1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, S_IRUGO); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, S_IRUGO); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1512 HV_X64_MSR_RESET, 1513 HV_X64_MSR_VP_INDEX, 1514 HV_X64_MSR_VP_RUNTIME, 1515 HV_X64_MSR_SCONTROL, 1516 HV_X64_MSR_STIMER0_CONFIG, 1517 HV_X64_MSR_VP_ASSIST_PAGE, 1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1520 HV_X64_MSR_SYNDBG_OPTIONS, 1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1625 1626 static u64 kvm_get_arch_capabilities(void) 1627 { 1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1629 1630 /* 1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1632 * the nested hypervisor runs with NX huge pages. If it is not, 1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1634 * L1 guests, so it need not worry about its own (L2) guests. 1635 */ 1636 data |= ARCH_CAP_PSCHANGE_MC_NO; 1637 1638 /* 1639 * If we're doing cache flushes (either "always" or "cond") 1640 * we will do one whenever the guest does a vmlaunch/vmresume. 1641 * If an outer hypervisor is doing the cache flush for us 1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1643 * capability to the guest too, and if EPT is disabled we're not 1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1645 * require a nested hypervisor to do a flush of its own. 1646 */ 1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1649 1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1651 data |= ARCH_CAP_RDCL_NO; 1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1653 data |= ARCH_CAP_SSB_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1655 data |= ARCH_CAP_MDS_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1657 data |= ARCH_CAP_RFDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 msr.index = index; 1708 r = kvm_get_msr_feature(&msr); 1709 1710 if (r == KVM_MSR_RET_INVALID) { 1711 /* Unconditionally clear the output for simplicity */ 1712 *data = 0; 1713 if (kvm_msr_ignored_check(index, 0, false)) 1714 r = 0; 1715 } 1716 1717 if (r) 1718 return r; 1719 1720 *data = msr.data; 1721 1722 return 0; 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 return 0; 1786 } 1787 1788 void kvm_enable_efer_bits(u64 mask) 1789 { 1790 efer_reserved_bits &= ~mask; 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1793 1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1795 { 1796 struct kvm_x86_msr_filter *msr_filter; 1797 struct msr_bitmap_range *ranges; 1798 struct kvm *kvm = vcpu->kvm; 1799 bool allowed; 1800 int idx; 1801 u32 i; 1802 1803 /* x2APIC MSRs do not support filtering. */ 1804 if (index >= 0x800 && index <= 0x8ff) 1805 return true; 1806 1807 idx = srcu_read_lock(&kvm->srcu); 1808 1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1810 if (!msr_filter) { 1811 allowed = true; 1812 goto out; 1813 } 1814 1815 allowed = msr_filter->default_allow; 1816 ranges = msr_filter->ranges; 1817 1818 for (i = 0; i < msr_filter->count; i++) { 1819 u32 start = ranges[i].base; 1820 u32 end = start + ranges[i].nmsrs; 1821 u32 flags = ranges[i].flags; 1822 unsigned long *bitmap = ranges[i].bitmap; 1823 1824 if ((index >= start) && (index < end) && (flags & type)) { 1825 allowed = test_bit(index - start, bitmap); 1826 break; 1827 } 1828 } 1829 1830 out: 1831 srcu_read_unlock(&kvm->srcu, idx); 1832 1833 return allowed; 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1836 1837 /* 1838 * Write @data into the MSR specified by @index. Select MSR specific fault 1839 * checks are bypassed if @host_initiated is %true. 1840 * Returns 0 on success, non-0 otherwise. 1841 * Assumes vcpu_load() was already called. 1842 */ 1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1844 bool host_initiated) 1845 { 1846 struct msr_data msr; 1847 1848 switch (index) { 1849 case MSR_FS_BASE: 1850 case MSR_GS_BASE: 1851 case MSR_KERNEL_GS_BASE: 1852 case MSR_CSTAR: 1853 case MSR_LSTAR: 1854 if (is_noncanonical_address(data, vcpu)) 1855 return 1; 1856 break; 1857 case MSR_IA32_SYSENTER_EIP: 1858 case MSR_IA32_SYSENTER_ESP: 1859 /* 1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1861 * non-canonical address is written on Intel but not on 1862 * AMD (which ignores the top 32-bits, because it does 1863 * not implement 64-bit SYSENTER). 1864 * 1865 * 64-bit code should hence be able to write a non-canonical 1866 * value on AMD. Making the address canonical ensures that 1867 * vmentry does not fail on Intel after writing a non-canonical 1868 * value, and that something deterministic happens if the guest 1869 * invokes 64-bit SYSENTER. 1870 */ 1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1872 break; 1873 case MSR_TSC_AUX: 1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1875 return 1; 1876 1877 if (!host_initiated && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1880 return 1; 1881 1882 /* 1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1884 * incomplete and conflicting architectural behavior. Current 1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1886 * reserved and always read as zeros. Enforce Intel's reserved 1887 * bits check if and only if the guest CPU is Intel, and clear 1888 * the bits in all other cases. This ensures cross-vendor 1889 * migration will provide consistent behavior for the guest. 1890 */ 1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1892 return 1; 1893 1894 data = (u32)data; 1895 break; 1896 } 1897 1898 msr.data = data; 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1903 } 1904 1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1906 u32 index, u64 data, bool host_initiated) 1907 { 1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1909 1910 if (ret == KVM_MSR_RET_INVALID) 1911 if (kvm_msr_ignored_check(index, data, true)) 1912 ret = 0; 1913 1914 return ret; 1915 } 1916 1917 /* 1918 * Read the MSR specified by @index into @data. Select MSR specific fault 1919 * checks are bypassed if @host_initiated is %true. 1920 * Returns 0 on success, non-0 otherwise. 1921 * Assumes vcpu_load() was already called. 1922 */ 1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1924 bool host_initiated) 1925 { 1926 struct msr_data msr; 1927 int ret; 1928 1929 switch (index) { 1930 case MSR_TSC_AUX: 1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1932 return 1; 1933 1934 if (!host_initiated && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1937 return 1; 1938 break; 1939 } 1940 1941 msr.index = index; 1942 msr.host_initiated = host_initiated; 1943 1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1945 if (!ret) 1946 *data = msr.data; 1947 return ret; 1948 } 1949 1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1951 u32 index, u64 *data, bool host_initiated) 1952 { 1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1954 1955 if (ret == KVM_MSR_RET_INVALID) { 1956 /* Unconditionally clear *data for simplicity */ 1957 *data = 0; 1958 if (kvm_msr_ignored_check(index, 0, false)) 1959 ret = 0; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1966 { 1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1968 return KVM_MSR_RET_FILTERED; 1969 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1970 } 1971 1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1975 return KVM_MSR_RET_FILTERED; 1976 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1977 } 1978 1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1980 { 1981 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_get_msr); 1984 1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1986 { 1987 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_set_msr); 1990 1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 if (!vcpu->run->msr.error) { 1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1996 } 1997 } 1998 1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2000 { 2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2002 } 2003 2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2005 { 2006 complete_userspace_rdmsr(vcpu); 2007 return complete_emulated_msr_access(vcpu); 2008 } 2009 2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2011 { 2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2013 } 2014 2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 complete_userspace_rdmsr(vcpu); 2018 return complete_fast_msr_access(vcpu); 2019 } 2020 2021 static u64 kvm_msr_reason(int r) 2022 { 2023 switch (r) { 2024 case KVM_MSR_RET_INVALID: 2025 return KVM_MSR_EXIT_REASON_UNKNOWN; 2026 case KVM_MSR_RET_FILTERED: 2027 return KVM_MSR_EXIT_REASON_FILTER; 2028 default: 2029 return KVM_MSR_EXIT_REASON_INVAL; 2030 } 2031 } 2032 2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2034 u32 exit_reason, u64 data, 2035 int (*completion)(struct kvm_vcpu *vcpu), 2036 int r) 2037 { 2038 u64 msr_reason = kvm_msr_reason(r); 2039 2040 /* Check if the user wanted to know about this MSR fault */ 2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2042 return 0; 2043 2044 vcpu->run->exit_reason = exit_reason; 2045 vcpu->run->msr.error = 0; 2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2047 vcpu->run->msr.reason = msr_reason; 2048 vcpu->run->msr.index = index; 2049 vcpu->run->msr.data = data; 2050 vcpu->arch.complete_userspace_io = completion; 2051 2052 return 1; 2053 } 2054 2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2056 { 2057 u32 ecx = kvm_rcx_read(vcpu); 2058 u64 data; 2059 int r; 2060 2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2062 2063 if (!r) { 2064 trace_kvm_msr_read(ecx, data); 2065 2066 kvm_rax_write(vcpu, data & -1u); 2067 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2068 } else { 2069 /* MSR read failed? See if we should ask user space */ 2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2071 complete_fast_rdmsr, r)) 2072 return 0; 2073 trace_kvm_msr_read_ex(ecx); 2074 } 2075 2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2079 2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2081 { 2082 u32 ecx = kvm_rcx_read(vcpu); 2083 u64 data = kvm_read_edx_eax(vcpu); 2084 int r; 2085 2086 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2087 2088 if (!r) { 2089 trace_kvm_msr_write(ecx, data); 2090 } else { 2091 /* MSR write failed? See if we should ask user space */ 2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2093 complete_fast_msr_access, r)) 2094 return 0; 2095 /* Signal all other negative errors to userspace */ 2096 if (r < 0) 2097 return r; 2098 trace_kvm_msr_write_ex(ecx, data); 2099 } 2100 2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2102 } 2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2104 2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2106 { 2107 return kvm_skip_emulated_instruction(vcpu); 2108 } 2109 2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2111 { 2112 /* Treat an INVD instruction as a NOP and just skip it. */ 2113 return kvm_emulate_as_nop(vcpu); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2116 2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2118 { 2119 kvm_queue_exception(vcpu, UD_VECTOR); 2120 return 1; 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2123 2124 2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2126 { 2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2129 return kvm_handle_invalid_op(vcpu); 2130 2131 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2132 return kvm_emulate_as_nop(vcpu); 2133 } 2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2135 { 2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2137 } 2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2139 2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2141 { 2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2143 } 2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2145 2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2147 { 2148 xfer_to_guest_mode_prepare(); 2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2150 xfer_to_guest_mode_work_pending(); 2151 } 2152 2153 /* 2154 * The fast path for frequent and performance sensitive wrmsr emulation, 2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2158 * other cases which must be called after interrupts are enabled on the host. 2159 */ 2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2161 { 2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2163 return 1; 2164 2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2168 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2170 2171 return 1; 2172 } 2173 2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2175 { 2176 if (!kvm_can_use_hv_timer(vcpu)) 2177 return 1; 2178 2179 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2180 return 0; 2181 } 2182 2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2184 { 2185 u32 msr = kvm_rcx_read(vcpu); 2186 u64 data; 2187 fastpath_t ret = EXIT_FASTPATH_NONE; 2188 2189 kvm_vcpu_srcu_read_lock(vcpu); 2190 2191 switch (msr) { 2192 case APIC_BASE_MSR + (APIC_ICR >> 4): 2193 data = kvm_read_edx_eax(vcpu); 2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2195 kvm_skip_emulated_instruction(vcpu); 2196 ret = EXIT_FASTPATH_EXIT_HANDLED; 2197 } 2198 break; 2199 case MSR_IA32_TSC_DEADLINE: 2200 data = kvm_read_edx_eax(vcpu); 2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2202 kvm_skip_emulated_instruction(vcpu); 2203 ret = EXIT_FASTPATH_REENTER_GUEST; 2204 } 2205 break; 2206 default: 2207 break; 2208 } 2209 2210 if (ret != EXIT_FASTPATH_NONE) 2211 trace_kvm_msr_write(msr, data); 2212 2213 kvm_vcpu_srcu_read_unlock(vcpu); 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2218 2219 /* 2220 * Adapt set_msr() to msr_io()'s calling convention 2221 */ 2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2223 { 2224 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2225 } 2226 2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2228 { 2229 u64 val; 2230 2231 /* 2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2233 * not support modifying the guest vCPU model on the fly, e.g. changing 2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2235 * writes of the same value, e.g. to allow userspace to blindly stuff 2236 * all MSRs when emulating RESET. 2237 */ 2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2239 if (do_get_msr(vcpu, index, &val) || *data != val) 2240 return -EINVAL; 2241 2242 return 0; 2243 } 2244 2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2246 } 2247 2248 #ifdef CONFIG_X86_64 2249 struct pvclock_clock { 2250 int vclock_mode; 2251 u64 cycle_last; 2252 u64 mask; 2253 u32 mult; 2254 u32 shift; 2255 u64 base_cycles; 2256 u64 offset; 2257 }; 2258 2259 struct pvclock_gtod_data { 2260 seqcount_t seq; 2261 2262 struct pvclock_clock clock; /* extract of a clocksource struct */ 2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2264 2265 ktime_t offs_boot; 2266 u64 wall_time_sec; 2267 }; 2268 2269 static struct pvclock_gtod_data pvclock_gtod_data; 2270 2271 static void update_pvclock_gtod(struct timekeeper *tk) 2272 { 2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2274 2275 write_seqcount_begin(&vdata->seq); 2276 2277 /* copy pvclock gtod data */ 2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2280 vdata->clock.mask = tk->tkr_mono.mask; 2281 vdata->clock.mult = tk->tkr_mono.mult; 2282 vdata->clock.shift = tk->tkr_mono.shift; 2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2284 vdata->clock.offset = tk->tkr_mono.base; 2285 2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2288 vdata->raw_clock.mask = tk->tkr_raw.mask; 2289 vdata->raw_clock.mult = tk->tkr_raw.mult; 2290 vdata->raw_clock.shift = tk->tkr_raw.shift; 2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2292 vdata->raw_clock.offset = tk->tkr_raw.base; 2293 2294 vdata->wall_time_sec = tk->xtime_sec; 2295 2296 vdata->offs_boot = tk->offs_boot; 2297 2298 write_seqcount_end(&vdata->seq); 2299 } 2300 2301 static s64 get_kvmclock_base_ns(void) 2302 { 2303 /* Count up from boot time, but with the frequency of the raw clock. */ 2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2305 } 2306 #else 2307 static s64 get_kvmclock_base_ns(void) 2308 { 2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2310 return ktime_get_boottime_ns(); 2311 } 2312 #endif 2313 2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2315 { 2316 int version; 2317 int r; 2318 struct pvclock_wall_clock wc; 2319 u32 wc_sec_hi; 2320 u64 wall_nsec; 2321 2322 if (!wall_clock) 2323 return; 2324 2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2326 if (r) 2327 return; 2328 2329 if (version & 1) 2330 ++version; /* first time write, random junk */ 2331 2332 ++version; 2333 2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2335 return; 2336 2337 /* 2338 * The guest calculates current wall clock time by adding 2339 * system time (updated by kvm_guest_time_update below) to the 2340 * wall clock specified here. We do the reverse here. 2341 */ 2342 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2343 2344 wc.nsec = do_div(wall_nsec, 1000000000); 2345 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2346 wc.version = version; 2347 2348 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2349 2350 if (sec_hi_ofs) { 2351 wc_sec_hi = wall_nsec >> 32; 2352 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2353 &wc_sec_hi, sizeof(wc_sec_hi)); 2354 } 2355 2356 version++; 2357 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2358 } 2359 2360 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2361 bool old_msr, bool host_initiated) 2362 { 2363 struct kvm_arch *ka = &vcpu->kvm->arch; 2364 2365 if (vcpu->vcpu_id == 0 && !host_initiated) { 2366 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2367 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2368 2369 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2370 } 2371 2372 vcpu->arch.time = system_time; 2373 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2374 2375 /* we verify if the enable bit is set... */ 2376 if (system_time & 1) 2377 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2378 sizeof(struct pvclock_vcpu_time_info)); 2379 else 2380 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2381 2382 return; 2383 } 2384 2385 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2386 { 2387 do_shl32_div32(dividend, divisor); 2388 return dividend; 2389 } 2390 2391 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2392 s8 *pshift, u32 *pmultiplier) 2393 { 2394 uint64_t scaled64; 2395 int32_t shift = 0; 2396 uint64_t tps64; 2397 uint32_t tps32; 2398 2399 tps64 = base_hz; 2400 scaled64 = scaled_hz; 2401 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2402 tps64 >>= 1; 2403 shift--; 2404 } 2405 2406 tps32 = (uint32_t)tps64; 2407 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2408 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2409 scaled64 >>= 1; 2410 else 2411 tps32 <<= 1; 2412 shift++; 2413 } 2414 2415 *pshift = shift; 2416 *pmultiplier = div_frac(scaled64, tps32); 2417 } 2418 2419 #ifdef CONFIG_X86_64 2420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2421 #endif 2422 2423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2424 static unsigned long max_tsc_khz; 2425 2426 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2427 { 2428 u64 v = (u64)khz * (1000000 + ppm); 2429 do_div(v, 1000000); 2430 return v; 2431 } 2432 2433 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2434 2435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2436 { 2437 u64 ratio; 2438 2439 /* Guest TSC same frequency as host TSC? */ 2440 if (!scale) { 2441 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2442 return 0; 2443 } 2444 2445 /* TSC scaling supported? */ 2446 if (!kvm_caps.has_tsc_control) { 2447 if (user_tsc_khz > tsc_khz) { 2448 vcpu->arch.tsc_catchup = 1; 2449 vcpu->arch.tsc_always_catchup = 1; 2450 return 0; 2451 } else { 2452 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2453 return -1; 2454 } 2455 } 2456 2457 /* TSC scaling required - calculate ratio */ 2458 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2459 user_tsc_khz, tsc_khz); 2460 2461 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2462 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2463 user_tsc_khz); 2464 return -1; 2465 } 2466 2467 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2468 return 0; 2469 } 2470 2471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2472 { 2473 u32 thresh_lo, thresh_hi; 2474 int use_scaling = 0; 2475 2476 /* tsc_khz can be zero if TSC calibration fails */ 2477 if (user_tsc_khz == 0) { 2478 /* set tsc_scaling_ratio to a safe value */ 2479 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2480 return -1; 2481 } 2482 2483 /* Compute a scale to convert nanoseconds in TSC cycles */ 2484 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2485 &vcpu->arch.virtual_tsc_shift, 2486 &vcpu->arch.virtual_tsc_mult); 2487 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2488 2489 /* 2490 * Compute the variation in TSC rate which is acceptable 2491 * within the range of tolerance and decide if the 2492 * rate being applied is within that bounds of the hardware 2493 * rate. If so, no scaling or compensation need be done. 2494 */ 2495 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2496 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2497 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2498 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2499 user_tsc_khz, thresh_lo, thresh_hi); 2500 use_scaling = 1; 2501 } 2502 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2503 } 2504 2505 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2506 { 2507 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2508 vcpu->arch.virtual_tsc_mult, 2509 vcpu->arch.virtual_tsc_shift); 2510 tsc += vcpu->arch.this_tsc_write; 2511 return tsc; 2512 } 2513 2514 #ifdef CONFIG_X86_64 2515 static inline int gtod_is_based_on_tsc(int mode) 2516 { 2517 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2518 } 2519 #endif 2520 2521 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2522 { 2523 #ifdef CONFIG_X86_64 2524 bool vcpus_matched; 2525 struct kvm_arch *ka = &vcpu->kvm->arch; 2526 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2527 2528 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2529 atomic_read(&vcpu->kvm->online_vcpus)); 2530 2531 /* 2532 * Once the masterclock is enabled, always perform request in 2533 * order to update it. 2534 * 2535 * In order to enable masterclock, the host clocksource must be TSC 2536 * and the vcpus need to have matched TSCs. When that happens, 2537 * perform request to enable masterclock. 2538 */ 2539 if (ka->use_master_clock || 2540 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2542 2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2544 atomic_read(&vcpu->kvm->online_vcpus), 2545 ka->use_master_clock, gtod->clock.vclock_mode); 2546 #endif 2547 } 2548 2549 /* 2550 * Multiply tsc by a fixed point number represented by ratio. 2551 * 2552 * The most significant 64-N bits (mult) of ratio represent the 2553 * integral part of the fixed point number; the remaining N bits 2554 * (frac) represent the fractional part, ie. ratio represents a fixed 2555 * point number (mult + frac * 2^(-N)). 2556 * 2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2558 */ 2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2560 { 2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2562 } 2563 2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2565 { 2566 u64 _tsc = tsc; 2567 2568 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2569 _tsc = __scale_tsc(ratio, tsc); 2570 2571 return _tsc; 2572 } 2573 2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2575 { 2576 u64 tsc; 2577 2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2579 2580 return target_tsc - tsc; 2581 } 2582 2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2584 { 2585 return vcpu->arch.l1_tsc_offset + 2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2587 } 2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2589 2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2591 { 2592 u64 nested_offset; 2593 2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2595 nested_offset = l1_offset; 2596 else 2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2598 kvm_caps.tsc_scaling_ratio_frac_bits); 2599 2600 nested_offset += l2_offset; 2601 return nested_offset; 2602 } 2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2604 2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2606 { 2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2609 kvm_caps.tsc_scaling_ratio_frac_bits); 2610 2611 return l1_multiplier; 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2614 2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2616 { 2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2618 vcpu->arch.l1_tsc_offset, 2619 l1_offset); 2620 2621 vcpu->arch.l1_tsc_offset = l1_offset; 2622 2623 /* 2624 * If we are here because L1 chose not to trap WRMSR to TSC then 2625 * according to the spec this should set L1's TSC (as opposed to 2626 * setting L1's offset for L2). 2627 */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2630 l1_offset, 2631 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2632 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2633 else 2634 vcpu->arch.tsc_offset = l1_offset; 2635 2636 static_call(kvm_x86_write_tsc_offset)(vcpu); 2637 } 2638 2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2640 { 2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2642 2643 /* Userspace is changing the multiplier while L2 is active */ 2644 if (is_guest_mode(vcpu)) 2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2646 l1_multiplier, 2647 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2648 else 2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2650 2651 if (kvm_caps.has_tsc_control) 2652 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2653 } 2654 2655 static inline bool kvm_check_tsc_unstable(void) 2656 { 2657 #ifdef CONFIG_X86_64 2658 /* 2659 * TSC is marked unstable when we're running on Hyper-V, 2660 * 'TSC page' clocksource is good. 2661 */ 2662 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2663 return false; 2664 #endif 2665 return check_tsc_unstable(); 2666 } 2667 2668 /* 2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2671 * participates in. 2672 */ 2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2674 u64 ns, bool matched) 2675 { 2676 struct kvm *kvm = vcpu->kvm; 2677 2678 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2679 2680 /* 2681 * We also track th most recent recorded KHZ, write and time to 2682 * allow the matching interval to be extended at each write. 2683 */ 2684 kvm->arch.last_tsc_nsec = ns; 2685 kvm->arch.last_tsc_write = tsc; 2686 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2687 kvm->arch.last_tsc_offset = offset; 2688 2689 vcpu->arch.last_guest_tsc = tsc; 2690 2691 kvm_vcpu_write_tsc_offset(vcpu, offset); 2692 2693 if (!matched) { 2694 /* 2695 * We split periods of matched TSC writes into generations. 2696 * For each generation, we track the original measured 2697 * nanosecond time, offset, and write, so if TSCs are in 2698 * sync, we can match exact offset, and if not, we can match 2699 * exact software computation in compute_guest_tsc() 2700 * 2701 * These values are tracked in kvm->arch.cur_xxx variables. 2702 */ 2703 kvm->arch.cur_tsc_generation++; 2704 kvm->arch.cur_tsc_nsec = ns; 2705 kvm->arch.cur_tsc_write = tsc; 2706 kvm->arch.cur_tsc_offset = offset; 2707 kvm->arch.nr_vcpus_matched_tsc = 0; 2708 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2709 kvm->arch.nr_vcpus_matched_tsc++; 2710 } 2711 2712 /* Keep track of which generation this VCPU has synchronized to */ 2713 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2714 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2715 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2716 2717 kvm_track_tsc_matching(vcpu); 2718 } 2719 2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2721 { 2722 struct kvm *kvm = vcpu->kvm; 2723 u64 offset, ns, elapsed; 2724 unsigned long flags; 2725 bool matched = false; 2726 bool synchronizing = false; 2727 2728 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2729 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2730 ns = get_kvmclock_base_ns(); 2731 elapsed = ns - kvm->arch.last_tsc_nsec; 2732 2733 if (vcpu->arch.virtual_tsc_khz) { 2734 if (data == 0) { 2735 /* 2736 * detection of vcpu initialization -- need to sync 2737 * with other vCPUs. This particularly helps to keep 2738 * kvm_clock stable after CPU hotplug 2739 */ 2740 synchronizing = true; 2741 } else { 2742 u64 tsc_exp = kvm->arch.last_tsc_write + 2743 nsec_to_cycles(vcpu, elapsed); 2744 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2745 /* 2746 * Special case: TSC write with a small delta (1 second) 2747 * of virtual cycle time against real time is 2748 * interpreted as an attempt to synchronize the CPU. 2749 */ 2750 synchronizing = data < tsc_exp + tsc_hz && 2751 data + tsc_hz > tsc_exp; 2752 } 2753 } 2754 2755 /* 2756 * For a reliable TSC, we can match TSC offsets, and for an unstable 2757 * TSC, we add elapsed time in this computation. We could let the 2758 * compensation code attempt to catch up if we fall behind, but 2759 * it's better to try to match offsets from the beginning. 2760 */ 2761 if (synchronizing && 2762 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2763 if (!kvm_check_tsc_unstable()) { 2764 offset = kvm->arch.cur_tsc_offset; 2765 } else { 2766 u64 delta = nsec_to_cycles(vcpu, elapsed); 2767 data += delta; 2768 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2769 } 2770 matched = true; 2771 } 2772 2773 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2774 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2775 } 2776 2777 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2778 s64 adjustment) 2779 { 2780 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2781 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2782 } 2783 2784 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2785 { 2786 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2787 WARN_ON(adjustment < 0); 2788 adjustment = kvm_scale_tsc((u64) adjustment, 2789 vcpu->arch.l1_tsc_scaling_ratio); 2790 adjust_tsc_offset_guest(vcpu, adjustment); 2791 } 2792 2793 #ifdef CONFIG_X86_64 2794 2795 static u64 read_tsc(void) 2796 { 2797 u64 ret = (u64)rdtsc_ordered(); 2798 u64 last = pvclock_gtod_data.clock.cycle_last; 2799 2800 if (likely(ret >= last)) 2801 return ret; 2802 2803 /* 2804 * GCC likes to generate cmov here, but this branch is extremely 2805 * predictable (it's just a function of time and the likely is 2806 * very likely) and there's a data dependence, so force GCC 2807 * to generate a branch instead. I don't barrier() because 2808 * we don't actually need a barrier, and if this function 2809 * ever gets inlined it will generate worse code. 2810 */ 2811 asm volatile (""); 2812 return last; 2813 } 2814 2815 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2816 int *mode) 2817 { 2818 u64 tsc_pg_val; 2819 long v; 2820 2821 switch (clock->vclock_mode) { 2822 case VDSO_CLOCKMODE_HVCLOCK: 2823 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2824 tsc_timestamp, &tsc_pg_val)) { 2825 /* TSC page valid */ 2826 *mode = VDSO_CLOCKMODE_HVCLOCK; 2827 v = (tsc_pg_val - clock->cycle_last) & 2828 clock->mask; 2829 } else { 2830 /* TSC page invalid */ 2831 *mode = VDSO_CLOCKMODE_NONE; 2832 } 2833 break; 2834 case VDSO_CLOCKMODE_TSC: 2835 *mode = VDSO_CLOCKMODE_TSC; 2836 *tsc_timestamp = read_tsc(); 2837 v = (*tsc_timestamp - clock->cycle_last) & 2838 clock->mask; 2839 break; 2840 default: 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 2844 if (*mode == VDSO_CLOCKMODE_NONE) 2845 *tsc_timestamp = v = 0; 2846 2847 return v * clock->mult; 2848 } 2849 2850 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2851 { 2852 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2853 unsigned long seq; 2854 int mode; 2855 u64 ns; 2856 2857 do { 2858 seq = read_seqcount_begin(>od->seq); 2859 ns = gtod->raw_clock.base_cycles; 2860 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2861 ns >>= gtod->raw_clock.shift; 2862 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2863 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2864 *t = ns; 2865 2866 return mode; 2867 } 2868 2869 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2870 { 2871 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2872 unsigned long seq; 2873 int mode; 2874 u64 ns; 2875 2876 do { 2877 seq = read_seqcount_begin(>od->seq); 2878 ts->tv_sec = gtod->wall_time_sec; 2879 ns = gtod->clock.base_cycles; 2880 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2881 ns >>= gtod->clock.shift; 2882 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2883 2884 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2885 ts->tv_nsec = ns; 2886 2887 return mode; 2888 } 2889 2890 /* returns true if host is using TSC based clocksource */ 2891 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2892 { 2893 /* checked again under seqlock below */ 2894 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2895 return false; 2896 2897 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2898 tsc_timestamp)); 2899 } 2900 2901 /* returns true if host is using TSC based clocksource */ 2902 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2903 u64 *tsc_timestamp) 2904 { 2905 /* checked again under seqlock below */ 2906 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2907 return false; 2908 2909 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2910 } 2911 #endif 2912 2913 /* 2914 * 2915 * Assuming a stable TSC across physical CPUS, and a stable TSC 2916 * across virtual CPUs, the following condition is possible. 2917 * Each numbered line represents an event visible to both 2918 * CPUs at the next numbered event. 2919 * 2920 * "timespecX" represents host monotonic time. "tscX" represents 2921 * RDTSC value. 2922 * 2923 * VCPU0 on CPU0 | VCPU1 on CPU1 2924 * 2925 * 1. read timespec0,tsc0 2926 * 2. | timespec1 = timespec0 + N 2927 * | tsc1 = tsc0 + M 2928 * 3. transition to guest | transition to guest 2929 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2930 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2931 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2932 * 2933 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2934 * 2935 * - ret0 < ret1 2936 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2937 * ... 2938 * - 0 < N - M => M < N 2939 * 2940 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2941 * always the case (the difference between two distinct xtime instances 2942 * might be smaller then the difference between corresponding TSC reads, 2943 * when updating guest vcpus pvclock areas). 2944 * 2945 * To avoid that problem, do not allow visibility of distinct 2946 * system_timestamp/tsc_timestamp values simultaneously: use a master 2947 * copy of host monotonic time values. Update that master copy 2948 * in lockstep. 2949 * 2950 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2951 * 2952 */ 2953 2954 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2955 { 2956 #ifdef CONFIG_X86_64 2957 struct kvm_arch *ka = &kvm->arch; 2958 int vclock_mode; 2959 bool host_tsc_clocksource, vcpus_matched; 2960 2961 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2962 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2963 atomic_read(&kvm->online_vcpus)); 2964 2965 /* 2966 * If the host uses TSC clock, then passthrough TSC as stable 2967 * to the guest. 2968 */ 2969 host_tsc_clocksource = kvm_get_time_and_clockread( 2970 &ka->master_kernel_ns, 2971 &ka->master_cycle_now); 2972 2973 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2974 && !ka->backwards_tsc_observed 2975 && !ka->boot_vcpu_runs_old_kvmclock; 2976 2977 if (ka->use_master_clock) 2978 atomic_set(&kvm_guest_has_master_clock, 1); 2979 2980 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2981 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2982 vcpus_matched); 2983 #endif 2984 } 2985 2986 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2987 { 2988 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2989 } 2990 2991 static void __kvm_start_pvclock_update(struct kvm *kvm) 2992 { 2993 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2994 write_seqcount_begin(&kvm->arch.pvclock_sc); 2995 } 2996 2997 static void kvm_start_pvclock_update(struct kvm *kvm) 2998 { 2999 kvm_make_mclock_inprogress_request(kvm); 3000 3001 /* no guest entries from this point */ 3002 __kvm_start_pvclock_update(kvm); 3003 } 3004 3005 static void kvm_end_pvclock_update(struct kvm *kvm) 3006 { 3007 struct kvm_arch *ka = &kvm->arch; 3008 struct kvm_vcpu *vcpu; 3009 unsigned long i; 3010 3011 write_seqcount_end(&ka->pvclock_sc); 3012 raw_spin_unlock_irq(&ka->tsc_write_lock); 3013 kvm_for_each_vcpu(i, vcpu, kvm) 3014 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3015 3016 /* guest entries allowed */ 3017 kvm_for_each_vcpu(i, vcpu, kvm) 3018 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3019 } 3020 3021 static void kvm_update_masterclock(struct kvm *kvm) 3022 { 3023 kvm_hv_request_tsc_page_update(kvm); 3024 kvm_start_pvclock_update(kvm); 3025 pvclock_update_vm_gtod_copy(kvm); 3026 kvm_end_pvclock_update(kvm); 3027 } 3028 3029 /* 3030 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3031 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3032 * can change during boot even if the TSC is constant, as it's possible for KVM 3033 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3034 * notification when calibration completes, but practically speaking calibration 3035 * will complete before userspace is alive enough to create VMs. 3036 */ 3037 static unsigned long get_cpu_tsc_khz(void) 3038 { 3039 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3040 return tsc_khz; 3041 else 3042 return __this_cpu_read(cpu_tsc_khz); 3043 } 3044 3045 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3046 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3047 { 3048 struct kvm_arch *ka = &kvm->arch; 3049 struct pvclock_vcpu_time_info hv_clock; 3050 3051 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3052 get_cpu(); 3053 3054 data->flags = 0; 3055 if (ka->use_master_clock && 3056 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3057 #ifdef CONFIG_X86_64 3058 struct timespec64 ts; 3059 3060 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3061 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3062 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3063 } else 3064 #endif 3065 data->host_tsc = rdtsc(); 3066 3067 data->flags |= KVM_CLOCK_TSC_STABLE; 3068 hv_clock.tsc_timestamp = ka->master_cycle_now; 3069 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3070 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3071 &hv_clock.tsc_shift, 3072 &hv_clock.tsc_to_system_mul); 3073 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3074 } else { 3075 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3076 } 3077 3078 put_cpu(); 3079 } 3080 3081 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3082 { 3083 struct kvm_arch *ka = &kvm->arch; 3084 unsigned seq; 3085 3086 do { 3087 seq = read_seqcount_begin(&ka->pvclock_sc); 3088 __get_kvmclock(kvm, data); 3089 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3090 } 3091 3092 u64 get_kvmclock_ns(struct kvm *kvm) 3093 { 3094 struct kvm_clock_data data; 3095 3096 get_kvmclock(kvm, &data); 3097 return data.clock; 3098 } 3099 3100 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3101 struct gfn_to_pfn_cache *gpc, 3102 unsigned int offset) 3103 { 3104 struct kvm_vcpu_arch *vcpu = &v->arch; 3105 struct pvclock_vcpu_time_info *guest_hv_clock; 3106 unsigned long flags; 3107 3108 read_lock_irqsave(&gpc->lock, flags); 3109 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3110 read_unlock_irqrestore(&gpc->lock, flags); 3111 3112 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3113 return; 3114 3115 read_lock_irqsave(&gpc->lock, flags); 3116 } 3117 3118 guest_hv_clock = (void *)(gpc->khva + offset); 3119 3120 /* 3121 * This VCPU is paused, but it's legal for a guest to read another 3122 * VCPU's kvmclock, so we really have to follow the specification where 3123 * it says that version is odd if data is being modified, and even after 3124 * it is consistent. 3125 */ 3126 3127 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3128 smp_wmb(); 3129 3130 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3131 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3132 3133 if (vcpu->pvclock_set_guest_stopped_request) { 3134 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3135 vcpu->pvclock_set_guest_stopped_request = false; 3136 } 3137 3138 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3139 smp_wmb(); 3140 3141 guest_hv_clock->version = ++vcpu->hv_clock.version; 3142 3143 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3144 read_unlock_irqrestore(&gpc->lock, flags); 3145 3146 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3147 } 3148 3149 static int kvm_guest_time_update(struct kvm_vcpu *v) 3150 { 3151 unsigned long flags, tgt_tsc_khz; 3152 unsigned seq; 3153 struct kvm_vcpu_arch *vcpu = &v->arch; 3154 struct kvm_arch *ka = &v->kvm->arch; 3155 s64 kernel_ns; 3156 u64 tsc_timestamp, host_tsc; 3157 u8 pvclock_flags; 3158 bool use_master_clock; 3159 3160 kernel_ns = 0; 3161 host_tsc = 0; 3162 3163 /* 3164 * If the host uses TSC clock, then passthrough TSC as stable 3165 * to the guest. 3166 */ 3167 do { 3168 seq = read_seqcount_begin(&ka->pvclock_sc); 3169 use_master_clock = ka->use_master_clock; 3170 if (use_master_clock) { 3171 host_tsc = ka->master_cycle_now; 3172 kernel_ns = ka->master_kernel_ns; 3173 } 3174 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3175 3176 /* Keep irq disabled to prevent changes to the clock */ 3177 local_irq_save(flags); 3178 tgt_tsc_khz = get_cpu_tsc_khz(); 3179 if (unlikely(tgt_tsc_khz == 0)) { 3180 local_irq_restore(flags); 3181 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3182 return 1; 3183 } 3184 if (!use_master_clock) { 3185 host_tsc = rdtsc(); 3186 kernel_ns = get_kvmclock_base_ns(); 3187 } 3188 3189 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3190 3191 /* 3192 * We may have to catch up the TSC to match elapsed wall clock 3193 * time for two reasons, even if kvmclock is used. 3194 * 1) CPU could have been running below the maximum TSC rate 3195 * 2) Broken TSC compensation resets the base at each VCPU 3196 * entry to avoid unknown leaps of TSC even when running 3197 * again on the same CPU. This may cause apparent elapsed 3198 * time to disappear, and the guest to stand still or run 3199 * very slowly. 3200 */ 3201 if (vcpu->tsc_catchup) { 3202 u64 tsc = compute_guest_tsc(v, kernel_ns); 3203 if (tsc > tsc_timestamp) { 3204 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3205 tsc_timestamp = tsc; 3206 } 3207 } 3208 3209 local_irq_restore(flags); 3210 3211 /* With all the info we got, fill in the values */ 3212 3213 if (kvm_caps.has_tsc_control) 3214 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3215 v->arch.l1_tsc_scaling_ratio); 3216 3217 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3218 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3219 &vcpu->hv_clock.tsc_shift, 3220 &vcpu->hv_clock.tsc_to_system_mul); 3221 vcpu->hw_tsc_khz = tgt_tsc_khz; 3222 kvm_xen_update_tsc_info(v); 3223 } 3224 3225 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3226 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3227 vcpu->last_guest_tsc = tsc_timestamp; 3228 3229 /* If the host uses TSC clocksource, then it is stable */ 3230 pvclock_flags = 0; 3231 if (use_master_clock) 3232 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3233 3234 vcpu->hv_clock.flags = pvclock_flags; 3235 3236 if (vcpu->pv_time.active) 3237 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3238 if (vcpu->xen.vcpu_info_cache.active) 3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3240 offsetof(struct compat_vcpu_info, time)); 3241 if (vcpu->xen.vcpu_time_info_cache.active) 3242 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3243 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3244 return 0; 3245 } 3246 3247 /* 3248 * kvmclock updates which are isolated to a given vcpu, such as 3249 * vcpu->cpu migration, should not allow system_timestamp from 3250 * the rest of the vcpus to remain static. Otherwise ntp frequency 3251 * correction applies to one vcpu's system_timestamp but not 3252 * the others. 3253 * 3254 * So in those cases, request a kvmclock update for all vcpus. 