xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142 
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145 
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149 
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152 
153 #define KVM_NR_SHARED_MSRS 16
154 
155 struct kvm_shared_msrs_global {
156 	int nr;
157 	u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159 
160 struct kvm_shared_msrs {
161 	struct user_return_notifier urn;
162 	bool registered;
163 	struct kvm_shared_msr_values {
164 		u64 host;
165 		u64 curr;
166 	} values[KVM_NR_SHARED_MSRS];
167 };
168 
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171 
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
174 	{ "pf_guest", VCPU_STAT(pf_guest) },
175 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
176 	{ "invlpg", VCPU_STAT(invlpg) },
177 	{ "exits", VCPU_STAT(exits) },
178 	{ "io_exits", VCPU_STAT(io_exits) },
179 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
180 	{ "signal_exits", VCPU_STAT(signal_exits) },
181 	{ "irq_window", VCPU_STAT(irq_window_exits) },
182 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
183 	{ "halt_exits", VCPU_STAT(halt_exits) },
184 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 	{ "hypercalls", VCPU_STAT(hypercalls) },
189 	{ "request_irq", VCPU_STAT(request_irq_exits) },
190 	{ "irq_exits", VCPU_STAT(irq_exits) },
191 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
192 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
193 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
194 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 	{ "irq_injections", VCPU_STAT(irq_injections) },
196 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
197 	{ "req_event", VCPU_STAT(req_event) },
198 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
199 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
200 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
201 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
202 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
203 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
204 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
205 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
206 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
207 	{ "largepages", VM_STAT(lpages) },
208 	{ "max_mmu_page_hash_collisions",
209 		VM_STAT(max_mmu_page_hash_collisions) },
210 	{ NULL }
211 };
212 
213 u64 __read_mostly host_xcr0;
214 
215 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
216 
217 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
218 {
219 	int i;
220 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
221 		vcpu->arch.apf.gfns[i] = ~0;
222 }
223 
224 static void kvm_on_user_return(struct user_return_notifier *urn)
225 {
226 	unsigned slot;
227 	struct kvm_shared_msrs *locals
228 		= container_of(urn, struct kvm_shared_msrs, urn);
229 	struct kvm_shared_msr_values *values;
230 	unsigned long flags;
231 
232 	/*
233 	 * Disabling irqs at this point since the following code could be
234 	 * interrupted and executed through kvm_arch_hardware_disable()
235 	 */
236 	local_irq_save(flags);
237 	if (locals->registered) {
238 		locals->registered = false;
239 		user_return_notifier_unregister(urn);
240 	}
241 	local_irq_restore(flags);
242 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
243 		values = &locals->values[slot];
244 		if (values->host != values->curr) {
245 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
246 			values->curr = values->host;
247 		}
248 	}
249 }
250 
251 static void shared_msr_update(unsigned slot, u32 msr)
252 {
253 	u64 value;
254 	unsigned int cpu = smp_processor_id();
255 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256 
257 	/* only read, and nobody should modify it at this time,
258 	 * so don't need lock */
259 	if (slot >= shared_msrs_global.nr) {
260 		printk(KERN_ERR "kvm: invalid MSR slot!");
261 		return;
262 	}
263 	rdmsrl_safe(msr, &value);
264 	smsr->values[slot].host = value;
265 	smsr->values[slot].curr = value;
266 }
267 
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
269 {
270 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271 	shared_msrs_global.msrs[slot] = msr;
272 	if (slot >= shared_msrs_global.nr)
273 		shared_msrs_global.nr = slot + 1;
274 }
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
276 
277 static void kvm_shared_msr_cpu_online(void)
278 {
279 	unsigned i;
280 
281 	for (i = 0; i < shared_msrs_global.nr; ++i)
282 		shared_msr_update(i, shared_msrs_global.msrs[i]);
283 }
284 
285 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
286 {
287 	unsigned int cpu = smp_processor_id();
288 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
289 	int err;
290 
291 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
292 		return 0;
293 	smsr->values[slot].curr = value;
294 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
295 	if (err)
296 		return 1;
297 
298 	if (!smsr->registered) {
299 		smsr->urn.on_user_return = kvm_on_user_return;
300 		user_return_notifier_register(&smsr->urn);
301 		smsr->registered = true;
302 	}
303 	return 0;
304 }
305 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
306 
307 static void drop_user_return_notifiers(void)
308 {
309 	unsigned int cpu = smp_processor_id();
310 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
311 
312 	if (smsr->registered)
313 		kvm_on_user_return(&smsr->urn);
314 }
315 
316 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
317 {
318 	return vcpu->arch.apic_base;
319 }
320 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
321 
322 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
323 {
324 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
325 }
326 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
327 
328 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
329 {
330 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
331 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
332 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
333 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
334 
335 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
336 		return 1;
337 	if (!msr_info->host_initiated) {
338 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
339 			return 1;
340 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
341 			return 1;
342 	}
343 
344 	kvm_lapic_set_base(vcpu, msr_info->data);
345 	return 0;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
348 
349 asmlinkage __visible void kvm_spurious_fault(void)
350 {
351 	/* Fault while not rebooting.  We want the trace. */
352 	BUG();
353 }
354 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
355 
356 #define EXCPT_BENIGN		0
357 #define EXCPT_CONTRIBUTORY	1
358 #define EXCPT_PF		2
359 
360 static int exception_class(int vector)
361 {
362 	switch (vector) {
363 	case PF_VECTOR:
364 		return EXCPT_PF;
365 	case DE_VECTOR:
366 	case TS_VECTOR:
367 	case NP_VECTOR:
368 	case SS_VECTOR:
369 	case GP_VECTOR:
370 		return EXCPT_CONTRIBUTORY;
371 	default:
372 		break;
373 	}
374 	return EXCPT_BENIGN;
375 }
376 
377 #define EXCPT_FAULT		0
378 #define EXCPT_TRAP		1
379 #define EXCPT_ABORT		2
380 #define EXCPT_INTERRUPT		3
381 
382 static int exception_type(int vector)
383 {
384 	unsigned int mask;
385 
386 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
387 		return EXCPT_INTERRUPT;
388 
389 	mask = 1 << vector;
390 
391 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
392 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
393 		return EXCPT_TRAP;
394 
395 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
396 		return EXCPT_ABORT;
397 
398 	/* Reserved exceptions will result in fault */
399 	return EXCPT_FAULT;
400 }
401 
402 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
403 		unsigned nr, bool has_error, u32 error_code,
404 		bool reinject)
405 {
406 	u32 prev_nr;
407 	int class1, class2;
408 
409 	kvm_make_request(KVM_REQ_EVENT, vcpu);
410 
411 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
412 	queue:
413 		if (has_error && !is_protmode(vcpu))
414 			has_error = false;
415 		if (reinject) {
416 			/*
417 			 * On vmentry, vcpu->arch.exception.pending is only
418 			 * true if an event injection was blocked by
419 			 * nested_run_pending.  In that case, however,
420 			 * vcpu_enter_guest requests an immediate exit,
421 			 * and the guest shouldn't proceed far enough to
422 			 * need reinjection.
423 			 */
424 			WARN_ON_ONCE(vcpu->arch.exception.pending);
425 			vcpu->arch.exception.injected = true;
426 		} else {
427 			vcpu->arch.exception.pending = true;
428 			vcpu->arch.exception.injected = false;
429 		}
430 		vcpu->arch.exception.has_error_code = has_error;
431 		vcpu->arch.exception.nr = nr;
432 		vcpu->arch.exception.error_code = error_code;
433 		return;
434 	}
435 
436 	/* to check exception */
437 	prev_nr = vcpu->arch.exception.nr;
438 	if (prev_nr == DF_VECTOR) {
439 		/* triple fault -> shutdown */
440 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
441 		return;
442 	}
443 	class1 = exception_class(prev_nr);
444 	class2 = exception_class(nr);
445 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
446 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
447 		/*
448 		 * Generate double fault per SDM Table 5-5.  Set
449 		 * exception.pending = true so that the double fault
450 		 * can trigger a nested vmexit.
451 		 */
452 		vcpu->arch.exception.pending = true;
453 		vcpu->arch.exception.injected = false;
454 		vcpu->arch.exception.has_error_code = true;
455 		vcpu->arch.exception.nr = DF_VECTOR;
456 		vcpu->arch.exception.error_code = 0;
457 	} else
458 		/* replace previous exception with a new one in a hope
459 		   that instruction re-execution will regenerate lost
460 		   exception */
461 		goto queue;
462 }
463 
464 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
465 {
466 	kvm_multiple_exception(vcpu, nr, false, 0, false);
467 }
468 EXPORT_SYMBOL_GPL(kvm_queue_exception);
469 
470 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
471 {
472 	kvm_multiple_exception(vcpu, nr, false, 0, true);
473 }
474 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
475 
476 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
477 {
478 	if (err)
479 		kvm_inject_gp(vcpu, 0);
480 	else
481 		return kvm_skip_emulated_instruction(vcpu);
482 
483 	return 1;
484 }
485 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
486 
487 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
488 {
489 	++vcpu->stat.pf_guest;
490 	vcpu->arch.exception.nested_apf =
491 		is_guest_mode(vcpu) && fault->async_page_fault;
492 	if (vcpu->arch.exception.nested_apf)
493 		vcpu->arch.apf.nested_apf_token = fault->address;
494 	else
495 		vcpu->arch.cr2 = fault->address;
496 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
497 }
498 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
499 
500 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
501 {
502 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
503 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
504 	else
505 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
506 
507 	return fault->nested_page_fault;
508 }
509 
510 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
511 {
512 	atomic_inc(&vcpu->arch.nmi_queued);
513 	kvm_make_request(KVM_REQ_NMI, vcpu);
514 }
515 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
516 
517 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
518 {
519 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
520 }
521 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
522 
523 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
524 {
525 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
526 }
527 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
528 
529 /*
530  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
531  * a #GP and return false.
532  */
533 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
534 {
535 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
536 		return true;
537 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
538 	return false;
539 }
540 EXPORT_SYMBOL_GPL(kvm_require_cpl);
541 
542 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
543 {
544 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
545 		return true;
546 
547 	kvm_queue_exception(vcpu, UD_VECTOR);
548 	return false;
549 }
550 EXPORT_SYMBOL_GPL(kvm_require_dr);
551 
552 /*
553  * This function will be used to read from the physical memory of the currently
554  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
555  * can read from guest physical or from the guest's guest physical memory.
556  */
557 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
558 			    gfn_t ngfn, void *data, int offset, int len,
559 			    u32 access)
560 {
561 	struct x86_exception exception;
562 	gfn_t real_gfn;
563 	gpa_t ngpa;
564 
565 	ngpa     = gfn_to_gpa(ngfn);
566 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
567 	if (real_gfn == UNMAPPED_GVA)
568 		return -EFAULT;
569 
570 	real_gfn = gpa_to_gfn(real_gfn);
571 
572 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
573 }
574 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
575 
576 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
577 			       void *data, int offset, int len, u32 access)
578 {
579 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
580 				       data, offset, len, access);
581 }
582 
583 /*
584  * Load the pae pdptrs.  Return true is they are all valid.
585  */
586 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
587 {
588 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
589 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
590 	int i;
591 	int ret;
592 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
593 
594 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
595 				      offset * sizeof(u64), sizeof(pdpte),
596 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
597 	if (ret < 0) {
598 		ret = 0;
599 		goto out;
600 	}
601 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
602 		if ((pdpte[i] & PT_PRESENT_MASK) &&
603 		    (pdpte[i] &
604 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
605 			ret = 0;
606 			goto out;
607 		}
608 	}
609 	ret = 1;
610 
611 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
612 	__set_bit(VCPU_EXREG_PDPTR,
613 		  (unsigned long *)&vcpu->arch.regs_avail);
614 	__set_bit(VCPU_EXREG_PDPTR,
615 		  (unsigned long *)&vcpu->arch.regs_dirty);
616 out:
617 
618 	return ret;
619 }
620 EXPORT_SYMBOL_GPL(load_pdptrs);
621 
622 bool pdptrs_changed(struct kvm_vcpu *vcpu)
623 {
624 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
625 	bool changed = true;
626 	int offset;
627 	gfn_t gfn;
628 	int r;
629 
630 	if (is_long_mode(vcpu) || !is_pae(vcpu))
631 		return false;
632 
633 	if (!test_bit(VCPU_EXREG_PDPTR,
634 		      (unsigned long *)&vcpu->arch.regs_avail))
635 		return true;
636 
637 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
638 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
639 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
640 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
641 	if (r < 0)
642 		goto out;
643 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
644 out:
645 
646 	return changed;
647 }
648 EXPORT_SYMBOL_GPL(pdptrs_changed);
649 
650 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
651 {
652 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
653 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
654 
655 	cr0 |= X86_CR0_ET;
656 
657 #ifdef CONFIG_X86_64
658 	if (cr0 & 0xffffffff00000000UL)
659 		return 1;
660 #endif
661 
662 	cr0 &= ~CR0_RESERVED_BITS;
663 
664 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
665 		return 1;
666 
667 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
668 		return 1;
669 
670 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
671 #ifdef CONFIG_X86_64
672 		if ((vcpu->arch.efer & EFER_LME)) {
673 			int cs_db, cs_l;
674 
675 			if (!is_pae(vcpu))
676 				return 1;
677 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
678 			if (cs_l)
679 				return 1;
680 		} else
681 #endif
682 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
683 						 kvm_read_cr3(vcpu)))
684 			return 1;
685 	}
686 
687 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
688 		return 1;
689 
690 	kvm_x86_ops->set_cr0(vcpu, cr0);
691 
692 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
693 		kvm_clear_async_pf_completion_queue(vcpu);
694 		kvm_async_pf_hash_reset(vcpu);
695 	}
696 
697 	if ((cr0 ^ old_cr0) & update_bits)
698 		kvm_mmu_reset_context(vcpu);
699 
700 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
701 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
702 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
703 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr0);
708 
709 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
710 {
711 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
712 }
713 EXPORT_SYMBOL_GPL(kvm_lmsw);
714 
715 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
716 {
717 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
718 			!vcpu->guest_xcr0_loaded) {
719 		/* kvm_set_xcr() also depends on this */
720 		if (vcpu->arch.xcr0 != host_xcr0)
721 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
722 		vcpu->guest_xcr0_loaded = 1;
723 	}
724 }
725 
726 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
727 {
728 	if (vcpu->guest_xcr0_loaded) {
729 		if (vcpu->arch.xcr0 != host_xcr0)
730 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
731 		vcpu->guest_xcr0_loaded = 0;
732 	}
733 }
734 
735 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737 	u64 xcr0 = xcr;
738 	u64 old_xcr0 = vcpu->arch.xcr0;
739 	u64 valid_bits;
740 
741 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
742 	if (index != XCR_XFEATURE_ENABLED_MASK)
743 		return 1;
744 	if (!(xcr0 & XFEATURE_MASK_FP))
745 		return 1;
746 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
747 		return 1;
748 
749 	/*
750 	 * Do not allow the guest to set bits that we do not support
751 	 * saving.  However, xcr0 bit 0 is always set, even if the
752 	 * emulated CPU does not support XSAVE (see fx_init).
753 	 */
754 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
755 	if (xcr0 & ~valid_bits)
756 		return 1;
757 
758 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
759 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
760 		return 1;
761 
762 	if (xcr0 & XFEATURE_MASK_AVX512) {
763 		if (!(xcr0 & XFEATURE_MASK_YMM))
764 			return 1;
765 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
766 			return 1;
767 	}
768 	vcpu->arch.xcr0 = xcr0;
769 
770 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
771 		kvm_update_cpuid(vcpu);
772 	return 0;
773 }
774 
775 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
776 {
777 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
778 	    __kvm_set_xcr(vcpu, index, xcr)) {
779 		kvm_inject_gp(vcpu, 0);
780 		return 1;
781 	}
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_xcr);
785 
786 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
787 {
788 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
789 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
790 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
791 
792 	if (cr4 & CR4_RESERVED_BITS)
793 		return 1;
794 
795 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
796 		return 1;
797 
798 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
799 		return 1;
800 
801 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
802 		return 1;
803 
804 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
805 		return 1;
806 
807 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
808 		return 1;
809 
810 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
811 		return 1;
812 
813 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
814 		return 1;
815 
816 	if (is_long_mode(vcpu)) {
817 		if (!(cr4 & X86_CR4_PAE))
818 			return 1;
819 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
820 		   && ((cr4 ^ old_cr4) & pdptr_bits)
821 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
822 				   kvm_read_cr3(vcpu)))
823 		return 1;
824 
825 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
826 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
827 			return 1;
828 
829 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
830 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
831 			return 1;
832 	}
833 
834 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
835 		return 1;
836 
837 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
838 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
839 		kvm_mmu_reset_context(vcpu);
840 
841 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
842 		kvm_update_cpuid(vcpu);
843 
844 	return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_set_cr4);
847 
848 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850 #ifdef CONFIG_X86_64
851 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
852 
853 	if (pcid_enabled)
854 		cr3 &= ~CR3_PCID_INVD;
855 #endif
856 
857 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
858 		kvm_mmu_sync_roots(vcpu);
859 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
860 		return 0;
861 	}
862 
863 	if (is_long_mode(vcpu) &&
864 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
865 		return 1;
866 	else if (is_pae(vcpu) && is_paging(vcpu) &&
867 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
868 		return 1;
869 
870 	vcpu->arch.cr3 = cr3;
871 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
872 	kvm_mmu_new_cr3(vcpu);
873 	return 0;
874 }
875 EXPORT_SYMBOL_GPL(kvm_set_cr3);
876 
877 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
878 {
879 	if (cr8 & CR8_RESERVED_BITS)
880 		return 1;
881 	if (lapic_in_kernel(vcpu))
882 		kvm_lapic_set_tpr(vcpu, cr8);
883 	else
884 		vcpu->arch.cr8 = cr8;
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_cr8);
888 
889 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
890 {
891 	if (lapic_in_kernel(vcpu))
892 		return kvm_lapic_get_cr8(vcpu);
893 	else
894 		return vcpu->arch.cr8;
895 }
896 EXPORT_SYMBOL_GPL(kvm_get_cr8);
897 
898 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
899 {
900 	int i;
901 
902 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
903 		for (i = 0; i < KVM_NR_DB_REGS; i++)
904 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
905 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
906 	}
907 }
908 
909 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
910 {
911 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
912 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
913 }
914 
915 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
916 {
917 	unsigned long dr7;
918 
919 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
920 		dr7 = vcpu->arch.guest_debug_dr7;
921 	else
922 		dr7 = vcpu->arch.dr7;
923 	kvm_x86_ops->set_dr7(vcpu, dr7);
924 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
925 	if (dr7 & DR7_BP_EN_MASK)
926 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
927 }
928 
929 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
930 {
931 	u64 fixed = DR6_FIXED_1;
932 
933 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
934 		fixed |= DR6_RTM;
935 	return fixed;
936 }
937 
938 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
939 {
940 	switch (dr) {
941 	case 0 ... 3:
942 		vcpu->arch.db[dr] = val;
943 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
944 			vcpu->arch.eff_db[dr] = val;
945 		break;
946 	case 4:
947 		/* fall through */
948 	case 6:
949 		if (val & 0xffffffff00000000ULL)
950 			return -1; /* #GP */
951 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
952 		kvm_update_dr6(vcpu);
953 		break;
954 	case 5:
955 		/* fall through */
956 	default: /* 7 */
957 		if (val & 0xffffffff00000000ULL)
958 			return -1; /* #GP */
959 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
960 		kvm_update_dr7(vcpu);
961 		break;
962 	}
963 
964 	return 0;
965 }
966 
967 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
968 {
969 	if (__kvm_set_dr(vcpu, dr, val)) {
970 		kvm_inject_gp(vcpu, 0);
971 		return 1;
972 	}
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_dr);
976 
977 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
978 {
979 	switch (dr) {
980 	case 0 ... 3:
981 		*val = vcpu->arch.db[dr];
982 		break;
983 	case 4:
984 		/* fall through */
985 	case 6:
986 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
987 			*val = vcpu->arch.dr6;
988 		else
989 			*val = kvm_x86_ops->get_dr6(vcpu);
990 		break;
991 	case 5:
992 		/* fall through */
993 	default: /* 7 */
994 		*val = vcpu->arch.dr7;
995 		break;
996 	}
997 	return 0;
998 }
999 EXPORT_SYMBOL_GPL(kvm_get_dr);
1000 
1001 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1002 {
1003 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1004 	u64 data;
1005 	int err;
1006 
1007 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1008 	if (err)
1009 		return err;
1010 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1011 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1012 	return err;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1015 
1016 /*
1017  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1018  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1019  *
1020  * This list is modified at module load time to reflect the
1021  * capabilities of the host cpu. This capabilities test skips MSRs that are
1022  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1023  * may depend on host virtualization features rather than host cpu features.
1024  */
1025 
1026 static u32 msrs_to_save[] = {
1027 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1028 	MSR_STAR,
1029 #ifdef CONFIG_X86_64
1030 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1031 #endif
1032 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1033 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1034 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1035 };
1036 
1037 static unsigned num_msrs_to_save;
1038 
1039 static u32 emulated_msrs[] = {
1040 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1041 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1042 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1043 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1044 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1045 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1046 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1047 	HV_X64_MSR_RESET,
1048 	HV_X64_MSR_VP_INDEX,
1049 	HV_X64_MSR_VP_RUNTIME,
1050 	HV_X64_MSR_SCONTROL,
1051 	HV_X64_MSR_STIMER0_CONFIG,
1052 	HV_X64_MSR_VP_ASSIST_PAGE,
1053 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1054 	HV_X64_MSR_TSC_EMULATION_STATUS,
1055 
1056 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1057 	MSR_KVM_PV_EOI_EN,
1058 
1059 	MSR_IA32_TSC_ADJUST,
1060 	MSR_IA32_TSCDEADLINE,
1061 	MSR_IA32_MISC_ENABLE,
1062 	MSR_IA32_MCG_STATUS,
1063 	MSR_IA32_MCG_CTL,
1064 	MSR_IA32_MCG_EXT_CTL,
1065 	MSR_IA32_SMBASE,
1066 	MSR_SMI_COUNT,
1067 	MSR_PLATFORM_INFO,
1068 	MSR_MISC_FEATURES_ENABLES,
1069 	MSR_AMD64_VIRT_SPEC_CTRL,
1070 };
1071 
1072 static unsigned num_emulated_msrs;
1073 
1074 /*
1075  * List of msr numbers which are used to expose MSR-based features that
1076  * can be used by a hypervisor to validate requested CPU features.
1077  */
1078 static u32 msr_based_features[] = {
1079 	MSR_IA32_VMX_BASIC,
1080 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1081 	MSR_IA32_VMX_PINBASED_CTLS,
1082 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1083 	MSR_IA32_VMX_PROCBASED_CTLS,
1084 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1085 	MSR_IA32_VMX_EXIT_CTLS,
1086 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1087 	MSR_IA32_VMX_ENTRY_CTLS,
1088 	MSR_IA32_VMX_MISC,
1089 	MSR_IA32_VMX_CR0_FIXED0,
1090 	MSR_IA32_VMX_CR0_FIXED1,
1091 	MSR_IA32_VMX_CR4_FIXED0,
1092 	MSR_IA32_VMX_CR4_FIXED1,
1093 	MSR_IA32_VMX_VMCS_ENUM,
1094 	MSR_IA32_VMX_PROCBASED_CTLS2,
1095 	MSR_IA32_VMX_EPT_VPID_CAP,
1096 	MSR_IA32_VMX_VMFUNC,
1097 
1098 	MSR_F10H_DECFG,
1099 	MSR_IA32_UCODE_REV,
1100 };
1101 
1102 static unsigned int num_msr_based_features;
1103 
1104 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1105 {
1106 	switch (msr->index) {
1107 	case MSR_IA32_UCODE_REV:
1108 		rdmsrl(msr->index, msr->data);
1109 		break;
1110 	default:
1111 		if (kvm_x86_ops->get_msr_feature(msr))
1112 			return 1;
1113 	}
1114 	return 0;
1115 }
1116 
1117 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1118 {
1119 	struct kvm_msr_entry msr;
1120 	int r;
1121 
1122 	msr.index = index;
1123 	r = kvm_get_msr_feature(&msr);
1124 	if (r)
1125 		return r;
1126 
1127 	*data = msr.data;
1128 
1129 	return 0;
1130 }
1131 
1132 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1133 {
1134 	if (efer & efer_reserved_bits)
1135 		return false;
1136 
1137 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1138 			return false;
1139 
1140 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1141 			return false;
1142 
1143 	return true;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1146 
1147 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1148 {
1149 	u64 old_efer = vcpu->arch.efer;
1150 
1151 	if (!kvm_valid_efer(vcpu, efer))
1152 		return 1;
1153 
1154 	if (is_paging(vcpu)
1155 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1156 		return 1;
1157 
1158 	efer &= ~EFER_LMA;
1159 	efer |= vcpu->arch.efer & EFER_LMA;
1160 
1161 	kvm_x86_ops->set_efer(vcpu, efer);
1162 
1163 	/* Update reserved bits */
1164 	if ((efer ^ old_efer) & EFER_NX)
1165 		kvm_mmu_reset_context(vcpu);
1166 
1167 	return 0;
1168 }
1169 
1170 void kvm_enable_efer_bits(u64 mask)
1171 {
1172        efer_reserved_bits &= ~mask;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1175 
1176 /*
1177  * Writes msr value into into the appropriate "register".
1178  * Returns 0 on success, non-0 otherwise.
1179  * Assumes vcpu_load() was already called.
1180  */
1181 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183 	switch (msr->index) {
1184 	case MSR_FS_BASE:
1185 	case MSR_GS_BASE:
1186 	case MSR_KERNEL_GS_BASE:
1187 	case MSR_CSTAR:
1188 	case MSR_LSTAR:
1189 		if (is_noncanonical_address(msr->data, vcpu))
1190 			return 1;
1191 		break;
1192 	case MSR_IA32_SYSENTER_EIP:
1193 	case MSR_IA32_SYSENTER_ESP:
1194 		/*
1195 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1196 		 * non-canonical address is written on Intel but not on
1197 		 * AMD (which ignores the top 32-bits, because it does
1198 		 * not implement 64-bit SYSENTER).
1199 		 *
1200 		 * 64-bit code should hence be able to write a non-canonical
1201 		 * value on AMD.  Making the address canonical ensures that
1202 		 * vmentry does not fail on Intel after writing a non-canonical
1203 		 * value, and that something deterministic happens if the guest
1204 		 * invokes 64-bit SYSENTER.
1205 		 */
1206 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1207 	}
1208 	return kvm_x86_ops->set_msr(vcpu, msr);
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_set_msr);
1211 
1212 /*
1213  * Adapt set_msr() to msr_io()'s calling convention
1214  */
1215 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1216 {
1217 	struct msr_data msr;
1218 	int r;
1219 
1220 	msr.index = index;
1221 	msr.host_initiated = true;
1222 	r = kvm_get_msr(vcpu, &msr);
1223 	if (r)
1224 		return r;
1225 
1226 	*data = msr.data;
1227 	return 0;
1228 }
1229 
1230 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1231 {
1232 	struct msr_data msr;
1233 
1234 	msr.data = *data;
1235 	msr.index = index;
1236 	msr.host_initiated = true;
1237 	return kvm_set_msr(vcpu, &msr);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 struct pvclock_gtod_data {
1242 	seqcount_t	seq;
1243 
1244 	struct { /* extract of a clocksource struct */
1245 		int vclock_mode;
1246 		u64	cycle_last;
1247 		u64	mask;
1248 		u32	mult;
1249 		u32	shift;
1250 	} clock;
1251 
1252 	u64		boot_ns;
1253 	u64		nsec_base;
1254 	u64		wall_time_sec;
1255 };
1256 
1257 static struct pvclock_gtod_data pvclock_gtod_data;
1258 
1259 static void update_pvclock_gtod(struct timekeeper *tk)
1260 {
1261 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1262 	u64 boot_ns;
1263 
1264 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1265 
1266 	write_seqcount_begin(&vdata->seq);
1267 
1268 	/* copy pvclock gtod data */
1269 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1270 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1271 	vdata->clock.mask		= tk->tkr_mono.mask;
1272 	vdata->clock.mult		= tk->tkr_mono.mult;
1273 	vdata->clock.shift		= tk->tkr_mono.shift;
1274 
1275 	vdata->boot_ns			= boot_ns;
1276 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1277 
1278 	vdata->wall_time_sec            = tk->xtime_sec;
1279 
1280 	write_seqcount_end(&vdata->seq);
1281 }
1282 #endif
1283 
1284 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1285 {
1286 	/*
1287 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1288 	 * vcpu_enter_guest.  This function is only called from
1289 	 * the physical CPU that is running vcpu.
1290 	 */
1291 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1292 }
1293 
1294 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1295 {
1296 	int version;
1297 	int r;
1298 	struct pvclock_wall_clock wc;
1299 	struct timespec64 boot;
1300 
1301 	if (!wall_clock)
1302 		return;
1303 
1304 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1305 	if (r)
1306 		return;
1307 
1308 	if (version & 1)
1309 		++version;  /* first time write, random junk */
1310 
1311 	++version;
1312 
1313 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1314 		return;
1315 
1316 	/*
1317 	 * The guest calculates current wall clock time by adding
1318 	 * system time (updated by kvm_guest_time_update below) to the
1319 	 * wall clock specified here.  guest system time equals host
1320 	 * system time for us, thus we must fill in host boot time here.
1321 	 */
1322 	getboottime64(&boot);
1323 
1324 	if (kvm->arch.kvmclock_offset) {
1325 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1326 		boot = timespec64_sub(boot, ts);
1327 	}
1328 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1329 	wc.nsec = boot.tv_nsec;
1330 	wc.version = version;
1331 
1332 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1333 
1334 	version++;
1335 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1336 }
1337 
1338 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1339 {
1340 	do_shl32_div32(dividend, divisor);
1341 	return dividend;
1342 }
1343 
1344 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1345 			       s8 *pshift, u32 *pmultiplier)
1346 {
1347 	uint64_t scaled64;
1348 	int32_t  shift = 0;
1349 	uint64_t tps64;
1350 	uint32_t tps32;
1351 
1352 	tps64 = base_hz;
1353 	scaled64 = scaled_hz;
1354 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1355 		tps64 >>= 1;
1356 		shift--;
1357 	}
1358 
1359 	tps32 = (uint32_t)tps64;
1360 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1361 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1362 			scaled64 >>= 1;
1363 		else
1364 			tps32 <<= 1;
1365 		shift++;
1366 	}
1367 
1368 	*pshift = shift;
1369 	*pmultiplier = div_frac(scaled64, tps32);
1370 
1371 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1372 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1373 }
1374 
1375 #ifdef CONFIG_X86_64
1376 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1377 #endif
1378 
1379 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1380 static unsigned long max_tsc_khz;
1381 
1382 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1383 {
1384 	u64 v = (u64)khz * (1000000 + ppm);
1385 	do_div(v, 1000000);
1386 	return v;
1387 }
1388 
1389 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1390 {
1391 	u64 ratio;
1392 
1393 	/* Guest TSC same frequency as host TSC? */
1394 	if (!scale) {
1395 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1396 		return 0;
1397 	}
1398 
1399 	/* TSC scaling supported? */
1400 	if (!kvm_has_tsc_control) {
1401 		if (user_tsc_khz > tsc_khz) {
1402 			vcpu->arch.tsc_catchup = 1;
1403 			vcpu->arch.tsc_always_catchup = 1;
1404 			return 0;
1405 		} else {
1406 			WARN(1, "user requested TSC rate below hardware speed\n");
1407 			return -1;
1408 		}
1409 	}
1410 
1411 	/* TSC scaling required  - calculate ratio */
1412 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1413 				user_tsc_khz, tsc_khz);
1414 
1415 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1416 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1417 			  user_tsc_khz);
1418 		return -1;
1419 	}
1420 
1421 	vcpu->arch.tsc_scaling_ratio = ratio;
1422 	return 0;
1423 }
1424 
1425 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1426 {
1427 	u32 thresh_lo, thresh_hi;
1428 	int use_scaling = 0;
1429 
1430 	/* tsc_khz can be zero if TSC calibration fails */
1431 	if (user_tsc_khz == 0) {
1432 		/* set tsc_scaling_ratio to a safe value */
1433 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1434 		return -1;
1435 	}
1436 
1437 	/* Compute a scale to convert nanoseconds in TSC cycles */
1438 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1439 			   &vcpu->arch.virtual_tsc_shift,
1440 			   &vcpu->arch.virtual_tsc_mult);
1441 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1442 
1443 	/*
1444 	 * Compute the variation in TSC rate which is acceptable
1445 	 * within the range of tolerance and decide if the
1446 	 * rate being applied is within that bounds of the hardware
1447 	 * rate.  If so, no scaling or compensation need be done.
