xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 77d84ff8)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 	int i;
168 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 		vcpu->arch.apf.gfns[i] = ~0;
170 }
171 
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 	unsigned slot;
175 	struct kvm_shared_msrs *locals
176 		= container_of(urn, struct kvm_shared_msrs, urn);
177 	struct kvm_shared_msr_values *values;
178 
179 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 		values = &locals->values[slot];
181 		if (values->host != values->curr) {
182 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 			values->curr = values->host;
184 		}
185 	}
186 	locals->registered = false;
187 	user_return_notifier_unregister(urn);
188 }
189 
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 	u64 value;
193 	unsigned int cpu = smp_processor_id();
194 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195 
196 	/* only read, and nobody should modify it at this time,
197 	 * so don't need lock */
198 	if (slot >= shared_msrs_global.nr) {
199 		printk(KERN_ERR "kvm: invalid MSR slot!");
200 		return;
201 	}
202 	rdmsrl_safe(msr, &value);
203 	smsr->values[slot].host = value;
204 	smsr->values[slot].curr = value;
205 }
206 
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 	if (slot >= shared_msrs_global.nr)
210 		shared_msrs_global.nr = slot + 1;
211 	shared_msrs_global.msrs[slot] = msr;
212 	/* we need ensured the shared_msr_global have been updated */
213 	smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216 
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 	unsigned i;
220 
221 	for (i = 0; i < shared_msrs_global.nr; ++i)
222 		shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224 
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229 
230 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 		return;
232 	smsr->values[slot].curr = value;
233 	wrmsrl(shared_msrs_global.msrs[slot], value);
234 	if (!smsr->registered) {
235 		smsr->urn.on_user_return = kvm_on_user_return;
236 		user_return_notifier_register(&smsr->urn);
237 		smsr->registered = true;
238 	}
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241 
242 static void drop_user_return_notifiers(void *ignore)
243 {
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	if (smsr->registered)
248 		kvm_on_user_return(&smsr->urn);
249 }
250 
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 	/* TODO: reserve bits check */
260 	kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263 
264 asmlinkage void kvm_spurious_fault(void)
265 {
266 	/* Fault while not rebooting.  We want the trace. */
267 	BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270 
271 #define EXCPT_BENIGN		0
272 #define EXCPT_CONTRIBUTORY	1
273 #define EXCPT_PF		2
274 
275 static int exception_class(int vector)
276 {
277 	switch (vector) {
278 	case PF_VECTOR:
279 		return EXCPT_PF;
280 	case DE_VECTOR:
281 	case TS_VECTOR:
282 	case NP_VECTOR:
283 	case SS_VECTOR:
284 	case GP_VECTOR:
285 		return EXCPT_CONTRIBUTORY;
286 	default:
287 		break;
288 	}
289 	return EXCPT_BENIGN;
290 }
291 
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 		unsigned nr, bool has_error, u32 error_code,
294 		bool reinject)
295 {
296 	u32 prev_nr;
297 	int class1, class2;
298 
299 	kvm_make_request(KVM_REQ_EVENT, vcpu);
300 
301 	if (!vcpu->arch.exception.pending) {
302 	queue:
303 		vcpu->arch.exception.pending = true;
304 		vcpu->arch.exception.has_error_code = has_error;
305 		vcpu->arch.exception.nr = nr;
306 		vcpu->arch.exception.error_code = error_code;
307 		vcpu->arch.exception.reinject = reinject;
308 		return;
309 	}
310 
311 	/* to check exception */
312 	prev_nr = vcpu->arch.exception.nr;
313 	if (prev_nr == DF_VECTOR) {
314 		/* triple fault -> shutdown */
315 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 		return;
317 	}
318 	class1 = exception_class(prev_nr);
319 	class2 = exception_class(nr);
320 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 		/* generate double fault per SDM Table 5-5 */
323 		vcpu->arch.exception.pending = true;
324 		vcpu->arch.exception.has_error_code = true;
325 		vcpu->arch.exception.nr = DF_VECTOR;
326 		vcpu->arch.exception.error_code = 0;
327 	} else
328 		/* replace previous exception with a new one in a hope
329 		   that instruction re-execution will regenerate lost
330 		   exception */
331 		goto queue;
332 }
333 
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 	kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339 
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 	kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345 
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 	if (err)
349 		kvm_inject_gp(vcpu, 0);
350 	else
351 		kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354 
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 	++vcpu->stat.pf_guest;
358 	vcpu->arch.cr2 = fault->address;
359 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362 
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 	else
368 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370 
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 	atomic_inc(&vcpu->arch.nmi_queued);
374 	kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377 
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383 
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389 
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 		return true;
398 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 	return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402 
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 			    gfn_t ngfn, void *data, int offset, int len,
410 			    u32 access)
411 {
412 	gfn_t real_gfn;
413 	gpa_t ngpa;
414 
415 	ngpa     = gfn_to_gpa(ngfn);
416 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 	if (real_gfn == UNMAPPED_GVA)
418 		return -EFAULT;
419 
420 	real_gfn = gpa_to_gfn(real_gfn);
421 
422 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425 
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 			       void *data, int offset, int len, u32 access)
428 {
429 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 				       data, offset, len, access);
431 }
432 
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 	int i;
441 	int ret;
442 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443 
444 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 				      offset * sizeof(u64), sizeof(pdpte),
446 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
447 	if (ret < 0) {
448 		ret = 0;
449 		goto out;
450 	}
451 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 		if (is_present_gpte(pdpte[i]) &&
453 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 			ret = 0;
455 			goto out;
456 		}
457 	}
458 	ret = 1;
459 
460 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 	__set_bit(VCPU_EXREG_PDPTR,
462 		  (unsigned long *)&vcpu->arch.regs_avail);
463 	__set_bit(VCPU_EXREG_PDPTR,
464 		  (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470 
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 	bool changed = true;
475 	int offset;
476 	gfn_t gfn;
477 	int r;
478 
479 	if (is_long_mode(vcpu) || !is_pae(vcpu))
480 		return false;
481 
482 	if (!test_bit(VCPU_EXREG_PDPTR,
483 		      (unsigned long *)&vcpu->arch.regs_avail))
484 		return true;
485 
486 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
490 	if (r < 0)
491 		goto out;
492 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494 
495 	return changed;
496 }
497 
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 				    X86_CR0_CD | X86_CR0_NW;
503 
504 	cr0 |= X86_CR0_ET;
505 
506 #ifdef CONFIG_X86_64
507 	if (cr0 & 0xffffffff00000000UL)
508 		return 1;
509 #endif
510 
511 	cr0 &= ~CR0_RESERVED_BITS;
512 
513 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 		return 1;
515 
516 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 		return 1;
518 
519 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 		if ((vcpu->arch.efer & EFER_LME)) {
522 			int cs_db, cs_l;
523 
524 			if (!is_pae(vcpu))
525 				return 1;
526 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 			if (cs_l)
528 				return 1;
529 		} else
530 #endif
531 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 						 kvm_read_cr3(vcpu)))
533 			return 1;
534 	}
535 
536 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 		return 1;
538 
539 	kvm_x86_ops->set_cr0(vcpu, cr0);
540 
541 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 		kvm_clear_async_pf_completion_queue(vcpu);
543 		kvm_async_pf_hash_reset(vcpu);
544 	}
545 
546 	if ((cr0 ^ old_cr0) & update_bits)
547 		kvm_mmu_reset_context(vcpu);
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551 
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557 
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 			!vcpu->guest_xcr0_loaded) {
562 		/* kvm_set_xcr() also depends on this */
563 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 		vcpu->guest_xcr0_loaded = 1;
565 	}
566 }
567 
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->guest_xcr0_loaded) {
571 		if (vcpu->arch.xcr0 != host_xcr0)
572 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 		vcpu->guest_xcr0_loaded = 0;
574 	}
575 }
576 
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 	u64 xcr0;
580 	u64 valid_bits;
581 
582 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
583 	if (index != XCR_XFEATURE_ENABLED_MASK)
584 		return 1;
585 	xcr0 = xcr;
586 	if (!(xcr0 & XSTATE_FP))
587 		return 1;
588 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
589 		return 1;
590 
591 	/*
592 	 * Do not allow the guest to set bits that we do not support
593 	 * saving.  However, xcr0 bit 0 is always set, even if the
594 	 * emulated CPU does not support XSAVE (see fx_init).
595 	 */
596 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
597 	if (xcr0 & ~valid_bits)
598 		return 1;
599 
600 	kvm_put_guest_xcr0(vcpu);
601 	vcpu->arch.xcr0 = xcr0;
602 	return 0;
603 }
604 
605 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
606 {
607 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
608 	    __kvm_set_xcr(vcpu, index, xcr)) {
609 		kvm_inject_gp(vcpu, 0);
610 		return 1;
611 	}
612 	return 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_set_xcr);
615 
616 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
617 {
618 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
619 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
620 				   X86_CR4_PAE | X86_CR4_SMEP;
621 	if (cr4 & CR4_RESERVED_BITS)
622 		return 1;
623 
624 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
625 		return 1;
626 
627 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
628 		return 1;
629 
630 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
631 		return 1;
632 
633 	if (is_long_mode(vcpu)) {
634 		if (!(cr4 & X86_CR4_PAE))
635 			return 1;
636 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
637 		   && ((cr4 ^ old_cr4) & pdptr_bits)
638 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639 				   kvm_read_cr3(vcpu)))
640 		return 1;
641 
642 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
643 		if (!guest_cpuid_has_pcid(vcpu))
644 			return 1;
645 
646 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
647 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
648 			return 1;
649 	}
650 
651 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
652 		return 1;
653 
654 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
655 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
656 		kvm_mmu_reset_context(vcpu);
657 
658 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
659 		kvm_update_cpuid(vcpu);
660 
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr4);
664 
665 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
666 {
667 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
668 		kvm_mmu_sync_roots(vcpu);
669 		kvm_mmu_flush_tlb(vcpu);
670 		return 0;
671 	}
672 
673 	if (is_long_mode(vcpu)) {
674 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
675 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
676 				return 1;
677 		} else
678 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
679 				return 1;
680 	} else {
681 		if (is_pae(vcpu)) {
682 			if (cr3 & CR3_PAE_RESERVED_BITS)
683 				return 1;
684 			if (is_paging(vcpu) &&
685 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
686 				return 1;
687 		}
688 		/*
689 		 * We don't check reserved bits in nonpae mode, because
690 		 * this isn't enforced, and VMware depends on this.
691 		 */
692 	}
693 
694 	vcpu->arch.cr3 = cr3;
695 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
696 	kvm_mmu_new_cr3(vcpu);
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_set_cr3);
700 
701 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
702 {
703 	if (cr8 & CR8_RESERVED_BITS)
704 		return 1;
705 	if (irqchip_in_kernel(vcpu->kvm))
706 		kvm_lapic_set_tpr(vcpu, cr8);
707 	else
708 		vcpu->arch.cr8 = cr8;
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(kvm_set_cr8);
712 
713 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
714 {
715 	if (irqchip_in_kernel(vcpu->kvm))
716 		return kvm_lapic_get_cr8(vcpu);
717 	else
718 		return vcpu->arch.cr8;
719 }
720 EXPORT_SYMBOL_GPL(kvm_get_cr8);
721 
722 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
723 {
724 	unsigned long dr7;
725 
726 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
727 		dr7 = vcpu->arch.guest_debug_dr7;
728 	else
729 		dr7 = vcpu->arch.dr7;
730 	kvm_x86_ops->set_dr7(vcpu, dr7);
731 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
732 }
733 
734 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
735 {
736 	switch (dr) {
737 	case 0 ... 3:
738 		vcpu->arch.db[dr] = val;
739 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
740 			vcpu->arch.eff_db[dr] = val;
741 		break;
742 	case 4:
743 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744 			return 1; /* #UD */
745 		/* fall through */
746 	case 6:
747 		if (val & 0xffffffff00000000ULL)
748 			return -1; /* #GP */
749 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
750 		break;
751 	case 5:
752 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 			return 1; /* #UD */
754 		/* fall through */
755 	default: /* 7 */
756 		if (val & 0xffffffff00000000ULL)
757 			return -1; /* #GP */
758 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
759 		kvm_update_dr7(vcpu);
760 		break;
761 	}
762 
763 	return 0;
764 }
765 
766 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
767 {
768 	int res;
769 
770 	res = __kvm_set_dr(vcpu, dr, val);
771 	if (res > 0)
772 		kvm_queue_exception(vcpu, UD_VECTOR);
773 	else if (res < 0)
774 		kvm_inject_gp(vcpu, 0);
775 
776 	return res;
777 }
778 EXPORT_SYMBOL_GPL(kvm_set_dr);
779 
780 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
781 {
782 	switch (dr) {
783 	case 0 ... 3:
784 		*val = vcpu->arch.db[dr];
785 		break;
786 	case 4:
787 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
788 			return 1;
789 		/* fall through */
790 	case 6:
791 		*val = vcpu->arch.dr6;
792 		break;
793 	case 5:
794 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
795 			return 1;
796 		/* fall through */
797 	default: /* 7 */
798 		*val = vcpu->arch.dr7;
799 		break;
800 	}
801 
802 	return 0;
803 }
804 
805 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
806 {
807 	if (_kvm_get_dr(vcpu, dr, val)) {
808 		kvm_queue_exception(vcpu, UD_VECTOR);
809 		return 1;
810 	}
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_get_dr);
814 
815 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
816 {
817 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
818 	u64 data;
819 	int err;
820 
821 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
822 	if (err)
823 		return err;
824 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
825 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
826 	return err;
827 }
828 EXPORT_SYMBOL_GPL(kvm_rdpmc);
829 
830 /*
831  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
832  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
833  *
834  * This list is modified at module load time to reflect the
835  * capabilities of the host cpu. This capabilities test skips MSRs that are
836  * kvm-specific. Those are put in the beginning of the list.
837  */
838 
839 #define KVM_SAVE_MSRS_BEGIN	10
840 static u32 msrs_to_save[] = {
841 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
842 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
843 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
844 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
845 	MSR_KVM_PV_EOI_EN,
846 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
847 	MSR_STAR,
848 #ifdef CONFIG_X86_64
849 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
850 #endif
851 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
852 	MSR_IA32_FEATURE_CONTROL
853 };
854 
855 static unsigned num_msrs_to_save;
856 
857 static const u32 emulated_msrs[] = {
858 	MSR_IA32_TSC_ADJUST,
859 	MSR_IA32_TSCDEADLINE,
860 	MSR_IA32_MISC_ENABLE,
861 	MSR_IA32_MCG_STATUS,
862 	MSR_IA32_MCG_CTL,
863 };
864 
865 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
866 {
867 	if (efer & efer_reserved_bits)
868 		return false;
869 
870 	if (efer & EFER_FFXSR) {
871 		struct kvm_cpuid_entry2 *feat;
872 
873 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
874 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
875 			return false;
876 	}
877 
878 	if (efer & EFER_SVME) {
879 		struct kvm_cpuid_entry2 *feat;
880 
881 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
882 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
883 			return false;
884 	}
885 
886 	return true;
887 }
888 EXPORT_SYMBOL_GPL(kvm_valid_efer);
889 
890 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
891 {
892 	u64 old_efer = vcpu->arch.efer;
893 
894 	if (!kvm_valid_efer(vcpu, efer))
895 		return 1;
896 
897 	if (is_paging(vcpu)
898 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
899 		return 1;
900 
901 	efer &= ~EFER_LMA;
902 	efer |= vcpu->arch.efer & EFER_LMA;
903 
904 	kvm_x86_ops->set_efer(vcpu, efer);
905 
906 	/* Update reserved bits */
907 	if ((efer ^ old_efer) & EFER_NX)
908 		kvm_mmu_reset_context(vcpu);
909 
910 	return 0;
911 }
912 
913 void kvm_enable_efer_bits(u64 mask)
914 {
915        efer_reserved_bits &= ~mask;
916 }
917 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
918 
919 
920 /*
921  * Writes msr value into into the appropriate "register".
922  * Returns 0 on success, non-0 otherwise.
923  * Assumes vcpu_load() was already called.
924  */
925 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
926 {
927 	return kvm_x86_ops->set_msr(vcpu, msr);
928 }
929 
930 /*
931  * Adapt set_msr() to msr_io()'s calling convention
932  */
933 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
934 {
935 	struct msr_data msr;
936 
937 	msr.data = *data;
938 	msr.index = index;
939 	msr.host_initiated = true;
940 	return kvm_set_msr(vcpu, &msr);
941 }
942 
943 #ifdef CONFIG_X86_64
944 struct pvclock_gtod_data {
945 	seqcount_t	seq;
946 
947 	struct { /* extract of a clocksource struct */
948 		int vclock_mode;
949 		cycle_t	cycle_last;
950 		cycle_t	mask;
951 		u32	mult;
952 		u32	shift;
953 	} clock;
954 
955 	/* open coded 'struct timespec' */
956 	u64		monotonic_time_snsec;
957 	time_t		monotonic_time_sec;
958 };
959 
960 static struct pvclock_gtod_data pvclock_gtod_data;
961 
962 static void update_pvclock_gtod(struct timekeeper *tk)
963 {
964 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
965 
966 	write_seqcount_begin(&vdata->seq);
967 
968 	/* copy pvclock gtod data */
969 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
970 	vdata->clock.cycle_last		= tk->clock->cycle_last;
971 	vdata->clock.mask		= tk->clock->mask;
972 	vdata->clock.mult		= tk->mult;
973 	vdata->clock.shift		= tk->shift;
974 
975 	vdata->monotonic_time_sec	= tk->xtime_sec
976 					+ tk->wall_to_monotonic.tv_sec;
977 	vdata->monotonic_time_snsec	= tk->xtime_nsec
978 					+ (tk->wall_to_monotonic.tv_nsec
979 						<< tk->shift);
980 	while (vdata->monotonic_time_snsec >=
981 					(((u64)NSEC_PER_SEC) << tk->shift)) {
982 		vdata->monotonic_time_snsec -=
983 					((u64)NSEC_PER_SEC) << tk->shift;
984 		vdata->monotonic_time_sec++;
985 	}
986 
987 	write_seqcount_end(&vdata->seq);
988 }
989 #endif
990 
991 
992 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
993 {
994 	int version;
995 	int r;
996 	struct pvclock_wall_clock wc;
997 	struct timespec boot;
998 
999 	if (!wall_clock)
1000 		return;
1001 
1002 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1003 	if (r)
1004 		return;
1005 
1006 	if (version & 1)
1007 		++version;  /* first time write, random junk */
1008 
1009 	++version;
1010 
1011 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1012 
1013 	/*
1014 	 * The guest calculates current wall clock time by adding
1015 	 * system time (updated by kvm_guest_time_update below) to the
1016 	 * wall clock specified here.  guest system time equals host
1017 	 * system time for us, thus we must fill in host boot time here.
1018 	 */
1019 	getboottime(&boot);
1020 
1021 	if (kvm->arch.kvmclock_offset) {
1022 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1023 		boot = timespec_sub(boot, ts);
1024 	}
1025 	wc.sec = boot.tv_sec;
1026 	wc.nsec = boot.tv_nsec;
1027 	wc.version = version;
1028 
1029 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1030 
1031 	version++;
1032 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1033 }
1034 
1035 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1036 {
1037 	uint32_t quotient, remainder;
1038 
1039 	/* Don't try to replace with do_div(), this one calculates
1040 	 * "(dividend << 32) / divisor" */
1041 	__asm__ ( "divl %4"
1042 		  : "=a" (quotient), "=d" (remainder)
1043 		  : "0" (0), "1" (dividend), "r" (divisor) );
1044 	return quotient;
1045 }
1046 
1047 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1048 			       s8 *pshift, u32 *pmultiplier)
1049 {
1050 	uint64_t scaled64;
1051 	int32_t  shift = 0;
1052 	uint64_t tps64;
1053 	uint32_t tps32;
1054 
1055 	tps64 = base_khz * 1000LL;
1056 	scaled64 = scaled_khz * 1000LL;
1057 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1058 		tps64 >>= 1;
1059 		shift--;
1060 	}
1061 
1062 	tps32 = (uint32_t)tps64;
1063 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1064 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1065 			scaled64 >>= 1;
1066 		else
1067 			tps32 <<= 1;
1068 		shift++;
1069 	}
1070 
1071 	*pshift = shift;
1072 	*pmultiplier = div_frac(scaled64, tps32);
1073 
1074 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1075 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1076 }
1077 
1078 static inline u64 get_kernel_ns(void)
1079 {
1080 	struct timespec ts;
1081 
1082 	WARN_ON(preemptible());
1083 	ktime_get_ts(&ts);
1084 	monotonic_to_bootbased(&ts);
1085 	return timespec_to_ns(&ts);
1086 }
1087 
1088 #ifdef CONFIG_X86_64
1089 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1090 #endif
1091 
1092 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1093 unsigned long max_tsc_khz;
1094 
1095 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1096 {
1097 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1098 				   vcpu->arch.virtual_tsc_shift);
1099 }
1100 
1101 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1102 {
1103 	u64 v = (u64)khz * (1000000 + ppm);
1104 	do_div(v, 1000000);
1105 	return v;
1106 }
1107 
1108 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1109 {
1110 	u32 thresh_lo, thresh_hi;
1111 	int use_scaling = 0;
1112 
1113 	/* tsc_khz can be zero if TSC calibration fails */
1114 	if (this_tsc_khz == 0)
1115 		return;
1116 
1117 	/* Compute a scale to convert nanoseconds in TSC cycles */
1118 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1119 			   &vcpu->arch.virtual_tsc_shift,
1120 			   &vcpu->arch.virtual_tsc_mult);
1121 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1122 
1123 	/*
1124 	 * Compute the variation in TSC rate which is acceptable
1125 	 * within the range of tolerance and decide if the
1126 	 * rate being applied is within that bounds of the hardware
1127 	 * rate.  If so, no scaling or compensation need be done.
1128 	 */
1129 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1130 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1131 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1132 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1133 		use_scaling = 1;
1134 	}
1135 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1136 }
1137 
1138 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1139 {
1140 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1141 				      vcpu->arch.virtual_tsc_mult,
1142 				      vcpu->arch.virtual_tsc_shift);
1143 	tsc += vcpu->arch.this_tsc_write;
1144 	return tsc;
1145 }
1146 
1147 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1148 {
1149 #ifdef CONFIG_X86_64
1150 	bool vcpus_matched;
1151 	bool do_request = false;
1152 	struct kvm_arch *ka = &vcpu->kvm->arch;
1153 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1154 
1155 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1156 			 atomic_read(&vcpu->kvm->online_vcpus));
1157 
1158 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1159 		if (!ka->use_master_clock)
1160 			do_request = 1;
1161 
1162 	if (!vcpus_matched && ka->use_master_clock)
1163 			do_request = 1;
1164 
1165 	if (do_request)
1166 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1167 
1168 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1169 			    atomic_read(&vcpu->kvm->online_vcpus),
1170 		            ka->use_master_clock, gtod->clock.vclock_mode);
1171 #endif
1172 }
1173 
1174 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1175 {
1176 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1177 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1178 }
1179 
1180 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1181 {
1182 	struct kvm *kvm = vcpu->kvm;
1183 	u64 offset, ns, elapsed;
1184 	unsigned long flags;
1185 	s64 usdiff;
1186 	bool matched;
1187 	u64 data = msr->data;
1188 
1189 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1190 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1191 	ns = get_kernel_ns();
1192 	elapsed = ns - kvm->arch.last_tsc_nsec;
1193 
1194 	if (vcpu->arch.virtual_tsc_khz) {
1195 		int faulted = 0;
1196 
1197 		/* n.b - signed multiplication and division required */
1198 		usdiff = data - kvm->arch.last_tsc_write;
1199 #ifdef CONFIG_X86_64
1200 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1201 #else
1202 		/* do_div() only does unsigned */
1203 		asm("1: idivl %[divisor]\n"
1204 		    "2: xor %%edx, %%edx\n"
1205 		    "   movl $0, %[faulted]\n"
1206 		    "3:\n"
1207 		    ".section .fixup,\"ax\"\n"
1208 		    "4: movl $1, %[faulted]\n"
1209 		    "   jmp  3b\n"
1210 		    ".previous\n"
1211 
1212 		_ASM_EXTABLE(1b, 4b)
1213 
1214 		: "=A"(usdiff), [faulted] "=r" (faulted)
1215 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1216 
1217 #endif
1218 		do_div(elapsed, 1000);
1219 		usdiff -= elapsed;
1220 		if (usdiff < 0)
1221 			usdiff = -usdiff;
1222 
1223 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1224 		if (faulted)
1225 			usdiff = USEC_PER_SEC;
1226 	} else
1227 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1228 
1229 	/*
1230 	 * Special case: TSC write with a small delta (1 second) of virtual
1231 	 * cycle time against real time is interpreted as an attempt to
1232 	 * synchronize the CPU.