3255 * We need to rate-limit these requests though, as they can 3256 * considerably slow guests that have a large number of vcpus. 3257 * The time for a remote vcpu to update its kvmclock is bound 3258 * by the delay we use to rate-limit the updates. 3259 */ 3260 3261 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3262 3263 static void kvmclock_update_fn(struct work_struct *work) 3264 { 3265 unsigned long i; 3266 struct delayed_work *dwork = to_delayed_work(work); 3267 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3268 kvmclock_update_work); 3269 struct kvm *kvm = container_of(ka, struct kvm, arch); 3270 struct kvm_vcpu *vcpu; 3271 3272 kvm_for_each_vcpu(i, vcpu, kvm) { 3273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3274 kvm_vcpu_kick(vcpu); 3275 } 3276 } 3277 3278 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3279 { 3280 struct kvm *kvm = v->kvm; 3281 3282 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3283 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3284 KVMCLOCK_UPDATE_DELAY); 3285 } 3286 3287 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3288 3289 static void kvmclock_sync_fn(struct work_struct *work) 3290 { 3291 struct delayed_work *dwork = to_delayed_work(work); 3292 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3293 kvmclock_sync_work); 3294 struct kvm *kvm = container_of(ka, struct kvm, arch); 3295 3296 if (!kvmclock_periodic_sync) 3297 return; 3298 3299 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3300 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3301 KVMCLOCK_SYNC_PERIOD); 3302 } 3303 3304 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3305 static bool is_mci_control_msr(u32 msr) 3306 { 3307 return (msr & 3) == 0; 3308 } 3309 static bool is_mci_status_msr(u32 msr) 3310 { 3311 return (msr & 3) == 1; 3312 } 3313 3314 /* 3315 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3316 */ 3317 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3318 { 3319 /* McStatusWrEn enabled? */ 3320 if (guest_cpuid_is_amd_compatible(vcpu)) 3321 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3322 3323 return false; 3324 } 3325 3326 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3327 { 3328 u64 mcg_cap = vcpu->arch.mcg_cap; 3329 unsigned bank_num = mcg_cap & 0xff; 3330 u32 msr = msr_info->index; 3331 u64 data = msr_info->data; 3332 u32 offset, last_msr; 3333 3334 switch (msr) { 3335 case MSR_IA32_MCG_STATUS: 3336 vcpu->arch.mcg_status = data; 3337 break; 3338 case MSR_IA32_MCG_CTL: 3339 if (!(mcg_cap & MCG_CTL_P) && 3340 (data || !msr_info->host_initiated)) 3341 return 1; 3342 if (data != 0 && data != ~(u64)0) 3343 return 1; 3344 vcpu->arch.mcg_ctl = data; 3345 break; 3346 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3347 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3348 if (msr > last_msr) 3349 return 1; 3350 3351 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3352 return 1; 3353 /* An attempt to write a 1 to a reserved bit raises #GP */ 3354 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3355 return 1; 3356 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3357 last_msr + 1 - MSR_IA32_MC0_CTL2); 3358 vcpu->arch.mci_ctl2_banks[offset] = data; 3359 break; 3360 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3361 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3362 if (msr > last_msr) 3363 return 1; 3364 3365 /* 3366 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3367 * values are architecturally undefined. But, some Linux 3368 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3369 * issue on AMD K8s, allow bit 10 to be clear when setting all 3370 * other bits in order to avoid an uncaught #GP in the guest. 3371 * 3372 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3373 * single-bit ECC data errors. 3374 */ 3375 if (is_mci_control_msr(msr) && 3376 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3377 return 1; 3378 3379 /* 3380 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3381 * AMD-based CPUs allow non-zero values, but if and only if 3382 * HWCR[McStatusWrEn] is set. 3383 */ 3384 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3385 data != 0 && !can_set_mci_status(vcpu)) 3386 return 1; 3387 3388 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3389 last_msr + 1 - MSR_IA32_MC0_CTL); 3390 vcpu->arch.mce_banks[offset] = data; 3391 break; 3392 default: 3393 return 1; 3394 } 3395 return 0; 3396 } 3397 3398 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3399 { 3400 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3401 3402 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3403 } 3404 3405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3406 { 3407 gpa_t gpa = data & ~0x3f; 3408 3409 /* Bits 4:5 are reserved, Should be zero */ 3410 if (data & 0x30) 3411 return 1; 3412 3413 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3414 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3415 return 1; 3416 3417 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3418 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3419 return 1; 3420 3421 if (!lapic_in_kernel(vcpu)) 3422 return data ? 1 : 0; 3423 3424 vcpu->arch.apf.msr_en_val = data; 3425 3426 if (!kvm_pv_async_pf_enabled(vcpu)) { 3427 kvm_clear_async_pf_completion_queue(vcpu); 3428 kvm_async_pf_hash_reset(vcpu); 3429 return 0; 3430 } 3431 3432 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3433 sizeof(u64))) 3434 return 1; 3435 3436 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3437 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3438 3439 kvm_async_pf_wakeup_all(vcpu); 3440 3441 return 0; 3442 } 3443 3444 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3445 { 3446 /* Bits 8-63 are reserved */ 3447 if (data >> 8) 3448 return 1; 3449 3450 if (!lapic_in_kernel(vcpu)) 3451 return 1; 3452 3453 vcpu->arch.apf.msr_int_val = data; 3454 3455 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3456 3457 return 0; 3458 } 3459 3460 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3461 { 3462 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3463 vcpu->arch.time = 0; 3464 } 3465 3466 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3467 { 3468 ++vcpu->stat.tlb_flush; 3469 static_call(kvm_x86_flush_tlb_all)(vcpu); 3470 3471 /* Flushing all ASIDs flushes the current ASID... */ 3472 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3473 } 3474 3475 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3476 { 3477 ++vcpu->stat.tlb_flush; 3478 3479 if (!tdp_enabled) { 3480 /* 3481 * A TLB flush on behalf of the guest is equivalent to 3482 * INVPCID(all), toggling CR4.PGE, etc., which requires 3483 * a forced sync of the shadow page tables. Ensure all the 3484 * roots are synced and the guest TLB in hardware is clean. 3485 */ 3486 kvm_mmu_sync_roots(vcpu); 3487 kvm_mmu_sync_prev_roots(vcpu); 3488 } 3489 3490 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3491 3492 /* 3493 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3494 * grained flushing. 3495 */ 3496 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3497 } 3498 3499 3500 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3501 { 3502 ++vcpu->stat.tlb_flush; 3503 static_call(kvm_x86_flush_tlb_current)(vcpu); 3504 } 3505 3506 /* 3507 * Service "local" TLB flush requests, which are specific to the current MMU 3508 * context. In addition to the generic event handling in vcpu_enter_guest(), 3509 * TLB flushes that are targeted at an MMU context also need to be serviced 3510 * prior before nested VM-Enter/VM-Exit. 3511 */ 3512 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3513 { 3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3515 kvm_vcpu_flush_tlb_current(vcpu); 3516 3517 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3518 kvm_vcpu_flush_tlb_guest(vcpu); 3519 } 3520 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3521 3522 static void record_steal_time(struct kvm_vcpu *vcpu) 3523 { 3524 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3525 struct kvm_steal_time __user *st; 3526 struct kvm_memslots *slots; 3527 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3528 u64 steal; 3529 u32 version; 3530 3531 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3532 kvm_xen_runstate_set_running(vcpu); 3533 return; 3534 } 3535 3536 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3537 return; 3538 3539 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3540 return; 3541 3542 slots = kvm_memslots(vcpu->kvm); 3543 3544 if (unlikely(slots->generation != ghc->generation || 3545 gpa != ghc->gpa || 3546 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3547 /* We rely on the fact that it fits in a single page. */ 3548 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3549 3550 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3551 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3552 return; 3553 } 3554 3555 st = (struct kvm_steal_time __user *)ghc->hva; 3556 /* 3557 * Doing a TLB flush here, on the guest's behalf, can avoid 3558 * expensive IPIs. 3559 */ 3560 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3561 u8 st_preempted = 0; 3562 int err = -EFAULT; 3563 3564 if (!user_access_begin(st, sizeof(*st))) 3565 return; 3566 3567 asm volatile("1: xchgb %0, %2\n" 3568 "xor %1, %1\n" 3569 "2:\n" 3570 _ASM_EXTABLE_UA(1b, 2b) 3571 : "+q" (st_preempted), 3572 "+&r" (err), 3573 "+m" (st->preempted)); 3574 if (err) 3575 goto out; 3576 3577 user_access_end(); 3578 3579 vcpu->arch.st.preempted = 0; 3580 3581 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3582 st_preempted & KVM_VCPU_FLUSH_TLB); 3583 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3584 kvm_vcpu_flush_tlb_guest(vcpu); 3585 3586 if (!user_access_begin(st, sizeof(*st))) 3587 goto dirty; 3588 } else { 3589 if (!user_access_begin(st, sizeof(*st))) 3590 return; 3591 3592 unsafe_put_user(0, &st->preempted, out); 3593 vcpu->arch.st.preempted = 0; 3594 } 3595 3596 unsafe_get_user(version, &st->version, out); 3597 if (version & 1) 3598 version += 1; /* first time write, random junk */ 3599 3600 version += 1; 3601 unsafe_put_user(version, &st->version, out); 3602 3603 smp_wmb(); 3604 3605 unsafe_get_user(steal, &st->steal, out); 3606 steal += current->sched_info.run_delay - 3607 vcpu->arch.st.last_steal; 3608 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3609 unsafe_put_user(steal, &st->steal, out); 3610 3611 version += 1; 3612 unsafe_put_user(version, &st->version, out); 3613 3614 out: 3615 user_access_end(); 3616 dirty: 3617 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3618 } 3619 3620 static bool kvm_is_msr_to_save(u32 msr_index) 3621 { 3622 unsigned int i; 3623 3624 for (i = 0; i < num_msrs_to_save; i++) { 3625 if (msrs_to_save[i] == msr_index) 3626 return true; 3627 } 3628 3629 return false; 3630 } 3631 3632 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3633 { 3634 u32 msr = msr_info->index; 3635 u64 data = msr_info->data; 3636 3637 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3638 return kvm_xen_write_hypercall_page(vcpu, data); 3639 3640 switch (msr) { 3641 case MSR_AMD64_NB_CFG: 3642 case MSR_IA32_UCODE_WRITE: 3643 case MSR_VM_HSAVE_PA: 3644 case MSR_AMD64_PATCH_LOADER: 3645 case MSR_AMD64_BU_CFG2: 3646 case MSR_AMD64_DC_CFG: 3647 case MSR_AMD64_TW_CFG: 3648 case MSR_F15H_EX_CFG: 3649 break; 3650 3651 case MSR_IA32_UCODE_REV: 3652 if (msr_info->host_initiated) 3653 vcpu->arch.microcode_version = data; 3654 break; 3655 case MSR_IA32_ARCH_CAPABILITIES: 3656 if (!msr_info->host_initiated) 3657 return 1; 3658 vcpu->arch.arch_capabilities = data; 3659 break; 3660 case MSR_IA32_PERF_CAPABILITIES: 3661 if (!msr_info->host_initiated) 3662 return 1; 3663 if (data & ~kvm_caps.supported_perf_cap) 3664 return 1; 3665 3666 /* 3667 * Note, this is not just a performance optimization! KVM 3668 * disallows changing feature MSRs after the vCPU has run; PMU 3669 * refresh will bug the VM if called after the vCPU has run. 3670 */ 3671 if (vcpu->arch.perf_capabilities == data) 3672 break; 3673 3674 vcpu->arch.perf_capabilities = data; 3675 kvm_pmu_refresh(vcpu); 3676 break; 3677 case MSR_IA32_PRED_CMD: 3678 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3679 return 1; 3680 3681 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3682 return 1; 3683 if (!data) 3684 break; 3685 3686 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3687 break; 3688 case MSR_IA32_FLUSH_CMD: 3689 if (!msr_info->host_initiated && 3690 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3691 return 1; 3692 3693 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3694 return 1; 3695 if (!data) 3696 break; 3697 3698 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3699 break; 3700 case MSR_EFER: 3701 return set_efer(vcpu, msr_info); 3702 case MSR_K7_HWCR: 3703 data &= ~(u64)0x40; /* ignore flush filter disable */ 3704 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3705 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3706 3707 /* Handle McStatusWrEn */ 3708 if (data == BIT_ULL(18)) { 3709 vcpu->arch.msr_hwcr = data; 3710 } else if (data != 0) { 3711 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3712 return 1; 3713 } 3714 break; 3715 case MSR_FAM10H_MMIO_CONF_BASE: 3716 if (data != 0) { 3717 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3718 return 1; 3719 } 3720 break; 3721 case MSR_IA32_CR_PAT: 3722 if (!kvm_pat_valid(data)) 3723 return 1; 3724 3725 vcpu->arch.pat = data; 3726 break; 3727 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3728 case MSR_MTRRdefType: 3729 return kvm_mtrr_set_msr(vcpu, msr, data); 3730 case MSR_IA32_APICBASE: 3731 return kvm_set_apic_base(vcpu, msr_info); 3732 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3733 return kvm_x2apic_msr_write(vcpu, msr, data); 3734 case MSR_IA32_TSC_DEADLINE: 3735 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3736 break; 3737 case MSR_IA32_TSC_ADJUST: 3738 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3739 if (!msr_info->host_initiated) { 3740 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3741 adjust_tsc_offset_guest(vcpu, adj); 3742 /* Before back to guest, tsc_timestamp must be adjusted 3743 * as well, otherwise guest's percpu pvclock time could jump. 3744 */ 3745 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3746 } 3747 vcpu->arch.ia32_tsc_adjust_msr = data; 3748 } 3749 break; 3750 case MSR_IA32_MISC_ENABLE: { 3751 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3752 3753 if (!msr_info->host_initiated) { 3754 /* RO bits */ 3755 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3756 return 1; 3757 3758 /* R bits, i.e. writes are ignored, but don't fault. */ 3759 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3760 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3761 } 3762 3763 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3764 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3765 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3766 return 1; 3767 vcpu->arch.ia32_misc_enable_msr = data; 3768 kvm_update_cpuid_runtime(vcpu); 3769 } else { 3770 vcpu->arch.ia32_misc_enable_msr = data; 3771 } 3772 break; 3773 } 3774 case MSR_IA32_SMBASE: 3775 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3776 return 1; 3777 vcpu->arch.smbase = data; 3778 break; 3779 case MSR_IA32_POWER_CTL: 3780 vcpu->arch.msr_ia32_power_ctl = data; 3781 break; 3782 case MSR_IA32_TSC: 3783 if (msr_info->host_initiated) { 3784 kvm_synchronize_tsc(vcpu, data); 3785 } else { 3786 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3787 adjust_tsc_offset_guest(vcpu, adj); 3788 vcpu->arch.ia32_tsc_adjust_msr += adj; 3789 } 3790 break; 3791 case MSR_IA32_XSS: 3792 if (!msr_info->host_initiated && 3793 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3794 return 1; 3795 /* 3796 * KVM supports exposing PT to the guest, but does not support 3797 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3798 * XSAVES/XRSTORS to save/restore PT MSRs. 3799 */ 3800 if (data & ~kvm_caps.supported_xss) 3801 return 1; 3802 vcpu->arch.ia32_xss = data; 3803 kvm_update_cpuid_runtime(vcpu); 3804 break; 3805 case MSR_SMI_COUNT: 3806 if (!msr_info->host_initiated) 3807 return 1; 3808 vcpu->arch.smi_count = data; 3809 break; 3810 case MSR_KVM_WALL_CLOCK_NEW: 3811 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3812 return 1; 3813 3814 vcpu->kvm->arch.wall_clock = data; 3815 kvm_write_wall_clock(vcpu->kvm, data, 0); 3816 break; 3817 case MSR_KVM_WALL_CLOCK: 3818 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3819 return 1; 3820 3821 vcpu->kvm->arch.wall_clock = data; 3822 kvm_write_wall_clock(vcpu->kvm, data, 0); 3823 break; 3824 case MSR_KVM_SYSTEM_TIME_NEW: 3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3826 return 1; 3827 3828 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3829 break; 3830 case MSR_KVM_SYSTEM_TIME: 3831 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3832 return 1; 3833 3834 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3835 break; 3836 case MSR_KVM_ASYNC_PF_EN: 3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3838 return 1; 3839 3840 if (kvm_pv_enable_async_pf(vcpu, data)) 3841 return 1; 3842 break; 3843 case MSR_KVM_ASYNC_PF_INT: 3844 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3845 return 1; 3846 3847 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3848 return 1; 3849 break; 3850 case MSR_KVM_ASYNC_PF_ACK: 3851 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3852 return 1; 3853 if (data & 0x1) { 3854 vcpu->arch.apf.pageready_pending = false; 3855 kvm_check_async_pf_completion(vcpu); 3856 } 3857 break; 3858 case MSR_KVM_STEAL_TIME: 3859 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3860 return 1; 3861 3862 if (unlikely(!sched_info_on())) 3863 return 1; 3864 3865 if (data & KVM_STEAL_RESERVED_MASK) 3866 return 1; 3867 3868 vcpu->arch.st.msr_val = data; 3869 3870 if (!(data & KVM_MSR_ENABLED)) 3871 break; 3872 3873 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3874 3875 break; 3876 case MSR_KVM_PV_EOI_EN: 3877 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3878 return 1; 3879 3880 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3881 return 1; 3882 break; 3883 3884 case MSR_KVM_POLL_CONTROL: 3885 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3886 return 1; 3887 3888 /* only enable bit supported */ 3889 if (data & (-1ULL << 1)) 3890 return 1; 3891 3892 vcpu->arch.msr_kvm_poll_control = data; 3893 break; 3894 3895 case MSR_IA32_MCG_CTL: 3896 case MSR_IA32_MCG_STATUS: 3897 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3898 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3899 return set_msr_mce(vcpu, msr_info); 3900 3901 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3902 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3903 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3904 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3905 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3906 return kvm_pmu_set_msr(vcpu, msr_info); 3907 3908 if (data) 3909 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3910 break; 3911 case MSR_K7_CLK_CTL: 3912 /* 3913 * Ignore all writes to this no longer documented MSR. 3914 * Writes are only relevant for old K7 processors, 3915 * all pre-dating SVM, but a recommended workaround from 3916 * AMD for these chips. It is possible to specify the 3917 * affected processor models on the command line, hence 3918 * the need to ignore the workaround. 3919 */ 3920 break; 3921 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3922 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3923 case HV_X64_MSR_SYNDBG_OPTIONS: 3924 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3925 case HV_X64_MSR_CRASH_CTL: 3926 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3927 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3928 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3929 case HV_X64_MSR_TSC_EMULATION_STATUS: 3930 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3931 return kvm_hv_set_msr_common(vcpu, msr, data, 3932 msr_info->host_initiated); 3933 case MSR_IA32_BBL_CR_CTL3: 3934 /* Drop writes to this legacy MSR -- see rdmsr 3935 * counterpart for further detail. 3936 */ 3937 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3938 break; 3939 case MSR_AMD64_OSVW_ID_LENGTH: 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3941 return 1; 3942 vcpu->arch.osvw.length = data; 3943 break; 3944 case MSR_AMD64_OSVW_STATUS: 3945 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3946 return 1; 3947 vcpu->arch.osvw.status = data; 3948 break; 3949 case MSR_PLATFORM_INFO: 3950 if (!msr_info->host_initiated || 3951 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3952 cpuid_fault_enabled(vcpu))) 3953 return 1; 3954 vcpu->arch.msr_platform_info = data; 3955 break; 3956 case MSR_MISC_FEATURES_ENABLES: 3957 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3958 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3959 !supports_cpuid_fault(vcpu))) 3960 return 1; 3961 vcpu->arch.msr_misc_features_enables = data; 3962 break; 3963 #ifdef CONFIG_X86_64 3964 case MSR_IA32_XFD: 3965 if (!msr_info->host_initiated && 3966 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3967 return 1; 3968 3969 if (data & ~kvm_guest_supported_xfd(vcpu)) 3970 return 1; 3971 3972 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3973 break; 3974 case MSR_IA32_XFD_ERR: 3975 if (!msr_info->host_initiated && 3976 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3977 return 1; 3978 3979 if (data & ~kvm_guest_supported_xfd(vcpu)) 3980 return 1; 3981 3982 vcpu->arch.guest_fpu.xfd_err = data; 3983 break; 3984 #endif 3985 default: 3986 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3987 return kvm_pmu_set_msr(vcpu, msr_info); 3988 3989 /* 3990 * Userspace is allowed to write '0' to MSRs that KVM reports 3991 * as to-be-saved, even if an MSRs isn't fully supported. 3992 */ 3993 if (msr_info->host_initiated && !data && 3994 kvm_is_msr_to_save(msr)) 3995 break; 3996 3997 return KVM_MSR_RET_INVALID; 3998 } 3999 return 0; 4000 } 4001 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4002 4003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4004 { 4005 u64 data; 4006 u64 mcg_cap = vcpu->arch.mcg_cap; 4007 unsigned bank_num = mcg_cap & 0xff; 4008 u32 offset, last_msr; 4009 4010 switch (msr) { 4011 case MSR_IA32_P5_MC_ADDR: 4012 case MSR_IA32_P5_MC_TYPE: 4013 data = 0; 4014 break; 4015 case MSR_IA32_MCG_CAP: 4016 data = vcpu->arch.mcg_cap; 4017 break; 4018 case MSR_IA32_MCG_CTL: 4019 if (!(mcg_cap & MCG_CTL_P) && !host) 4020 return 1; 4021 data = vcpu->arch.mcg_ctl; 4022 break; 4023 case MSR_IA32_MCG_STATUS: 4024 data = vcpu->arch.mcg_status; 4025 break; 4026 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4027 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4028 if (msr > last_msr) 4029 return 1; 4030 4031 if (!(mcg_cap & MCG_CMCI_P) && !host) 4032 return 1; 4033 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4034 last_msr + 1 - MSR_IA32_MC0_CTL2); 4035 data = vcpu->arch.mci_ctl2_banks[offset]; 4036 break; 4037 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4038 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4039 if (msr > last_msr) 4040 return 1; 4041 4042 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4043 last_msr + 1 - MSR_IA32_MC0_CTL); 4044 data = vcpu->arch.mce_banks[offset]; 4045 break; 4046 default: 4047 return 1; 4048 } 4049 *pdata = data; 4050 return 0; 4051 } 4052 4053 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4054 { 4055 switch (msr_info->index) { 4056 case MSR_IA32_PLATFORM_ID: 4057 case MSR_IA32_EBL_CR_POWERON: 4058 case MSR_IA32_LASTBRANCHFROMIP: 4059 case MSR_IA32_LASTBRANCHTOIP: 4060 case MSR_IA32_LASTINTFROMIP: 4061 case MSR_IA32_LASTINTTOIP: 4062 case MSR_AMD64_SYSCFG: 4063 case MSR_K8_TSEG_ADDR: 4064 case MSR_K8_TSEG_MASK: 4065 case MSR_VM_HSAVE_PA: 4066 case MSR_K8_INT_PENDING_MSG: 4067 case MSR_AMD64_NB_CFG: 4068 case MSR_FAM10H_MMIO_CONF_BASE: 4069 case MSR_AMD64_BU_CFG2: 4070 case MSR_IA32_PERF_CTL: 4071 case MSR_AMD64_DC_CFG: 4072 case MSR_AMD64_TW_CFG: 4073 case MSR_F15H_EX_CFG: 4074 /* 4075 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4076 * limit) MSRs. Just return 0, as we do not want to expose the host 4077 * data here. Do not conditionalize this on CPUID, as KVM does not do 4078 * so for existing CPU-specific MSRs. 4079 */ 4080 case MSR_RAPL_POWER_UNIT: 4081 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4082 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4083 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4084 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4085 msr_info->data = 0; 4086 break; 4087 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4088 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4089 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4090 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4091 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4092 return kvm_pmu_get_msr(vcpu, msr_info); 4093 msr_info->data = 0; 4094 break; 4095 case MSR_IA32_UCODE_REV: 4096 msr_info->data = vcpu->arch.microcode_version; 4097 break; 4098 case MSR_IA32_ARCH_CAPABILITIES: 4099 if (!msr_info->host_initiated && 4100 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4101 return 1; 4102 msr_info->data = vcpu->arch.arch_capabilities; 4103 break; 4104 case MSR_IA32_PERF_CAPABILITIES: 4105 if (!msr_info->host_initiated && 4106 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4107 return 1; 4108 msr_info->data = vcpu->arch.perf_capabilities; 4109 break; 4110 case MSR_IA32_POWER_CTL: 4111 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4112 break; 4113 case MSR_IA32_TSC: { 4114 /* 4115 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4116 * even when not intercepted. AMD manual doesn't explicitly 4117 * state this but appears to behave the same. 4118 * 4119 * On userspace reads and writes, however, we unconditionally 4120 * return L1's TSC value to ensure backwards-compatible 4121 * behavior for migration. 4122 */ 4123 u64 offset, ratio; 4124 4125 if (msr_info->host_initiated) { 4126 offset = vcpu->arch.l1_tsc_offset; 4127 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4128 } else { 4129 offset = vcpu->arch.tsc_offset; 4130 ratio = vcpu->arch.tsc_scaling_ratio; 4131 } 4132 4133 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4134 break; 4135 } 4136 case MSR_IA32_CR_PAT: 4137 msr_info->data = vcpu->arch.pat; 4138 break; 4139 case MSR_MTRRcap: 4140 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4141 case MSR_MTRRdefType: 4142 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4143 case 0xcd: /* fsb frequency */ 4144 msr_info->data = 3; 4145 break; 4146 /* 4147 * MSR_EBC_FREQUENCY_ID 4148 * Conservative value valid for even the basic CPU models. 4149 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4150 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4151 * and 266MHz for model 3, or 4. Set Core Clock 4152 * Frequency to System Bus Frequency Ratio to 1 (bits 4153 * 31:24) even though these are only valid for CPU 4154 * models > 2, however guests may end up dividing or 4155 * multiplying by zero otherwise. 4156 */ 4157 case MSR_EBC_FREQUENCY_ID: 4158 msr_info->data = 1 << 24; 4159 break; 4160 case MSR_IA32_APICBASE: 4161 msr_info->data = kvm_get_apic_base(vcpu); 4162 break; 4163 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4164 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4165 case MSR_IA32_TSC_DEADLINE: 4166 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4167 break; 4168 case MSR_IA32_TSC_ADJUST: 4169 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4170 break; 4171 case MSR_IA32_MISC_ENABLE: 4172 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4173 break; 4174 case MSR_IA32_SMBASE: 4175 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4176 return 1; 4177 msr_info->data = vcpu->arch.smbase; 4178 break; 4179 case MSR_SMI_COUNT: 4180 msr_info->data = vcpu->arch.smi_count; 4181 break; 4182 case MSR_IA32_PERF_STATUS: 4183 /* TSC increment by tick */ 4184 msr_info->data = 1000ULL; 4185 /* CPU multiplier */ 4186 msr_info->data |= (((uint64_t)4ULL) << 40); 4187 break; 4188 case MSR_EFER: 4189 msr_info->data = vcpu->arch.efer; 4190 break; 4191 case MSR_KVM_WALL_CLOCK: 4192 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4193 return 1; 4194 4195 msr_info->data = vcpu->kvm->arch.wall_clock; 4196 break; 4197 case MSR_KVM_WALL_CLOCK_NEW: 4198 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4199 return 1; 4200 4201 msr_info->data = vcpu->kvm->arch.wall_clock; 4202 break; 4203 case MSR_KVM_SYSTEM_TIME: 4204 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4205 return 1; 4206 4207 msr_info->data = vcpu->arch.time; 4208 break; 4209 case MSR_KVM_SYSTEM_TIME_NEW: 4210 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4211 return 1; 4212 4213 msr_info->data = vcpu->arch.time; 4214 break; 4215 case MSR_KVM_ASYNC_PF_EN: 4216 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4217 return 1; 4218 4219 msr_info->data = vcpu->arch.apf.msr_en_val; 4220 break; 4221 case MSR_KVM_ASYNC_PF_INT: 4222 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4223 return 1; 4224 4225 msr_info->data = vcpu->arch.apf.msr_int_val; 4226 break; 4227 case MSR_KVM_ASYNC_PF_ACK: 4228 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4229 return 1; 4230 4231 msr_info->data = 0; 4232 break; 4233 case MSR_KVM_STEAL_TIME: 4234 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4235 return 1; 4236 4237 msr_info->data = vcpu->arch.st.msr_val; 4238 break; 4239 case MSR_KVM_PV_EOI_EN: 4240 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4241 return 1; 4242 4243 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4244 break; 4245 case MSR_KVM_POLL_CONTROL: 4246 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4250 break; 4251 case MSR_IA32_P5_MC_ADDR: 4252 case MSR_IA32_P5_MC_TYPE: 4253 case MSR_IA32_MCG_CAP: 4254 case MSR_IA32_MCG_CTL: 4255 case MSR_IA32_MCG_STATUS: 4256 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4257 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4258 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4259 msr_info->host_initiated); 4260 case MSR_IA32_XSS: 4261 if (!msr_info->host_initiated && 4262 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4263 return 1; 4264 msr_info->data = vcpu->arch.ia32_xss; 4265 break; 4266 case MSR_K7_CLK_CTL: 4267 /* 4268 * Provide expected ramp-up count for K7. All other 4269 * are set to zero, indicating minimum divisors for 4270 * every field. 4271 * 4272 * This prevents guest kernels on AMD host with CPU 4273 * type 6, model 8 and higher from exploding due to 4274 * the rdmsr failing. 4275 */ 4276 msr_info->data = 0x20000000; 4277 break; 4278 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4279 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4280 case HV_X64_MSR_SYNDBG_OPTIONS: 4281 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4282 case HV_X64_MSR_CRASH_CTL: 4283 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4284 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4285 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4286 case HV_X64_MSR_TSC_EMULATION_STATUS: 4287 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4288 return kvm_hv_get_msr_common(vcpu, 4289 msr_info->index, &msr_info->data, 4290 msr_info->host_initiated); 4291 case MSR_IA32_BBL_CR_CTL3: 4292 /* This legacy MSR exists but isn't fully documented in current 4293 * silicon. It is however accessed by winxp in very narrow 4294 * scenarios where it sets bit #19, itself documented as 4295 * a "reserved" bit. Best effort attempt to source coherent 4296 * read data here should the balance of the register be 4297 * interpreted by the guest: 4298 * 4299 * L2 cache control register 3: 64GB range, 256KB size, 4300 * enabled, latency 0x1, configured 4301 */ 4302 msr_info->data = 0xbe702111; 4303 break; 4304 case MSR_AMD64_OSVW_ID_LENGTH: 4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4306 return 1; 4307 msr_info->data = vcpu->arch.osvw.length; 4308 break; 4309 case MSR_AMD64_OSVW_STATUS: 4310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4311 return 1; 4312 msr_info->data = vcpu->arch.osvw.status; 4313 break; 4314 case MSR_PLATFORM_INFO: 4315 if (!msr_info->host_initiated && 4316 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4317 return 1; 4318 msr_info->data = vcpu->arch.msr_platform_info; 4319 break; 4320 case MSR_MISC_FEATURES_ENABLES: 4321 msr_info->data = vcpu->arch.msr_misc_features_enables; 4322 break; 4323 case MSR_K7_HWCR: 4324 msr_info->data = vcpu->arch.msr_hwcr; 4325 break; 4326 #ifdef CONFIG_X86_64 4327 case MSR_IA32_XFD: 4328 if (!msr_info->host_initiated && 4329 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4330 return 1; 4331 4332 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4333 break; 4334 case MSR_IA32_XFD_ERR: 4335 if (!msr_info->host_initiated && 4336 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4337 return 1; 4338 4339 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4340 break; 4341 #endif 4342 default: 4343 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4344 return kvm_pmu_get_msr(vcpu, msr_info); 4345 4346 /* 4347 * Userspace is allowed to read MSRs that KVM reports as 4348 * to-be-saved, even if an MSR isn't fully supported. 4349 */ 4350 if (msr_info->host_initiated && 4351 kvm_is_msr_to_save(msr_info->index)) { 4352 msr_info->data = 0; 4353 break; 4354 } 4355 4356 return KVM_MSR_RET_INVALID; 4357 } 4358 return 0; 4359 } 4360 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4361 4362 /* 4363 * Read or write a bunch of msrs. All parameters are kernel addresses. 4364 * 4365 * @return number of msrs set successfully. 4366 */ 4367 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4368 struct kvm_msr_entry *entries, 4369 int (*do_msr)(struct kvm_vcpu *vcpu, 4370 unsigned index, u64 *data)) 4371 { 4372 int i; 4373 4374 for (i = 0; i < msrs->nmsrs; ++i) 4375 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4376 break; 4377 4378 return i; 4379 } 4380 4381 /* 4382 * Read or write a bunch of msrs. Parameters are user addresses. 4383 * 4384 * @return number of msrs set successfully. 4385 */ 4386 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4387 int (*do_msr)(struct kvm_vcpu *vcpu, 4388 unsigned index, u64 *data), 4389 int writeback) 4390 { 4391 struct kvm_msrs msrs; 4392 struct kvm_msr_entry *entries; 4393 unsigned size; 4394 int r; 4395 4396 r = -EFAULT; 4397 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4398 goto out; 4399 4400 r = -E2BIG; 4401 if (msrs.nmsrs >= MAX_IO_MSRS) 4402 goto out; 4403 4404 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4405 entries = memdup_user(user_msrs->entries, size); 4406 if (IS_ERR(entries)) { 4407 r = PTR_ERR(entries); 4408 goto out; 4409 } 4410 4411 r = __msr_io(vcpu, &msrs, entries, do_msr); 4412 4413 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4414 r = -EFAULT; 4415 4416 kfree(entries); 4417 out: 4418 return r; 4419 } 4420 4421 static inline bool kvm_can_mwait_in_guest(void) 4422 { 4423 return boot_cpu_has(X86_FEATURE_MWAIT) && 4424 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4425 boot_cpu_has(X86_FEATURE_ARAT); 4426 } 4427 4428 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4429 struct kvm_cpuid2 __user *cpuid_arg) 4430 { 4431 struct kvm_cpuid2 cpuid; 4432 int r; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4436 return r; 4437 4438 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4439 if (r) 4440 return r; 4441 4442 r = -EFAULT; 4443 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4444 return r; 4445 4446 return 0; 4447 } 4448 4449 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4450 { 4451 int r = 0; 4452 4453 switch (ext) { 4454 case KVM_CAP_IRQCHIP: 4455 case KVM_CAP_HLT: 4456 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4457 case KVM_CAP_SET_TSS_ADDR: 4458 case KVM_CAP_EXT_CPUID: 4459 case KVM_CAP_EXT_EMUL_CPUID: 4460 case KVM_CAP_CLOCKSOURCE: 4461 case KVM_CAP_PIT: 4462 case KVM_CAP_NOP_IO_DELAY: 4463 case KVM_CAP_MP_STATE: 4464 case KVM_CAP_SYNC_MMU: 4465 case KVM_CAP_USER_NMI: 4466 case KVM_CAP_REINJECT_CONTROL: 4467 case KVM_CAP_IRQ_INJECT_STATUS: 4468 case KVM_CAP_IOEVENTFD: 4469 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4470 case KVM_CAP_PIT2: 4471 case KVM_CAP_PIT_STATE2: 4472 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4473 case KVM_CAP_VCPU_EVENTS: 4474 case KVM_CAP_HYPERV: 4475 case KVM_CAP_HYPERV_VAPIC: 4476 case KVM_CAP_HYPERV_SPIN: 4477 case KVM_CAP_HYPERV_SYNIC: 4478 case KVM_CAP_HYPERV_SYNIC2: 4479 case KVM_CAP_HYPERV_VP_INDEX: 4480 case KVM_CAP_HYPERV_EVENTFD: 4481 case KVM_CAP_HYPERV_TLBFLUSH: 4482 case KVM_CAP_HYPERV_SEND_IPI: 4483 case KVM_CAP_HYPERV_CPUID: 4484 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4485 case KVM_CAP_SYS_HYPERV_CPUID: 4486 case KVM_CAP_PCI_SEGMENT: 4487 case KVM_CAP_DEBUGREGS: 4488 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4489 case KVM_CAP_XSAVE: 4490 case KVM_CAP_ASYNC_PF: 4491 case KVM_CAP_ASYNC_PF_INT: 4492 case KVM_CAP_GET_TSC_KHZ: 4493 case KVM_CAP_KVMCLOCK_CTRL: 4494 case KVM_CAP_READONLY_MEM: 4495 case KVM_CAP_HYPERV_TIME: 4496 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4497 case KVM_CAP_TSC_DEADLINE_TIMER: 4498 case KVM_CAP_DISABLE_QUIRKS: 4499 case KVM_CAP_SET_BOOT_CPU_ID: 4500 case KVM_CAP_SPLIT_IRQCHIP: 4501 case KVM_CAP_IMMEDIATE_EXIT: 4502 case KVM_CAP_PMU_EVENT_FILTER: 4503 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4504 case KVM_CAP_GET_MSR_FEATURES: 4505 case KVM_CAP_MSR_PLATFORM_INFO: 4506 case KVM_CAP_EXCEPTION_PAYLOAD: 4507 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4508 case KVM_CAP_SET_GUEST_DEBUG: 4509 case KVM_CAP_LAST_CPU: 4510 case KVM_CAP_X86_USER_SPACE_MSR: 4511 case KVM_CAP_X86_MSR_FILTER: 4512 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4513 #ifdef CONFIG_X86_SGX_KVM 4514 case KVM_CAP_SGX_ATTRIBUTE: 4515 #endif 4516 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4517 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4518 case KVM_CAP_SREGS2: 4519 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4520 case KVM_CAP_VCPU_ATTRIBUTES: 4521 case KVM_CAP_SYS_ATTRIBUTES: 4522 case KVM_CAP_VAPIC: 4523 case KVM_CAP_ENABLE_CAP: 4524 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4525 case KVM_CAP_IRQFD_RESAMPLE: 4526 r = 1; 4527 break; 4528 case KVM_CAP_EXIT_HYPERCALL: 4529 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4530 break; 4531 case KVM_CAP_SET_GUEST_DEBUG2: 4532 return KVM_GUESTDBG_VALID_MASK; 4533 #ifdef CONFIG_KVM_XEN 4534 case KVM_CAP_XEN_HVM: 4535 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4536 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4537 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4538 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4539 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4540 if (sched_info_on()) 4541 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4542 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4543 break; 4544 #endif 4545 case KVM_CAP_SYNC_REGS: 4546 r = KVM_SYNC_X86_VALID_FIELDS; 4547 break; 4548 case KVM_CAP_ADJUST_CLOCK: 4549 r = KVM_CLOCK_VALID_FLAGS; 4550 break; 4551 case KVM_CAP_X86_DISABLE_EXITS: 4552 r = KVM_X86_DISABLE_EXITS_PAUSE; 4553 4554 if (!mitigate_smt_rsb) { 4555 r |= KVM_X86_DISABLE_EXITS_HLT | 4556 KVM_X86_DISABLE_EXITS_CSTATE; 4557 4558 if (kvm_can_mwait_in_guest()) 4559 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4560 } 4561 break; 4562 case KVM_CAP_X86_SMM: 4563 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4564 break; 4565 4566 /* SMBASE is usually relocated above 1M on modern chipsets, 4567 * and SMM handlers might indeed rely on 4G segment limits, 4568 * so do not report SMM to be available if real mode is 4569 * emulated via vm86 mode. Still, do not go to great lengths 4570 * to avoid userspace's usage of the feature, because it is a 4571 * fringe case that is not enabled except via specific settings 4572 * of the module parameters. 4573 */ 4574 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4575 break; 4576 case KVM_CAP_NR_VCPUS: 4577 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4578 break; 4579 case KVM_CAP_MAX_VCPUS: 4580 r = KVM_MAX_VCPUS; 4581 break; 4582 case KVM_CAP_MAX_VCPU_ID: 4583 r = KVM_MAX_VCPU_IDS; 4584 break; 4585 case KVM_CAP_PV_MMU: /* obsolete */ 4586 r = 0; 4587 break; 4588 case KVM_CAP_MCE: 4589 r = KVM_MAX_MCE_BANKS; 4590 break; 4591 case KVM_CAP_XCRS: 4592 r = boot_cpu_has(X86_FEATURE_XSAVE); 4593 break; 4594 case KVM_CAP_TSC_CONTROL: 4595 case KVM_CAP_VM_TSC_CONTROL: 4596 r = kvm_caps.has_tsc_control; 4597 break; 4598 case KVM_CAP_X2APIC_API: 4599 r = KVM_X2APIC_API_VALID_FLAGS; 4600 break; 4601 case KVM_CAP_NESTED_STATE: 4602 r = kvm_x86_ops.nested_ops->get_state ? 4603 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4604 break; 4605 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4606 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4607 break; 4608 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4609 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4610 break; 4611 case KVM_CAP_SMALLER_MAXPHYADDR: 4612 r = (int) allow_smaller_maxphyaddr; 4613 break; 4614 case KVM_CAP_STEAL_TIME: 4615 r = sched_info_on(); 4616 break; 4617 case KVM_CAP_X86_BUS_LOCK_EXIT: 4618 if (kvm_caps.has_bus_lock_exit) 4619 r = KVM_BUS_LOCK_DETECTION_OFF | 4620 KVM_BUS_LOCK_DETECTION_EXIT; 4621 else 4622 r = 0; 4623 break; 4624 case KVM_CAP_XSAVE2: { 4625 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4626 if (r < sizeof(struct kvm_xsave)) 4627 r = sizeof(struct kvm_xsave); 4628 break; 4629 } 4630 case KVM_CAP_PMU_CAPABILITY: 4631 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4632 break; 4633 case KVM_CAP_DISABLE_QUIRKS2: 4634 r = KVM_X86_VALID_QUIRKS; 4635 break; 4636 case KVM_CAP_X86_NOTIFY_VMEXIT: 4637 r = kvm_caps.has_notify_vmexit; 4638 break; 4639 default: 4640 break; 4641 } 4642 return r; 4643 } 4644 4645 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4646 { 4647 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4648 4649 if ((u64)(unsigned long)uaddr != attr->addr) 4650 return ERR_PTR_USR(-EFAULT); 4651 return uaddr; 4652 } 4653 4654 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4655 { 4656 u64 __user *uaddr = kvm_get_attr_addr(attr); 4657 4658 if (attr->group) 4659 return -ENXIO; 4660 4661 if (IS_ERR(uaddr)) 4662 return PTR_ERR(uaddr); 4663 4664 switch (attr->attr) { 4665 case KVM_X86_XCOMP_GUEST_SUPP: 4666 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4667 return -EFAULT; 4668 return 0; 4669 default: 4670 return -ENXIO; 4671 } 4672 } 4673 4674 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4675 { 4676 if (attr->group) 4677 return -ENXIO; 4678 4679 switch (attr->attr) { 4680 case KVM_X86_XCOMP_GUEST_SUPP: 4681 return 0; 4682 default: 4683 return -ENXIO; 4684 } 4685 } 4686 4687 long kvm_arch_dev_ioctl(struct file *filp, 4688 unsigned int ioctl, unsigned long arg) 4689 { 4690 void __user *argp = (void __user *)arg; 4691 long r; 4692 4693 switch (ioctl) { 4694 case KVM_GET_MSR_INDEX_LIST: { 4695 struct kvm_msr_list __user *user_msr_list = argp; 4696 struct kvm_msr_list msr_list; 4697 unsigned n; 4698 4699 r = -EFAULT; 4700 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4701 goto out; 4702 n = msr_list.nmsrs; 4703 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4704 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4705 goto out; 4706 r = -E2BIG; 4707 if (n < msr_list.nmsrs) 4708 goto out; 4709 r = -EFAULT; 4710 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4711 num_msrs_to_save * sizeof(u32))) 4712 goto out; 4713 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4714 &emulated_msrs, 4715 num_emulated_msrs * sizeof(u32))) 4716 goto out; 4717 r = 0; 4718 break; 4719 } 4720 case KVM_GET_SUPPORTED_CPUID: 4721 case KVM_GET_EMULATED_CPUID: { 4722 struct kvm_cpuid2 __user *cpuid_arg = argp; 4723 struct kvm_cpuid2 cpuid; 4724 4725 r = -EFAULT; 4726 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4727 goto out; 4728 4729 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4730 ioctl); 4731 if (r) 4732 goto out; 4733 4734 r = -EFAULT; 4735 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4736 goto out; 4737 r = 0; 4738 break; 4739 } 4740 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4741 r = -EFAULT; 4742 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4743 sizeof(kvm_caps.supported_mce_cap))) 4744 goto out; 4745 r = 0; 4746 break; 4747 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4748 struct kvm_msr_list __user *user_msr_list = argp; 4749 struct kvm_msr_list msr_list; 4750 unsigned int n; 4751 4752 r = -EFAULT; 4753 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4754 goto out; 4755 n = msr_list.nmsrs; 4756 msr_list.nmsrs = num_msr_based_features; 4757 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4758 goto out; 4759 r = -E2BIG; 4760 if (n < msr_list.nmsrs) 4761 goto out; 4762 r = -EFAULT; 4763 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4764 num_msr_based_features * sizeof(u32))) 4765 goto out; 4766 r = 0; 4767 break; 4768 } 4769 case KVM_GET_MSRS: 4770 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4771 break; 4772 case KVM_GET_SUPPORTED_HV_CPUID: 4773 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4774 break; 4775 case KVM_GET_DEVICE_ATTR: { 4776 struct kvm_device_attr attr; 4777 r = -EFAULT; 4778 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4779 break; 4780 r = kvm_x86_dev_get_attr(&attr); 4781 break; 4782 } 4783 case KVM_HAS_DEVICE_ATTR: { 4784 struct kvm_device_attr attr; 4785 r = -EFAULT; 4786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4787 break; 4788 r = kvm_x86_dev_has_attr(&attr); 4789 break; 4790 } 4791 default: 4792 r = -EINVAL; 4793 break; 4794 } 4795 out: 4796 return r; 4797 } 4798 4799 static void wbinvd_ipi(void *garbage) 4800 { 4801 wbinvd(); 4802 } 4803 4804 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4805 { 4806 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4807 } 4808 4809 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4810 { 4811 /* Address WBINVD may be executed by guest */ 4812 if (need_emulate_wbinvd(vcpu)) { 4813 if (static_call(kvm_x86_has_wbinvd_exit)()) 4814 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4815 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4816 smp_call_function_single(vcpu->cpu, 4817 wbinvd_ipi, NULL, 1); 4818 } 4819 4820 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4821 4822 /* Save host pkru register if supported */ 4823 vcpu->arch.host_pkru = read_pkru(); 4824 4825 /* Apply any externally detected TSC adjustments (due to suspend) */ 4826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4828 vcpu->arch.tsc_offset_adjustment = 0; 4829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4830 } 4831 4832 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4834 rdtsc() - vcpu->arch.last_host_tsc; 4835 if (tsc_delta < 0) 4836 mark_tsc_unstable("KVM discovered backwards TSC"); 4837 4838 if (kvm_check_tsc_unstable()) { 4839 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4840 vcpu->arch.last_guest_tsc); 4841 kvm_vcpu_write_tsc_offset(vcpu, offset); 4842 vcpu->arch.tsc_catchup = 1; 4843 } 4844 4845 if (kvm_lapic_hv_timer_in_use(vcpu)) 4846 kvm_lapic_restart_hv_timer(vcpu); 4847 4848 /* 4849 * On a host with synchronized TSC, there is no need to update 4850 * kvmclock on vcpu->cpu migration 4851 */ 4852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4854 if (vcpu->cpu != cpu) 4855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4856 vcpu->cpu = cpu; 4857 } 4858 4859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4860 } 4861 4862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4863 { 4864 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4865 struct kvm_steal_time __user *st; 4866 struct kvm_memslots *slots; 4867 static const u8 preempted = KVM_VCPU_PREEMPTED; 4868 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4869 4870 /* 4871 * The vCPU can be marked preempted if and only if the VM-Exit was on 4872 * an instruction boundary and will not trigger guest emulation of any 4873 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4874 * when this is true, for example allowing the vCPU to be marked 4875 * preempted if and only if the VM-Exit was due to a host interrupt. 