1448 	 */
1449 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1450 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1451 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1452 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1453 		use_scaling = 1;
1454 	}
1455 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1456 }
1457 
1458 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1459 {
1460 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1461 				      vcpu->arch.virtual_tsc_mult,
1462 				      vcpu->arch.virtual_tsc_shift);
1463 	tsc += vcpu->arch.this_tsc_write;
1464 	return tsc;
1465 }
1466 
1467 static inline int gtod_is_based_on_tsc(int mode)
1468 {
1469 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1470 }
1471 
1472 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1473 {
1474 #ifdef CONFIG_X86_64
1475 	bool vcpus_matched;
1476 	struct kvm_arch *ka = &vcpu->kvm->arch;
1477 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478 
1479 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1480 			 atomic_read(&vcpu->kvm->online_vcpus));
1481 
1482 	/*
1483 	 * Once the masterclock is enabled, always perform request in
1484 	 * order to update it.
1485 	 *
1486 	 * In order to enable masterclock, the host clocksource must be TSC
1487 	 * and the vcpus need to have matched TSCs.  When that happens,
1488 	 * perform request to enable masterclock.
1489 	 */
1490 	if (ka->use_master_clock ||
1491 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1492 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1493 
1494 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1495 			    atomic_read(&vcpu->kvm->online_vcpus),
1496 		            ka->use_master_clock, gtod->clock.vclock_mode);
1497 #endif
1498 }
1499 
1500 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1501 {
1502 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1503 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1504 }
1505 
1506 /*
1507  * Multiply tsc by a fixed point number represented by ratio.
1508  *
1509  * The most significant 64-N bits (mult) of ratio represent the
1510  * integral part of the fixed point number; the remaining N bits
1511  * (frac) represent the fractional part, ie. ratio represents a fixed
1512  * point number (mult + frac * 2^(-N)).
1513  *
1514  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1515  */
1516 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1517 {
1518 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1519 }
1520 
1521 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1522 {
1523 	u64 _tsc = tsc;
1524 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1525 
1526 	if (ratio != kvm_default_tsc_scaling_ratio)
1527 		_tsc = __scale_tsc(ratio, tsc);
1528 
1529 	return _tsc;
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1532 
1533 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1534 {
1535 	u64 tsc;
1536 
1537 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1538 
1539 	return target_tsc - tsc;
1540 }
1541 
1542 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1543 {
1544 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1545 
1546 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1549 
1550 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1551 {
1552 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1553 	vcpu->arch.tsc_offset = offset;
1554 }
1555 
1556 static inline bool kvm_check_tsc_unstable(void)
1557 {
1558 #ifdef CONFIG_X86_64
1559 	/*
1560 	 * TSC is marked unstable when we're running on Hyper-V,
1561 	 * 'TSC page' clocksource is good.
1562 	 */
1563 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1564 		return false;
1565 #endif
1566 	return check_tsc_unstable();
1567 }
1568 
1569 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1570 {
1571 	struct kvm *kvm = vcpu->kvm;
1572 	u64 offset, ns, elapsed;
1573 	unsigned long flags;
1574 	bool matched;
1575 	bool already_matched;
1576 	u64 data = msr->data;
1577 	bool synchronizing = false;
1578 
1579 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1580 	offset = kvm_compute_tsc_offset(vcpu, data);
1581 	ns = ktime_get_boot_ns();
1582 	elapsed = ns - kvm->arch.last_tsc_nsec;
1583 
1584 	if (vcpu->arch.virtual_tsc_khz) {
1585 		if (data == 0 && msr->host_initiated) {
1586 			/*
1587 			 * detection of vcpu initialization -- need to sync
1588 			 * with other vCPUs. This particularly helps to keep
1589 			 * kvm_clock stable after CPU hotplug
1590 			 */
1591 			synchronizing = true;
1592 		} else {
1593 			u64 tsc_exp = kvm->arch.last_tsc_write +
1594 						nsec_to_cycles(vcpu, elapsed);
1595 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1596 			/*
1597 			 * Special case: TSC write with a small delta (1 second)
1598 			 * of virtual cycle time against real time is
1599 			 * interpreted as an attempt to synchronize the CPU.
1600 			 */
1601 			synchronizing = data < tsc_exp + tsc_hz &&
1602 					data + tsc_hz > tsc_exp;
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1608 	 * TSC, we add elapsed time in this computation.  We could let the
1609 	 * compensation code attempt to catch up if we fall behind, but
1610 	 * it's better to try to match offsets from the beginning.
1611          */
1612 	if (synchronizing &&
1613 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1614 		if (!kvm_check_tsc_unstable()) {
1615 			offset = kvm->arch.cur_tsc_offset;
1616 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1617 		} else {
1618 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1619 			data += delta;
1620 			offset = kvm_compute_tsc_offset(vcpu, data);
1621 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1622 		}
1623 		matched = true;
1624 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1625 	} else {
1626 		/*
1627 		 * We split periods of matched TSC writes into generations.
1628 		 * For each generation, we track the original measured
1629 		 * nanosecond time, offset, and write, so if TSCs are in
1630 		 * sync, we can match exact offset, and if not, we can match
1631 		 * exact software computation in compute_guest_tsc()
1632 		 *
1633 		 * These values are tracked in kvm->arch.cur_xxx variables.
1634 		 */
1635 		kvm->arch.cur_tsc_generation++;
1636 		kvm->arch.cur_tsc_nsec = ns;
1637 		kvm->arch.cur_tsc_write = data;
1638 		kvm->arch.cur_tsc_offset = offset;
1639 		matched = false;
1640 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1641 			 kvm->arch.cur_tsc_generation, data);
1642 	}
1643 
1644 	/*
1645 	 * We also track th most recent recorded KHZ, write and time to
1646 	 * allow the matching interval to be extended at each write.
1647 	 */
1648 	kvm->arch.last_tsc_nsec = ns;
1649 	kvm->arch.last_tsc_write = data;
1650 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1651 
1652 	vcpu->arch.last_guest_tsc = data;
1653 
1654 	/* Keep track of which generation this VCPU has synchronized to */
1655 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1656 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1657 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1658 
1659 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1660 		update_ia32_tsc_adjust_msr(vcpu, offset);
1661 
1662 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1663 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1664 
1665 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1666 	if (!matched) {
1667 		kvm->arch.nr_vcpus_matched_tsc = 0;
1668 	} else if (!already_matched) {
1669 		kvm->arch.nr_vcpus_matched_tsc++;
1670 	}
1671 
1672 	kvm_track_tsc_matching(vcpu);
1673 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1674 }
1675 
1676 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1677 
1678 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1679 					   s64 adjustment)
1680 {
1681 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1682 }
1683 
1684 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1685 {
1686 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1687 		WARN_ON(adjustment < 0);
1688 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1689 	adjust_tsc_offset_guest(vcpu, adjustment);
1690 }
1691 
1692 #ifdef CONFIG_X86_64
1693 
1694 static u64 read_tsc(void)
1695 {
1696 	u64 ret = (u64)rdtsc_ordered();
1697 	u64 last = pvclock_gtod_data.clock.cycle_last;
1698 
1699 	if (likely(ret >= last))
1700 		return ret;
1701 
1702 	/*
1703 	 * GCC likes to generate cmov here, but this branch is extremely
1704 	 * predictable (it's just a function of time and the likely is
1705 	 * very likely) and there's a data dependence, so force GCC
1706 	 * to generate a branch instead.  I don't barrier() because
1707 	 * we don't actually need a barrier, and if this function
1708 	 * ever gets inlined it will generate worse code.
1709 	 */
1710 	asm volatile ("");
1711 	return last;
1712 }
1713 
1714 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1715 {
1716 	long v;
1717 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1718 	u64 tsc_pg_val;
1719 
1720 	switch (gtod->clock.vclock_mode) {
1721 	case VCLOCK_HVCLOCK:
1722 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1723 						  tsc_timestamp);
1724 		if (tsc_pg_val != U64_MAX) {
1725 			/* TSC page valid */
1726 			*mode = VCLOCK_HVCLOCK;
1727 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1728 				gtod->clock.mask;
1729 		} else {
1730 			/* TSC page invalid */
1731 			*mode = VCLOCK_NONE;
1732 		}
1733 		break;
1734 	case VCLOCK_TSC:
1735 		*mode = VCLOCK_TSC;
1736 		*tsc_timestamp = read_tsc();
1737 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1738 			gtod->clock.mask;
1739 		break;
1740 	default:
1741 		*mode = VCLOCK_NONE;
1742 	}
1743 
1744 	if (*mode == VCLOCK_NONE)
1745 		*tsc_timestamp = v = 0;
1746 
1747 	return v * gtod->clock.mult;
1748 }
1749 
1750 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1751 {
1752 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1753 	unsigned long seq;
1754 	int mode;
1755 	u64 ns;
1756 
1757 	do {
1758 		seq = read_seqcount_begin(&gtod->seq);
1759 		ns = gtod->nsec_base;
1760 		ns += vgettsc(tsc_timestamp, &mode);
1761 		ns >>= gtod->clock.shift;
1762 		ns += gtod->boot_ns;
1763 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1764 	*t = ns;
1765 
1766 	return mode;
1767 }
1768 
1769 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1770 {
1771 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1772 	unsigned long seq;
1773 	int mode;
1774 	u64 ns;
1775 
1776 	do {
1777 		seq = read_seqcount_begin(&gtod->seq);
1778 		ts->tv_sec = gtod->wall_time_sec;
1779 		ns = gtod->nsec_base;
1780 		ns += vgettsc(tsc_timestamp, &mode);
1781 		ns >>= gtod->clock.shift;
1782 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1783 
1784 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1785 	ts->tv_nsec = ns;
1786 
1787 	return mode;
1788 }
1789 
1790 /* returns true if host is using TSC based clocksource */
1791 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1792 {
1793 	/* checked again under seqlock below */
1794 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1795 		return false;
1796 
1797 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1798 						      tsc_timestamp));
1799 }
1800 
1801 /* returns true if host is using TSC based clocksource */
1802 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1803 					   u64 *tsc_timestamp)
1804 {
1805 	/* checked again under seqlock below */
1806 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1807 		return false;
1808 
1809 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1810 }
1811 #endif
1812 
1813 /*
1814  *
1815  * Assuming a stable TSC across physical CPUS, and a stable TSC
1816  * across virtual CPUs, the following condition is possible.
1817  * Each numbered line represents an event visible to both
1818  * CPUs at the next numbered event.
1819  *
1820  * "timespecX" represents host monotonic time. "tscX" represents
1821  * RDTSC value.
1822  *
1823  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1824  *
1825  * 1.  read timespec0,tsc0
1826  * 2.					| timespec1 = timespec0 + N
1827  * 					| tsc1 = tsc0 + M
1828  * 3. transition to guest		| transition to guest
1829  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1830  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1831  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1832  *
1833  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1834  *
1835  * 	- ret0 < ret1
1836  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1837  *		...
1838  *	- 0 < N - M => M < N
1839  *
1840  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1841  * always the case (the difference between two distinct xtime instances
1842  * might be smaller then the difference between corresponding TSC reads,
1843  * when updating guest vcpus pvclock areas).
1844  *
1845  * To avoid that problem, do not allow visibility of distinct
1846  * system_timestamp/tsc_timestamp values simultaneously: use a master
1847  * copy of host monotonic time values. Update that master copy
1848  * in lockstep.
1849  *
1850  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1851  *
1852  */
1853 
1854 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1855 {
1856 #ifdef CONFIG_X86_64
1857 	struct kvm_arch *ka = &kvm->arch;
1858 	int vclock_mode;
1859 	bool host_tsc_clocksource, vcpus_matched;
1860 
1861 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1862 			atomic_read(&kvm->online_vcpus));
1863 
1864 	/*
1865 	 * If the host uses TSC clock, then passthrough TSC as stable
1866 	 * to the guest.
1867 	 */
1868 	host_tsc_clocksource = kvm_get_time_and_clockread(
1869 					&ka->master_kernel_ns,
1870 					&ka->master_cycle_now);
1871 
1872 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1873 				&& !ka->backwards_tsc_observed
1874 				&& !ka->boot_vcpu_runs_old_kvmclock;
1875 
1876 	if (ka->use_master_clock)
1877 		atomic_set(&kvm_guest_has_master_clock, 1);
1878 
1879 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1880 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1881 					vcpus_matched);
1882 #endif
1883 }
1884 
1885 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1886 {
1887 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1888 }
1889 
1890 static void kvm_gen_update_masterclock(struct kvm *kvm)
1891 {
1892 #ifdef CONFIG_X86_64
1893 	int i;
1894 	struct kvm_vcpu *vcpu;
1895 	struct kvm_arch *ka = &kvm->arch;
1896 
1897 	spin_lock(&ka->pvclock_gtod_sync_lock);
1898 	kvm_make_mclock_inprogress_request(kvm);
1899 	/* no guest entries from this point */
1900 	pvclock_update_vm_gtod_copy(kvm);
1901 
1902 	kvm_for_each_vcpu(i, vcpu, kvm)
1903 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1904 
1905 	/* guest entries allowed */
1906 	kvm_for_each_vcpu(i, vcpu, kvm)
1907 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1908 
1909 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1910 #endif
1911 }
1912 
1913 u64 get_kvmclock_ns(struct kvm *kvm)
1914 {
1915 	struct kvm_arch *ka = &kvm->arch;
1916 	struct pvclock_vcpu_time_info hv_clock;
1917 	u64 ret;
1918 
1919 	spin_lock(&ka->pvclock_gtod_sync_lock);
1920 	if (!ka->use_master_clock) {
1921 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1922 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1923 	}
1924 
1925 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1926 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1927 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1928 
1929 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1930 	get_cpu();
1931 
1932 	if (__this_cpu_read(cpu_tsc_khz)) {
1933 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1934 				   &hv_clock.tsc_shift,
1935 				   &hv_clock.tsc_to_system_mul);
1936 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1937 	} else
1938 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1939 
1940 	put_cpu();
1941 
1942 	return ret;
1943 }
1944 
1945 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1946 {
1947 	struct kvm_vcpu_arch *vcpu = &v->arch;
1948 	struct pvclock_vcpu_time_info guest_hv_clock;
1949 
1950 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1951 		&guest_hv_clock, sizeof(guest_hv_clock))))
1952 		return;
1953 
1954 	/* This VCPU is paused, but it's legal for a guest to read another
1955 	 * VCPU's kvmclock, so we really have to follow the specification where
1956 	 * it says that version is odd if data is being modified, and even after
1957 	 * it is consistent.
1958 	 *
1959 	 * Version field updates must be kept separate.  This is because
1960 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1961 	 * writes within a string instruction are weakly ordered.  So there
1962 	 * are three writes overall.
1963 	 *
1964 	 * As a small optimization, only write the version field in the first
1965 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1966 	 * version field is the first in the struct.
1967 	 */
1968 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1969 
1970 	if (guest_hv_clock.version & 1)
1971 		++guest_hv_clock.version;  /* first time write, random junk */
1972 
1973 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1974 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1975 				&vcpu->hv_clock,
1976 				sizeof(vcpu->hv_clock.version));
1977 
1978 	smp_wmb();
1979 
1980 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1981 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1982 
1983 	if (vcpu->pvclock_set_guest_stopped_request) {
1984 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1985 		vcpu->pvclock_set_guest_stopped_request = false;
1986 	}
1987 
1988 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1989 
1990 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1991 				&vcpu->hv_clock,
1992 				sizeof(vcpu->hv_clock));
1993 
1994 	smp_wmb();
1995 
1996 	vcpu->hv_clock.version++;
1997 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1998 				&vcpu->hv_clock,
1999 				sizeof(vcpu->hv_clock.version));
2000 }
2001 
2002 static int kvm_guest_time_update(struct kvm_vcpu *v)
2003 {
2004 	unsigned long flags, tgt_tsc_khz;
2005 	struct kvm_vcpu_arch *vcpu = &v->arch;
2006 	struct kvm_arch *ka = &v->kvm->arch;
2007 	s64 kernel_ns;
2008 	u64 tsc_timestamp, host_tsc;
2009 	u8 pvclock_flags;
2010 	bool use_master_clock;
2011 
2012 	kernel_ns = 0;
2013 	host_tsc = 0;
2014 
2015 	/*
2016 	 * If the host uses TSC clock, then passthrough TSC as stable
2017 	 * to the guest.
2018 	 */
2019 	spin_lock(&ka->pvclock_gtod_sync_lock);
2020 	use_master_clock = ka->use_master_clock;
2021 	if (use_master_clock) {
2022 		host_tsc = ka->master_cycle_now;
2023 		kernel_ns = ka->master_kernel_ns;
2024 	}
2025 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2026 
2027 	/* Keep irq disabled to prevent changes to the clock */
2028 	local_irq_save(flags);
2029 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2030 	if (unlikely(tgt_tsc_khz == 0)) {
2031 		local_irq_restore(flags);
2032 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2033 		return 1;
2034 	}
2035 	if (!use_master_clock) {
2036 		host_tsc = rdtsc();
2037 		kernel_ns = ktime_get_boot_ns();
2038 	}
2039 
2040 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2041 
2042 	/*
2043 	 * We may have to catch up the TSC to match elapsed wall clock
2044 	 * time for two reasons, even if kvmclock is used.
2045 	 *   1) CPU could have been running below the maximum TSC rate
2046 	 *   2) Broken TSC compensation resets the base at each VCPU
2047 	 *      entry to avoid unknown leaps of TSC even when running
2048 	 *      again on the same CPU.  This may cause apparent elapsed
2049 	 *      time to disappear, and the guest to stand still or run
2050 	 *	very slowly.
2051 	 */
2052 	if (vcpu->tsc_catchup) {
2053 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2054 		if (tsc > tsc_timestamp) {
2055 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2056 			tsc_timestamp = tsc;
2057 		}
2058 	}
2059 
2060 	local_irq_restore(flags);
2061 
2062 	/* With all the info we got, fill in the values */
2063 
2064 	if (kvm_has_tsc_control)
2065 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2066 
2067 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2068 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2069 				   &vcpu->hv_clock.tsc_shift,
2070 				   &vcpu->hv_clock.tsc_to_system_mul);
2071 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2072 	}
2073 
2074 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2075 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2076 	vcpu->last_guest_tsc = tsc_timestamp;
2077 
2078 	/* If the host uses TSC clocksource, then it is stable */
2079 	pvclock_flags = 0;
2080 	if (use_master_clock)
2081 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2082 
2083 	vcpu->hv_clock.flags = pvclock_flags;
2084 
2085 	if (vcpu->pv_time_enabled)
2086 		kvm_setup_pvclock_page(v);
2087 	if (v == kvm_get_vcpu(v->kvm, 0))
2088 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2089 	return 0;
2090 }
2091 
2092 /*
2093  * kvmclock updates which are isolated to a given vcpu, such as
2094  * vcpu->cpu migration, should not allow system_timestamp from
2095  * the rest of the vcpus to remain static. Otherwise ntp frequency
2096  * correction applies to one vcpu's system_timestamp but not
2097  * the others.
2098  *
2099  * So in those cases, request a kvmclock update for all vcpus.
2100  * We need to rate-limit these requests though, as they can
2101  * considerably slow guests that have a large number of vcpus.
2102  * The time for a remote vcpu to update its kvmclock is bound
2103  * by the delay we use to rate-limit the updates.
2104  */
2105 
2106 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2107 
2108 static void kvmclock_update_fn(struct work_struct *work)
2109 {
2110 	int i;
2111 	struct delayed_work *dwork = to_delayed_work(work);
2112 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2113 					   kvmclock_update_work);
2114 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2115 	struct kvm_vcpu *vcpu;
2116 
2117 	kvm_for_each_vcpu(i, vcpu, kvm) {
2118 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2119 		kvm_vcpu_kick(vcpu);
2120 	}
2121 }
2122 
2123 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2124 {
2125 	struct kvm *kvm = v->kvm;
2126 
2127 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2128 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2129 					KVMCLOCK_UPDATE_DELAY);
2130 }
2131 
2132 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2133 
2134 static void kvmclock_sync_fn(struct work_struct *work)
2135 {
2136 	struct delayed_work *dwork = to_delayed_work(work);
2137 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2138 					   kvmclock_sync_work);
2139 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2140 
2141 	if (!kvmclock_periodic_sync)
2142 		return;
2143 
2144 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2145 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2146 					KVMCLOCK_SYNC_PERIOD);
2147 }
2148 
2149 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2150 {
2151 	u64 mcg_cap = vcpu->arch.mcg_cap;
2152 	unsigned bank_num = mcg_cap & 0xff;
2153 	u32 msr = msr_info->index;
2154 	u64 data = msr_info->data;
2155 
2156 	switch (msr) {
2157 	case MSR_IA32_MCG_STATUS:
2158 		vcpu->arch.mcg_status = data;
2159 		break;
2160 	case MSR_IA32_MCG_CTL:
2161 		if (!(mcg_cap & MCG_CTL_P))
2162 			return 1;
2163 		if (data != 0 && data != ~(u64)0)
2164 			return -1;
2165 		vcpu->arch.mcg_ctl = data;
2166 		break;
2167 	default:
2168 		if (msr >= MSR_IA32_MC0_CTL &&
2169 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2170 			u32 offset = msr - MSR_IA32_MC0_CTL;
2171 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2172 			 * some Linux kernels though clear bit 10 in bank 4 to
2173 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2174 			 * this to avoid an uncatched #GP in the guest
2175 			 */
2176 			if ((offset & 0x3) == 0 &&
2177 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2178 				return -1;
2179 			if (!msr_info->host_initiated &&
2180 				(offset & 0x3) == 1 && data != 0)
2181 				return -1;
2182 			vcpu->arch.mce_banks[offset] = data;
2183 			break;
2184 		}
2185 		return 1;
2186 	}
2187 	return 0;
2188 }
2189 
2190 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2191 {
2192 	struct kvm *kvm = vcpu->kvm;
2193 	int lm = is_long_mode(vcpu);
2194 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2195 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2196 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2197 		: kvm->arch.xen_hvm_config.blob_size_32;
2198 	u32 page_num = data & ~PAGE_MASK;
2199 	u64 page_addr = data & PAGE_MASK;
2200 	u8 *page;
2201 	int r;
2202 
2203 	r = -E2BIG;
2204 	if (page_num >= blob_size)
2205 		goto out;
2206 	r = -ENOMEM;
2207 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2208 	if (IS_ERR(page)) {
2209 		r = PTR_ERR(page);
2210 		goto out;
2211 	}
2212 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2213 		goto out_free;
2214 	r = 0;
2215 out_free:
2216 	kfree(page);
2217 out:
2218 	return r;
2219 }
2220 
2221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2222 {
2223 	gpa_t gpa = data & ~0x3f;
2224 
2225 	/* Bits 3:5 are reserved, Should be zero */
2226 	if (data & 0x38)
2227 		return 1;
2228 
2229 	vcpu->arch.apf.msr_val = data;
2230 
2231 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2232 		kvm_clear_async_pf_completion_queue(vcpu);
2233 		kvm_async_pf_hash_reset(vcpu);
2234 		return 0;
2235 	}
2236 
2237 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2238 					sizeof(u32)))
2239 		return 1;
2240 
2241 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2242 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2243 	kvm_async_pf_wakeup_all(vcpu);
2244 	return 0;
2245 }
2246 
2247 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2248 {
2249 	vcpu->arch.pv_time_enabled = false;
2250 }
2251 
2252 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2253 {
2254 	++vcpu->stat.tlb_flush;
2255 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2256 }
2257 
2258 static void record_steal_time(struct kvm_vcpu *vcpu)
2259 {
2260 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2261 		return;
2262 
2263 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2264 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2265 		return;
2266 
2267 	/*
2268 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2269 	 * expensive IPIs.
2270 	 */
2271 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2272 		kvm_vcpu_flush_tlb(vcpu, false);
2273 
2274 	if (vcpu->arch.st.steal.version & 1)
2275 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2276 
2277 	vcpu->arch.st.steal.version += 1;
2278 
2279 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2280 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2281 
2282 	smp_wmb();
2283 
2284 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2285 		vcpu->arch.st.last_steal;
2286 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2287 
2288 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2289 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2290 
2291 	smp_wmb();
2292 
2293 	vcpu->arch.st.steal.version += 1;
2294 
2295 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2296 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2297 }
2298 
2299 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2300 {
2301 	bool pr = false;
2302 	u32 msr = msr_info->index;
2303 	u64 data = msr_info->data;
2304 
2305 	switch (msr) {
2306 	case MSR_AMD64_NB_CFG:
2307 	case MSR_IA32_UCODE_WRITE:
2308 	case MSR_VM_HSAVE_PA:
2309 	case MSR_AMD64_PATCH_LOADER:
2310 	case MSR_AMD64_BU_CFG2:
2311 	case MSR_AMD64_DC_CFG:
2312 		break;
2313 
2314 	case MSR_IA32_UCODE_REV:
2315 		if (msr_info->host_initiated)
2316 			vcpu->arch.microcode_version = data;
2317 		break;
2318 	case MSR_EFER:
2319 		return set_efer(vcpu, data);
2320 	case MSR_K7_HWCR:
2321 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2322 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2323 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2324 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2325 		if (data != 0) {
2326 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2327 				    data);
2328 			return 1;
2329 		}
2330 		break;
2331 	case MSR_FAM10H_MMIO_CONF_BASE:
2332 		if (data != 0) {
2333 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2334 				    "0x%llx\n", data);
2335 			return 1;
2336 		}
2337 		break;
2338 	case MSR_IA32_DEBUGCTLMSR:
2339 		if (!data) {
2340 			/* We support the non-activated case already */
2341 			break;
2342 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2343 			/* Values other than LBR and BTF are vendor-specific,
2344 			   thus reserved and should throw a #GP */
2345 			return 1;
2346 		}
2347 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2348 			    __func__, data);
2349 		break;
2350 	case 0x200 ... 0x2ff:
2351 		return kvm_mtrr_set_msr(vcpu, msr, data);
2352 	case MSR_IA32_APICBASE:
2353 		return kvm_set_apic_base(vcpu, msr_info);
2354 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2355 		return kvm_x2apic_msr_write(vcpu, msr, data);
2356 	case MSR_IA32_TSCDEADLINE:
2357 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2358 		break;
2359 	case MSR_IA32_TSC_ADJUST:
2360 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2361 			if (!msr_info->host_initiated) {
2362 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2363 				adjust_tsc_offset_guest(vcpu, adj);
2364 			}
2365 			vcpu->arch.ia32_tsc_adjust_msr = data;
2366 		}
2367 		break;
2368 	case MSR_IA32_MISC_ENABLE:
2369 		vcpu->arch.ia32_misc_enable_msr = data;
2370 		break;
2371 	case MSR_IA32_SMBASE:
2372 		if (!msr_info->host_initiated)
2373 			return 1;
2374 		vcpu->arch.smbase = data;
2375 		break;
2376 	case MSR_IA32_TSC:
2377 		kvm_write_tsc(vcpu, msr_info);
2378 		break;
2379 	case MSR_SMI_COUNT:
2380 		if (!msr_info->host_initiated)
2381 			return 1;
2382 		vcpu->arch.smi_count = data;
2383 		break;
2384 	case MSR_KVM_WALL_CLOCK_NEW:
2385 	case MSR_KVM_WALL_CLOCK:
2386 		vcpu->kvm->arch.wall_clock = data;
2387 		kvm_write_wall_clock(vcpu->kvm, data);
2388 		break;
2389 	case MSR_KVM_SYSTEM_TIME_NEW:
2390 	case MSR_KVM_SYSTEM_TIME: {
2391 		struct kvm_arch *ka = &vcpu->kvm->arch;
2392 
2393 		kvmclock_reset(vcpu);
2394 
2395 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2396 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2397 
2398 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2399 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2400 
2401 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2402 		}
2403 
2404 		vcpu->arch.time = data;
2405 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2406 
2407 		/* we verify if the enable bit is set... */
2408 		if (!(data & 1))
2409 			break;
2410 
2411 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2412 		     &vcpu->arch.pv_time, data & ~1ULL,
2413 		     sizeof(struct pvclock_vcpu_time_info)))
2414 			vcpu->arch.pv_time_enabled = false;
2415 		else
2416 			vcpu->arch.pv_time_enabled = true;
2417 
2418 		break;
2419 	}
2420 	case MSR_KVM_ASYNC_PF_EN:
2421 		if (kvm_pv_enable_async_pf(vcpu, data))
2422 			return 1;
2423 		break;
2424 	case MSR_KVM_STEAL_TIME:
2425 
2426 		if (unlikely(!sched_info_on()))
2427 			return 1;
2428 
2429 		if (data & KVM_STEAL_RESERVED_MASK)
2430 			return 1;
2431 
2432 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2433 						data & KVM_STEAL_VALID_BITS,
2434 						sizeof(struct kvm_steal_time)))
2435 			return 1;
2436 
2437 		vcpu->arch.st.msr_val = data;
2438 
2439 		if (!(data & KVM_MSR_ENABLED))
2440 			break;
2441 
2442 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2443 
2444 		break;
2445 	case MSR_KVM_PV_EOI_EN:
2446 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2447 			return 1;
2448 		break;
2449 
2450 	case MSR_IA32_MCG_CTL:
2451 	case MSR_IA32_MCG_STATUS:
2452 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2453 		return set_msr_mce(vcpu, msr_info);
2454 
2455 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2456 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2457 		pr = true; /* fall through */
2458 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2459 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2460 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2461 			return kvm_pmu_set_msr(vcpu, msr_info);
2462 
2463 		if (pr || data != 0)
2464 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2465 				    "0x%x data 0x%llx\n", msr, data);
2466 		break;
2467 	case MSR_K7_CLK_CTL:
2468 		/*
2469 		 * Ignore all writes to this no longer documented MSR.
2470 		 * Writes are only relevant for old K7 processors,
2471 		 * all pre-dating SVM, but a recommended workaround from
2472 		 * AMD for these chips. It is possible to specify the
2473 		 * affected processor models on the command line, hence
2474 		 * the need to ignore the workaround.
2475 		 */
2476 		break;
2477 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479 	case HV_X64_MSR_CRASH_CTL:
2480 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2482 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2483 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2484 		return kvm_hv_set_msr_common(vcpu, msr, data,
2485 					     msr_info->host_initiated);
2486 	case MSR_IA32_BBL_CR_CTL3:
2487 		/* Drop writes to this legacy MSR -- see rdmsr
2488 		 * counterpart for further detail.
2489 		 */
2490 		if (report_ignored_msrs)
2491 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2492 				msr, data);
2493 		break;
2494 	case MSR_AMD64_OSVW_ID_LENGTH:
2495 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2496 			return 1;
2497 		vcpu->arch.osvw.length = data;
2498 		break;
2499 	case MSR_AMD64_OSVW_STATUS:
2500 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2501 			return 1;
2502 		vcpu->arch.osvw.status = data;
2503 		break;
2504 	case MSR_PLATFORM_INFO:
2505 		if (!msr_info->host_initiated ||
2506 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2507 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2508 		     cpuid_fault_enabled(vcpu)))
2509 			return 1;
2510 		vcpu->arch.msr_platform_info = data;
2511 		break;
2512 	case MSR_MISC_FEATURES_ENABLES:
2513 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2514 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2515 		     !supports_cpuid_fault(vcpu)))
2516 			return 1;
2517 		vcpu->arch.msr_misc_features_enables = data;
2518 		break;
2519 	default:
2520 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2521 			return xen_hvm_config(vcpu, data);
2522 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2523 			return kvm_pmu_set_msr(vcpu, msr_info);
2524 		if (!ignore_msrs) {
2525 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2526 				    msr, data);
2527 			return 1;
2528 		} else {
2529 			if (report_ignored_msrs)
2530 				vcpu_unimpl(vcpu,
2531 					"ignored wrmsr: 0x%x data 0x%llx\n",
2532 					msr, data);
2533 			break;
2534 		}
2535 	}
2536 	return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2539 
2540 
2541 /*
2542  * Reads an msr value (of 'msr_index') into 'pdata'.
