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2878 ns >>= gtod->clock.shift; 2879 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2880 2881 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2882 ts->tv_nsec = ns; 2883 2884 return mode; 2885 } 2886 2887 /* returns true if host is using TSC based clocksource */ 2888 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2889 { 2890 /* checked again under seqlock below */ 2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2892 return false; 2893 2894 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2895 tsc_timestamp)); 2896 } 2897 2898 /* returns true if host is using TSC based clocksource */ 2899 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2900 u64 *tsc_timestamp) 2901 { 2902 /* checked again under seqlock below */ 2903 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2904 return false; 2905 2906 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2907 } 2908 #endif 2909 2910 /* 2911 * 2912 * Assuming a stable TSC across physical CPUS, and a stable TSC 2913 * across virtual CPUs, the following condition is possible. 2914 * Each numbered line represents an event visible to both 2915 * CPUs at the next numbered event. 2916 * 2917 * "timespecX" represents host monotonic time. "tscX" represents 2918 * RDTSC value. 2919 * 2920 * VCPU0 on CPU0 | VCPU1 on CPU1 2921 * 2922 * 1. read timespec0,tsc0 2923 * 2. | timespec1 = timespec0 + N 2924 * | tsc1 = tsc0 + M 2925 * 3. transition to guest | transition to guest 2926 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2927 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2928 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2929 * 2930 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2931 * 2932 * - ret0 < ret1 2933 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2934 * ... 2935 * - 0 < N - M => M < N 2936 * 2937 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2938 * always the case (the difference between two distinct xtime instances 2939 * might be smaller then the difference between corresponding TSC reads, 2940 * when updating guest vcpus pvclock areas). 2941 * 2942 * To avoid that problem, do not allow visibility of distinct 2943 * system_timestamp/tsc_timestamp values simultaneously: use a master 2944 * copy of host monotonic time values. Update that master copy 2945 * in lockstep. 2946 * 2947 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2948 * 2949 */ 2950 2951 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2952 { 2953 #ifdef CONFIG_X86_64 2954 struct kvm_arch *ka = &kvm->arch; 2955 int vclock_mode; 2956 bool host_tsc_clocksource, vcpus_matched; 2957 2958 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2959 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2960 atomic_read(&kvm->online_vcpus)); 2961 2962 /* 2963 * If the host uses TSC clock, then passthrough TSC as stable 2964 * to the guest. 2965 */ 2966 host_tsc_clocksource = kvm_get_time_and_clockread( 2967 &ka->master_kernel_ns, 2968 &ka->master_cycle_now); 2969 2970 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2971 && !ka->backwards_tsc_observed 2972 && !ka->boot_vcpu_runs_old_kvmclock; 2973 2974 if (ka->use_master_clock) 2975 atomic_set(&kvm_guest_has_master_clock, 1); 2976 2977 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2978 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2979 vcpus_matched); 2980 #endif 2981 } 2982 2983 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2984 { 2985 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2986 } 2987 2988 static void __kvm_start_pvclock_update(struct kvm *kvm) 2989 { 2990 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2991 write_seqcount_begin(&kvm->arch.pvclock_sc); 2992 } 2993 2994 static void kvm_start_pvclock_update(struct kvm *kvm) 2995 { 2996 kvm_make_mclock_inprogress_request(kvm); 2997 2998 /* no guest entries from this point */ 2999 __kvm_start_pvclock_update(kvm); 3000 } 3001 3002 static void kvm_end_pvclock_update(struct kvm *kvm) 3003 { 3004 struct kvm_arch *ka = &kvm->arch; 3005 struct kvm_vcpu *vcpu; 3006 unsigned long i; 3007 3008 write_seqcount_end(&ka->pvclock_sc); 3009 raw_spin_unlock_irq(&ka->tsc_write_lock); 3010 kvm_for_each_vcpu(i, vcpu, kvm) 3011 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3012 3013 /* guest entries allowed */ 3014 kvm_for_each_vcpu(i, vcpu, kvm) 3015 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3016 } 3017 3018 static void kvm_update_masterclock(struct kvm *kvm) 3019 { 3020 kvm_hv_request_tsc_page_update(kvm); 3021 kvm_start_pvclock_update(kvm); 3022 pvclock_update_vm_gtod_copy(kvm); 3023 kvm_end_pvclock_update(kvm); 3024 } 3025 3026 /* 3027 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3028 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3029 * can change during boot even if the TSC is constant, as it's possible for KVM 3030 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3031 * notification when calibration completes, but practically speaking calibration 3032 * will complete before userspace is alive enough to create VMs. 3033 */ 3034 static unsigned long get_cpu_tsc_khz(void) 3035 { 3036 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3037 return tsc_khz; 3038 else 3039 return __this_cpu_read(cpu_tsc_khz); 3040 } 3041 3042 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3043 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3044 { 3045 struct kvm_arch *ka = &kvm->arch; 3046 struct pvclock_vcpu_time_info hv_clock; 3047 3048 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3049 get_cpu(); 3050 3051 data->flags = 0; 3052 if (ka->use_master_clock && 3053 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3054 #ifdef CONFIG_X86_64 3055 struct timespec64 ts; 3056 3057 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3058 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3059 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3060 } else 3061 #endif 3062 data->host_tsc = rdtsc(); 3063 3064 data->flags |= KVM_CLOCK_TSC_STABLE; 3065 hv_clock.tsc_timestamp = ka->master_cycle_now; 3066 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3067 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3068 &hv_clock.tsc_shift, 3069 &hv_clock.tsc_to_system_mul); 3070 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3071 } else { 3072 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3073 } 3074 3075 put_cpu(); 3076 } 3077 3078 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3079 { 3080 struct kvm_arch *ka = &kvm->arch; 3081 unsigned seq; 3082 3083 do { 3084 seq = read_seqcount_begin(&ka->pvclock_sc); 3085 __get_kvmclock(kvm, data); 3086 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3087 } 3088 3089 u64 get_kvmclock_ns(struct kvm *kvm) 3090 { 3091 struct kvm_clock_data data; 3092 3093 get_kvmclock(kvm, &data); 3094 return data.clock; 3095 } 3096 3097 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3098 struct gfn_to_pfn_cache *gpc, 3099 unsigned int offset) 3100 { 3101 struct kvm_vcpu_arch *vcpu = &v->arch; 3102 struct pvclock_vcpu_time_info *guest_hv_clock; 3103 unsigned long flags; 3104 3105 read_lock_irqsave(&gpc->lock, flags); 3106 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3107 read_unlock_irqrestore(&gpc->lock, flags); 3108 3109 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3110 return; 3111 3112 read_lock_irqsave(&gpc->lock, flags); 3113 } 3114 3115 guest_hv_clock = (void *)(gpc->khva + offset); 3116 3117 /* 3118 * This VCPU is paused, but it's legal for a guest to read another 3119 * VCPU's kvmclock, so we really have to follow the specification where 3120 * it says that version is odd if data is being modified, and even after 3121 * it is consistent. 3122 */ 3123 3124 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3125 smp_wmb(); 3126 3127 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3128 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3129 3130 if (vcpu->pvclock_set_guest_stopped_request) { 3131 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3132 vcpu->pvclock_set_guest_stopped_request = false; 3133 } 3134 3135 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3136 smp_wmb(); 3137 3138 guest_hv_clock->version = ++vcpu->hv_clock.version; 3139 3140 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3141 read_unlock_irqrestore(&gpc->lock, flags); 3142 3143 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3144 } 3145 3146 static int kvm_guest_time_update(struct kvm_vcpu *v) 3147 { 3148 unsigned long flags, tgt_tsc_khz; 3149 unsigned seq; 3150 struct kvm_vcpu_arch *vcpu = &v->arch; 3151 struct kvm_arch *ka = &v->kvm->arch; 3152 s64 kernel_ns; 3153 u64 tsc_timestamp, host_tsc; 3154 u8 pvclock_flags; 3155 bool use_master_clock; 3156 3157 kernel_ns = 0; 3158 host_tsc = 0; 3159 3160 /* 3161 * If the host uses TSC clock, then passthrough TSC as stable 3162 * to the guest. 3163 */ 3164 do { 3165 seq = read_seqcount_begin(&ka->pvclock_sc); 3166 use_master_clock = ka->use_master_clock; 3167 if (use_master_clock) { 3168 host_tsc = ka->master_cycle_now; 3169 kernel_ns = ka->master_kernel_ns; 3170 } 3171 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3172 3173 /* Keep irq disabled to prevent changes to the clock */ 3174 local_irq_save(flags); 3175 tgt_tsc_khz = get_cpu_tsc_khz(); 3176 if (unlikely(tgt_tsc_khz == 0)) { 3177 local_irq_restore(flags); 3178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3179 return 1; 3180 } 3181 if (!use_master_clock) { 3182 host_tsc = rdtsc(); 3183 kernel_ns = get_kvmclock_base_ns(); 3184 } 3185 3186 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3187 3188 /* 3189 * We may have to catch up the TSC to match elapsed wall clock 3190 * time for two reasons, even if kvmclock is used. 3191 * 1) CPU could have been running below the maximum TSC rate 3192 * 2) Broken TSC compensation resets the base at each VCPU 3193 * entry to avoid unknown leaps of TSC even when running 3194 * again on the same CPU. This may cause apparent elapsed 3195 * time to disappear, and the guest to stand still or run 3196 * very slowly. 3197 */ 3198 if (vcpu->tsc_catchup) { 3199 u64 tsc = compute_guest_tsc(v, kernel_ns); 3200 if (tsc > tsc_timestamp) { 3201 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3202 tsc_timestamp = tsc; 3203 } 3204 } 3205 3206 local_irq_restore(flags); 3207 3208 /* With all the info we got, fill in the values */ 3209 3210 if (kvm_caps.has_tsc_control) 3211 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3212 v->arch.l1_tsc_scaling_ratio); 3213 3214 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3215 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3216 &vcpu->hv_clock.tsc_shift, 3217 &vcpu->hv_clock.tsc_to_system_mul); 3218 vcpu->hw_tsc_khz = tgt_tsc_khz; 3219 kvm_xen_update_tsc_info(v); 3220 } 3221 3222 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3223 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3224 vcpu->last_guest_tsc = tsc_timestamp; 3225 3226 /* If the host uses TSC clocksource, then it is stable */ 3227 pvclock_flags = 0; 3228 if (use_master_clock) 3229 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3230 3231 vcpu->hv_clock.flags = pvclock_flags; 3232 3233 if (vcpu->pv_time.active) 3234 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3235 if (vcpu->xen.vcpu_info_cache.active) 3236 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3237 offsetof(struct compat_vcpu_info, time)); 3238 if (vcpu->xen.vcpu_time_info_cache.active) 3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3240 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3241 return 0; 3242 } 3243 3244 /* 3245 * kvmclock updates which are isolated to a given vcpu, such as 3246 * vcpu->cpu migration, should not allow system_timestamp from 3247 * the rest of the vcpus to remain static. Otherwise ntp frequency 3248 * correction applies to one vcpu's system_timestamp but not 3249 * the others. 3250 * 3251 * So in those cases, request a kvmclock update for all vcpus. 3252 * We need to rate-limit these requests though, as they can 3253 * considerably slow guests that have a large number of vcpus. 3254 * The time for a remote vcpu to update its kvmclock is bound 3255 * by the delay we use to rate-limit the updates. 3256 */ 3257 3258 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3259 3260 static void kvmclock_update_fn(struct work_struct *work) 3261 { 3262 unsigned long i; 3263 struct delayed_work *dwork = to_delayed_work(work); 3264 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3265 kvmclock_update_work); 3266 struct kvm *kvm = container_of(ka, struct kvm, arch); 3267 struct kvm_vcpu *vcpu; 3268 3269 kvm_for_each_vcpu(i, vcpu, kvm) { 3270 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3271 kvm_vcpu_kick(vcpu); 3272 } 3273 } 3274 3275 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3276 { 3277 struct kvm *kvm = v->kvm; 3278 3279 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3280 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3281 KVMCLOCK_UPDATE_DELAY); 3282 } 3283 3284 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3285 3286 static void kvmclock_sync_fn(struct work_struct *work) 3287 { 3288 struct delayed_work *dwork = to_delayed_work(work); 3289 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3290 kvmclock_sync_work); 3291 struct kvm *kvm = container_of(ka, struct kvm, arch); 3292 3293 if (!kvmclock_periodic_sync) 3294 return; 3295 3296 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3297 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3298 KVMCLOCK_SYNC_PERIOD); 3299 } 3300 3301 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3302 static bool is_mci_control_msr(u32 msr) 3303 { 3304 return (msr & 3) == 0; 3305 } 3306 static bool is_mci_status_msr(u32 msr) 3307 { 3308 return (msr & 3) == 1; 3309 } 3310 3311 /* 3312 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3313 */ 3314 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3315 { 3316 /* McStatusWrEn enabled? */ 3317 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3318 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3319 3320 return false; 3321 } 3322 3323 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3324 { 3325 u64 mcg_cap = vcpu->arch.mcg_cap; 3326 unsigned bank_num = mcg_cap & 0xff; 3327 u32 msr = msr_info->index; 3328 u64 data = msr_info->data; 3329 u32 offset, last_msr; 3330 3331 switch (msr) { 3332 case MSR_IA32_MCG_STATUS: 3333 vcpu->arch.mcg_status = data; 3334 break; 3335 case MSR_IA32_MCG_CTL: 3336 if (!(mcg_cap & MCG_CTL_P) && 3337 (data || !msr_info->host_initiated)) 3338 return 1; 3339 if (data != 0 && data != ~(u64)0) 3340 return 1; 3341 vcpu->arch.mcg_ctl = data; 3342 break; 3343 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3344 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3345 if (msr > last_msr) 3346 return 1; 3347 3348 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3349 return 1; 3350 /* An attempt to write a 1 to a reserved bit raises #GP */ 3351 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3352 return 1; 3353 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3354 last_msr + 1 - MSR_IA32_MC0_CTL2); 3355 vcpu->arch.mci_ctl2_banks[offset] = data; 3356 break; 3357 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3358 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3359 if (msr > last_msr) 3360 return 1; 3361 3362 /* 3363 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3364 * values are architecturally undefined. But, some Linux 3365 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3366 * issue on AMD K8s, allow bit 10 to be clear when setting all 3367 * other bits in order to avoid an uncaught #GP in the guest. 3368 * 3369 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3370 * single-bit ECC data errors. 3371 */ 3372 if (is_mci_control_msr(msr) && 3373 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3374 return 1; 3375 3376 /* 3377 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3378 * AMD-based CPUs allow non-zero values, but if and only if 3379 * HWCR[McStatusWrEn] is set. 3380 */ 3381 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3382 data != 0 && !can_set_mci_status(vcpu)) 3383 return 1; 3384 3385 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3386 last_msr + 1 - MSR_IA32_MC0_CTL); 3387 vcpu->arch.mce_banks[offset] = data; 3388 break; 3389 default: 3390 return 1; 3391 } 3392 return 0; 3393 } 3394 3395 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3396 { 3397 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3398 3399 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3400 } 3401 3402 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3403 { 3404 gpa_t gpa = data & ~0x3f; 3405 3406 /* Bits 4:5 are reserved, Should be zero */ 3407 if (data & 0x30) 3408 return 1; 3409 3410 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3411 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3412 return 1; 3413 3414 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3415 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3416 return 1; 3417 3418 if (!lapic_in_kernel(vcpu)) 3419 return data ? 1 : 0; 3420 3421 vcpu->arch.apf.msr_en_val = data; 3422 3423 if (!kvm_pv_async_pf_enabled(vcpu)) { 3424 kvm_clear_async_pf_completion_queue(vcpu); 3425 kvm_async_pf_hash_reset(vcpu); 3426 return 0; 3427 } 3428 3429 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3430 sizeof(u64))) 3431 return 1; 3432 3433 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3434 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3435 3436 kvm_async_pf_wakeup_all(vcpu); 3437 3438 return 0; 3439 } 3440 3441 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3442 { 3443 /* Bits 8-63 are reserved */ 3444 if (data >> 8) 3445 return 1; 3446 3447 if (!lapic_in_kernel(vcpu)) 3448 return 1; 3449 3450 vcpu->arch.apf.msr_int_val = data; 3451 3452 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3453 3454 return 0; 3455 } 3456 3457 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3458 { 3459 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3460 vcpu->arch.time = 0; 3461 } 3462 3463 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3464 { 3465 ++vcpu->stat.tlb_flush; 3466 static_call(kvm_x86_flush_tlb_all)(vcpu); 3467 3468 /* Flushing all ASIDs flushes the current ASID... */ 3469 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3470 } 3471 3472 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3473 { 3474 ++vcpu->stat.tlb_flush; 3475 3476 if (!tdp_enabled) { 3477 /* 3478 * A TLB flush on behalf of the guest is equivalent to 3479 * INVPCID(all), toggling CR4.PGE, etc., which requires 3480 * a forced sync of the shadow page tables. Ensure all the 3481 * roots are synced and the guest TLB in hardware is clean. 3482 */ 3483 kvm_mmu_sync_roots(vcpu); 3484 kvm_mmu_sync_prev_roots(vcpu); 3485 } 3486 3487 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3488 3489 /* 3490 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3491 * grained flushing. 3492 */ 3493 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3494 } 3495 3496 3497 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3498 { 3499 ++vcpu->stat.tlb_flush; 3500 static_call(kvm_x86_flush_tlb_current)(vcpu); 3501 } 3502 3503 /* 3504 * Service "local" TLB flush requests, which are specific to the current MMU 3505 * context. In addition to the generic event handling in vcpu_enter_guest(), 3506 * TLB flushes that are targeted at an MMU context also need to be serviced 3507 * prior before nested VM-Enter/VM-Exit. 3508 */ 3509 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3510 { 3511 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3512 kvm_vcpu_flush_tlb_current(vcpu); 3513 3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3515 kvm_vcpu_flush_tlb_guest(vcpu); 3516 } 3517 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3518 3519 static void record_steal_time(struct kvm_vcpu *vcpu) 3520 { 3521 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3522 struct kvm_steal_time __user *st; 3523 struct kvm_memslots *slots; 3524 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3525 u64 steal; 3526 u32 version; 3527 3528 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3529 kvm_xen_runstate_set_running(vcpu); 3530 return; 3531 } 3532 3533 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3534 return; 3535 3536 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3537 return; 3538 3539 slots = kvm_memslots(vcpu->kvm); 3540 3541 if (unlikely(slots->generation != ghc->generation || 3542 gpa != ghc->gpa || 3543 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3544 /* We rely on the fact that it fits in a single page. */ 3545 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3546 3547 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3548 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3549 return; 3550 } 3551 3552 st = (struct kvm_steal_time __user *)ghc->hva; 3553 /* 3554 * Doing a TLB flush here, on the guest's behalf, can avoid 3555 * expensive IPIs. 3556 */ 3557 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3558 u8 st_preempted = 0; 3559 int err = -EFAULT; 3560 3561 if (!user_access_begin(st, sizeof(*st))) 3562 return; 3563 3564 asm volatile("1: xchgb %0, %2\n" 3565 "xor %1, %1\n" 3566 "2:\n" 3567 _ASM_EXTABLE_UA(1b, 2b) 3568 : "+q" (st_preempted), 3569 "+&r" (err), 3570 "+m" (st->preempted)); 3571 if (err) 3572 goto out; 3573 3574 user_access_end(); 3575 3576 vcpu->arch.st.preempted = 0; 3577 3578 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3579 st_preempted & KVM_VCPU_FLUSH_TLB); 3580 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3581 kvm_vcpu_flush_tlb_guest(vcpu); 3582 3583 if (!user_access_begin(st, sizeof(*st))) 3584 goto dirty; 3585 } else { 3586 if (!user_access_begin(st, sizeof(*st))) 3587 return; 3588 3589 unsafe_put_user(0, &st->preempted, out); 3590 vcpu->arch.st.preempted = 0; 3591 } 3592 3593 unsafe_get_user(version, &st->version, out); 3594 if (version & 1) 3595 version += 1; /* first time write, random junk */ 3596 3597 version += 1; 3598 unsafe_put_user(version, &st->version, out); 3599 3600 smp_wmb(); 3601 3602 unsafe_get_user(steal, &st->steal, out); 3603 steal += current->sched_info.run_delay - 3604 vcpu->arch.st.last_steal; 3605 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3606 unsafe_put_user(steal, &st->steal, out); 3607 3608 version += 1; 3609 unsafe_put_user(version, &st->version, out); 3610 3611 out: 3612 user_access_end(); 3613 dirty: 3614 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3615 } 3616 3617 static bool kvm_is_msr_to_save(u32 msr_index) 3618 { 3619 unsigned int i; 3620 3621 for (i = 0; i < num_msrs_to_save; i++) { 3622 if (msrs_to_save[i] == msr_index) 3623 return true; 3624 } 3625 3626 return false; 3627 } 3628 3629 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3630 { 3631 u32 msr = msr_info->index; 3632 u64 data = msr_info->data; 3633 3634 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3635 return kvm_xen_write_hypercall_page(vcpu, data); 3636 3637 switch (msr) { 3638 case MSR_AMD64_NB_CFG: 3639 case MSR_IA32_UCODE_WRITE: 3640 case MSR_VM_HSAVE_PA: 3641 case MSR_AMD64_PATCH_LOADER: 3642 case MSR_AMD64_BU_CFG2: 3643 case MSR_AMD64_DC_CFG: 3644 case MSR_F15H_EX_CFG: 3645 break; 3646 3647 case MSR_IA32_UCODE_REV: 3648 if (msr_info->host_initiated) 3649 vcpu->arch.microcode_version = data; 3650 break; 3651 case MSR_IA32_ARCH_CAPABILITIES: 3652 if (!msr_info->host_initiated) 3653 return 1; 3654 vcpu->arch.arch_capabilities = data; 3655 break; 3656 case MSR_IA32_PERF_CAPABILITIES: 3657 if (!msr_info->host_initiated) 3658 return 1; 3659 if (data & ~kvm_caps.supported_perf_cap) 3660 return 1; 3661 3662 /* 3663 * Note, this is not just a performance optimization! KVM 3664 * disallows changing feature MSRs after the vCPU has run; PMU 3665 * refresh will bug the VM if called after the vCPU has run. 3666 */ 3667 if (vcpu->arch.perf_capabilities == data) 3668 break; 3669 3670 vcpu->arch.perf_capabilities = data; 3671 kvm_pmu_refresh(vcpu); 3672 break; 3673 case MSR_IA32_PRED_CMD: 3674 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3675 return 1; 3676 3677 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3678 return 1; 3679 if (!data) 3680 break; 3681 3682 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3683 break; 3684 case MSR_IA32_FLUSH_CMD: 3685 if (!msr_info->host_initiated && 3686 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3687 return 1; 3688 3689 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3690 return 1; 3691 if (!data) 3692 break; 3693 3694 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3695 break; 3696 case MSR_EFER: 3697 return set_efer(vcpu, msr_info); 3698 case MSR_K7_HWCR: 3699 data &= ~(u64)0x40; /* ignore flush filter disable */ 3700 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3701 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3702 3703 /* Handle McStatusWrEn */ 3704 if (data == BIT_ULL(18)) { 3705 vcpu->arch.msr_hwcr = data; 3706 } else if (data != 0) { 3707 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3708 return 1; 3709 } 3710 break; 3711 case MSR_FAM10H_MMIO_CONF_BASE: 3712 if (data != 0) { 3713 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3714 return 1; 3715 } 3716 break; 3717 case MSR_IA32_CR_PAT: 3718 if (!kvm_pat_valid(data)) 3719 return 1; 3720 3721 vcpu->arch.pat = data; 3722 break; 3723 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3724 case MSR_MTRRdefType: 3725 return kvm_mtrr_set_msr(vcpu, msr, data); 3726 case MSR_IA32_APICBASE: 3727 return kvm_set_apic_base(vcpu, msr_info); 3728 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3729 return kvm_x2apic_msr_write(vcpu, msr, data); 3730 case MSR_IA32_TSC_DEADLINE: 3731 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3732 break; 3733 case MSR_IA32_TSC_ADJUST: 3734 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3735 if (!msr_info->host_initiated) { 3736 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3737 adjust_tsc_offset_guest(vcpu, adj); 3738 /* Before back to guest, tsc_timestamp must be adjusted 3739 * as well, otherwise guest's percpu pvclock time could jump. 3740 */ 3741 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3742 } 3743 vcpu->arch.ia32_tsc_adjust_msr = data; 3744 } 3745 break; 3746 case MSR_IA32_MISC_ENABLE: { 3747 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3748 3749 if (!msr_info->host_initiated) { 3750 /* RO bits */ 3751 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3752 return 1; 3753 3754 /* R bits, i.e. writes are ignored, but don't fault. */ 3755 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3756 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3757 } 3758 3759 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3760 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3761 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3762 return 1; 3763 vcpu->arch.ia32_misc_enable_msr = data; 3764 kvm_update_cpuid_runtime(vcpu); 3765 } else { 3766 vcpu->arch.ia32_misc_enable_msr = data; 3767 } 3768 break; 3769 } 3770 case MSR_IA32_SMBASE: 3771 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3772 return 1; 3773 vcpu->arch.smbase = data; 3774 break; 3775 case MSR_IA32_POWER_CTL: 3776 vcpu->arch.msr_ia32_power_ctl = data; 3777 break; 3778 case MSR_IA32_TSC: 3779 if (msr_info->host_initiated) { 3780 kvm_synchronize_tsc(vcpu, data); 3781 } else { 3782 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3783 adjust_tsc_offset_guest(vcpu, adj); 3784 vcpu->arch.ia32_tsc_adjust_msr += adj; 3785 } 3786 break; 3787 case MSR_IA32_XSS: 3788 if (!msr_info->host_initiated && 3789 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3790 return 1; 3791 /* 3792 * KVM supports exposing PT to the guest, but does not support 3793 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3794 * XSAVES/XRSTORS to save/restore PT MSRs. 3795 */ 3796 if (data & ~kvm_caps.supported_xss) 3797 return 1; 3798 vcpu->arch.ia32_xss = data; 3799 kvm_update_cpuid_runtime(vcpu); 3800 break; 3801 case MSR_SMI_COUNT: 3802 if (!msr_info->host_initiated) 3803 return 1; 3804 vcpu->arch.smi_count = data; 3805 break; 3806 case MSR_KVM_WALL_CLOCK_NEW: 3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3808 return 1; 3809 3810 vcpu->kvm->arch.wall_clock = data; 3811 kvm_write_wall_clock(vcpu->kvm, data, 0); 3812 break; 3813 case MSR_KVM_WALL_CLOCK: 3814 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3815 return 1; 3816 3817 vcpu->kvm->arch.wall_clock = data; 3818 kvm_write_wall_clock(vcpu->kvm, data, 0); 3819 break; 3820 case MSR_KVM_SYSTEM_TIME_NEW: 3821 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3822 return 1; 3823 3824 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3825 break; 3826 case MSR_KVM_SYSTEM_TIME: 3827 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3828 return 1; 3829 3830 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3831 break; 3832 case MSR_KVM_ASYNC_PF_EN: 3833 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3834 return 1; 3835 3836 if (kvm_pv_enable_async_pf(vcpu, data)) 3837 return 1; 3838 break; 3839 case MSR_KVM_ASYNC_PF_INT: 3840 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3841 return 1; 3842 3843 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3844 return 1; 3845 break; 3846 case MSR_KVM_ASYNC_PF_ACK: 3847 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3848 return 1; 3849 if (data & 0x1) { 3850 vcpu->arch.apf.pageready_pending = false; 3851 kvm_check_async_pf_completion(vcpu); 3852 } 3853 break; 3854 case MSR_KVM_STEAL_TIME: 3855 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3856 return 1; 3857 3858 if (unlikely(!sched_info_on())) 3859 return 1; 3860 3861 if (data & KVM_STEAL_RESERVED_MASK) 3862 return 1; 3863 3864 vcpu->arch.st.msr_val = data; 3865 3866 if (!(data & KVM_MSR_ENABLED)) 3867 break; 3868 3869 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3870 3871 break; 3872 case MSR_KVM_PV_EOI_EN: 3873 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3874 return 1; 3875 3876 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3877 return 1; 3878 break; 3879 3880 case MSR_KVM_POLL_CONTROL: 3881 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3882 return 1; 3883 3884 /* only enable bit supported */ 3885 if (data & (-1ULL << 1)) 3886 return 1; 3887 3888 vcpu->arch.msr_kvm_poll_control = data; 3889 break; 3890 3891 case MSR_IA32_MCG_CTL: 3892 case MSR_IA32_MCG_STATUS: 3893 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3894 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3895 return set_msr_mce(vcpu, msr_info); 3896 3897 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3898 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3899 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3900 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3901 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3902 return kvm_pmu_set_msr(vcpu, msr_info); 3903 3904 if (data) 3905 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3906 break; 3907 case MSR_K7_CLK_CTL: 3908 /* 3909 * Ignore all writes to this no longer documented MSR. 3910 * Writes are only relevant for old K7 processors, 3911 * all pre-dating SVM, but a recommended workaround from 3912 * AMD for these chips. It is possible to specify the 3913 * affected processor models on the command line, hence 3914 * the need to ignore the workaround. 3915 */ 3916 break; 3917 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3918 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3919 case HV_X64_MSR_SYNDBG_OPTIONS: 3920 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3921 case HV_X64_MSR_CRASH_CTL: 3922 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3923 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3924 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3925 case HV_X64_MSR_TSC_EMULATION_STATUS: 3926 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3927 return kvm_hv_set_msr_common(vcpu, msr, data, 3928 msr_info->host_initiated); 3929 case MSR_IA32_BBL_CR_CTL3: 3930 /* Drop writes to this legacy MSR -- see rdmsr 3931 * counterpart for further detail. 3932 */ 3933 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3934 break; 3935 case MSR_AMD64_OSVW_ID_LENGTH: 3936 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3937 return 1; 3938 vcpu->arch.osvw.length = data; 3939 break; 3940 case MSR_AMD64_OSVW_STATUS: 3941 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3942 return 1; 3943 vcpu->arch.osvw.status = data; 3944 break; 3945 case MSR_PLATFORM_INFO: 3946 if (!msr_info->host_initiated || 3947 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3948 cpuid_fault_enabled(vcpu))) 3949 return 1; 3950 vcpu->arch.msr_platform_info = data; 3951 break; 3952 case MSR_MISC_FEATURES_ENABLES: 3953 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3954 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3955 !supports_cpuid_fault(vcpu))) 3956 return 1; 3957 vcpu->arch.msr_misc_features_enables = data; 3958 break; 3959 #ifdef CONFIG_X86_64 3960 case MSR_IA32_XFD: 3961 if (!msr_info->host_initiated && 3962 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3963 return 1; 3964 3965 if (data & ~kvm_guest_supported_xfd(vcpu)) 3966 return 1; 3967 3968 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3969 break; 3970 case MSR_IA32_XFD_ERR: 3971 if (!msr_info->host_initiated && 3972 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3973 return 1; 3974 3975 if (data & ~kvm_guest_supported_xfd(vcpu)) 3976 return 1; 3977 3978 vcpu->arch.guest_fpu.xfd_err = data; 3979 break; 3980 #endif 3981 default: 3982 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3983 return kvm_pmu_set_msr(vcpu, msr_info); 3984 3985 /* 3986 * Userspace is allowed to write '0' to MSRs that KVM reports 3987 * as to-be-saved, even if an MSRs isn't fully supported. 3988 */ 3989 if (msr_info->host_initiated && !data && 3990 kvm_is_msr_to_save(msr)) 3991 break; 3992 3993 return KVM_MSR_RET_INVALID; 3994 } 3995 return 0; 3996 } 3997 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3998 3999 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4000 { 4001 u64 data; 4002 u64 mcg_cap = vcpu->arch.mcg_cap; 4003 unsigned bank_num = mcg_cap & 0xff; 4004 u32 offset, last_msr; 4005 4006 switch (msr) { 4007 case MSR_IA32_P5_MC_ADDR: 4008 case MSR_IA32_P5_MC_TYPE: 4009 data = 0; 4010 break; 4011 case MSR_IA32_MCG_CAP: 4012 data = vcpu->arch.mcg_cap; 4013 break; 4014 case MSR_IA32_MCG_CTL: 4015 if (!(mcg_cap & MCG_CTL_P) && !host) 4016 return 1; 4017 data = vcpu->arch.mcg_ctl; 4018 break; 4019 case MSR_IA32_MCG_STATUS: 4020 data = vcpu->arch.mcg_status; 4021 break; 4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4023 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4024 if (msr > last_msr) 4025 return 1; 4026 4027 if (!(mcg_cap & MCG_CMCI_P) && !host) 4028 return 1; 4029 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4030 last_msr + 1 - MSR_IA32_MC0_CTL2); 4031 data = vcpu->arch.mci_ctl2_banks[offset]; 4032 break; 4033 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4034 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4035 if (msr > last_msr) 4036 return 1; 4037 4038 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4039 last_msr + 1 - MSR_IA32_MC0_CTL); 4040 data = vcpu->arch.mce_banks[offset]; 4041 break; 4042 default: 4043 return 1; 4044 } 4045 *pdata = data; 4046 return 0; 4047 } 4048 4049 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4050 { 4051 switch (msr_info->index) { 4052 case MSR_IA32_PLATFORM_ID: 4053 case MSR_IA32_EBL_CR_POWERON: 4054 case MSR_IA32_LASTBRANCHFROMIP: 4055 case MSR_IA32_LASTBRANCHTOIP: 4056 case MSR_IA32_LASTINTFROMIP: 4057 case MSR_IA32_LASTINTTOIP: 4058 case MSR_AMD64_SYSCFG: 4059 case MSR_K8_TSEG_ADDR: 4060 case MSR_K8_TSEG_MASK: 4061 case MSR_VM_HSAVE_PA: 4062 case MSR_K8_INT_PENDING_MSG: 4063 case MSR_AMD64_NB_CFG: 4064 case MSR_FAM10H_MMIO_CONF_BASE: 4065 case MSR_AMD64_BU_CFG2: 4066 case MSR_IA32_PERF_CTL: 4067 case MSR_AMD64_DC_CFG: 4068 case MSR_F15H_EX_CFG: 4069 /* 4070 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4071 * limit) MSRs. Just return 0, as we do not want to expose the host 4072 * data here. Do not conditionalize this on CPUID, as KVM does not do 4073 * so for existing CPU-specific MSRs. 4074 */ 4075 case MSR_RAPL_POWER_UNIT: 4076 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4077 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4078 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4079 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4080 msr_info->data = 0; 4081 break; 4082 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4083 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4084 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4085 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4086 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4087 return kvm_pmu_get_msr(vcpu, msr_info); 4088 msr_info->data = 0; 4089 break; 4090 case MSR_IA32_UCODE_REV: 4091 msr_info->data = vcpu->arch.microcode_version; 4092 break; 4093 case MSR_IA32_ARCH_CAPABILITIES: 4094 if (!msr_info->host_initiated && 4095 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4096 return 1; 4097 msr_info->data = vcpu->arch.arch_capabilities; 4098 break; 4099 case MSR_IA32_PERF_CAPABILITIES: 4100 if (!msr_info->host_initiated && 4101 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4102 return 1; 4103 msr_info->data = vcpu->arch.perf_capabilities; 4104 break; 4105 case MSR_IA32_POWER_CTL: 4106 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4107 break; 4108 case MSR_IA32_TSC: { 4109 /* 4110 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4111 * even when not intercepted. AMD manual doesn't explicitly 4112 * state this but appears to behave the same. 4113 * 4114 * On userspace reads and writes, however, we unconditionally 4115 * return L1's TSC value to ensure backwards-compatible 4116 * behavior for migration. 4117 */ 4118 u64 offset, ratio; 4119 4120 if (msr_info->host_initiated) { 4121 offset = vcpu->arch.l1_tsc_offset; 4122 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4123 } else { 4124 offset = vcpu->arch.tsc_offset; 4125 ratio = vcpu->arch.tsc_scaling_ratio; 4126 } 4127 4128 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4129 break; 4130 } 4131 case MSR_IA32_CR_PAT: 4132 msr_info->data = vcpu->arch.pat; 4133 break; 4134 case MSR_MTRRcap: 4135 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4136 case MSR_MTRRdefType: 4137 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4138 case 0xcd: /* fsb frequency */ 4139 msr_info->data = 3; 4140 break; 4141 /* 4142 * MSR_EBC_FREQUENCY_ID 4143 * Conservative value valid for even the basic CPU models. 4144 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4145 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4146 * and 266MHz for model 3, or 4. Set Core Clock 4147 * Frequency to System Bus Frequency Ratio to 1 (bits 4148 * 31:24) even though these are only valid for CPU 4149 * models > 2, however guests may end up dividing or 4150 * multiplying by zero otherwise. 