4876 */ 4877 if (!vcpu->arch.at_instruction_boundary) { 4878 vcpu->stat.preemption_other++; 4879 return; 4880 } 4881 4882 vcpu->stat.preemption_reported++; 4883 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4884 return; 4885 4886 if (vcpu->arch.st.preempted) 4887 return; 4888 4889 /* This happens on process exit */ 4890 if (unlikely(current->mm != vcpu->kvm->mm)) 4891 return; 4892 4893 slots = kvm_memslots(vcpu->kvm); 4894 4895 if (unlikely(slots->generation != ghc->generation || 4896 gpa != ghc->gpa || 4897 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4898 return; 4899 4900 st = (struct kvm_steal_time __user *)ghc->hva; 4901 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4902 4903 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4904 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4905 4906 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4907 } 4908 4909 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4910 { 4911 int idx; 4912 4913 if (vcpu->preempted) { 4914 if (!vcpu->arch.guest_state_protected) 4915 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4916 4917 /* 4918 * Take the srcu lock as memslots will be accessed to check the gfn 4919 * cache generation against the memslots generation. 4920 */ 4921 idx = srcu_read_lock(&vcpu->kvm->srcu); 4922 if (kvm_xen_msr_enabled(vcpu->kvm)) 4923 kvm_xen_runstate_set_preempted(vcpu); 4924 else 4925 kvm_steal_time_set_preempted(vcpu); 4926 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4927 } 4928 4929 static_call(kvm_x86_vcpu_put)(vcpu); 4930 vcpu->arch.last_host_tsc = rdtsc(); 4931 } 4932 4933 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4934 struct kvm_lapic_state *s) 4935 { 4936 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4937 4938 return kvm_apic_get_state(vcpu, s); 4939 } 4940 4941 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4942 struct kvm_lapic_state *s) 4943 { 4944 int r; 4945 4946 r = kvm_apic_set_state(vcpu, s); 4947 if (r) 4948 return r; 4949 update_cr8_intercept(vcpu); 4950 4951 return 0; 4952 } 4953 4954 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4955 { 4956 /* 4957 * We can accept userspace's request for interrupt injection 4958 * as long as we have a place to store the interrupt number. 4959 * The actual injection will happen when the CPU is able to 4960 * deliver the interrupt. 4961 */ 4962 if (kvm_cpu_has_extint(vcpu)) 4963 return false; 4964 4965 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4966 return (!lapic_in_kernel(vcpu) || 4967 kvm_apic_accept_pic_intr(vcpu)); 4968 } 4969 4970 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4971 { 4972 /* 4973 * Do not cause an interrupt window exit if an exception 4974 * is pending or an event needs reinjection; userspace 4975 * might want to inject the interrupt manually using KVM_SET_REGS 4976 * or KVM_SET_SREGS. For that to work, we must be at an 4977 * instruction boundary and with no events half-injected. 4978 */ 4979 return (kvm_arch_interrupt_allowed(vcpu) && 4980 kvm_cpu_accept_dm_intr(vcpu) && 4981 !kvm_event_needs_reinjection(vcpu) && 4982 !kvm_is_exception_pending(vcpu)); 4983 } 4984 4985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4986 struct kvm_interrupt *irq) 4987 { 4988 if (irq->irq >= KVM_NR_INTERRUPTS) 4989 return -EINVAL; 4990 4991 if (!irqchip_in_kernel(vcpu->kvm)) { 4992 kvm_queue_interrupt(vcpu, irq->irq, false); 4993 kvm_make_request(KVM_REQ_EVENT, vcpu); 4994 return 0; 4995 } 4996 4997 /* 4998 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4999 * fail for in-kernel 8259. 5000 */ 5001 if (pic_in_kernel(vcpu->kvm)) 5002 return -ENXIO; 5003 5004 if (vcpu->arch.pending_external_vector != -1) 5005 return -EEXIST; 5006 5007 vcpu->arch.pending_external_vector = irq->irq; 5008 kvm_make_request(KVM_REQ_EVENT, vcpu); 5009 return 0; 5010 } 5011 5012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5013 { 5014 kvm_inject_nmi(vcpu); 5015 5016 return 0; 5017 } 5018 5019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5020 struct kvm_tpr_access_ctl *tac) 5021 { 5022 if (tac->flags) 5023 return -EINVAL; 5024 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5025 return 0; 5026 } 5027 5028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5029 u64 mcg_cap) 5030 { 5031 int r; 5032 unsigned bank_num = mcg_cap & 0xff, bank; 5033 5034 r = -EINVAL; 5035 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5036 goto out; 5037 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5038 goto out; 5039 r = 0; 5040 vcpu->arch.mcg_cap = mcg_cap; 5041 /* Init IA32_MCG_CTL to all 1s */ 5042 if (mcg_cap & MCG_CTL_P) 5043 vcpu->arch.mcg_ctl = ~(u64)0; 5044 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5045 for (bank = 0; bank < bank_num; bank++) { 5046 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5047 if (mcg_cap & MCG_CMCI_P) 5048 vcpu->arch.mci_ctl2_banks[bank] = 0; 5049 } 5050 5051 kvm_apic_after_set_mcg_cap(vcpu); 5052 5053 static_call(kvm_x86_setup_mce)(vcpu); 5054 out: 5055 return r; 5056 } 5057 5058 /* 5059 * Validate this is an UCNA (uncorrectable no action) error by checking the 5060 * MCG_STATUS and MCi_STATUS registers: 5061 * - none of the bits for Machine Check Exceptions are set 5062 * - both the VAL (valid) and UC (uncorrectable) bits are set 5063 * MCI_STATUS_PCC - Processor Context Corrupted 5064 * MCI_STATUS_S - Signaled as a Machine Check Exception 5065 * MCI_STATUS_AR - Software recoverable Action Required 5066 */ 5067 static bool is_ucna(struct kvm_x86_mce *mce) 5068 { 5069 return !mce->mcg_status && 5070 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5071 (mce->status & MCI_STATUS_VAL) && 5072 (mce->status & MCI_STATUS_UC); 5073 } 5074 5075 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5076 { 5077 u64 mcg_cap = vcpu->arch.mcg_cap; 5078 5079 banks[1] = mce->status; 5080 banks[2] = mce->addr; 5081 banks[3] = mce->misc; 5082 vcpu->arch.mcg_status = mce->mcg_status; 5083 5084 if (!(mcg_cap & MCG_CMCI_P) || 5085 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5086 return 0; 5087 5088 if (lapic_in_kernel(vcpu)) 5089 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5090 5091 return 0; 5092 } 5093 5094 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5095 struct kvm_x86_mce *mce) 5096 { 5097 u64 mcg_cap = vcpu->arch.mcg_cap; 5098 unsigned bank_num = mcg_cap & 0xff; 5099 u64 *banks = vcpu->arch.mce_banks; 5100 5101 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5102 return -EINVAL; 5103 5104 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5105 5106 if (is_ucna(mce)) 5107 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5108 5109 /* 5110 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5111 * reporting is disabled 5112 */ 5113 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5114 vcpu->arch.mcg_ctl != ~(u64)0) 5115 return 0; 5116 /* 5117 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5118 * reporting is disabled for the bank 5119 */ 5120 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5121 return 0; 5122 if (mce->status & MCI_STATUS_UC) { 5123 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5124 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5125 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5126 return 0; 5127 } 5128 if (banks[1] & MCI_STATUS_VAL) 5129 mce->status |= MCI_STATUS_OVER; 5130 banks[2] = mce->addr; 5131 banks[3] = mce->misc; 5132 vcpu->arch.mcg_status = mce->mcg_status; 5133 banks[1] = mce->status; 5134 kvm_queue_exception(vcpu, MC_VECTOR); 5135 } else if (!(banks[1] & MCI_STATUS_VAL) 5136 || !(banks[1] & MCI_STATUS_UC)) { 5137 if (banks[1] & MCI_STATUS_VAL) 5138 mce->status |= MCI_STATUS_OVER; 5139 banks[2] = mce->addr; 5140 banks[3] = mce->misc; 5141 banks[1] = mce->status; 5142 } else 5143 banks[1] |= MCI_STATUS_OVER; 5144 return 0; 5145 } 5146 5147 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5148 struct kvm_vcpu_events *events) 5149 { 5150 struct kvm_queued_exception *ex; 5151 5152 process_nmi(vcpu); 5153 5154 #ifdef CONFIG_KVM_SMM 5155 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5156 process_smi(vcpu); 5157 #endif 5158 5159 /* 5160 * KVM's ABI only allows for one exception to be migrated. Luckily, 5161 * the only time there can be two queued exceptions is if there's a 5162 * non-exiting _injected_ exception, and a pending exiting exception. 5163 * In that case, ignore the VM-Exiting exception as it's an extension 5164 * of the injected exception. 5165 */ 5166 if (vcpu->arch.exception_vmexit.pending && 5167 !vcpu->arch.exception.pending && 5168 !vcpu->arch.exception.injected) 5169 ex = &vcpu->arch.exception_vmexit; 5170 else 5171 ex = &vcpu->arch.exception; 5172 5173 /* 5174 * In guest mode, payload delivery should be deferred if the exception 5175 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5176 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5177 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5178 * propagate the payload and so it cannot be safely deferred. Deliver 5179 * the payload if the capability hasn't been requested. 5180 */ 5181 if (!vcpu->kvm->arch.exception_payload_enabled && 5182 ex->pending && ex->has_payload) 5183 kvm_deliver_exception_payload(vcpu, ex); 5184 5185 memset(events, 0, sizeof(*events)); 5186 5187 /* 5188 * The API doesn't provide the instruction length for software 5189 * exceptions, so don't report them. As long as the guest RIP 5190 * isn't advanced, we should expect to encounter the exception 5191 * again. 5192 */ 5193 if (!kvm_exception_is_soft(ex->vector)) { 5194 events->exception.injected = ex->injected; 5195 events->exception.pending = ex->pending; 5196 /* 5197 * For ABI compatibility, deliberately conflate 5198 * pending and injected exceptions when 5199 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5200 */ 5201 if (!vcpu->kvm->arch.exception_payload_enabled) 5202 events->exception.injected |= ex->pending; 5203 } 5204 events->exception.nr = ex->vector; 5205 events->exception.has_error_code = ex->has_error_code; 5206 events->exception.error_code = ex->error_code; 5207 events->exception_has_payload = ex->has_payload; 5208 events->exception_payload = ex->payload; 5209 5210 events->interrupt.injected = 5211 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5212 events->interrupt.nr = vcpu->arch.interrupt.nr; 5213 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5214 5215 events->nmi.injected = vcpu->arch.nmi_injected; 5216 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5217 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5218 5219 /* events->sipi_vector is never valid when reporting to user space */ 5220 5221 #ifdef CONFIG_KVM_SMM 5222 events->smi.smm = is_smm(vcpu); 5223 events->smi.pending = vcpu->arch.smi_pending; 5224 events->smi.smm_inside_nmi = 5225 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5226 #endif 5227 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5228 5229 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5230 | KVM_VCPUEVENT_VALID_SHADOW 5231 | KVM_VCPUEVENT_VALID_SMM); 5232 if (vcpu->kvm->arch.exception_payload_enabled) 5233 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5234 if (vcpu->kvm->arch.triple_fault_event) { 5235 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5236 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5237 } 5238 } 5239 5240 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5241 struct kvm_vcpu_events *events) 5242 { 5243 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5244 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5245 | KVM_VCPUEVENT_VALID_SHADOW 5246 | KVM_VCPUEVENT_VALID_SMM 5247 | KVM_VCPUEVENT_VALID_PAYLOAD 5248 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5249 return -EINVAL; 5250 5251 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5252 if (!vcpu->kvm->arch.exception_payload_enabled) 5253 return -EINVAL; 5254 if (events->exception.pending) 5255 events->exception.injected = 0; 5256 else 5257 events->exception_has_payload = 0; 5258 } else { 5259 events->exception.pending = 0; 5260 events->exception_has_payload = 0; 5261 } 5262 5263 if ((events->exception.injected || events->exception.pending) && 5264 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5265 return -EINVAL; 5266 5267 /* INITs are latched while in SMM */ 5268 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5269 (events->smi.smm || events->smi.pending) && 5270 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5271 return -EINVAL; 5272 5273 process_nmi(vcpu); 5274 5275 /* 5276 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5277 * morph the exception to a VM-Exit if appropriate. Do this only for 5278 * pending exceptions, already-injected exceptions are not subject to 5279 * intercpetion. Note, userspace that conflates pending and injected 5280 * is hosed, and will incorrectly convert an injected exception into a 5281 * pending exception, which in turn may cause a spurious VM-Exit. 5282 */ 5283 vcpu->arch.exception_from_userspace = events->exception.pending; 5284 5285 vcpu->arch.exception_vmexit.pending = false; 5286 5287 vcpu->arch.exception.injected = events->exception.injected; 5288 vcpu->arch.exception.pending = events->exception.pending; 5289 vcpu->arch.exception.vector = events->exception.nr; 5290 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5291 vcpu->arch.exception.error_code = events->exception.error_code; 5292 vcpu->arch.exception.has_payload = events->exception_has_payload; 5293 vcpu->arch.exception.payload = events->exception_payload; 5294 5295 vcpu->arch.interrupt.injected = events->interrupt.injected; 5296 vcpu->arch.interrupt.nr = events->interrupt.nr; 5297 vcpu->arch.interrupt.soft = events->interrupt.soft; 5298 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5299 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5300 events->interrupt.shadow); 5301 5302 vcpu->arch.nmi_injected = events->nmi.injected; 5303 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5304 vcpu->arch.nmi_pending = 0; 5305 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5306 if (events->nmi.pending) 5307 kvm_make_request(KVM_REQ_NMI, vcpu); 5308 } 5309 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5310 5311 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5312 lapic_in_kernel(vcpu)) 5313 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5314 5315 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5316 #ifdef CONFIG_KVM_SMM 5317 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5318 kvm_leave_nested(vcpu); 5319 kvm_smm_changed(vcpu, events->smi.smm); 5320 } 5321 5322 vcpu->arch.smi_pending = events->smi.pending; 5323 5324 if (events->smi.smm) { 5325 if (events->smi.smm_inside_nmi) 5326 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5327 else 5328 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5329 } 5330 5331 #else 5332 if (events->smi.smm || events->smi.pending || 5333 events->smi.smm_inside_nmi) 5334 return -EINVAL; 5335 #endif 5336 5337 if (lapic_in_kernel(vcpu)) { 5338 if (events->smi.latched_init) 5339 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5340 else 5341 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5342 } 5343 } 5344 5345 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5346 if (!vcpu->kvm->arch.triple_fault_event) 5347 return -EINVAL; 5348 if (events->triple_fault.pending) 5349 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5350 else 5351 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5352 } 5353 5354 kvm_make_request(KVM_REQ_EVENT, vcpu); 5355 5356 return 0; 5357 } 5358 5359 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5360 struct kvm_debugregs *dbgregs) 5361 { 5362 unsigned long val; 5363 5364 memset(dbgregs, 0, sizeof(*dbgregs)); 5365 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5366 kvm_get_dr(vcpu, 6, &val); 5367 dbgregs->dr6 = val; 5368 dbgregs->dr7 = vcpu->arch.dr7; 5369 } 5370 5371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5372 struct kvm_debugregs *dbgregs) 5373 { 5374 if (dbgregs->flags) 5375 return -EINVAL; 5376 5377 if (!kvm_dr6_valid(dbgregs->dr6)) 5378 return -EINVAL; 5379 if (!kvm_dr7_valid(dbgregs->dr7)) 5380 return -EINVAL; 5381 5382 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5383 kvm_update_dr0123(vcpu); 5384 vcpu->arch.dr6 = dbgregs->dr6; 5385 vcpu->arch.dr7 = dbgregs->dr7; 5386 kvm_update_dr7(vcpu); 5387 5388 return 0; 5389 } 5390 5391 5392 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5393 u8 *state, unsigned int size) 5394 { 5395 /* 5396 * Only copy state for features that are enabled for the guest. The 5397 * state itself isn't problematic, but setting bits in the header for 5398 * features that are supported in *this* host but not exposed to the 5399 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5400 * compatible host without the features that are NOT exposed to the 5401 * guest. 5402 * 5403 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5404 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5405 * supported by the host. 5406 */ 5407 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5408 XFEATURE_MASK_FPSSE; 5409 5410 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5411 return; 5412 5413 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5414 supported_xcr0, vcpu->arch.pkru); 5415 } 5416 5417 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5418 struct kvm_xsave *guest_xsave) 5419 { 5420 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5421 sizeof(guest_xsave->region)); 5422 } 5423 5424 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5425 struct kvm_xsave *guest_xsave) 5426 { 5427 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5428 return 0; 5429 5430 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5431 guest_xsave->region, 5432 kvm_caps.supported_xcr0, 5433 &vcpu->arch.pkru); 5434 } 5435 5436 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5437 struct kvm_xcrs *guest_xcrs) 5438 { 5439 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5440 guest_xcrs->nr_xcrs = 0; 5441 return; 5442 } 5443 5444 guest_xcrs->nr_xcrs = 1; 5445 guest_xcrs->flags = 0; 5446 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5447 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5448 } 5449 5450 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5451 struct kvm_xcrs *guest_xcrs) 5452 { 5453 int i, r = 0; 5454 5455 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5456 return -EINVAL; 5457 5458 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5459 return -EINVAL; 5460 5461 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5462 /* Only support XCR0 currently */ 5463 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5464 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5465 guest_xcrs->xcrs[i].value); 5466 break; 5467 } 5468 if (r) 5469 r = -EINVAL; 5470 return r; 5471 } 5472 5473 /* 5474 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5475 * stopped by the hypervisor. This function will be called from the host only. 5476 * EINVAL is returned when the host attempts to set the flag for a guest that 5477 * does not support pv clocks. 5478 */ 5479 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5480 { 5481 if (!vcpu->arch.pv_time.active) 5482 return -EINVAL; 5483 vcpu->arch.pvclock_set_guest_stopped_request = true; 5484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5485 return 0; 5486 } 5487 5488 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5489 struct kvm_device_attr *attr) 5490 { 5491 int r; 5492 5493 switch (attr->attr) { 5494 case KVM_VCPU_TSC_OFFSET: 5495 r = 0; 5496 break; 5497 default: 5498 r = -ENXIO; 5499 } 5500 5501 return r; 5502 } 5503 5504 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5505 struct kvm_device_attr *attr) 5506 { 5507 u64 __user *uaddr = kvm_get_attr_addr(attr); 5508 int r; 5509 5510 if (IS_ERR(uaddr)) 5511 return PTR_ERR(uaddr); 5512 5513 switch (attr->attr) { 5514 case KVM_VCPU_TSC_OFFSET: 5515 r = -EFAULT; 5516 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5517 break; 5518 r = 0; 5519 break; 5520 default: 5521 r = -ENXIO; 5522 } 5523 5524 return r; 5525 } 5526 5527 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5528 struct kvm_device_attr *attr) 5529 { 5530 u64 __user *uaddr = kvm_get_attr_addr(attr); 5531 struct kvm *kvm = vcpu->kvm; 5532 int r; 5533 5534 if (IS_ERR(uaddr)) 5535 return PTR_ERR(uaddr); 5536 5537 switch (attr->attr) { 5538 case KVM_VCPU_TSC_OFFSET: { 5539 u64 offset, tsc, ns; 5540 unsigned long flags; 5541 bool matched; 5542 5543 r = -EFAULT; 5544 if (get_user(offset, uaddr)) 5545 break; 5546 5547 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5548 5549 matched = (vcpu->arch.virtual_tsc_khz && 5550 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5551 kvm->arch.last_tsc_offset == offset); 5552 5553 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5554 ns = get_kvmclock_base_ns(); 5555 5556 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5557 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5558 5559 r = 0; 5560 break; 5561 } 5562 default: 5563 r = -ENXIO; 5564 } 5565 5566 return r; 5567 } 5568 5569 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5570 unsigned int ioctl, 5571 void __user *argp) 5572 { 5573 struct kvm_device_attr attr; 5574 int r; 5575 5576 if (copy_from_user(&attr, argp, sizeof(attr))) 5577 return -EFAULT; 5578 5579 if (attr.group != KVM_VCPU_TSC_CTRL) 5580 return -ENXIO; 5581 5582 switch (ioctl) { 5583 case KVM_HAS_DEVICE_ATTR: 5584 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5585 break; 5586 case KVM_GET_DEVICE_ATTR: 5587 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5588 break; 5589 case KVM_SET_DEVICE_ATTR: 5590 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5591 break; 5592 } 5593 5594 return r; 5595 } 5596 5597 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5598 struct kvm_enable_cap *cap) 5599 { 5600 int r; 5601 uint16_t vmcs_version; 5602 void __user *user_ptr; 5603 5604 if (cap->flags) 5605 return -EINVAL; 5606 5607 switch (cap->cap) { 5608 case KVM_CAP_HYPERV_SYNIC2: 5609 if (cap->args[0]) 5610 return -EINVAL; 5611 fallthrough; 5612 5613 case KVM_CAP_HYPERV_SYNIC: 5614 if (!irqchip_in_kernel(vcpu->kvm)) 5615 return -EINVAL; 5616 return kvm_hv_activate_synic(vcpu, cap->cap == 5617 KVM_CAP_HYPERV_SYNIC2); 5618 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5619 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5620 return -ENOTTY; 5621 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5622 if (!r) { 5623 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5624 if (copy_to_user(user_ptr, &vmcs_version, 5625 sizeof(vmcs_version))) 5626 r = -EFAULT; 5627 } 5628 return r; 5629 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5630 if (!kvm_x86_ops.enable_l2_tlb_flush) 5631 return -ENOTTY; 5632 5633 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5634 5635 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5636 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5637 5638 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5639 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5640 if (vcpu->arch.pv_cpuid.enforce) 5641 kvm_update_pv_runtime(vcpu); 5642 5643 return 0; 5644 default: 5645 return -EINVAL; 5646 } 5647 } 5648 5649 long kvm_arch_vcpu_ioctl(struct file *filp, 5650 unsigned int ioctl, unsigned long arg) 5651 { 5652 struct kvm_vcpu *vcpu = filp->private_data; 5653 void __user *argp = (void __user *)arg; 5654 int r; 5655 union { 5656 struct kvm_sregs2 *sregs2; 5657 struct kvm_lapic_state *lapic; 5658 struct kvm_xsave *xsave; 5659 struct kvm_xcrs *xcrs; 5660 void *buffer; 5661 } u; 5662 5663 vcpu_load(vcpu); 5664 5665 u.buffer = NULL; 5666 switch (ioctl) { 5667 case KVM_GET_LAPIC: { 5668 r = -EINVAL; 5669 if (!lapic_in_kernel(vcpu)) 5670 goto out; 5671 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5672 GFP_KERNEL_ACCOUNT); 5673 5674 r = -ENOMEM; 5675 if (!u.lapic) 5676 goto out; 5677 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5678 if (r) 5679 goto out; 5680 r = -EFAULT; 5681 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5682 goto out; 5683 r = 0; 5684 break; 5685 } 5686 case KVM_SET_LAPIC: { 5687 r = -EINVAL; 5688 if (!lapic_in_kernel(vcpu)) 5689 goto out; 5690 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5691 if (IS_ERR(u.lapic)) { 5692 r = PTR_ERR(u.lapic); 5693 goto out_nofree; 5694 } 5695 5696 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5697 break; 5698 } 5699 case KVM_INTERRUPT: { 5700 struct kvm_interrupt irq; 5701 5702 r = -EFAULT; 5703 if (copy_from_user(&irq, argp, sizeof(irq))) 5704 goto out; 5705 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5706 break; 5707 } 5708 case KVM_NMI: { 5709 r = kvm_vcpu_ioctl_nmi(vcpu); 5710 break; 5711 } 5712 case KVM_SMI: { 5713 r = kvm_inject_smi(vcpu); 5714 break; 5715 } 5716 case KVM_SET_CPUID: { 5717 struct kvm_cpuid __user *cpuid_arg = argp; 5718 struct kvm_cpuid cpuid; 5719 5720 r = -EFAULT; 5721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5722 goto out; 5723 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5724 break; 5725 } 5726 case KVM_SET_CPUID2: { 5727 struct kvm_cpuid2 __user *cpuid_arg = argp; 5728 struct kvm_cpuid2 cpuid; 5729 5730 r = -EFAULT; 5731 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5732 goto out; 5733 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5734 cpuid_arg->entries); 5735 break; 5736 } 5737 case KVM_GET_CPUID2: { 5738 struct kvm_cpuid2 __user *cpuid_arg = argp; 5739 struct kvm_cpuid2 cpuid; 5740 5741 r = -EFAULT; 5742 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5743 goto out; 5744 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5745 cpuid_arg->entries); 5746 if (r) 5747 goto out; 5748 r = -EFAULT; 5749 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5750 goto out; 5751 r = 0; 5752 break; 5753 } 5754 case KVM_GET_MSRS: { 5755 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5756 r = msr_io(vcpu, argp, do_get_msr, 1); 5757 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5758 break; 5759 } 5760 case KVM_SET_MSRS: { 5761 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5762 r = msr_io(vcpu, argp, do_set_msr, 0); 5763 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5764 break; 5765 } 5766 case KVM_TPR_ACCESS_REPORTING: { 5767 struct kvm_tpr_access_ctl tac; 5768 5769 r = -EFAULT; 5770 if (copy_from_user(&tac, argp, sizeof(tac))) 5771 goto out; 5772 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5773 if (r) 5774 goto out; 5775 r = -EFAULT; 5776 if (copy_to_user(argp, &tac, sizeof(tac))) 5777 goto out; 5778 r = 0; 5779 break; 5780 }; 5781 case KVM_SET_VAPIC_ADDR: { 5782 struct kvm_vapic_addr va; 5783 int idx; 5784 5785 r = -EINVAL; 5786 if (!lapic_in_kernel(vcpu)) 5787 goto out; 5788 r = -EFAULT; 5789 if (copy_from_user(&va, argp, sizeof(va))) 5790 goto out; 5791 idx = srcu_read_lock(&vcpu->kvm->srcu); 5792 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5793 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5794 break; 5795 } 5796 case KVM_X86_SETUP_MCE: { 5797 u64 mcg_cap; 5798 5799 r = -EFAULT; 5800 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5801 goto out; 5802 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5803 break; 5804 } 5805 case KVM_X86_SET_MCE: { 5806 struct kvm_x86_mce mce; 5807 5808 r = -EFAULT; 5809 if (copy_from_user(&mce, argp, sizeof(mce))) 5810 goto out; 5811 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5812 break; 5813 } 5814 case KVM_GET_VCPU_EVENTS: { 5815 struct kvm_vcpu_events events; 5816 5817 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5818 5819 r = -EFAULT; 5820 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5821 break; 5822 r = 0; 5823 break; 5824 } 5825 case KVM_SET_VCPU_EVENTS: { 5826 struct kvm_vcpu_events events; 5827 5828 r = -EFAULT; 5829 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5830 break; 5831 5832 kvm_vcpu_srcu_read_lock(vcpu); 5833 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5834 kvm_vcpu_srcu_read_unlock(vcpu); 5835 break; 5836 } 5837 case KVM_GET_DEBUGREGS: { 5838 struct kvm_debugregs dbgregs; 5839 5840 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5841 5842 r = -EFAULT; 5843 if (copy_to_user(argp, &dbgregs, 5844 sizeof(struct kvm_debugregs))) 5845 break; 5846 r = 0; 5847 break; 5848 } 5849 case KVM_SET_DEBUGREGS: { 5850 struct kvm_debugregs dbgregs; 5851 5852 r = -EFAULT; 5853 if (copy_from_user(&dbgregs, argp, 5854 sizeof(struct kvm_debugregs))) 5855 break; 5856 5857 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5858 break; 5859 } 5860 case KVM_GET_XSAVE: { 5861 r = -EINVAL; 5862 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5863 break; 5864 5865 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5866 r = -ENOMEM; 5867 if (!u.xsave) 5868 break; 5869 5870 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5871 5872 r = -EFAULT; 5873 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5874 break; 5875 r = 0; 5876 break; 5877 } 5878 case KVM_SET_XSAVE: { 5879 int size = vcpu->arch.guest_fpu.uabi_size; 5880 5881 u.xsave = memdup_user(argp, size); 5882 if (IS_ERR(u.xsave)) { 5883 r = PTR_ERR(u.xsave); 5884 goto out_nofree; 5885 } 5886 5887 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5888 break; 5889 } 5890 5891 case KVM_GET_XSAVE2: { 5892 int size = vcpu->arch.guest_fpu.uabi_size; 5893 5894 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5895 r = -ENOMEM; 5896 if (!u.xsave) 5897 break; 5898 5899 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5900 5901 r = -EFAULT; 5902 if (copy_to_user(argp, u.xsave, size)) 5903 break; 5904 5905 r = 0; 5906 break; 5907 } 5908 5909 case KVM_GET_XCRS: { 5910 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5911 r = -ENOMEM; 5912 if (!u.xcrs) 5913 break; 5914 5915 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5916 5917 r = -EFAULT; 5918 if (copy_to_user(argp, u.xcrs, 5919 sizeof(struct kvm_xcrs))) 5920 break; 5921 r = 0; 5922 break; 5923 } 5924 case KVM_SET_XCRS: { 5925 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5926 if (IS_ERR(u.xcrs)) { 5927 r = PTR_ERR(u.xcrs); 5928 goto out_nofree; 5929 } 5930 5931 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5932 break; 5933 } 5934 case KVM_SET_TSC_KHZ: { 5935 u32 user_tsc_khz; 5936 5937 r = -EINVAL; 5938 user_tsc_khz = (u32)arg; 5939 5940 if (kvm_caps.has_tsc_control && 5941 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5942 goto out; 5943 5944 if (user_tsc_khz == 0) 5945 user_tsc_khz = tsc_khz; 5946 5947 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5948 r = 0; 5949 5950 goto out; 5951 } 5952 case KVM_GET_TSC_KHZ: { 5953 r = vcpu->arch.virtual_tsc_khz; 5954 goto out; 5955 } 5956 case KVM_KVMCLOCK_CTRL: { 5957 r = kvm_set_guest_paused(vcpu); 5958 goto out; 5959 } 5960 case KVM_ENABLE_CAP: { 5961 struct kvm_enable_cap cap; 5962 5963 r = -EFAULT; 5964 if (copy_from_user(&cap, argp, sizeof(cap))) 5965 goto out; 5966 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5967 break; 5968 } 5969 case KVM_GET_NESTED_STATE: { 5970 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5971 u32 user_data_size; 5972 5973 r = -EINVAL; 5974 if (!kvm_x86_ops.nested_ops->get_state) 5975 break; 5976 5977 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5978 r = -EFAULT; 5979 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5980 break; 5981 5982 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5983 user_data_size); 5984 if (r < 0) 5985 break; 5986 5987 if (r > user_data_size) { 5988 if (put_user(r, &user_kvm_nested_state->size)) 5989 r = -EFAULT; 5990 else 5991 r = -E2BIG; 5992 break; 5993 } 5994 5995 r = 0; 5996 break; 5997 } 5998 case KVM_SET_NESTED_STATE: { 5999 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6000 struct kvm_nested_state kvm_state; 6001 int idx; 6002 6003 r = -EINVAL; 6004 if (!kvm_x86_ops.nested_ops->set_state) 6005 break; 6006 6007 r = -EFAULT; 6008 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6009 break; 6010 6011 r = -EINVAL; 6012 if (kvm_state.size < sizeof(kvm_state)) 6013 break; 6014 6015 if (kvm_state.flags & 6016 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6017 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6018 | KVM_STATE_NESTED_GIF_SET)) 6019 break; 6020 6021 /* nested_run_pending implies guest_mode. */ 6022 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6023 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6024 break; 6025 6026 idx = srcu_read_lock(&vcpu->kvm->srcu); 6027 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6028 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6029 break; 6030 } 6031 case KVM_GET_SUPPORTED_HV_CPUID: 6032 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6033 break; 6034 #ifdef CONFIG_KVM_XEN 6035 case KVM_XEN_VCPU_GET_ATTR: { 6036 struct kvm_xen_vcpu_attr xva; 6037 6038 r = -EFAULT; 6039 if (copy_from_user(&xva, argp, sizeof(xva))) 6040 goto out; 6041 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6042 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6043 r = -EFAULT; 6044 break; 6045 } 6046 case KVM_XEN_VCPU_SET_ATTR: { 6047 struct kvm_xen_vcpu_attr xva; 6048 6049 r = -EFAULT; 6050 if (copy_from_user(&xva, argp, sizeof(xva))) 6051 goto out; 6052 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6053 break; 6054 } 6055 #endif 6056 case KVM_GET_SREGS2: { 6057 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6058 r = -ENOMEM; 6059 if (!u.sregs2) 6060 goto out; 6061 __get_sregs2(vcpu, u.sregs2); 6062 r = -EFAULT; 6063 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6064 goto out; 6065 r = 0; 6066 break; 6067 } 6068 case KVM_SET_SREGS2: { 6069 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6070 if (IS_ERR(u.sregs2)) { 6071 r = PTR_ERR(u.sregs2); 6072 u.sregs2 = NULL; 6073 goto out; 6074 } 6075 r = __set_sregs2(vcpu, u.sregs2); 6076 break; 6077 } 6078 case KVM_HAS_DEVICE_ATTR: 6079 case KVM_GET_DEVICE_ATTR: 6080 case KVM_SET_DEVICE_ATTR: 6081 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6082 break; 6083 default: 6084 r = -EINVAL; 6085 } 6086 out: 6087 kfree(u.buffer); 6088 out_nofree: 6089 vcpu_put(vcpu); 6090 return r; 6091 } 6092 6093 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6094 { 6095 return VM_FAULT_SIGBUS; 6096 } 6097 6098 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6099 { 6100 int ret; 6101 6102 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6103 return -EINVAL; 6104 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6105 return ret; 6106 } 6107 6108 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6109 u64 ident_addr) 6110 { 6111 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6112 } 6113 6114 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6115 unsigned long kvm_nr_mmu_pages) 6116 { 6117 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6118 return -EINVAL; 6119 6120 mutex_lock(&kvm->slots_lock); 6121 6122 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6123 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6124 6125 mutex_unlock(&kvm->slots_lock); 6126 return 0; 6127 } 6128 6129 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6130 { 6131 struct kvm_pic *pic = kvm->arch.vpic; 6132 int r; 6133 6134 r = 0; 6135 switch (chip->chip_id) { 6136 case KVM_IRQCHIP_PIC_MASTER: 6137 memcpy(&chip->chip.pic, &pic->pics[0], 6138 sizeof(struct kvm_pic_state)); 6139 break; 6140 case KVM_IRQCHIP_PIC_SLAVE: 6141 memcpy(&chip->chip.pic, &pic->pics[1], 6142 sizeof(struct kvm_pic_state)); 6143 break; 6144 case KVM_IRQCHIP_IOAPIC: 6145 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6146 break; 6147 default: 6148 r = -EINVAL; 6149 break; 6150 } 6151 return r; 6152 } 6153 6154 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6155 { 6156 struct kvm_pic *pic = kvm->arch.vpic; 6157 int r; 6158 6159 r = 0; 6160 switch (chip->chip_id) { 6161 case KVM_IRQCHIP_PIC_MASTER: 6162 spin_lock(&pic->lock); 6163 memcpy(&pic->pics[0], &chip->chip.pic, 6164 sizeof(struct kvm_pic_state)); 6165 spin_unlock(&pic->lock); 6166 break; 6167 case KVM_IRQCHIP_PIC_SLAVE: 6168 spin_lock(&pic->lock); 6169 memcpy(&pic->pics[1], &chip->chip.pic, 6170 sizeof(struct kvm_pic_state)); 6171 spin_unlock(&pic->lock); 6172 break; 6173 case KVM_IRQCHIP_IOAPIC: 6174 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6175 break; 6176 default: 6177 r = -EINVAL; 6178 break; 6179 } 6180 kvm_pic_update_irq(pic); 6181 return r; 6182 } 6183 6184 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6185 { 6186 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6187 6188 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6189 6190 mutex_lock(&kps->lock); 6191 memcpy(ps, &kps->channels, sizeof(*ps)); 6192 mutex_unlock(&kps->lock); 6193 return 0; 6194 } 6195 6196 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6197 { 6198 int i; 6199 struct kvm_pit *pit = kvm->arch.vpit; 6200 6201 mutex_lock(&pit->pit_state.lock); 6202 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6203 for (i = 0; i < 3; i++) 6204 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6205 mutex_unlock(&pit->pit_state.lock); 6206 return 0; 6207 } 6208 6209 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6210 { 6211 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6212 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6213 sizeof(ps->channels)); 6214 ps->flags = kvm->arch.vpit->pit_state.flags; 6215 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6216 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6217 return 0; 6218 } 6219 6220 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6221 { 6222 int start = 0; 6223 int i; 6224 u32 prev_legacy, cur_legacy; 6225 struct kvm_pit *pit = kvm->arch.vpit; 6226 6227 mutex_lock(&pit->pit_state.lock); 6228 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6229 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6230 if (!prev_legacy && cur_legacy) 6231 start = 1; 6232 memcpy(&pit->pit_state.channels, &ps->channels, 6233 sizeof(pit->pit_state.channels)); 6234 pit->pit_state.flags = ps->flags; 6235 for (i = 0; i < 3; i++) 6236 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6237 start && i == 0); 6238 mutex_unlock(&pit->pit_state.lock); 6239 return 0; 6240 } 6241 6242 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6243 struct kvm_reinject_control *control) 6244 { 6245 struct kvm_pit *pit = kvm->arch.vpit; 6246 6247 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6248 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6249 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6250 */ 6251 mutex_lock(&pit->pit_state.lock); 6252 kvm_pit_set_reinject(pit, control->pit_reinject); 6253 mutex_unlock(&pit->pit_state.lock); 6254 6255 return 0; 6256 } 6257 6258 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6259 { 6260 6261 /* 6262 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6263 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6264 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6265 * VM-Exit. 6266 */ 6267 struct kvm_vcpu *vcpu; 6268 unsigned long i; 6269 6270 kvm_for_each_vcpu(i, vcpu, kvm) 6271 kvm_vcpu_kick(vcpu); 6272 } 6273 6274 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6275 bool line_status) 6276 { 6277 if (!irqchip_in_kernel(kvm)) 6278 return -ENXIO; 6279 6280 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6281 irq_event->irq, irq_event->level, 6282 line_status); 6283 return 0; 6284 } 6285 6286 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6287 struct kvm_enable_cap *cap) 6288 { 6289 int r; 6290 6291 if (cap->flags) 6292 return -EINVAL; 6293 6294 switch (cap->cap) { 6295 case KVM_CAP_DISABLE_QUIRKS2: 6296 r = -EINVAL; 6297 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6298 break; 6299 fallthrough; 6300 case KVM_CAP_DISABLE_QUIRKS: 6301 kvm->arch.disabled_quirks = cap->args[0]; 6302 r = 0; 6303 break; 6304 case KVM_CAP_SPLIT_IRQCHIP: { 6305 mutex_lock(&kvm->lock); 6306 r = -EINVAL; 6307 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6308 goto split_irqchip_unlock; 6309 r = -EEXIST; 6310 if (irqchip_in_kernel(kvm)) 6311 goto split_irqchip_unlock; 6312 if (kvm->created_vcpus) 6313 goto split_irqchip_unlock; 6314 r = kvm_setup_empty_irq_routing(kvm); 6315 if (r) 6316 goto split_irqchip_unlock; 6317 /* Pairs with irqchip_in_kernel. */ 6318 smp_wmb(); 6319 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6320 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6321 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6322 r = 0; 6323 split_irqchip_unlock: 6324 mutex_unlock(&kvm->lock); 6325 break; 6326 } 6327 case KVM_CAP_X2APIC_API: 6328 r = -EINVAL; 6329 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6330 break; 6331 6332 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6333 kvm->arch.x2apic_format = true; 6334 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6335 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6336 6337 r = 0; 6338 break; 6339 case KVM_CAP_X86_DISABLE_EXITS: 6340 r = -EINVAL; 6341 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6342 break; 6343 6344 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6345 kvm->arch.pause_in_guest = true; 6346 6347 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6348 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6349 6350 if (!mitigate_smt_rsb) { 6351 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6352 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6353 pr_warn_once(SMT_RSB_MSG); 6354 6355 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6356 kvm_can_mwait_in_guest()) 6357 kvm->arch.mwait_in_guest = true; 6358 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6359 kvm->arch.hlt_in_guest = true; 6360 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6361 kvm->arch.cstate_in_guest = true; 6362 } 6363 6364 r = 0; 6365 break; 6366 case KVM_CAP_MSR_PLATFORM_INFO: 6367 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6368 r = 0; 6369 break; 6370 case KVM_CAP_EXCEPTION_PAYLOAD: 6371 kvm->arch.exception_payload_enabled = cap->args[0]; 6372 r = 0; 6373 break; 6374 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6375 kvm->arch.triple_fault_event = cap->args[0]; 6376 r = 0; 6377 break; 6378 case KVM_CAP_X86_USER_SPACE_MSR: 6379 r = -EINVAL; 6380 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6381 break; 6382 kvm->arch.user_space_msr_mask = cap->args[0]; 6383 r = 0; 6384 break; 6385 case KVM_CAP_X86_BUS_LOCK_EXIT: 6386 r = -EINVAL; 6387 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6388 break; 6389 6390 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6391 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6392 break; 6393 6394 if (kvm_caps.has_bus_lock_exit && 6395 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6396 kvm->arch.bus_lock_detection_enabled = true; 6397 r = 0; 6398 break; 6399 #ifdef CONFIG_X86_SGX_KVM 6400 case KVM_CAP_SGX_ATTRIBUTE: { 6401 unsigned long allowed_attributes = 0; 6402 6403 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6404 if (r) 6405 break; 6406 6407 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6408 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6409 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6410 kvm->arch.sgx_provisioning_allowed = true; 6411 else 6412 r = -EINVAL; 6413 break; 6414 } 6415 #endif 6416 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6417 r = -EINVAL; 6418 if (!kvm_x86_ops.vm_copy_enc_context_from) 6419 break; 6420 6421 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6422 break; 6423 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6424 r = -EINVAL; 6425 if (!kvm_x86_ops.vm_move_enc_context_from) 6426 break; 6427 6428 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6429 break; 6430 case KVM_CAP_EXIT_HYPERCALL: 6431 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6432 r = -EINVAL; 6433 break; 6434 } 6435 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6436 r = 0; 6437 break; 6438 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6439 r = -EINVAL; 6440 if (cap->args[0] & ~1) 6441 break; 6442 kvm->arch.exit_on_emulation_error = cap->args[0]; 6443 r = 0; 6444 break; 6445 case KVM_CAP_PMU_CAPABILITY: 6446 r = -EINVAL; 6447 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6448 break; 6449 6450 mutex_lock(&kvm->lock); 6451 if (!kvm->created_vcpus) { 6452 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6453 r = 0; 6454 } 6455 mutex_unlock(&kvm->lock); 6456 break; 6457 case KVM_CAP_MAX_VCPU_ID: 6458 r = -EINVAL; 6459 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6460 break; 6461 6462 mutex_lock(&kvm->lock); 6463 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6464 r = 0; 6465 } else if (!kvm->arch.max_vcpu_ids) { 6466 kvm->arch.max_vcpu_ids = cap->args[0]; 6467 r = 0; 6468 } 6469 mutex_unlock(&kvm->lock); 6470 break; 6471 case KVM_CAP_X86_NOTIFY_VMEXIT: 6472 r = -EINVAL; 6473 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6474 break; 6475 if (!kvm_caps.has_notify_vmexit) 6476 break; 6477 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6478 break; 6479 mutex_lock(&kvm->lock); 6480 if (!kvm->created_vcpus) { 6481 kvm->arch.notify_window = cap->args[0] >> 32; 6482 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6483 r = 0; 6484 } 6485 mutex_unlock(&kvm->lock); 6486 break; 6487 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6488 r = -EINVAL; 6489 6490 /* 6491 * Since the risk of disabling NX hugepages is a guest crashing 6492 * the system, ensure the userspace process has permission to 6493 * reboot the system. 