2543  * Returns 0 on success, non-0 otherwise.
2544  * Assumes vcpu_load() was already called.
2545  */
2546 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2547 {
2548 	return kvm_x86_ops->get_msr(vcpu, msr);
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_get_msr);
2551 
2552 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2553 {
2554 	u64 data;
2555 	u64 mcg_cap = vcpu->arch.mcg_cap;
2556 	unsigned bank_num = mcg_cap & 0xff;
2557 
2558 	switch (msr) {
2559 	case MSR_IA32_P5_MC_ADDR:
2560 	case MSR_IA32_P5_MC_TYPE:
2561 		data = 0;
2562 		break;
2563 	case MSR_IA32_MCG_CAP:
2564 		data = vcpu->arch.mcg_cap;
2565 		break;
2566 	case MSR_IA32_MCG_CTL:
2567 		if (!(mcg_cap & MCG_CTL_P))
2568 			return 1;
2569 		data = vcpu->arch.mcg_ctl;
2570 		break;
2571 	case MSR_IA32_MCG_STATUS:
2572 		data = vcpu->arch.mcg_status;
2573 		break;
2574 	default:
2575 		if (msr >= MSR_IA32_MC0_CTL &&
2576 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2577 			u32 offset = msr - MSR_IA32_MC0_CTL;
2578 			data = vcpu->arch.mce_banks[offset];
2579 			break;
2580 		}
2581 		return 1;
2582 	}
2583 	*pdata = data;
2584 	return 0;
2585 }
2586 
2587 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2588 {
2589 	switch (msr_info->index) {
2590 	case MSR_IA32_PLATFORM_ID:
2591 	case MSR_IA32_EBL_CR_POWERON:
2592 	case MSR_IA32_DEBUGCTLMSR:
2593 	case MSR_IA32_LASTBRANCHFROMIP:
2594 	case MSR_IA32_LASTBRANCHTOIP:
2595 	case MSR_IA32_LASTINTFROMIP:
2596 	case MSR_IA32_LASTINTTOIP:
2597 	case MSR_K8_SYSCFG:
2598 	case MSR_K8_TSEG_ADDR:
2599 	case MSR_K8_TSEG_MASK:
2600 	case MSR_K7_HWCR:
2601 	case MSR_VM_HSAVE_PA:
2602 	case MSR_K8_INT_PENDING_MSG:
2603 	case MSR_AMD64_NB_CFG:
2604 	case MSR_FAM10H_MMIO_CONF_BASE:
2605 	case MSR_AMD64_BU_CFG2:
2606 	case MSR_IA32_PERF_CTL:
2607 	case MSR_AMD64_DC_CFG:
2608 		msr_info->data = 0;
2609 		break;
2610 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2611 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2612 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2613 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2614 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2615 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2616 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2617 		msr_info->data = 0;
2618 		break;
2619 	case MSR_IA32_UCODE_REV:
2620 		msr_info->data = vcpu->arch.microcode_version;
2621 		break;
2622 	case MSR_IA32_TSC:
2623 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2624 		break;
2625 	case MSR_MTRRcap:
2626 	case 0x200 ... 0x2ff:
2627 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2628 	case 0xcd: /* fsb frequency */
2629 		msr_info->data = 3;
2630 		break;
2631 		/*
2632 		 * MSR_EBC_FREQUENCY_ID
2633 		 * Conservative value valid for even the basic CPU models.
2634 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2635 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2636 		 * and 266MHz for model 3, or 4. Set Core Clock
2637 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2638 		 * 31:24) even though these are only valid for CPU
2639 		 * models > 2, however guests may end up dividing or
2640 		 * multiplying by zero otherwise.
2641 		 */
2642 	case MSR_EBC_FREQUENCY_ID:
2643 		msr_info->data = 1 << 24;
2644 		break;
2645 	case MSR_IA32_APICBASE:
2646 		msr_info->data = kvm_get_apic_base(vcpu);
2647 		break;
2648 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2649 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2650 		break;
2651 	case MSR_IA32_TSCDEADLINE:
2652 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2653 		break;
2654 	case MSR_IA32_TSC_ADJUST:
2655 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2656 		break;
2657 	case MSR_IA32_MISC_ENABLE:
2658 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2659 		break;
2660 	case MSR_IA32_SMBASE:
2661 		if (!msr_info->host_initiated)
2662 			return 1;
2663 		msr_info->data = vcpu->arch.smbase;
2664 		break;
2665 	case MSR_SMI_COUNT:
2666 		msr_info->data = vcpu->arch.smi_count;
2667 		break;
2668 	case MSR_IA32_PERF_STATUS:
2669 		/* TSC increment by tick */
2670 		msr_info->data = 1000ULL;
2671 		/* CPU multiplier */
2672 		msr_info->data |= (((uint64_t)4ULL) << 40);
2673 		break;
2674 	case MSR_EFER:
2675 		msr_info->data = vcpu->arch.efer;
2676 		break;
2677 	case MSR_KVM_WALL_CLOCK:
2678 	case MSR_KVM_WALL_CLOCK_NEW:
2679 		msr_info->data = vcpu->kvm->arch.wall_clock;
2680 		break;
2681 	case MSR_KVM_SYSTEM_TIME:
2682 	case MSR_KVM_SYSTEM_TIME_NEW:
2683 		msr_info->data = vcpu->arch.time;
2684 		break;
2685 	case MSR_KVM_ASYNC_PF_EN:
2686 		msr_info->data = vcpu->arch.apf.msr_val;
2687 		break;
2688 	case MSR_KVM_STEAL_TIME:
2689 		msr_info->data = vcpu->arch.st.msr_val;
2690 		break;
2691 	case MSR_KVM_PV_EOI_EN:
2692 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2693 		break;
2694 	case MSR_IA32_P5_MC_ADDR:
2695 	case MSR_IA32_P5_MC_TYPE:
2696 	case MSR_IA32_MCG_CAP:
2697 	case MSR_IA32_MCG_CTL:
2698 	case MSR_IA32_MCG_STATUS:
2699 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2700 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2701 	case MSR_K7_CLK_CTL:
2702 		/*
2703 		 * Provide expected ramp-up count for K7. All other
2704 		 * are set to zero, indicating minimum divisors for
2705 		 * every field.
2706 		 *
2707 		 * This prevents guest kernels on AMD host with CPU
2708 		 * type 6, model 8 and higher from exploding due to
2709 		 * the rdmsr failing.
2710 		 */
2711 		msr_info->data = 0x20000000;
2712 		break;
2713 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2714 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2715 	case HV_X64_MSR_CRASH_CTL:
2716 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2717 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2718 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2719 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2720 		return kvm_hv_get_msr_common(vcpu,
2721 					     msr_info->index, &msr_info->data);
2722 		break;
2723 	case MSR_IA32_BBL_CR_CTL3:
2724 		/* This legacy MSR exists but isn't fully documented in current
2725 		 * silicon.  It is however accessed by winxp in very narrow
2726 		 * scenarios where it sets bit #19, itself documented as
2727 		 * a "reserved" bit.  Best effort attempt to source coherent
2728 		 * read data here should the balance of the register be
2729 		 * interpreted by the guest:
2730 		 *
2731 		 * L2 cache control register 3: 64GB range, 256KB size,
2732 		 * enabled, latency 0x1, configured
2733 		 */
2734 		msr_info->data = 0xbe702111;
2735 		break;
2736 	case MSR_AMD64_OSVW_ID_LENGTH:
2737 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2738 			return 1;
2739 		msr_info->data = vcpu->arch.osvw.length;
2740 		break;
2741 	case MSR_AMD64_OSVW_STATUS:
2742 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2743 			return 1;
2744 		msr_info->data = vcpu->arch.osvw.status;
2745 		break;
2746 	case MSR_PLATFORM_INFO:
2747 		msr_info->data = vcpu->arch.msr_platform_info;
2748 		break;
2749 	case MSR_MISC_FEATURES_ENABLES:
2750 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2751 		break;
2752 	default:
2753 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2754 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2755 		if (!ignore_msrs) {
2756 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2757 					       msr_info->index);
2758 			return 1;
2759 		} else {
2760 			if (report_ignored_msrs)
2761 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2762 					msr_info->index);
2763 			msr_info->data = 0;
2764 		}
2765 		break;
2766 	}
2767 	return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2770 
2771 /*
2772  * Read or write a bunch of msrs. All parameters are kernel addresses.
2773  *
2774  * @return number of msrs set successfully.
2775  */
2776 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2777 		    struct kvm_msr_entry *entries,
2778 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2779 				  unsigned index, u64 *data))
2780 {
2781 	int i;
2782 
2783 	for (i = 0; i < msrs->nmsrs; ++i)
2784 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2785 			break;
2786 
2787 	return i;
2788 }
2789 
2790 /*
2791  * Read or write a bunch of msrs. Parameters are user addresses.
2792  *
2793  * @return number of msrs set successfully.
2794  */
2795 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2796 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2797 				unsigned index, u64 *data),
2798 		  int writeback)
2799 {
2800 	struct kvm_msrs msrs;
2801 	struct kvm_msr_entry *entries;
2802 	int r, n;
2803 	unsigned size;
2804 
2805 	r = -EFAULT;
2806 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2807 		goto out;
2808 
2809 	r = -E2BIG;
2810 	if (msrs.nmsrs >= MAX_IO_MSRS)
2811 		goto out;
2812 
2813 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2814 	entries = memdup_user(user_msrs->entries, size);
2815 	if (IS_ERR(entries)) {
2816 		r = PTR_ERR(entries);
2817 		goto out;
2818 	}
2819 
2820 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2821 	if (r < 0)
2822 		goto out_free;
2823 
2824 	r = -EFAULT;
2825 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2826 		goto out_free;
2827 
2828 	r = n;
2829 
2830 out_free:
2831 	kfree(entries);
2832 out:
2833 	return r;
2834 }
2835 
2836 static inline bool kvm_can_mwait_in_guest(void)
2837 {
2838 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2839 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2840 		boot_cpu_has(X86_FEATURE_ARAT);
2841 }
2842 
2843 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2844 {
2845 	int r = 0;
2846 
2847 	switch (ext) {
2848 	case KVM_CAP_IRQCHIP:
2849 	case KVM_CAP_HLT:
2850 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2851 	case KVM_CAP_SET_TSS_ADDR:
2852 	case KVM_CAP_EXT_CPUID:
2853 	case KVM_CAP_EXT_EMUL_CPUID:
2854 	case KVM_CAP_CLOCKSOURCE:
2855 	case KVM_CAP_PIT:
2856 	case KVM_CAP_NOP_IO_DELAY:
2857 	case KVM_CAP_MP_STATE:
2858 	case KVM_CAP_SYNC_MMU:
2859 	case KVM_CAP_USER_NMI:
2860 	case KVM_CAP_REINJECT_CONTROL:
2861 	case KVM_CAP_IRQ_INJECT_STATUS:
2862 	case KVM_CAP_IOEVENTFD:
2863 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2864 	case KVM_CAP_PIT2:
2865 	case KVM_CAP_PIT_STATE2:
2866 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2867 	case KVM_CAP_XEN_HVM:
2868 	case KVM_CAP_VCPU_EVENTS:
2869 	case KVM_CAP_HYPERV:
2870 	case KVM_CAP_HYPERV_VAPIC:
2871 	case KVM_CAP_HYPERV_SPIN:
2872 	case KVM_CAP_HYPERV_SYNIC:
2873 	case KVM_CAP_HYPERV_SYNIC2:
2874 	case KVM_CAP_HYPERV_VP_INDEX:
2875 	case KVM_CAP_HYPERV_EVENTFD:
2876 	case KVM_CAP_HYPERV_TLBFLUSH:
2877 	case KVM_CAP_PCI_SEGMENT:
2878 	case KVM_CAP_DEBUGREGS:
2879 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2880 	case KVM_CAP_XSAVE:
2881 	case KVM_CAP_ASYNC_PF:
2882 	case KVM_CAP_GET_TSC_KHZ:
2883 	case KVM_CAP_KVMCLOCK_CTRL:
2884 	case KVM_CAP_READONLY_MEM:
2885 	case KVM_CAP_HYPERV_TIME:
2886 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2887 	case KVM_CAP_TSC_DEADLINE_TIMER:
2888 	case KVM_CAP_ENABLE_CAP_VM:
2889 	case KVM_CAP_DISABLE_QUIRKS:
2890 	case KVM_CAP_SET_BOOT_CPU_ID:
2891  	case KVM_CAP_SPLIT_IRQCHIP:
2892 	case KVM_CAP_IMMEDIATE_EXIT:
2893 	case KVM_CAP_GET_MSR_FEATURES:
2894 		r = 1;
2895 		break;
2896 	case KVM_CAP_SYNC_REGS:
2897 		r = KVM_SYNC_X86_VALID_FIELDS;
2898 		break;
2899 	case KVM_CAP_ADJUST_CLOCK:
2900 		r = KVM_CLOCK_TSC_STABLE;
2901 		break;
2902 	case KVM_CAP_X86_DISABLE_EXITS:
2903 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2904 		if(kvm_can_mwait_in_guest())
2905 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2906 		break;
2907 	case KVM_CAP_X86_SMM:
2908 		/* SMBASE is usually relocated above 1M on modern chipsets,
2909 		 * and SMM handlers might indeed rely on 4G segment limits,
2910 		 * so do not report SMM to be available if real mode is
2911 		 * emulated via vm86 mode.  Still, do not go to great lengths
2912 		 * to avoid userspace's usage of the feature, because it is a
2913 		 * fringe case that is not enabled except via specific settings
2914 		 * of the module parameters.
2915 		 */
2916 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2917 		break;
2918 	case KVM_CAP_VAPIC:
2919 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2920 		break;
2921 	case KVM_CAP_NR_VCPUS:
2922 		r = KVM_SOFT_MAX_VCPUS;
2923 		break;
2924 	case KVM_CAP_MAX_VCPUS:
2925 		r = KVM_MAX_VCPUS;
2926 		break;
2927 	case KVM_CAP_NR_MEMSLOTS:
2928 		r = KVM_USER_MEM_SLOTS;
2929 		break;
2930 	case KVM_CAP_PV_MMU:	/* obsolete */
2931 		r = 0;
2932 		break;
2933 	case KVM_CAP_MCE:
2934 		r = KVM_MAX_MCE_BANKS;
2935 		break;
2936 	case KVM_CAP_XCRS:
2937 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2938 		break;
2939 	case KVM_CAP_TSC_CONTROL:
2940 		r = kvm_has_tsc_control;
2941 		break;
2942 	case KVM_CAP_X2APIC_API:
2943 		r = KVM_X2APIC_API_VALID_FLAGS;
2944 		break;
2945 	default:
2946 		break;
2947 	}
2948 	return r;
2949 
2950 }
2951 
2952 long kvm_arch_dev_ioctl(struct file *filp,
2953 			unsigned int ioctl, unsigned long arg)
2954 {
2955 	void __user *argp = (void __user *)arg;
2956 	long r;
2957 
2958 	switch (ioctl) {
2959 	case KVM_GET_MSR_INDEX_LIST: {
2960 		struct kvm_msr_list __user *user_msr_list = argp;
2961 		struct kvm_msr_list msr_list;
2962 		unsigned n;
2963 
2964 		r = -EFAULT;
2965 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2966 			goto out;
2967 		n = msr_list.nmsrs;
2968 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2969 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2970 			goto out;
2971 		r = -E2BIG;
2972 		if (n < msr_list.nmsrs)
2973 			goto out;
2974 		r = -EFAULT;
2975 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2976 				 num_msrs_to_save * sizeof(u32)))
2977 			goto out;
2978 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2979 				 &emulated_msrs,
2980 				 num_emulated_msrs * sizeof(u32)))
2981 			goto out;
2982 		r = 0;
2983 		break;
2984 	}
2985 	case KVM_GET_SUPPORTED_CPUID:
2986 	case KVM_GET_EMULATED_CPUID: {
2987 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2988 		struct kvm_cpuid2 cpuid;
2989 
2990 		r = -EFAULT;
2991 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2992 			goto out;
2993 
2994 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2995 					    ioctl);
2996 		if (r)
2997 			goto out;
2998 
2999 		r = -EFAULT;
3000 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3001 			goto out;
3002 		r = 0;
3003 		break;
3004 	}
3005 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3006 		r = -EFAULT;
3007 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3008 				 sizeof(kvm_mce_cap_supported)))
3009 			goto out;
3010 		r = 0;
3011 		break;
3012 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3013 		struct kvm_msr_list __user *user_msr_list = argp;
3014 		struct kvm_msr_list msr_list;
3015 		unsigned int n;
3016 
3017 		r = -EFAULT;
3018 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3019 			goto out;
3020 		n = msr_list.nmsrs;
3021 		msr_list.nmsrs = num_msr_based_features;
3022 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3023 			goto out;
3024 		r = -E2BIG;
3025 		if (n < msr_list.nmsrs)
3026 			goto out;
3027 		r = -EFAULT;
3028 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3029 				 num_msr_based_features * sizeof(u32)))
3030 			goto out;
3031 		r = 0;
3032 		break;
3033 	}
3034 	case KVM_GET_MSRS:
3035 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3036 		break;
3037 	}
3038 	default:
3039 		r = -EINVAL;
3040 	}
3041 out:
3042 	return r;
3043 }
3044 
3045 static void wbinvd_ipi(void *garbage)
3046 {
3047 	wbinvd();
3048 }
3049 
3050 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3051 {
3052 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3053 }
3054 
3055 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3056 {
3057 	/* Address WBINVD may be executed by guest */
3058 	if (need_emulate_wbinvd(vcpu)) {
3059 		if (kvm_x86_ops->has_wbinvd_exit())
3060 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3061 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3062 			smp_call_function_single(vcpu->cpu,
3063 					wbinvd_ipi, NULL, 1);
3064 	}
3065 
3066 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3067 
3068 	/* Apply any externally detected TSC adjustments (due to suspend) */
3069 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3070 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3071 		vcpu->arch.tsc_offset_adjustment = 0;
3072 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3073 	}
3074 
3075 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3076 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3077 				rdtsc() - vcpu->arch.last_host_tsc;
3078 		if (tsc_delta < 0)
3079 			mark_tsc_unstable("KVM discovered backwards TSC");
3080 
3081 		if (kvm_check_tsc_unstable()) {
3082 			u64 offset = kvm_compute_tsc_offset(vcpu,
3083 						vcpu->arch.last_guest_tsc);
3084 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3085 			vcpu->arch.tsc_catchup = 1;
3086 		}
3087 
3088 		if (kvm_lapic_hv_timer_in_use(vcpu))
3089 			kvm_lapic_restart_hv_timer(vcpu);
3090 
3091 		/*
3092 		 * On a host with synchronized TSC, there is no need to update
3093 		 * kvmclock on vcpu->cpu migration
3094 		 */
3095 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3096 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3097 		if (vcpu->cpu != cpu)
3098 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3099 		vcpu->cpu = cpu;
3100 	}
3101 
3102 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3103 }
3104 
3105 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3106 {
3107 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3108 		return;
3109 
3110 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3111 
3112 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3113 			&vcpu->arch.st.steal.preempted,
3114 			offsetof(struct kvm_steal_time, preempted),
3115 			sizeof(vcpu->arch.st.steal.preempted));
3116 }
3117 
3118 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3119 {
3120 	int idx;
3121 
3122 	if (vcpu->preempted)
3123 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3124 
3125 	/*
3126 	 * Disable page faults because we're in atomic context here.
3127 	 * kvm_write_guest_offset_cached() would call might_fault()
3128 	 * that relies on pagefault_disable() to tell if there's a
3129 	 * bug. NOTE: the write to guest memory may not go through if
3130 	 * during postcopy live migration or if there's heavy guest
3131 	 * paging.
3132 	 */
3133 	pagefault_disable();
3134 	/*
3135 	 * kvm_memslots() will be called by
3136 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3137 	 */
3138 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3139 	kvm_steal_time_set_preempted(vcpu);
3140 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3141 	pagefault_enable();
3142 	kvm_x86_ops->vcpu_put(vcpu);
3143 	vcpu->arch.last_host_tsc = rdtsc();
3144 	/*
3145 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3146 	 * on every vmexit, but if not, we might have a stale dr6 from the
3147 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3148 	 */
3149 	set_debugreg(0, 6);
3150 }
3151 
3152 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3153 				    struct kvm_lapic_state *s)
3154 {
3155 	if (vcpu->arch.apicv_active)
3156 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3157 
3158 	return kvm_apic_get_state(vcpu, s);
3159 }
3160 
3161 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3162 				    struct kvm_lapic_state *s)
3163 {
3164 	int r;
3165 
3166 	r = kvm_apic_set_state(vcpu, s);
3167 	if (r)
3168 		return r;
3169 	update_cr8_intercept(vcpu);
3170 
3171 	return 0;
3172 }
3173 
3174 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3175 {
3176 	return (!lapic_in_kernel(vcpu) ||
3177 		kvm_apic_accept_pic_intr(vcpu));
3178 }
3179 
3180 /*
3181  * if userspace requested an interrupt window, check that the
3182  * interrupt window is open.
3183  *
3184  * No need to exit to userspace if we already have an interrupt queued.
3185  */
3186 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3187 {
3188 	return kvm_arch_interrupt_allowed(vcpu) &&
3189 		!kvm_cpu_has_interrupt(vcpu) &&
3190 		!kvm_event_needs_reinjection(vcpu) &&
3191 		kvm_cpu_accept_dm_intr(vcpu);
3192 }
3193 
3194 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3195 				    struct kvm_interrupt *irq)
3196 {
3197 	if (irq->irq >= KVM_NR_INTERRUPTS)
3198 		return -EINVAL;
3199 
3200 	if (!irqchip_in_kernel(vcpu->kvm)) {
3201 		kvm_queue_interrupt(vcpu, irq->irq, false);
3202 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3203 		return 0;
3204 	}
3205 
3206 	/*
3207 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3208 	 * fail for in-kernel 8259.
3209 	 */
3210 	if (pic_in_kernel(vcpu->kvm))
3211 		return -ENXIO;
3212 
3213 	if (vcpu->arch.pending_external_vector != -1)
3214 		return -EEXIST;
3215 
3216 	vcpu->arch.pending_external_vector = irq->irq;
3217 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3218 	return 0;
3219 }
3220 
3221 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3222 {
3223 	kvm_inject_nmi(vcpu);
3224 
3225 	return 0;
3226 }
3227 
3228 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3229 {
3230 	kvm_make_request(KVM_REQ_SMI, vcpu);
3231 
3232 	return 0;
3233 }
3234 
3235 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3236 					   struct kvm_tpr_access_ctl *tac)
3237 {
3238 	if (tac->flags)
3239 		return -EINVAL;
3240 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3241 	return 0;
3242 }
3243 
3244 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3245 					u64 mcg_cap)
3246 {
3247 	int r;
3248 	unsigned bank_num = mcg_cap & 0xff, bank;
3249 
3250 	r = -EINVAL;
3251 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3252 		goto out;
3253 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3254 		goto out;
3255 	r = 0;
3256 	vcpu->arch.mcg_cap = mcg_cap;
3257 	/* Init IA32_MCG_CTL to all 1s */
3258 	if (mcg_cap & MCG_CTL_P)
3259 		vcpu->arch.mcg_ctl = ~(u64)0;
3260 	/* Init IA32_MCi_CTL to all 1s */
3261 	for (bank = 0; bank < bank_num; bank++)
3262 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3263 
3264 	if (kvm_x86_ops->setup_mce)
3265 		kvm_x86_ops->setup_mce(vcpu);
3266 out:
3267 	return r;
3268 }
3269 
3270 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3271 				      struct kvm_x86_mce *mce)
3272 {
3273 	u64 mcg_cap = vcpu->arch.mcg_cap;
3274 	unsigned bank_num = mcg_cap & 0xff;
3275 	u64 *banks = vcpu->arch.mce_banks;
3276 
3277 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3278 		return -EINVAL;
3279 	/*
3280 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3281 	 * reporting is disabled
3282 	 */
3283 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3284 	    vcpu->arch.mcg_ctl != ~(u64)0)
3285 		return 0;
3286 	banks += 4 * mce->bank;
3287 	/*
3288 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3289 	 * reporting is disabled for the bank
3290 	 */
3291 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3292 		return 0;
3293 	if (mce->status & MCI_STATUS_UC) {
3294 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3295 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3296 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3297 			return 0;
3298 		}
3299 		if (banks[1] & MCI_STATUS_VAL)
3300 			mce->status |= MCI_STATUS_OVER;
3301 		banks[2] = mce->addr;
3302 		banks[3] = mce->misc;
3303 		vcpu->arch.mcg_status = mce->mcg_status;
3304 		banks[1] = mce->status;
3305 		kvm_queue_exception(vcpu, MC_VECTOR);
3306 	} else if (!(banks[1] & MCI_STATUS_VAL)
3307 		   || !(banks[1] & MCI_STATUS_UC)) {
3308 		if (banks[1] & MCI_STATUS_VAL)
3309 			mce->status |= MCI_STATUS_OVER;
3310 		banks[2] = mce->addr;
3311 		banks[3] = mce->misc;
3312 		banks[1] = mce->status;
3313 	} else
3314 		banks[1] |= MCI_STATUS_OVER;
3315 	return 0;
3316 }
3317 
3318 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3319 					       struct kvm_vcpu_events *events)
3320 {
3321 	process_nmi(vcpu);
3322 	/*
3323 	 * FIXME: pass injected and pending separately.  This is only
3324 	 * needed for nested virtualization, whose state cannot be
3325 	 * migrated yet.  For now we can combine them.
3326 	 */
3327 	events->exception.injected =
3328 		(vcpu->arch.exception.pending ||
3329 		 vcpu->arch.exception.injected) &&
3330 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3331 	events->exception.nr = vcpu->arch.exception.nr;
3332 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3333 	events->exception.pad = 0;
3334 	events->exception.error_code = vcpu->arch.exception.error_code;
3335 
3336 	events->interrupt.injected =
3337 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3338 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3339 	events->interrupt.soft = 0;
3340 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3341 
3342 	events->nmi.injected = vcpu->arch.nmi_injected;
3343 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3344 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3345 	events->nmi.pad = 0;
3346 
3347 	events->sipi_vector = 0; /* never valid when reporting to user space */
3348 
3349 	events->smi.smm = is_smm(vcpu);
3350 	events->smi.pending = vcpu->arch.smi_pending;
3351 	events->smi.smm_inside_nmi =
3352 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3353 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3354 
3355 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3356 			 | KVM_VCPUEVENT_VALID_SHADOW
3357 			 | KVM_VCPUEVENT_VALID_SMM);
3358 	memset(&events->reserved, 0, sizeof(events->reserved));
3359 }
3360 
3361 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3362 
3363 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3364 					      struct kvm_vcpu_events *events)
3365 {
3366 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3367 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3368 			      | KVM_VCPUEVENT_VALID_SHADOW
3369 			      | KVM_VCPUEVENT_VALID_SMM))
3370 		return -EINVAL;
3371 
3372 	if (events->exception.injected &&
3373 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3374 	     is_guest_mode(vcpu)))
3375 		return -EINVAL;
3376 
3377 	/* INITs are latched while in SMM */
3378 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3379 	    (events->smi.smm || events->smi.pending) &&
3380 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3381 		return -EINVAL;
3382 
3383 	process_nmi(vcpu);
3384 	vcpu->arch.exception.injected = false;
3385 	vcpu->arch.exception.pending = events->exception.injected;
3386 	vcpu->arch.exception.nr = events->exception.nr;
3387 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3388 	vcpu->arch.exception.error_code = events->exception.error_code;
3389 
3390 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3391 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3392 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3393 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3394 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3395 						  events->interrupt.shadow);
3396 
3397 	vcpu->arch.nmi_injected = events->nmi.injected;
3398 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3399 		vcpu->arch.nmi_pending = events->nmi.pending;
3400 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3401 
3402 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3403 	    lapic_in_kernel(vcpu))
3404 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3405 
3406 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3407 		u32 hflags = vcpu->arch.hflags;
3408 		if (events->smi.smm)
3409 			hflags |= HF_SMM_MASK;
3410 		else
3411 			hflags &= ~HF_SMM_MASK;
3412 		kvm_set_hflags(vcpu, hflags);
3413 
3414 		vcpu->arch.smi_pending = events->smi.pending;
3415 
3416 		if (events->smi.smm) {
3417 			if (events->smi.smm_inside_nmi)
3418 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3419 			else
3420 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3421 			if (lapic_in_kernel(vcpu)) {
3422 				if (events->smi.latched_init)
3423 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3424 				else
3425 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3426 			}
3427 		}
3428 	}
3429 
3430 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3431 
3432 	return 0;
3433 }
3434 
3435 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3436 					     struct kvm_debugregs *dbgregs)
3437 {
3438 	unsigned long val;
3439 
3440 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3441 	kvm_get_dr(vcpu, 6, &val);
3442 	dbgregs->dr6 = val;
3443 	dbgregs->dr7 = vcpu->arch.dr7;
3444 	dbgregs->flags = 0;
3445 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3446 }
3447 
3448 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3449 					    struct kvm_debugregs *dbgregs)
3450 {
3451 	if (dbgregs->flags)
3452 		return -EINVAL;
3453 
3454 	if (dbgregs->dr6 & ~0xffffffffull)
3455 		return -EINVAL;
3456 	if (dbgregs->dr7 & ~0xffffffffull)
3457 		return -EINVAL;
3458 
3459 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3460 	kvm_update_dr0123(vcpu);
3461 	vcpu->arch.dr6 = dbgregs->dr6;
3462 	kvm_update_dr6(vcpu);
3463 	vcpu->arch.dr7 = dbgregs->dr7;
3464 	kvm_update_dr7(vcpu);
3465 
3466 	return 0;
3467 }
3468 
3469 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3470 
3471 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3472 {
3473 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3474 	u64 xstate_bv = xsave->header.xfeatures;
3475 	u64 valid;
3476 
3477 	/*
3478 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3479 	 * leaves 0 and 1 in the loop below.
3480 	 */
3481 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3482 
3483 	/* Set XSTATE_BV */
3484 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3485 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3486 
3487 	/*
3488 	 * Copy each region from the possibly compacted offset to the
3489 	 * non-compacted offset.
3490 	 */
3491 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3492 	while (valid) {
3493 		u64 feature = valid & -valid;
3494 		int index = fls64(feature) - 1;
3495 		void *src = get_xsave_addr(xsave, feature);
3496 
3497 		if (src) {
3498 			u32 size, offset, ecx, edx;
3499 			cpuid_count(XSTATE_CPUID, index,
3500 				    &size, &offset, &ecx, &edx);
3501 			if (feature == XFEATURE_MASK_PKRU)
3502 				memcpy(dest + offset, &vcpu->arch.pkru,
3503 				       sizeof(vcpu->arch.pkru));
3504 			else
3505 				memcpy(dest + offset, src, size);
3506 
3507 		}
3508 
3509 		valid -= feature;
3510 	}
3511 }
3512 
3513 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3514 {
3515 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3516 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3517 	u64 valid;
3518 
3519 	/*
3520 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3521 	 * leaves 0 and 1 in the loop below.
3522 	 */
3523 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3524 
3525 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3526 	xsave->header.xfeatures = xstate_bv;
3527 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3528 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3529 
3530 	/*
3531 	 * Copy each region from the non-compacted offset to the
3532 	 * possibly compacted offset.
3533 	 */
3534 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535 	while (valid) {
3536 		u64 feature = valid & -valid;
3537 		int index = fls64(feature) - 1;
3538 		void *dest = get_xsave_addr(xsave, feature);
3539 
3540 		if (dest) {
3541 			u32 size, offset, ecx, edx;
3542 			cpuid_count(XSTATE_CPUID, index,
3543 				    &size, &offset, &ecx, &edx);
3544 			if (feature == XFEATURE_MASK_PKRU)
3545 				memcpy(&vcpu->arch.pkru, src + offset,
3546 				       sizeof(vcpu->arch.pkru));
3547 			else
3548 				memcpy(dest, src + offset, size);
3549 		}
3550 
3551 		valid -= feature;
3552 	}
3553 }
3554 
3555 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3556 					 struct kvm_xsave *guest_xsave)
3557 {
3558 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3559 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3560 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3561 	} else {
3562 		memcpy(guest_xsave->region,
3563 			&vcpu->arch.guest_fpu.state.fxsave,
3564 			sizeof(struct fxregs_state));
3565 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3566 			XFEATURE_MASK_FPSSE;
3567 	}
3568 }
3569 
3570 #define XSAVE_MXCSR_OFFSET 24
3571 
3572 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3573 					struct kvm_xsave *guest_xsave)
3574 {
3575 	u64 xstate_bv =
3576 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3577 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3578 
3579 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3580 		/*
3581 		 * Here we allow setting states that are not present in
3582 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3583 		 * with old userspace.