1233          *
1234 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1235 	 * TSC, we add elapsed time in this computation.  We could let the
1236 	 * compensation code attempt to catch up if we fall behind, but
1237 	 * it's better to try to match offsets from the beginning.
1238          */
1239 	if (usdiff < USEC_PER_SEC &&
1240 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1241 		if (!check_tsc_unstable()) {
1242 			offset = kvm->arch.cur_tsc_offset;
1243 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1244 		} else {
1245 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1246 			data += delta;
1247 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1248 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1249 		}
1250 		matched = true;
1251 	} else {
1252 		/*
1253 		 * We split periods of matched TSC writes into generations.
1254 		 * For each generation, we track the original measured
1255 		 * nanosecond time, offset, and write, so if TSCs are in
1256 		 * sync, we can match exact offset, and if not, we can match
1257 		 * exact software computation in compute_guest_tsc()
1258 		 *
1259 		 * These values are tracked in kvm->arch.cur_xxx variables.
1260 		 */
1261 		kvm->arch.cur_tsc_generation++;
1262 		kvm->arch.cur_tsc_nsec = ns;
1263 		kvm->arch.cur_tsc_write = data;
1264 		kvm->arch.cur_tsc_offset = offset;
1265 		matched = false;
1266 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1267 			 kvm->arch.cur_tsc_generation, data);
1268 	}
1269 
1270 	/*
1271 	 * We also track th most recent recorded KHZ, write and time to
1272 	 * allow the matching interval to be extended at each write.
1273 	 */
1274 	kvm->arch.last_tsc_nsec = ns;
1275 	kvm->arch.last_tsc_write = data;
1276 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1277 
1278 	/* Reset of TSC must disable overshoot protection below */
1279 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1280 	vcpu->arch.last_guest_tsc = data;
1281 
1282 	/* Keep track of which generation this VCPU has synchronized to */
1283 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1284 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1285 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1286 
1287 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1288 		update_ia32_tsc_adjust_msr(vcpu, offset);
1289 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1290 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1291 
1292 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1293 	if (matched)
1294 		kvm->arch.nr_vcpus_matched_tsc++;
1295 	else
1296 		kvm->arch.nr_vcpus_matched_tsc = 0;
1297 
1298 	kvm_track_tsc_matching(vcpu);
1299 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1300 }
1301 
1302 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1303 
1304 #ifdef CONFIG_X86_64
1305 
1306 static cycle_t read_tsc(void)
1307 {
1308 	cycle_t ret;
1309 	u64 last;
1310 
1311 	/*
1312 	 * Empirically, a fence (of type that depends on the CPU)
1313 	 * before rdtsc is enough to ensure that rdtsc is ordered
1314 	 * with respect to loads.  The various CPU manuals are unclear
1315 	 * as to whether rdtsc can be reordered with later loads,
1316 	 * but no one has ever seen it happen.
1317 	 */
1318 	rdtsc_barrier();
1319 	ret = (cycle_t)vget_cycles();
1320 
1321 	last = pvclock_gtod_data.clock.cycle_last;
1322 
1323 	if (likely(ret >= last))
1324 		return ret;
1325 
1326 	/*
1327 	 * GCC likes to generate cmov here, but this branch is extremely
1328 	 * predictable (it's just a funciton of time and the likely is
1329 	 * very likely) and there's a data dependence, so force GCC
1330 	 * to generate a branch instead.  I don't barrier() because
1331 	 * we don't actually need a barrier, and if this function
1332 	 * ever gets inlined it will generate worse code.
1333 	 */
1334 	asm volatile ("");
1335 	return last;
1336 }
1337 
1338 static inline u64 vgettsc(cycle_t *cycle_now)
1339 {
1340 	long v;
1341 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1342 
1343 	*cycle_now = read_tsc();
1344 
1345 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1346 	return v * gtod->clock.mult;
1347 }
1348 
1349 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1350 {
1351 	unsigned long seq;
1352 	u64 ns;
1353 	int mode;
1354 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1355 
1356 	ts->tv_nsec = 0;
1357 	do {
1358 		seq = read_seqcount_begin(&gtod->seq);
1359 		mode = gtod->clock.vclock_mode;
1360 		ts->tv_sec = gtod->monotonic_time_sec;
1361 		ns = gtod->monotonic_time_snsec;
1362 		ns += vgettsc(cycle_now);
1363 		ns >>= gtod->clock.shift;
1364 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1365 	timespec_add_ns(ts, ns);
1366 
1367 	return mode;
1368 }
1369 
1370 /* returns true if host is using tsc clocksource */
1371 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1372 {
1373 	struct timespec ts;
1374 
1375 	/* checked again under seqlock below */
1376 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1377 		return false;
1378 
1379 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1380 		return false;
1381 
1382 	monotonic_to_bootbased(&ts);
1383 	*kernel_ns = timespec_to_ns(&ts);
1384 
1385 	return true;
1386 }
1387 #endif
1388 
1389 /*
1390  *
1391  * Assuming a stable TSC across physical CPUS, and a stable TSC
1392  * across virtual CPUs, the following condition is possible.
1393  * Each numbered line represents an event visible to both
1394  * CPUs at the next numbered event.
1395  *
1396  * "timespecX" represents host monotonic time. "tscX" represents
1397  * RDTSC value.
1398  *
1399  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1400  *
1401  * 1.  read timespec0,tsc0
1402  * 2.					| timespec1 = timespec0 + N
1403  * 					| tsc1 = tsc0 + M
1404  * 3. transition to guest		| transition to guest
1405  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1406  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1407  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1408  *
1409  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1410  *
1411  * 	- ret0 < ret1
1412  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1413  *		...
1414  *	- 0 < N - M => M < N
1415  *
1416  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1417  * always the case (the difference between two distinct xtime instances
1418  * might be smaller then the difference between corresponding TSC reads,
1419  * when updating guest vcpus pvclock areas).
1420  *
1421  * To avoid that problem, do not allow visibility of distinct
1422  * system_timestamp/tsc_timestamp values simultaneously: use a master
1423  * copy of host monotonic time values. Update that master copy
1424  * in lockstep.
1425  *
1426  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1427  *
1428  */
1429 
1430 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1431 {
1432 #ifdef CONFIG_X86_64
1433 	struct kvm_arch *ka = &kvm->arch;
1434 	int vclock_mode;
1435 	bool host_tsc_clocksource, vcpus_matched;
1436 
1437 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1438 			atomic_read(&kvm->online_vcpus));
1439 
1440 	/*
1441 	 * If the host uses TSC clock, then passthrough TSC as stable
1442 	 * to the guest.
1443 	 */
1444 	host_tsc_clocksource = kvm_get_time_and_clockread(
1445 					&ka->master_kernel_ns,
1446 					&ka->master_cycle_now);
1447 
1448 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1449 
1450 	if (ka->use_master_clock)
1451 		atomic_set(&kvm_guest_has_master_clock, 1);
1452 
1453 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1454 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1455 					vcpus_matched);
1456 #endif
1457 }
1458 
1459 static void kvm_gen_update_masterclock(struct kvm *kvm)
1460 {
1461 #ifdef CONFIG_X86_64
1462 	int i;
1463 	struct kvm_vcpu *vcpu;
1464 	struct kvm_arch *ka = &kvm->arch;
1465 
1466 	spin_lock(&ka->pvclock_gtod_sync_lock);
1467 	kvm_make_mclock_inprogress_request(kvm);
1468 	/* no guest entries from this point */
1469 	pvclock_update_vm_gtod_copy(kvm);
1470 
1471 	kvm_for_each_vcpu(i, vcpu, kvm)
1472 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1473 
1474 	/* guest entries allowed */
1475 	kvm_for_each_vcpu(i, vcpu, kvm)
1476 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1477 
1478 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1479 #endif
1480 }
1481 
1482 static int kvm_guest_time_update(struct kvm_vcpu *v)
1483 {
1484 	unsigned long flags, this_tsc_khz;
1485 	struct kvm_vcpu_arch *vcpu = &v->arch;
1486 	struct kvm_arch *ka = &v->kvm->arch;
1487 	s64 kernel_ns, max_kernel_ns;
1488 	u64 tsc_timestamp, host_tsc;
1489 	struct pvclock_vcpu_time_info guest_hv_clock;
1490 	u8 pvclock_flags;
1491 	bool use_master_clock;
1492 
1493 	kernel_ns = 0;
1494 	host_tsc = 0;
1495 
1496 	/*
1497 	 * If the host uses TSC clock, then passthrough TSC as stable
1498 	 * to the guest.
1499 	 */
1500 	spin_lock(&ka->pvclock_gtod_sync_lock);
1501 	use_master_clock = ka->use_master_clock;
1502 	if (use_master_clock) {
1503 		host_tsc = ka->master_cycle_now;
1504 		kernel_ns = ka->master_kernel_ns;
1505 	}
1506 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1507 
1508 	/* Keep irq disabled to prevent changes to the clock */
1509 	local_irq_save(flags);
1510 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1511 	if (unlikely(this_tsc_khz == 0)) {
1512 		local_irq_restore(flags);
1513 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1514 		return 1;
1515 	}
1516 	if (!use_master_clock) {
1517 		host_tsc = native_read_tsc();
1518 		kernel_ns = get_kernel_ns();
1519 	}
1520 
1521 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1522 
1523 	/*
1524 	 * We may have to catch up the TSC to match elapsed wall clock
1525 	 * time for two reasons, even if kvmclock is used.
1526 	 *   1) CPU could have been running below the maximum TSC rate
1527 	 *   2) Broken TSC compensation resets the base at each VCPU
1528 	 *      entry to avoid unknown leaps of TSC even when running
1529 	 *      again on the same CPU.  This may cause apparent elapsed
1530 	 *      time to disappear, and the guest to stand still or run
1531 	 *	very slowly.
1532 	 */
1533 	if (vcpu->tsc_catchup) {
1534 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1535 		if (tsc > tsc_timestamp) {
1536 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1537 			tsc_timestamp = tsc;
1538 		}
1539 	}
1540 
1541 	local_irq_restore(flags);
1542 
1543 	if (!vcpu->pv_time_enabled)
1544 		return 0;
1545 
1546 	/*
1547 	 * Time as measured by the TSC may go backwards when resetting the base
1548 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1549 	 * higher than the resolution of the other clock scales.  Thus, many
1550 	 * possible measurments of the TSC correspond to one measurement of any
1551 	 * other clock, and so a spread of values is possible.  This is not a
1552 	 * problem for the computation of the nanosecond clock; with TSC rates
1553 	 * around 1GHZ, there can only be a few cycles which correspond to one
1554 	 * nanosecond value, and any path through this code will inevitably
1555 	 * take longer than that.  However, with the kernel_ns value itself,
1556 	 * the precision may be much lower, down to HZ granularity.  If the
1557 	 * first sampling of TSC against kernel_ns ends in the low part of the
1558 	 * range, and the second in the high end of the range, we can get:
1559 	 *
1560 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1561 	 *
1562 	 * As the sampling errors potentially range in the thousands of cycles,
1563 	 * it is possible such a time value has already been observed by the
1564 	 * guest.  To protect against this, we must compute the system time as
1565 	 * observed by the guest and ensure the new system time is greater.
1566 	 */
1567 	max_kernel_ns = 0;
1568 	if (vcpu->hv_clock.tsc_timestamp) {
1569 		max_kernel_ns = vcpu->last_guest_tsc -
1570 				vcpu->hv_clock.tsc_timestamp;
1571 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1572 				    vcpu->hv_clock.tsc_to_system_mul,
1573 				    vcpu->hv_clock.tsc_shift);
1574 		max_kernel_ns += vcpu->last_kernel_ns;
1575 	}
1576 
1577 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1578 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1579 				   &vcpu->hv_clock.tsc_shift,
1580 				   &vcpu->hv_clock.tsc_to_system_mul);
1581 		vcpu->hw_tsc_khz = this_tsc_khz;
1582 	}
1583 
1584 	/* with a master <monotonic time, tsc value> tuple,
1585 	 * pvclock clock reads always increase at the (scaled) rate
1586 	 * of guest TSC - no need to deal with sampling errors.
1587 	 */
1588 	if (!use_master_clock) {
1589 		if (max_kernel_ns > kernel_ns)
1590 			kernel_ns = max_kernel_ns;
1591 	}
1592 	/* With all the info we got, fill in the values */
1593 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1594 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1595 	vcpu->last_kernel_ns = kernel_ns;
1596 	vcpu->last_guest_tsc = tsc_timestamp;
1597 
1598 	/*
1599 	 * The interface expects us to write an even number signaling that the
1600 	 * update is finished. Since the guest won't see the intermediate
1601 	 * state, we just increase by 2 at the end.
1602 	 */
1603 	vcpu->hv_clock.version += 2;
1604 
1605 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1606 		&guest_hv_clock, sizeof(guest_hv_clock))))
1607 		return 0;
1608 
1609 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1610 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1611 
1612 	if (vcpu->pvclock_set_guest_stopped_request) {
1613 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1614 		vcpu->pvclock_set_guest_stopped_request = false;
1615 	}
1616 
1617 	/* If the host uses TSC clocksource, then it is stable */
1618 	if (use_master_clock)
1619 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1620 
1621 	vcpu->hv_clock.flags = pvclock_flags;
1622 
1623 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1624 				&vcpu->hv_clock,
1625 				sizeof(vcpu->hv_clock));
1626 	return 0;
1627 }
1628 
1629 /*
1630  * kvmclock updates which are isolated to a given vcpu, such as
1631  * vcpu->cpu migration, should not allow system_timestamp from
1632  * the rest of the vcpus to remain static. Otherwise ntp frequency
1633  * correction applies to one vcpu's system_timestamp but not
1634  * the others.
1635  *
1636  * So in those cases, request a kvmclock update for all vcpus.
1637  * The worst case for a remote vcpu to update its kvmclock
1638  * is then bounded by maximum nohz sleep latency.
1639  */
1640 
1641 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1642 {
1643 	int i;
1644 	struct kvm *kvm = v->kvm;
1645 	struct kvm_vcpu *vcpu;
1646 
1647 	kvm_for_each_vcpu(i, vcpu, kvm) {
1648 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1649 		kvm_vcpu_kick(vcpu);
1650 	}
1651 }
1652 
1653 static bool msr_mtrr_valid(unsigned msr)
1654 {
1655 	switch (msr) {
1656 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1657 	case MSR_MTRRfix64K_00000:
1658 	case MSR_MTRRfix16K_80000:
1659 	case MSR_MTRRfix16K_A0000:
1660 	case MSR_MTRRfix4K_C0000:
1661 	case MSR_MTRRfix4K_C8000:
1662 	case MSR_MTRRfix4K_D0000:
1663 	case MSR_MTRRfix4K_D8000:
1664 	case MSR_MTRRfix4K_E0000:
1665 	case MSR_MTRRfix4K_E8000:
1666 	case MSR_MTRRfix4K_F0000:
1667 	case MSR_MTRRfix4K_F8000:
1668 	case MSR_MTRRdefType:
1669 	case MSR_IA32_CR_PAT:
1670 		return true;
1671 	case 0x2f8:
1672 		return true;
1673 	}
1674 	return false;
1675 }
1676 
1677 static bool valid_pat_type(unsigned t)
1678 {
1679 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1680 }
1681 
1682 static bool valid_mtrr_type(unsigned t)
1683 {
1684 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1685 }
1686 
1687 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1688 {
1689 	int i;
1690 
1691 	if (!msr_mtrr_valid(msr))
1692 		return false;
1693 
1694 	if (msr == MSR_IA32_CR_PAT) {
1695 		for (i = 0; i < 8; i++)
1696 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1697 				return false;
1698 		return true;
1699 	} else if (msr == MSR_MTRRdefType) {
1700 		if (data & ~0xcff)
1701 			return false;
1702 		return valid_mtrr_type(data & 0xff);
1703 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1704 		for (i = 0; i < 8 ; i++)
1705 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1706 				return false;
1707 		return true;
1708 	}
1709 
1710 	/* variable MTRRs */
1711 	return valid_mtrr_type(data & 0xff);
1712 }
1713 
1714 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1715 {
1716 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1717 
1718 	if (!mtrr_valid(vcpu, msr, data))
1719 		return 1;
1720 
1721 	if (msr == MSR_MTRRdefType) {
1722 		vcpu->arch.mtrr_state.def_type = data;
1723 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1724 	} else if (msr == MSR_MTRRfix64K_00000)
1725 		p[0] = data;
1726 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1727 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1728 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1729 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1730 	else if (msr == MSR_IA32_CR_PAT)
1731 		vcpu->arch.pat = data;
1732 	else {	/* Variable MTRRs */
1733 		int idx, is_mtrr_mask;
1734 		u64 *pt;
1735 
1736 		idx = (msr - 0x200) / 2;
1737 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1738 		if (!is_mtrr_mask)
1739 			pt =
1740 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1741 		else
1742 			pt =
1743 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1744 		*pt = data;
1745 	}
1746 
1747 	kvm_mmu_reset_context(vcpu);
1748 	return 0;
1749 }
1750 
1751 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1752 {
1753 	u64 mcg_cap = vcpu->arch.mcg_cap;
1754 	unsigned bank_num = mcg_cap & 0xff;
1755 
1756 	switch (msr) {
1757 	case MSR_IA32_MCG_STATUS:
1758 		vcpu->arch.mcg_status = data;
1759 		break;
1760 	case MSR_IA32_MCG_CTL:
1761 		if (!(mcg_cap & MCG_CTL_P))
1762 			return 1;
1763 		if (data != 0 && data != ~(u64)0)
1764 			return -1;
1765 		vcpu->arch.mcg_ctl = data;
1766 		break;
1767 	default:
1768 		if (msr >= MSR_IA32_MC0_CTL &&
1769 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1770 			u32 offset = msr - MSR_IA32_MC0_CTL;
1771 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1772 			 * some Linux kernels though clear bit 10 in bank 4 to
1773 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1774 			 * this to avoid an uncatched #GP in the guest
1775 			 */
1776 			if ((offset & 0x3) == 0 &&
1777 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1778 				return -1;
1779 			vcpu->arch.mce_banks[offset] = data;
1780 			break;
1781 		}
1782 		return 1;
1783 	}
1784 	return 0;
1785 }
1786 
1787 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1788 {
1789 	struct kvm *kvm = vcpu->kvm;
1790 	int lm = is_long_mode(vcpu);
1791 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1792 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1793 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1794 		: kvm->arch.xen_hvm_config.blob_size_32;
1795 	u32 page_num = data & ~PAGE_MASK;
1796 	u64 page_addr = data & PAGE_MASK;
1797 	u8 *page;
1798 	int r;
1799 
1800 	r = -E2BIG;
1801 	if (page_num >= blob_size)
1802 		goto out;
1803 	r = -ENOMEM;
1804 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1805 	if (IS_ERR(page)) {
1806 		r = PTR_ERR(page);
1807 		goto out;
1808 	}
1809 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1810 		goto out_free;
1811 	r = 0;
1812 out_free:
1813 	kfree(page);
1814 out:
1815 	return r;
1816 }
1817 
1818 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1819 {
1820 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1821 }
1822 
1823 static bool kvm_hv_msr_partition_wide(u32 msr)
1824 {
1825 	bool r = false;
1826 	switch (msr) {
1827 	case HV_X64_MSR_GUEST_OS_ID:
1828 	case HV_X64_MSR_HYPERCALL:
1829 		r = true;
1830 		break;
1831 	}
1832 
1833 	return r;
1834 }
1835 
1836 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1837 {
1838 	struct kvm *kvm = vcpu->kvm;
1839 
1840 	switch (msr) {
1841 	case HV_X64_MSR_GUEST_OS_ID:
1842 		kvm->arch.hv_guest_os_id = data;
1843 		/* setting guest os id to zero disables hypercall page */
1844 		if (!kvm->arch.hv_guest_os_id)
1845 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1846 		break;
1847 	case HV_X64_MSR_HYPERCALL: {
1848 		u64 gfn;
1849 		unsigned long addr;
1850 		u8 instructions[4];
1851 
1852 		/* if guest os id is not set hypercall should remain disabled */
1853 		if (!kvm->arch.hv_guest_os_id)
1854 			break;
1855 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1856 			kvm->arch.hv_hypercall = data;
1857 			break;
1858 		}
1859 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1860 		addr = gfn_to_hva(kvm, gfn);
1861 		if (kvm_is_error_hva(addr))
1862 			return 1;
1863 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1864 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1865 		if (__copy_to_user((void __user *)addr, instructions, 4))
1866 			return 1;
1867 		kvm->arch.hv_hypercall = data;
1868 		break;
1869 	}
1870 	default:
1871 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1872 			    "data 0x%llx\n", msr, data);
1873 		return 1;
1874 	}
1875 	return 0;
1876 }
1877 
1878 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1879 {
1880 	switch (msr) {
1881 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1882 		unsigned long addr;
1883 
1884 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1885 			vcpu->arch.hv_vapic = data;
1886 			break;
1887 		}
1888 		addr = gfn_to_hva(vcpu->kvm, data >>
1889 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1890 		if (kvm_is_error_hva(addr))
1891 			return 1;
1892 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1893 			return 1;
1894 		vcpu->arch.hv_vapic = data;
1895 		break;
1896 	}
1897 	case HV_X64_MSR_EOI:
1898 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1899 	case HV_X64_MSR_ICR:
1900 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1901 	case HV_X64_MSR_TPR:
1902 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1903 	default:
1904 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1905 			    "data 0x%llx\n", msr, data);
1906 		return 1;
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1913 {
1914 	gpa_t gpa = data & ~0x3f;
1915 
1916 	/* Bits 2:5 are reserved, Should be zero */
1917 	if (data & 0x3c)
1918 		return 1;
1919 
1920 	vcpu->arch.apf.msr_val = data;
1921 
1922 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1923 		kvm_clear_async_pf_completion_queue(vcpu);
1924 		kvm_async_pf_hash_reset(vcpu);
1925 		return 0;
1926 	}
1927 
1928 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1929 					sizeof(u32)))
1930 		return 1;
1931 
1932 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1933 	kvm_async_pf_wakeup_all(vcpu);
1934 	return 0;
1935 }
1936 
1937 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1938 {
1939 	vcpu->arch.pv_time_enabled = false;
1940 }
1941 
1942 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1943 {
1944 	u64 delta;
1945 
1946 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1947 		return;
1948 
1949 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1950 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1951 	vcpu->arch.st.accum_steal = delta;
1952 }
1953 
1954 static void record_steal_time(struct kvm_vcpu *vcpu)
1955 {
1956 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1957 		return;
1958 
1959 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1960 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1961 		return;
1962 
1963 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1964 	vcpu->arch.st.steal.version += 2;
1965 	vcpu->arch.st.accum_steal = 0;
1966 
1967 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1968 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1969 }
1970 
1971 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1972 {
1973 	bool pr = false;
1974 	u32 msr = msr_info->index;
1975 	u64 data = msr_info->data;
1976 
1977 	switch (msr) {
1978 	case MSR_AMD64_NB_CFG:
1979 	case MSR_IA32_UCODE_REV:
1980 	case MSR_IA32_UCODE_WRITE:
1981 	case MSR_VM_HSAVE_PA:
1982 	case MSR_AMD64_PATCH_LOADER:
1983 	case MSR_AMD64_BU_CFG2:
1984 		break;
1985 
1986 	case MSR_EFER:
1987 		return set_efer(vcpu, data);
1988 	case MSR_K7_HWCR:
1989 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1990 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1991 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1992 		if (data != 0) {
1993 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1994 				    data);
1995 			return 1;
1996 		}
1997 		break;
1998 	case MSR_FAM10H_MMIO_CONF_BASE:
1999 		if (data != 0) {
2000 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2001 				    "0x%llx\n", data);
2002 			return 1;
2003 		}
2004 		break;
2005 	case MSR_IA32_DEBUGCTLMSR:
2006 		if (!data) {
2007 			/* We support the non-activated case already */
2008 			break;
2009 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2010 			/* Values other than LBR and BTF are vendor-specific,
2011 			   thus reserved and should throw a #GP */
2012 			return 1;
2013 		}
2014 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2015 			    __func__, data);
2016 		break;
2017 	case 0x200 ... 0x2ff:
2018 		return set_msr_mtrr(vcpu, msr, data);
2019 	case MSR_IA32_APICBASE:
2020 		kvm_set_apic_base(vcpu, data);
2021 		break;
2022 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2023 		return kvm_x2apic_msr_write(vcpu, msr, data);
2024 	case MSR_IA32_TSCDEADLINE:
2025 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2026 		break;
2027 	case MSR_IA32_TSC_ADJUST:
2028 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2029 			if (!msr_info->host_initiated) {
2030 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2031 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2032 			}
2033 			vcpu->arch.ia32_tsc_adjust_msr = data;
2034 		}
2035 		break;
2036 	case MSR_IA32_MISC_ENABLE:
2037 		vcpu->arch.ia32_misc_enable_msr = data;
2038 		break;
2039 	case MSR_KVM_WALL_CLOCK_NEW:
2040 	case MSR_KVM_WALL_CLOCK:
2041 		vcpu->kvm->arch.wall_clock = data;
2042 		kvm_write_wall_clock(vcpu->kvm, data);
2043 		break;
2044 	case MSR_KVM_SYSTEM_TIME_NEW:
2045 	case MSR_KVM_SYSTEM_TIME: {
2046 		u64 gpa_offset;
2047 		kvmclock_reset(vcpu);
2048 
2049 		vcpu->arch.time = data;
2050 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2051 
2052 		/* we verify if the enable bit is set... */
2053 		if (!(data & 1))
2054 			break;
2055 
2056 		gpa_offset = data & ~(PAGE_MASK | 1);
2057 
2058 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2059 		     &vcpu->arch.pv_time, data & ~1ULL,
2060 		     sizeof(struct pvclock_vcpu_time_info)))
2061 			vcpu->arch.pv_time_enabled = false;
2062 		else
2063 			vcpu->arch.pv_time_enabled = true;
2064 
2065 		break;
2066 	}
2067 	case MSR_KVM_ASYNC_PF_EN:
2068 		if (kvm_pv_enable_async_pf(vcpu, data))
2069 			return 1;
2070 		break;
2071 	case MSR_KVM_STEAL_TIME:
2072 
2073 		if (unlikely(!sched_info_on()))
2074 			return 1;
2075 
2076 		if (data & KVM_STEAL_RESERVED_MASK)
2077 			return 1;
2078 
2079 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2080 						data & KVM_STEAL_VALID_BITS,
2081 						sizeof(struct kvm_steal_time)))
2082 			return 1;
2083 
2084 		vcpu->arch.st.msr_val = data;
2085 
2086 		if (!(data & KVM_MSR_ENABLED))
2087 			break;
2088 
2089 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2090 
2091 		preempt_disable();
2092 		accumulate_steal_time(vcpu);
2093 		preempt_enable();
2094 
2095 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2096 
2097 		break;
2098 	case MSR_KVM_PV_EOI_EN:
2099 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2100 			return 1;
2101 		break;
2102 
2103 	case MSR_IA32_MCG_CTL:
2104 	case MSR_IA32_MCG_STATUS:
2105 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2106 		return set_msr_mce(vcpu, msr, data);
2107 
2108 	/* Performance counters are not protected by a CPUID bit,
2109 	 * so we should check all of them in the generic path for the sake of
2110 	 * cross vendor migration.