6494 * 6495 * Note that unlike the reboot() syscall, the process must have 6496 * this capability in the root namespace because exposing 6497 * /dev/kvm into a container does not limit the scope of the 6498 * iTLB multihit bug to that container. In other words, 6499 * this must use capable(), not ns_capable(). 6500 */ 6501 if (!capable(CAP_SYS_BOOT)) { 6502 r = -EPERM; 6503 break; 6504 } 6505 6506 if (cap->args[0]) 6507 break; 6508 6509 mutex_lock(&kvm->lock); 6510 if (!kvm->created_vcpus) { 6511 kvm->arch.disable_nx_huge_pages = true; 6512 r = 0; 6513 } 6514 mutex_unlock(&kvm->lock); 6515 break; 6516 default: 6517 r = -EINVAL; 6518 break; 6519 } 6520 return r; 6521 } 6522 6523 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6524 { 6525 struct kvm_x86_msr_filter *msr_filter; 6526 6527 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6528 if (!msr_filter) 6529 return NULL; 6530 6531 msr_filter->default_allow = default_allow; 6532 return msr_filter; 6533 } 6534 6535 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6536 { 6537 u32 i; 6538 6539 if (!msr_filter) 6540 return; 6541 6542 for (i = 0; i < msr_filter->count; i++) 6543 kfree(msr_filter->ranges[i].bitmap); 6544 6545 kfree(msr_filter); 6546 } 6547 6548 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6549 struct kvm_msr_filter_range *user_range) 6550 { 6551 unsigned long *bitmap; 6552 size_t bitmap_size; 6553 6554 if (!user_range->nmsrs) 6555 return 0; 6556 6557 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6558 return -EINVAL; 6559 6560 if (!user_range->flags) 6561 return -EINVAL; 6562 6563 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6564 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6565 return -EINVAL; 6566 6567 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6568 if (IS_ERR(bitmap)) 6569 return PTR_ERR(bitmap); 6570 6571 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6572 .flags = user_range->flags, 6573 .base = user_range->base, 6574 .nmsrs = user_range->nmsrs, 6575 .bitmap = bitmap, 6576 }; 6577 6578 msr_filter->count++; 6579 return 0; 6580 } 6581 6582 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6583 struct kvm_msr_filter *filter) 6584 { 6585 struct kvm_x86_msr_filter *new_filter, *old_filter; 6586 bool default_allow; 6587 bool empty = true; 6588 int r; 6589 u32 i; 6590 6591 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6592 return -EINVAL; 6593 6594 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6595 empty &= !filter->ranges[i].nmsrs; 6596 6597 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6598 if (empty && !default_allow) 6599 return -EINVAL; 6600 6601 new_filter = kvm_alloc_msr_filter(default_allow); 6602 if (!new_filter) 6603 return -ENOMEM; 6604 6605 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6606 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6607 if (r) { 6608 kvm_free_msr_filter(new_filter); 6609 return r; 6610 } 6611 } 6612 6613 mutex_lock(&kvm->lock); 6614 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6615 mutex_is_locked(&kvm->lock)); 6616 mutex_unlock(&kvm->lock); 6617 synchronize_srcu(&kvm->srcu); 6618 6619 kvm_free_msr_filter(old_filter); 6620 6621 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6622 6623 return 0; 6624 } 6625 6626 #ifdef CONFIG_KVM_COMPAT 6627 /* for KVM_X86_SET_MSR_FILTER */ 6628 struct kvm_msr_filter_range_compat { 6629 __u32 flags; 6630 __u32 nmsrs; 6631 __u32 base; 6632 __u32 bitmap; 6633 }; 6634 6635 struct kvm_msr_filter_compat { 6636 __u32 flags; 6637 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6638 }; 6639 6640 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6641 6642 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6643 unsigned long arg) 6644 { 6645 void __user *argp = (void __user *)arg; 6646 struct kvm *kvm = filp->private_data; 6647 long r = -ENOTTY; 6648 6649 switch (ioctl) { 6650 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6651 struct kvm_msr_filter __user *user_msr_filter = argp; 6652 struct kvm_msr_filter_compat filter_compat; 6653 struct kvm_msr_filter filter; 6654 int i; 6655 6656 if (copy_from_user(&filter_compat, user_msr_filter, 6657 sizeof(filter_compat))) 6658 return -EFAULT; 6659 6660 filter.flags = filter_compat.flags; 6661 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6662 struct kvm_msr_filter_range_compat *cr; 6663 6664 cr = &filter_compat.ranges[i]; 6665 filter.ranges[i] = (struct kvm_msr_filter_range) { 6666 .flags = cr->flags, 6667 .nmsrs = cr->nmsrs, 6668 .base = cr->base, 6669 .bitmap = (__u8 *)(ulong)cr->bitmap, 6670 }; 6671 } 6672 6673 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6674 break; 6675 } 6676 } 6677 6678 return r; 6679 } 6680 #endif 6681 6682 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6683 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6684 { 6685 struct kvm_vcpu *vcpu; 6686 unsigned long i; 6687 int ret = 0; 6688 6689 mutex_lock(&kvm->lock); 6690 kvm_for_each_vcpu(i, vcpu, kvm) { 6691 if (!vcpu->arch.pv_time.active) 6692 continue; 6693 6694 ret = kvm_set_guest_paused(vcpu); 6695 if (ret) { 6696 kvm_err("Failed to pause guest VCPU%d: %d\n", 6697 vcpu->vcpu_id, ret); 6698 break; 6699 } 6700 } 6701 mutex_unlock(&kvm->lock); 6702 6703 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6704 } 6705 6706 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6707 { 6708 switch (state) { 6709 case PM_HIBERNATION_PREPARE: 6710 case PM_SUSPEND_PREPARE: 6711 return kvm_arch_suspend_notifier(kvm); 6712 } 6713 6714 return NOTIFY_DONE; 6715 } 6716 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6717 6718 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6719 { 6720 struct kvm_clock_data data = { 0 }; 6721 6722 get_kvmclock(kvm, &data); 6723 if (copy_to_user(argp, &data, sizeof(data))) 6724 return -EFAULT; 6725 6726 return 0; 6727 } 6728 6729 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6730 { 6731 struct kvm_arch *ka = &kvm->arch; 6732 struct kvm_clock_data data; 6733 u64 now_raw_ns; 6734 6735 if (copy_from_user(&data, argp, sizeof(data))) 6736 return -EFAULT; 6737 6738 /* 6739 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6740 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6741 */ 6742 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6743 return -EINVAL; 6744 6745 kvm_hv_request_tsc_page_update(kvm); 6746 kvm_start_pvclock_update(kvm); 6747 pvclock_update_vm_gtod_copy(kvm); 6748 6749 /* 6750 * This pairs with kvm_guest_time_update(): when masterclock is 6751 * in use, we use master_kernel_ns + kvmclock_offset to set 6752 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6753 * is slightly ahead) here we risk going negative on unsigned 6754 * 'system_time' when 'data.clock' is very small. 6755 */ 6756 if (data.flags & KVM_CLOCK_REALTIME) { 6757 u64 now_real_ns = ktime_get_real_ns(); 6758 6759 /* 6760 * Avoid stepping the kvmclock backwards. 6761 */ 6762 if (now_real_ns > data.realtime) 6763 data.clock += now_real_ns - data.realtime; 6764 } 6765 6766 if (ka->use_master_clock) 6767 now_raw_ns = ka->master_kernel_ns; 6768 else 6769 now_raw_ns = get_kvmclock_base_ns(); 6770 ka->kvmclock_offset = data.clock - now_raw_ns; 6771 kvm_end_pvclock_update(kvm); 6772 return 0; 6773 } 6774 6775 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6776 { 6777 struct kvm *kvm = filp->private_data; 6778 void __user *argp = (void __user *)arg; 6779 int r = -ENOTTY; 6780 /* 6781 * This union makes it completely explicit to gcc-3.x 6782 * that these two variables' stack usage should be 6783 * combined, not added together. 6784 */ 6785 union { 6786 struct kvm_pit_state ps; 6787 struct kvm_pit_state2 ps2; 6788 struct kvm_pit_config pit_config; 6789 } u; 6790 6791 switch (ioctl) { 6792 case KVM_SET_TSS_ADDR: 6793 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6794 break; 6795 case KVM_SET_IDENTITY_MAP_ADDR: { 6796 u64 ident_addr; 6797 6798 mutex_lock(&kvm->lock); 6799 r = -EINVAL; 6800 if (kvm->created_vcpus) 6801 goto set_identity_unlock; 6802 r = -EFAULT; 6803 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6804 goto set_identity_unlock; 6805 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6806 set_identity_unlock: 6807 mutex_unlock(&kvm->lock); 6808 break; 6809 } 6810 case KVM_SET_NR_MMU_PAGES: 6811 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6812 break; 6813 case KVM_CREATE_IRQCHIP: { 6814 mutex_lock(&kvm->lock); 6815 6816 r = -EEXIST; 6817 if (irqchip_in_kernel(kvm)) 6818 goto create_irqchip_unlock; 6819 6820 r = -EINVAL; 6821 if (kvm->created_vcpus) 6822 goto create_irqchip_unlock; 6823 6824 r = kvm_pic_init(kvm); 6825 if (r) 6826 goto create_irqchip_unlock; 6827 6828 r = kvm_ioapic_init(kvm); 6829 if (r) { 6830 kvm_pic_destroy(kvm); 6831 goto create_irqchip_unlock; 6832 } 6833 6834 r = kvm_setup_default_irq_routing(kvm); 6835 if (r) { 6836 kvm_ioapic_destroy(kvm); 6837 kvm_pic_destroy(kvm); 6838 goto create_irqchip_unlock; 6839 } 6840 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6841 smp_wmb(); 6842 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6843 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6844 create_irqchip_unlock: 6845 mutex_unlock(&kvm->lock); 6846 break; 6847 } 6848 case KVM_CREATE_PIT: 6849 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6850 goto create_pit; 6851 case KVM_CREATE_PIT2: 6852 r = -EFAULT; 6853 if (copy_from_user(&u.pit_config, argp, 6854 sizeof(struct kvm_pit_config))) 6855 goto out; 6856 create_pit: 6857 mutex_lock(&kvm->lock); 6858 r = -EEXIST; 6859 if (kvm->arch.vpit) 6860 goto create_pit_unlock; 6861 r = -ENOMEM; 6862 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6863 if (kvm->arch.vpit) 6864 r = 0; 6865 create_pit_unlock: 6866 mutex_unlock(&kvm->lock); 6867 break; 6868 case KVM_GET_IRQCHIP: { 6869 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6870 struct kvm_irqchip *chip; 6871 6872 chip = memdup_user(argp, sizeof(*chip)); 6873 if (IS_ERR(chip)) { 6874 r = PTR_ERR(chip); 6875 goto out; 6876 } 6877 6878 r = -ENXIO; 6879 if (!irqchip_kernel(kvm)) 6880 goto get_irqchip_out; 6881 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6882 if (r) 6883 goto get_irqchip_out; 6884 r = -EFAULT; 6885 if (copy_to_user(argp, chip, sizeof(*chip))) 6886 goto get_irqchip_out; 6887 r = 0; 6888 get_irqchip_out: 6889 kfree(chip); 6890 break; 6891 } 6892 case KVM_SET_IRQCHIP: { 6893 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6894 struct kvm_irqchip *chip; 6895 6896 chip = memdup_user(argp, sizeof(*chip)); 6897 if (IS_ERR(chip)) { 6898 r = PTR_ERR(chip); 6899 goto out; 6900 } 6901 6902 r = -ENXIO; 6903 if (!irqchip_kernel(kvm)) 6904 goto set_irqchip_out; 6905 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6906 set_irqchip_out: 6907 kfree(chip); 6908 break; 6909 } 6910 case KVM_GET_PIT: { 6911 r = -EFAULT; 6912 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6913 goto out; 6914 r = -ENXIO; 6915 if (!kvm->arch.vpit) 6916 goto out; 6917 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6918 if (r) 6919 goto out; 6920 r = -EFAULT; 6921 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6922 goto out; 6923 r = 0; 6924 break; 6925 } 6926 case KVM_SET_PIT: { 6927 r = -EFAULT; 6928 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6929 goto out; 6930 mutex_lock(&kvm->lock); 6931 r = -ENXIO; 6932 if (!kvm->arch.vpit) 6933 goto set_pit_out; 6934 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6935 set_pit_out: 6936 mutex_unlock(&kvm->lock); 6937 break; 6938 } 6939 case KVM_GET_PIT2: { 6940 r = -ENXIO; 6941 if (!kvm->arch.vpit) 6942 goto out; 6943 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6944 if (r) 6945 goto out; 6946 r = -EFAULT; 6947 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6948 goto out; 6949 r = 0; 6950 break; 6951 } 6952 case KVM_SET_PIT2: { 6953 r = -EFAULT; 6954 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6955 goto out; 6956 mutex_lock(&kvm->lock); 6957 r = -ENXIO; 6958 if (!kvm->arch.vpit) 6959 goto set_pit2_out; 6960 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6961 set_pit2_out: 6962 mutex_unlock(&kvm->lock); 6963 break; 6964 } 6965 case KVM_REINJECT_CONTROL: { 6966 struct kvm_reinject_control control; 6967 r = -EFAULT; 6968 if (copy_from_user(&control, argp, sizeof(control))) 6969 goto out; 6970 r = -ENXIO; 6971 if (!kvm->arch.vpit) 6972 goto out; 6973 r = kvm_vm_ioctl_reinject(kvm, &control); 6974 break; 6975 } 6976 case KVM_SET_BOOT_CPU_ID: 6977 r = 0; 6978 mutex_lock(&kvm->lock); 6979 if (kvm->created_vcpus) 6980 r = -EBUSY; 6981 else 6982 kvm->arch.bsp_vcpu_id = arg; 6983 mutex_unlock(&kvm->lock); 6984 break; 6985 #ifdef CONFIG_KVM_XEN 6986 case KVM_XEN_HVM_CONFIG: { 6987 struct kvm_xen_hvm_config xhc; 6988 r = -EFAULT; 6989 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6990 goto out; 6991 r = kvm_xen_hvm_config(kvm, &xhc); 6992 break; 6993 } 6994 case KVM_XEN_HVM_GET_ATTR: { 6995 struct kvm_xen_hvm_attr xha; 6996 6997 r = -EFAULT; 6998 if (copy_from_user(&xha, argp, sizeof(xha))) 6999 goto out; 7000 r = kvm_xen_hvm_get_attr(kvm, &xha); 7001 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7002 r = -EFAULT; 7003 break; 7004 } 7005 case KVM_XEN_HVM_SET_ATTR: { 7006 struct kvm_xen_hvm_attr xha; 7007 7008 r = -EFAULT; 7009 if (copy_from_user(&xha, argp, sizeof(xha))) 7010 goto out; 7011 r = kvm_xen_hvm_set_attr(kvm, &xha); 7012 break; 7013 } 7014 case KVM_XEN_HVM_EVTCHN_SEND: { 7015 struct kvm_irq_routing_xen_evtchn uxe; 7016 7017 r = -EFAULT; 7018 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7019 goto out; 7020 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7021 break; 7022 } 7023 #endif 7024 case KVM_SET_CLOCK: 7025 r = kvm_vm_ioctl_set_clock(kvm, argp); 7026 break; 7027 case KVM_GET_CLOCK: 7028 r = kvm_vm_ioctl_get_clock(kvm, argp); 7029 break; 7030 case KVM_SET_TSC_KHZ: { 7031 u32 user_tsc_khz; 7032 7033 r = -EINVAL; 7034 user_tsc_khz = (u32)arg; 7035 7036 if (kvm_caps.has_tsc_control && 7037 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7038 goto out; 7039 7040 if (user_tsc_khz == 0) 7041 user_tsc_khz = tsc_khz; 7042 7043 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7044 r = 0; 7045 7046 goto out; 7047 } 7048 case KVM_GET_TSC_KHZ: { 7049 r = READ_ONCE(kvm->arch.default_tsc_khz); 7050 goto out; 7051 } 7052 case KVM_MEMORY_ENCRYPT_OP: { 7053 r = -ENOTTY; 7054 if (!kvm_x86_ops.mem_enc_ioctl) 7055 goto out; 7056 7057 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7058 break; 7059 } 7060 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7061 struct kvm_enc_region region; 7062 7063 r = -EFAULT; 7064 if (copy_from_user(®ion, argp, sizeof(region))) 7065 goto out; 7066 7067 r = -ENOTTY; 7068 if (!kvm_x86_ops.mem_enc_register_region) 7069 goto out; 7070 7071 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7072 break; 7073 } 7074 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7075 struct kvm_enc_region region; 7076 7077 r = -EFAULT; 7078 if (copy_from_user(®ion, argp, sizeof(region))) 7079 goto out; 7080 7081 r = -ENOTTY; 7082 if (!kvm_x86_ops.mem_enc_unregister_region) 7083 goto out; 7084 7085 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7086 break; 7087 } 7088 case KVM_HYPERV_EVENTFD: { 7089 struct kvm_hyperv_eventfd hvevfd; 7090 7091 r = -EFAULT; 7092 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7093 goto out; 7094 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7095 break; 7096 } 7097 case KVM_SET_PMU_EVENT_FILTER: 7098 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7099 break; 7100 case KVM_X86_SET_MSR_FILTER: { 7101 struct kvm_msr_filter __user *user_msr_filter = argp; 7102 struct kvm_msr_filter filter; 7103 7104 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7105 return -EFAULT; 7106 7107 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7108 break; 7109 } 7110 default: 7111 r = -ENOTTY; 7112 } 7113 out: 7114 return r; 7115 } 7116 7117 static void kvm_probe_feature_msr(u32 msr_index) 7118 { 7119 struct kvm_msr_entry msr = { 7120 .index = msr_index, 7121 }; 7122 7123 if (kvm_get_msr_feature(&msr)) 7124 return; 7125 7126 msr_based_features[num_msr_based_features++] = msr_index; 7127 } 7128 7129 static void kvm_probe_msr_to_save(u32 msr_index) 7130 { 7131 u32 dummy[2]; 7132 7133 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7134 return; 7135 7136 /* 7137 * Even MSRs that are valid in the host may not be exposed to guests in 7138 * some cases. 7139 */ 7140 switch (msr_index) { 7141 case MSR_IA32_BNDCFGS: 7142 if (!kvm_mpx_supported()) 7143 return; 7144 break; 7145 case MSR_TSC_AUX: 7146 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7147 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7148 return; 7149 break; 7150 case MSR_IA32_UMWAIT_CONTROL: 7151 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7152 return; 7153 break; 7154 case MSR_IA32_RTIT_CTL: 7155 case MSR_IA32_RTIT_STATUS: 7156 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7157 return; 7158 break; 7159 case MSR_IA32_RTIT_CR3_MATCH: 7160 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7161 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7162 return; 7163 break; 7164 case MSR_IA32_RTIT_OUTPUT_BASE: 7165 case MSR_IA32_RTIT_OUTPUT_MASK: 7166 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7167 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7168 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7169 return; 7170 break; 7171 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7172 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7173 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7174 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7175 return; 7176 break; 7177 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7178 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7179 kvm_pmu_cap.num_counters_gp) 7180 return; 7181 break; 7182 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7183 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7184 kvm_pmu_cap.num_counters_gp) 7185 return; 7186 break; 7187 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7188 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7189 kvm_pmu_cap.num_counters_fixed) 7190 return; 7191 break; 7192 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7193 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7194 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7195 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7196 return; 7197 break; 7198 case MSR_IA32_XFD: 7199 case MSR_IA32_XFD_ERR: 7200 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7201 return; 7202 break; 7203 case MSR_IA32_TSX_CTRL: 7204 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7205 return; 7206 break; 7207 default: 7208 break; 7209 } 7210 7211 msrs_to_save[num_msrs_to_save++] = msr_index; 7212 } 7213 7214 static void kvm_init_msr_lists(void) 7215 { 7216 unsigned i; 7217 7218 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7219 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7220 7221 num_msrs_to_save = 0; 7222 num_emulated_msrs = 0; 7223 num_msr_based_features = 0; 7224 7225 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7226 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7227 7228 if (enable_pmu) { 7229 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7230 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7231 } 7232 7233 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7234 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7235 continue; 7236 7237 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7238 } 7239 7240 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7241 kvm_probe_feature_msr(i); 7242 7243 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7244 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7245 } 7246 7247 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7248 const void *v) 7249 { 7250 int handled = 0; 7251 int n; 7252 7253 do { 7254 n = min(len, 8); 7255 if (!(lapic_in_kernel(vcpu) && 7256 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7257 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7258 break; 7259 handled += n; 7260 addr += n; 7261 len -= n; 7262 v += n; 7263 } while (len); 7264 7265 return handled; 7266 } 7267 7268 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7269 { 7270 int handled = 0; 7271 int n; 7272 7273 do { 7274 n = min(len, 8); 7275 if (!(lapic_in_kernel(vcpu) && 7276 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7277 addr, n, v)) 7278 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7279 break; 7280 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7281 handled += n; 7282 addr += n; 7283 len -= n; 7284 v += n; 7285 } while (len); 7286 7287 return handled; 7288 } 7289 7290 void kvm_set_segment(struct kvm_vcpu *vcpu, 7291 struct kvm_segment *var, int seg) 7292 { 7293 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7294 } 7295 7296 void kvm_get_segment(struct kvm_vcpu *vcpu, 7297 struct kvm_segment *var, int seg) 7298 { 7299 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7300 } 7301 7302 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7303 struct x86_exception *exception) 7304 { 7305 struct kvm_mmu *mmu = vcpu->arch.mmu; 7306 gpa_t t_gpa; 7307 7308 BUG_ON(!mmu_is_nested(vcpu)); 7309 7310 /* NPT walks are always user-walks */ 7311 access |= PFERR_USER_MASK; 7312 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7313 7314 return t_gpa; 7315 } 7316 7317 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7318 struct x86_exception *exception) 7319 { 7320 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7321 7322 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7323 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7324 } 7325 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7326 7327 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7328 struct x86_exception *exception) 7329 { 7330 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7331 7332 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7333 access |= PFERR_WRITE_MASK; 7334 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7335 } 7336 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7337 7338 /* uses this to access any guest's mapped memory without checking CPL */ 7339 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7340 struct x86_exception *exception) 7341 { 7342 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7343 7344 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7345 } 7346 7347 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7348 struct kvm_vcpu *vcpu, u64 access, 7349 struct x86_exception *exception) 7350 { 7351 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7352 void *data = val; 7353 int r = X86EMUL_CONTINUE; 7354 7355 while (bytes) { 7356 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7357 unsigned offset = addr & (PAGE_SIZE-1); 7358 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7359 int ret; 7360 7361 if (gpa == INVALID_GPA) 7362 return X86EMUL_PROPAGATE_FAULT; 7363 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7364 offset, toread); 7365 if (ret < 0) { 7366 r = X86EMUL_IO_NEEDED; 7367 goto out; 7368 } 7369 7370 bytes -= toread; 7371 data += toread; 7372 addr += toread; 7373 } 7374 out: 7375 return r; 7376 } 7377 7378 /* used for instruction fetching */ 7379 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7380 gva_t addr, void *val, unsigned int bytes, 7381 struct x86_exception *exception) 7382 { 7383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7384 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7385 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7386 unsigned offset; 7387 int ret; 7388 7389 /* Inline kvm_read_guest_virt_helper for speed. */ 7390 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7391 exception); 7392 if (unlikely(gpa == INVALID_GPA)) 7393 return X86EMUL_PROPAGATE_FAULT; 7394 7395 offset = addr & (PAGE_SIZE-1); 7396 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7397 bytes = (unsigned)PAGE_SIZE - offset; 7398 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7399 offset, bytes); 7400 if (unlikely(ret < 0)) 7401 return X86EMUL_IO_NEEDED; 7402 7403 return X86EMUL_CONTINUE; 7404 } 7405 7406 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7407 gva_t addr, void *val, unsigned int bytes, 7408 struct x86_exception *exception) 7409 { 7410 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7411 7412 /* 7413 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7414 * is returned, but our callers are not ready for that and they blindly 7415 * call kvm_inject_page_fault. Ensure that they at least do not leak 7416 * uninitialized kernel stack memory into cr2 and error code. 7417 */ 7418 memset(exception, 0, sizeof(*exception)); 7419 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7420 exception); 7421 } 7422 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7423 7424 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7425 gva_t addr, void *val, unsigned int bytes, 7426 struct x86_exception *exception, bool system) 7427 { 7428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7429 u64 access = 0; 7430 7431 if (system) 7432 access |= PFERR_IMPLICIT_ACCESS; 7433 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7434 access |= PFERR_USER_MASK; 7435 7436 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7437 } 7438 7439 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7440 struct kvm_vcpu *vcpu, u64 access, 7441 struct x86_exception *exception) 7442 { 7443 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7444 void *data = val; 7445 int r = X86EMUL_CONTINUE; 7446 7447 while (bytes) { 7448 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7449 unsigned offset = addr & (PAGE_SIZE-1); 7450 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7451 int ret; 7452 7453 if (gpa == INVALID_GPA) 7454 return X86EMUL_PROPAGATE_FAULT; 7455 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7456 if (ret < 0) { 7457 r = X86EMUL_IO_NEEDED; 7458 goto out; 7459 } 7460 7461 bytes -= towrite; 7462 data += towrite; 7463 addr += towrite; 7464 } 7465 out: 7466 return r; 7467 } 7468 7469 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7470 unsigned int bytes, struct x86_exception *exception, 7471 bool system) 7472 { 7473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7474 u64 access = PFERR_WRITE_MASK; 7475 7476 if (system) 7477 access |= PFERR_IMPLICIT_ACCESS; 7478 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7479 access |= PFERR_USER_MASK; 7480 7481 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7482 access, exception); 7483 } 7484 7485 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7486 unsigned int bytes, struct x86_exception *exception) 7487 { 7488 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7489 vcpu->arch.l1tf_flush_l1d = true; 7490 7491 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7492 PFERR_WRITE_MASK, exception); 7493 } 7494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7495 7496 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7497 void *insn, int insn_len) 7498 { 7499 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7500 insn, insn_len); 7501 } 7502 7503 int handle_ud(struct kvm_vcpu *vcpu) 7504 { 7505 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7506 int fep_flags = READ_ONCE(force_emulation_prefix); 7507 int emul_type = EMULTYPE_TRAP_UD; 7508 char sig[5]; /* ud2; .ascii "kvm" */ 7509 struct x86_exception e; 7510 7511 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7512 return 1; 7513 7514 if (fep_flags && 7515 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7516 sig, sizeof(sig), &e) == 0 && 7517 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7518 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7519 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7520 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7521 emul_type = EMULTYPE_TRAP_UD_FORCED; 7522 } 7523 7524 return kvm_emulate_instruction(vcpu, emul_type); 7525 } 7526 EXPORT_SYMBOL_GPL(handle_ud); 7527 7528 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7529 gpa_t gpa, bool write) 7530 { 7531 /* For APIC access vmexit */ 7532 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7533 return 1; 7534 7535 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7536 trace_vcpu_match_mmio(gva, gpa, write, true); 7537 return 1; 7538 } 7539 7540 return 0; 7541 } 7542 7543 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7544 gpa_t *gpa, struct x86_exception *exception, 7545 bool write) 7546 { 7547 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7548 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7549 | (write ? PFERR_WRITE_MASK : 0); 7550 7551 /* 7552 * currently PKRU is only applied to ept enabled guest so 7553 * there is no pkey in EPT page table for L1 guest or EPT 7554 * shadow page table for L2 guest. 7555 */ 7556 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7557 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7558 vcpu->arch.mmio_access, 0, access))) { 7559 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7560 (gva & (PAGE_SIZE - 1)); 7561 trace_vcpu_match_mmio(gva, *gpa, write, false); 7562 return 1; 7563 } 7564 7565 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7566 7567 if (*gpa == INVALID_GPA) 7568 return -1; 7569 7570 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7571 } 7572 7573 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7574 const void *val, int bytes) 7575 { 7576 int ret; 7577 7578 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7579 if (ret < 0) 7580 return 0; 7581 kvm_page_track_write(vcpu, gpa, val, bytes); 7582 return 1; 7583 } 7584 7585 struct read_write_emulator_ops { 7586 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7587 int bytes); 7588 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7589 void *val, int bytes); 7590 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7591 int bytes, void *val); 7592 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7593 void *val, int bytes); 7594 bool write; 7595 }; 7596 7597 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7598 { 7599 if (vcpu->mmio_read_completed) { 7600 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7601 vcpu->mmio_fragments[0].gpa, val); 7602 vcpu->mmio_read_completed = 0; 7603 return 1; 7604 } 7605 7606 return 0; 7607 } 7608 7609 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7610 void *val, int bytes) 7611 { 7612 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7613 } 7614 7615 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7616 void *val, int bytes) 7617 { 7618 return emulator_write_phys(vcpu, gpa, val, bytes); 7619 } 7620 7621 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7622 { 7623 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7624 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7625 } 7626 7627 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7628 void *val, int bytes) 7629 { 7630 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7631 return X86EMUL_IO_NEEDED; 7632 } 7633 7634 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7635 void *val, int bytes) 7636 { 7637 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7638 7639 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7640 return X86EMUL_CONTINUE; 7641 } 7642 7643 static const struct read_write_emulator_ops read_emultor = { 7644 .read_write_prepare = read_prepare, 7645 .read_write_emulate = read_emulate, 7646 .read_write_mmio = vcpu_mmio_read, 7647 .read_write_exit_mmio = read_exit_mmio, 7648 }; 7649 7650 static const struct read_write_emulator_ops write_emultor = { 7651 .read_write_emulate = write_emulate, 7652 .read_write_mmio = write_mmio, 7653 .read_write_exit_mmio = write_exit_mmio, 7654 .write = true, 7655 }; 7656 7657 static int emulator_read_write_onepage(unsigned long addr, void *val, 7658 unsigned int bytes, 7659 struct x86_exception *exception, 7660 struct kvm_vcpu *vcpu, 7661 const struct read_write_emulator_ops *ops) 7662 { 7663 gpa_t gpa; 7664 int handled, ret; 7665 bool write = ops->write; 7666 struct kvm_mmio_fragment *frag; 7667 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7668 7669 /* 7670 * If the exit was due to a NPF we may already have a GPA. 7671 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7672 * Note, this cannot be used on string operations since string 7673 * operation using rep will only have the initial GPA from the NPF 7674 * occurred. 7675 */ 7676 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7677 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7678 gpa = ctxt->gpa_val; 7679 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7680 } else { 7681 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7682 if (ret < 0) 7683 return X86EMUL_PROPAGATE_FAULT; 7684 } 7685 7686 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7687 return X86EMUL_CONTINUE; 7688 7689 /* 7690 * Is this MMIO handled locally? 7691 */ 7692 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7693 if (handled == bytes) 7694 return X86EMUL_CONTINUE; 7695 7696 gpa += handled; 7697 bytes -= handled; 7698 val += handled; 7699 7700 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7701 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7702 frag->gpa = gpa; 7703 frag->data = val; 7704 frag->len = bytes; 7705 return X86EMUL_CONTINUE; 7706 } 7707 7708 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7709 unsigned long addr, 7710 void *val, unsigned int bytes, 7711 struct x86_exception *exception, 7712 const struct read_write_emulator_ops *ops) 7713 { 7714 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7715 gpa_t gpa; 7716 int rc; 7717 7718 if (ops->read_write_prepare && 7719 ops->read_write_prepare(vcpu, val, bytes)) 7720 return X86EMUL_CONTINUE; 7721 7722 vcpu->mmio_nr_fragments = 0; 7723 7724 /* Crossing a page boundary? */ 7725 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7726 int now; 7727 7728 now = -addr & ~PAGE_MASK; 7729 rc = emulator_read_write_onepage(addr, val, now, exception, 7730 vcpu, ops); 7731 7732 if (rc != X86EMUL_CONTINUE) 7733 return rc; 7734 addr += now; 7735 if (ctxt->mode != X86EMUL_MODE_PROT64) 7736 addr = (u32)addr; 7737 val += now; 7738 bytes -= now; 7739 } 7740 7741 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7742 vcpu, ops); 7743 if (rc != X86EMUL_CONTINUE) 7744 return rc; 7745 7746 if (!vcpu->mmio_nr_fragments) 7747 return rc; 7748 7749 gpa = vcpu->mmio_fragments[0].gpa; 7750 7751 vcpu->mmio_needed = 1; 7752 vcpu->mmio_cur_fragment = 0; 7753 7754 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7755 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7756 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7757 vcpu->run->mmio.phys_addr = gpa; 7758 7759 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7760 } 7761 7762 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7763 unsigned long addr, 7764 void *val, 7765 unsigned int bytes, 7766 struct x86_exception *exception) 7767 { 7768 return emulator_read_write(ctxt, addr, val, bytes, 7769 exception, &read_emultor); 7770 } 7771 7772 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7773 unsigned long addr, 7774 const void *val, 7775 unsigned int bytes, 7776 struct x86_exception *exception) 7777 { 7778 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7779 exception, &write_emultor); 7780 } 7781 7782 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7783 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7784 7785 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7786 unsigned long addr, 7787 const void *old, 7788 const void *new, 7789 unsigned int bytes, 7790 struct x86_exception *exception) 7791 { 7792 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7793 u64 page_line_mask; 7794 unsigned long hva; 7795 gpa_t gpa; 7796 int r; 7797 7798 /* guests cmpxchg8b have to be emulated atomically */ 7799 if (bytes > 8 || (bytes & (bytes - 1))) 7800 goto emul_write; 7801 7802 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7803 7804 if (gpa == INVALID_GPA || 7805 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7806 goto emul_write; 7807 7808 /* 7809 * Emulate the atomic as a straight write to avoid #AC if SLD is 7810 * enabled in the host and the access splits a cache line. 7811 */ 7812 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7813 page_line_mask = ~(cache_line_size() - 1); 7814 else 7815 page_line_mask = PAGE_MASK; 7816 7817 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7818 goto emul_write; 7819 7820 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7821 if (kvm_is_error_hva(hva)) 7822 goto emul_write; 7823 7824 hva += offset_in_page(gpa); 7825 7826 switch (bytes) { 7827 case 1: 7828 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7829 break; 7830 case 2: 7831 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7832 break; 7833 case 4: 7834 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7835 break; 7836 case 8: 7837 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7838 break; 7839 default: 7840 BUG(); 7841 } 7842 7843 if (r < 0) 7844 return X86EMUL_UNHANDLEABLE; 7845 7846 /* 7847 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 7848 * successful, as the old value is written back on failure. Note, for 7849 * live migration, this is unnecessarily conservative as CMPXCHG writes 7850 * back the original value and the access is atomic, but KVM's ABI is 7851 * that all writes are dirty logged, regardless of the value written. 7852 */ 7853 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 7854 7855 if (r) 7856 return X86EMUL_CMPXCHG_FAILED; 7857 7858 kvm_page_track_write(vcpu, gpa, new, bytes); 7859 7860 return X86EMUL_CONTINUE; 7861 7862 emul_write: 7863 pr_warn_once("emulating exchange as write\n"); 7864 7865 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7866 } 7867 7868 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7869 unsigned short port, void *data, 7870 unsigned int count, bool in) 7871 { 7872 unsigned i; 7873 int r; 7874 7875 WARN_ON_ONCE(vcpu->arch.pio.count); 7876 for (i = 0; i < count; i++) { 7877 if (in) 7878 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7879 else 7880 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7881 7882 if (r) { 7883 if (i == 0) 7884 goto userspace_io; 7885 7886 /* 7887 * Userspace must have unregistered the device while PIO 7888 * was running. Drop writes / read as 0. 7889 */ 7890 if (in) 7891 memset(data, 0, size * (count - i)); 7892 break; 7893 } 7894 7895 data += size; 7896 } 7897 return 1; 7898 7899 userspace_io: 7900 vcpu->arch.pio.port = port; 7901 vcpu->arch.pio.in = in; 7902 vcpu->arch.pio.count = count; 7903 vcpu->arch.pio.size = size; 7904 7905 if (in) 7906 memset(vcpu->arch.pio_data, 0, size * count); 7907 else 7908 memcpy(vcpu->arch.pio_data, data, size * count); 7909 7910 vcpu->run->exit_reason = KVM_EXIT_IO; 7911 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7912 vcpu->run->io.size = size; 7913 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7914 vcpu->run->io.count = count; 7915 vcpu->run->io.port = port; 7916 return 0; 7917 } 7918 7919 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7920 unsigned short port, void *val, unsigned int count) 7921 { 7922 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7923 if (r) 7924 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7925 7926 return r; 7927 } 7928 7929 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7930 { 7931 int size = vcpu->arch.pio.size; 7932 unsigned int count = vcpu->arch.pio.count; 7933 memcpy(val, vcpu->arch.pio_data, size * count); 7934 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7935 vcpu->arch.pio.count = 0; 7936 } 7937 7938 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7939 int size, unsigned short port, void *val, 7940 unsigned int count) 7941 { 7942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7943 if (vcpu->arch.pio.count) { 7944 /* 7945 * Complete a previous iteration that required userspace I/O. 7946 * Note, @count isn't guaranteed to match pio.count as userspace 7947 * can modify ECX before rerunning the vCPU. Ignore any such 7948 * shenanigans as KVM doesn't support modifying the rep count, 7949 * and the emulator ensures @count doesn't overflow the buffer. 