1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 #include <asm/mshyperv.h> 71 #include <asm/hypervisor.h> 72 73 #define CREATE_TRACE_POINTS 74 #include "trace.h" 75 76 #define MAX_IO_MSRS 256 77 #define KVM_MAX_MCE_BANKS 32 78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 80 81 #define emul_to_vcpu(ctxt) \ 82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 83 84 /* EFER defaults: 85 * - enable syscall per default because its emulated by KVM 86 * - enable LME and LMA per default on 64 bit KVM 87 */ 88 #ifdef CONFIG_X86_64 89 static 90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 91 #else 92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 93 #endif 94 95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 97 98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 100 101 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 102 static void process_nmi(struct kvm_vcpu *vcpu); 103 static void enter_smm(struct kvm_vcpu *vcpu); 104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 105 106 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 107 EXPORT_SYMBOL_GPL(kvm_x86_ops); 108 109 static bool __read_mostly ignore_msrs = 0; 110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 111 112 static bool __read_mostly report_ignored_msrs = true; 113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 114 115 unsigned int min_timer_period_us = 500; 116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 117 118 static bool __read_mostly kvmclock_periodic_sync = true; 119 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 120 121 bool __read_mostly kvm_has_tsc_control; 122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 123 u32 __read_mostly kvm_max_guest_tsc_khz; 124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 125 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 127 u64 __read_mostly kvm_max_tsc_scaling_ratio; 128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 129 u64 __read_mostly kvm_default_tsc_scaling_ratio; 130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 131 132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 133 static u32 __read_mostly tsc_tolerance_ppm = 250; 134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 135 136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 137 unsigned int __read_mostly lapic_timer_advance_ns = 0; 138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 139 140 static bool __read_mostly vector_hashing = true; 141 module_param(vector_hashing, bool, S_IRUGO); 142 143 #define KVM_NR_SHARED_MSRS 16 144 145 struct kvm_shared_msrs_global { 146 int nr; 147 u32 msrs[KVM_NR_SHARED_MSRS]; 148 }; 149 150 struct kvm_shared_msrs { 151 struct user_return_notifier urn; 152 bool registered; 153 struct kvm_shared_msr_values { 154 u64 host; 155 u64 curr; 156 } values[KVM_NR_SHARED_MSRS]; 157 }; 158 159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 160 static struct kvm_shared_msrs __percpu *shared_msrs; 161 162 struct kvm_stats_debugfs_item debugfs_entries[] = { 163 { "pf_fixed", VCPU_STAT(pf_fixed) }, 164 { "pf_guest", VCPU_STAT(pf_guest) }, 165 { "tlb_flush", VCPU_STAT(tlb_flush) }, 166 { "invlpg", VCPU_STAT(invlpg) }, 167 { "exits", VCPU_STAT(exits) }, 168 { "io_exits", VCPU_STAT(io_exits) }, 169 { "mmio_exits", VCPU_STAT(mmio_exits) }, 170 { "signal_exits", VCPU_STAT(signal_exits) }, 171 { "irq_window", VCPU_STAT(irq_window_exits) }, 172 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 173 { "halt_exits", VCPU_STAT(halt_exits) }, 174 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 175 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 176 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 177 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 178 { "hypercalls", VCPU_STAT(hypercalls) }, 179 { "request_irq", VCPU_STAT(request_irq_exits) }, 180 { "irq_exits", VCPU_STAT(irq_exits) }, 181 { "host_state_reload", VCPU_STAT(host_state_reload) }, 182 { "fpu_reload", VCPU_STAT(fpu_reload) }, 183 { "insn_emulation", VCPU_STAT(insn_emulation) }, 184 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 185 { "irq_injections", VCPU_STAT(irq_injections) }, 186 { "nmi_injections", VCPU_STAT(nmi_injections) }, 187 { "req_event", VCPU_STAT(req_event) }, 188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 189 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 192 { "mmu_flooded", VM_STAT(mmu_flooded) }, 193 { "mmu_recycled", VM_STAT(mmu_recycled) }, 194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 195 { "mmu_unsync", VM_STAT(mmu_unsync) }, 196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 197 { "largepages", VM_STAT(lpages) }, 198 { "max_mmu_page_hash_collisions", 199 VM_STAT(max_mmu_page_hash_collisions) }, 200 { NULL } 201 }; 202 203 u64 __read_mostly host_xcr0; 204 205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 206 207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 208 { 209 int i; 210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 211 vcpu->arch.apf.gfns[i] = ~0; 212 } 213 214 static void kvm_on_user_return(struct user_return_notifier *urn) 215 { 216 unsigned slot; 217 struct kvm_shared_msrs *locals 218 = container_of(urn, struct kvm_shared_msrs, urn); 219 struct kvm_shared_msr_values *values; 220 unsigned long flags; 221 222 /* 223 * Disabling irqs at this point since the following code could be 224 * interrupted and executed through kvm_arch_hardware_disable() 225 */ 226 local_irq_save(flags); 227 if (locals->registered) { 228 locals->registered = false; 229 user_return_notifier_unregister(urn); 230 } 231 local_irq_restore(flags); 232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 233 values = &locals->values[slot]; 234 if (values->host != values->curr) { 235 wrmsrl(shared_msrs_global.msrs[slot], values->host); 236 values->curr = values->host; 237 } 238 } 239 } 240 241 static void shared_msr_update(unsigned slot, u32 msr) 242 { 243 u64 value; 244 unsigned int cpu = smp_processor_id(); 245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 246 247 /* only read, and nobody should modify it at this time, 248 * so don't need lock */ 249 if (slot >= shared_msrs_global.nr) { 250 printk(KERN_ERR "kvm: invalid MSR slot!"); 251 return; 252 } 253 rdmsrl_safe(msr, &value); 254 smsr->values[slot].host = value; 255 smsr->values[slot].curr = value; 256 } 257 258 void kvm_define_shared_msr(unsigned slot, u32 msr) 259 { 260 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 261 shared_msrs_global.msrs[slot] = msr; 262 if (slot >= shared_msrs_global.nr) 263 shared_msrs_global.nr = slot + 1; 264 } 265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 266 267 static void kvm_shared_msr_cpu_online(void) 268 { 269 unsigned i; 270 271 for (i = 0; i < shared_msrs_global.nr; ++i) 272 shared_msr_update(i, shared_msrs_global.msrs[i]); 273 } 274 275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 276 { 277 unsigned int cpu = smp_processor_id(); 278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 279 int err; 280 281 if (((value ^ smsr->values[slot].curr) & mask) == 0) 282 return 0; 283 smsr->values[slot].curr = value; 284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 285 if (err) 286 return 1; 287 288 if (!smsr->registered) { 289 smsr->urn.on_user_return = kvm_on_user_return; 290 user_return_notifier_register(&smsr->urn); 291 smsr->registered = true; 292 } 293 return 0; 294 } 295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 296 297 static void drop_user_return_notifiers(void) 298 { 299 unsigned int cpu = smp_processor_id(); 300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 301 302 if (smsr->registered) 303 kvm_on_user_return(&smsr->urn); 304 } 305 306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 307 { 308 return vcpu->arch.apic_base; 309 } 310 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 311 312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 313 { 314 u64 old_state = vcpu->arch.apic_base & 315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 316 u64 new_state = msr_info->data & 317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 320 321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE) 322 return 1; 323 if (!msr_info->host_initiated && 324 ((new_state == MSR_IA32_APICBASE_ENABLE && 325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 327 old_state == 0))) 328 return 1; 329 330 kvm_lapic_set_base(vcpu, msr_info->data); 331 return 0; 332 } 333 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 334 335 asmlinkage __visible void kvm_spurious_fault(void) 336 { 337 /* Fault while not rebooting. We want the trace. */ 338 BUG(); 339 } 340 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 341 342 #define EXCPT_BENIGN 0 343 #define EXCPT_CONTRIBUTORY 1 344 #define EXCPT_PF 2 345 346 static int exception_class(int vector) 347 { 348 switch (vector) { 349 case PF_VECTOR: 350 return EXCPT_PF; 351 case DE_VECTOR: 352 case TS_VECTOR: 353 case NP_VECTOR: 354 case SS_VECTOR: 355 case GP_VECTOR: 356 return EXCPT_CONTRIBUTORY; 357 default: 358 break; 359 } 360 return EXCPT_BENIGN; 361 } 362 363 #define EXCPT_FAULT 0 364 #define EXCPT_TRAP 1 365 #define EXCPT_ABORT 2 366 #define EXCPT_INTERRUPT 3 367 368 static int exception_type(int vector) 369 { 370 unsigned int mask; 371 372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 373 return EXCPT_INTERRUPT; 374 375 mask = 1 << vector; 376 377 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 379 return EXCPT_TRAP; 380 381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 382 return EXCPT_ABORT; 383 384 /* Reserved exceptions will result in fault */ 385 return EXCPT_FAULT; 386 } 387 388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 389 unsigned nr, bool has_error, u32 error_code, 390 bool reinject) 391 { 392 u32 prev_nr; 393 int class1, class2; 394 395 kvm_make_request(KVM_REQ_EVENT, vcpu); 396 397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 398 queue: 399 if (has_error && !is_protmode(vcpu)) 400 has_error = false; 401 if (reinject) { 402 /* 403 * On vmentry, vcpu->arch.exception.pending is only 404 * true if an event injection was blocked by 405 * nested_run_pending. In that case, however, 406 * vcpu_enter_guest requests an immediate exit, 407 * and the guest shouldn't proceed far enough to 408 * need reinjection. 409 */ 410 WARN_ON_ONCE(vcpu->arch.exception.pending); 411 vcpu->arch.exception.injected = true; 412 } else { 413 vcpu->arch.exception.pending = true; 414 vcpu->arch.exception.injected = false; 415 } 416 vcpu->arch.exception.has_error_code = has_error; 417 vcpu->arch.exception.nr = nr; 418 vcpu->arch.exception.error_code = error_code; 419 return; 420 } 421 422 /* to check exception */ 423 prev_nr = vcpu->arch.exception.nr; 424 if (prev_nr == DF_VECTOR) { 425 /* triple fault -> shutdown */ 426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 427 return; 428 } 429 class1 = exception_class(prev_nr); 430 class2 = exception_class(nr); 431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 433 /* 434 * Generate double fault per SDM Table 5-5. Set 435 * exception.pending = true so that the double fault 436 * can trigger a nested vmexit. 437 */ 438 vcpu->arch.exception.pending = true; 439 vcpu->arch.exception.injected = false; 440 vcpu->arch.exception.has_error_code = true; 441 vcpu->arch.exception.nr = DF_VECTOR; 442 vcpu->arch.exception.error_code = 0; 443 } else 444 /* replace previous exception with a new one in a hope 445 that instruction re-execution will regenerate lost 446 exception */ 447 goto queue; 448 } 449 450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 451 { 452 kvm_multiple_exception(vcpu, nr, false, 0, false); 453 } 454 EXPORT_SYMBOL_GPL(kvm_queue_exception); 455 456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 457 { 458 kvm_multiple_exception(vcpu, nr, false, 0, true); 459 } 460 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 461 462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 463 { 464 if (err) 465 kvm_inject_gp(vcpu, 0); 466 else 467 return kvm_skip_emulated_instruction(vcpu); 468 469 return 1; 470 } 471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 472 473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 474 { 475 ++vcpu->stat.pf_guest; 476 vcpu->arch.exception.nested_apf = 477 is_guest_mode(vcpu) && fault->async_page_fault; 478 if (vcpu->arch.exception.nested_apf) 479 vcpu->arch.apf.nested_apf_token = fault->address; 480 else 481 vcpu->arch.cr2 = fault->address; 482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 483 } 484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 485 486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 487 { 488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 490 else 491 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 492 493 return fault->nested_page_fault; 494 } 495 496 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 497 { 498 atomic_inc(&vcpu->arch.nmi_queued); 499 kvm_make_request(KVM_REQ_NMI, vcpu); 500 } 501 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 502 503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 504 { 505 kvm_multiple_exception(vcpu, nr, true, error_code, false); 506 } 507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 508 509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 510 { 511 kvm_multiple_exception(vcpu, nr, true, error_code, true); 512 } 513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 514 515 /* 516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 517 * a #GP and return false. 518 */ 519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 520 { 521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 522 return true; 523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 524 return false; 525 } 526 EXPORT_SYMBOL_GPL(kvm_require_cpl); 527 528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 529 { 530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 531 return true; 532 533 kvm_queue_exception(vcpu, UD_VECTOR); 534 return false; 535 } 536 EXPORT_SYMBOL_GPL(kvm_require_dr); 537 538 /* 539 * This function will be used to read from the physical memory of the currently 540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 541 * can read from guest physical or from the guest's guest physical memory. 542 */ 543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 544 gfn_t ngfn, void *data, int offset, int len, 545 u32 access) 546 { 547 struct x86_exception exception; 548 gfn_t real_gfn; 549 gpa_t ngpa; 550 551 ngpa = gfn_to_gpa(ngfn); 552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 553 if (real_gfn == UNMAPPED_GVA) 554 return -EFAULT; 555 556 real_gfn = gpa_to_gfn(real_gfn); 557 558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 559 } 560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 561 562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 563 void *data, int offset, int len, u32 access) 564 { 565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 566 data, offset, len, access); 567 } 568 569 /* 570 * Load the pae pdptrs. Return true is they are all valid. 571 */ 572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 573 { 574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 576 int i; 577 int ret; 578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 579 580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 581 offset * sizeof(u64), sizeof(pdpte), 582 PFERR_USER_MASK|PFERR_WRITE_MASK); 583 if (ret < 0) { 584 ret = 0; 585 goto out; 586 } 587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 588 if ((pdpte[i] & PT_PRESENT_MASK) && 589 (pdpte[i] & 590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 591 ret = 0; 592 goto out; 593 } 594 } 595 ret = 1; 596 597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 598 __set_bit(VCPU_EXREG_PDPTR, 599 (unsigned long *)&vcpu->arch.regs_avail); 600 __set_bit(VCPU_EXREG_PDPTR, 601 (unsigned long *)&vcpu->arch.regs_dirty); 602 out: 603 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(load_pdptrs); 607 608 bool pdptrs_changed(struct kvm_vcpu *vcpu) 609 { 610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 611 bool changed = true; 612 int offset; 613 gfn_t gfn; 614 int r; 615 616 if (is_long_mode(vcpu) || !is_pae(vcpu)) 617 return false; 618 619 if (!test_bit(VCPU_EXREG_PDPTR, 620 (unsigned long *)&vcpu->arch.regs_avail)) 621 return true; 622 623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 626 PFERR_USER_MASK | PFERR_WRITE_MASK); 627 if (r < 0) 628 goto out; 629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 630 out: 631 632 return changed; 633 } 634 EXPORT_SYMBOL_GPL(pdptrs_changed); 635 636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 637 { 638 unsigned long old_cr0 = kvm_read_cr0(vcpu); 639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 640 641 cr0 |= X86_CR0_ET; 642 643 #ifdef CONFIG_X86_64 644 if (cr0 & 0xffffffff00000000UL) 645 return 1; 646 #endif 647 648 cr0 &= ~CR0_RESERVED_BITS; 649 650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 651 return 1; 652 653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 654 return 1; 655 656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 657 #ifdef CONFIG_X86_64 658 if ((vcpu->arch.efer & EFER_LME)) { 659 int cs_db, cs_l; 660 661 if (!is_pae(vcpu)) 662 return 1; 663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 664 if (cs_l) 665 return 1; 666 } else 667 #endif 668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 669 kvm_read_cr3(vcpu))) 670 return 1; 671 } 672 673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 674 return 1; 675 676 kvm_x86_ops->set_cr0(vcpu, cr0); 677 678 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 679 kvm_clear_async_pf_completion_queue(vcpu); 680 kvm_async_pf_hash_reset(vcpu); 681 } 682 683 if ((cr0 ^ old_cr0) & update_bits) 684 kvm_mmu_reset_context(vcpu); 685 686 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 687 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 690 691 return 0; 692 } 693 EXPORT_SYMBOL_GPL(kvm_set_cr0); 694 695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 696 { 697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 698 } 699 EXPORT_SYMBOL_GPL(kvm_lmsw); 700 701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 702 { 703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 704 !vcpu->guest_xcr0_loaded) { 705 /* kvm_set_xcr() also depends on this */ 706 if (vcpu->arch.xcr0 != host_xcr0) 707 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 708 vcpu->guest_xcr0_loaded = 1; 709 } 710 } 711 712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 713 { 714 if (vcpu->guest_xcr0_loaded) { 715 if (vcpu->arch.xcr0 != host_xcr0) 716 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 717 vcpu->guest_xcr0_loaded = 0; 718 } 719 } 720 721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 722 { 723 u64 xcr0 = xcr; 724 u64 old_xcr0 = vcpu->arch.xcr0; 725 u64 valid_bits; 726 727 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 728 if (index != XCR_XFEATURE_ENABLED_MASK) 729 return 1; 730 if (!(xcr0 & XFEATURE_MASK_FP)) 731 return 1; 732 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 733 return 1; 734 735 /* 736 * Do not allow the guest to set bits that we do not support 737 * saving. However, xcr0 bit 0 is always set, even if the 738 * emulated CPU does not support XSAVE (see fx_init). 739 */ 740 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 741 if (xcr0 & ~valid_bits) 742 return 1; 743 744 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 745 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 746 return 1; 747 748 if (xcr0 & XFEATURE_MASK_AVX512) { 749 if (!(xcr0 & XFEATURE_MASK_YMM)) 750 return 1; 751 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 752 return 1; 753 } 754 vcpu->arch.xcr0 = xcr0; 755 756 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 757 kvm_update_cpuid(vcpu); 758 return 0; 759 } 760 761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 762 { 763 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 764 __kvm_set_xcr(vcpu, index, xcr)) { 765 kvm_inject_gp(vcpu, 0); 766 return 1; 767 } 768 return 0; 769 } 770 EXPORT_SYMBOL_GPL(kvm_set_xcr); 771 772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 773 { 774 unsigned long old_cr4 = kvm_read_cr4(vcpu); 775 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 776 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 777 778 if (cr4 & CR4_RESERVED_BITS) 779 return 1; 780 781 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 782 return 1; 783 784 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 785 return 1; 786 787 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 788 return 1; 789 790 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 791 return 1; 792 793 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 794 return 1; 795 796 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 797 return 1; 798 799 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) 800 return 1; 801 802 if (is_long_mode(vcpu)) { 803 if (!(cr4 & X86_CR4_PAE)) 804 return 1; 805 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 806 && ((cr4 ^ old_cr4) & pdptr_bits) 807 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 808 kvm_read_cr3(vcpu))) 809 return 1; 810 811 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 812 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 813 return 1; 814 815 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 816 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 817 return 1; 818 } 819 820 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 821 return 1; 822 823 if (((cr4 ^ old_cr4) & pdptr_bits) || 824 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 825 kvm_mmu_reset_context(vcpu); 826 827 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 828 kvm_update_cpuid(vcpu); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(kvm_set_cr4); 833 834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 835 { 836 #ifdef CONFIG_X86_64 837 cr3 &= ~CR3_PCID_INVD; 838 #endif 839 840 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 841 kvm_mmu_sync_roots(vcpu); 842 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 843 return 0; 844 } 845 846 if (is_long_mode(vcpu) && 847 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62))) 848 return 1; 849 else if (is_pae(vcpu) && is_paging(vcpu) && 850 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 851 return 1; 852 853 vcpu->arch.cr3 = cr3; 854 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 855 kvm_mmu_new_cr3(vcpu); 856 return 0; 857 } 858 EXPORT_SYMBOL_GPL(kvm_set_cr3); 859 860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 861 { 862 if (cr8 & CR8_RESERVED_BITS) 863 return 1; 864 if (lapic_in_kernel(vcpu)) 865 kvm_lapic_set_tpr(vcpu, cr8); 866 else 867 vcpu->arch.cr8 = cr8; 868 return 0; 869 } 870 EXPORT_SYMBOL_GPL(kvm_set_cr8); 871 872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 873 { 874 if (lapic_in_kernel(vcpu)) 875 return kvm_lapic_get_cr8(vcpu); 876 else 877 return vcpu->arch.cr8; 878 } 879 EXPORT_SYMBOL_GPL(kvm_get_cr8); 880 881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 882 { 883 int i; 884 885 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 886 for (i = 0; i < KVM_NR_DB_REGS; i++) 887 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 888 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 889 } 890 } 891 892 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 893 { 894 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 895 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 896 } 897 898 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 899 { 900 unsigned long dr7; 901 902 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 903 dr7 = vcpu->arch.guest_debug_dr7; 904 else 905 dr7 = vcpu->arch.dr7; 906 kvm_x86_ops->set_dr7(vcpu, dr7); 907 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 908 if (dr7 & DR7_BP_EN_MASK) 909 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 910 } 911 912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 913 { 914 u64 fixed = DR6_FIXED_1; 915 916 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 917 fixed |= DR6_RTM; 918 return fixed; 919 } 920 921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 922 { 923 switch (dr) { 924 case 0 ... 3: 925 vcpu->arch.db[dr] = val; 926 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 927 vcpu->arch.eff_db[dr] = val; 928 break; 929 case 4: 930 /* fall through */ 931 case 6: 932 if (val & 0xffffffff00000000ULL) 933 return -1; /* #GP */ 934 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 935 kvm_update_dr6(vcpu); 936 break; 937 case 5: 938 /* fall through */ 939 default: /* 7 */ 940 if (val & 0xffffffff00000000ULL) 941 return -1; /* #GP */ 942 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 943 kvm_update_dr7(vcpu); 944 break; 945 } 946 947 return 0; 948 } 949 950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 951 { 952 if (__kvm_set_dr(vcpu, dr, val)) { 953 kvm_inject_gp(vcpu, 0); 954 return 1; 955 } 956 return 0; 957 } 958 EXPORT_SYMBOL_GPL(kvm_set_dr); 959 960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 961 { 962 switch (dr) { 963 case 0 ... 3: 964 *val = vcpu->arch.db[dr]; 965 break; 966 case 4: 967 /* fall through */ 968 case 6: 969 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 970 *val = vcpu->arch.dr6; 971 else 972 *val = kvm_x86_ops->get_dr6(vcpu); 973 break; 974 case 5: 975 /* fall through */ 976 default: /* 7 */ 977 *val = vcpu->arch.dr7; 978 break; 979 } 980 return 0; 981 } 982 EXPORT_SYMBOL_GPL(kvm_get_dr); 983 984 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 985 { 986 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 987 u64 data; 988 int err; 989 990 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 991 if (err) 992 return err; 993 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 994 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 995 return err; 996 } 997 EXPORT_SYMBOL_GPL(kvm_rdpmc); 998 999 /* 1000 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1001 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1002 * 1003 * This list is modified at module load time to reflect the 1004 * capabilities of the host cpu. This capabilities test skips MSRs that are 1005 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1006 * may depend on host virtualization features rather than host cpu features. 1007 */ 1008 1009 static u32 msrs_to_save[] = { 1010 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1011 MSR_STAR, 1012 #ifdef CONFIG_X86_64 1013 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1014 #endif 1015 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1016 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1017 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES 1018 }; 1019 1020 static unsigned num_msrs_to_save; 1021 1022 static u32 emulated_msrs[] = { 1023 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1024 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1025 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1026 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1027 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1028 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1029 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1030 HV_X64_MSR_RESET, 1031 HV_X64_MSR_VP_INDEX, 1032 HV_X64_MSR_VP_RUNTIME, 1033 HV_X64_MSR_SCONTROL, 1034 HV_X64_MSR_STIMER0_CONFIG, 1035 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1036 MSR_KVM_PV_EOI_EN, 1037 1038 MSR_IA32_TSC_ADJUST, 1039 MSR_IA32_TSCDEADLINE, 1040 MSR_IA32_MISC_ENABLE, 1041 MSR_IA32_MCG_STATUS, 1042 MSR_IA32_MCG_CTL, 1043 MSR_IA32_MCG_EXT_CTL, 1044 MSR_IA32_SMBASE, 1045 MSR_SMI_COUNT, 1046 MSR_PLATFORM_INFO, 1047 MSR_MISC_FEATURES_ENABLES, 1048 }; 1049 1050 static unsigned num_emulated_msrs; 1051 1052 /* 1053 * List of msr numbers which are used to expose MSR-based features that 1054 * can be used by a hypervisor to validate requested CPU features. 1055 */ 1056 static u32 msr_based_features[] = { 1057 MSR_F10H_DECFG, 1058 MSR_IA32_UCODE_REV, 1059 }; 1060 1061 static unsigned int num_msr_based_features; 1062 1063 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1064 { 1065 switch (msr->index) { 1066 case MSR_IA32_UCODE_REV: 1067 rdmsrl(msr->index, msr->data); 1068 break; 1069 default: 1070 if (kvm_x86_ops->get_msr_feature(msr)) 1071 return 1; 1072 } 1073 return 0; 1074 } 1075 1076 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1077 { 1078 struct kvm_msr_entry msr; 1079 int r; 1080 1081 msr.index = index; 1082 r = kvm_get_msr_feature(&msr); 1083 if (r) 1084 return r; 1085 1086 *data = msr.data; 1087 1088 return 0; 1089 } 1090 1091 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1092 { 1093 if (efer & efer_reserved_bits) 1094 return false; 1095 1096 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1097 return false; 1098 1099 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1100 return false; 1101 1102 return true; 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1105 1106 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1107 { 1108 u64 old_efer = vcpu->arch.efer; 1109 1110 if (!kvm_valid_efer(vcpu, efer)) 1111 return 1; 1112 1113 if (is_paging(vcpu) 1114 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1115 return 1; 1116 1117 efer &= ~EFER_LMA; 1118 efer |= vcpu->arch.efer & EFER_LMA; 1119 1120 kvm_x86_ops->set_efer(vcpu, efer); 1121 1122 /* Update reserved bits */ 1123 if ((efer ^ old_efer) & EFER_NX) 1124 kvm_mmu_reset_context(vcpu); 1125 1126 return 0; 1127 } 1128 1129 void kvm_enable_efer_bits(u64 mask) 1130 { 1131 efer_reserved_bits &= ~mask; 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1134 1135 /* 1136 * Writes msr value into into the appropriate "register". 1137 * Returns 0 on success, non-0 otherwise. 1138 * Assumes vcpu_load() was already called. 1139 */ 1140 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1141 { 1142 switch (msr->index) { 1143 case MSR_FS_BASE: 1144 case MSR_GS_BASE: 1145 case MSR_KERNEL_GS_BASE: 1146 case MSR_CSTAR: 1147 case MSR_LSTAR: 1148 if (is_noncanonical_address(msr->data, vcpu)) 1149 return 1; 1150 break; 1151 case MSR_IA32_SYSENTER_EIP: 1152 case MSR_IA32_SYSENTER_ESP: 1153 /* 1154 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1155 * non-canonical address is written on Intel but not on 1156 * AMD (which ignores the top 32-bits, because it does 1157 * not implement 64-bit SYSENTER). 1158 * 1159 * 64-bit code should hence be able to write a non-canonical 1160 * value on AMD. Making the address canonical ensures that 1161 * vmentry does not fail on Intel after writing a non-canonical 1162 * value, and that something deterministic happens if the guest 1163 * invokes 64-bit SYSENTER. 