3584 		 */
3585 		if (xstate_bv & ~kvm_supported_xcr0() ||
3586 			mxcsr & ~mxcsr_feature_mask)
3587 			return -EINVAL;
3588 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3589 	} else {
3590 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3591 			mxcsr & ~mxcsr_feature_mask)
3592 			return -EINVAL;
3593 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3594 			guest_xsave->region, sizeof(struct fxregs_state));
3595 	}
3596 	return 0;
3597 }
3598 
3599 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3600 					struct kvm_xcrs *guest_xcrs)
3601 {
3602 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3603 		guest_xcrs->nr_xcrs = 0;
3604 		return;
3605 	}
3606 
3607 	guest_xcrs->nr_xcrs = 1;
3608 	guest_xcrs->flags = 0;
3609 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3610 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3611 }
3612 
3613 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3614 				       struct kvm_xcrs *guest_xcrs)
3615 {
3616 	int i, r = 0;
3617 
3618 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3619 		return -EINVAL;
3620 
3621 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3622 		return -EINVAL;
3623 
3624 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3625 		/* Only support XCR0 currently */
3626 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3627 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3628 				guest_xcrs->xcrs[i].value);
3629 			break;
3630 		}
3631 	if (r)
3632 		r = -EINVAL;
3633 	return r;
3634 }
3635 
3636 /*
3637  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3638  * stopped by the hypervisor.  This function will be called from the host only.
3639  * EINVAL is returned when the host attempts to set the flag for a guest that
3640  * does not support pv clocks.
3641  */
3642 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3643 {
3644 	if (!vcpu->arch.pv_time_enabled)
3645 		return -EINVAL;
3646 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3647 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3648 	return 0;
3649 }
3650 
3651 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3652 				     struct kvm_enable_cap *cap)
3653 {
3654 	if (cap->flags)
3655 		return -EINVAL;
3656 
3657 	switch (cap->cap) {
3658 	case KVM_CAP_HYPERV_SYNIC2:
3659 		if (cap->args[0])
3660 			return -EINVAL;
3661 	case KVM_CAP_HYPERV_SYNIC:
3662 		if (!irqchip_in_kernel(vcpu->kvm))
3663 			return -EINVAL;
3664 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3665 					     KVM_CAP_HYPERV_SYNIC2);
3666 	default:
3667 		return -EINVAL;
3668 	}
3669 }
3670 
3671 long kvm_arch_vcpu_ioctl(struct file *filp,
3672 			 unsigned int ioctl, unsigned long arg)
3673 {
3674 	struct kvm_vcpu *vcpu = filp->private_data;
3675 	void __user *argp = (void __user *)arg;
3676 	int r;
3677 	union {
3678 		struct kvm_lapic_state *lapic;
3679 		struct kvm_xsave *xsave;
3680 		struct kvm_xcrs *xcrs;
3681 		void *buffer;
3682 	} u;
3683 
3684 	vcpu_load(vcpu);
3685 
3686 	u.buffer = NULL;
3687 	switch (ioctl) {
3688 	case KVM_GET_LAPIC: {
3689 		r = -EINVAL;
3690 		if (!lapic_in_kernel(vcpu))
3691 			goto out;
3692 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3693 
3694 		r = -ENOMEM;
3695 		if (!u.lapic)
3696 			goto out;
3697 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3698 		if (r)
3699 			goto out;
3700 		r = -EFAULT;
3701 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3702 			goto out;
3703 		r = 0;
3704 		break;
3705 	}
3706 	case KVM_SET_LAPIC: {
3707 		r = -EINVAL;
3708 		if (!lapic_in_kernel(vcpu))
3709 			goto out;
3710 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3711 		if (IS_ERR(u.lapic)) {
3712 			r = PTR_ERR(u.lapic);
3713 			goto out_nofree;
3714 		}
3715 
3716 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3717 		break;
3718 	}
3719 	case KVM_INTERRUPT: {
3720 		struct kvm_interrupt irq;
3721 
3722 		r = -EFAULT;
3723 		if (copy_from_user(&irq, argp, sizeof irq))
3724 			goto out;
3725 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3726 		break;
3727 	}
3728 	case KVM_NMI: {
3729 		r = kvm_vcpu_ioctl_nmi(vcpu);
3730 		break;
3731 	}
3732 	case KVM_SMI: {
3733 		r = kvm_vcpu_ioctl_smi(vcpu);
3734 		break;
3735 	}
3736 	case KVM_SET_CPUID: {
3737 		struct kvm_cpuid __user *cpuid_arg = argp;
3738 		struct kvm_cpuid cpuid;
3739 
3740 		r = -EFAULT;
3741 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3742 			goto out;
3743 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3744 		break;
3745 	}
3746 	case KVM_SET_CPUID2: {
3747 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3748 		struct kvm_cpuid2 cpuid;
3749 
3750 		r = -EFAULT;
3751 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3752 			goto out;
3753 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3754 					      cpuid_arg->entries);
3755 		break;
3756 	}
3757 	case KVM_GET_CPUID2: {
3758 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3759 		struct kvm_cpuid2 cpuid;
3760 
3761 		r = -EFAULT;
3762 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3763 			goto out;
3764 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3765 					      cpuid_arg->entries);
3766 		if (r)
3767 			goto out;
3768 		r = -EFAULT;
3769 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3770 			goto out;
3771 		r = 0;
3772 		break;
3773 	}
3774 	case KVM_GET_MSRS: {
3775 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3776 		r = msr_io(vcpu, argp, do_get_msr, 1);
3777 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3778 		break;
3779 	}
3780 	case KVM_SET_MSRS: {
3781 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3782 		r = msr_io(vcpu, argp, do_set_msr, 0);
3783 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3784 		break;
3785 	}
3786 	case KVM_TPR_ACCESS_REPORTING: {
3787 		struct kvm_tpr_access_ctl tac;
3788 
3789 		r = -EFAULT;
3790 		if (copy_from_user(&tac, argp, sizeof tac))
3791 			goto out;
3792 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3793 		if (r)
3794 			goto out;
3795 		r = -EFAULT;
3796 		if (copy_to_user(argp, &tac, sizeof tac))
3797 			goto out;
3798 		r = 0;
3799 		break;
3800 	};
3801 	case KVM_SET_VAPIC_ADDR: {
3802 		struct kvm_vapic_addr va;
3803 		int idx;
3804 
3805 		r = -EINVAL;
3806 		if (!lapic_in_kernel(vcpu))
3807 			goto out;
3808 		r = -EFAULT;
3809 		if (copy_from_user(&va, argp, sizeof va))
3810 			goto out;
3811 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3812 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3813 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3814 		break;
3815 	}
3816 	case KVM_X86_SETUP_MCE: {
3817 		u64 mcg_cap;
3818 
3819 		r = -EFAULT;
3820 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3821 			goto out;
3822 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3823 		break;
3824 	}
3825 	case KVM_X86_SET_MCE: {
3826 		struct kvm_x86_mce mce;
3827 
3828 		r = -EFAULT;
3829 		if (copy_from_user(&mce, argp, sizeof mce))
3830 			goto out;
3831 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3832 		break;
3833 	}
3834 	case KVM_GET_VCPU_EVENTS: {
3835 		struct kvm_vcpu_events events;
3836 
3837 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3838 
3839 		r = -EFAULT;
3840 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3841 			break;
3842 		r = 0;
3843 		break;
3844 	}
3845 	case KVM_SET_VCPU_EVENTS: {
3846 		struct kvm_vcpu_events events;
3847 
3848 		r = -EFAULT;
3849 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3850 			break;
3851 
3852 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3853 		break;
3854 	}
3855 	case KVM_GET_DEBUGREGS: {
3856 		struct kvm_debugregs dbgregs;
3857 
3858 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3859 
3860 		r = -EFAULT;
3861 		if (copy_to_user(argp, &dbgregs,
3862 				 sizeof(struct kvm_debugregs)))
3863 			break;
3864 		r = 0;
3865 		break;
3866 	}
3867 	case KVM_SET_DEBUGREGS: {
3868 		struct kvm_debugregs dbgregs;
3869 
3870 		r = -EFAULT;
3871 		if (copy_from_user(&dbgregs, argp,
3872 				   sizeof(struct kvm_debugregs)))
3873 			break;
3874 
3875 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3876 		break;
3877 	}
3878 	case KVM_GET_XSAVE: {
3879 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3880 		r = -ENOMEM;
3881 		if (!u.xsave)
3882 			break;
3883 
3884 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3885 
3886 		r = -EFAULT;
3887 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3888 			break;
3889 		r = 0;
3890 		break;
3891 	}
3892 	case KVM_SET_XSAVE: {
3893 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3894 		if (IS_ERR(u.xsave)) {
3895 			r = PTR_ERR(u.xsave);
3896 			goto out_nofree;
3897 		}
3898 
3899 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3900 		break;
3901 	}
3902 	case KVM_GET_XCRS: {
3903 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3904 		r = -ENOMEM;
3905 		if (!u.xcrs)
3906 			break;
3907 
3908 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3909 
3910 		r = -EFAULT;
3911 		if (copy_to_user(argp, u.xcrs,
3912 				 sizeof(struct kvm_xcrs)))
3913 			break;
3914 		r = 0;
3915 		break;
3916 	}
3917 	case KVM_SET_XCRS: {
3918 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3919 		if (IS_ERR(u.xcrs)) {
3920 			r = PTR_ERR(u.xcrs);
3921 			goto out_nofree;
3922 		}
3923 
3924 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3925 		break;
3926 	}
3927 	case KVM_SET_TSC_KHZ: {
3928 		u32 user_tsc_khz;
3929 
3930 		r = -EINVAL;
3931 		user_tsc_khz = (u32)arg;
3932 
3933 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3934 			goto out;
3935 
3936 		if (user_tsc_khz == 0)
3937 			user_tsc_khz = tsc_khz;
3938 
3939 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3940 			r = 0;
3941 
3942 		goto out;
3943 	}
3944 	case KVM_GET_TSC_KHZ: {
3945 		r = vcpu->arch.virtual_tsc_khz;
3946 		goto out;
3947 	}
3948 	case KVM_KVMCLOCK_CTRL: {
3949 		r = kvm_set_guest_paused(vcpu);
3950 		goto out;
3951 	}
3952 	case KVM_ENABLE_CAP: {
3953 		struct kvm_enable_cap cap;
3954 
3955 		r = -EFAULT;
3956 		if (copy_from_user(&cap, argp, sizeof(cap)))
3957 			goto out;
3958 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3959 		break;
3960 	}
3961 	default:
3962 		r = -EINVAL;
3963 	}
3964 out:
3965 	kfree(u.buffer);
3966 out_nofree:
3967 	vcpu_put(vcpu);
3968 	return r;
3969 }
3970 
3971 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3972 {
3973 	return VM_FAULT_SIGBUS;
3974 }
3975 
3976 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3977 {
3978 	int ret;
3979 
3980 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3981 		return -EINVAL;
3982 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3983 	return ret;
3984 }
3985 
3986 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3987 					      u64 ident_addr)
3988 {
3989 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3990 }
3991 
3992 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3993 					  u32 kvm_nr_mmu_pages)
3994 {
3995 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3996 		return -EINVAL;
3997 
3998 	mutex_lock(&kvm->slots_lock);
3999 
4000 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4001 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4002 
4003 	mutex_unlock(&kvm->slots_lock);
4004 	return 0;
4005 }
4006 
4007 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4008 {
4009 	return kvm->arch.n_max_mmu_pages;
4010 }
4011 
4012 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4013 {
4014 	struct kvm_pic *pic = kvm->arch.vpic;
4015 	int r;
4016 
4017 	r = 0;
4018 	switch (chip->chip_id) {
4019 	case KVM_IRQCHIP_PIC_MASTER:
4020 		memcpy(&chip->chip.pic, &pic->pics[0],
4021 			sizeof(struct kvm_pic_state));
4022 		break;
4023 	case KVM_IRQCHIP_PIC_SLAVE:
4024 		memcpy(&chip->chip.pic, &pic->pics[1],
4025 			sizeof(struct kvm_pic_state));
4026 		break;
4027 	case KVM_IRQCHIP_IOAPIC:
4028 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4029 		break;
4030 	default:
4031 		r = -EINVAL;
4032 		break;
4033 	}
4034 	return r;
4035 }
4036 
4037 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4038 {
4039 	struct kvm_pic *pic = kvm->arch.vpic;
4040 	int r;
4041 
4042 	r = 0;
4043 	switch (chip->chip_id) {
4044 	case KVM_IRQCHIP_PIC_MASTER:
4045 		spin_lock(&pic->lock);
4046 		memcpy(&pic->pics[0], &chip->chip.pic,
4047 			sizeof(struct kvm_pic_state));
4048 		spin_unlock(&pic->lock);
4049 		break;
4050 	case KVM_IRQCHIP_PIC_SLAVE:
4051 		spin_lock(&pic->lock);
4052 		memcpy(&pic->pics[1], &chip->chip.pic,
4053 			sizeof(struct kvm_pic_state));
4054 		spin_unlock(&pic->lock);
4055 		break;
4056 	case KVM_IRQCHIP_IOAPIC:
4057 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4058 		break;
4059 	default:
4060 		r = -EINVAL;
4061 		break;
4062 	}
4063 	kvm_pic_update_irq(pic);
4064 	return r;
4065 }
4066 
4067 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4068 {
4069 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4070 
4071 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4072 
4073 	mutex_lock(&kps->lock);
4074 	memcpy(ps, &kps->channels, sizeof(*ps));
4075 	mutex_unlock(&kps->lock);
4076 	return 0;
4077 }
4078 
4079 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4080 {
4081 	int i;
4082 	struct kvm_pit *pit = kvm->arch.vpit;
4083 
4084 	mutex_lock(&pit->pit_state.lock);
4085 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4086 	for (i = 0; i < 3; i++)
4087 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4088 	mutex_unlock(&pit->pit_state.lock);
4089 	return 0;
4090 }
4091 
4092 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4093 {
4094 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4095 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4096 		sizeof(ps->channels));
4097 	ps->flags = kvm->arch.vpit->pit_state.flags;
4098 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4099 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4100 	return 0;
4101 }
4102 
4103 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4104 {
4105 	int start = 0;
4106 	int i;
4107 	u32 prev_legacy, cur_legacy;
4108 	struct kvm_pit *pit = kvm->arch.vpit;
4109 
4110 	mutex_lock(&pit->pit_state.lock);
4111 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4112 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4113 	if (!prev_legacy && cur_legacy)
4114 		start = 1;
4115 	memcpy(&pit->pit_state.channels, &ps->channels,
4116 	       sizeof(pit->pit_state.channels));
4117 	pit->pit_state.flags = ps->flags;
4118 	for (i = 0; i < 3; i++)
4119 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4120 				   start && i == 0);
4121 	mutex_unlock(&pit->pit_state.lock);
4122 	return 0;
4123 }
4124 
4125 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4126 				 struct kvm_reinject_control *control)
4127 {
4128 	struct kvm_pit *pit = kvm->arch.vpit;
4129 
4130 	if (!pit)
4131 		return -ENXIO;
4132 
4133 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4134 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4135 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4136 	 */
4137 	mutex_lock(&pit->pit_state.lock);
4138 	kvm_pit_set_reinject(pit, control->pit_reinject);
4139 	mutex_unlock(&pit->pit_state.lock);
4140 
4141 	return 0;
4142 }
4143 
4144 /**
4145  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4146  * @kvm: kvm instance
4147  * @log: slot id and address to which we copy the log
4148  *
4149  * Steps 1-4 below provide general overview of dirty page logging. See
4150  * kvm_get_dirty_log_protect() function description for additional details.
4151  *
4152  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4153  * always flush the TLB (step 4) even if previous step failed  and the dirty
4154  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4155  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4156  * writes will be marked dirty for next log read.
4157  *
4158  *   1. Take a snapshot of the bit and clear it if needed.
4159  *   2. Write protect the corresponding page.
4160  *   3. Copy the snapshot to the userspace.
4161  *   4. Flush TLB's if needed.
4162  */
4163 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4164 {
4165 	bool is_dirty = false;
4166 	int r;
4167 
4168 	mutex_lock(&kvm->slots_lock);
4169 
4170 	/*
4171 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4172 	 */
4173 	if (kvm_x86_ops->flush_log_dirty)
4174 		kvm_x86_ops->flush_log_dirty(kvm);
4175 
4176 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4177 
4178 	/*
4179 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4180 	 * kvm_mmu_slot_remove_write_access().
4181 	 */
4182 	lockdep_assert_held(&kvm->slots_lock);
4183 	if (is_dirty)
4184 		kvm_flush_remote_tlbs(kvm);
4185 
4186 	mutex_unlock(&kvm->slots_lock);
4187 	return r;
4188 }
4189 
4190 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4191 			bool line_status)
4192 {
4193 	if (!irqchip_in_kernel(kvm))
4194 		return -ENXIO;
4195 
4196 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4197 					irq_event->irq, irq_event->level,
4198 					line_status);
4199 	return 0;
4200 }
4201 
4202 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4203 				   struct kvm_enable_cap *cap)
4204 {
4205 	int r;
4206 
4207 	if (cap->flags)
4208 		return -EINVAL;
4209 
4210 	switch (cap->cap) {
4211 	case KVM_CAP_DISABLE_QUIRKS:
4212 		kvm->arch.disabled_quirks = cap->args[0];
4213 		r = 0;
4214 		break;
4215 	case KVM_CAP_SPLIT_IRQCHIP: {
4216 		mutex_lock(&kvm->lock);
4217 		r = -EINVAL;
4218 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4219 			goto split_irqchip_unlock;
4220 		r = -EEXIST;
4221 		if (irqchip_in_kernel(kvm))
4222 			goto split_irqchip_unlock;
4223 		if (kvm->created_vcpus)
4224 			goto split_irqchip_unlock;
4225 		r = kvm_setup_empty_irq_routing(kvm);
4226 		if (r)
4227 			goto split_irqchip_unlock;
4228 		/* Pairs with irqchip_in_kernel. */
4229 		smp_wmb();
4230 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4231 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4232 		r = 0;
4233 split_irqchip_unlock:
4234 		mutex_unlock(&kvm->lock);
4235 		break;
4236 	}
4237 	case KVM_CAP_X2APIC_API:
4238 		r = -EINVAL;
4239 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4240 			break;
4241 
4242 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4243 			kvm->arch.x2apic_format = true;
4244 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4245 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4246 
4247 		r = 0;
4248 		break;
4249 	case KVM_CAP_X86_DISABLE_EXITS:
4250 		r = -EINVAL;
4251 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4252 			break;
4253 
4254 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4255 			kvm_can_mwait_in_guest())
4256 			kvm->arch.mwait_in_guest = true;
4257 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4258 			kvm->arch.hlt_in_guest = true;
4259 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4260 			kvm->arch.pause_in_guest = true;
4261 		r = 0;
4262 		break;
4263 	default:
4264 		r = -EINVAL;
4265 		break;
4266 	}
4267 	return r;
4268 }
4269 
4270 long kvm_arch_vm_ioctl(struct file *filp,
4271 		       unsigned int ioctl, unsigned long arg)
4272 {
4273 	struct kvm *kvm = filp->private_data;
4274 	void __user *argp = (void __user *)arg;
4275 	int r = -ENOTTY;
4276 	/*
4277 	 * This union makes it completely explicit to gcc-3.x
4278 	 * that these two variables' stack usage should be
4279 	 * combined, not added together.
4280 	 */
4281 	union {
4282 		struct kvm_pit_state ps;
4283 		struct kvm_pit_state2 ps2;
4284 		struct kvm_pit_config pit_config;
4285 	} u;
4286 
4287 	switch (ioctl) {
4288 	case KVM_SET_TSS_ADDR:
4289 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4290 		break;
4291 	case KVM_SET_IDENTITY_MAP_ADDR: {
4292 		u64 ident_addr;
4293 
4294 		mutex_lock(&kvm->lock);
4295 		r = -EINVAL;
4296 		if (kvm->created_vcpus)
4297 			goto set_identity_unlock;
4298 		r = -EFAULT;
4299 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4300 			goto set_identity_unlock;
4301 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4302 set_identity_unlock:
4303 		mutex_unlock(&kvm->lock);
4304 		break;
4305 	}
4306 	case KVM_SET_NR_MMU_PAGES:
4307 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4308 		break;
4309 	case KVM_GET_NR_MMU_PAGES:
4310 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4311 		break;
4312 	case KVM_CREATE_IRQCHIP: {
4313 		mutex_lock(&kvm->lock);
4314 
4315 		r = -EEXIST;
4316 		if (irqchip_in_kernel(kvm))
4317 			goto create_irqchip_unlock;
4318 
4319 		r = -EINVAL;
4320 		if (kvm->created_vcpus)
4321 			goto create_irqchip_unlock;
4322 
4323 		r = kvm_pic_init(kvm);
4324 		if (r)
4325 			goto create_irqchip_unlock;
4326 
4327 		r = kvm_ioapic_init(kvm);
4328 		if (r) {
4329 			kvm_pic_destroy(kvm);
4330 			goto create_irqchip_unlock;
4331 		}
4332 
4333 		r = kvm_setup_default_irq_routing(kvm);
4334 		if (r) {
4335 			kvm_ioapic_destroy(kvm);
4336 			kvm_pic_destroy(kvm);
4337 			goto create_irqchip_unlock;
4338 		}
4339 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4340 		smp_wmb();
4341 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4342 	create_irqchip_unlock:
4343 		mutex_unlock(&kvm->lock);
4344 		break;
4345 	}
4346 	case KVM_CREATE_PIT:
4347 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4348 		goto create_pit;
4349 	case KVM_CREATE_PIT2:
4350 		r = -EFAULT;
4351 		if (copy_from_user(&u.pit_config, argp,
4352 				   sizeof(struct kvm_pit_config)))
4353 			goto out;
4354 	create_pit:
4355 		mutex_lock(&kvm->lock);
4356 		r = -EEXIST;
4357 		if (kvm->arch.vpit)
4358 			goto create_pit_unlock;
4359 		r = -ENOMEM;
4360 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4361 		if (kvm->arch.vpit)
4362 			r = 0;
4363 	create_pit_unlock:
4364 		mutex_unlock(&kvm->lock);
4365 		break;
4366 	case KVM_GET_IRQCHIP: {
4367 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4368 		struct kvm_irqchip *chip;
4369 
4370 		chip = memdup_user(argp, sizeof(*chip));
4371 		if (IS_ERR(chip)) {
4372 			r = PTR_ERR(chip);
4373 			goto out;
4374 		}
4375 
4376 		r = -ENXIO;
4377 		if (!irqchip_kernel(kvm))
4378 			goto get_irqchip_out;
4379 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4380 		if (r)
4381 			goto get_irqchip_out;
4382 		r = -EFAULT;
4383 		if (copy_to_user(argp, chip, sizeof *chip))
4384 			goto get_irqchip_out;
4385 		r = 0;
4386 	get_irqchip_out:
4387 		kfree(chip);
4388 		break;
4389 	}
4390 	case KVM_SET_IRQCHIP: {
4391 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4392 		struct kvm_irqchip *chip;
4393 
4394 		chip = memdup_user(argp, sizeof(*chip));
4395 		if (IS_ERR(chip)) {
4396 			r = PTR_ERR(chip);
4397 			goto out;
4398 		}
4399 
4400 		r = -ENXIO;
4401 		if (!irqchip_kernel(kvm))
4402 			goto set_irqchip_out;
4403 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4404 		if (r)
4405 			goto set_irqchip_out;
4406 		r = 0;
4407 	set_irqchip_out:
4408 		kfree(chip);
4409 		break;
4410 	}
4411 	case KVM_GET_PIT: {
4412 		r = -EFAULT;
4413 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4414 			goto out;
4415 		r = -ENXIO;
4416 		if (!kvm->arch.vpit)
4417 			goto out;
4418 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4419 		if (r)
4420 			goto out;
4421 		r = -EFAULT;
4422 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4423 			goto out;
4424 		r = 0;
4425 		break;
4426 	}
4427 	case KVM_SET_PIT: {
4428 		r = -EFAULT;
4429 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4430 			goto out;
4431 		r = -ENXIO;
4432 		if (!kvm->arch.vpit)
4433 			goto out;
4434 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4435 		break;
4436 	}
4437 	case KVM_GET_PIT2: {
4438 		r = -ENXIO;
4439 		if (!kvm->arch.vpit)
4440 			goto out;
4441 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4442 		if (r)
4443 			goto out;
4444 		r = -EFAULT;
4445 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4446 			goto out;
4447 		r = 0;
4448 		break;
4449 	}
4450 	case KVM_SET_PIT2: {
4451 		r = -EFAULT;
4452 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4453 			goto out;
4454 		r = -ENXIO;
4455 		if (!kvm->arch.vpit)
4456 			goto out;
4457 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4458 		break;
4459 	}
4460 	case KVM_REINJECT_CONTROL: {
4461 		struct kvm_reinject_control control;
4462 		r =  -EFAULT;
4463 		if (copy_from_user(&control, argp, sizeof(control)))
4464 			goto out;
4465 		r = kvm_vm_ioctl_reinject(kvm, &control);
4466 		break;
4467 	}
4468 	case KVM_SET_BOOT_CPU_ID:
4469 		r = 0;
4470 		mutex_lock(&kvm->lock);
4471 		if (kvm->created_vcpus)
4472 			r = -EBUSY;
4473 		else
4474 			kvm->arch.bsp_vcpu_id = arg;
4475 		mutex_unlock(&kvm->lock);
4476 		break;
4477 	case KVM_XEN_HVM_CONFIG: {
4478 		struct kvm_xen_hvm_config xhc;
4479 		r = -EFAULT;
4480 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4481 			goto out;
4482 		r = -EINVAL;
4483 		if (xhc.flags)
4484 			goto out;
4485 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4486 		r = 0;
4487 		break;
4488 	}
4489 	case KVM_SET_CLOCK: {
4490 		struct kvm_clock_data user_ns;
4491 		u64 now_ns;
4492 
4493 		r = -EFAULT;
4494 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4495 			goto out;
4496 
4497 		r = -EINVAL;
4498 		if (user_ns.flags)
4499 			goto out;
4500 
4501 		r = 0;
4502 		/*
4503 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4504 		 * kvm_gen_update_masterclock() can be cut down to locked
4505 		 * pvclock_update_vm_gtod_copy().
4506 		 */
4507 		kvm_gen_update_masterclock(kvm);
4508 		now_ns = get_kvmclock_ns(kvm);
4509 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4510 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4511 		break;
4512 	}
4513 	case KVM_GET_CLOCK: {
4514 		struct kvm_clock_data user_ns;
4515 		u64 now_ns;
4516 
4517 		now_ns = get_kvmclock_ns(kvm);
4518 		user_ns.clock = now_ns;
4519 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4520 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4521 
4522 		r = -EFAULT;
4523 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4524 			goto out;
4525 		r = 0;
4526 		break;
4527 	}
4528 	case KVM_ENABLE_CAP: {
4529 		struct kvm_enable_cap cap;
4530 
4531 		r = -EFAULT;
4532 		if (copy_from_user(&cap, argp, sizeof(cap)))
4533 			goto out;
4534 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4535 		break;
4536 	}
4537 	case KVM_MEMORY_ENCRYPT_OP: {
4538 		r = -ENOTTY;
4539 		if (kvm_x86_ops->mem_enc_op)
4540 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4541 		break;
4542 	}
4543 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4544 		struct kvm_enc_region region;
4545 
4546 		r = -EFAULT;
4547 		if (copy_from_user(&region, argp, sizeof(region)))
4548 			goto out;
4549 
4550 		r = -ENOTTY;
4551 		if (kvm_x86_ops->mem_enc_reg_region)
4552 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4553 		break;
4554 	}
4555 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4556 		struct kvm_enc_region region;
4557 
4558 		r = -EFAULT;
4559 		if (copy_from_user(&region, argp, sizeof(region)))
4560 			goto out;
4561 
4562 		r = -ENOTTY;
4563 		if (kvm_x86_ops->mem_enc_unreg_region)
4564 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4565 		break;
4566 	}
4567 	case KVM_HYPERV_EVENTFD: {
4568 		struct kvm_hyperv_eventfd hvevfd;
4569 
4570 		r = -EFAULT;
4571 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4572 			goto out;
4573 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4574 		break;
4575 	}
4576 	default:
4577 		r = -ENOTTY;
4578 	}
4579 out:
4580 	return r;
4581 }
4582 
4583 static void kvm_init_msr_list(void)
4584 {
4585 	u32 dummy[2];
4586 	unsigned i, j;
4587 
4588 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4589 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4590 			continue;
4591 
4592 		/*
4593 		 * Even MSRs that are valid in the host may not be exposed
4594 		 * to the guests in some cases.