7950 */ 7951 complete_emulator_pio_in(vcpu, val); 7952 return 1; 7953 } 7954 7955 return emulator_pio_in(vcpu, size, port, val, count); 7956 } 7957 7958 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7959 unsigned short port, const void *val, 7960 unsigned int count) 7961 { 7962 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7963 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7964 } 7965 7966 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7967 int size, unsigned short port, 7968 const void *val, unsigned int count) 7969 { 7970 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7971 } 7972 7973 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7974 { 7975 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7976 } 7977 7978 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7979 { 7980 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7981 } 7982 7983 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7984 { 7985 if (!need_emulate_wbinvd(vcpu)) 7986 return X86EMUL_CONTINUE; 7987 7988 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7989 int cpu = get_cpu(); 7990 7991 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7992 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7993 wbinvd_ipi, NULL, 1); 7994 put_cpu(); 7995 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7996 } else 7997 wbinvd(); 7998 return X86EMUL_CONTINUE; 7999 } 8000 8001 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8002 { 8003 kvm_emulate_wbinvd_noskip(vcpu); 8004 return kvm_skip_emulated_instruction(vcpu); 8005 } 8006 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8007 8008 8009 8010 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8011 { 8012 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8013 } 8014 8015 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8016 unsigned long *dest) 8017 { 8018 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8019 } 8020 8021 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8022 unsigned long value) 8023 { 8024 8025 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8026 } 8027 8028 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8029 { 8030 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8031 } 8032 8033 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8034 { 8035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8036 unsigned long value; 8037 8038 switch (cr) { 8039 case 0: 8040 value = kvm_read_cr0(vcpu); 8041 break; 8042 case 2: 8043 value = vcpu->arch.cr2; 8044 break; 8045 case 3: 8046 value = kvm_read_cr3(vcpu); 8047 break; 8048 case 4: 8049 value = kvm_read_cr4(vcpu); 8050 break; 8051 case 8: 8052 value = kvm_get_cr8(vcpu); 8053 break; 8054 default: 8055 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8056 return 0; 8057 } 8058 8059 return value; 8060 } 8061 8062 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8063 { 8064 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8065 int res = 0; 8066 8067 switch (cr) { 8068 case 0: 8069 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8070 break; 8071 case 2: 8072 vcpu->arch.cr2 = val; 8073 break; 8074 case 3: 8075 res = kvm_set_cr3(vcpu, val); 8076 break; 8077 case 4: 8078 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8079 break; 8080 case 8: 8081 res = kvm_set_cr8(vcpu, val); 8082 break; 8083 default: 8084 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8085 res = -1; 8086 } 8087 8088 return res; 8089 } 8090 8091 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8092 { 8093 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8094 } 8095 8096 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8097 { 8098 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8099 } 8100 8101 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8102 { 8103 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8104 } 8105 8106 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8107 { 8108 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8109 } 8110 8111 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8112 { 8113 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8114 } 8115 8116 static unsigned long emulator_get_cached_segment_base( 8117 struct x86_emulate_ctxt *ctxt, int seg) 8118 { 8119 return get_segment_base(emul_to_vcpu(ctxt), seg); 8120 } 8121 8122 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8123 struct desc_struct *desc, u32 *base3, 8124 int seg) 8125 { 8126 struct kvm_segment var; 8127 8128 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8129 *selector = var.selector; 8130 8131 if (var.unusable) { 8132 memset(desc, 0, sizeof(*desc)); 8133 if (base3) 8134 *base3 = 0; 8135 return false; 8136 } 8137 8138 if (var.g) 8139 var.limit >>= 12; 8140 set_desc_limit(desc, var.limit); 8141 set_desc_base(desc, (unsigned long)var.base); 8142 #ifdef CONFIG_X86_64 8143 if (base3) 8144 *base3 = var.base >> 32; 8145 #endif 8146 desc->type = var.type; 8147 desc->s = var.s; 8148 desc->dpl = var.dpl; 8149 desc->p = var.present; 8150 desc->avl = var.avl; 8151 desc->l = var.l; 8152 desc->d = var.db; 8153 desc->g = var.g; 8154 8155 return true; 8156 } 8157 8158 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8159 struct desc_struct *desc, u32 base3, 8160 int seg) 8161 { 8162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8163 struct kvm_segment var; 8164 8165 var.selector = selector; 8166 var.base = get_desc_base(desc); 8167 #ifdef CONFIG_X86_64 8168 var.base |= ((u64)base3) << 32; 8169 #endif 8170 var.limit = get_desc_limit(desc); 8171 if (desc->g) 8172 var.limit = (var.limit << 12) | 0xfff; 8173 var.type = desc->type; 8174 var.dpl = desc->dpl; 8175 var.db = desc->d; 8176 var.s = desc->s; 8177 var.l = desc->l; 8178 var.g = desc->g; 8179 var.avl = desc->avl; 8180 var.present = desc->p; 8181 var.unusable = !var.present; 8182 var.padding = 0; 8183 8184 kvm_set_segment(vcpu, &var, seg); 8185 return; 8186 } 8187 8188 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8189 u32 msr_index, u64 *pdata) 8190 { 8191 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8192 int r; 8193 8194 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8195 if (r < 0) 8196 return X86EMUL_UNHANDLEABLE; 8197 8198 if (r) { 8199 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8200 complete_emulated_rdmsr, r)) 8201 return X86EMUL_IO_NEEDED; 8202 8203 trace_kvm_msr_read_ex(msr_index); 8204 return X86EMUL_PROPAGATE_FAULT; 8205 } 8206 8207 trace_kvm_msr_read(msr_index, *pdata); 8208 return X86EMUL_CONTINUE; 8209 } 8210 8211 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8212 u32 msr_index, u64 data) 8213 { 8214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8215 int r; 8216 8217 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8218 if (r < 0) 8219 return X86EMUL_UNHANDLEABLE; 8220 8221 if (r) { 8222 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8223 complete_emulated_msr_access, r)) 8224 return X86EMUL_IO_NEEDED; 8225 8226 trace_kvm_msr_write_ex(msr_index, data); 8227 return X86EMUL_PROPAGATE_FAULT; 8228 } 8229 8230 trace_kvm_msr_write(msr_index, data); 8231 return X86EMUL_CONTINUE; 8232 } 8233 8234 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8235 u32 msr_index, u64 *pdata) 8236 { 8237 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8238 } 8239 8240 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8241 u32 pmc) 8242 { 8243 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8244 return 0; 8245 return -EINVAL; 8246 } 8247 8248 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8249 u32 pmc, u64 *pdata) 8250 { 8251 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8252 } 8253 8254 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8255 { 8256 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8257 } 8258 8259 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8260 struct x86_instruction_info *info, 8261 enum x86_intercept_stage stage) 8262 { 8263 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8264 &ctxt->exception); 8265 } 8266 8267 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8268 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8269 bool exact_only) 8270 { 8271 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8272 } 8273 8274 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8275 { 8276 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8277 } 8278 8279 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8280 { 8281 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8282 } 8283 8284 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8285 { 8286 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8287 } 8288 8289 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8290 { 8291 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8292 } 8293 8294 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8295 { 8296 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8297 } 8298 8299 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8300 { 8301 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8302 } 8303 8304 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8305 { 8306 return is_smm(emul_to_vcpu(ctxt)); 8307 } 8308 8309 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8310 { 8311 return is_guest_mode(emul_to_vcpu(ctxt)); 8312 } 8313 8314 #ifndef CONFIG_KVM_SMM 8315 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8316 { 8317 WARN_ON_ONCE(1); 8318 return X86EMUL_UNHANDLEABLE; 8319 } 8320 #endif 8321 8322 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8323 { 8324 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8325 } 8326 8327 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8328 { 8329 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8330 } 8331 8332 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8333 { 8334 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8335 8336 if (!kvm->vm_bugged) 8337 kvm_vm_bugged(kvm); 8338 } 8339 8340 static const struct x86_emulate_ops emulate_ops = { 8341 .vm_bugged = emulator_vm_bugged, 8342 .read_gpr = emulator_read_gpr, 8343 .write_gpr = emulator_write_gpr, 8344 .read_std = emulator_read_std, 8345 .write_std = emulator_write_std, 8346 .fetch = kvm_fetch_guest_virt, 8347 .read_emulated = emulator_read_emulated, 8348 .write_emulated = emulator_write_emulated, 8349 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8350 .invlpg = emulator_invlpg, 8351 .pio_in_emulated = emulator_pio_in_emulated, 8352 .pio_out_emulated = emulator_pio_out_emulated, 8353 .get_segment = emulator_get_segment, 8354 .set_segment = emulator_set_segment, 8355 .get_cached_segment_base = emulator_get_cached_segment_base, 8356 .get_gdt = emulator_get_gdt, 8357 .get_idt = emulator_get_idt, 8358 .set_gdt = emulator_set_gdt, 8359 .set_idt = emulator_set_idt, 8360 .get_cr = emulator_get_cr, 8361 .set_cr = emulator_set_cr, 8362 .cpl = emulator_get_cpl, 8363 .get_dr = emulator_get_dr, 8364 .set_dr = emulator_set_dr, 8365 .set_msr_with_filter = emulator_set_msr_with_filter, 8366 .get_msr_with_filter = emulator_get_msr_with_filter, 8367 .get_msr = emulator_get_msr, 8368 .check_pmc = emulator_check_pmc, 8369 .read_pmc = emulator_read_pmc, 8370 .halt = emulator_halt, 8371 .wbinvd = emulator_wbinvd, 8372 .fix_hypercall = emulator_fix_hypercall, 8373 .intercept = emulator_intercept, 8374 .get_cpuid = emulator_get_cpuid, 8375 .guest_has_movbe = emulator_guest_has_movbe, 8376 .guest_has_fxsr = emulator_guest_has_fxsr, 8377 .guest_has_rdpid = emulator_guest_has_rdpid, 8378 .set_nmi_mask = emulator_set_nmi_mask, 8379 .is_smm = emulator_is_smm, 8380 .is_guest_mode = emulator_is_guest_mode, 8381 .leave_smm = emulator_leave_smm, 8382 .triple_fault = emulator_triple_fault, 8383 .set_xcr = emulator_set_xcr, 8384 }; 8385 8386 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8387 { 8388 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8389 /* 8390 * an sti; sti; sequence only disable interrupts for the first 8391 * instruction. So, if the last instruction, be it emulated or 8392 * not, left the system with the INT_STI flag enabled, it 8393 * means that the last instruction is an sti. We should not 8394 * leave the flag on in this case. The same goes for mov ss 8395 */ 8396 if (int_shadow & mask) 8397 mask = 0; 8398 if (unlikely(int_shadow || mask)) { 8399 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8400 if (!mask) 8401 kvm_make_request(KVM_REQ_EVENT, vcpu); 8402 } 8403 } 8404 8405 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8406 { 8407 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8408 8409 if (ctxt->exception.vector == PF_VECTOR) 8410 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8411 else if (ctxt->exception.error_code_valid) 8412 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8413 ctxt->exception.error_code); 8414 else 8415 kvm_queue_exception(vcpu, ctxt->exception.vector); 8416 } 8417 8418 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8419 { 8420 struct x86_emulate_ctxt *ctxt; 8421 8422 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8423 if (!ctxt) { 8424 pr_err("failed to allocate vcpu's emulator\n"); 8425 return NULL; 8426 } 8427 8428 ctxt->vcpu = vcpu; 8429 ctxt->ops = &emulate_ops; 8430 vcpu->arch.emulate_ctxt = ctxt; 8431 8432 return ctxt; 8433 } 8434 8435 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8436 { 8437 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8438 int cs_db, cs_l; 8439 8440 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8441 8442 ctxt->gpa_available = false; 8443 ctxt->eflags = kvm_get_rflags(vcpu); 8444 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8445 8446 ctxt->eip = kvm_rip_read(vcpu); 8447 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8448 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8449 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8450 cs_db ? X86EMUL_MODE_PROT32 : 8451 X86EMUL_MODE_PROT16; 8452 ctxt->interruptibility = 0; 8453 ctxt->have_exception = false; 8454 ctxt->exception.vector = -1; 8455 ctxt->perm_ok = false; 8456 8457 init_decode_cache(ctxt); 8458 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8459 } 8460 8461 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8462 { 8463 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8464 int ret; 8465 8466 init_emulate_ctxt(vcpu); 8467 8468 ctxt->op_bytes = 2; 8469 ctxt->ad_bytes = 2; 8470 ctxt->_eip = ctxt->eip + inc_eip; 8471 ret = emulate_int_real(ctxt, irq); 8472 8473 if (ret != X86EMUL_CONTINUE) { 8474 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8475 } else { 8476 ctxt->eip = ctxt->_eip; 8477 kvm_rip_write(vcpu, ctxt->eip); 8478 kvm_set_rflags(vcpu, ctxt->eflags); 8479 } 8480 } 8481 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8482 8483 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8484 u8 ndata, u8 *insn_bytes, u8 insn_size) 8485 { 8486 struct kvm_run *run = vcpu->run; 8487 u64 info[5]; 8488 u8 info_start; 8489 8490 /* 8491 * Zero the whole array used to retrieve the exit info, as casting to 8492 * u32 for select entries will leave some chunks uninitialized. 8493 */ 8494 memset(&info, 0, sizeof(info)); 8495 8496 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8497 &info[2], (u32 *)&info[3], 8498 (u32 *)&info[4]); 8499 8500 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8501 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8502 8503 /* 8504 * There's currently space for 13 entries, but 5 are used for the exit 8505 * reason and info. Restrict to 4 to reduce the maintenance burden 8506 * when expanding kvm_run.emulation_failure in the future. 8507 */ 8508 if (WARN_ON_ONCE(ndata > 4)) 8509 ndata = 4; 8510 8511 /* Always include the flags as a 'data' entry. */ 8512 info_start = 1; 8513 run->emulation_failure.flags = 0; 8514 8515 if (insn_size) { 8516 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8517 sizeof(run->emulation_failure.insn_bytes) != 16)); 8518 info_start += 2; 8519 run->emulation_failure.flags |= 8520 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8521 run->emulation_failure.insn_size = insn_size; 8522 memset(run->emulation_failure.insn_bytes, 0x90, 8523 sizeof(run->emulation_failure.insn_bytes)); 8524 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8525 } 8526 8527 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8528 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8529 ndata * sizeof(data[0])); 8530 8531 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8532 } 8533 8534 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8535 { 8536 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8537 8538 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8539 ctxt->fetch.end - ctxt->fetch.data); 8540 } 8541 8542 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8543 u8 ndata) 8544 { 8545 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8546 } 8547 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8548 8549 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8550 { 8551 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8552 } 8553 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8554 8555 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8556 { 8557 struct kvm *kvm = vcpu->kvm; 8558 8559 ++vcpu->stat.insn_emulation_fail; 8560 trace_kvm_emulate_insn_failed(vcpu); 8561 8562 if (emulation_type & EMULTYPE_VMWARE_GP) { 8563 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8564 return 1; 8565 } 8566 8567 if (kvm->arch.exit_on_emulation_error || 8568 (emulation_type & EMULTYPE_SKIP)) { 8569 prepare_emulation_ctxt_failure_exit(vcpu); 8570 return 0; 8571 } 8572 8573 kvm_queue_exception(vcpu, UD_VECTOR); 8574 8575 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8576 prepare_emulation_ctxt_failure_exit(vcpu); 8577 return 0; 8578 } 8579 8580 return 1; 8581 } 8582 8583 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8584 int emulation_type) 8585 { 8586 gpa_t gpa = cr2_or_gpa; 8587 kvm_pfn_t pfn; 8588 8589 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8590 return false; 8591 8592 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8593 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8594 return false; 8595 8596 if (!vcpu->arch.mmu->root_role.direct) { 8597 /* 8598 * Write permission should be allowed since only 8599 * write access need to be emulated. 8600 */ 8601 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8602 8603 /* 8604 * If the mapping is invalid in guest, let cpu retry 8605 * it to generate fault. 8606 */ 8607 if (gpa == INVALID_GPA) 8608 return true; 8609 } 8610 8611 /* 8612 * Do not retry the unhandleable instruction if it faults on the 8613 * readonly host memory, otherwise it will goto a infinite loop: 8614 * retry instruction -> write #PF -> emulation fail -> retry 8615 * instruction -> ... 8616 */ 8617 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8618 8619 /* 8620 * If the instruction failed on the error pfn, it can not be fixed, 8621 * report the error to userspace. 8622 */ 8623 if (is_error_noslot_pfn(pfn)) 8624 return false; 8625 8626 kvm_release_pfn_clean(pfn); 8627 8628 /* The instructions are well-emulated on direct mmu. */ 8629 if (vcpu->arch.mmu->root_role.direct) { 8630 unsigned int indirect_shadow_pages; 8631 8632 write_lock(&vcpu->kvm->mmu_lock); 8633 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8634 write_unlock(&vcpu->kvm->mmu_lock); 8635 8636 if (indirect_shadow_pages) 8637 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8638 8639 return true; 8640 } 8641 8642 /* 8643 * if emulation was due to access to shadowed page table 8644 * and it failed try to unshadow page and re-enter the 8645 * guest to let CPU execute the instruction. 8646 */ 8647 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8648 8649 /* 8650 * If the access faults on its page table, it can not 8651 * be fixed by unprotecting shadow page and it should 8652 * be reported to userspace. 8653 */ 8654 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8655 } 8656 8657 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8658 gpa_t cr2_or_gpa, int emulation_type) 8659 { 8660 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8661 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8662 8663 last_retry_eip = vcpu->arch.last_retry_eip; 8664 last_retry_addr = vcpu->arch.last_retry_addr; 8665 8666 /* 8667 * If the emulation is caused by #PF and it is non-page_table 8668 * writing instruction, it means the VM-EXIT is caused by shadow 8669 * page protected, we can zap the shadow page and retry this 8670 * instruction directly. 8671 * 8672 * Note: if the guest uses a non-page-table modifying instruction 8673 * on the PDE that points to the instruction, then we will unmap 8674 * the instruction and go to an infinite loop. So, we cache the 8675 * last retried eip and the last fault address, if we meet the eip 8676 * and the address again, we can break out of the potential infinite 8677 * loop. 8678 */ 8679 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8680 8681 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8682 return false; 8683 8684 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8685 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8686 return false; 8687 8688 if (x86_page_table_writing_insn(ctxt)) 8689 return false; 8690 8691 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8692 return false; 8693 8694 vcpu->arch.last_retry_eip = ctxt->eip; 8695 vcpu->arch.last_retry_addr = cr2_or_gpa; 8696 8697 if (!vcpu->arch.mmu->root_role.direct) 8698 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8699 8700 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8701 8702 return true; 8703 } 8704 8705 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8706 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8707 8708 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8709 unsigned long *db) 8710 { 8711 u32 dr6 = 0; 8712 int i; 8713 u32 enable, rwlen; 8714 8715 enable = dr7; 8716 rwlen = dr7 >> 16; 8717 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8718 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8719 dr6 |= (1 << i); 8720 return dr6; 8721 } 8722 8723 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8724 { 8725 struct kvm_run *kvm_run = vcpu->run; 8726 8727 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8728 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8729 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8730 kvm_run->debug.arch.exception = DB_VECTOR; 8731 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8732 return 0; 8733 } 8734 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8735 return 1; 8736 } 8737 8738 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8739 { 8740 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8741 int r; 8742 8743 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8744 if (unlikely(!r)) 8745 return 0; 8746 8747 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8748 8749 /* 8750 * rflags is the old, "raw" value of the flags. The new value has 8751 * not been saved yet. 8752 * 8753 * This is correct even for TF set by the guest, because "the 8754 * processor will not generate this exception after the instruction 8755 * that sets the TF flag". 8756 */ 8757 if (unlikely(rflags & X86_EFLAGS_TF)) 8758 r = kvm_vcpu_do_singlestep(vcpu); 8759 return r; 8760 } 8761 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8762 8763 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8764 { 8765 u32 shadow; 8766 8767 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8768 return true; 8769 8770 /* 8771 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8772 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8773 * to avoid the relatively expensive CPUID lookup. 8774 */ 8775 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8776 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8777 guest_cpuid_is_intel(vcpu); 8778 } 8779 8780 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8781 int emulation_type, int *r) 8782 { 8783 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8784 8785 /* 8786 * Do not check for code breakpoints if hardware has already done the 8787 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8788 * the instruction has passed all exception checks, and all intercepted 8789 * exceptions that trigger emulation have lower priority than code 8790 * breakpoints, i.e. the fact that the intercepted exception occurred 8791 * means any code breakpoints have already been serviced. 8792 * 8793 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8794 * hardware has checked the RIP of the magic prefix, but not the RIP of 8795 * the instruction being emulated. The intent of forced emulation is 8796 * to behave as if KVM intercepted the instruction without an exception 8797 * and without a prefix. 8798 */ 8799 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8800 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8801 return false; 8802 8803 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8804 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8805 struct kvm_run *kvm_run = vcpu->run; 8806 unsigned long eip = kvm_get_linear_rip(vcpu); 8807 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8808 vcpu->arch.guest_debug_dr7, 8809 vcpu->arch.eff_db); 8810 8811 if (dr6 != 0) { 8812 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8813 kvm_run->debug.arch.pc = eip; 8814 kvm_run->debug.arch.exception = DB_VECTOR; 8815 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8816 *r = 0; 8817 return true; 8818 } 8819 } 8820 8821 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8822 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8823 unsigned long eip = kvm_get_linear_rip(vcpu); 8824 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8825 vcpu->arch.dr7, 8826 vcpu->arch.db); 8827 8828 if (dr6 != 0) { 8829 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8830 *r = 1; 8831 return true; 8832 } 8833 } 8834 8835 return false; 8836 } 8837 8838 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8839 { 8840 switch (ctxt->opcode_len) { 8841 case 1: 8842 switch (ctxt->b) { 8843 case 0xe4: /* IN */ 8844 case 0xe5: 8845 case 0xec: 8846 case 0xed: 8847 case 0xe6: /* OUT */ 8848 case 0xe7: 8849 case 0xee: 8850 case 0xef: 8851 case 0x6c: /* INS */ 8852 case 0x6d: 8853 case 0x6e: /* OUTS */ 8854 case 0x6f: 8855 return true; 8856 } 8857 break; 8858 case 2: 8859 switch (ctxt->b) { 8860 case 0x33: /* RDPMC */ 8861 return true; 8862 } 8863 break; 8864 } 8865 8866 return false; 8867 } 8868 8869 /* 8870 * Decode an instruction for emulation. The caller is responsible for handling 8871 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8872 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8873 * code breakpoints have higher priority and thus have already been done by 8874 * hardware. 8875 * 8876 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8877 * response to a machine check. 8878 */ 8879 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8880 void *insn, int insn_len) 8881 { 8882 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8883 int r; 8884 8885 init_emulate_ctxt(vcpu); 8886 8887 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8888 8889 trace_kvm_emulate_insn_start(vcpu); 8890 ++vcpu->stat.insn_emulation; 8891 8892 return r; 8893 } 8894 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8895 8896 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8897 int emulation_type, void *insn, int insn_len) 8898 { 8899 int r; 8900 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8901 bool writeback = true; 8902 8903 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8904 return 1; 8905 8906 vcpu->arch.l1tf_flush_l1d = true; 8907 8908 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8909 kvm_clear_exception_queue(vcpu); 8910 8911 /* 8912 * Return immediately if RIP hits a code breakpoint, such #DBs 8913 * are fault-like and are higher priority than any faults on 8914 * the code fetch itself. 8915 */ 8916 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8917 return r; 8918 8919 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8920 insn, insn_len); 8921 if (r != EMULATION_OK) { 8922 if ((emulation_type & EMULTYPE_TRAP_UD) || 8923 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8924 kvm_queue_exception(vcpu, UD_VECTOR); 8925 return 1; 8926 } 8927 if (reexecute_instruction(vcpu, cr2_or_gpa, 8928 emulation_type)) 8929 return 1; 8930 8931 if (ctxt->have_exception && 8932 !(emulation_type & EMULTYPE_SKIP)) { 8933 /* 8934 * #UD should result in just EMULATION_FAILED, and trap-like 8935 * exception should not be encountered during decode. 8936 */ 8937 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8938 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8939 inject_emulated_exception(vcpu); 8940 return 1; 8941 } 8942 return handle_emulation_failure(vcpu, emulation_type); 8943 } 8944 } 8945 8946 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8947 !is_vmware_backdoor_opcode(ctxt)) { 8948 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8949 return 1; 8950 } 8951 8952 /* 8953 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8954 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8955 * The caller is responsible for updating interruptibility state and 8956 * injecting single-step #DBs. 8957 */ 8958 if (emulation_type & EMULTYPE_SKIP) { 8959 if (ctxt->mode != X86EMUL_MODE_PROT64) 8960 ctxt->eip = (u32)ctxt->_eip; 8961 else 8962 ctxt->eip = ctxt->_eip; 8963 8964 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8965 r = 1; 8966 goto writeback; 8967 } 8968 8969 kvm_rip_write(vcpu, ctxt->eip); 8970 if (ctxt->eflags & X86_EFLAGS_RF) 8971 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8972 return 1; 8973 } 8974 8975 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8976 return 1; 8977 8978 /* this is needed for vmware backdoor interface to work since it 8979 changes registers values during IO operation */ 8980 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8981 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8982 emulator_invalidate_register_cache(ctxt); 8983 } 8984 8985 restart: 8986 if (emulation_type & EMULTYPE_PF) { 8987 /* Save the faulting GPA (cr2) in the address field */ 8988 ctxt->exception.address = cr2_or_gpa; 8989 8990 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8991 if (vcpu->arch.mmu->root_role.direct) { 8992 ctxt->gpa_available = true; 8993 ctxt->gpa_val = cr2_or_gpa; 8994 } 8995 } else { 8996 /* Sanitize the address out of an abundance of paranoia. */ 8997 ctxt->exception.address = 0; 8998 } 8999 9000 r = x86_emulate_insn(ctxt); 9001 9002 if (r == EMULATION_INTERCEPTED) 9003 return 1; 9004 9005 if (r == EMULATION_FAILED) { 9006 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9007 return 1; 9008 9009 return handle_emulation_failure(vcpu, emulation_type); 9010 } 9011 9012 if (ctxt->have_exception) { 9013 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9014 vcpu->mmio_needed = false; 9015 r = 1; 9016 inject_emulated_exception(vcpu); 9017 } else if (vcpu->arch.pio.count) { 9018 if (!vcpu->arch.pio.in) { 9019 /* FIXME: return into emulator if single-stepping. */ 9020 vcpu->arch.pio.count = 0; 9021 } else { 9022 writeback = false; 9023 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9024 } 9025 r = 0; 9026 } else if (vcpu->mmio_needed) { 9027 ++vcpu->stat.mmio_exits; 9028 9029 if (!vcpu->mmio_is_write) 9030 writeback = false; 9031 r = 0; 9032 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9033 } else if (vcpu->arch.complete_userspace_io) { 9034 writeback = false; 9035 r = 0; 9036 } else if (r == EMULATION_RESTART) 9037 goto restart; 9038 else 9039 r = 1; 9040 9041 writeback: 9042 if (writeback) { 9043 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9044 toggle_interruptibility(vcpu, ctxt->interruptibility); 9045 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9046 9047 /* 9048 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9049 * only supports code breakpoints and general detect #DB, both 9050 * of which are fault-like. 9051 */ 9052 if (!ctxt->have_exception || 9053 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9054 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9055 if (ctxt->is_branch) 9056 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9057 kvm_rip_write(vcpu, ctxt->eip); 9058 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9059 r = kvm_vcpu_do_singlestep(vcpu); 9060 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9061 __kvm_set_rflags(vcpu, ctxt->eflags); 9062 } 9063 9064 /* 9065 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9066 * do nothing, and it will be requested again as soon as 9067 * the shadow expires. But we still need to check here, 9068 * because POPF has no interrupt shadow. 9069 */ 9070 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9071 kvm_make_request(KVM_REQ_EVENT, vcpu); 9072 } else 9073 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9074 9075 return r; 9076 } 9077 9078 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9079 { 9080 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9081 } 9082 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9083 9084 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9085 void *insn, int insn_len) 9086 { 9087 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9088 } 9089 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9090 9091 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9092 { 9093 vcpu->arch.pio.count = 0; 9094 return 1; 9095 } 9096 9097 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9098 { 9099 vcpu->arch.pio.count = 0; 9100 9101 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9102 return 1; 9103 9104 return kvm_skip_emulated_instruction(vcpu); 9105 } 9106 9107 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9108 unsigned short port) 9109 { 9110 unsigned long val = kvm_rax_read(vcpu); 9111 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9112 9113 if (ret) 9114 return ret; 9115 9116 /* 9117 * Workaround userspace that relies on old KVM behavior of %rip being 9118 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9119 */ 9120 if (port == 0x7e && 9121 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9122 vcpu->arch.complete_userspace_io = 9123 complete_fast_pio_out_port_0x7e; 9124 kvm_skip_emulated_instruction(vcpu); 9125 } else { 9126 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9127 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9128 } 9129 return 0; 9130 } 9131 9132 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9133 { 9134 unsigned long val; 9135 9136 /* We should only ever be called with arch.pio.count equal to 1 */ 9137 BUG_ON(vcpu->arch.pio.count != 1); 9138 9139 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9140 vcpu->arch.pio.count = 0; 9141 return 1; 9142 } 9143 9144 /* For size less than 4 we merge, else we zero extend */ 9145 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9146 9147 complete_emulator_pio_in(vcpu, &val); 9148 kvm_rax_write(vcpu, val); 9149 9150 return kvm_skip_emulated_instruction(vcpu); 9151 } 9152 9153 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9154 unsigned short port) 9155 { 9156 unsigned long val; 9157 int ret; 9158 9159 /* For size less than 4 we merge, else we zero extend */ 9160 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9161 9162 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9163 if (ret) { 9164 kvm_rax_write(vcpu, val); 9165 return ret; 9166 } 9167 9168 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9169 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9170 9171 return 0; 9172 } 9173 9174 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9175 { 9176 int ret; 9177 9178 if (in) 9179 ret = kvm_fast_pio_in(vcpu, size, port); 9180 else 9181 ret = kvm_fast_pio_out(vcpu, size, port); 9182 return ret && kvm_skip_emulated_instruction(vcpu); 9183 } 9184 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9185 9186 static int kvmclock_cpu_down_prep(unsigned int cpu) 9187 { 9188 __this_cpu_write(cpu_tsc_khz, 0); 9189 return 0; 9190 } 9191 9192 static void tsc_khz_changed(void *data) 9193 { 9194 struct cpufreq_freqs *freq = data; 9195 unsigned long khz; 9196 9197 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9198 9199 if (data) 9200 khz = freq->new; 9201 else 9202 khz = cpufreq_quick_get(raw_smp_processor_id()); 9203 if (!khz) 9204 khz = tsc_khz; 9205 __this_cpu_write(cpu_tsc_khz, khz); 9206 } 9207 9208 #ifdef CONFIG_X86_64 9209 static void kvm_hyperv_tsc_notifier(void) 9210 { 9211 struct kvm *kvm; 9212 int cpu; 9213 9214 mutex_lock(&kvm_lock); 9215 list_for_each_entry(kvm, &vm_list, vm_list) 9216 kvm_make_mclock_inprogress_request(kvm); 9217 9218 /* no guest entries from this point */ 9219 hyperv_stop_tsc_emulation(); 9220 9221 /* TSC frequency always matches when on Hyper-V */ 9222 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9223 for_each_present_cpu(cpu) 9224 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9225 } 9226 kvm_caps.max_guest_tsc_khz = tsc_khz; 9227 9228 list_for_each_entry(kvm, &vm_list, vm_list) { 9229 __kvm_start_pvclock_update(kvm); 9230 pvclock_update_vm_gtod_copy(kvm); 9231 kvm_end_pvclock_update(kvm); 9232 } 9233 9234 mutex_unlock(&kvm_lock); 9235 } 9236 #endif 9237 9238 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9239 { 9240 struct kvm *kvm; 9241 struct kvm_vcpu *vcpu; 9242 int send_ipi = 0; 9243 unsigned long i; 9244 9245 /* 9246 * We allow guests to temporarily run on slowing clocks, 9247 * provided we notify them after, or to run on accelerating 9248 * clocks, provided we notify them before. Thus time never 9249 * goes backwards. 9250 * 9251 * However, we have a problem. We can't atomically update 9252 * the frequency of a given CPU from this function; it is 9253 * merely a notifier, which can be called from any CPU. 9254 * Changing the TSC frequency at arbitrary points in time 9255 * requires a recomputation of local variables related to 9256 * the TSC for each VCPU. We must flag these local variables 9257 * to be updated and be sure the update takes place with the 9258 * new frequency before any guests proceed. 9259 * 9260 * Unfortunately, the combination of hotplug CPU and frequency 9261 * change creates an intractable locking scenario; the order 9262 * of when these callouts happen is undefined with respect to 9263 * CPU hotplug, and they can race with each other. As such, 9264 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9265 * undefined; you can actually have a CPU frequency change take 9266 * place in between the computation of X and the setting of the 9267 * variable. To protect against this problem, all updates of 9268 * the per_cpu tsc_khz variable are done in an interrupt 9269 * protected IPI, and all callers wishing to update the value 9270 * must wait for a synchronous IPI to complete (which is trivial 9271 * if the caller is on the CPU already). This establishes the 9272 * necessary total order on variable updates. 9273 * 9274 * Note that because a guest time update may take place 9275 * anytime after the setting of the VCPU's request bit, the 9276 * correct TSC value must be set before the request. However, 9277 * to ensure the update actually makes it to any guest which 9278 * starts running in hardware virtualization between the set 9279 * and the acquisition of the spinlock, we must also ping the 9280 * CPU after setting the request bit. 9281 * 9282 */ 9283 9284 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9285 9286 mutex_lock(&kvm_lock); 9287 list_for_each_entry(kvm, &vm_list, vm_list) { 9288 kvm_for_each_vcpu(i, vcpu, kvm) { 9289 if (vcpu->cpu != cpu) 9290 continue; 9291 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9292 if (vcpu->cpu != raw_smp_processor_id()) 9293 send_ipi = 1; 9294 } 9295 } 9296 mutex_unlock(&kvm_lock); 9297 9298 if (freq->old < freq->new && send_ipi) { 9299 /* 9300 * We upscale the frequency. Must make the guest 9301 * doesn't see old kvmclock values while running with 9302 * the new frequency, otherwise we risk the guest sees 9303 * time go backwards. 9304 * 9305 * In case we update the frequency for another cpu 9306 * (which might be in guest context) send an interrupt 9307 * to kick the cpu out of guest context. Next time 9308 * guest context is entered kvmclock will be updated, 9309 * so the guest will not see stale values. 9310 */ 9311 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9312 } 9313 } 9314 9315 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9316 void *data) 9317 { 9318 struct cpufreq_freqs *freq = data; 9319 int cpu; 9320 9321 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9322 return 0; 9323 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9324 return 0; 9325 9326 for_each_cpu(cpu, freq->policy->cpus) 9327 __kvmclock_cpufreq_notifier(freq, cpu); 9328 9329 return 0; 9330 } 9331 9332 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9333 .notifier_call = kvmclock_cpufreq_notifier 9334 }; 9335 9336 static int kvmclock_cpu_online(unsigned int cpu) 9337 { 9338 tsc_khz_changed(NULL); 9339 return 0; 9340 } 9341 9342 static void kvm_timer_init(void) 9343 { 9344 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9345 max_tsc_khz = tsc_khz; 9346 9347 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9348 struct cpufreq_policy *policy; 9349 int cpu; 9350 9351 cpu = get_cpu(); 9352 policy = cpufreq_cpu_get(cpu); 9353 if (policy) { 9354 if (policy->cpuinfo.max_freq) 9355 max_tsc_khz = policy->cpuinfo.max_freq; 9356 cpufreq_cpu_put(policy); 9357 } 9358 put_cpu(); 9359 } 9360 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9361 CPUFREQ_TRANSITION_NOTIFIER); 9362 9363 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9364 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9365 } 9366 } 9367 9368 #ifdef CONFIG_X86_64 9369 static void pvclock_gtod_update_fn(struct work_struct *work) 9370 { 9371 struct kvm *kvm; 9372 struct kvm_vcpu *vcpu; 9373 unsigned long i; 9374 9375 mutex_lock(&kvm_lock); 9376 list_for_each_entry(kvm, &vm_list, vm_list) 9377 kvm_for_each_vcpu(i, vcpu, kvm) 9378 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9379 atomic_set(&kvm_guest_has_master_clock, 0); 9380 mutex_unlock(&kvm_lock); 9381 } 9382 9383 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9384 9385 /* 9386 * Indirection to move queue_work() out of the tk_core.seq write held 9387 * region to prevent possible deadlocks against time accessors which 9388 * are invoked with work related locks held. 9389 */ 9390 static void pvclock_irq_work_fn(struct irq_work *w) 9391 { 9392 queue_work(system_long_wq, &pvclock_gtod_work); 9393 } 9394 9395 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9396 9397 /* 9398 * Notification about pvclock gtod data update. 9399 */ 9400 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9401 void *priv) 9402 { 9403 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9404 struct timekeeper *tk = priv; 9405 9406 update_pvclock_gtod(tk); 9407 9408 /* 9409 * Disable master clock if host does not trust, or does not use, 9410 * TSC based clocksource. Delegate queue_work() to irq_work as 9411 * this is invoked with tk_core.seq write held. 9412 */ 9413 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9414 atomic_read(&kvm_guest_has_master_clock) != 0) 9415 irq_work_queue(&pvclock_irq_work); 9416 return 0; 9417 } 9418 9419 static struct notifier_block pvclock_gtod_notifier = { 9420 .notifier_call = pvclock_gtod_notify, 9421 }; 9422 #endif 9423 9424 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9425 { 9426 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9427 9428 #define __KVM_X86_OP(func) \ 9429 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9430 #define KVM_X86_OP(func) \ 9431 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9432 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9433 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9434 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9435 (void *)__static_call_return0); 9436 #include <asm/kvm-x86-ops.h> 9437 #undef __KVM_X86_OP 9438 9439 kvm_pmu_ops_update(ops->pmu_ops); 9440 } 9441 9442 static int kvm_x86_check_processor_compatibility(void) 9443 { 9444 int cpu = smp_processor_id(); 9445 struct cpuinfo_x86 *c = &cpu_data(cpu); 9446 9447 /* 9448 * Compatibility checks are done when loading KVM and when enabling 9449 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9450 * compatible, i.e. KVM should never perform a compatibility check on 9451 * an offline CPU. 9452 */ 9453 WARN_ON(!cpu_online(cpu)); 9454 9455 if (__cr4_reserved_bits(cpu_has, c) != 9456 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9457 return -EIO; 9458 9459 return static_call(kvm_x86_check_processor_compatibility)(); 9460 } 9461 9462 static void kvm_x86_check_cpu_compat(void *ret) 9463 { 9464 *(int *)ret = kvm_x86_check_processor_compatibility(); 9465 } 9466 9467 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9468 { 9469 u64 host_pat; 9470 int r, cpu; 9471 9472 if (kvm_x86_ops.hardware_enable) { 9473 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9474 return -EEXIST; 9475 } 9476 9477 /* 9478 * KVM explicitly assumes that the guest has an FPU and 9479 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9480 * vCPU's FPU state as a fxregs_state struct. 