1164 */ 1165 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); 1166 } 1167 return kvm_x86_ops->set_msr(vcpu, msr); 1168 } 1169 EXPORT_SYMBOL_GPL(kvm_set_msr); 1170 1171 /* 1172 * Adapt set_msr() to msr_io()'s calling convention 1173 */ 1174 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1175 { 1176 struct msr_data msr; 1177 int r; 1178 1179 msr.index = index; 1180 msr.host_initiated = true; 1181 r = kvm_get_msr(vcpu, &msr); 1182 if (r) 1183 return r; 1184 1185 *data = msr.data; 1186 return 0; 1187 } 1188 1189 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1190 { 1191 struct msr_data msr; 1192 1193 msr.data = *data; 1194 msr.index = index; 1195 msr.host_initiated = true; 1196 return kvm_set_msr(vcpu, &msr); 1197 } 1198 1199 #ifdef CONFIG_X86_64 1200 struct pvclock_gtod_data { 1201 seqcount_t seq; 1202 1203 struct { /* extract of a clocksource struct */ 1204 int vclock_mode; 1205 u64 cycle_last; 1206 u64 mask; 1207 u32 mult; 1208 u32 shift; 1209 } clock; 1210 1211 u64 boot_ns; 1212 u64 nsec_base; 1213 u64 wall_time_sec; 1214 }; 1215 1216 static struct pvclock_gtod_data pvclock_gtod_data; 1217 1218 static void update_pvclock_gtod(struct timekeeper *tk) 1219 { 1220 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1221 u64 boot_ns; 1222 1223 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1224 1225 write_seqcount_begin(&vdata->seq); 1226 1227 /* copy pvclock gtod data */ 1228 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1229 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1230 vdata->clock.mask = tk->tkr_mono.mask; 1231 vdata->clock.mult = tk->tkr_mono.mult; 1232 vdata->clock.shift = tk->tkr_mono.shift; 1233 1234 vdata->boot_ns = boot_ns; 1235 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1236 1237 vdata->wall_time_sec = tk->xtime_sec; 1238 1239 write_seqcount_end(&vdata->seq); 1240 } 1241 #endif 1242 1243 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1244 { 1245 /* 1246 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1247 * vcpu_enter_guest. This function is only called from 1248 * the physical CPU that is running vcpu. 1249 */ 1250 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1251 } 1252 1253 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1254 { 1255 int version; 1256 int r; 1257 struct pvclock_wall_clock wc; 1258 struct timespec64 boot; 1259 1260 if (!wall_clock) 1261 return; 1262 1263 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1264 if (r) 1265 return; 1266 1267 if (version & 1) 1268 ++version; /* first time write, random junk */ 1269 1270 ++version; 1271 1272 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1273 return; 1274 1275 /* 1276 * The guest calculates current wall clock time by adding 1277 * system time (updated by kvm_guest_time_update below) to the 1278 * wall clock specified here. guest system time equals host 1279 * system time for us, thus we must fill in host boot time here. 1280 */ 1281 getboottime64(&boot); 1282 1283 if (kvm->arch.kvmclock_offset) { 1284 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1285 boot = timespec64_sub(boot, ts); 1286 } 1287 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1288 wc.nsec = boot.tv_nsec; 1289 wc.version = version; 1290 1291 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1292 1293 version++; 1294 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1295 } 1296 1297 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1298 { 1299 do_shl32_div32(dividend, divisor); 1300 return dividend; 1301 } 1302 1303 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1304 s8 *pshift, u32 *pmultiplier) 1305 { 1306 uint64_t scaled64; 1307 int32_t shift = 0; 1308 uint64_t tps64; 1309 uint32_t tps32; 1310 1311 tps64 = base_hz; 1312 scaled64 = scaled_hz; 1313 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1314 tps64 >>= 1; 1315 shift--; 1316 } 1317 1318 tps32 = (uint32_t)tps64; 1319 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1320 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1321 scaled64 >>= 1; 1322 else 1323 tps32 <<= 1; 1324 shift++; 1325 } 1326 1327 *pshift = shift; 1328 *pmultiplier = div_frac(scaled64, tps32); 1329 1330 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1331 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1332 } 1333 1334 #ifdef CONFIG_X86_64 1335 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1336 #endif 1337 1338 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1339 static unsigned long max_tsc_khz; 1340 1341 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1342 { 1343 u64 v = (u64)khz * (1000000 + ppm); 1344 do_div(v, 1000000); 1345 return v; 1346 } 1347 1348 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1349 { 1350 u64 ratio; 1351 1352 /* Guest TSC same frequency as host TSC? */ 1353 if (!scale) { 1354 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1355 return 0; 1356 } 1357 1358 /* TSC scaling supported? */ 1359 if (!kvm_has_tsc_control) { 1360 if (user_tsc_khz > tsc_khz) { 1361 vcpu->arch.tsc_catchup = 1; 1362 vcpu->arch.tsc_always_catchup = 1; 1363 return 0; 1364 } else { 1365 WARN(1, "user requested TSC rate below hardware speed\n"); 1366 return -1; 1367 } 1368 } 1369 1370 /* TSC scaling required - calculate ratio */ 1371 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1372 user_tsc_khz, tsc_khz); 1373 1374 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1375 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1376 user_tsc_khz); 1377 return -1; 1378 } 1379 1380 vcpu->arch.tsc_scaling_ratio = ratio; 1381 return 0; 1382 } 1383 1384 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1385 { 1386 u32 thresh_lo, thresh_hi; 1387 int use_scaling = 0; 1388 1389 /* tsc_khz can be zero if TSC calibration fails */ 1390 if (user_tsc_khz == 0) { 1391 /* set tsc_scaling_ratio to a safe value */ 1392 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1393 return -1; 1394 } 1395 1396 /* Compute a scale to convert nanoseconds in TSC cycles */ 1397 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1398 &vcpu->arch.virtual_tsc_shift, 1399 &vcpu->arch.virtual_tsc_mult); 1400 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1401 1402 /* 1403 * Compute the variation in TSC rate which is acceptable 1404 * within the range of tolerance and decide if the 1405 * rate being applied is within that bounds of the hardware 1406 * rate. If so, no scaling or compensation need be done. 1407 */ 1408 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1409 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1410 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1411 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1412 use_scaling = 1; 1413 } 1414 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1415 } 1416 1417 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1418 { 1419 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1420 vcpu->arch.virtual_tsc_mult, 1421 vcpu->arch.virtual_tsc_shift); 1422 tsc += vcpu->arch.this_tsc_write; 1423 return tsc; 1424 } 1425 1426 static inline int gtod_is_based_on_tsc(int mode) 1427 { 1428 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; 1429 } 1430 1431 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1432 { 1433 #ifdef CONFIG_X86_64 1434 bool vcpus_matched; 1435 struct kvm_arch *ka = &vcpu->kvm->arch; 1436 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1437 1438 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1439 atomic_read(&vcpu->kvm->online_vcpus)); 1440 1441 /* 1442 * Once the masterclock is enabled, always perform request in 1443 * order to update it. 1444 * 1445 * In order to enable masterclock, the host clocksource must be TSC 1446 * and the vcpus need to have matched TSCs. When that happens, 1447 * perform request to enable masterclock. 1448 */ 1449 if (ka->use_master_clock || 1450 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1451 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1452 1453 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1454 atomic_read(&vcpu->kvm->online_vcpus), 1455 ka->use_master_clock, gtod->clock.vclock_mode); 1456 #endif 1457 } 1458 1459 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1460 { 1461 u64 curr_offset = vcpu->arch.tsc_offset; 1462 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1463 } 1464 1465 /* 1466 * Multiply tsc by a fixed point number represented by ratio. 1467 * 1468 * The most significant 64-N bits (mult) of ratio represent the 1469 * integral part of the fixed point number; the remaining N bits 1470 * (frac) represent the fractional part, ie. ratio represents a fixed 1471 * point number (mult + frac * 2^(-N)). 1472 * 1473 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1474 */ 1475 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1476 { 1477 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1478 } 1479 1480 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1481 { 1482 u64 _tsc = tsc; 1483 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1484 1485 if (ratio != kvm_default_tsc_scaling_ratio) 1486 _tsc = __scale_tsc(ratio, tsc); 1487 1488 return _tsc; 1489 } 1490 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1491 1492 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1493 { 1494 u64 tsc; 1495 1496 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1497 1498 return target_tsc - tsc; 1499 } 1500 1501 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1502 { 1503 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1504 } 1505 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1506 1507 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1508 { 1509 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1510 vcpu->arch.tsc_offset = offset; 1511 } 1512 1513 static inline bool kvm_check_tsc_unstable(void) 1514 { 1515 #ifdef CONFIG_X86_64 1516 /* 1517 * TSC is marked unstable when we're running on Hyper-V, 1518 * 'TSC page' clocksource is good. 1519 */ 1520 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) 1521 return false; 1522 #endif 1523 return check_tsc_unstable(); 1524 } 1525 1526 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1527 { 1528 struct kvm *kvm = vcpu->kvm; 1529 u64 offset, ns, elapsed; 1530 unsigned long flags; 1531 bool matched; 1532 bool already_matched; 1533 u64 data = msr->data; 1534 bool synchronizing = false; 1535 1536 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1537 offset = kvm_compute_tsc_offset(vcpu, data); 1538 ns = ktime_get_boot_ns(); 1539 elapsed = ns - kvm->arch.last_tsc_nsec; 1540 1541 if (vcpu->arch.virtual_tsc_khz) { 1542 if (data == 0 && msr->host_initiated) { 1543 /* 1544 * detection of vcpu initialization -- need to sync 1545 * with other vCPUs. This particularly helps to keep 1546 * kvm_clock stable after CPU hotplug 1547 */ 1548 synchronizing = true; 1549 } else { 1550 u64 tsc_exp = kvm->arch.last_tsc_write + 1551 nsec_to_cycles(vcpu, elapsed); 1552 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1553 /* 1554 * Special case: TSC write with a small delta (1 second) 1555 * of virtual cycle time against real time is 1556 * interpreted as an attempt to synchronize the CPU. 1557 */ 1558 synchronizing = data < tsc_exp + tsc_hz && 1559 data + tsc_hz > tsc_exp; 1560 } 1561 } 1562 1563 /* 1564 * For a reliable TSC, we can match TSC offsets, and for an unstable 1565 * TSC, we add elapsed time in this computation. We could let the 1566 * compensation code attempt to catch up if we fall behind, but 1567 * it's better to try to match offsets from the beginning. 1568 */ 1569 if (synchronizing && 1570 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1571 if (!kvm_check_tsc_unstable()) { 1572 offset = kvm->arch.cur_tsc_offset; 1573 pr_debug("kvm: matched tsc offset for %llu\n", data); 1574 } else { 1575 u64 delta = nsec_to_cycles(vcpu, elapsed); 1576 data += delta; 1577 offset = kvm_compute_tsc_offset(vcpu, data); 1578 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1579 } 1580 matched = true; 1581 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1582 } else { 1583 /* 1584 * We split periods of matched TSC writes into generations. 1585 * For each generation, we track the original measured 1586 * nanosecond time, offset, and write, so if TSCs are in 1587 * sync, we can match exact offset, and if not, we can match 1588 * exact software computation in compute_guest_tsc() 1589 * 1590 * These values are tracked in kvm->arch.cur_xxx variables. 1591 */ 1592 kvm->arch.cur_tsc_generation++; 1593 kvm->arch.cur_tsc_nsec = ns; 1594 kvm->arch.cur_tsc_write = data; 1595 kvm->arch.cur_tsc_offset = offset; 1596 matched = false; 1597 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1598 kvm->arch.cur_tsc_generation, data); 1599 } 1600 1601 /* 1602 * We also track th most recent recorded KHZ, write and time to 1603 * allow the matching interval to be extended at each write. 1604 */ 1605 kvm->arch.last_tsc_nsec = ns; 1606 kvm->arch.last_tsc_write = data; 1607 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1608 1609 vcpu->arch.last_guest_tsc = data; 1610 1611 /* Keep track of which generation this VCPU has synchronized to */ 1612 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1613 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1614 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1615 1616 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1617 update_ia32_tsc_adjust_msr(vcpu, offset); 1618 1619 kvm_vcpu_write_tsc_offset(vcpu, offset); 1620 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1621 1622 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1623 if (!matched) { 1624 kvm->arch.nr_vcpus_matched_tsc = 0; 1625 } else if (!already_matched) { 1626 kvm->arch.nr_vcpus_matched_tsc++; 1627 } 1628 1629 kvm_track_tsc_matching(vcpu); 1630 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1631 } 1632 1633 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1634 1635 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1636 s64 adjustment) 1637 { 1638 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1639 } 1640 1641 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1642 { 1643 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1644 WARN_ON(adjustment < 0); 1645 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1646 adjust_tsc_offset_guest(vcpu, adjustment); 1647 } 1648 1649 #ifdef CONFIG_X86_64 1650 1651 static u64 read_tsc(void) 1652 { 1653 u64 ret = (u64)rdtsc_ordered(); 1654 u64 last = pvclock_gtod_data.clock.cycle_last; 1655 1656 if (likely(ret >= last)) 1657 return ret; 1658 1659 /* 1660 * GCC likes to generate cmov here, but this branch is extremely 1661 * predictable (it's just a function of time and the likely is 1662 * very likely) and there's a data dependence, so force GCC 1663 * to generate a branch instead. I don't barrier() because 1664 * we don't actually need a barrier, and if this function 1665 * ever gets inlined it will generate worse code. 1666 */ 1667 asm volatile (""); 1668 return last; 1669 } 1670 1671 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) 1672 { 1673 long v; 1674 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1675 u64 tsc_pg_val; 1676 1677 switch (gtod->clock.vclock_mode) { 1678 case VCLOCK_HVCLOCK: 1679 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 1680 tsc_timestamp); 1681 if (tsc_pg_val != U64_MAX) { 1682 /* TSC page valid */ 1683 *mode = VCLOCK_HVCLOCK; 1684 v = (tsc_pg_val - gtod->clock.cycle_last) & 1685 gtod->clock.mask; 1686 } else { 1687 /* TSC page invalid */ 1688 *mode = VCLOCK_NONE; 1689 } 1690 break; 1691 case VCLOCK_TSC: 1692 *mode = VCLOCK_TSC; 1693 *tsc_timestamp = read_tsc(); 1694 v = (*tsc_timestamp - gtod->clock.cycle_last) & 1695 gtod->clock.mask; 1696 break; 1697 default: 1698 *mode = VCLOCK_NONE; 1699 } 1700 1701 if (*mode == VCLOCK_NONE) 1702 *tsc_timestamp = v = 0; 1703 1704 return v * gtod->clock.mult; 1705 } 1706 1707 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) 1708 { 1709 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1710 unsigned long seq; 1711 int mode; 1712 u64 ns; 1713 1714 do { 1715 seq = read_seqcount_begin(>od->seq); 1716 ns = gtod->nsec_base; 1717 ns += vgettsc(tsc_timestamp, &mode); 1718 ns >>= gtod->clock.shift; 1719 ns += gtod->boot_ns; 1720 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1721 *t = ns; 1722 1723 return mode; 1724 } 1725 1726 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp) 1727 { 1728 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1729 unsigned long seq; 1730 int mode; 1731 u64 ns; 1732 1733 do { 1734 seq = read_seqcount_begin(>od->seq); 1735 ts->tv_sec = gtod->wall_time_sec; 1736 ns = gtod->nsec_base; 1737 ns += vgettsc(tsc_timestamp, &mode); 1738 ns >>= gtod->clock.shift; 1739 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1740 1741 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1742 ts->tv_nsec = ns; 1743 1744 return mode; 1745 } 1746 1747 /* returns true if host is using TSC based clocksource */ 1748 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 1749 { 1750 /* checked again under seqlock below */ 1751 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1752 return false; 1753 1754 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, 1755 tsc_timestamp)); 1756 } 1757 1758 /* returns true if host is using TSC based clocksource */ 1759 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1760 u64 *tsc_timestamp) 1761 { 1762 /* checked again under seqlock below */ 1763 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1764 return false; 1765 1766 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 1767 } 1768 #endif 1769 1770 /* 1771 * 1772 * Assuming a stable TSC across physical CPUS, and a stable TSC 1773 * across virtual CPUs, the following condition is possible. 1774 * Each numbered line represents an event visible to both 1775 * CPUs at the next numbered event. 1776 * 1777 * "timespecX" represents host monotonic time. "tscX" represents 1778 * RDTSC value. 1779 * 1780 * VCPU0 on CPU0 | VCPU1 on CPU1 1781 * 1782 * 1. read timespec0,tsc0 1783 * 2. | timespec1 = timespec0 + N 1784 * | tsc1 = tsc0 + M 1785 * 3. transition to guest | transition to guest 1786 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1787 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1788 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1789 * 1790 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1791 * 1792 * - ret0 < ret1 1793 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1794 * ... 1795 * - 0 < N - M => M < N 1796 * 1797 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1798 * always the case (the difference between two distinct xtime instances 1799 * might be smaller then the difference between corresponding TSC reads, 1800 * when updating guest vcpus pvclock areas). 1801 * 1802 * To avoid that problem, do not allow visibility of distinct 1803 * system_timestamp/tsc_timestamp values simultaneously: use a master 1804 * copy of host monotonic time values. Update that master copy 1805 * in lockstep. 1806 * 1807 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1808 * 1809 */ 1810 1811 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1812 { 1813 #ifdef CONFIG_X86_64 1814 struct kvm_arch *ka = &kvm->arch; 1815 int vclock_mode; 1816 bool host_tsc_clocksource, vcpus_matched; 1817 1818 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1819 atomic_read(&kvm->online_vcpus)); 1820 1821 /* 1822 * If the host uses TSC clock, then passthrough TSC as stable 1823 * to the guest. 1824 */ 1825 host_tsc_clocksource = kvm_get_time_and_clockread( 1826 &ka->master_kernel_ns, 1827 &ka->master_cycle_now); 1828 1829 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1830 && !ka->backwards_tsc_observed 1831 && !ka->boot_vcpu_runs_old_kvmclock; 1832 1833 if (ka->use_master_clock) 1834 atomic_set(&kvm_guest_has_master_clock, 1); 1835 1836 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1837 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1838 vcpus_matched); 1839 #endif 1840 } 1841 1842 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1843 { 1844 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1845 } 1846 1847 static void kvm_gen_update_masterclock(struct kvm *kvm) 1848 { 1849 #ifdef CONFIG_X86_64 1850 int i; 1851 struct kvm_vcpu *vcpu; 1852 struct kvm_arch *ka = &kvm->arch; 1853 1854 spin_lock(&ka->pvclock_gtod_sync_lock); 1855 kvm_make_mclock_inprogress_request(kvm); 1856 /* no guest entries from this point */ 1857 pvclock_update_vm_gtod_copy(kvm); 1858 1859 kvm_for_each_vcpu(i, vcpu, kvm) 1860 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1861 1862 /* guest entries allowed */ 1863 kvm_for_each_vcpu(i, vcpu, kvm) 1864 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 1865 1866 spin_unlock(&ka->pvclock_gtod_sync_lock); 1867 #endif 1868 } 1869 1870 u64 get_kvmclock_ns(struct kvm *kvm) 1871 { 1872 struct kvm_arch *ka = &kvm->arch; 1873 struct pvclock_vcpu_time_info hv_clock; 1874 u64 ret; 1875 1876 spin_lock(&ka->pvclock_gtod_sync_lock); 1877 if (!ka->use_master_clock) { 1878 spin_unlock(&ka->pvclock_gtod_sync_lock); 1879 return ktime_get_boot_ns() + ka->kvmclock_offset; 1880 } 1881 1882 hv_clock.tsc_timestamp = ka->master_cycle_now; 1883 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1884 spin_unlock(&ka->pvclock_gtod_sync_lock); 1885 1886 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 1887 get_cpu(); 1888 1889 if (__this_cpu_read(cpu_tsc_khz)) { 1890 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1891 &hv_clock.tsc_shift, 1892 &hv_clock.tsc_to_system_mul); 1893 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 1894 } else 1895 ret = ktime_get_boot_ns() + ka->kvmclock_offset; 1896 1897 put_cpu(); 1898 1899 return ret; 1900 } 1901 1902 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1903 { 1904 struct kvm_vcpu_arch *vcpu = &v->arch; 1905 struct pvclock_vcpu_time_info guest_hv_clock; 1906 1907 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1908 &guest_hv_clock, sizeof(guest_hv_clock)))) 1909 return; 1910 1911 /* This VCPU is paused, but it's legal for a guest to read another 1912 * VCPU's kvmclock, so we really have to follow the specification where 1913 * it says that version is odd if data is being modified, and even after 1914 * it is consistent. 1915 * 1916 * Version field updates must be kept separate. This is because 1917 * kvm_write_guest_cached might use a "rep movs" instruction, and 1918 * writes within a string instruction are weakly ordered. So there 1919 * are three writes overall. 1920 * 1921 * As a small optimization, only write the version field in the first 1922 * and third write. The vcpu->pv_time cache is still valid, because the 1923 * version field is the first in the struct. 1924 */ 1925 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1926 1927 if (guest_hv_clock.version & 1) 1928 ++guest_hv_clock.version; /* first time write, random junk */ 1929 1930 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1931 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1932 &vcpu->hv_clock, 1933 sizeof(vcpu->hv_clock.version)); 1934 1935 smp_wmb(); 1936 1937 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1938 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1939 1940 if (vcpu->pvclock_set_guest_stopped_request) { 1941 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1942 vcpu->pvclock_set_guest_stopped_request = false; 1943 } 1944 1945 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1946 1947 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1948 &vcpu->hv_clock, 1949 sizeof(vcpu->hv_clock)); 1950 1951 smp_wmb(); 1952 1953 vcpu->hv_clock.version++; 1954 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1955 &vcpu->hv_clock, 1956 sizeof(vcpu->hv_clock.version)); 1957 } 1958 1959 static int kvm_guest_time_update(struct kvm_vcpu *v) 1960 { 1961 unsigned long flags, tgt_tsc_khz; 1962 struct kvm_vcpu_arch *vcpu = &v->arch; 1963 struct kvm_arch *ka = &v->kvm->arch; 1964 s64 kernel_ns; 1965 u64 tsc_timestamp, host_tsc; 1966 u8 pvclock_flags; 1967 bool use_master_clock; 1968 1969 kernel_ns = 0; 1970 host_tsc = 0; 1971 1972 /* 1973 * If the host uses TSC clock, then passthrough TSC as stable 1974 * to the guest. 1975 */ 1976 spin_lock(&ka->pvclock_gtod_sync_lock); 1977 use_master_clock = ka->use_master_clock; 1978 if (use_master_clock) { 1979 host_tsc = ka->master_cycle_now; 1980 kernel_ns = ka->master_kernel_ns; 1981 } 1982 spin_unlock(&ka->pvclock_gtod_sync_lock); 1983 1984 /* Keep irq disabled to prevent changes to the clock */ 1985 local_irq_save(flags); 1986 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1987 if (unlikely(tgt_tsc_khz == 0)) { 1988 local_irq_restore(flags); 1989 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1990 return 1; 1991 } 1992 if (!use_master_clock) { 1993 host_tsc = rdtsc(); 1994 kernel_ns = ktime_get_boot_ns(); 1995 } 1996 1997 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1998 1999 /* 2000 * We may have to catch up the TSC to match elapsed wall clock 2001 * time for two reasons, even if kvmclock is used. 2002 * 1) CPU could have been running below the maximum TSC rate 2003 * 2) Broken TSC compensation resets the base at each VCPU 2004 * entry to avoid unknown leaps of TSC even when running 2005 * again on the same CPU. This may cause apparent elapsed 2006 * time to disappear, and the guest to stand still or run 2007 * very slowly. 2008 */ 2009 if (vcpu->tsc_catchup) { 2010 u64 tsc = compute_guest_tsc(v, kernel_ns); 2011 if (tsc > tsc_timestamp) { 2012 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2013 tsc_timestamp = tsc; 2014 } 2015 } 2016 2017 local_irq_restore(flags); 2018 2019 /* With all the info we got, fill in the values */ 2020 2021 if (kvm_has_tsc_control) 2022 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2023 2024 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2025 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2026 &vcpu->hv_clock.tsc_shift, 2027 &vcpu->hv_clock.tsc_to_system_mul); 2028 vcpu->hw_tsc_khz = tgt_tsc_khz; 2029 } 2030 2031 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2032 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2033 vcpu->last_guest_tsc = tsc_timestamp; 2034 2035 /* If the host uses TSC clocksource, then it is stable */ 2036 pvclock_flags = 0; 2037 if (use_master_clock) 2038 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2039 2040 vcpu->hv_clock.flags = pvclock_flags; 2041 2042 if (vcpu->pv_time_enabled) 2043 kvm_setup_pvclock_page(v); 2044 if (v == kvm_get_vcpu(v->kvm, 0)) 2045 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2046 return 0; 2047 } 2048 2049 /* 2050 * kvmclock updates which are isolated to a given vcpu, such as 2051 * vcpu->cpu migration, should not allow system_timestamp from 2052 * the rest of the vcpus to remain static. Otherwise ntp frequency 2053 * correction applies to one vcpu's system_timestamp but not 2054 * the others. 2055 * 2056 * So in those cases, request a kvmclock update for all vcpus. 2057 * We need to rate-limit these requests though, as they can 2058 * considerably slow guests that have a large number of vcpus. 2059 * The time for a remote vcpu to update its kvmclock is bound 2060 * by the delay we use to rate-limit the updates. 2061 */ 2062 2063 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2064 2065 static void kvmclock_update_fn(struct work_struct *work) 2066 { 2067 int i; 2068 struct delayed_work *dwork = to_delayed_work(work); 2069 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2070 kvmclock_update_work); 2071 struct kvm *kvm = container_of(ka, struct kvm, arch); 2072 struct kvm_vcpu *vcpu; 2073 2074 kvm_for_each_vcpu(i, vcpu, kvm) { 2075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2076 kvm_vcpu_kick(vcpu); 2077 } 2078 } 2079 2080 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2081 { 2082 struct kvm *kvm = v->kvm; 2083 2084 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2085 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2086 KVMCLOCK_UPDATE_DELAY); 2087 } 2088 2089 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2090 2091 static void kvmclock_sync_fn(struct work_struct *work) 2092 { 2093 struct delayed_work *dwork = to_delayed_work(work); 2094 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2095 kvmclock_sync_work); 2096 struct kvm *kvm = container_of(ka, struct kvm, arch); 2097 2098 if (!kvmclock_periodic_sync) 2099 return; 2100 2101 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2102 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2103 KVMCLOCK_SYNC_PERIOD); 2104 } 2105 2106 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2107 { 2108 u64 mcg_cap = vcpu->arch.mcg_cap; 2109 unsigned bank_num = mcg_cap & 0xff; 2110 u32 msr = msr_info->index; 2111 u64 data = msr_info->data; 2112 2113 switch (msr) { 2114 case MSR_IA32_MCG_STATUS: 2115 vcpu->arch.mcg_status = data; 2116 break; 2117 case MSR_IA32_MCG_CTL: 2118 if (!(mcg_cap & MCG_CTL_P)) 2119 return 1; 2120 if (data != 0 && data != ~(u64)0) 2121 return -1; 2122 vcpu->arch.mcg_ctl = data; 2123 break; 2124 default: 2125 if (msr >= MSR_IA32_MC0_CTL && 2126 msr < MSR_IA32_MCx_CTL(bank_num)) { 2127 u32 offset = msr - MSR_IA32_MC0_CTL; 2128 /* only 0 or all 1s can be written to IA32_MCi_CTL 2129 * some Linux kernels though clear bit 10 in bank 4 to 2130 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2131 * this to avoid an uncatched #GP in the guest 2132 */ 2133 if ((offset & 0x3) == 0 && 2134 data != 0 && (data | (1 << 10)) != ~(u64)0) 2135 return -1; 2136 if (!msr_info->host_initiated && 2137 (offset & 0x3) == 1 && data != 0) 2138 return -1; 2139 vcpu->arch.mce_banks[offset] = data; 2140 break; 2141 } 2142 return 1; 2143 } 2144 return 0; 2145 } 2146 2147 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2148 { 2149 struct kvm *kvm = vcpu->kvm; 2150 int lm = is_long_mode(vcpu); 2151 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2152 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2153 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2154 : kvm->arch.xen_hvm_config.blob_size_32; 2155 u32 page_num = data & ~PAGE_MASK; 2156 u64 page_addr = data & PAGE_MASK; 2157 u8 *page; 2158 int r; 2159 2160 r = -E2BIG; 2161 if (page_num >= blob_size) 2162 goto out; 2163 r = -ENOMEM; 2164 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2165 if (IS_ERR(page)) { 2166 r = PTR_ERR(page); 2167 goto out; 2168 } 2169 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2170 goto out_free; 2171 r = 0; 2172 out_free: 2173 kfree(page); 2174 out: 2175 return r; 2176 } 2177 2178 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2179 { 2180 gpa_t gpa = data & ~0x3f; 2181 2182 /* Bits 3:5 are reserved, Should be zero */ 2183 if (data & 0x38) 2184 return 1; 2185 2186 vcpu->arch.apf.msr_val = data; 2187 2188 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2189 kvm_clear_async_pf_completion_queue(vcpu); 2190 kvm_async_pf_hash_reset(vcpu); 2191 return 0; 2192 } 2193 2194 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2195 sizeof(u32))) 2196 return 1; 2197 2198 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2199 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2200 kvm_async_pf_wakeup_all(vcpu); 2201 return 0; 2202 } 2203 2204 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2205 { 2206 vcpu->arch.pv_time_enabled = false; 2207 } 2208 2209 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2210 { 2211 ++vcpu->stat.tlb_flush; 2212 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2213 } 2214 2215 static void record_steal_time(struct kvm_vcpu *vcpu) 2216 { 2217 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2218 return; 2219 2220 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2221 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2222 return; 2223 2224 /* 2225 * Doing a TLB flush here, on the guest's behalf, can avoid 2226 * expensive IPIs. 2227 */ 2228 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) 2229 kvm_vcpu_flush_tlb(vcpu, false); 2230 2231 if (vcpu->arch.st.steal.version & 1) 2232 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2233 2234 vcpu->arch.st.steal.version += 1; 2235 2236 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2237 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2238 2239 smp_wmb(); 2240 2241 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2242 vcpu->arch.st.last_steal; 2243 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2244 2245 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2246 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2247 2248 smp_wmb(); 2249 2250 vcpu->arch.st.steal.version += 1; 2251 2252 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2253 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2254 } 2255 2256 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2257 { 2258 bool pr = false; 2259 u32 msr = msr_info->index; 2260 u64 data = msr_info->data; 2261 2262 switch (msr) { 2263 case MSR_AMD64_NB_CFG: 2264 case MSR_IA32_UCODE_WRITE: 2265 case MSR_VM_HSAVE_PA: 2266 case MSR_AMD64_PATCH_LOADER: 2267 case MSR_AMD64_BU_CFG2: 2268 case MSR_AMD64_DC_CFG: 2269 break; 2270 2271 case MSR_IA32_UCODE_REV: 2272 if (msr_info->host_initiated) 2273 vcpu->arch.microcode_version = data; 2274 break; 2275 case MSR_EFER: 2276 return set_efer(vcpu, data); 2277 case MSR_K7_HWCR: 2278 data &= ~(u64)0x40; /* ignore flush filter disable */ 2279 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2280 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2281 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2282 if (data != 0) { 2283 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2284 data); 2285 return 1; 2286 } 2287 break; 2288 case MSR_FAM10H_MMIO_CONF_BASE: 2289 if (data != 0) { 2290 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2291 "0x%llx\n", data); 2292 return 1; 2293 } 2294 break; 2295 case MSR_IA32_DEBUGCTLMSR: 2296 if (!data) { 2297 /* We support the non-activated case already */ 2298 break; 2299 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2300 /* Values other than LBR and BTF are vendor-specific, 2301 thus reserved and should throw a #GP */ 2302 return 1; 2303 } 2304 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2305 __func__, data); 2306 break; 2307 case 0x200 ... 0x2ff: 2308 return kvm_mtrr_set_msr(vcpu, msr, data); 2309 case MSR_IA32_APICBASE: 2310 return kvm_set_apic_base(vcpu, msr_info); 2311 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2312 return kvm_x2apic_msr_write(vcpu, msr, data); 2313 case MSR_IA32_TSCDEADLINE: 2314 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2315 break; 2316 case MSR_IA32_TSC_ADJUST: 2317 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2318 if (!msr_info->host_initiated) { 2319 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2320 adjust_tsc_offset_guest(vcpu, adj); 2321 } 2322 vcpu->arch.ia32_tsc_adjust_msr = data; 2323 } 2324 break; 2325 case MSR_IA32_MISC_ENABLE: 2326 vcpu->arch.ia32_misc_enable_msr = data; 2327 break; 2328 case MSR_IA32_SMBASE: 2329 if (!msr_info->host_initiated) 2330 return 1; 2331 vcpu->arch.smbase = data; 2332 break; 2333 case MSR_SMI_COUNT: 2334 if (!msr_info->host_initiated) 2335 return 1; 2336 vcpu->arch.smi_count = data; 2337 break; 2338 case MSR_KVM_WALL_CLOCK_NEW: 2339 case MSR_KVM_WALL_CLOCK: 2340 vcpu->kvm->arch.wall_clock = data; 2341 kvm_write_wall_clock(vcpu->kvm, data); 2342 break; 2343 case MSR_KVM_SYSTEM_TIME_NEW: 2344 case MSR_KVM_SYSTEM_TIME: { 2345 struct kvm_arch *ka = &vcpu->kvm->arch; 2346 2347 kvmclock_reset(vcpu); 2348 2349 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2350 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2351 2352 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2353 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2354 2355 ka->boot_vcpu_runs_old_kvmclock = tmp; 2356 } 2357 2358 vcpu->arch.time = data; 2359 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2360 2361 /* we verify if the enable bit is set... */ 2362 if (!