4151 */ 4152 case MSR_EBC_FREQUENCY_ID: 4153 msr_info->data = 1 << 24; 4154 break; 4155 case MSR_IA32_APICBASE: 4156 msr_info->data = kvm_get_apic_base(vcpu); 4157 break; 4158 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4159 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4160 case MSR_IA32_TSC_DEADLINE: 4161 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4162 break; 4163 case MSR_IA32_TSC_ADJUST: 4164 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4165 break; 4166 case MSR_IA32_MISC_ENABLE: 4167 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4168 break; 4169 case MSR_IA32_SMBASE: 4170 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4171 return 1; 4172 msr_info->data = vcpu->arch.smbase; 4173 break; 4174 case MSR_SMI_COUNT: 4175 msr_info->data = vcpu->arch.smi_count; 4176 break; 4177 case MSR_IA32_PERF_STATUS: 4178 /* TSC increment by tick */ 4179 msr_info->data = 1000ULL; 4180 /* CPU multiplier */ 4181 msr_info->data |= (((uint64_t)4ULL) << 40); 4182 break; 4183 case MSR_EFER: 4184 msr_info->data = vcpu->arch.efer; 4185 break; 4186 case MSR_KVM_WALL_CLOCK: 4187 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4188 return 1; 4189 4190 msr_info->data = vcpu->kvm->arch.wall_clock; 4191 break; 4192 case MSR_KVM_WALL_CLOCK_NEW: 4193 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4194 return 1; 4195 4196 msr_info->data = vcpu->kvm->arch.wall_clock; 4197 break; 4198 case MSR_KVM_SYSTEM_TIME: 4199 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4200 return 1; 4201 4202 msr_info->data = vcpu->arch.time; 4203 break; 4204 case MSR_KVM_SYSTEM_TIME_NEW: 4205 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4206 return 1; 4207 4208 msr_info->data = vcpu->arch.time; 4209 break; 4210 case MSR_KVM_ASYNC_PF_EN: 4211 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4212 return 1; 4213 4214 msr_info->data = vcpu->arch.apf.msr_en_val; 4215 break; 4216 case MSR_KVM_ASYNC_PF_INT: 4217 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4218 return 1; 4219 4220 msr_info->data = vcpu->arch.apf.msr_int_val; 4221 break; 4222 case MSR_KVM_ASYNC_PF_ACK: 4223 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4224 return 1; 4225 4226 msr_info->data = 0; 4227 break; 4228 case MSR_KVM_STEAL_TIME: 4229 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4230 return 1; 4231 4232 msr_info->data = vcpu->arch.st.msr_val; 4233 break; 4234 case MSR_KVM_PV_EOI_EN: 4235 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4236 return 1; 4237 4238 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4239 break; 4240 case MSR_KVM_POLL_CONTROL: 4241 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4242 return 1; 4243 4244 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4245 break; 4246 case MSR_IA32_P5_MC_ADDR: 4247 case MSR_IA32_P5_MC_TYPE: 4248 case MSR_IA32_MCG_CAP: 4249 case MSR_IA32_MCG_CTL: 4250 case MSR_IA32_MCG_STATUS: 4251 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4252 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4253 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4254 msr_info->host_initiated); 4255 case MSR_IA32_XSS: 4256 if (!msr_info->host_initiated && 4257 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4258 return 1; 4259 msr_info->data = vcpu->arch.ia32_xss; 4260 break; 4261 case MSR_K7_CLK_CTL: 4262 /* 4263 * Provide expected ramp-up count for K7. All other 4264 * are set to zero, indicating minimum divisors for 4265 * every field. 4266 * 4267 * This prevents guest kernels on AMD host with CPU 4268 * type 6, model 8 and higher from exploding due to 4269 * the rdmsr failing. 4270 */ 4271 msr_info->data = 0x20000000; 4272 break; 4273 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4274 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4275 case HV_X64_MSR_SYNDBG_OPTIONS: 4276 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4277 case HV_X64_MSR_CRASH_CTL: 4278 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4279 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4280 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4281 case HV_X64_MSR_TSC_EMULATION_STATUS: 4282 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4283 return kvm_hv_get_msr_common(vcpu, 4284 msr_info->index, &msr_info->data, 4285 msr_info->host_initiated); 4286 case MSR_IA32_BBL_CR_CTL3: 4287 /* This legacy MSR exists but isn't fully documented in current 4288 * silicon. It is however accessed by winxp in very narrow 4289 * scenarios where it sets bit #19, itself documented as 4290 * a "reserved" bit. Best effort attempt to source coherent 4291 * read data here should the balance of the register be 4292 * interpreted by the guest: 4293 * 4294 * L2 cache control register 3: 64GB range, 256KB size, 4295 * enabled, latency 0x1, configured 4296 */ 4297 msr_info->data = 0xbe702111; 4298 break; 4299 case MSR_AMD64_OSVW_ID_LENGTH: 4300 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4301 return 1; 4302 msr_info->data = vcpu->arch.osvw.length; 4303 break; 4304 case MSR_AMD64_OSVW_STATUS: 4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4306 return 1; 4307 msr_info->data = vcpu->arch.osvw.status; 4308 break; 4309 case MSR_PLATFORM_INFO: 4310 if (!msr_info->host_initiated && 4311 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4312 return 1; 4313 msr_info->data = vcpu->arch.msr_platform_info; 4314 break; 4315 case MSR_MISC_FEATURES_ENABLES: 4316 msr_info->data = vcpu->arch.msr_misc_features_enables; 4317 break; 4318 case MSR_K7_HWCR: 4319 msr_info->data = vcpu->arch.msr_hwcr; 4320 break; 4321 #ifdef CONFIG_X86_64 4322 case MSR_IA32_XFD: 4323 if (!msr_info->host_initiated && 4324 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4325 return 1; 4326 4327 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4328 break; 4329 case MSR_IA32_XFD_ERR: 4330 if (!msr_info->host_initiated && 4331 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4332 return 1; 4333 4334 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4335 break; 4336 #endif 4337 default: 4338 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4339 return kvm_pmu_get_msr(vcpu, msr_info); 4340 4341 /* 4342 * Userspace is allowed to read MSRs that KVM reports as 4343 * to-be-saved, even if an MSR isn't fully supported. 4344 */ 4345 if (msr_info->host_initiated && 4346 kvm_is_msr_to_save(msr_info->index)) { 4347 msr_info->data = 0; 4348 break; 4349 } 4350 4351 return KVM_MSR_RET_INVALID; 4352 } 4353 return 0; 4354 } 4355 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4356 4357 /* 4358 * Read or write a bunch of msrs. All parameters are kernel addresses. 4359 * 4360 * @return number of msrs set successfully. 4361 */ 4362 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4363 struct kvm_msr_entry *entries, 4364 int (*do_msr)(struct kvm_vcpu *vcpu, 4365 unsigned index, u64 *data)) 4366 { 4367 int i; 4368 4369 for (i = 0; i < msrs->nmsrs; ++i) 4370 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4371 break; 4372 4373 return i; 4374 } 4375 4376 /* 4377 * Read or write a bunch of msrs. Parameters are user addresses. 4378 * 4379 * @return number of msrs set successfully. 4380 */ 4381 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4382 int (*do_msr)(struct kvm_vcpu *vcpu, 4383 unsigned index, u64 *data), 4384 int writeback) 4385 { 4386 struct kvm_msrs msrs; 4387 struct kvm_msr_entry *entries; 4388 unsigned size; 4389 int r; 4390 4391 r = -EFAULT; 4392 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4393 goto out; 4394 4395 r = -E2BIG; 4396 if (msrs.nmsrs >= MAX_IO_MSRS) 4397 goto out; 4398 4399 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4400 entries = memdup_user(user_msrs->entries, size); 4401 if (IS_ERR(entries)) { 4402 r = PTR_ERR(entries); 4403 goto out; 4404 } 4405 4406 r = __msr_io(vcpu, &msrs, entries, do_msr); 4407 4408 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4409 r = -EFAULT; 4410 4411 kfree(entries); 4412 out: 4413 return r; 4414 } 4415 4416 static inline bool kvm_can_mwait_in_guest(void) 4417 { 4418 return boot_cpu_has(X86_FEATURE_MWAIT) && 4419 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4420 boot_cpu_has(X86_FEATURE_ARAT); 4421 } 4422 4423 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4424 struct kvm_cpuid2 __user *cpuid_arg) 4425 { 4426 struct kvm_cpuid2 cpuid; 4427 int r; 4428 4429 r = -EFAULT; 4430 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4431 return r; 4432 4433 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4434 if (r) 4435 return r; 4436 4437 r = -EFAULT; 4438 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4439 return r; 4440 4441 return 0; 4442 } 4443 4444 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4445 { 4446 int r = 0; 4447 4448 switch (ext) { 4449 case KVM_CAP_IRQCHIP: 4450 case KVM_CAP_HLT: 4451 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4452 case KVM_CAP_SET_TSS_ADDR: 4453 case KVM_CAP_EXT_CPUID: 4454 case KVM_CAP_EXT_EMUL_CPUID: 4455 case KVM_CAP_CLOCKSOURCE: 4456 case KVM_CAP_PIT: 4457 case KVM_CAP_NOP_IO_DELAY: 4458 case KVM_CAP_MP_STATE: 4459 case KVM_CAP_SYNC_MMU: 4460 case KVM_CAP_USER_NMI: 4461 case KVM_CAP_REINJECT_CONTROL: 4462 case KVM_CAP_IRQ_INJECT_STATUS: 4463 case KVM_CAP_IOEVENTFD: 4464 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4465 case KVM_CAP_PIT2: 4466 case KVM_CAP_PIT_STATE2: 4467 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4468 case KVM_CAP_VCPU_EVENTS: 4469 case KVM_CAP_HYPERV: 4470 case KVM_CAP_HYPERV_VAPIC: 4471 case KVM_CAP_HYPERV_SPIN: 4472 case KVM_CAP_HYPERV_SYNIC: 4473 case KVM_CAP_HYPERV_SYNIC2: 4474 case KVM_CAP_HYPERV_VP_INDEX: 4475 case KVM_CAP_HYPERV_EVENTFD: 4476 case KVM_CAP_HYPERV_TLBFLUSH: 4477 case KVM_CAP_HYPERV_SEND_IPI: 4478 case KVM_CAP_HYPERV_CPUID: 4479 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4480 case KVM_CAP_SYS_HYPERV_CPUID: 4481 case KVM_CAP_PCI_SEGMENT: 4482 case KVM_CAP_DEBUGREGS: 4483 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4484 case KVM_CAP_XSAVE: 4485 case KVM_CAP_ASYNC_PF: 4486 case KVM_CAP_ASYNC_PF_INT: 4487 case KVM_CAP_GET_TSC_KHZ: 4488 case KVM_CAP_KVMCLOCK_CTRL: 4489 case KVM_CAP_READONLY_MEM: 4490 case KVM_CAP_HYPERV_TIME: 4491 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4492 case KVM_CAP_TSC_DEADLINE_TIMER: 4493 case KVM_CAP_DISABLE_QUIRKS: 4494 case KVM_CAP_SET_BOOT_CPU_ID: 4495 case KVM_CAP_SPLIT_IRQCHIP: 4496 case KVM_CAP_IMMEDIATE_EXIT: 4497 case KVM_CAP_PMU_EVENT_FILTER: 4498 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4499 case KVM_CAP_GET_MSR_FEATURES: 4500 case KVM_CAP_MSR_PLATFORM_INFO: 4501 case KVM_CAP_EXCEPTION_PAYLOAD: 4502 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4503 case KVM_CAP_SET_GUEST_DEBUG: 4504 case KVM_CAP_LAST_CPU: 4505 case KVM_CAP_X86_USER_SPACE_MSR: 4506 case KVM_CAP_X86_MSR_FILTER: 4507 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4508 #ifdef CONFIG_X86_SGX_KVM 4509 case KVM_CAP_SGX_ATTRIBUTE: 4510 #endif 4511 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4512 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4513 case KVM_CAP_SREGS2: 4514 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4515 case KVM_CAP_VCPU_ATTRIBUTES: 4516 case KVM_CAP_SYS_ATTRIBUTES: 4517 case KVM_CAP_VAPIC: 4518 case KVM_CAP_ENABLE_CAP: 4519 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4520 case KVM_CAP_IRQFD_RESAMPLE: 4521 r = 1; 4522 break; 4523 case KVM_CAP_EXIT_HYPERCALL: 4524 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4525 break; 4526 case KVM_CAP_SET_GUEST_DEBUG2: 4527 return KVM_GUESTDBG_VALID_MASK; 4528 #ifdef CONFIG_KVM_XEN 4529 case KVM_CAP_XEN_HVM: 4530 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4531 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4532 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4533 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4534 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4535 if (sched_info_on()) 4536 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4537 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4538 break; 4539 #endif 4540 case KVM_CAP_SYNC_REGS: 4541 r = KVM_SYNC_X86_VALID_FIELDS; 4542 break; 4543 case KVM_CAP_ADJUST_CLOCK: 4544 r = KVM_CLOCK_VALID_FLAGS; 4545 break; 4546 case KVM_CAP_X86_DISABLE_EXITS: 4547 r = KVM_X86_DISABLE_EXITS_PAUSE; 4548 4549 if (!mitigate_smt_rsb) { 4550 r |= KVM_X86_DISABLE_EXITS_HLT | 4551 KVM_X86_DISABLE_EXITS_CSTATE; 4552 4553 if (kvm_can_mwait_in_guest()) 4554 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4555 } 4556 break; 4557 case KVM_CAP_X86_SMM: 4558 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4559 break; 4560 4561 /* SMBASE is usually relocated above 1M on modern chipsets, 4562 * and SMM handlers might indeed rely on 4G segment limits, 4563 * so do not report SMM to be available if real mode is 4564 * emulated via vm86 mode. Still, do not go to great lengths 4565 * to avoid userspace's usage of the feature, because it is a 4566 * fringe case that is not enabled except via specific settings 4567 * of the module parameters. 4568 */ 4569 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4570 break; 4571 case KVM_CAP_NR_VCPUS: 4572 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4573 break; 4574 case KVM_CAP_MAX_VCPUS: 4575 r = KVM_MAX_VCPUS; 4576 break; 4577 case KVM_CAP_MAX_VCPU_ID: 4578 r = KVM_MAX_VCPU_IDS; 4579 break; 4580 case KVM_CAP_PV_MMU: /* obsolete */ 4581 r = 0; 4582 break; 4583 case KVM_CAP_MCE: 4584 r = KVM_MAX_MCE_BANKS; 4585 break; 4586 case KVM_CAP_XCRS: 4587 r = boot_cpu_has(X86_FEATURE_XSAVE); 4588 break; 4589 case KVM_CAP_TSC_CONTROL: 4590 case KVM_CAP_VM_TSC_CONTROL: 4591 r = kvm_caps.has_tsc_control; 4592 break; 4593 case KVM_CAP_X2APIC_API: 4594 r = KVM_X2APIC_API_VALID_FLAGS; 4595 break; 4596 case KVM_CAP_NESTED_STATE: 4597 r = kvm_x86_ops.nested_ops->get_state ? 4598 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4599 break; 4600 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4601 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4602 break; 4603 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4604 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4605 break; 4606 case KVM_CAP_SMALLER_MAXPHYADDR: 4607 r = (int) allow_smaller_maxphyaddr; 4608 break; 4609 case KVM_CAP_STEAL_TIME: 4610 r = sched_info_on(); 4611 break; 4612 case KVM_CAP_X86_BUS_LOCK_EXIT: 4613 if (kvm_caps.has_bus_lock_exit) 4614 r = KVM_BUS_LOCK_DETECTION_OFF | 4615 KVM_BUS_LOCK_DETECTION_EXIT; 4616 else 4617 r = 0; 4618 break; 4619 case KVM_CAP_XSAVE2: { 4620 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4621 if (r < sizeof(struct kvm_xsave)) 4622 r = sizeof(struct kvm_xsave); 4623 break; 4624 } 4625 case KVM_CAP_PMU_CAPABILITY: 4626 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4627 break; 4628 case KVM_CAP_DISABLE_QUIRKS2: 4629 r = KVM_X86_VALID_QUIRKS; 4630 break; 4631 case KVM_CAP_X86_NOTIFY_VMEXIT: 4632 r = kvm_caps.has_notify_vmexit; 4633 break; 4634 default: 4635 break; 4636 } 4637 return r; 4638 } 4639 4640 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4641 { 4642 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4643 4644 if ((u64)(unsigned long)uaddr != attr->addr) 4645 return ERR_PTR_USR(-EFAULT); 4646 return uaddr; 4647 } 4648 4649 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4650 { 4651 u64 __user *uaddr = kvm_get_attr_addr(attr); 4652 4653 if (attr->group) 4654 return -ENXIO; 4655 4656 if (IS_ERR(uaddr)) 4657 return PTR_ERR(uaddr); 4658 4659 switch (attr->attr) { 4660 case KVM_X86_XCOMP_GUEST_SUPP: 4661 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4662 return -EFAULT; 4663 return 0; 4664 default: 4665 return -ENXIO; 4666 } 4667 } 4668 4669 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4670 { 4671 if (attr->group) 4672 return -ENXIO; 4673 4674 switch (attr->attr) { 4675 case KVM_X86_XCOMP_GUEST_SUPP: 4676 return 0; 4677 default: 4678 return -ENXIO; 4679 } 4680 } 4681 4682 long kvm_arch_dev_ioctl(struct file *filp, 4683 unsigned int ioctl, unsigned long arg) 4684 { 4685 void __user *argp = (void __user *)arg; 4686 long r; 4687 4688 switch (ioctl) { 4689 case KVM_GET_MSR_INDEX_LIST: { 4690 struct kvm_msr_list __user *user_msr_list = argp; 4691 struct kvm_msr_list msr_list; 4692 unsigned n; 4693 4694 r = -EFAULT; 4695 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4696 goto out; 4697 n = msr_list.nmsrs; 4698 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4699 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4700 goto out; 4701 r = -E2BIG; 4702 if (n < msr_list.nmsrs) 4703 goto out; 4704 r = -EFAULT; 4705 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4706 num_msrs_to_save * sizeof(u32))) 4707 goto out; 4708 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4709 &emulated_msrs, 4710 num_emulated_msrs * sizeof(u32))) 4711 goto out; 4712 r = 0; 4713 break; 4714 } 4715 case KVM_GET_SUPPORTED_CPUID: 4716 case KVM_GET_EMULATED_CPUID: { 4717 struct kvm_cpuid2 __user *cpuid_arg = argp; 4718 struct kvm_cpuid2 cpuid; 4719 4720 r = -EFAULT; 4721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4722 goto out; 4723 4724 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4725 ioctl); 4726 if (r) 4727 goto out; 4728 4729 r = -EFAULT; 4730 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4731 goto out; 4732 r = 0; 4733 break; 4734 } 4735 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4736 r = -EFAULT; 4737 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4738 sizeof(kvm_caps.supported_mce_cap))) 4739 goto out; 4740 r = 0; 4741 break; 4742 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4743 struct kvm_msr_list __user *user_msr_list = argp; 4744 struct kvm_msr_list msr_list; 4745 unsigned int n; 4746 4747 r = -EFAULT; 4748 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4749 goto out; 4750 n = msr_list.nmsrs; 4751 msr_list.nmsrs = num_msr_based_features; 4752 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4753 goto out; 4754 r = -E2BIG; 4755 if (n < msr_list.nmsrs) 4756 goto out; 4757 r = -EFAULT; 4758 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4759 num_msr_based_features * sizeof(u32))) 4760 goto out; 4761 r = 0; 4762 break; 4763 } 4764 case KVM_GET_MSRS: 4765 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4766 break; 4767 case KVM_GET_SUPPORTED_HV_CPUID: 4768 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4769 break; 4770 case KVM_GET_DEVICE_ATTR: { 4771 struct kvm_device_attr attr; 4772 r = -EFAULT; 4773 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4774 break; 4775 r = kvm_x86_dev_get_attr(&attr); 4776 break; 4777 } 4778 case KVM_HAS_DEVICE_ATTR: { 4779 struct kvm_device_attr attr; 4780 r = -EFAULT; 4781 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4782 break; 4783 r = kvm_x86_dev_has_attr(&attr); 4784 break; 4785 } 4786 default: 4787 r = -EINVAL; 4788 break; 4789 } 4790 out: 4791 return r; 4792 } 4793 4794 static void wbinvd_ipi(void *garbage) 4795 { 4796 wbinvd(); 4797 } 4798 4799 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4800 { 4801 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4802 } 4803 4804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4805 { 4806 /* Address WBINVD may be executed by guest */ 4807 if (need_emulate_wbinvd(vcpu)) { 4808 if (static_call(kvm_x86_has_wbinvd_exit)()) 4809 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4810 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4811 smp_call_function_single(vcpu->cpu, 4812 wbinvd_ipi, NULL, 1); 4813 } 4814 4815 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4816 4817 /* Save host pkru register if supported */ 4818 vcpu->arch.host_pkru = read_pkru(); 4819 4820 /* Apply any externally detected TSC adjustments (due to suspend) */ 4821 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4822 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4823 vcpu->arch.tsc_offset_adjustment = 0; 4824 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4825 } 4826 4827 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4828 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4829 rdtsc() - vcpu->arch.last_host_tsc; 4830 if (tsc_delta < 0) 4831 mark_tsc_unstable("KVM discovered backwards TSC"); 4832 4833 if (kvm_check_tsc_unstable()) { 4834 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4835 vcpu->arch.last_guest_tsc); 4836 kvm_vcpu_write_tsc_offset(vcpu, offset); 4837 vcpu->arch.tsc_catchup = 1; 4838 } 4839 4840 if (kvm_lapic_hv_timer_in_use(vcpu)) 4841 kvm_lapic_restart_hv_timer(vcpu); 4842 4843 /* 4844 * On a host with synchronized TSC, there is no need to update 4845 * kvmclock on vcpu->cpu migration 4846 */ 4847 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4848 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4849 if (vcpu->cpu != cpu) 4850 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4851 vcpu->cpu = cpu; 4852 } 4853 4854 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4855 } 4856 4857 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4858 { 4859 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4860 struct kvm_steal_time __user *st; 4861 struct kvm_memslots *slots; 4862 static const u8 preempted = KVM_VCPU_PREEMPTED; 4863 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4864 4865 /* 4866 * The vCPU can be marked preempted if and only if the VM-Exit was on 4867 * an instruction boundary and will not trigger guest emulation of any 4868 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4869 * when this is true, for example allowing the vCPU to be marked 4870 * preempted if and only if the VM-Exit was due to a host interrupt. 4871 */ 4872 if (!vcpu->arch.at_instruction_boundary) { 4873 vcpu->stat.preemption_other++; 4874 return; 4875 } 4876 4877 vcpu->stat.preemption_reported++; 4878 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4879 return; 4880 4881 if (vcpu->arch.st.preempted) 4882 return; 4883 4884 /* This happens on process exit */ 4885 if (unlikely(current->mm != vcpu->kvm->mm)) 4886 return; 4887 4888 slots = kvm_memslots(vcpu->kvm); 4889 4890 if (unlikely(slots->generation != ghc->generation || 4891 gpa != ghc->gpa || 4892 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4893 return; 4894 4895 st = (struct kvm_steal_time __user *)ghc->hva; 4896 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4897 4898 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4899 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4900 4901 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4902 } 4903 4904 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4905 { 4906 int idx; 4907 4908 if (vcpu->preempted) { 4909 if (!vcpu->arch.guest_state_protected) 4910 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4911 4912 /* 4913 * Take the srcu lock as memslots will be accessed to check the gfn 4914 * cache generation against the memslots generation. 4915 */ 4916 idx = srcu_read_lock(&vcpu->kvm->srcu); 4917 if (kvm_xen_msr_enabled(vcpu->kvm)) 4918 kvm_xen_runstate_set_preempted(vcpu); 4919 else 4920 kvm_steal_time_set_preempted(vcpu); 4921 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4922 } 4923 4924 static_call(kvm_x86_vcpu_put)(vcpu); 4925 vcpu->arch.last_host_tsc = rdtsc(); 4926 } 4927 4928 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4929 struct kvm_lapic_state *s) 4930 { 4931 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4932 4933 return kvm_apic_get_state(vcpu, s); 4934 } 4935 4936 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4937 struct kvm_lapic_state *s) 4938 { 4939 int r; 4940 4941 r = kvm_apic_set_state(vcpu, s); 4942 if (r) 4943 return r; 4944 update_cr8_intercept(vcpu); 4945 4946 return 0; 4947 } 4948 4949 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4950 { 4951 /* 4952 * We can accept userspace's request for interrupt injection 4953 * as long as we have a place to store the interrupt number. 4954 * The actual injection will happen when the CPU is able to 4955 * deliver the interrupt. 4956 */ 4957 if (kvm_cpu_has_extint(vcpu)) 4958 return false; 4959 4960 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4961 return (!lapic_in_kernel(vcpu) || 4962 kvm_apic_accept_pic_intr(vcpu)); 4963 } 4964 4965 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4966 { 4967 /* 4968 * Do not cause an interrupt window exit if an exception 4969 * is pending or an event needs reinjection; userspace 4970 * might want to inject the interrupt manually using KVM_SET_REGS 4971 * or KVM_SET_SREGS. For that to work, we must be at an 4972 * instruction boundary and with no events half-injected. 4973 */ 4974 return (kvm_arch_interrupt_allowed(vcpu) && 4975 kvm_cpu_accept_dm_intr(vcpu) && 4976 !kvm_event_needs_reinjection(vcpu) && 4977 !kvm_is_exception_pending(vcpu)); 4978 } 4979 4980 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4981 struct kvm_interrupt *irq) 4982 { 4983 if (irq->irq >= KVM_NR_INTERRUPTS) 4984 return -EINVAL; 4985 4986 if (!irqchip_in_kernel(vcpu->kvm)) { 4987 kvm_queue_interrupt(vcpu, irq->irq, false); 4988 kvm_make_request(KVM_REQ_EVENT, vcpu); 4989 return 0; 4990 } 4991 4992 /* 4993 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4994 * fail for in-kernel 8259. 4995 */ 4996 if (pic_in_kernel(vcpu->kvm)) 4997 return -ENXIO; 4998 4999 if (vcpu->arch.pending_external_vector != -1) 5000 return -EEXIST; 5001 5002 vcpu->arch.pending_external_vector = irq->irq; 5003 kvm_make_request(KVM_REQ_EVENT, vcpu); 5004 return 0; 5005 } 5006 5007 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5008 { 5009 kvm_inject_nmi(vcpu); 5010 5011 return 0; 5012 } 5013 5014 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5015 struct kvm_tpr_access_ctl *tac) 5016 { 5017 if (tac->flags) 5018 return -EINVAL; 5019 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5020 return 0; 5021 } 5022 5023 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5024 u64 mcg_cap) 5025 { 5026 int r; 5027 unsigned bank_num = mcg_cap & 0xff, bank; 5028 5029 r = -EINVAL; 5030 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5031 goto out; 5032 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5033 goto out; 5034 r = 0; 5035 vcpu->arch.mcg_cap = mcg_cap; 5036 /* Init IA32_MCG_CTL to all 1s */ 5037 if (mcg_cap & MCG_CTL_P) 5038 vcpu->arch.mcg_ctl = ~(u64)0; 5039 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5040 for (bank = 0; bank < bank_num; bank++) { 5041 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5042 if (mcg_cap & MCG_CMCI_P) 5043 vcpu->arch.mci_ctl2_banks[bank] = 0; 5044 } 5045 5046 kvm_apic_after_set_mcg_cap(vcpu); 5047 5048 static_call(kvm_x86_setup_mce)(vcpu); 5049 out: 5050 return r; 5051 } 5052 5053 /* 5054 * Validate this is an UCNA (uncorrectable no action) error by checking the 5055 * MCG_STATUS and MCi_STATUS registers: 5056 * - none of the bits for Machine Check Exceptions are set 5057 * - both the VAL (valid) and UC (uncorrectable) bits are set 5058 * MCI_STATUS_PCC - Processor Context Corrupted 5059 * MCI_STATUS_S - Signaled as a Machine Check Exception 5060 * MCI_STATUS_AR - Software recoverable Action Required 5061 */ 5062 static bool is_ucna(struct kvm_x86_mce *mce) 5063 { 5064 return !mce->mcg_status && 5065 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5066 (mce->status & MCI_STATUS_VAL) && 5067 (mce->status & MCI_STATUS_UC); 5068 } 5069 5070 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5071 { 5072 u64 mcg_cap = vcpu->arch.mcg_cap; 5073 5074 banks[1] = mce->status; 5075 banks[2] = mce->addr; 5076 banks[3] = mce->misc; 5077 vcpu->arch.mcg_status = mce->mcg_status; 5078 5079 if (!(mcg_cap & MCG_CMCI_P) || 5080 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5081 return 0; 5082 5083 if (lapic_in_kernel(vcpu)) 5084 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5085 5086 return 0; 5087 } 5088 5089 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5090 struct kvm_x86_mce *mce) 5091 { 5092 u64 mcg_cap = vcpu->arch.mcg_cap; 5093 unsigned bank_num = mcg_cap & 0xff; 5094 u64 *banks = vcpu->arch.mce_banks; 5095 5096 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5097 return -EINVAL; 5098 5099 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5100 5101 if (is_ucna(mce)) 5102 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5103 5104 /* 5105 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5106 * reporting is disabled 5107 */ 5108 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5109 vcpu->arch.mcg_ctl != ~(u64)0) 5110 return 0; 5111 /* 5112 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5113 * reporting is disabled for the bank 5114 */ 5115 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5116 return 0; 5117 if (mce->status & MCI_STATUS_UC) { 5118 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5119 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5120 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5121 return 0; 5122 } 5123 if (banks[1] & MCI_STATUS_VAL) 5124 mce->status |= MCI_STATUS_OVER; 5125 banks[2] = mce->addr; 5126 banks[3] = mce->misc; 5127 vcpu->arch.mcg_status = mce->mcg_status; 5128 banks[1] = mce->status; 5129 kvm_queue_exception(vcpu, MC_VECTOR); 5130 } else if (!(banks[1] & MCI_STATUS_VAL) 5131 || !(banks[1] & MCI_STATUS_UC)) { 5132 if (banks[1] & MCI_STATUS_VAL) 5133 mce->status |= MCI_STATUS_OVER; 5134 banks[2] = mce->addr; 5135 banks[3] = mce->misc; 5136 banks[1] = mce->status; 5137 } else 5138 banks[1] |= MCI_STATUS_OVER; 5139 return 0; 5140 } 5141 5142 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5143 struct kvm_vcpu_events *events) 5144 { 5145 struct kvm_queued_exception *ex; 5146 5147 process_nmi(vcpu); 5148 5149 #ifdef CONFIG_KVM_SMM 5150 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5151 process_smi(vcpu); 5152 #endif 5153 5154 /* 5155 * KVM's ABI only allows for one exception to be migrated. Luckily, 5156 * the only time there can be two queued exceptions is if there's a 5157 * non-exiting _injected_ exception, and a pending exiting exception. 5158 * In that case, ignore the VM-Exiting exception as it's an extension 5159 * of the injected exception. 5160 */ 5161 if (vcpu->arch.exception_vmexit.pending && 5162 !vcpu->arch.exception.pending && 5163 !vcpu->arch.exception.injected) 5164 ex = &vcpu->arch.exception_vmexit; 5165 else 5166 ex = &vcpu->arch.exception; 5167 5168 /* 5169 * In guest mode, payload delivery should be deferred if the exception 5170 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5171 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5172 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5173 * propagate the payload and so it cannot be safely deferred. Deliver 5174 * the payload if the capability hasn't been requested. 5175 */ 5176 if (!vcpu->kvm->arch.exception_payload_enabled && 5177 ex->pending && ex->has_payload) 5178 kvm_deliver_exception_payload(vcpu, ex); 5179 5180 memset(events, 0, sizeof(*events)); 5181 5182 /* 5183 * The API doesn't provide the instruction length for software 5184 * exceptions, so don't report them. As long as the guest RIP 5185 * isn't advanced, we should expect to encounter the exception 5186 * again. 5187 */ 5188 if (!kvm_exception_is_soft(ex->vector)) { 5189 events->exception.injected = ex->injected; 5190 events->exception.pending = ex->pending; 5191 /* 5192 * For ABI compatibility, deliberately conflate 5193 * pending and injected exceptions when 5194 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5195 */ 5196 if (!vcpu->kvm->arch.exception_payload_enabled) 5197 events->exception.injected |= ex->pending; 5198 } 5199 events->exception.nr = ex->vector; 5200 events->exception.has_error_code = ex->has_error_code; 5201 events->exception.error_code = ex->error_code; 5202 events->exception_has_payload = ex->has_payload; 5203 events->exception_payload = ex->payload; 5204 5205 events->interrupt.injected = 5206 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5207 events->interrupt.nr = vcpu->arch.interrupt.nr; 5208 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5209 5210 events->nmi.injected = vcpu->arch.nmi_injected; 5211 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5212 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5213 5214 /* events->sipi_vector is never valid when reporting to user space */ 5215 5216 #ifdef CONFIG_KVM_SMM 5217 events->smi.smm = is_smm(vcpu); 5218 events->smi.pending = vcpu->arch.smi_pending; 5219 events->smi.smm_inside_nmi = 5220 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5221 #endif 5222 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5223 5224 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5225 | KVM_VCPUEVENT_VALID_SHADOW 5226 | KVM_VCPUEVENT_VALID_SMM); 5227 if (vcpu->kvm->arch.exception_payload_enabled) 5228 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5229 if (vcpu->kvm->arch.triple_fault_event) { 5230 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5231 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5232 } 5233 } 5234 5235 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5236 struct kvm_vcpu_events *events) 5237 { 5238 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5239 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5240 | KVM_VCPUEVENT_VALID_SHADOW 5241 | KVM_VCPUEVENT_VALID_SMM 5242 | KVM_VCPUEVENT_VALID_PAYLOAD 5243 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5244 return -EINVAL; 5245 5246 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5247 if (!vcpu->kvm->arch.exception_payload_enabled) 5248 return -EINVAL; 5249 if (events->exception.pending) 5250 events->exception.injected = 0; 5251 else 5252 events->exception_has_payload = 0; 5253 } else { 5254 events->exception.pending = 0; 5255 events->exception_has_payload = 0; 5256 } 5257 5258 if ((events->exception.injected || events->exception.pending) && 5259 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5260 return -EINVAL; 5261 5262 /* INITs are latched while in SMM */ 5263 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5264 (events->smi.smm || events->smi.pending) && 5265 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5266 return -EINVAL; 5267 5268 process_nmi(vcpu); 5269 5270 /* 5271 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5272 * morph the exception to a VM-Exit if appropriate. Do this only for 5273 * pending exceptions, already-injected exceptions are not subject to 5274 * intercpetion. Note, userspace that conflates pending and injected 5275 * is hosed, and will incorrectly convert an injected exception into a 5276 * pending exception, which in turn may cause a spurious VM-Exit. 5277 */ 5278 vcpu->arch.exception_from_userspace = events->exception.pending; 5279 5280 vcpu->arch.exception_vmexit.pending = false; 5281 5282 vcpu->arch.exception.injected = events->exception.injected; 5283 vcpu->arch.exception.pending = events->exception.pending; 5284 vcpu->arch.exception.vector = events->exception.nr; 5285 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5286 vcpu->arch.exception.error_code = events->exception.error_code; 5287 vcpu->arch.exception.has_payload = events->exception_has_payload; 5288 vcpu->arch.exception.payload = events->exception_payload; 5289 5290 vcpu->arch.interrupt.injected = events->interrupt.injected; 5291 vcpu->arch.interrupt.nr = events->interrupt.nr; 5292 vcpu->arch.interrupt.soft = events->interrupt.soft; 5293 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5294 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5295 events->interrupt.shadow); 5296 5297 vcpu->arch.nmi_injected = events->nmi.injected; 5298 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5299 vcpu->arch.nmi_pending = 0; 5300 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5301 kvm_make_request(KVM_REQ_NMI, vcpu); 5302 } 5303 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5304 5305 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5306 lapic_in_kernel(vcpu)) 5307 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5308 5309 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5310 #ifdef CONFIG_KVM_SMM 5311 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5312 kvm_leave_nested(vcpu); 5313 kvm_smm_changed(vcpu, events->smi.smm); 5314 } 5315 5316 vcpu->arch.smi_pending = events->smi.pending; 5317 5318 if (events->smi.smm) { 5319 if (events->smi.smm_inside_nmi) 5320 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5321 else 5322 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5323 } 5324 5325 #else 5326 if (events->smi.smm || events->smi.pending || 5327 events->smi.smm_inside_nmi) 5328 return -EINVAL; 5329 #endif 5330 5331 if (lapic_in_kernel(vcpu)) { 5332 if (events->smi.latched_init) 5333 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5334 else 5335 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5336 } 5337 } 5338 5339 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5340 if (!vcpu->kvm->arch.triple_fault_event) 5341 return -EINVAL; 5342 if (events->triple_fault.pending) 5343 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5344 else 5345 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5346 } 5347 5348 kvm_make_request(KVM_REQ_EVENT, vcpu); 5349 5350 return 0; 5351 } 5352 5353 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5354 struct kvm_debugregs *dbgregs) 5355 { 5356 unsigned long val; 5357 5358 memset(dbgregs, 0, sizeof(*dbgregs)); 5359 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5360 kvm_get_dr(vcpu, 6, &val); 5361 dbgregs->dr6 = val; 5362 dbgregs->dr7 = vcpu->arch.dr7; 5363 } 5364 5365 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5366 struct kvm_debugregs *dbgregs) 5367 { 5368 if (dbgregs->flags) 5369 return -EINVAL; 5370 5371 if (!kvm_dr6_valid(dbgregs->dr6)) 5372 return -EINVAL; 5373 if (!kvm_dr7_valid(dbgregs->dr7)) 5374 return -EINVAL; 5375 5376 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5377 kvm_update_dr0123(vcpu); 5378 vcpu->arch.dr6 = dbgregs->dr6; 5379 vcpu->arch.dr7 = dbgregs->dr7; 5380 kvm_update_dr7(vcpu); 5381 5382 return 0; 5383 } 5384 5385 5386 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5387 u8 *state, unsigned int size) 5388 { 5389 /* 5390 * Only copy state for features that are enabled for the guest. The 5391 * state itself isn't problematic, but setting bits in the header for 5392 * features that are supported in *this* host but not exposed to the 5393 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5394 * compatible host without the features that are NOT exposed to the 5395 * guest. 5396 * 5397 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5398 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5399 * supported by the host. 5400 */ 5401 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5402 XFEATURE_MASK_FPSSE; 5403 5404 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5405 return; 5406 5407 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5408 supported_xcr0, vcpu->arch.pkru); 5409 } 5410 5411 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5412 struct kvm_xsave *guest_xsave) 5413 { 5414 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5415 sizeof(guest_xsave->region)); 5416 } 5417 5418 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5419 struct kvm_xsave *guest_xsave) 5420 { 5421 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5422 return 0; 5423 5424 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5425 guest_xsave->region, 5426 kvm_caps.supported_xcr0, 5427 &vcpu->arch.pkru); 5428 } 5429 5430 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5431 struct kvm_xcrs *guest_xcrs) 5432 { 5433 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5434 guest_xcrs->nr_xcrs = 0; 5435 return; 5436 } 5437 5438 guest_xcrs->nr_xcrs = 1; 5439 guest_xcrs->flags = 0; 5440 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5441 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5442 } 5443 5444 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5445 struct kvm_xcrs *guest_xcrs) 5446 { 5447 int i, r = 0; 5448 5449 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5450 return -EINVAL; 5451 5452 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5453 return -EINVAL; 5454 5455 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5456 /* Only support XCR0 currently */ 5457 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5458 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5459 guest_xcrs->xcrs[i].value); 5460 break; 5461 } 5462 if (r) 5463 r = -EINVAL; 5464 return r; 5465 } 5466 5467 /* 5468 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5469 * stopped by the hypervisor. This function will be called from the host only. 5470 * EINVAL is returned when the host attempts to set the flag for a guest that 5471 * does not support pv clocks. 