4595 		 */
4596 		switch (msrs_to_save[i]) {
4597 		case MSR_IA32_BNDCFGS:
4598 			if (!kvm_x86_ops->mpx_supported())
4599 				continue;
4600 			break;
4601 		case MSR_TSC_AUX:
4602 			if (!kvm_x86_ops->rdtscp_supported())
4603 				continue;
4604 			break;
4605 		default:
4606 			break;
4607 		}
4608 
4609 		if (j < i)
4610 			msrs_to_save[j] = msrs_to_save[i];
4611 		j++;
4612 	}
4613 	num_msrs_to_save = j;
4614 
4615 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4616 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4617 			continue;
4618 
4619 		if (j < i)
4620 			emulated_msrs[j] = emulated_msrs[i];
4621 		j++;
4622 	}
4623 	num_emulated_msrs = j;
4624 
4625 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4626 		struct kvm_msr_entry msr;
4627 
4628 		msr.index = msr_based_features[i];
4629 		if (kvm_get_msr_feature(&msr))
4630 			continue;
4631 
4632 		if (j < i)
4633 			msr_based_features[j] = msr_based_features[i];
4634 		j++;
4635 	}
4636 	num_msr_based_features = j;
4637 }
4638 
4639 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4640 			   const void *v)
4641 {
4642 	int handled = 0;
4643 	int n;
4644 
4645 	do {
4646 		n = min(len, 8);
4647 		if (!(lapic_in_kernel(vcpu) &&
4648 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4649 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4650 			break;
4651 		handled += n;
4652 		addr += n;
4653 		len -= n;
4654 		v += n;
4655 	} while (len);
4656 
4657 	return handled;
4658 }
4659 
4660 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4661 {
4662 	int handled = 0;
4663 	int n;
4664 
4665 	do {
4666 		n = min(len, 8);
4667 		if (!(lapic_in_kernel(vcpu) &&
4668 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4669 					 addr, n, v))
4670 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4671 			break;
4672 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4673 		handled += n;
4674 		addr += n;
4675 		len -= n;
4676 		v += n;
4677 	} while (len);
4678 
4679 	return handled;
4680 }
4681 
4682 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4683 			struct kvm_segment *var, int seg)
4684 {
4685 	kvm_x86_ops->set_segment(vcpu, var, seg);
4686 }
4687 
4688 void kvm_get_segment(struct kvm_vcpu *vcpu,
4689 		     struct kvm_segment *var, int seg)
4690 {
4691 	kvm_x86_ops->get_segment(vcpu, var, seg);
4692 }
4693 
4694 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4695 			   struct x86_exception *exception)
4696 {
4697 	gpa_t t_gpa;
4698 
4699 	BUG_ON(!mmu_is_nested(vcpu));
4700 
4701 	/* NPT walks are always user-walks */
4702 	access |= PFERR_USER_MASK;
4703 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4704 
4705 	return t_gpa;
4706 }
4707 
4708 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4709 			      struct x86_exception *exception)
4710 {
4711 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4712 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4713 }
4714 
4715  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4716 				struct x86_exception *exception)
4717 {
4718 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4719 	access |= PFERR_FETCH_MASK;
4720 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4721 }
4722 
4723 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4724 			       struct x86_exception *exception)
4725 {
4726 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4727 	access |= PFERR_WRITE_MASK;
4728 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4729 }
4730 
4731 /* uses this to access any guest's mapped memory without checking CPL */
4732 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4733 				struct x86_exception *exception)
4734 {
4735 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4736 }
4737 
4738 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4739 				      struct kvm_vcpu *vcpu, u32 access,
4740 				      struct x86_exception *exception)
4741 {
4742 	void *data = val;
4743 	int r = X86EMUL_CONTINUE;
4744 
4745 	while (bytes) {
4746 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4747 							    exception);
4748 		unsigned offset = addr & (PAGE_SIZE-1);
4749 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4750 		int ret;
4751 
4752 		if (gpa == UNMAPPED_GVA)
4753 			return X86EMUL_PROPAGATE_FAULT;
4754 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4755 					       offset, toread);
4756 		if (ret < 0) {
4757 			r = X86EMUL_IO_NEEDED;
4758 			goto out;
4759 		}
4760 
4761 		bytes -= toread;
4762 		data += toread;
4763 		addr += toread;
4764 	}
4765 out:
4766 	return r;
4767 }
4768 
4769 /* used for instruction fetching */
4770 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4771 				gva_t addr, void *val, unsigned int bytes,
4772 				struct x86_exception *exception)
4773 {
4774 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4776 	unsigned offset;
4777 	int ret;
4778 
4779 	/* Inline kvm_read_guest_virt_helper for speed.  */
4780 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4781 						    exception);
4782 	if (unlikely(gpa == UNMAPPED_GVA))
4783 		return X86EMUL_PROPAGATE_FAULT;
4784 
4785 	offset = addr & (PAGE_SIZE-1);
4786 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4787 		bytes = (unsigned)PAGE_SIZE - offset;
4788 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4789 				       offset, bytes);
4790 	if (unlikely(ret < 0))
4791 		return X86EMUL_IO_NEEDED;
4792 
4793 	return X86EMUL_CONTINUE;
4794 }
4795 
4796 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4797 			       gva_t addr, void *val, unsigned int bytes,
4798 			       struct x86_exception *exception)
4799 {
4800 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4801 
4802 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4803 					  exception);
4804 }
4805 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4806 
4807 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4808 			     gva_t addr, void *val, unsigned int bytes,
4809 			     struct x86_exception *exception, bool system)
4810 {
4811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812 	u32 access = 0;
4813 
4814 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4815 		access |= PFERR_USER_MASK;
4816 
4817 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4818 }
4819 
4820 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4821 		unsigned long addr, void *val, unsigned int bytes)
4822 {
4823 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4824 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4825 
4826 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4827 }
4828 
4829 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4830 				      struct kvm_vcpu *vcpu, u32 access,
4831 				      struct x86_exception *exception)
4832 {
4833 	void *data = val;
4834 	int r = X86EMUL_CONTINUE;
4835 
4836 	while (bytes) {
4837 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4838 							     access,
4839 							     exception);
4840 		unsigned offset = addr & (PAGE_SIZE-1);
4841 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4842 		int ret;
4843 
4844 		if (gpa == UNMAPPED_GVA)
4845 			return X86EMUL_PROPAGATE_FAULT;
4846 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4847 		if (ret < 0) {
4848 			r = X86EMUL_IO_NEEDED;
4849 			goto out;
4850 		}
4851 
4852 		bytes -= towrite;
4853 		data += towrite;
4854 		addr += towrite;
4855 	}
4856 out:
4857 	return r;
4858 }
4859 
4860 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4861 			      unsigned int bytes, struct x86_exception *exception,
4862 			      bool system)
4863 {
4864 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865 	u32 access = PFERR_WRITE_MASK;
4866 
4867 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4868 		access |= PFERR_USER_MASK;
4869 
4870 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4871 					   access, exception);
4872 }
4873 
4874 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4875 				unsigned int bytes, struct x86_exception *exception)
4876 {
4877 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4878 					   PFERR_WRITE_MASK, exception);
4879 }
4880 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4881 
4882 int handle_ud(struct kvm_vcpu *vcpu)
4883 {
4884 	int emul_type = EMULTYPE_TRAP_UD;
4885 	enum emulation_result er;
4886 	char sig[5]; /* ud2; .ascii "kvm" */
4887 	struct x86_exception e;
4888 
4889 	if (force_emulation_prefix &&
4890 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4891 				sig, sizeof(sig), &e) == 0 &&
4892 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4893 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4894 		emul_type = 0;
4895 	}
4896 
4897 	er = emulate_instruction(vcpu, emul_type);
4898 	if (er == EMULATE_USER_EXIT)
4899 		return 0;
4900 	if (er != EMULATE_DONE)
4901 		kvm_queue_exception(vcpu, UD_VECTOR);
4902 	return 1;
4903 }
4904 EXPORT_SYMBOL_GPL(handle_ud);
4905 
4906 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4907 			    gpa_t gpa, bool write)
4908 {
4909 	/* For APIC access vmexit */
4910 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4911 		return 1;
4912 
4913 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4914 		trace_vcpu_match_mmio(gva, gpa, write, true);
4915 		return 1;
4916 	}
4917 
4918 	return 0;
4919 }
4920 
4921 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4922 				gpa_t *gpa, struct x86_exception *exception,
4923 				bool write)
4924 {
4925 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4926 		| (write ? PFERR_WRITE_MASK : 0);
4927 
4928 	/*
4929 	 * currently PKRU is only applied to ept enabled guest so
4930 	 * there is no pkey in EPT page table for L1 guest or EPT
4931 	 * shadow page table for L2 guest.
4932 	 */
4933 	if (vcpu_match_mmio_gva(vcpu, gva)
4934 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4935 				 vcpu->arch.access, 0, access)) {
4936 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4937 					(gva & (PAGE_SIZE - 1));
4938 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4939 		return 1;
4940 	}
4941 
4942 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4943 
4944 	if (*gpa == UNMAPPED_GVA)
4945 		return -1;
4946 
4947 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4948 }
4949 
4950 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4951 			const void *val, int bytes)
4952 {
4953 	int ret;
4954 
4955 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4956 	if (ret < 0)
4957 		return 0;
4958 	kvm_page_track_write(vcpu, gpa, val, bytes);
4959 	return 1;
4960 }
4961 
4962 struct read_write_emulator_ops {
4963 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4964 				  int bytes);
4965 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4966 				  void *val, int bytes);
4967 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4968 			       int bytes, void *val);
4969 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4970 				    void *val, int bytes);
4971 	bool write;
4972 };
4973 
4974 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4975 {
4976 	if (vcpu->mmio_read_completed) {
4977 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4978 			       vcpu->mmio_fragments[0].gpa, val);
4979 		vcpu->mmio_read_completed = 0;
4980 		return 1;
4981 	}
4982 
4983 	return 0;
4984 }
4985 
4986 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4987 			void *val, int bytes)
4988 {
4989 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4990 }
4991 
4992 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4993 			 void *val, int bytes)
4994 {
4995 	return emulator_write_phys(vcpu, gpa, val, bytes);
4996 }
4997 
4998 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4999 {
5000 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5001 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5002 }
5003 
5004 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5005 			  void *val, int bytes)
5006 {
5007 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5008 	return X86EMUL_IO_NEEDED;
5009 }
5010 
5011 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5012 			   void *val, int bytes)
5013 {
5014 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5015 
5016 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5017 	return X86EMUL_CONTINUE;
5018 }
5019 
5020 static const struct read_write_emulator_ops read_emultor = {
5021 	.read_write_prepare = read_prepare,
5022 	.read_write_emulate = read_emulate,
5023 	.read_write_mmio = vcpu_mmio_read,
5024 	.read_write_exit_mmio = read_exit_mmio,
5025 };
5026 
5027 static const struct read_write_emulator_ops write_emultor = {
5028 	.read_write_emulate = write_emulate,
5029 	.read_write_mmio = write_mmio,
5030 	.read_write_exit_mmio = write_exit_mmio,
5031 	.write = true,
5032 };
5033 
5034 static int emulator_read_write_onepage(unsigned long addr, void *val,
5035 				       unsigned int bytes,
5036 				       struct x86_exception *exception,
5037 				       struct kvm_vcpu *vcpu,
5038 				       const struct read_write_emulator_ops *ops)
5039 {
5040 	gpa_t gpa;
5041 	int handled, ret;
5042 	bool write = ops->write;
5043 	struct kvm_mmio_fragment *frag;
5044 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5045 
5046 	/*
5047 	 * If the exit was due to a NPF we may already have a GPA.
5048 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5049 	 * Note, this cannot be used on string operations since string
5050 	 * operation using rep will only have the initial GPA from the NPF
5051 	 * occurred.
5052 	 */
5053 	if (vcpu->arch.gpa_available &&
5054 	    emulator_can_use_gpa(ctxt) &&
5055 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5056 		gpa = vcpu->arch.gpa_val;
5057 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5058 	} else {
5059 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5060 		if (ret < 0)
5061 			return X86EMUL_PROPAGATE_FAULT;
5062 	}
5063 
5064 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5065 		return X86EMUL_CONTINUE;
5066 
5067 	/*
5068 	 * Is this MMIO handled locally?
5069 	 */
5070 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5071 	if (handled == bytes)
5072 		return X86EMUL_CONTINUE;
5073 
5074 	gpa += handled;
5075 	bytes -= handled;
5076 	val += handled;
5077 
5078 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5079 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5080 	frag->gpa = gpa;
5081 	frag->data = val;
5082 	frag->len = bytes;
5083 	return X86EMUL_CONTINUE;
5084 }
5085 
5086 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5087 			unsigned long addr,
5088 			void *val, unsigned int bytes,
5089 			struct x86_exception *exception,
5090 			const struct read_write_emulator_ops *ops)
5091 {
5092 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5093 	gpa_t gpa;
5094 	int rc;
5095 
5096 	if (ops->read_write_prepare &&
5097 		  ops->read_write_prepare(vcpu, val, bytes))
5098 		return X86EMUL_CONTINUE;
5099 
5100 	vcpu->mmio_nr_fragments = 0;
5101 
5102 	/* Crossing a page boundary? */
5103 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5104 		int now;
5105 
5106 		now = -addr & ~PAGE_MASK;
5107 		rc = emulator_read_write_onepage(addr, val, now, exception,
5108 						 vcpu, ops);
5109 
5110 		if (rc != X86EMUL_CONTINUE)
5111 			return rc;
5112 		addr += now;
5113 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5114 			addr = (u32)addr;
5115 		val += now;
5116 		bytes -= now;
5117 	}
5118 
5119 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5120 					 vcpu, ops);
5121 	if (rc != X86EMUL_CONTINUE)
5122 		return rc;
5123 
5124 	if (!vcpu->mmio_nr_fragments)
5125 		return rc;
5126 
5127 	gpa = vcpu->mmio_fragments[0].gpa;
5128 
5129 	vcpu->mmio_needed = 1;
5130 	vcpu->mmio_cur_fragment = 0;
5131 
5132 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5133 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5134 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5135 	vcpu->run->mmio.phys_addr = gpa;
5136 
5137 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5138 }
5139 
5140 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5141 				  unsigned long addr,
5142 				  void *val,
5143 				  unsigned int bytes,
5144 				  struct x86_exception *exception)
5145 {
5146 	return emulator_read_write(ctxt, addr, val, bytes,
5147 				   exception, &read_emultor);
5148 }
5149 
5150 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5151 			    unsigned long addr,
5152 			    const void *val,
5153 			    unsigned int bytes,
5154 			    struct x86_exception *exception)
5155 {
5156 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5157 				   exception, &write_emultor);
5158 }
5159 
5160 #define CMPXCHG_TYPE(t, ptr, old, new) \
5161 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5162 
5163 #ifdef CONFIG_X86_64
5164 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5165 #else
5166 #  define CMPXCHG64(ptr, old, new) \
5167 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5168 #endif
5169 
5170 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5171 				     unsigned long addr,
5172 				     const void *old,
5173 				     const void *new,
5174 				     unsigned int bytes,
5175 				     struct x86_exception *exception)
5176 {
5177 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5178 	gpa_t gpa;
5179 	struct page *page;
5180 	char *kaddr;
5181 	bool exchanged;
5182 
5183 	/* guests cmpxchg8b have to be emulated atomically */
5184 	if (bytes > 8 || (bytes & (bytes - 1)))
5185 		goto emul_write;
5186 
5187 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5188 
5189 	if (gpa == UNMAPPED_GVA ||
5190 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5191 		goto emul_write;
5192 
5193 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5194 		goto emul_write;
5195 
5196 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5197 	if (is_error_page(page))
5198 		goto emul_write;
5199 
5200 	kaddr = kmap_atomic(page);
5201 	kaddr += offset_in_page(gpa);
5202 	switch (bytes) {
5203 	case 1:
5204 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5205 		break;
5206 	case 2:
5207 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5208 		break;
5209 	case 4:
5210 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5211 		break;
5212 	case 8:
5213 		exchanged = CMPXCHG64(kaddr, old, new);
5214 		break;
5215 	default:
5216 		BUG();
5217 	}
5218 	kunmap_atomic(kaddr);
5219 	kvm_release_page_dirty(page);
5220 
5221 	if (!exchanged)
5222 		return X86EMUL_CMPXCHG_FAILED;
5223 
5224 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5225 	kvm_page_track_write(vcpu, gpa, new, bytes);
5226 
5227 	return X86EMUL_CONTINUE;
5228 
5229 emul_write:
5230 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5231 
5232 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5233 }
5234 
5235 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5236 {
5237 	int r = 0, i;
5238 
5239 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5240 		if (vcpu->arch.pio.in)
5241 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5242 					    vcpu->arch.pio.size, pd);
5243 		else
5244 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5245 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5246 					     pd);
5247 		if (r)
5248 			break;
5249 		pd += vcpu->arch.pio.size;
5250 	}
5251 	return r;
5252 }
5253 
5254 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5255 			       unsigned short port, void *val,
5256 			       unsigned int count, bool in)
5257 {
5258 	vcpu->arch.pio.port = port;
5259 	vcpu->arch.pio.in = in;
5260 	vcpu->arch.pio.count  = count;
5261 	vcpu->arch.pio.size = size;
5262 
5263 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5264 		vcpu->arch.pio.count = 0;
5265 		return 1;
5266 	}
5267 
5268 	vcpu->run->exit_reason = KVM_EXIT_IO;
5269 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5270 	vcpu->run->io.size = size;
5271 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5272 	vcpu->run->io.count = count;
5273 	vcpu->run->io.port = port;
5274 
5275 	return 0;
5276 }
5277 
5278 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5279 				    int size, unsigned short port, void *val,
5280 				    unsigned int count)
5281 {
5282 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5283 	int ret;
5284 
5285 	if (vcpu->arch.pio.count)
5286 		goto data_avail;
5287 
5288 	memset(vcpu->arch.pio_data, 0, size * count);
5289 
5290 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5291 	if (ret) {
5292 data_avail:
5293 		memcpy(val, vcpu->arch.pio_data, size * count);
5294 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5295 		vcpu->arch.pio.count = 0;
5296 		return 1;
5297 	}
5298 
5299 	return 0;
5300 }
5301 
5302 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5303 				     int size, unsigned short port,
5304 				     const void *val, unsigned int count)
5305 {
5306 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5307 
5308 	memcpy(vcpu->arch.pio_data, val, size * count);
5309 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5310 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5311 }
5312 
5313 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5314 {
5315 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5316 }
5317 
5318 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5319 {
5320 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5321 }
5322 
5323 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5324 {
5325 	if (!need_emulate_wbinvd(vcpu))
5326 		return X86EMUL_CONTINUE;
5327 
5328 	if (kvm_x86_ops->has_wbinvd_exit()) {
5329 		int cpu = get_cpu();
5330 
5331 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5332 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5333 				wbinvd_ipi, NULL, 1);
5334 		put_cpu();
5335 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5336 	} else
5337 		wbinvd();
5338 	return X86EMUL_CONTINUE;
5339 }
5340 
5341 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5342 {
5343 	kvm_emulate_wbinvd_noskip(vcpu);
5344 	return kvm_skip_emulated_instruction(vcpu);
5345 }
5346 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5347 
5348 
5349 
5350 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5351 {
5352 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5353 }
5354 
5355 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5356 			   unsigned long *dest)
5357 {
5358 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5359 }
5360 
5361 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5362 			   unsigned long value)
5363 {
5364 
5365 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5366 }
5367 
5368 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5369 {
5370 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5371 }
5372 
5373 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5374 {
5375 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5376 	unsigned long value;
5377 
5378 	switch (cr) {
5379 	case 0:
5380 		value = kvm_read_cr0(vcpu);
5381 		break;
5382 	case 2:
5383 		value = vcpu->arch.cr2;
5384 		break;
5385 	case 3:
5386 		value = kvm_read_cr3(vcpu);
5387 		break;
5388 	case 4:
5389 		value = kvm_read_cr4(vcpu);
5390 		break;
5391 	case 8:
5392 		value = kvm_get_cr8(vcpu);
5393 		break;
5394 	default:
5395 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5396 		return 0;
5397 	}
5398 
5399 	return value;
5400 }
5401 
5402 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5403 {
5404 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5405 	int res = 0;
5406 
5407 	switch (cr) {
5408 	case 0:
5409 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5410 		break;
5411 	case 2:
5412 		vcpu->arch.cr2 = val;
5413 		break;
5414 	case 3:
5415 		res = kvm_set_cr3(vcpu, val);
5416 		break;
5417 	case 4:
5418 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5419 		break;
5420 	case 8:
5421 		res = kvm_set_cr8(vcpu, val);
5422 		break;
5423 	default:
5424 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5425 		res = -1;
5426 	}
5427 
5428 	return res;
5429 }
5430 
5431 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5432 {
5433 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5434 }
5435 
5436 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5437 {
5438 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5439 }
5440 
5441 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5442 {
5443 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5444 }
5445 
5446 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5447 {
5448 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5449 }
5450 
5451 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5452 {
5453 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5454 }
5455 
5456 static unsigned long emulator_get_cached_segment_base(
5457 	struct x86_emulate_ctxt *ctxt, int seg)
5458 {
5459 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5460 }
5461 
5462 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5463 				 struct desc_struct *desc, u32 *base3,
5464 				 int seg)
5465 {
5466 	struct kvm_segment var;
5467 
5468 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5469 	*selector = var.selector;
5470 
5471 	if (var.unusable) {
5472 		memset(desc, 0, sizeof(*desc));
5473 		if (base3)
5474 			*base3 = 0;
5475 		return false;
5476 	}
5477 
5478 	if (var.g)
5479 		var.limit >>= 12;
5480 	set_desc_limit(desc, var.limit);
5481 	set_desc_base(desc, (unsigned long)var.base);
5482 #ifdef CONFIG_X86_64
5483 	if (base3)
5484 		*base3 = var.base >> 32;
5485 #endif
5486 	desc->type = var.type;
5487 	desc->s = var.s;
5488 	desc->dpl = var.dpl;
5489 	desc->p = var.present;
5490 	desc->avl = var.avl;
5491 	desc->l = var.l;
5492 	desc->d = var.db;
5493 	desc->g = var.g;
5494 
5495 	return true;
5496 }
5497 
5498 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5499 				 struct desc_struct *desc, u32 base3,
5500 				 int seg)
5501 {
5502 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5503 	struct kvm_segment var;
5504 
5505 	var.selector = selector;
5506 	var.base = get_desc_base(desc);
5507 #ifdef CONFIG_X86_64
5508 	var.base |= ((u64)base3) << 32;
5509 #endif
5510 	var.limit = get_desc_limit(desc);
5511 	if (desc->g)
5512 		var.limit = (var.limit << 12) | 0xfff;
5513 	var.type = desc->type;
5514 	var.dpl = desc->dpl;
5515 	var.db = desc->d;
5516 	var.s = desc->s;
5517 	var.l = desc->l;
5518 	var.g = desc->g;
5519 	var.avl = desc->avl;
5520 	var.present = desc->p;
5521 	var.unusable = !var.present;
5522 	var.padding = 0;
5523 
5524 	kvm_set_segment(vcpu, &var, seg);
5525 	return;
5526 }
5527 
5528 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5529 			    u32 msr_index, u64 *pdata)
5530 {
5531 	struct msr_data msr;
5532 	int r;
5533 
5534 	msr.index = msr_index;
5535 	msr.host_initiated = false;
5536 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5537 	if (r)
5538 		return r;
5539 
5540 	*pdata = msr.data;
5541 	return 0;
5542 }
5543 
5544 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5545 			    u32 msr_index, u64 data)
5546 {
5547 	struct msr_data msr;
5548 
5549 	msr.data = data;
5550 	msr.index = msr_index;
5551 	msr.host_initiated = false;
5552 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5553 }
5554 
5555 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5556 {
5557 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5558 
5559 	return vcpu->arch.smbase;
5560 }
5561 
5562 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5563 {
5564 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5565 
5566 	vcpu->arch.smbase = smbase;
5567 }
5568 
5569 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5570 			      u32 pmc)
5571 {
5572 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5573 }
5574 
5575 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5576 			     u32 pmc, u64 *pdata)
5577 {
5578 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5579 }
5580 
5581 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5582 {
5583 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5584 }
5585 
5586 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5587 			      struct x86_instruction_info *info,
5588 			      enum x86_intercept_stage stage)
5589 {
5590 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5591 }
5592 
5593 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5594 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5595 {
5596 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5597 }
5598 
5599 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5600 {
5601 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5602 }
5603 
5604 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5605 {
5606 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5607 }
5608 
5609 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5610 {
5611 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5612 }
5613 
5614 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5615 {
5616 	return emul_to_vcpu(ctxt)->arch.hflags;
5617 }
5618 
5619 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5620 {
5621 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5622 }
5623 
5624 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5625 {
5626 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5627 }
5628 
5629 static const struct x86_emulate_ops emulate_ops = {
5630 	.read_gpr            = emulator_read_gpr,
5631 	.write_gpr           = emulator_write_gpr,
5632 	.read_std            = emulator_read_std,
5633 	.write_std           = emulator_write_std,
5634 	.read_phys           = kvm_read_guest_phys_system,
5635 	.fetch               = kvm_fetch_guest_virt,
5636 	.read_emulated       = emulator_read_emulated,
5637 	.write_emulated      = emulator_write_emulated,
5638 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5639 	.invlpg              = emulator_invlpg,
5640 	.pio_in_emulated     = emulator_pio_in_emulated,
5641 	.pio_out_emulated    = emulator_pio_out_emulated,
5642 	.get_segment         = emulator_get_segment,
5643 	.set_segment         = emulator_set_segment,
5644 	.get_cached_segment_base = emulator_get_cached_segment_base,
5645 	.get_gdt             = emulator_get_gdt,
5646 	.get_idt	     = emulator_get_idt,
5647 	.set_gdt             = emulator_set_gdt,
5648 	.set_idt	     = emulator_set_idt,
5649 	.get_cr              = emulator_get_cr,
5650 	.set_cr              = emulator_set_cr,
5651 	.cpl                 = emulator_get_cpl,
5652 	.get_dr              = emulator_get_dr,
5653 	.set_dr              = emulator_set_dr,
5654 	.get_smbase          = emulator_get_smbase,
5655 	.set_smbase          = emulator_set_smbase,
5656 	.set_msr             = emulator_set_msr,
5657 	.get_msr             = emulator_get_msr,
5658 	.check_pmc	     = emulator_check_pmc,
5659 	.read_pmc            = emulator_read_pmc,
5660 	.halt                = emulator_halt,
5661 	.wbinvd              = emulator_wbinvd,
5662 	.fix_hypercall       = emulator_fix_hypercall,
5663 	.intercept           = emulator_intercept,
5664 	.get_cpuid           = emulator_get_cpuid,
5665 	.set_nmi_mask        = emulator_set_nmi_mask,
5666 	.get_hflags          = emulator_get_hflags,
5667 	.set_hflags          = emulator_set_hflags,
5668 	.pre_leave_smm       = emulator_pre_leave_smm,
5669 };
5670 
5671 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5672 {
5673 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5674 	/*
5675 	 * an sti; sti; sequence only disable interrupts for the first
5676 	 * instruction. So, if the last instruction, be it emulated or
5677 	 * not, left the system with the INT_STI flag enabled, it
5678 	 * means that the last instruction is an sti. We should not
5679 	 * leave the flag on in this case. The same goes for mov ss
5680 	 */
5681 	if (int_shadow & mask)
5682 		mask = 0;
5683 	if (unlikely(int_shadow || mask)) {
5684 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5685 		if (!mask)
5686 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5687 	}
5688 }
5689 
5690 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5691 {
5692 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5693 	if (ctxt->exception.vector == PF_VECTOR)
5694 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5695 
5696 	if (ctxt->exception.error_code_valid)
5697 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5698 				      ctxt->exception.error_code);
5699 	else
5700 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5701 	return false;
5702 }
5703 
5704 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5705 {
5706 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5707 	int cs_db, cs_l;
5708 
5709 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5710 
5711 	ctxt->eflags = kvm_get_rflags(vcpu);
5712 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5713 
5714 	ctxt->eip = kvm_rip_read(vcpu);
5715 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5716 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5717 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5718 		     cs_db				? X86EMUL_MODE_PROT32 :
5719 							  X86EMUL_MODE_PROT16;
5720 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5721 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5722 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5723 
5724 	init_decode_cache(ctxt);
5725 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5726 }
5727 
5728 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5729 {
5730 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5731 	int ret;
5732 
5733 	init_emulate_ctxt(vcpu);
5734 
5735 	ctxt->op_bytes = 2;
5736 	ctxt->ad_bytes = 2;
5737 	ctxt->_eip = ctxt->eip + inc_eip;
5738 	ret = emulate_int_real(ctxt, irq);
5739 
5740 	if (ret != X86EMUL_CONTINUE)
5741 		return EMULATE_FAIL;
5742 
5743 	ctxt->eip = ctxt->_eip;
5744 	kvm_rip_write(vcpu, ctxt->eip);
5745 	kvm_set_rflags(vcpu, ctxt->eflags);
5746 
5747 	return EMULATE_DONE;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5750 
5751 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5752 {
5753 	int r = EMULATE_DONE;
5754 
5755 	++vcpu->stat.insn_emulation_fail;
5756 	trace_kvm_emulate_insn_failed(vcpu);
5757 
5758 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5759 		return EMULATE_FAIL;
5760 
5761 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5762 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5763 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5764 		vcpu->run->internal.ndata = 0;
5765 		r = EMULATE_USER_EXIT;
5766 	}
5767 
5768 	kvm_queue_exception(vcpu, UD_VECTOR);
5769 
5770 	return r;
5771 }
5772 
5773 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5774 				  bool write_fault_to_shadow_pgtable,
5775 				  int emulation_type)
5776 {
5777 	gpa_t gpa = cr2;
5778 	kvm_pfn_t pfn;
5779 
5780 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5781 		return false;
5782 
5783 	if (!vcpu->arch.mmu.direct_map) {
5784 		/*
5785 		 * Write permission should be allowed since only
5786 		 * write access need to be emulated.
5787 		 */
5788 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5789 
5790 		/*
5791 		 * If the mapping is invalid in guest, let cpu retry
5792 		 * it to generate fault.
5793 		 */
5794 		if (gpa == UNMAPPED_GVA)
5795 			return true;
5796 	}
5797 
5798 	/*
5799 	 * Do not retry the unhandleable instruction if it faults on the
5800 	 * readonly host memory, otherwise it will goto a infinite loop:
5801 	 * retry instruction -> write #PF -> emulation fail -> retry
5802 	 * instruction -> ...
5803 	 */
5804 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5805 
5806 	/*
5807 	 * If the instruction failed on the error pfn, it can not be fixed,
5808 	 * report the error to userspace.
5809 	 */
5810 	if (is_error_noslot_pfn(pfn))
5811 		return false;
5812 
5813 	kvm_release_pfn_clean(pfn);
5814 
5815 	/* The instructions are well-emulated on direct mmu. */
5816 	if (vcpu->arch.mmu.direct_map) {
5817 		unsigned int indirect_shadow_pages;
5818 
5819 		spin_lock(&vcpu->kvm->mmu_lock);
5820 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5821 		spin_unlock(&vcpu->kvm->mmu_lock);
5822 
5823 		if (indirect_shadow_pages)
5824 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5825 
5826 		return true;
5827 	}
5828 
5829 	/*
5830 	 * if emulation was due to access to shadowed page table
5831 	 * and it failed try to unshadow page and re-enter the
5832 	 * guest to let CPU execute the instruction.
5833 	 */
5834 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5835 
5836 	/*
5837 	 * If the access faults on its page table, it can not
5838 	 * be fixed by unprotecting shadow page and it should
5839 	 * be reported to userspace.
5840 	 */
5841 	return !write_fault_to_shadow_pgtable;
5842 }
5843 
5844 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5845 			      unsigned long cr2,  int emulation_type)
5846 {
5847 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5848 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5849 
5850 	last_retry_eip = vcpu->arch.last_retry_eip;
5851 	last_retry_addr = vcpu->arch.last_retry_addr;
5852 
5853 	/*
5854 	 * If the emulation is caused by #PF and it is non-page_table
5855 	 * writing instruction, it means the VM-EXIT is caused by shadow
5856 	 * page protected, we can zap the shadow page and retry this
5857 	 * instruction directly.
5858 	 *
5859 	 * Note: if the guest uses a non-page-table modifying instruction
5860 	 * on the PDE that points to the instruction, then we will unmap
5861 	 * the instruction and go to an infinite loop. So, we cache the
5862 	 * last retried eip and the last fault address, if we meet the eip
5863 	 * and the address again, we can break out of the potential infinite
5864 	 * loop.
5865 	 */
5866 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5867 
5868 	if (!(emulation_type & EMULTYPE_RETRY))
5869 		return false;
5870 
5871 	if (x86_page_table_writing_insn(ctxt))
5872 		return false;
5873 
5874 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5875 		return false;
5876 
5877 	vcpu->arch.last_retry_eip = ctxt->eip;
5878 	vcpu->arch.last_retry_addr = cr2;
5879 
5880 	if (!vcpu->arch.mmu.direct_map)
5881 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5882 
5883 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5884 
5885 	return true;
5886 }
5887 
5888 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5889 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5890 
5891 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5892 {
5893 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5894 		/* This is a good place to trace that we are exiting SMM.  */
5895 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5896 
5897 		/* Process a latched INIT or SMI, if any.  */
5898 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5899 	}
5900 
5901 	kvm_mmu_reset_context(vcpu);
5902 }
5903 
5904 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5905 {
5906 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5907 
5908 	vcpu->arch.hflags = emul_flags;
5909 
5910 	if (changed & HF_SMM_MASK)
5911 		kvm_smm_changed(vcpu);
5912 }
5913 
5914 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5915 				unsigned long *db)
5916 {
5917 	u32 dr6 = 0;
5918 	int i;
5919 	u32 enable, rwlen;
5920 
5921 	enable = dr7;
5922 	rwlen = dr7 >> 16;
5923 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5924 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5925 			dr6 |= (1 << i);
5926 	return dr6;
5927 }
5928 
5929 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5930 {
5931 	struct kvm_run *kvm_run = vcpu->run;
5932 
5933 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5934 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5935 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5936 		kvm_run->debug.arch.exception = DB_VECTOR;
5937 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5938 		*r = EMULATE_USER_EXIT;
5939 	} else {
5940 		/*
5941 		 * "Certain debug exceptions may clear bit 0-3.  The
5942 		 * remaining contents of the DR6 register are never
5943 		 * cleared by the processor".
5944 		 */
5945 		vcpu->arch.dr6 &= ~15;
5946 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5947 		kvm_queue_exception(vcpu, DB_VECTOR);
5948 	}
5949 }
5950 
5951 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5952 {
5953 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5954 	int r = EMULATE_DONE;
5955 
5956 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5957 
5958 	/*
5959 	 * rflags is the old, "raw" value of the flags.  The new value has
5960 	 * not been saved yet.
5961 	 *
5962 	 * This is correct even for TF set by the guest, because "the
5963 	 * processor will not generate this exception after the instruction
5964 	 * that sets the TF flag".