(data & 1)) 2363 break; 2364 2365 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2366 &vcpu->arch.pv_time, data & ~1ULL, 2367 sizeof(struct pvclock_vcpu_time_info))) 2368 vcpu->arch.pv_time_enabled = false; 2369 else 2370 vcpu->arch.pv_time_enabled = true; 2371 2372 break; 2373 } 2374 case MSR_KVM_ASYNC_PF_EN: 2375 if (kvm_pv_enable_async_pf(vcpu, data)) 2376 return 1; 2377 break; 2378 case MSR_KVM_STEAL_TIME: 2379 2380 if (unlikely(!sched_info_on())) 2381 return 1; 2382 2383 if (data & KVM_STEAL_RESERVED_MASK) 2384 return 1; 2385 2386 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2387 data & KVM_STEAL_VALID_BITS, 2388 sizeof(struct kvm_steal_time))) 2389 return 1; 2390 2391 vcpu->arch.st.msr_val = data; 2392 2393 if (!(data & KVM_MSR_ENABLED)) 2394 break; 2395 2396 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2397 2398 break; 2399 case MSR_KVM_PV_EOI_EN: 2400 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2401 return 1; 2402 break; 2403 2404 case MSR_IA32_MCG_CTL: 2405 case MSR_IA32_MCG_STATUS: 2406 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2407 return set_msr_mce(vcpu, msr_info); 2408 2409 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2410 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2411 pr = true; /* fall through */ 2412 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2413 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2414 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2415 return kvm_pmu_set_msr(vcpu, msr_info); 2416 2417 if (pr || data != 0) 2418 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2419 "0x%x data 0x%llx\n", msr, data); 2420 break; 2421 case MSR_K7_CLK_CTL: 2422 /* 2423 * Ignore all writes to this no longer documented MSR. 2424 * Writes are only relevant for old K7 processors, 2425 * all pre-dating SVM, but a recommended workaround from 2426 * AMD for these chips. It is possible to specify the 2427 * affected processor models on the command line, hence 2428 * the need to ignore the workaround. 2429 */ 2430 break; 2431 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2432 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2433 case HV_X64_MSR_CRASH_CTL: 2434 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2435 return kvm_hv_set_msr_common(vcpu, msr, data, 2436 msr_info->host_initiated); 2437 case MSR_IA32_BBL_CR_CTL3: 2438 /* Drop writes to this legacy MSR -- see rdmsr 2439 * counterpart for further detail. 2440 */ 2441 if (report_ignored_msrs) 2442 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2443 msr, data); 2444 break; 2445 case MSR_AMD64_OSVW_ID_LENGTH: 2446 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2447 return 1; 2448 vcpu->arch.osvw.length = data; 2449 break; 2450 case MSR_AMD64_OSVW_STATUS: 2451 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2452 return 1; 2453 vcpu->arch.osvw.status = data; 2454 break; 2455 case MSR_PLATFORM_INFO: 2456 if (!msr_info->host_initiated || 2457 data & ~MSR_PLATFORM_INFO_CPUID_FAULT || 2458 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2459 cpuid_fault_enabled(vcpu))) 2460 return 1; 2461 vcpu->arch.msr_platform_info = data; 2462 break; 2463 case MSR_MISC_FEATURES_ENABLES: 2464 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2465 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2466 !supports_cpuid_fault(vcpu))) 2467 return 1; 2468 vcpu->arch.msr_misc_features_enables = data; 2469 break; 2470 default: 2471 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2472 return xen_hvm_config(vcpu, data); 2473 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2474 return kvm_pmu_set_msr(vcpu, msr_info); 2475 if (!ignore_msrs) { 2476 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2477 msr, data); 2478 return 1; 2479 } else { 2480 if (report_ignored_msrs) 2481 vcpu_unimpl(vcpu, 2482 "ignored wrmsr: 0x%x data 0x%llx\n", 2483 msr, data); 2484 break; 2485 } 2486 } 2487 return 0; 2488 } 2489 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2490 2491 2492 /* 2493 * Reads an msr value (of 'msr_index') into 'pdata'. 2494 * Returns 0 on success, non-0 otherwise. 2495 * Assumes vcpu_load() was already called. 2496 */ 2497 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2498 { 2499 return kvm_x86_ops->get_msr(vcpu, msr); 2500 } 2501 EXPORT_SYMBOL_GPL(kvm_get_msr); 2502 2503 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2504 { 2505 u64 data; 2506 u64 mcg_cap = vcpu->arch.mcg_cap; 2507 unsigned bank_num = mcg_cap & 0xff; 2508 2509 switch (msr) { 2510 case MSR_IA32_P5_MC_ADDR: 2511 case MSR_IA32_P5_MC_TYPE: 2512 data = 0; 2513 break; 2514 case MSR_IA32_MCG_CAP: 2515 data = vcpu->arch.mcg_cap; 2516 break; 2517 case MSR_IA32_MCG_CTL: 2518 if (!(mcg_cap & MCG_CTL_P)) 2519 return 1; 2520 data = vcpu->arch.mcg_ctl; 2521 break; 2522 case MSR_IA32_MCG_STATUS: 2523 data = vcpu->arch.mcg_status; 2524 break; 2525 default: 2526 if (msr >= MSR_IA32_MC0_CTL && 2527 msr < MSR_IA32_MCx_CTL(bank_num)) { 2528 u32 offset = msr - MSR_IA32_MC0_CTL; 2529 data = vcpu->arch.mce_banks[offset]; 2530 break; 2531 } 2532 return 1; 2533 } 2534 *pdata = data; 2535 return 0; 2536 } 2537 2538 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2539 { 2540 switch (msr_info->index) { 2541 case MSR_IA32_PLATFORM_ID: 2542 case MSR_IA32_EBL_CR_POWERON: 2543 case MSR_IA32_DEBUGCTLMSR: 2544 case MSR_IA32_LASTBRANCHFROMIP: 2545 case MSR_IA32_LASTBRANCHTOIP: 2546 case MSR_IA32_LASTINTFROMIP: 2547 case MSR_IA32_LASTINTTOIP: 2548 case MSR_K8_SYSCFG: 2549 case MSR_K8_TSEG_ADDR: 2550 case MSR_K8_TSEG_MASK: 2551 case MSR_K7_HWCR: 2552 case MSR_VM_HSAVE_PA: 2553 case MSR_K8_INT_PENDING_MSG: 2554 case MSR_AMD64_NB_CFG: 2555 case MSR_FAM10H_MMIO_CONF_BASE: 2556 case MSR_AMD64_BU_CFG2: 2557 case MSR_IA32_PERF_CTL: 2558 case MSR_AMD64_DC_CFG: 2559 msr_info->data = 0; 2560 break; 2561 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2562 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2563 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2564 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2565 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2566 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2567 msr_info->data = 0; 2568 break; 2569 case MSR_IA32_UCODE_REV: 2570 msr_info->data = vcpu->arch.microcode_version; 2571 break; 2572 case MSR_MTRRcap: 2573 case 0x200 ... 0x2ff: 2574 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2575 case 0xcd: /* fsb frequency */ 2576 msr_info->data = 3; 2577 break; 2578 /* 2579 * MSR_EBC_FREQUENCY_ID 2580 * Conservative value valid for even the basic CPU models. 2581 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2582 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2583 * and 266MHz for model 3, or 4. Set Core Clock 2584 * Frequency to System Bus Frequency Ratio to 1 (bits 2585 * 31:24) even though these are only valid for CPU 2586 * models > 2, however guests may end up dividing or 2587 * multiplying by zero otherwise. 2588 */ 2589 case MSR_EBC_FREQUENCY_ID: 2590 msr_info->data = 1 << 24; 2591 break; 2592 case MSR_IA32_APICBASE: 2593 msr_info->data = kvm_get_apic_base(vcpu); 2594 break; 2595 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2596 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2597 break; 2598 case MSR_IA32_TSCDEADLINE: 2599 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2600 break; 2601 case MSR_IA32_TSC_ADJUST: 2602 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2603 break; 2604 case MSR_IA32_MISC_ENABLE: 2605 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2606 break; 2607 case MSR_IA32_SMBASE: 2608 if (!msr_info->host_initiated) 2609 return 1; 2610 msr_info->data = vcpu->arch.smbase; 2611 break; 2612 case MSR_SMI_COUNT: 2613 msr_info->data = vcpu->arch.smi_count; 2614 break; 2615 case MSR_IA32_PERF_STATUS: 2616 /* TSC increment by tick */ 2617 msr_info->data = 1000ULL; 2618 /* CPU multiplier */ 2619 msr_info->data |= (((uint64_t)4ULL) << 40); 2620 break; 2621 case MSR_EFER: 2622 msr_info->data = vcpu->arch.efer; 2623 break; 2624 case MSR_KVM_WALL_CLOCK: 2625 case MSR_KVM_WALL_CLOCK_NEW: 2626 msr_info->data = vcpu->kvm->arch.wall_clock; 2627 break; 2628 case MSR_KVM_SYSTEM_TIME: 2629 case MSR_KVM_SYSTEM_TIME_NEW: 2630 msr_info->data = vcpu->arch.time; 2631 break; 2632 case MSR_KVM_ASYNC_PF_EN: 2633 msr_info->data = vcpu->arch.apf.msr_val; 2634 break; 2635 case MSR_KVM_STEAL_TIME: 2636 msr_info->data = vcpu->arch.st.msr_val; 2637 break; 2638 case MSR_KVM_PV_EOI_EN: 2639 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2640 break; 2641 case MSR_IA32_P5_MC_ADDR: 2642 case MSR_IA32_P5_MC_TYPE: 2643 case MSR_IA32_MCG_CAP: 2644 case MSR_IA32_MCG_CTL: 2645 case MSR_IA32_MCG_STATUS: 2646 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2647 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2648 case MSR_K7_CLK_CTL: 2649 /* 2650 * Provide expected ramp-up count for K7. All other 2651 * are set to zero, indicating minimum divisors for 2652 * every field. 2653 * 2654 * This prevents guest kernels on AMD host with CPU 2655 * type 6, model 8 and higher from exploding due to 2656 * the rdmsr failing. 2657 */ 2658 msr_info->data = 0x20000000; 2659 break; 2660 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2661 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2662 case HV_X64_MSR_CRASH_CTL: 2663 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2664 return kvm_hv_get_msr_common(vcpu, 2665 msr_info->index, &msr_info->data); 2666 break; 2667 case MSR_IA32_BBL_CR_CTL3: 2668 /* This legacy MSR exists but isn't fully documented in current 2669 * silicon. It is however accessed by winxp in very narrow 2670 * scenarios where it sets bit #19, itself documented as 2671 * a "reserved" bit. Best effort attempt to source coherent 2672 * read data here should the balance of the register be 2673 * interpreted by the guest: 2674 * 2675 * L2 cache control register 3: 64GB range, 256KB size, 2676 * enabled, latency 0x1, configured 2677 */ 2678 msr_info->data = 0xbe702111; 2679 break; 2680 case MSR_AMD64_OSVW_ID_LENGTH: 2681 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2682 return 1; 2683 msr_info->data = vcpu->arch.osvw.length; 2684 break; 2685 case MSR_AMD64_OSVW_STATUS: 2686 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2687 return 1; 2688 msr_info->data = vcpu->arch.osvw.status; 2689 break; 2690 case MSR_PLATFORM_INFO: 2691 msr_info->data = vcpu->arch.msr_platform_info; 2692 break; 2693 case MSR_MISC_FEATURES_ENABLES: 2694 msr_info->data = vcpu->arch.msr_misc_features_enables; 2695 break; 2696 default: 2697 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2698 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2699 if (!ignore_msrs) { 2700 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2701 msr_info->index); 2702 return 1; 2703 } else { 2704 if (report_ignored_msrs) 2705 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 2706 msr_info->index); 2707 msr_info->data = 0; 2708 } 2709 break; 2710 } 2711 return 0; 2712 } 2713 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2714 2715 /* 2716 * Read or write a bunch of msrs. All parameters are kernel addresses. 2717 * 2718 * @return number of msrs set successfully. 2719 */ 2720 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2721 struct kvm_msr_entry *entries, 2722 int (*do_msr)(struct kvm_vcpu *vcpu, 2723 unsigned index, u64 *data)) 2724 { 2725 int i; 2726 2727 for (i = 0; i < msrs->nmsrs; ++i) 2728 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2729 break; 2730 2731 return i; 2732 } 2733 2734 /* 2735 * Read or write a bunch of msrs. Parameters are user addresses. 2736 * 2737 * @return number of msrs set successfully. 2738 */ 2739 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2740 int (*do_msr)(struct kvm_vcpu *vcpu, 2741 unsigned index, u64 *data), 2742 int writeback) 2743 { 2744 struct kvm_msrs msrs; 2745 struct kvm_msr_entry *entries; 2746 int r, n; 2747 unsigned size; 2748 2749 r = -EFAULT; 2750 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2751 goto out; 2752 2753 r = -E2BIG; 2754 if (msrs.nmsrs >= MAX_IO_MSRS) 2755 goto out; 2756 2757 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2758 entries = memdup_user(user_msrs->entries, size); 2759 if (IS_ERR(entries)) { 2760 r = PTR_ERR(entries); 2761 goto out; 2762 } 2763 2764 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2765 if (r < 0) 2766 goto out_free; 2767 2768 r = -EFAULT; 2769 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2770 goto out_free; 2771 2772 r = n; 2773 2774 out_free: 2775 kfree(entries); 2776 out: 2777 return r; 2778 } 2779 2780 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2781 { 2782 int r; 2783 2784 switch (ext) { 2785 case KVM_CAP_IRQCHIP: 2786 case KVM_CAP_HLT: 2787 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2788 case KVM_CAP_SET_TSS_ADDR: 2789 case KVM_CAP_EXT_CPUID: 2790 case KVM_CAP_EXT_EMUL_CPUID: 2791 case KVM_CAP_CLOCKSOURCE: 2792 case KVM_CAP_PIT: 2793 case KVM_CAP_NOP_IO_DELAY: 2794 case KVM_CAP_MP_STATE: 2795 case KVM_CAP_SYNC_MMU: 2796 case KVM_CAP_USER_NMI: 2797 case KVM_CAP_REINJECT_CONTROL: 2798 case KVM_CAP_IRQ_INJECT_STATUS: 2799 case KVM_CAP_IOEVENTFD: 2800 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2801 case KVM_CAP_PIT2: 2802 case KVM_CAP_PIT_STATE2: 2803 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2804 case KVM_CAP_XEN_HVM: 2805 case KVM_CAP_VCPU_EVENTS: 2806 case KVM_CAP_HYPERV: 2807 case KVM_CAP_HYPERV_VAPIC: 2808 case KVM_CAP_HYPERV_SPIN: 2809 case KVM_CAP_HYPERV_SYNIC: 2810 case KVM_CAP_HYPERV_SYNIC2: 2811 case KVM_CAP_HYPERV_VP_INDEX: 2812 case KVM_CAP_PCI_SEGMENT: 2813 case KVM_CAP_DEBUGREGS: 2814 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2815 case KVM_CAP_XSAVE: 2816 case KVM_CAP_ASYNC_PF: 2817 case KVM_CAP_GET_TSC_KHZ: 2818 case KVM_CAP_KVMCLOCK_CTRL: 2819 case KVM_CAP_READONLY_MEM: 2820 case KVM_CAP_HYPERV_TIME: 2821 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2822 case KVM_CAP_TSC_DEADLINE_TIMER: 2823 case KVM_CAP_ENABLE_CAP_VM: 2824 case KVM_CAP_DISABLE_QUIRKS: 2825 case KVM_CAP_SET_BOOT_CPU_ID: 2826 case KVM_CAP_SPLIT_IRQCHIP: 2827 case KVM_CAP_IMMEDIATE_EXIT: 2828 case KVM_CAP_GET_MSR_FEATURES: 2829 r = 1; 2830 break; 2831 case KVM_CAP_ADJUST_CLOCK: 2832 r = KVM_CLOCK_TSC_STABLE; 2833 break; 2834 case KVM_CAP_X86_GUEST_MWAIT: 2835 r = kvm_mwait_in_guest(); 2836 break; 2837 case KVM_CAP_X86_SMM: 2838 /* SMBASE is usually relocated above 1M on modern chipsets, 2839 * and SMM handlers might indeed rely on 4G segment limits, 2840 * so do not report SMM to be available if real mode is 2841 * emulated via vm86 mode. Still, do not go to great lengths 2842 * to avoid userspace's usage of the feature, because it is a 2843 * fringe case that is not enabled except via specific settings 2844 * of the module parameters. 2845 */ 2846 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2847 break; 2848 case KVM_CAP_VAPIC: 2849 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2850 break; 2851 case KVM_CAP_NR_VCPUS: 2852 r = KVM_SOFT_MAX_VCPUS; 2853 break; 2854 case KVM_CAP_MAX_VCPUS: 2855 r = KVM_MAX_VCPUS; 2856 break; 2857 case KVM_CAP_NR_MEMSLOTS: 2858 r = KVM_USER_MEM_SLOTS; 2859 break; 2860 case KVM_CAP_PV_MMU: /* obsolete */ 2861 r = 0; 2862 break; 2863 case KVM_CAP_MCE: 2864 r = KVM_MAX_MCE_BANKS; 2865 break; 2866 case KVM_CAP_XCRS: 2867 r = boot_cpu_has(X86_FEATURE_XSAVE); 2868 break; 2869 case KVM_CAP_TSC_CONTROL: 2870 r = kvm_has_tsc_control; 2871 break; 2872 case KVM_CAP_X2APIC_API: 2873 r = KVM_X2APIC_API_VALID_FLAGS; 2874 break; 2875 default: 2876 r = 0; 2877 break; 2878 } 2879 return r; 2880 2881 } 2882 2883 long kvm_arch_dev_ioctl(struct file *filp, 2884 unsigned int ioctl, unsigned long arg) 2885 { 2886 void __user *argp = (void __user *)arg; 2887 long r; 2888 2889 switch (ioctl) { 2890 case KVM_GET_MSR_INDEX_LIST: { 2891 struct kvm_msr_list __user *user_msr_list = argp; 2892 struct kvm_msr_list msr_list; 2893 unsigned n; 2894 2895 r = -EFAULT; 2896 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2897 goto out; 2898 n = msr_list.nmsrs; 2899 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2900 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2901 goto out; 2902 r = -E2BIG; 2903 if (n < msr_list.nmsrs) 2904 goto out; 2905 r = -EFAULT; 2906 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2907 num_msrs_to_save * sizeof(u32))) 2908 goto out; 2909 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2910 &emulated_msrs, 2911 num_emulated_msrs * sizeof(u32))) 2912 goto out; 2913 r = 0; 2914 break; 2915 } 2916 case KVM_GET_SUPPORTED_CPUID: 2917 case KVM_GET_EMULATED_CPUID: { 2918 struct kvm_cpuid2 __user *cpuid_arg = argp; 2919 struct kvm_cpuid2 cpuid; 2920 2921 r = -EFAULT; 2922 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2923 goto out; 2924 2925 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2926 ioctl); 2927 if (r) 2928 goto out; 2929 2930 r = -EFAULT; 2931 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2932 goto out; 2933 r = 0; 2934 break; 2935 } 2936 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2937 r = -EFAULT; 2938 if (copy_to_user(argp, &kvm_mce_cap_supported, 2939 sizeof(kvm_mce_cap_supported))) 2940 goto out; 2941 r = 0; 2942 break; 2943 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 2944 struct kvm_msr_list __user *user_msr_list = argp; 2945 struct kvm_msr_list msr_list; 2946 unsigned int n; 2947 2948 r = -EFAULT; 2949 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 2950 goto out; 2951 n = msr_list.nmsrs; 2952 msr_list.nmsrs = num_msr_based_features; 2953 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 2954 goto out; 2955 r = -E2BIG; 2956 if (n < msr_list.nmsrs) 2957 goto out; 2958 r = -EFAULT; 2959 if (copy_to_user(user_msr_list->indices, &msr_based_features, 2960 num_msr_based_features * sizeof(u32))) 2961 goto out; 2962 r = 0; 2963 break; 2964 } 2965 case KVM_GET_MSRS: 2966 r = msr_io(NULL, argp, do_get_msr_feature, 1); 2967 break; 2968 } 2969 default: 2970 r = -EINVAL; 2971 } 2972 out: 2973 return r; 2974 } 2975 2976 static void wbinvd_ipi(void *garbage) 2977 { 2978 wbinvd(); 2979 } 2980 2981 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2982 { 2983 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2984 } 2985 2986 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2987 { 2988 /* Address WBINVD may be executed by guest */ 2989 if (need_emulate_wbinvd(vcpu)) { 2990 if (kvm_x86_ops->has_wbinvd_exit()) 2991 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2992 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2993 smp_call_function_single(vcpu->cpu, 2994 wbinvd_ipi, NULL, 1); 2995 } 2996 2997 kvm_x86_ops->vcpu_load(vcpu, cpu); 2998 2999 /* Apply any externally detected TSC adjustments (due to suspend) */ 3000 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3001 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3002 vcpu->arch.tsc_offset_adjustment = 0; 3003 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3004 } 3005 3006 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3007 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3008 rdtsc() - vcpu->arch.last_host_tsc; 3009 if (tsc_delta < 0) 3010 mark_tsc_unstable("KVM discovered backwards TSC"); 3011 3012 if (kvm_check_tsc_unstable()) { 3013 u64 offset = kvm_compute_tsc_offset(vcpu, 3014 vcpu->arch.last_guest_tsc); 3015 kvm_vcpu_write_tsc_offset(vcpu, offset); 3016 vcpu->arch.tsc_catchup = 1; 3017 } 3018 3019 if (kvm_lapic_hv_timer_in_use(vcpu)) 3020 kvm_lapic_restart_hv_timer(vcpu); 3021 3022 /* 3023 * On a host with synchronized TSC, there is no need to update 3024 * kvmclock on vcpu->cpu migration 3025 */ 3026 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3027 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3028 if (vcpu->cpu != cpu) 3029 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3030 vcpu->cpu = cpu; 3031 } 3032 3033 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3034 } 3035 3036 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3037 { 3038 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3039 return; 3040 3041 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; 3042 3043 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 3044 &vcpu->arch.st.steal.preempted, 3045 offsetof(struct kvm_steal_time, preempted), 3046 sizeof(vcpu->arch.st.steal.preempted)); 3047 } 3048 3049 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3050 { 3051 int idx; 3052 3053 if (vcpu->preempted) 3054 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3055 3056 /* 3057 * Disable page faults because we're in atomic context here. 3058 * kvm_write_guest_offset_cached() would call might_fault() 3059 * that relies on pagefault_disable() to tell if there's a 3060 * bug. NOTE: the write to guest memory may not go through if 3061 * during postcopy live migration or if there's heavy guest 3062 * paging. 3063 */ 3064 pagefault_disable(); 3065 /* 3066 * kvm_memslots() will be called by 3067 * kvm_write_guest_offset_cached() so take the srcu lock. 3068 */ 3069 idx = srcu_read_lock(&vcpu->kvm->srcu); 3070 kvm_steal_time_set_preempted(vcpu); 3071 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3072 pagefault_enable(); 3073 kvm_x86_ops->vcpu_put(vcpu); 3074 vcpu->arch.last_host_tsc = rdtsc(); 3075 /* 3076 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3077 * on every vmexit, but if not, we might have a stale dr6 from the 3078 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3079 */ 3080 set_debugreg(0, 6); 3081 } 3082 3083 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3084 struct kvm_lapic_state *s) 3085 { 3086 if (vcpu->arch.apicv_active) 3087 kvm_x86_ops->sync_pir_to_irr(vcpu); 3088 3089 return kvm_apic_get_state(vcpu, s); 3090 } 3091 3092 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3093 struct kvm_lapic_state *s) 3094 { 3095 int r; 3096 3097 r = kvm_apic_set_state(vcpu, s); 3098 if (r) 3099 return r; 3100 update_cr8_intercept(vcpu); 3101 3102 return 0; 3103 } 3104 3105 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3106 { 3107 return (!lapic_in_kernel(vcpu) || 3108 kvm_apic_accept_pic_intr(vcpu)); 3109 } 3110 3111 /* 3112 * if userspace requested an interrupt window, check that the 3113 * interrupt window is open. 3114 * 3115 * No need to exit to userspace if we already have an interrupt queued. 3116 */ 3117 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3118 { 3119 return kvm_arch_interrupt_allowed(vcpu) && 3120 !kvm_cpu_has_interrupt(vcpu) && 3121 !kvm_event_needs_reinjection(vcpu) && 3122 kvm_cpu_accept_dm_intr(vcpu); 3123 } 3124 3125 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3126 struct kvm_interrupt *irq) 3127 { 3128 if (irq->irq >= KVM_NR_INTERRUPTS) 3129 return -EINVAL; 3130 3131 if (!irqchip_in_kernel(vcpu->kvm)) { 3132 kvm_queue_interrupt(vcpu, irq->irq, false); 3133 kvm_make_request(KVM_REQ_EVENT, vcpu); 3134 return 0; 3135 } 3136 3137 /* 3138 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3139 * fail for in-kernel 8259. 3140 */ 3141 if (pic_in_kernel(vcpu->kvm)) 3142 return -ENXIO; 3143 3144 if (vcpu->arch.pending_external_vector != -1) 3145 return -EEXIST; 3146 3147 vcpu->arch.pending_external_vector = irq->irq; 3148 kvm_make_request(KVM_REQ_EVENT, vcpu); 3149 return 0; 3150 } 3151 3152 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3153 { 3154 kvm_inject_nmi(vcpu); 3155 3156 return 0; 3157 } 3158 3159 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3160 { 3161 kvm_make_request(KVM_REQ_SMI, vcpu); 3162 3163 return 0; 3164 } 3165 3166 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3167 struct kvm_tpr_access_ctl *tac) 3168 { 3169 if (tac->flags) 3170 return -EINVAL; 3171 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3172 return 0; 3173 } 3174 3175 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3176 u64 mcg_cap) 3177 { 3178 int r; 3179 unsigned bank_num = mcg_cap & 0xff, bank; 3180 3181 r = -EINVAL; 3182 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3183 goto out; 3184 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3185 goto out; 3186 r = 0; 3187 vcpu->arch.mcg_cap = mcg_cap; 3188 /* Init IA32_MCG_CTL to all 1s */ 3189 if (mcg_cap & MCG_CTL_P) 3190 vcpu->arch.mcg_ctl = ~(u64)0; 3191 /* Init IA32_MCi_CTL to all 1s */ 3192 for (bank = 0; bank < bank_num; bank++) 3193 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3194 3195 if (kvm_x86_ops->setup_mce) 3196 kvm_x86_ops->setup_mce(vcpu); 3197 out: 3198 return r; 3199 } 3200 3201 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3202 struct kvm_x86_mce *mce) 3203 { 3204 u64 mcg_cap = vcpu->arch.mcg_cap; 3205 unsigned bank_num = mcg_cap & 0xff; 3206 u64 *banks = vcpu->arch.mce_banks; 3207 3208 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3209 return -EINVAL; 3210 /* 3211 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3212 * reporting is disabled 3213 */ 3214 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3215 vcpu->arch.mcg_ctl != ~(u64)0) 3216 return 0; 3217 banks += 4 * mce->bank; 3218 /* 3219 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3220 * reporting is disabled for the bank 3221 */ 3222 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3223 return 0; 3224 if (mce->status & MCI_STATUS_UC) { 3225 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3226 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3228 return 0; 3229 } 3230 if (banks[1] & MCI_STATUS_VAL) 3231 mce->status |= MCI_STATUS_OVER; 3232 banks[2] = mce->addr; 3233 banks[3] = mce->misc; 3234 vcpu->arch.mcg_status = mce->mcg_status; 3235 banks[1] = mce->status; 3236 kvm_queue_exception(vcpu, MC_VECTOR); 3237 } else if (!(banks[1] & MCI_STATUS_VAL) 3238 || !(banks[1] & MCI_STATUS_UC)) { 3239 if (banks[1] & MCI_STATUS_VAL) 3240 mce->status |= MCI_STATUS_OVER; 3241 banks[2] = mce->addr; 3242 banks[3] = mce->misc; 3243 banks[1] = mce->status; 3244 } else 3245 banks[1] |= MCI_STATUS_OVER; 3246 return 0; 3247 } 3248 3249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3250 struct kvm_vcpu_events *events) 3251 { 3252 process_nmi(vcpu); 3253 /* 3254 * FIXME: pass injected and pending separately. This is only 3255 * needed for nested virtualization, whose state cannot be 3256 * migrated yet. For now we can combine them. 3257 */ 3258 events->exception.injected = 3259 (vcpu->arch.exception.pending || 3260 vcpu->arch.exception.injected) && 3261 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3262 events->exception.nr = vcpu->arch.exception.nr; 3263 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3264 events->exception.pad = 0; 3265 events->exception.error_code = vcpu->arch.exception.error_code; 3266 3267 events->interrupt.injected = 3268 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3269 events->interrupt.nr = vcpu->arch.interrupt.nr; 3270 events->interrupt.soft = 0; 3271 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3272 3273 events->nmi.injected = vcpu->arch.nmi_injected; 3274 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3275 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3276 events->nmi.pad = 0; 3277 3278 events->sipi_vector = 0; /* never valid when reporting to user space */ 3279 3280 events->smi.smm = is_smm(vcpu); 3281 events->smi.pending = vcpu->arch.smi_pending; 3282 events->smi.smm_inside_nmi = 3283 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3284 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3285 3286 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3287 | KVM_VCPUEVENT_VALID_SHADOW 3288 | KVM_VCPUEVENT_VALID_SMM); 3289 memset(&events->reserved, 0, sizeof(events->reserved)); 3290 } 3291 3292 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3293 3294 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3295 struct kvm_vcpu_events *events) 3296 { 3297 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3298 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3299 | KVM_VCPUEVENT_VALID_SHADOW 3300 | KVM_VCPUEVENT_VALID_SMM)) 3301 return -EINVAL; 3302 3303 if (events->exception.injected && 3304 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || 3305 is_guest_mode(vcpu))) 3306 return -EINVAL; 3307 3308 /* INITs are latched while in SMM */ 3309 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3310 (events->smi.smm || events->smi.pending) && 3311 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3312 return -EINVAL; 3313 3314 process_nmi(vcpu); 3315 vcpu->arch.exception.injected = false; 3316 vcpu->arch.exception.pending = events->exception.injected; 3317 vcpu->arch.exception.nr = events->exception.nr; 3318 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3319 vcpu->arch.exception.error_code = events->exception.error_code; 3320 3321 vcpu->arch.interrupt.pending = events->interrupt.injected; 3322 vcpu->arch.interrupt.nr = events->interrupt.nr; 3323 vcpu->arch.interrupt.soft = events->interrupt.soft; 3324 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3325 kvm_x86_ops->set_interrupt_shadow(vcpu, 3326 events->interrupt.shadow); 3327 3328 vcpu->arch.nmi_injected = events->nmi.injected; 3329 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3330 vcpu->arch.nmi_pending = events->nmi.pending; 3331 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3332 3333 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3334 lapic_in_kernel(vcpu)) 3335 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3336 3337 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3338 u32 hflags = vcpu->arch.hflags; 3339 if (events->smi.smm) 3340 hflags |= HF_SMM_MASK; 3341 else 3342 hflags &= ~HF_SMM_MASK; 3343 kvm_set_hflags(vcpu, hflags); 3344 3345 vcpu->arch.smi_pending = events->smi.pending; 3346 3347 if (events->smi.smm) { 3348 if (events->smi.smm_inside_nmi) 3349 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3350 else 3351 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3352 if (lapic_in_kernel(vcpu)) { 3353 if (events->smi.latched_init) 3354 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3355 else 3356 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3357 } 3358 } 3359 } 3360 3361 kvm_make_request(KVM_REQ_EVENT, vcpu); 3362 3363 return 0; 3364 } 3365 3366 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3367 struct kvm_debugregs *dbgregs) 3368 { 3369 unsigned long val; 3370 3371 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3372 kvm_get_dr(vcpu, 6, &val); 3373 dbgregs->dr6 = val; 3374 dbgregs->dr7 = vcpu->arch.dr7; 3375 dbgregs->flags = 0; 3376 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3377 } 3378 3379 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3380 struct kvm_debugregs *dbgregs) 3381 { 3382 if (dbgregs->flags) 3383 return -EINVAL; 3384 3385 if (dbgregs->dr6 & ~0xffffffffull) 3386 return -EINVAL; 3387 if (dbgregs->dr7 & ~0xffffffffull) 3388 return -EINVAL; 3389 3390 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3391 kvm_update_dr0123(vcpu); 3392 vcpu->arch.dr6 = dbgregs->dr6; 3393 kvm_update_dr6(vcpu); 3394 vcpu->arch.dr7 = dbgregs->dr7; 3395 kvm_update_dr7(vcpu); 3396 3397 return 0; 3398 } 3399 3400 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3401 3402 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3403 { 3404 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3405 u64 xstate_bv = xsave->header.xfeatures; 3406 u64 valid; 3407 3408 /* 3409 * Copy legacy XSAVE area, to avoid complications with CPUID 3410 * leaves 0 and 1 in the loop below. 3411 */ 3412 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3413 3414 /* Set XSTATE_BV */ 3415 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3416 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3417 3418 /* 3419 * Copy each region from the possibly compacted offset to the 3420 * non-compacted offset. 3421 */ 3422 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3423 while (valid) { 3424 u64 feature = valid & -valid; 3425 int index = fls64(feature) - 1; 3426 void *src = get_xsave_addr(xsave, feature); 3427 3428 if (src) { 3429 u32 size, offset, ecx, edx; 3430 cpuid_count(XSTATE_CPUID, index, 3431 &size, &offset, &ecx, &edx); 3432 if (feature == XFEATURE_MASK_PKRU) 3433 memcpy(dest + offset, &vcpu->arch.pkru, 3434 sizeof(vcpu->arch.pkru)); 3435 else 3436 memcpy(dest + offset, src, size); 3437 3438 } 3439 3440 valid -= feature; 3441 } 3442 } 3443 3444 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3445 { 3446 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3447 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3448 u64 valid; 3449 3450 /* 3451 * Copy legacy XSAVE area, to avoid complications with CPUID 3452 * leaves 0 and 1 in the loop below. 