5472 */ 5473 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5474 { 5475 if (!vcpu->arch.pv_time.active) 5476 return -EINVAL; 5477 vcpu->arch.pvclock_set_guest_stopped_request = true; 5478 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5479 return 0; 5480 } 5481 5482 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5483 struct kvm_device_attr *attr) 5484 { 5485 int r; 5486 5487 switch (attr->attr) { 5488 case KVM_VCPU_TSC_OFFSET: 5489 r = 0; 5490 break; 5491 default: 5492 r = -ENXIO; 5493 } 5494 5495 return r; 5496 } 5497 5498 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5499 struct kvm_device_attr *attr) 5500 { 5501 u64 __user *uaddr = kvm_get_attr_addr(attr); 5502 int r; 5503 5504 if (IS_ERR(uaddr)) 5505 return PTR_ERR(uaddr); 5506 5507 switch (attr->attr) { 5508 case KVM_VCPU_TSC_OFFSET: 5509 r = -EFAULT; 5510 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5511 break; 5512 r = 0; 5513 break; 5514 default: 5515 r = -ENXIO; 5516 } 5517 5518 return r; 5519 } 5520 5521 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5522 struct kvm_device_attr *attr) 5523 { 5524 u64 __user *uaddr = kvm_get_attr_addr(attr); 5525 struct kvm *kvm = vcpu->kvm; 5526 int r; 5527 5528 if (IS_ERR(uaddr)) 5529 return PTR_ERR(uaddr); 5530 5531 switch (attr->attr) { 5532 case KVM_VCPU_TSC_OFFSET: { 5533 u64 offset, tsc, ns; 5534 unsigned long flags; 5535 bool matched; 5536 5537 r = -EFAULT; 5538 if (get_user(offset, uaddr)) 5539 break; 5540 5541 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5542 5543 matched = (vcpu->arch.virtual_tsc_khz && 5544 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5545 kvm->arch.last_tsc_offset == offset); 5546 5547 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5548 ns = get_kvmclock_base_ns(); 5549 5550 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5551 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5552 5553 r = 0; 5554 break; 5555 } 5556 default: 5557 r = -ENXIO; 5558 } 5559 5560 return r; 5561 } 5562 5563 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5564 unsigned int ioctl, 5565 void __user *argp) 5566 { 5567 struct kvm_device_attr attr; 5568 int r; 5569 5570 if (copy_from_user(&attr, argp, sizeof(attr))) 5571 return -EFAULT; 5572 5573 if (attr.group != KVM_VCPU_TSC_CTRL) 5574 return -ENXIO; 5575 5576 switch (ioctl) { 5577 case KVM_HAS_DEVICE_ATTR: 5578 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5579 break; 5580 case KVM_GET_DEVICE_ATTR: 5581 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5582 break; 5583 case KVM_SET_DEVICE_ATTR: 5584 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5585 break; 5586 } 5587 5588 return r; 5589 } 5590 5591 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5592 struct kvm_enable_cap *cap) 5593 { 5594 int r; 5595 uint16_t vmcs_version; 5596 void __user *user_ptr; 5597 5598 if (cap->flags) 5599 return -EINVAL; 5600 5601 switch (cap->cap) { 5602 case KVM_CAP_HYPERV_SYNIC2: 5603 if (cap->args[0]) 5604 return -EINVAL; 5605 fallthrough; 5606 5607 case KVM_CAP_HYPERV_SYNIC: 5608 if (!irqchip_in_kernel(vcpu->kvm)) 5609 return -EINVAL; 5610 return kvm_hv_activate_synic(vcpu, cap->cap == 5611 KVM_CAP_HYPERV_SYNIC2); 5612 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5613 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5614 return -ENOTTY; 5615 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5616 if (!r) { 5617 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5618 if (copy_to_user(user_ptr, &vmcs_version, 5619 sizeof(vmcs_version))) 5620 r = -EFAULT; 5621 } 5622 return r; 5623 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5624 if (!kvm_x86_ops.enable_l2_tlb_flush) 5625 return -ENOTTY; 5626 5627 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5628 5629 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5630 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5631 5632 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5633 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5634 if (vcpu->arch.pv_cpuid.enforce) 5635 kvm_update_pv_runtime(vcpu); 5636 5637 return 0; 5638 default: 5639 return -EINVAL; 5640 } 5641 } 5642 5643 long kvm_arch_vcpu_ioctl(struct file *filp, 5644 unsigned int ioctl, unsigned long arg) 5645 { 5646 struct kvm_vcpu *vcpu = filp->private_data; 5647 void __user *argp = (void __user *)arg; 5648 int r; 5649 union { 5650 struct kvm_sregs2 *sregs2; 5651 struct kvm_lapic_state *lapic; 5652 struct kvm_xsave *xsave; 5653 struct kvm_xcrs *xcrs; 5654 void *buffer; 5655 } u; 5656 5657 vcpu_load(vcpu); 5658 5659 u.buffer = NULL; 5660 switch (ioctl) { 5661 case KVM_GET_LAPIC: { 5662 r = -EINVAL; 5663 if (!lapic_in_kernel(vcpu)) 5664 goto out; 5665 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5666 GFP_KERNEL_ACCOUNT); 5667 5668 r = -ENOMEM; 5669 if (!u.lapic) 5670 goto out; 5671 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5672 if (r) 5673 goto out; 5674 r = -EFAULT; 5675 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5676 goto out; 5677 r = 0; 5678 break; 5679 } 5680 case KVM_SET_LAPIC: { 5681 r = -EINVAL; 5682 if (!lapic_in_kernel(vcpu)) 5683 goto out; 5684 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5685 if (IS_ERR(u.lapic)) { 5686 r = PTR_ERR(u.lapic); 5687 goto out_nofree; 5688 } 5689 5690 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5691 break; 5692 } 5693 case KVM_INTERRUPT: { 5694 struct kvm_interrupt irq; 5695 5696 r = -EFAULT; 5697 if (copy_from_user(&irq, argp, sizeof(irq))) 5698 goto out; 5699 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5700 break; 5701 } 5702 case KVM_NMI: { 5703 r = kvm_vcpu_ioctl_nmi(vcpu); 5704 break; 5705 } 5706 case KVM_SMI: { 5707 r = kvm_inject_smi(vcpu); 5708 break; 5709 } 5710 case KVM_SET_CPUID: { 5711 struct kvm_cpuid __user *cpuid_arg = argp; 5712 struct kvm_cpuid cpuid; 5713 5714 r = -EFAULT; 5715 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5716 goto out; 5717 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5718 break; 5719 } 5720 case KVM_SET_CPUID2: { 5721 struct kvm_cpuid2 __user *cpuid_arg = argp; 5722 struct kvm_cpuid2 cpuid; 5723 5724 r = -EFAULT; 5725 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5726 goto out; 5727 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5728 cpuid_arg->entries); 5729 break; 5730 } 5731 case KVM_GET_CPUID2: { 5732 struct kvm_cpuid2 __user *cpuid_arg = argp; 5733 struct kvm_cpuid2 cpuid; 5734 5735 r = -EFAULT; 5736 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5737 goto out; 5738 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5739 cpuid_arg->entries); 5740 if (r) 5741 goto out; 5742 r = -EFAULT; 5743 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5744 goto out; 5745 r = 0; 5746 break; 5747 } 5748 case KVM_GET_MSRS: { 5749 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5750 r = msr_io(vcpu, argp, do_get_msr, 1); 5751 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5752 break; 5753 } 5754 case KVM_SET_MSRS: { 5755 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5756 r = msr_io(vcpu, argp, do_set_msr, 0); 5757 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5758 break; 5759 } 5760 case KVM_TPR_ACCESS_REPORTING: { 5761 struct kvm_tpr_access_ctl tac; 5762 5763 r = -EFAULT; 5764 if (copy_from_user(&tac, argp, sizeof(tac))) 5765 goto out; 5766 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5767 if (r) 5768 goto out; 5769 r = -EFAULT; 5770 if (copy_to_user(argp, &tac, sizeof(tac))) 5771 goto out; 5772 r = 0; 5773 break; 5774 }; 5775 case KVM_SET_VAPIC_ADDR: { 5776 struct kvm_vapic_addr va; 5777 int idx; 5778 5779 r = -EINVAL; 5780 if (!lapic_in_kernel(vcpu)) 5781 goto out; 5782 r = -EFAULT; 5783 if (copy_from_user(&va, argp, sizeof(va))) 5784 goto out; 5785 idx = srcu_read_lock(&vcpu->kvm->srcu); 5786 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5787 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5788 break; 5789 } 5790 case KVM_X86_SETUP_MCE: { 5791 u64 mcg_cap; 5792 5793 r = -EFAULT; 5794 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5795 goto out; 5796 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5797 break; 5798 } 5799 case KVM_X86_SET_MCE: { 5800 struct kvm_x86_mce mce; 5801 5802 r = -EFAULT; 5803 if (copy_from_user(&mce, argp, sizeof(mce))) 5804 goto out; 5805 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5806 break; 5807 } 5808 case KVM_GET_VCPU_EVENTS: { 5809 struct kvm_vcpu_events events; 5810 5811 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5812 5813 r = -EFAULT; 5814 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5815 break; 5816 r = 0; 5817 break; 5818 } 5819 case KVM_SET_VCPU_EVENTS: { 5820 struct kvm_vcpu_events events; 5821 5822 r = -EFAULT; 5823 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5824 break; 5825 5826 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5827 break; 5828 } 5829 case KVM_GET_DEBUGREGS: { 5830 struct kvm_debugregs dbgregs; 5831 5832 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5833 5834 r = -EFAULT; 5835 if (copy_to_user(argp, &dbgregs, 5836 sizeof(struct kvm_debugregs))) 5837 break; 5838 r = 0; 5839 break; 5840 } 5841 case KVM_SET_DEBUGREGS: { 5842 struct kvm_debugregs dbgregs; 5843 5844 r = -EFAULT; 5845 if (copy_from_user(&dbgregs, argp, 5846 sizeof(struct kvm_debugregs))) 5847 break; 5848 5849 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5850 break; 5851 } 5852 case KVM_GET_XSAVE: { 5853 r = -EINVAL; 5854 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5855 break; 5856 5857 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5858 r = -ENOMEM; 5859 if (!u.xsave) 5860 break; 5861 5862 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5863 5864 r = -EFAULT; 5865 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5866 break; 5867 r = 0; 5868 break; 5869 } 5870 case KVM_SET_XSAVE: { 5871 int size = vcpu->arch.guest_fpu.uabi_size; 5872 5873 u.xsave = memdup_user(argp, size); 5874 if (IS_ERR(u.xsave)) { 5875 r = PTR_ERR(u.xsave); 5876 goto out_nofree; 5877 } 5878 5879 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5880 break; 5881 } 5882 5883 case KVM_GET_XSAVE2: { 5884 int size = vcpu->arch.guest_fpu.uabi_size; 5885 5886 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5887 r = -ENOMEM; 5888 if (!u.xsave) 5889 break; 5890 5891 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5892 5893 r = -EFAULT; 5894 if (copy_to_user(argp, u.xsave, size)) 5895 break; 5896 5897 r = 0; 5898 break; 5899 } 5900 5901 case KVM_GET_XCRS: { 5902 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5903 r = -ENOMEM; 5904 if (!u.xcrs) 5905 break; 5906 5907 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5908 5909 r = -EFAULT; 5910 if (copy_to_user(argp, u.xcrs, 5911 sizeof(struct kvm_xcrs))) 5912 break; 5913 r = 0; 5914 break; 5915 } 5916 case KVM_SET_XCRS: { 5917 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5918 if (IS_ERR(u.xcrs)) { 5919 r = PTR_ERR(u.xcrs); 5920 goto out_nofree; 5921 } 5922 5923 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5924 break; 5925 } 5926 case KVM_SET_TSC_KHZ: { 5927 u32 user_tsc_khz; 5928 5929 r = -EINVAL; 5930 user_tsc_khz = (u32)arg; 5931 5932 if (kvm_caps.has_tsc_control && 5933 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5934 goto out; 5935 5936 if (user_tsc_khz == 0) 5937 user_tsc_khz = tsc_khz; 5938 5939 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5940 r = 0; 5941 5942 goto out; 5943 } 5944 case KVM_GET_TSC_KHZ: { 5945 r = vcpu->arch.virtual_tsc_khz; 5946 goto out; 5947 } 5948 case KVM_KVMCLOCK_CTRL: { 5949 r = kvm_set_guest_paused(vcpu); 5950 goto out; 5951 } 5952 case KVM_ENABLE_CAP: { 5953 struct kvm_enable_cap cap; 5954 5955 r = -EFAULT; 5956 if (copy_from_user(&cap, argp, sizeof(cap))) 5957 goto out; 5958 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5959 break; 5960 } 5961 case KVM_GET_NESTED_STATE: { 5962 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5963 u32 user_data_size; 5964 5965 r = -EINVAL; 5966 if (!kvm_x86_ops.nested_ops->get_state) 5967 break; 5968 5969 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5970 r = -EFAULT; 5971 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5972 break; 5973 5974 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5975 user_data_size); 5976 if (r < 0) 5977 break; 5978 5979 if (r > user_data_size) { 5980 if (put_user(r, &user_kvm_nested_state->size)) 5981 r = -EFAULT; 5982 else 5983 r = -E2BIG; 5984 break; 5985 } 5986 5987 r = 0; 5988 break; 5989 } 5990 case KVM_SET_NESTED_STATE: { 5991 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5992 struct kvm_nested_state kvm_state; 5993 int idx; 5994 5995 r = -EINVAL; 5996 if (!kvm_x86_ops.nested_ops->set_state) 5997 break; 5998 5999 r = -EFAULT; 6000 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6001 break; 6002 6003 r = -EINVAL; 6004 if (kvm_state.size < sizeof(kvm_state)) 6005 break; 6006 6007 if (kvm_state.flags & 6008 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6009 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6010 | KVM_STATE_NESTED_GIF_SET)) 6011 break; 6012 6013 /* nested_run_pending implies guest_mode. */ 6014 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6015 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6016 break; 6017 6018 idx = srcu_read_lock(&vcpu->kvm->srcu); 6019 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6020 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6021 break; 6022 } 6023 case KVM_GET_SUPPORTED_HV_CPUID: 6024 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6025 break; 6026 #ifdef CONFIG_KVM_XEN 6027 case KVM_XEN_VCPU_GET_ATTR: { 6028 struct kvm_xen_vcpu_attr xva; 6029 6030 r = -EFAULT; 6031 if (copy_from_user(&xva, argp, sizeof(xva))) 6032 goto out; 6033 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6034 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6035 r = -EFAULT; 6036 break; 6037 } 6038 case KVM_XEN_VCPU_SET_ATTR: { 6039 struct kvm_xen_vcpu_attr xva; 6040 6041 r = -EFAULT; 6042 if (copy_from_user(&xva, argp, sizeof(xva))) 6043 goto out; 6044 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6045 break; 6046 } 6047 #endif 6048 case KVM_GET_SREGS2: { 6049 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6050 r = -ENOMEM; 6051 if (!u.sregs2) 6052 goto out; 6053 __get_sregs2(vcpu, u.sregs2); 6054 r = -EFAULT; 6055 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6056 goto out; 6057 r = 0; 6058 break; 6059 } 6060 case KVM_SET_SREGS2: { 6061 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6062 if (IS_ERR(u.sregs2)) { 6063 r = PTR_ERR(u.sregs2); 6064 u.sregs2 = NULL; 6065 goto out; 6066 } 6067 r = __set_sregs2(vcpu, u.sregs2); 6068 break; 6069 } 6070 case KVM_HAS_DEVICE_ATTR: 6071 case KVM_GET_DEVICE_ATTR: 6072 case KVM_SET_DEVICE_ATTR: 6073 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6074 break; 6075 default: 6076 r = -EINVAL; 6077 } 6078 out: 6079 kfree(u.buffer); 6080 out_nofree: 6081 vcpu_put(vcpu); 6082 return r; 6083 } 6084 6085 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6086 { 6087 return VM_FAULT_SIGBUS; 6088 } 6089 6090 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6091 { 6092 int ret; 6093 6094 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6095 return -EINVAL; 6096 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6097 return ret; 6098 } 6099 6100 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6101 u64 ident_addr) 6102 { 6103 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6104 } 6105 6106 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6107 unsigned long kvm_nr_mmu_pages) 6108 { 6109 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6110 return -EINVAL; 6111 6112 mutex_lock(&kvm->slots_lock); 6113 6114 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6115 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6116 6117 mutex_unlock(&kvm->slots_lock); 6118 return 0; 6119 } 6120 6121 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6122 { 6123 struct kvm_pic *pic = kvm->arch.vpic; 6124 int r; 6125 6126 r = 0; 6127 switch (chip->chip_id) { 6128 case KVM_IRQCHIP_PIC_MASTER: 6129 memcpy(&chip->chip.pic, &pic->pics[0], 6130 sizeof(struct kvm_pic_state)); 6131 break; 6132 case KVM_IRQCHIP_PIC_SLAVE: 6133 memcpy(&chip->chip.pic, &pic->pics[1], 6134 sizeof(struct kvm_pic_state)); 6135 break; 6136 case KVM_IRQCHIP_IOAPIC: 6137 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6138 break; 6139 default: 6140 r = -EINVAL; 6141 break; 6142 } 6143 return r; 6144 } 6145 6146 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6147 { 6148 struct kvm_pic *pic = kvm->arch.vpic; 6149 int r; 6150 6151 r = 0; 6152 switch (chip->chip_id) { 6153 case KVM_IRQCHIP_PIC_MASTER: 6154 spin_lock(&pic->lock); 6155 memcpy(&pic->pics[0], &chip->chip.pic, 6156 sizeof(struct kvm_pic_state)); 6157 spin_unlock(&pic->lock); 6158 break; 6159 case KVM_IRQCHIP_PIC_SLAVE: 6160 spin_lock(&pic->lock); 6161 memcpy(&pic->pics[1], &chip->chip.pic, 6162 sizeof(struct kvm_pic_state)); 6163 spin_unlock(&pic->lock); 6164 break; 6165 case KVM_IRQCHIP_IOAPIC: 6166 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6167 break; 6168 default: 6169 r = -EINVAL; 6170 break; 6171 } 6172 kvm_pic_update_irq(pic); 6173 return r; 6174 } 6175 6176 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6177 { 6178 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6179 6180 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6181 6182 mutex_lock(&kps->lock); 6183 memcpy(ps, &kps->channels, sizeof(*ps)); 6184 mutex_unlock(&kps->lock); 6185 return 0; 6186 } 6187 6188 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6189 { 6190 int i; 6191 struct kvm_pit *pit = kvm->arch.vpit; 6192 6193 mutex_lock(&pit->pit_state.lock); 6194 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6195 for (i = 0; i < 3; i++) 6196 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6197 mutex_unlock(&pit->pit_state.lock); 6198 return 0; 6199 } 6200 6201 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6202 { 6203 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6204 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6205 sizeof(ps->channels)); 6206 ps->flags = kvm->arch.vpit->pit_state.flags; 6207 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6208 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6209 return 0; 6210 } 6211 6212 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6213 { 6214 int start = 0; 6215 int i; 6216 u32 prev_legacy, cur_legacy; 6217 struct kvm_pit *pit = kvm->arch.vpit; 6218 6219 mutex_lock(&pit->pit_state.lock); 6220 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6221 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6222 if (!prev_legacy && cur_legacy) 6223 start = 1; 6224 memcpy(&pit->pit_state.channels, &ps->channels, 6225 sizeof(pit->pit_state.channels)); 6226 pit->pit_state.flags = ps->flags; 6227 for (i = 0; i < 3; i++) 6228 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6229 start && i == 0); 6230 mutex_unlock(&pit->pit_state.lock); 6231 return 0; 6232 } 6233 6234 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6235 struct kvm_reinject_control *control) 6236 { 6237 struct kvm_pit *pit = kvm->arch.vpit; 6238 6239 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6240 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6241 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6242 */ 6243 mutex_lock(&pit->pit_state.lock); 6244 kvm_pit_set_reinject(pit, control->pit_reinject); 6245 mutex_unlock(&pit->pit_state.lock); 6246 6247 return 0; 6248 } 6249 6250 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6251 { 6252 6253 /* 6254 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6255 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6256 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6257 * VM-Exit. 6258 */ 6259 struct kvm_vcpu *vcpu; 6260 unsigned long i; 6261 6262 kvm_for_each_vcpu(i, vcpu, kvm) 6263 kvm_vcpu_kick(vcpu); 6264 } 6265 6266 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6267 bool line_status) 6268 { 6269 if (!irqchip_in_kernel(kvm)) 6270 return -ENXIO; 6271 6272 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6273 irq_event->irq, irq_event->level, 6274 line_status); 6275 return 0; 6276 } 6277 6278 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6279 struct kvm_enable_cap *cap) 6280 { 6281 int r; 6282 6283 if (cap->flags) 6284 return -EINVAL; 6285 6286 switch (cap->cap) { 6287 case KVM_CAP_DISABLE_QUIRKS2: 6288 r = -EINVAL; 6289 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6290 break; 6291 fallthrough; 6292 case KVM_CAP_DISABLE_QUIRKS: 6293 kvm->arch.disabled_quirks = cap->args[0]; 6294 r = 0; 6295 break; 6296 case KVM_CAP_SPLIT_IRQCHIP: { 6297 mutex_lock(&kvm->lock); 6298 r = -EINVAL; 6299 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6300 goto split_irqchip_unlock; 6301 r = -EEXIST; 6302 if (irqchip_in_kernel(kvm)) 6303 goto split_irqchip_unlock; 6304 if (kvm->created_vcpus) 6305 goto split_irqchip_unlock; 6306 r = kvm_setup_empty_irq_routing(kvm); 6307 if (r) 6308 goto split_irqchip_unlock; 6309 /* Pairs with irqchip_in_kernel. */ 6310 smp_wmb(); 6311 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6312 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6313 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6314 r = 0; 6315 split_irqchip_unlock: 6316 mutex_unlock(&kvm->lock); 6317 break; 6318 } 6319 case KVM_CAP_X2APIC_API: 6320 r = -EINVAL; 6321 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6322 break; 6323 6324 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6325 kvm->arch.x2apic_format = true; 6326 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6327 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6328 6329 r = 0; 6330 break; 6331 case KVM_CAP_X86_DISABLE_EXITS: 6332 r = -EINVAL; 6333 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6334 break; 6335 6336 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6337 kvm->arch.pause_in_guest = true; 6338 6339 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6340 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6341 6342 if (!mitigate_smt_rsb) { 6343 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6344 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6345 pr_warn_once(SMT_RSB_MSG); 6346 6347 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6348 kvm_can_mwait_in_guest()) 6349 kvm->arch.mwait_in_guest = true; 6350 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6351 kvm->arch.hlt_in_guest = true; 6352 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6353 kvm->arch.cstate_in_guest = true; 6354 } 6355 6356 r = 0; 6357 break; 6358 case KVM_CAP_MSR_PLATFORM_INFO: 6359 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6360 r = 0; 6361 break; 6362 case KVM_CAP_EXCEPTION_PAYLOAD: 6363 kvm->arch.exception_payload_enabled = cap->args[0]; 6364 r = 0; 6365 break; 6366 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6367 kvm->arch.triple_fault_event = cap->args[0]; 6368 r = 0; 6369 break; 6370 case KVM_CAP_X86_USER_SPACE_MSR: 6371 r = -EINVAL; 6372 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6373 break; 6374 kvm->arch.user_space_msr_mask = cap->args[0]; 6375 r = 0; 6376 break; 6377 case KVM_CAP_X86_BUS_LOCK_EXIT: 6378 r = -EINVAL; 6379 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6380 break; 6381 6382 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6383 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6384 break; 6385 6386 if (kvm_caps.has_bus_lock_exit && 6387 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6388 kvm->arch.bus_lock_detection_enabled = true; 6389 r = 0; 6390 break; 6391 #ifdef CONFIG_X86_SGX_KVM 6392 case KVM_CAP_SGX_ATTRIBUTE: { 6393 unsigned long allowed_attributes = 0; 6394 6395 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6396 if (r) 6397 break; 6398 6399 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6400 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6401 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6402 kvm->arch.sgx_provisioning_allowed = true; 6403 else 6404 r = -EINVAL; 6405 break; 6406 } 6407 #endif 6408 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6409 r = -EINVAL; 6410 if (!kvm_x86_ops.vm_copy_enc_context_from) 6411 break; 6412 6413 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6414 break; 6415 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6416 r = -EINVAL; 6417 if (!kvm_x86_ops.vm_move_enc_context_from) 6418 break; 6419 6420 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6421 break; 6422 case KVM_CAP_EXIT_HYPERCALL: 6423 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6424 r = -EINVAL; 6425 break; 6426 } 6427 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6428 r = 0; 6429 break; 6430 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6431 r = -EINVAL; 6432 if (cap->args[0] & ~1) 6433 break; 6434 kvm->arch.exit_on_emulation_error = cap->args[0]; 6435 r = 0; 6436 break; 6437 case KVM_CAP_PMU_CAPABILITY: 6438 r = -EINVAL; 6439 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6440 break; 6441 6442 mutex_lock(&kvm->lock); 6443 if (!kvm->created_vcpus) { 6444 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6445 r = 0; 6446 } 6447 mutex_unlock(&kvm->lock); 6448 break; 6449 case KVM_CAP_MAX_VCPU_ID: 6450 r = -EINVAL; 6451 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6452 break; 6453 6454 mutex_lock(&kvm->lock); 6455 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6456 r = 0; 6457 } else if (!kvm->arch.max_vcpu_ids) { 6458 kvm->arch.max_vcpu_ids = cap->args[0]; 6459 r = 0; 6460 } 6461 mutex_unlock(&kvm->lock); 6462 break; 6463 case KVM_CAP_X86_NOTIFY_VMEXIT: 6464 r = -EINVAL; 6465 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6466 break; 6467 if (!kvm_caps.has_notify_vmexit) 6468 break; 6469 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6470 break; 6471 mutex_lock(&kvm->lock); 6472 if (!kvm->created_vcpus) { 6473 kvm->arch.notify_window = cap->args[0] >> 32; 6474 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6475 r = 0; 6476 } 6477 mutex_unlock(&kvm->lock); 6478 break; 6479 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6480 r = -EINVAL; 6481 6482 /* 6483 * Since the risk of disabling NX hugepages is a guest crashing 6484 * the system, ensure the userspace process has permission to 6485 * reboot the system. 6486 * 6487 * Note that unlike the reboot() syscall, the process must have 6488 * this capability in the root namespace because exposing 6489 * /dev/kvm into a container does not limit the scope of the 6490 * iTLB multihit bug to that container. In other words, 6491 * this must use capable(), not ns_capable(). 6492 */ 6493 if (!capable(CAP_SYS_BOOT)) { 6494 r = -EPERM; 6495 break; 6496 } 6497 6498 if (cap->args[0]) 6499 break; 6500 6501 mutex_lock(&kvm->lock); 6502 if (!kvm->created_vcpus) { 6503 kvm->arch.disable_nx_huge_pages = true; 6504 r = 0; 6505 } 6506 mutex_unlock(&kvm->lock); 6507 break; 6508 default: 6509 r = -EINVAL; 6510 break; 6511 } 6512 return r; 6513 } 6514 6515 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6516 { 6517 struct kvm_x86_msr_filter *msr_filter; 6518 6519 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6520 if (!msr_filter) 6521 return NULL; 6522 6523 msr_filter->default_allow = default_allow; 6524 return msr_filter; 6525 } 6526 6527 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6528 { 6529 u32 i; 6530 6531 if (!msr_filter) 6532 return; 6533 6534 for (i = 0; i < msr_filter->count; i++) 6535 kfree(msr_filter->ranges[i].bitmap); 6536 6537 kfree(msr_filter); 6538 } 6539 6540 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6541 struct kvm_msr_filter_range *user_range) 6542 { 6543 unsigned long *bitmap; 6544 size_t bitmap_size; 6545 6546 if (!user_range->nmsrs) 6547 return 0; 6548 6549 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6550 return -EINVAL; 6551 6552 if (!user_range->flags) 6553 return -EINVAL; 6554 6555 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6556 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6557 return -EINVAL; 6558 6559 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6560 if (IS_ERR(bitmap)) 6561 return PTR_ERR(bitmap); 6562 6563 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6564 .flags = user_range->flags, 6565 .base = user_range->base, 6566 .nmsrs = user_range->nmsrs, 6567 .bitmap = bitmap, 6568 }; 6569 6570 msr_filter->count++; 6571 return 0; 6572 } 6573 6574 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6575 struct kvm_msr_filter *filter) 6576 { 6577 struct kvm_x86_msr_filter *new_filter, *old_filter; 6578 bool default_allow; 6579 bool empty = true; 6580 int r; 6581 u32 i; 6582 6583 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6584 return -EINVAL; 6585 6586 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6587 empty &= !filter->ranges[i].nmsrs; 6588 6589 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6590 if (empty && !default_allow) 6591 return -EINVAL; 6592 6593 new_filter = kvm_alloc_msr_filter(default_allow); 6594 if (!new_filter) 6595 return -ENOMEM; 6596 6597 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6598 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6599 if (r) { 6600 kvm_free_msr_filter(new_filter); 6601 return r; 6602 } 6603 } 6604 6605 mutex_lock(&kvm->lock); 6606 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6607 mutex_is_locked(&kvm->lock)); 6608 mutex_unlock(&kvm->lock); 6609 synchronize_srcu(&kvm->srcu); 6610 6611 kvm_free_msr_filter(old_filter); 6612 6613 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6614 6615 return 0; 6616 } 6617 6618 #ifdef CONFIG_KVM_COMPAT 6619 /* for KVM_X86_SET_MSR_FILTER */ 6620 struct kvm_msr_filter_range_compat { 6621 __u32 flags; 6622 __u32 nmsrs; 6623 __u32 base; 6624 __u32 bitmap; 6625 }; 6626 6627 struct kvm_msr_filter_compat { 6628 __u32 flags; 6629 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6630 }; 6631 6632 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6633 6634 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6635 unsigned long arg) 6636 { 6637 void __user *argp = (void __user *)arg; 6638 struct kvm *kvm = filp->private_data; 6639 long r = -ENOTTY; 6640 6641 switch (ioctl) { 6642 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6643 struct kvm_msr_filter __user *user_msr_filter = argp; 6644 struct kvm_msr_filter_compat filter_compat; 6645 struct kvm_msr_filter filter; 6646 int i; 6647 6648 if (copy_from_user(&filter_compat, user_msr_filter, 6649 sizeof(filter_compat))) 6650 return -EFAULT; 6651 6652 filter.flags = filter_compat.flags; 6653 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6654 struct kvm_msr_filter_range_compat *cr; 6655 6656 cr = &filter_compat.ranges[i]; 6657 filter.ranges[i] = (struct kvm_msr_filter_range) { 6658 .flags = cr->flags, 6659 .nmsrs = cr->nmsrs, 6660 .base = cr->base, 6661 .bitmap = (__u8 *)(ulong)cr->bitmap, 6662 }; 6663 } 6664 6665 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6666 break; 6667 } 6668 } 6669 6670 return r; 6671 } 6672 #endif 6673 6674 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6675 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6676 { 6677 struct kvm_vcpu *vcpu; 6678 unsigned long i; 6679 int ret = 0; 6680 6681 mutex_lock(&kvm->lock); 6682 kvm_for_each_vcpu(i, vcpu, kvm) { 6683 if (!vcpu->arch.pv_time.active) 6684 continue; 6685 6686 ret = kvm_set_guest_paused(vcpu); 6687 if (ret) { 6688 kvm_err("Failed to pause guest VCPU%d: %d\n", 6689 vcpu->vcpu_id, ret); 6690 break; 6691 } 6692 } 6693 mutex_unlock(&kvm->lock); 6694 6695 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6696 } 6697 6698 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6699 { 6700 switch (state) { 6701 case PM_HIBERNATION_PREPARE: 6702 case PM_SUSPEND_PREPARE: 6703 return kvm_arch_suspend_notifier(kvm); 6704 } 6705 6706 return NOTIFY_DONE; 6707 } 6708 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6709 6710 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6711 { 6712 struct kvm_clock_data data = { 0 }; 6713 6714 get_kvmclock(kvm, &data); 6715 if (copy_to_user(argp, &data, sizeof(data))) 6716 return -EFAULT; 6717 6718 return 0; 6719 } 6720 6721 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6722 { 6723 struct kvm_arch *ka = &kvm->arch; 6724 struct kvm_clock_data data; 6725 u64 now_raw_ns; 6726 6727 if (copy_from_user(&data, argp, sizeof(data))) 6728 return -EFAULT; 6729 6730 /* 6731 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6732 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6733 */ 6734 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6735 return -EINVAL; 6736 6737 kvm_hv_request_tsc_page_update(kvm); 6738 kvm_start_pvclock_update(kvm); 6739 pvclock_update_vm_gtod_copy(kvm); 6740 6741 /* 6742 * This pairs with kvm_guest_time_update(): when masterclock is 6743 * in use, we use master_kernel_ns + kvmclock_offset to set 6744 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6745 * is slightly ahead) here we risk going negative on unsigned 6746 * 'system_time' when 'data.clock' is very small. 6747 */ 6748 if (data.flags & KVM_CLOCK_REALTIME) { 6749 u64 now_real_ns = ktime_get_real_ns(); 6750 6751 /* 6752 * Avoid stepping the kvmclock backwards. 6753 */ 6754 if (now_real_ns > data.realtime) 6755 data.clock += now_real_ns - data.realtime; 6756 } 6757 6758 if (ka->use_master_clock) 6759 now_raw_ns = ka->master_kernel_ns; 6760 else 6761 now_raw_ns = get_kvmclock_base_ns(); 6762 ka->kvmclock_offset = data.clock - now_raw_ns; 6763 kvm_end_pvclock_update(kvm); 6764 return 0; 6765 } 6766 6767 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6768 { 6769 struct kvm *kvm = filp->private_data; 6770 void __user *argp = (void __user *)arg; 6771 int r = -ENOTTY; 6772 /* 6773 * This union makes it completely explicit to gcc-3.x 6774 * that these two variables' stack usage should be 6775 * combined, not added together. 6776 */ 6777 union { 6778 struct kvm_pit_state ps; 6779 struct kvm_pit_state2 ps2; 6780 struct kvm_pit_config pit_config; 6781 } u; 6782 6783 switch (ioctl) { 6784 case KVM_SET_TSS_ADDR: 6785 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6786 break; 6787 case KVM_SET_IDENTITY_MAP_ADDR: { 6788 u64 ident_addr; 6789 6790 mutex_lock(&kvm->lock); 6791 r = -EINVAL; 6792 if (kvm->created_vcpus) 6793 goto set_identity_unlock; 6794 r = -EFAULT; 6795 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6796 goto set_identity_unlock; 6797 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6798 set_identity_unlock: 6799 mutex_unlock(&kvm->lock); 6800 break; 6801 } 6802 case KVM_SET_NR_MMU_PAGES: 6803 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6804 break; 6805 case KVM_CREATE_IRQCHIP: { 6806 mutex_lock(&kvm->lock); 6807 6808 r = -EEXIST; 6809 if (irqchip_in_kernel(kvm)) 6810 goto create_irqchip_unlock; 6811 6812 r = -EINVAL; 6813 if (kvm->created_vcpus) 6814 goto create_irqchip_unlock; 6815 6816 r = kvm_pic_init(kvm); 6817 if (r) 6818 goto create_irqchip_unlock; 6819 6820 r = kvm_ioapic_init(kvm); 6821 if (r) { 6822 kvm_pic_destroy(kvm); 6823 goto create_irqchip_unlock; 6824 } 6825 6826 r = kvm_setup_default_irq_routing(kvm); 6827 if (r) { 6828 kvm_ioapic_destroy(kvm); 6829 kvm_pic_destroy(kvm); 6830 goto create_irqchip_unlock; 6831 } 6832 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6833 smp_wmb(); 6834 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6835 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6836 create_irqchip_unlock: 6837 mutex_unlock(&kvm->lock); 6838 break; 6839 } 6840 case KVM_CREATE_PIT: 6841 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6842 goto create_pit; 6843 case KVM_CREATE_PIT2: 6844 r = -EFAULT; 6845 if (copy_from_user(&u.pit_config, argp, 6846 sizeof(struct kvm_pit_config))) 6847 goto out; 6848 create_pit: 6849 mutex_lock(&kvm->lock); 6850 r = -EEXIST; 6851 if (kvm->arch.vpit) 6852 goto create_pit_unlock; 6853 r = -ENOMEM; 6854 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6855 if (kvm->arch.vpit) 6856 r = 0; 6857 create_pit_unlock: 6858 mutex_unlock(&kvm->lock); 6859 break; 6860 case KVM_GET_IRQCHIP: { 6861 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6862 struct kvm_irqchip *chip; 6863 6864 chip = memdup_user(argp, sizeof(*chip)); 6865 if (IS_ERR(chip)) { 6866 r = PTR_ERR(chip); 6867 goto out; 6868 } 6869 6870 r = -ENXIO; 6871 if (!irqchip_kernel(kvm)) 6872 goto get_irqchip_out; 6873 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6874 if (r) 6875 goto get_irqchip_out; 6876 r = -EFAULT; 6877 if (copy_to_user(argp, chip, sizeof(*chip))) 6878 goto get_irqchip_out; 6879 r = 0; 6880 get_irqchip_out: 6881 kfree(chip); 6882 break; 6883 } 6884 case KVM_SET_IRQCHIP: { 6885 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6886 struct kvm_irqchip *chip; 6887 6888 chip = memdup_user(argp, sizeof(*chip)); 6889 if (IS_ERR(chip)) { 6890 r = PTR_ERR(chip); 6891 goto out; 6892 } 6893 6894 r = -ENXIO; 6895 if (!irqchip_kernel(kvm)) 6896 goto set_irqchip_out; 6897 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6898 set_irqchip_out: 6899 kfree(chip); 6900 break; 6901 } 6902 case KVM_GET_PIT: { 6903 r = -EFAULT; 6904 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6905 goto out; 6906 r = -ENXIO; 6907 if (!kvm->arch.vpit) 6908 goto out; 6909 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6910 if (r) 6911 goto out; 6912 r = -EFAULT; 6913 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6914 goto out; 6915 r = 0; 6916 break; 6917 } 6918 case KVM_SET_PIT: { 6919 r = -EFAULT; 6920 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6921 goto out; 6922 mutex_lock(&kvm->lock); 6923 r = -ENXIO; 6924 if (!kvm->arch.vpit) 6925 goto set_pit_out; 6926 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6927 set_pit_out: 6928 mutex_unlock(&kvm->lock); 6929 break; 6930 } 6931 case KVM_GET_PIT2: { 6932 r = -ENXIO; 6933 if (!kvm->arch.vpit) 6934 goto out; 6935 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6936 if (r) 6937 goto out; 6938 r = -EFAULT; 6939 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6940 goto out; 6941 r = 0; 6942 break; 6943 } 6944 case KVM_SET_PIT2: { 6945 r = -EFAULT; 6946 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6947 goto out; 6948 mutex_lock(&kvm->lock); 6949 r = -ENXIO; 6950 if (!kvm->arch.vpit) 6951 goto set_pit2_out; 6952 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6953 set_pit2_out: 6954 mutex_unlock(&kvm->lock); 6955 break; 6956 } 6957 case KVM_REINJECT_CONTROL: { 6958 struct kvm_reinject_control control; 6959 r = -EFAULT; 6960 if (copy_from_user(&control, argp, sizeof(control))) 6961 goto out; 6962 r = -ENXIO; 6963 if (!kvm->arch.vpit) 6964 goto out; 6965 r = kvm_vm_ioctl_reinject(kvm, &control); 6966 break; 6967 } 6968 case KVM_SET_BOOT_CPU_ID: 6969 r = 0; 6970 mutex_lock(&kvm->lock); 6971 if (kvm->created_vcpus) 6972 r = -EBUSY; 6973 else 6974 kvm->arch.bsp_vcpu_id = arg; 6975 mutex_unlock(&kvm->lock); 6976 break; 6977 #ifdef CONFIG_KVM_XEN 6978 case KVM_XEN_HVM_CONFIG: { 6979 struct kvm_xen_hvm_config xhc; 6980 r = -EFAULT; 6981 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6982 goto out; 6983 r = kvm_xen_hvm_config(kvm, &xhc); 6984 break; 6985 } 6986 case KVM_XEN_HVM_GET_ATTR: { 6987 struct kvm_xen_hvm_attr xha; 6988 6989 r = -EFAULT; 6990 if (copy_from_user(&xha, argp, sizeof(xha))) 6991 goto out; 6992 r = kvm_xen_hvm_get_attr(kvm, &xha); 6993 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6994 r = -EFAULT; 6995 break; 6996 } 6997 case KVM_XEN_HVM_SET_ATTR: { 6998 struct kvm_xen_hvm_attr xha; 6999 7000 r = -EFAULT; 7001 if (copy_from_user(&xha, argp, sizeof(xha))) 7002 goto out; 7003 r = kvm_xen_hvm_set_attr(kvm, &xha); 7004 break; 7005 } 7006 case KVM_XEN_HVM_EVTCHN_SEND: { 7007 struct kvm_irq_routing_xen_evtchn uxe; 7008 7009 r = -EFAULT; 7010 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7011 goto out; 7012 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7013 break; 7014 } 7015 #endif 7016 case KVM_SET_CLOCK: 7017 r = kvm_vm_ioctl_set_clock(kvm, argp); 7018 break; 7019 case KVM_GET_CLOCK: 7020 r = kvm_vm_ioctl_get_clock(kvm, argp); 7021 break; 7022 case KVM_SET_TSC_KHZ: { 7023 u32 user_tsc_khz; 7024 7025 r = -EINVAL; 7026 user_tsc_khz = (u32)arg; 7027 7028 if (kvm_caps.has_tsc_control && 7029 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7030 goto out; 7031 7032 if (user_tsc_khz == 0) 7033 user_tsc_khz = tsc_khz; 7034 7035 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7036 r = 0; 7037 7038 goto out; 7039 } 7040 case KVM_GET_TSC_KHZ: { 7041 r = READ_ONCE(kvm->arch.default_tsc_khz); 7042 goto out; 7043 } 7044 case KVM_MEMORY_ENCRYPT_OP: { 7045 r = -ENOTTY; 7046 if (!kvm_x86_ops.mem_enc_ioctl) 7047 goto out; 7048 7049 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7050 break; 7051 } 7052 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7053 struct kvm_enc_region region; 7054 7055 r = -EFAULT; 7056 if (copy_from_user(®ion, argp, sizeof(region))) 7057 goto out; 7058 7059 r = -ENOTTY; 7060 if (!kvm_x86_ops.mem_enc_register_region) 7061 goto out; 7062 7063 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7064 break; 7065 } 7066 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7067 struct kvm_enc_region region; 7068 7069 r = -EFAULT; 7070 if (copy_from_user(®ion, argp, sizeof(region))) 7071 goto out; 7072 7073 r = -ENOTTY; 7074 if (!kvm_x86_ops.mem_enc_unregister_region) 7075 goto out; 7076 7077 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7078 break; 7079 } 7080 case KVM_HYPERV_EVENTFD: { 7081 struct kvm_hyperv_eventfd hvevfd; 7082 7083 r = -EFAULT; 7084 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7085 goto out; 7086 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7087 break; 7088 } 7089 case KVM_SET_PMU_EVENT_FILTER: 7090 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7091 break; 7092 case KVM_X86_SET_MSR_FILTER: { 7093 struct kvm_msr_filter __user *user_msr_filter = argp; 7094 struct kvm_msr_filter filter; 7095 7096 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7097 return -EFAULT; 7098 7099 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7100 break; 7101 } 7102 default: 7103 r = -ENOTTY; 7104 } 7105 out: 7106 return r; 7107 } 7108 7109 static void kvm_probe_feature_msr(u32 msr_index) 7110 { 7111 struct kvm_msr_entry msr = { 7112 .index = msr_index, 7113 }; 7114 7115 if (kvm_get_msr_feature(&msr)) 7116 return; 7117 7118 msr_based_features[num_msr_based_features++] = msr_index; 7119 } 7120 7121 static void kvm_probe_msr_to_save(u32 msr_index) 7122 { 7123 u32 dummy[2]; 7124 7125 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7126 return; 7127 7128 /* 7129 * Even MSRs that are valid in the host may not be exposed to guests in 7130 * some cases. 