2111 	 * Writing a zero into the event select MSRs disables them,
2112 	 * which we perfectly emulate ;-). Any other value should be at least
2113 	 * reported, some guests depend on them.
2114 	 */
2115 	case MSR_K7_EVNTSEL0:
2116 	case MSR_K7_EVNTSEL1:
2117 	case MSR_K7_EVNTSEL2:
2118 	case MSR_K7_EVNTSEL3:
2119 		if (data != 0)
2120 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2121 				    "0x%x data 0x%llx\n", msr, data);
2122 		break;
2123 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2124 	 * so we ignore writes to make it happy.
2125 	 */
2126 	case MSR_K7_PERFCTR0:
2127 	case MSR_K7_PERFCTR1:
2128 	case MSR_K7_PERFCTR2:
2129 	case MSR_K7_PERFCTR3:
2130 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2131 			    "0x%x data 0x%llx\n", msr, data);
2132 		break;
2133 	case MSR_P6_PERFCTR0:
2134 	case MSR_P6_PERFCTR1:
2135 		pr = true;
2136 	case MSR_P6_EVNTSEL0:
2137 	case MSR_P6_EVNTSEL1:
2138 		if (kvm_pmu_msr(vcpu, msr))
2139 			return kvm_pmu_set_msr(vcpu, msr_info);
2140 
2141 		if (pr || data != 0)
2142 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2143 				    "0x%x data 0x%llx\n", msr, data);
2144 		break;
2145 	case MSR_K7_CLK_CTL:
2146 		/*
2147 		 * Ignore all writes to this no longer documented MSR.
2148 		 * Writes are only relevant for old K7 processors,
2149 		 * all pre-dating SVM, but a recommended workaround from
2150 		 * AMD for these chips. It is possible to specify the
2151 		 * affected processor models on the command line, hence
2152 		 * the need to ignore the workaround.
2153 		 */
2154 		break;
2155 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2156 		if (kvm_hv_msr_partition_wide(msr)) {
2157 			int r;
2158 			mutex_lock(&vcpu->kvm->lock);
2159 			r = set_msr_hyperv_pw(vcpu, msr, data);
2160 			mutex_unlock(&vcpu->kvm->lock);
2161 			return r;
2162 		} else
2163 			return set_msr_hyperv(vcpu, msr, data);
2164 		break;
2165 	case MSR_IA32_BBL_CR_CTL3:
2166 		/* Drop writes to this legacy MSR -- see rdmsr
2167 		 * counterpart for further detail.
2168 		 */
2169 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2170 		break;
2171 	case MSR_AMD64_OSVW_ID_LENGTH:
2172 		if (!guest_cpuid_has_osvw(vcpu))
2173 			return 1;
2174 		vcpu->arch.osvw.length = data;
2175 		break;
2176 	case MSR_AMD64_OSVW_STATUS:
2177 		if (!guest_cpuid_has_osvw(vcpu))
2178 			return 1;
2179 		vcpu->arch.osvw.status = data;
2180 		break;
2181 	default:
2182 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2183 			return xen_hvm_config(vcpu, data);
2184 		if (kvm_pmu_msr(vcpu, msr))
2185 			return kvm_pmu_set_msr(vcpu, msr_info);
2186 		if (!ignore_msrs) {
2187 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2188 				    msr, data);
2189 			return 1;
2190 		} else {
2191 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2192 				    msr, data);
2193 			break;
2194 		}
2195 	}
2196 	return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2199 
2200 
2201 /*
2202  * Reads an msr value (of 'msr_index') into 'pdata'.
2203  * Returns 0 on success, non-0 otherwise.
2204  * Assumes vcpu_load() was already called.
2205  */
2206 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2207 {
2208 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2209 }
2210 
2211 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2212 {
2213 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2214 
2215 	if (!msr_mtrr_valid(msr))
2216 		return 1;
2217 
2218 	if (msr == MSR_MTRRdefType)
2219 		*pdata = vcpu->arch.mtrr_state.def_type +
2220 			 (vcpu->arch.mtrr_state.enabled << 10);
2221 	else if (msr == MSR_MTRRfix64K_00000)
2222 		*pdata = p[0];
2223 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2224 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2225 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2226 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2227 	else if (msr == MSR_IA32_CR_PAT)
2228 		*pdata = vcpu->arch.pat;
2229 	else {	/* Variable MTRRs */
2230 		int idx, is_mtrr_mask;
2231 		u64 *pt;
2232 
2233 		idx = (msr - 0x200) / 2;
2234 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2235 		if (!is_mtrr_mask)
2236 			pt =
2237 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2238 		else
2239 			pt =
2240 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2241 		*pdata = *pt;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2248 {
2249 	u64 data;
2250 	u64 mcg_cap = vcpu->arch.mcg_cap;
2251 	unsigned bank_num = mcg_cap & 0xff;
2252 
2253 	switch (msr) {
2254 	case MSR_IA32_P5_MC_ADDR:
2255 	case MSR_IA32_P5_MC_TYPE:
2256 		data = 0;
2257 		break;
2258 	case MSR_IA32_MCG_CAP:
2259 		data = vcpu->arch.mcg_cap;
2260 		break;
2261 	case MSR_IA32_MCG_CTL:
2262 		if (!(mcg_cap & MCG_CTL_P))
2263 			return 1;
2264 		data = vcpu->arch.mcg_ctl;
2265 		break;
2266 	case MSR_IA32_MCG_STATUS:
2267 		data = vcpu->arch.mcg_status;
2268 		break;
2269 	default:
2270 		if (msr >= MSR_IA32_MC0_CTL &&
2271 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2272 			u32 offset = msr - MSR_IA32_MC0_CTL;
2273 			data = vcpu->arch.mce_banks[offset];
2274 			break;
2275 		}
2276 		return 1;
2277 	}
2278 	*pdata = data;
2279 	return 0;
2280 }
2281 
2282 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2283 {
2284 	u64 data = 0;
2285 	struct kvm *kvm = vcpu->kvm;
2286 
2287 	switch (msr) {
2288 	case HV_X64_MSR_GUEST_OS_ID:
2289 		data = kvm->arch.hv_guest_os_id;
2290 		break;
2291 	case HV_X64_MSR_HYPERCALL:
2292 		data = kvm->arch.hv_hypercall;
2293 		break;
2294 	default:
2295 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2296 		return 1;
2297 	}
2298 
2299 	*pdata = data;
2300 	return 0;
2301 }
2302 
2303 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2304 {
2305 	u64 data = 0;
2306 
2307 	switch (msr) {
2308 	case HV_X64_MSR_VP_INDEX: {
2309 		int r;
2310 		struct kvm_vcpu *v;
2311 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2312 			if (v == vcpu)
2313 				data = r;
2314 		break;
2315 	}
2316 	case HV_X64_MSR_EOI:
2317 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2318 	case HV_X64_MSR_ICR:
2319 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2320 	case HV_X64_MSR_TPR:
2321 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2322 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2323 		data = vcpu->arch.hv_vapic;
2324 		break;
2325 	default:
2326 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2327 		return 1;
2328 	}
2329 	*pdata = data;
2330 	return 0;
2331 }
2332 
2333 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2334 {
2335 	u64 data;
2336 
2337 	switch (msr) {
2338 	case MSR_IA32_PLATFORM_ID:
2339 	case MSR_IA32_EBL_CR_POWERON:
2340 	case MSR_IA32_DEBUGCTLMSR:
2341 	case MSR_IA32_LASTBRANCHFROMIP:
2342 	case MSR_IA32_LASTBRANCHTOIP:
2343 	case MSR_IA32_LASTINTFROMIP:
2344 	case MSR_IA32_LASTINTTOIP:
2345 	case MSR_K8_SYSCFG:
2346 	case MSR_K7_HWCR:
2347 	case MSR_VM_HSAVE_PA:
2348 	case MSR_K7_EVNTSEL0:
2349 	case MSR_K7_PERFCTR0:
2350 	case MSR_K8_INT_PENDING_MSG:
2351 	case MSR_AMD64_NB_CFG:
2352 	case MSR_FAM10H_MMIO_CONF_BASE:
2353 	case MSR_AMD64_BU_CFG2:
2354 		data = 0;
2355 		break;
2356 	case MSR_P6_PERFCTR0:
2357 	case MSR_P6_PERFCTR1:
2358 	case MSR_P6_EVNTSEL0:
2359 	case MSR_P6_EVNTSEL1:
2360 		if (kvm_pmu_msr(vcpu, msr))
2361 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2362 		data = 0;
2363 		break;
2364 	case MSR_IA32_UCODE_REV:
2365 		data = 0x100000000ULL;
2366 		break;
2367 	case MSR_MTRRcap:
2368 		data = 0x500 | KVM_NR_VAR_MTRR;
2369 		break;
2370 	case 0x200 ... 0x2ff:
2371 		return get_msr_mtrr(vcpu, msr, pdata);
2372 	case 0xcd: /* fsb frequency */
2373 		data = 3;
2374 		break;
2375 		/*
2376 		 * MSR_EBC_FREQUENCY_ID
2377 		 * Conservative value valid for even the basic CPU models.
2378 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2379 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2380 		 * and 266MHz for model 3, or 4. Set Core Clock
2381 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2382 		 * 31:24) even though these are only valid for CPU
2383 		 * models > 2, however guests may end up dividing or
2384 		 * multiplying by zero otherwise.
2385 		 */
2386 	case MSR_EBC_FREQUENCY_ID:
2387 		data = 1 << 24;
2388 		break;
2389 	case MSR_IA32_APICBASE:
2390 		data = kvm_get_apic_base(vcpu);
2391 		break;
2392 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2393 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2394 		break;
2395 	case MSR_IA32_TSCDEADLINE:
2396 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2397 		break;
2398 	case MSR_IA32_TSC_ADJUST:
2399 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2400 		break;
2401 	case MSR_IA32_MISC_ENABLE:
2402 		data = vcpu->arch.ia32_misc_enable_msr;
2403 		break;
2404 	case MSR_IA32_PERF_STATUS:
2405 		/* TSC increment by tick */
2406 		data = 1000ULL;
2407 		/* CPU multiplier */
2408 		data |= (((uint64_t)4ULL) << 40);
2409 		break;
2410 	case MSR_EFER:
2411 		data = vcpu->arch.efer;
2412 		break;
2413 	case MSR_KVM_WALL_CLOCK:
2414 	case MSR_KVM_WALL_CLOCK_NEW:
2415 		data = vcpu->kvm->arch.wall_clock;
2416 		break;
2417 	case MSR_KVM_SYSTEM_TIME:
2418 	case MSR_KVM_SYSTEM_TIME_NEW:
2419 		data = vcpu->arch.time;
2420 		break;
2421 	case MSR_KVM_ASYNC_PF_EN:
2422 		data = vcpu->arch.apf.msr_val;
2423 		break;
2424 	case MSR_KVM_STEAL_TIME:
2425 		data = vcpu->arch.st.msr_val;
2426 		break;
2427 	case MSR_KVM_PV_EOI_EN:
2428 		data = vcpu->arch.pv_eoi.msr_val;
2429 		break;
2430 	case MSR_IA32_P5_MC_ADDR:
2431 	case MSR_IA32_P5_MC_TYPE:
2432 	case MSR_IA32_MCG_CAP:
2433 	case MSR_IA32_MCG_CTL:
2434 	case MSR_IA32_MCG_STATUS:
2435 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2436 		return get_msr_mce(vcpu, msr, pdata);
2437 	case MSR_K7_CLK_CTL:
2438 		/*
2439 		 * Provide expected ramp-up count for K7. All other
2440 		 * are set to zero, indicating minimum divisors for
2441 		 * every field.
2442 		 *
2443 		 * This prevents guest kernels on AMD host with CPU
2444 		 * type 6, model 8 and higher from exploding due to
2445 		 * the rdmsr failing.
2446 		 */
2447 		data = 0x20000000;
2448 		break;
2449 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2450 		if (kvm_hv_msr_partition_wide(msr)) {
2451 			int r;
2452 			mutex_lock(&vcpu->kvm->lock);
2453 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2454 			mutex_unlock(&vcpu->kvm->lock);
2455 			return r;
2456 		} else
2457 			return get_msr_hyperv(vcpu, msr, pdata);
2458 		break;
2459 	case MSR_IA32_BBL_CR_CTL3:
2460 		/* This legacy MSR exists but isn't fully documented in current
2461 		 * silicon.  It is however accessed by winxp in very narrow
2462 		 * scenarios where it sets bit #19, itself documented as
2463 		 * a "reserved" bit.  Best effort attempt to source coherent
2464 		 * read data here should the balance of the register be
2465 		 * interpreted by the guest:
2466 		 *
2467 		 * L2 cache control register 3: 64GB range, 256KB size,
2468 		 * enabled, latency 0x1, configured
2469 		 */
2470 		data = 0xbe702111;
2471 		break;
2472 	case MSR_AMD64_OSVW_ID_LENGTH:
2473 		if (!guest_cpuid_has_osvw(vcpu))
2474 			return 1;
2475 		data = vcpu->arch.osvw.length;
2476 		break;
2477 	case MSR_AMD64_OSVW_STATUS:
2478 		if (!guest_cpuid_has_osvw(vcpu))
2479 			return 1;
2480 		data = vcpu->arch.osvw.status;
2481 		break;
2482 	default:
2483 		if (kvm_pmu_msr(vcpu, msr))
2484 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2485 		if (!ignore_msrs) {
2486 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2487 			return 1;
2488 		} else {
2489 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2490 			data = 0;
2491 		}
2492 		break;
2493 	}
2494 	*pdata = data;
2495 	return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2498 
2499 /*
2500  * Read or write a bunch of msrs. All parameters are kernel addresses.
2501  *
2502  * @return number of msrs set successfully.
2503  */
2504 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2505 		    struct kvm_msr_entry *entries,
2506 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2507 				  unsigned index, u64 *data))
2508 {
2509 	int i, idx;
2510 
2511 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2512 	for (i = 0; i < msrs->nmsrs; ++i)
2513 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2514 			break;
2515 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2516 
2517 	return i;
2518 }
2519 
2520 /*
2521  * Read or write a bunch of msrs. Parameters are user addresses.
2522  *
2523  * @return number of msrs set successfully.
2524  */
2525 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2526 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2527 				unsigned index, u64 *data),
2528 		  int writeback)
2529 {
2530 	struct kvm_msrs msrs;
2531 	struct kvm_msr_entry *entries;
2532 	int r, n;
2533 	unsigned size;
2534 
2535 	r = -EFAULT;
2536 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2537 		goto out;
2538 
2539 	r = -E2BIG;
2540 	if (msrs.nmsrs >= MAX_IO_MSRS)
2541 		goto out;
2542 
2543 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2544 	entries = memdup_user(user_msrs->entries, size);
2545 	if (IS_ERR(entries)) {
2546 		r = PTR_ERR(entries);
2547 		goto out;
2548 	}
2549 
2550 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2551 	if (r < 0)
2552 		goto out_free;
2553 
2554 	r = -EFAULT;
2555 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2556 		goto out_free;
2557 
2558 	r = n;
2559 
2560 out_free:
2561 	kfree(entries);
2562 out:
2563 	return r;
2564 }
2565 
2566 int kvm_dev_ioctl_check_extension(long ext)
2567 {
2568 	int r;
2569 
2570 	switch (ext) {
2571 	case KVM_CAP_IRQCHIP:
2572 	case KVM_CAP_HLT:
2573 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2574 	case KVM_CAP_SET_TSS_ADDR:
2575 	case KVM_CAP_EXT_CPUID:
2576 	case KVM_CAP_EXT_EMUL_CPUID:
2577 	case KVM_CAP_CLOCKSOURCE:
2578 	case KVM_CAP_PIT:
2579 	case KVM_CAP_NOP_IO_DELAY:
2580 	case KVM_CAP_MP_STATE:
2581 	case KVM_CAP_SYNC_MMU:
2582 	case KVM_CAP_USER_NMI:
2583 	case KVM_CAP_REINJECT_CONTROL:
2584 	case KVM_CAP_IRQ_INJECT_STATUS:
2585 	case KVM_CAP_IRQFD:
2586 	case KVM_CAP_IOEVENTFD:
2587 	case KVM_CAP_PIT2:
2588 	case KVM_CAP_PIT_STATE2:
2589 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2590 	case KVM_CAP_XEN_HVM:
2591 	case KVM_CAP_ADJUST_CLOCK:
2592 	case KVM_CAP_VCPU_EVENTS:
2593 	case KVM_CAP_HYPERV:
2594 	case KVM_CAP_HYPERV_VAPIC:
2595 	case KVM_CAP_HYPERV_SPIN:
2596 	case KVM_CAP_PCI_SEGMENT:
2597 	case KVM_CAP_DEBUGREGS:
2598 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2599 	case KVM_CAP_XSAVE:
2600 	case KVM_CAP_ASYNC_PF:
2601 	case KVM_CAP_GET_TSC_KHZ:
2602 	case KVM_CAP_KVMCLOCK_CTRL:
2603 	case KVM_CAP_READONLY_MEM:
2604 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2605 	case KVM_CAP_ASSIGN_DEV_IRQ:
2606 	case KVM_CAP_PCI_2_3:
2607 #endif
2608 		r = 1;
2609 		break;
2610 	case KVM_CAP_COALESCED_MMIO:
2611 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2612 		break;
2613 	case KVM_CAP_VAPIC:
2614 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2615 		break;
2616 	case KVM_CAP_NR_VCPUS:
2617 		r = KVM_SOFT_MAX_VCPUS;
2618 		break;
2619 	case KVM_CAP_MAX_VCPUS:
2620 		r = KVM_MAX_VCPUS;
2621 		break;
2622 	case KVM_CAP_NR_MEMSLOTS:
2623 		r = KVM_USER_MEM_SLOTS;
2624 		break;
2625 	case KVM_CAP_PV_MMU:	/* obsolete */
2626 		r = 0;
2627 		break;
2628 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2629 	case KVM_CAP_IOMMU:
2630 		r = iommu_present(&pci_bus_type);
2631 		break;
2632 #endif
2633 	case KVM_CAP_MCE:
2634 		r = KVM_MAX_MCE_BANKS;
2635 		break;
2636 	case KVM_CAP_XCRS:
2637 		r = cpu_has_xsave;
2638 		break;
2639 	case KVM_CAP_TSC_CONTROL:
2640 		r = kvm_has_tsc_control;
2641 		break;
2642 	case KVM_CAP_TSC_DEADLINE_TIMER:
2643 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2644 		break;
2645 	default:
2646 		r = 0;
2647 		break;
2648 	}
2649 	return r;
2650 
2651 }
2652 
2653 long kvm_arch_dev_ioctl(struct file *filp,
2654 			unsigned int ioctl, unsigned long arg)
2655 {
2656 	void __user *argp = (void __user *)arg;
2657 	long r;
2658 
2659 	switch (ioctl) {
2660 	case KVM_GET_MSR_INDEX_LIST: {
2661 		struct kvm_msr_list __user *user_msr_list = argp;
2662 		struct kvm_msr_list msr_list;
2663 		unsigned n;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2667 			goto out;
2668 		n = msr_list.nmsrs;
2669 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2670 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2671 			goto out;
2672 		r = -E2BIG;
2673 		if (n < msr_list.nmsrs)
2674 			goto out;
2675 		r = -EFAULT;
2676 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2677 				 num_msrs_to_save * sizeof(u32)))
2678 			goto out;
2679 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2680 				 &emulated_msrs,
2681 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2682 			goto out;
2683 		r = 0;
2684 		break;
2685 	}
2686 	case KVM_GET_SUPPORTED_CPUID:
2687 	case KVM_GET_EMULATED_CPUID: {
2688 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2689 		struct kvm_cpuid2 cpuid;
2690 
2691 		r = -EFAULT;
2692 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2693 			goto out;
2694 
2695 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2696 					    ioctl);
2697 		if (r)
2698 			goto out;
2699 
2700 		r = -EFAULT;
2701 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2702 			goto out;
2703 		r = 0;
2704 		break;
2705 	}
2706 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2707 		u64 mce_cap;
2708 
2709 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2710 		r = -EFAULT;
2711 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2712 			goto out;
2713 		r = 0;
2714 		break;
2715 	}
2716 	default:
2717 		r = -EINVAL;
2718 	}
2719 out:
2720 	return r;
2721 }
2722 
2723 static void wbinvd_ipi(void *garbage)
2724 {
2725 	wbinvd();
2726 }
2727 
2728 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2729 {
2730 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2731 }
2732 
2733 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2734 {
2735 	/* Address WBINVD may be executed by guest */
2736 	if (need_emulate_wbinvd(vcpu)) {
2737 		if (kvm_x86_ops->has_wbinvd_exit())
2738 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2739 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2740 			smp_call_function_single(vcpu->cpu,
2741 					wbinvd_ipi, NULL, 1);
2742 	}
2743 
2744 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2745 
2746 	/* Apply any externally detected TSC adjustments (due to suspend) */
2747 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2748 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2749 		vcpu->arch.tsc_offset_adjustment = 0;
2750 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2751 	}
2752 
2753 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2754 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2755 				native_read_tsc() - vcpu->arch.last_host_tsc;
2756 		if (tsc_delta < 0)
2757 			mark_tsc_unstable("KVM discovered backwards TSC");
2758 		if (check_tsc_unstable()) {
2759 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2760 						vcpu->arch.last_guest_tsc);
2761 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2762 			vcpu->arch.tsc_catchup = 1;
2763 		}
2764 		/*
2765 		 * On a host with synchronized TSC, there is no need to update
2766 		 * kvmclock on vcpu->cpu migration
2767 		 */
2768 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2769 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2770 		if (vcpu->cpu != cpu)
2771 			kvm_migrate_timers(vcpu);
2772 		vcpu->cpu = cpu;
2773 	}
2774 
2775 	accumulate_steal_time(vcpu);
2776 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2777 }
2778 
2779 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2780 {
2781 	kvm_x86_ops->vcpu_put(vcpu);
2782 	kvm_put_guest_fpu(vcpu);
2783 	vcpu->arch.last_host_tsc = native_read_tsc();
2784 }
2785 
2786 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2787 				    struct kvm_lapic_state *s)
2788 {
2789 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2790 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2791 
2792 	return 0;
2793 }
2794 
2795 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2796 				    struct kvm_lapic_state *s)
2797 {
2798 	kvm_apic_post_state_restore(vcpu, s);
2799 	update_cr8_intercept(vcpu);
2800 
2801 	return 0;
2802 }
2803 
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805 				    struct kvm_interrupt *irq)
2806 {
2807 	if (irq->irq >= KVM_NR_INTERRUPTS)
2808 		return -EINVAL;
2809 	if (irqchip_in_kernel(vcpu->kvm))
2810 		return -ENXIO;
2811 
2812 	kvm_queue_interrupt(vcpu, irq->irq, false);
2813 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2814 
2815 	return 0;
2816 }
2817 
2818 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2819 {
2820 	kvm_inject_nmi(vcpu);
2821 
2822 	return 0;
2823 }
2824 
2825 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2826 					   struct kvm_tpr_access_ctl *tac)
2827 {
2828 	if (tac->flags)
2829 		return -EINVAL;
2830 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2831 	return 0;
2832 }
2833 
2834 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2835 					u64 mcg_cap)
2836 {
2837 	int r;
2838 	unsigned bank_num = mcg_cap & 0xff, bank;
2839 
2840 	r = -EINVAL;
2841 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2842 		goto out;
2843 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2844 		goto out;
2845 	r = 0;
2846 	vcpu->arch.mcg_cap = mcg_cap;
2847 	/* Init IA32_MCG_CTL to all 1s */
2848 	if (mcg_cap & MCG_CTL_P)
2849 		vcpu->arch.mcg_ctl = ~(u64)0;
2850 	/* Init IA32_MCi_CTL to all 1s */
2851 	for (bank = 0; bank < bank_num; bank++)
2852 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2853 out:
2854 	return r;
2855 }
2856 
2857 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2858 				      struct kvm_x86_mce *mce)
2859 {
2860 	u64 mcg_cap = vcpu->arch.mcg_cap;
2861 	unsigned bank_num = mcg_cap & 0xff;
2862 	u64 *banks = vcpu->arch.mce_banks;
2863 
2864 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2865 		return -EINVAL;
2866 	/*
2867 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2868 	 * reporting is disabled
2869 	 */
2870 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2871 	    vcpu->arch.mcg_ctl != ~(u64)0)
2872 		return 0;
2873 	banks += 4 * mce->bank;
2874 	/*
2875 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2876 	 * reporting is disabled for the bank
2877 	 */
2878 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2879 		return 0;
2880 	if (mce->status & MCI_STATUS_UC) {
2881 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2882 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2883 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2884 			return 0;
2885 		}
2886 		if (banks[1] & MCI_STATUS_VAL)
2887 			mce->status |= MCI_STATUS_OVER;
2888 		banks[2] = mce->addr;
2889 		banks[3] = mce->misc;
2890 		vcpu->arch.mcg_status = mce->mcg_status;
2891 		banks[1] = mce->status;
2892 		kvm_queue_exception(vcpu, MC_VECTOR);
2893 	} else if (!(banks[1] & MCI_STATUS_VAL)
2894 		   || !(banks[1] & MCI_STATUS_UC)) {
2895 		if (banks[1] & MCI_STATUS_VAL)
2896 			mce->status |= MCI_STATUS_OVER;
2897 		banks[2] = mce->addr;
2898 		banks[3] = mce->misc;
2899 		banks[1] = mce->status;
2900 	} else
2901 		banks[1] |= MCI_STATUS_OVER;
2902 	return 0;
2903 }
2904 
2905 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2906 					       struct kvm_vcpu_events *events)
2907 {
2908 	process_nmi(vcpu);
2909 	events->exception.injected =
2910 		vcpu->arch.exception.pending &&
2911 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2912 	events->exception.nr = vcpu->arch.exception.nr;
2913 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2914 	events->exception.pad = 0;
2915 	events->exception.error_code = vcpu->arch.exception.error_code;
2916 
2917 	events->interrupt.injected =
2918 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2919 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2920 	events->interrupt.soft = 0;
2921 	events->interrupt.shadow =
2922 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2923 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2924 
2925 	events->nmi.injected = vcpu->arch.nmi_injected;
2926 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928 	events->nmi.pad = 0;
2929 
2930 	events->sipi_vector = 0; /* never valid when reporting to user space */
2931 
2932 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2933 			 | KVM_VCPUEVENT_VALID_SHADOW);
2934 	memset(&events->reserved, 0, sizeof(events->reserved));
2935 }
2936 
2937 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2938 					      struct kvm_vcpu_events *events)
2939 {
2940 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2941 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2942 			      | KVM_VCPUEVENT_VALID_SHADOW))
2943 		return -EINVAL;
2944 
2945 	process_nmi(vcpu);
2946 	vcpu->arch.exception.pending = events->exception.injected;
2947 	vcpu->arch.exception.nr = events->exception.nr;
2948 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2949 	vcpu->arch.exception.error_code = events->exception.error_code;
2950 
2951 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2952 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2953 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2954 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2955 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2956 						  events->interrupt.shadow);
2957 
2958 	vcpu->arch.nmi_injected = events->nmi.injected;
2959 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2960 		vcpu->arch.nmi_pending = events->nmi.pending;
2961 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2962 
2963 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2964 	    kvm_vcpu_has_lapic(vcpu))
2965 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2966 
2967 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2968 
2969 	return 0;
2970 }
2971 
2972 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2973 					     struct kvm_debugregs *dbgregs)
2974 {
2975 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2976 	dbgregs->dr6 = vcpu->arch.dr6;
2977 	dbgregs->dr7 = vcpu->arch.dr7;
2978 	dbgregs->flags = 0;
2979 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2980 }
2981 
2982 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2983 					    struct kvm_debugregs *dbgregs)
2984 {
2985 	if (dbgregs->flags)
2986 		return -EINVAL;
2987 
2988 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2989 	vcpu->arch.dr6 = dbgregs->dr6;
2990 	vcpu->arch.dr7 = dbgregs->dr7;
2991 
2992 	return 0;
2993 }
2994 
2995 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2996 					 struct kvm_xsave *guest_xsave)
2997 {
2998 	if (cpu_has_xsave) {
2999 		memcpy(guest_xsave->region,
3000 			&vcpu->arch.guest_fpu.state->xsave,
3001 			vcpu->arch.guest_xstate_size);
3002 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3003 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3004 	} else {
3005 		memcpy(guest_xsave->region,
3006 			&vcpu->arch.guest_fpu.state->fxsave,
3007 			sizeof(struct i387_fxsave_struct));
3008 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3009 			XSTATE_FPSSE;
3010 	}
3011 }
3012 
3013 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3014 					struct kvm_xsave *guest_xsave)
3015 {
3016 	u64 xstate_bv =
3017 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3018 
3019 	if (cpu_has_xsave) {
3020 		/*
3021 		 * Here we allow setting states that are not present in
3022 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3023 		 * with old userspace.