3453 */ 3454 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3455 3456 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3457 xsave->header.xfeatures = xstate_bv; 3458 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3459 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3460 3461 /* 3462 * Copy each region from the non-compacted offset to the 3463 * possibly compacted offset. 3464 */ 3465 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3466 while (valid) { 3467 u64 feature = valid & -valid; 3468 int index = fls64(feature) - 1; 3469 void *dest = get_xsave_addr(xsave, feature); 3470 3471 if (dest) { 3472 u32 size, offset, ecx, edx; 3473 cpuid_count(XSTATE_CPUID, index, 3474 &size, &offset, &ecx, &edx); 3475 if (feature == XFEATURE_MASK_PKRU) 3476 memcpy(&vcpu->arch.pkru, src + offset, 3477 sizeof(vcpu->arch.pkru)); 3478 else 3479 memcpy(dest, src + offset, size); 3480 } 3481 3482 valid -= feature; 3483 } 3484 } 3485 3486 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3487 struct kvm_xsave *guest_xsave) 3488 { 3489 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3490 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3491 fill_xsave((u8 *) guest_xsave->region, vcpu); 3492 } else { 3493 memcpy(guest_xsave->region, 3494 &vcpu->arch.guest_fpu.state.fxsave, 3495 sizeof(struct fxregs_state)); 3496 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3497 XFEATURE_MASK_FPSSE; 3498 } 3499 } 3500 3501 #define XSAVE_MXCSR_OFFSET 24 3502 3503 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3504 struct kvm_xsave *guest_xsave) 3505 { 3506 u64 xstate_bv = 3507 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3508 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3509 3510 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3511 /* 3512 * Here we allow setting states that are not present in 3513 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3514 * with old userspace. 3515 */ 3516 if (xstate_bv & ~kvm_supported_xcr0() || 3517 mxcsr & ~mxcsr_feature_mask) 3518 return -EINVAL; 3519 load_xsave(vcpu, (u8 *)guest_xsave->region); 3520 } else { 3521 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3522 mxcsr & ~mxcsr_feature_mask) 3523 return -EINVAL; 3524 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3525 guest_xsave->region, sizeof(struct fxregs_state)); 3526 } 3527 return 0; 3528 } 3529 3530 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3531 struct kvm_xcrs *guest_xcrs) 3532 { 3533 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3534 guest_xcrs->nr_xcrs = 0; 3535 return; 3536 } 3537 3538 guest_xcrs->nr_xcrs = 1; 3539 guest_xcrs->flags = 0; 3540 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3541 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3542 } 3543 3544 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3545 struct kvm_xcrs *guest_xcrs) 3546 { 3547 int i, r = 0; 3548 3549 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3550 return -EINVAL; 3551 3552 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3553 return -EINVAL; 3554 3555 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3556 /* Only support XCR0 currently */ 3557 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3558 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3559 guest_xcrs->xcrs[i].value); 3560 break; 3561 } 3562 if (r) 3563 r = -EINVAL; 3564 return r; 3565 } 3566 3567 /* 3568 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3569 * stopped by the hypervisor. This function will be called from the host only. 3570 * EINVAL is returned when the host attempts to set the flag for a guest that 3571 * does not support pv clocks. 3572 */ 3573 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3574 { 3575 if (!vcpu->arch.pv_time_enabled) 3576 return -EINVAL; 3577 vcpu->arch.pvclock_set_guest_stopped_request = true; 3578 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3579 return 0; 3580 } 3581 3582 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3583 struct kvm_enable_cap *cap) 3584 { 3585 if (cap->flags) 3586 return -EINVAL; 3587 3588 switch (cap->cap) { 3589 case KVM_CAP_HYPERV_SYNIC2: 3590 if (cap->args[0]) 3591 return -EINVAL; 3592 case KVM_CAP_HYPERV_SYNIC: 3593 if (!irqchip_in_kernel(vcpu->kvm)) 3594 return -EINVAL; 3595 return kvm_hv_activate_synic(vcpu, cap->cap == 3596 KVM_CAP_HYPERV_SYNIC2); 3597 default: 3598 return -EINVAL; 3599 } 3600 } 3601 3602 long kvm_arch_vcpu_ioctl(struct file *filp, 3603 unsigned int ioctl, unsigned long arg) 3604 { 3605 struct kvm_vcpu *vcpu = filp->private_data; 3606 void __user *argp = (void __user *)arg; 3607 int r; 3608 union { 3609 struct kvm_lapic_state *lapic; 3610 struct kvm_xsave *xsave; 3611 struct kvm_xcrs *xcrs; 3612 void *buffer; 3613 } u; 3614 3615 vcpu_load(vcpu); 3616 3617 u.buffer = NULL; 3618 switch (ioctl) { 3619 case KVM_GET_LAPIC: { 3620 r = -EINVAL; 3621 if (!lapic_in_kernel(vcpu)) 3622 goto out; 3623 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3624 3625 r = -ENOMEM; 3626 if (!u.lapic) 3627 goto out; 3628 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3629 if (r) 3630 goto out; 3631 r = -EFAULT; 3632 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3633 goto out; 3634 r = 0; 3635 break; 3636 } 3637 case KVM_SET_LAPIC: { 3638 r = -EINVAL; 3639 if (!lapic_in_kernel(vcpu)) 3640 goto out; 3641 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3642 if (IS_ERR(u.lapic)) { 3643 r = PTR_ERR(u.lapic); 3644 goto out_nofree; 3645 } 3646 3647 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3648 break; 3649 } 3650 case KVM_INTERRUPT: { 3651 struct kvm_interrupt irq; 3652 3653 r = -EFAULT; 3654 if (copy_from_user(&irq, argp, sizeof irq)) 3655 goto out; 3656 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3657 break; 3658 } 3659 case KVM_NMI: { 3660 r = kvm_vcpu_ioctl_nmi(vcpu); 3661 break; 3662 } 3663 case KVM_SMI: { 3664 r = kvm_vcpu_ioctl_smi(vcpu); 3665 break; 3666 } 3667 case KVM_SET_CPUID: { 3668 struct kvm_cpuid __user *cpuid_arg = argp; 3669 struct kvm_cpuid cpuid; 3670 3671 r = -EFAULT; 3672 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3673 goto out; 3674 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3675 break; 3676 } 3677 case KVM_SET_CPUID2: { 3678 struct kvm_cpuid2 __user *cpuid_arg = argp; 3679 struct kvm_cpuid2 cpuid; 3680 3681 r = -EFAULT; 3682 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3683 goto out; 3684 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3685 cpuid_arg->entries); 3686 break; 3687 } 3688 case KVM_GET_CPUID2: { 3689 struct kvm_cpuid2 __user *cpuid_arg = argp; 3690 struct kvm_cpuid2 cpuid; 3691 3692 r = -EFAULT; 3693 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3694 goto out; 3695 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3696 cpuid_arg->entries); 3697 if (r) 3698 goto out; 3699 r = -EFAULT; 3700 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3701 goto out; 3702 r = 0; 3703 break; 3704 } 3705 case KVM_GET_MSRS: { 3706 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3707 r = msr_io(vcpu, argp, do_get_msr, 1); 3708 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3709 break; 3710 } 3711 case KVM_SET_MSRS: { 3712 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3713 r = msr_io(vcpu, argp, do_set_msr, 0); 3714 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3715 break; 3716 } 3717 case KVM_TPR_ACCESS_REPORTING: { 3718 struct kvm_tpr_access_ctl tac; 3719 3720 r = -EFAULT; 3721 if (copy_from_user(&tac, argp, sizeof tac)) 3722 goto out; 3723 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3724 if (r) 3725 goto out; 3726 r = -EFAULT; 3727 if (copy_to_user(argp, &tac, sizeof tac)) 3728 goto out; 3729 r = 0; 3730 break; 3731 }; 3732 case KVM_SET_VAPIC_ADDR: { 3733 struct kvm_vapic_addr va; 3734 int idx; 3735 3736 r = -EINVAL; 3737 if (!lapic_in_kernel(vcpu)) 3738 goto out; 3739 r = -EFAULT; 3740 if (copy_from_user(&va, argp, sizeof va)) 3741 goto out; 3742 idx = srcu_read_lock(&vcpu->kvm->srcu); 3743 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3744 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3745 break; 3746 } 3747 case KVM_X86_SETUP_MCE: { 3748 u64 mcg_cap; 3749 3750 r = -EFAULT; 3751 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3752 goto out; 3753 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3754 break; 3755 } 3756 case KVM_X86_SET_MCE: { 3757 struct kvm_x86_mce mce; 3758 3759 r = -EFAULT; 3760 if (copy_from_user(&mce, argp, sizeof mce)) 3761 goto out; 3762 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3763 break; 3764 } 3765 case KVM_GET_VCPU_EVENTS: { 3766 struct kvm_vcpu_events events; 3767 3768 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3769 3770 r = -EFAULT; 3771 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3772 break; 3773 r = 0; 3774 break; 3775 } 3776 case KVM_SET_VCPU_EVENTS: { 3777 struct kvm_vcpu_events events; 3778 3779 r = -EFAULT; 3780 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3781 break; 3782 3783 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3784 break; 3785 } 3786 case KVM_GET_DEBUGREGS: { 3787 struct kvm_debugregs dbgregs; 3788 3789 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3790 3791 r = -EFAULT; 3792 if (copy_to_user(argp, &dbgregs, 3793 sizeof(struct kvm_debugregs))) 3794 break; 3795 r = 0; 3796 break; 3797 } 3798 case KVM_SET_DEBUGREGS: { 3799 struct kvm_debugregs dbgregs; 3800 3801 r = -EFAULT; 3802 if (copy_from_user(&dbgregs, argp, 3803 sizeof(struct kvm_debugregs))) 3804 break; 3805 3806 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3807 break; 3808 } 3809 case KVM_GET_XSAVE: { 3810 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3811 r = -ENOMEM; 3812 if (!u.xsave) 3813 break; 3814 3815 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3816 3817 r = -EFAULT; 3818 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3819 break; 3820 r = 0; 3821 break; 3822 } 3823 case KVM_SET_XSAVE: { 3824 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3825 if (IS_ERR(u.xsave)) { 3826 r = PTR_ERR(u.xsave); 3827 goto out_nofree; 3828 } 3829 3830 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3831 break; 3832 } 3833 case KVM_GET_XCRS: { 3834 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3835 r = -ENOMEM; 3836 if (!u.xcrs) 3837 break; 3838 3839 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3840 3841 r = -EFAULT; 3842 if (copy_to_user(argp, u.xcrs, 3843 sizeof(struct kvm_xcrs))) 3844 break; 3845 r = 0; 3846 break; 3847 } 3848 case KVM_SET_XCRS: { 3849 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3850 if (IS_ERR(u.xcrs)) { 3851 r = PTR_ERR(u.xcrs); 3852 goto out_nofree; 3853 } 3854 3855 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3856 break; 3857 } 3858 case KVM_SET_TSC_KHZ: { 3859 u32 user_tsc_khz; 3860 3861 r = -EINVAL; 3862 user_tsc_khz = (u32)arg; 3863 3864 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3865 goto out; 3866 3867 if (user_tsc_khz == 0) 3868 user_tsc_khz = tsc_khz; 3869 3870 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3871 r = 0; 3872 3873 goto out; 3874 } 3875 case KVM_GET_TSC_KHZ: { 3876 r = vcpu->arch.virtual_tsc_khz; 3877 goto out; 3878 } 3879 case KVM_KVMCLOCK_CTRL: { 3880 r = kvm_set_guest_paused(vcpu); 3881 goto out; 3882 } 3883 case KVM_ENABLE_CAP: { 3884 struct kvm_enable_cap cap; 3885 3886 r = -EFAULT; 3887 if (copy_from_user(&cap, argp, sizeof(cap))) 3888 goto out; 3889 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3890 break; 3891 } 3892 default: 3893 r = -EINVAL; 3894 } 3895 out: 3896 kfree(u.buffer); 3897 out_nofree: 3898 vcpu_put(vcpu); 3899 return r; 3900 } 3901 3902 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3903 { 3904 return VM_FAULT_SIGBUS; 3905 } 3906 3907 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3908 { 3909 int ret; 3910 3911 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3912 return -EINVAL; 3913 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3914 return ret; 3915 } 3916 3917 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3918 u64 ident_addr) 3919 { 3920 kvm->arch.ept_identity_map_addr = ident_addr; 3921 return 0; 3922 } 3923 3924 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3925 u32 kvm_nr_mmu_pages) 3926 { 3927 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3928 return -EINVAL; 3929 3930 mutex_lock(&kvm->slots_lock); 3931 3932 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3933 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3934 3935 mutex_unlock(&kvm->slots_lock); 3936 return 0; 3937 } 3938 3939 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3940 { 3941 return kvm->arch.n_max_mmu_pages; 3942 } 3943 3944 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3945 { 3946 struct kvm_pic *pic = kvm->arch.vpic; 3947 int r; 3948 3949 r = 0; 3950 switch (chip->chip_id) { 3951 case KVM_IRQCHIP_PIC_MASTER: 3952 memcpy(&chip->chip.pic, &pic->pics[0], 3953 sizeof(struct kvm_pic_state)); 3954 break; 3955 case KVM_IRQCHIP_PIC_SLAVE: 3956 memcpy(&chip->chip.pic, &pic->pics[1], 3957 sizeof(struct kvm_pic_state)); 3958 break; 3959 case KVM_IRQCHIP_IOAPIC: 3960 kvm_get_ioapic(kvm, &chip->chip.ioapic); 3961 break; 3962 default: 3963 r = -EINVAL; 3964 break; 3965 } 3966 return r; 3967 } 3968 3969 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3970 { 3971 struct kvm_pic *pic = kvm->arch.vpic; 3972 int r; 3973 3974 r = 0; 3975 switch (chip->chip_id) { 3976 case KVM_IRQCHIP_PIC_MASTER: 3977 spin_lock(&pic->lock); 3978 memcpy(&pic->pics[0], &chip->chip.pic, 3979 sizeof(struct kvm_pic_state)); 3980 spin_unlock(&pic->lock); 3981 break; 3982 case KVM_IRQCHIP_PIC_SLAVE: 3983 spin_lock(&pic->lock); 3984 memcpy(&pic->pics[1], &chip->chip.pic, 3985 sizeof(struct kvm_pic_state)); 3986 spin_unlock(&pic->lock); 3987 break; 3988 case KVM_IRQCHIP_IOAPIC: 3989 kvm_set_ioapic(kvm, &chip->chip.ioapic); 3990 break; 3991 default: 3992 r = -EINVAL; 3993 break; 3994 } 3995 kvm_pic_update_irq(pic); 3996 return r; 3997 } 3998 3999 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4000 { 4001 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4002 4003 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4004 4005 mutex_lock(&kps->lock); 4006 memcpy(ps, &kps->channels, sizeof(*ps)); 4007 mutex_unlock(&kps->lock); 4008 return 0; 4009 } 4010 4011 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4012 { 4013 int i; 4014 struct kvm_pit *pit = kvm->arch.vpit; 4015 4016 mutex_lock(&pit->pit_state.lock); 4017 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4018 for (i = 0; i < 3; i++) 4019 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4020 mutex_unlock(&pit->pit_state.lock); 4021 return 0; 4022 } 4023 4024 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4025 { 4026 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4027 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4028 sizeof(ps->channels)); 4029 ps->flags = kvm->arch.vpit->pit_state.flags; 4030 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4031 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4032 return 0; 4033 } 4034 4035 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4036 { 4037 int start = 0; 4038 int i; 4039 u32 prev_legacy, cur_legacy; 4040 struct kvm_pit *pit = kvm->arch.vpit; 4041 4042 mutex_lock(&pit->pit_state.lock); 4043 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4044 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4045 if (!prev_legacy && cur_legacy) 4046 start = 1; 4047 memcpy(&pit->pit_state.channels, &ps->channels, 4048 sizeof(pit->pit_state.channels)); 4049 pit->pit_state.flags = ps->flags; 4050 for (i = 0; i < 3; i++) 4051 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4052 start && i == 0); 4053 mutex_unlock(&pit->pit_state.lock); 4054 return 0; 4055 } 4056 4057 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4058 struct kvm_reinject_control *control) 4059 { 4060 struct kvm_pit *pit = kvm->arch.vpit; 4061 4062 if (!pit) 4063 return -ENXIO; 4064 4065 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4066 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4067 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4068 */ 4069 mutex_lock(&pit->pit_state.lock); 4070 kvm_pit_set_reinject(pit, control->pit_reinject); 4071 mutex_unlock(&pit->pit_state.lock); 4072 4073 return 0; 4074 } 4075 4076 /** 4077 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4078 * @kvm: kvm instance 4079 * @log: slot id and address to which we copy the log 4080 * 4081 * Steps 1-4 below provide general overview of dirty page logging. See 4082 * kvm_get_dirty_log_protect() function description for additional details. 4083 * 4084 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4085 * always flush the TLB (step 4) even if previous step failed and the dirty 4086 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4087 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4088 * writes will be marked dirty for next log read. 4089 * 4090 * 1. Take a snapshot of the bit and clear it if needed. 4091 * 2. Write protect the corresponding page. 4092 * 3. Copy the snapshot to the userspace. 4093 * 4. Flush TLB's if needed. 4094 */ 4095 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4096 { 4097 bool is_dirty = false; 4098 int r; 4099 4100 mutex_lock(&kvm->slots_lock); 4101 4102 /* 4103 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4104 */ 4105 if (kvm_x86_ops->flush_log_dirty) 4106 kvm_x86_ops->flush_log_dirty(kvm); 4107 4108 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 4109 4110 /* 4111 * All the TLBs can be flushed out of mmu lock, see the comments in 4112 * kvm_mmu_slot_remove_write_access(). 4113 */ 4114 lockdep_assert_held(&kvm->slots_lock); 4115 if (is_dirty) 4116 kvm_flush_remote_tlbs(kvm); 4117 4118 mutex_unlock(&kvm->slots_lock); 4119 return r; 4120 } 4121 4122 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4123 bool line_status) 4124 { 4125 if (!irqchip_in_kernel(kvm)) 4126 return -ENXIO; 4127 4128 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4129 irq_event->irq, irq_event->level, 4130 line_status); 4131 return 0; 4132 } 4133 4134 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4135 struct kvm_enable_cap *cap) 4136 { 4137 int r; 4138 4139 if (cap->flags) 4140 return -EINVAL; 4141 4142 switch (cap->cap) { 4143 case KVM_CAP_DISABLE_QUIRKS: 4144 kvm->arch.disabled_quirks = cap->args[0]; 4145 r = 0; 4146 break; 4147 case KVM_CAP_SPLIT_IRQCHIP: { 4148 mutex_lock(&kvm->lock); 4149 r = -EINVAL; 4150 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4151 goto split_irqchip_unlock; 4152 r = -EEXIST; 4153 if (irqchip_in_kernel(kvm)) 4154 goto split_irqchip_unlock; 4155 if (kvm->created_vcpus) 4156 goto split_irqchip_unlock; 4157 r = kvm_setup_empty_irq_routing(kvm); 4158 if (r) 4159 goto split_irqchip_unlock; 4160 /* Pairs with irqchip_in_kernel. */ 4161 smp_wmb(); 4162 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4163 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4164 r = 0; 4165 split_irqchip_unlock: 4166 mutex_unlock(&kvm->lock); 4167 break; 4168 } 4169 case KVM_CAP_X2APIC_API: 4170 r = -EINVAL; 4171 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4172 break; 4173 4174 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4175 kvm->arch.x2apic_format = true; 4176 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4177 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4178 4179 r = 0; 4180 break; 4181 default: 4182 r = -EINVAL; 4183 break; 4184 } 4185 return r; 4186 } 4187 4188 long kvm_arch_vm_ioctl(struct file *filp, 4189 unsigned int ioctl, unsigned long arg) 4190 { 4191 struct kvm *kvm = filp->private_data; 4192 void __user *argp = (void __user *)arg; 4193 int r = -ENOTTY; 4194 /* 4195 * This union makes it completely explicit to gcc-3.x 4196 * that these two variables' stack usage should be 4197 * combined, not added together. 4198 */ 4199 union { 4200 struct kvm_pit_state ps; 4201 struct kvm_pit_state2 ps2; 4202 struct kvm_pit_config pit_config; 4203 } u; 4204 4205 switch (ioctl) { 4206 case KVM_SET_TSS_ADDR: 4207 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4208 break; 4209 case KVM_SET_IDENTITY_MAP_ADDR: { 4210 u64 ident_addr; 4211 4212 mutex_lock(&kvm->lock); 4213 r = -EINVAL; 4214 if (kvm->created_vcpus) 4215 goto set_identity_unlock; 4216 r = -EFAULT; 4217 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 4218 goto set_identity_unlock; 4219 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4220 set_identity_unlock: 4221 mutex_unlock(&kvm->lock); 4222 break; 4223 } 4224 case KVM_SET_NR_MMU_PAGES: 4225 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4226 break; 4227 case KVM_GET_NR_MMU_PAGES: 4228 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4229 break; 4230 case KVM_CREATE_IRQCHIP: { 4231 mutex_lock(&kvm->lock); 4232 4233 r = -EEXIST; 4234 if (irqchip_in_kernel(kvm)) 4235 goto create_irqchip_unlock; 4236 4237 r = -EINVAL; 4238 if (kvm->created_vcpus) 4239 goto create_irqchip_unlock; 4240 4241 r = kvm_pic_init(kvm); 4242 if (r) 4243 goto create_irqchip_unlock; 4244 4245 r = kvm_ioapic_init(kvm); 4246 if (r) { 4247 kvm_pic_destroy(kvm); 4248 goto create_irqchip_unlock; 4249 } 4250 4251 r = kvm_setup_default_irq_routing(kvm); 4252 if (r) { 4253 kvm_ioapic_destroy(kvm); 4254 kvm_pic_destroy(kvm); 4255 goto create_irqchip_unlock; 4256 } 4257 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4258 smp_wmb(); 4259 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4260 create_irqchip_unlock: 4261 mutex_unlock(&kvm->lock); 4262 break; 4263 } 4264 case KVM_CREATE_PIT: 4265 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4266 goto create_pit; 4267 case KVM_CREATE_PIT2: 4268 r = -EFAULT; 4269 if (copy_from_user(&u.pit_config, argp, 4270 sizeof(struct kvm_pit_config))) 4271 goto out; 4272 create_pit: 4273 mutex_lock(&kvm->lock); 4274 r = -EEXIST; 4275 if (kvm->arch.vpit) 4276 goto create_pit_unlock; 4277 r = -ENOMEM; 4278 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4279 if (kvm->arch.vpit) 4280 r = 0; 4281 create_pit_unlock: 4282 mutex_unlock(&kvm->lock); 4283 break; 4284 case KVM_GET_IRQCHIP: { 4285 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4286 struct kvm_irqchip *chip; 4287 4288 chip = memdup_user(argp, sizeof(*chip)); 4289 if (IS_ERR(chip)) { 4290 r = PTR_ERR(chip); 4291 goto out; 4292 } 4293 4294 r = -ENXIO; 4295 if (!irqchip_kernel(kvm)) 4296 goto get_irqchip_out; 4297 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4298 if (r) 4299 goto get_irqchip_out; 4300 r = -EFAULT; 4301 if (copy_to_user(argp, chip, sizeof *chip)) 4302 goto get_irqchip_out; 4303 r = 0; 4304 get_irqchip_out: 4305 kfree(chip); 4306 break; 4307 } 4308 case KVM_SET_IRQCHIP: { 4309 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4310 struct kvm_irqchip *chip; 4311 4312 chip = memdup_user(argp, sizeof(*chip)); 4313 if (IS_ERR(chip)) { 4314 r = PTR_ERR(chip); 4315 goto out; 4316 } 4317 4318 r = -ENXIO; 4319 if (!irqchip_kernel(kvm)) 4320 goto set_irqchip_out; 4321 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4322 if (r) 4323 goto set_irqchip_out; 4324 r = 0; 4325 set_irqchip_out: 4326 kfree(chip); 4327 break; 4328 } 4329 case KVM_GET_PIT: { 4330 r = -EFAULT; 4331 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4332 goto out; 4333 r = -ENXIO; 4334 if (!kvm->arch.vpit) 4335 goto out; 4336 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4337 if (r) 4338 goto out; 4339 r = -EFAULT; 4340 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4341 goto out; 4342 r = 0; 4343 break; 4344 } 4345 case KVM_SET_PIT: { 4346 r = -EFAULT; 4347 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4348 goto out; 4349 r = -ENXIO; 4350 if (!kvm->arch.vpit) 4351 goto out; 4352 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4353 break; 4354 } 4355 case KVM_GET_PIT2: { 4356 r = -ENXIO; 4357 if (!kvm->arch.vpit) 4358 goto out; 4359 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4360 if (r) 4361 goto out; 4362 r = -EFAULT; 4363 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4364 goto out; 4365 r = 0; 4366 break; 4367 } 4368 case KVM_SET_PIT2: { 4369 r = -EFAULT; 4370 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4371 goto out; 4372 r = -ENXIO; 4373 if (!kvm->arch.vpit) 4374 goto out; 4375 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4376 break; 4377 } 4378 case KVM_REINJECT_CONTROL: { 4379 struct kvm_reinject_control control; 4380 r = -EFAULT; 4381 if (copy_from_user(&control, argp, sizeof(control))) 4382 goto out; 4383 r = kvm_vm_ioctl_reinject(kvm, &control); 4384 break; 4385 } 4386 case KVM_SET_BOOT_CPU_ID: 4387 r = 0; 4388 mutex_lock(&kvm->lock); 4389 if (kvm->created_vcpus) 4390 r = -EBUSY; 4391 else 4392 kvm->arch.bsp_vcpu_id = arg; 4393 mutex_unlock(&kvm->lock); 4394 break; 4395 case KVM_XEN_HVM_CONFIG: { 4396 struct kvm_xen_hvm_config xhc; 4397 r = -EFAULT; 4398 if (copy_from_user(&xhc, argp, sizeof(xhc))) 4399 goto out; 4400 r = -EINVAL; 4401 if (xhc.flags) 4402 goto out; 4403 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 4404 r = 0; 4405 break; 4406 } 4407 case KVM_SET_CLOCK: { 4408 struct kvm_clock_data user_ns; 4409 u64 now_ns; 4410 4411 r = -EFAULT; 4412 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4413 goto out; 4414 4415 r = -EINVAL; 4416 if (user_ns.flags) 4417 goto out; 4418 4419 r = 0; 4420 /* 4421 * TODO: userspace has to take care of races with VCPU_RUN, so 4422 * kvm_gen_update_masterclock() can be cut down to locked 4423 * pvclock_update_vm_gtod_copy(). 4424 */ 4425 kvm_gen_update_masterclock(kvm); 4426 now_ns = get_kvmclock_ns(kvm); 4427 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4428 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4429 break; 4430 } 4431 case KVM_GET_CLOCK: { 4432 struct kvm_clock_data user_ns; 4433 u64 now_ns; 4434 4435 now_ns = get_kvmclock_ns(kvm); 4436 user_ns.clock = now_ns; 4437 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4438 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4439 4440 r = -EFAULT; 4441 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4442 goto out; 4443 r = 0; 4444 break; 4445 } 4446 case KVM_ENABLE_CAP: { 4447 struct kvm_enable_cap cap; 4448 4449 r = -EFAULT; 4450 if (copy_from_user(&cap, argp, sizeof(cap))) 4451 goto out; 4452 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4453 break; 4454 } 4455 case KVM_MEMORY_ENCRYPT_OP: { 4456 r = -ENOTTY; 4457 if (kvm_x86_ops->mem_enc_op) 4458 r = kvm_x86_ops->mem_enc_op(kvm, argp); 4459 break; 4460 } 4461 case KVM_MEMORY_ENCRYPT_REG_REGION: { 4462 struct kvm_enc_region region; 4463 4464 r = -EFAULT; 4465 if (copy_from_user(®ion, argp, sizeof(region))) 4466 goto out; 4467 4468 r = -ENOTTY; 4469 if (kvm_x86_ops->mem_enc_reg_region) 4470 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 4471 break; 4472 } 4473 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 4474 struct kvm_enc_region region; 4475 4476 r = -EFAULT; 4477 if (copy_from_user(®ion, argp, sizeof(region))) 4478 goto out; 4479 4480 r = -ENOTTY; 4481 if (kvm_x86_ops->mem_enc_unreg_region) 4482 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 4483 break; 4484 } 4485 default: 4486 r = -ENOTTY; 4487 } 4488 out: 4489 return r; 4490 } 4491 4492 static void kvm_init_msr_list(void) 4493 { 4494 u32 dummy[2]; 4495 unsigned i, j; 4496 4497 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4498 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4499 continue; 4500 4501 /* 4502 * Even MSRs that are valid in the host may not be exposed 4503 * to the guests in some cases. 4504 */ 4505 switch (msrs_to_save[i]) { 4506 case MSR_IA32_BNDCFGS: 4507 if (!kvm_x86_ops->mpx_supported()) 4508 continue; 4509 break; 4510 case MSR_TSC_AUX: 4511 if (!kvm_x86_ops->rdtscp_supported()) 4512 continue; 4513 break; 4514 default: 4515 break; 4516 } 4517 4518 if (j < i) 4519 msrs_to_save[j] = msrs_to_save[i]; 4520 j++; 4521 } 4522 num_msrs_to_save = j; 4523 4524 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4525 switch (emulated_msrs[i]) { 4526 case MSR_IA32_SMBASE: 4527 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4528 continue; 4529 break; 4530 default: 4531 break; 4532 } 4533 4534 if (j < i) 4535 emulated_msrs[j] = emulated_msrs[i]; 4536 j++; 4537 } 4538 num_emulated_msrs = j; 4539 4540 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { 4541 struct kvm_msr_entry msr; 4542 4543 msr.index = msr_based_features[i]; 4544 if (kvm_get_msr_feature(&msr)) 4545 continue; 4546 4547 if (j < i) 4548 msr_based_features[j] = msr_based_features[i]; 4549 j++; 4550 } 4551 num_msr_based_features = j; 4552 } 4553 4554 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4555 const void *v) 4556 { 4557 int handled = 0; 4558 int n; 4559 4560 do { 4561 n = min(len, 8); 4562 if (!(lapic_in_kernel(vcpu) && 4563 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4564 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4565 break; 4566 handled += n; 4567 addr += n; 4568 len -= n; 4569 v += n; 4570 } while (len); 4571 4572 return handled; 4573 } 4574 4575 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4576 { 4577 int handled = 0; 4578 int n; 4579 4580 do { 4581 n = min(len, 8); 4582 if (!(lapic_in_kernel(vcpu) && 4583 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4584 addr, n, v)) 4585 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4586 break; 4587 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 4588 handled += n; 4589 addr += n; 4590 len -= n; 4591 v += n; 4592 } while (len); 4593 4594 return handled; 4595 } 4596 4597 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4598 struct kvm_segment *var, int seg) 4599 { 4600 kvm_x86_ops->set_segment(vcpu, var, seg); 4601 } 4602 4603 void kvm_get_segment(struct kvm_vcpu *vcpu, 4604 struct kvm_segment *var, int seg) 4605 { 4606 kvm_x86_ops->get_segment(vcpu, var, seg); 4607 } 4608 4609 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4610 struct x86_exception *exception) 4611 { 4612 gpa_t t_gpa; 4613 4614 BUG_ON(!mmu_is_nested(vcpu)); 4615 4616 /* NPT walks are always user-walks */ 4617 access |= PFERR_USER_MASK; 4618 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4619 4620 return t_gpa; 4621 } 4622 4623 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4624 struct x86_exception *exception) 4625 { 4626 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4627 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4628 } 4629 4630 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4631 struct x86_exception *exception) 4632 { 4633 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4634 access |= PFERR_FETCH_MASK; 4635 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4636 } 4637 4638 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4639 struct x86_exception *exception) 4640 { 4641 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4642 access |= PFERR_WRITE_MASK; 4643 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4644 } 4645 4646 /* uses this to access any guest's mapped memory without checking CPL */ 4647 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4648 struct x86_exception *exception) 4649 { 4650 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4651 } 4652 4653 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4654 struct kvm_vcpu *vcpu, u32 access, 4655 struct x86_exception *exception) 4656 { 4657 void *data = val; 4658 int r = X86EMUL_CONTINUE; 4659 4660 while (bytes) { 4661 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4662 exception); 4663 unsigned offset = addr & (PAGE_SIZE-1); 4664 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4665 int ret; 4666 4667 if (gpa == UNMAPPED_GVA) 4668 return X86EMUL_PROPAGATE_FAULT; 4669 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4670 offset, toread); 4671 if (ret < 0) { 4672 r = X86EMUL_IO_NEEDED; 4673 goto out; 4674 } 4675 4676 bytes -= toread; 4677 data += toread; 4678 addr += toread; 4679 } 4680 out: 4681 return r; 4682 } 4683 4684 /* used for instruction fetching */ 4685 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4686 gva_t addr, void *val, unsigned int bytes, 4687 struct x86_exception *exception) 4688 { 4689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4690 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4691 unsigned offset; 4692 int ret; 4693 4694 /* Inline kvm_read_guest_virt_helper for speed. */ 4695 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4696 exception); 4697 if (unlikely(gpa == UNMAPPED_GVA)) 4698 return X86EMUL_PROPAGATE_FAULT; 4699 4700 offset = addr & (PAGE_SIZE-1); 4701 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4702 bytes = (unsigned)PAGE_SIZE - offset; 4703 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4704 offset, bytes); 4705 if (unlikely(ret < 0)) 4706 return X86EMUL_IO_NEEDED; 4707 4708 return X86EMUL_CONTINUE; 4709 } 4710 4711 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4712 gva_t addr, void *val, unsigned int bytes, 4713 struct x86_exception *exception) 4714 { 4715 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4716 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4717 4718 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4719 exception); 4720 } 4721 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4722 4723 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4724 gva_t addr, void *val, unsigned int bytes, 4725 struct x86_exception *exception) 4726 { 4727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4728 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4729 } 4730 4731 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4732 unsigned long addr, void *val, unsigned int bytes) 4733 { 4734 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4735 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4736 4737 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4738 } 4739 4740 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4741 gva_t addr, void *val, 4742 unsigned int bytes, 4743 struct x86_exception *exception) 4744 { 4745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4746 void *data = val; 4747 int r = X86EMUL_CONTINUE; 4748 4749 while (bytes) { 4750 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4751 PFERR_WRITE_MASK, 4752 exception); 4753 unsigned offset = addr & (PAGE_SIZE-1); 4754 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4755 int ret; 4756 4757 if (gpa == UNMAPPED_GVA) 4758 return X86EMUL_PROPAGATE_FAULT; 4759 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4760 if (ret < 0) { 4761 r = X86EMUL_IO_NEEDED; 4762 goto out; 4763 } 4764 4765 bytes -= towrite; 4766 data += towrite; 4767 addr += towrite; 4768 } 4769 out: 4770 return r; 4771 } 4772 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4773 4774 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4775 gpa_t gpa, bool write) 4776 { 4777 /* For APIC access vmexit */ 4778 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4779 return 1; 4780 4781 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4782 trace_vcpu_match_mmio(gva, gpa, write, true); 4783 return 1; 4784 } 4785 4786 return 0; 4787 } 4788 4789 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4790 gpa_t *gpa, struct x86_exception *exception, 4791 bool write) 4792 { 4793 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4794 | (write ? PFERR_WRITE_MASK : 0); 4795 4796 /* 4797 * currently PKRU is only applied to ept enabled guest so 4798 * there is no pkey in EPT page table for L1 guest or EPT 4799 * shadow page table for L2 guest. 