7131 */ 7132 switch (msr_index) { 7133 case MSR_IA32_BNDCFGS: 7134 if (!kvm_mpx_supported()) 7135 return; 7136 break; 7137 case MSR_TSC_AUX: 7138 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7139 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7140 return; 7141 break; 7142 case MSR_IA32_UMWAIT_CONTROL: 7143 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7144 return; 7145 break; 7146 case MSR_IA32_RTIT_CTL: 7147 case MSR_IA32_RTIT_STATUS: 7148 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7149 return; 7150 break; 7151 case MSR_IA32_RTIT_CR3_MATCH: 7152 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7153 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7154 return; 7155 break; 7156 case MSR_IA32_RTIT_OUTPUT_BASE: 7157 case MSR_IA32_RTIT_OUTPUT_MASK: 7158 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7159 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7160 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7161 return; 7162 break; 7163 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7164 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7165 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7166 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7167 return; 7168 break; 7169 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7170 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7171 kvm_pmu_cap.num_counters_gp) 7172 return; 7173 break; 7174 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7175 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7176 kvm_pmu_cap.num_counters_gp) 7177 return; 7178 break; 7179 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7180 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7181 kvm_pmu_cap.num_counters_fixed) 7182 return; 7183 break; 7184 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7185 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7186 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7187 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7188 return; 7189 break; 7190 case MSR_IA32_XFD: 7191 case MSR_IA32_XFD_ERR: 7192 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7193 return; 7194 break; 7195 case MSR_IA32_TSX_CTRL: 7196 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7197 return; 7198 break; 7199 default: 7200 break; 7201 } 7202 7203 msrs_to_save[num_msrs_to_save++] = msr_index; 7204 } 7205 7206 static void kvm_init_msr_lists(void) 7207 { 7208 unsigned i; 7209 7210 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7211 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7212 7213 num_msrs_to_save = 0; 7214 num_emulated_msrs = 0; 7215 num_msr_based_features = 0; 7216 7217 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7218 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7219 7220 if (enable_pmu) { 7221 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7222 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7223 } 7224 7225 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7226 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7227 continue; 7228 7229 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7230 } 7231 7232 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7233 kvm_probe_feature_msr(i); 7234 7235 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7236 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7237 } 7238 7239 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7240 const void *v) 7241 { 7242 int handled = 0; 7243 int n; 7244 7245 do { 7246 n = min(len, 8); 7247 if (!(lapic_in_kernel(vcpu) && 7248 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7249 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7250 break; 7251 handled += n; 7252 addr += n; 7253 len -= n; 7254 v += n; 7255 } while (len); 7256 7257 return handled; 7258 } 7259 7260 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7261 { 7262 int handled = 0; 7263 int n; 7264 7265 do { 7266 n = min(len, 8); 7267 if (!(lapic_in_kernel(vcpu) && 7268 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7269 addr, n, v)) 7270 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7271 break; 7272 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7273 handled += n; 7274 addr += n; 7275 len -= n; 7276 v += n; 7277 } while (len); 7278 7279 return handled; 7280 } 7281 7282 void kvm_set_segment(struct kvm_vcpu *vcpu, 7283 struct kvm_segment *var, int seg) 7284 { 7285 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7286 } 7287 7288 void kvm_get_segment(struct kvm_vcpu *vcpu, 7289 struct kvm_segment *var, int seg) 7290 { 7291 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7292 } 7293 7294 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7295 struct x86_exception *exception) 7296 { 7297 struct kvm_mmu *mmu = vcpu->arch.mmu; 7298 gpa_t t_gpa; 7299 7300 BUG_ON(!mmu_is_nested(vcpu)); 7301 7302 /* NPT walks are always user-walks */ 7303 access |= PFERR_USER_MASK; 7304 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7305 7306 return t_gpa; 7307 } 7308 7309 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7310 struct x86_exception *exception) 7311 { 7312 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7313 7314 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7315 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7316 } 7317 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7318 7319 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7320 struct x86_exception *exception) 7321 { 7322 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7323 7324 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7325 access |= PFERR_WRITE_MASK; 7326 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7327 } 7328 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7329 7330 /* uses this to access any guest's mapped memory without checking CPL */ 7331 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7332 struct x86_exception *exception) 7333 { 7334 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7335 7336 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7337 } 7338 7339 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7340 struct kvm_vcpu *vcpu, u64 access, 7341 struct x86_exception *exception) 7342 { 7343 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7344 void *data = val; 7345 int r = X86EMUL_CONTINUE; 7346 7347 while (bytes) { 7348 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7349 unsigned offset = addr & (PAGE_SIZE-1); 7350 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7351 int ret; 7352 7353 if (gpa == INVALID_GPA) 7354 return X86EMUL_PROPAGATE_FAULT; 7355 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7356 offset, toread); 7357 if (ret < 0) { 7358 r = X86EMUL_IO_NEEDED; 7359 goto out; 7360 } 7361 7362 bytes -= toread; 7363 data += toread; 7364 addr += toread; 7365 } 7366 out: 7367 return r; 7368 } 7369 7370 /* used for instruction fetching */ 7371 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7372 gva_t addr, void *val, unsigned int bytes, 7373 struct x86_exception *exception) 7374 { 7375 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7376 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7377 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7378 unsigned offset; 7379 int ret; 7380 7381 /* Inline kvm_read_guest_virt_helper for speed. */ 7382 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7383 exception); 7384 if (unlikely(gpa == INVALID_GPA)) 7385 return X86EMUL_PROPAGATE_FAULT; 7386 7387 offset = addr & (PAGE_SIZE-1); 7388 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7389 bytes = (unsigned)PAGE_SIZE - offset; 7390 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7391 offset, bytes); 7392 if (unlikely(ret < 0)) 7393 return X86EMUL_IO_NEEDED; 7394 7395 return X86EMUL_CONTINUE; 7396 } 7397 7398 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7399 gva_t addr, void *val, unsigned int bytes, 7400 struct x86_exception *exception) 7401 { 7402 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7403 7404 /* 7405 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7406 * is returned, but our callers are not ready for that and they blindly 7407 * call kvm_inject_page_fault. Ensure that they at least do not leak 7408 * uninitialized kernel stack memory into cr2 and error code. 7409 */ 7410 memset(exception, 0, sizeof(*exception)); 7411 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7412 exception); 7413 } 7414 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7415 7416 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7417 gva_t addr, void *val, unsigned int bytes, 7418 struct x86_exception *exception, bool system) 7419 { 7420 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7421 u64 access = 0; 7422 7423 if (system) 7424 access |= PFERR_IMPLICIT_ACCESS; 7425 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7426 access |= PFERR_USER_MASK; 7427 7428 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7429 } 7430 7431 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7432 struct kvm_vcpu *vcpu, u64 access, 7433 struct x86_exception *exception) 7434 { 7435 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7436 void *data = val; 7437 int r = X86EMUL_CONTINUE; 7438 7439 while (bytes) { 7440 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7441 unsigned offset = addr & (PAGE_SIZE-1); 7442 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7443 int ret; 7444 7445 if (gpa == INVALID_GPA) 7446 return X86EMUL_PROPAGATE_FAULT; 7447 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7448 if (ret < 0) { 7449 r = X86EMUL_IO_NEEDED; 7450 goto out; 7451 } 7452 7453 bytes -= towrite; 7454 data += towrite; 7455 addr += towrite; 7456 } 7457 out: 7458 return r; 7459 } 7460 7461 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7462 unsigned int bytes, struct x86_exception *exception, 7463 bool system) 7464 { 7465 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7466 u64 access = PFERR_WRITE_MASK; 7467 7468 if (system) 7469 access |= PFERR_IMPLICIT_ACCESS; 7470 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7471 access |= PFERR_USER_MASK; 7472 7473 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7474 access, exception); 7475 } 7476 7477 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7478 unsigned int bytes, struct x86_exception *exception) 7479 { 7480 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7481 vcpu->arch.l1tf_flush_l1d = true; 7482 7483 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7484 PFERR_WRITE_MASK, exception); 7485 } 7486 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7487 7488 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7489 void *insn, int insn_len) 7490 { 7491 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7492 insn, insn_len); 7493 } 7494 7495 int handle_ud(struct kvm_vcpu *vcpu) 7496 { 7497 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7498 int fep_flags = READ_ONCE(force_emulation_prefix); 7499 int emul_type = EMULTYPE_TRAP_UD; 7500 char sig[5]; /* ud2; .ascii "kvm" */ 7501 struct x86_exception e; 7502 7503 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7504 return 1; 7505 7506 if (fep_flags && 7507 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7508 sig, sizeof(sig), &e) == 0 && 7509 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7510 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7511 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7512 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7513 emul_type = EMULTYPE_TRAP_UD_FORCED; 7514 } 7515 7516 return kvm_emulate_instruction(vcpu, emul_type); 7517 } 7518 EXPORT_SYMBOL_GPL(handle_ud); 7519 7520 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7521 gpa_t gpa, bool write) 7522 { 7523 /* For APIC access vmexit */ 7524 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7525 return 1; 7526 7527 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7528 trace_vcpu_match_mmio(gva, gpa, write, true); 7529 return 1; 7530 } 7531 7532 return 0; 7533 } 7534 7535 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7536 gpa_t *gpa, struct x86_exception *exception, 7537 bool write) 7538 { 7539 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7540 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7541 | (write ? PFERR_WRITE_MASK : 0); 7542 7543 /* 7544 * currently PKRU is only applied to ept enabled guest so 7545 * there is no pkey in EPT page table for L1 guest or EPT 7546 * shadow page table for L2 guest. 7547 */ 7548 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7549 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7550 vcpu->arch.mmio_access, 0, access))) { 7551 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7552 (gva & (PAGE_SIZE - 1)); 7553 trace_vcpu_match_mmio(gva, *gpa, write, false); 7554 return 1; 7555 } 7556 7557 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7558 7559 if (*gpa == INVALID_GPA) 7560 return -1; 7561 7562 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7563 } 7564 7565 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7566 const void *val, int bytes) 7567 { 7568 int ret; 7569 7570 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7571 if (ret < 0) 7572 return 0; 7573 kvm_page_track_write(vcpu, gpa, val, bytes); 7574 return 1; 7575 } 7576 7577 struct read_write_emulator_ops { 7578 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7579 int bytes); 7580 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7581 void *val, int bytes); 7582 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7583 int bytes, void *val); 7584 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7585 void *val, int bytes); 7586 bool write; 7587 }; 7588 7589 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7590 { 7591 if (vcpu->mmio_read_completed) { 7592 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7593 vcpu->mmio_fragments[0].gpa, val); 7594 vcpu->mmio_read_completed = 0; 7595 return 1; 7596 } 7597 7598 return 0; 7599 } 7600 7601 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7602 void *val, int bytes) 7603 { 7604 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7605 } 7606 7607 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7608 void *val, int bytes) 7609 { 7610 return emulator_write_phys(vcpu, gpa, val, bytes); 7611 } 7612 7613 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7614 { 7615 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7616 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7617 } 7618 7619 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7620 void *val, int bytes) 7621 { 7622 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7623 return X86EMUL_IO_NEEDED; 7624 } 7625 7626 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7627 void *val, int bytes) 7628 { 7629 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7630 7631 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7632 return X86EMUL_CONTINUE; 7633 } 7634 7635 static const struct read_write_emulator_ops read_emultor = { 7636 .read_write_prepare = read_prepare, 7637 .read_write_emulate = read_emulate, 7638 .read_write_mmio = vcpu_mmio_read, 7639 .read_write_exit_mmio = read_exit_mmio, 7640 }; 7641 7642 static const struct read_write_emulator_ops write_emultor = { 7643 .read_write_emulate = write_emulate, 7644 .read_write_mmio = write_mmio, 7645 .read_write_exit_mmio = write_exit_mmio, 7646 .write = true, 7647 }; 7648 7649 static int emulator_read_write_onepage(unsigned long addr, void *val, 7650 unsigned int bytes, 7651 struct x86_exception *exception, 7652 struct kvm_vcpu *vcpu, 7653 const struct read_write_emulator_ops *ops) 7654 { 7655 gpa_t gpa; 7656 int handled, ret; 7657 bool write = ops->write; 7658 struct kvm_mmio_fragment *frag; 7659 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7660 7661 /* 7662 * If the exit was due to a NPF we may already have a GPA. 7663 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7664 * Note, this cannot be used on string operations since string 7665 * operation using rep will only have the initial GPA from the NPF 7666 * occurred. 7667 */ 7668 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7669 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7670 gpa = ctxt->gpa_val; 7671 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7672 } else { 7673 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7674 if (ret < 0) 7675 return X86EMUL_PROPAGATE_FAULT; 7676 } 7677 7678 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7679 return X86EMUL_CONTINUE; 7680 7681 /* 7682 * Is this MMIO handled locally? 7683 */ 7684 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7685 if (handled == bytes) 7686 return X86EMUL_CONTINUE; 7687 7688 gpa += handled; 7689 bytes -= handled; 7690 val += handled; 7691 7692 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7693 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7694 frag->gpa = gpa; 7695 frag->data = val; 7696 frag->len = bytes; 7697 return X86EMUL_CONTINUE; 7698 } 7699 7700 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7701 unsigned long addr, 7702 void *val, unsigned int bytes, 7703 struct x86_exception *exception, 7704 const struct read_write_emulator_ops *ops) 7705 { 7706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7707 gpa_t gpa; 7708 int rc; 7709 7710 if (ops->read_write_prepare && 7711 ops->read_write_prepare(vcpu, val, bytes)) 7712 return X86EMUL_CONTINUE; 7713 7714 vcpu->mmio_nr_fragments = 0; 7715 7716 /* Crossing a page boundary? */ 7717 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7718 int now; 7719 7720 now = -addr & ~PAGE_MASK; 7721 rc = emulator_read_write_onepage(addr, val, now, exception, 7722 vcpu, ops); 7723 7724 if (rc != X86EMUL_CONTINUE) 7725 return rc; 7726 addr += now; 7727 if (ctxt->mode != X86EMUL_MODE_PROT64) 7728 addr = (u32)addr; 7729 val += now; 7730 bytes -= now; 7731 } 7732 7733 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7734 vcpu, ops); 7735 if (rc != X86EMUL_CONTINUE) 7736 return rc; 7737 7738 if (!vcpu->mmio_nr_fragments) 7739 return rc; 7740 7741 gpa = vcpu->mmio_fragments[0].gpa; 7742 7743 vcpu->mmio_needed = 1; 7744 vcpu->mmio_cur_fragment = 0; 7745 7746 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7747 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7748 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7749 vcpu->run->mmio.phys_addr = gpa; 7750 7751 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7752 } 7753 7754 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7755 unsigned long addr, 7756 void *val, 7757 unsigned int bytes, 7758 struct x86_exception *exception) 7759 { 7760 return emulator_read_write(ctxt, addr, val, bytes, 7761 exception, &read_emultor); 7762 } 7763 7764 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7765 unsigned long addr, 7766 const void *val, 7767 unsigned int bytes, 7768 struct x86_exception *exception) 7769 { 7770 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7771 exception, &write_emultor); 7772 } 7773 7774 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7775 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7776 7777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7778 unsigned long addr, 7779 const void *old, 7780 const void *new, 7781 unsigned int bytes, 7782 struct x86_exception *exception) 7783 { 7784 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7785 u64 page_line_mask; 7786 unsigned long hva; 7787 gpa_t gpa; 7788 int r; 7789 7790 /* guests cmpxchg8b have to be emulated atomically */ 7791 if (bytes > 8 || (bytes & (bytes - 1))) 7792 goto emul_write; 7793 7794 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7795 7796 if (gpa == INVALID_GPA || 7797 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7798 goto emul_write; 7799 7800 /* 7801 * Emulate the atomic as a straight write to avoid #AC if SLD is 7802 * enabled in the host and the access splits a cache line. 7803 */ 7804 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7805 page_line_mask = ~(cache_line_size() - 1); 7806 else 7807 page_line_mask = PAGE_MASK; 7808 7809 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7810 goto emul_write; 7811 7812 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7813 if (kvm_is_error_hva(hva)) 7814 goto emul_write; 7815 7816 hva += offset_in_page(gpa); 7817 7818 switch (bytes) { 7819 case 1: 7820 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7821 break; 7822 case 2: 7823 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7824 break; 7825 case 4: 7826 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7827 break; 7828 case 8: 7829 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7830 break; 7831 default: 7832 BUG(); 7833 } 7834 7835 if (r < 0) 7836 return X86EMUL_UNHANDLEABLE; 7837 if (r) 7838 return X86EMUL_CMPXCHG_FAILED; 7839 7840 kvm_page_track_write(vcpu, gpa, new, bytes); 7841 7842 return X86EMUL_CONTINUE; 7843 7844 emul_write: 7845 pr_warn_once("emulating exchange as write\n"); 7846 7847 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7848 } 7849 7850 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7851 unsigned short port, void *data, 7852 unsigned int count, bool in) 7853 { 7854 unsigned i; 7855 int r; 7856 7857 WARN_ON_ONCE(vcpu->arch.pio.count); 7858 for (i = 0; i < count; i++) { 7859 if (in) 7860 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7861 else 7862 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7863 7864 if (r) { 7865 if (i == 0) 7866 goto userspace_io; 7867 7868 /* 7869 * Userspace must have unregistered the device while PIO 7870 * was running. Drop writes / read as 0. 7871 */ 7872 if (in) 7873 memset(data, 0, size * (count - i)); 7874 break; 7875 } 7876 7877 data += size; 7878 } 7879 return 1; 7880 7881 userspace_io: 7882 vcpu->arch.pio.port = port; 7883 vcpu->arch.pio.in = in; 7884 vcpu->arch.pio.count = count; 7885 vcpu->arch.pio.size = size; 7886 7887 if (in) 7888 memset(vcpu->arch.pio_data, 0, size * count); 7889 else 7890 memcpy(vcpu->arch.pio_data, data, size * count); 7891 7892 vcpu->run->exit_reason = KVM_EXIT_IO; 7893 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7894 vcpu->run->io.size = size; 7895 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7896 vcpu->run->io.count = count; 7897 vcpu->run->io.port = port; 7898 return 0; 7899 } 7900 7901 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7902 unsigned short port, void *val, unsigned int count) 7903 { 7904 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7905 if (r) 7906 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7907 7908 return r; 7909 } 7910 7911 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7912 { 7913 int size = vcpu->arch.pio.size; 7914 unsigned int count = vcpu->arch.pio.count; 7915 memcpy(val, vcpu->arch.pio_data, size * count); 7916 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7917 vcpu->arch.pio.count = 0; 7918 } 7919 7920 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7921 int size, unsigned short port, void *val, 7922 unsigned int count) 7923 { 7924 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7925 if (vcpu->arch.pio.count) { 7926 /* 7927 * Complete a previous iteration that required userspace I/O. 7928 * Note, @count isn't guaranteed to match pio.count as userspace 7929 * can modify ECX before rerunning the vCPU. Ignore any such 7930 * shenanigans as KVM doesn't support modifying the rep count, 7931 * and the emulator ensures @count doesn't overflow the buffer. 7932 */ 7933 complete_emulator_pio_in(vcpu, val); 7934 return 1; 7935 } 7936 7937 return emulator_pio_in(vcpu, size, port, val, count); 7938 } 7939 7940 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7941 unsigned short port, const void *val, 7942 unsigned int count) 7943 { 7944 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7945 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7946 } 7947 7948 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7949 int size, unsigned short port, 7950 const void *val, unsigned int count) 7951 { 7952 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7953 } 7954 7955 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7956 { 7957 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7958 } 7959 7960 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7961 { 7962 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7963 } 7964 7965 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7966 { 7967 if (!need_emulate_wbinvd(vcpu)) 7968 return X86EMUL_CONTINUE; 7969 7970 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7971 int cpu = get_cpu(); 7972 7973 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7974 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7975 wbinvd_ipi, NULL, 1); 7976 put_cpu(); 7977 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7978 } else 7979 wbinvd(); 7980 return X86EMUL_CONTINUE; 7981 } 7982 7983 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7984 { 7985 kvm_emulate_wbinvd_noskip(vcpu); 7986 return kvm_skip_emulated_instruction(vcpu); 7987 } 7988 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7989 7990 7991 7992 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7993 { 7994 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7995 } 7996 7997 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7998 unsigned long *dest) 7999 { 8000 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8001 } 8002 8003 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8004 unsigned long value) 8005 { 8006 8007 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8008 } 8009 8010 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8011 { 8012 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8013 } 8014 8015 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8016 { 8017 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8018 unsigned long value; 8019 8020 switch (cr) { 8021 case 0: 8022 value = kvm_read_cr0(vcpu); 8023 break; 8024 case 2: 8025 value = vcpu->arch.cr2; 8026 break; 8027 case 3: 8028 value = kvm_read_cr3(vcpu); 8029 break; 8030 case 4: 8031 value = kvm_read_cr4(vcpu); 8032 break; 8033 case 8: 8034 value = kvm_get_cr8(vcpu); 8035 break; 8036 default: 8037 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8038 return 0; 8039 } 8040 8041 return value; 8042 } 8043 8044 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8045 { 8046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8047 int res = 0; 8048 8049 switch (cr) { 8050 case 0: 8051 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8052 break; 8053 case 2: 8054 vcpu->arch.cr2 = val; 8055 break; 8056 case 3: 8057 res = kvm_set_cr3(vcpu, val); 8058 break; 8059 case 4: 8060 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8061 break; 8062 case 8: 8063 res = kvm_set_cr8(vcpu, val); 8064 break; 8065 default: 8066 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8067 res = -1; 8068 } 8069 8070 return res; 8071 } 8072 8073 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8074 { 8075 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8076 } 8077 8078 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8079 { 8080 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8081 } 8082 8083 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8084 { 8085 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8086 } 8087 8088 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8089 { 8090 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8091 } 8092 8093 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8094 { 8095 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8096 } 8097 8098 static unsigned long emulator_get_cached_segment_base( 8099 struct x86_emulate_ctxt *ctxt, int seg) 8100 { 8101 return get_segment_base(emul_to_vcpu(ctxt), seg); 8102 } 8103 8104 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8105 struct desc_struct *desc, u32 *base3, 8106 int seg) 8107 { 8108 struct kvm_segment var; 8109 8110 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8111 *selector = var.selector; 8112 8113 if (var.unusable) { 8114 memset(desc, 0, sizeof(*desc)); 8115 if (base3) 8116 *base3 = 0; 8117 return false; 8118 } 8119 8120 if (var.g) 8121 var.limit >>= 12; 8122 set_desc_limit(desc, var.limit); 8123 set_desc_base(desc, (unsigned long)var.base); 8124 #ifdef CONFIG_X86_64 8125 if (base3) 8126 *base3 = var.base >> 32; 8127 #endif 8128 desc->type = var.type; 8129 desc->s = var.s; 8130 desc->dpl = var.dpl; 8131 desc->p = var.present; 8132 desc->avl = var.avl; 8133 desc->l = var.l; 8134 desc->d = var.db; 8135 desc->g = var.g; 8136 8137 return true; 8138 } 8139 8140 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8141 struct desc_struct *desc, u32 base3, 8142 int seg) 8143 { 8144 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8145 struct kvm_segment var; 8146 8147 var.selector = selector; 8148 var.base = get_desc_base(desc); 8149 #ifdef CONFIG_X86_64 8150 var.base |= ((u64)base3) << 32; 8151 #endif 8152 var.limit = get_desc_limit(desc); 8153 if (desc->g) 8154 var.limit = (var.limit << 12) | 0xfff; 8155 var.type = desc->type; 8156 var.dpl = desc->dpl; 8157 var.db = desc->d; 8158 var.s = desc->s; 8159 var.l = desc->l; 8160 var.g = desc->g; 8161 var.avl = desc->avl; 8162 var.present = desc->p; 8163 var.unusable = !var.present; 8164 var.padding = 0; 8165 8166 kvm_set_segment(vcpu, &var, seg); 8167 return; 8168 } 8169 8170 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8171 u32 msr_index, u64 *pdata) 8172 { 8173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8174 int r; 8175 8176 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8177 if (r < 0) 8178 return X86EMUL_UNHANDLEABLE; 8179 8180 if (r) { 8181 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8182 complete_emulated_rdmsr, r)) 8183 return X86EMUL_IO_NEEDED; 8184 8185 trace_kvm_msr_read_ex(msr_index); 8186 return X86EMUL_PROPAGATE_FAULT; 8187 } 8188 8189 trace_kvm_msr_read(msr_index, *pdata); 8190 return X86EMUL_CONTINUE; 8191 } 8192 8193 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8194 u32 msr_index, u64 data) 8195 { 8196 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8197 int r; 8198 8199 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8200 if (r < 0) 8201 return X86EMUL_UNHANDLEABLE; 8202 8203 if (r) { 8204 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8205 complete_emulated_msr_access, r)) 8206 return X86EMUL_IO_NEEDED; 8207 8208 trace_kvm_msr_write_ex(msr_index, data); 8209 return X86EMUL_PROPAGATE_FAULT; 8210 } 8211 8212 trace_kvm_msr_write(msr_index, data); 8213 return X86EMUL_CONTINUE; 8214 } 8215 8216 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8217 u32 msr_index, u64 *pdata) 8218 { 8219 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8220 } 8221 8222 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8223 u32 pmc) 8224 { 8225 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8226 return 0; 8227 return -EINVAL; 8228 } 8229 8230 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8231 u32 pmc, u64 *pdata) 8232 { 8233 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8234 } 8235 8236 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8237 { 8238 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8239 } 8240 8241 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8242 struct x86_instruction_info *info, 8243 enum x86_intercept_stage stage) 8244 { 8245 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8246 &ctxt->exception); 8247 } 8248 8249 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8250 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8251 bool exact_only) 8252 { 8253 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8254 } 8255 8256 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8257 { 8258 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8259 } 8260 8261 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8262 { 8263 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8264 } 8265 8266 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8267 { 8268 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8269 } 8270 8271 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8272 { 8273 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8274 } 8275 8276 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8277 { 8278 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8279 } 8280 8281 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8282 { 8283 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8284 } 8285 8286 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8287 { 8288 return is_smm(emul_to_vcpu(ctxt)); 8289 } 8290 8291 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8292 { 8293 return is_guest_mode(emul_to_vcpu(ctxt)); 8294 } 8295 8296 #ifndef CONFIG_KVM_SMM 8297 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8298 { 8299 WARN_ON_ONCE(1); 8300 return X86EMUL_UNHANDLEABLE; 8301 } 8302 #endif 8303 8304 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8305 { 8306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8307 } 8308 8309 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8310 { 8311 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8312 } 8313 8314 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8315 { 8316 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8317 8318 if (!kvm->vm_bugged) 8319 kvm_vm_bugged(kvm); 8320 } 8321 8322 static const struct x86_emulate_ops emulate_ops = { 8323 .vm_bugged = emulator_vm_bugged, 8324 .read_gpr = emulator_read_gpr, 8325 .write_gpr = emulator_write_gpr, 8326 .read_std = emulator_read_std, 8327 .write_std = emulator_write_std, 8328 .fetch = kvm_fetch_guest_virt, 8329 .read_emulated = emulator_read_emulated, 8330 .write_emulated = emulator_write_emulated, 8331 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8332 .invlpg = emulator_invlpg, 8333 .pio_in_emulated = emulator_pio_in_emulated, 8334 .pio_out_emulated = emulator_pio_out_emulated, 8335 .get_segment = emulator_get_segment, 8336 .set_segment = emulator_set_segment, 8337 .get_cached_segment_base = emulator_get_cached_segment_base, 8338 .get_gdt = emulator_get_gdt, 8339 .get_idt = emulator_get_idt, 8340 .set_gdt = emulator_set_gdt, 8341 .set_idt = emulator_set_idt, 8342 .get_cr = emulator_get_cr, 8343 .set_cr = emulator_set_cr, 8344 .cpl = emulator_get_cpl, 8345 .get_dr = emulator_get_dr, 8346 .set_dr = emulator_set_dr, 8347 .set_msr_with_filter = emulator_set_msr_with_filter, 8348 .get_msr_with_filter = emulator_get_msr_with_filter, 8349 .get_msr = emulator_get_msr, 8350 .check_pmc = emulator_check_pmc, 8351 .read_pmc = emulator_read_pmc, 8352 .halt = emulator_halt, 8353 .wbinvd = emulator_wbinvd, 8354 .fix_hypercall = emulator_fix_hypercall, 8355 .intercept = emulator_intercept, 8356 .get_cpuid = emulator_get_cpuid, 8357 .guest_has_movbe = emulator_guest_has_movbe, 8358 .guest_has_fxsr = emulator_guest_has_fxsr, 8359 .guest_has_rdpid = emulator_guest_has_rdpid, 8360 .set_nmi_mask = emulator_set_nmi_mask, 8361 .is_smm = emulator_is_smm, 8362 .is_guest_mode = emulator_is_guest_mode, 8363 .leave_smm = emulator_leave_smm, 8364 .triple_fault = emulator_triple_fault, 8365 .set_xcr = emulator_set_xcr, 8366 }; 8367 8368 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8369 { 8370 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8371 /* 8372 * an sti; sti; sequence only disable interrupts for the first 8373 * instruction. So, if the last instruction, be it emulated or 8374 * not, left the system with the INT_STI flag enabled, it 8375 * means that the last instruction is an sti. We should not 8376 * leave the flag on in this case. The same goes for mov ss 8377 */ 8378 if (int_shadow & mask) 8379 mask = 0; 8380 if (unlikely(int_shadow || mask)) { 8381 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8382 if (!mask) 8383 kvm_make_request(KVM_REQ_EVENT, vcpu); 8384 } 8385 } 8386 8387 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8388 { 8389 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8390 8391 if (ctxt->exception.vector == PF_VECTOR) 8392 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8393 else if (ctxt->exception.error_code_valid) 8394 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8395 ctxt->exception.error_code); 8396 else 8397 kvm_queue_exception(vcpu, ctxt->exception.vector); 8398 } 8399 8400 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8401 { 8402 struct x86_emulate_ctxt *ctxt; 8403 8404 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8405 if (!ctxt) { 8406 pr_err("failed to allocate vcpu's emulator\n"); 8407 return NULL; 8408 } 8409 8410 ctxt->vcpu = vcpu; 8411 ctxt->ops = &emulate_ops; 8412 vcpu->arch.emulate_ctxt = ctxt; 8413 8414 return ctxt; 8415 } 8416 8417 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8418 { 8419 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8420 int cs_db, cs_l; 8421 8422 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8423 8424 ctxt->gpa_available = false; 8425 ctxt->eflags = kvm_get_rflags(vcpu); 8426 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8427 8428 ctxt->eip = kvm_rip_read(vcpu); 8429 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8430 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8431 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8432 cs_db ? X86EMUL_MODE_PROT32 : 8433 X86EMUL_MODE_PROT16; 8434 ctxt->interruptibility = 0; 8435 ctxt->have_exception = false; 8436 ctxt->exception.vector = -1; 8437 ctxt->perm_ok = false; 8438 8439 init_decode_cache(ctxt); 8440 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8441 } 8442 8443 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8444 { 8445 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8446 int ret; 8447 8448 init_emulate_ctxt(vcpu); 8449 8450 ctxt->op_bytes = 2; 8451 ctxt->ad_bytes = 2; 8452 ctxt->_eip = ctxt->eip + inc_eip; 8453 ret = emulate_int_real(ctxt, irq); 8454 8455 if (ret != X86EMUL_CONTINUE) { 8456 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8457 } else { 8458 ctxt->eip = ctxt->_eip; 8459 kvm_rip_write(vcpu, ctxt->eip); 8460 kvm_set_rflags(vcpu, ctxt->eflags); 8461 } 8462 } 8463 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8464 8465 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8466 u8 ndata, u8 *insn_bytes, u8 insn_size) 8467 { 8468 struct kvm_run *run = vcpu->run; 8469 u64 info[5]; 8470 u8 info_start; 8471 8472 /* 8473 * Zero the whole array used to retrieve the exit info, as casting to 8474 * u32 for select entries will leave some chunks uninitialized. 8475 */ 8476 memset(&info, 0, sizeof(info)); 8477 8478 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8479 &info[2], (u32 *)&info[3], 8480 (u32 *)&info[4]); 8481 8482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8483 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8484 8485 /* 8486 * There's currently space for 13 entries, but 5 are used for the exit 8487 * reason and info. Restrict to 4 to reduce the maintenance burden 8488 * when expanding kvm_run.emulation_failure in the future. 