5965 	 */
5966 	if (unlikely(rflags & X86_EFLAGS_TF))
5967 		kvm_vcpu_do_singlestep(vcpu, &r);
5968 	return r == EMULATE_DONE;
5969 }
5970 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5971 
5972 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5973 {
5974 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5975 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5976 		struct kvm_run *kvm_run = vcpu->run;
5977 		unsigned long eip = kvm_get_linear_rip(vcpu);
5978 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5979 					   vcpu->arch.guest_debug_dr7,
5980 					   vcpu->arch.eff_db);
5981 
5982 		if (dr6 != 0) {
5983 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5984 			kvm_run->debug.arch.pc = eip;
5985 			kvm_run->debug.arch.exception = DB_VECTOR;
5986 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5987 			*r = EMULATE_USER_EXIT;
5988 			return true;
5989 		}
5990 	}
5991 
5992 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5993 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5994 		unsigned long eip = kvm_get_linear_rip(vcpu);
5995 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5996 					   vcpu->arch.dr7,
5997 					   vcpu->arch.db);
5998 
5999 		if (dr6 != 0) {
6000 			vcpu->arch.dr6 &= ~15;
6001 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6002 			kvm_queue_exception(vcpu, DB_VECTOR);
6003 			*r = EMULATE_DONE;
6004 			return true;
6005 		}
6006 	}
6007 
6008 	return false;
6009 }
6010 
6011 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6012 {
6013 	switch (ctxt->opcode_len) {
6014 	case 1:
6015 		switch (ctxt->b) {
6016 		case 0xe4:	/* IN */
6017 		case 0xe5:
6018 		case 0xec:
6019 		case 0xed:
6020 		case 0xe6:	/* OUT */
6021 		case 0xe7:
6022 		case 0xee:
6023 		case 0xef:
6024 		case 0x6c:	/* INS */
6025 		case 0x6d:
6026 		case 0x6e:	/* OUTS */
6027 		case 0x6f:
6028 			return true;
6029 		}
6030 		break;
6031 	case 2:
6032 		switch (ctxt->b) {
6033 		case 0x33:	/* RDPMC */
6034 			return true;
6035 		}
6036 		break;
6037 	}
6038 
6039 	return false;
6040 }
6041 
6042 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6043 			    unsigned long cr2,
6044 			    int emulation_type,
6045 			    void *insn,
6046 			    int insn_len)
6047 {
6048 	int r;
6049 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6050 	bool writeback = true;
6051 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6052 
6053 	/*
6054 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6055 	 * never reused.
6056 	 */
6057 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6058 	kvm_clear_exception_queue(vcpu);
6059 
6060 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6061 		init_emulate_ctxt(vcpu);
6062 
6063 		/*
6064 		 * We will reenter on the same instruction since
6065 		 * we do not set complete_userspace_io.  This does not
6066 		 * handle watchpoints yet, those would be handled in
6067 		 * the emulate_ops.
6068 		 */
6069 		if (!(emulation_type & EMULTYPE_SKIP) &&
6070 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6071 			return r;
6072 
6073 		ctxt->interruptibility = 0;
6074 		ctxt->have_exception = false;
6075 		ctxt->exception.vector = -1;
6076 		ctxt->perm_ok = false;
6077 
6078 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6079 
6080 		r = x86_decode_insn(ctxt, insn, insn_len);
6081 
6082 		trace_kvm_emulate_insn_start(vcpu);
6083 		++vcpu->stat.insn_emulation;
6084 		if (r != EMULATION_OK)  {
6085 			if (emulation_type & EMULTYPE_TRAP_UD)
6086 				return EMULATE_FAIL;
6087 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6088 						emulation_type))
6089 				return EMULATE_DONE;
6090 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6091 				return EMULATE_DONE;
6092 			if (emulation_type & EMULTYPE_SKIP)
6093 				return EMULATE_FAIL;
6094 			return handle_emulation_failure(vcpu, emulation_type);
6095 		}
6096 	}
6097 
6098 	if ((emulation_type & EMULTYPE_VMWARE) &&
6099 	    !is_vmware_backdoor_opcode(ctxt))
6100 		return EMULATE_FAIL;
6101 
6102 	if (emulation_type & EMULTYPE_SKIP) {
6103 		kvm_rip_write(vcpu, ctxt->_eip);
6104 		if (ctxt->eflags & X86_EFLAGS_RF)
6105 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6106 		return EMULATE_DONE;
6107 	}
6108 
6109 	if (retry_instruction(ctxt, cr2, emulation_type))
6110 		return EMULATE_DONE;
6111 
6112 	/* this is needed for vmware backdoor interface to work since it
6113 	   changes registers values  during IO operation */
6114 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6115 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6116 		emulator_invalidate_register_cache(ctxt);
6117 	}
6118 
6119 restart:
6120 	/* Save the faulting GPA (cr2) in the address field */
6121 	ctxt->exception.address = cr2;
6122 
6123 	r = x86_emulate_insn(ctxt);
6124 
6125 	if (r == EMULATION_INTERCEPTED)
6126 		return EMULATE_DONE;
6127 
6128 	if (r == EMULATION_FAILED) {
6129 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6130 					emulation_type))
6131 			return EMULATE_DONE;
6132 
6133 		return handle_emulation_failure(vcpu, emulation_type);
6134 	}
6135 
6136 	if (ctxt->have_exception) {
6137 		r = EMULATE_DONE;
6138 		if (inject_emulated_exception(vcpu))
6139 			return r;
6140 	} else if (vcpu->arch.pio.count) {
6141 		if (!vcpu->arch.pio.in) {
6142 			/* FIXME: return into emulator if single-stepping.  */
6143 			vcpu->arch.pio.count = 0;
6144 		} else {
6145 			writeback = false;
6146 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6147 		}
6148 		r = EMULATE_USER_EXIT;
6149 	} else if (vcpu->mmio_needed) {
6150 		if (!vcpu->mmio_is_write)
6151 			writeback = false;
6152 		r = EMULATE_USER_EXIT;
6153 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6154 	} else if (r == EMULATION_RESTART)
6155 		goto restart;
6156 	else
6157 		r = EMULATE_DONE;
6158 
6159 	if (writeback) {
6160 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6161 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6162 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6163 		kvm_rip_write(vcpu, ctxt->eip);
6164 		if (r == EMULATE_DONE &&
6165 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6166 			kvm_vcpu_do_singlestep(vcpu, &r);
6167 		if (!ctxt->have_exception ||
6168 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6169 			__kvm_set_rflags(vcpu, ctxt->eflags);
6170 
6171 		/*
6172 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6173 		 * do nothing, and it will be requested again as soon as
6174 		 * the shadow expires.  But we still need to check here,
6175 		 * because POPF has no interrupt shadow.
6176 		 */
6177 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6178 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6179 	} else
6180 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6181 
6182 	return r;
6183 }
6184 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6185 
6186 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6187 			    unsigned short port)
6188 {
6189 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6190 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6191 					    size, port, &val, 1);
6192 	/* do not return to emulator after return from userspace */
6193 	vcpu->arch.pio.count = 0;
6194 	return ret;
6195 }
6196 
6197 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6198 {
6199 	unsigned long val;
6200 
6201 	/* We should only ever be called with arch.pio.count equal to 1 */
6202 	BUG_ON(vcpu->arch.pio.count != 1);
6203 
6204 	/* For size less than 4 we merge, else we zero extend */
6205 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6206 					: 0;
6207 
6208 	/*
6209 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6210 	 * the copy and tracing
6211 	 */
6212 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6213 				 vcpu->arch.pio.port, &val, 1);
6214 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6215 
6216 	return 1;
6217 }
6218 
6219 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6220 			   unsigned short port)
6221 {
6222 	unsigned long val;
6223 	int ret;
6224 
6225 	/* For size less than 4 we merge, else we zero extend */
6226 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6227 
6228 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6229 				       &val, 1);
6230 	if (ret) {
6231 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6232 		return ret;
6233 	}
6234 
6235 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6236 
6237 	return 0;
6238 }
6239 
6240 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6241 {
6242 	int ret = kvm_skip_emulated_instruction(vcpu);
6243 
6244 	/*
6245 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6246 	 * KVM_EXIT_DEBUG here.
6247 	 */
6248 	if (in)
6249 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6250 	else
6251 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6252 }
6253 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6254 
6255 static int kvmclock_cpu_down_prep(unsigned int cpu)
6256 {
6257 	__this_cpu_write(cpu_tsc_khz, 0);
6258 	return 0;
6259 }
6260 
6261 static void tsc_khz_changed(void *data)
6262 {
6263 	struct cpufreq_freqs *freq = data;
6264 	unsigned long khz = 0;
6265 
6266 	if (data)
6267 		khz = freq->new;
6268 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6269 		khz = cpufreq_quick_get(raw_smp_processor_id());
6270 	if (!khz)
6271 		khz = tsc_khz;
6272 	__this_cpu_write(cpu_tsc_khz, khz);
6273 }
6274 
6275 #ifdef CONFIG_X86_64
6276 static void kvm_hyperv_tsc_notifier(void)
6277 {
6278 	struct kvm *kvm;
6279 	struct kvm_vcpu *vcpu;
6280 	int cpu;
6281 
6282 	spin_lock(&kvm_lock);
6283 	list_for_each_entry(kvm, &vm_list, vm_list)
6284 		kvm_make_mclock_inprogress_request(kvm);
6285 
6286 	hyperv_stop_tsc_emulation();
6287 
6288 	/* TSC frequency always matches when on Hyper-V */
6289 	for_each_present_cpu(cpu)
6290 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6291 	kvm_max_guest_tsc_khz = tsc_khz;
6292 
6293 	list_for_each_entry(kvm, &vm_list, vm_list) {
6294 		struct kvm_arch *ka = &kvm->arch;
6295 
6296 		spin_lock(&ka->pvclock_gtod_sync_lock);
6297 
6298 		pvclock_update_vm_gtod_copy(kvm);
6299 
6300 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6301 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6302 
6303 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6304 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6305 
6306 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6307 	}
6308 	spin_unlock(&kvm_lock);
6309 }
6310 #endif
6311 
6312 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6313 				     void *data)
6314 {
6315 	struct cpufreq_freqs *freq = data;
6316 	struct kvm *kvm;
6317 	struct kvm_vcpu *vcpu;
6318 	int i, send_ipi = 0;
6319 
6320 	/*
6321 	 * We allow guests to temporarily run on slowing clocks,
6322 	 * provided we notify them after, or to run on accelerating
6323 	 * clocks, provided we notify them before.  Thus time never
6324 	 * goes backwards.
6325 	 *
6326 	 * However, we have a problem.  We can't atomically update
6327 	 * the frequency of a given CPU from this function; it is
6328 	 * merely a notifier, which can be called from any CPU.
6329 	 * Changing the TSC frequency at arbitrary points in time
6330 	 * requires a recomputation of local variables related to
6331 	 * the TSC for each VCPU.  We must flag these local variables
6332 	 * to be updated and be sure the update takes place with the
6333 	 * new frequency before any guests proceed.
6334 	 *
6335 	 * Unfortunately, the combination of hotplug CPU and frequency
6336 	 * change creates an intractable locking scenario; the order
6337 	 * of when these callouts happen is undefined with respect to
6338 	 * CPU hotplug, and they can race with each other.  As such,
6339 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6340 	 * undefined; you can actually have a CPU frequency change take
6341 	 * place in between the computation of X and the setting of the
6342 	 * variable.  To protect against this problem, all updates of
6343 	 * the per_cpu tsc_khz variable are done in an interrupt
6344 	 * protected IPI, and all callers wishing to update the value
6345 	 * must wait for a synchronous IPI to complete (which is trivial
6346 	 * if the caller is on the CPU already).  This establishes the
6347 	 * necessary total order on variable updates.
6348 	 *
6349 	 * Note that because a guest time update may take place
6350 	 * anytime after the setting of the VCPU's request bit, the
6351 	 * correct TSC value must be set before the request.  However,
6352 	 * to ensure the update actually makes it to any guest which
6353 	 * starts running in hardware virtualization between the set
6354 	 * and the acquisition of the spinlock, we must also ping the
6355 	 * CPU after setting the request bit.
6356 	 *
6357 	 */
6358 
6359 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6360 		return 0;
6361 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6362 		return 0;
6363 
6364 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6365 
6366 	spin_lock(&kvm_lock);
6367 	list_for_each_entry(kvm, &vm_list, vm_list) {
6368 		kvm_for_each_vcpu(i, vcpu, kvm) {
6369 			if (vcpu->cpu != freq->cpu)
6370 				continue;
6371 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6372 			if (vcpu->cpu != smp_processor_id())
6373 				send_ipi = 1;
6374 		}
6375 	}
6376 	spin_unlock(&kvm_lock);
6377 
6378 	if (freq->old < freq->new && send_ipi) {
6379 		/*
6380 		 * We upscale the frequency.  Must make the guest
6381 		 * doesn't see old kvmclock values while running with
6382 		 * the new frequency, otherwise we risk the guest sees
6383 		 * time go backwards.
6384 		 *
6385 		 * In case we update the frequency for another cpu
6386 		 * (which might be in guest context) send an interrupt
6387 		 * to kick the cpu out of guest context.  Next time
6388 		 * guest context is entered kvmclock will be updated,
6389 		 * so the guest will not see stale values.
6390 		 */
6391 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6392 	}
6393 	return 0;
6394 }
6395 
6396 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6397 	.notifier_call  = kvmclock_cpufreq_notifier
6398 };
6399 
6400 static int kvmclock_cpu_online(unsigned int cpu)
6401 {
6402 	tsc_khz_changed(NULL);
6403 	return 0;
6404 }
6405 
6406 static void kvm_timer_init(void)
6407 {
6408 	max_tsc_khz = tsc_khz;
6409 
6410 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6411 #ifdef CONFIG_CPU_FREQ
6412 		struct cpufreq_policy policy;
6413 		int cpu;
6414 
6415 		memset(&policy, 0, sizeof(policy));
6416 		cpu = get_cpu();
6417 		cpufreq_get_policy(&policy, cpu);
6418 		if (policy.cpuinfo.max_freq)
6419 			max_tsc_khz = policy.cpuinfo.max_freq;
6420 		put_cpu();
6421 #endif
6422 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6423 					  CPUFREQ_TRANSITION_NOTIFIER);
6424 	}
6425 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6426 
6427 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6428 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6429 }
6430 
6431 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6432 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6433 
6434 int kvm_is_in_guest(void)
6435 {
6436 	return __this_cpu_read(current_vcpu) != NULL;
6437 }
6438 
6439 static int kvm_is_user_mode(void)
6440 {
6441 	int user_mode = 3;
6442 
6443 	if (__this_cpu_read(current_vcpu))
6444 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6445 
6446 	return user_mode != 0;
6447 }
6448 
6449 static unsigned long kvm_get_guest_ip(void)
6450 {
6451 	unsigned long ip = 0;
6452 
6453 	if (__this_cpu_read(current_vcpu))
6454 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6455 
6456 	return ip;
6457 }
6458 
6459 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6460 	.is_in_guest		= kvm_is_in_guest,
6461 	.is_user_mode		= kvm_is_user_mode,
6462 	.get_guest_ip		= kvm_get_guest_ip,
6463 };
6464 
6465 static void kvm_set_mmio_spte_mask(void)
6466 {
6467 	u64 mask;
6468 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6469 
6470 	/*
6471 	 * Set the reserved bits and the present bit of an paging-structure
6472 	 * entry to generate page fault with PFER.RSV = 1.
6473 	 */
6474 	 /* Mask the reserved physical address bits. */
6475 	mask = rsvd_bits(maxphyaddr, 51);
6476 
6477 	/* Set the present bit. */
6478 	mask |= 1ull;
6479 
6480 #ifdef CONFIG_X86_64
6481 	/*
6482 	 * If reserved bit is not supported, clear the present bit to disable
6483 	 * mmio page fault.
6484 	 */
6485 	if (maxphyaddr == 52)
6486 		mask &= ~1ull;
6487 #endif
6488 
6489 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6490 }
6491 
6492 #ifdef CONFIG_X86_64
6493 static void pvclock_gtod_update_fn(struct work_struct *work)
6494 {
6495 	struct kvm *kvm;
6496 
6497 	struct kvm_vcpu *vcpu;
6498 	int i;
6499 
6500 	spin_lock(&kvm_lock);
6501 	list_for_each_entry(kvm, &vm_list, vm_list)
6502 		kvm_for_each_vcpu(i, vcpu, kvm)
6503 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6504 	atomic_set(&kvm_guest_has_master_clock, 0);
6505 	spin_unlock(&kvm_lock);
6506 }
6507 
6508 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6509 
6510 /*
6511  * Notification about pvclock gtod data update.
6512  */
6513 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6514 			       void *priv)
6515 {
6516 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6517 	struct timekeeper *tk = priv;
6518 
6519 	update_pvclock_gtod(tk);
6520 
6521 	/* disable master clock if host does not trust, or does not
6522 	 * use, TSC based clocksource.
6523 	 */
6524 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6525 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6526 		queue_work(system_long_wq, &pvclock_gtod_work);
6527 
6528 	return 0;
6529 }
6530 
6531 static struct notifier_block pvclock_gtod_notifier = {
6532 	.notifier_call = pvclock_gtod_notify,
6533 };
6534 #endif
6535 
6536 int kvm_arch_init(void *opaque)
6537 {
6538 	int r;
6539 	struct kvm_x86_ops *ops = opaque;
6540 
6541 	if (kvm_x86_ops) {
6542 		printk(KERN_ERR "kvm: already loaded the other module\n");
6543 		r = -EEXIST;
6544 		goto out;
6545 	}
6546 
6547 	if (!ops->cpu_has_kvm_support()) {
6548 		printk(KERN_ERR "kvm: no hardware support\n");
6549 		r = -EOPNOTSUPP;
6550 		goto out;
6551 	}
6552 	if (ops->disabled_by_bios()) {
6553 		printk(KERN_ERR "kvm: disabled by bios\n");
6554 		r = -EOPNOTSUPP;
6555 		goto out;
6556 	}
6557 
6558 	r = -ENOMEM;
6559 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6560 	if (!shared_msrs) {
6561 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6562 		goto out;
6563 	}
6564 
6565 	r = kvm_mmu_module_init();
6566 	if (r)
6567 		goto out_free_percpu;
6568 
6569 	kvm_set_mmio_spte_mask();
6570 
6571 	kvm_x86_ops = ops;
6572 
6573 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6574 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6575 			PT_PRESENT_MASK, 0, sme_me_mask);
6576 	kvm_timer_init();
6577 
6578 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6579 
6580 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6581 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6582 
6583 	kvm_lapic_init();
6584 #ifdef CONFIG_X86_64
6585 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6586 
6587 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6588 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6589 #endif
6590 
6591 	return 0;
6592 
6593 out_free_percpu:
6594 	free_percpu(shared_msrs);
6595 out:
6596 	return r;
6597 }
6598 
6599 void kvm_arch_exit(void)
6600 {
6601 #ifdef CONFIG_X86_64
6602 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6603 		clear_hv_tscchange_cb();
6604 #endif
6605 	kvm_lapic_exit();
6606 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6607 
6608 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6609 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6610 					    CPUFREQ_TRANSITION_NOTIFIER);
6611 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6612 #ifdef CONFIG_X86_64
6613 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6614 #endif
6615 	kvm_x86_ops = NULL;
6616 	kvm_mmu_module_exit();
6617 	free_percpu(shared_msrs);
6618 }
6619 
6620 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6621 {
6622 	++vcpu->stat.halt_exits;
6623 	if (lapic_in_kernel(vcpu)) {
6624 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6625 		return 1;
6626 	} else {
6627 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6628 		return 0;
6629 	}
6630 }
6631 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6632 
6633 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6634 {
6635 	int ret = kvm_skip_emulated_instruction(vcpu);
6636 	/*
6637 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6638 	 * KVM_EXIT_DEBUG here.
6639 	 */
6640 	return kvm_vcpu_halt(vcpu) && ret;
6641 }
6642 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6643 
6644 #ifdef CONFIG_X86_64
6645 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6646 			        unsigned long clock_type)
6647 {
6648 	struct kvm_clock_pairing clock_pairing;
6649 	struct timespec64 ts;
6650 	u64 cycle;
6651 	int ret;
6652 
6653 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6654 		return -KVM_EOPNOTSUPP;
6655 
6656 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6657 		return -KVM_EOPNOTSUPP;
6658 
6659 	clock_pairing.sec = ts.tv_sec;
6660 	clock_pairing.nsec = ts.tv_nsec;
6661 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6662 	clock_pairing.flags = 0;
6663 
6664 	ret = 0;
6665 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6666 			    sizeof(struct kvm_clock_pairing)))
6667 		ret = -KVM_EFAULT;
6668 
6669 	return ret;
6670 }
6671 #endif
6672 
6673 /*
6674  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6675  *
6676  * @apicid - apicid of vcpu to be kicked.
6677  */
6678 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6679 {
6680 	struct kvm_lapic_irq lapic_irq;
6681 
6682 	lapic_irq.shorthand = 0;
6683 	lapic_irq.dest_mode = 0;
6684 	lapic_irq.level = 0;
6685 	lapic_irq.dest_id = apicid;
6686 	lapic_irq.msi_redir_hint = false;
6687 
6688 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6689 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6690 }
6691 
6692 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6693 {
6694 	vcpu->arch.apicv_active = false;
6695 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6696 }
6697 
6698 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6699 {
6700 	unsigned long nr, a0, a1, a2, a3, ret;
6701 	int op_64_bit;
6702 
6703 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6704 		return kvm_hv_hypercall(vcpu);
6705 
6706 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6707 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6708 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6709 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6710 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6711 
6712 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6713 
6714 	op_64_bit = is_64_bit_mode(vcpu);
6715 	if (!op_64_bit) {
6716 		nr &= 0xFFFFFFFF;
6717 		a0 &= 0xFFFFFFFF;
6718 		a1 &= 0xFFFFFFFF;
6719 		a2 &= 0xFFFFFFFF;
6720 		a3 &= 0xFFFFFFFF;
6721 	}
6722 
6723 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6724 		ret = -KVM_EPERM;
6725 		goto out;
6726 	}
6727 
6728 	switch (nr) {
6729 	case KVM_HC_VAPIC_POLL_IRQ:
6730 		ret = 0;
6731 		break;
6732 	case KVM_HC_KICK_CPU:
6733 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6734 		ret = 0;
6735 		break;
6736 #ifdef CONFIG_X86_64
6737 	case KVM_HC_CLOCK_PAIRING:
6738 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6739 		break;
6740 #endif
6741 	default:
6742 		ret = -KVM_ENOSYS;
6743 		break;
6744 	}
6745 out:
6746 	if (!op_64_bit)
6747 		ret = (u32)ret;
6748 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6749 
6750 	++vcpu->stat.hypercalls;
6751 	return kvm_skip_emulated_instruction(vcpu);
6752 }
6753 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6754 
6755 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6756 {
6757 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758 	char instruction[3];
6759 	unsigned long rip = kvm_rip_read(vcpu);
6760 
6761 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6762 
6763 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6764 		&ctxt->exception);
6765 }
6766 
6767 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6768 {
6769 	return vcpu->run->request_interrupt_window &&
6770 		likely(!pic_in_kernel(vcpu->kvm));
6771 }
6772 
6773 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6774 {
6775 	struct kvm_run *kvm_run = vcpu->run;
6776 
6777 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6778 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6779 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6780 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6781 	kvm_run->ready_for_interrupt_injection =
6782 		pic_in_kernel(vcpu->kvm) ||
6783 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6784 }
6785 
6786 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6787 {
6788 	int max_irr, tpr;
6789 
6790 	if (!kvm_x86_ops->update_cr8_intercept)
6791 		return;
6792 
6793 	if (!lapic_in_kernel(vcpu))
6794 		return;
6795 
6796 	if (vcpu->arch.apicv_active)
6797 		return;
6798 
6799 	if (!vcpu->arch.apic->vapic_addr)
6800 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6801 	else
6802 		max_irr = -1;
6803 
6804 	if (max_irr != -1)
6805 		max_irr >>= 4;
6806 
6807 	tpr = kvm_lapic_get_cr8(vcpu);
6808 
6809 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6810 }
6811 
6812 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6813 {
6814 	int r;
6815 
6816 	/* try to reinject previous events if any */
6817 
6818 	if (vcpu->arch.exception.injected)
6819 		kvm_x86_ops->queue_exception(vcpu);
6820 	/*
6821 	 * Do not inject an NMI or interrupt if there is a pending
6822 	 * exception.  Exceptions and interrupts are recognized at
6823 	 * instruction boundaries, i.e. the start of an instruction.
6824 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6825 	 * NMIs and interrupts, i.e. traps are recognized before an
6826 	 * NMI/interrupt that's pending on the same instruction.
6827 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6828 	 * priority, but are only generated (pended) during instruction
6829 	 * execution, i.e. a pending fault-like exception means the
6830 	 * fault occurred on the *previous* instruction and must be
6831 	 * serviced prior to recognizing any new events in order to
6832 	 * fully complete the previous instruction.
6833 	 */
6834 	else if (!vcpu->arch.exception.pending) {
6835 		if (vcpu->arch.nmi_injected)
6836 			kvm_x86_ops->set_nmi(vcpu);
6837 		else if (vcpu->arch.interrupt.injected)
6838 			kvm_x86_ops->set_irq(vcpu);
6839 	}
6840 
6841 	/*
6842 	 * Call check_nested_events() even if we reinjected a previous event
6843 	 * in order for caller to determine if it should require immediate-exit
6844 	 * from L2 to L1 due to pending L1 events which require exit
6845 	 * from L2 to L1.
6846 	 */
6847 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6848 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6849 		if (r != 0)
6850 			return r;
6851 	}
6852 
6853 	/* try to inject new event if pending */
6854 	if (vcpu->arch.exception.pending) {
6855 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6856 					vcpu->arch.exception.has_error_code,
6857 					vcpu->arch.exception.error_code);
6858 
6859 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6860 		vcpu->arch.exception.pending = false;
6861 		vcpu->arch.exception.injected = true;
6862 
6863 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6864 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6865 					     X86_EFLAGS_RF);
6866 
6867 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6868 		    (vcpu->arch.dr7 & DR7_GD)) {
6869 			vcpu->arch.dr7 &= ~DR7_GD;
6870 			kvm_update_dr7(vcpu);
6871 		}
6872 
6873 		kvm_x86_ops->queue_exception(vcpu);
6874 	}
6875 
6876 	/* Don't consider new event if we re-injected an event */
6877 	if (kvm_event_needs_reinjection(vcpu))
6878 		return 0;
6879 
6880 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6881 	    kvm_x86_ops->smi_allowed(vcpu)) {
6882 		vcpu->arch.smi_pending = false;
6883 		++vcpu->arch.smi_count;
6884 		enter_smm(vcpu);
6885 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6886 		--vcpu->arch.nmi_pending;
6887 		vcpu->arch.nmi_injected = true;
6888 		kvm_x86_ops->set_nmi(vcpu);
6889 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6890 		/*
6891 		 * Because interrupts can be injected asynchronously, we are
6892 		 * calling check_nested_events again here to avoid a race condition.
6893 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6894 		 * proposal and current concerns.  Perhaps we should be setting
6895 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6896 		 */
6897 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6898 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6899 			if (r != 0)
6900 				return r;
6901 		}
6902 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6903 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6904 					    false);
6905 			kvm_x86_ops->set_irq(vcpu);
6906 		}
6907 	}
6908 
6909 	return 0;
6910 }
6911 
6912 static void process_nmi(struct kvm_vcpu *vcpu)
6913 {
6914 	unsigned limit = 2;
6915 
6916 	/*
6917 	 * x86 is limited to one NMI running, and one NMI pending after it.
6918 	 * If an NMI is already in progress, limit further NMIs to just one.
6919 	 * Otherwise, allow two (and we'll inject the first one immediately).
6920 	 */
6921 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6922 		limit = 1;
6923 
6924 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6925 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6926 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6927 }
6928 
6929 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6930 {
6931 	u32 flags = 0;
6932 	flags |= seg->g       << 23;
6933 	flags |= seg->db      << 22;
6934 	flags |= seg->l       << 21;
6935 	flags |= seg->avl     << 20;
6936 	flags |= seg->present << 15;
6937 	flags |= seg->dpl     << 13;
6938 	flags |= seg->s       << 12;
6939 	flags |= seg->type    << 8;
6940 	return flags;
6941 }
6942 
6943 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6944 {
6945 	struct kvm_segment seg;
6946 	int offset;
6947 
6948 	kvm_get_segment(vcpu, &seg, n);
6949 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6950 
6951 	if (n < 3)
6952 		offset = 0x7f84 + n * 12;
6953 	else
6954 		offset = 0x7f2c + (n - 3) * 12;
6955 
6956 	put_smstate(u32, buf, offset + 8, seg.base);
6957 	put_smstate(u32, buf, offset + 4, seg.limit);
6958 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6959 }
6960 
6961 #ifdef CONFIG_X86_64
6962 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6963 {
6964 	struct kvm_segment seg;
6965 	int offset;
6966 	u16 flags;
6967 
6968 	kvm_get_segment(vcpu, &seg, n);
6969 	offset = 0x7e00 + n * 16;
6970 
6971 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6972 	put_smstate(u16, buf, offset, seg.selector);
6973 	put_smstate(u16, buf, offset + 2, flags);
6974 	put_smstate(u32, buf, offset + 4, seg.limit);
6975 	put_smstate(u64, buf, offset + 8, seg.base);
6976 }
6977 #endif
6978 
6979 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6980 {
6981 	struct desc_ptr dt;
6982 	struct kvm_segment seg;
6983 	unsigned long val;
6984 	int i;
6985 
6986 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6987 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6988 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6989 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6990 
6991 	for (i = 0; i < 8; i++)
6992 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6993 
6994 	kvm_get_dr(vcpu, 6, &val);
6995 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6996 	kvm_get_dr(vcpu, 7, &val);
6997 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6998 
6999 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7000 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7001 	put_smstate(u32, buf, 0x7f64, seg.base);
7002 	put_smstate(u32, buf, 0x7f60, seg.limit);
7003 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7004 
7005 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7006 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7007 	put_smstate(u32, buf, 0x7f80, seg.base);
7008 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7009 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7010 
7011 	kvm_x86_ops->get_gdt(vcpu, &dt);
7012 	put_smstate(u32, buf, 0x7f74, dt.address);
7013 	put_smstate(u32, buf, 0x7f70, dt.size);
7014 
7015 	kvm_x86_ops->get_idt(vcpu, &dt);
7016 	put_smstate(u32, buf, 0x7f58, dt.address);
7017 	put_smstate(u32, buf, 0x7f54, dt.size);
7018 
7019 	for (i = 0; i < 6; i++)
7020 		enter_smm_save_seg_32(vcpu, buf, i);
7021 
7022 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7023 
7024 	/* revision id */
7025 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7026 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7027 }
7028 
7029 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7030 {
7031 #ifdef CONFIG_X86_64
7032 	struct desc_ptr dt;
7033 	struct kvm_segment seg;
7034 	unsigned long val;
7035 	int i;
7036 
7037 	for (i = 0; i < 16; i++)
7038 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7039 
7040 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7041 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7042 
7043 	kvm_get_dr(vcpu, 6, &val);
7044 	put_smstate(u64, buf, 0x7f68, val);
7045 	kvm_get_dr(vcpu, 7, &val);
7046 	put_smstate(u64, buf, 0x7f60, val);
7047 
7048 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7049 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7050 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7051 
7052 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7053 
7054 	/* revision id */
7055 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7056 
7057 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7058 
7059 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7060 	put_smstate(u16, buf, 0x7e90, seg.selector);
7061 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7062 	put_smstate(u32, buf, 0x7e94, seg.limit);
7063 	put_smstate(u64, buf, 0x7e98, seg.base);
7064 
7065 	kvm_x86_ops->get_idt(vcpu, &dt);
7066 	put_smstate(u32, buf, 0x7e84, dt.size);
7067 	put_smstate(u64, buf, 0x7e88, dt.address);
7068 
7069 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7070 	put_smstate(u16, buf, 0x7e70, seg.selector);
7071 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7072 	put_smstate(u32, buf, 0x7e74, seg.limit);
7073 	put_smstate(u64, buf, 0x7e78, seg.base);
7074 
7075 	kvm_x86_ops->get_gdt(vcpu, &dt);
7076 	put_smstate(u32, buf, 0x7e64, dt.size);
7077 	put_smstate(u64, buf, 0x7e68, dt.address);
7078 
7079 	for (i = 0; i < 6; i++)
7080 		enter_smm_save_seg_64(vcpu, buf, i);
7081 #else
7082 	WARN_ON_ONCE(1);
7083 #endif
7084 }
7085 
7086 static void enter_smm(struct kvm_vcpu *vcpu)
7087 {
7088 	struct kvm_segment cs, ds;
7089 	struct desc_ptr dt;
7090 	char buf[512];
7091 	u32 cr0;
7092 
7093 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7094 	memset(buf, 0, 512);
7095 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7096 		enter_smm_save_state_64(vcpu, buf);
7097 	else
7098 		enter_smm_save_state_32(vcpu, buf);
7099 
7100 	/*
7101 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7102 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7103 	 * the SMM state-save area.