4800 */ 4801 if (vcpu_match_mmio_gva(vcpu, gva) 4802 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4803 vcpu->arch.access, 0, access)) { 4804 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4805 (gva & (PAGE_SIZE - 1)); 4806 trace_vcpu_match_mmio(gva, *gpa, write, false); 4807 return 1; 4808 } 4809 4810 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4811 4812 if (*gpa == UNMAPPED_GVA) 4813 return -1; 4814 4815 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4816 } 4817 4818 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4819 const void *val, int bytes) 4820 { 4821 int ret; 4822 4823 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4824 if (ret < 0) 4825 return 0; 4826 kvm_page_track_write(vcpu, gpa, val, bytes); 4827 return 1; 4828 } 4829 4830 struct read_write_emulator_ops { 4831 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4832 int bytes); 4833 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4834 void *val, int bytes); 4835 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4836 int bytes, void *val); 4837 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4838 void *val, int bytes); 4839 bool write; 4840 }; 4841 4842 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4843 { 4844 if (vcpu->mmio_read_completed) { 4845 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4846 vcpu->mmio_fragments[0].gpa, val); 4847 vcpu->mmio_read_completed = 0; 4848 return 1; 4849 } 4850 4851 return 0; 4852 } 4853 4854 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4855 void *val, int bytes) 4856 { 4857 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4858 } 4859 4860 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4861 void *val, int bytes) 4862 { 4863 return emulator_write_phys(vcpu, gpa, val, bytes); 4864 } 4865 4866 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4867 { 4868 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 4869 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4870 } 4871 4872 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4873 void *val, int bytes) 4874 { 4875 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 4876 return X86EMUL_IO_NEEDED; 4877 } 4878 4879 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4880 void *val, int bytes) 4881 { 4882 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4883 4884 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4885 return X86EMUL_CONTINUE; 4886 } 4887 4888 static const struct read_write_emulator_ops read_emultor = { 4889 .read_write_prepare = read_prepare, 4890 .read_write_emulate = read_emulate, 4891 .read_write_mmio = vcpu_mmio_read, 4892 .read_write_exit_mmio = read_exit_mmio, 4893 }; 4894 4895 static const struct read_write_emulator_ops write_emultor = { 4896 .read_write_emulate = write_emulate, 4897 .read_write_mmio = write_mmio, 4898 .read_write_exit_mmio = write_exit_mmio, 4899 .write = true, 4900 }; 4901 4902 static int emulator_read_write_onepage(unsigned long addr, void *val, 4903 unsigned int bytes, 4904 struct x86_exception *exception, 4905 struct kvm_vcpu *vcpu, 4906 const struct read_write_emulator_ops *ops) 4907 { 4908 gpa_t gpa; 4909 int handled, ret; 4910 bool write = ops->write; 4911 struct kvm_mmio_fragment *frag; 4912 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4913 4914 /* 4915 * If the exit was due to a NPF we may already have a GPA. 4916 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4917 * Note, this cannot be used on string operations since string 4918 * operation using rep will only have the initial GPA from the NPF 4919 * occurred. 4920 */ 4921 if (vcpu->arch.gpa_available && 4922 emulator_can_use_gpa(ctxt) && 4923 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 4924 gpa = vcpu->arch.gpa_val; 4925 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 4926 } else { 4927 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4928 if (ret < 0) 4929 return X86EMUL_PROPAGATE_FAULT; 4930 } 4931 4932 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 4933 return X86EMUL_CONTINUE; 4934 4935 /* 4936 * Is this MMIO handled locally? 4937 */ 4938 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4939 if (handled == bytes) 4940 return X86EMUL_CONTINUE; 4941 4942 gpa += handled; 4943 bytes -= handled; 4944 val += handled; 4945 4946 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4947 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4948 frag->gpa = gpa; 4949 frag->data = val; 4950 frag->len = bytes; 4951 return X86EMUL_CONTINUE; 4952 } 4953 4954 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4955 unsigned long addr, 4956 void *val, unsigned int bytes, 4957 struct x86_exception *exception, 4958 const struct read_write_emulator_ops *ops) 4959 { 4960 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4961 gpa_t gpa; 4962 int rc; 4963 4964 if (ops->read_write_prepare && 4965 ops->read_write_prepare(vcpu, val, bytes)) 4966 return X86EMUL_CONTINUE; 4967 4968 vcpu->mmio_nr_fragments = 0; 4969 4970 /* Crossing a page boundary? */ 4971 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4972 int now; 4973 4974 now = -addr & ~PAGE_MASK; 4975 rc = emulator_read_write_onepage(addr, val, now, exception, 4976 vcpu, ops); 4977 4978 if (rc != X86EMUL_CONTINUE) 4979 return rc; 4980 addr += now; 4981 if (ctxt->mode != X86EMUL_MODE_PROT64) 4982 addr = (u32)addr; 4983 val += now; 4984 bytes -= now; 4985 } 4986 4987 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4988 vcpu, ops); 4989 if (rc != X86EMUL_CONTINUE) 4990 return rc; 4991 4992 if (!vcpu->mmio_nr_fragments) 4993 return rc; 4994 4995 gpa = vcpu->mmio_fragments[0].gpa; 4996 4997 vcpu->mmio_needed = 1; 4998 vcpu->mmio_cur_fragment = 0; 4999 5000 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5001 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5002 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5003 vcpu->run->mmio.phys_addr = gpa; 5004 5005 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5006 } 5007 5008 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5009 unsigned long addr, 5010 void *val, 5011 unsigned int bytes, 5012 struct x86_exception *exception) 5013 { 5014 return emulator_read_write(ctxt, addr, val, bytes, 5015 exception, &read_emultor); 5016 } 5017 5018 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5019 unsigned long addr, 5020 const void *val, 5021 unsigned int bytes, 5022 struct x86_exception *exception) 5023 { 5024 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5025 exception, &write_emultor); 5026 } 5027 5028 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5029 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5030 5031 #ifdef CONFIG_X86_64 5032 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5033 #else 5034 # define CMPXCHG64(ptr, old, new) \ 5035 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5036 #endif 5037 5038 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5039 unsigned long addr, 5040 const void *old, 5041 const void *new, 5042 unsigned int bytes, 5043 struct x86_exception *exception) 5044 { 5045 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5046 gpa_t gpa; 5047 struct page *page; 5048 char *kaddr; 5049 bool exchanged; 5050 5051 /* guests cmpxchg8b have to be emulated atomically */ 5052 if (bytes > 8 || (bytes & (bytes - 1))) 5053 goto emul_write; 5054 5055 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5056 5057 if (gpa == UNMAPPED_GVA || 5058 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5059 goto emul_write; 5060 5061 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5062 goto emul_write; 5063 5064 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 5065 if (is_error_page(page)) 5066 goto emul_write; 5067 5068 kaddr = kmap_atomic(page); 5069 kaddr += offset_in_page(gpa); 5070 switch (bytes) { 5071 case 1: 5072 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5073 break; 5074 case 2: 5075 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5076 break; 5077 case 4: 5078 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5079 break; 5080 case 8: 5081 exchanged = CMPXCHG64(kaddr, old, new); 5082 break; 5083 default: 5084 BUG(); 5085 } 5086 kunmap_atomic(kaddr); 5087 kvm_release_page_dirty(page); 5088 5089 if (!exchanged) 5090 return X86EMUL_CMPXCHG_FAILED; 5091 5092 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5093 kvm_page_track_write(vcpu, gpa, new, bytes); 5094 5095 return X86EMUL_CONTINUE; 5096 5097 emul_write: 5098 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5099 5100 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5101 } 5102 5103 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5104 { 5105 int r = 0, i; 5106 5107 for (i = 0; i < vcpu->arch.pio.count; i++) { 5108 if (vcpu->arch.pio.in) 5109 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5110 vcpu->arch.pio.size, pd); 5111 else 5112 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5113 vcpu->arch.pio.port, vcpu->arch.pio.size, 5114 pd); 5115 if (r) 5116 break; 5117 pd += vcpu->arch.pio.size; 5118 } 5119 return r; 5120 } 5121 5122 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5123 unsigned short port, void *val, 5124 unsigned int count, bool in) 5125 { 5126 vcpu->arch.pio.port = port; 5127 vcpu->arch.pio.in = in; 5128 vcpu->arch.pio.count = count; 5129 vcpu->arch.pio.size = size; 5130 5131 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5132 vcpu->arch.pio.count = 0; 5133 return 1; 5134 } 5135 5136 vcpu->run->exit_reason = KVM_EXIT_IO; 5137 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5138 vcpu->run->io.size = size; 5139 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5140 vcpu->run->io.count = count; 5141 vcpu->run->io.port = port; 5142 5143 return 0; 5144 } 5145 5146 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5147 int size, unsigned short port, void *val, 5148 unsigned int count) 5149 { 5150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5151 int ret; 5152 5153 if (vcpu->arch.pio.count) 5154 goto data_avail; 5155 5156 memset(vcpu->arch.pio_data, 0, size * count); 5157 5158 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5159 if (ret) { 5160 data_avail: 5161 memcpy(val, vcpu->arch.pio_data, size * count); 5162 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5163 vcpu->arch.pio.count = 0; 5164 return 1; 5165 } 5166 5167 return 0; 5168 } 5169 5170 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5171 int size, unsigned short port, 5172 const void *val, unsigned int count) 5173 { 5174 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5175 5176 memcpy(vcpu->arch.pio_data, val, size * count); 5177 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5178 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5179 } 5180 5181 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5182 { 5183 return kvm_x86_ops->get_segment_base(vcpu, seg); 5184 } 5185 5186 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 5187 { 5188 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 5189 } 5190 5191 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 5192 { 5193 if (!need_emulate_wbinvd(vcpu)) 5194 return X86EMUL_CONTINUE; 5195 5196 if (kvm_x86_ops->has_wbinvd_exit()) { 5197 int cpu = get_cpu(); 5198 5199 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5200 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5201 wbinvd_ipi, NULL, 1); 5202 put_cpu(); 5203 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5204 } else 5205 wbinvd(); 5206 return X86EMUL_CONTINUE; 5207 } 5208 5209 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5210 { 5211 kvm_emulate_wbinvd_noskip(vcpu); 5212 return kvm_skip_emulated_instruction(vcpu); 5213 } 5214 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5215 5216 5217 5218 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5219 { 5220 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5221 } 5222 5223 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5224 unsigned long *dest) 5225 { 5226 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5227 } 5228 5229 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5230 unsigned long value) 5231 { 5232 5233 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5234 } 5235 5236 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5237 { 5238 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5239 } 5240 5241 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5242 { 5243 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5244 unsigned long value; 5245 5246 switch (cr) { 5247 case 0: 5248 value = kvm_read_cr0(vcpu); 5249 break; 5250 case 2: 5251 value = vcpu->arch.cr2; 5252 break; 5253 case 3: 5254 value = kvm_read_cr3(vcpu); 5255 break; 5256 case 4: 5257 value = kvm_read_cr4(vcpu); 5258 break; 5259 case 8: 5260 value = kvm_get_cr8(vcpu); 5261 break; 5262 default: 5263 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5264 return 0; 5265 } 5266 5267 return value; 5268 } 5269 5270 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5271 { 5272 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5273 int res = 0; 5274 5275 switch (cr) { 5276 case 0: 5277 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5278 break; 5279 case 2: 5280 vcpu->arch.cr2 = val; 5281 break; 5282 case 3: 5283 res = kvm_set_cr3(vcpu, val); 5284 break; 5285 case 4: 5286 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5287 break; 5288 case 8: 5289 res = kvm_set_cr8(vcpu, val); 5290 break; 5291 default: 5292 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5293 res = -1; 5294 } 5295 5296 return res; 5297 } 5298 5299 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5300 { 5301 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5302 } 5303 5304 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5305 { 5306 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5307 } 5308 5309 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5310 { 5311 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5312 } 5313 5314 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5315 { 5316 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5317 } 5318 5319 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5320 { 5321 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5322 } 5323 5324 static unsigned long emulator_get_cached_segment_base( 5325 struct x86_emulate_ctxt *ctxt, int seg) 5326 { 5327 return get_segment_base(emul_to_vcpu(ctxt), seg); 5328 } 5329 5330 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5331 struct desc_struct *desc, u32 *base3, 5332 int seg) 5333 { 5334 struct kvm_segment var; 5335 5336 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5337 *selector = var.selector; 5338 5339 if (var.unusable) { 5340 memset(desc, 0, sizeof(*desc)); 5341 if (base3) 5342 *base3 = 0; 5343 return false; 5344 } 5345 5346 if (var.g) 5347 var.limit >>= 12; 5348 set_desc_limit(desc, var.limit); 5349 set_desc_base(desc, (unsigned long)var.base); 5350 #ifdef CONFIG_X86_64 5351 if (base3) 5352 *base3 = var.base >> 32; 5353 #endif 5354 desc->type = var.type; 5355 desc->s = var.s; 5356 desc->dpl = var.dpl; 5357 desc->p = var.present; 5358 desc->avl = var.avl; 5359 desc->l = var.l; 5360 desc->d = var.db; 5361 desc->g = var.g; 5362 5363 return true; 5364 } 5365 5366 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5367 struct desc_struct *desc, u32 base3, 5368 int seg) 5369 { 5370 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5371 struct kvm_segment var; 5372 5373 var.selector = selector; 5374 var.base = get_desc_base(desc); 5375 #ifdef CONFIG_X86_64 5376 var.base |= ((u64)base3) << 32; 5377 #endif 5378 var.limit = get_desc_limit(desc); 5379 if (desc->g) 5380 var.limit = (var.limit << 12) | 0xfff; 5381 var.type = desc->type; 5382 var.dpl = desc->dpl; 5383 var.db = desc->d; 5384 var.s = desc->s; 5385 var.l = desc->l; 5386 var.g = desc->g; 5387 var.avl = desc->avl; 5388 var.present = desc->p; 5389 var.unusable = !var.present; 5390 var.padding = 0; 5391 5392 kvm_set_segment(vcpu, &var, seg); 5393 return; 5394 } 5395 5396 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5397 u32 msr_index, u64 *pdata) 5398 { 5399 struct msr_data msr; 5400 int r; 5401 5402 msr.index = msr_index; 5403 msr.host_initiated = false; 5404 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5405 if (r) 5406 return r; 5407 5408 *pdata = msr.data; 5409 return 0; 5410 } 5411 5412 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5413 u32 msr_index, u64 data) 5414 { 5415 struct msr_data msr; 5416 5417 msr.data = data; 5418 msr.index = msr_index; 5419 msr.host_initiated = false; 5420 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5421 } 5422 5423 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5424 { 5425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5426 5427 return vcpu->arch.smbase; 5428 } 5429 5430 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5431 { 5432 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5433 5434 vcpu->arch.smbase = smbase; 5435 } 5436 5437 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5438 u32 pmc) 5439 { 5440 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5441 } 5442 5443 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5444 u32 pmc, u64 *pdata) 5445 { 5446 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5447 } 5448 5449 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5450 { 5451 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5452 } 5453 5454 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5455 struct x86_instruction_info *info, 5456 enum x86_intercept_stage stage) 5457 { 5458 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5459 } 5460 5461 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5462 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 5463 { 5464 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 5465 } 5466 5467 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5468 { 5469 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5470 } 5471 5472 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5473 { 5474 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5475 } 5476 5477 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5478 { 5479 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5480 } 5481 5482 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 5483 { 5484 return emul_to_vcpu(ctxt)->arch.hflags; 5485 } 5486 5487 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 5488 { 5489 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); 5490 } 5491 5492 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) 5493 { 5494 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); 5495 } 5496 5497 static const struct x86_emulate_ops emulate_ops = { 5498 .read_gpr = emulator_read_gpr, 5499 .write_gpr = emulator_write_gpr, 5500 .read_std = kvm_read_guest_virt_system, 5501 .write_std = kvm_write_guest_virt_system, 5502 .read_phys = kvm_read_guest_phys_system, 5503 .fetch = kvm_fetch_guest_virt, 5504 .read_emulated = emulator_read_emulated, 5505 .write_emulated = emulator_write_emulated, 5506 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5507 .invlpg = emulator_invlpg, 5508 .pio_in_emulated = emulator_pio_in_emulated, 5509 .pio_out_emulated = emulator_pio_out_emulated, 5510 .get_segment = emulator_get_segment, 5511 .set_segment = emulator_set_segment, 5512 .get_cached_segment_base = emulator_get_cached_segment_base, 5513 .get_gdt = emulator_get_gdt, 5514 .get_idt = emulator_get_idt, 5515 .set_gdt = emulator_set_gdt, 5516 .set_idt = emulator_set_idt, 5517 .get_cr = emulator_get_cr, 5518 .set_cr = emulator_set_cr, 5519 .cpl = emulator_get_cpl, 5520 .get_dr = emulator_get_dr, 5521 .set_dr = emulator_set_dr, 5522 .get_smbase = emulator_get_smbase, 5523 .set_smbase = emulator_set_smbase, 5524 .set_msr = emulator_set_msr, 5525 .get_msr = emulator_get_msr, 5526 .check_pmc = emulator_check_pmc, 5527 .read_pmc = emulator_read_pmc, 5528 .halt = emulator_halt, 5529 .wbinvd = emulator_wbinvd, 5530 .fix_hypercall = emulator_fix_hypercall, 5531 .intercept = emulator_intercept, 5532 .get_cpuid = emulator_get_cpuid, 5533 .set_nmi_mask = emulator_set_nmi_mask, 5534 .get_hflags = emulator_get_hflags, 5535 .set_hflags = emulator_set_hflags, 5536 .pre_leave_smm = emulator_pre_leave_smm, 5537 }; 5538 5539 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5540 { 5541 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5542 /* 5543 * an sti; sti; sequence only disable interrupts for the first 5544 * instruction. So, if the last instruction, be it emulated or 5545 * not, left the system with the INT_STI flag enabled, it 5546 * means that the last instruction is an sti. We should not 5547 * leave the flag on in this case. The same goes for mov ss 5548 */ 5549 if (int_shadow & mask) 5550 mask = 0; 5551 if (unlikely(int_shadow || mask)) { 5552 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5553 if (!mask) 5554 kvm_make_request(KVM_REQ_EVENT, vcpu); 5555 } 5556 } 5557 5558 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5559 { 5560 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5561 if (ctxt->exception.vector == PF_VECTOR) 5562 return kvm_propagate_fault(vcpu, &ctxt->exception); 5563 5564 if (ctxt->exception.error_code_valid) 5565 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5566 ctxt->exception.error_code); 5567 else 5568 kvm_queue_exception(vcpu, ctxt->exception.vector); 5569 return false; 5570 } 5571 5572 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5573 { 5574 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5575 int cs_db, cs_l; 5576 5577 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5578 5579 ctxt->eflags = kvm_get_rflags(vcpu); 5580 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 5581 5582 ctxt->eip = kvm_rip_read(vcpu); 5583 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5584 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5585 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5586 cs_db ? X86EMUL_MODE_PROT32 : 5587 X86EMUL_MODE_PROT16; 5588 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5589 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5590 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5591 5592 init_decode_cache(ctxt); 5593 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5594 } 5595 5596 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5597 { 5598 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5599 int ret; 5600 5601 init_emulate_ctxt(vcpu); 5602 5603 ctxt->op_bytes = 2; 5604 ctxt->ad_bytes = 2; 5605 ctxt->_eip = ctxt->eip + inc_eip; 5606 ret = emulate_int_real(ctxt, irq); 5607 5608 if (ret != X86EMUL_CONTINUE) 5609 return EMULATE_FAIL; 5610 5611 ctxt->eip = ctxt->_eip; 5612 kvm_rip_write(vcpu, ctxt->eip); 5613 kvm_set_rflags(vcpu, ctxt->eflags); 5614 5615 if (irq == NMI_VECTOR) 5616 vcpu->arch.nmi_pending = 0; 5617 else 5618 vcpu->arch.interrupt.pending = false; 5619 5620 return EMULATE_DONE; 5621 } 5622 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5623 5624 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5625 { 5626 int r = EMULATE_DONE; 5627 5628 ++vcpu->stat.insn_emulation_fail; 5629 trace_kvm_emulate_insn_failed(vcpu); 5630 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5631 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5632 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5633 vcpu->run->internal.ndata = 0; 5634 r = EMULATE_USER_EXIT; 5635 } 5636 kvm_queue_exception(vcpu, UD_VECTOR); 5637 5638 return r; 5639 } 5640 5641 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5642 bool write_fault_to_shadow_pgtable, 5643 int emulation_type) 5644 { 5645 gpa_t gpa = cr2; 5646 kvm_pfn_t pfn; 5647 5648 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5649 return false; 5650 5651 if (!vcpu->arch.mmu.direct_map) { 5652 /* 5653 * Write permission should be allowed since only 5654 * write access need to be emulated. 5655 */ 5656 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5657 5658 /* 5659 * If the mapping is invalid in guest, let cpu retry 5660 * it to generate fault. 5661 */ 5662 if (gpa == UNMAPPED_GVA) 5663 return true; 5664 } 5665 5666 /* 5667 * Do not retry the unhandleable instruction if it faults on the 5668 * readonly host memory, otherwise it will goto a infinite loop: 5669 * retry instruction -> write #PF -> emulation fail -> retry 5670 * instruction -> ... 5671 */ 5672 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5673 5674 /* 5675 * If the instruction failed on the error pfn, it can not be fixed, 5676 * report the error to userspace. 5677 */ 5678 if (is_error_noslot_pfn(pfn)) 5679 return false; 5680 5681 kvm_release_pfn_clean(pfn); 5682 5683 /* The instructions are well-emulated on direct mmu. */ 5684 if (vcpu->arch.mmu.direct_map) { 5685 unsigned int indirect_shadow_pages; 5686 5687 spin_lock(&vcpu->kvm->mmu_lock); 5688 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5689 spin_unlock(&vcpu->kvm->mmu_lock); 5690 5691 if (indirect_shadow_pages) 5692 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5693 5694 return true; 5695 } 5696 5697 /* 5698 * if emulation was due to access to shadowed page table 5699 * and it failed try to unshadow page and re-enter the 5700 * guest to let CPU execute the instruction. 5701 */ 5702 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5703 5704 /* 5705 * If the access faults on its page table, it can not 5706 * be fixed by unprotecting shadow page and it should 5707 * be reported to userspace. 5708 */ 5709 return !write_fault_to_shadow_pgtable; 5710 } 5711 5712 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5713 unsigned long cr2, int emulation_type) 5714 { 5715 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5716 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5717 5718 last_retry_eip = vcpu->arch.last_retry_eip; 5719 last_retry_addr = vcpu->arch.last_retry_addr; 5720 5721 /* 5722 * If the emulation is caused by #PF and it is non-page_table 5723 * writing instruction, it means the VM-EXIT is caused by shadow 5724 * page protected, we can zap the shadow page and retry this 5725 * instruction directly. 5726 * 5727 * Note: if the guest uses a non-page-table modifying instruction 5728 * on the PDE that points to the instruction, then we will unmap 5729 * the instruction and go to an infinite loop. So, we cache the 5730 * last retried eip and the last fault address, if we meet the eip 5731 * and the address again, we can break out of the potential infinite 5732 * loop. 5733 */ 5734 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5735 5736 if (!(emulation_type & EMULTYPE_RETRY)) 5737 return false; 5738 5739 if (x86_page_table_writing_insn(ctxt)) 5740 return false; 5741 5742 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5743 return false; 5744 5745 vcpu->arch.last_retry_eip = ctxt->eip; 5746 vcpu->arch.last_retry_addr = cr2; 5747 5748 if (!vcpu->arch.mmu.direct_map) 5749 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5750 5751 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5752 5753 return true; 5754 } 5755 5756 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5757 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5758 5759 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5760 { 5761 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5762 /* This is a good place to trace that we are exiting SMM. */ 5763 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5764 5765 /* Process a latched INIT or SMI, if any. */ 5766 kvm_make_request(KVM_REQ_EVENT, vcpu); 5767 } 5768 5769 kvm_mmu_reset_context(vcpu); 5770 } 5771 5772 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5773 { 5774 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5775 5776 vcpu->arch.hflags = emul_flags; 5777 5778 if (changed & HF_SMM_MASK) 5779 kvm_smm_changed(vcpu); 5780 } 5781 5782 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5783 unsigned long *db) 5784 { 5785 u32 dr6 = 0; 5786 int i; 5787 u32 enable, rwlen; 5788 5789 enable = dr7; 5790 rwlen = dr7 >> 16; 5791 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5792 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5793 dr6 |= (1 << i); 5794 return dr6; 5795 } 5796 5797 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 5798 { 5799 struct kvm_run *kvm_run = vcpu->run; 5800 5801 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5802 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 5803 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5804 kvm_run->debug.arch.exception = DB_VECTOR; 5805 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5806 *r = EMULATE_USER_EXIT; 5807 } else { 5808 /* 5809 * "Certain debug exceptions may clear bit 0-3. The 5810 * remaining contents of the DR6 register are never 5811 * cleared by the processor". 5812 */ 5813 vcpu->arch.dr6 &= ~15; 5814 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5815 kvm_queue_exception(vcpu, DB_VECTOR); 5816 } 5817 } 5818 5819 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5820 { 5821 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5822 int r = EMULATE_DONE; 5823 5824 kvm_x86_ops->skip_emulated_instruction(vcpu); 5825 5826 /* 5827 * rflags is the old, "raw" value of the flags. The new value has 5828 * not been saved yet. 5829 * 5830 * This is correct even for TF set by the guest, because "the 5831 * processor will not generate this exception after the instruction 5832 * that sets the TF flag". 5833 */ 5834 if (unlikely(rflags & X86_EFLAGS_TF)) 5835 kvm_vcpu_do_singlestep(vcpu, &r); 5836 return r == EMULATE_DONE; 5837 } 5838 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5839 5840 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5841 { 5842 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5843 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5844 struct kvm_run *kvm_run = vcpu->run; 5845 unsigned long eip = kvm_get_linear_rip(vcpu); 5846 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5847 vcpu->arch.guest_debug_dr7, 5848 vcpu->arch.eff_db); 5849 5850 if (dr6 != 0) { 5851 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5852 kvm_run->debug.arch.pc = eip; 5853 kvm_run->debug.arch.exception = DB_VECTOR; 5854 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5855 *r = EMULATE_USER_EXIT; 5856 return true; 5857 } 5858 } 5859 5860 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5861 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5862 unsigned long eip = kvm_get_linear_rip(vcpu); 5863 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5864 vcpu->arch.dr7, 5865 vcpu->arch.db); 5866 5867 if (dr6 != 0) { 5868 vcpu->arch.dr6 &= ~15; 5869 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5870 kvm_queue_exception(vcpu, DB_VECTOR); 5871 *r = EMULATE_DONE; 5872 return true; 5873 } 5874 } 5875 5876 return false; 5877 } 5878 5879 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5880 unsigned long cr2, 5881 int emulation_type, 5882 void *insn, 5883 int insn_len) 5884 { 5885 int r; 5886 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5887 bool writeback = true; 5888 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5889 5890 /* 5891 * Clear write_fault_to_shadow_pgtable here to ensure it is 5892 * never reused. 