8489 */ 8490 if (WARN_ON_ONCE(ndata > 4)) 8491 ndata = 4; 8492 8493 /* Always include the flags as a 'data' entry. */ 8494 info_start = 1; 8495 run->emulation_failure.flags = 0; 8496 8497 if (insn_size) { 8498 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8499 sizeof(run->emulation_failure.insn_bytes) != 16)); 8500 info_start += 2; 8501 run->emulation_failure.flags |= 8502 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8503 run->emulation_failure.insn_size = insn_size; 8504 memset(run->emulation_failure.insn_bytes, 0x90, 8505 sizeof(run->emulation_failure.insn_bytes)); 8506 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8507 } 8508 8509 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8510 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8511 ndata * sizeof(data[0])); 8512 8513 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8514 } 8515 8516 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8517 { 8518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8519 8520 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8521 ctxt->fetch.end - ctxt->fetch.data); 8522 } 8523 8524 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8525 u8 ndata) 8526 { 8527 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8528 } 8529 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8530 8531 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8532 { 8533 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8534 } 8535 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8536 8537 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8538 { 8539 struct kvm *kvm = vcpu->kvm; 8540 8541 ++vcpu->stat.insn_emulation_fail; 8542 trace_kvm_emulate_insn_failed(vcpu); 8543 8544 if (emulation_type & EMULTYPE_VMWARE_GP) { 8545 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8546 return 1; 8547 } 8548 8549 if (kvm->arch.exit_on_emulation_error || 8550 (emulation_type & EMULTYPE_SKIP)) { 8551 prepare_emulation_ctxt_failure_exit(vcpu); 8552 return 0; 8553 } 8554 8555 kvm_queue_exception(vcpu, UD_VECTOR); 8556 8557 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8558 prepare_emulation_ctxt_failure_exit(vcpu); 8559 return 0; 8560 } 8561 8562 return 1; 8563 } 8564 8565 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8566 int emulation_type) 8567 { 8568 gpa_t gpa = cr2_or_gpa; 8569 kvm_pfn_t pfn; 8570 8571 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8572 return false; 8573 8574 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8575 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8576 return false; 8577 8578 if (!vcpu->arch.mmu->root_role.direct) { 8579 /* 8580 * Write permission should be allowed since only 8581 * write access need to be emulated. 8582 */ 8583 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8584 8585 /* 8586 * If the mapping is invalid in guest, let cpu retry 8587 * it to generate fault. 8588 */ 8589 if (gpa == INVALID_GPA) 8590 return true; 8591 } 8592 8593 /* 8594 * Do not retry the unhandleable instruction if it faults on the 8595 * readonly host memory, otherwise it will goto a infinite loop: 8596 * retry instruction -> write #PF -> emulation fail -> retry 8597 * instruction -> ... 8598 */ 8599 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8600 8601 /* 8602 * If the instruction failed on the error pfn, it can not be fixed, 8603 * report the error to userspace. 8604 */ 8605 if (is_error_noslot_pfn(pfn)) 8606 return false; 8607 8608 kvm_release_pfn_clean(pfn); 8609 8610 /* The instructions are well-emulated on direct mmu. */ 8611 if (vcpu->arch.mmu->root_role.direct) { 8612 unsigned int indirect_shadow_pages; 8613 8614 write_lock(&vcpu->kvm->mmu_lock); 8615 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8616 write_unlock(&vcpu->kvm->mmu_lock); 8617 8618 if (indirect_shadow_pages) 8619 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8620 8621 return true; 8622 } 8623 8624 /* 8625 * if emulation was due to access to shadowed page table 8626 * and it failed try to unshadow page and re-enter the 8627 * guest to let CPU execute the instruction. 8628 */ 8629 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8630 8631 /* 8632 * If the access faults on its page table, it can not 8633 * be fixed by unprotecting shadow page and it should 8634 * be reported to userspace. 8635 */ 8636 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8637 } 8638 8639 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8640 gpa_t cr2_or_gpa, int emulation_type) 8641 { 8642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8643 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8644 8645 last_retry_eip = vcpu->arch.last_retry_eip; 8646 last_retry_addr = vcpu->arch.last_retry_addr; 8647 8648 /* 8649 * If the emulation is caused by #PF and it is non-page_table 8650 * writing instruction, it means the VM-EXIT is caused by shadow 8651 * page protected, we can zap the shadow page and retry this 8652 * instruction directly. 8653 * 8654 * Note: if the guest uses a non-page-table modifying instruction 8655 * on the PDE that points to the instruction, then we will unmap 8656 * the instruction and go to an infinite loop. So, we cache the 8657 * last retried eip and the last fault address, if we meet the eip 8658 * and the address again, we can break out of the potential infinite 8659 * loop. 8660 */ 8661 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8662 8663 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8664 return false; 8665 8666 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8667 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8668 return false; 8669 8670 if (x86_page_table_writing_insn(ctxt)) 8671 return false; 8672 8673 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8674 return false; 8675 8676 vcpu->arch.last_retry_eip = ctxt->eip; 8677 vcpu->arch.last_retry_addr = cr2_or_gpa; 8678 8679 if (!vcpu->arch.mmu->root_role.direct) 8680 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8681 8682 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8683 8684 return true; 8685 } 8686 8687 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8688 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8689 8690 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8691 unsigned long *db) 8692 { 8693 u32 dr6 = 0; 8694 int i; 8695 u32 enable, rwlen; 8696 8697 enable = dr7; 8698 rwlen = dr7 >> 16; 8699 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8700 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8701 dr6 |= (1 << i); 8702 return dr6; 8703 } 8704 8705 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8706 { 8707 struct kvm_run *kvm_run = vcpu->run; 8708 8709 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8710 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8711 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8712 kvm_run->debug.arch.exception = DB_VECTOR; 8713 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8714 return 0; 8715 } 8716 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8717 return 1; 8718 } 8719 8720 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8721 { 8722 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8723 int r; 8724 8725 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8726 if (unlikely(!r)) 8727 return 0; 8728 8729 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8730 8731 /* 8732 * rflags is the old, "raw" value of the flags. The new value has 8733 * not been saved yet. 8734 * 8735 * This is correct even for TF set by the guest, because "the 8736 * processor will not generate this exception after the instruction 8737 * that sets the TF flag". 8738 */ 8739 if (unlikely(rflags & X86_EFLAGS_TF)) 8740 r = kvm_vcpu_do_singlestep(vcpu); 8741 return r; 8742 } 8743 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8744 8745 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8746 { 8747 u32 shadow; 8748 8749 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8750 return true; 8751 8752 /* 8753 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8754 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8755 * to avoid the relatively expensive CPUID lookup. 8756 */ 8757 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8758 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8759 guest_cpuid_is_intel(vcpu); 8760 } 8761 8762 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8763 int emulation_type, int *r) 8764 { 8765 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8766 8767 /* 8768 * Do not check for code breakpoints if hardware has already done the 8769 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8770 * the instruction has passed all exception checks, and all intercepted 8771 * exceptions that trigger emulation have lower priority than code 8772 * breakpoints, i.e. the fact that the intercepted exception occurred 8773 * means any code breakpoints have already been serviced. 8774 * 8775 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8776 * hardware has checked the RIP of the magic prefix, but not the RIP of 8777 * the instruction being emulated. The intent of forced emulation is 8778 * to behave as if KVM intercepted the instruction without an exception 8779 * and without a prefix. 8780 */ 8781 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8782 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8783 return false; 8784 8785 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8786 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8787 struct kvm_run *kvm_run = vcpu->run; 8788 unsigned long eip = kvm_get_linear_rip(vcpu); 8789 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8790 vcpu->arch.guest_debug_dr7, 8791 vcpu->arch.eff_db); 8792 8793 if (dr6 != 0) { 8794 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8795 kvm_run->debug.arch.pc = eip; 8796 kvm_run->debug.arch.exception = DB_VECTOR; 8797 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8798 *r = 0; 8799 return true; 8800 } 8801 } 8802 8803 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8804 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8805 unsigned long eip = kvm_get_linear_rip(vcpu); 8806 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8807 vcpu->arch.dr7, 8808 vcpu->arch.db); 8809 8810 if (dr6 != 0) { 8811 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8812 *r = 1; 8813 return true; 8814 } 8815 } 8816 8817 return false; 8818 } 8819 8820 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8821 { 8822 switch (ctxt->opcode_len) { 8823 case 1: 8824 switch (ctxt->b) { 8825 case 0xe4: /* IN */ 8826 case 0xe5: 8827 case 0xec: 8828 case 0xed: 8829 case 0xe6: /* OUT */ 8830 case 0xe7: 8831 case 0xee: 8832 case 0xef: 8833 case 0x6c: /* INS */ 8834 case 0x6d: 8835 case 0x6e: /* OUTS */ 8836 case 0x6f: 8837 return true; 8838 } 8839 break; 8840 case 2: 8841 switch (ctxt->b) { 8842 case 0x33: /* RDPMC */ 8843 return true; 8844 } 8845 break; 8846 } 8847 8848 return false; 8849 } 8850 8851 /* 8852 * Decode an instruction for emulation. The caller is responsible for handling 8853 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8854 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8855 * code breakpoints have higher priority and thus have already been done by 8856 * hardware. 8857 * 8858 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8859 * response to a machine check. 8860 */ 8861 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8862 void *insn, int insn_len) 8863 { 8864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8865 int r; 8866 8867 init_emulate_ctxt(vcpu); 8868 8869 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8870 8871 trace_kvm_emulate_insn_start(vcpu); 8872 ++vcpu->stat.insn_emulation; 8873 8874 return r; 8875 } 8876 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8877 8878 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8879 int emulation_type, void *insn, int insn_len) 8880 { 8881 int r; 8882 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8883 bool writeback = true; 8884 8885 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8886 return 1; 8887 8888 vcpu->arch.l1tf_flush_l1d = true; 8889 8890 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8891 kvm_clear_exception_queue(vcpu); 8892 8893 /* 8894 * Return immediately if RIP hits a code breakpoint, such #DBs 8895 * are fault-like and are higher priority than any faults on 8896 * the code fetch itself. 8897 */ 8898 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8899 return r; 8900 8901 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8902 insn, insn_len); 8903 if (r != EMULATION_OK) { 8904 if ((emulation_type & EMULTYPE_TRAP_UD) || 8905 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8906 kvm_queue_exception(vcpu, UD_VECTOR); 8907 return 1; 8908 } 8909 if (reexecute_instruction(vcpu, cr2_or_gpa, 8910 emulation_type)) 8911 return 1; 8912 8913 if (ctxt->have_exception && 8914 !(emulation_type & EMULTYPE_SKIP)) { 8915 /* 8916 * #UD should result in just EMULATION_FAILED, and trap-like 8917 * exception should not be encountered during decode. 8918 */ 8919 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8920 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8921 inject_emulated_exception(vcpu); 8922 return 1; 8923 } 8924 return handle_emulation_failure(vcpu, emulation_type); 8925 } 8926 } 8927 8928 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8929 !is_vmware_backdoor_opcode(ctxt)) { 8930 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8931 return 1; 8932 } 8933 8934 /* 8935 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8936 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8937 * The caller is responsible for updating interruptibility state and 8938 * injecting single-step #DBs. 8939 */ 8940 if (emulation_type & EMULTYPE_SKIP) { 8941 if (ctxt->mode != X86EMUL_MODE_PROT64) 8942 ctxt->eip = (u32)ctxt->_eip; 8943 else 8944 ctxt->eip = ctxt->_eip; 8945 8946 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8947 r = 1; 8948 goto writeback; 8949 } 8950 8951 kvm_rip_write(vcpu, ctxt->eip); 8952 if (ctxt->eflags & X86_EFLAGS_RF) 8953 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8954 return 1; 8955 } 8956 8957 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8958 return 1; 8959 8960 /* this is needed for vmware backdoor interface to work since it 8961 changes registers values during IO operation */ 8962 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8963 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8964 emulator_invalidate_register_cache(ctxt); 8965 } 8966 8967 restart: 8968 if (emulation_type & EMULTYPE_PF) { 8969 /* Save the faulting GPA (cr2) in the address field */ 8970 ctxt->exception.address = cr2_or_gpa; 8971 8972 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8973 if (vcpu->arch.mmu->root_role.direct) { 8974 ctxt->gpa_available = true; 8975 ctxt->gpa_val = cr2_or_gpa; 8976 } 8977 } else { 8978 /* Sanitize the address out of an abundance of paranoia. */ 8979 ctxt->exception.address = 0; 8980 } 8981 8982 r = x86_emulate_insn(ctxt); 8983 8984 if (r == EMULATION_INTERCEPTED) 8985 return 1; 8986 8987 if (r == EMULATION_FAILED) { 8988 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8989 return 1; 8990 8991 return handle_emulation_failure(vcpu, emulation_type); 8992 } 8993 8994 if (ctxt->have_exception) { 8995 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8996 vcpu->mmio_needed = false; 8997 r = 1; 8998 inject_emulated_exception(vcpu); 8999 } else if (vcpu->arch.pio.count) { 9000 if (!vcpu->arch.pio.in) { 9001 /* FIXME: return into emulator if single-stepping. */ 9002 vcpu->arch.pio.count = 0; 9003 } else { 9004 writeback = false; 9005 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9006 } 9007 r = 0; 9008 } else if (vcpu->mmio_needed) { 9009 ++vcpu->stat.mmio_exits; 9010 9011 if (!vcpu->mmio_is_write) 9012 writeback = false; 9013 r = 0; 9014 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9015 } else if (vcpu->arch.complete_userspace_io) { 9016 writeback = false; 9017 r = 0; 9018 } else if (r == EMULATION_RESTART) 9019 goto restart; 9020 else 9021 r = 1; 9022 9023 writeback: 9024 if (writeback) { 9025 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9026 toggle_interruptibility(vcpu, ctxt->interruptibility); 9027 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9028 9029 /* 9030 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9031 * only supports code breakpoints and general detect #DB, both 9032 * of which are fault-like. 9033 */ 9034 if (!ctxt->have_exception || 9035 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9036 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9037 if (ctxt->is_branch) 9038 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9039 kvm_rip_write(vcpu, ctxt->eip); 9040 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9041 r = kvm_vcpu_do_singlestep(vcpu); 9042 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9043 __kvm_set_rflags(vcpu, ctxt->eflags); 9044 } 9045 9046 /* 9047 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9048 * do nothing, and it will be requested again as soon as 9049 * the shadow expires. But we still need to check here, 9050 * because POPF has no interrupt shadow. 9051 */ 9052 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9053 kvm_make_request(KVM_REQ_EVENT, vcpu); 9054 } else 9055 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9056 9057 return r; 9058 } 9059 9060 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9061 { 9062 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9063 } 9064 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9065 9066 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9067 void *insn, int insn_len) 9068 { 9069 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9070 } 9071 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9072 9073 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9074 { 9075 vcpu->arch.pio.count = 0; 9076 return 1; 9077 } 9078 9079 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9080 { 9081 vcpu->arch.pio.count = 0; 9082 9083 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9084 return 1; 9085 9086 return kvm_skip_emulated_instruction(vcpu); 9087 } 9088 9089 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9090 unsigned short port) 9091 { 9092 unsigned long val = kvm_rax_read(vcpu); 9093 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9094 9095 if (ret) 9096 return ret; 9097 9098 /* 9099 * Workaround userspace that relies on old KVM behavior of %rip being 9100 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9101 */ 9102 if (port == 0x7e && 9103 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9104 vcpu->arch.complete_userspace_io = 9105 complete_fast_pio_out_port_0x7e; 9106 kvm_skip_emulated_instruction(vcpu); 9107 } else { 9108 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9109 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9110 } 9111 return 0; 9112 } 9113 9114 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9115 { 9116 unsigned long val; 9117 9118 /* We should only ever be called with arch.pio.count equal to 1 */ 9119 BUG_ON(vcpu->arch.pio.count != 1); 9120 9121 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9122 vcpu->arch.pio.count = 0; 9123 return 1; 9124 } 9125 9126 /* For size less than 4 we merge, else we zero extend */ 9127 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9128 9129 complete_emulator_pio_in(vcpu, &val); 9130 kvm_rax_write(vcpu, val); 9131 9132 return kvm_skip_emulated_instruction(vcpu); 9133 } 9134 9135 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9136 unsigned short port) 9137 { 9138 unsigned long val; 9139 int ret; 9140 9141 /* For size less than 4 we merge, else we zero extend */ 9142 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9143 9144 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9145 if (ret) { 9146 kvm_rax_write(vcpu, val); 9147 return ret; 9148 } 9149 9150 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9151 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9152 9153 return 0; 9154 } 9155 9156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9157 { 9158 int ret; 9159 9160 if (in) 9161 ret = kvm_fast_pio_in(vcpu, size, port); 9162 else 9163 ret = kvm_fast_pio_out(vcpu, size, port); 9164 return ret && kvm_skip_emulated_instruction(vcpu); 9165 } 9166 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9167 9168 static int kvmclock_cpu_down_prep(unsigned int cpu) 9169 { 9170 __this_cpu_write(cpu_tsc_khz, 0); 9171 return 0; 9172 } 9173 9174 static void tsc_khz_changed(void *data) 9175 { 9176 struct cpufreq_freqs *freq = data; 9177 unsigned long khz; 9178 9179 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9180 9181 if (data) 9182 khz = freq->new; 9183 else 9184 khz = cpufreq_quick_get(raw_smp_processor_id()); 9185 if (!khz) 9186 khz = tsc_khz; 9187 __this_cpu_write(cpu_tsc_khz, khz); 9188 } 9189 9190 #ifdef CONFIG_X86_64 9191 static void kvm_hyperv_tsc_notifier(void) 9192 { 9193 struct kvm *kvm; 9194 int cpu; 9195 9196 mutex_lock(&kvm_lock); 9197 list_for_each_entry(kvm, &vm_list, vm_list) 9198 kvm_make_mclock_inprogress_request(kvm); 9199 9200 /* no guest entries from this point */ 9201 hyperv_stop_tsc_emulation(); 9202 9203 /* TSC frequency always matches when on Hyper-V */ 9204 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9205 for_each_present_cpu(cpu) 9206 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9207 } 9208 kvm_caps.max_guest_tsc_khz = tsc_khz; 9209 9210 list_for_each_entry(kvm, &vm_list, vm_list) { 9211 __kvm_start_pvclock_update(kvm); 9212 pvclock_update_vm_gtod_copy(kvm); 9213 kvm_end_pvclock_update(kvm); 9214 } 9215 9216 mutex_unlock(&kvm_lock); 9217 } 9218 #endif 9219 9220 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9221 { 9222 struct kvm *kvm; 9223 struct kvm_vcpu *vcpu; 9224 int send_ipi = 0; 9225 unsigned long i; 9226 9227 /* 9228 * We allow guests to temporarily run on slowing clocks, 9229 * provided we notify them after, or to run on accelerating 9230 * clocks, provided we notify them before. Thus time never 9231 * goes backwards. 9232 * 9233 * However, we have a problem. We can't atomically update 9234 * the frequency of a given CPU from this function; it is 9235 * merely a notifier, which can be called from any CPU. 9236 * Changing the TSC frequency at arbitrary points in time 9237 * requires a recomputation of local variables related to 9238 * the TSC for each VCPU. We must flag these local variables 9239 * to be updated and be sure the update takes place with the 9240 * new frequency before any guests proceed. 9241 * 9242 * Unfortunately, the combination of hotplug CPU and frequency 9243 * change creates an intractable locking scenario; the order 9244 * of when these callouts happen is undefined with respect to 9245 * CPU hotplug, and they can race with each other. As such, 9246 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9247 * undefined; you can actually have a CPU frequency change take 9248 * place in between the computation of X and the setting of the 9249 * variable. To protect against this problem, all updates of 9250 * the per_cpu tsc_khz variable are done in an interrupt 9251 * protected IPI, and all callers wishing to update the value 9252 * must wait for a synchronous IPI to complete (which is trivial 9253 * if the caller is on the CPU already). This establishes the 9254 * necessary total order on variable updates. 9255 * 9256 * Note that because a guest time update may take place 9257 * anytime after the setting of the VCPU's request bit, the 9258 * correct TSC value must be set before the request. However, 9259 * to ensure the update actually makes it to any guest which 9260 * starts running in hardware virtualization between the set 9261 * and the acquisition of the spinlock, we must also ping the 9262 * CPU after setting the request bit. 9263 * 9264 */ 9265 9266 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9267 9268 mutex_lock(&kvm_lock); 9269 list_for_each_entry(kvm, &vm_list, vm_list) { 9270 kvm_for_each_vcpu(i, vcpu, kvm) { 9271 if (vcpu->cpu != cpu) 9272 continue; 9273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9274 if (vcpu->cpu != raw_smp_processor_id()) 9275 send_ipi = 1; 9276 } 9277 } 9278 mutex_unlock(&kvm_lock); 9279 9280 if (freq->old < freq->new && send_ipi) { 9281 /* 9282 * We upscale the frequency. Must make the guest 9283 * doesn't see old kvmclock values while running with 9284 * the new frequency, otherwise we risk the guest sees 9285 * time go backwards. 9286 * 9287 * In case we update the frequency for another cpu 9288 * (which might be in guest context) send an interrupt 9289 * to kick the cpu out of guest context. Next time 9290 * guest context is entered kvmclock will be updated, 9291 * so the guest will not see stale values. 9292 */ 9293 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9294 } 9295 } 9296 9297 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9298 void *data) 9299 { 9300 struct cpufreq_freqs *freq = data; 9301 int cpu; 9302 9303 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9304 return 0; 9305 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9306 return 0; 9307 9308 for_each_cpu(cpu, freq->policy->cpus) 9309 __kvmclock_cpufreq_notifier(freq, cpu); 9310 9311 return 0; 9312 } 9313 9314 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9315 .notifier_call = kvmclock_cpufreq_notifier 9316 }; 9317 9318 static int kvmclock_cpu_online(unsigned int cpu) 9319 { 9320 tsc_khz_changed(NULL); 9321 return 0; 9322 } 9323 9324 static void kvm_timer_init(void) 9325 { 9326 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9327 max_tsc_khz = tsc_khz; 9328 9329 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9330 struct cpufreq_policy *policy; 9331 int cpu; 9332 9333 cpu = get_cpu(); 9334 policy = cpufreq_cpu_get(cpu); 9335 if (policy) { 9336 if (policy->cpuinfo.max_freq) 9337 max_tsc_khz = policy->cpuinfo.max_freq; 9338 cpufreq_cpu_put(policy); 9339 } 9340 put_cpu(); 9341 } 9342 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9343 CPUFREQ_TRANSITION_NOTIFIER); 9344 9345 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9346 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9347 } 9348 } 9349 9350 #ifdef CONFIG_X86_64 9351 static void pvclock_gtod_update_fn(struct work_struct *work) 9352 { 9353 struct kvm *kvm; 9354 struct kvm_vcpu *vcpu; 9355 unsigned long i; 9356 9357 mutex_lock(&kvm_lock); 9358 list_for_each_entry(kvm, &vm_list, vm_list) 9359 kvm_for_each_vcpu(i, vcpu, kvm) 9360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9361 atomic_set(&kvm_guest_has_master_clock, 0); 9362 mutex_unlock(&kvm_lock); 9363 } 9364 9365 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9366 9367 /* 9368 * Indirection to move queue_work() out of the tk_core.seq write held 9369 * region to prevent possible deadlocks against time accessors which 9370 * are invoked with work related locks held. 9371 */ 9372 static void pvclock_irq_work_fn(struct irq_work *w) 9373 { 9374 queue_work(system_long_wq, &pvclock_gtod_work); 9375 } 9376 9377 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9378 9379 /* 9380 * Notification about pvclock gtod data update. 9381 */ 9382 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9383 void *priv) 9384 { 9385 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9386 struct timekeeper *tk = priv; 9387 9388 update_pvclock_gtod(tk); 9389 9390 /* 9391 * Disable master clock if host does not trust, or does not use, 9392 * TSC based clocksource. Delegate queue_work() to irq_work as 9393 * this is invoked with tk_core.seq write held. 9394 */ 9395 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9396 atomic_read(&kvm_guest_has_master_clock) != 0) 9397 irq_work_queue(&pvclock_irq_work); 9398 return 0; 9399 } 9400 9401 static struct notifier_block pvclock_gtod_notifier = { 9402 .notifier_call = pvclock_gtod_notify, 9403 }; 9404 #endif 9405 9406 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9407 { 9408 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9409 9410 #define __KVM_X86_OP(func) \ 9411 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9412 #define KVM_X86_OP(func) \ 9413 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9414 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9415 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9416 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9417 (void *)__static_call_return0); 9418 #include <asm/kvm-x86-ops.h> 9419 #undef __KVM_X86_OP 9420 9421 kvm_pmu_ops_update(ops->pmu_ops); 9422 } 9423 9424 static int kvm_x86_check_processor_compatibility(void) 9425 { 9426 int cpu = smp_processor_id(); 9427 struct cpuinfo_x86 *c = &cpu_data(cpu); 9428 9429 /* 9430 * Compatibility checks are done when loading KVM and when enabling 9431 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9432 * compatible, i.e. KVM should never perform a compatibility check on 9433 * an offline CPU. 9434 */ 9435 WARN_ON(!cpu_online(cpu)); 9436 9437 if (__cr4_reserved_bits(cpu_has, c) != 9438 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9439 return -EIO; 9440 9441 return static_call(kvm_x86_check_processor_compatibility)(); 9442 } 9443 9444 static void kvm_x86_check_cpu_compat(void *ret) 9445 { 9446 *(int *)ret = kvm_x86_check_processor_compatibility(); 9447 } 9448 9449 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9450 { 9451 u64 host_pat; 9452 int r, cpu; 9453 9454 if (kvm_x86_ops.hardware_enable) { 9455 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9456 return -EEXIST; 9457 } 9458 9459 /* 9460 * KVM explicitly assumes that the guest has an FPU and 9461 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9462 * vCPU's FPU state as a fxregs_state struct. 9463 */ 9464 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9465 pr_err("inadequate fpu\n"); 9466 return -EOPNOTSUPP; 9467 } 9468 9469 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9470 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9471 return -EOPNOTSUPP; 9472 } 9473 9474 /* 9475 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9476 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9477 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9478 * with an exception. PAT[0] is set to WB on RESET and also by the 9479 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9480 */ 9481 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9482 (host_pat & GENMASK(2, 0)) != 6) { 9483 pr_err("host PAT[0] is not WB\n"); 9484 return -EIO; 9485 } 9486 9487 x86_emulator_cache = kvm_alloc_emulator_cache(); 9488 if (!x86_emulator_cache) { 9489 pr_err("failed to allocate cache for x86 emulator\n"); 9490 return -ENOMEM; 9491 } 9492 9493 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9494 if (!user_return_msrs) { 9495 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9496 r = -ENOMEM; 9497 goto out_free_x86_emulator_cache; 9498 } 9499 kvm_nr_uret_msrs = 0; 9500 9501 r = kvm_mmu_vendor_module_init(); 9502 if (r) 9503 goto out_free_percpu; 9504 9505 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9506 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9507 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9508 } 9509 9510 rdmsrl_safe(MSR_EFER, &host_efer); 9511 9512 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9513 rdmsrl(MSR_IA32_XSS, host_xss); 9514 9515 kvm_init_pmu_capability(ops->pmu_ops); 9516 9517 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9518 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9519 9520 r = ops->hardware_setup(); 9521 if (r != 0) 9522 goto out_mmu_exit; 9523 9524 kvm_ops_update(ops); 9525 9526 for_each_online_cpu(cpu) { 9527 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9528 if (r < 0) 9529 goto out_unwind_ops; 9530 } 9531 9532 /* 9533 * Point of no return! DO NOT add error paths below this point unless 9534 * absolutely necessary, as most operations from this point forward 9535 * require unwinding. 9536 */ 9537 kvm_timer_init(); 9538 9539 if (pi_inject_timer == -1) 9540 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9541 #ifdef CONFIG_X86_64 9542 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9543 9544 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9545 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9546 #endif 9547 9548 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9549 9550 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9551 kvm_caps.supported_xss = 0; 9552 9553 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9554 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9555 #undef __kvm_cpu_cap_has 9556 9557 if (kvm_caps.has_tsc_control) { 9558 /* 9559 * Make sure the user can only configure tsc_khz values that 9560 * fit into a signed integer. 9561 * A min value is not calculated because it will always 9562 * be 1 on all machines. 9563 */ 9564 u64 max = min(0x7fffffffULL, 9565 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9566 kvm_caps.max_guest_tsc_khz = max; 9567 } 9568 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9569 kvm_init_msr_lists(); 9570 return 0; 9571 9572 out_unwind_ops: 9573 kvm_x86_ops.hardware_enable = NULL; 9574 static_call(kvm_x86_hardware_unsetup)(); 9575 out_mmu_exit: 9576 kvm_mmu_vendor_module_exit(); 9577 out_free_percpu: 9578 free_percpu(user_return_msrs); 9579 out_free_x86_emulator_cache: 9580 kmem_cache_destroy(x86_emulator_cache); 9581 return r; 9582 } 9583 9584 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9585 { 9586 int r; 9587 9588 mutex_lock(&vendor_module_lock); 9589 r = __kvm_x86_vendor_init(ops); 9590 mutex_unlock(&vendor_module_lock); 9591 9592 return r; 9593 } 9594 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9595 9596 void kvm_x86_vendor_exit(void) 9597 { 9598 kvm_unregister_perf_callbacks(); 9599 9600 #ifdef CONFIG_X86_64 9601 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9602 clear_hv_tscchange_cb(); 9603 #endif 9604 kvm_lapic_exit(); 9605 9606 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9607 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9608 CPUFREQ_TRANSITION_NOTIFIER); 9609 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9610 } 9611 #ifdef CONFIG_X86_64 9612 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9613 irq_work_sync(&pvclock_irq_work); 9614 cancel_work_sync(&pvclock_gtod_work); 9615 #endif 9616 static_call(kvm_x86_hardware_unsetup)(); 9617 kvm_mmu_vendor_module_exit(); 9618 free_percpu(user_return_msrs); 9619 kmem_cache_destroy(x86_emulator_cache); 9620 #ifdef CONFIG_KVM_XEN 9621 static_key_deferred_flush(&kvm_xen_enabled); 9622 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9623 #endif 9624 mutex_lock(&vendor_module_lock); 9625 kvm_x86_ops.hardware_enable = NULL; 9626 mutex_unlock(&vendor_module_lock); 9627 } 9628 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9629 9630 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9631 { 9632 /* 9633 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9634 * local APIC is in-kernel, the run loop will detect the non-runnable 9635 * state and halt the vCPU. Exit to userspace if the local APIC is 9636 * managed by userspace, in which case userspace is responsible for 9637 * handling wake events. 9638 */ 9639 ++vcpu->stat.halt_exits; 9640 if (lapic_in_kernel(vcpu)) { 9641 vcpu->arch.mp_state = state; 9642 return 1; 9643 } else { 9644 vcpu->run->exit_reason = reason; 9645 return 0; 9646 } 9647 } 9648 9649 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9650 { 9651 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9652 } 9653 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9654 9655 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9656 { 9657 int ret = kvm_skip_emulated_instruction(vcpu); 9658 /* 9659 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9660 * KVM_EXIT_DEBUG here. 9661 */ 9662 return kvm_emulate_halt_noskip(vcpu) && ret; 9663 } 9664 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9665 9666 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9667 { 9668 int ret = kvm_skip_emulated_instruction(vcpu); 9669 9670 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9671 KVM_EXIT_AP_RESET_HOLD) && ret; 9672 } 9673 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9674 9675 #ifdef CONFIG_X86_64 9676 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9677 unsigned long clock_type) 9678 { 9679 struct kvm_clock_pairing clock_pairing; 9680 struct timespec64 ts; 9681 u64 cycle; 9682 int ret; 9683 9684 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9685 return -KVM_EOPNOTSUPP; 9686 9687 /* 9688 * When tsc is in permanent catchup mode guests won't be able to use 9689 * pvclock_read_retry loop to get consistent view of pvclock 9690 */ 9691 if (vcpu->arch.tsc_always_catchup) 9692 return -KVM_EOPNOTSUPP; 9693 9694 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9695 return -KVM_EOPNOTSUPP; 9696 9697 clock_pairing.sec = ts.tv_sec; 9698 clock_pairing.nsec = ts.tv_nsec; 9699 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9700 clock_pairing.flags = 0; 9701 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9702 9703 ret = 0; 9704 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9705 sizeof(struct kvm_clock_pairing))) 9706 ret = -KVM_EFAULT; 9707 9708 return ret; 9709 } 9710 #endif 9711 9712 /* 9713 * kvm_pv_kick_cpu_op: Kick a vcpu. 9714 * 9715 * @apicid - apicid of vcpu to be kicked. 9716 */ 9717 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9718 { 9719 /* 9720 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9721 * common code, e.g. for tracing. Defer initialization to the compiler. 9722 */ 9723 struct kvm_lapic_irq lapic_irq = { 9724 .delivery_mode = APIC_DM_REMRD, 9725 .dest_mode = APIC_DEST_PHYSICAL, 9726 .shorthand = APIC_DEST_NOSHORT, 9727 .dest_id = apicid, 9728 }; 9729 9730 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9731 } 9732 9733 bool kvm_apicv_activated(struct kvm *kvm) 9734 { 9735 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9736 } 9737 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9738 9739 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9740 { 9741 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9742 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9743 9744 return (vm_reasons | vcpu_reasons) == 0; 9745 } 9746 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9747 9748 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9749 enum kvm_apicv_inhibit reason, bool set) 9750 { 9751 if (set) 9752 __set_bit(reason, inhibits); 9753 else 9754 __clear_bit(reason, inhibits); 9755 9756 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9757 } 9758 9759 static void kvm_apicv_init(struct kvm *kvm) 9760 { 9761 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9762 9763 init_rwsem(&kvm->arch.apicv_update_lock); 9764 9765 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9766 9767 if (!enable_apicv) 9768 set_or_clear_apicv_inhibit(inhibits, 9769 APICV_INHIBIT_REASON_DISABLE, true); 9770 } 9771 9772 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9773 { 9774 struct kvm_vcpu *target = NULL; 9775 struct kvm_apic_map *map; 9776 9777 vcpu->stat.directed_yield_attempted++; 9778 9779 if (single_task_running()) 9780 goto no_yield; 9781 9782 rcu_read_lock(); 9783 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9784 9785 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9786 target = map->phys_map[dest_id]->vcpu; 9787 9788 rcu_read_unlock(); 9789 9790 if (!target || !READ_ONCE(target->ready)) 9791 goto no_yield; 9792 9793 /* Ignore requests to yield to self */ 9794 if (vcpu == target) 9795 goto no_yield; 9796 9797 if (kvm_vcpu_yield_to(target) <= 0) 9798 goto no_yield; 9799 9800 vcpu->stat.directed_yield_successful++; 9801 9802 no_yield: 9803 return; 9804 } 9805 9806 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9807 { 9808 u64 ret = vcpu->run->hypercall.ret; 9809 9810 if (!is_64_bit_mode(vcpu)) 9811 ret = (u32)ret; 9812 kvm_rax_write(vcpu, ret); 9813 ++vcpu->stat.hypercalls; 9814 return kvm_skip_emulated_instruction(vcpu); 9815 } 9816 9817 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9818 { 9819 unsigned long nr, a0, a1, a2, a3, ret; 9820 int op_64_bit; 9821 9822 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9823 return kvm_xen_hypercall(vcpu); 9824 9825 if (kvm_hv_hypercall_enabled(vcpu)) 9826 return kvm_hv_hypercall(vcpu); 9827 9828 nr = kvm_rax_read(vcpu); 9829 a0 = kvm_rbx_read(vcpu); 9830 a1 = kvm_rcx_read(vcpu); 9831 a2 = kvm_rdx_read(vcpu); 9832 a3 = kvm_rsi_read(vcpu); 9833 9834 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9835 9836 op_64_bit = is_64_bit_hypercall(vcpu); 9837 if (!op_64_bit) { 9838 nr &= 0xFFFFFFFF; 9839 a0 &= 0xFFFFFFFF; 9840 a1 &= 0xFFFFFFFF; 9841 a2 &= 0xFFFFFFFF; 9842 a3 &= 0xFFFFFFFF; 9843 } 9844 9845 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9846 ret = -KVM_EPERM; 9847 goto out; 9848 } 9849 9850 ret = -KVM_ENOSYS; 9851 9852 switch (nr) { 9853 case KVM_HC_VAPIC_POLL_IRQ: 9854 ret = 0; 9855 break; 9856 case KVM_HC_KICK_CPU: 9857 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9858 break; 9859 9860 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9861 kvm_sched_yield(vcpu, a1); 9862 ret = 0; 9863 break; 9864 #ifdef CONFIG_X86_64 9865 case KVM_HC_CLOCK_PAIRING: 9866 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9867 break; 9868 #endif 9869 case KVM_HC_SEND_IPI: 9870 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9871 break; 9872 9873 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9874 break; 9875 case KVM_HC_SCHED_YIELD: 9876 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9877 break; 9878 9879 kvm_sched_yield(vcpu, a0); 9880 ret = 0; 9881 break; 9882 case KVM_HC_MAP_GPA_RANGE: { 9883 u64 gpa = a0, npages = a1, attrs = a2; 9884 9885 ret = -KVM_ENOSYS; 9886 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9887 break; 9888 9889 if (!PAGE_ALIGNED(gpa) || !npages || 9890 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9891 ret = -KVM_EINVAL; 9892 break; 9893 } 9894 9895 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9896 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9897 vcpu->run->hypercall.args[0] = gpa; 9898 vcpu->run->hypercall.args[1] = npages; 9899 vcpu->run->hypercall.args[2] = attrs; 9900 vcpu->run->hypercall.flags = 0; 9901 if (op_64_bit) 9902 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9903 9904 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9905 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9906 return 0; 9907 } 9908 default: 9909 ret = -KVM_ENOSYS; 9910 break; 9911 } 9912 out: 9913 if (!op_64_bit) 9914 ret = (u32)ret; 9915 kvm_rax_write(vcpu, ret); 9916 9917 ++vcpu->stat.hypercalls; 9918 return kvm_skip_emulated_instruction(vcpu); 9919 } 9920 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9921 9922 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9923 { 9924 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9925 char instruction[3]; 9926 unsigned long rip = kvm_rip_read(vcpu); 9927 9928 /* 9929 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9930 * the pieces. 