7104 	 */
7105 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7106 
7107 	vcpu->arch.hflags |= HF_SMM_MASK;
7108 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7109 
7110 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7111 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7112 	else
7113 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7114 
7115 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7116 	kvm_rip_write(vcpu, 0x8000);
7117 
7118 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7119 	kvm_x86_ops->set_cr0(vcpu, cr0);
7120 	vcpu->arch.cr0 = cr0;
7121 
7122 	kvm_x86_ops->set_cr4(vcpu, 0);
7123 
7124 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7125 	dt.address = dt.size = 0;
7126 	kvm_x86_ops->set_idt(vcpu, &dt);
7127 
7128 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7129 
7130 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7131 	cs.base = vcpu->arch.smbase;
7132 
7133 	ds.selector = 0;
7134 	ds.base = 0;
7135 
7136 	cs.limit    = ds.limit = 0xffffffff;
7137 	cs.type     = ds.type = 0x3;
7138 	cs.dpl      = ds.dpl = 0;
7139 	cs.db       = ds.db = 0;
7140 	cs.s        = ds.s = 1;
7141 	cs.l        = ds.l = 0;
7142 	cs.g        = ds.g = 1;
7143 	cs.avl      = ds.avl = 0;
7144 	cs.present  = ds.present = 1;
7145 	cs.unusable = ds.unusable = 0;
7146 	cs.padding  = ds.padding = 0;
7147 
7148 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7149 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7150 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7151 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7152 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7153 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7154 
7155 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7156 		kvm_x86_ops->set_efer(vcpu, 0);
7157 
7158 	kvm_update_cpuid(vcpu);
7159 	kvm_mmu_reset_context(vcpu);
7160 }
7161 
7162 static void process_smi(struct kvm_vcpu *vcpu)
7163 {
7164 	vcpu->arch.smi_pending = true;
7165 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7166 }
7167 
7168 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7169 {
7170 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7171 }
7172 
7173 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7174 {
7175 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7176 		return;
7177 
7178 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7179 
7180 	if (irqchip_split(vcpu->kvm))
7181 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7182 	else {
7183 		if (vcpu->arch.apicv_active)
7184 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7185 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7186 	}
7187 
7188 	if (is_guest_mode(vcpu))
7189 		vcpu->arch.load_eoi_exitmap_pending = true;
7190 	else
7191 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7192 }
7193 
7194 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7195 {
7196 	u64 eoi_exit_bitmap[4];
7197 
7198 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7199 		return;
7200 
7201 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7202 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7203 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7204 }
7205 
7206 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7207 		unsigned long start, unsigned long end)
7208 {
7209 	unsigned long apic_address;
7210 
7211 	/*
7212 	 * The physical address of apic access page is stored in the VMCS.
7213 	 * Update it when it becomes invalid.
7214 	 */
7215 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7216 	if (start <= apic_address && apic_address < end)
7217 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7218 }
7219 
7220 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7221 {
7222 	struct page *page = NULL;
7223 
7224 	if (!lapic_in_kernel(vcpu))
7225 		return;
7226 
7227 	if (!kvm_x86_ops->set_apic_access_page_addr)
7228 		return;
7229 
7230 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7231 	if (is_error_page(page))
7232 		return;
7233 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7234 
7235 	/*
7236 	 * Do not pin apic access page in memory, the MMU notifier
7237 	 * will call us again if it is migrated or swapped out.
7238 	 */
7239 	put_page(page);
7240 }
7241 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7242 
7243 /*
7244  * Returns 1 to let vcpu_run() continue the guest execution loop without
7245  * exiting to the userspace.  Otherwise, the value will be returned to the
7246  * userspace.
7247  */
7248 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7249 {
7250 	int r;
7251 	bool req_int_win =
7252 		dm_request_for_irq_injection(vcpu) &&
7253 		kvm_cpu_accept_dm_intr(vcpu);
7254 
7255 	bool req_immediate_exit = false;
7256 
7257 	if (kvm_request_pending(vcpu)) {
7258 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7259 			kvm_mmu_unload(vcpu);
7260 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7261 			__kvm_migrate_timers(vcpu);
7262 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7263 			kvm_gen_update_masterclock(vcpu->kvm);
7264 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7265 			kvm_gen_kvmclock_update(vcpu);
7266 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7267 			r = kvm_guest_time_update(vcpu);
7268 			if (unlikely(r))
7269 				goto out;
7270 		}
7271 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7272 			kvm_mmu_sync_roots(vcpu);
7273 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7274 			kvm_vcpu_flush_tlb(vcpu, true);
7275 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7276 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7277 			r = 0;
7278 			goto out;
7279 		}
7280 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7281 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7282 			vcpu->mmio_needed = 0;
7283 			r = 0;
7284 			goto out;
7285 		}
7286 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7287 			/* Page is swapped out. Do synthetic halt */
7288 			vcpu->arch.apf.halted = true;
7289 			r = 1;
7290 			goto out;
7291 		}
7292 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7293 			record_steal_time(vcpu);
7294 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7295 			process_smi(vcpu);
7296 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7297 			process_nmi(vcpu);
7298 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7299 			kvm_pmu_handle_event(vcpu);
7300 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7301 			kvm_pmu_deliver_pmi(vcpu);
7302 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7303 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7304 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7305 				     vcpu->arch.ioapic_handled_vectors)) {
7306 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7307 				vcpu->run->eoi.vector =
7308 						vcpu->arch.pending_ioapic_eoi;
7309 				r = 0;
7310 				goto out;
7311 			}
7312 		}
7313 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7314 			vcpu_scan_ioapic(vcpu);
7315 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7316 			vcpu_load_eoi_exitmap(vcpu);
7317 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7318 			kvm_vcpu_reload_apic_access_page(vcpu);
7319 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7320 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7321 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7322 			r = 0;
7323 			goto out;
7324 		}
7325 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7326 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7327 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7328 			r = 0;
7329 			goto out;
7330 		}
7331 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7332 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7333 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7334 			r = 0;
7335 			goto out;
7336 		}
7337 
7338 		/*
7339 		 * KVM_REQ_HV_STIMER has to be processed after
7340 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7341 		 * depend on the guest clock being up-to-date
7342 		 */
7343 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7344 			kvm_hv_process_stimers(vcpu);
7345 	}
7346 
7347 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7348 		++vcpu->stat.req_event;
7349 		kvm_apic_accept_events(vcpu);
7350 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7351 			r = 1;
7352 			goto out;
7353 		}
7354 
7355 		if (inject_pending_event(vcpu, req_int_win) != 0)
7356 			req_immediate_exit = true;
7357 		else {
7358 			/* Enable SMI/NMI/IRQ window open exits if needed.
7359 			 *
7360 			 * SMIs have three cases:
7361 			 * 1) They can be nested, and then there is nothing to
7362 			 *    do here because RSM will cause a vmexit anyway.
7363 			 * 2) There is an ISA-specific reason why SMI cannot be
7364 			 *    injected, and the moment when this changes can be
7365 			 *    intercepted.
7366 			 * 3) Or the SMI can be pending because
7367 			 *    inject_pending_event has completed the injection
7368 			 *    of an IRQ or NMI from the previous vmexit, and
7369 			 *    then we request an immediate exit to inject the
7370 			 *    SMI.
7371 			 */
7372 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7373 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7374 					req_immediate_exit = true;
7375 			if (vcpu->arch.nmi_pending)
7376 				kvm_x86_ops->enable_nmi_window(vcpu);
7377 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7378 				kvm_x86_ops->enable_irq_window(vcpu);
7379 			WARN_ON(vcpu->arch.exception.pending);
7380 		}
7381 
7382 		if (kvm_lapic_enabled(vcpu)) {
7383 			update_cr8_intercept(vcpu);
7384 			kvm_lapic_sync_to_vapic(vcpu);
7385 		}
7386 	}
7387 
7388 	r = kvm_mmu_reload(vcpu);
7389 	if (unlikely(r)) {
7390 		goto cancel_injection;
7391 	}
7392 
7393 	preempt_disable();
7394 
7395 	kvm_x86_ops->prepare_guest_switch(vcpu);
7396 
7397 	/*
7398 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7399 	 * IPI are then delayed after guest entry, which ensures that they
7400 	 * result in virtual interrupt delivery.
7401 	 */
7402 	local_irq_disable();
7403 	vcpu->mode = IN_GUEST_MODE;
7404 
7405 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7406 
7407 	/*
7408 	 * 1) We should set ->mode before checking ->requests.  Please see
7409 	 * the comment in kvm_vcpu_exiting_guest_mode().
7410 	 *
7411 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7412 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7413 	 * (see vmx_deliver_posted_interrupt).
7414 	 *
7415 	 * 3) This also orders the write to mode from any reads to the page
7416 	 * tables done while the VCPU is running.  Please see the comment
7417 	 * in kvm_flush_remote_tlbs.
7418 	 */
7419 	smp_mb__after_srcu_read_unlock();
7420 
7421 	/*
7422 	 * This handles the case where a posted interrupt was
7423 	 * notified with kvm_vcpu_kick.
7424 	 */
7425 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7426 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7427 
7428 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7429 	    || need_resched() || signal_pending(current)) {
7430 		vcpu->mode = OUTSIDE_GUEST_MODE;
7431 		smp_wmb();
7432 		local_irq_enable();
7433 		preempt_enable();
7434 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7435 		r = 1;
7436 		goto cancel_injection;
7437 	}
7438 
7439 	kvm_load_guest_xcr0(vcpu);
7440 
7441 	if (req_immediate_exit) {
7442 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7443 		smp_send_reschedule(vcpu->cpu);
7444 	}
7445 
7446 	trace_kvm_entry(vcpu->vcpu_id);
7447 	if (lapic_timer_advance_ns)
7448 		wait_lapic_expire(vcpu);
7449 	guest_enter_irqoff();
7450 
7451 	if (unlikely(vcpu->arch.switch_db_regs)) {
7452 		set_debugreg(0, 7);
7453 		set_debugreg(vcpu->arch.eff_db[0], 0);
7454 		set_debugreg(vcpu->arch.eff_db[1], 1);
7455 		set_debugreg(vcpu->arch.eff_db[2], 2);
7456 		set_debugreg(vcpu->arch.eff_db[3], 3);
7457 		set_debugreg(vcpu->arch.dr6, 6);
7458 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7459 	}
7460 
7461 	kvm_x86_ops->run(vcpu);
7462 
7463 	/*
7464 	 * Do this here before restoring debug registers on the host.  And
7465 	 * since we do this before handling the vmexit, a DR access vmexit
7466 	 * can (a) read the correct value of the debug registers, (b) set
7467 	 * KVM_DEBUGREG_WONT_EXIT again.
7468 	 */
7469 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7470 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7471 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7472 		kvm_update_dr0123(vcpu);
7473 		kvm_update_dr6(vcpu);
7474 		kvm_update_dr7(vcpu);
7475 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7476 	}
7477 
7478 	/*
7479 	 * If the guest has used debug registers, at least dr7
7480 	 * will be disabled while returning to the host.
7481 	 * If we don't have active breakpoints in the host, we don't
7482 	 * care about the messed up debug address registers. But if
7483 	 * we have some of them active, restore the old state.
7484 	 */
7485 	if (hw_breakpoint_active())
7486 		hw_breakpoint_restore();
7487 
7488 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7489 
7490 	vcpu->mode = OUTSIDE_GUEST_MODE;
7491 	smp_wmb();
7492 
7493 	kvm_put_guest_xcr0(vcpu);
7494 
7495 	kvm_before_interrupt(vcpu);
7496 	kvm_x86_ops->handle_external_intr(vcpu);
7497 	kvm_after_interrupt(vcpu);
7498 
7499 	++vcpu->stat.exits;
7500 
7501 	guest_exit_irqoff();
7502 
7503 	local_irq_enable();
7504 	preempt_enable();
7505 
7506 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7507 
7508 	/*
7509 	 * Profile KVM exit RIPs:
7510 	 */
7511 	if (unlikely(prof_on == KVM_PROFILING)) {
7512 		unsigned long rip = kvm_rip_read(vcpu);
7513 		profile_hit(KVM_PROFILING, (void *)rip);
7514 	}
7515 
7516 	if (unlikely(vcpu->arch.tsc_always_catchup))
7517 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7518 
7519 	if (vcpu->arch.apic_attention)
7520 		kvm_lapic_sync_from_vapic(vcpu);
7521 
7522 	vcpu->arch.gpa_available = false;
7523 	r = kvm_x86_ops->handle_exit(vcpu);
7524 	return r;
7525 
7526 cancel_injection:
7527 	kvm_x86_ops->cancel_injection(vcpu);
7528 	if (unlikely(vcpu->arch.apic_attention))
7529 		kvm_lapic_sync_from_vapic(vcpu);
7530 out:
7531 	return r;
7532 }
7533 
7534 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7535 {
7536 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7537 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7538 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7539 		kvm_vcpu_block(vcpu);
7540 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7541 
7542 		if (kvm_x86_ops->post_block)
7543 			kvm_x86_ops->post_block(vcpu);
7544 
7545 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7546 			return 1;
7547 	}
7548 
7549 	kvm_apic_accept_events(vcpu);
7550 	switch(vcpu->arch.mp_state) {
7551 	case KVM_MP_STATE_HALTED:
7552 		vcpu->arch.pv.pv_unhalted = false;
7553 		vcpu->arch.mp_state =
7554 			KVM_MP_STATE_RUNNABLE;
7555 	case KVM_MP_STATE_RUNNABLE:
7556 		vcpu->arch.apf.halted = false;
7557 		break;
7558 	case KVM_MP_STATE_INIT_RECEIVED:
7559 		break;
7560 	default:
7561 		return -EINTR;
7562 		break;
7563 	}
7564 	return 1;
7565 }
7566 
7567 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7568 {
7569 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7570 		kvm_x86_ops->check_nested_events(vcpu, false);
7571 
7572 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7573 		!vcpu->arch.apf.halted);
7574 }
7575 
7576 static int vcpu_run(struct kvm_vcpu *vcpu)
7577 {
7578 	int r;
7579 	struct kvm *kvm = vcpu->kvm;
7580 
7581 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7582 
7583 	for (;;) {
7584 		if (kvm_vcpu_running(vcpu)) {
7585 			r = vcpu_enter_guest(vcpu);
7586 		} else {
7587 			r = vcpu_block(kvm, vcpu);
7588 		}
7589 
7590 		if (r <= 0)
7591 			break;
7592 
7593 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7594 		if (kvm_cpu_has_pending_timer(vcpu))
7595 			kvm_inject_pending_timer_irqs(vcpu);
7596 
7597 		if (dm_request_for_irq_injection(vcpu) &&
7598 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7599 			r = 0;
7600 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7601 			++vcpu->stat.request_irq_exits;
7602 			break;
7603 		}
7604 
7605 		kvm_check_async_pf_completion(vcpu);
7606 
7607 		if (signal_pending(current)) {
7608 			r = -EINTR;
7609 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7610 			++vcpu->stat.signal_exits;
7611 			break;
7612 		}
7613 		if (need_resched()) {
7614 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7615 			cond_resched();
7616 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7617 		}
7618 	}
7619 
7620 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7621 
7622 	return r;
7623 }
7624 
7625 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7626 {
7627 	int r;
7628 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7629 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7630 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7631 	if (r != EMULATE_DONE)
7632 		return 0;
7633 	return 1;
7634 }
7635 
7636 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7637 {
7638 	BUG_ON(!vcpu->arch.pio.count);
7639 
7640 	return complete_emulated_io(vcpu);
7641 }
7642 
7643 /*
7644  * Implements the following, as a state machine:
7645  *
7646  * read:
7647  *   for each fragment
7648  *     for each mmio piece in the fragment
7649  *       write gpa, len
7650  *       exit
7651  *       copy data
7652  *   execute insn
7653  *
7654  * write:
7655  *   for each fragment
7656  *     for each mmio piece in the fragment
7657  *       write gpa, len
7658  *       copy data
7659  *       exit
7660  */
7661 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7662 {
7663 	struct kvm_run *run = vcpu->run;
7664 	struct kvm_mmio_fragment *frag;
7665 	unsigned len;
7666 
7667 	BUG_ON(!vcpu->mmio_needed);
7668 
7669 	/* Complete previous fragment */
7670 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7671 	len = min(8u, frag->len);
7672 	if (!vcpu->mmio_is_write)
7673 		memcpy(frag->data, run->mmio.data, len);
7674 
7675 	if (frag->len <= 8) {
7676 		/* Switch to the next fragment. */
7677 		frag++;
7678 		vcpu->mmio_cur_fragment++;
7679 	} else {
7680 		/* Go forward to the next mmio piece. */
7681 		frag->data += len;
7682 		frag->gpa += len;
7683 		frag->len -= len;
7684 	}
7685 
7686 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7687 		vcpu->mmio_needed = 0;
7688 
7689 		/* FIXME: return into emulator if single-stepping.  */
7690 		if (vcpu->mmio_is_write)
7691 			return 1;
7692 		vcpu->mmio_read_completed = 1;
7693 		return complete_emulated_io(vcpu);
7694 	}
7695 
7696 	run->exit_reason = KVM_EXIT_MMIO;
7697 	run->mmio.phys_addr = frag->gpa;
7698 	if (vcpu->mmio_is_write)
7699 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7700 	run->mmio.len = min(8u, frag->len);
7701 	run->mmio.is_write = vcpu->mmio_is_write;
7702 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7703 	return 0;
7704 }
7705 
7706 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7707 {
7708 	int r;
7709 
7710 	vcpu_load(vcpu);
7711 	kvm_sigset_activate(vcpu);
7712 	kvm_load_guest_fpu(vcpu);
7713 
7714 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7715 		if (kvm_run->immediate_exit) {
7716 			r = -EINTR;
7717 			goto out;
7718 		}
7719 		kvm_vcpu_block(vcpu);
7720 		kvm_apic_accept_events(vcpu);
7721 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7722 		r = -EAGAIN;
7723 		if (signal_pending(current)) {
7724 			r = -EINTR;
7725 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7726 			++vcpu->stat.signal_exits;
7727 		}
7728 		goto out;
7729 	}
7730 
7731 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7732 		r = -EINVAL;
7733 		goto out;
7734 	}
7735 
7736 	if (vcpu->run->kvm_dirty_regs) {
7737 		r = sync_regs(vcpu);
7738 		if (r != 0)
7739 			goto out;
7740 	}
7741 
7742 	/* re-sync apic's tpr */
7743 	if (!lapic_in_kernel(vcpu)) {
7744 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7745 			r = -EINVAL;
7746 			goto out;
7747 		}
7748 	}
7749 
7750 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7751 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7752 		vcpu->arch.complete_userspace_io = NULL;
7753 		r = cui(vcpu);
7754 		if (r <= 0)
7755 			goto out;
7756 	} else
7757 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7758 
7759 	if (kvm_run->immediate_exit)
7760 		r = -EINTR;
7761 	else
7762 		r = vcpu_run(vcpu);
7763 
7764 out:
7765 	kvm_put_guest_fpu(vcpu);
7766 	if (vcpu->run->kvm_valid_regs)
7767 		store_regs(vcpu);
7768 	post_kvm_run_save(vcpu);
7769 	kvm_sigset_deactivate(vcpu);
7770 
7771 	vcpu_put(vcpu);
7772 	return r;
7773 }
7774 
7775 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7776 {
7777 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7778 		/*
7779 		 * We are here if userspace calls get_regs() in the middle of
7780 		 * instruction emulation. Registers state needs to be copied
7781 		 * back from emulation context to vcpu. Userspace shouldn't do
7782 		 * that usually, but some bad designed PV devices (vmware
7783 		 * backdoor interface) need this to work
7784 		 */
7785 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7786 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7787 	}
7788 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7789 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7790 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7791 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7792 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7793 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7794 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7795 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7796 #ifdef CONFIG_X86_64
7797 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7798 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7799 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7800 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7801 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7802 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7803 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7804 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7805 #endif
7806 
7807 	regs->rip = kvm_rip_read(vcpu);
7808 	regs->rflags = kvm_get_rflags(vcpu);
7809 }
7810 
7811 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7812 {
7813 	vcpu_load(vcpu);
7814 	__get_regs(vcpu, regs);
7815 	vcpu_put(vcpu);
7816 	return 0;
7817 }
7818 
7819 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7820 {
7821 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7822 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7823 
7824 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7825 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7826 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7827 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7828 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7829 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7830 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7831 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7832 #ifdef CONFIG_X86_64
7833 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7834 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7835 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7836 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7837 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7838 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7839 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7840 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7841 #endif
7842 
7843 	kvm_rip_write(vcpu, regs->rip);
7844 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7845 
7846 	vcpu->arch.exception.pending = false;
7847 
7848 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7849 }
7850 
7851 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7852 {
7853 	vcpu_load(vcpu);
7854 	__set_regs(vcpu, regs);
7855 	vcpu_put(vcpu);
7856 	return 0;
7857 }
7858 
7859 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7860 {
7861 	struct kvm_segment cs;
7862 
7863 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7864 	*db = cs.db;
7865 	*l = cs.l;
7866 }
7867 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7868 
7869 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7870 {
7871 	struct desc_ptr dt;
7872 
7873 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7874 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7875 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7876 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7877 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7878 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7879 
7880 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7881 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7882 
7883 	kvm_x86_ops->get_idt(vcpu, &dt);
7884 	sregs->idt.limit = dt.size;
7885 	sregs->idt.base = dt.address;
7886 	kvm_x86_ops->get_gdt(vcpu, &dt);
7887 	sregs->gdt.limit = dt.size;
7888 	sregs->gdt.base = dt.address;
7889 
7890 	sregs->cr0 = kvm_read_cr0(vcpu);
7891 	sregs->cr2 = vcpu->arch.cr2;
7892 	sregs->cr3 = kvm_read_cr3(vcpu);
7893 	sregs->cr4 = kvm_read_cr4(vcpu);
7894 	sregs->cr8 = kvm_get_cr8(vcpu);
7895 	sregs->efer = vcpu->arch.efer;
7896 	sregs->apic_base = kvm_get_apic_base(vcpu);
7897 
7898 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7899 
7900 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7901 		set_bit(vcpu->arch.interrupt.nr,
7902 			(unsigned long *)sregs->interrupt_bitmap);
7903 }
7904 
7905 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7906 				  struct kvm_sregs *sregs)
7907 {
7908 	vcpu_load(vcpu);
7909 	__get_sregs(vcpu, sregs);
7910 	vcpu_put(vcpu);
7911 	return 0;
7912 }
7913 
7914 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7915 				    struct kvm_mp_state *mp_state)
7916 {
7917 	vcpu_load(vcpu);
7918 
7919 	kvm_apic_accept_events(vcpu);
7920 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7921 					vcpu->arch.pv.pv_unhalted)
7922 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7923 	else
7924 		mp_state->mp_state = vcpu->arch.mp_state;
7925 
7926 	vcpu_put(vcpu);
7927 	return 0;
7928 }
7929 
7930 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7931 				    struct kvm_mp_state *mp_state)
7932 {
7933 	int ret = -EINVAL;
7934 
7935 	vcpu_load(vcpu);
7936 
7937 	if (!lapic_in_kernel(vcpu) &&
7938 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7939 		goto out;
7940 
7941 	/* INITs are latched while in SMM */
7942 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7943 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7944 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7945 		goto out;
7946 
7947 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7948 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7949 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7950 	} else
7951 		vcpu->arch.mp_state = mp_state->mp_state;
7952 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7953 
7954 	ret = 0;
7955 out:
7956 	vcpu_put(vcpu);
7957 	return ret;
7958 }
7959 
7960 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7961 		    int reason, bool has_error_code, u32 error_code)
7962 {
7963 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7964 	int ret;
7965 
7966 	init_emulate_ctxt(vcpu);
7967 
7968 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7969 				   has_error_code, error_code);
7970 
7971 	if (ret)
7972 		return EMULATE_FAIL;
7973 
7974 	kvm_rip_write(vcpu, ctxt->eip);
7975 	kvm_set_rflags(vcpu, ctxt->eflags);
7976 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7977 	return EMULATE_DONE;
7978 }
7979 EXPORT_SYMBOL_GPL(kvm_task_switch);
7980 
7981 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7982 {
7983 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7984 		/*
7985 		 * When EFER.LME and CR0.PG are set, the processor is in
7986 		 * 64-bit mode (though maybe in a 32-bit code segment).
7987 		 * CR4.PAE and EFER.LMA must be set.
7988 		 */
7989 		if (!(sregs->cr4 & X86_CR4_PAE)
7990 		    || !(sregs->efer & EFER_LMA))
7991 			return -EINVAL;
7992 	} else {
7993 		/*
7994 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7995 		 * segment cannot be 64-bit.
7996 		 */
7997 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7998 			return -EINVAL;
7999 	}
8000 
8001 	return 0;
8002 }
8003 
8004 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8005 {
8006 	struct msr_data apic_base_msr;
8007 	int mmu_reset_needed = 0;
8008 	int cpuid_update_needed = 0;
8009 	int pending_vec, max_bits, idx;
8010 	struct desc_ptr dt;
8011 	int ret = -EINVAL;
8012 
8013 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8014 			(sregs->cr4 & X86_CR4_OSXSAVE))
8015 		goto out;
8016 
8017 	if (kvm_valid_sregs(vcpu, sregs))
8018 		goto out;
8019 
8020 	apic_base_msr.data = sregs->apic_base;
8021 	apic_base_msr.host_initiated = true;
8022 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8023 		goto out;
8024 
8025 	dt.size = sregs->idt.limit;
8026 	dt.address = sregs->idt.base;
8027 	kvm_x86_ops->set_idt(vcpu, &dt);
8028 	dt.size = sregs->gdt.limit;
8029 	dt.address = sregs->gdt.base;
8030 	kvm_x86_ops->set_gdt(vcpu, &dt);
8031 
8032 	vcpu->arch.cr2 = sregs->cr2;
8033 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8034 	vcpu->arch.cr3 = sregs->cr3;
8035 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8036 
8037 	kvm_set_cr8(vcpu, sregs->cr8);
8038 
8039 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8040 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8041 
8042 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8043 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8044 	vcpu->arch.cr0 = sregs->cr0;
8045 
8046 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8047 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8048 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8049 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8050 	if (cpuid_update_needed)
8051 		kvm_update_cpuid(vcpu);
8052 
8053 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8054 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8055 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8056 		mmu_reset_needed = 1;
8057 	}
8058 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8059 
8060 	if (mmu_reset_needed)
8061 		kvm_mmu_reset_context(vcpu);
8062 
8063 	max_bits = KVM_NR_INTERRUPTS;
8064 	pending_vec = find_first_bit(
8065 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8066 	if (pending_vec < max_bits) {
8067 		kvm_queue_interrupt(vcpu, pending_vec, false);
8068 		pr_debug("Set back pending irq %d\n", pending_vec);
8069 	}
8070 
8071 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8072 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8073 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8074 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8075 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8076 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8077 
8078 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8079 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8080 
8081 	update_cr8_intercept(vcpu);
8082 
8083 	/* Older userspace won't unhalt the vcpu on reset. */
8084 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8085 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8086 	    !is_protmode(vcpu))
8087 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8088 
8089 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8090 
8091 	ret = 0;
8092 out:
8093 	return ret;
8094 }
8095 
8096 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8097 				  struct kvm_sregs *sregs)
8098 {
8099 	int ret;
8100 
8101 	vcpu_load(vcpu);
8102 	ret = __set_sregs(vcpu, sregs);
8103 	vcpu_put(vcpu);
8104 	return ret;
8105 }
8106 
8107 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8108 					struct kvm_guest_debug *dbg)
8109 {
8110 	unsigned long rflags;
8111 	int i, r;
8112 
8113 	vcpu_load(vcpu);
8114 
8115 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8116 		r = -EBUSY;
8117 		if (vcpu->arch.exception.pending)
8118 			goto out;
8119 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8120 			kvm_queue_exception(vcpu, DB_VECTOR);
8121 		else
8122 			kvm_queue_exception(vcpu, BP_VECTOR);
8123 	}
8124 
8125 	/*
8126 	 * Read rflags as long as potentially injected trace flags are still
8127 	 * filtered out.
8128 	 */
8129 	rflags = kvm_get_rflags(vcpu);
8130 
8131 	vcpu->guest_debug = dbg->control;
8132 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8133 		vcpu->guest_debug = 0;
8134 
8135 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8136 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8137 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8138 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8139 	} else {
8140 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8141 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8142 	}
8143 	kvm_update_dr7(vcpu);
8144 
8145 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8146 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8147 			get_segment_base(vcpu, VCPU_SREG_CS);
8148 
8149 	/*
8150 	 * Trigger an rflags update that will inject or remove the trace
8151 	 * flags.
8152 	 */
8153 	kvm_set_rflags(vcpu, rflags);
8154 
8155 	kvm_x86_ops->update_bp_intercept(vcpu);
8156 
8157 	r = 0;
8158 
8159 out:
8160 	vcpu_put(vcpu);
8161 	return r;
8162 }
8163 
8164 /*
8165  * Translate a guest virtual address to a guest physical address.