5893 */ 5894 vcpu->arch.write_fault_to_shadow_pgtable = false; 5895 kvm_clear_exception_queue(vcpu); 5896 5897 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5898 init_emulate_ctxt(vcpu); 5899 5900 /* 5901 * We will reenter on the same instruction since 5902 * we do not set complete_userspace_io. This does not 5903 * handle watchpoints yet, those would be handled in 5904 * the emulate_ops. 5905 */ 5906 if (!(emulation_type & EMULTYPE_SKIP) && 5907 kvm_vcpu_check_breakpoint(vcpu, &r)) 5908 return r; 5909 5910 ctxt->interruptibility = 0; 5911 ctxt->have_exception = false; 5912 ctxt->exception.vector = -1; 5913 ctxt->perm_ok = false; 5914 5915 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5916 5917 r = x86_decode_insn(ctxt, insn, insn_len); 5918 5919 trace_kvm_emulate_insn_start(vcpu); 5920 ++vcpu->stat.insn_emulation; 5921 if (r != EMULATION_OK) { 5922 if (emulation_type & EMULTYPE_TRAP_UD) 5923 return EMULATE_FAIL; 5924 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5925 emulation_type)) 5926 return EMULATE_DONE; 5927 if (ctxt->have_exception && inject_emulated_exception(vcpu)) 5928 return EMULATE_DONE; 5929 if (emulation_type & EMULTYPE_SKIP) 5930 return EMULATE_FAIL; 5931 return handle_emulation_failure(vcpu); 5932 } 5933 } 5934 5935 if (emulation_type & EMULTYPE_SKIP) { 5936 kvm_rip_write(vcpu, ctxt->_eip); 5937 if (ctxt->eflags & X86_EFLAGS_RF) 5938 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5939 return EMULATE_DONE; 5940 } 5941 5942 if (retry_instruction(ctxt, cr2, emulation_type)) 5943 return EMULATE_DONE; 5944 5945 /* this is needed for vmware backdoor interface to work since it 5946 changes registers values during IO operation */ 5947 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5948 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5949 emulator_invalidate_register_cache(ctxt); 5950 } 5951 5952 restart: 5953 /* Save the faulting GPA (cr2) in the address field */ 5954 ctxt->exception.address = cr2; 5955 5956 r = x86_emulate_insn(ctxt); 5957 5958 if (r == EMULATION_INTERCEPTED) 5959 return EMULATE_DONE; 5960 5961 if (r == EMULATION_FAILED) { 5962 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5963 emulation_type)) 5964 return EMULATE_DONE; 5965 5966 return handle_emulation_failure(vcpu); 5967 } 5968 5969 if (ctxt->have_exception) { 5970 r = EMULATE_DONE; 5971 if (inject_emulated_exception(vcpu)) 5972 return r; 5973 } else if (vcpu->arch.pio.count) { 5974 if (!vcpu->arch.pio.in) { 5975 /* FIXME: return into emulator if single-stepping. */ 5976 vcpu->arch.pio.count = 0; 5977 } else { 5978 writeback = false; 5979 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5980 } 5981 r = EMULATE_USER_EXIT; 5982 } else if (vcpu->mmio_needed) { 5983 if (!vcpu->mmio_is_write) 5984 writeback = false; 5985 r = EMULATE_USER_EXIT; 5986 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5987 } else if (r == EMULATION_RESTART) 5988 goto restart; 5989 else 5990 r = EMULATE_DONE; 5991 5992 if (writeback) { 5993 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5994 toggle_interruptibility(vcpu, ctxt->interruptibility); 5995 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5996 kvm_rip_write(vcpu, ctxt->eip); 5997 if (r == EMULATE_DONE && 5998 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 5999 kvm_vcpu_do_singlestep(vcpu, &r); 6000 if (!ctxt->have_exception || 6001 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 6002 __kvm_set_rflags(vcpu, ctxt->eflags); 6003 6004 /* 6005 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6006 * do nothing, and it will be requested again as soon as 6007 * the shadow expires. But we still need to check here, 6008 * because POPF has no interrupt shadow. 6009 */ 6010 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6011 kvm_make_request(KVM_REQ_EVENT, vcpu); 6012 } else 6013 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6014 6015 return r; 6016 } 6017 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 6018 6019 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 6020 { 6021 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 6022 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6023 size, port, &val, 1); 6024 /* do not return to emulator after return from userspace */ 6025 vcpu->arch.pio.count = 0; 6026 return ret; 6027 } 6028 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 6029 6030 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6031 { 6032 unsigned long val; 6033 6034 /* We should only ever be called with arch.pio.count equal to 1 */ 6035 BUG_ON(vcpu->arch.pio.count != 1); 6036 6037 /* For size less than 4 we merge, else we zero extend */ 6038 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 6039 : 0; 6040 6041 /* 6042 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6043 * the copy and tracing 6044 */ 6045 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6046 vcpu->arch.pio.port, &val, 1); 6047 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 6048 6049 return 1; 6050 } 6051 6052 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 6053 { 6054 unsigned long val; 6055 int ret; 6056 6057 /* For size less than 4 we merge, else we zero extend */ 6058 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 6059 6060 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 6061 &val, 1); 6062 if (ret) { 6063 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 6064 return ret; 6065 } 6066 6067 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 6068 6069 return 0; 6070 } 6071 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 6072 6073 static int kvmclock_cpu_down_prep(unsigned int cpu) 6074 { 6075 __this_cpu_write(cpu_tsc_khz, 0); 6076 return 0; 6077 } 6078 6079 static void tsc_khz_changed(void *data) 6080 { 6081 struct cpufreq_freqs *freq = data; 6082 unsigned long khz = 0; 6083 6084 if (data) 6085 khz = freq->new; 6086 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6087 khz = cpufreq_quick_get(raw_smp_processor_id()); 6088 if (!khz) 6089 khz = tsc_khz; 6090 __this_cpu_write(cpu_tsc_khz, khz); 6091 } 6092 6093 #ifdef CONFIG_X86_64 6094 static void kvm_hyperv_tsc_notifier(void) 6095 { 6096 struct kvm *kvm; 6097 struct kvm_vcpu *vcpu; 6098 int cpu; 6099 6100 spin_lock(&kvm_lock); 6101 list_for_each_entry(kvm, &vm_list, vm_list) 6102 kvm_make_mclock_inprogress_request(kvm); 6103 6104 hyperv_stop_tsc_emulation(); 6105 6106 /* TSC frequency always matches when on Hyper-V */ 6107 for_each_present_cpu(cpu) 6108 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 6109 kvm_max_guest_tsc_khz = tsc_khz; 6110 6111 list_for_each_entry(kvm, &vm_list, vm_list) { 6112 struct kvm_arch *ka = &kvm->arch; 6113 6114 spin_lock(&ka->pvclock_gtod_sync_lock); 6115 6116 pvclock_update_vm_gtod_copy(kvm); 6117 6118 kvm_for_each_vcpu(cpu, vcpu, kvm) 6119 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6120 6121 kvm_for_each_vcpu(cpu, vcpu, kvm) 6122 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 6123 6124 spin_unlock(&ka->pvclock_gtod_sync_lock); 6125 } 6126 spin_unlock(&kvm_lock); 6127 } 6128 #endif 6129 6130 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 6131 void *data) 6132 { 6133 struct cpufreq_freqs *freq = data; 6134 struct kvm *kvm; 6135 struct kvm_vcpu *vcpu; 6136 int i, send_ipi = 0; 6137 6138 /* 6139 * We allow guests to temporarily run on slowing clocks, 6140 * provided we notify them after, or to run on accelerating 6141 * clocks, provided we notify them before. Thus time never 6142 * goes backwards. 6143 * 6144 * However, we have a problem. We can't atomically update 6145 * the frequency of a given CPU from this function; it is 6146 * merely a notifier, which can be called from any CPU. 6147 * Changing the TSC frequency at arbitrary points in time 6148 * requires a recomputation of local variables related to 6149 * the TSC for each VCPU. We must flag these local variables 6150 * to be updated and be sure the update takes place with the 6151 * new frequency before any guests proceed. 6152 * 6153 * Unfortunately, the combination of hotplug CPU and frequency 6154 * change creates an intractable locking scenario; the order 6155 * of when these callouts happen is undefined with respect to 6156 * CPU hotplug, and they can race with each other. As such, 6157 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 6158 * undefined; you can actually have a CPU frequency change take 6159 * place in between the computation of X and the setting of the 6160 * variable. To protect against this problem, all updates of 6161 * the per_cpu tsc_khz variable are done in an interrupt 6162 * protected IPI, and all callers wishing to update the value 6163 * must wait for a synchronous IPI to complete (which is trivial 6164 * if the caller is on the CPU already). This establishes the 6165 * necessary total order on variable updates. 6166 * 6167 * Note that because a guest time update may take place 6168 * anytime after the setting of the VCPU's request bit, the 6169 * correct TSC value must be set before the request. However, 6170 * to ensure the update actually makes it to any guest which 6171 * starts running in hardware virtualization between the set 6172 * and the acquisition of the spinlock, we must also ping the 6173 * CPU after setting the request bit. 6174 * 6175 */ 6176 6177 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 6178 return 0; 6179 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 6180 return 0; 6181 6182 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 6183 6184 spin_lock(&kvm_lock); 6185 list_for_each_entry(kvm, &vm_list, vm_list) { 6186 kvm_for_each_vcpu(i, vcpu, kvm) { 6187 if (vcpu->cpu != freq->cpu) 6188 continue; 6189 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6190 if (vcpu->cpu != smp_processor_id()) 6191 send_ipi = 1; 6192 } 6193 } 6194 spin_unlock(&kvm_lock); 6195 6196 if (freq->old < freq->new && send_ipi) { 6197 /* 6198 * We upscale the frequency. Must make the guest 6199 * doesn't see old kvmclock values while running with 6200 * the new frequency, otherwise we risk the guest sees 6201 * time go backwards. 6202 * 6203 * In case we update the frequency for another cpu 6204 * (which might be in guest context) send an interrupt 6205 * to kick the cpu out of guest context. Next time 6206 * guest context is entered kvmclock will be updated, 6207 * so the guest will not see stale values. 6208 */ 6209 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 6210 } 6211 return 0; 6212 } 6213 6214 static struct notifier_block kvmclock_cpufreq_notifier_block = { 6215 .notifier_call = kvmclock_cpufreq_notifier 6216 }; 6217 6218 static int kvmclock_cpu_online(unsigned int cpu) 6219 { 6220 tsc_khz_changed(NULL); 6221 return 0; 6222 } 6223 6224 static void kvm_timer_init(void) 6225 { 6226 max_tsc_khz = tsc_khz; 6227 6228 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 6229 #ifdef CONFIG_CPU_FREQ 6230 struct cpufreq_policy policy; 6231 int cpu; 6232 6233 memset(&policy, 0, sizeof(policy)); 6234 cpu = get_cpu(); 6235 cpufreq_get_policy(&policy, cpu); 6236 if (policy.cpuinfo.max_freq) 6237 max_tsc_khz = policy.cpuinfo.max_freq; 6238 put_cpu(); 6239 #endif 6240 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 6241 CPUFREQ_TRANSITION_NOTIFIER); 6242 } 6243 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 6244 6245 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 6246 kvmclock_cpu_online, kvmclock_cpu_down_prep); 6247 } 6248 6249 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 6250 6251 int kvm_is_in_guest(void) 6252 { 6253 return __this_cpu_read(current_vcpu) != NULL; 6254 } 6255 6256 static int kvm_is_user_mode(void) 6257 { 6258 int user_mode = 3; 6259 6260 if (__this_cpu_read(current_vcpu)) 6261 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 6262 6263 return user_mode != 0; 6264 } 6265 6266 static unsigned long kvm_get_guest_ip(void) 6267 { 6268 unsigned long ip = 0; 6269 6270 if (__this_cpu_read(current_vcpu)) 6271 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 6272 6273 return ip; 6274 } 6275 6276 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6277 .is_in_guest = kvm_is_in_guest, 6278 .is_user_mode = kvm_is_user_mode, 6279 .get_guest_ip = kvm_get_guest_ip, 6280 }; 6281 6282 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 6283 { 6284 __this_cpu_write(current_vcpu, vcpu); 6285 } 6286 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 6287 6288 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 6289 { 6290 __this_cpu_write(current_vcpu, NULL); 6291 } 6292 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 6293 6294 static void kvm_set_mmio_spte_mask(void) 6295 { 6296 u64 mask; 6297 int maxphyaddr = boot_cpu_data.x86_phys_bits; 6298 6299 /* 6300 * Set the reserved bits and the present bit of an paging-structure 6301 * entry to generate page fault with PFER.RSV = 1. 6302 */ 6303 /* Mask the reserved physical address bits. */ 6304 mask = rsvd_bits(maxphyaddr, 51); 6305 6306 /* Set the present bit. */ 6307 mask |= 1ull; 6308 6309 #ifdef CONFIG_X86_64 6310 /* 6311 * If reserved bit is not supported, clear the present bit to disable 6312 * mmio page fault. 6313 */ 6314 if (maxphyaddr == 52) 6315 mask &= ~1ull; 6316 #endif 6317 6318 kvm_mmu_set_mmio_spte_mask(mask, mask); 6319 } 6320 6321 #ifdef CONFIG_X86_64 6322 static void pvclock_gtod_update_fn(struct work_struct *work) 6323 { 6324 struct kvm *kvm; 6325 6326 struct kvm_vcpu *vcpu; 6327 int i; 6328 6329 spin_lock(&kvm_lock); 6330 list_for_each_entry(kvm, &vm_list, vm_list) 6331 kvm_for_each_vcpu(i, vcpu, kvm) 6332 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6333 atomic_set(&kvm_guest_has_master_clock, 0); 6334 spin_unlock(&kvm_lock); 6335 } 6336 6337 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6338 6339 /* 6340 * Notification about pvclock gtod data update. 6341 */ 6342 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6343 void *priv) 6344 { 6345 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6346 struct timekeeper *tk = priv; 6347 6348 update_pvclock_gtod(tk); 6349 6350 /* disable master clock if host does not trust, or does not 6351 * use, TSC based clocksource. 6352 */ 6353 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 6354 atomic_read(&kvm_guest_has_master_clock) != 0) 6355 queue_work(system_long_wq, &pvclock_gtod_work); 6356 6357 return 0; 6358 } 6359 6360 static struct notifier_block pvclock_gtod_notifier = { 6361 .notifier_call = pvclock_gtod_notify, 6362 }; 6363 #endif 6364 6365 int kvm_arch_init(void *opaque) 6366 { 6367 int r; 6368 struct kvm_x86_ops *ops = opaque; 6369 6370 if (kvm_x86_ops) { 6371 printk(KERN_ERR "kvm: already loaded the other module\n"); 6372 r = -EEXIST; 6373 goto out; 6374 } 6375 6376 if (!ops->cpu_has_kvm_support()) { 6377 printk(KERN_ERR "kvm: no hardware support\n"); 6378 r = -EOPNOTSUPP; 6379 goto out; 6380 } 6381 if (ops->disabled_by_bios()) { 6382 printk(KERN_ERR "kvm: disabled by bios\n"); 6383 r = -EOPNOTSUPP; 6384 goto out; 6385 } 6386 6387 r = -ENOMEM; 6388 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6389 if (!shared_msrs) { 6390 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6391 goto out; 6392 } 6393 6394 r = kvm_mmu_module_init(); 6395 if (r) 6396 goto out_free_percpu; 6397 6398 kvm_set_mmio_spte_mask(); 6399 6400 kvm_x86_ops = ops; 6401 6402 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6403 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6404 PT_PRESENT_MASK, 0, sme_me_mask); 6405 kvm_timer_init(); 6406 6407 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6408 6409 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6410 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6411 6412 kvm_lapic_init(); 6413 #ifdef CONFIG_X86_64 6414 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6415 6416 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 6417 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 6418 #endif 6419 6420 return 0; 6421 6422 out_free_percpu: 6423 free_percpu(shared_msrs); 6424 out: 6425 return r; 6426 } 6427 6428 void kvm_arch_exit(void) 6429 { 6430 #ifdef CONFIG_X86_64 6431 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 6432 clear_hv_tscchange_cb(); 6433 #endif 6434 kvm_lapic_exit(); 6435 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6436 6437 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6438 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6439 CPUFREQ_TRANSITION_NOTIFIER); 6440 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6441 #ifdef CONFIG_X86_64 6442 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6443 #endif 6444 kvm_x86_ops = NULL; 6445 kvm_mmu_module_exit(); 6446 free_percpu(shared_msrs); 6447 } 6448 6449 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6450 { 6451 ++vcpu->stat.halt_exits; 6452 if (lapic_in_kernel(vcpu)) { 6453 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6454 return 1; 6455 } else { 6456 vcpu->run->exit_reason = KVM_EXIT_HLT; 6457 return 0; 6458 } 6459 } 6460 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6461 6462 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6463 { 6464 int ret = kvm_skip_emulated_instruction(vcpu); 6465 /* 6466 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6467 * KVM_EXIT_DEBUG here. 6468 */ 6469 return kvm_vcpu_halt(vcpu) && ret; 6470 } 6471 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6472 6473 #ifdef CONFIG_X86_64 6474 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6475 unsigned long clock_type) 6476 { 6477 struct kvm_clock_pairing clock_pairing; 6478 struct timespec ts; 6479 u64 cycle; 6480 int ret; 6481 6482 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6483 return -KVM_EOPNOTSUPP; 6484 6485 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6486 return -KVM_EOPNOTSUPP; 6487 6488 clock_pairing.sec = ts.tv_sec; 6489 clock_pairing.nsec = ts.tv_nsec; 6490 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6491 clock_pairing.flags = 0; 6492 6493 ret = 0; 6494 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6495 sizeof(struct kvm_clock_pairing))) 6496 ret = -KVM_EFAULT; 6497 6498 return ret; 6499 } 6500 #endif 6501 6502 /* 6503 * kvm_pv_kick_cpu_op: Kick a vcpu. 6504 * 6505 * @apicid - apicid of vcpu to be kicked. 6506 */ 6507 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6508 { 6509 struct kvm_lapic_irq lapic_irq; 6510 6511 lapic_irq.shorthand = 0; 6512 lapic_irq.dest_mode = 0; 6513 lapic_irq.level = 0; 6514 lapic_irq.dest_id = apicid; 6515 lapic_irq.msi_redir_hint = false; 6516 6517 lapic_irq.delivery_mode = APIC_DM_REMRD; 6518 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6519 } 6520 6521 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6522 { 6523 vcpu->arch.apicv_active = false; 6524 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6525 } 6526 6527 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6528 { 6529 unsigned long nr, a0, a1, a2, a3, ret; 6530 int op_64_bit, r; 6531 6532 r = kvm_skip_emulated_instruction(vcpu); 6533 6534 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6535 return kvm_hv_hypercall(vcpu); 6536 6537 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6538 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6539 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6540 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6541 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6542 6543 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6544 6545 op_64_bit = is_64_bit_mode(vcpu); 6546 if (!op_64_bit) { 6547 nr &= 0xFFFFFFFF; 6548 a0 &= 0xFFFFFFFF; 6549 a1 &= 0xFFFFFFFF; 6550 a2 &= 0xFFFFFFFF; 6551 a3 &= 0xFFFFFFFF; 6552 } 6553 6554 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6555 ret = -KVM_EPERM; 6556 goto out; 6557 } 6558 6559 switch (nr) { 6560 case KVM_HC_VAPIC_POLL_IRQ: 6561 ret = 0; 6562 break; 6563 case KVM_HC_KICK_CPU: 6564 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6565 ret = 0; 6566 break; 6567 #ifdef CONFIG_X86_64 6568 case KVM_HC_CLOCK_PAIRING: 6569 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6570 break; 6571 #endif 6572 default: 6573 ret = -KVM_ENOSYS; 6574 break; 6575 } 6576 out: 6577 if (!op_64_bit) 6578 ret = (u32)ret; 6579 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6580 ++vcpu->stat.hypercalls; 6581 return r; 6582 } 6583 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6584 6585 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6586 { 6587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6588 char instruction[3]; 6589 unsigned long rip = kvm_rip_read(vcpu); 6590 6591 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6592 6593 return emulator_write_emulated(ctxt, rip, instruction, 3, 6594 &ctxt->exception); 6595 } 6596 6597 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6598 { 6599 return vcpu->run->request_interrupt_window && 6600 likely(!pic_in_kernel(vcpu->kvm)); 6601 } 6602 6603 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6604 { 6605 struct kvm_run *kvm_run = vcpu->run; 6606 6607 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6608 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6609 kvm_run->cr8 = kvm_get_cr8(vcpu); 6610 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6611 kvm_run->ready_for_interrupt_injection = 6612 pic_in_kernel(vcpu->kvm) || 6613 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6614 } 6615 6616 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6617 { 6618 int max_irr, tpr; 6619 6620 if (!kvm_x86_ops->update_cr8_intercept) 6621 return; 6622 6623 if (!lapic_in_kernel(vcpu)) 6624 return; 6625 6626 if (vcpu->arch.apicv_active) 6627 return; 6628 6629 if (!vcpu->arch.apic->vapic_addr) 6630 max_irr = kvm_lapic_find_highest_irr(vcpu); 6631 else 6632 max_irr = -1; 6633 6634 if (max_irr != -1) 6635 max_irr >>= 4; 6636 6637 tpr = kvm_lapic_get_cr8(vcpu); 6638 6639 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6640 } 6641 6642 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6643 { 6644 int r; 6645 6646 /* try to reinject previous events if any */ 6647 if (vcpu->arch.exception.injected) { 6648 kvm_x86_ops->queue_exception(vcpu); 6649 return 0; 6650 } 6651 6652 /* 6653 * Exceptions must be injected immediately, or the exception 6654 * frame will have the address of the NMI or interrupt handler. 6655 */ 6656 if (!vcpu->arch.exception.pending) { 6657 if (vcpu->arch.nmi_injected) { 6658 kvm_x86_ops->set_nmi(vcpu); 6659 return 0; 6660 } 6661 6662 if (vcpu->arch.interrupt.pending) { 6663 kvm_x86_ops->set_irq(vcpu); 6664 return 0; 6665 } 6666 } 6667 6668 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6669 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6670 if (r != 0) 6671 return r; 6672 } 6673 6674 /* try to inject new event if pending */ 6675 if (vcpu->arch.exception.pending) { 6676 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6677 vcpu->arch.exception.has_error_code, 6678 vcpu->arch.exception.error_code); 6679 6680 vcpu->arch.exception.pending = false; 6681 vcpu->arch.exception.injected = true; 6682 6683 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6684 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6685 X86_EFLAGS_RF); 6686 6687 if (vcpu->arch.exception.nr == DB_VECTOR && 6688 (vcpu->arch.dr7 & DR7_GD)) { 6689 vcpu->arch.dr7 &= ~DR7_GD; 6690 kvm_update_dr7(vcpu); 6691 } 6692 6693 kvm_x86_ops->queue_exception(vcpu); 6694 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) { 6695 vcpu->arch.smi_pending = false; 6696 ++vcpu->arch.smi_count; 6697 enter_smm(vcpu); 6698 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6699 --vcpu->arch.nmi_pending; 6700 vcpu->arch.nmi_injected = true; 6701 kvm_x86_ops->set_nmi(vcpu); 6702 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6703 /* 6704 * Because interrupts can be injected asynchronously, we are 6705 * calling check_nested_events again here to avoid a race condition. 6706 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6707 * proposal and current concerns. Perhaps we should be setting 6708 * KVM_REQ_EVENT only on certain events and not unconditionally? 6709 */ 6710 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6711 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6712 if (r != 0) 6713 return r; 6714 } 6715 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6716 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6717 false); 6718 kvm_x86_ops->set_irq(vcpu); 6719 } 6720 } 6721 6722 return 0; 6723 } 6724 6725 static void process_nmi(struct kvm_vcpu *vcpu) 6726 { 6727 unsigned limit = 2; 6728 6729 /* 6730 * x86 is limited to one NMI running, and one NMI pending after it. 6731 * If an NMI is already in progress, limit further NMIs to just one. 6732 * Otherwise, allow two (and we'll inject the first one immediately). 6733 */ 6734 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6735 limit = 1; 6736 6737 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6738 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6739 kvm_make_request(KVM_REQ_EVENT, vcpu); 6740 } 6741 6742 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6743 { 6744 u32 flags = 0; 6745 flags |= seg->g << 23; 6746 flags |= seg->db << 22; 6747 flags |= seg->l << 21; 6748 flags |= seg->avl << 20; 6749 flags |= seg->present << 15; 6750 flags |= seg->dpl << 13; 6751 flags |= seg->s << 12; 6752 flags |= seg->type << 8; 6753 return flags; 6754 } 6755 6756 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6757 { 6758 struct kvm_segment seg; 6759 int offset; 6760 6761 kvm_get_segment(vcpu, &seg, n); 6762 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6763 6764 if (n < 3) 6765 offset = 0x7f84 + n * 12; 6766 else 6767 offset = 0x7f2c + (n - 3) * 12; 6768 6769 put_smstate(u32, buf, offset + 8, seg.base); 6770 put_smstate(u32, buf, offset + 4, seg.limit); 6771 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6772 } 6773 6774 #ifdef CONFIG_X86_64 6775 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6776 { 6777 struct kvm_segment seg; 6778 int offset; 6779 u16 flags; 6780 6781 kvm_get_segment(vcpu, &seg, n); 6782 offset = 0x7e00 + n * 16; 6783 6784 flags = enter_smm_get_segment_flags(&seg) >> 8; 6785 put_smstate(u16, buf, offset, seg.selector); 6786 put_smstate(u16, buf, offset + 2, flags); 6787 put_smstate(u32, buf, offset + 4, seg.limit); 6788 put_smstate(u64, buf, offset + 8, seg.base); 6789 } 6790 #endif 6791 6792 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6793 { 6794 struct desc_ptr dt; 6795 struct kvm_segment seg; 6796 unsigned long val; 6797 int i; 6798 6799 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6800 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6801 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6802 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6803 6804 for (i = 0; i < 8; i++) 6805 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6806 6807 kvm_get_dr(vcpu, 6, &val); 6808 put_smstate(u32, buf, 0x7fcc, (u32)val); 6809 kvm_get_dr(vcpu, 7, &val); 6810 put_smstate(u32, buf, 0x7fc8, (u32)val); 6811 6812 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6813 put_smstate(u32, buf, 0x7fc4, seg.selector); 6814 put_smstate(u32, buf, 0x7f64, seg.base); 6815 put_smstate(u32, buf, 0x7f60, seg.limit); 6816 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6817 6818 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6819 put_smstate(u32, buf, 0x7fc0, seg.selector); 6820 put_smstate(u32, buf, 0x7f80, seg.base); 6821 put_smstate(u32, buf, 0x7f7c, seg.limit); 6822 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6823 6824 kvm_x86_ops->get_gdt(vcpu, &dt); 6825 put_smstate(u32, buf, 0x7f74, dt.address); 6826 put_smstate(u32, buf, 0x7f70, dt.size); 6827 6828 kvm_x86_ops->get_idt(vcpu, &dt); 6829 put_smstate(u32, buf, 0x7f58, dt.address); 6830 put_smstate(u32, buf, 0x7f54, dt.size); 6831 6832 for (i = 0; i < 6; i++) 6833 enter_smm_save_seg_32(vcpu, buf, i); 6834 6835 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6836 6837 /* revision id */ 6838 put_smstate(u32, buf, 0x7efc, 0x00020000); 6839 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6840 } 6841 6842 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6843 { 6844 #ifdef CONFIG_X86_64 6845 struct desc_ptr dt; 6846 struct kvm_segment seg; 6847 unsigned long val; 6848 int i; 6849 6850 for (i = 0; i < 16; i++) 6851 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6852 6853 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6854 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6855 6856 kvm_get_dr(vcpu, 6, &val); 6857 put_smstate(u64, buf, 0x7f68, val); 6858 kvm_get_dr(vcpu, 7, &val); 6859 put_smstate(u64, buf, 0x7f60, val); 6860 6861 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6862 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6863 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6864 6865 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6866 6867 /* revision id */ 6868 put_smstate(u32, buf, 0x7efc, 0x00020064); 6869 6870 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6871 6872 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6873 put_smstate(u16, buf, 0x7e90, seg.selector); 6874 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6875 put_smstate(u32, buf, 0x7e94, seg.limit); 6876 put_smstate(u64, buf, 0x7e98, seg.base); 6877 6878 kvm_x86_ops->get_idt(vcpu, &dt); 6879 put_smstate(u32, buf, 0x7e84, dt.size); 6880 put_smstate(u64, buf, 0x7e88, dt.address); 6881 6882 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6883 put_smstate(u16, buf, 0x7e70, seg.selector); 6884 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6885 put_smstate(u32, buf, 0x7e74, seg.limit); 6886 put_smstate(u64, buf, 0x7e78, seg.base); 6887 6888 kvm_x86_ops->get_gdt(vcpu, &dt); 6889 put_smstate(u32, buf, 0x7e64, dt.size); 6890 put_smstate(u64, buf, 0x7e68, dt.address); 6891 6892 for (i = 0; i < 6; i++) 6893 enter_smm_save_seg_64(vcpu, buf, i); 6894 #else 6895 WARN_ON_ONCE(1); 6896 #endif 6897 } 6898 6899 static void enter_smm(struct kvm_vcpu *vcpu) 6900 { 6901 struct kvm_segment cs, ds; 6902 struct desc_ptr dt; 6903 char buf[512]; 6904 u32 cr0; 6905 6906 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6907 memset(buf, 0, 512); 6908 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 6909 enter_smm_save_state_64(vcpu, buf); 6910 else 6911 enter_smm_save_state_32(vcpu, buf); 6912 6913 /* 6914 * Give pre_enter_smm() a chance to make ISA-specific changes to the 6915 * vCPU state (e.g. leave guest mode) after we've saved the state into 6916 * the SMM state-save area. 6917 */ 6918 kvm_x86_ops->pre_enter_smm(vcpu, buf); 6919 6920 vcpu->arch.hflags |= HF_SMM_MASK; 6921 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6922 6923 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6924 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6925 else 6926 kvm_x86_ops->set_nmi_mask(vcpu, true); 6927 6928 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6929 kvm_rip_write(vcpu, 0x8000); 6930 6931 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6932 kvm_x86_ops->set_cr0(vcpu, cr0); 6933 vcpu->arch.cr0 = cr0; 6934 6935 kvm_x86_ops->set_cr4(vcpu, 0); 6936 6937 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6938 dt.address = dt.size = 0; 6939 kvm_x86_ops->set_idt(vcpu, &dt); 6940 6941 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6942 6943 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6944 cs.base = vcpu->arch.smbase; 6945 6946 ds.selector = 0; 6947 ds.base = 0; 6948 6949 cs.limit = ds.limit = 0xffffffff; 6950 cs.type = ds.type = 0x3; 6951 cs.dpl = ds.dpl = 0; 6952 cs.db = ds.db = 0; 6953 cs.s = ds.s = 1; 6954 cs.l = ds.l = 0; 6955 cs.g = ds.g = 1; 6956 cs.avl = ds.avl = 0; 6957 cs.present = ds.present = 1; 6958 cs.unusable = ds.unusable = 0; 6959 cs.padding = ds.padding = 0; 6960 6961 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6962 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6963 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6964 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6965 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6966 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6967 6968 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 6969 kvm_x86_ops->set_efer(vcpu, 0); 6970 6971 kvm_update_cpuid(vcpu); 6972 kvm_mmu_reset_context(vcpu); 6973 } 6974 6975 static void process_smi(struct kvm_vcpu *vcpu) 6976 { 6977 vcpu->arch.smi_pending = true; 6978 kvm_make_request(KVM_REQ_EVENT, vcpu); 6979 } 6980 6981 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6982 { 6983 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6984 } 6985 6986 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6987 { 6988 u64 eoi_exit_bitmap[4]; 6989 6990 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6991 return; 6992 6993 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6994 6995 if (irqchip_split(vcpu->kvm)) 6996 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6997 else { 6998 if (vcpu->arch.apicv_active) 6999 kvm_x86_ops->sync_pir_to_irr(vcpu); 7000 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 7001 } 7002 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 7003 vcpu_to_synic(vcpu)->vec_bitmap, 256); 7004 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 7005 } 7006 7007 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 7008 unsigned long start, unsigned long end) 7009 { 7010 unsigned long apic_address; 7011 7012 /* 7013 * The physical address of apic access page is stored in the VMCS. 7014 * Update it when it becomes invalid. 