9481 */ 9482 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9483 pr_err("inadequate fpu\n"); 9484 return -EOPNOTSUPP; 9485 } 9486 9487 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9488 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9489 return -EOPNOTSUPP; 9490 } 9491 9492 /* 9493 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9494 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9495 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9496 * with an exception. PAT[0] is set to WB on RESET and also by the 9497 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9498 */ 9499 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9500 (host_pat & GENMASK(2, 0)) != 6) { 9501 pr_err("host PAT[0] is not WB\n"); 9502 return -EIO; 9503 } 9504 9505 x86_emulator_cache = kvm_alloc_emulator_cache(); 9506 if (!x86_emulator_cache) { 9507 pr_err("failed to allocate cache for x86 emulator\n"); 9508 return -ENOMEM; 9509 } 9510 9511 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9512 if (!user_return_msrs) { 9513 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9514 r = -ENOMEM; 9515 goto out_free_x86_emulator_cache; 9516 } 9517 kvm_nr_uret_msrs = 0; 9518 9519 r = kvm_mmu_vendor_module_init(); 9520 if (r) 9521 goto out_free_percpu; 9522 9523 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9524 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9525 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9526 } 9527 9528 rdmsrl_safe(MSR_EFER, &host_efer); 9529 9530 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9531 rdmsrl(MSR_IA32_XSS, host_xss); 9532 9533 kvm_init_pmu_capability(ops->pmu_ops); 9534 9535 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9536 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9537 9538 r = ops->hardware_setup(); 9539 if (r != 0) 9540 goto out_mmu_exit; 9541 9542 kvm_ops_update(ops); 9543 9544 for_each_online_cpu(cpu) { 9545 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9546 if (r < 0) 9547 goto out_unwind_ops; 9548 } 9549 9550 /* 9551 * Point of no return! DO NOT add error paths below this point unless 9552 * absolutely necessary, as most operations from this point forward 9553 * require unwinding. 9554 */ 9555 kvm_timer_init(); 9556 9557 if (pi_inject_timer == -1) 9558 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9559 #ifdef CONFIG_X86_64 9560 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9561 9562 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9563 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9564 #endif 9565 9566 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9567 9568 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9569 kvm_caps.supported_xss = 0; 9570 9571 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9572 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9573 #undef __kvm_cpu_cap_has 9574 9575 if (kvm_caps.has_tsc_control) { 9576 /* 9577 * Make sure the user can only configure tsc_khz values that 9578 * fit into a signed integer. 9579 * A min value is not calculated because it will always 9580 * be 1 on all machines. 9581 */ 9582 u64 max = min(0x7fffffffULL, 9583 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9584 kvm_caps.max_guest_tsc_khz = max; 9585 } 9586 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9587 kvm_init_msr_lists(); 9588 return 0; 9589 9590 out_unwind_ops: 9591 kvm_x86_ops.hardware_enable = NULL; 9592 static_call(kvm_x86_hardware_unsetup)(); 9593 out_mmu_exit: 9594 kvm_mmu_vendor_module_exit(); 9595 out_free_percpu: 9596 free_percpu(user_return_msrs); 9597 out_free_x86_emulator_cache: 9598 kmem_cache_destroy(x86_emulator_cache); 9599 return r; 9600 } 9601 9602 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9603 { 9604 int r; 9605 9606 mutex_lock(&vendor_module_lock); 9607 r = __kvm_x86_vendor_init(ops); 9608 mutex_unlock(&vendor_module_lock); 9609 9610 return r; 9611 } 9612 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9613 9614 void kvm_x86_vendor_exit(void) 9615 { 9616 kvm_unregister_perf_callbacks(); 9617 9618 #ifdef CONFIG_X86_64 9619 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9620 clear_hv_tscchange_cb(); 9621 #endif 9622 kvm_lapic_exit(); 9623 9624 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9625 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9626 CPUFREQ_TRANSITION_NOTIFIER); 9627 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9628 } 9629 #ifdef CONFIG_X86_64 9630 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9631 irq_work_sync(&pvclock_irq_work); 9632 cancel_work_sync(&pvclock_gtod_work); 9633 #endif 9634 static_call(kvm_x86_hardware_unsetup)(); 9635 kvm_mmu_vendor_module_exit(); 9636 free_percpu(user_return_msrs); 9637 kmem_cache_destroy(x86_emulator_cache); 9638 #ifdef CONFIG_KVM_XEN 9639 static_key_deferred_flush(&kvm_xen_enabled); 9640 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9641 #endif 9642 mutex_lock(&vendor_module_lock); 9643 kvm_x86_ops.hardware_enable = NULL; 9644 mutex_unlock(&vendor_module_lock); 9645 } 9646 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9647 9648 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9649 { 9650 /* 9651 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9652 * local APIC is in-kernel, the run loop will detect the non-runnable 9653 * state and halt the vCPU. Exit to userspace if the local APIC is 9654 * managed by userspace, in which case userspace is responsible for 9655 * handling wake events. 9656 */ 9657 ++vcpu->stat.halt_exits; 9658 if (lapic_in_kernel(vcpu)) { 9659 vcpu->arch.mp_state = state; 9660 return 1; 9661 } else { 9662 vcpu->run->exit_reason = reason; 9663 return 0; 9664 } 9665 } 9666 9667 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9668 { 9669 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9670 } 9671 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9672 9673 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9674 { 9675 int ret = kvm_skip_emulated_instruction(vcpu); 9676 /* 9677 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9678 * KVM_EXIT_DEBUG here. 9679 */ 9680 return kvm_emulate_halt_noskip(vcpu) && ret; 9681 } 9682 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9683 9684 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9685 { 9686 int ret = kvm_skip_emulated_instruction(vcpu); 9687 9688 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9689 KVM_EXIT_AP_RESET_HOLD) && ret; 9690 } 9691 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9692 9693 #ifdef CONFIG_X86_64 9694 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9695 unsigned long clock_type) 9696 { 9697 struct kvm_clock_pairing clock_pairing; 9698 struct timespec64 ts; 9699 u64 cycle; 9700 int ret; 9701 9702 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9703 return -KVM_EOPNOTSUPP; 9704 9705 /* 9706 * When tsc is in permanent catchup mode guests won't be able to use 9707 * pvclock_read_retry loop to get consistent view of pvclock 9708 */ 9709 if (vcpu->arch.tsc_always_catchup) 9710 return -KVM_EOPNOTSUPP; 9711 9712 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9713 return -KVM_EOPNOTSUPP; 9714 9715 clock_pairing.sec = ts.tv_sec; 9716 clock_pairing.nsec = ts.tv_nsec; 9717 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9718 clock_pairing.flags = 0; 9719 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9720 9721 ret = 0; 9722 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9723 sizeof(struct kvm_clock_pairing))) 9724 ret = -KVM_EFAULT; 9725 9726 return ret; 9727 } 9728 #endif 9729 9730 /* 9731 * kvm_pv_kick_cpu_op: Kick a vcpu. 9732 * 9733 * @apicid - apicid of vcpu to be kicked. 9734 */ 9735 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9736 { 9737 /* 9738 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9739 * common code, e.g. for tracing. Defer initialization to the compiler. 9740 */ 9741 struct kvm_lapic_irq lapic_irq = { 9742 .delivery_mode = APIC_DM_REMRD, 9743 .dest_mode = APIC_DEST_PHYSICAL, 9744 .shorthand = APIC_DEST_NOSHORT, 9745 .dest_id = apicid, 9746 }; 9747 9748 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9749 } 9750 9751 bool kvm_apicv_activated(struct kvm *kvm) 9752 { 9753 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9754 } 9755 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9756 9757 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9758 { 9759 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9760 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9761 9762 return (vm_reasons | vcpu_reasons) == 0; 9763 } 9764 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9765 9766 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9767 enum kvm_apicv_inhibit reason, bool set) 9768 { 9769 if (set) 9770 __set_bit(reason, inhibits); 9771 else 9772 __clear_bit(reason, inhibits); 9773 9774 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9775 } 9776 9777 static void kvm_apicv_init(struct kvm *kvm) 9778 { 9779 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9780 9781 init_rwsem(&kvm->arch.apicv_update_lock); 9782 9783 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9784 9785 if (!enable_apicv) 9786 set_or_clear_apicv_inhibit(inhibits, 9787 APICV_INHIBIT_REASON_DISABLE, true); 9788 } 9789 9790 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9791 { 9792 struct kvm_vcpu *target = NULL; 9793 struct kvm_apic_map *map; 9794 9795 vcpu->stat.directed_yield_attempted++; 9796 9797 if (single_task_running()) 9798 goto no_yield; 9799 9800 rcu_read_lock(); 9801 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9802 9803 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9804 target = map->phys_map[dest_id]->vcpu; 9805 9806 rcu_read_unlock(); 9807 9808 if (!target || !READ_ONCE(target->ready)) 9809 goto no_yield; 9810 9811 /* Ignore requests to yield to self */ 9812 if (vcpu == target) 9813 goto no_yield; 9814 9815 if (kvm_vcpu_yield_to(target) <= 0) 9816 goto no_yield; 9817 9818 vcpu->stat.directed_yield_successful++; 9819 9820 no_yield: 9821 return; 9822 } 9823 9824 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9825 { 9826 u64 ret = vcpu->run->hypercall.ret; 9827 9828 if (!is_64_bit_mode(vcpu)) 9829 ret = (u32)ret; 9830 kvm_rax_write(vcpu, ret); 9831 ++vcpu->stat.hypercalls; 9832 return kvm_skip_emulated_instruction(vcpu); 9833 } 9834 9835 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9836 { 9837 unsigned long nr, a0, a1, a2, a3, ret; 9838 int op_64_bit; 9839 9840 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9841 return kvm_xen_hypercall(vcpu); 9842 9843 if (kvm_hv_hypercall_enabled(vcpu)) 9844 return kvm_hv_hypercall(vcpu); 9845 9846 nr = kvm_rax_read(vcpu); 9847 a0 = kvm_rbx_read(vcpu); 9848 a1 = kvm_rcx_read(vcpu); 9849 a2 = kvm_rdx_read(vcpu); 9850 a3 = kvm_rsi_read(vcpu); 9851 9852 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9853 9854 op_64_bit = is_64_bit_hypercall(vcpu); 9855 if (!op_64_bit) { 9856 nr &= 0xFFFFFFFF; 9857 a0 &= 0xFFFFFFFF; 9858 a1 &= 0xFFFFFFFF; 9859 a2 &= 0xFFFFFFFF; 9860 a3 &= 0xFFFFFFFF; 9861 } 9862 9863 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9864 ret = -KVM_EPERM; 9865 goto out; 9866 } 9867 9868 ret = -KVM_ENOSYS; 9869 9870 switch (nr) { 9871 case KVM_HC_VAPIC_POLL_IRQ: 9872 ret = 0; 9873 break; 9874 case KVM_HC_KICK_CPU: 9875 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9876 break; 9877 9878 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9879 kvm_sched_yield(vcpu, a1); 9880 ret = 0; 9881 break; 9882 #ifdef CONFIG_X86_64 9883 case KVM_HC_CLOCK_PAIRING: 9884 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9885 break; 9886 #endif 9887 case KVM_HC_SEND_IPI: 9888 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9889 break; 9890 9891 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9892 break; 9893 case KVM_HC_SCHED_YIELD: 9894 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9895 break; 9896 9897 kvm_sched_yield(vcpu, a0); 9898 ret = 0; 9899 break; 9900 case KVM_HC_MAP_GPA_RANGE: { 9901 u64 gpa = a0, npages = a1, attrs = a2; 9902 9903 ret = -KVM_ENOSYS; 9904 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9905 break; 9906 9907 if (!PAGE_ALIGNED(gpa) || !npages || 9908 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9909 ret = -KVM_EINVAL; 9910 break; 9911 } 9912 9913 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9914 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9915 vcpu->run->hypercall.args[0] = gpa; 9916 vcpu->run->hypercall.args[1] = npages; 9917 vcpu->run->hypercall.args[2] = attrs; 9918 vcpu->run->hypercall.flags = 0; 9919 if (op_64_bit) 9920 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9921 9922 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9923 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9924 return 0; 9925 } 9926 default: 9927 ret = -KVM_ENOSYS; 9928 break; 9929 } 9930 out: 9931 if (!op_64_bit) 9932 ret = (u32)ret; 9933 kvm_rax_write(vcpu, ret); 9934 9935 ++vcpu->stat.hypercalls; 9936 return kvm_skip_emulated_instruction(vcpu); 9937 } 9938 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9939 9940 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9941 { 9942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9943 char instruction[3]; 9944 unsigned long rip = kvm_rip_read(vcpu); 9945 9946 /* 9947 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9948 * the pieces. 9949 */ 9950 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9951 ctxt->exception.error_code_valid = false; 9952 ctxt->exception.vector = UD_VECTOR; 9953 ctxt->have_exception = true; 9954 return X86EMUL_PROPAGATE_FAULT; 9955 } 9956 9957 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9958 9959 return emulator_write_emulated(ctxt, rip, instruction, 3, 9960 &ctxt->exception); 9961 } 9962 9963 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9964 { 9965 return vcpu->run->request_interrupt_window && 9966 likely(!pic_in_kernel(vcpu->kvm)); 9967 } 9968 9969 /* Called within kvm->srcu read side. */ 9970 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9971 { 9972 struct kvm_run *kvm_run = vcpu->run; 9973 9974 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9975 kvm_run->cr8 = kvm_get_cr8(vcpu); 9976 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9977 9978 kvm_run->ready_for_interrupt_injection = 9979 pic_in_kernel(vcpu->kvm) || 9980 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9981 9982 if (is_smm(vcpu)) 9983 kvm_run->flags |= KVM_RUN_X86_SMM; 9984 } 9985 9986 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9987 { 9988 int max_irr, tpr; 9989 9990 if (!kvm_x86_ops.update_cr8_intercept) 9991 return; 9992 9993 if (!lapic_in_kernel(vcpu)) 9994 return; 9995 9996 if (vcpu->arch.apic->apicv_active) 9997 return; 9998 9999 if (!vcpu->arch.apic->vapic_addr) 10000 max_irr = kvm_lapic_find_highest_irr(vcpu); 10001 else 10002 max_irr = -1; 10003 10004 if (max_irr != -1) 10005 max_irr >>= 4; 10006 10007 tpr = kvm_lapic_get_cr8(vcpu); 10008 10009 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10010 } 10011 10012 10013 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10014 { 10015 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10016 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10017 return 1; 10018 } 10019 10020 return kvm_x86_ops.nested_ops->check_events(vcpu); 10021 } 10022 10023 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10024 { 10025 /* 10026 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10027 * exceptions don't report error codes. The presence of an error code 10028 * is carried with the exception and only stripped when the exception 10029 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10030 * report an error code despite the CPU being in Real Mode. 10031 */ 10032 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10033 10034 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10035 vcpu->arch.exception.has_error_code, 10036 vcpu->arch.exception.error_code, 10037 vcpu->arch.exception.injected); 10038 10039 static_call(kvm_x86_inject_exception)(vcpu); 10040 } 10041 10042 /* 10043 * Check for any event (interrupt or exception) that is ready to be injected, 10044 * and if there is at least one event, inject the event with the highest 10045 * priority. This handles both "pending" events, i.e. events that have never 10046 * been injected into the guest, and "injected" events, i.e. events that were 10047 * injected as part of a previous VM-Enter, but weren't successfully delivered 10048 * and need to be re-injected. 10049 * 10050 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10051 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10052 * be able to inject exceptions in the "middle" of an instruction, and so must 10053 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10054 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10055 * boundaries is necessary and correct. 10056 * 10057 * For simplicity, KVM uses a single path to inject all events (except events 10058 * that are injected directly from L1 to L2) and doesn't explicitly track 10059 * instruction boundaries for asynchronous events. However, because VM-Exits 10060 * that can occur during instruction execution typically result in KVM skipping 10061 * the instruction or injecting an exception, e.g. instruction and exception 10062 * intercepts, and because pending exceptions have higher priority than pending 10063 * interrupts, KVM still honors instruction boundaries in most scenarios. 10064 * 10065 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10066 * the instruction or inject an exception, then KVM can incorrecty inject a new 10067 * asynchrounous event if the event became pending after the CPU fetched the 10068 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10069 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10070 * injected on the restarted instruction instead of being deferred until the 10071 * instruction completes. 10072 * 10073 * In practice, this virtualization hole is unlikely to be observed by the 10074 * guest, and even less likely to cause functional problems. To detect the 10075 * hole, the guest would have to trigger an event on a side effect of an early 10076 * phase of instruction execution, e.g. on the instruction fetch from memory. 10077 * And for it to be a functional problem, the guest would need to depend on the 10078 * ordering between that side effect, the instruction completing, _and_ the 10079 * delivery of the asynchronous event. 10080 */ 10081 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10082 bool *req_immediate_exit) 10083 { 10084 bool can_inject; 10085 int r; 10086 10087 /* 10088 * Process nested events first, as nested VM-Exit supercedes event 10089 * re-injection. If there's an event queued for re-injection, it will 10090 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10091 */ 10092 if (is_guest_mode(vcpu)) 10093 r = kvm_check_nested_events(vcpu); 10094 else 10095 r = 0; 10096 10097 /* 10098 * Re-inject exceptions and events *especially* if immediate entry+exit 10099 * to/from L2 is needed, as any event that has already been injected 10100 * into L2 needs to complete its lifecycle before injecting a new event. 10101 * 10102 * Don't re-inject an NMI or interrupt if there is a pending exception. 10103 * This collision arises if an exception occurred while vectoring the 10104 * injected event, KVM intercepted said exception, and KVM ultimately 10105 * determined the fault belongs to the guest and queues the exception 10106 * for injection back into the guest. 10107 * 10108 * "Injected" interrupts can also collide with pending exceptions if 10109 * userspace ignores the "ready for injection" flag and blindly queues 10110 * an interrupt. In that case, prioritizing the exception is correct, 10111 * as the exception "occurred" before the exit to userspace. Trap-like 10112 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10113 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10114 * priority, they're only generated (pended) during instruction 10115 * execution, and interrupts are recognized at instruction boundaries. 10116 * Thus a pending fault-like exception means the fault occurred on the 10117 * *previous* instruction and must be serviced prior to recognizing any 10118 * new events in order to fully complete the previous instruction. 10119 */ 10120 if (vcpu->arch.exception.injected) 10121 kvm_inject_exception(vcpu); 10122 else if (kvm_is_exception_pending(vcpu)) 10123 ; /* see above */ 10124 else if (vcpu->arch.nmi_injected) 10125 static_call(kvm_x86_inject_nmi)(vcpu); 10126 else if (vcpu->arch.interrupt.injected) 10127 static_call(kvm_x86_inject_irq)(vcpu, true); 10128 10129 /* 10130 * Exceptions that morph to VM-Exits are handled above, and pending 10131 * exceptions on top of injected exceptions that do not VM-Exit should 10132 * either morph to #DF or, sadly, override the injected exception. 10133 */ 10134 WARN_ON_ONCE(vcpu->arch.exception.injected && 10135 vcpu->arch.exception.pending); 10136 10137 /* 10138 * Bail if immediate entry+exit to/from the guest is needed to complete 10139 * nested VM-Enter or event re-injection so that a different pending 10140 * event can be serviced (or if KVM needs to exit to userspace). 10141 * 10142 * Otherwise, continue processing events even if VM-Exit occurred. The 10143 * VM-Exit will have cleared exceptions that were meant for L2, but 10144 * there may now be events that can be injected into L1. 10145 */ 10146 if (r < 0) 10147 goto out; 10148 10149 /* 10150 * A pending exception VM-Exit should either result in nested VM-Exit 10151 * or force an immediate re-entry and exit to/from L2, and exception 10152 * VM-Exits cannot be injected (flag should _never_ be set). 10153 */ 10154 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10155 vcpu->arch.exception_vmexit.pending); 10156 10157 /* 10158 * New events, other than exceptions, cannot be injected if KVM needs 10159 * to re-inject a previous event. See above comments on re-injecting 10160 * for why pending exceptions get priority. 10161 */ 10162 can_inject = !kvm_event_needs_reinjection(vcpu); 10163 10164 if (vcpu->arch.exception.pending) { 10165 /* 10166 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10167 * value pushed on the stack. Trap-like exception and all #DBs 10168 * leave RF as-is (KVM follows Intel's behavior in this regard; 10169 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10170 * 10171 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10172 * describe the behavior of General Detect #DBs, which are 10173 * fault-like. They do _not_ set RF, a la code breakpoints. 10174 */ 10175 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10176 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10177 X86_EFLAGS_RF); 10178 10179 if (vcpu->arch.exception.vector == DB_VECTOR) { 10180 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10181 if (vcpu->arch.dr7 & DR7_GD) { 10182 vcpu->arch.dr7 &= ~DR7_GD; 10183 kvm_update_dr7(vcpu); 10184 } 10185 } 10186 10187 kvm_inject_exception(vcpu); 10188 10189 vcpu->arch.exception.pending = false; 10190 vcpu->arch.exception.injected = true; 10191 10192 can_inject = false; 10193 } 10194 10195 /* Don't inject interrupts if the user asked to avoid doing so */ 10196 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10197 return 0; 10198 10199 /* 10200 * Finally, inject interrupt events. If an event cannot be injected 10201 * due to architectural conditions (e.g. IF=0) a window-open exit 10202 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10203 * and can architecturally be injected, but we cannot do it right now: 10204 * an interrupt could have arrived just now and we have to inject it 10205 * as a vmexit, or there could already an event in the queue, which is 10206 * indicated by can_inject. In that case we request an immediate exit 10207 * in order to make progress and get back here for another iteration. 10208 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10209 */ 10210 #ifdef CONFIG_KVM_SMM 10211 if (vcpu->arch.smi_pending) { 10212 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10213 if (r < 0) 10214 goto out; 10215 if (r) { 10216 vcpu->arch.smi_pending = false; 10217 ++vcpu->arch.smi_count; 10218 enter_smm(vcpu); 10219 can_inject = false; 10220 } else 10221 static_call(kvm_x86_enable_smi_window)(vcpu); 10222 } 10223 #endif 10224 10225 if (vcpu->arch.nmi_pending) { 10226 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10227 if (r < 0) 10228 goto out; 10229 if (r) { 10230 --vcpu->arch.nmi_pending; 10231 vcpu->arch.nmi_injected = true; 10232 static_call(kvm_x86_inject_nmi)(vcpu); 10233 can_inject = false; 10234 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10235 } 10236 if (vcpu->arch.nmi_pending) 10237 static_call(kvm_x86_enable_nmi_window)(vcpu); 10238 } 10239 10240 if (kvm_cpu_has_injectable_intr(vcpu)) { 10241 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10242 if (r < 0) 10243 goto out; 10244 if (r) { 10245 int irq = kvm_cpu_get_interrupt(vcpu); 10246 10247 if (!WARN_ON_ONCE(irq == -1)) { 10248 kvm_queue_interrupt(vcpu, irq, false); 10249 static_call(kvm_x86_inject_irq)(vcpu, false); 10250 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10251 } 10252 } 10253 if (kvm_cpu_has_injectable_intr(vcpu)) 10254 static_call(kvm_x86_enable_irq_window)(vcpu); 10255 } 10256 10257 if (is_guest_mode(vcpu) && 10258 kvm_x86_ops.nested_ops->has_events && 10259 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10260 *req_immediate_exit = true; 10261 10262 /* 10263 * KVM must never queue a new exception while injecting an event; KVM 10264 * is done emulating and should only propagate the to-be-injected event 10265 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10266 * infinite loop as KVM will bail from VM-Enter to inject the pending 10267 * exception and start the cycle all over. 10268 * 10269 * Exempt triple faults as they have special handling and won't put the 10270 * vCPU into an infinite loop. Triple fault can be queued when running 10271 * VMX without unrestricted guest, as that requires KVM to emulate Real 10272 * Mode events (see kvm_inject_realmode_interrupt()). 10273 */ 10274 WARN_ON_ONCE(vcpu->arch.exception.pending || 10275 vcpu->arch.exception_vmexit.pending); 10276 return 0; 10277 10278 out: 10279 if (r == -EBUSY) { 10280 *req_immediate_exit = true; 10281 r = 0; 10282 } 10283 return r; 10284 } 10285 10286 static void process_nmi(struct kvm_vcpu *vcpu) 10287 { 10288 unsigned int limit; 10289 10290 /* 10291 * x86 is limited to one NMI pending, but because KVM can't react to 10292 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10293 * scheduled out, KVM needs to play nice with two queued NMIs showing 10294 * up at the same time. To handle this scenario, allow two NMIs to be 10295 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10296 * waiting for a previous NMI injection to complete (which effectively 10297 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10298 * will request an NMI window to handle the second NMI. 10299 */ 10300 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10301 limit = 1; 10302 else 10303 limit = 2; 10304 10305 /* 10306 * Adjust the limit to account for pending virtual NMIs, which aren't 10307 * tracked in vcpu->arch.nmi_pending. 10308 */ 10309 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10310 limit--; 10311 10312 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10313 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10314 10315 if (vcpu->arch.nmi_pending && 10316 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10317 vcpu->arch.nmi_pending--; 10318 10319 if (vcpu->arch.nmi_pending) 10320 kvm_make_request(KVM_REQ_EVENT, vcpu); 10321 } 10322 10323 /* Return total number of NMIs pending injection to the VM */ 10324 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10325 { 10326 return vcpu->arch.nmi_pending + 10327 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10328 } 10329 10330 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10331 unsigned long *vcpu_bitmap) 10332 { 10333 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10334 } 10335 10336 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10337 { 10338 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10339 } 10340 10341 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10342 { 10343 struct kvm_lapic *apic = vcpu->arch.apic; 10344 bool activate; 10345 10346 if (!lapic_in_kernel(vcpu)) 10347 return; 10348 10349 down_read(&vcpu->kvm->arch.apicv_update_lock); 10350 preempt_disable(); 10351 10352 /* Do not activate APICV when APIC is disabled */ 10353 activate = kvm_vcpu_apicv_activated(vcpu) && 10354 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10355 10356 if (apic->apicv_active == activate) 10357 goto out; 10358 10359 apic->apicv_active = activate; 10360 kvm_apic_update_apicv(vcpu); 10361 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10362 10363 /* 10364 * When APICv gets disabled, we may still have injected interrupts 10365 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10366 * still active when the interrupt got accepted. Make sure 10367 * kvm_check_and_inject_events() is called to check for that. 10368 */ 10369 if (!apic->apicv_active) 10370 kvm_make_request(KVM_REQ_EVENT, vcpu); 10371 10372 out: 10373 preempt_enable(); 10374 up_read(&vcpu->kvm->arch.apicv_update_lock); 10375 } 10376 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10377 10378 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10379 { 10380 if (!lapic_in_kernel(vcpu)) 10381 return; 10382 10383 /* 10384 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10385 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10386 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10387 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10388 * this case so that KVM can the AVIC doorbell to inject interrupts to 10389 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10390 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10391 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10392 * access page is sticky. 10393 */ 10394 if (apic_x2apic_mode(vcpu->arch.apic) && 10395 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10396 kvm_inhibit_apic_access_page(vcpu); 10397 10398 __kvm_vcpu_update_apicv(vcpu); 10399 } 10400 10401 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10402 enum kvm_apicv_inhibit reason, bool set) 10403 { 10404 unsigned long old, new; 10405 10406 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10407 10408 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10409 return; 10410 10411 old = new = kvm->arch.apicv_inhibit_reasons; 10412 10413 set_or_clear_apicv_inhibit(&new, reason, set); 10414 10415 if (!!old != !!new) { 10416 /* 10417 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10418 * false positives in the sanity check WARN in svm_vcpu_run(). 10419 * This task will wait for all vCPUs to ack the kick IRQ before 10420 * updating apicv_inhibit_reasons, and all other vCPUs will 10421 * block on acquiring apicv_update_lock so that vCPUs can't 10422 * redo svm_vcpu_run() without seeing the new inhibit state. 10423 * 10424 * Note, holding apicv_update_lock and taking it in the read 10425 * side (handling the request) also prevents other vCPUs from 10426 * servicing the request with a stale apicv_inhibit_reasons. 10427 */ 10428 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10429 kvm->arch.apicv_inhibit_reasons = new; 10430 if (new) { 10431 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10432 int idx = srcu_read_lock(&kvm->srcu); 10433 10434 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10435 srcu_read_unlock(&kvm->srcu, idx); 10436 } 10437 } else { 10438 kvm->arch.apicv_inhibit_reasons = new; 10439 } 10440 } 10441 10442 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10443 enum kvm_apicv_inhibit reason, bool set) 10444 { 10445 if (!enable_apicv) 10446 return; 10447 10448 down_write(&kvm->arch.apicv_update_lock); 10449 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10450 up_write(&kvm->arch.apicv_update_lock); 10451 } 10452 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10453 10454 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10455 { 10456 if (!kvm_apic_present(vcpu)) 10457 return; 10458 10459 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10460 10461 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10462 10463 if (irqchip_split(vcpu->kvm)) 10464 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10465 else if (ioapic_in_kernel(vcpu->kvm)) 10466 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10467 10468 if (is_guest_mode(vcpu)) 10469 vcpu->arch.load_eoi_exitmap_pending = true; 10470 else 10471 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10472 } 10473 10474 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10475 { 10476 u64 eoi_exit_bitmap[4]; 10477 10478 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10479 return; 10480 10481 if (to_hv_vcpu(vcpu)) { 10482 bitmap_or((ulong *)eoi_exit_bitmap, 10483 vcpu->arch.ioapic_handled_vectors, 10484 to_hv_synic(vcpu)->vec_bitmap, 256); 10485 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10486 return; 10487 } 10488 10489 static_call_cond(kvm_x86_load_eoi_exitmap)( 10490 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10491 } 10492 10493 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10494 { 10495 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10496 } 10497 10498 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10499 { 10500 if (!lapic_in_kernel(vcpu)) 10501 return; 10502 10503 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10504 } 10505 10506 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10507 { 10508 smp_send_reschedule(vcpu->cpu); 10509 } 10510 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10511 10512 /* 10513 * Called within kvm->srcu read side. 10514 * Returns 1 to let vcpu_run() continue the guest execution loop without 10515 * exiting to the userspace. Otherwise, the value will be returned to the 10516 * userspace. 10517 */ 10518 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10519 { 10520 int r; 10521 bool req_int_win = 10522 dm_request_for_irq_injection(vcpu) && 10523 kvm_cpu_accept_dm_intr(vcpu); 10524 fastpath_t exit_fastpath; 10525 10526 bool req_immediate_exit = false; 10527 10528 if (kvm_request_pending(vcpu)) { 10529 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10530 r = -EIO; 10531 goto out; 10532 } 10533 10534 if (kvm_dirty_ring_check_request(vcpu)) { 10535 r = 0; 10536 goto out; 10537 } 10538 10539 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10540 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10541 r = 0; 10542 goto out; 10543 } 10544 } 10545 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10546 kvm_mmu_free_obsolete_roots(vcpu); 10547 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10548 __kvm_migrate_timers(vcpu); 10549 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10550 kvm_update_masterclock(vcpu->kvm); 10551 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10552 kvm_gen_kvmclock_update(vcpu); 10553 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10554 r = kvm_guest_time_update(vcpu); 10555 if (unlikely(r)) 10556 goto out; 10557 } 10558 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10559 kvm_mmu_sync_roots(vcpu); 10560 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10561 kvm_mmu_load_pgd(vcpu); 10562 10563 /* 10564 * Note, the order matters here, as flushing "all" TLB entries 10565 * also flushes the "current" TLB entries, i.e. servicing the 10566 * flush "all" will clear any request to flush "current". 10567 */ 10568 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10569 kvm_vcpu_flush_tlb_all(vcpu); 10570 10571 kvm_service_local_tlb_flush_requests(vcpu); 10572 10573 /* 10574 * Fall back to a "full" guest flush if Hyper-V's precise 10575 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10576 * the flushes are considered "remote" and not "local" because 10577 * the requests can be initiated from other vCPUs. 10578 */ 10579 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10580 kvm_hv_vcpu_flush_tlb(vcpu)) 10581 kvm_vcpu_flush_tlb_guest(vcpu); 10582 10583 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10584 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10585 r = 0; 10586 goto out; 10587 } 10588 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10589 if (is_guest_mode(vcpu)) 10590 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10591 10592 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10593 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10594 vcpu->mmio_needed = 0; 10595 r = 0; 10596 goto out; 10597 } 10598 } 10599 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10600 /* Page is swapped out. Do synthetic halt */ 10601 vcpu->arch.apf.halted = true; 10602 r = 1; 10603 goto out; 10604 } 10605 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10606 record_steal_time(vcpu); 10607 #ifdef CONFIG_KVM_SMM 10608 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10609 process_smi(vcpu); 10610 #endif 10611 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10612 process_nmi(vcpu); 10613 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10614 kvm_pmu_handle_event(vcpu); 10615 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10616 kvm_pmu_deliver_pmi(vcpu); 10617 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10618 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10619 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10620 vcpu->arch.ioapic_handled_vectors)) { 10621 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10622 vcpu->run->eoi.vector = 10623 vcpu->arch.pending_ioapic_eoi; 10624 r = 0; 10625 goto out; 10626 } 10627 } 10628 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10629 vcpu_scan_ioapic(vcpu); 10630 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10631 vcpu_load_eoi_exitmap(vcpu); 10632 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10633 kvm_vcpu_reload_apic_access_page(vcpu); 10634 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10635 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10636 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10637 vcpu->run->system_event.ndata = 0; 10638 r = 0; 10639 goto out; 10640 } 10641 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10642 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10643 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10644 vcpu->run->system_event.ndata = 0; 10645 r = 0; 10646 goto out; 10647 } 10648 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10649 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10650 10651 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10652 vcpu->run->hyperv = hv_vcpu->exit; 10653 r = 0; 10654 goto out; 10655 } 10656 10657 /* 10658 * KVM_REQ_HV_STIMER has to be processed after 10659 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10660 * depend on the guest clock being up-to-date 10661 */ 10662 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10663 kvm_hv_process_stimers(vcpu); 10664 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10665 kvm_vcpu_update_apicv(vcpu); 10666 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10667 kvm_check_async_pf_completion(vcpu); 10668 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10669 static_call(kvm_x86_msr_filter_changed)(vcpu); 10670 10671 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10672 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10673 } 10674 10675 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10676 kvm_xen_has_interrupt(vcpu)) { 10677 ++vcpu->stat.req_event; 10678 r = kvm_apic_accept_events(vcpu); 10679 if (r < 0) { 10680 r = 0; 10681 goto out; 10682 } 10683 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10684 r = 1; 10685 goto out; 10686 } 10687 10688 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10689 if (r < 0) { 10690 r = 0; 10691 goto out; 10692 } 10693 if (req_int_win) 10694 static_call(kvm_x86_enable_irq_window)(vcpu); 10695 10696 if (kvm_lapic_enabled(vcpu)) { 10697 update_cr8_intercept(vcpu); 10698 kvm_lapic_sync_to_vapic(vcpu); 10699 } 10700 } 10701 10702 r = kvm_mmu_reload(vcpu); 10703 if (unlikely(r)) { 10704 goto cancel_injection; 10705 } 10706 10707 preempt_disable(); 10708 10709 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10710 10711 /* 10712 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10713 * IPI are then delayed after guest entry, which ensures that they 10714 * result in virtual interrupt delivery. 10715 */ 10716 local_irq_disable(); 10717 10718 /* Store vcpu->apicv_active before vcpu->mode. */ 10719 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10720 10721 kvm_vcpu_srcu_read_unlock(vcpu); 10722 10723 /* 10724 * 1) We should set ->mode before checking ->requests. Please see 10725 * the comment in kvm_vcpu_exiting_guest_mode(). 10726 * 10727 * 2) For APICv, we should set ->mode before checking PID.ON. This 10728 * pairs with the memory barrier implicit in pi_test_and_set_on 10729 * (see vmx_deliver_posted_interrupt). 10730 * 10731 * 3) This also orders the write to mode from any reads to the page 10732 * tables done while the VCPU is running. Please see the comment 10733 * in kvm_flush_remote_tlbs. 10734 */ 10735 smp_mb__after_srcu_read_unlock(); 10736 10737 /* 10738 * Process pending posted interrupts to handle the case where the 10739 * notification IRQ arrived in the host, or was never sent (because the 10740 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10741 * status, KVM doesn't update assigned devices when APICv is inhibited, 10742 * i.e. they can post interrupts even if APICv is temporarily disabled. 10743 */ 10744 if (kvm_lapic_enabled(vcpu)) 10745 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10746 10747 if (kvm_vcpu_exit_request(vcpu)) { 10748 vcpu->mode = OUTSIDE_GUEST_MODE; 10749 smp_wmb(); 10750 local_irq_enable(); 10751 preempt_enable(); 10752 kvm_vcpu_srcu_read_lock(vcpu); 10753 r = 1; 10754 goto cancel_injection; 10755 } 10756 10757 if (req_immediate_exit) { 10758 kvm_make_request(KVM_REQ_EVENT, vcpu); 10759 static_call(kvm_x86_request_immediate_exit)(vcpu); 10760 } 10761 10762 fpregs_assert_state_consistent(); 10763 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10764 switch_fpu_return(); 10765 10766 if (vcpu->arch.guest_fpu.xfd_err) 10767 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10768 10769 if (unlikely(vcpu->arch.switch_db_regs)) { 10770 set_debugreg(0, 7); 10771 set_debugreg(vcpu->arch.eff_db[0], 0); 10772 set_debugreg(vcpu->arch.eff_db[1], 1); 10773 set_debugreg(vcpu->arch.eff_db[2], 2); 10774 set_debugreg(vcpu->arch.eff_db[3], 3); 10775 } else if (unlikely(hw_breakpoint_active())) { 10776 set_debugreg(0, 7); 10777 } 10778 10779 guest_timing_enter_irqoff(); 10780 10781 for (;;) { 10782 /* 10783 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10784 * update must kick and wait for all vCPUs before toggling the 10785 * per-VM state, and responsing vCPUs must wait for the update 10786 * to complete before servicing KVM_REQ_APICV_UPDATE. 10787 */ 10788 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10789 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10790 10791 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10792 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10793 break; 10794 10795 if (kvm_lapic_enabled(vcpu)) 10796 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10797 10798 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10799 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10800 break; 10801 } 10802 10803 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10804 ++vcpu->stat.exits; 10805 } 10806 10807 /* 10808 * Do this here before restoring debug registers on the host. And 10809 * since we do this before handling the vmexit, a DR access vmexit 10810 * can (a) read the correct value of the debug registers, (b) set 10811 * KVM_DEBUGREG_WONT_EXIT again. 