3024 		 */
3025 		if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3026 			return -EINVAL;
3027 		if (xstate_bv & ~host_xcr0)
3028 			return -EINVAL;
3029 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
3030 			guest_xsave->region, vcpu->arch.guest_xstate_size);
3031 	} else {
3032 		if (xstate_bv & ~XSTATE_FPSSE)
3033 			return -EINVAL;
3034 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3035 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3036 	}
3037 	return 0;
3038 }
3039 
3040 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3041 					struct kvm_xcrs *guest_xcrs)
3042 {
3043 	if (!cpu_has_xsave) {
3044 		guest_xcrs->nr_xcrs = 0;
3045 		return;
3046 	}
3047 
3048 	guest_xcrs->nr_xcrs = 1;
3049 	guest_xcrs->flags = 0;
3050 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3051 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3052 }
3053 
3054 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3055 				       struct kvm_xcrs *guest_xcrs)
3056 {
3057 	int i, r = 0;
3058 
3059 	if (!cpu_has_xsave)
3060 		return -EINVAL;
3061 
3062 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3063 		return -EINVAL;
3064 
3065 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3066 		/* Only support XCR0 currently */
3067 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3068 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3069 				guest_xcrs->xcrs[i].value);
3070 			break;
3071 		}
3072 	if (r)
3073 		r = -EINVAL;
3074 	return r;
3075 }
3076 
3077 /*
3078  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3079  * stopped by the hypervisor.  This function will be called from the host only.
3080  * EINVAL is returned when the host attempts to set the flag for a guest that
3081  * does not support pv clocks.
3082  */
3083 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3084 {
3085 	if (!vcpu->arch.pv_time_enabled)
3086 		return -EINVAL;
3087 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3088 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3089 	return 0;
3090 }
3091 
3092 long kvm_arch_vcpu_ioctl(struct file *filp,
3093 			 unsigned int ioctl, unsigned long arg)
3094 {
3095 	struct kvm_vcpu *vcpu = filp->private_data;
3096 	void __user *argp = (void __user *)arg;
3097 	int r;
3098 	union {
3099 		struct kvm_lapic_state *lapic;
3100 		struct kvm_xsave *xsave;
3101 		struct kvm_xcrs *xcrs;
3102 		void *buffer;
3103 	} u;
3104 
3105 	u.buffer = NULL;
3106 	switch (ioctl) {
3107 	case KVM_GET_LAPIC: {
3108 		r = -EINVAL;
3109 		if (!vcpu->arch.apic)
3110 			goto out;
3111 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3112 
3113 		r = -ENOMEM;
3114 		if (!u.lapic)
3115 			goto out;
3116 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3117 		if (r)
3118 			goto out;
3119 		r = -EFAULT;
3120 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3121 			goto out;
3122 		r = 0;
3123 		break;
3124 	}
3125 	case KVM_SET_LAPIC: {
3126 		r = -EINVAL;
3127 		if (!vcpu->arch.apic)
3128 			goto out;
3129 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3130 		if (IS_ERR(u.lapic))
3131 			return PTR_ERR(u.lapic);
3132 
3133 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3134 		break;
3135 	}
3136 	case KVM_INTERRUPT: {
3137 		struct kvm_interrupt irq;
3138 
3139 		r = -EFAULT;
3140 		if (copy_from_user(&irq, argp, sizeof irq))
3141 			goto out;
3142 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3143 		break;
3144 	}
3145 	case KVM_NMI: {
3146 		r = kvm_vcpu_ioctl_nmi(vcpu);
3147 		break;
3148 	}
3149 	case KVM_SET_CPUID: {
3150 		struct kvm_cpuid __user *cpuid_arg = argp;
3151 		struct kvm_cpuid cpuid;
3152 
3153 		r = -EFAULT;
3154 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3155 			goto out;
3156 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3157 		break;
3158 	}
3159 	case KVM_SET_CPUID2: {
3160 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3161 		struct kvm_cpuid2 cpuid;
3162 
3163 		r = -EFAULT;
3164 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3165 			goto out;
3166 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3167 					      cpuid_arg->entries);
3168 		break;
3169 	}
3170 	case KVM_GET_CPUID2: {
3171 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3172 		struct kvm_cpuid2 cpuid;
3173 
3174 		r = -EFAULT;
3175 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3176 			goto out;
3177 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3178 					      cpuid_arg->entries);
3179 		if (r)
3180 			goto out;
3181 		r = -EFAULT;
3182 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3183 			goto out;
3184 		r = 0;
3185 		break;
3186 	}
3187 	case KVM_GET_MSRS:
3188 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3189 		break;
3190 	case KVM_SET_MSRS:
3191 		r = msr_io(vcpu, argp, do_set_msr, 0);
3192 		break;
3193 	case KVM_TPR_ACCESS_REPORTING: {
3194 		struct kvm_tpr_access_ctl tac;
3195 
3196 		r = -EFAULT;
3197 		if (copy_from_user(&tac, argp, sizeof tac))
3198 			goto out;
3199 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3200 		if (r)
3201 			goto out;
3202 		r = -EFAULT;
3203 		if (copy_to_user(argp, &tac, sizeof tac))
3204 			goto out;
3205 		r = 0;
3206 		break;
3207 	};
3208 	case KVM_SET_VAPIC_ADDR: {
3209 		struct kvm_vapic_addr va;
3210 
3211 		r = -EINVAL;
3212 		if (!irqchip_in_kernel(vcpu->kvm))
3213 			goto out;
3214 		r = -EFAULT;
3215 		if (copy_from_user(&va, argp, sizeof va))
3216 			goto out;
3217 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3218 		break;
3219 	}
3220 	case KVM_X86_SETUP_MCE: {
3221 		u64 mcg_cap;
3222 
3223 		r = -EFAULT;
3224 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3225 			goto out;
3226 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3227 		break;
3228 	}
3229 	case KVM_X86_SET_MCE: {
3230 		struct kvm_x86_mce mce;
3231 
3232 		r = -EFAULT;
3233 		if (copy_from_user(&mce, argp, sizeof mce))
3234 			goto out;
3235 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3236 		break;
3237 	}
3238 	case KVM_GET_VCPU_EVENTS: {
3239 		struct kvm_vcpu_events events;
3240 
3241 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3242 
3243 		r = -EFAULT;
3244 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3245 			break;
3246 		r = 0;
3247 		break;
3248 	}
3249 	case KVM_SET_VCPU_EVENTS: {
3250 		struct kvm_vcpu_events events;
3251 
3252 		r = -EFAULT;
3253 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3254 			break;
3255 
3256 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3257 		break;
3258 	}
3259 	case KVM_GET_DEBUGREGS: {
3260 		struct kvm_debugregs dbgregs;
3261 
3262 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3263 
3264 		r = -EFAULT;
3265 		if (copy_to_user(argp, &dbgregs,
3266 				 sizeof(struct kvm_debugregs)))
3267 			break;
3268 		r = 0;
3269 		break;
3270 	}
3271 	case KVM_SET_DEBUGREGS: {
3272 		struct kvm_debugregs dbgregs;
3273 
3274 		r = -EFAULT;
3275 		if (copy_from_user(&dbgregs, argp,
3276 				   sizeof(struct kvm_debugregs)))
3277 			break;
3278 
3279 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3280 		break;
3281 	}
3282 	case KVM_GET_XSAVE: {
3283 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3284 		r = -ENOMEM;
3285 		if (!u.xsave)
3286 			break;
3287 
3288 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3289 
3290 		r = -EFAULT;
3291 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3292 			break;
3293 		r = 0;
3294 		break;
3295 	}
3296 	case KVM_SET_XSAVE: {
3297 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3298 		if (IS_ERR(u.xsave))
3299 			return PTR_ERR(u.xsave);
3300 
3301 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3302 		break;
3303 	}
3304 	case KVM_GET_XCRS: {
3305 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3306 		r = -ENOMEM;
3307 		if (!u.xcrs)
3308 			break;
3309 
3310 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3311 
3312 		r = -EFAULT;
3313 		if (copy_to_user(argp, u.xcrs,
3314 				 sizeof(struct kvm_xcrs)))
3315 			break;
3316 		r = 0;
3317 		break;
3318 	}
3319 	case KVM_SET_XCRS: {
3320 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3321 		if (IS_ERR(u.xcrs))
3322 			return PTR_ERR(u.xcrs);
3323 
3324 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3325 		break;
3326 	}
3327 	case KVM_SET_TSC_KHZ: {
3328 		u32 user_tsc_khz;
3329 
3330 		r = -EINVAL;
3331 		user_tsc_khz = (u32)arg;
3332 
3333 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3334 			goto out;
3335 
3336 		if (user_tsc_khz == 0)
3337 			user_tsc_khz = tsc_khz;
3338 
3339 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3340 
3341 		r = 0;
3342 		goto out;
3343 	}
3344 	case KVM_GET_TSC_KHZ: {
3345 		r = vcpu->arch.virtual_tsc_khz;
3346 		goto out;
3347 	}
3348 	case KVM_KVMCLOCK_CTRL: {
3349 		r = kvm_set_guest_paused(vcpu);
3350 		goto out;
3351 	}
3352 	default:
3353 		r = -EINVAL;
3354 	}
3355 out:
3356 	kfree(u.buffer);
3357 	return r;
3358 }
3359 
3360 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3361 {
3362 	return VM_FAULT_SIGBUS;
3363 }
3364 
3365 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3366 {
3367 	int ret;
3368 
3369 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3370 		return -EINVAL;
3371 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3372 	return ret;
3373 }
3374 
3375 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3376 					      u64 ident_addr)
3377 {
3378 	kvm->arch.ept_identity_map_addr = ident_addr;
3379 	return 0;
3380 }
3381 
3382 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3383 					  u32 kvm_nr_mmu_pages)
3384 {
3385 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3386 		return -EINVAL;
3387 
3388 	mutex_lock(&kvm->slots_lock);
3389 
3390 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3391 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3392 
3393 	mutex_unlock(&kvm->slots_lock);
3394 	return 0;
3395 }
3396 
3397 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3398 {
3399 	return kvm->arch.n_max_mmu_pages;
3400 }
3401 
3402 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3403 {
3404 	int r;
3405 
3406 	r = 0;
3407 	switch (chip->chip_id) {
3408 	case KVM_IRQCHIP_PIC_MASTER:
3409 		memcpy(&chip->chip.pic,
3410 			&pic_irqchip(kvm)->pics[0],
3411 			sizeof(struct kvm_pic_state));
3412 		break;
3413 	case KVM_IRQCHIP_PIC_SLAVE:
3414 		memcpy(&chip->chip.pic,
3415 			&pic_irqchip(kvm)->pics[1],
3416 			sizeof(struct kvm_pic_state));
3417 		break;
3418 	case KVM_IRQCHIP_IOAPIC:
3419 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3420 		break;
3421 	default:
3422 		r = -EINVAL;
3423 		break;
3424 	}
3425 	return r;
3426 }
3427 
3428 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3429 {
3430 	int r;
3431 
3432 	r = 0;
3433 	switch (chip->chip_id) {
3434 	case KVM_IRQCHIP_PIC_MASTER:
3435 		spin_lock(&pic_irqchip(kvm)->lock);
3436 		memcpy(&pic_irqchip(kvm)->pics[0],
3437 			&chip->chip.pic,
3438 			sizeof(struct kvm_pic_state));
3439 		spin_unlock(&pic_irqchip(kvm)->lock);
3440 		break;
3441 	case KVM_IRQCHIP_PIC_SLAVE:
3442 		spin_lock(&pic_irqchip(kvm)->lock);
3443 		memcpy(&pic_irqchip(kvm)->pics[1],
3444 			&chip->chip.pic,
3445 			sizeof(struct kvm_pic_state));
3446 		spin_unlock(&pic_irqchip(kvm)->lock);
3447 		break;
3448 	case KVM_IRQCHIP_IOAPIC:
3449 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3450 		break;
3451 	default:
3452 		r = -EINVAL;
3453 		break;
3454 	}
3455 	kvm_pic_update_irq(pic_irqchip(kvm));
3456 	return r;
3457 }
3458 
3459 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3460 {
3461 	int r = 0;
3462 
3463 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3465 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3466 	return r;
3467 }
3468 
3469 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3470 {
3471 	int r = 0;
3472 
3473 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3474 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3475 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3476 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3477 	return r;
3478 }
3479 
3480 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3481 {
3482 	int r = 0;
3483 
3484 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3485 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3486 		sizeof(ps->channels));
3487 	ps->flags = kvm->arch.vpit->pit_state.flags;
3488 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3489 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3490 	return r;
3491 }
3492 
3493 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3494 {
3495 	int r = 0, start = 0;
3496 	u32 prev_legacy, cur_legacy;
3497 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3498 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3499 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3500 	if (!prev_legacy && cur_legacy)
3501 		start = 1;
3502 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3503 	       sizeof(kvm->arch.vpit->pit_state.channels));
3504 	kvm->arch.vpit->pit_state.flags = ps->flags;
3505 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3506 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3507 	return r;
3508 }
3509 
3510 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3511 				 struct kvm_reinject_control *control)
3512 {
3513 	if (!kvm->arch.vpit)
3514 		return -ENXIO;
3515 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3516 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3517 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3518 	return 0;
3519 }
3520 
3521 /**
3522  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3523  * @kvm: kvm instance
3524  * @log: slot id and address to which we copy the log
3525  *
3526  * We need to keep it in mind that VCPU threads can write to the bitmap
3527  * concurrently.  So, to avoid losing data, we keep the following order for
3528  * each bit:
3529  *
3530  *   1. Take a snapshot of the bit and clear it if needed.
3531  *   2. Write protect the corresponding page.
3532  *   3. Flush TLB's if needed.
3533  *   4. Copy the snapshot to the userspace.
3534  *
3535  * Between 2 and 3, the guest may write to the page using the remaining TLB
3536  * entry.  This is not a problem because the page will be reported dirty at
3537  * step 4 using the snapshot taken before and step 3 ensures that successive
3538  * writes will be logged for the next call.
3539  */
3540 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3541 {
3542 	int r;
3543 	struct kvm_memory_slot *memslot;
3544 	unsigned long n, i;
3545 	unsigned long *dirty_bitmap;
3546 	unsigned long *dirty_bitmap_buffer;
3547 	bool is_dirty = false;
3548 
3549 	mutex_lock(&kvm->slots_lock);
3550 
3551 	r = -EINVAL;
3552 	if (log->slot >= KVM_USER_MEM_SLOTS)
3553 		goto out;
3554 
3555 	memslot = id_to_memslot(kvm->memslots, log->slot);
3556 
3557 	dirty_bitmap = memslot->dirty_bitmap;
3558 	r = -ENOENT;
3559 	if (!dirty_bitmap)
3560 		goto out;
3561 
3562 	n = kvm_dirty_bitmap_bytes(memslot);
3563 
3564 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3565 	memset(dirty_bitmap_buffer, 0, n);
3566 
3567 	spin_lock(&kvm->mmu_lock);
3568 
3569 	for (i = 0; i < n / sizeof(long); i++) {
3570 		unsigned long mask;
3571 		gfn_t offset;
3572 
3573 		if (!dirty_bitmap[i])
3574 			continue;
3575 
3576 		is_dirty = true;
3577 
3578 		mask = xchg(&dirty_bitmap[i], 0);
3579 		dirty_bitmap_buffer[i] = mask;
3580 
3581 		offset = i * BITS_PER_LONG;
3582 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3583 	}
3584 	if (is_dirty)
3585 		kvm_flush_remote_tlbs(kvm);
3586 
3587 	spin_unlock(&kvm->mmu_lock);
3588 
3589 	r = -EFAULT;
3590 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3591 		goto out;
3592 
3593 	r = 0;
3594 out:
3595 	mutex_unlock(&kvm->slots_lock);
3596 	return r;
3597 }
3598 
3599 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3600 			bool line_status)
3601 {
3602 	if (!irqchip_in_kernel(kvm))
3603 		return -ENXIO;
3604 
3605 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3606 					irq_event->irq, irq_event->level,
3607 					line_status);
3608 	return 0;
3609 }
3610 
3611 long kvm_arch_vm_ioctl(struct file *filp,
3612 		       unsigned int ioctl, unsigned long arg)
3613 {
3614 	struct kvm *kvm = filp->private_data;
3615 	void __user *argp = (void __user *)arg;
3616 	int r = -ENOTTY;
3617 	/*
3618 	 * This union makes it completely explicit to gcc-3.x
3619 	 * that these two variables' stack usage should be
3620 	 * combined, not added together.