7015 */ 7016 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7017 if (start <= apic_address && apic_address < end) 7018 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 7019 } 7020 7021 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 7022 { 7023 struct page *page = NULL; 7024 7025 if (!lapic_in_kernel(vcpu)) 7026 return; 7027 7028 if (!kvm_x86_ops->set_apic_access_page_addr) 7029 return; 7030 7031 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7032 if (is_error_page(page)) 7033 return; 7034 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 7035 7036 /* 7037 * Do not pin apic access page in memory, the MMU notifier 7038 * will call us again if it is migrated or swapped out. 7039 */ 7040 put_page(page); 7041 } 7042 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 7043 7044 /* 7045 * Returns 1 to let vcpu_run() continue the guest execution loop without 7046 * exiting to the userspace. Otherwise, the value will be returned to the 7047 * userspace. 7048 */ 7049 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 7050 { 7051 int r; 7052 bool req_int_win = 7053 dm_request_for_irq_injection(vcpu) && 7054 kvm_cpu_accept_dm_intr(vcpu); 7055 7056 bool req_immediate_exit = false; 7057 7058 if (kvm_request_pending(vcpu)) { 7059 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 7060 kvm_mmu_unload(vcpu); 7061 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 7062 __kvm_migrate_timers(vcpu); 7063 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 7064 kvm_gen_update_masterclock(vcpu->kvm); 7065 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 7066 kvm_gen_kvmclock_update(vcpu); 7067 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 7068 r = kvm_guest_time_update(vcpu); 7069 if (unlikely(r)) 7070 goto out; 7071 } 7072 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 7073 kvm_mmu_sync_roots(vcpu); 7074 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 7075 kvm_vcpu_flush_tlb(vcpu, true); 7076 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 7077 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 7078 r = 0; 7079 goto out; 7080 } 7081 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 7082 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 7083 vcpu->mmio_needed = 0; 7084 r = 0; 7085 goto out; 7086 } 7087 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 7088 /* Page is swapped out. Do synthetic halt */ 7089 vcpu->arch.apf.halted = true; 7090 r = 1; 7091 goto out; 7092 } 7093 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 7094 record_steal_time(vcpu); 7095 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 7096 process_smi(vcpu); 7097 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 7098 process_nmi(vcpu); 7099 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 7100 kvm_pmu_handle_event(vcpu); 7101 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 7102 kvm_pmu_deliver_pmi(vcpu); 7103 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 7104 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 7105 if (test_bit(vcpu->arch.pending_ioapic_eoi, 7106 vcpu->arch.ioapic_handled_vectors)) { 7107 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 7108 vcpu->run->eoi.vector = 7109 vcpu->arch.pending_ioapic_eoi; 7110 r = 0; 7111 goto out; 7112 } 7113 } 7114 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 7115 vcpu_scan_ioapic(vcpu); 7116 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 7117 kvm_vcpu_reload_apic_access_page(vcpu); 7118 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 7119 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7120 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 7121 r = 0; 7122 goto out; 7123 } 7124 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 7125 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7126 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 7127 r = 0; 7128 goto out; 7129 } 7130 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 7131 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 7132 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 7133 r = 0; 7134 goto out; 7135 } 7136 7137 /* 7138 * KVM_REQ_HV_STIMER has to be processed after 7139 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 7140 * depend on the guest clock being up-to-date 7141 */ 7142 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 7143 kvm_hv_process_stimers(vcpu); 7144 } 7145 7146 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 7147 ++vcpu->stat.req_event; 7148 kvm_apic_accept_events(vcpu); 7149 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 7150 r = 1; 7151 goto out; 7152 } 7153 7154 if (inject_pending_event(vcpu, req_int_win) != 0) 7155 req_immediate_exit = true; 7156 else { 7157 /* Enable SMI/NMI/IRQ window open exits if needed. 7158 * 7159 * SMIs have three cases: 7160 * 1) They can be nested, and then there is nothing to 7161 * do here because RSM will cause a vmexit anyway. 7162 * 2) There is an ISA-specific reason why SMI cannot be 7163 * injected, and the moment when this changes can be 7164 * intercepted. 7165 * 3) Or the SMI can be pending because 7166 * inject_pending_event has completed the injection 7167 * of an IRQ or NMI from the previous vmexit, and 7168 * then we request an immediate exit to inject the 7169 * SMI. 7170 */ 7171 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 7172 if (!kvm_x86_ops->enable_smi_window(vcpu)) 7173 req_immediate_exit = true; 7174 if (vcpu->arch.nmi_pending) 7175 kvm_x86_ops->enable_nmi_window(vcpu); 7176 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 7177 kvm_x86_ops->enable_irq_window(vcpu); 7178 WARN_ON(vcpu->arch.exception.pending); 7179 } 7180 7181 if (kvm_lapic_enabled(vcpu)) { 7182 update_cr8_intercept(vcpu); 7183 kvm_lapic_sync_to_vapic(vcpu); 7184 } 7185 } 7186 7187 r = kvm_mmu_reload(vcpu); 7188 if (unlikely(r)) { 7189 goto cancel_injection; 7190 } 7191 7192 preempt_disable(); 7193 7194 kvm_x86_ops->prepare_guest_switch(vcpu); 7195 7196 /* 7197 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 7198 * IPI are then delayed after guest entry, which ensures that they 7199 * result in virtual interrupt delivery. 7200 */ 7201 local_irq_disable(); 7202 vcpu->mode = IN_GUEST_MODE; 7203 7204 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7205 7206 /* 7207 * 1) We should set ->mode before checking ->requests. Please see 7208 * the comment in kvm_vcpu_exiting_guest_mode(). 7209 * 7210 * 2) For APICv, we should set ->mode before checking PIR.ON. This 7211 * pairs with the memory barrier implicit in pi_test_and_set_on 7212 * (see vmx_deliver_posted_interrupt). 7213 * 7214 * 3) This also orders the write to mode from any reads to the page 7215 * tables done while the VCPU is running. Please see the comment 7216 * in kvm_flush_remote_tlbs. 7217 */ 7218 smp_mb__after_srcu_read_unlock(); 7219 7220 /* 7221 * This handles the case where a posted interrupt was 7222 * notified with kvm_vcpu_kick. 7223 */ 7224 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 7225 kvm_x86_ops->sync_pir_to_irr(vcpu); 7226 7227 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 7228 || need_resched() || signal_pending(current)) { 7229 vcpu->mode = OUTSIDE_GUEST_MODE; 7230 smp_wmb(); 7231 local_irq_enable(); 7232 preempt_enable(); 7233 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7234 r = 1; 7235 goto cancel_injection; 7236 } 7237 7238 kvm_load_guest_xcr0(vcpu); 7239 7240 if (req_immediate_exit) { 7241 kvm_make_request(KVM_REQ_EVENT, vcpu); 7242 smp_send_reschedule(vcpu->cpu); 7243 } 7244 7245 trace_kvm_entry(vcpu->vcpu_id); 7246 if (lapic_timer_advance_ns) 7247 wait_lapic_expire(vcpu); 7248 guest_enter_irqoff(); 7249 7250 if (unlikely(vcpu->arch.switch_db_regs)) { 7251 set_debugreg(0, 7); 7252 set_debugreg(vcpu->arch.eff_db[0], 0); 7253 set_debugreg(vcpu->arch.eff_db[1], 1); 7254 set_debugreg(vcpu->arch.eff_db[2], 2); 7255 set_debugreg(vcpu->arch.eff_db[3], 3); 7256 set_debugreg(vcpu->arch.dr6, 6); 7257 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7258 } 7259 7260 kvm_x86_ops->run(vcpu); 7261 7262 /* 7263 * Do this here before restoring debug registers on the host. And 7264 * since we do this before handling the vmexit, a DR access vmexit 7265 * can (a) read the correct value of the debug registers, (b) set 7266 * KVM_DEBUGREG_WONT_EXIT again. 7267 */ 7268 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 7269 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 7270 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 7271 kvm_update_dr0123(vcpu); 7272 kvm_update_dr6(vcpu); 7273 kvm_update_dr7(vcpu); 7274 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7275 } 7276 7277 /* 7278 * If the guest has used debug registers, at least dr7 7279 * will be disabled while returning to the host. 7280 * If we don't have active breakpoints in the host, we don't 7281 * care about the messed up debug address registers. But if 7282 * we have some of them active, restore the old state. 7283 */ 7284 if (hw_breakpoint_active()) 7285 hw_breakpoint_restore(); 7286 7287 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 7288 7289 vcpu->mode = OUTSIDE_GUEST_MODE; 7290 smp_wmb(); 7291 7292 kvm_put_guest_xcr0(vcpu); 7293 7294 kvm_x86_ops->handle_external_intr(vcpu); 7295 7296 ++vcpu->stat.exits; 7297 7298 guest_exit_irqoff(); 7299 7300 local_irq_enable(); 7301 preempt_enable(); 7302 7303 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7304 7305 /* 7306 * Profile KVM exit RIPs: 7307 */ 7308 if (unlikely(prof_on == KVM_PROFILING)) { 7309 unsigned long rip = kvm_rip_read(vcpu); 7310 profile_hit(KVM_PROFILING, (void *)rip); 7311 } 7312 7313 if (unlikely(vcpu->arch.tsc_always_catchup)) 7314 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7315 7316 if (vcpu->arch.apic_attention) 7317 kvm_lapic_sync_from_vapic(vcpu); 7318 7319 vcpu->arch.gpa_available = false; 7320 r = kvm_x86_ops->handle_exit(vcpu); 7321 return r; 7322 7323 cancel_injection: 7324 kvm_x86_ops->cancel_injection(vcpu); 7325 if (unlikely(vcpu->arch.apic_attention)) 7326 kvm_lapic_sync_from_vapic(vcpu); 7327 out: 7328 return r; 7329 } 7330 7331 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 7332 { 7333 if (!kvm_arch_vcpu_runnable(vcpu) && 7334 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 7335 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7336 kvm_vcpu_block(vcpu); 7337 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7338 7339 if (kvm_x86_ops->post_block) 7340 kvm_x86_ops->post_block(vcpu); 7341 7342 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7343 return 1; 7344 } 7345 7346 kvm_apic_accept_events(vcpu); 7347 switch(vcpu->arch.mp_state) { 7348 case KVM_MP_STATE_HALTED: 7349 vcpu->arch.pv.pv_unhalted = false; 7350 vcpu->arch.mp_state = 7351 KVM_MP_STATE_RUNNABLE; 7352 case KVM_MP_STATE_RUNNABLE: 7353 vcpu->arch.apf.halted = false; 7354 break; 7355 case KVM_MP_STATE_INIT_RECEIVED: 7356 break; 7357 default: 7358 return -EINTR; 7359 break; 7360 } 7361 return 1; 7362 } 7363 7364 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7365 { 7366 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7367 kvm_x86_ops->check_nested_events(vcpu, false); 7368 7369 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7370 !vcpu->arch.apf.halted); 7371 } 7372 7373 static int vcpu_run(struct kvm_vcpu *vcpu) 7374 { 7375 int r; 7376 struct kvm *kvm = vcpu->kvm; 7377 7378 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7379 7380 for (;;) { 7381 if (kvm_vcpu_running(vcpu)) { 7382 r = vcpu_enter_guest(vcpu); 7383 } else { 7384 r = vcpu_block(kvm, vcpu); 7385 } 7386 7387 if (r <= 0) 7388 break; 7389 7390 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 7391 if (kvm_cpu_has_pending_timer(vcpu)) 7392 kvm_inject_pending_timer_irqs(vcpu); 7393 7394 if (dm_request_for_irq_injection(vcpu) && 7395 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7396 r = 0; 7397 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7398 ++vcpu->stat.request_irq_exits; 7399 break; 7400 } 7401 7402 kvm_check_async_pf_completion(vcpu); 7403 7404 if (signal_pending(current)) { 7405 r = -EINTR; 7406 vcpu->run->exit_reason = KVM_EXIT_INTR; 7407 ++vcpu->stat.signal_exits; 7408 break; 7409 } 7410 if (need_resched()) { 7411 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7412 cond_resched(); 7413 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7414 } 7415 } 7416 7417 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7418 7419 return r; 7420 } 7421 7422 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7423 { 7424 int r; 7425 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7426 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7427 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7428 if (r != EMULATE_DONE) 7429 return 0; 7430 return 1; 7431 } 7432 7433 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7434 { 7435 BUG_ON(!vcpu->arch.pio.count); 7436 7437 return complete_emulated_io(vcpu); 7438 } 7439 7440 /* 7441 * Implements the following, as a state machine: 7442 * 7443 * read: 7444 * for each fragment 7445 * for each mmio piece in the fragment 7446 * write gpa, len 7447 * exit 7448 * copy data 7449 * execute insn 7450 * 7451 * write: 7452 * for each fragment 7453 * for each mmio piece in the fragment 7454 * write gpa, len 7455 * copy data 7456 * exit 7457 */ 7458 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7459 { 7460 struct kvm_run *run = vcpu->run; 7461 struct kvm_mmio_fragment *frag; 7462 unsigned len; 7463 7464 BUG_ON(!vcpu->mmio_needed); 7465 7466 /* Complete previous fragment */ 7467 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7468 len = min(8u, frag->len); 7469 if (!vcpu->mmio_is_write) 7470 memcpy(frag->data, run->mmio.data, len); 7471 7472 if (frag->len <= 8) { 7473 /* Switch to the next fragment. */ 7474 frag++; 7475 vcpu->mmio_cur_fragment++; 7476 } else { 7477 /* Go forward to the next mmio piece. */ 7478 frag->data += len; 7479 frag->gpa += len; 7480 frag->len -= len; 7481 } 7482 7483 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7484 vcpu->mmio_needed = 0; 7485 7486 /* FIXME: return into emulator if single-stepping. */ 7487 if (vcpu->mmio_is_write) 7488 return 1; 7489 vcpu->mmio_read_completed = 1; 7490 return complete_emulated_io(vcpu); 7491 } 7492 7493 run->exit_reason = KVM_EXIT_MMIO; 7494 run->mmio.phys_addr = frag->gpa; 7495 if (vcpu->mmio_is_write) 7496 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7497 run->mmio.len = min(8u, frag->len); 7498 run->mmio.is_write = vcpu->mmio_is_write; 7499 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7500 return 0; 7501 } 7502 7503 7504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7505 { 7506 int r; 7507 7508 vcpu_load(vcpu); 7509 kvm_sigset_activate(vcpu); 7510 kvm_load_guest_fpu(vcpu); 7511 7512 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7513 if (kvm_run->immediate_exit) { 7514 r = -EINTR; 7515 goto out; 7516 } 7517 kvm_vcpu_block(vcpu); 7518 kvm_apic_accept_events(vcpu); 7519 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 7520 r = -EAGAIN; 7521 if (signal_pending(current)) { 7522 r = -EINTR; 7523 vcpu->run->exit_reason = KVM_EXIT_INTR; 7524 ++vcpu->stat.signal_exits; 7525 } 7526 goto out; 7527 } 7528 7529 /* re-sync apic's tpr */ 7530 if (!lapic_in_kernel(vcpu)) { 7531 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7532 r = -EINVAL; 7533 goto out; 7534 } 7535 } 7536 7537 if (unlikely(vcpu->arch.complete_userspace_io)) { 7538 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7539 vcpu->arch.complete_userspace_io = NULL; 7540 r = cui(vcpu); 7541 if (r <= 0) 7542 goto out; 7543 } else 7544 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7545 7546 if (kvm_run->immediate_exit) 7547 r = -EINTR; 7548 else 7549 r = vcpu_run(vcpu); 7550 7551 out: 7552 kvm_put_guest_fpu(vcpu); 7553 post_kvm_run_save(vcpu); 7554 kvm_sigset_deactivate(vcpu); 7555 7556 vcpu_put(vcpu); 7557 return r; 7558 } 7559 7560 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7561 { 7562 vcpu_load(vcpu); 7563 7564 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7565 /* 7566 * We are here if userspace calls get_regs() in the middle of 7567 * instruction emulation. Registers state needs to be copied 7568 * back from emulation context to vcpu. Userspace shouldn't do 7569 * that usually, but some bad designed PV devices (vmware 7570 * backdoor interface) need this to work 7571 */ 7572 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7573 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7574 } 7575 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7576 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7577 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7578 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7579 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7580 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7581 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7582 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7583 #ifdef CONFIG_X86_64 7584 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7585 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7586 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7587 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7588 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7589 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7590 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7591 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7592 #endif 7593 7594 regs->rip = kvm_rip_read(vcpu); 7595 regs->rflags = kvm_get_rflags(vcpu); 7596 7597 vcpu_put(vcpu); 7598 return 0; 7599 } 7600 7601 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7602 { 7603 vcpu_load(vcpu); 7604 7605 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7606 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7607 7608 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7609 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7610 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7611 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7612 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7613 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7614 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7615 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7616 #ifdef CONFIG_X86_64 7617 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7618 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7619 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7620 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7621 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7622 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7623 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7624 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7625 #endif 7626 7627 kvm_rip_write(vcpu, regs->rip); 7628 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 7629 7630 vcpu->arch.exception.pending = false; 7631 7632 kvm_make_request(KVM_REQ_EVENT, vcpu); 7633 7634 vcpu_put(vcpu); 7635 return 0; 7636 } 7637 7638 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7639 { 7640 struct kvm_segment cs; 7641 7642 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7643 *db = cs.db; 7644 *l = cs.l; 7645 } 7646 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7647 7648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7649 struct kvm_sregs *sregs) 7650 { 7651 struct desc_ptr dt; 7652 7653 vcpu_load(vcpu); 7654 7655 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7656 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7657 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7658 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7659 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7660 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7661 7662 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7663 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7664 7665 kvm_x86_ops->get_idt(vcpu, &dt); 7666 sregs->idt.limit = dt.size; 7667 sregs->idt.base = dt.address; 7668 kvm_x86_ops->get_gdt(vcpu, &dt); 7669 sregs->gdt.limit = dt.size; 7670 sregs->gdt.base = dt.address; 7671 7672 sregs->cr0 = kvm_read_cr0(vcpu); 7673 sregs->cr2 = vcpu->arch.cr2; 7674 sregs->cr3 = kvm_read_cr3(vcpu); 7675 sregs->cr4 = kvm_read_cr4(vcpu); 7676 sregs->cr8 = kvm_get_cr8(vcpu); 7677 sregs->efer = vcpu->arch.efer; 7678 sregs->apic_base = kvm_get_apic_base(vcpu); 7679 7680 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7681 7682 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7683 set_bit(vcpu->arch.interrupt.nr, 7684 (unsigned long *)sregs->interrupt_bitmap); 7685 7686 vcpu_put(vcpu); 7687 return 0; 7688 } 7689 7690 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7691 struct kvm_mp_state *mp_state) 7692 { 7693 vcpu_load(vcpu); 7694 7695 kvm_apic_accept_events(vcpu); 7696 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7697 vcpu->arch.pv.pv_unhalted) 7698 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7699 else 7700 mp_state->mp_state = vcpu->arch.mp_state; 7701 7702 vcpu_put(vcpu); 7703 return 0; 7704 } 7705 7706 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7707 struct kvm_mp_state *mp_state) 7708 { 7709 int ret = -EINVAL; 7710 7711 vcpu_load(vcpu); 7712 7713 if (!lapic_in_kernel(vcpu) && 7714 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7715 goto out; 7716 7717 /* INITs are latched while in SMM */ 7718 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 7719 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 7720 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 7721 goto out; 7722 7723 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7724 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7725 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7726 } else 7727 vcpu->arch.mp_state = mp_state->mp_state; 7728 kvm_make_request(KVM_REQ_EVENT, vcpu); 7729 7730 ret = 0; 7731 out: 7732 vcpu_put(vcpu); 7733 return ret; 7734 } 7735 7736 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7737 int reason, bool has_error_code, u32 error_code) 7738 { 7739 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7740 int ret; 7741 7742 init_emulate_ctxt(vcpu); 7743 7744 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7745 has_error_code, error_code); 7746 7747 if (ret) 7748 return EMULATE_FAIL; 7749 7750 kvm_rip_write(vcpu, ctxt->eip); 7751 kvm_set_rflags(vcpu, ctxt->eflags); 7752 kvm_make_request(KVM_REQ_EVENT, vcpu); 7753 return EMULATE_DONE; 7754 } 7755 EXPORT_SYMBOL_GPL(kvm_task_switch); 7756 7757 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 7758 { 7759 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 7760 /* 7761 * When EFER.LME and CR0.PG are set, the processor is in 7762 * 64-bit mode (though maybe in a 32-bit code segment). 7763 * CR4.PAE and EFER.LMA must be set. 7764 */ 7765 if (!(sregs->cr4 & X86_CR4_PAE) 7766 || !(sregs->efer & EFER_LMA)) 7767 return -EINVAL; 7768 } else { 7769 /* 7770 * Not in 64-bit mode: EFER.LMA is clear and the code 7771 * segment cannot be 64-bit. 7772 */ 7773 if (sregs->efer & EFER_LMA || sregs->cs.l) 7774 return -EINVAL; 7775 } 7776 7777 return 0; 7778 } 7779 7780 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7781 struct kvm_sregs *sregs) 7782 { 7783 struct msr_data apic_base_msr; 7784 int mmu_reset_needed = 0; 7785 int pending_vec, max_bits, idx; 7786 struct desc_ptr dt; 7787 int ret = -EINVAL; 7788 7789 vcpu_load(vcpu); 7790 7791 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 7792 (sregs->cr4 & X86_CR4_OSXSAVE)) 7793 goto out; 7794 7795 if (kvm_valid_sregs(vcpu, sregs)) 7796 goto out; 7797 7798 apic_base_msr.data = sregs->apic_base; 7799 apic_base_msr.host_initiated = true; 7800 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 7801 goto out; 7802 7803 dt.size = sregs->idt.limit; 7804 dt.address = sregs->idt.base; 7805 kvm_x86_ops->set_idt(vcpu, &dt); 7806 dt.size = sregs->gdt.limit; 7807 dt.address = sregs->gdt.base; 7808 kvm_x86_ops->set_gdt(vcpu, &dt); 7809 7810 vcpu->arch.cr2 = sregs->cr2; 7811 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7812 vcpu->arch.cr3 = sregs->cr3; 7813 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7814 7815 kvm_set_cr8(vcpu, sregs->cr8); 7816 7817 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7818 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7819 7820 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7821 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7822 vcpu->arch.cr0 = sregs->cr0; 7823 7824 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7825 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7826 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7827 kvm_update_cpuid(vcpu); 7828 7829 idx = srcu_read_lock(&vcpu->kvm->srcu); 7830 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7831 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7832 mmu_reset_needed = 1; 7833 } 7834 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7835 7836 if (mmu_reset_needed) 7837 kvm_mmu_reset_context(vcpu); 7838 7839 max_bits = KVM_NR_INTERRUPTS; 7840 pending_vec = find_first_bit( 7841 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7842 if (pending_vec < max_bits) { 7843 kvm_queue_interrupt(vcpu, pending_vec, false); 7844 pr_debug("Set back pending irq %d\n", pending_vec); 7845 } 7846 7847 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7848 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7849 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7850 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7851 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7852 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7853 7854 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7855 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7856 7857 update_cr8_intercept(vcpu); 7858 7859 /* Older userspace won't unhalt the vcpu on reset. */ 7860 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7861 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7862 !is_protmode(vcpu)) 7863 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7864 7865 kvm_make_request(KVM_REQ_EVENT, vcpu); 7866 7867 ret = 0; 7868 out: 7869 vcpu_put(vcpu); 7870 return ret; 7871 } 7872 7873 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7874 struct kvm_guest_debug *dbg) 7875 { 7876 unsigned long rflags; 7877 int i, r; 7878 7879 vcpu_load(vcpu); 7880 7881 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7882 r = -EBUSY; 7883 if (vcpu->arch.exception.pending) 7884 goto out; 7885 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7886 kvm_queue_exception(vcpu, DB_VECTOR); 7887 else 7888 kvm_queue_exception(vcpu, BP_VECTOR); 7889 } 7890 7891 /* 7892 * Read rflags as long as potentially injected trace flags are still 7893 * filtered out. 7894 */ 7895 rflags = kvm_get_rflags(vcpu); 7896 7897 vcpu->guest_debug = dbg->control; 7898 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7899 vcpu->guest_debug = 0; 7900 7901 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7902 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7903 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7904 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7905 } else { 7906 for (i = 0; i < KVM_NR_DB_REGS; i++) 7907 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7908 } 7909 kvm_update_dr7(vcpu); 7910 7911 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7912 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7913 get_segment_base(vcpu, VCPU_SREG_CS); 7914 7915 /* 7916 * Trigger an rflags update that will inject or remove the trace 7917 * flags. 7918 */ 7919 kvm_set_rflags(vcpu, rflags); 7920 7921 kvm_x86_ops->update_bp_intercept(vcpu); 7922 7923 r = 0; 7924 7925 out: 7926 vcpu_put(vcpu); 7927 return r; 7928 } 7929 7930 /* 7931 * Translate a guest virtual address to a guest physical address. 7932 */ 7933 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7934 struct kvm_translation *tr) 7935 { 7936 unsigned long vaddr = tr->linear_address; 7937 gpa_t gpa; 7938 int idx; 7939 7940 vcpu_load(vcpu); 7941 7942 idx = srcu_read_lock(&vcpu->kvm->srcu); 7943 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7944 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7945 tr->physical_address = gpa; 7946 tr->valid = gpa != UNMAPPED_GVA; 7947 tr->writeable = 1; 7948 tr->usermode = 0; 7949 7950 vcpu_put(vcpu); 7951 return 0; 7952 } 7953 7954 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7955 { 7956 struct fxregs_state *fxsave; 7957 7958 vcpu_load(vcpu); 7959 7960 fxsave = &vcpu->arch.guest_fpu.state.fxsave; 7961 memcpy(fpu->fpr, fxsave->st_space, 128); 7962 fpu->fcw = fxsave->cwd; 7963 fpu->fsw = fxsave->swd; 7964 fpu->ftwx = fxsave->twd; 7965 fpu->last_opcode = fxsave->fop; 7966 fpu->last_ip = fxsave->rip; 7967 fpu->last_dp = fxsave->rdp; 7968 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7969 7970 vcpu_put(vcpu); 7971 return 0; 7972 } 7973 7974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7975 { 7976 struct fxregs_state *fxsave; 7977 7978 vcpu_load(vcpu); 7979 7980 fxsave = &vcpu->arch.guest_fpu.state.fxsave; 7981 7982 memcpy(fxsave->st_space, fpu->fpr, 128); 7983 fxsave->cwd = fpu->fcw; 7984 fxsave->swd = fpu->fsw; 7985 fxsave->twd = fpu->ftwx; 7986 fxsave->fop = fpu->last_opcode; 7987 fxsave->rip = fpu->last_ip; 7988 fxsave->rdp = fpu->last_dp; 7989 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7990 7991 vcpu_put(vcpu); 7992 return 0; 7993 } 7994 7995 static void fx_init(struct kvm_vcpu *vcpu) 7996 { 7997 fpstate_init(&vcpu->arch.guest_fpu.state); 7998 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7999 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 8000 host_xcr0 | XSTATE_COMPACTION_ENABLED; 8001 8002 /* 8003 * Ensure guest xcr0 is valid for loading 8004 */ 8005 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8006 8007 vcpu->arch.cr0 |= X86_CR0_ET; 8008 } 8009 8010 /* Swap (qemu) user FPU context for the guest FPU context. */ 8011 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8012 { 8013 preempt_disable(); 8014 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); 8015 /* PKRU is separately restored in kvm_x86_ops->run. */ 8016 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, 8017 ~XFEATURE_MASK_PKRU); 8018 preempt_enable(); 8019 trace_kvm_fpu(1); 8020 } 8021 8022 /* When vcpu_run ends, restore user space FPU context. */ 8023 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8024 { 8025 preempt_disable(); 8026 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 8027 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); 8028 preempt_enable(); 8029 ++vcpu->stat.fpu_reload; 8030 trace_kvm_fpu(0); 8031 } 8032 8033 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 8034 { 8035 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 8036 8037 kvmclock_reset(vcpu); 8038 8039 kvm_x86_ops->vcpu_free(vcpu); 8040 free_cpumask_var(wbinvd_dirty_mask); 8041 } 8042 8043 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 8044 unsigned int id) 8045 { 8046 struct kvm_vcpu *vcpu; 8047 8048 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 8049 printk_once(KERN_WARNING 8050 "kvm: SMP vm created on host with unstable TSC; " 8051 "guest TSC will not be reliable\n"); 8052 8053 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 8054 8055 return vcpu; 8056 } 8057 8058 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 8059 { 8060 kvm_vcpu_mtrr_init(vcpu); 8061 vcpu_load(vcpu); 8062 kvm_vcpu_reset(vcpu, false); 8063 kvm_mmu_setup(vcpu); 8064 vcpu_put(vcpu); 8065 return 0; 8066 } 8067 8068 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 8069 { 8070 struct msr_data msr; 8071 struct kvm *kvm = vcpu->kvm; 8072 8073 kvm_hv_vcpu_postcreate(vcpu); 8074 8075 if (mutex_lock_killable(&vcpu->mutex)) 8076 return; 8077 vcpu_load(vcpu); 8078 msr.data = 0x0; 8079 msr.index = MSR_IA32_TSC; 8080 msr.host_initiated = true; 8081 kvm_write_tsc(vcpu, &msr); 8082 vcpu_put(vcpu); 8083 mutex_unlock(&vcpu->mutex); 8084 8085 if (!kvmclock_periodic_sync) 8086 return; 8087 8088 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 8089 KVMCLOCK_SYNC_PERIOD); 8090 } 8091 8092 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 8093 { 8094 vcpu->arch.apf.msr_val = 0; 8095 8096 vcpu_load(vcpu); 8097 kvm_mmu_unload(vcpu); 8098 vcpu_put(vcpu); 8099 8100 kvm_x86_ops->vcpu_free(vcpu); 8101 } 8102 8103 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 8104 { 8105 kvm_lapic_reset(vcpu, init_event); 8106 8107 vcpu->arch.hflags = 0; 8108 8109 vcpu->arch.smi_pending = 0; 8110 vcpu->arch.smi_count = 0; 8111 atomic_set(&vcpu->arch.nmi_queued, 0); 8112 vcpu->arch.nmi_pending = 0; 8113 vcpu->arch.nmi_injected = false; 8114 kvm_clear_interrupt_queue(vcpu); 8115 kvm_clear_exception_queue(vcpu); 8116 vcpu->arch.exception.pending = false; 8117 8118 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 8119 kvm_update_dr0123(vcpu); 8120 vcpu->arch.dr6 = DR6_INIT; 8121 kvm_update_dr6(vcpu); 8122 vcpu->arch.dr7 = DR7_FIXED_1; 8123 kvm_update_dr7(vcpu); 8124 8125 vcpu->arch.cr2 = 0; 8126 8127 kvm_make_request(KVM_REQ_EVENT, vcpu); 8128 vcpu->arch.apf.msr_val = 0; 8129 vcpu->arch.st.msr_val = 0; 8130 8131 kvmclock_reset(vcpu); 8132 8133 kvm_clear_async_pf_completion_queue(vcpu); 8134 kvm_async_pf_hash_reset(vcpu); 8135 vcpu->arch.apf.halted = false; 8136 8137 if (kvm_mpx_supported()) { 8138 void *mpx_state_buffer; 8139 8140 /* 8141 * To avoid have the INIT path from kvm_apic_has_events() that be 8142 * called with loaded FPU and does not let userspace fix the state. 