10812 */ 10813 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10814 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10815 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10816 kvm_update_dr0123(vcpu); 10817 kvm_update_dr7(vcpu); 10818 } 10819 10820 /* 10821 * If the guest has used debug registers, at least dr7 10822 * will be disabled while returning to the host. 10823 * If we don't have active breakpoints in the host, we don't 10824 * care about the messed up debug address registers. But if 10825 * we have some of them active, restore the old state. 10826 */ 10827 if (hw_breakpoint_active()) 10828 hw_breakpoint_restore(); 10829 10830 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10831 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10832 10833 vcpu->mode = OUTSIDE_GUEST_MODE; 10834 smp_wmb(); 10835 10836 /* 10837 * Sync xfd before calling handle_exit_irqoff() which may 10838 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10839 * in #NM irqoff handler). 10840 */ 10841 if (vcpu->arch.xfd_no_write_intercept) 10842 fpu_sync_guest_vmexit_xfd_state(); 10843 10844 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10845 10846 if (vcpu->arch.guest_fpu.xfd_err) 10847 wrmsrl(MSR_IA32_XFD_ERR, 0); 10848 10849 /* 10850 * Consume any pending interrupts, including the possible source of 10851 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10852 * An instruction is required after local_irq_enable() to fully unblock 10853 * interrupts on processors that implement an interrupt shadow, the 10854 * stat.exits increment will do nicely. 10855 */ 10856 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10857 local_irq_enable(); 10858 ++vcpu->stat.exits; 10859 local_irq_disable(); 10860 kvm_after_interrupt(vcpu); 10861 10862 /* 10863 * Wait until after servicing IRQs to account guest time so that any 10864 * ticks that occurred while running the guest are properly accounted 10865 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10866 * of accounting via context tracking, but the loss of accuracy is 10867 * acceptable for all known use cases. 10868 */ 10869 guest_timing_exit_irqoff(); 10870 10871 local_irq_enable(); 10872 preempt_enable(); 10873 10874 kvm_vcpu_srcu_read_lock(vcpu); 10875 10876 /* 10877 * Profile KVM exit RIPs: 10878 */ 10879 if (unlikely(prof_on == KVM_PROFILING)) { 10880 unsigned long rip = kvm_rip_read(vcpu); 10881 profile_hit(KVM_PROFILING, (void *)rip); 10882 } 10883 10884 if (unlikely(vcpu->arch.tsc_always_catchup)) 10885 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10886 10887 if (vcpu->arch.apic_attention) 10888 kvm_lapic_sync_from_vapic(vcpu); 10889 10890 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10891 return r; 10892 10893 cancel_injection: 10894 if (req_immediate_exit) 10895 kvm_make_request(KVM_REQ_EVENT, vcpu); 10896 static_call(kvm_x86_cancel_injection)(vcpu); 10897 if (unlikely(vcpu->arch.apic_attention)) 10898 kvm_lapic_sync_from_vapic(vcpu); 10899 out: 10900 return r; 10901 } 10902 10903 /* Called within kvm->srcu read side. */ 10904 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10905 { 10906 bool hv_timer; 10907 10908 if (!kvm_arch_vcpu_runnable(vcpu)) { 10909 /* 10910 * Switch to the software timer before halt-polling/blocking as 10911 * the guest's timer may be a break event for the vCPU, and the 10912 * hypervisor timer runs only when the CPU is in guest mode. 10913 * Switch before halt-polling so that KVM recognizes an expired 10914 * timer before blocking. 10915 */ 10916 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10917 if (hv_timer) 10918 kvm_lapic_switch_to_sw_timer(vcpu); 10919 10920 kvm_vcpu_srcu_read_unlock(vcpu); 10921 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10922 kvm_vcpu_halt(vcpu); 10923 else 10924 kvm_vcpu_block(vcpu); 10925 kvm_vcpu_srcu_read_lock(vcpu); 10926 10927 if (hv_timer) 10928 kvm_lapic_switch_to_hv_timer(vcpu); 10929 10930 /* 10931 * If the vCPU is not runnable, a signal or another host event 10932 * of some kind is pending; service it without changing the 10933 * vCPU's activity state. 10934 */ 10935 if (!kvm_arch_vcpu_runnable(vcpu)) 10936 return 1; 10937 } 10938 10939 /* 10940 * Evaluate nested events before exiting the halted state. This allows 10941 * the halt state to be recorded properly in the VMCS12's activity 10942 * state field (AMD does not have a similar field and a VM-Exit always 10943 * causes a spurious wakeup from HLT). 10944 */ 10945 if (is_guest_mode(vcpu)) { 10946 if (kvm_check_nested_events(vcpu) < 0) 10947 return 0; 10948 } 10949 10950 if (kvm_apic_accept_events(vcpu) < 0) 10951 return 0; 10952 switch(vcpu->arch.mp_state) { 10953 case KVM_MP_STATE_HALTED: 10954 case KVM_MP_STATE_AP_RESET_HOLD: 10955 vcpu->arch.pv.pv_unhalted = false; 10956 vcpu->arch.mp_state = 10957 KVM_MP_STATE_RUNNABLE; 10958 fallthrough; 10959 case KVM_MP_STATE_RUNNABLE: 10960 vcpu->arch.apf.halted = false; 10961 break; 10962 case KVM_MP_STATE_INIT_RECEIVED: 10963 break; 10964 default: 10965 WARN_ON_ONCE(1); 10966 break; 10967 } 10968 return 1; 10969 } 10970 10971 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10972 { 10973 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10974 !vcpu->arch.apf.halted); 10975 } 10976 10977 /* Called within kvm->srcu read side. */ 10978 static int vcpu_run(struct kvm_vcpu *vcpu) 10979 { 10980 int r; 10981 10982 vcpu->arch.l1tf_flush_l1d = true; 10983 10984 for (;;) { 10985 /* 10986 * If another guest vCPU requests a PV TLB flush in the middle 10987 * of instruction emulation, the rest of the emulation could 10988 * use a stale page translation. Assume that any code after 10989 * this point can start executing an instruction. 10990 */ 10991 vcpu->arch.at_instruction_boundary = false; 10992 if (kvm_vcpu_running(vcpu)) { 10993 r = vcpu_enter_guest(vcpu); 10994 } else { 10995 r = vcpu_block(vcpu); 10996 } 10997 10998 if (r <= 0) 10999 break; 11000 11001 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11002 if (kvm_xen_has_pending_events(vcpu)) 11003 kvm_xen_inject_pending_events(vcpu); 11004 11005 if (kvm_cpu_has_pending_timer(vcpu)) 11006 kvm_inject_pending_timer_irqs(vcpu); 11007 11008 if (dm_request_for_irq_injection(vcpu) && 11009 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11010 r = 0; 11011 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11012 ++vcpu->stat.request_irq_exits; 11013 break; 11014 } 11015 11016 if (__xfer_to_guest_mode_work_pending()) { 11017 kvm_vcpu_srcu_read_unlock(vcpu); 11018 r = xfer_to_guest_mode_handle_work(vcpu); 11019 kvm_vcpu_srcu_read_lock(vcpu); 11020 if (r) 11021 return r; 11022 } 11023 } 11024 11025 return r; 11026 } 11027 11028 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11029 { 11030 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11031 } 11032 11033 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11034 { 11035 BUG_ON(!vcpu->arch.pio.count); 11036 11037 return complete_emulated_io(vcpu); 11038 } 11039 11040 /* 11041 * Implements the following, as a state machine: 11042 * 11043 * read: 11044 * for each fragment 11045 * for each mmio piece in the fragment 11046 * write gpa, len 11047 * exit 11048 * copy data 11049 * execute insn 11050 * 11051 * write: 11052 * for each fragment 11053 * for each mmio piece in the fragment 11054 * write gpa, len 11055 * copy data 11056 * exit 11057 */ 11058 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11059 { 11060 struct kvm_run *run = vcpu->run; 11061 struct kvm_mmio_fragment *frag; 11062 unsigned len; 11063 11064 BUG_ON(!vcpu->mmio_needed); 11065 11066 /* Complete previous fragment */ 11067 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11068 len = min(8u, frag->len); 11069 if (!vcpu->mmio_is_write) 11070 memcpy(frag->data, run->mmio.data, len); 11071 11072 if (frag->len <= 8) { 11073 /* Switch to the next fragment. */ 11074 frag++; 11075 vcpu->mmio_cur_fragment++; 11076 } else { 11077 /* Go forward to the next mmio piece. */ 11078 frag->data += len; 11079 frag->gpa += len; 11080 frag->len -= len; 11081 } 11082 11083 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11084 vcpu->mmio_needed = 0; 11085 11086 /* FIXME: return into emulator if single-stepping. */ 11087 if (vcpu->mmio_is_write) 11088 return 1; 11089 vcpu->mmio_read_completed = 1; 11090 return complete_emulated_io(vcpu); 11091 } 11092 11093 run->exit_reason = KVM_EXIT_MMIO; 11094 run->mmio.phys_addr = frag->gpa; 11095 if (vcpu->mmio_is_write) 11096 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11097 run->mmio.len = min(8u, frag->len); 11098 run->mmio.is_write = vcpu->mmio_is_write; 11099 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11100 return 0; 11101 } 11102 11103 /* Swap (qemu) user FPU context for the guest FPU context. */ 11104 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11105 { 11106 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11107 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11108 trace_kvm_fpu(1); 11109 } 11110 11111 /* When vcpu_run ends, restore user space FPU context. */ 11112 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11113 { 11114 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11115 ++vcpu->stat.fpu_reload; 11116 trace_kvm_fpu(0); 11117 } 11118 11119 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11120 { 11121 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11122 struct kvm_run *kvm_run = vcpu->run; 11123 int r; 11124 11125 vcpu_load(vcpu); 11126 kvm_sigset_activate(vcpu); 11127 kvm_run->flags = 0; 11128 kvm_load_guest_fpu(vcpu); 11129 11130 kvm_vcpu_srcu_read_lock(vcpu); 11131 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11132 if (kvm_run->immediate_exit) { 11133 r = -EINTR; 11134 goto out; 11135 } 11136 11137 /* 11138 * Don't bother switching APIC timer emulation from the 11139 * hypervisor timer to the software timer, the only way for the 11140 * APIC timer to be active is if userspace stuffed vCPU state, 11141 * i.e. put the vCPU into a nonsensical state. Only an INIT 11142 * will transition the vCPU out of UNINITIALIZED (without more 11143 * state stuffing from userspace), which will reset the local 11144 * APIC and thus cancel the timer or drop the IRQ (if the timer 11145 * already expired). 11146 */ 11147 kvm_vcpu_srcu_read_unlock(vcpu); 11148 kvm_vcpu_block(vcpu); 11149 kvm_vcpu_srcu_read_lock(vcpu); 11150 11151 if (kvm_apic_accept_events(vcpu) < 0) { 11152 r = 0; 11153 goto out; 11154 } 11155 r = -EAGAIN; 11156 if (signal_pending(current)) { 11157 r = -EINTR; 11158 kvm_run->exit_reason = KVM_EXIT_INTR; 11159 ++vcpu->stat.signal_exits; 11160 } 11161 goto out; 11162 } 11163 11164 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11165 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11166 r = -EINVAL; 11167 goto out; 11168 } 11169 11170 if (kvm_run->kvm_dirty_regs) { 11171 r = sync_regs(vcpu); 11172 if (r != 0) 11173 goto out; 11174 } 11175 11176 /* re-sync apic's tpr */ 11177 if (!lapic_in_kernel(vcpu)) { 11178 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11179 r = -EINVAL; 11180 goto out; 11181 } 11182 } 11183 11184 /* 11185 * If userspace set a pending exception and L2 is active, convert it to 11186 * a pending VM-Exit if L1 wants to intercept the exception. 11187 */ 11188 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11189 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11190 ex->error_code)) { 11191 kvm_queue_exception_vmexit(vcpu, ex->vector, 11192 ex->has_error_code, ex->error_code, 11193 ex->has_payload, ex->payload); 11194 ex->injected = false; 11195 ex->pending = false; 11196 } 11197 vcpu->arch.exception_from_userspace = false; 11198 11199 if (unlikely(vcpu->arch.complete_userspace_io)) { 11200 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11201 vcpu->arch.complete_userspace_io = NULL; 11202 r = cui(vcpu); 11203 if (r <= 0) 11204 goto out; 11205 } else { 11206 WARN_ON_ONCE(vcpu->arch.pio.count); 11207 WARN_ON_ONCE(vcpu->mmio_needed); 11208 } 11209 11210 if (kvm_run->immediate_exit) { 11211 r = -EINTR; 11212 goto out; 11213 } 11214 11215 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11216 if (r <= 0) 11217 goto out; 11218 11219 r = vcpu_run(vcpu); 11220 11221 out: 11222 kvm_put_guest_fpu(vcpu); 11223 if (kvm_run->kvm_valid_regs) 11224 store_regs(vcpu); 11225 post_kvm_run_save(vcpu); 11226 kvm_vcpu_srcu_read_unlock(vcpu); 11227 11228 kvm_sigset_deactivate(vcpu); 11229 vcpu_put(vcpu); 11230 return r; 11231 } 11232 11233 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11234 { 11235 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11236 /* 11237 * We are here if userspace calls get_regs() in the middle of 11238 * instruction emulation. Registers state needs to be copied 11239 * back from emulation context to vcpu. Userspace shouldn't do 11240 * that usually, but some bad designed PV devices (vmware 11241 * backdoor interface) need this to work 11242 */ 11243 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11244 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11245 } 11246 regs->rax = kvm_rax_read(vcpu); 11247 regs->rbx = kvm_rbx_read(vcpu); 11248 regs->rcx = kvm_rcx_read(vcpu); 11249 regs->rdx = kvm_rdx_read(vcpu); 11250 regs->rsi = kvm_rsi_read(vcpu); 11251 regs->rdi = kvm_rdi_read(vcpu); 11252 regs->rsp = kvm_rsp_read(vcpu); 11253 regs->rbp = kvm_rbp_read(vcpu); 11254 #ifdef CONFIG_X86_64 11255 regs->r8 = kvm_r8_read(vcpu); 11256 regs->r9 = kvm_r9_read(vcpu); 11257 regs->r10 = kvm_r10_read(vcpu); 11258 regs->r11 = kvm_r11_read(vcpu); 11259 regs->r12 = kvm_r12_read(vcpu); 11260 regs->r13 = kvm_r13_read(vcpu); 11261 regs->r14 = kvm_r14_read(vcpu); 11262 regs->r15 = kvm_r15_read(vcpu); 11263 #endif 11264 11265 regs->rip = kvm_rip_read(vcpu); 11266 regs->rflags = kvm_get_rflags(vcpu); 11267 } 11268 11269 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11270 { 11271 vcpu_load(vcpu); 11272 __get_regs(vcpu, regs); 11273 vcpu_put(vcpu); 11274 return 0; 11275 } 11276 11277 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11278 { 11279 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11280 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11281 11282 kvm_rax_write(vcpu, regs->rax); 11283 kvm_rbx_write(vcpu, regs->rbx); 11284 kvm_rcx_write(vcpu, regs->rcx); 11285 kvm_rdx_write(vcpu, regs->rdx); 11286 kvm_rsi_write(vcpu, regs->rsi); 11287 kvm_rdi_write(vcpu, regs->rdi); 11288 kvm_rsp_write(vcpu, regs->rsp); 11289 kvm_rbp_write(vcpu, regs->rbp); 11290 #ifdef CONFIG_X86_64 11291 kvm_r8_write(vcpu, regs->r8); 11292 kvm_r9_write(vcpu, regs->r9); 11293 kvm_r10_write(vcpu, regs->r10); 11294 kvm_r11_write(vcpu, regs->r11); 11295 kvm_r12_write(vcpu, regs->r12); 11296 kvm_r13_write(vcpu, regs->r13); 11297 kvm_r14_write(vcpu, regs->r14); 11298 kvm_r15_write(vcpu, regs->r15); 11299 #endif 11300 11301 kvm_rip_write(vcpu, regs->rip); 11302 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11303 11304 vcpu->arch.exception.pending = false; 11305 vcpu->arch.exception_vmexit.pending = false; 11306 11307 kvm_make_request(KVM_REQ_EVENT, vcpu); 11308 } 11309 11310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11311 { 11312 vcpu_load(vcpu); 11313 __set_regs(vcpu, regs); 11314 vcpu_put(vcpu); 11315 return 0; 11316 } 11317 11318 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11319 { 11320 struct desc_ptr dt; 11321 11322 if (vcpu->arch.guest_state_protected) 11323 goto skip_protected_regs; 11324 11325 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11326 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11327 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11328 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11329 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11330 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11331 11332 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11333 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11334 11335 static_call(kvm_x86_get_idt)(vcpu, &dt); 11336 sregs->idt.limit = dt.size; 11337 sregs->idt.base = dt.address; 11338 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11339 sregs->gdt.limit = dt.size; 11340 sregs->gdt.base = dt.address; 11341 11342 sregs->cr2 = vcpu->arch.cr2; 11343 sregs->cr3 = kvm_read_cr3(vcpu); 11344 11345 skip_protected_regs: 11346 sregs->cr0 = kvm_read_cr0(vcpu); 11347 sregs->cr4 = kvm_read_cr4(vcpu); 11348 sregs->cr8 = kvm_get_cr8(vcpu); 11349 sregs->efer = vcpu->arch.efer; 11350 sregs->apic_base = kvm_get_apic_base(vcpu); 11351 } 11352 11353 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11354 { 11355 __get_sregs_common(vcpu, sregs); 11356 11357 if (vcpu->arch.guest_state_protected) 11358 return; 11359 11360 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11361 set_bit(vcpu->arch.interrupt.nr, 11362 (unsigned long *)sregs->interrupt_bitmap); 11363 } 11364 11365 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11366 { 11367 int i; 11368 11369 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11370 11371 if (vcpu->arch.guest_state_protected) 11372 return; 11373 11374 if (is_pae_paging(vcpu)) { 11375 for (i = 0 ; i < 4 ; i++) 11376 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11377 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11378 } 11379 } 11380 11381 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11382 struct kvm_sregs *sregs) 11383 { 11384 vcpu_load(vcpu); 11385 __get_sregs(vcpu, sregs); 11386 vcpu_put(vcpu); 11387 return 0; 11388 } 11389 11390 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11391 struct kvm_mp_state *mp_state) 11392 { 11393 int r; 11394 11395 vcpu_load(vcpu); 11396 if (kvm_mpx_supported()) 11397 kvm_load_guest_fpu(vcpu); 11398 11399 r = kvm_apic_accept_events(vcpu); 11400 if (r < 0) 11401 goto out; 11402 r = 0; 11403 11404 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11405 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11406 vcpu->arch.pv.pv_unhalted) 11407 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11408 else 11409 mp_state->mp_state = vcpu->arch.mp_state; 11410 11411 out: 11412 if (kvm_mpx_supported()) 11413 kvm_put_guest_fpu(vcpu); 11414 vcpu_put(vcpu); 11415 return r; 11416 } 11417 11418 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11419 struct kvm_mp_state *mp_state) 11420 { 11421 int ret = -EINVAL; 11422 11423 vcpu_load(vcpu); 11424 11425 switch (mp_state->mp_state) { 11426 case KVM_MP_STATE_UNINITIALIZED: 11427 case KVM_MP_STATE_HALTED: 11428 case KVM_MP_STATE_AP_RESET_HOLD: 11429 case KVM_MP_STATE_INIT_RECEIVED: 11430 case KVM_MP_STATE_SIPI_RECEIVED: 11431 if (!lapic_in_kernel(vcpu)) 11432 goto out; 11433 break; 11434 11435 case KVM_MP_STATE_RUNNABLE: 11436 break; 11437 11438 default: 11439 goto out; 11440 } 11441 11442 /* 11443 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11444 * forcing the guest into INIT/SIPI if those events are supposed to be 11445 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11446 * if an SMI is pending as well. 11447 */ 11448 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11449 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11450 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11451 goto out; 11452 11453 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11454 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11455 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11456 } else 11457 vcpu->arch.mp_state = mp_state->mp_state; 11458 kvm_make_request(KVM_REQ_EVENT, vcpu); 11459 11460 ret = 0; 11461 out: 11462 vcpu_put(vcpu); 11463 return ret; 11464 } 11465 11466 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11467 int reason, bool has_error_code, u32 error_code) 11468 { 11469 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11470 int ret; 11471 11472 init_emulate_ctxt(vcpu); 11473 11474 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11475 has_error_code, error_code); 11476 if (ret) { 11477 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11478 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11479 vcpu->run->internal.ndata = 0; 11480 return 0; 11481 } 11482 11483 kvm_rip_write(vcpu, ctxt->eip); 11484 kvm_set_rflags(vcpu, ctxt->eflags); 11485 return 1; 11486 } 11487 EXPORT_SYMBOL_GPL(kvm_task_switch); 11488 11489 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11490 { 11491 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11492 /* 11493 * When EFER.LME and CR0.PG are set, the processor is in 11494 * 64-bit mode (though maybe in a 32-bit code segment). 11495 * CR4.PAE and EFER.LMA must be set. 11496 */ 11497 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11498 return false; 11499 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11500 return false; 11501 } else { 11502 /* 11503 * Not in 64-bit mode: EFER.LMA is clear and the code 11504 * segment cannot be 64-bit. 11505 */ 11506 if (sregs->efer & EFER_LMA || sregs->cs.l) 11507 return false; 11508 } 11509 11510 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11511 kvm_is_valid_cr0(vcpu, sregs->cr0); 11512 } 11513 11514 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11515 int *mmu_reset_needed, bool update_pdptrs) 11516 { 11517 struct msr_data apic_base_msr; 11518 int idx; 11519 struct desc_ptr dt; 11520 11521 if (!kvm_is_valid_sregs(vcpu, sregs)) 11522 return -EINVAL; 11523 11524 apic_base_msr.data = sregs->apic_base; 11525 apic_base_msr.host_initiated = true; 11526 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11527 return -EINVAL; 11528 11529 if (vcpu->arch.guest_state_protected) 11530 return 0; 11531 11532 dt.size = sregs->idt.limit; 11533 dt.address = sregs->idt.base; 11534 static_call(kvm_x86_set_idt)(vcpu, &dt); 11535 dt.size = sregs->gdt.limit; 11536 dt.address = sregs->gdt.base; 11537 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11538 11539 vcpu->arch.cr2 = sregs->cr2; 11540 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11541 vcpu->arch.cr3 = sregs->cr3; 11542 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11543 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11544 11545 kvm_set_cr8(vcpu, sregs->cr8); 11546 11547 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11548 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11549 11550 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11551 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11552 vcpu->arch.cr0 = sregs->cr0; 11553 11554 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11555 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11556 11557 if (update_pdptrs) { 11558 idx = srcu_read_lock(&vcpu->kvm->srcu); 11559 if (is_pae_paging(vcpu)) { 11560 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11561 *mmu_reset_needed = 1; 11562 } 11563 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11564 } 11565 11566 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11567 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11568 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11569 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11570 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11571 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11572 11573 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11574 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11575 11576 update_cr8_intercept(vcpu); 11577 11578 /* Older userspace won't unhalt the vcpu on reset. */ 11579 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11580 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11581 !is_protmode(vcpu)) 11582 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11583 11584 return 0; 11585 } 11586 11587 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11588 { 11589 int pending_vec, max_bits; 11590 int mmu_reset_needed = 0; 11591 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11592 11593 if (ret) 11594 return ret; 11595 11596 if (mmu_reset_needed) 11597 kvm_mmu_reset_context(vcpu); 11598 11599 max_bits = KVM_NR_INTERRUPTS; 11600 pending_vec = find_first_bit( 11601 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11602 11603 if (pending_vec < max_bits) { 11604 kvm_queue_interrupt(vcpu, pending_vec, false); 11605 pr_debug("Set back pending irq %d\n", pending_vec); 11606 kvm_make_request(KVM_REQ_EVENT, vcpu); 11607 } 11608 return 0; 11609 } 11610 11611 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11612 { 11613 int mmu_reset_needed = 0; 11614 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11615 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11616 !(sregs2->efer & EFER_LMA); 11617 int i, ret; 11618 11619 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11620 return -EINVAL; 11621 11622 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11623 return -EINVAL; 11624 11625 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11626 &mmu_reset_needed, !valid_pdptrs); 11627 if (ret) 11628 return ret; 11629 11630 if (valid_pdptrs) { 11631 for (i = 0; i < 4 ; i++) 11632 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11633 11634 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11635 mmu_reset_needed = 1; 11636 vcpu->arch.pdptrs_from_userspace = true; 11637 } 11638 if (mmu_reset_needed) 11639 kvm_mmu_reset_context(vcpu); 11640 return 0; 11641 } 11642 11643 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11644 struct kvm_sregs *sregs) 11645 { 11646 int ret; 11647 11648 vcpu_load(vcpu); 11649 ret = __set_sregs(vcpu, sregs); 11650 vcpu_put(vcpu); 11651 return ret; 11652 } 11653 11654 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11655 { 11656 bool set = false; 11657 struct kvm_vcpu *vcpu; 11658 unsigned long i; 11659 11660 if (!enable_apicv) 11661 return; 11662 11663 down_write(&kvm->arch.apicv_update_lock); 11664 11665 kvm_for_each_vcpu(i, vcpu, kvm) { 11666 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11667 set = true; 11668 break; 11669 } 11670 } 11671 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11672 up_write(&kvm->arch.apicv_update_lock); 11673 } 11674 11675 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11676 struct kvm_guest_debug *dbg) 11677 { 11678 unsigned long rflags; 11679 int i, r; 11680 11681 if (vcpu->arch.guest_state_protected) 11682 return -EINVAL; 11683 11684 vcpu_load(vcpu); 11685 11686 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11687 r = -EBUSY; 11688 if (kvm_is_exception_pending(vcpu)) 11689 goto out; 11690 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11691 kvm_queue_exception(vcpu, DB_VECTOR); 11692 else 11693 kvm_queue_exception(vcpu, BP_VECTOR); 11694 } 11695 11696 /* 11697 * Read rflags as long as potentially injected trace flags are still 11698 * filtered out. 11699 */ 11700 rflags = kvm_get_rflags(vcpu); 11701 11702 vcpu->guest_debug = dbg->control; 11703 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11704 vcpu->guest_debug = 0; 11705 11706 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11707 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11708 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11709 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11710 } else { 11711 for (i = 0; i < KVM_NR_DB_REGS; i++) 11712 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11713 } 11714 kvm_update_dr7(vcpu); 11715 11716 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11717 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11718 11719 /* 11720 * Trigger an rflags update that will inject or remove the trace 11721 * flags. 11722 */ 11723 kvm_set_rflags(vcpu, rflags); 11724 11725 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11726 11727 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11728 11729 r = 0; 11730 11731 out: 11732 vcpu_put(vcpu); 11733 return r; 11734 } 11735 11736 /* 11737 * Translate a guest virtual address to a guest physical address. 11738 */ 11739 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11740 struct kvm_translation *tr) 11741 { 11742 unsigned long vaddr = tr->linear_address; 11743 gpa_t gpa; 11744 int idx; 11745 11746 vcpu_load(vcpu); 11747 11748 idx = srcu_read_lock(&vcpu->kvm->srcu); 11749 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11750 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11751 tr->physical_address = gpa; 11752 tr->valid = gpa != INVALID_GPA; 11753 tr->writeable = 1; 11754 tr->usermode = 0; 11755 11756 vcpu_put(vcpu); 11757 return 0; 11758 } 11759 11760 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11761 { 11762 struct fxregs_state *fxsave; 11763 11764 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11765 return 0; 11766 11767 vcpu_load(vcpu); 11768 11769 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11770 memcpy(fpu->fpr, fxsave->st_space, 128); 11771 fpu->fcw = fxsave->cwd; 11772 fpu->fsw = fxsave->swd; 11773 fpu->ftwx = fxsave->twd; 11774 fpu->last_opcode = fxsave->fop; 11775 fpu->last_ip = fxsave->rip; 11776 fpu->last_dp = fxsave->rdp; 11777 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11778 11779 vcpu_put(vcpu); 11780 return 0; 11781 } 11782 11783 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11784 { 11785 struct fxregs_state *fxsave; 11786 11787 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11788 return 0; 11789 11790 vcpu_load(vcpu); 11791 11792 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11793 11794 memcpy(fxsave->st_space, fpu->fpr, 128); 11795 fxsave->cwd = fpu->fcw; 11796 fxsave->swd = fpu->fsw; 11797 fxsave->twd = fpu->ftwx; 11798 fxsave->fop = fpu->last_opcode; 11799 fxsave->rip = fpu->last_ip; 11800 fxsave->rdp = fpu->last_dp; 11801 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11802 11803 vcpu_put(vcpu); 11804 return 0; 11805 } 11806 11807 static void store_regs(struct kvm_vcpu *vcpu) 11808 { 11809 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11810 11811 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11812 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11813 11814 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11815 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11816 11817 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11818 kvm_vcpu_ioctl_x86_get_vcpu_events( 11819 vcpu, &vcpu->run->s.regs.events); 11820 } 11821 11822 static int sync_regs(struct kvm_vcpu *vcpu) 11823 { 11824 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11825 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11826 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11827 } 11828 11829 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11830 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 11831 11832 if (__set_sregs(vcpu, &sregs)) 11833 return -EINVAL; 11834 11835 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11836 } 11837 11838 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11839 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 11840 11841 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 11842 return -EINVAL; 11843 11844 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11845 } 11846 11847 return 0; 11848 } 11849 11850 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11851 { 11852 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11853 pr_warn_once("SMP vm created on host with unstable TSC; " 11854 "guest TSC will not be reliable\n"); 11855 11856 if (!kvm->arch.max_vcpu_ids) 11857 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11858 11859 if (id >= kvm->arch.max_vcpu_ids) 11860 return -EINVAL; 11861 11862 return static_call(kvm_x86_vcpu_precreate)(kvm); 11863 } 11864 11865 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11866 { 11867 struct page *page; 11868 int r; 11869 11870 vcpu->arch.last_vmentry_cpu = -1; 11871 vcpu->arch.regs_avail = ~0; 11872 vcpu->arch.regs_dirty = ~0; 11873 11874 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11875 11876 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11877 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11878 else 11879 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11880 11881 r = kvm_mmu_create(vcpu); 11882 if (r < 0) 11883 return r; 11884 11885 if (irqchip_in_kernel(vcpu->kvm)) { 11886 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11887 if (r < 0) 11888 goto fail_mmu_destroy; 11889 11890 /* 11891 * Defer evaluating inhibits until the vCPU is first run, as 11892 * this vCPU will not get notified of any changes until this 11893 * vCPU is visible to other vCPUs (marked online and added to 11894 * the set of vCPUs). Opportunistically mark APICv active as 11895 * VMX in particularly is highly unlikely to have inhibits. 11896 * Ignore the current per-VM APICv state so that vCPU creation 11897 * is guaranteed to run with a deterministic value, the request 11898 * will ensure the vCPU gets the correct state before VM-Entry. 11899 */ 11900 if (enable_apicv) { 11901 vcpu->arch.apic->apicv_active = true; 11902 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11903 } 11904 } else 11905 static_branch_inc(&kvm_has_noapic_vcpu); 11906 11907 r = -ENOMEM; 11908 11909 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11910 if (!page) 11911 goto fail_free_lapic; 11912 vcpu->arch.pio_data = page_address(page); 11913 11914 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11915 GFP_KERNEL_ACCOUNT); 11916 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11917 GFP_KERNEL_ACCOUNT); 11918 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11919 goto fail_free_mce_banks; 11920 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11921 11922 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11923 GFP_KERNEL_ACCOUNT)) 11924 goto fail_free_mce_banks; 11925 11926 if (!alloc_emulate_ctxt(vcpu)) 11927 goto free_wbinvd_dirty_mask; 11928 11929 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11930 pr_err("failed to allocate vcpu's fpu\n"); 11931 goto free_emulate_ctxt; 11932 } 11933 11934 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11935 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11936 11937 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11938 11939 kvm_async_pf_hash_reset(vcpu); 11940 11941 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11942 kvm_pmu_init(vcpu); 11943 11944 vcpu->arch.pending_external_vector = -1; 11945 vcpu->arch.preempted_in_kernel = false; 11946 11947 #if IS_ENABLED(CONFIG_HYPERV) 11948 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11949 #endif 11950 11951 r = static_call(kvm_x86_vcpu_create)(vcpu); 11952 if (r) 11953 goto free_guest_fpu; 11954 11955 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11956 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11957 kvm_xen_init_vcpu(vcpu); 11958 kvm_vcpu_mtrr_init(vcpu); 11959 vcpu_load(vcpu); 11960 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11961 kvm_vcpu_reset(vcpu, false); 11962 kvm_init_mmu(vcpu); 11963 vcpu_put(vcpu); 11964 return 0; 11965 11966 free_guest_fpu: 11967 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11968 free_emulate_ctxt: 11969 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11970 free_wbinvd_dirty_mask: 11971 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11972 fail_free_mce_banks: 11973 kfree(vcpu->arch.mce_banks); 11974 kfree(vcpu->arch.mci_ctl2_banks); 11975 free_page((unsigned long)vcpu->arch.pio_data); 11976 fail_free_lapic: 11977 kvm_free_lapic(vcpu); 11978 fail_mmu_destroy: 11979 kvm_mmu_destroy(vcpu); 11980 return r; 11981 } 11982 11983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11984 { 11985 struct kvm *kvm = vcpu->kvm; 11986 11987 if (mutex_lock_killable(&vcpu->mutex)) 11988 return; 11989 vcpu_load(vcpu); 11990 kvm_synchronize_tsc(vcpu, 0); 11991 vcpu_put(vcpu); 11992 11993 /* poll control enabled by default */ 11994 vcpu->arch.msr_kvm_poll_control = 1; 11995 11996 mutex_unlock(&vcpu->mutex); 11997 11998 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11999 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12000 KVMCLOCK_SYNC_PERIOD); 12001 } 12002 12003 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12004 { 12005 int idx; 12006 12007 kvmclock_reset(vcpu); 12008 12009 static_call(kvm_x86_vcpu_free)(vcpu); 12010 12011 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12012 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12013 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12014 12015 kvm_xen_destroy_vcpu(vcpu); 12016 kvm_hv_vcpu_uninit(vcpu); 12017 kvm_pmu_destroy(vcpu); 12018 kfree(vcpu->arch.mce_banks); 12019 kfree(vcpu->arch.mci_ctl2_banks); 12020 kvm_free_lapic(vcpu); 12021 idx = srcu_read_lock(&vcpu->kvm->srcu); 12022 kvm_mmu_destroy(vcpu); 12023 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12024 free_page((unsigned long)vcpu->arch.pio_data); 12025 kvfree(vcpu->arch.cpuid_entries); 12026 if (!lapic_in_kernel(vcpu)) 12027 static_branch_dec(&kvm_has_noapic_vcpu); 12028 } 12029 12030 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12031 { 12032 struct kvm_cpuid_entry2 *cpuid_0x1; 12033 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12034 unsigned long new_cr0; 12035 12036 /* 12037 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12038 * to handle side effects. RESET emulation hits those flows and relies 12039 * on emulated/virtualized registers, including those that are loaded 12040 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12041 * to detect improper or missing initialization. 12042 */ 12043 WARN_ON_ONCE(!init_event && 12044 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12045 12046 /* 12047 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12048 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12049 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12050 * bits), i.e. virtualization is disabled. 12051 */ 12052 if (is_guest_mode(vcpu)) 12053 kvm_leave_nested(vcpu); 12054 12055 kvm_lapic_reset(vcpu, init_event); 12056 12057 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12058 vcpu->arch.hflags = 0; 12059 12060 vcpu->arch.smi_pending = 0; 12061 vcpu->arch.smi_count = 0; 12062 atomic_set(&vcpu->arch.nmi_queued, 0); 12063 vcpu->arch.nmi_pending = 0; 12064 vcpu->arch.nmi_injected = false; 12065 kvm_clear_interrupt_queue(vcpu); 12066 kvm_clear_exception_queue(vcpu); 12067 12068 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12069 kvm_update_dr0123(vcpu); 12070 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12071 vcpu->arch.dr7 = DR7_FIXED_1; 12072 kvm_update_dr7(vcpu); 12073 12074 vcpu->arch.cr2 = 0; 12075 12076 kvm_make_request(KVM_REQ_EVENT, vcpu); 12077 vcpu->arch.apf.msr_en_val = 0; 12078 vcpu->arch.apf.msr_int_val = 0; 12079 vcpu->arch.st.msr_val = 0; 12080 12081 kvmclock_reset(vcpu); 12082 12083 kvm_clear_async_pf_completion_queue(vcpu); 12084 kvm_async_pf_hash_reset(vcpu); 12085 vcpu->arch.apf.halted = false; 12086 12087 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12088 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12089 12090 /* 12091 * All paths that lead to INIT are required to load the guest's 12092 * FPU state (because most paths are buried in KVM_RUN). 12093 */ 12094 if (init_event) 12095 kvm_put_guest_fpu(vcpu); 12096 12097 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12098 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12099 12100 if (init_event) 12101 kvm_load_guest_fpu(vcpu); 12102 } 12103 12104 if (!init_event) { 12105 kvm_pmu_reset(vcpu); 12106 vcpu->arch.smbase = 0x30000; 12107 12108 vcpu->arch.msr_misc_features_enables = 0; 12109 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12110 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12111 12112 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12113 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12114 } 12115 12116 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12117 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12118 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12119 12120 /* 12121 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12122 * if no CPUID match is found. Note, it's impossible to get a match at 12123 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12124 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12125 * on RESET. But, go through the motions in case that's ever remedied. 12126 */ 12127 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12128 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12129 12130 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12131 12132 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12133 kvm_rip_write(vcpu, 0xfff0); 12134 12135 vcpu->arch.cr3 = 0; 12136 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12137 12138 /* 12139 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12140 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12141 * (or qualify) that with a footnote stating that CD/NW are preserved. 12142 */ 12143 new_cr0 = X86_CR0_ET; 12144 if (init_event) 12145 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12146 else 12147 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12148 12149 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12150 static_call(kvm_x86_set_cr4)(vcpu, 0); 12151 static_call(kvm_x86_set_efer)(vcpu, 0); 12152 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12153 12154 /* 12155 * On the standard CR0/CR4/EFER modification paths, there are several 12156 * complex conditions determining whether the MMU has to be reset and/or 12157 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12158 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12159 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12160 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12161 */ 12162 if (old_cr0 & X86_CR0_PG) { 12163 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12164 kvm_mmu_reset_context(vcpu); 12165 } 12166 12167 /* 12168 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12169 * APM states the TLBs are untouched by INIT, but it also states that 12170 * the TLBs are flushed on "External initialization of the processor." 12171 * Flush the guest TLB regardless of vendor, there is no meaningful 12172 * benefit in relying on the guest to flush the TLB immediately after 12173 * INIT. A spurious TLB flush is benign and likely negligible from a 12174 * performance perspective. 12175 */ 12176 if (init_event) 12177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12178 } 12179 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12180 12181 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12182 { 12183 struct kvm_segment cs; 12184 12185 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12186 cs.selector = vector << 8; 12187 cs.base = vector << 12; 12188 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12189 kvm_rip_write(vcpu, 0); 12190 } 12191 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12192 12193 int kvm_arch_hardware_enable(void) 12194 { 12195 struct kvm *kvm; 12196 struct kvm_vcpu *vcpu; 12197 unsigned long i; 12198 int ret; 12199 u64 local_tsc; 12200 u64 max_tsc = 0; 12201 bool stable, backwards_tsc = false; 12202 12203 kvm_user_return_msr_cpu_online(); 12204 12205 ret = kvm_x86_check_processor_compatibility(); 12206 if (ret) 12207 return ret; 12208 12209 ret = static_call(kvm_x86_hardware_enable)(); 12210 if (ret != 0) 12211 return ret; 12212 12213 local_tsc = rdtsc(); 12214 stable = !kvm_check_tsc_unstable(); 12215 list_for_each_entry(kvm, &vm_list, vm_list) { 12216 kvm_for_each_vcpu(i, vcpu, kvm) { 12217 if (!stable && vcpu->cpu == smp_processor_id()) 12218 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12219 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12220 backwards_tsc = true; 12221 if (vcpu->arch.last_host_tsc > max_tsc) 12222 max_tsc = vcpu->arch.last_host_tsc; 12223 } 12224 } 12225 } 12226 12227 /* 12228 * Sometimes, even reliable TSCs go backwards. This happens on 12229 * platforms that reset TSC during suspend or hibernate actions, but 12230 * maintain synchronization. We must compensate. Fortunately, we can 12231 * detect that condition here, which happens early in CPU bringup, 12232 * before any KVM threads can be running. Unfortunately, we can't 12233 * bring the TSCs fully up to date with real time, as we aren't yet far 12234 * enough into CPU bringup that we know how much real time has actually 12235 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12236 * variables that haven't been updated yet. 12237 * 12238 * So we simply find the maximum observed TSC above, then record the 12239 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12240 * the adjustment will be applied. Note that we accumulate 12241 * adjustments, in case multiple suspend cycles happen before some VCPU 12242 * gets a chance to run again. In the event that no KVM threads get a 12243 * chance to run, we will miss the entire elapsed period, as we'll have 12244 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12245 * loose cycle time. This isn't too big a deal, since the loss will be 12246 * uniform across all VCPUs (not to mention the scenario is extremely 12247 * unlikely). It is possible that a second hibernate recovery happens 12248 * much faster than a first, causing the observed TSC here to be 12249 * smaller; this would require additional padding adjustment, which is 12250 * why we set last_host_tsc to the local tsc observed here. 12251 * 12252 * N.B. - this code below runs only on platforms with reliable TSC, 12253 * as that is the only way backwards_tsc is set above. Also note 12254 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12255 * have the same delta_cyc adjustment applied if backwards_tsc 12256 * is detected. Note further, this adjustment is only done once, 12257 * as we reset last_host_tsc on all VCPUs to stop this from being 12258 * called multiple times (one for each physical CPU bringup). 