3621 	 */
3622 	union {
3623 		struct kvm_pit_state ps;
3624 		struct kvm_pit_state2 ps2;
3625 		struct kvm_pit_config pit_config;
3626 	} u;
3627 
3628 	switch (ioctl) {
3629 	case KVM_SET_TSS_ADDR:
3630 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3631 		break;
3632 	case KVM_SET_IDENTITY_MAP_ADDR: {
3633 		u64 ident_addr;
3634 
3635 		r = -EFAULT;
3636 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3637 			goto out;
3638 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3639 		break;
3640 	}
3641 	case KVM_SET_NR_MMU_PAGES:
3642 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3643 		break;
3644 	case KVM_GET_NR_MMU_PAGES:
3645 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3646 		break;
3647 	case KVM_CREATE_IRQCHIP: {
3648 		struct kvm_pic *vpic;
3649 
3650 		mutex_lock(&kvm->lock);
3651 		r = -EEXIST;
3652 		if (kvm->arch.vpic)
3653 			goto create_irqchip_unlock;
3654 		r = -EINVAL;
3655 		if (atomic_read(&kvm->online_vcpus))
3656 			goto create_irqchip_unlock;
3657 		r = -ENOMEM;
3658 		vpic = kvm_create_pic(kvm);
3659 		if (vpic) {
3660 			r = kvm_ioapic_init(kvm);
3661 			if (r) {
3662 				mutex_lock(&kvm->slots_lock);
3663 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3664 							  &vpic->dev_master);
3665 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3666 							  &vpic->dev_slave);
3667 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3668 							  &vpic->dev_eclr);
3669 				mutex_unlock(&kvm->slots_lock);
3670 				kfree(vpic);
3671 				goto create_irqchip_unlock;
3672 			}
3673 		} else
3674 			goto create_irqchip_unlock;
3675 		smp_wmb();
3676 		kvm->arch.vpic = vpic;
3677 		smp_wmb();
3678 		r = kvm_setup_default_irq_routing(kvm);
3679 		if (r) {
3680 			mutex_lock(&kvm->slots_lock);
3681 			mutex_lock(&kvm->irq_lock);
3682 			kvm_ioapic_destroy(kvm);
3683 			kvm_destroy_pic(kvm);
3684 			mutex_unlock(&kvm->irq_lock);
3685 			mutex_unlock(&kvm->slots_lock);
3686 		}
3687 	create_irqchip_unlock:
3688 		mutex_unlock(&kvm->lock);
3689 		break;
3690 	}
3691 	case KVM_CREATE_PIT:
3692 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3693 		goto create_pit;
3694 	case KVM_CREATE_PIT2:
3695 		r = -EFAULT;
3696 		if (copy_from_user(&u.pit_config, argp,
3697 				   sizeof(struct kvm_pit_config)))
3698 			goto out;
3699 	create_pit:
3700 		mutex_lock(&kvm->slots_lock);
3701 		r = -EEXIST;
3702 		if (kvm->arch.vpit)
3703 			goto create_pit_unlock;
3704 		r = -ENOMEM;
3705 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3706 		if (kvm->arch.vpit)
3707 			r = 0;
3708 	create_pit_unlock:
3709 		mutex_unlock(&kvm->slots_lock);
3710 		break;
3711 	case KVM_GET_IRQCHIP: {
3712 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3713 		struct kvm_irqchip *chip;
3714 
3715 		chip = memdup_user(argp, sizeof(*chip));
3716 		if (IS_ERR(chip)) {
3717 			r = PTR_ERR(chip);
3718 			goto out;
3719 		}
3720 
3721 		r = -ENXIO;
3722 		if (!irqchip_in_kernel(kvm))
3723 			goto get_irqchip_out;
3724 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3725 		if (r)
3726 			goto get_irqchip_out;
3727 		r = -EFAULT;
3728 		if (copy_to_user(argp, chip, sizeof *chip))
3729 			goto get_irqchip_out;
3730 		r = 0;
3731 	get_irqchip_out:
3732 		kfree(chip);
3733 		break;
3734 	}
3735 	case KVM_SET_IRQCHIP: {
3736 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3737 		struct kvm_irqchip *chip;
3738 
3739 		chip = memdup_user(argp, sizeof(*chip));
3740 		if (IS_ERR(chip)) {
3741 			r = PTR_ERR(chip);
3742 			goto out;
3743 		}
3744 
3745 		r = -ENXIO;
3746 		if (!irqchip_in_kernel(kvm))
3747 			goto set_irqchip_out;
3748 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3749 		if (r)
3750 			goto set_irqchip_out;
3751 		r = 0;
3752 	set_irqchip_out:
3753 		kfree(chip);
3754 		break;
3755 	}
3756 	case KVM_GET_PIT: {
3757 		r = -EFAULT;
3758 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3759 			goto out;
3760 		r = -ENXIO;
3761 		if (!kvm->arch.vpit)
3762 			goto out;
3763 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3764 		if (r)
3765 			goto out;
3766 		r = -EFAULT;
3767 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3768 			goto out;
3769 		r = 0;
3770 		break;
3771 	}
3772 	case KVM_SET_PIT: {
3773 		r = -EFAULT;
3774 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3775 			goto out;
3776 		r = -ENXIO;
3777 		if (!kvm->arch.vpit)
3778 			goto out;
3779 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3780 		break;
3781 	}
3782 	case KVM_GET_PIT2: {
3783 		r = -ENXIO;
3784 		if (!kvm->arch.vpit)
3785 			goto out;
3786 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3787 		if (r)
3788 			goto out;
3789 		r = -EFAULT;
3790 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3791 			goto out;
3792 		r = 0;
3793 		break;
3794 	}
3795 	case KVM_SET_PIT2: {
3796 		r = -EFAULT;
3797 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3798 			goto out;
3799 		r = -ENXIO;
3800 		if (!kvm->arch.vpit)
3801 			goto out;
3802 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3803 		break;
3804 	}
3805 	case KVM_REINJECT_CONTROL: {
3806 		struct kvm_reinject_control control;
3807 		r =  -EFAULT;
3808 		if (copy_from_user(&control, argp, sizeof(control)))
3809 			goto out;
3810 		r = kvm_vm_ioctl_reinject(kvm, &control);
3811 		break;
3812 	}
3813 	case KVM_XEN_HVM_CONFIG: {
3814 		r = -EFAULT;
3815 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3816 				   sizeof(struct kvm_xen_hvm_config)))
3817 			goto out;
3818 		r = -EINVAL;
3819 		if (kvm->arch.xen_hvm_config.flags)
3820 			goto out;
3821 		r = 0;
3822 		break;
3823 	}
3824 	case KVM_SET_CLOCK: {
3825 		struct kvm_clock_data user_ns;
3826 		u64 now_ns;
3827 		s64 delta;
3828 
3829 		r = -EFAULT;
3830 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3831 			goto out;
3832 
3833 		r = -EINVAL;
3834 		if (user_ns.flags)
3835 			goto out;
3836 
3837 		r = 0;
3838 		local_irq_disable();
3839 		now_ns = get_kernel_ns();
3840 		delta = user_ns.clock - now_ns;
3841 		local_irq_enable();
3842 		kvm->arch.kvmclock_offset = delta;
3843 		kvm_gen_update_masterclock(kvm);
3844 		break;
3845 	}
3846 	case KVM_GET_CLOCK: {
3847 		struct kvm_clock_data user_ns;
3848 		u64 now_ns;
3849 
3850 		local_irq_disable();
3851 		now_ns = get_kernel_ns();
3852 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3853 		local_irq_enable();
3854 		user_ns.flags = 0;
3855 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3856 
3857 		r = -EFAULT;
3858 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3859 			goto out;
3860 		r = 0;
3861 		break;
3862 	}
3863 
3864 	default:
3865 		;
3866 	}
3867 out:
3868 	return r;
3869 }
3870 
3871 static void kvm_init_msr_list(void)
3872 {
3873 	u32 dummy[2];
3874 	unsigned i, j;
3875 
3876 	/* skip the first msrs in the list. KVM-specific */
3877 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3878 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3879 			continue;
3880 		if (j < i)
3881 			msrs_to_save[j] = msrs_to_save[i];
3882 		j++;
3883 	}
3884 	num_msrs_to_save = j;
3885 }
3886 
3887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3888 			   const void *v)
3889 {
3890 	int handled = 0;
3891 	int n;
3892 
3893 	do {
3894 		n = min(len, 8);
3895 		if (!(vcpu->arch.apic &&
3896 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3897 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3898 			break;
3899 		handled += n;
3900 		addr += n;
3901 		len -= n;
3902 		v += n;
3903 	} while (len);
3904 
3905 	return handled;
3906 }
3907 
3908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3909 {
3910 	int handled = 0;
3911 	int n;
3912 
3913 	do {
3914 		n = min(len, 8);
3915 		if (!(vcpu->arch.apic &&
3916 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3917 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3918 			break;
3919 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3920 		handled += n;
3921 		addr += n;
3922 		len -= n;
3923 		v += n;
3924 	} while (len);
3925 
3926 	return handled;
3927 }
3928 
3929 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3930 			struct kvm_segment *var, int seg)
3931 {
3932 	kvm_x86_ops->set_segment(vcpu, var, seg);
3933 }
3934 
3935 void kvm_get_segment(struct kvm_vcpu *vcpu,
3936 		     struct kvm_segment *var, int seg)
3937 {
3938 	kvm_x86_ops->get_segment(vcpu, var, seg);
3939 }
3940 
3941 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3942 {
3943 	gpa_t t_gpa;
3944 	struct x86_exception exception;
3945 
3946 	BUG_ON(!mmu_is_nested(vcpu));
3947 
3948 	/* NPT walks are always user-walks */
3949 	access |= PFERR_USER_MASK;
3950 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3951 
3952 	return t_gpa;
3953 }
3954 
3955 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3956 			      struct x86_exception *exception)
3957 {
3958 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3960 }
3961 
3962  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3963 				struct x86_exception *exception)
3964 {
3965 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966 	access |= PFERR_FETCH_MASK;
3967 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3968 }
3969 
3970 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3971 			       struct x86_exception *exception)
3972 {
3973 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3974 	access |= PFERR_WRITE_MASK;
3975 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3976 }
3977 
3978 /* uses this to access any guest's mapped memory without checking CPL */
3979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3980 				struct x86_exception *exception)
3981 {
3982 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3983 }
3984 
3985 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3986 				      struct kvm_vcpu *vcpu, u32 access,
3987 				      struct x86_exception *exception)
3988 {
3989 	void *data = val;
3990 	int r = X86EMUL_CONTINUE;
3991 
3992 	while (bytes) {
3993 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3994 							    exception);
3995 		unsigned offset = addr & (PAGE_SIZE-1);
3996 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3997 		int ret;
3998 
3999 		if (gpa == UNMAPPED_GVA)
4000 			return X86EMUL_PROPAGATE_FAULT;
4001 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4002 		if (ret < 0) {
4003 			r = X86EMUL_IO_NEEDED;
4004 			goto out;
4005 		}
4006 
4007 		bytes -= toread;
4008 		data += toread;
4009 		addr += toread;
4010 	}
4011 out:
4012 	return r;
4013 }
4014 
4015 /* used for instruction fetching */
4016 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4017 				gva_t addr, void *val, unsigned int bytes,
4018 				struct x86_exception *exception)
4019 {
4020 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4021 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4022 
4023 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4024 					  access | PFERR_FETCH_MASK,
4025 					  exception);
4026 }
4027 
4028 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4029 			       gva_t addr, void *val, unsigned int bytes,
4030 			       struct x86_exception *exception)
4031 {
4032 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4034 
4035 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4036 					  exception);
4037 }
4038 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4039 
4040 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4041 				      gva_t addr, void *val, unsigned int bytes,
4042 				      struct x86_exception *exception)
4043 {
4044 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4045 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4046 }
4047 
4048 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4049 				       gva_t addr, void *val,
4050 				       unsigned int bytes,
4051 				       struct x86_exception *exception)
4052 {
4053 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4054 	void *data = val;
4055 	int r = X86EMUL_CONTINUE;
4056 
4057 	while (bytes) {
4058 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4059 							     PFERR_WRITE_MASK,
4060 							     exception);
4061 		unsigned offset = addr & (PAGE_SIZE-1);
4062 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4063 		int ret;
4064 
4065 		if (gpa == UNMAPPED_GVA)
4066 			return X86EMUL_PROPAGATE_FAULT;
4067 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4068 		if (ret < 0) {
4069 			r = X86EMUL_IO_NEEDED;
4070 			goto out;
4071 		}
4072 
4073 		bytes -= towrite;
4074 		data += towrite;
4075 		addr += towrite;
4076 	}
4077 out:
4078 	return r;
4079 }
4080 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4081 
4082 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4083 				gpa_t *gpa, struct x86_exception *exception,
4084 				bool write)
4085 {
4086 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4087 		| (write ? PFERR_WRITE_MASK : 0);
4088 
4089 	if (vcpu_match_mmio_gva(vcpu, gva)
4090 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4091 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4092 					(gva & (PAGE_SIZE - 1));
4093 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4094 		return 1;
4095 	}
4096 
4097 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4098 
4099 	if (*gpa == UNMAPPED_GVA)
4100 		return -1;
4101 
4102 	/* For APIC access vmexit */
4103 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4104 		return 1;
4105 
4106 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4107 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4108 		return 1;
4109 	}
4110 
4111 	return 0;
4112 }
4113 
4114 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4115 			const void *val, int bytes)
4116 {
4117 	int ret;
4118 
4119 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4120 	if (ret < 0)
4121 		return 0;
4122 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4123 	return 1;
4124 }
4125 
4126 struct read_write_emulator_ops {
4127 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4128 				  int bytes);
4129 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4130 				  void *val, int bytes);
4131 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4132 			       int bytes, void *val);
4133 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4134 				    void *val, int bytes);
4135 	bool write;
4136 };
4137 
4138 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4139 {
4140 	if (vcpu->mmio_read_completed) {
4141 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4142 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4143 		vcpu->mmio_read_completed = 0;
4144 		return 1;
4145 	}
4146 
4147 	return 0;
4148 }
4149 
4150 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4151 			void *val, int bytes)
4152 {
4153 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4154 }
4155 
4156 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4157 			 void *val, int bytes)
4158 {
4159 	return emulator_write_phys(vcpu, gpa, val, bytes);
4160 }
4161 
4162 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4163 {
4164 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4165 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4166 }
4167 
4168 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4169 			  void *val, int bytes)
4170 {
4171 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4172 	return X86EMUL_IO_NEEDED;
4173 }
4174 
4175 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4176 			   void *val, int bytes)
4177 {
4178 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4179 
4180 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4181 	return X86EMUL_CONTINUE;
4182 }
4183 
4184 static const struct read_write_emulator_ops read_emultor = {
4185 	.read_write_prepare = read_prepare,
4186 	.read_write_emulate = read_emulate,
4187 	.read_write_mmio = vcpu_mmio_read,
4188 	.read_write_exit_mmio = read_exit_mmio,
4189 };
4190 
4191 static const struct read_write_emulator_ops write_emultor = {
4192 	.read_write_emulate = write_emulate,
4193 	.read_write_mmio = write_mmio,
4194 	.read_write_exit_mmio = write_exit_mmio,
4195 	.write = true,
4196 };
4197 
4198 static int emulator_read_write_onepage(unsigned long addr, void *val,
4199 				       unsigned int bytes,
4200 				       struct x86_exception *exception,
4201 				       struct kvm_vcpu *vcpu,
4202 				       const struct read_write_emulator_ops *ops)
4203 {
4204 	gpa_t gpa;
4205 	int handled, ret;
4206 	bool write = ops->write;
4207 	struct kvm_mmio_fragment *frag;
4208 
4209 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4210 
4211 	if (ret < 0)
4212 		return X86EMUL_PROPAGATE_FAULT;
4213 
4214 	/* For APIC access vmexit */
4215 	if (ret)
4216 		goto mmio;
4217 
4218 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4219 		return X86EMUL_CONTINUE;
4220 
4221 mmio:
4222 	/*
4223 	 * Is this MMIO handled locally?
4224 	 */
4225 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4226 	if (handled == bytes)
4227 		return X86EMUL_CONTINUE;
4228 
4229 	gpa += handled;
4230 	bytes -= handled;
4231 	val += handled;
4232 
4233 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4234 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4235 	frag->gpa = gpa;
4236 	frag->data = val;
4237 	frag->len = bytes;
4238 	return X86EMUL_CONTINUE;
4239 }
4240 
4241 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4242 			void *val, unsigned int bytes,
4243 			struct x86_exception *exception,
4244 			const struct read_write_emulator_ops *ops)
4245 {
4246 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247 	gpa_t gpa;
4248 	int rc;
4249 
4250 	if (ops->read_write_prepare &&
4251 		  ops->read_write_prepare(vcpu, val, bytes))
4252 		return X86EMUL_CONTINUE;
4253 
4254 	vcpu->mmio_nr_fragments = 0;
4255 
4256 	/* Crossing a page boundary? */
4257 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4258 		int now;
4259 
4260 		now = -addr & ~PAGE_MASK;
4261 		rc = emulator_read_write_onepage(addr, val, now, exception,
4262 						 vcpu, ops);
4263 
4264 		if (rc != X86EMUL_CONTINUE)
4265 			return rc;
4266 		addr += now;
4267 		val += now;
4268 		bytes -= now;
4269 	}
4270 
4271 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4272 					 vcpu, ops);
4273 	if (rc != X86EMUL_CONTINUE)
4274 		return rc;
4275 
4276 	if (!vcpu->mmio_nr_fragments)
4277 		return rc;
4278 
4279 	gpa = vcpu->mmio_fragments[0].gpa;
4280 
4281 	vcpu->mmio_needed = 1;
4282 	vcpu->mmio_cur_fragment = 0;
4283 
4284 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4285 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4286 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4287 	vcpu->run->mmio.phys_addr = gpa;
4288 
4289 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4290 }
4291 
4292 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4293 				  unsigned long addr,
4294 				  void *val,
4295 				  unsigned int bytes,
4296 				  struct x86_exception *exception)
4297 {
4298 	return emulator_read_write(ctxt, addr, val, bytes,
4299 				   exception, &read_emultor);
4300 }
4301 
4302 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4303 			    unsigned long addr,
4304 			    const void *val,
4305 			    unsigned int bytes,
4306 			    struct x86_exception *exception)
4307 {
4308 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4309 				   exception, &write_emultor);
4310 }
4311 
4312 #define CMPXCHG_TYPE(t, ptr, old, new) \
4313 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4314 
4315 #ifdef CONFIG_X86_64
4316 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4317 #else
4318 #  define CMPXCHG64(ptr, old, new) \
4319 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4320 #endif
4321 
4322 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4323 				     unsigned long addr,
4324 				     const void *old,
4325 				     const void *new,
4326 				     unsigned int bytes,
4327 				     struct x86_exception *exception)
4328 {
4329 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4330 	gpa_t gpa;
4331 	struct page *page;
4332 	char *kaddr;
4333 	bool exchanged;
4334 
4335 	/* guests cmpxchg8b have to be emulated atomically */
4336 	if (bytes > 8 || (bytes & (bytes - 1)))
4337 		goto emul_write;
4338 
4339 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4340 
4341 	if (gpa == UNMAPPED_GVA ||
4342 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4343 		goto emul_write;
4344 
4345 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4346 		goto emul_write;
4347 
4348 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4349 	if (is_error_page(page))
4350 		goto emul_write;
4351 
4352 	kaddr = kmap_atomic(page);
4353 	kaddr += offset_in_page(gpa);
4354 	switch (bytes) {
4355 	case 1:
4356 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4357 		break;
4358 	case 2:
4359 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4360 		break;
4361 	case 4:
4362 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4363 		break;
4364 	case 8:
4365 		exchanged = CMPXCHG64(kaddr, old, new);
4366 		break;
4367 	default:
4368 		BUG();
4369 	}
4370 	kunmap_atomic(kaddr);
4371 	kvm_release_page_dirty(page);
4372 
4373 	if (!exchanged)
4374 		return X86EMUL_CMPXCHG_FAILED;
4375 
4376 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4377 
4378 	return X86EMUL_CONTINUE;
4379 
4380 emul_write:
4381 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4382 
4383 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4384 }
4385 
4386 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4387 {
4388 	/* TODO: String I/O for in kernel device */
4389 	int r;
4390 
4391 	if (vcpu->arch.pio.in)
4392 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4393 				    vcpu->arch.pio.size, pd);
4394 	else
4395 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4396 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4397 				     pd);
4398 	return r;
4399 }
4400 
4401 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4402 			       unsigned short port, void *val,
4403 			       unsigned int count, bool in)
4404 {
4405 	trace_kvm_pio(!in, port, size, count);
4406 
4407 	vcpu->arch.pio.port = port;
4408 	vcpu->arch.pio.in = in;
4409 	vcpu->arch.pio.count  = count;
4410 	vcpu->arch.pio.size = size;
4411 
4412 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4413 		vcpu->arch.pio.count = 0;
4414 		return 1;
4415 	}
4416 
4417 	vcpu->run->exit_reason = KVM_EXIT_IO;
4418 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4419 	vcpu->run->io.size = size;
4420 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4421 	vcpu->run->io.count = count;
4422 	vcpu->run->io.port = port;
4423 
4424 	return 0;
4425 }
4426 
4427 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4428 				    int size, unsigned short port, void *val,
4429 				    unsigned int count)
4430 {
4431 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4432 	int ret;
4433 
4434 	if (vcpu->arch.pio.count)
4435 		goto data_avail;
4436 
4437 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4438 	if (ret) {
4439 data_avail:
4440 		memcpy(val, vcpu->arch.pio_data, size * count);
4441 		vcpu->arch.pio.count = 0;
4442 		return 1;
4443 	}
4444 
4445 	return 0;
4446 }
4447 
4448 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4449 				     int size, unsigned short port,
4450 				     const void *val, unsigned int count)
4451 {
4452 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453 
4454 	memcpy(vcpu->arch.pio_data, val, size * count);
4455 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4456 }
4457 
4458 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4459 {
4460 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4461 }
4462 
4463 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4464 {
4465 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4466 }
4467 
4468 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4469 {
4470 	if (!need_emulate_wbinvd(vcpu))
4471 		return X86EMUL_CONTINUE;
4472 
4473 	if (kvm_x86_ops->has_wbinvd_exit()) {
4474 		int cpu = get_cpu();
4475 
4476 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4477 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4478 				wbinvd_ipi, NULL, 1);
4479 		put_cpu();
4480 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4481 	} else
4482 		wbinvd();
4483 	return X86EMUL_CONTINUE;
4484 }
4485 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4486 
4487 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4488 {
4489 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4490 }
4491 
4492 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4493 {
4494 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4495 }
4496 
4497 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4498 {
4499 
4500 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4501 }
4502 
4503 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4504 {
4505 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4506 }
4507 
4508 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4509 {
4510 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4511 	unsigned long value;
4512 
4513 	switch (cr) {
4514 	case 0:
4515 		value = kvm_read_cr0(vcpu);
4516 		break;
4517 	case 2:
4518 		value = vcpu->arch.cr2;
4519 		break;
4520 	case 3:
4521 		value = kvm_read_cr3(vcpu);
4522 		break;
4523 	case 4:
4524 		value = kvm_read_cr4(vcpu);
4525 		break;
4526 	case 8:
4527 		value = kvm_get_cr8(vcpu);
4528 		break;
4529 	default:
4530 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4531 		return 0;
4532 	}
4533 
4534 	return value;
4535 }
4536 
4537 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4538 {
4539 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4540 	int res = 0;
4541 
4542 	switch (cr) {
4543 	case 0:
4544 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4545 		break;
4546 	case 2:
4547 		vcpu->arch.cr2 = val;
4548 		break;
4549 	case 3:
4550 		res = kvm_set_cr3(vcpu, val);
4551 		break;
4552 	case 4:
4553 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4554 		break;
4555 	case 8:
4556 		res = kvm_set_cr8(vcpu, val);
4557 		break;
4558 	default:
4559 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4560 		res = -1;
4561 	}
4562 
4563 	return res;
4564 }
4565 
4566 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4567 {
4568 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4569 }
4570 
4571 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4572 {
4573 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4574 }
4575 
4576 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4577 {
4578 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4579 }
4580 
4581 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4582 {
4583 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4584 }
4585 
4586 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4587 {
4588 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4589 }
4590 
4591 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4592 {
4593 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4594 }
4595 
4596 static unsigned long emulator_get_cached_segment_base(
4597 	struct x86_emulate_ctxt *ctxt, int seg)
4598 {
4599 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4600 }
4601 
4602 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4603 				 struct desc_struct *desc, u32 *base3,
4604 				 int seg)
4605 {
4606 	struct kvm_segment var;
4607 
4608 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4609 	*selector = var.selector;
4610 
4611 	if (var.unusable) {
4612 		memset(desc, 0, sizeof(*desc));
4613 		return false;
4614 	}
4615 
4616 	if (var.g)
4617 		var.limit >>= 12;
4618 	set_desc_limit(desc, var.limit);
4619 	set_desc_base(desc, (unsigned long)var.base);
4620 #ifdef CONFIG_X86_64
4621 	if (base3)
4622 		*base3 = var.base >> 32;
4623 #endif
4624 	desc->type = var.type;
4625 	desc->s = var.s;
4626 	desc->dpl = var.dpl;
4627 	desc->p = var.present;
4628 	desc->avl = var.avl;
4629 	desc->l = var.l;
4630 	desc->d = var.db;
4631 	desc->g = var.g;
4632 
4633 	return true;
4634 }
4635 
4636 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4637 				 struct desc_struct *desc, u32 base3,
4638 				 int seg)
4639 {
4640 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4641 	struct kvm_segment var;
4642 
4643 	var.selector = selector;
4644 	var.base = get_desc_base(desc);
4645 #ifdef CONFIG_X86_64
4646 	var.base |= ((u64)base3) << 32;
4647 #endif
4648 	var.limit = get_desc_limit(desc);
4649 	if (desc->g)
4650 		var.limit = (var.limit << 12) | 0xfff;
4651 	var.type = desc->type;
4652 	var.present = desc->p;
4653 	var.dpl = desc->dpl;
4654 	var.db = desc->d;
4655 	var.s = desc->s;
4656 	var.l = desc->l;
4657 	var.g = desc->g;
4658 	var.avl = desc->avl;
4659 	var.present = desc->p;
4660 	var.unusable = !var.present;
4661 	var.padding = 0;
4662 
4663 	kvm_set_segment(vcpu, &var, seg);
4664 	return;
4665 }
4666 
4667 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4668 			    u32 msr_index, u64 *pdata)
4669 {
4670 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4671 }
4672 
4673 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4674 			    u32 msr_index, u64 data)
4675 {
4676 	struct msr_data msr;
4677 
4678 	msr.data = data;
4679 	msr.index = msr_index;
4680 	msr.host_initiated = false;
4681 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4682 }
4683 
4684 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4685 			     u32 pmc, u64 *pdata)
4686 {
4687 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4688 }
4689 
4690 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4691 {
4692 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4693 }
4694 
4695 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4696 {
4697 	preempt_disable();
4698 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4699 	/*
4700 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4701 	 * so it may be clear at this point.