9931 */ 9932 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9933 ctxt->exception.error_code_valid = false; 9934 ctxt->exception.vector = UD_VECTOR; 9935 ctxt->have_exception = true; 9936 return X86EMUL_PROPAGATE_FAULT; 9937 } 9938 9939 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9940 9941 return emulator_write_emulated(ctxt, rip, instruction, 3, 9942 &ctxt->exception); 9943 } 9944 9945 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9946 { 9947 return vcpu->run->request_interrupt_window && 9948 likely(!pic_in_kernel(vcpu->kvm)); 9949 } 9950 9951 /* Called within kvm->srcu read side. */ 9952 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9953 { 9954 struct kvm_run *kvm_run = vcpu->run; 9955 9956 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9957 kvm_run->cr8 = kvm_get_cr8(vcpu); 9958 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9959 9960 kvm_run->ready_for_interrupt_injection = 9961 pic_in_kernel(vcpu->kvm) || 9962 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9963 9964 if (is_smm(vcpu)) 9965 kvm_run->flags |= KVM_RUN_X86_SMM; 9966 } 9967 9968 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9969 { 9970 int max_irr, tpr; 9971 9972 if (!kvm_x86_ops.update_cr8_intercept) 9973 return; 9974 9975 if (!lapic_in_kernel(vcpu)) 9976 return; 9977 9978 if (vcpu->arch.apic->apicv_active) 9979 return; 9980 9981 if (!vcpu->arch.apic->vapic_addr) 9982 max_irr = kvm_lapic_find_highest_irr(vcpu); 9983 else 9984 max_irr = -1; 9985 9986 if (max_irr != -1) 9987 max_irr >>= 4; 9988 9989 tpr = kvm_lapic_get_cr8(vcpu); 9990 9991 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9992 } 9993 9994 9995 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9996 { 9997 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9998 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9999 return 1; 10000 } 10001 10002 return kvm_x86_ops.nested_ops->check_events(vcpu); 10003 } 10004 10005 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10006 { 10007 /* 10008 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10009 * exceptions don't report error codes. The presence of an error code 10010 * is carried with the exception and only stripped when the exception 10011 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10012 * report an error code despite the CPU being in Real Mode. 10013 */ 10014 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10015 10016 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10017 vcpu->arch.exception.has_error_code, 10018 vcpu->arch.exception.error_code, 10019 vcpu->arch.exception.injected); 10020 10021 static_call(kvm_x86_inject_exception)(vcpu); 10022 } 10023 10024 /* 10025 * Check for any event (interrupt or exception) that is ready to be injected, 10026 * and if there is at least one event, inject the event with the highest 10027 * priority. This handles both "pending" events, i.e. events that have never 10028 * been injected into the guest, and "injected" events, i.e. events that were 10029 * injected as part of a previous VM-Enter, but weren't successfully delivered 10030 * and need to be re-injected. 10031 * 10032 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10033 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10034 * be able to inject exceptions in the "middle" of an instruction, and so must 10035 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10036 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10037 * boundaries is necessary and correct. 10038 * 10039 * For simplicity, KVM uses a single path to inject all events (except events 10040 * that are injected directly from L1 to L2) and doesn't explicitly track 10041 * instruction boundaries for asynchronous events. However, because VM-Exits 10042 * that can occur during instruction execution typically result in KVM skipping 10043 * the instruction or injecting an exception, e.g. instruction and exception 10044 * intercepts, and because pending exceptions have higher priority than pending 10045 * interrupts, KVM still honors instruction boundaries in most scenarios. 10046 * 10047 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10048 * the instruction or inject an exception, then KVM can incorrecty inject a new 10049 * asynchrounous event if the event became pending after the CPU fetched the 10050 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10051 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10052 * injected on the restarted instruction instead of being deferred until the 10053 * instruction completes. 10054 * 10055 * In practice, this virtualization hole is unlikely to be observed by the 10056 * guest, and even less likely to cause functional problems. To detect the 10057 * hole, the guest would have to trigger an event on a side effect of an early 10058 * phase of instruction execution, e.g. on the instruction fetch from memory. 10059 * And for it to be a functional problem, the guest would need to depend on the 10060 * ordering between that side effect, the instruction completing, _and_ the 10061 * delivery of the asynchronous event. 10062 */ 10063 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10064 bool *req_immediate_exit) 10065 { 10066 bool can_inject; 10067 int r; 10068 10069 /* 10070 * Process nested events first, as nested VM-Exit supercedes event 10071 * re-injection. If there's an event queued for re-injection, it will 10072 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10073 */ 10074 if (is_guest_mode(vcpu)) 10075 r = kvm_check_nested_events(vcpu); 10076 else 10077 r = 0; 10078 10079 /* 10080 * Re-inject exceptions and events *especially* if immediate entry+exit 10081 * to/from L2 is needed, as any event that has already been injected 10082 * into L2 needs to complete its lifecycle before injecting a new event. 10083 * 10084 * Don't re-inject an NMI or interrupt if there is a pending exception. 10085 * This collision arises if an exception occurred while vectoring the 10086 * injected event, KVM intercepted said exception, and KVM ultimately 10087 * determined the fault belongs to the guest and queues the exception 10088 * for injection back into the guest. 10089 * 10090 * "Injected" interrupts can also collide with pending exceptions if 10091 * userspace ignores the "ready for injection" flag and blindly queues 10092 * an interrupt. In that case, prioritizing the exception is correct, 10093 * as the exception "occurred" before the exit to userspace. Trap-like 10094 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10095 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10096 * priority, they're only generated (pended) during instruction 10097 * execution, and interrupts are recognized at instruction boundaries. 10098 * Thus a pending fault-like exception means the fault occurred on the 10099 * *previous* instruction and must be serviced prior to recognizing any 10100 * new events in order to fully complete the previous instruction. 10101 */ 10102 if (vcpu->arch.exception.injected) 10103 kvm_inject_exception(vcpu); 10104 else if (kvm_is_exception_pending(vcpu)) 10105 ; /* see above */ 10106 else if (vcpu->arch.nmi_injected) 10107 static_call(kvm_x86_inject_nmi)(vcpu); 10108 else if (vcpu->arch.interrupt.injected) 10109 static_call(kvm_x86_inject_irq)(vcpu, true); 10110 10111 /* 10112 * Exceptions that morph to VM-Exits are handled above, and pending 10113 * exceptions on top of injected exceptions that do not VM-Exit should 10114 * either morph to #DF or, sadly, override the injected exception. 10115 */ 10116 WARN_ON_ONCE(vcpu->arch.exception.injected && 10117 vcpu->arch.exception.pending); 10118 10119 /* 10120 * Bail if immediate entry+exit to/from the guest is needed to complete 10121 * nested VM-Enter or event re-injection so that a different pending 10122 * event can be serviced (or if KVM needs to exit to userspace). 10123 * 10124 * Otherwise, continue processing events even if VM-Exit occurred. The 10125 * VM-Exit will have cleared exceptions that were meant for L2, but 10126 * there may now be events that can be injected into L1. 10127 */ 10128 if (r < 0) 10129 goto out; 10130 10131 /* 10132 * A pending exception VM-Exit should either result in nested VM-Exit 10133 * or force an immediate re-entry and exit to/from L2, and exception 10134 * VM-Exits cannot be injected (flag should _never_ be set). 10135 */ 10136 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10137 vcpu->arch.exception_vmexit.pending); 10138 10139 /* 10140 * New events, other than exceptions, cannot be injected if KVM needs 10141 * to re-inject a previous event. See above comments on re-injecting 10142 * for why pending exceptions get priority. 10143 */ 10144 can_inject = !kvm_event_needs_reinjection(vcpu); 10145 10146 if (vcpu->arch.exception.pending) { 10147 /* 10148 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10149 * value pushed on the stack. Trap-like exception and all #DBs 10150 * leave RF as-is (KVM follows Intel's behavior in this regard; 10151 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10152 * 10153 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10154 * describe the behavior of General Detect #DBs, which are 10155 * fault-like. They do _not_ set RF, a la code breakpoints. 10156 */ 10157 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10158 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10159 X86_EFLAGS_RF); 10160 10161 if (vcpu->arch.exception.vector == DB_VECTOR) { 10162 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10163 if (vcpu->arch.dr7 & DR7_GD) { 10164 vcpu->arch.dr7 &= ~DR7_GD; 10165 kvm_update_dr7(vcpu); 10166 } 10167 } 10168 10169 kvm_inject_exception(vcpu); 10170 10171 vcpu->arch.exception.pending = false; 10172 vcpu->arch.exception.injected = true; 10173 10174 can_inject = false; 10175 } 10176 10177 /* Don't inject interrupts if the user asked to avoid doing so */ 10178 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10179 return 0; 10180 10181 /* 10182 * Finally, inject interrupt events. If an event cannot be injected 10183 * due to architectural conditions (e.g. IF=0) a window-open exit 10184 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10185 * and can architecturally be injected, but we cannot do it right now: 10186 * an interrupt could have arrived just now and we have to inject it 10187 * as a vmexit, or there could already an event in the queue, which is 10188 * indicated by can_inject. In that case we request an immediate exit 10189 * in order to make progress and get back here for another iteration. 10190 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10191 */ 10192 #ifdef CONFIG_KVM_SMM 10193 if (vcpu->arch.smi_pending) { 10194 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10195 if (r < 0) 10196 goto out; 10197 if (r) { 10198 vcpu->arch.smi_pending = false; 10199 ++vcpu->arch.smi_count; 10200 enter_smm(vcpu); 10201 can_inject = false; 10202 } else 10203 static_call(kvm_x86_enable_smi_window)(vcpu); 10204 } 10205 #endif 10206 10207 if (vcpu->arch.nmi_pending) { 10208 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10209 if (r < 0) 10210 goto out; 10211 if (r) { 10212 --vcpu->arch.nmi_pending; 10213 vcpu->arch.nmi_injected = true; 10214 static_call(kvm_x86_inject_nmi)(vcpu); 10215 can_inject = false; 10216 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10217 } 10218 if (vcpu->arch.nmi_pending) 10219 static_call(kvm_x86_enable_nmi_window)(vcpu); 10220 } 10221 10222 if (kvm_cpu_has_injectable_intr(vcpu)) { 10223 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10224 if (r < 0) 10225 goto out; 10226 if (r) { 10227 int irq = kvm_cpu_get_interrupt(vcpu); 10228 10229 if (!WARN_ON_ONCE(irq == -1)) { 10230 kvm_queue_interrupt(vcpu, irq, false); 10231 static_call(kvm_x86_inject_irq)(vcpu, false); 10232 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10233 } 10234 } 10235 if (kvm_cpu_has_injectable_intr(vcpu)) 10236 static_call(kvm_x86_enable_irq_window)(vcpu); 10237 } 10238 10239 if (is_guest_mode(vcpu) && 10240 kvm_x86_ops.nested_ops->has_events && 10241 kvm_x86_ops.nested_ops->has_events(vcpu)) 10242 *req_immediate_exit = true; 10243 10244 /* 10245 * KVM must never queue a new exception while injecting an event; KVM 10246 * is done emulating and should only propagate the to-be-injected event 10247 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10248 * infinite loop as KVM will bail from VM-Enter to inject the pending 10249 * exception and start the cycle all over. 10250 * 10251 * Exempt triple faults as they have special handling and won't put the 10252 * vCPU into an infinite loop. Triple fault can be queued when running 10253 * VMX without unrestricted guest, as that requires KVM to emulate Real 10254 * Mode events (see kvm_inject_realmode_interrupt()). 10255 */ 10256 WARN_ON_ONCE(vcpu->arch.exception.pending || 10257 vcpu->arch.exception_vmexit.pending); 10258 return 0; 10259 10260 out: 10261 if (r == -EBUSY) { 10262 *req_immediate_exit = true; 10263 r = 0; 10264 } 10265 return r; 10266 } 10267 10268 static void process_nmi(struct kvm_vcpu *vcpu) 10269 { 10270 unsigned int limit; 10271 10272 /* 10273 * x86 is limited to one NMI pending, but because KVM can't react to 10274 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10275 * scheduled out, KVM needs to play nice with two queued NMIs showing 10276 * up at the same time. To handle this scenario, allow two NMIs to be 10277 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10278 * waiting for a previous NMI injection to complete (which effectively 10279 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10280 * will request an NMI window to handle the second NMI. 10281 */ 10282 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10283 limit = 1; 10284 else 10285 limit = 2; 10286 10287 /* 10288 * Adjust the limit to account for pending virtual NMIs, which aren't 10289 * tracked in vcpu->arch.nmi_pending. 10290 */ 10291 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10292 limit--; 10293 10294 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10295 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10296 10297 if (vcpu->arch.nmi_pending && 10298 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10299 vcpu->arch.nmi_pending--; 10300 10301 if (vcpu->arch.nmi_pending) 10302 kvm_make_request(KVM_REQ_EVENT, vcpu); 10303 } 10304 10305 /* Return total number of NMIs pending injection to the VM */ 10306 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10307 { 10308 return vcpu->arch.nmi_pending + 10309 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10310 } 10311 10312 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10313 unsigned long *vcpu_bitmap) 10314 { 10315 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10316 } 10317 10318 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10319 { 10320 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10321 } 10322 10323 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10324 { 10325 struct kvm_lapic *apic = vcpu->arch.apic; 10326 bool activate; 10327 10328 if (!lapic_in_kernel(vcpu)) 10329 return; 10330 10331 down_read(&vcpu->kvm->arch.apicv_update_lock); 10332 preempt_disable(); 10333 10334 /* Do not activate APICV when APIC is disabled */ 10335 activate = kvm_vcpu_apicv_activated(vcpu) && 10336 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10337 10338 if (apic->apicv_active == activate) 10339 goto out; 10340 10341 apic->apicv_active = activate; 10342 kvm_apic_update_apicv(vcpu); 10343 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10344 10345 /* 10346 * When APICv gets disabled, we may still have injected interrupts 10347 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10348 * still active when the interrupt got accepted. Make sure 10349 * kvm_check_and_inject_events() is called to check for that. 10350 */ 10351 if (!apic->apicv_active) 10352 kvm_make_request(KVM_REQ_EVENT, vcpu); 10353 10354 out: 10355 preempt_enable(); 10356 up_read(&vcpu->kvm->arch.apicv_update_lock); 10357 } 10358 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10359 10360 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10361 { 10362 if (!lapic_in_kernel(vcpu)) 10363 return; 10364 10365 /* 10366 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10367 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10368 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10369 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10370 * this case so that KVM can the AVIC doorbell to inject interrupts to 10371 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10372 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10373 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10374 * access page is sticky. 10375 */ 10376 if (apic_x2apic_mode(vcpu->arch.apic) && 10377 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10378 kvm_inhibit_apic_access_page(vcpu); 10379 10380 __kvm_vcpu_update_apicv(vcpu); 10381 } 10382 10383 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10384 enum kvm_apicv_inhibit reason, bool set) 10385 { 10386 unsigned long old, new; 10387 10388 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10389 10390 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10391 return; 10392 10393 old = new = kvm->arch.apicv_inhibit_reasons; 10394 10395 set_or_clear_apicv_inhibit(&new, reason, set); 10396 10397 if (!!old != !!new) { 10398 /* 10399 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10400 * false positives in the sanity check WARN in svm_vcpu_run(). 10401 * This task will wait for all vCPUs to ack the kick IRQ before 10402 * updating apicv_inhibit_reasons, and all other vCPUs will 10403 * block on acquiring apicv_update_lock so that vCPUs can't 10404 * redo svm_vcpu_run() without seeing the new inhibit state. 10405 * 10406 * Note, holding apicv_update_lock and taking it in the read 10407 * side (handling the request) also prevents other vCPUs from 10408 * servicing the request with a stale apicv_inhibit_reasons. 10409 */ 10410 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10411 kvm->arch.apicv_inhibit_reasons = new; 10412 if (new) { 10413 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10414 int idx = srcu_read_lock(&kvm->srcu); 10415 10416 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10417 srcu_read_unlock(&kvm->srcu, idx); 10418 } 10419 } else { 10420 kvm->arch.apicv_inhibit_reasons = new; 10421 } 10422 } 10423 10424 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10425 enum kvm_apicv_inhibit reason, bool set) 10426 { 10427 if (!enable_apicv) 10428 return; 10429 10430 down_write(&kvm->arch.apicv_update_lock); 10431 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10432 up_write(&kvm->arch.apicv_update_lock); 10433 } 10434 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10435 10436 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10437 { 10438 if (!kvm_apic_present(vcpu)) 10439 return; 10440 10441 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10442 10443 if (irqchip_split(vcpu->kvm)) 10444 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10445 else { 10446 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10447 if (ioapic_in_kernel(vcpu->kvm)) 10448 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10449 } 10450 10451 if (is_guest_mode(vcpu)) 10452 vcpu->arch.load_eoi_exitmap_pending = true; 10453 else 10454 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10455 } 10456 10457 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10458 { 10459 u64 eoi_exit_bitmap[4]; 10460 10461 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10462 return; 10463 10464 if (to_hv_vcpu(vcpu)) { 10465 bitmap_or((ulong *)eoi_exit_bitmap, 10466 vcpu->arch.ioapic_handled_vectors, 10467 to_hv_synic(vcpu)->vec_bitmap, 256); 10468 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10469 return; 10470 } 10471 10472 static_call_cond(kvm_x86_load_eoi_exitmap)( 10473 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10474 } 10475 10476 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10477 { 10478 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10479 } 10480 10481 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10482 { 10483 if (!lapic_in_kernel(vcpu)) 10484 return; 10485 10486 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10487 } 10488 10489 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10490 { 10491 smp_send_reschedule(vcpu->cpu); 10492 } 10493 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10494 10495 /* 10496 * Called within kvm->srcu read side. 10497 * Returns 1 to let vcpu_run() continue the guest execution loop without 10498 * exiting to the userspace. Otherwise, the value will be returned to the 10499 * userspace. 10500 */ 10501 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10502 { 10503 int r; 10504 bool req_int_win = 10505 dm_request_for_irq_injection(vcpu) && 10506 kvm_cpu_accept_dm_intr(vcpu); 10507 fastpath_t exit_fastpath; 10508 10509 bool req_immediate_exit = false; 10510 10511 if (kvm_request_pending(vcpu)) { 10512 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10513 r = -EIO; 10514 goto out; 10515 } 10516 10517 if (kvm_dirty_ring_check_request(vcpu)) { 10518 r = 0; 10519 goto out; 10520 } 10521 10522 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10523 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10524 r = 0; 10525 goto out; 10526 } 10527 } 10528 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10529 kvm_mmu_free_obsolete_roots(vcpu); 10530 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10531 __kvm_migrate_timers(vcpu); 10532 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10533 kvm_update_masterclock(vcpu->kvm); 10534 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10535 kvm_gen_kvmclock_update(vcpu); 10536 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10537 r = kvm_guest_time_update(vcpu); 10538 if (unlikely(r)) 10539 goto out; 10540 } 10541 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10542 kvm_mmu_sync_roots(vcpu); 10543 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10544 kvm_mmu_load_pgd(vcpu); 10545 10546 /* 10547 * Note, the order matters here, as flushing "all" TLB entries 10548 * also flushes the "current" TLB entries, i.e. servicing the 10549 * flush "all" will clear any request to flush "current". 10550 */ 10551 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10552 kvm_vcpu_flush_tlb_all(vcpu); 10553 10554 kvm_service_local_tlb_flush_requests(vcpu); 10555 10556 /* 10557 * Fall back to a "full" guest flush if Hyper-V's precise 10558 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10559 * the flushes are considered "remote" and not "local" because 10560 * the requests can be initiated from other vCPUs. 10561 */ 10562 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10563 kvm_hv_vcpu_flush_tlb(vcpu)) 10564 kvm_vcpu_flush_tlb_guest(vcpu); 10565 10566 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10567 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10568 r = 0; 10569 goto out; 10570 } 10571 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10572 if (is_guest_mode(vcpu)) 10573 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10574 10575 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10576 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10577 vcpu->mmio_needed = 0; 10578 r = 0; 10579 goto out; 10580 } 10581 } 10582 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10583 /* Page is swapped out. Do synthetic halt */ 10584 vcpu->arch.apf.halted = true; 10585 r = 1; 10586 goto out; 10587 } 10588 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10589 record_steal_time(vcpu); 10590 #ifdef CONFIG_KVM_SMM 10591 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10592 process_smi(vcpu); 10593 #endif 10594 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10595 process_nmi(vcpu); 10596 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10597 kvm_pmu_handle_event(vcpu); 10598 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10599 kvm_pmu_deliver_pmi(vcpu); 10600 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10601 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10602 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10603 vcpu->arch.ioapic_handled_vectors)) { 10604 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10605 vcpu->run->eoi.vector = 10606 vcpu->arch.pending_ioapic_eoi; 10607 r = 0; 10608 goto out; 10609 } 10610 } 10611 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10612 vcpu_scan_ioapic(vcpu); 10613 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10614 vcpu_load_eoi_exitmap(vcpu); 10615 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10616 kvm_vcpu_reload_apic_access_page(vcpu); 10617 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10618 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10619 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10620 vcpu->run->system_event.ndata = 0; 10621 r = 0; 10622 goto out; 10623 } 10624 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10625 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10626 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10627 vcpu->run->system_event.ndata = 0; 10628 r = 0; 10629 goto out; 10630 } 10631 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10632 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10633 10634 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10635 vcpu->run->hyperv = hv_vcpu->exit; 10636 r = 0; 10637 goto out; 10638 } 10639 10640 /* 10641 * KVM_REQ_HV_STIMER has to be processed after 10642 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10643 * depend on the guest clock being up-to-date 10644 */ 10645 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10646 kvm_hv_process_stimers(vcpu); 10647 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10648 kvm_vcpu_update_apicv(vcpu); 10649 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10650 kvm_check_async_pf_completion(vcpu); 10651 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10652 static_call(kvm_x86_msr_filter_changed)(vcpu); 10653 10654 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10655 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10656 } 10657 10658 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10659 kvm_xen_has_interrupt(vcpu)) { 10660 ++vcpu->stat.req_event; 10661 r = kvm_apic_accept_events(vcpu); 10662 if (r < 0) { 10663 r = 0; 10664 goto out; 10665 } 10666 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10667 r = 1; 10668 goto out; 10669 } 10670 10671 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10672 if (r < 0) { 10673 r = 0; 10674 goto out; 10675 } 10676 if (req_int_win) 10677 static_call(kvm_x86_enable_irq_window)(vcpu); 10678 10679 if (kvm_lapic_enabled(vcpu)) { 10680 update_cr8_intercept(vcpu); 10681 kvm_lapic_sync_to_vapic(vcpu); 10682 } 10683 } 10684 10685 r = kvm_mmu_reload(vcpu); 10686 if (unlikely(r)) { 10687 goto cancel_injection; 10688 } 10689 10690 preempt_disable(); 10691 10692 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10693 10694 /* 10695 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10696 * IPI are then delayed after guest entry, which ensures that they 10697 * result in virtual interrupt delivery. 10698 */ 10699 local_irq_disable(); 10700 10701 /* Store vcpu->apicv_active before vcpu->mode. */ 10702 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10703 10704 kvm_vcpu_srcu_read_unlock(vcpu); 10705 10706 /* 10707 * 1) We should set ->mode before checking ->requests. Please see 10708 * the comment in kvm_vcpu_exiting_guest_mode(). 10709 * 10710 * 2) For APICv, we should set ->mode before checking PID.ON. This 10711 * pairs with the memory barrier implicit in pi_test_and_set_on 10712 * (see vmx_deliver_posted_interrupt). 10713 * 10714 * 3) This also orders the write to mode from any reads to the page 10715 * tables done while the VCPU is running. Please see the comment 10716 * in kvm_flush_remote_tlbs. 10717 */ 10718 smp_mb__after_srcu_read_unlock(); 10719 10720 /* 10721 * Process pending posted interrupts to handle the case where the 10722 * notification IRQ arrived in the host, or was never sent (because the 10723 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10724 * status, KVM doesn't update assigned devices when APICv is inhibited, 10725 * i.e. they can post interrupts even if APICv is temporarily disabled. 10726 */ 10727 if (kvm_lapic_enabled(vcpu)) 10728 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10729 10730 if (kvm_vcpu_exit_request(vcpu)) { 10731 vcpu->mode = OUTSIDE_GUEST_MODE; 10732 smp_wmb(); 10733 local_irq_enable(); 10734 preempt_enable(); 10735 kvm_vcpu_srcu_read_lock(vcpu); 10736 r = 1; 10737 goto cancel_injection; 10738 } 10739 10740 if (req_immediate_exit) { 10741 kvm_make_request(KVM_REQ_EVENT, vcpu); 10742 static_call(kvm_x86_request_immediate_exit)(vcpu); 10743 } 10744 10745 fpregs_assert_state_consistent(); 10746 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10747 switch_fpu_return(); 10748 10749 if (vcpu->arch.guest_fpu.xfd_err) 10750 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10751 10752 if (unlikely(vcpu->arch.switch_db_regs)) { 10753 set_debugreg(0, 7); 10754 set_debugreg(vcpu->arch.eff_db[0], 0); 10755 set_debugreg(vcpu->arch.eff_db[1], 1); 10756 set_debugreg(vcpu->arch.eff_db[2], 2); 10757 set_debugreg(vcpu->arch.eff_db[3], 3); 10758 } else if (unlikely(hw_breakpoint_active())) { 10759 set_debugreg(0, 7); 10760 } 10761 10762 guest_timing_enter_irqoff(); 10763 10764 for (;;) { 10765 /* 10766 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10767 * update must kick and wait for all vCPUs before toggling the 10768 * per-VM state, and responsing vCPUs must wait for the update 10769 * to complete before servicing KVM_REQ_APICV_UPDATE. 10770 */ 10771 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10772 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10773 10774 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10775 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10776 break; 10777 10778 if (kvm_lapic_enabled(vcpu)) 10779 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10780 10781 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10782 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10783 break; 10784 } 10785 10786 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10787 ++vcpu->stat.exits; 10788 } 10789 10790 /* 10791 * Do this here before restoring debug registers on the host. And 10792 * since we do this before handling the vmexit, a DR access vmexit 10793 * can (a) read the correct value of the debug registers, (b) set 10794 * KVM_DEBUGREG_WONT_EXIT again. 10795 */ 10796 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10797 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10798 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10799 kvm_update_dr0123(vcpu); 10800 kvm_update_dr7(vcpu); 10801 } 10802 10803 /* 10804 * If the guest has used debug registers, at least dr7 10805 * will be disabled while returning to the host. 10806 * If we don't have active breakpoints in the host, we don't 10807 * care about the messed up debug address registers. But if 10808 * we have some of them active, restore the old state. 10809 */ 10810 if (hw_breakpoint_active()) 10811 hw_breakpoint_restore(); 10812 10813 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10814 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10815 10816 vcpu->mode = OUTSIDE_GUEST_MODE; 10817 smp_wmb(); 10818 10819 /* 10820 * Sync xfd before calling handle_exit_irqoff() which may 10821 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10822 * in #NM irqoff handler). 10823 */ 10824 if (vcpu->arch.xfd_no_write_intercept) 10825 fpu_sync_guest_vmexit_xfd_state(); 10826 10827 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10828 10829 if (vcpu->arch.guest_fpu.xfd_err) 10830 wrmsrl(MSR_IA32_XFD_ERR, 0); 10831 10832 /* 10833 * Consume any pending interrupts, including the possible source of 10834 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10835 * An instruction is required after local_irq_enable() to fully unblock 10836 * interrupts on processors that implement an interrupt shadow, the 10837 * stat.exits increment will do nicely. 10838 */ 10839 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10840 local_irq_enable(); 10841 ++vcpu->stat.exits; 10842 local_irq_disable(); 10843 kvm_after_interrupt(vcpu); 10844 10845 /* 10846 * Wait until after servicing IRQs to account guest time so that any 10847 * ticks that occurred while running the guest are properly accounted 10848 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10849 * of accounting via context tracking, but the loss of accuracy is 10850 * acceptable for all known use cases. 10851 */ 10852 guest_timing_exit_irqoff(); 10853 10854 local_irq_enable(); 10855 preempt_enable(); 10856 10857 kvm_vcpu_srcu_read_lock(vcpu); 10858 10859 /* 10860 * Profile KVM exit RIPs: 10861 */ 10862 if (unlikely(prof_on == KVM_PROFILING)) { 10863 unsigned long rip = kvm_rip_read(vcpu); 10864 profile_hit(KVM_PROFILING, (void *)rip); 10865 } 10866 10867 if (unlikely(vcpu->arch.tsc_always_catchup)) 10868 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10869 10870 if (vcpu->arch.apic_attention) 10871 kvm_lapic_sync_from_vapic(vcpu); 10872 10873 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10874 return r; 10875 10876 cancel_injection: 10877 if (req_immediate_exit) 10878 kvm_make_request(KVM_REQ_EVENT, vcpu); 10879 static_call(kvm_x86_cancel_injection)(vcpu); 10880 if (unlikely(vcpu->arch.apic_attention)) 10881 kvm_lapic_sync_from_vapic(vcpu); 10882 out: 10883 return r; 10884 } 10885 10886 /* Called within kvm->srcu read side. */ 10887 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10888 { 10889 bool hv_timer; 10890 10891 if (!kvm_arch_vcpu_runnable(vcpu)) { 10892 /* 10893 * Switch to the software timer before halt-polling/blocking as 10894 * the guest's timer may be a break event for the vCPU, and the 10895 * hypervisor timer runs only when the CPU is in guest mode. 10896 * Switch before halt-polling so that KVM recognizes an expired 10897 * timer before blocking. 10898 */ 10899 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10900 if (hv_timer) 10901 kvm_lapic_switch_to_sw_timer(vcpu); 10902 10903 kvm_vcpu_srcu_read_unlock(vcpu); 10904 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10905 kvm_vcpu_halt(vcpu); 10906 else 10907 kvm_vcpu_block(vcpu); 10908 kvm_vcpu_srcu_read_lock(vcpu); 10909 10910 if (hv_timer) 10911 kvm_lapic_switch_to_hv_timer(vcpu); 10912 10913 /* 10914 * If the vCPU is not runnable, a signal or another host event 10915 * of some kind is pending; service it without changing the 10916 * vCPU's activity state. 10917 */ 10918 if (!kvm_arch_vcpu_runnable(vcpu)) 10919 return 1; 10920 } 10921 10922 /* 10923 * Evaluate nested events before exiting the halted state. This allows 10924 * the halt state to be recorded properly in the VMCS12's activity 10925 * state field (AMD does not have a similar field and a VM-Exit always 10926 * causes a spurious wakeup from HLT). 10927 */ 10928 if (is_guest_mode(vcpu)) { 10929 if (kvm_check_nested_events(vcpu) < 0) 10930 return 0; 10931 } 10932 10933 if (kvm_apic_accept_events(vcpu) < 0) 10934 return 0; 10935 switch(vcpu->arch.mp_state) { 10936 case KVM_MP_STATE_HALTED: 10937 case KVM_MP_STATE_AP_RESET_HOLD: 10938 vcpu->arch.pv.pv_unhalted = false; 10939 vcpu->arch.mp_state = 10940 KVM_MP_STATE_RUNNABLE; 10941 fallthrough; 10942 case KVM_MP_STATE_RUNNABLE: 10943 vcpu->arch.apf.halted = false; 10944 break; 10945 case KVM_MP_STATE_INIT_RECEIVED: 10946 break; 10947 default: 10948 WARN_ON_ONCE(1); 10949 break; 10950 } 10951 return 1; 10952 } 10953 10954 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10955 { 10956 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10957 !vcpu->arch.apf.halted); 10958 } 10959 10960 /* Called within kvm->srcu read side. */ 10961 static int vcpu_run(struct kvm_vcpu *vcpu) 10962 { 10963 int r; 10964 10965 vcpu->arch.l1tf_flush_l1d = true; 10966 10967 for (;;) { 10968 /* 10969 * If another guest vCPU requests a PV TLB flush in the middle 10970 * of instruction emulation, the rest of the emulation could 10971 * use a stale page translation. Assume that any code after 10972 * this point can start executing an instruction. 10973 */ 10974 vcpu->arch.at_instruction_boundary = false; 10975 if (kvm_vcpu_running(vcpu)) { 10976 r = vcpu_enter_guest(vcpu); 10977 } else { 10978 r = vcpu_block(vcpu); 10979 } 10980 10981 if (r <= 0) 10982 break; 10983 10984 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10985 if (kvm_xen_has_pending_events(vcpu)) 10986 kvm_xen_inject_pending_events(vcpu); 10987 10988 if (kvm_cpu_has_pending_timer(vcpu)) 10989 kvm_inject_pending_timer_irqs(vcpu); 10990 10991 if (dm_request_for_irq_injection(vcpu) && 10992 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10993 r = 0; 10994 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10995 ++vcpu->stat.request_irq_exits; 10996 break; 10997 } 10998 10999 if (__xfer_to_guest_mode_work_pending()) { 11000 kvm_vcpu_srcu_read_unlock(vcpu); 11001 r = xfer_to_guest_mode_handle_work(vcpu); 11002 kvm_vcpu_srcu_read_lock(vcpu); 11003 if (r) 11004 return r; 11005 } 11006 } 11007 11008 return r; 11009 } 11010 11011 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11012 { 11013 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11014 } 11015 11016 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11017 { 11018 BUG_ON(!vcpu->arch.pio.count); 11019 11020 return complete_emulated_io(vcpu); 11021 } 11022 11023 /* 11024 * Implements the following, as a state machine: 11025 * 11026 * read: 11027 * for each fragment 11028 * for each mmio piece in the fragment 11029 * write gpa, len 11030 * exit 11031 * copy data 11032 * execute insn 11033 * 11034 * write: 11035 * for each fragment 11036 * for each mmio piece in the fragment 11037 * write gpa, len 11038 * copy data 11039 * exit 11040 */ 11041 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11042 { 11043 struct kvm_run *run = vcpu->run; 11044 struct kvm_mmio_fragment *frag; 11045 unsigned len; 11046 11047 BUG_ON(!vcpu->mmio_needed); 11048 11049 /* Complete previous fragment */ 11050 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11051 len = min(8u, frag->len); 11052 if (!vcpu->mmio_is_write) 11053 memcpy(frag->data, run->mmio.data, len); 11054 11055 if (frag->len <= 8) { 11056 /* Switch to the next fragment. */ 11057 frag++; 11058 vcpu->mmio_cur_fragment++; 11059 } else { 11060 /* Go forward to the next mmio piece. */ 11061 frag->data += len; 11062 frag->gpa += len; 11063 frag->len -= len; 11064 } 11065 11066 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11067 vcpu->mmio_needed = 0; 11068 11069 /* FIXME: return into emulator if single-stepping. */ 11070 if (vcpu->mmio_is_write) 11071 return 1; 11072 vcpu->mmio_read_completed = 1; 11073 return complete_emulated_io(vcpu); 11074 } 11075 11076 run->exit_reason = KVM_EXIT_MMIO; 11077 run->mmio.phys_addr = frag->gpa; 11078 if (vcpu->mmio_is_write) 11079 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11080 run->mmio.len = min(8u, frag->len); 11081 run->mmio.is_write = vcpu->mmio_is_write; 11082 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11083 return 0; 11084 } 11085 11086 /* Swap (qemu) user FPU context for the guest FPU context. */ 11087 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11088 { 11089 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11090 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11091 trace_kvm_fpu(1); 11092 } 11093 11094 /* When vcpu_run ends, restore user space FPU context. */ 11095 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11096 { 11097 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11098 ++vcpu->stat.fpu_reload; 11099 trace_kvm_fpu(0); 11100 } 11101 11102 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11103 { 11104 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11105 struct kvm_run *kvm_run = vcpu->run; 11106 int r; 11107 11108 vcpu_load(vcpu); 11109 kvm_sigset_activate(vcpu); 11110 kvm_run->flags = 0; 11111 kvm_load_guest_fpu(vcpu); 11112 11113 kvm_vcpu_srcu_read_lock(vcpu); 11114 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11115 if (kvm_run->immediate_exit) { 11116 r = -EINTR; 11117 goto out; 11118 } 11119 11120 /* 11121 * Don't bother switching APIC timer emulation from the 11122 * hypervisor timer to the software timer, the only way for the 11123 * APIC timer to be active is if userspace stuffed vCPU state, 11124 * i.e. put the vCPU into a nonsensical state. Only an INIT 11125 * will transition the vCPU out of UNINITIALIZED (without more 11126 * state stuffing from userspace), which will reset the local 11127 * APIC and thus cancel the timer or drop the IRQ (if the timer 11128 * already expired). 