8143 */ 8144 if (init_event) 8145 kvm_put_guest_fpu(vcpu); 8146 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, 8147 XFEATURE_MASK_BNDREGS); 8148 if (mpx_state_buffer) 8149 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 8150 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, 8151 XFEATURE_MASK_BNDCSR); 8152 if (mpx_state_buffer) 8153 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 8154 if (init_event) 8155 kvm_load_guest_fpu(vcpu); 8156 } 8157 8158 if (!init_event) { 8159 kvm_pmu_reset(vcpu); 8160 vcpu->arch.smbase = 0x30000; 8161 8162 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 8163 vcpu->arch.msr_misc_features_enables = 0; 8164 8165 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8166 } 8167 8168 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 8169 vcpu->arch.regs_avail = ~0; 8170 vcpu->arch.regs_dirty = ~0; 8171 8172 vcpu->arch.ia32_xss = 0; 8173 8174 kvm_x86_ops->vcpu_reset(vcpu, init_event); 8175 } 8176 8177 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 8178 { 8179 struct kvm_segment cs; 8180 8181 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8182 cs.selector = vector << 8; 8183 cs.base = vector << 12; 8184 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8185 kvm_rip_write(vcpu, 0); 8186 } 8187 8188 int kvm_arch_hardware_enable(void) 8189 { 8190 struct kvm *kvm; 8191 struct kvm_vcpu *vcpu; 8192 int i; 8193 int ret; 8194 u64 local_tsc; 8195 u64 max_tsc = 0; 8196 bool stable, backwards_tsc = false; 8197 8198 kvm_shared_msr_cpu_online(); 8199 ret = kvm_x86_ops->hardware_enable(); 8200 if (ret != 0) 8201 return ret; 8202 8203 local_tsc = rdtsc(); 8204 stable = !kvm_check_tsc_unstable(); 8205 list_for_each_entry(kvm, &vm_list, vm_list) { 8206 kvm_for_each_vcpu(i, vcpu, kvm) { 8207 if (!stable && vcpu->cpu == smp_processor_id()) 8208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8209 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 8210 backwards_tsc = true; 8211 if (vcpu->arch.last_host_tsc > max_tsc) 8212 max_tsc = vcpu->arch.last_host_tsc; 8213 } 8214 } 8215 } 8216 8217 /* 8218 * Sometimes, even reliable TSCs go backwards. This happens on 8219 * platforms that reset TSC during suspend or hibernate actions, but 8220 * maintain synchronization. We must compensate. Fortunately, we can 8221 * detect that condition here, which happens early in CPU bringup, 8222 * before any KVM threads can be running. Unfortunately, we can't 8223 * bring the TSCs fully up to date with real time, as we aren't yet far 8224 * enough into CPU bringup that we know how much real time has actually 8225 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 8226 * variables that haven't been updated yet. 8227 * 8228 * So we simply find the maximum observed TSC above, then record the 8229 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 8230 * the adjustment will be applied. Note that we accumulate 8231 * adjustments, in case multiple suspend cycles happen before some VCPU 8232 * gets a chance to run again. In the event that no KVM threads get a 8233 * chance to run, we will miss the entire elapsed period, as we'll have 8234 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 8235 * loose cycle time. This isn't too big a deal, since the loss will be 8236 * uniform across all VCPUs (not to mention the scenario is extremely 8237 * unlikely). It is possible that a second hibernate recovery happens 8238 * much faster than a first, causing the observed TSC here to be 8239 * smaller; this would require additional padding adjustment, which is 8240 * why we set last_host_tsc to the local tsc observed here. 8241 * 8242 * N.B. - this code below runs only on platforms with reliable TSC, 8243 * as that is the only way backwards_tsc is set above. Also note 8244 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 8245 * have the same delta_cyc adjustment applied if backwards_tsc 8246 * is detected. Note further, this adjustment is only done once, 8247 * as we reset last_host_tsc on all VCPUs to stop this from being 8248 * called multiple times (one for each physical CPU bringup). 8249 * 8250 * Platforms with unreliable TSCs don't have to deal with this, they 8251 * will be compensated by the logic in vcpu_load, which sets the TSC to 8252 * catchup mode. This will catchup all VCPUs to real time, but cannot 8253 * guarantee that they stay in perfect synchronization. 8254 */ 8255 if (backwards_tsc) { 8256 u64 delta_cyc = max_tsc - local_tsc; 8257 list_for_each_entry(kvm, &vm_list, vm_list) { 8258 kvm->arch.backwards_tsc_observed = true; 8259 kvm_for_each_vcpu(i, vcpu, kvm) { 8260 vcpu->arch.tsc_offset_adjustment += delta_cyc; 8261 vcpu->arch.last_host_tsc = local_tsc; 8262 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8263 } 8264 8265 /* 8266 * We have to disable TSC offset matching.. if you were 8267 * booting a VM while issuing an S4 host suspend.... 8268 * you may have some problem. Solving this issue is 8269 * left as an exercise to the reader. 8270 */ 8271 kvm->arch.last_tsc_nsec = 0; 8272 kvm->arch.last_tsc_write = 0; 8273 } 8274 8275 } 8276 return 0; 8277 } 8278 8279 void kvm_arch_hardware_disable(void) 8280 { 8281 kvm_x86_ops->hardware_disable(); 8282 drop_user_return_notifiers(); 8283 } 8284 8285 int kvm_arch_hardware_setup(void) 8286 { 8287 int r; 8288 8289 r = kvm_x86_ops->hardware_setup(); 8290 if (r != 0) 8291 return r; 8292 8293 if (kvm_has_tsc_control) { 8294 /* 8295 * Make sure the user can only configure tsc_khz values that 8296 * fit into a signed integer. 8297 * A min value is not calculated needed because it will always 8298 * be 1 on all machines. 8299 */ 8300 u64 max = min(0x7fffffffULL, 8301 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 8302 kvm_max_guest_tsc_khz = max; 8303 8304 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 8305 } 8306 8307 kvm_init_msr_list(); 8308 return 0; 8309 } 8310 8311 void kvm_arch_hardware_unsetup(void) 8312 { 8313 kvm_x86_ops->hardware_unsetup(); 8314 } 8315 8316 void kvm_arch_check_processor_compat(void *rtn) 8317 { 8318 kvm_x86_ops->check_processor_compatibility(rtn); 8319 } 8320 8321 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 8322 { 8323 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 8324 } 8325 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 8326 8327 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 8328 { 8329 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 8330 } 8331 8332 struct static_key kvm_no_apic_vcpu __read_mostly; 8333 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 8334 8335 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 8336 { 8337 struct page *page; 8338 int r; 8339 8340 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); 8341 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 8342 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 8343 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8344 else 8345 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 8346 8347 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 8348 if (!page) { 8349 r = -ENOMEM; 8350 goto fail; 8351 } 8352 vcpu->arch.pio_data = page_address(page); 8353 8354 kvm_set_tsc_khz(vcpu, max_tsc_khz); 8355 8356 r = kvm_mmu_create(vcpu); 8357 if (r < 0) 8358 goto fail_free_pio_data; 8359 8360 if (irqchip_in_kernel(vcpu->kvm)) { 8361 r = kvm_create_lapic(vcpu); 8362 if (r < 0) 8363 goto fail_mmu_destroy; 8364 } else 8365 static_key_slow_inc(&kvm_no_apic_vcpu); 8366 8367 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 8368 GFP_KERNEL); 8369 if (!vcpu->arch.mce_banks) { 8370 r = -ENOMEM; 8371 goto fail_free_lapic; 8372 } 8373 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 8374 8375 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 8376 r = -ENOMEM; 8377 goto fail_free_mce_banks; 8378 } 8379 8380 fx_init(vcpu); 8381 8382 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 8383 8384 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 8385 8386 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 8387 8388 kvm_async_pf_hash_reset(vcpu); 8389 kvm_pmu_init(vcpu); 8390 8391 vcpu->arch.pending_external_vector = -1; 8392 vcpu->arch.preempted_in_kernel = false; 8393 8394 kvm_hv_vcpu_init(vcpu); 8395 8396 return 0; 8397 8398 fail_free_mce_banks: 8399 kfree(vcpu->arch.mce_banks); 8400 fail_free_lapic: 8401 kvm_free_lapic(vcpu); 8402 fail_mmu_destroy: 8403 kvm_mmu_destroy(vcpu); 8404 fail_free_pio_data: 8405 free_page((unsigned long)vcpu->arch.pio_data); 8406 fail: 8407 return r; 8408 } 8409 8410 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 8411 { 8412 int idx; 8413 8414 kvm_hv_vcpu_uninit(vcpu); 8415 kvm_pmu_destroy(vcpu); 8416 kfree(vcpu->arch.mce_banks); 8417 kvm_free_lapic(vcpu); 8418 idx = srcu_read_lock(&vcpu->kvm->srcu); 8419 kvm_mmu_destroy(vcpu); 8420 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8421 free_page((unsigned long)vcpu->arch.pio_data); 8422 if (!lapic_in_kernel(vcpu)) 8423 static_key_slow_dec(&kvm_no_apic_vcpu); 8424 } 8425 8426 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 8427 { 8428 kvm_x86_ops->sched_in(vcpu, cpu); 8429 } 8430 8431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 8432 { 8433 if (type) 8434 return -EINVAL; 8435 8436 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8437 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8438 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8439 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8440 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8441 8442 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8443 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8444 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8445 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8446 &kvm->arch.irq_sources_bitmap); 8447 8448 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8449 mutex_init(&kvm->arch.apic_map_lock); 8450 mutex_init(&kvm->arch.hyperv.hv_lock); 8451 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8452 8453 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8454 pvclock_update_vm_gtod_copy(kvm); 8455 8456 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8457 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8458 8459 kvm_page_track_init(kvm); 8460 kvm_mmu_init_vm(kvm); 8461 8462 if (kvm_x86_ops->vm_init) 8463 return kvm_x86_ops->vm_init(kvm); 8464 8465 return 0; 8466 } 8467 8468 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8469 { 8470 vcpu_load(vcpu); 8471 kvm_mmu_unload(vcpu); 8472 vcpu_put(vcpu); 8473 } 8474 8475 static void kvm_free_vcpus(struct kvm *kvm) 8476 { 8477 unsigned int i; 8478 struct kvm_vcpu *vcpu; 8479 8480 /* 8481 * Unpin any mmu pages first. 8482 */ 8483 kvm_for_each_vcpu(i, vcpu, kvm) { 8484 kvm_clear_async_pf_completion_queue(vcpu); 8485 kvm_unload_vcpu_mmu(vcpu); 8486 } 8487 kvm_for_each_vcpu(i, vcpu, kvm) 8488 kvm_arch_vcpu_free(vcpu); 8489 8490 mutex_lock(&kvm->lock); 8491 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8492 kvm->vcpus[i] = NULL; 8493 8494 atomic_set(&kvm->online_vcpus, 0); 8495 mutex_unlock(&kvm->lock); 8496 } 8497 8498 void kvm_arch_sync_events(struct kvm *kvm) 8499 { 8500 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8501 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8502 kvm_free_pit(kvm); 8503 } 8504 8505 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8506 { 8507 int i, r; 8508 unsigned long hva; 8509 struct kvm_memslots *slots = kvm_memslots(kvm); 8510 struct kvm_memory_slot *slot, old; 8511 8512 /* Called with kvm->slots_lock held. */ 8513 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8514 return -EINVAL; 8515 8516 slot = id_to_memslot(slots, id); 8517 if (size) { 8518 if (slot->npages) 8519 return -EEXIST; 8520 8521 /* 8522 * MAP_SHARED to prevent internal slot pages from being moved 8523 * by fork()/COW. 8524 */ 8525 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8526 MAP_SHARED | MAP_ANONYMOUS, 0); 8527 if (IS_ERR((void *)hva)) 8528 return PTR_ERR((void *)hva); 8529 } else { 8530 if (!slot->npages) 8531 return 0; 8532 8533 hva = 0; 8534 } 8535 8536 old = *slot; 8537 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8538 struct kvm_userspace_memory_region m; 8539 8540 m.slot = id | (i << 16); 8541 m.flags = 0; 8542 m.guest_phys_addr = gpa; 8543 m.userspace_addr = hva; 8544 m.memory_size = size; 8545 r = __kvm_set_memory_region(kvm, &m); 8546 if (r < 0) 8547 return r; 8548 } 8549 8550 if (!size) 8551 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8552 8553 return 0; 8554 } 8555 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8556 8557 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8558 { 8559 int r; 8560 8561 mutex_lock(&kvm->slots_lock); 8562 r = __x86_set_memory_region(kvm, id, gpa, size); 8563 mutex_unlock(&kvm->slots_lock); 8564 8565 return r; 8566 } 8567 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8568 8569 void kvm_arch_destroy_vm(struct kvm *kvm) 8570 { 8571 if (current->mm == kvm->mm) { 8572 /* 8573 * Free memory regions allocated on behalf of userspace, 8574 * unless the the memory map has changed due to process exit 8575 * or fd copying. 8576 */ 8577 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8578 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8579 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8580 } 8581 if (kvm_x86_ops->vm_destroy) 8582 kvm_x86_ops->vm_destroy(kvm); 8583 kvm_pic_destroy(kvm); 8584 kvm_ioapic_destroy(kvm); 8585 kvm_free_vcpus(kvm); 8586 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8587 kvm_mmu_uninit_vm(kvm); 8588 kvm_page_track_cleanup(kvm); 8589 } 8590 8591 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8592 struct kvm_memory_slot *dont) 8593 { 8594 int i; 8595 8596 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8597 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8598 kvfree(free->arch.rmap[i]); 8599 free->arch.rmap[i] = NULL; 8600 } 8601 if (i == 0) 8602 continue; 8603 8604 if (!dont || free->arch.lpage_info[i - 1] != 8605 dont->arch.lpage_info[i - 1]) { 8606 kvfree(free->arch.lpage_info[i - 1]); 8607 free->arch.lpage_info[i - 1] = NULL; 8608 } 8609 } 8610 8611 kvm_page_track_free_memslot(free, dont); 8612 } 8613 8614 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8615 unsigned long npages) 8616 { 8617 int i; 8618 8619 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8620 struct kvm_lpage_info *linfo; 8621 unsigned long ugfn; 8622 int lpages; 8623 int level = i + 1; 8624 8625 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8626 slot->base_gfn, level) + 1; 8627 8628 slot->arch.rmap[i] = 8629 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); 8630 if (!slot->arch.rmap[i]) 8631 goto out_free; 8632 if (i == 0) 8633 continue; 8634 8635 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); 8636 if (!linfo) 8637 goto out_free; 8638 8639 slot->arch.lpage_info[i - 1] = linfo; 8640 8641 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8642 linfo[0].disallow_lpage = 1; 8643 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8644 linfo[lpages - 1].disallow_lpage = 1; 8645 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8646 /* 8647 * If the gfn and userspace address are not aligned wrt each 8648 * other, or if explicitly asked to, disable large page 8649 * support for this slot 8650 */ 8651 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8652 !kvm_largepages_enabled()) { 8653 unsigned long j; 8654 8655 for (j = 0; j < lpages; ++j) 8656 linfo[j].disallow_lpage = 1; 8657 } 8658 } 8659 8660 if (kvm_page_track_create_memslot(slot, npages)) 8661 goto out_free; 8662 8663 return 0; 8664 8665 out_free: 8666 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8667 kvfree(slot->arch.rmap[i]); 8668 slot->arch.rmap[i] = NULL; 8669 if (i == 0) 8670 continue; 8671 8672 kvfree(slot->arch.lpage_info[i - 1]); 8673 slot->arch.lpage_info[i - 1] = NULL; 8674 } 8675 return -ENOMEM; 8676 } 8677 8678 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8679 { 8680 /* 8681 * memslots->generation has been incremented. 8682 * mmio generation may have reached its maximum value. 8683 */ 8684 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8685 } 8686 8687 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8688 struct kvm_memory_slot *memslot, 8689 const struct kvm_userspace_memory_region *mem, 8690 enum kvm_mr_change change) 8691 { 8692 return 0; 8693 } 8694 8695 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8696 struct kvm_memory_slot *new) 8697 { 8698 /* Still write protect RO slot */ 8699 if (new->flags & KVM_MEM_READONLY) { 8700 kvm_mmu_slot_remove_write_access(kvm, new); 8701 return; 8702 } 8703 8704 /* 8705 * Call kvm_x86_ops dirty logging hooks when they are valid. 8706 * 8707 * kvm_x86_ops->slot_disable_log_dirty is called when: 8708 * 8709 * - KVM_MR_CREATE with dirty logging is disabled 8710 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8711 * 8712 * The reason is, in case of PML, we need to set D-bit for any slots 8713 * with dirty logging disabled in order to eliminate unnecessary GPA 8714 * logging in PML buffer (and potential PML buffer full VMEXT). This 8715 * guarantees leaving PML enabled during guest's lifetime won't have 8716 * any additonal overhead from PML when guest is running with dirty 8717 * logging disabled for memory slots. 8718 * 8719 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8720 * to dirty logging mode. 8721 * 8722 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8723 * 8724 * In case of write protect: 8725 * 8726 * Write protect all pages for dirty logging. 8727 * 8728 * All the sptes including the large sptes which point to this 8729 * slot are set to readonly. We can not create any new large 8730 * spte on this slot until the end of the logging. 8731 * 8732 * See the comments in fast_page_fault(). 8733 */ 8734 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8735 if (kvm_x86_ops->slot_enable_log_dirty) 8736 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8737 else 8738 kvm_mmu_slot_remove_write_access(kvm, new); 8739 } else { 8740 if (kvm_x86_ops->slot_disable_log_dirty) 8741 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8742 } 8743 } 8744 8745 void kvm_arch_commit_memory_region(struct kvm *kvm, 8746 const struct kvm_userspace_memory_region *mem, 8747 const struct kvm_memory_slot *old, 8748 const struct kvm_memory_slot *new, 8749 enum kvm_mr_change change) 8750 { 8751 int nr_mmu_pages = 0; 8752 8753 if (!kvm->arch.n_requested_mmu_pages) 8754 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8755 8756 if (nr_mmu_pages) 8757 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8758 8759 /* 8760 * Dirty logging tracks sptes in 4k granularity, meaning that large 8761 * sptes have to be split. If live migration is successful, the guest 8762 * in the source machine will be destroyed and large sptes will be 8763 * created in the destination. However, if the guest continues to run 8764 * in the source machine (for example if live migration fails), small 8765 * sptes will remain around and cause bad performance. 8766 * 8767 * Scan sptes if dirty logging has been stopped, dropping those 8768 * which can be collapsed into a single large-page spte. Later 8769 * page faults will create the large-page sptes. 8770 */ 8771 if ((change != KVM_MR_DELETE) && 8772 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8773 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8774 kvm_mmu_zap_collapsible_sptes(kvm, new); 8775 8776 /* 8777 * Set up write protection and/or dirty logging for the new slot. 8778 * 8779 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8780 * been zapped so no dirty logging staff is needed for old slot. For 8781 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8782 * new and it's also covered when dealing with the new slot. 8783 * 8784 * FIXME: const-ify all uses of struct kvm_memory_slot. 8785 */ 8786 if (change != KVM_MR_DELETE) 8787 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8788 } 8789 8790 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8791 { 8792 kvm_mmu_invalidate_zap_all_pages(kvm); 8793 } 8794 8795 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8796 struct kvm_memory_slot *slot) 8797 { 8798 kvm_page_track_flush_slot(kvm, slot); 8799 } 8800 8801 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8802 { 8803 if (!list_empty_careful(&vcpu->async_pf.done)) 8804 return true; 8805 8806 if (kvm_apic_has_events(vcpu)) 8807 return true; 8808 8809 if (vcpu->arch.pv.pv_unhalted) 8810 return true; 8811 8812 if (vcpu->arch.exception.pending) 8813 return true; 8814 8815 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 8816 (vcpu->arch.nmi_pending && 8817 kvm_x86_ops->nmi_allowed(vcpu))) 8818 return true; 8819 8820 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 8821 (vcpu->arch.smi_pending && !is_smm(vcpu))) 8822 return true; 8823 8824 if (kvm_arch_interrupt_allowed(vcpu) && 8825 kvm_cpu_has_interrupt(vcpu)) 8826 return true; 8827 8828 if (kvm_hv_has_stimer_pending(vcpu)) 8829 return true; 8830 8831 return false; 8832 } 8833 8834 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8835 { 8836 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8837 } 8838 8839 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 8840 { 8841 return vcpu->arch.preempted_in_kernel; 8842 } 8843 8844 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8845 { 8846 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8847 } 8848 8849 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8850 { 8851 return kvm_x86_ops->interrupt_allowed(vcpu); 8852 } 8853 8854 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8855 { 8856 if (is_64_bit_mode(vcpu)) 8857 return kvm_rip_read(vcpu); 8858 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8859 kvm_rip_read(vcpu)); 8860 } 8861 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8862 8863 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8864 { 8865 return kvm_get_linear_rip(vcpu) == linear_rip; 8866 } 8867 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8868 8869 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8870 { 8871 unsigned long rflags; 8872 8873 rflags = kvm_x86_ops->get_rflags(vcpu); 8874 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8875 rflags &= ~X86_EFLAGS_TF; 8876 return rflags; 8877 } 8878 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8879 8880 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8881 { 8882 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8883 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8884 rflags |= X86_EFLAGS_TF; 8885 kvm_x86_ops->set_rflags(vcpu, rflags); 8886 } 8887 8888 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8889 { 8890 __kvm_set_rflags(vcpu, rflags); 8891 kvm_make_request(KVM_REQ_EVENT, vcpu); 8892 } 8893 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8894 8895 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8896 { 8897 int r; 8898 8899 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8900 work->wakeup_all) 8901 return; 8902 8903 r = kvm_mmu_reload(vcpu); 8904 if (unlikely(r)) 8905 return; 8906 8907 if (!vcpu->arch.mmu.direct_map && 8908 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8909 return; 8910 8911 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8912 } 8913 8914 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8915 { 8916 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8917 } 8918 8919 static inline u32 kvm_async_pf_next_probe(u32 key) 8920 { 8921 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8922 } 8923 8924 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8925 { 8926 u32 key = kvm_async_pf_hash_fn(gfn); 8927 8928 while (vcpu->arch.apf.gfns[key] != ~0) 8929 key = kvm_async_pf_next_probe(key); 8930 8931 vcpu->arch.apf.gfns[key] = gfn; 8932 } 8933 8934 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8935 { 8936 int i; 8937 u32 key = kvm_async_pf_hash_fn(gfn); 8938 8939 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8940 (vcpu->arch.apf.gfns[key] != gfn && 8941 vcpu->arch.apf.gfns[key] != ~0); i++) 8942 key = kvm_async_pf_next_probe(key); 8943 8944 return key; 8945 } 8946 8947 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8948 { 8949 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8950 } 8951 8952 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8953 { 8954 u32 i, j, k; 8955 8956 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8957 while (true) { 8958 vcpu->arch.apf.gfns[i] = ~0; 8959 do { 8960 j = kvm_async_pf_next_probe(j); 8961 if (vcpu->arch.apf.gfns[j] == ~0) 8962 return; 8963 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8964 /* 8965 * k lies cyclically in ]i,j] 8966 * | i.k.j | 8967 * |....j i.k.| or |.k..j i...| 8968 */ 8969 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8970 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8971 i = j; 8972 } 8973 } 8974 8975 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8976 { 8977 8978 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 8979 sizeof(val)); 8980 } 8981 8982 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 8983 { 8984 8985 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 8986 sizeof(u32)); 8987 } 8988 8989 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8990 struct kvm_async_pf *work) 8991 { 8992 struct x86_exception fault; 8993 8994 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8995 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8996 8997 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8998 (vcpu->arch.apf.send_user_only && 8999 kvm_x86_ops->get_cpl(vcpu) == 0)) 9000 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 9001 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 9002 fault.vector = PF_VECTOR; 9003 fault.error_code_valid = true; 9004 fault.error_code = 0; 9005 fault.nested_page_fault = false; 9006 fault.address = work->arch.token; 9007 fault.async_page_fault = true; 9008 kvm_inject_page_fault(vcpu, &fault); 9009 } 9010 } 9011 9012 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 9013 struct kvm_async_pf *work) 9014 { 9015 struct x86_exception fault; 9016 u32 val; 9017 9018 if (work->wakeup_all) 9019 work->arch.token = ~0; /* broadcast wakeup */ 9020 else 9021 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 9022 trace_kvm_async_pf_ready(work->arch.token, work->gva); 9023 9024 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 9025 !apf_get_user(vcpu, &val)) { 9026 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 9027 vcpu->arch.exception.pending && 9028 vcpu->arch.exception.nr == PF_VECTOR && 9029 !apf_put_user(vcpu, 0)) { 9030 vcpu->arch.exception.injected = false; 9031 vcpu->arch.exception.pending = false; 9032 vcpu->arch.exception.nr = 0; 9033 vcpu->arch.exception.has_error_code = false; 9034 vcpu->arch.exception.error_code = 0; 9035 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 9036 fault.vector = PF_VECTOR; 9037 fault.error_code_valid = true; 9038 fault.error_code = 0; 9039 fault.nested_page_fault = false; 9040 fault.address = work->arch.token; 9041 fault.async_page_fault = true; 9042 kvm_inject_page_fault(vcpu, &fault); 9043 } 9044 } 9045 vcpu->arch.apf.halted = false; 9046 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9047 } 9048 9049 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 9050 { 9051 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 9052 return true; 9053 else 9054 return kvm_can_do_async_pf(vcpu); 9055 } 9056 9057 void kvm_arch_start_assignment(struct kvm *kvm) 9058 { 9059 atomic_inc(&kvm->arch.assigned_device_count); 9060 } 9061 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 9062 9063 void kvm_arch_end_assignment(struct kvm *kvm) 9064 { 9065 atomic_dec(&kvm->arch.assigned_device_count); 9066 } 9067 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 9068 9069 bool kvm_arch_has_assigned_device(struct kvm *kvm) 9070 { 9071 return atomic_read(&kvm->arch.assigned_device_count); 9072 } 9073 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 9074 9075 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 9076 { 9077 atomic_inc(&kvm->arch.noncoherent_dma_count); 9078 } 9079 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 9080 9081 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 9082 { 9083 atomic_dec(&kvm->arch.noncoherent_dma_count); 9084 } 9085 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 9086 9087 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 9088 { 9089 return atomic_read(&kvm->arch.noncoherent_dma_count); 9090 } 9091 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 9092 9093 bool kvm_arch_has_irq_bypass(void) 9094 { 9095 return kvm_x86_ops->update_pi_irte != NULL; 9096 } 9097 9098 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 9099 struct irq_bypass_producer *prod) 9100 { 9101 struct kvm_kernel_irqfd *irqfd = 9102 container_of(cons, struct kvm_kernel_irqfd, consumer); 9103 9104 irqfd->producer = prod; 9105 9106 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 9107 prod->irq, irqfd->gsi, 1); 9108 } 9109 9110 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 9111 struct irq_bypass_producer *prod) 9112 { 9113 int ret; 9114 struct kvm_kernel_irqfd *irqfd = 9115 container_of(cons, struct kvm_kernel_irqfd, consumer); 9116 9117 WARN_ON(irqfd->producer != prod); 9118 irqfd->producer = NULL; 9119 9120 /* 9121 * When producer of consumer is unregistered, we change back to 9122 * remapped mode, so we can re-use the current implementation 9123 * when the irq is masked/disabled or the consumer side (KVM 9124 * int this case doesn't want to receive the interrupts. 9125 */ 9126 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 9127 if (ret) 9128 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 9129 " fails: %d\n", irqfd->consumer.token, ret); 9130 } 9131 9132 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 9133 uint32_t guest_irq, bool set) 9134 { 9135 if (!kvm_x86_ops->update_pi_irte) 9136 return -EINVAL; 9137 9138 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 9139 } 9140 9141 bool kvm_vector_hashing_enabled(void) 9142 { 9143 return vector_hashing; 9144 } 9145 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 9146 9147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 9148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 9149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 9150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 9151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 9152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 9153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 9154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 9155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 9156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 9157 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 9158 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 9159 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 9160 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 9161 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 9162 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 9163 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 9164 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 9165 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 9166