4702 	 */
4703 	clts();
4704 }
4705 
4706 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4707 {
4708 	preempt_enable();
4709 }
4710 
4711 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4712 			      struct x86_instruction_info *info,
4713 			      enum x86_intercept_stage stage)
4714 {
4715 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4716 }
4717 
4718 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4719 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4720 {
4721 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4722 }
4723 
4724 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4725 {
4726 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4727 }
4728 
4729 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4730 {
4731 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4732 }
4733 
4734 static const struct x86_emulate_ops emulate_ops = {
4735 	.read_gpr            = emulator_read_gpr,
4736 	.write_gpr           = emulator_write_gpr,
4737 	.read_std            = kvm_read_guest_virt_system,
4738 	.write_std           = kvm_write_guest_virt_system,
4739 	.fetch               = kvm_fetch_guest_virt,
4740 	.read_emulated       = emulator_read_emulated,
4741 	.write_emulated      = emulator_write_emulated,
4742 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4743 	.invlpg              = emulator_invlpg,
4744 	.pio_in_emulated     = emulator_pio_in_emulated,
4745 	.pio_out_emulated    = emulator_pio_out_emulated,
4746 	.get_segment         = emulator_get_segment,
4747 	.set_segment         = emulator_set_segment,
4748 	.get_cached_segment_base = emulator_get_cached_segment_base,
4749 	.get_gdt             = emulator_get_gdt,
4750 	.get_idt	     = emulator_get_idt,
4751 	.set_gdt             = emulator_set_gdt,
4752 	.set_idt	     = emulator_set_idt,
4753 	.get_cr              = emulator_get_cr,
4754 	.set_cr              = emulator_set_cr,
4755 	.set_rflags          = emulator_set_rflags,
4756 	.cpl                 = emulator_get_cpl,
4757 	.get_dr              = emulator_get_dr,
4758 	.set_dr              = emulator_set_dr,
4759 	.set_msr             = emulator_set_msr,
4760 	.get_msr             = emulator_get_msr,
4761 	.read_pmc            = emulator_read_pmc,
4762 	.halt                = emulator_halt,
4763 	.wbinvd              = emulator_wbinvd,
4764 	.fix_hypercall       = emulator_fix_hypercall,
4765 	.get_fpu             = emulator_get_fpu,
4766 	.put_fpu             = emulator_put_fpu,
4767 	.intercept           = emulator_intercept,
4768 	.get_cpuid           = emulator_get_cpuid,
4769 };
4770 
4771 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4772 {
4773 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4774 	/*
4775 	 * an sti; sti; sequence only disable interrupts for the first
4776 	 * instruction. So, if the last instruction, be it emulated or
4777 	 * not, left the system with the INT_STI flag enabled, it
4778 	 * means that the last instruction is an sti. We should not
4779 	 * leave the flag on in this case. The same goes for mov ss
4780 	 */
4781 	if (!(int_shadow & mask))
4782 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4783 }
4784 
4785 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4786 {
4787 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4788 	if (ctxt->exception.vector == PF_VECTOR)
4789 		kvm_propagate_fault(vcpu, &ctxt->exception);
4790 	else if (ctxt->exception.error_code_valid)
4791 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4792 				      ctxt->exception.error_code);
4793 	else
4794 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4795 }
4796 
4797 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4798 {
4799 	memset(&ctxt->opcode_len, 0,
4800 	       (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4801 
4802 	ctxt->fetch.start = 0;
4803 	ctxt->fetch.end = 0;
4804 	ctxt->io_read.pos = 0;
4805 	ctxt->io_read.end = 0;
4806 	ctxt->mem_read.pos = 0;
4807 	ctxt->mem_read.end = 0;
4808 }
4809 
4810 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4811 {
4812 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4813 	int cs_db, cs_l;
4814 
4815 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4816 
4817 	ctxt->eflags = kvm_get_rflags(vcpu);
4818 	ctxt->eip = kvm_rip_read(vcpu);
4819 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4820 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4821 		     cs_l				? X86EMUL_MODE_PROT64 :
4822 		     cs_db				? X86EMUL_MODE_PROT32 :
4823 							  X86EMUL_MODE_PROT16;
4824 	ctxt->guest_mode = is_guest_mode(vcpu);
4825 
4826 	init_decode_cache(ctxt);
4827 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4828 }
4829 
4830 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4831 {
4832 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4833 	int ret;
4834 
4835 	init_emulate_ctxt(vcpu);
4836 
4837 	ctxt->op_bytes = 2;
4838 	ctxt->ad_bytes = 2;
4839 	ctxt->_eip = ctxt->eip + inc_eip;
4840 	ret = emulate_int_real(ctxt, irq);
4841 
4842 	if (ret != X86EMUL_CONTINUE)
4843 		return EMULATE_FAIL;
4844 
4845 	ctxt->eip = ctxt->_eip;
4846 	kvm_rip_write(vcpu, ctxt->eip);
4847 	kvm_set_rflags(vcpu, ctxt->eflags);
4848 
4849 	if (irq == NMI_VECTOR)
4850 		vcpu->arch.nmi_pending = 0;
4851 	else
4852 		vcpu->arch.interrupt.pending = false;
4853 
4854 	return EMULATE_DONE;
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4857 
4858 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4859 {
4860 	int r = EMULATE_DONE;
4861 
4862 	++vcpu->stat.insn_emulation_fail;
4863 	trace_kvm_emulate_insn_failed(vcpu);
4864 	if (!is_guest_mode(vcpu)) {
4865 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4866 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4867 		vcpu->run->internal.ndata = 0;
4868 		r = EMULATE_FAIL;
4869 	}
4870 	kvm_queue_exception(vcpu, UD_VECTOR);
4871 
4872 	return r;
4873 }
4874 
4875 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4876 				  bool write_fault_to_shadow_pgtable,
4877 				  int emulation_type)
4878 {
4879 	gpa_t gpa = cr2;
4880 	pfn_t pfn;
4881 
4882 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4883 		return false;
4884 
4885 	if (!vcpu->arch.mmu.direct_map) {
4886 		/*
4887 		 * Write permission should be allowed since only
4888 		 * write access need to be emulated.
4889 		 */
4890 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4891 
4892 		/*
4893 		 * If the mapping is invalid in guest, let cpu retry
4894 		 * it to generate fault.
4895 		 */
4896 		if (gpa == UNMAPPED_GVA)
4897 			return true;
4898 	}
4899 
4900 	/*
4901 	 * Do not retry the unhandleable instruction if it faults on the
4902 	 * readonly host memory, otherwise it will goto a infinite loop:
4903 	 * retry instruction -> write #PF -> emulation fail -> retry
4904 	 * instruction -> ...
4905 	 */
4906 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4907 
4908 	/*
4909 	 * If the instruction failed on the error pfn, it can not be fixed,
4910 	 * report the error to userspace.
4911 	 */
4912 	if (is_error_noslot_pfn(pfn))
4913 		return false;
4914 
4915 	kvm_release_pfn_clean(pfn);
4916 
4917 	/* The instructions are well-emulated on direct mmu. */
4918 	if (vcpu->arch.mmu.direct_map) {
4919 		unsigned int indirect_shadow_pages;
4920 
4921 		spin_lock(&vcpu->kvm->mmu_lock);
4922 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4923 		spin_unlock(&vcpu->kvm->mmu_lock);
4924 
4925 		if (indirect_shadow_pages)
4926 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4927 
4928 		return true;
4929 	}
4930 
4931 	/*
4932 	 * if emulation was due to access to shadowed page table
4933 	 * and it failed try to unshadow page and re-enter the
4934 	 * guest to let CPU execute the instruction.
4935 	 */
4936 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4937 
4938 	/*
4939 	 * If the access faults on its page table, it can not
4940 	 * be fixed by unprotecting shadow page and it should
4941 	 * be reported to userspace.
4942 	 */
4943 	return !write_fault_to_shadow_pgtable;
4944 }
4945 
4946 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4947 			      unsigned long cr2,  int emulation_type)
4948 {
4949 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4950 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4951 
4952 	last_retry_eip = vcpu->arch.last_retry_eip;
4953 	last_retry_addr = vcpu->arch.last_retry_addr;
4954 
4955 	/*
4956 	 * If the emulation is caused by #PF and it is non-page_table
4957 	 * writing instruction, it means the VM-EXIT is caused by shadow
4958 	 * page protected, we can zap the shadow page and retry this
4959 	 * instruction directly.
4960 	 *
4961 	 * Note: if the guest uses a non-page-table modifying instruction
4962 	 * on the PDE that points to the instruction, then we will unmap
4963 	 * the instruction and go to an infinite loop. So, we cache the
4964 	 * last retried eip and the last fault address, if we meet the eip
4965 	 * and the address again, we can break out of the potential infinite
4966 	 * loop.
4967 	 */
4968 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4969 
4970 	if (!(emulation_type & EMULTYPE_RETRY))
4971 		return false;
4972 
4973 	if (x86_page_table_writing_insn(ctxt))
4974 		return false;
4975 
4976 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4977 		return false;
4978 
4979 	vcpu->arch.last_retry_eip = ctxt->eip;
4980 	vcpu->arch.last_retry_addr = cr2;
4981 
4982 	if (!vcpu->arch.mmu.direct_map)
4983 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4984 
4985 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4986 
4987 	return true;
4988 }
4989 
4990 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4991 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4992 
4993 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4994 				unsigned long *db)
4995 {
4996 	u32 dr6 = 0;
4997 	int i;
4998 	u32 enable, rwlen;
4999 
5000 	enable = dr7;
5001 	rwlen = dr7 >> 16;
5002 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5003 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5004 			dr6 |= (1 << i);
5005 	return dr6;
5006 }
5007 
5008 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5009 {
5010 	struct kvm_run *kvm_run = vcpu->run;
5011 
5012 	/*
5013 	 * Use the "raw" value to see if TF was passed to the processor.
5014 	 * Note that the new value of the flags has not been saved yet.
5015 	 *
5016 	 * This is correct even for TF set by the guest, because "the
5017 	 * processor will not generate this exception after the instruction
5018 	 * that sets the TF flag".
5019 	 */
5020 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5021 
5022 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5023 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5024 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5025 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5026 			kvm_run->debug.arch.exception = DB_VECTOR;
5027 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5028 			*r = EMULATE_USER_EXIT;
5029 		} else {
5030 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5031 			/*
5032 			 * "Certain debug exceptions may clear bit 0-3.  The
5033 			 * remaining contents of the DR6 register are never
5034 			 * cleared by the processor".
5035 			 */
5036 			vcpu->arch.dr6 &= ~15;
5037 			vcpu->arch.dr6 |= DR6_BS;
5038 			kvm_queue_exception(vcpu, DB_VECTOR);
5039 		}
5040 	}
5041 }
5042 
5043 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5044 {
5045 	struct kvm_run *kvm_run = vcpu->run;
5046 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5047 	u32 dr6 = 0;
5048 
5049 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5050 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5051 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5052 					   vcpu->arch.guest_debug_dr7,
5053 					   vcpu->arch.eff_db);
5054 
5055 		if (dr6 != 0) {
5056 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5057 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5058 				get_segment_base(vcpu, VCPU_SREG_CS);
5059 
5060 			kvm_run->debug.arch.exception = DB_VECTOR;
5061 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5062 			*r = EMULATE_USER_EXIT;
5063 			return true;
5064 		}
5065 	}
5066 
5067 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5068 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5069 					   vcpu->arch.dr7,
5070 					   vcpu->arch.db);
5071 
5072 		if (dr6 != 0) {
5073 			vcpu->arch.dr6 &= ~15;
5074 			vcpu->arch.dr6 |= dr6;
5075 			kvm_queue_exception(vcpu, DB_VECTOR);
5076 			*r = EMULATE_DONE;
5077 			return true;
5078 		}
5079 	}
5080 
5081 	return false;
5082 }
5083 
5084 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5085 			    unsigned long cr2,
5086 			    int emulation_type,
5087 			    void *insn,
5088 			    int insn_len)
5089 {
5090 	int r;
5091 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5092 	bool writeback = true;
5093 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5094 
5095 	/*
5096 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5097 	 * never reused.
5098 	 */
5099 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5100 	kvm_clear_exception_queue(vcpu);
5101 
5102 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5103 		init_emulate_ctxt(vcpu);
5104 
5105 		/*
5106 		 * We will reenter on the same instruction since
5107 		 * we do not set complete_userspace_io.  This does not
5108 		 * handle watchpoints yet, those would be handled in
5109 		 * the emulate_ops.
5110 		 */
5111 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5112 			return r;
5113 
5114 		ctxt->interruptibility = 0;
5115 		ctxt->have_exception = false;
5116 		ctxt->perm_ok = false;
5117 
5118 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5119 
5120 		r = x86_decode_insn(ctxt, insn, insn_len);
5121 
5122 		trace_kvm_emulate_insn_start(vcpu);
5123 		++vcpu->stat.insn_emulation;
5124 		if (r != EMULATION_OK)  {
5125 			if (emulation_type & EMULTYPE_TRAP_UD)
5126 				return EMULATE_FAIL;
5127 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5128 						emulation_type))
5129 				return EMULATE_DONE;
5130 			if (emulation_type & EMULTYPE_SKIP)
5131 				return EMULATE_FAIL;
5132 			return handle_emulation_failure(vcpu);
5133 		}
5134 	}
5135 
5136 	if (emulation_type & EMULTYPE_SKIP) {
5137 		kvm_rip_write(vcpu, ctxt->_eip);
5138 		return EMULATE_DONE;
5139 	}
5140 
5141 	if (retry_instruction(ctxt, cr2, emulation_type))
5142 		return EMULATE_DONE;
5143 
5144 	/* this is needed for vmware backdoor interface to work since it
5145 	   changes registers values  during IO operation */
5146 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5147 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5148 		emulator_invalidate_register_cache(ctxt);
5149 	}
5150 
5151 restart:
5152 	r = x86_emulate_insn(ctxt);
5153 
5154 	if (r == EMULATION_INTERCEPTED)
5155 		return EMULATE_DONE;
5156 
5157 	if (r == EMULATION_FAILED) {
5158 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5159 					emulation_type))
5160 			return EMULATE_DONE;
5161 
5162 		return handle_emulation_failure(vcpu);
5163 	}
5164 
5165 	if (ctxt->have_exception) {
5166 		inject_emulated_exception(vcpu);
5167 		r = EMULATE_DONE;
5168 	} else if (vcpu->arch.pio.count) {
5169 		if (!vcpu->arch.pio.in) {
5170 			/* FIXME: return into emulator if single-stepping.  */
5171 			vcpu->arch.pio.count = 0;
5172 		} else {
5173 			writeback = false;
5174 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5175 		}
5176 		r = EMULATE_USER_EXIT;
5177 	} else if (vcpu->mmio_needed) {
5178 		if (!vcpu->mmio_is_write)
5179 			writeback = false;
5180 		r = EMULATE_USER_EXIT;
5181 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5182 	} else if (r == EMULATION_RESTART)
5183 		goto restart;
5184 	else
5185 		r = EMULATE_DONE;
5186 
5187 	if (writeback) {
5188 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5189 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5190 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5191 		kvm_rip_write(vcpu, ctxt->eip);
5192 		if (r == EMULATE_DONE)
5193 			kvm_vcpu_check_singlestep(vcpu, &r);
5194 		kvm_set_rflags(vcpu, ctxt->eflags);
5195 	} else
5196 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5197 
5198 	return r;
5199 }
5200 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5201 
5202 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5203 {
5204 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5205 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5206 					    size, port, &val, 1);
5207 	/* do not return to emulator after return from userspace */
5208 	vcpu->arch.pio.count = 0;
5209 	return ret;
5210 }
5211 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5212 
5213 static void tsc_bad(void *info)
5214 {
5215 	__this_cpu_write(cpu_tsc_khz, 0);
5216 }
5217 
5218 static void tsc_khz_changed(void *data)
5219 {
5220 	struct cpufreq_freqs *freq = data;
5221 	unsigned long khz = 0;
5222 
5223 	if (data)
5224 		khz = freq->new;
5225 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5226 		khz = cpufreq_quick_get(raw_smp_processor_id());
5227 	if (!khz)
5228 		khz = tsc_khz;
5229 	__this_cpu_write(cpu_tsc_khz, khz);
5230 }
5231 
5232 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5233 				     void *data)
5234 {
5235 	struct cpufreq_freqs *freq = data;
5236 	struct kvm *kvm;
5237 	struct kvm_vcpu *vcpu;
5238 	int i, send_ipi = 0;
5239 
5240 	/*
5241 	 * We allow guests to temporarily run on slowing clocks,
5242 	 * provided we notify them after, or to run on accelerating
5243 	 * clocks, provided we notify them before.  Thus time never
5244 	 * goes backwards.
5245 	 *
5246 	 * However, we have a problem.  We can't atomically update
5247 	 * the frequency of a given CPU from this function; it is
5248 	 * merely a notifier, which can be called from any CPU.
5249 	 * Changing the TSC frequency at arbitrary points in time
5250 	 * requires a recomputation of local variables related to
5251 	 * the TSC for each VCPU.  We must flag these local variables
5252 	 * to be updated and be sure the update takes place with the
5253 	 * new frequency before any guests proceed.
5254 	 *
5255 	 * Unfortunately, the combination of hotplug CPU and frequency
5256 	 * change creates an intractable locking scenario; the order
5257 	 * of when these callouts happen is undefined with respect to
5258 	 * CPU hotplug, and they can race with each other.  As such,
5259 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5260 	 * undefined; you can actually have a CPU frequency change take
5261 	 * place in between the computation of X and the setting of the
5262 	 * variable.  To protect against this problem, all updates of
5263 	 * the per_cpu tsc_khz variable are done in an interrupt
5264 	 * protected IPI, and all callers wishing to update the value
5265 	 * must wait for a synchronous IPI to complete (which is trivial
5266 	 * if the caller is on the CPU already).  This establishes the
5267 	 * necessary total order on variable updates.
5268 	 *
5269 	 * Note that because a guest time update may take place
5270 	 * anytime after the setting of the VCPU's request bit, the
5271 	 * correct TSC value must be set before the request.  However,
5272 	 * to ensure the update actually makes it to any guest which
5273 	 * starts running in hardware virtualization between the set
5274 	 * and the acquisition of the spinlock, we must also ping the
5275 	 * CPU after setting the request bit.
5276 	 *
5277 	 */
5278 
5279 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5280 		return 0;
5281 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5282 		return 0;
5283 
5284 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5285 
5286 	spin_lock(&kvm_lock);
5287 	list_for_each_entry(kvm, &vm_list, vm_list) {
5288 		kvm_for_each_vcpu(i, vcpu, kvm) {
5289 			if (vcpu->cpu != freq->cpu)
5290 				continue;
5291 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5292 			if (vcpu->cpu != smp_processor_id())
5293 				send_ipi = 1;
5294 		}
5295 	}
5296 	spin_unlock(&kvm_lock);
5297 
5298 	if (freq->old < freq->new && send_ipi) {
5299 		/*
5300 		 * We upscale the frequency.  Must make the guest
5301 		 * doesn't see old kvmclock values while running with
5302 		 * the new frequency, otherwise we risk the guest sees
5303 		 * time go backwards.
5304 		 *
5305 		 * In case we update the frequency for another cpu
5306 		 * (which might be in guest context) send an interrupt
5307 		 * to kick the cpu out of guest context.  Next time
5308 		 * guest context is entered kvmclock will be updated,
5309 		 * so the guest will not see stale values.
5310 		 */
5311 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5312 	}
5313 	return 0;
5314 }
5315 
5316 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5317 	.notifier_call  = kvmclock_cpufreq_notifier
5318 };
5319 
5320 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5321 					unsigned long action, void *hcpu)
5322 {
5323 	unsigned int cpu = (unsigned long)hcpu;
5324 
5325 	switch (action) {
5326 		case CPU_ONLINE:
5327 		case CPU_DOWN_FAILED:
5328 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5329 			break;
5330 		case CPU_DOWN_PREPARE:
5331 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5332 			break;
5333 	}
5334 	return NOTIFY_OK;
5335 }
5336 
5337 static struct notifier_block kvmclock_cpu_notifier_block = {
5338 	.notifier_call  = kvmclock_cpu_notifier,
5339 	.priority = -INT_MAX
5340 };
5341 
5342 static void kvm_timer_init(void)
5343 {
5344 	int cpu;
5345 
5346 	max_tsc_khz = tsc_khz;
5347 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5348 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5349 #ifdef CONFIG_CPU_FREQ
5350 		struct cpufreq_policy policy;
5351 		memset(&policy, 0, sizeof(policy));
5352 		cpu = get_cpu();
5353 		cpufreq_get_policy(&policy, cpu);
5354 		if (policy.cpuinfo.max_freq)
5355 			max_tsc_khz = policy.cpuinfo.max_freq;
5356 		put_cpu();
5357 #endif
5358 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5359 					  CPUFREQ_TRANSITION_NOTIFIER);
5360 	}
5361 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5362 	for_each_online_cpu(cpu)
5363 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5364 }
5365 
5366 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5367 
5368 int kvm_is_in_guest(void)
5369 {
5370 	return __this_cpu_read(current_vcpu) != NULL;
5371 }
5372 
5373 static int kvm_is_user_mode(void)
5374 {
5375 	int user_mode = 3;
5376 
5377 	if (__this_cpu_read(current_vcpu))
5378 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5379 
5380 	return user_mode != 0;
5381 }
5382 
5383 static unsigned long kvm_get_guest_ip(void)
5384 {
5385 	unsigned long ip = 0;
5386 
5387 	if (__this_cpu_read(current_vcpu))
5388 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5389 
5390 	return ip;
5391 }
5392 
5393 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5394 	.is_in_guest		= kvm_is_in_guest,
5395 	.is_user_mode		= kvm_is_user_mode,
5396 	.get_guest_ip		= kvm_get_guest_ip,
5397 };
5398 
5399 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5400 {
5401 	__this_cpu_write(current_vcpu, vcpu);
5402 }
5403 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5404 
5405 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5406 {
5407 	__this_cpu_write(current_vcpu, NULL);
5408 }
5409 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5410 
5411 static void kvm_set_mmio_spte_mask(void)
5412 {
5413 	u64 mask;
5414 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5415 
5416 	/*
5417 	 * Set the reserved bits and the present bit of an paging-structure
5418 	 * entry to generate page fault with PFER.RSV = 1.
5419 	 */
5420 	 /* Mask the reserved physical address bits. */
5421 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5422 
5423 	/* Bit 62 is always reserved for 32bit host. */
5424 	mask |= 0x3ull << 62;
5425 
5426 	/* Set the present bit. */
5427 	mask |= 1ull;
5428 
5429 #ifdef CONFIG_X86_64
5430 	/*
5431 	 * If reserved bit is not supported, clear the present bit to disable
5432 	 * mmio page fault.
5433 	 */
5434 	if (maxphyaddr == 52)
5435 		mask &= ~1ull;
5436 #endif
5437 
5438 	kvm_mmu_set_mmio_spte_mask(mask);
5439 }
5440 
5441 #ifdef CONFIG_X86_64
5442 static void pvclock_gtod_update_fn(struct work_struct *work)
5443 {
5444 	struct kvm *kvm;
5445 
5446 	struct kvm_vcpu *vcpu;
5447 	int i;
5448 
5449 	spin_lock(&kvm_lock);
5450 	list_for_each_entry(kvm, &vm_list, vm_list)
5451 		kvm_for_each_vcpu(i, vcpu, kvm)
5452 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5453 	atomic_set(&kvm_guest_has_master_clock, 0);
5454 	spin_unlock(&kvm_lock);
5455 }
5456 
5457 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5458 
5459 /*
5460  * Notification about pvclock gtod data update.