11129 */ 11130 kvm_vcpu_srcu_read_unlock(vcpu); 11131 kvm_vcpu_block(vcpu); 11132 kvm_vcpu_srcu_read_lock(vcpu); 11133 11134 if (kvm_apic_accept_events(vcpu) < 0) { 11135 r = 0; 11136 goto out; 11137 } 11138 r = -EAGAIN; 11139 if (signal_pending(current)) { 11140 r = -EINTR; 11141 kvm_run->exit_reason = KVM_EXIT_INTR; 11142 ++vcpu->stat.signal_exits; 11143 } 11144 goto out; 11145 } 11146 11147 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11148 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11149 r = -EINVAL; 11150 goto out; 11151 } 11152 11153 if (kvm_run->kvm_dirty_regs) { 11154 r = sync_regs(vcpu); 11155 if (r != 0) 11156 goto out; 11157 } 11158 11159 /* re-sync apic's tpr */ 11160 if (!lapic_in_kernel(vcpu)) { 11161 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11162 r = -EINVAL; 11163 goto out; 11164 } 11165 } 11166 11167 /* 11168 * If userspace set a pending exception and L2 is active, convert it to 11169 * a pending VM-Exit if L1 wants to intercept the exception. 11170 */ 11171 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11172 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11173 ex->error_code)) { 11174 kvm_queue_exception_vmexit(vcpu, ex->vector, 11175 ex->has_error_code, ex->error_code, 11176 ex->has_payload, ex->payload); 11177 ex->injected = false; 11178 ex->pending = false; 11179 } 11180 vcpu->arch.exception_from_userspace = false; 11181 11182 if (unlikely(vcpu->arch.complete_userspace_io)) { 11183 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11184 vcpu->arch.complete_userspace_io = NULL; 11185 r = cui(vcpu); 11186 if (r <= 0) 11187 goto out; 11188 } else { 11189 WARN_ON_ONCE(vcpu->arch.pio.count); 11190 WARN_ON_ONCE(vcpu->mmio_needed); 11191 } 11192 11193 if (kvm_run->immediate_exit) { 11194 r = -EINTR; 11195 goto out; 11196 } 11197 11198 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11199 if (r <= 0) 11200 goto out; 11201 11202 r = vcpu_run(vcpu); 11203 11204 out: 11205 kvm_put_guest_fpu(vcpu); 11206 if (kvm_run->kvm_valid_regs) 11207 store_regs(vcpu); 11208 post_kvm_run_save(vcpu); 11209 kvm_vcpu_srcu_read_unlock(vcpu); 11210 11211 kvm_sigset_deactivate(vcpu); 11212 vcpu_put(vcpu); 11213 return r; 11214 } 11215 11216 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11217 { 11218 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11219 /* 11220 * We are here if userspace calls get_regs() in the middle of 11221 * instruction emulation. Registers state needs to be copied 11222 * back from emulation context to vcpu. Userspace shouldn't do 11223 * that usually, but some bad designed PV devices (vmware 11224 * backdoor interface) need this to work 11225 */ 11226 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11227 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11228 } 11229 regs->rax = kvm_rax_read(vcpu); 11230 regs->rbx = kvm_rbx_read(vcpu); 11231 regs->rcx = kvm_rcx_read(vcpu); 11232 regs->rdx = kvm_rdx_read(vcpu); 11233 regs->rsi = kvm_rsi_read(vcpu); 11234 regs->rdi = kvm_rdi_read(vcpu); 11235 regs->rsp = kvm_rsp_read(vcpu); 11236 regs->rbp = kvm_rbp_read(vcpu); 11237 #ifdef CONFIG_X86_64 11238 regs->r8 = kvm_r8_read(vcpu); 11239 regs->r9 = kvm_r9_read(vcpu); 11240 regs->r10 = kvm_r10_read(vcpu); 11241 regs->r11 = kvm_r11_read(vcpu); 11242 regs->r12 = kvm_r12_read(vcpu); 11243 regs->r13 = kvm_r13_read(vcpu); 11244 regs->r14 = kvm_r14_read(vcpu); 11245 regs->r15 = kvm_r15_read(vcpu); 11246 #endif 11247 11248 regs->rip = kvm_rip_read(vcpu); 11249 regs->rflags = kvm_get_rflags(vcpu); 11250 } 11251 11252 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11253 { 11254 vcpu_load(vcpu); 11255 __get_regs(vcpu, regs); 11256 vcpu_put(vcpu); 11257 return 0; 11258 } 11259 11260 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11261 { 11262 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11263 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11264 11265 kvm_rax_write(vcpu, regs->rax); 11266 kvm_rbx_write(vcpu, regs->rbx); 11267 kvm_rcx_write(vcpu, regs->rcx); 11268 kvm_rdx_write(vcpu, regs->rdx); 11269 kvm_rsi_write(vcpu, regs->rsi); 11270 kvm_rdi_write(vcpu, regs->rdi); 11271 kvm_rsp_write(vcpu, regs->rsp); 11272 kvm_rbp_write(vcpu, regs->rbp); 11273 #ifdef CONFIG_X86_64 11274 kvm_r8_write(vcpu, regs->r8); 11275 kvm_r9_write(vcpu, regs->r9); 11276 kvm_r10_write(vcpu, regs->r10); 11277 kvm_r11_write(vcpu, regs->r11); 11278 kvm_r12_write(vcpu, regs->r12); 11279 kvm_r13_write(vcpu, regs->r13); 11280 kvm_r14_write(vcpu, regs->r14); 11281 kvm_r15_write(vcpu, regs->r15); 11282 #endif 11283 11284 kvm_rip_write(vcpu, regs->rip); 11285 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11286 11287 vcpu->arch.exception.pending = false; 11288 vcpu->arch.exception_vmexit.pending = false; 11289 11290 kvm_make_request(KVM_REQ_EVENT, vcpu); 11291 } 11292 11293 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11294 { 11295 vcpu_load(vcpu); 11296 __set_regs(vcpu, regs); 11297 vcpu_put(vcpu); 11298 return 0; 11299 } 11300 11301 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11302 { 11303 struct desc_ptr dt; 11304 11305 if (vcpu->arch.guest_state_protected) 11306 goto skip_protected_regs; 11307 11308 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11309 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11310 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11311 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11312 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11313 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11314 11315 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11316 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11317 11318 static_call(kvm_x86_get_idt)(vcpu, &dt); 11319 sregs->idt.limit = dt.size; 11320 sregs->idt.base = dt.address; 11321 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11322 sregs->gdt.limit = dt.size; 11323 sregs->gdt.base = dt.address; 11324 11325 sregs->cr2 = vcpu->arch.cr2; 11326 sregs->cr3 = kvm_read_cr3(vcpu); 11327 11328 skip_protected_regs: 11329 sregs->cr0 = kvm_read_cr0(vcpu); 11330 sregs->cr4 = kvm_read_cr4(vcpu); 11331 sregs->cr8 = kvm_get_cr8(vcpu); 11332 sregs->efer = vcpu->arch.efer; 11333 sregs->apic_base = kvm_get_apic_base(vcpu); 11334 } 11335 11336 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11337 { 11338 __get_sregs_common(vcpu, sregs); 11339 11340 if (vcpu->arch.guest_state_protected) 11341 return; 11342 11343 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11344 set_bit(vcpu->arch.interrupt.nr, 11345 (unsigned long *)sregs->interrupt_bitmap); 11346 } 11347 11348 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11349 { 11350 int i; 11351 11352 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11353 11354 if (vcpu->arch.guest_state_protected) 11355 return; 11356 11357 if (is_pae_paging(vcpu)) { 11358 for (i = 0 ; i < 4 ; i++) 11359 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11360 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11361 } 11362 } 11363 11364 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11365 struct kvm_sregs *sregs) 11366 { 11367 vcpu_load(vcpu); 11368 __get_sregs(vcpu, sregs); 11369 vcpu_put(vcpu); 11370 return 0; 11371 } 11372 11373 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11374 struct kvm_mp_state *mp_state) 11375 { 11376 int r; 11377 11378 vcpu_load(vcpu); 11379 if (kvm_mpx_supported()) 11380 kvm_load_guest_fpu(vcpu); 11381 11382 r = kvm_apic_accept_events(vcpu); 11383 if (r < 0) 11384 goto out; 11385 r = 0; 11386 11387 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11388 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11389 vcpu->arch.pv.pv_unhalted) 11390 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11391 else 11392 mp_state->mp_state = vcpu->arch.mp_state; 11393 11394 out: 11395 if (kvm_mpx_supported()) 11396 kvm_put_guest_fpu(vcpu); 11397 vcpu_put(vcpu); 11398 return r; 11399 } 11400 11401 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11402 struct kvm_mp_state *mp_state) 11403 { 11404 int ret = -EINVAL; 11405 11406 vcpu_load(vcpu); 11407 11408 switch (mp_state->mp_state) { 11409 case KVM_MP_STATE_UNINITIALIZED: 11410 case KVM_MP_STATE_HALTED: 11411 case KVM_MP_STATE_AP_RESET_HOLD: 11412 case KVM_MP_STATE_INIT_RECEIVED: 11413 case KVM_MP_STATE_SIPI_RECEIVED: 11414 if (!lapic_in_kernel(vcpu)) 11415 goto out; 11416 break; 11417 11418 case KVM_MP_STATE_RUNNABLE: 11419 break; 11420 11421 default: 11422 goto out; 11423 } 11424 11425 /* 11426 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11427 * forcing the guest into INIT/SIPI if those events are supposed to be 11428 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11429 * if an SMI is pending as well. 11430 */ 11431 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11432 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11433 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11434 goto out; 11435 11436 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11437 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11438 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11439 } else 11440 vcpu->arch.mp_state = mp_state->mp_state; 11441 kvm_make_request(KVM_REQ_EVENT, vcpu); 11442 11443 ret = 0; 11444 out: 11445 vcpu_put(vcpu); 11446 return ret; 11447 } 11448 11449 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11450 int reason, bool has_error_code, u32 error_code) 11451 { 11452 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11453 int ret; 11454 11455 init_emulate_ctxt(vcpu); 11456 11457 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11458 has_error_code, error_code); 11459 if (ret) { 11460 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11461 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11462 vcpu->run->internal.ndata = 0; 11463 return 0; 11464 } 11465 11466 kvm_rip_write(vcpu, ctxt->eip); 11467 kvm_set_rflags(vcpu, ctxt->eflags); 11468 return 1; 11469 } 11470 EXPORT_SYMBOL_GPL(kvm_task_switch); 11471 11472 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11473 { 11474 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11475 /* 11476 * When EFER.LME and CR0.PG are set, the processor is in 11477 * 64-bit mode (though maybe in a 32-bit code segment). 11478 * CR4.PAE and EFER.LMA must be set. 11479 */ 11480 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11481 return false; 11482 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11483 return false; 11484 } else { 11485 /* 11486 * Not in 64-bit mode: EFER.LMA is clear and the code 11487 * segment cannot be 64-bit. 11488 */ 11489 if (sregs->efer & EFER_LMA || sregs->cs.l) 11490 return false; 11491 } 11492 11493 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11494 kvm_is_valid_cr0(vcpu, sregs->cr0); 11495 } 11496 11497 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11498 int *mmu_reset_needed, bool update_pdptrs) 11499 { 11500 struct msr_data apic_base_msr; 11501 int idx; 11502 struct desc_ptr dt; 11503 11504 if (!kvm_is_valid_sregs(vcpu, sregs)) 11505 return -EINVAL; 11506 11507 apic_base_msr.data = sregs->apic_base; 11508 apic_base_msr.host_initiated = true; 11509 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11510 return -EINVAL; 11511 11512 if (vcpu->arch.guest_state_protected) 11513 return 0; 11514 11515 dt.size = sregs->idt.limit; 11516 dt.address = sregs->idt.base; 11517 static_call(kvm_x86_set_idt)(vcpu, &dt); 11518 dt.size = sregs->gdt.limit; 11519 dt.address = sregs->gdt.base; 11520 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11521 11522 vcpu->arch.cr2 = sregs->cr2; 11523 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11524 vcpu->arch.cr3 = sregs->cr3; 11525 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11526 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11527 11528 kvm_set_cr8(vcpu, sregs->cr8); 11529 11530 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11531 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11532 11533 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11534 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11535 vcpu->arch.cr0 = sregs->cr0; 11536 11537 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11538 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11539 11540 if (update_pdptrs) { 11541 idx = srcu_read_lock(&vcpu->kvm->srcu); 11542 if (is_pae_paging(vcpu)) { 11543 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11544 *mmu_reset_needed = 1; 11545 } 11546 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11547 } 11548 11549 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11550 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11551 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11552 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11553 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11554 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11555 11556 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11557 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11558 11559 update_cr8_intercept(vcpu); 11560 11561 /* Older userspace won't unhalt the vcpu on reset. */ 11562 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11563 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11564 !is_protmode(vcpu)) 11565 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11566 11567 return 0; 11568 } 11569 11570 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11571 { 11572 int pending_vec, max_bits; 11573 int mmu_reset_needed = 0; 11574 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11575 11576 if (ret) 11577 return ret; 11578 11579 if (mmu_reset_needed) 11580 kvm_mmu_reset_context(vcpu); 11581 11582 max_bits = KVM_NR_INTERRUPTS; 11583 pending_vec = find_first_bit( 11584 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11585 11586 if (pending_vec < max_bits) { 11587 kvm_queue_interrupt(vcpu, pending_vec, false); 11588 pr_debug("Set back pending irq %d\n", pending_vec); 11589 kvm_make_request(KVM_REQ_EVENT, vcpu); 11590 } 11591 return 0; 11592 } 11593 11594 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11595 { 11596 int mmu_reset_needed = 0; 11597 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11598 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11599 !(sregs2->efer & EFER_LMA); 11600 int i, ret; 11601 11602 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11603 return -EINVAL; 11604 11605 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11606 return -EINVAL; 11607 11608 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11609 &mmu_reset_needed, !valid_pdptrs); 11610 if (ret) 11611 return ret; 11612 11613 if (valid_pdptrs) { 11614 for (i = 0; i < 4 ; i++) 11615 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11616 11617 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11618 mmu_reset_needed = 1; 11619 vcpu->arch.pdptrs_from_userspace = true; 11620 } 11621 if (mmu_reset_needed) 11622 kvm_mmu_reset_context(vcpu); 11623 return 0; 11624 } 11625 11626 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11627 struct kvm_sregs *sregs) 11628 { 11629 int ret; 11630 11631 vcpu_load(vcpu); 11632 ret = __set_sregs(vcpu, sregs); 11633 vcpu_put(vcpu); 11634 return ret; 11635 } 11636 11637 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11638 { 11639 bool set = false; 11640 struct kvm_vcpu *vcpu; 11641 unsigned long i; 11642 11643 if (!enable_apicv) 11644 return; 11645 11646 down_write(&kvm->arch.apicv_update_lock); 11647 11648 kvm_for_each_vcpu(i, vcpu, kvm) { 11649 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11650 set = true; 11651 break; 11652 } 11653 } 11654 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11655 up_write(&kvm->arch.apicv_update_lock); 11656 } 11657 11658 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11659 struct kvm_guest_debug *dbg) 11660 { 11661 unsigned long rflags; 11662 int i, r; 11663 11664 if (vcpu->arch.guest_state_protected) 11665 return -EINVAL; 11666 11667 vcpu_load(vcpu); 11668 11669 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11670 r = -EBUSY; 11671 if (kvm_is_exception_pending(vcpu)) 11672 goto out; 11673 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11674 kvm_queue_exception(vcpu, DB_VECTOR); 11675 else 11676 kvm_queue_exception(vcpu, BP_VECTOR); 11677 } 11678 11679 /* 11680 * Read rflags as long as potentially injected trace flags are still 11681 * filtered out. 11682 */ 11683 rflags = kvm_get_rflags(vcpu); 11684 11685 vcpu->guest_debug = dbg->control; 11686 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11687 vcpu->guest_debug = 0; 11688 11689 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11690 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11691 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11692 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11693 } else { 11694 for (i = 0; i < KVM_NR_DB_REGS; i++) 11695 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11696 } 11697 kvm_update_dr7(vcpu); 11698 11699 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11700 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11701 11702 /* 11703 * Trigger an rflags update that will inject or remove the trace 11704 * flags. 11705 */ 11706 kvm_set_rflags(vcpu, rflags); 11707 11708 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11709 11710 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11711 11712 r = 0; 11713 11714 out: 11715 vcpu_put(vcpu); 11716 return r; 11717 } 11718 11719 /* 11720 * Translate a guest virtual address to a guest physical address. 11721 */ 11722 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11723 struct kvm_translation *tr) 11724 { 11725 unsigned long vaddr = tr->linear_address; 11726 gpa_t gpa; 11727 int idx; 11728 11729 vcpu_load(vcpu); 11730 11731 idx = srcu_read_lock(&vcpu->kvm->srcu); 11732 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11733 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11734 tr->physical_address = gpa; 11735 tr->valid = gpa != INVALID_GPA; 11736 tr->writeable = 1; 11737 tr->usermode = 0; 11738 11739 vcpu_put(vcpu); 11740 return 0; 11741 } 11742 11743 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11744 { 11745 struct fxregs_state *fxsave; 11746 11747 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11748 return 0; 11749 11750 vcpu_load(vcpu); 11751 11752 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11753 memcpy(fpu->fpr, fxsave->st_space, 128); 11754 fpu->fcw = fxsave->cwd; 11755 fpu->fsw = fxsave->swd; 11756 fpu->ftwx = fxsave->twd; 11757 fpu->last_opcode = fxsave->fop; 11758 fpu->last_ip = fxsave->rip; 11759 fpu->last_dp = fxsave->rdp; 11760 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11761 11762 vcpu_put(vcpu); 11763 return 0; 11764 } 11765 11766 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11767 { 11768 struct fxregs_state *fxsave; 11769 11770 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11771 return 0; 11772 11773 vcpu_load(vcpu); 11774 11775 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11776 11777 memcpy(fxsave->st_space, fpu->fpr, 128); 11778 fxsave->cwd = fpu->fcw; 11779 fxsave->swd = fpu->fsw; 11780 fxsave->twd = fpu->ftwx; 11781 fxsave->fop = fpu->last_opcode; 11782 fxsave->rip = fpu->last_ip; 11783 fxsave->rdp = fpu->last_dp; 11784 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11785 11786 vcpu_put(vcpu); 11787 return 0; 11788 } 11789 11790 static void store_regs(struct kvm_vcpu *vcpu) 11791 { 11792 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11793 11794 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11795 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11796 11797 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11798 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11799 11800 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11801 kvm_vcpu_ioctl_x86_get_vcpu_events( 11802 vcpu, &vcpu->run->s.regs.events); 11803 } 11804 11805 static int sync_regs(struct kvm_vcpu *vcpu) 11806 { 11807 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11808 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11809 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11810 } 11811 11812 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11813 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 11814 11815 if (__set_sregs(vcpu, &sregs)) 11816 return -EINVAL; 11817 11818 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11819 } 11820 11821 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11822 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 11823 11824 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 11825 return -EINVAL; 11826 11827 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11828 } 11829 11830 return 0; 11831 } 11832 11833 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11834 { 11835 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11836 pr_warn_once("SMP vm created on host with unstable TSC; " 11837 "guest TSC will not be reliable\n"); 11838 11839 if (!kvm->arch.max_vcpu_ids) 11840 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11841 11842 if (id >= kvm->arch.max_vcpu_ids) 11843 return -EINVAL; 11844 11845 return static_call(kvm_x86_vcpu_precreate)(kvm); 11846 } 11847 11848 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11849 { 11850 struct page *page; 11851 int r; 11852 11853 vcpu->arch.last_vmentry_cpu = -1; 11854 vcpu->arch.regs_avail = ~0; 11855 vcpu->arch.regs_dirty = ~0; 11856 11857 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11858 11859 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11860 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11861 else 11862 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11863 11864 r = kvm_mmu_create(vcpu); 11865 if (r < 0) 11866 return r; 11867 11868 if (irqchip_in_kernel(vcpu->kvm)) { 11869 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11870 if (r < 0) 11871 goto fail_mmu_destroy; 11872 11873 /* 11874 * Defer evaluating inhibits until the vCPU is first run, as 11875 * this vCPU will not get notified of any changes until this 11876 * vCPU is visible to other vCPUs (marked online and added to 11877 * the set of vCPUs). Opportunistically mark APICv active as 11878 * VMX in particularly is highly unlikely to have inhibits. 11879 * Ignore the current per-VM APICv state so that vCPU creation 11880 * is guaranteed to run with a deterministic value, the request 11881 * will ensure the vCPU gets the correct state before VM-Entry. 11882 */ 11883 if (enable_apicv) { 11884 vcpu->arch.apic->apicv_active = true; 11885 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11886 } 11887 } else 11888 static_branch_inc(&kvm_has_noapic_vcpu); 11889 11890 r = -ENOMEM; 11891 11892 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11893 if (!page) 11894 goto fail_free_lapic; 11895 vcpu->arch.pio_data = page_address(page); 11896 11897 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11898 GFP_KERNEL_ACCOUNT); 11899 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11900 GFP_KERNEL_ACCOUNT); 11901 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11902 goto fail_free_mce_banks; 11903 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11904 11905 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11906 GFP_KERNEL_ACCOUNT)) 11907 goto fail_free_mce_banks; 11908 11909 if (!alloc_emulate_ctxt(vcpu)) 11910 goto free_wbinvd_dirty_mask; 11911 11912 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11913 pr_err("failed to allocate vcpu's fpu\n"); 11914 goto free_emulate_ctxt; 11915 } 11916 11917 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11918 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11919 11920 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11921 11922 kvm_async_pf_hash_reset(vcpu); 11923 11924 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11925 kvm_pmu_init(vcpu); 11926 11927 vcpu->arch.pending_external_vector = -1; 11928 vcpu->arch.preempted_in_kernel = false; 11929 11930 #if IS_ENABLED(CONFIG_HYPERV) 11931 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11932 #endif 11933 11934 r = static_call(kvm_x86_vcpu_create)(vcpu); 11935 if (r) 11936 goto free_guest_fpu; 11937 11938 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11939 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11940 kvm_xen_init_vcpu(vcpu); 11941 kvm_vcpu_mtrr_init(vcpu); 11942 vcpu_load(vcpu); 11943 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11944 kvm_vcpu_reset(vcpu, false); 11945 kvm_init_mmu(vcpu); 11946 vcpu_put(vcpu); 11947 return 0; 11948 11949 free_guest_fpu: 11950 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11951 free_emulate_ctxt: 11952 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11953 free_wbinvd_dirty_mask: 11954 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11955 fail_free_mce_banks: 11956 kfree(vcpu->arch.mce_banks); 11957 kfree(vcpu->arch.mci_ctl2_banks); 11958 free_page((unsigned long)vcpu->arch.pio_data); 11959 fail_free_lapic: 11960 kvm_free_lapic(vcpu); 11961 fail_mmu_destroy: 11962 kvm_mmu_destroy(vcpu); 11963 return r; 11964 } 11965 11966 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11967 { 11968 struct kvm *kvm = vcpu->kvm; 11969 11970 if (mutex_lock_killable(&vcpu->mutex)) 11971 return; 11972 vcpu_load(vcpu); 11973 kvm_synchronize_tsc(vcpu, 0); 11974 vcpu_put(vcpu); 11975 11976 /* poll control enabled by default */ 11977 vcpu->arch.msr_kvm_poll_control = 1; 11978 11979 mutex_unlock(&vcpu->mutex); 11980 11981 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11982 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11983 KVMCLOCK_SYNC_PERIOD); 11984 } 11985 11986 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11987 { 11988 int idx; 11989 11990 kvmclock_reset(vcpu); 11991 11992 static_call(kvm_x86_vcpu_free)(vcpu); 11993 11994 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11995 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11996 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11997 11998 kvm_xen_destroy_vcpu(vcpu); 11999 kvm_hv_vcpu_uninit(vcpu); 12000 kvm_pmu_destroy(vcpu); 12001 kfree(vcpu->arch.mce_banks); 12002 kfree(vcpu->arch.mci_ctl2_banks); 12003 kvm_free_lapic(vcpu); 12004 idx = srcu_read_lock(&vcpu->kvm->srcu); 12005 kvm_mmu_destroy(vcpu); 12006 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12007 free_page((unsigned long)vcpu->arch.pio_data); 12008 kvfree(vcpu->arch.cpuid_entries); 12009 if (!lapic_in_kernel(vcpu)) 12010 static_branch_dec(&kvm_has_noapic_vcpu); 12011 } 12012 12013 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12014 { 12015 struct kvm_cpuid_entry2 *cpuid_0x1; 12016 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12017 unsigned long new_cr0; 12018 12019 /* 12020 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12021 * to handle side effects. RESET emulation hits those flows and relies 12022 * on emulated/virtualized registers, including those that are loaded 12023 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12024 * to detect improper or missing initialization. 12025 */ 12026 WARN_ON_ONCE(!init_event && 12027 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12028 12029 /* 12030 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12031 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12032 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12033 * bits), i.e. virtualization is disabled. 12034 */ 12035 if (is_guest_mode(vcpu)) 12036 kvm_leave_nested(vcpu); 12037 12038 kvm_lapic_reset(vcpu, init_event); 12039 12040 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12041 vcpu->arch.hflags = 0; 12042 12043 vcpu->arch.smi_pending = 0; 12044 vcpu->arch.smi_count = 0; 12045 atomic_set(&vcpu->arch.nmi_queued, 0); 12046 vcpu->arch.nmi_pending = 0; 12047 vcpu->arch.nmi_injected = false; 12048 kvm_clear_interrupt_queue(vcpu); 12049 kvm_clear_exception_queue(vcpu); 12050 12051 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12052 kvm_update_dr0123(vcpu); 12053 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12054 vcpu->arch.dr7 = DR7_FIXED_1; 12055 kvm_update_dr7(vcpu); 12056 12057 vcpu->arch.cr2 = 0; 12058 12059 kvm_make_request(KVM_REQ_EVENT, vcpu); 12060 vcpu->arch.apf.msr_en_val = 0; 12061 vcpu->arch.apf.msr_int_val = 0; 12062 vcpu->arch.st.msr_val = 0; 12063 12064 kvmclock_reset(vcpu); 12065 12066 kvm_clear_async_pf_completion_queue(vcpu); 12067 kvm_async_pf_hash_reset(vcpu); 12068 vcpu->arch.apf.halted = false; 12069 12070 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12071 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12072 12073 /* 12074 * All paths that lead to INIT are required to load the guest's 12075 * FPU state (because most paths are buried in KVM_RUN). 12076 */ 12077 if (init_event) 12078 kvm_put_guest_fpu(vcpu); 12079 12080 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12081 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12082 12083 if (init_event) 12084 kvm_load_guest_fpu(vcpu); 12085 } 12086 12087 if (!init_event) { 12088 kvm_pmu_reset(vcpu); 12089 vcpu->arch.smbase = 0x30000; 12090 12091 vcpu->arch.msr_misc_features_enables = 0; 12092 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12093 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12094 12095 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12096 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12097 } 12098 12099 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12100 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12101 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12102 12103 /* 12104 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12105 * if no CPUID match is found. Note, it's impossible to get a match at 12106 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12107 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12108 * on RESET. But, go through the motions in case that's ever remedied. 12109 */ 12110 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12111 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12112 12113 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12114 12115 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12116 kvm_rip_write(vcpu, 0xfff0); 12117 12118 vcpu->arch.cr3 = 0; 12119 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12120 12121 /* 12122 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12123 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12124 * (or qualify) that with a footnote stating that CD/NW are preserved. 12125 */ 12126 new_cr0 = X86_CR0_ET; 12127 if (init_event) 12128 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12129 else 12130 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12131 12132 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12133 static_call(kvm_x86_set_cr4)(vcpu, 0); 12134 static_call(kvm_x86_set_efer)(vcpu, 0); 12135 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12136 12137 /* 12138 * On the standard CR0/CR4/EFER modification paths, there are several 12139 * complex conditions determining whether the MMU has to be reset and/or 12140 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12141 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12142 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12143 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12144 */ 12145 if (old_cr0 & X86_CR0_PG) { 12146 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12147 kvm_mmu_reset_context(vcpu); 12148 } 12149 12150 /* 12151 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12152 * APM states the TLBs are untouched by INIT, but it also states that 12153 * the TLBs are flushed on "External initialization of the processor." 12154 * Flush the guest TLB regardless of vendor, there is no meaningful 12155 * benefit in relying on the guest to flush the TLB immediately after 12156 * INIT. A spurious TLB flush is benign and likely negligible from a 12157 * performance perspective. 12158 */ 12159 if (init_event) 12160 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12161 } 12162 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12163 12164 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12165 { 12166 struct kvm_segment cs; 12167 12168 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12169 cs.selector = vector << 8; 12170 cs.base = vector << 12; 12171 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12172 kvm_rip_write(vcpu, 0); 12173 } 12174 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12175 12176 int kvm_arch_hardware_enable(void) 12177 { 12178 struct kvm *kvm; 12179 struct kvm_vcpu *vcpu; 12180 unsigned long i; 12181 int ret; 12182 u64 local_tsc; 12183 u64 max_tsc = 0; 12184 bool stable, backwards_tsc = false; 12185 12186 kvm_user_return_msr_cpu_online(); 12187 12188 ret = kvm_x86_check_processor_compatibility(); 12189 if (ret) 12190 return ret; 12191 12192 ret = static_call(kvm_x86_hardware_enable)(); 12193 if (ret != 0) 12194 return ret; 12195 12196 local_tsc = rdtsc(); 12197 stable = !kvm_check_tsc_unstable(); 12198 list_for_each_entry(kvm, &vm_list, vm_list) { 12199 kvm_for_each_vcpu(i, vcpu, kvm) { 12200 if (!stable && vcpu->cpu == smp_processor_id()) 12201 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12202 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12203 backwards_tsc = true; 12204 if (vcpu->arch.last_host_tsc > max_tsc) 12205 max_tsc = vcpu->arch.last_host_tsc; 12206 } 12207 } 12208 } 12209 12210 /* 12211 * Sometimes, even reliable TSCs go backwards. This happens on 12212 * platforms that reset TSC during suspend or hibernate actions, but 12213 * maintain synchronization. We must compensate. Fortunately, we can 12214 * detect that condition here, which happens early in CPU bringup, 12215 * before any KVM threads can be running. Unfortunately, we can't 12216 * bring the TSCs fully up to date with real time, as we aren't yet far 12217 * enough into CPU bringup that we know how much real time has actually 12218 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12219 * variables that haven't been updated yet. 12220 * 12221 * So we simply find the maximum observed TSC above, then record the 12222 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12223 * the adjustment will be applied. Note that we accumulate 12224 * adjustments, in case multiple suspend cycles happen before some VCPU 12225 * gets a chance to run again. In the event that no KVM threads get a 12226 * chance to run, we will miss the entire elapsed period, as we'll have 12227 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12228 * loose cycle time. This isn't too big a deal, since the loss will be 12229 * uniform across all VCPUs (not to mention the scenario is extremely 12230 * unlikely). It is possible that a second hibernate recovery happens 12231 * much faster than a first, causing the observed TSC here to be 12232 * smaller; this would require additional padding adjustment, which is 12233 * why we set last_host_tsc to the local tsc observed here. 12234 * 12235 * N.B. - this code below runs only on platforms with reliable TSC, 12236 * as that is the only way backwards_tsc is set above. Also note 12237 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12238 * have the same delta_cyc adjustment applied if backwards_tsc 12239 * is detected. Note further, this adjustment is only done once, 12240 * as we reset last_host_tsc on all VCPUs to stop this from being 12241 * called multiple times (one for each physical CPU bringup). 12242 * 12243 * Platforms with unreliable TSCs don't have to deal with this, they 12244 * will be compensated by the logic in vcpu_load, which sets the TSC to 12245 * catchup mode. This will catchup all VCPUs to real time, but cannot 12246 * guarantee that they stay in perfect synchronization. 12247 */ 12248 if (backwards_tsc) { 12249 u64 delta_cyc = max_tsc - local_tsc; 12250 list_for_each_entry(kvm, &vm_list, vm_list) { 12251 kvm->arch.backwards_tsc_observed = true; 12252 kvm_for_each_vcpu(i, vcpu, kvm) { 12253 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12254 vcpu->arch.last_host_tsc = local_tsc; 12255 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12256 } 12257 12258 /* 12259 * We have to disable TSC offset matching.. if you were 12260 * booting a VM while issuing an S4 host suspend.... 12261 * you may have some problem. Solving this issue is 12262 * left as an exercise to the reader. 12263 */ 12264 kvm->arch.last_tsc_nsec = 0; 12265 kvm->arch.last_tsc_write = 0; 12266 } 12267 12268 } 12269 return 0; 12270 } 12271 12272 void kvm_arch_hardware_disable(void) 12273 { 12274 static_call(kvm_x86_hardware_disable)(); 12275 drop_user_return_notifiers(); 12276 } 12277 12278 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12279 { 12280 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12281 } 12282 12283 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12284 { 12285 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12286 } 12287 12288 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12289 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12290 12291 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12292 { 12293 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12294 12295 vcpu->arch.l1tf_flush_l1d = true; 12296 if (pmu->version && unlikely(pmu->event_count)) { 12297 pmu->need_cleanup = true; 12298 kvm_make_request(KVM_REQ_PMU, vcpu); 12299 } 12300 static_call(kvm_x86_sched_in)(vcpu, cpu); 12301 } 12302 12303 void kvm_arch_free_vm(struct kvm *kvm) 12304 { 12305 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12306 __kvm_arch_free_vm(kvm); 12307 } 12308 12309 12310 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12311 { 12312 int ret; 12313 unsigned long flags; 12314 12315 if (type) 12316 return -EINVAL; 12317 12318 ret = kvm_page_track_init(kvm); 12319 if (ret) 12320 goto out; 12321 12322 kvm_mmu_init_vm(kvm); 12323 12324 ret = static_call(kvm_x86_vm_init)(kvm); 12325 if (ret) 12326 goto out_uninit_mmu; 12327 12328 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12329 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12330 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12331 12332 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12333 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12334 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12335 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12336 &kvm->arch.irq_sources_bitmap); 12337 12338 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12339 mutex_init(&kvm->arch.apic_map_lock); 12340 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12341 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12342 12343 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12344 pvclock_update_vm_gtod_copy(kvm); 12345 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12346 12347 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12348 kvm->arch.guest_can_read_msr_platform_info = true; 12349 kvm->arch.enable_pmu = enable_pmu; 12350 12351 #if IS_ENABLED(CONFIG_HYPERV) 12352 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12353 kvm->arch.hv_root_tdp = INVALID_PAGE; 12354 #endif 12355 12356 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12357 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12358 12359 kvm_apicv_init(kvm); 12360 kvm_hv_init_vm(kvm); 12361 kvm_xen_init_vm(kvm); 12362 12363 return 0; 12364 12365 out_uninit_mmu: 12366 kvm_mmu_uninit_vm(kvm); 12367 kvm_page_track_cleanup(kvm); 12368 out: 12369 return ret; 12370 } 12371 12372 int kvm_arch_post_init_vm(struct kvm *kvm) 12373 { 12374 return kvm_mmu_post_init_vm(kvm); 12375 } 12376 12377 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12378 { 12379 vcpu_load(vcpu); 12380 kvm_mmu_unload(vcpu); 12381 vcpu_put(vcpu); 12382 } 12383 12384 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12385 { 12386 unsigned long i; 12387 struct kvm_vcpu *vcpu; 12388 12389 kvm_for_each_vcpu(i, vcpu, kvm) { 12390 kvm_clear_async_pf_completion_queue(vcpu); 12391 kvm_unload_vcpu_mmu(vcpu); 12392 } 12393 } 12394 12395 void kvm_arch_sync_events(struct kvm *kvm) 12396 { 12397 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12398 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12399 kvm_free_pit(kvm); 12400 } 12401 12402 /** 12403 * __x86_set_memory_region: Setup KVM internal memory slot 12404 * 12405 * @kvm: the kvm pointer to the VM. 12406 * @id: the slot ID to setup. 