12259 * 12260 * Platforms with unreliable TSCs don't have to deal with this, they 12261 * will be compensated by the logic in vcpu_load, which sets the TSC to 12262 * catchup mode. This will catchup all VCPUs to real time, but cannot 12263 * guarantee that they stay in perfect synchronization. 12264 */ 12265 if (backwards_tsc) { 12266 u64 delta_cyc = max_tsc - local_tsc; 12267 list_for_each_entry(kvm, &vm_list, vm_list) { 12268 kvm->arch.backwards_tsc_observed = true; 12269 kvm_for_each_vcpu(i, vcpu, kvm) { 12270 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12271 vcpu->arch.last_host_tsc = local_tsc; 12272 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12273 } 12274 12275 /* 12276 * We have to disable TSC offset matching.. if you were 12277 * booting a VM while issuing an S4 host suspend.... 12278 * you may have some problem. Solving this issue is 12279 * left as an exercise to the reader. 12280 */ 12281 kvm->arch.last_tsc_nsec = 0; 12282 kvm->arch.last_tsc_write = 0; 12283 } 12284 12285 } 12286 return 0; 12287 } 12288 12289 void kvm_arch_hardware_disable(void) 12290 { 12291 static_call(kvm_x86_hardware_disable)(); 12292 drop_user_return_notifiers(); 12293 } 12294 12295 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12296 { 12297 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12298 } 12299 12300 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12301 { 12302 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12303 } 12304 12305 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12306 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12307 12308 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12309 { 12310 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12311 12312 vcpu->arch.l1tf_flush_l1d = true; 12313 if (pmu->version && unlikely(pmu->event_count)) { 12314 pmu->need_cleanup = true; 12315 kvm_make_request(KVM_REQ_PMU, vcpu); 12316 } 12317 static_call(kvm_x86_sched_in)(vcpu, cpu); 12318 } 12319 12320 void kvm_arch_free_vm(struct kvm *kvm) 12321 { 12322 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12323 __kvm_arch_free_vm(kvm); 12324 } 12325 12326 12327 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12328 { 12329 int ret; 12330 unsigned long flags; 12331 12332 if (type) 12333 return -EINVAL; 12334 12335 ret = kvm_page_track_init(kvm); 12336 if (ret) 12337 goto out; 12338 12339 kvm_mmu_init_vm(kvm); 12340 12341 ret = static_call(kvm_x86_vm_init)(kvm); 12342 if (ret) 12343 goto out_uninit_mmu; 12344 12345 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12346 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12347 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12348 12349 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12350 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12351 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12352 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12353 &kvm->arch.irq_sources_bitmap); 12354 12355 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12356 mutex_init(&kvm->arch.apic_map_lock); 12357 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12358 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12359 12360 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12361 pvclock_update_vm_gtod_copy(kvm); 12362 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12363 12364 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12365 kvm->arch.guest_can_read_msr_platform_info = true; 12366 kvm->arch.enable_pmu = enable_pmu; 12367 12368 #if IS_ENABLED(CONFIG_HYPERV) 12369 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12370 kvm->arch.hv_root_tdp = INVALID_PAGE; 12371 #endif 12372 12373 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12374 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12375 12376 kvm_apicv_init(kvm); 12377 kvm_hv_init_vm(kvm); 12378 kvm_xen_init_vm(kvm); 12379 12380 return 0; 12381 12382 out_uninit_mmu: 12383 kvm_mmu_uninit_vm(kvm); 12384 kvm_page_track_cleanup(kvm); 12385 out: 12386 return ret; 12387 } 12388 12389 int kvm_arch_post_init_vm(struct kvm *kvm) 12390 { 12391 return kvm_mmu_post_init_vm(kvm); 12392 } 12393 12394 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12395 { 12396 vcpu_load(vcpu); 12397 kvm_mmu_unload(vcpu); 12398 vcpu_put(vcpu); 12399 } 12400 12401 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12402 { 12403 unsigned long i; 12404 struct kvm_vcpu *vcpu; 12405 12406 kvm_for_each_vcpu(i, vcpu, kvm) { 12407 kvm_clear_async_pf_completion_queue(vcpu); 12408 kvm_unload_vcpu_mmu(vcpu); 12409 } 12410 } 12411 12412 void kvm_arch_sync_events(struct kvm *kvm) 12413 { 12414 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12415 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12416 kvm_free_pit(kvm); 12417 } 12418 12419 /** 12420 * __x86_set_memory_region: Setup KVM internal memory slot 12421 * 12422 * @kvm: the kvm pointer to the VM. 12423 * @id: the slot ID to setup. 12424 * @gpa: the GPA to install the slot (unused when @size == 0). 12425 * @size: the size of the slot. Set to zero to uninstall a slot. 12426 * 12427 * This function helps to setup a KVM internal memory slot. Specify 12428 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12429 * slot. The return code can be one of the following: 12430 * 12431 * HVA: on success (uninstall will return a bogus HVA) 12432 * -errno: on error 12433 * 12434 * The caller should always use IS_ERR() to check the return value 12435 * before use. Note, the KVM internal memory slots are guaranteed to 12436 * remain valid and unchanged until the VM is destroyed, i.e., the 12437 * GPA->HVA translation will not change. However, the HVA is a user 12438 * address, i.e. its accessibility is not guaranteed, and must be 12439 * accessed via __copy_{to,from}_user(). 12440 */ 12441 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12442 u32 size) 12443 { 12444 int i, r; 12445 unsigned long hva, old_npages; 12446 struct kvm_memslots *slots = kvm_memslots(kvm); 12447 struct kvm_memory_slot *slot; 12448 12449 /* Called with kvm->slots_lock held. */ 12450 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12451 return ERR_PTR_USR(-EINVAL); 12452 12453 slot = id_to_memslot(slots, id); 12454 if (size) { 12455 if (slot && slot->npages) 12456 return ERR_PTR_USR(-EEXIST); 12457 12458 /* 12459 * MAP_SHARED to prevent internal slot pages from being moved 12460 * by fork()/COW. 12461 */ 12462 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12463 MAP_SHARED | MAP_ANONYMOUS, 0); 12464 if (IS_ERR_VALUE(hva)) 12465 return (void __user *)hva; 12466 } else { 12467 if (!slot || !slot->npages) 12468 return NULL; 12469 12470 old_npages = slot->npages; 12471 hva = slot->userspace_addr; 12472 } 12473 12474 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12475 struct kvm_userspace_memory_region m; 12476 12477 m.slot = id | (i << 16); 12478 m.flags = 0; 12479 m.guest_phys_addr = gpa; 12480 m.userspace_addr = hva; 12481 m.memory_size = size; 12482 r = __kvm_set_memory_region(kvm, &m); 12483 if (r < 0) 12484 return ERR_PTR_USR(r); 12485 } 12486 12487 if (!size) 12488 vm_munmap(hva, old_npages * PAGE_SIZE); 12489 12490 return (void __user *)hva; 12491 } 12492 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12493 12494 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12495 { 12496 kvm_mmu_pre_destroy_vm(kvm); 12497 } 12498 12499 void kvm_arch_destroy_vm(struct kvm *kvm) 12500 { 12501 if (current->mm == kvm->mm) { 12502 /* 12503 * Free memory regions allocated on behalf of userspace, 12504 * unless the memory map has changed due to process exit 12505 * or fd copying. 12506 */ 12507 mutex_lock(&kvm->slots_lock); 12508 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12509 0, 0); 12510 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12511 0, 0); 12512 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12513 mutex_unlock(&kvm->slots_lock); 12514 } 12515 kvm_unload_vcpu_mmus(kvm); 12516 static_call_cond(kvm_x86_vm_destroy)(kvm); 12517 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12518 kvm_pic_destroy(kvm); 12519 kvm_ioapic_destroy(kvm); 12520 kvm_destroy_vcpus(kvm); 12521 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12522 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12523 kvm_mmu_uninit_vm(kvm); 12524 kvm_page_track_cleanup(kvm); 12525 kvm_xen_destroy_vm(kvm); 12526 kvm_hv_destroy_vm(kvm); 12527 } 12528 12529 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12530 { 12531 int i; 12532 12533 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12534 kvfree(slot->arch.rmap[i]); 12535 slot->arch.rmap[i] = NULL; 12536 } 12537 } 12538 12539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12540 { 12541 int i; 12542 12543 memslot_rmap_free(slot); 12544 12545 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12546 kvfree(slot->arch.lpage_info[i - 1]); 12547 slot->arch.lpage_info[i - 1] = NULL; 12548 } 12549 12550 kvm_page_track_free_memslot(slot); 12551 } 12552 12553 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12554 { 12555 const int sz = sizeof(*slot->arch.rmap[0]); 12556 int i; 12557 12558 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12559 int level = i + 1; 12560 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12561 12562 if (slot->arch.rmap[i]) 12563 continue; 12564 12565 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12566 if (!slot->arch.rmap[i]) { 12567 memslot_rmap_free(slot); 12568 return -ENOMEM; 12569 } 12570 } 12571 12572 return 0; 12573 } 12574 12575 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12576 struct kvm_memory_slot *slot) 12577 { 12578 unsigned long npages = slot->npages; 12579 int i, r; 12580 12581 /* 12582 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12583 * old arrays will be freed by __kvm_set_memory_region() if installing 12584 * the new memslot is successful. 12585 */ 12586 memset(&slot->arch, 0, sizeof(slot->arch)); 12587 12588 if (kvm_memslots_have_rmaps(kvm)) { 12589 r = memslot_rmap_alloc(slot, npages); 12590 if (r) 12591 return r; 12592 } 12593 12594 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12595 struct kvm_lpage_info *linfo; 12596 unsigned long ugfn; 12597 int lpages; 12598 int level = i + 1; 12599 12600 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12601 12602 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12603 if (!linfo) 12604 goto out_free; 12605 12606 slot->arch.lpage_info[i - 1] = linfo; 12607 12608 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12609 linfo[0].disallow_lpage = 1; 12610 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12611 linfo[lpages - 1].disallow_lpage = 1; 12612 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12613 /* 12614 * If the gfn and userspace address are not aligned wrt each 12615 * other, disable large page support for this slot. 12616 */ 12617 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12618 unsigned long j; 12619 12620 for (j = 0; j < lpages; ++j) 12621 linfo[j].disallow_lpage = 1; 12622 } 12623 } 12624 12625 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12626 goto out_free; 12627 12628 return 0; 12629 12630 out_free: 12631 memslot_rmap_free(slot); 12632 12633 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12634 kvfree(slot->arch.lpage_info[i - 1]); 12635 slot->arch.lpage_info[i - 1] = NULL; 12636 } 12637 return -ENOMEM; 12638 } 12639 12640 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12641 { 12642 struct kvm_vcpu *vcpu; 12643 unsigned long i; 12644 12645 /* 12646 * memslots->generation has been incremented. 12647 * mmio generation may have reached its maximum value. 12648 */ 12649 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12650 12651 /* Force re-initialization of steal_time cache */ 12652 kvm_for_each_vcpu(i, vcpu, kvm) 12653 kvm_vcpu_kick(vcpu); 12654 } 12655 12656 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12657 const struct kvm_memory_slot *old, 12658 struct kvm_memory_slot *new, 12659 enum kvm_mr_change change) 12660 { 12661 /* 12662 * KVM doesn't support moving memslots when there are external page 12663 * trackers attached to the VM, i.e. if KVMGT is in use. 12664 */ 12665 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12666 return -EINVAL; 12667 12668 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12669 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12670 return -EINVAL; 12671 12672 return kvm_alloc_memslot_metadata(kvm, new); 12673 } 12674 12675 if (change == KVM_MR_FLAGS_ONLY) 12676 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12677 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12678 return -EIO; 12679 12680 return 0; 12681 } 12682 12683 12684 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12685 { 12686 int nr_slots; 12687 12688 if (!kvm_x86_ops.cpu_dirty_log_size) 12689 return; 12690 12691 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12692 if ((enable && nr_slots == 1) || !nr_slots) 12693 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12694 } 12695 12696 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12697 struct kvm_memory_slot *old, 12698 const struct kvm_memory_slot *new, 12699 enum kvm_mr_change change) 12700 { 12701 u32 old_flags = old ? old->flags : 0; 12702 u32 new_flags = new ? new->flags : 0; 12703 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12704 12705 /* 12706 * Update CPU dirty logging if dirty logging is being toggled. This 12707 * applies to all operations. 12708 */ 12709 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12710 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12711 12712 /* 12713 * Nothing more to do for RO slots (which can't be dirtied and can't be 12714 * made writable) or CREATE/MOVE/DELETE of a slot. 12715 * 12716 * For a memslot with dirty logging disabled: 12717 * CREATE: No dirty mappings will already exist. 12718 * MOVE/DELETE: The old mappings will already have been cleaned up by 12719 * kvm_arch_flush_shadow_memslot() 12720 * 12721 * For a memslot with dirty logging enabled: 12722 * CREATE: No shadow pages exist, thus nothing to write-protect 12723 * and no dirty bits to clear. 12724 * MOVE/DELETE: The old mappings will already have been cleaned up by 12725 * kvm_arch_flush_shadow_memslot(). 12726 */ 12727 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12728 return; 12729 12730 /* 12731 * READONLY and non-flags changes were filtered out above, and the only 12732 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12733 * logging isn't being toggled on or off. 12734 */ 12735 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12736 return; 12737 12738 if (!log_dirty_pages) { 12739 /* 12740 * Dirty logging tracks sptes in 4k granularity, meaning that 12741 * large sptes have to be split. If live migration succeeds, 12742 * the guest in the source machine will be destroyed and large 12743 * sptes will be created in the destination. However, if the 12744 * guest continues to run in the source machine (for example if 12745 * live migration fails), small sptes will remain around and 12746 * cause bad performance. 12747 * 12748 * Scan sptes if dirty logging has been stopped, dropping those 12749 * which can be collapsed into a single large-page spte. Later 12750 * page faults will create the large-page sptes. 12751 */ 12752 kvm_mmu_zap_collapsible_sptes(kvm, new); 12753 } else { 12754 /* 12755 * Initially-all-set does not require write protecting any page, 12756 * because they're all assumed to be dirty. 12757 */ 12758 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12759 return; 12760 12761 if (READ_ONCE(eager_page_split)) 12762 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12763 12764 if (kvm_x86_ops.cpu_dirty_log_size) { 12765 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12766 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12767 } else { 12768 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12769 } 12770 12771 /* 12772 * Unconditionally flush the TLBs after enabling dirty logging. 12773 * A flush is almost always going to be necessary (see below), 12774 * and unconditionally flushing allows the helpers to omit 12775 * the subtly complex checks when removing write access. 12776 * 12777 * Do the flush outside of mmu_lock to reduce the amount of 12778 * time mmu_lock is held. Flushing after dropping mmu_lock is 12779 * safe as KVM only needs to guarantee the slot is fully 12780 * write-protected before returning to userspace, i.e. before 12781 * userspace can consume the dirty status. 12782 * 12783 * Flushing outside of mmu_lock requires KVM to be careful when 12784 * making decisions based on writable status of an SPTE, e.g. a 12785 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12786 * 12787 * Specifically, KVM also write-protects guest page tables to 12788 * monitor changes when using shadow paging, and must guarantee 12789 * no CPUs can write to those page before mmu_lock is dropped. 12790 * Because CPUs may have stale TLB entries at this point, a 12791 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12792 * 12793 * KVM also allows making SPTES writable outside of mmu_lock, 12794 * e.g. to allow dirty logging without taking mmu_lock. 12795 * 12796 * To handle these scenarios, KVM uses a separate software-only 12797 * bit (MMU-writable) to track if a SPTE is !writable due to 12798 * a guest page table being write-protected (KVM clears the 12799 * MMU-writable flag when write-protecting for shadow paging). 12800 * 12801 * The use of MMU-writable is also the primary motivation for 12802 * the unconditional flush. Because KVM must guarantee that a 12803 * CPU doesn't contain stale, writable TLB entries for a 12804 * !MMU-writable SPTE, KVM must flush if it encounters any 12805 * MMU-writable SPTE regardless of whether the actual hardware 12806 * writable bit was set. I.e. KVM is almost guaranteed to need 12807 * to flush, while unconditionally flushing allows the "remove 12808 * write access" helpers to ignore MMU-writable entirely. 12809 * 12810 * See is_writable_pte() for more details (the case involving 12811 * access-tracked SPTEs is particularly relevant). 12812 */ 12813 kvm_flush_remote_tlbs_memslot(kvm, new); 12814 } 12815 } 12816 12817 void kvm_arch_commit_memory_region(struct kvm *kvm, 12818 struct kvm_memory_slot *old, 12819 const struct kvm_memory_slot *new, 12820 enum kvm_mr_change change) 12821 { 12822 if (change == KVM_MR_DELETE) 12823 kvm_page_track_delete_slot(kvm, old); 12824 12825 if (!kvm->arch.n_requested_mmu_pages && 12826 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12827 unsigned long nr_mmu_pages; 12828 12829 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12830 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12831 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12832 } 12833 12834 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12835 12836 /* Free the arrays associated with the old memslot. */ 12837 if (change == KVM_MR_MOVE) 12838 kvm_arch_free_memslot(kvm, old); 12839 } 12840 12841 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12842 { 12843 return (is_guest_mode(vcpu) && 12844 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12845 } 12846 12847 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12848 { 12849 if (!list_empty_careful(&vcpu->async_pf.done)) 12850 return true; 12851 12852 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12853 kvm_apic_init_sipi_allowed(vcpu)) 12854 return true; 12855 12856 if (vcpu->arch.pv.pv_unhalted) 12857 return true; 12858 12859 if (kvm_is_exception_pending(vcpu)) 12860 return true; 12861 12862 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12863 (vcpu->arch.nmi_pending && 12864 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12865 return true; 12866 12867 #ifdef CONFIG_KVM_SMM 12868 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12869 (vcpu->arch.smi_pending && 12870 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12871 return true; 12872 #endif 12873 12874 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 12875 return true; 12876 12877 if (kvm_arch_interrupt_allowed(vcpu) && 12878 (kvm_cpu_has_interrupt(vcpu) || 12879 kvm_guest_apic_has_interrupt(vcpu))) 12880 return true; 12881 12882 if (kvm_hv_has_stimer_pending(vcpu)) 12883 return true; 12884 12885 if (is_guest_mode(vcpu) && 12886 kvm_x86_ops.nested_ops->has_events && 12887 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 12888 return true; 12889 12890 if (kvm_xen_has_pending_events(vcpu)) 12891 return true; 12892 12893 return false; 12894 } 12895 12896 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12897 { 12898 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12899 } 12900 12901 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12902 { 12903 if (kvm_vcpu_apicv_active(vcpu) && 12904 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12905 return true; 12906 12907 return false; 12908 } 12909 12910 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12911 { 12912 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12913 return true; 12914 12915 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12916 #ifdef CONFIG_KVM_SMM 12917 kvm_test_request(KVM_REQ_SMI, vcpu) || 12918 #endif 12919 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12920 return true; 12921 12922 return kvm_arch_dy_has_pending_interrupt(vcpu); 12923 } 12924 12925 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12926 { 12927 if (vcpu->arch.guest_state_protected) 12928 return true; 12929 12930 return vcpu->arch.preempted_in_kernel; 12931 } 12932 12933 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12934 { 12935 return kvm_rip_read(vcpu); 12936 } 12937 12938 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12939 { 12940 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12941 } 12942 12943 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12944 { 12945 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12946 } 12947 12948 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12949 { 12950 /* Can't read the RIP when guest state is protected, just return 0 */ 12951 if (vcpu->arch.guest_state_protected) 12952 return 0; 12953 12954 if (is_64_bit_mode(vcpu)) 12955 return kvm_rip_read(vcpu); 12956 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12957 kvm_rip_read(vcpu)); 12958 } 12959 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12960 12961 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12962 { 12963 return kvm_get_linear_rip(vcpu) == linear_rip; 12964 } 12965 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12966 12967 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12968 { 12969 unsigned long rflags; 12970 12971 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12972 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12973 rflags &= ~X86_EFLAGS_TF; 12974 return rflags; 12975 } 12976 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12977 12978 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12979 { 12980 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12981 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12982 rflags |= X86_EFLAGS_TF; 12983 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12984 } 12985 12986 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12987 { 12988 __kvm_set_rflags(vcpu, rflags); 12989 kvm_make_request(KVM_REQ_EVENT, vcpu); 12990 } 12991 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12992 12993 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12994 { 12995 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12996 12997 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12998 } 12999 13000 static inline u32 kvm_async_pf_next_probe(u32 key) 13001 { 13002 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13003 } 13004 13005 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13006 { 13007 u32 key = kvm_async_pf_hash_fn(gfn); 13008 13009 while (vcpu->arch.apf.gfns[key] != ~0) 13010 key = kvm_async_pf_next_probe(key); 13011 13012 vcpu->arch.apf.gfns[key] = gfn; 13013 } 13014 13015 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13016 { 13017 int i; 13018 u32 key = kvm_async_pf_hash_fn(gfn); 13019 13020 for (i = 0; i < ASYNC_PF_PER_VCPU && 13021 (vcpu->arch.apf.gfns[key] != gfn && 13022 vcpu->arch.apf.gfns[key] != ~0); i++) 13023 key = kvm_async_pf_next_probe(key); 13024 13025 return key; 13026 } 13027 13028 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13029 { 13030 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13031 } 13032 13033 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13034 { 13035 u32 i, j, k; 13036 13037 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13038 13039 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13040 return; 13041 13042 while (true) { 13043 vcpu->arch.apf.gfns[i] = ~0; 13044 do { 13045 j = kvm_async_pf_next_probe(j); 13046 if (vcpu->arch.apf.gfns[j] == ~0) 13047 return; 13048 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13049 /* 13050 * k lies cyclically in ]i,j] 13051 * | i.k.j | 13052 * |....j i.k.| or |.k..j i...| 13053 */ 13054 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13055 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13056 i = j; 13057 } 13058 } 13059 13060 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13061 { 13062 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13063 13064 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13065 sizeof(reason)); 13066 } 13067 13068 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13069 { 13070 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13071 13072 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13073 &token, offset, sizeof(token)); 13074 } 13075 13076 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13077 { 13078 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13079 u32 val; 13080 13081 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13082 &val, offset, sizeof(val))) 13083 return false; 13084 13085 return !val; 13086 } 13087 13088 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13089 { 13090 13091 if (!kvm_pv_async_pf_enabled(vcpu)) 13092 return false; 13093 13094 if (vcpu->arch.apf.send_user_only && 13095 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13096 return false; 13097 13098 if (is_guest_mode(vcpu)) { 13099 /* 13100 * L1 needs to opt into the special #PF vmexits that are 13101 * used to deliver async page faults. 13102 */ 13103 return vcpu->arch.apf.delivery_as_pf_vmexit; 13104 } else { 13105 /* 13106 * Play it safe in case the guest temporarily disables paging. 13107 * The real mode IDT in particular is unlikely to have a #PF 13108 * exception setup. 13109 */ 13110 return is_paging(vcpu); 13111 } 13112 } 13113 13114 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13115 { 13116 if (unlikely(!lapic_in_kernel(vcpu) || 13117 kvm_event_needs_reinjection(vcpu) || 13118 kvm_is_exception_pending(vcpu))) 13119 return false; 13120 13121 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13122 return false; 13123 13124 /* 13125 * If interrupts are off we cannot even use an artificial 13126 * halt state. 13127 */ 13128 return kvm_arch_interrupt_allowed(vcpu); 13129 } 13130 13131 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13132 struct kvm_async_pf *work) 13133 { 13134 struct x86_exception fault; 13135 13136 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13137 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13138 13139 if (kvm_can_deliver_async_pf(vcpu) && 13140 !apf_put_user_notpresent(vcpu)) { 13141 fault.vector = PF_VECTOR; 13142 fault.error_code_valid = true; 13143 fault.error_code = 0; 13144 fault.nested_page_fault = false; 13145 fault.address = work->arch.token; 13146 fault.async_page_fault = true; 13147 kvm_inject_page_fault(vcpu, &fault); 13148 return true; 13149 } else { 13150 /* 13151 * It is not possible to deliver a paravirtualized asynchronous 13152 * page fault, but putting the guest in an artificial halt state 13153 * can be beneficial nevertheless: if an interrupt arrives, we 13154 * can deliver it timely and perhaps the guest will schedule 13155 * another process. When the instruction that triggered a page 13156 * fault is retried, hopefully the page will be ready in the host. 13157 */ 13158 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13159 return false; 13160 } 13161 } 13162 13163 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13164 struct kvm_async_pf *work) 13165 { 13166 struct kvm_lapic_irq irq = { 13167 .delivery_mode = APIC_DM_FIXED, 13168 .vector = vcpu->arch.apf.vec 13169 }; 13170 13171 if (work->wakeup_all) 13172 work->arch.token = ~0; /* broadcast wakeup */ 13173 else 13174 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13175 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13176 13177 if ((work->wakeup_all || work->notpresent_injected) && 13178 kvm_pv_async_pf_enabled(vcpu) && 13179 !apf_put_user_ready(vcpu, work->arch.token)) { 13180 vcpu->arch.apf.pageready_pending = true; 13181 kvm_apic_set_irq(vcpu, &irq, NULL); 13182 } 13183 13184 vcpu->arch.apf.halted = false; 13185 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13186 } 13187 13188 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13189 { 13190 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13191 if (!vcpu->arch.apf.pageready_pending) 13192 kvm_vcpu_kick(vcpu); 13193 } 13194 13195 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13196 { 13197 if (!kvm_pv_async_pf_enabled(vcpu)) 13198 return true; 13199 else 13200 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13201 } 13202 13203 void kvm_arch_start_assignment(struct kvm *kvm) 13204 { 13205 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13206 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13207 } 13208 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13209 13210 void kvm_arch_end_assignment(struct kvm *kvm) 13211 { 13212 atomic_dec(&kvm->arch.assigned_device_count); 13213 } 13214 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13215 13216 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13217 { 13218 return raw_atomic_read(&kvm->arch.assigned_device_count); 13219 } 13220 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13221 13222 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13223 { 13224 atomic_inc(&kvm->arch.noncoherent_dma_count); 13225 } 13226 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13227 13228 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13229 { 13230 atomic_dec(&kvm->arch.noncoherent_dma_count); 13231 } 13232 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13233 13234 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13235 { 13236 return atomic_read(&kvm->arch.noncoherent_dma_count); 13237 } 13238 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13239 13240 bool kvm_arch_has_irq_bypass(void) 13241 { 13242 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13243 } 13244 13245 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13246 struct irq_bypass_producer *prod) 13247 { 13248 struct kvm_kernel_irqfd *irqfd = 13249 container_of(cons, struct kvm_kernel_irqfd, consumer); 13250 int ret; 13251 13252 irqfd->producer = prod; 13253 kvm_arch_start_assignment(irqfd->kvm); 13254 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13255 prod->irq, irqfd->gsi, 1); 13256 13257 if (ret) 13258 kvm_arch_end_assignment(irqfd->kvm); 13259 13260 return ret; 13261 } 13262 13263 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13264 struct irq_bypass_producer *prod) 13265 { 13266 int ret; 13267 struct kvm_kernel_irqfd *irqfd = 13268 container_of(cons, struct kvm_kernel_irqfd, consumer); 13269 13270 WARN_ON(irqfd->producer != prod); 13271 irqfd->producer = NULL; 13272 13273 /* 13274 * When producer of consumer is unregistered, we change back to 13275 * remapped mode, so we can re-use the current implementation 13276 * when the irq is masked/disabled or the consumer side (KVM 13277 * int this case doesn't want to receive the interrupts. 13278 */ 13279 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13280 if (ret) 13281 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13282 " fails: %d\n", irqfd->consumer.token, ret); 13283 13284 kvm_arch_end_assignment(irqfd->kvm); 13285 } 13286 13287 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13288 uint32_t guest_irq, bool set) 13289 { 13290 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13291 } 13292 13293 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13294 struct kvm_kernel_irq_routing_entry *new) 13295 { 13296 if (new->type != KVM_IRQ_ROUTING_MSI) 13297 return true; 13298 13299 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13300 } 13301 13302 bool kvm_vector_hashing_enabled(void) 13303 { 13304 return vector_hashing; 13305 } 13306 13307 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13308 { 13309 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13310 } 13311 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13312 13313 13314 int kvm_spec_ctrl_test_value(u64 value) 13315 { 13316 /* 13317 * test that setting IA32_SPEC_CTRL to given value 13318 * is allowed by the host processor 13319 */ 13320 13321 u64 saved_value; 13322 unsigned long flags; 13323 int ret = 0; 13324 13325 local_irq_save(flags); 13326 13327 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13328 ret = 1; 13329 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13330 ret = 1; 13331 else 13332 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13333 13334 local_irq_restore(flags); 13335 13336 return ret; 13337 } 13338 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13339 13340 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13341 { 13342 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13343 struct x86_exception fault; 13344 u64 access = error_code & 13345 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13346 13347 if (!(error_code & PFERR_PRESENT_MASK) || 13348 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13349 /* 13350 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13351 * tables probably do not match the TLB. Just proceed 13352 * with the error code that the processor gave. 13353 */ 13354 fault.vector = PF_VECTOR; 13355 fault.error_code_valid = true; 13356 fault.error_code = error_code; 13357 fault.nested_page_fault = false; 13358 fault.address = gva; 13359 fault.async_page_fault = false; 13360 } 13361 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13362 } 13363 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13364 13365 /* 13366 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13367 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13368 * indicates whether exit to userspace is needed. 13369 */ 13370 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13371 struct x86_exception *e) 13372 { 13373 if (r == X86EMUL_PROPAGATE_FAULT) { 13374 if (KVM_BUG_ON(!e, vcpu->kvm)) 13375 return -EIO; 13376 13377 kvm_inject_emulated_page_fault(vcpu, e); 13378 return 1; 13379 } 13380 13381 /* 13382 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13383 * while handling a VMX instruction KVM could've handled the request 13384 * correctly by exiting to userspace and performing I/O but there 13385 * doesn't seem to be a real use-case behind such requests, just return 13386 * KVM_EXIT_INTERNAL_ERROR for now. 13387 */ 13388 kvm_prepare_emulation_failure_exit(vcpu); 13389 13390 return 0; 13391 } 13392 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13393 13394 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13395 { 13396 bool pcid_enabled; 13397 struct x86_exception e; 13398 struct { 13399 u64 pcid; 13400 u64 gla; 13401 } operand; 13402 int r; 13403 13404 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13405 if (r != X86EMUL_CONTINUE) 13406 return kvm_handle_memory_failure(vcpu, r, &e); 13407 13408 if (operand.pcid >> 12 != 0) { 13409 kvm_inject_gp(vcpu, 0); 13410 return 1; 13411 } 13412 13413 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13414 13415 switch (type) { 13416 case INVPCID_TYPE_INDIV_ADDR: 13417 if ((!pcid_enabled && (operand.pcid != 0)) || 13418 is_noncanonical_address(operand.gla, vcpu)) { 13419 kvm_inject_gp(vcpu, 0); 13420 return 1; 13421 } 13422 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13423 return kvm_skip_emulated_instruction(vcpu); 13424 13425 case INVPCID_TYPE_SINGLE_CTXT: 13426 if (!pcid_enabled && (operand.pcid != 0)) { 13427 kvm_inject_gp(vcpu, 0); 13428 return 1; 13429 } 13430 13431 kvm_invalidate_pcid(vcpu, operand.pcid); 13432 return kvm_skip_emulated_instruction(vcpu); 13433 13434 case INVPCID_TYPE_ALL_NON_GLOBAL: 13435 /* 13436 * Currently, KVM doesn't mark global entries in the shadow 13437 * page tables, so a non-global flush just degenerates to a 13438 * global flush. If needed, we could optimize this later by 13439 * keeping track of global entries in shadow page tables. 13440 */ 13441 13442 fallthrough; 13443 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13444 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13445 return kvm_skip_emulated_instruction(vcpu); 13446 13447 default: 13448 kvm_inject_gp(vcpu, 0); 13449 return 1; 13450 } 13451 } 13452 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13453 13454 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13455 { 13456 struct kvm_run *run = vcpu->run; 13457 struct kvm_mmio_fragment *frag; 13458 unsigned int len; 13459 13460 BUG_ON(!vcpu->mmio_needed); 13461 13462 /* Complete previous fragment */ 13463 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13464 len = min(8u, frag->len); 13465 if (!vcpu->mmio_is_write) 13466 memcpy(frag->data, run->mmio.data, len); 13467 13468 if (frag->len <= 8) { 13469 /* Switch to the next fragment. */ 13470 frag++; 13471 vcpu->mmio_cur_fragment++; 13472 } else { 13473 /* Go forward to the next mmio piece. */ 13474 frag->data += len; 13475 frag->gpa += len; 13476 frag->len -= len; 13477 } 13478 13479 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13480 vcpu->mmio_needed = 0; 13481 13482 // VMG change, at this point, we're always done 13483 // RIP has already been advanced 13484 return 1; 13485 } 13486 13487 // More MMIO is needed 13488 run->mmio.phys_addr = frag->gpa; 13489 run->mmio.len = min(8u, frag->len); 13490 run->mmio.is_write = vcpu->mmio_is_write; 13491 if (run->mmio.is_write) 13492 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13493 run->exit_reason = KVM_EXIT_MMIO; 13494 13495 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13496 13497 return 0; 13498 } 13499 13500 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13501 void *data) 13502 { 13503 int handled; 13504 struct kvm_mmio_fragment *frag; 13505 13506 if (!data) 13507 return -EINVAL; 13508 13509 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13510 if (handled == bytes) 13511 return 1; 13512 13513 bytes -= handled; 13514 gpa += handled; 13515 data += handled; 13516 13517 /*TODO: Check if need to increment number of frags */ 13518 frag = vcpu->mmio_fragments; 13519 vcpu->mmio_nr_fragments = 1; 13520 frag->len = bytes; 13521 frag->gpa = gpa; 13522 frag->data = data; 13523 13524 vcpu->mmio_needed = 1; 13525 vcpu->mmio_cur_fragment = 0; 13526 13527 vcpu->run->mmio.phys_addr = gpa; 13528 vcpu->run->mmio.len = min(8u, frag->len); 13529 vcpu->run->mmio.is_write = 1; 13530 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13531 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13532 13533 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13534 13535 return 0; 13536 } 13537 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13538 13539 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13540 void *data) 13541 { 13542 int handled; 13543 struct kvm_mmio_fragment *frag; 13544 13545 if (!data) 13546 return -EINVAL; 13547 13548 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13549 if (handled == bytes) 13550 return 1; 13551 13552 bytes -= handled; 13553 gpa += handled; 13554 data += handled; 13555 13556 /*TODO: Check if need to increment number of frags */ 13557 frag = vcpu->mmio_fragments; 13558 vcpu->mmio_nr_fragments = 1; 13559 frag->len = bytes; 13560 frag->gpa = gpa; 13561 frag->data = data; 13562 13563 vcpu->mmio_needed = 1; 13564 vcpu->mmio_cur_fragment = 0; 13565 13566 vcpu->run->mmio.phys_addr = gpa; 13567 vcpu->run->mmio.len = min(8u, frag->len); 13568 vcpu->run->mmio.is_write = 0; 13569 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13570 13571 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13572 13573 return 0; 13574 } 13575 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13576 13577 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13578 { 13579 vcpu->arch.sev_pio_count -= count; 13580 vcpu->arch.sev_pio_data += count * size; 13581 } 13582 13583 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13584 unsigned int port); 13585 13586 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13587 { 13588 int size = vcpu->arch.pio.size; 13589 int port = vcpu->arch.pio.port; 13590 13591 vcpu->arch.pio.count = 0; 13592 if (vcpu->arch.sev_pio_count) 13593 return kvm_sev_es_outs(vcpu, size, port); 13594 return 1; 13595 } 13596 13597 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13598 unsigned int port) 13599 { 13600 for (;;) { 13601 unsigned int count = 13602 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13603 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13604 13605 /* memcpy done already by emulator_pio_out. */ 13606 advance_sev_es_emulated_pio(vcpu, count, size); 13607 if (!ret) 13608 break; 13609 13610 /* Emulation done by the kernel. */ 13611 if (!vcpu->arch.sev_pio_count) 13612 return 1; 13613 } 13614 13615 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13616 return 0; 13617 } 13618 13619 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13620 unsigned int port); 13621 13622 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13623 { 13624 unsigned count = vcpu->arch.pio.count; 13625 int size = vcpu->arch.pio.size; 13626 int port = vcpu->arch.pio.port; 13627 13628 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13629 advance_sev_es_emulated_pio(vcpu, count, size); 13630 if (vcpu->arch.sev_pio_count) 13631 return kvm_sev_es_ins(vcpu, size, port); 13632 return 1; 13633 } 13634 13635 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13636 unsigned int port) 13637 { 13638 for (;;) { 13639 unsigned int count = 13640 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13641 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13642 break; 13643 13644 /* Emulation done by the kernel. */ 13645 advance_sev_es_emulated_pio(vcpu, count, size); 13646 if (!vcpu->arch.sev_pio_count) 13647 return 1; 13648 } 13649 13650 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13651 return 0; 13652 } 13653 13654 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13655 unsigned int port, void *data, unsigned int count, 13656 int in) 13657 { 13658 vcpu->arch.sev_pio_data = data; 13659 vcpu->arch.sev_pio_count = count; 13660 return in ? kvm_sev_es_ins(vcpu, size, port) 13661 : kvm_sev_es_outs(vcpu, size, port); 13662 } 13663 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13664 13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13694 13695 static int __init kvm_x86_init(void) 13696 { 13697 kvm_mmu_x86_module_init(); 13698 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13699 return 0; 13700 } 13701 module_init(kvm_x86_init); 13702 13703 static void __exit kvm_x86_exit(void) 13704 { 13705 /* 13706 * If module_init() is implemented, module_exit() must also be 13707 * implemented to allow module unload. 13708 */ 13709 } 13710 module_exit(kvm_x86_exit); 13711