5461  */
5462 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5463 			       void *priv)
5464 {
5465 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5466 	struct timekeeper *tk = priv;
5467 
5468 	update_pvclock_gtod(tk);
5469 
5470 	/* disable master clock if host does not trust, or does not
5471 	 * use, TSC clocksource
5472 	 */
5473 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5474 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5475 		queue_work(system_long_wq, &pvclock_gtod_work);
5476 
5477 	return 0;
5478 }
5479 
5480 static struct notifier_block pvclock_gtod_notifier = {
5481 	.notifier_call = pvclock_gtod_notify,
5482 };
5483 #endif
5484 
5485 int kvm_arch_init(void *opaque)
5486 {
5487 	int r;
5488 	struct kvm_x86_ops *ops = opaque;
5489 
5490 	if (kvm_x86_ops) {
5491 		printk(KERN_ERR "kvm: already loaded the other module\n");
5492 		r = -EEXIST;
5493 		goto out;
5494 	}
5495 
5496 	if (!ops->cpu_has_kvm_support()) {
5497 		printk(KERN_ERR "kvm: no hardware support\n");
5498 		r = -EOPNOTSUPP;
5499 		goto out;
5500 	}
5501 	if (ops->disabled_by_bios()) {
5502 		printk(KERN_ERR "kvm: disabled by bios\n");
5503 		r = -EOPNOTSUPP;
5504 		goto out;
5505 	}
5506 
5507 	r = -ENOMEM;
5508 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5509 	if (!shared_msrs) {
5510 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5511 		goto out;
5512 	}
5513 
5514 	r = kvm_mmu_module_init();
5515 	if (r)
5516 		goto out_free_percpu;
5517 
5518 	kvm_set_mmio_spte_mask();
5519 	kvm_init_msr_list();
5520 
5521 	kvm_x86_ops = ops;
5522 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5523 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5524 
5525 	kvm_timer_init();
5526 
5527 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5528 
5529 	if (cpu_has_xsave)
5530 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5531 
5532 	kvm_lapic_init();
5533 #ifdef CONFIG_X86_64
5534 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5535 #endif
5536 
5537 	return 0;
5538 
5539 out_free_percpu:
5540 	free_percpu(shared_msrs);
5541 out:
5542 	return r;
5543 }
5544 
5545 void kvm_arch_exit(void)
5546 {
5547 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5548 
5549 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5550 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5551 					    CPUFREQ_TRANSITION_NOTIFIER);
5552 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5553 #ifdef CONFIG_X86_64
5554 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5555 #endif
5556 	kvm_x86_ops = NULL;
5557 	kvm_mmu_module_exit();
5558 	free_percpu(shared_msrs);
5559 }
5560 
5561 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5562 {
5563 	++vcpu->stat.halt_exits;
5564 	if (irqchip_in_kernel(vcpu->kvm)) {
5565 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5566 		return 1;
5567 	} else {
5568 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5569 		return 0;
5570 	}
5571 }
5572 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5573 
5574 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5575 {
5576 	u64 param, ingpa, outgpa, ret;
5577 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5578 	bool fast, longmode;
5579 	int cs_db, cs_l;
5580 
5581 	/*
5582 	 * hypercall generates UD from non zero cpl and real mode
5583 	 * per HYPER-V spec
5584 	 */
5585 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5586 		kvm_queue_exception(vcpu, UD_VECTOR);
5587 		return 0;
5588 	}
5589 
5590 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5591 	longmode = is_long_mode(vcpu) && cs_l == 1;
5592 
5593 	if (!longmode) {
5594 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5595 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5596 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5597 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5598 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5599 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5600 	}
5601 #ifdef CONFIG_X86_64
5602 	else {
5603 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5604 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5605 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5606 	}
5607 #endif
5608 
5609 	code = param & 0xffff;
5610 	fast = (param >> 16) & 0x1;
5611 	rep_cnt = (param >> 32) & 0xfff;
5612 	rep_idx = (param >> 48) & 0xfff;
5613 
5614 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5615 
5616 	switch (code) {
5617 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5618 		kvm_vcpu_on_spin(vcpu);
5619 		break;
5620 	default:
5621 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5622 		break;
5623 	}
5624 
5625 	ret = res | (((u64)rep_done & 0xfff) << 32);
5626 	if (longmode) {
5627 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5628 	} else {
5629 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5630 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5631 	}
5632 
5633 	return 1;
5634 }
5635 
5636 /*
5637  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5638  *
5639  * @apicid - apicid of vcpu to be kicked.
5640  */
5641 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5642 {
5643 	struct kvm_lapic_irq lapic_irq;
5644 
5645 	lapic_irq.shorthand = 0;
5646 	lapic_irq.dest_mode = 0;
5647 	lapic_irq.dest_id = apicid;
5648 
5649 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5650 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5651 }
5652 
5653 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5654 {
5655 	unsigned long nr, a0, a1, a2, a3, ret;
5656 	int r = 1;
5657 
5658 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5659 		return kvm_hv_hypercall(vcpu);
5660 
5661 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5662 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5663 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5664 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5665 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5666 
5667 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5668 
5669 	if (!is_long_mode(vcpu)) {
5670 		nr &= 0xFFFFFFFF;
5671 		a0 &= 0xFFFFFFFF;
5672 		a1 &= 0xFFFFFFFF;
5673 		a2 &= 0xFFFFFFFF;
5674 		a3 &= 0xFFFFFFFF;
5675 	}
5676 
5677 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5678 		ret = -KVM_EPERM;
5679 		goto out;
5680 	}
5681 
5682 	switch (nr) {
5683 	case KVM_HC_VAPIC_POLL_IRQ:
5684 		ret = 0;
5685 		break;
5686 	case KVM_HC_KICK_CPU:
5687 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5688 		ret = 0;
5689 		break;
5690 	default:
5691 		ret = -KVM_ENOSYS;
5692 		break;
5693 	}
5694 out:
5695 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5696 	++vcpu->stat.hypercalls;
5697 	return r;
5698 }
5699 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5700 
5701 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5702 {
5703 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5704 	char instruction[3];
5705 	unsigned long rip = kvm_rip_read(vcpu);
5706 
5707 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5708 
5709 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5710 }
5711 
5712 /*
5713  * Check if userspace requested an interrupt window, and that the
5714  * interrupt window is open.
5715  *
5716  * No need to exit to userspace if we already have an interrupt queued.
5717  */
5718 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5719 {
5720 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5721 		vcpu->run->request_interrupt_window &&
5722 		kvm_arch_interrupt_allowed(vcpu));
5723 }
5724 
5725 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5726 {
5727 	struct kvm_run *kvm_run = vcpu->run;
5728 
5729 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5730 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5731 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5732 	if (irqchip_in_kernel(vcpu->kvm))
5733 		kvm_run->ready_for_interrupt_injection = 1;
5734 	else
5735 		kvm_run->ready_for_interrupt_injection =
5736 			kvm_arch_interrupt_allowed(vcpu) &&
5737 			!kvm_cpu_has_interrupt(vcpu) &&
5738 			!kvm_event_needs_reinjection(vcpu);
5739 }
5740 
5741 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5742 {
5743 	int max_irr, tpr;
5744 
5745 	if (!kvm_x86_ops->update_cr8_intercept)
5746 		return;
5747 
5748 	if (!vcpu->arch.apic)
5749 		return;
5750 
5751 	if (!vcpu->arch.apic->vapic_addr)
5752 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5753 	else
5754 		max_irr = -1;
5755 
5756 	if (max_irr != -1)
5757 		max_irr >>= 4;
5758 
5759 	tpr = kvm_lapic_get_cr8(vcpu);
5760 
5761 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5762 }
5763 
5764 static void inject_pending_event(struct kvm_vcpu *vcpu)
5765 {
5766 	/* try to reinject previous events if any */
5767 	if (vcpu->arch.exception.pending) {
5768 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5769 					vcpu->arch.exception.has_error_code,
5770 					vcpu->arch.exception.error_code);
5771 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5772 					  vcpu->arch.exception.has_error_code,
5773 					  vcpu->arch.exception.error_code,
5774 					  vcpu->arch.exception.reinject);
5775 		return;
5776 	}
5777 
5778 	if (vcpu->arch.nmi_injected) {
5779 		kvm_x86_ops->set_nmi(vcpu);
5780 		return;
5781 	}
5782 
5783 	if (vcpu->arch.interrupt.pending) {
5784 		kvm_x86_ops->set_irq(vcpu);
5785 		return;
5786 	}
5787 
5788 	/* try to inject new event if pending */
5789 	if (vcpu->arch.nmi_pending) {
5790 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5791 			--vcpu->arch.nmi_pending;
5792 			vcpu->arch.nmi_injected = true;
5793 			kvm_x86_ops->set_nmi(vcpu);
5794 		}
5795 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5796 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5797 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5798 					    false);
5799 			kvm_x86_ops->set_irq(vcpu);
5800 		}
5801 	}
5802 }
5803 
5804 static void process_nmi(struct kvm_vcpu *vcpu)
5805 {
5806 	unsigned limit = 2;
5807 
5808 	/*
5809 	 * x86 is limited to one NMI running, and one NMI pending after it.
5810 	 * If an NMI is already in progress, limit further NMIs to just one.
5811 	 * Otherwise, allow two (and we'll inject the first one immediately).
5812 	 */
5813 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5814 		limit = 1;
5815 
5816 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5817 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5818 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5819 }
5820 
5821 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5822 {
5823 	u64 eoi_exit_bitmap[4];
5824 	u32 tmr[8];
5825 
5826 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5827 		return;
5828 
5829 	memset(eoi_exit_bitmap, 0, 32);
5830 	memset(tmr, 0, 32);
5831 
5832 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5833 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5834 	kvm_apic_update_tmr(vcpu, tmr);
5835 }
5836 
5837 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5838 {
5839 	int r;
5840 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5841 		vcpu->run->request_interrupt_window;
5842 	bool req_immediate_exit = false;
5843 
5844 	if (vcpu->requests) {
5845 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5846 			kvm_mmu_unload(vcpu);
5847 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5848 			__kvm_migrate_timers(vcpu);
5849 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5850 			kvm_gen_update_masterclock(vcpu->kvm);
5851 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5852 			kvm_gen_kvmclock_update(vcpu);
5853 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5854 			r = kvm_guest_time_update(vcpu);
5855 			if (unlikely(r))
5856 				goto out;
5857 		}
5858 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5859 			kvm_mmu_sync_roots(vcpu);
5860 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5861 			kvm_x86_ops->tlb_flush(vcpu);
5862 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5863 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5864 			r = 0;
5865 			goto out;
5866 		}
5867 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5868 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5869 			r = 0;
5870 			goto out;
5871 		}
5872 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5873 			vcpu->fpu_active = 0;
5874 			kvm_x86_ops->fpu_deactivate(vcpu);
5875 		}
5876 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5877 			/* Page is swapped out. Do synthetic halt */
5878 			vcpu->arch.apf.halted = true;
5879 			r = 1;
5880 			goto out;
5881 		}
5882 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5883 			record_steal_time(vcpu);
5884 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5885 			process_nmi(vcpu);
5886 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5887 			kvm_handle_pmu_event(vcpu);
5888 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5889 			kvm_deliver_pmi(vcpu);
5890 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5891 			vcpu_scan_ioapic(vcpu);
5892 	}
5893 
5894 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5895 		kvm_apic_accept_events(vcpu);
5896 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5897 			r = 1;
5898 			goto out;
5899 		}
5900 
5901 		inject_pending_event(vcpu);
5902 
5903 		/* enable NMI/IRQ window open exits if needed */
5904 		if (vcpu->arch.nmi_pending)
5905 			req_immediate_exit =
5906 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5907 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5908 			req_immediate_exit =
5909 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
5910 
5911 		if (kvm_lapic_enabled(vcpu)) {
5912 			/*
5913 			 * Update architecture specific hints for APIC
5914 			 * virtual interrupt delivery.
5915 			 */
5916 			if (kvm_x86_ops->hwapic_irr_update)
5917 				kvm_x86_ops->hwapic_irr_update(vcpu,
5918 					kvm_lapic_find_highest_irr(vcpu));
5919 			update_cr8_intercept(vcpu);
5920 			kvm_lapic_sync_to_vapic(vcpu);
5921 		}
5922 	}
5923 
5924 	r = kvm_mmu_reload(vcpu);
5925 	if (unlikely(r)) {
5926 		goto cancel_injection;
5927 	}
5928 
5929 	preempt_disable();
5930 
5931 	kvm_x86_ops->prepare_guest_switch(vcpu);
5932 	if (vcpu->fpu_active)
5933 		kvm_load_guest_fpu(vcpu);
5934 	kvm_load_guest_xcr0(vcpu);
5935 
5936 	vcpu->mode = IN_GUEST_MODE;
5937 
5938 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5939 
5940 	/* We should set ->mode before check ->requests,
5941 	 * see the comment in make_all_cpus_request.
5942 	 */
5943 	smp_mb__after_srcu_read_unlock();
5944 
5945 	local_irq_disable();
5946 
5947 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5948 	    || need_resched() || signal_pending(current)) {
5949 		vcpu->mode = OUTSIDE_GUEST_MODE;
5950 		smp_wmb();
5951 		local_irq_enable();
5952 		preempt_enable();
5953 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5954 		r = 1;
5955 		goto cancel_injection;
5956 	}
5957 
5958 	if (req_immediate_exit)
5959 		smp_send_reschedule(vcpu->cpu);
5960 
5961 	kvm_guest_enter();
5962 
5963 	if (unlikely(vcpu->arch.switch_db_regs)) {
5964 		set_debugreg(0, 7);
5965 		set_debugreg(vcpu->arch.eff_db[0], 0);
5966 		set_debugreg(vcpu->arch.eff_db[1], 1);
5967 		set_debugreg(vcpu->arch.eff_db[2], 2);
5968 		set_debugreg(vcpu->arch.eff_db[3], 3);
5969 	}
5970 
5971 	trace_kvm_entry(vcpu->vcpu_id);
5972 	kvm_x86_ops->run(vcpu);
5973 
5974 	/*
5975 	 * If the guest has used debug registers, at least dr7
5976 	 * will be disabled while returning to the host.
5977 	 * If we don't have active breakpoints in the host, we don't
5978 	 * care about the messed up debug address registers. But if
5979 	 * we have some of them active, restore the old state.
5980 	 */
5981 	if (hw_breakpoint_active())
5982 		hw_breakpoint_restore();
5983 
5984 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5985 							   native_read_tsc());
5986 
5987 	vcpu->mode = OUTSIDE_GUEST_MODE;
5988 	smp_wmb();
5989 
5990 	/* Interrupt is enabled by handle_external_intr() */
5991 	kvm_x86_ops->handle_external_intr(vcpu);
5992 
5993 	++vcpu->stat.exits;
5994 
5995 	/*
5996 	 * We must have an instruction between local_irq_enable() and
5997 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5998 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5999 	 * But we need to prevent reordering, hence this barrier():
6000 	 */
6001 	barrier();
6002 
6003 	kvm_guest_exit();
6004 
6005 	preempt_enable();
6006 
6007 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6008 
6009 	/*
6010 	 * Profile KVM exit RIPs:
6011 	 */
6012 	if (unlikely(prof_on == KVM_PROFILING)) {
6013 		unsigned long rip = kvm_rip_read(vcpu);
6014 		profile_hit(KVM_PROFILING, (void *)rip);
6015 	}
6016 
6017 	if (unlikely(vcpu->arch.tsc_always_catchup))
6018 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6019 
6020 	if (vcpu->arch.apic_attention)
6021 		kvm_lapic_sync_from_vapic(vcpu);
6022 
6023 	r = kvm_x86_ops->handle_exit(vcpu);
6024 	return r;
6025 
6026 cancel_injection:
6027 	kvm_x86_ops->cancel_injection(vcpu);
6028 	if (unlikely(vcpu->arch.apic_attention))
6029 		kvm_lapic_sync_from_vapic(vcpu);
6030 out:
6031 	return r;
6032 }
6033 
6034 
6035 static int __vcpu_run(struct kvm_vcpu *vcpu)
6036 {
6037 	int r;
6038 	struct kvm *kvm = vcpu->kvm;
6039 
6040 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6041 
6042 	r = 1;
6043 	while (r > 0) {
6044 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6045 		    !vcpu->arch.apf.halted)
6046 			r = vcpu_enter_guest(vcpu);
6047 		else {
6048 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6049 			kvm_vcpu_block(vcpu);
6050 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6051 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6052 				kvm_apic_accept_events(vcpu);
6053 				switch(vcpu->arch.mp_state) {
6054 				case KVM_MP_STATE_HALTED:
6055 					vcpu->arch.pv.pv_unhalted = false;
6056 					vcpu->arch.mp_state =
6057 						KVM_MP_STATE_RUNNABLE;
6058 				case KVM_MP_STATE_RUNNABLE:
6059 					vcpu->arch.apf.halted = false;
6060 					break;
6061 				case KVM_MP_STATE_INIT_RECEIVED:
6062 					break;
6063 				default:
6064 					r = -EINTR;
6065 					break;
6066 				}
6067 			}
6068 		}
6069 
6070 		if (r <= 0)
6071 			break;
6072 
6073 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6074 		if (kvm_cpu_has_pending_timer(vcpu))
6075 			kvm_inject_pending_timer_irqs(vcpu);
6076 
6077 		if (dm_request_for_irq_injection(vcpu)) {
6078 			r = -EINTR;
6079 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6080 			++vcpu->stat.request_irq_exits;
6081 		}
6082 
6083 		kvm_check_async_pf_completion(vcpu);
6084 
6085 		if (signal_pending(current)) {
6086 			r = -EINTR;
6087 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6088 			++vcpu->stat.signal_exits;
6089 		}
6090 		if (need_resched()) {
6091 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6092 			kvm_resched(vcpu);
6093 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6094 		}
6095 	}
6096 
6097 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6098 
6099 	return r;
6100 }
6101 
6102 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6103 {
6104 	int r;
6105 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6106 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6107 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6108 	if (r != EMULATE_DONE)
6109 		return 0;
6110 	return 1;
6111 }
6112 
6113 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6114 {
6115 	BUG_ON(!vcpu->arch.pio.count);
6116 
6117 	return complete_emulated_io(vcpu);
6118 }
6119 
6120 /*
6121  * Implements the following, as a state machine:
6122  *
6123  * read:
6124  *   for each fragment
6125  *     for each mmio piece in the fragment
6126  *       write gpa, len
6127  *       exit
6128  *       copy data
6129  *   execute insn
6130  *
6131  * write:
6132  *   for each fragment
6133  *     for each mmio piece in the fragment
6134  *       write gpa, len
6135  *       copy data
6136  *       exit
6137  */
6138 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6139 {
6140 	struct kvm_run *run = vcpu->run;
6141 	struct kvm_mmio_fragment *frag;
6142 	unsigned len;
6143 
6144 	BUG_ON(!vcpu->mmio_needed);
6145 
6146 	/* Complete previous fragment */
6147 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6148 	len = min(8u, frag->len);
6149 	if (!vcpu->mmio_is_write)
6150 		memcpy(frag->data, run->mmio.data, len);
6151 
6152 	if (frag->len <= 8) {
6153 		/* Switch to the next fragment. */
6154 		frag++;
6155 		vcpu->mmio_cur_fragment++;
6156 	} else {
6157 		/* Go forward to the next mmio piece. */
6158 		frag->data += len;
6159 		frag->gpa += len;
6160 		frag->len -= len;
6161 	}
6162 
6163 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6164 		vcpu->mmio_needed = 0;
6165 
6166 		/* FIXME: return into emulator if single-stepping.  */
6167 		if (vcpu->mmio_is_write)
6168 			return 1;
6169 		vcpu->mmio_read_completed = 1;
6170 		return complete_emulated_io(vcpu);
6171 	}
6172 
6173 	run->exit_reason = KVM_EXIT_MMIO;
6174 	run->mmio.phys_addr = frag->gpa;
6175 	if (vcpu->mmio_is_write)
6176 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6177 	run->mmio.len = min(8u, frag->len);
6178 	run->mmio.is_write = vcpu->mmio_is_write;
6179 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6180 	return 0;
6181 }
6182 
6183 
6184 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6185 {
6186 	int r;
6187 	sigset_t sigsaved;
6188 
6189 	if (!tsk_used_math(current) && init_fpu(current))
6190 		return -ENOMEM;
6191 
6192 	if (vcpu->sigset_active)
6193 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6194 
6195 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6196 		kvm_vcpu_block(vcpu);
6197 		kvm_apic_accept_events(vcpu);
6198 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6199 		r = -EAGAIN;
6200 		goto out;
6201 	}
6202 
6203 	/* re-sync apic's tpr */
6204 	if (!irqchip_in_kernel(vcpu->kvm)) {
6205 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6206 			r = -EINVAL;
6207 			goto out;
6208 		}
6209 	}
6210 
6211 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6212 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6213 		vcpu->arch.complete_userspace_io = NULL;
6214 		r = cui(vcpu);
6215 		if (r <= 0)
6216 			goto out;
6217 	} else
6218 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6219 
6220 	r = __vcpu_run(vcpu);
6221 
6222 out:
6223 	post_kvm_run_save(vcpu);
6224 	if (vcpu->sigset_active)
6225 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6226 
6227 	return r;
6228 }
6229 
6230 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6231 {
6232 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6233 		/*
6234 		 * We are here if userspace calls get_regs() in the middle of
6235 		 * instruction emulation. Registers state needs to be copied
6236 		 * back from emulation context to vcpu. Userspace shouldn't do
6237 		 * that usually, but some bad designed PV devices (vmware
6238 		 * backdoor interface) need this to work
6239 		 */
6240 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6241 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6242 	}
6243 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6244 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6245 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6246 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6247 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6248 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6249 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6250 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6251 #ifdef CONFIG_X86_64
6252 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6253 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6254 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6255 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6256 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6257 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6258 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6259 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6260 #endif
6261 
6262 	regs->rip = kvm_rip_read(vcpu);
6263 	regs->rflags = kvm_get_rflags(vcpu);
6264 
6265 	return 0;
6266 }
6267 
6268 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6269 {
6270 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6271 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6272 
6273 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6274 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6275 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6276 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6277 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6278 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6279 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6280 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6281 #ifdef CONFIG_X86_64
6282 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6283 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6284 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6285 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6286 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6287 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6288 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6289 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6290 #endif
6291 
6292 	kvm_rip_write(vcpu, regs->rip);
6293 	kvm_set_rflags(vcpu, regs->rflags);
6294 
6295 	vcpu->arch.exception.pending = false;
6296 
6297 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6298 
6299 	return 0;
6300 }
6301 
6302 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6303 {
6304 	struct kvm_segment cs;
6305 
6306 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6307 	*db = cs.db;
6308 	*l = cs.l;
6309 }
6310 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6311 
6312 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6313 				  struct kvm_sregs *sregs)
6314 {
6315 	struct desc_ptr dt;
6316 
6317 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6318 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6319 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6320 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6321 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6322 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6323 
6324 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6325 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6326 
6327 	kvm_x86_ops->get_idt(vcpu, &dt);
6328 	sregs->idt.limit = dt.size;
6329 	sregs->idt.base = dt.address;
6330 	kvm_x86_ops->get_gdt(vcpu, &dt);
6331 	sregs->gdt.limit = dt.size;
6332 	sregs->gdt.base = dt.address;
6333 
6334 	sregs->cr0 = kvm_read_cr0(vcpu);
6335 	sregs->cr2 = vcpu->arch.cr2;
6336 	sregs->cr3 = kvm_read_cr3(vcpu);
6337 	sregs->cr4 = kvm_read_cr4(vcpu);
6338 	sregs->cr8 = kvm_get_cr8(vcpu);
6339 	sregs->efer = vcpu->arch.efer;
6340 	sregs->apic_base = kvm_get_apic_base(vcpu);
6341 
6342 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6343 
6344 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6345 		set_bit(vcpu->arch.interrupt.nr,
6346 			(unsigned long *)sregs->interrupt_bitmap);
6347 
6348 	return 0;
6349 }
6350 
6351 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6352 				    struct kvm_mp_state *mp_state)
6353 {
6354 	kvm_apic_accept_events(vcpu);
6355 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6356 					vcpu->arch.pv.pv_unhalted)
6357 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6358 	else
6359 		mp_state->mp_state = vcpu->arch.mp_state;
6360 
6361 	return 0;
6362 }
6363 
6364 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6365 				    struct kvm_mp_state *mp_state)
6366 {
6367 	if (!kvm_vcpu_has_lapic(vcpu) &&
6368 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6369 		return -EINVAL;
6370 
6371 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6372 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6373 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6374 	} else
6375 		vcpu->arch.mp_state = mp_state->mp_state;
6376 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6377 	return 0;
6378 }
6379 
6380 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6381 		    int reason, bool has_error_code, u32 error_code)
6382 {
6383 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6384 	int ret;
6385 
6386 	init_emulate_ctxt(vcpu);
6387 
6388 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6389 				   has_error_code, error_code);
6390 
6391 	if (ret)
6392 		return EMULATE_FAIL;
6393 
6394 	kvm_rip_write(vcpu, ctxt->eip);
6395 	kvm_set_rflags(vcpu, ctxt->eflags);
6396 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6397 	return EMULATE_DONE;
6398 }
6399 EXPORT_SYMBOL_GPL(kvm_task_switch);
6400 
6401 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6402 				  struct kvm_sregs *sregs)
6403 {
6404 	int mmu_reset_needed = 0;
6405 	int pending_vec, max_bits, idx;
6406 	struct desc_ptr dt;
6407 
6408 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6409 		return -EINVAL;
6410 
6411 	dt.size = sregs->idt.limit;
6412 	dt.address = sregs->idt.base;
6413 	kvm_x86_ops->set_idt(vcpu, &dt);
6414 	dt.size = sregs->gdt.limit;
6415 	dt.address = sregs->gdt.base;
6416 	kvm_x86_ops->set_gdt(vcpu, &dt);
6417 
6418 	vcpu->arch.cr2 = sregs->cr2;
6419 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6420 	vcpu->arch.cr3 = sregs->cr3;
6421 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6422 
6423 	kvm_set_cr8(vcpu, sregs->cr8);
6424 
6425 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6426 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6427 	kvm_set_apic_base(vcpu, sregs->apic_base);
6428 
6429 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6430 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6431 	vcpu->arch.cr0 = sregs->cr0;
6432 
6433 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6434 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6435 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6436 		kvm_update_cpuid(vcpu);
6437 
6438 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6439 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6440 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6441 		mmu_reset_needed = 1;
6442 	}
6443 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6444 
6445 	if (mmu_reset_needed)
6446 		kvm_mmu_reset_context(vcpu);
6447 
6448 	max_bits = KVM_NR_INTERRUPTS;
6449 	pending_vec = find_first_bit(
6450 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6451 	if (pending_vec < max_bits) {
6452 		kvm_queue_interrupt(vcpu, pending_vec, false);
6453 		pr_debug("Set back pending irq %d\n", pending_vec);
6454 	}
6455 
6456 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6457 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6458 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6459 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6460 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6461 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6462 
6463 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6464 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6465 
6466 	update_cr8_intercept(vcpu);
6467 
6468 	/* Older userspace won't unhalt the vcpu on reset. */
6469 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6470 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6471 	    !is_protmode(vcpu))
6472 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6473 
6474 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6475 
6476 	return 0;
6477 }
6478 
6479 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6480 					struct kvm_guest_debug *dbg)
6481 {
6482 	unsigned long rflags;
6483 	int i, r;
6484 
6485 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6486 		r = -EBUSY;
6487 		if (vcpu->arch.exception.pending)
6488 			goto out;
6489 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6490 			kvm_queue_exception(vcpu, DB_VECTOR);
6491 		else
6492 			kvm_queue_exception(vcpu, BP_VECTOR);
6493 	}
6494 
6495 	/*
6496 	 * Read rflags as long as potentially injected trace flags are still
6497 	 * filtered out.