12407 * @gpa: the GPA to install the slot (unused when @size == 0). 12408 * @size: the size of the slot. Set to zero to uninstall a slot. 12409 * 12410 * This function helps to setup a KVM internal memory slot. Specify 12411 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12412 * slot. The return code can be one of the following: 12413 * 12414 * HVA: on success (uninstall will return a bogus HVA) 12415 * -errno: on error 12416 * 12417 * The caller should always use IS_ERR() to check the return value 12418 * before use. Note, the KVM internal memory slots are guaranteed to 12419 * remain valid and unchanged until the VM is destroyed, i.e., the 12420 * GPA->HVA translation will not change. However, the HVA is a user 12421 * address, i.e. its accessibility is not guaranteed, and must be 12422 * accessed via __copy_{to,from}_user(). 12423 */ 12424 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12425 u32 size) 12426 { 12427 int i, r; 12428 unsigned long hva, old_npages; 12429 struct kvm_memslots *slots = kvm_memslots(kvm); 12430 struct kvm_memory_slot *slot; 12431 12432 /* Called with kvm->slots_lock held. */ 12433 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12434 return ERR_PTR_USR(-EINVAL); 12435 12436 slot = id_to_memslot(slots, id); 12437 if (size) { 12438 if (slot && slot->npages) 12439 return ERR_PTR_USR(-EEXIST); 12440 12441 /* 12442 * MAP_SHARED to prevent internal slot pages from being moved 12443 * by fork()/COW. 12444 */ 12445 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12446 MAP_SHARED | MAP_ANONYMOUS, 0); 12447 if (IS_ERR_VALUE(hva)) 12448 return (void __user *)hva; 12449 } else { 12450 if (!slot || !slot->npages) 12451 return NULL; 12452 12453 old_npages = slot->npages; 12454 hva = slot->userspace_addr; 12455 } 12456 12457 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12458 struct kvm_userspace_memory_region m; 12459 12460 m.slot = id | (i << 16); 12461 m.flags = 0; 12462 m.guest_phys_addr = gpa; 12463 m.userspace_addr = hva; 12464 m.memory_size = size; 12465 r = __kvm_set_memory_region(kvm, &m); 12466 if (r < 0) 12467 return ERR_PTR_USR(r); 12468 } 12469 12470 if (!size) 12471 vm_munmap(hva, old_npages * PAGE_SIZE); 12472 12473 return (void __user *)hva; 12474 } 12475 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12476 12477 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12478 { 12479 kvm_mmu_pre_destroy_vm(kvm); 12480 } 12481 12482 void kvm_arch_destroy_vm(struct kvm *kvm) 12483 { 12484 if (current->mm == kvm->mm) { 12485 /* 12486 * Free memory regions allocated on behalf of userspace, 12487 * unless the memory map has changed due to process exit 12488 * or fd copying. 12489 */ 12490 mutex_lock(&kvm->slots_lock); 12491 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12492 0, 0); 12493 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12494 0, 0); 12495 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12496 mutex_unlock(&kvm->slots_lock); 12497 } 12498 kvm_unload_vcpu_mmus(kvm); 12499 static_call_cond(kvm_x86_vm_destroy)(kvm); 12500 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12501 kvm_pic_destroy(kvm); 12502 kvm_ioapic_destroy(kvm); 12503 kvm_destroy_vcpus(kvm); 12504 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12505 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12506 kvm_mmu_uninit_vm(kvm); 12507 kvm_page_track_cleanup(kvm); 12508 kvm_xen_destroy_vm(kvm); 12509 kvm_hv_destroy_vm(kvm); 12510 } 12511 12512 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12513 { 12514 int i; 12515 12516 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12517 kvfree(slot->arch.rmap[i]); 12518 slot->arch.rmap[i] = NULL; 12519 } 12520 } 12521 12522 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12523 { 12524 int i; 12525 12526 memslot_rmap_free(slot); 12527 12528 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12529 kvfree(slot->arch.lpage_info[i - 1]); 12530 slot->arch.lpage_info[i - 1] = NULL; 12531 } 12532 12533 kvm_page_track_free_memslot(slot); 12534 } 12535 12536 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12537 { 12538 const int sz = sizeof(*slot->arch.rmap[0]); 12539 int i; 12540 12541 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12542 int level = i + 1; 12543 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12544 12545 if (slot->arch.rmap[i]) 12546 continue; 12547 12548 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12549 if (!slot->arch.rmap[i]) { 12550 memslot_rmap_free(slot); 12551 return -ENOMEM; 12552 } 12553 } 12554 12555 return 0; 12556 } 12557 12558 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12559 struct kvm_memory_slot *slot) 12560 { 12561 unsigned long npages = slot->npages; 12562 int i, r; 12563 12564 /* 12565 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12566 * old arrays will be freed by __kvm_set_memory_region() if installing 12567 * the new memslot is successful. 12568 */ 12569 memset(&slot->arch, 0, sizeof(slot->arch)); 12570 12571 if (kvm_memslots_have_rmaps(kvm)) { 12572 r = memslot_rmap_alloc(slot, npages); 12573 if (r) 12574 return r; 12575 } 12576 12577 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12578 struct kvm_lpage_info *linfo; 12579 unsigned long ugfn; 12580 int lpages; 12581 int level = i + 1; 12582 12583 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12584 12585 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12586 if (!linfo) 12587 goto out_free; 12588 12589 slot->arch.lpage_info[i - 1] = linfo; 12590 12591 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12592 linfo[0].disallow_lpage = 1; 12593 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12594 linfo[lpages - 1].disallow_lpage = 1; 12595 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12596 /* 12597 * If the gfn and userspace address are not aligned wrt each 12598 * other, disable large page support for this slot. 12599 */ 12600 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12601 unsigned long j; 12602 12603 for (j = 0; j < lpages; ++j) 12604 linfo[j].disallow_lpage = 1; 12605 } 12606 } 12607 12608 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12609 goto out_free; 12610 12611 return 0; 12612 12613 out_free: 12614 memslot_rmap_free(slot); 12615 12616 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12617 kvfree(slot->arch.lpage_info[i - 1]); 12618 slot->arch.lpage_info[i - 1] = NULL; 12619 } 12620 return -ENOMEM; 12621 } 12622 12623 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12624 { 12625 struct kvm_vcpu *vcpu; 12626 unsigned long i; 12627 12628 /* 12629 * memslots->generation has been incremented. 12630 * mmio generation may have reached its maximum value. 12631 */ 12632 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12633 12634 /* Force re-initialization of steal_time cache */ 12635 kvm_for_each_vcpu(i, vcpu, kvm) 12636 kvm_vcpu_kick(vcpu); 12637 } 12638 12639 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12640 const struct kvm_memory_slot *old, 12641 struct kvm_memory_slot *new, 12642 enum kvm_mr_change change) 12643 { 12644 /* 12645 * KVM doesn't support moving memslots when there are external page 12646 * trackers attached to the VM, i.e. if KVMGT is in use. 12647 */ 12648 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12649 return -EINVAL; 12650 12651 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12652 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12653 return -EINVAL; 12654 12655 return kvm_alloc_memslot_metadata(kvm, new); 12656 } 12657 12658 if (change == KVM_MR_FLAGS_ONLY) 12659 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12660 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12661 return -EIO; 12662 12663 return 0; 12664 } 12665 12666 12667 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12668 { 12669 int nr_slots; 12670 12671 if (!kvm_x86_ops.cpu_dirty_log_size) 12672 return; 12673 12674 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12675 if ((enable && nr_slots == 1) || !nr_slots) 12676 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12677 } 12678 12679 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12680 struct kvm_memory_slot *old, 12681 const struct kvm_memory_slot *new, 12682 enum kvm_mr_change change) 12683 { 12684 u32 old_flags = old ? old->flags : 0; 12685 u32 new_flags = new ? new->flags : 0; 12686 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12687 12688 /* 12689 * Update CPU dirty logging if dirty logging is being toggled. This 12690 * applies to all operations. 12691 */ 12692 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12693 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12694 12695 /* 12696 * Nothing more to do for RO slots (which can't be dirtied and can't be 12697 * made writable) or CREATE/MOVE/DELETE of a slot. 12698 * 12699 * For a memslot with dirty logging disabled: 12700 * CREATE: No dirty mappings will already exist. 12701 * MOVE/DELETE: The old mappings will already have been cleaned up by 12702 * kvm_arch_flush_shadow_memslot() 12703 * 12704 * For a memslot with dirty logging enabled: 12705 * CREATE: No shadow pages exist, thus nothing to write-protect 12706 * and no dirty bits to clear. 12707 * MOVE/DELETE: The old mappings will already have been cleaned up by 12708 * kvm_arch_flush_shadow_memslot(). 12709 */ 12710 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12711 return; 12712 12713 /* 12714 * READONLY and non-flags changes were filtered out above, and the only 12715 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12716 * logging isn't being toggled on or off. 12717 */ 12718 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12719 return; 12720 12721 if (!log_dirty_pages) { 12722 /* 12723 * Dirty logging tracks sptes in 4k granularity, meaning that 12724 * large sptes have to be split. If live migration succeeds, 12725 * the guest in the source machine will be destroyed and large 12726 * sptes will be created in the destination. However, if the 12727 * guest continues to run in the source machine (for example if 12728 * live migration fails), small sptes will remain around and 12729 * cause bad performance. 12730 * 12731 * Scan sptes if dirty logging has been stopped, dropping those 12732 * which can be collapsed into a single large-page spte. Later 12733 * page faults will create the large-page sptes. 12734 */ 12735 kvm_mmu_zap_collapsible_sptes(kvm, new); 12736 } else { 12737 /* 12738 * Initially-all-set does not require write protecting any page, 12739 * because they're all assumed to be dirty. 12740 */ 12741 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12742 return; 12743 12744 if (READ_ONCE(eager_page_split)) 12745 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12746 12747 if (kvm_x86_ops.cpu_dirty_log_size) { 12748 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12749 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12750 } else { 12751 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12752 } 12753 12754 /* 12755 * Unconditionally flush the TLBs after enabling dirty logging. 12756 * A flush is almost always going to be necessary (see below), 12757 * and unconditionally flushing allows the helpers to omit 12758 * the subtly complex checks when removing write access. 12759 * 12760 * Do the flush outside of mmu_lock to reduce the amount of 12761 * time mmu_lock is held. Flushing after dropping mmu_lock is 12762 * safe as KVM only needs to guarantee the slot is fully 12763 * write-protected before returning to userspace, i.e. before 12764 * userspace can consume the dirty status. 12765 * 12766 * Flushing outside of mmu_lock requires KVM to be careful when 12767 * making decisions based on writable status of an SPTE, e.g. a 12768 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12769 * 12770 * Specifically, KVM also write-protects guest page tables to 12771 * monitor changes when using shadow paging, and must guarantee 12772 * no CPUs can write to those page before mmu_lock is dropped. 12773 * Because CPUs may have stale TLB entries at this point, a 12774 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12775 * 12776 * KVM also allows making SPTES writable outside of mmu_lock, 12777 * e.g. to allow dirty logging without taking mmu_lock. 12778 * 12779 * To handle these scenarios, KVM uses a separate software-only 12780 * bit (MMU-writable) to track if a SPTE is !writable due to 12781 * a guest page table being write-protected (KVM clears the 12782 * MMU-writable flag when write-protecting for shadow paging). 12783 * 12784 * The use of MMU-writable is also the primary motivation for 12785 * the unconditional flush. Because KVM must guarantee that a 12786 * CPU doesn't contain stale, writable TLB entries for a 12787 * !MMU-writable SPTE, KVM must flush if it encounters any 12788 * MMU-writable SPTE regardless of whether the actual hardware 12789 * writable bit was set. I.e. KVM is almost guaranteed to need 12790 * to flush, while unconditionally flushing allows the "remove 12791 * write access" helpers to ignore MMU-writable entirely. 12792 * 12793 * See is_writable_pte() for more details (the case involving 12794 * access-tracked SPTEs is particularly relevant). 12795 */ 12796 kvm_flush_remote_tlbs_memslot(kvm, new); 12797 } 12798 } 12799 12800 void kvm_arch_commit_memory_region(struct kvm *kvm, 12801 struct kvm_memory_slot *old, 12802 const struct kvm_memory_slot *new, 12803 enum kvm_mr_change change) 12804 { 12805 if (change == KVM_MR_DELETE) 12806 kvm_page_track_delete_slot(kvm, old); 12807 12808 if (!kvm->arch.n_requested_mmu_pages && 12809 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12810 unsigned long nr_mmu_pages; 12811 12812 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12813 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12814 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12815 } 12816 12817 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12818 12819 /* Free the arrays associated with the old memslot. */ 12820 if (change == KVM_MR_MOVE) 12821 kvm_arch_free_memslot(kvm, old); 12822 } 12823 12824 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12825 { 12826 return (is_guest_mode(vcpu) && 12827 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12828 } 12829 12830 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12831 { 12832 if (!list_empty_careful(&vcpu->async_pf.done)) 12833 return true; 12834 12835 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12836 kvm_apic_init_sipi_allowed(vcpu)) 12837 return true; 12838 12839 if (vcpu->arch.pv.pv_unhalted) 12840 return true; 12841 12842 if (kvm_is_exception_pending(vcpu)) 12843 return true; 12844 12845 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12846 (vcpu->arch.nmi_pending && 12847 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12848 return true; 12849 12850 #ifdef CONFIG_KVM_SMM 12851 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12852 (vcpu->arch.smi_pending && 12853 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12854 return true; 12855 #endif 12856 12857 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 12858 return true; 12859 12860 if (kvm_arch_interrupt_allowed(vcpu) && 12861 (kvm_cpu_has_interrupt(vcpu) || 12862 kvm_guest_apic_has_interrupt(vcpu))) 12863 return true; 12864 12865 if (kvm_hv_has_stimer_pending(vcpu)) 12866 return true; 12867 12868 if (is_guest_mode(vcpu) && 12869 kvm_x86_ops.nested_ops->has_events && 12870 kvm_x86_ops.nested_ops->has_events(vcpu)) 12871 return true; 12872 12873 if (kvm_xen_has_pending_events(vcpu)) 12874 return true; 12875 12876 return false; 12877 } 12878 12879 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12880 { 12881 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12882 } 12883 12884 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12885 { 12886 if (kvm_vcpu_apicv_active(vcpu) && 12887 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12888 return true; 12889 12890 return false; 12891 } 12892 12893 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12894 { 12895 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12896 return true; 12897 12898 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12899 #ifdef CONFIG_KVM_SMM 12900 kvm_test_request(KVM_REQ_SMI, vcpu) || 12901 #endif 12902 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12903 return true; 12904 12905 return kvm_arch_dy_has_pending_interrupt(vcpu); 12906 } 12907 12908 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12909 { 12910 if (vcpu->arch.guest_state_protected) 12911 return true; 12912 12913 return vcpu->arch.preempted_in_kernel; 12914 } 12915 12916 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12917 { 12918 return kvm_rip_read(vcpu); 12919 } 12920 12921 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12922 { 12923 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12924 } 12925 12926 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12927 { 12928 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12929 } 12930 12931 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12932 { 12933 /* Can't read the RIP when guest state is protected, just return 0 */ 12934 if (vcpu->arch.guest_state_protected) 12935 return 0; 12936 12937 if (is_64_bit_mode(vcpu)) 12938 return kvm_rip_read(vcpu); 12939 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12940 kvm_rip_read(vcpu)); 12941 } 12942 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12943 12944 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12945 { 12946 return kvm_get_linear_rip(vcpu) == linear_rip; 12947 } 12948 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12949 12950 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12951 { 12952 unsigned long rflags; 12953 12954 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12955 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12956 rflags &= ~X86_EFLAGS_TF; 12957 return rflags; 12958 } 12959 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12960 12961 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12962 { 12963 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12964 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12965 rflags |= X86_EFLAGS_TF; 12966 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12967 } 12968 12969 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12970 { 12971 __kvm_set_rflags(vcpu, rflags); 12972 kvm_make_request(KVM_REQ_EVENT, vcpu); 12973 } 12974 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12975 12976 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12977 { 12978 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12979 12980 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12981 } 12982 12983 static inline u32 kvm_async_pf_next_probe(u32 key) 12984 { 12985 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12986 } 12987 12988 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12989 { 12990 u32 key = kvm_async_pf_hash_fn(gfn); 12991 12992 while (vcpu->arch.apf.gfns[key] != ~0) 12993 key = kvm_async_pf_next_probe(key); 12994 12995 vcpu->arch.apf.gfns[key] = gfn; 12996 } 12997 12998 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12999 { 13000 int i; 13001 u32 key = kvm_async_pf_hash_fn(gfn); 13002 13003 for (i = 0; i < ASYNC_PF_PER_VCPU && 13004 (vcpu->arch.apf.gfns[key] != gfn && 13005 vcpu->arch.apf.gfns[key] != ~0); i++) 13006 key = kvm_async_pf_next_probe(key); 13007 13008 return key; 13009 } 13010 13011 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13012 { 13013 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13014 } 13015 13016 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13017 { 13018 u32 i, j, k; 13019 13020 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13021 13022 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13023 return; 13024 13025 while (true) { 13026 vcpu->arch.apf.gfns[i] = ~0; 13027 do { 13028 j = kvm_async_pf_next_probe(j); 13029 if (vcpu->arch.apf.gfns[j] == ~0) 13030 return; 13031 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13032 /* 13033 * k lies cyclically in ]i,j] 13034 * | i.k.j | 13035 * |....j i.k.| or |.k..j i...| 13036 */ 13037 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13038 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13039 i = j; 13040 } 13041 } 13042 13043 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13044 { 13045 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13046 13047 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13048 sizeof(reason)); 13049 } 13050 13051 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13052 { 13053 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13054 13055 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13056 &token, offset, sizeof(token)); 13057 } 13058 13059 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13060 { 13061 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13062 u32 val; 13063 13064 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13065 &val, offset, sizeof(val))) 13066 return false; 13067 13068 return !val; 13069 } 13070 13071 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13072 { 13073 13074 if (!kvm_pv_async_pf_enabled(vcpu)) 13075 return false; 13076 13077 if (vcpu->arch.apf.send_user_only && 13078 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13079 return false; 13080 13081 if (is_guest_mode(vcpu)) { 13082 /* 13083 * L1 needs to opt into the special #PF vmexits that are 13084 * used to deliver async page faults. 13085 */ 13086 return vcpu->arch.apf.delivery_as_pf_vmexit; 13087 } else { 13088 /* 13089 * Play it safe in case the guest temporarily disables paging. 13090 * The real mode IDT in particular is unlikely to have a #PF 13091 * exception setup. 13092 */ 13093 return is_paging(vcpu); 13094 } 13095 } 13096 13097 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13098 { 13099 if (unlikely(!lapic_in_kernel(vcpu) || 13100 kvm_event_needs_reinjection(vcpu) || 13101 kvm_is_exception_pending(vcpu))) 13102 return false; 13103 13104 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13105 return false; 13106 13107 /* 13108 * If interrupts are off we cannot even use an artificial 13109 * halt state. 13110 */ 13111 return kvm_arch_interrupt_allowed(vcpu); 13112 } 13113 13114 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13115 struct kvm_async_pf *work) 13116 { 13117 struct x86_exception fault; 13118 13119 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13120 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13121 13122 if (kvm_can_deliver_async_pf(vcpu) && 13123 !apf_put_user_notpresent(vcpu)) { 13124 fault.vector = PF_VECTOR; 13125 fault.error_code_valid = true; 13126 fault.error_code = 0; 13127 fault.nested_page_fault = false; 13128 fault.address = work->arch.token; 13129 fault.async_page_fault = true; 13130 kvm_inject_page_fault(vcpu, &fault); 13131 return true; 13132 } else { 13133 /* 13134 * It is not possible to deliver a paravirtualized asynchronous 13135 * page fault, but putting the guest in an artificial halt state 13136 * can be beneficial nevertheless: if an interrupt arrives, we 13137 * can deliver it timely and perhaps the guest will schedule 13138 * another process. When the instruction that triggered a page 13139 * fault is retried, hopefully the page will be ready in the host. 13140 */ 13141 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13142 return false; 13143 } 13144 } 13145 13146 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13147 struct kvm_async_pf *work) 13148 { 13149 struct kvm_lapic_irq irq = { 13150 .delivery_mode = APIC_DM_FIXED, 13151 .vector = vcpu->arch.apf.vec 13152 }; 13153 13154 if (work->wakeup_all) 13155 work->arch.token = ~0; /* broadcast wakeup */ 13156 else 13157 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13158 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13159 13160 if ((work->wakeup_all || work->notpresent_injected) && 13161 kvm_pv_async_pf_enabled(vcpu) && 13162 !apf_put_user_ready(vcpu, work->arch.token)) { 13163 vcpu->arch.apf.pageready_pending = true; 13164 kvm_apic_set_irq(vcpu, &irq, NULL); 13165 } 13166 13167 vcpu->arch.apf.halted = false; 13168 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13169 } 13170 13171 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13172 { 13173 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13174 if (!vcpu->arch.apf.pageready_pending) 13175 kvm_vcpu_kick(vcpu); 13176 } 13177 13178 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13179 { 13180 if (!kvm_pv_async_pf_enabled(vcpu)) 13181 return true; 13182 else 13183 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13184 } 13185 13186 void kvm_arch_start_assignment(struct kvm *kvm) 13187 { 13188 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13189 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13190 } 13191 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13192 13193 void kvm_arch_end_assignment(struct kvm *kvm) 13194 { 13195 atomic_dec(&kvm->arch.assigned_device_count); 13196 } 13197 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13198 13199 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13200 { 13201 return raw_atomic_read(&kvm->arch.assigned_device_count); 13202 } 13203 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13204 13205 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13206 { 13207 atomic_inc(&kvm->arch.noncoherent_dma_count); 13208 } 13209 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13210 13211 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13212 { 13213 atomic_dec(&kvm->arch.noncoherent_dma_count); 13214 } 13215 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13216 13217 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13218 { 13219 return atomic_read(&kvm->arch.noncoherent_dma_count); 13220 } 13221 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13222 13223 bool kvm_arch_has_irq_bypass(void) 13224 { 13225 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13226 } 13227 13228 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13229 struct irq_bypass_producer *prod) 13230 { 13231 struct kvm_kernel_irqfd *irqfd = 13232 container_of(cons, struct kvm_kernel_irqfd, consumer); 13233 int ret; 13234 13235 irqfd->producer = prod; 13236 kvm_arch_start_assignment(irqfd->kvm); 13237 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13238 prod->irq, irqfd->gsi, 1); 13239 13240 if (ret) 13241 kvm_arch_end_assignment(irqfd->kvm); 13242 13243 return ret; 13244 } 13245 13246 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13247 struct irq_bypass_producer *prod) 13248 { 13249 int ret; 13250 struct kvm_kernel_irqfd *irqfd = 13251 container_of(cons, struct kvm_kernel_irqfd, consumer); 13252 13253 WARN_ON(irqfd->producer != prod); 13254 irqfd->producer = NULL; 13255 13256 /* 13257 * When producer of consumer is unregistered, we change back to 13258 * remapped mode, so we can re-use the current implementation 13259 * when the irq is masked/disabled or the consumer side (KVM 13260 * int this case doesn't want to receive the interrupts. 13261 */ 13262 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13263 if (ret) 13264 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13265 " fails: %d\n", irqfd->consumer.token, ret); 13266 13267 kvm_arch_end_assignment(irqfd->kvm); 13268 } 13269 13270 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13271 uint32_t guest_irq, bool set) 13272 { 13273 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13274 } 13275 13276 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13277 struct kvm_kernel_irq_routing_entry *new) 13278 { 13279 if (new->type != KVM_IRQ_ROUTING_MSI) 13280 return true; 13281 13282 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13283 } 13284 13285 bool kvm_vector_hashing_enabled(void) 13286 { 13287 return vector_hashing; 13288 } 13289 13290 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13291 { 13292 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13293 } 13294 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13295 13296 13297 int kvm_spec_ctrl_test_value(u64 value) 13298 { 13299 /* 13300 * test that setting IA32_SPEC_CTRL to given value 13301 * is allowed by the host processor 13302 */ 13303 13304 u64 saved_value; 13305 unsigned long flags; 13306 int ret = 0; 13307 13308 local_irq_save(flags); 13309 13310 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13311 ret = 1; 13312 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13313 ret = 1; 13314 else 13315 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13316 13317 local_irq_restore(flags); 13318 13319 return ret; 13320 } 13321 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13322 13323 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13324 { 13325 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13326 struct x86_exception fault; 13327 u64 access = error_code & 13328 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13329 13330 if (!(error_code & PFERR_PRESENT_MASK) || 13331 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13332 /* 13333 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13334 * tables probably do not match the TLB. Just proceed 13335 * with the error code that the processor gave. 13336 */ 13337 fault.vector = PF_VECTOR; 13338 fault.error_code_valid = true; 13339 fault.error_code = error_code; 13340 fault.nested_page_fault = false; 13341 fault.address = gva; 13342 fault.async_page_fault = false; 13343 } 13344 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13345 } 13346 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13347 13348 /* 13349 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13350 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13351 * indicates whether exit to userspace is needed. 13352 */ 13353 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13354 struct x86_exception *e) 13355 { 13356 if (r == X86EMUL_PROPAGATE_FAULT) { 13357 if (KVM_BUG_ON(!e, vcpu->kvm)) 13358 return -EIO; 13359 13360 kvm_inject_emulated_page_fault(vcpu, e); 13361 return 1; 13362 } 13363 13364 /* 13365 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13366 * while handling a VMX instruction KVM could've handled the request 13367 * correctly by exiting to userspace and performing I/O but there 13368 * doesn't seem to be a real use-case behind such requests, just return 13369 * KVM_EXIT_INTERNAL_ERROR for now. 13370 */ 13371 kvm_prepare_emulation_failure_exit(vcpu); 13372 13373 return 0; 13374 } 13375 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13376 13377 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13378 { 13379 bool pcid_enabled; 13380 struct x86_exception e; 13381 struct { 13382 u64 pcid; 13383 u64 gla; 13384 } operand; 13385 int r; 13386 13387 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13388 if (r != X86EMUL_CONTINUE) 13389 return kvm_handle_memory_failure(vcpu, r, &e); 13390 13391 if (operand.pcid >> 12 != 0) { 13392 kvm_inject_gp(vcpu, 0); 13393 return 1; 13394 } 13395 13396 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13397 13398 switch (type) { 13399 case INVPCID_TYPE_INDIV_ADDR: 13400 if ((!pcid_enabled && (operand.pcid != 0)) || 13401 is_noncanonical_address(operand.gla, vcpu)) { 13402 kvm_inject_gp(vcpu, 0); 13403 return 1; 13404 } 13405 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13406 return kvm_skip_emulated_instruction(vcpu); 13407 13408 case INVPCID_TYPE_SINGLE_CTXT: 13409 if (!pcid_enabled && (operand.pcid != 0)) { 13410 kvm_inject_gp(vcpu, 0); 13411 return 1; 13412 } 13413 13414 kvm_invalidate_pcid(vcpu, operand.pcid); 13415 return kvm_skip_emulated_instruction(vcpu); 13416 13417 case INVPCID_TYPE_ALL_NON_GLOBAL: 13418 /* 13419 * Currently, KVM doesn't mark global entries in the shadow 13420 * page tables, so a non-global flush just degenerates to a 13421 * global flush. If needed, we could optimize this later by 13422 * keeping track of global entries in shadow page tables. 13423 */ 13424 13425 fallthrough; 13426 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13427 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13428 return kvm_skip_emulated_instruction(vcpu); 13429 13430 default: 13431 kvm_inject_gp(vcpu, 0); 13432 return 1; 13433 } 13434 } 13435 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13436 13437 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13438 { 13439 struct kvm_run *run = vcpu->run; 13440 struct kvm_mmio_fragment *frag; 13441 unsigned int len; 13442 13443 BUG_ON(!vcpu->mmio_needed); 13444 13445 /* Complete previous fragment */ 13446 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13447 len = min(8u, frag->len); 13448 if (!vcpu->mmio_is_write) 13449 memcpy(frag->data, run->mmio.data, len); 13450 13451 if (frag->len <= 8) { 13452 /* Switch to the next fragment. */ 13453 frag++; 13454 vcpu->mmio_cur_fragment++; 13455 } else { 13456 /* Go forward to the next mmio piece. */ 13457 frag->data += len; 13458 frag->gpa += len; 13459 frag->len -= len; 13460 } 13461 13462 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13463 vcpu->mmio_needed = 0; 13464 13465 // VMG change, at this point, we're always done 13466 // RIP has already been advanced 13467 return 1; 13468 } 13469 13470 // More MMIO is needed 13471 run->mmio.phys_addr = frag->gpa; 13472 run->mmio.len = min(8u, frag->len); 13473 run->mmio.is_write = vcpu->mmio_is_write; 13474 if (run->mmio.is_write) 13475 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13476 run->exit_reason = KVM_EXIT_MMIO; 13477 13478 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13479 13480 return 0; 13481 } 13482 13483 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13484 void *data) 13485 { 13486 int handled; 13487 struct kvm_mmio_fragment *frag; 13488 13489 if (!data) 13490 return -EINVAL; 13491 13492 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13493 if (handled == bytes) 13494 return 1; 13495 13496 bytes -= handled; 13497 gpa += handled; 13498 data += handled; 13499 13500 /*TODO: Check if need to increment number of frags */ 13501 frag = vcpu->mmio_fragments; 13502 vcpu->mmio_nr_fragments = 1; 13503 frag->len = bytes; 13504 frag->gpa = gpa; 13505 frag->data = data; 13506 13507 vcpu->mmio_needed = 1; 13508 vcpu->mmio_cur_fragment = 0; 13509 13510 vcpu->run->mmio.phys_addr = gpa; 13511 vcpu->run->mmio.len = min(8u, frag->len); 13512 vcpu->run->mmio.is_write = 1; 13513 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13514 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13515 13516 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13517 13518 return 0; 13519 } 13520 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13521 13522 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13523 void *data) 13524 { 13525 int handled; 13526 struct kvm_mmio_fragment *frag; 13527 13528 if (!data) 13529 return -EINVAL; 13530 13531 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13532 if (handled == bytes) 13533 return 1; 13534 13535 bytes -= handled; 13536 gpa += handled; 13537 data += handled; 13538 13539 /*TODO: Check if need to increment number of frags */ 13540 frag = vcpu->mmio_fragments; 13541 vcpu->mmio_nr_fragments = 1; 13542 frag->len = bytes; 13543 frag->gpa = gpa; 13544 frag->data = data; 13545 13546 vcpu->mmio_needed = 1; 13547 vcpu->mmio_cur_fragment = 0; 13548 13549 vcpu->run->mmio.phys_addr = gpa; 13550 vcpu->run->mmio.len = min(8u, frag->len); 13551 vcpu->run->mmio.is_write = 0; 13552 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13553 13554 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13555 13556 return 0; 13557 } 13558 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13559 13560 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13561 { 13562 vcpu->arch.sev_pio_count -= count; 13563 vcpu->arch.sev_pio_data += count * size; 13564 } 13565 13566 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13567 unsigned int port); 13568 13569 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13570 { 13571 int size = vcpu->arch.pio.size; 13572 int port = vcpu->arch.pio.port; 13573 13574 vcpu->arch.pio.count = 0; 13575 if (vcpu->arch.sev_pio_count) 13576 return kvm_sev_es_outs(vcpu, size, port); 13577 return 1; 13578 } 13579 13580 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13581 unsigned int port) 13582 { 13583 for (;;) { 13584 unsigned int count = 13585 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13586 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13587 13588 /* memcpy done already by emulator_pio_out. */ 13589 advance_sev_es_emulated_pio(vcpu, count, size); 13590 if (!ret) 13591 break; 13592 13593 /* Emulation done by the kernel. */ 13594 if (!vcpu->arch.sev_pio_count) 13595 return 1; 13596 } 13597 13598 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13599 return 0; 13600 } 13601 13602 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13603 unsigned int port); 13604 13605 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13606 { 13607 unsigned count = vcpu->arch.pio.count; 13608 int size = vcpu->arch.pio.size; 13609 int port = vcpu->arch.pio.port; 13610 13611 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13612 advance_sev_es_emulated_pio(vcpu, count, size); 13613 if (vcpu->arch.sev_pio_count) 13614 return kvm_sev_es_ins(vcpu, size, port); 13615 return 1; 13616 } 13617 13618 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13619 unsigned int port) 13620 { 13621 for (;;) { 13622 unsigned int count = 13623 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13624 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13625 break; 13626 13627 /* Emulation done by the kernel. */ 13628 advance_sev_es_emulated_pio(vcpu, count, size); 13629 if (!vcpu->arch.sev_pio_count) 13630 return 1; 13631 } 13632 13633 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13634 return 0; 13635 } 13636 13637 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13638 unsigned int port, void *data, unsigned int count, 13639 int in) 13640 { 13641 vcpu->arch.sev_pio_data = data; 13642 vcpu->arch.sev_pio_count = count; 13643 return in ? kvm_sev_es_ins(vcpu, size, port) 13644 : kvm_sev_es_outs(vcpu, size, port); 13645 } 13646 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13647 13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13677 13678 static int __init kvm_x86_init(void) 13679 { 13680 kvm_mmu_x86_module_init(); 13681 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13682 return 0; 13683 } 13684 module_init(kvm_x86_init); 13685 13686 static void __exit kvm_x86_exit(void) 13687 { 13688 /* 13689 * If module_init() is implemented, module_exit() must also be 13690 * implemented to allow module unload. 13691 */ 13692 } 13693 module_exit(kvm_x86_exit); 13694