8166  */
8167 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8168 				    struct kvm_translation *tr)
8169 {
8170 	unsigned long vaddr = tr->linear_address;
8171 	gpa_t gpa;
8172 	int idx;
8173 
8174 	vcpu_load(vcpu);
8175 
8176 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8177 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8178 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8179 	tr->physical_address = gpa;
8180 	tr->valid = gpa != UNMAPPED_GVA;
8181 	tr->writeable = 1;
8182 	tr->usermode = 0;
8183 
8184 	vcpu_put(vcpu);
8185 	return 0;
8186 }
8187 
8188 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8189 {
8190 	struct fxregs_state *fxsave;
8191 
8192 	vcpu_load(vcpu);
8193 
8194 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8195 	memcpy(fpu->fpr, fxsave->st_space, 128);
8196 	fpu->fcw = fxsave->cwd;
8197 	fpu->fsw = fxsave->swd;
8198 	fpu->ftwx = fxsave->twd;
8199 	fpu->last_opcode = fxsave->fop;
8200 	fpu->last_ip = fxsave->rip;
8201 	fpu->last_dp = fxsave->rdp;
8202 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8203 
8204 	vcpu_put(vcpu);
8205 	return 0;
8206 }
8207 
8208 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8209 {
8210 	struct fxregs_state *fxsave;
8211 
8212 	vcpu_load(vcpu);
8213 
8214 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8215 
8216 	memcpy(fxsave->st_space, fpu->fpr, 128);
8217 	fxsave->cwd = fpu->fcw;
8218 	fxsave->swd = fpu->fsw;
8219 	fxsave->twd = fpu->ftwx;
8220 	fxsave->fop = fpu->last_opcode;
8221 	fxsave->rip = fpu->last_ip;
8222 	fxsave->rdp = fpu->last_dp;
8223 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8224 
8225 	vcpu_put(vcpu);
8226 	return 0;
8227 }
8228 
8229 static void store_regs(struct kvm_vcpu *vcpu)
8230 {
8231 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8232 
8233 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8234 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8235 
8236 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8237 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8238 
8239 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8240 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8241 				vcpu, &vcpu->run->s.regs.events);
8242 }
8243 
8244 static int sync_regs(struct kvm_vcpu *vcpu)
8245 {
8246 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8247 		return -EINVAL;
8248 
8249 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8250 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8251 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8252 	}
8253 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8254 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8255 			return -EINVAL;
8256 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8257 	}
8258 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8259 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8260 				vcpu, &vcpu->run->s.regs.events))
8261 			return -EINVAL;
8262 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8263 	}
8264 
8265 	return 0;
8266 }
8267 
8268 static void fx_init(struct kvm_vcpu *vcpu)
8269 {
8270 	fpstate_init(&vcpu->arch.guest_fpu.state);
8271 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8272 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8273 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8274 
8275 	/*
8276 	 * Ensure guest xcr0 is valid for loading
8277 	 */
8278 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8279 
8280 	vcpu->arch.cr0 |= X86_CR0_ET;
8281 }
8282 
8283 /* Swap (qemu) user FPU context for the guest FPU context. */
8284 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8285 {
8286 	preempt_disable();
8287 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8288 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8289 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8290 				~XFEATURE_MASK_PKRU);
8291 	preempt_enable();
8292 	trace_kvm_fpu(1);
8293 }
8294 
8295 /* When vcpu_run ends, restore user space FPU context. */
8296 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8297 {
8298 	preempt_disable();
8299 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8300 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8301 	preempt_enable();
8302 	++vcpu->stat.fpu_reload;
8303 	trace_kvm_fpu(0);
8304 }
8305 
8306 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8307 {
8308 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8309 
8310 	kvmclock_reset(vcpu);
8311 
8312 	kvm_x86_ops->vcpu_free(vcpu);
8313 	free_cpumask_var(wbinvd_dirty_mask);
8314 }
8315 
8316 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8317 						unsigned int id)
8318 {
8319 	struct kvm_vcpu *vcpu;
8320 
8321 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8322 		printk_once(KERN_WARNING
8323 		"kvm: SMP vm created on host with unstable TSC; "
8324 		"guest TSC will not be reliable\n");
8325 
8326 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8327 
8328 	return vcpu;
8329 }
8330 
8331 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8332 {
8333 	kvm_vcpu_mtrr_init(vcpu);
8334 	vcpu_load(vcpu);
8335 	kvm_vcpu_reset(vcpu, false);
8336 	kvm_mmu_setup(vcpu);
8337 	vcpu_put(vcpu);
8338 	return 0;
8339 }
8340 
8341 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8342 {
8343 	struct msr_data msr;
8344 	struct kvm *kvm = vcpu->kvm;
8345 
8346 	kvm_hv_vcpu_postcreate(vcpu);
8347 
8348 	if (mutex_lock_killable(&vcpu->mutex))
8349 		return;
8350 	vcpu_load(vcpu);
8351 	msr.data = 0x0;
8352 	msr.index = MSR_IA32_TSC;
8353 	msr.host_initiated = true;
8354 	kvm_write_tsc(vcpu, &msr);
8355 	vcpu_put(vcpu);
8356 	mutex_unlock(&vcpu->mutex);
8357 
8358 	if (!kvmclock_periodic_sync)
8359 		return;
8360 
8361 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8362 					KVMCLOCK_SYNC_PERIOD);
8363 }
8364 
8365 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8366 {
8367 	vcpu->arch.apf.msr_val = 0;
8368 
8369 	vcpu_load(vcpu);
8370 	kvm_mmu_unload(vcpu);
8371 	vcpu_put(vcpu);
8372 
8373 	kvm_x86_ops->vcpu_free(vcpu);
8374 }
8375 
8376 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8377 {
8378 	kvm_lapic_reset(vcpu, init_event);
8379 
8380 	vcpu->arch.hflags = 0;
8381 
8382 	vcpu->arch.smi_pending = 0;
8383 	vcpu->arch.smi_count = 0;
8384 	atomic_set(&vcpu->arch.nmi_queued, 0);
8385 	vcpu->arch.nmi_pending = 0;
8386 	vcpu->arch.nmi_injected = false;
8387 	kvm_clear_interrupt_queue(vcpu);
8388 	kvm_clear_exception_queue(vcpu);
8389 	vcpu->arch.exception.pending = false;
8390 
8391 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8392 	kvm_update_dr0123(vcpu);
8393 	vcpu->arch.dr6 = DR6_INIT;
8394 	kvm_update_dr6(vcpu);
8395 	vcpu->arch.dr7 = DR7_FIXED_1;
8396 	kvm_update_dr7(vcpu);
8397 
8398 	vcpu->arch.cr2 = 0;
8399 
8400 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8401 	vcpu->arch.apf.msr_val = 0;
8402 	vcpu->arch.st.msr_val = 0;
8403 
8404 	kvmclock_reset(vcpu);
8405 
8406 	kvm_clear_async_pf_completion_queue(vcpu);
8407 	kvm_async_pf_hash_reset(vcpu);
8408 	vcpu->arch.apf.halted = false;
8409 
8410 	if (kvm_mpx_supported()) {
8411 		void *mpx_state_buffer;
8412 
8413 		/*
8414 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8415 		 * called with loaded FPU and does not let userspace fix the state.
8416 		 */
8417 		if (init_event)
8418 			kvm_put_guest_fpu(vcpu);
8419 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8420 					XFEATURE_MASK_BNDREGS);
8421 		if (mpx_state_buffer)
8422 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8423 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8424 					XFEATURE_MASK_BNDCSR);
8425 		if (mpx_state_buffer)
8426 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8427 		if (init_event)
8428 			kvm_load_guest_fpu(vcpu);
8429 	}
8430 
8431 	if (!init_event) {
8432 		kvm_pmu_reset(vcpu);
8433 		vcpu->arch.smbase = 0x30000;
8434 
8435 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8436 		vcpu->arch.msr_misc_features_enables = 0;
8437 
8438 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8439 	}
8440 
8441 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8442 	vcpu->arch.regs_avail = ~0;
8443 	vcpu->arch.regs_dirty = ~0;
8444 
8445 	vcpu->arch.ia32_xss = 0;
8446 
8447 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8448 }
8449 
8450 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8451 {
8452 	struct kvm_segment cs;
8453 
8454 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8455 	cs.selector = vector << 8;
8456 	cs.base = vector << 12;
8457 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8458 	kvm_rip_write(vcpu, 0);
8459 }
8460 
8461 int kvm_arch_hardware_enable(void)
8462 {
8463 	struct kvm *kvm;
8464 	struct kvm_vcpu *vcpu;
8465 	int i;
8466 	int ret;
8467 	u64 local_tsc;
8468 	u64 max_tsc = 0;
8469 	bool stable, backwards_tsc = false;
8470 
8471 	kvm_shared_msr_cpu_online();
8472 	ret = kvm_x86_ops->hardware_enable();
8473 	if (ret != 0)
8474 		return ret;
8475 
8476 	local_tsc = rdtsc();
8477 	stable = !kvm_check_tsc_unstable();
8478 	list_for_each_entry(kvm, &vm_list, vm_list) {
8479 		kvm_for_each_vcpu(i, vcpu, kvm) {
8480 			if (!stable && vcpu->cpu == smp_processor_id())
8481 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8482 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8483 				backwards_tsc = true;
8484 				if (vcpu->arch.last_host_tsc > max_tsc)
8485 					max_tsc = vcpu->arch.last_host_tsc;
8486 			}
8487 		}
8488 	}
8489 
8490 	/*
8491 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8492 	 * platforms that reset TSC during suspend or hibernate actions, but
8493 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8494 	 * detect that condition here, which happens early in CPU bringup,
8495 	 * before any KVM threads can be running.  Unfortunately, we can't
8496 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8497 	 * enough into CPU bringup that we know how much real time has actually
8498 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8499 	 * variables that haven't been updated yet.
8500 	 *
8501 	 * So we simply find the maximum observed TSC above, then record the
8502 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8503 	 * the adjustment will be applied.  Note that we accumulate
8504 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8505 	 * gets a chance to run again.  In the event that no KVM threads get a
8506 	 * chance to run, we will miss the entire elapsed period, as we'll have
8507 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8508 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8509 	 * uniform across all VCPUs (not to mention the scenario is extremely
8510 	 * unlikely). It is possible that a second hibernate recovery happens
8511 	 * much faster than a first, causing the observed TSC here to be
8512 	 * smaller; this would require additional padding adjustment, which is
8513 	 * why we set last_host_tsc to the local tsc observed here.
8514 	 *
8515 	 * N.B. - this code below runs only on platforms with reliable TSC,
8516 	 * as that is the only way backwards_tsc is set above.  Also note
8517 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8518 	 * have the same delta_cyc adjustment applied if backwards_tsc
8519 	 * is detected.  Note further, this adjustment is only done once,
8520 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8521 	 * called multiple times (one for each physical CPU bringup).
8522 	 *
8523 	 * Platforms with unreliable TSCs don't have to deal with this, they
8524 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8525 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8526 	 * guarantee that they stay in perfect synchronization.
8527 	 */
8528 	if (backwards_tsc) {
8529 		u64 delta_cyc = max_tsc - local_tsc;
8530 		list_for_each_entry(kvm, &vm_list, vm_list) {
8531 			kvm->arch.backwards_tsc_observed = true;
8532 			kvm_for_each_vcpu(i, vcpu, kvm) {
8533 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8534 				vcpu->arch.last_host_tsc = local_tsc;
8535 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8536 			}
8537 
8538 			/*
8539 			 * We have to disable TSC offset matching.. if you were
8540 			 * booting a VM while issuing an S4 host suspend....
8541 			 * you may have some problem.  Solving this issue is
8542 			 * left as an exercise to the reader.
8543 			 */
8544 			kvm->arch.last_tsc_nsec = 0;
8545 			kvm->arch.last_tsc_write = 0;
8546 		}
8547 
8548 	}
8549 	return 0;
8550 }
8551 
8552 void kvm_arch_hardware_disable(void)
8553 {
8554 	kvm_x86_ops->hardware_disable();
8555 	drop_user_return_notifiers();
8556 }
8557 
8558 int kvm_arch_hardware_setup(void)
8559 {
8560 	int r;
8561 
8562 	r = kvm_x86_ops->hardware_setup();
8563 	if (r != 0)
8564 		return r;
8565 
8566 	if (kvm_has_tsc_control) {
8567 		/*
8568 		 * Make sure the user can only configure tsc_khz values that
8569 		 * fit into a signed integer.
8570 		 * A min value is not calculated because it will always
8571 		 * be 1 on all machines.
8572 		 */
8573 		u64 max = min(0x7fffffffULL,
8574 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8575 		kvm_max_guest_tsc_khz = max;
8576 
8577 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8578 	}
8579 
8580 	kvm_init_msr_list();
8581 	return 0;
8582 }
8583 
8584 void kvm_arch_hardware_unsetup(void)
8585 {
8586 	kvm_x86_ops->hardware_unsetup();
8587 }
8588 
8589 void kvm_arch_check_processor_compat(void *rtn)
8590 {
8591 	kvm_x86_ops->check_processor_compatibility(rtn);
8592 }
8593 
8594 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8595 {
8596 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8597 }
8598 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8599 
8600 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8601 {
8602 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8603 }
8604 
8605 struct static_key kvm_no_apic_vcpu __read_mostly;
8606 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8607 
8608 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8609 {
8610 	struct page *page;
8611 	int r;
8612 
8613 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8614 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8615 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8616 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8617 	else
8618 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8619 
8620 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8621 	if (!page) {
8622 		r = -ENOMEM;
8623 		goto fail;
8624 	}
8625 	vcpu->arch.pio_data = page_address(page);
8626 
8627 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8628 
8629 	r = kvm_mmu_create(vcpu);
8630 	if (r < 0)
8631 		goto fail_free_pio_data;
8632 
8633 	if (irqchip_in_kernel(vcpu->kvm)) {
8634 		r = kvm_create_lapic(vcpu);
8635 		if (r < 0)
8636 			goto fail_mmu_destroy;
8637 	} else
8638 		static_key_slow_inc(&kvm_no_apic_vcpu);
8639 
8640 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8641 				       GFP_KERNEL);
8642 	if (!vcpu->arch.mce_banks) {
8643 		r = -ENOMEM;
8644 		goto fail_free_lapic;
8645 	}
8646 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8647 
8648 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8649 		r = -ENOMEM;
8650 		goto fail_free_mce_banks;
8651 	}
8652 
8653 	fx_init(vcpu);
8654 
8655 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8656 
8657 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8658 
8659 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8660 
8661 	kvm_async_pf_hash_reset(vcpu);
8662 	kvm_pmu_init(vcpu);
8663 
8664 	vcpu->arch.pending_external_vector = -1;
8665 	vcpu->arch.preempted_in_kernel = false;
8666 
8667 	kvm_hv_vcpu_init(vcpu);
8668 
8669 	return 0;
8670 
8671 fail_free_mce_banks:
8672 	kfree(vcpu->arch.mce_banks);
8673 fail_free_lapic:
8674 	kvm_free_lapic(vcpu);
8675 fail_mmu_destroy:
8676 	kvm_mmu_destroy(vcpu);
8677 fail_free_pio_data:
8678 	free_page((unsigned long)vcpu->arch.pio_data);
8679 fail:
8680 	return r;
8681 }
8682 
8683 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8684 {
8685 	int idx;
8686 
8687 	kvm_hv_vcpu_uninit(vcpu);
8688 	kvm_pmu_destroy(vcpu);
8689 	kfree(vcpu->arch.mce_banks);
8690 	kvm_free_lapic(vcpu);
8691 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8692 	kvm_mmu_destroy(vcpu);
8693 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8694 	free_page((unsigned long)vcpu->arch.pio_data);
8695 	if (!lapic_in_kernel(vcpu))
8696 		static_key_slow_dec(&kvm_no_apic_vcpu);
8697 }
8698 
8699 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8700 {
8701 	kvm_x86_ops->sched_in(vcpu, cpu);
8702 }
8703 
8704 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8705 {
8706 	if (type)
8707 		return -EINVAL;
8708 
8709 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8710 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8711 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8712 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8713 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8714 
8715 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8716 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8717 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8718 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8719 		&kvm->arch.irq_sources_bitmap);
8720 
8721 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8722 	mutex_init(&kvm->arch.apic_map_lock);
8723 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8724 
8725 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8726 	pvclock_update_vm_gtod_copy(kvm);
8727 
8728 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8729 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8730 
8731 	kvm_hv_init_vm(kvm);
8732 	kvm_page_track_init(kvm);
8733 	kvm_mmu_init_vm(kvm);
8734 
8735 	if (kvm_x86_ops->vm_init)
8736 		return kvm_x86_ops->vm_init(kvm);
8737 
8738 	return 0;
8739 }
8740 
8741 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8742 {
8743 	vcpu_load(vcpu);
8744 	kvm_mmu_unload(vcpu);
8745 	vcpu_put(vcpu);
8746 }
8747 
8748 static void kvm_free_vcpus(struct kvm *kvm)
8749 {
8750 	unsigned int i;
8751 	struct kvm_vcpu *vcpu;
8752 
8753 	/*
8754 	 * Unpin any mmu pages first.
8755 	 */
8756 	kvm_for_each_vcpu(i, vcpu, kvm) {
8757 		kvm_clear_async_pf_completion_queue(vcpu);
8758 		kvm_unload_vcpu_mmu(vcpu);
8759 	}
8760 	kvm_for_each_vcpu(i, vcpu, kvm)
8761 		kvm_arch_vcpu_free(vcpu);
8762 
8763 	mutex_lock(&kvm->lock);
8764 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8765 		kvm->vcpus[i] = NULL;
8766 
8767 	atomic_set(&kvm->online_vcpus, 0);
8768 	mutex_unlock(&kvm->lock);
8769 }
8770 
8771 void kvm_arch_sync_events(struct kvm *kvm)
8772 {
8773 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8774 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8775 	kvm_free_pit(kvm);
8776 }
8777 
8778 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8779 {
8780 	int i, r;
8781 	unsigned long hva;
8782 	struct kvm_memslots *slots = kvm_memslots(kvm);
8783 	struct kvm_memory_slot *slot, old;
8784 
8785 	/* Called with kvm->slots_lock held.  */
8786 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8787 		return -EINVAL;
8788 
8789 	slot = id_to_memslot(slots, id);
8790 	if (size) {
8791 		if (slot->npages)
8792 			return -EEXIST;
8793 
8794 		/*
8795 		 * MAP_SHARED to prevent internal slot pages from being moved
8796 		 * by fork()/COW.
8797 		 */
8798 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8799 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8800 		if (IS_ERR((void *)hva))
8801 			return PTR_ERR((void *)hva);
8802 	} else {
8803 		if (!slot->npages)
8804 			return 0;
8805 
8806 		hva = 0;
8807 	}
8808 
8809 	old = *slot;
8810 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8811 		struct kvm_userspace_memory_region m;
8812 
8813 		m.slot = id | (i << 16);
8814 		m.flags = 0;
8815 		m.guest_phys_addr = gpa;
8816 		m.userspace_addr = hva;
8817 		m.memory_size = size;
8818 		r = __kvm_set_memory_region(kvm, &m);
8819 		if (r < 0)
8820 			return r;
8821 	}
8822 
8823 	if (!size)
8824 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8825 
8826 	return 0;
8827 }
8828 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8829 
8830 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8831 {
8832 	int r;
8833 
8834 	mutex_lock(&kvm->slots_lock);
8835 	r = __x86_set_memory_region(kvm, id, gpa, size);
8836 	mutex_unlock(&kvm->slots_lock);
8837 
8838 	return r;
8839 }
8840 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8841 
8842 void kvm_arch_destroy_vm(struct kvm *kvm)
8843 {
8844 	if (current->mm == kvm->mm) {
8845 		/*
8846 		 * Free memory regions allocated on behalf of userspace,
8847 		 * unless the the memory map has changed due to process exit
8848 		 * or fd copying.
8849 		 */
8850 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8851 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8852 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8853 	}
8854 	if (kvm_x86_ops->vm_destroy)
8855 		kvm_x86_ops->vm_destroy(kvm);
8856 	kvm_pic_destroy(kvm);
8857 	kvm_ioapic_destroy(kvm);
8858 	kvm_free_vcpus(kvm);
8859 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8860 	kvm_mmu_uninit_vm(kvm);
8861 	kvm_page_track_cleanup(kvm);
8862 	kvm_hv_destroy_vm(kvm);
8863 }
8864 
8865 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8866 			   struct kvm_memory_slot *dont)
8867 {
8868 	int i;
8869 
8870 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8871 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8872 			kvfree(free->arch.rmap[i]);
8873 			free->arch.rmap[i] = NULL;
8874 		}
8875 		if (i == 0)
8876 			continue;
8877 
8878 		if (!dont || free->arch.lpage_info[i - 1] !=
8879 			     dont->arch.lpage_info[i - 1]) {
8880 			kvfree(free->arch.lpage_info[i - 1]);
8881 			free->arch.lpage_info[i - 1] = NULL;
8882 		}
8883 	}
8884 
8885 	kvm_page_track_free_memslot(free, dont);
8886 }
8887 
8888 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8889 			    unsigned long npages)
8890 {
8891 	int i;
8892 
8893 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8894 		struct kvm_lpage_info *linfo;
8895 		unsigned long ugfn;
8896 		int lpages;
8897 		int level = i + 1;
8898 
8899 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8900 				      slot->base_gfn, level) + 1;
8901 
8902 		slot->arch.rmap[i] =
8903 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
8904 				 GFP_KERNEL);
8905 		if (!slot->arch.rmap[i])
8906 			goto out_free;
8907 		if (i == 0)
8908 			continue;
8909 
8910 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
8911 		if (!linfo)
8912 			goto out_free;
8913 
8914 		slot->arch.lpage_info[i - 1] = linfo;
8915 
8916 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8917 			linfo[0].disallow_lpage = 1;
8918 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8919 			linfo[lpages - 1].disallow_lpage = 1;
8920 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8921 		/*
8922 		 * If the gfn and userspace address are not aligned wrt each
8923 		 * other, or if explicitly asked to, disable large page
8924 		 * support for this slot
8925 		 */
8926 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8927 		    !kvm_largepages_enabled()) {
8928 			unsigned long j;
8929 
8930 			for (j = 0; j < lpages; ++j)
8931 				linfo[j].disallow_lpage = 1;
8932 		}
8933 	}
8934 
8935 	if (kvm_page_track_create_memslot(slot, npages))
8936 		goto out_free;
8937 
8938 	return 0;
8939 
8940 out_free:
8941 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8942 		kvfree(slot->arch.rmap[i]);
8943 		slot->arch.rmap[i] = NULL;
8944 		if (i == 0)
8945 			continue;
8946 
8947 		kvfree(slot->arch.lpage_info[i - 1]);
8948 		slot->arch.lpage_info[i - 1] = NULL;
8949 	}
8950 	return -ENOMEM;
8951 }
8952 
8953 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8954 {
8955 	/*
8956 	 * memslots->generation has been incremented.
8957 	 * mmio generation may have reached its maximum value.
8958 	 */
8959 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8960 }
8961 
8962 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8963 				struct kvm_memory_slot *memslot,
8964 				const struct kvm_userspace_memory_region *mem,
8965 				enum kvm_mr_change change)
8966 {
8967 	return 0;
8968 }
8969 
8970 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8971 				     struct kvm_memory_slot *new)
8972 {
8973 	/* Still write protect RO slot */
8974 	if (new->flags & KVM_MEM_READONLY) {
8975 		kvm_mmu_slot_remove_write_access(kvm, new);
8976 		return;
8977 	}
8978 
8979 	/*
8980 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8981 	 *
8982 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8983 	 *
8984 	 *  - KVM_MR_CREATE with dirty logging is disabled
8985 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8986 	 *
8987 	 * The reason is, in case of PML, we need to set D-bit for any slots
8988 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8989 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8990 	 * guarantees leaving PML enabled during guest's lifetime won't have
8991 	 * any additonal overhead from PML when guest is running with dirty
8992 	 * logging disabled for memory slots.
8993 	 *
8994 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8995 	 * to dirty logging mode.
8996 	 *
8997 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8998 	 *
8999 	 * In case of write protect:
9000 	 *
9001 	 * Write protect all pages for dirty logging.
9002 	 *
9003 	 * All the sptes including the large sptes which point to this
9004 	 * slot are set to readonly. We can not create any new large
9005 	 * spte on this slot until the end of the logging.
9006 	 *
9007 	 * See the comments in fast_page_fault().
9008 	 */
9009 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9010 		if (kvm_x86_ops->slot_enable_log_dirty)
9011 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9012 		else
9013 			kvm_mmu_slot_remove_write_access(kvm, new);
9014 	} else {
9015 		if (kvm_x86_ops->slot_disable_log_dirty)
9016 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9017 	}
9018 }
9019 
9020 void kvm_arch_commit_memory_region(struct kvm *kvm,
9021 				const struct kvm_userspace_memory_region *mem,
9022 				const struct kvm_memory_slot *old,
9023 				const struct kvm_memory_slot *new,
9024 				enum kvm_mr_change change)
9025 {
9026 	int nr_mmu_pages = 0;
9027 
9028 	if (!kvm->arch.n_requested_mmu_pages)
9029 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9030 
9031 	if (nr_mmu_pages)
9032 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9033 
9034 	/*
9035 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9036 	 * sptes have to be split.  If live migration is successful, the guest
9037 	 * in the source machine will be destroyed and large sptes will be
9038 	 * created in the destination. However, if the guest continues to run
9039 	 * in the source machine (for example if live migration fails), small
9040 	 * sptes will remain around and cause bad performance.
9041 	 *
9042 	 * Scan sptes if dirty logging has been stopped, dropping those
9043 	 * which can be collapsed into a single large-page spte.  Later
9044 	 * page faults will create the large-page sptes.
9045 	 */
9046 	if ((change != KVM_MR_DELETE) &&
9047 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9048 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9049 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9050 
9051 	/*
9052 	 * Set up write protection and/or dirty logging for the new slot.
9053 	 *
9054 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9055 	 * been zapped so no dirty logging staff is needed for old slot. For
9056 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9057 	 * new and it's also covered when dealing with the new slot.
9058 	 *
9059 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9060 	 */
9061 	if (change != KVM_MR_DELETE)
9062 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9063 }
9064 
9065 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9066 {
9067 	kvm_mmu_invalidate_zap_all_pages(kvm);
9068 }
9069 
9070 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9071 				   struct kvm_memory_slot *slot)
9072 {
9073 	kvm_page_track_flush_slot(kvm, slot);
9074 }
9075 
9076 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9077 {
9078 	if (!list_empty_careful(&vcpu->async_pf.done))
9079 		return true;
9080 
9081 	if (kvm_apic_has_events(vcpu))
9082 		return true;
9083 
9084 	if (vcpu->arch.pv.pv_unhalted)
9085 		return true;
9086 
9087 	if (vcpu->arch.exception.pending)
9088 		return true;
9089 
9090 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9091 	    (vcpu->arch.nmi_pending &&
9092 	     kvm_x86_ops->nmi_allowed(vcpu)))
9093 		return true;
9094 
9095 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9096 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9097 		return true;
9098 
9099 	if (kvm_arch_interrupt_allowed(vcpu) &&
9100 	    kvm_cpu_has_interrupt(vcpu))
9101 		return true;
9102 
9103 	if (kvm_hv_has_stimer_pending(vcpu))
9104 		return true;
9105 
9106 	return false;
9107 }
9108 
9109 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9110 {
9111 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9112 }
9113 
9114 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9115 {
9116 	return vcpu->arch.preempted_in_kernel;
9117 }
9118 
9119 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9120 {
9121 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9122 }
9123 
9124 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9125 {
9126 	return kvm_x86_ops->interrupt_allowed(vcpu);
9127 }
9128 
9129 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9130 {
9131 	if (is_64_bit_mode(vcpu))
9132 		return kvm_rip_read(vcpu);
9133 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9134 		     kvm_rip_read(vcpu));
9135 }
9136 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9137 
9138 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9139 {
9140 	return kvm_get_linear_rip(vcpu) == linear_rip;
9141 }
9142 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9143 
9144 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9145 {
9146 	unsigned long rflags;
9147 
9148 	rflags = kvm_x86_ops->get_rflags(vcpu);
9149 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9150 		rflags &= ~X86_EFLAGS_TF;
9151 	return rflags;
9152 }
9153 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9154 
9155 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9156 {
9157 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9158 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9159 		rflags |= X86_EFLAGS_TF;
9160 	kvm_x86_ops->set_rflags(vcpu, rflags);
9161 }
9162 
9163 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9164 {
9165 	__kvm_set_rflags(vcpu, rflags);
9166 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9167 }
9168 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9169 
9170 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9171 {
9172 	int r;
9173 
9174 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9175 	      work->wakeup_all)
9176 		return;
9177 
9178 	r = kvm_mmu_reload(vcpu);
9179 	if (unlikely(r))
9180 		return;
9181 
9182 	if (!vcpu->arch.mmu.direct_map &&
9183 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9184 		return;
9185 
9186 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9187 }
9188 
9189 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9190 {
9191 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9192 }
9193 
9194 static inline u32 kvm_async_pf_next_probe(u32 key)
9195 {
9196 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9197 }
9198 
9199 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9200 {
9201 	u32 key = kvm_async_pf_hash_fn(gfn);
9202 
9203 	while (vcpu->arch.apf.gfns[key] != ~0)
9204 		key = kvm_async_pf_next_probe(key);
9205 
9206 	vcpu->arch.apf.gfns[key] = gfn;
9207 }
9208 
9209 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9210 {
9211 	int i;
9212 	u32 key = kvm_async_pf_hash_fn(gfn);
9213 
9214 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9215 		     (vcpu->arch.apf.gfns[key] != gfn &&
9216 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9217 		key = kvm_async_pf_next_probe(key);
9218 
9219 	return key;
9220 }
9221 
9222 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9223 {
9224 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9225 }
9226 
9227 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9228 {
9229 	u32 i, j, k;
9230 
9231 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9232 	while (true) {
9233 		vcpu->arch.apf.gfns[i] = ~0;
9234 		do {
9235 			j = kvm_async_pf_next_probe(j);
9236 			if (vcpu->arch.apf.gfns[j] == ~0)
9237 				return;
9238 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9239 			/*
9240 			 * k lies cyclically in ]i,j]
9241 			 * |    i.k.j |
9242 			 * |....j i.k.| or  |.k..j i...|
9243 			 */
9244 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9245 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9246 		i = j;
9247 	}
9248 }
9249 
9250 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9251 {
9252 
9253 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9254 				      sizeof(val));
9255 }
9256 
9257 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9258 {
9259 
9260 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9261 				      sizeof(u32));
9262 }
9263 
9264 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9265 				     struct kvm_async_pf *work)
9266 {
9267 	struct x86_exception fault;
9268 
9269 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9270 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9271 
9272 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9273 	    (vcpu->arch.apf.send_user_only &&
9274 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9275 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9276 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9277 		fault.vector = PF_VECTOR;
9278 		fault.error_code_valid = true;
9279 		fault.error_code = 0;
9280 		fault.nested_page_fault = false;
9281 		fault.address = work->arch.token;
9282 		fault.async_page_fault = true;
9283 		kvm_inject_page_fault(vcpu, &fault);
9284 	}
9285 }
9286 
9287 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9288 				 struct kvm_async_pf *work)
9289 {
9290 	struct x86_exception fault;
9291 	u32 val;
9292 
9293 	if (work->wakeup_all)
9294 		work->arch.token = ~0; /* broadcast wakeup */
9295 	else
9296 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9297 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9298 
9299 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9300 	    !apf_get_user(vcpu, &val)) {
9301 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9302 		    vcpu->arch.exception.pending &&
9303 		    vcpu->arch.exception.nr == PF_VECTOR &&
9304 		    !apf_put_user(vcpu, 0)) {
9305 			vcpu->arch.exception.injected = false;
9306 			vcpu->arch.exception.pending = false;
9307 			vcpu->arch.exception.nr = 0;
9308 			vcpu->arch.exception.has_error_code = false;
9309 			vcpu->arch.exception.error_code = 0;
9310 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9311 			fault.vector = PF_VECTOR;
9312 			fault.error_code_valid = true;
9313 			fault.error_code = 0;
9314 			fault.nested_page_fault = false;
9315 			fault.address = work->arch.token;
9316 			fault.async_page_fault = true;
9317 			kvm_inject_page_fault(vcpu, &fault);
9318 		}
9319 	}
9320 	vcpu->arch.apf.halted = false;
9321 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9322 }
9323 
9324 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9325 {
9326 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9327 		return true;
9328 	else
9329 		return kvm_can_do_async_pf(vcpu);
9330 }
9331 
9332 void kvm_arch_start_assignment(struct kvm *kvm)
9333 {
9334 	atomic_inc(&kvm->arch.assigned_device_count);
9335 }
9336 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9337 
9338 void kvm_arch_end_assignment(struct kvm *kvm)
9339 {
9340 	atomic_dec(&kvm->arch.assigned_device_count);
9341 }
9342 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9343 
9344 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9345 {
9346 	return atomic_read(&kvm->arch.assigned_device_count);
9347 }
9348 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9349 
9350 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9351 {
9352 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9353 }
9354 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9355 
9356 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9357 {
9358 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9359 }
9360 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9361 
9362 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9363 {
9364 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9365 }
9366 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9367 
9368 bool kvm_arch_has_irq_bypass(void)
9369 {
9370 	return kvm_x86_ops->update_pi_irte != NULL;
9371 }
9372 
9373 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9374 				      struct irq_bypass_producer *prod)
9375 {
9376 	struct kvm_kernel_irqfd *irqfd =
9377 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9378 
9379 	irqfd->producer = prod;
9380 
9381 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9382 					   prod->irq, irqfd->gsi, 1);
9383 }
9384 
9385 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9386 				      struct irq_bypass_producer *prod)
9387 {
9388 	int ret;
9389 	struct kvm_kernel_irqfd *irqfd =
9390 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9391 
9392 	WARN_ON(irqfd->producer != prod);
9393 	irqfd->producer = NULL;
9394 
9395 	/*
9396 	 * When producer of consumer is unregistered, we change back to
9397 	 * remapped mode, so we can re-use the current implementation
9398 	 * when the irq is masked/disabled or the consumer side (KVM
9399 	 * int this case doesn't want to receive the interrupts.
9400 	*/
9401 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9402 	if (ret)
9403 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9404 		       " fails: %d\n", irqfd->consumer.token, ret);
9405 }
9406 
9407 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9408 				   uint32_t guest_irq, bool set)
9409 {
9410 	if (!kvm_x86_ops->update_pi_irte)
9411 		return -EINVAL;
9412 
9413 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9414 }
9415 
9416 bool kvm_vector_hashing_enabled(void)
9417 {
9418 	return vector_hashing;
9419 }
9420 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9421 
9422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9441