6498 	 */
6499 	rflags = kvm_get_rflags(vcpu);
6500 
6501 	vcpu->guest_debug = dbg->control;
6502 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6503 		vcpu->guest_debug = 0;
6504 
6505 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6506 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6507 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6508 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6509 	} else {
6510 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6511 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6512 	}
6513 	kvm_update_dr7(vcpu);
6514 
6515 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6516 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6517 			get_segment_base(vcpu, VCPU_SREG_CS);
6518 
6519 	/*
6520 	 * Trigger an rflags update that will inject or remove the trace
6521 	 * flags.
6522 	 */
6523 	kvm_set_rflags(vcpu, rflags);
6524 
6525 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6526 
6527 	r = 0;
6528 
6529 out:
6530 
6531 	return r;
6532 }
6533 
6534 /*
6535  * Translate a guest virtual address to a guest physical address.
6536  */
6537 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6538 				    struct kvm_translation *tr)
6539 {
6540 	unsigned long vaddr = tr->linear_address;
6541 	gpa_t gpa;
6542 	int idx;
6543 
6544 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6545 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6546 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6547 	tr->physical_address = gpa;
6548 	tr->valid = gpa != UNMAPPED_GVA;
6549 	tr->writeable = 1;
6550 	tr->usermode = 0;
6551 
6552 	return 0;
6553 }
6554 
6555 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6556 {
6557 	struct i387_fxsave_struct *fxsave =
6558 			&vcpu->arch.guest_fpu.state->fxsave;
6559 
6560 	memcpy(fpu->fpr, fxsave->st_space, 128);
6561 	fpu->fcw = fxsave->cwd;
6562 	fpu->fsw = fxsave->swd;
6563 	fpu->ftwx = fxsave->twd;
6564 	fpu->last_opcode = fxsave->fop;
6565 	fpu->last_ip = fxsave->rip;
6566 	fpu->last_dp = fxsave->rdp;
6567 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6568 
6569 	return 0;
6570 }
6571 
6572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6573 {
6574 	struct i387_fxsave_struct *fxsave =
6575 			&vcpu->arch.guest_fpu.state->fxsave;
6576 
6577 	memcpy(fxsave->st_space, fpu->fpr, 128);
6578 	fxsave->cwd = fpu->fcw;
6579 	fxsave->swd = fpu->fsw;
6580 	fxsave->twd = fpu->ftwx;
6581 	fxsave->fop = fpu->last_opcode;
6582 	fxsave->rip = fpu->last_ip;
6583 	fxsave->rdp = fpu->last_dp;
6584 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6585 
6586 	return 0;
6587 }
6588 
6589 int fx_init(struct kvm_vcpu *vcpu)
6590 {
6591 	int err;
6592 
6593 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6594 	if (err)
6595 		return err;
6596 
6597 	fpu_finit(&vcpu->arch.guest_fpu);
6598 
6599 	/*
6600 	 * Ensure guest xcr0 is valid for loading
6601 	 */
6602 	vcpu->arch.xcr0 = XSTATE_FP;
6603 
6604 	vcpu->arch.cr0 |= X86_CR0_ET;
6605 
6606 	return 0;
6607 }
6608 EXPORT_SYMBOL_GPL(fx_init);
6609 
6610 static void fx_free(struct kvm_vcpu *vcpu)
6611 {
6612 	fpu_free(&vcpu->arch.guest_fpu);
6613 }
6614 
6615 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6616 {
6617 	if (vcpu->guest_fpu_loaded)
6618 		return;
6619 
6620 	/*
6621 	 * Restore all possible states in the guest,
6622 	 * and assume host would use all available bits.
6623 	 * Guest xcr0 would be loaded later.
6624 	 */
6625 	kvm_put_guest_xcr0(vcpu);
6626 	vcpu->guest_fpu_loaded = 1;
6627 	__kernel_fpu_begin();
6628 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6629 	trace_kvm_fpu(1);
6630 }
6631 
6632 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6633 {
6634 	kvm_put_guest_xcr0(vcpu);
6635 
6636 	if (!vcpu->guest_fpu_loaded)
6637 		return;
6638 
6639 	vcpu->guest_fpu_loaded = 0;
6640 	fpu_save_init(&vcpu->arch.guest_fpu);
6641 	__kernel_fpu_end();
6642 	++vcpu->stat.fpu_reload;
6643 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6644 	trace_kvm_fpu(0);
6645 }
6646 
6647 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6648 {
6649 	kvmclock_reset(vcpu);
6650 
6651 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6652 	fx_free(vcpu);
6653 	kvm_x86_ops->vcpu_free(vcpu);
6654 }
6655 
6656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6657 						unsigned int id)
6658 {
6659 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6660 		printk_once(KERN_WARNING
6661 		"kvm: SMP vm created on host with unstable TSC; "
6662 		"guest TSC will not be reliable\n");
6663 	return kvm_x86_ops->vcpu_create(kvm, id);
6664 }
6665 
6666 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6667 {
6668 	int r;
6669 
6670 	vcpu->arch.mtrr_state.have_fixed = 1;
6671 	r = vcpu_load(vcpu);
6672 	if (r)
6673 		return r;
6674 	kvm_vcpu_reset(vcpu);
6675 	kvm_mmu_setup(vcpu);
6676 	vcpu_put(vcpu);
6677 
6678 	return r;
6679 }
6680 
6681 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6682 {
6683 	int r;
6684 	struct msr_data msr;
6685 
6686 	r = vcpu_load(vcpu);
6687 	if (r)
6688 		return r;
6689 	msr.data = 0x0;
6690 	msr.index = MSR_IA32_TSC;
6691 	msr.host_initiated = true;
6692 	kvm_write_tsc(vcpu, &msr);
6693 	vcpu_put(vcpu);
6694 
6695 	return r;
6696 }
6697 
6698 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6699 {
6700 	int r;
6701 	vcpu->arch.apf.msr_val = 0;
6702 
6703 	r = vcpu_load(vcpu);
6704 	BUG_ON(r);
6705 	kvm_mmu_unload(vcpu);
6706 	vcpu_put(vcpu);
6707 
6708 	fx_free(vcpu);
6709 	kvm_x86_ops->vcpu_free(vcpu);
6710 }
6711 
6712 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6713 {
6714 	atomic_set(&vcpu->arch.nmi_queued, 0);
6715 	vcpu->arch.nmi_pending = 0;
6716 	vcpu->arch.nmi_injected = false;
6717 
6718 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6719 	vcpu->arch.dr6 = DR6_FIXED_1;
6720 	vcpu->arch.dr7 = DR7_FIXED_1;
6721 	kvm_update_dr7(vcpu);
6722 
6723 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6724 	vcpu->arch.apf.msr_val = 0;
6725 	vcpu->arch.st.msr_val = 0;
6726 
6727 	kvmclock_reset(vcpu);
6728 
6729 	kvm_clear_async_pf_completion_queue(vcpu);
6730 	kvm_async_pf_hash_reset(vcpu);
6731 	vcpu->arch.apf.halted = false;
6732 
6733 	kvm_pmu_reset(vcpu);
6734 
6735 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6736 	vcpu->arch.regs_avail = ~0;
6737 	vcpu->arch.regs_dirty = ~0;
6738 
6739 	kvm_x86_ops->vcpu_reset(vcpu);
6740 }
6741 
6742 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6743 {
6744 	struct kvm_segment cs;
6745 
6746 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6747 	cs.selector = vector << 8;
6748 	cs.base = vector << 12;
6749 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6750 	kvm_rip_write(vcpu, 0);
6751 }
6752 
6753 int kvm_arch_hardware_enable(void *garbage)
6754 {
6755 	struct kvm *kvm;
6756 	struct kvm_vcpu *vcpu;
6757 	int i;
6758 	int ret;
6759 	u64 local_tsc;
6760 	u64 max_tsc = 0;
6761 	bool stable, backwards_tsc = false;
6762 
6763 	kvm_shared_msr_cpu_online();
6764 	ret = kvm_x86_ops->hardware_enable(garbage);
6765 	if (ret != 0)
6766 		return ret;
6767 
6768 	local_tsc = native_read_tsc();
6769 	stable = !check_tsc_unstable();
6770 	list_for_each_entry(kvm, &vm_list, vm_list) {
6771 		kvm_for_each_vcpu(i, vcpu, kvm) {
6772 			if (!stable && vcpu->cpu == smp_processor_id())
6773 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6774 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6775 				backwards_tsc = true;
6776 				if (vcpu->arch.last_host_tsc > max_tsc)
6777 					max_tsc = vcpu->arch.last_host_tsc;
6778 			}
6779 		}
6780 	}
6781 
6782 	/*
6783 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6784 	 * platforms that reset TSC during suspend or hibernate actions, but
6785 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6786 	 * detect that condition here, which happens early in CPU bringup,
6787 	 * before any KVM threads can be running.  Unfortunately, we can't
6788 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6789 	 * enough into CPU bringup that we know how much real time has actually
6790 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6791 	 * variables that haven't been updated yet.
6792 	 *
6793 	 * So we simply find the maximum observed TSC above, then record the
6794 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6795 	 * the adjustment will be applied.  Note that we accumulate
6796 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6797 	 * gets a chance to run again.  In the event that no KVM threads get a
6798 	 * chance to run, we will miss the entire elapsed period, as we'll have
6799 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6800 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6801 	 * uniform across all VCPUs (not to mention the scenario is extremely
6802 	 * unlikely). It is possible that a second hibernate recovery happens
6803 	 * much faster than a first, causing the observed TSC here to be
6804 	 * smaller; this would require additional padding adjustment, which is
6805 	 * why we set last_host_tsc to the local tsc observed here.
6806 	 *
6807 	 * N.B. - this code below runs only on platforms with reliable TSC,
6808 	 * as that is the only way backwards_tsc is set above.  Also note
6809 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6810 	 * have the same delta_cyc adjustment applied if backwards_tsc
6811 	 * is detected.  Note further, this adjustment is only done once,
6812 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6813 	 * called multiple times (one for each physical CPU bringup).
6814 	 *
6815 	 * Platforms with unreliable TSCs don't have to deal with this, they
6816 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6817 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6818 	 * guarantee that they stay in perfect synchronization.
6819 	 */
6820 	if (backwards_tsc) {
6821 		u64 delta_cyc = max_tsc - local_tsc;
6822 		list_for_each_entry(kvm, &vm_list, vm_list) {
6823 			kvm_for_each_vcpu(i, vcpu, kvm) {
6824 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6825 				vcpu->arch.last_host_tsc = local_tsc;
6826 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6827 					&vcpu->requests);
6828 			}
6829 
6830 			/*
6831 			 * We have to disable TSC offset matching.. if you were
6832 			 * booting a VM while issuing an S4 host suspend....
6833 			 * you may have some problem.  Solving this issue is
6834 			 * left as an exercise to the reader.
6835 			 */
6836 			kvm->arch.last_tsc_nsec = 0;
6837 			kvm->arch.last_tsc_write = 0;
6838 		}
6839 
6840 	}
6841 	return 0;
6842 }
6843 
6844 void kvm_arch_hardware_disable(void *garbage)
6845 {
6846 	kvm_x86_ops->hardware_disable(garbage);
6847 	drop_user_return_notifiers(garbage);
6848 }
6849 
6850 int kvm_arch_hardware_setup(void)
6851 {
6852 	return kvm_x86_ops->hardware_setup();
6853 }
6854 
6855 void kvm_arch_hardware_unsetup(void)
6856 {
6857 	kvm_x86_ops->hardware_unsetup();
6858 }
6859 
6860 void kvm_arch_check_processor_compat(void *rtn)
6861 {
6862 	kvm_x86_ops->check_processor_compatibility(rtn);
6863 }
6864 
6865 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6866 {
6867 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6868 }
6869 
6870 struct static_key kvm_no_apic_vcpu __read_mostly;
6871 
6872 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6873 {
6874 	struct page *page;
6875 	struct kvm *kvm;
6876 	int r;
6877 
6878 	BUG_ON(vcpu->kvm == NULL);
6879 	kvm = vcpu->kvm;
6880 
6881 	vcpu->arch.pv.pv_unhalted = false;
6882 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6883 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6884 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6885 	else
6886 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6887 
6888 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6889 	if (!page) {
6890 		r = -ENOMEM;
6891 		goto fail;
6892 	}
6893 	vcpu->arch.pio_data = page_address(page);
6894 
6895 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6896 
6897 	r = kvm_mmu_create(vcpu);
6898 	if (r < 0)
6899 		goto fail_free_pio_data;
6900 
6901 	if (irqchip_in_kernel(kvm)) {
6902 		r = kvm_create_lapic(vcpu);
6903 		if (r < 0)
6904 			goto fail_mmu_destroy;
6905 	} else
6906 		static_key_slow_inc(&kvm_no_apic_vcpu);
6907 
6908 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6909 				       GFP_KERNEL);
6910 	if (!vcpu->arch.mce_banks) {
6911 		r = -ENOMEM;
6912 		goto fail_free_lapic;
6913 	}
6914 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6915 
6916 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6917 		r = -ENOMEM;
6918 		goto fail_free_mce_banks;
6919 	}
6920 
6921 	r = fx_init(vcpu);
6922 	if (r)
6923 		goto fail_free_wbinvd_dirty_mask;
6924 
6925 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6926 	vcpu->arch.pv_time_enabled = false;
6927 
6928 	vcpu->arch.guest_supported_xcr0 = 0;
6929 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6930 
6931 	kvm_async_pf_hash_reset(vcpu);
6932 	kvm_pmu_init(vcpu);
6933 
6934 	return 0;
6935 fail_free_wbinvd_dirty_mask:
6936 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6937 fail_free_mce_banks:
6938 	kfree(vcpu->arch.mce_banks);
6939 fail_free_lapic:
6940 	kvm_free_lapic(vcpu);
6941 fail_mmu_destroy:
6942 	kvm_mmu_destroy(vcpu);
6943 fail_free_pio_data:
6944 	free_page((unsigned long)vcpu->arch.pio_data);
6945 fail:
6946 	return r;
6947 }
6948 
6949 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6950 {
6951 	int idx;
6952 
6953 	kvm_pmu_destroy(vcpu);
6954 	kfree(vcpu->arch.mce_banks);
6955 	kvm_free_lapic(vcpu);
6956 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6957 	kvm_mmu_destroy(vcpu);
6958 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6959 	free_page((unsigned long)vcpu->arch.pio_data);
6960 	if (!irqchip_in_kernel(vcpu->kvm))
6961 		static_key_slow_dec(&kvm_no_apic_vcpu);
6962 }
6963 
6964 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6965 {
6966 	if (type)
6967 		return -EINVAL;
6968 
6969 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6970 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6971 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6972 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
6973 
6974 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6975 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6976 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6977 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6978 		&kvm->arch.irq_sources_bitmap);
6979 
6980 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6981 	mutex_init(&kvm->arch.apic_map_lock);
6982 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6983 
6984 	pvclock_update_vm_gtod_copy(kvm);
6985 
6986 	return 0;
6987 }
6988 
6989 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6990 {
6991 	int r;
6992 	r = vcpu_load(vcpu);
6993 	BUG_ON(r);
6994 	kvm_mmu_unload(vcpu);
6995 	vcpu_put(vcpu);
6996 }
6997 
6998 static void kvm_free_vcpus(struct kvm *kvm)
6999 {
7000 	unsigned int i;
7001 	struct kvm_vcpu *vcpu;
7002 
7003 	/*
7004 	 * Unpin any mmu pages first.
7005 	 */
7006 	kvm_for_each_vcpu(i, vcpu, kvm) {
7007 		kvm_clear_async_pf_completion_queue(vcpu);
7008 		kvm_unload_vcpu_mmu(vcpu);
7009 	}
7010 	kvm_for_each_vcpu(i, vcpu, kvm)
7011 		kvm_arch_vcpu_free(vcpu);
7012 
7013 	mutex_lock(&kvm->lock);
7014 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7015 		kvm->vcpus[i] = NULL;
7016 
7017 	atomic_set(&kvm->online_vcpus, 0);
7018 	mutex_unlock(&kvm->lock);
7019 }
7020 
7021 void kvm_arch_sync_events(struct kvm *kvm)
7022 {
7023 	kvm_free_all_assigned_devices(kvm);
7024 	kvm_free_pit(kvm);
7025 }
7026 
7027 void kvm_arch_destroy_vm(struct kvm *kvm)
7028 {
7029 	if (current->mm == kvm->mm) {
7030 		/*
7031 		 * Free memory regions allocated on behalf of userspace,
7032 		 * unless the the memory map has changed due to process exit
7033 		 * or fd copying.
7034 		 */
7035 		struct kvm_userspace_memory_region mem;
7036 		memset(&mem, 0, sizeof(mem));
7037 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7038 		kvm_set_memory_region(kvm, &mem);
7039 
7040 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7041 		kvm_set_memory_region(kvm, &mem);
7042 
7043 		mem.slot = TSS_PRIVATE_MEMSLOT;
7044 		kvm_set_memory_region(kvm, &mem);
7045 	}
7046 	kvm_iommu_unmap_guest(kvm);
7047 	kfree(kvm->arch.vpic);
7048 	kfree(kvm->arch.vioapic);
7049 	kvm_free_vcpus(kvm);
7050 	if (kvm->arch.apic_access_page)
7051 		put_page(kvm->arch.apic_access_page);
7052 	if (kvm->arch.ept_identity_pagetable)
7053 		put_page(kvm->arch.ept_identity_pagetable);
7054 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7055 }
7056 
7057 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7058 			   struct kvm_memory_slot *dont)
7059 {
7060 	int i;
7061 
7062 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7063 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7064 			kvm_kvfree(free->arch.rmap[i]);
7065 			free->arch.rmap[i] = NULL;
7066 		}
7067 		if (i == 0)
7068 			continue;
7069 
7070 		if (!dont || free->arch.lpage_info[i - 1] !=
7071 			     dont->arch.lpage_info[i - 1]) {
7072 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7073 			free->arch.lpage_info[i - 1] = NULL;
7074 		}
7075 	}
7076 }
7077 
7078 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7079 			    unsigned long npages)
7080 {
7081 	int i;
7082 
7083 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7084 		unsigned long ugfn;
7085 		int lpages;
7086 		int level = i + 1;
7087 
7088 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7089 				      slot->base_gfn, level) + 1;
7090 
7091 		slot->arch.rmap[i] =
7092 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7093 		if (!slot->arch.rmap[i])
7094 			goto out_free;
7095 		if (i == 0)
7096 			continue;
7097 
7098 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7099 					sizeof(*slot->arch.lpage_info[i - 1]));
7100 		if (!slot->arch.lpage_info[i - 1])
7101 			goto out_free;
7102 
7103 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7104 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7105 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7106 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7107 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7108 		/*
7109 		 * If the gfn and userspace address are not aligned wrt each
7110 		 * other, or if explicitly asked to, disable large page
7111 		 * support for this slot
7112 		 */
7113 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7114 		    !kvm_largepages_enabled()) {
7115 			unsigned long j;
7116 
7117 			for (j = 0; j < lpages; ++j)
7118 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7119 		}
7120 	}
7121 
7122 	return 0;
7123 
7124 out_free:
7125 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7126 		kvm_kvfree(slot->arch.rmap[i]);
7127 		slot->arch.rmap[i] = NULL;
7128 		if (i == 0)
7129 			continue;
7130 
7131 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7132 		slot->arch.lpage_info[i - 1] = NULL;
7133 	}
7134 	return -ENOMEM;
7135 }
7136 
7137 void kvm_arch_memslots_updated(struct kvm *kvm)
7138 {
7139 	/*
7140 	 * memslots->generation has been incremented.
7141 	 * mmio generation may have reached its maximum value.
7142 	 */
7143 	kvm_mmu_invalidate_mmio_sptes(kvm);
7144 }
7145 
7146 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7147 				struct kvm_memory_slot *memslot,
7148 				struct kvm_userspace_memory_region *mem,
7149 				enum kvm_mr_change change)
7150 {
7151 	/*
7152 	 * Only private memory slots need to be mapped here since
7153 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7154 	 */
7155 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7156 		unsigned long userspace_addr;
7157 
7158 		/*
7159 		 * MAP_SHARED to prevent internal slot pages from being moved
7160 		 * by fork()/COW.
7161 		 */
7162 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7163 					 PROT_READ | PROT_WRITE,
7164 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7165 
7166 		if (IS_ERR((void *)userspace_addr))
7167 			return PTR_ERR((void *)userspace_addr);
7168 
7169 		memslot->userspace_addr = userspace_addr;
7170 	}
7171 
7172 	return 0;
7173 }
7174 
7175 void kvm_arch_commit_memory_region(struct kvm *kvm,
7176 				struct kvm_userspace_memory_region *mem,
7177 				const struct kvm_memory_slot *old,
7178 				enum kvm_mr_change change)
7179 {
7180 
7181 	int nr_mmu_pages = 0;
7182 
7183 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7184 		int ret;
7185 
7186 		ret = vm_munmap(old->userspace_addr,
7187 				old->npages * PAGE_SIZE);
7188 		if (ret < 0)
7189 			printk(KERN_WARNING
7190 			       "kvm_vm_ioctl_set_memory_region: "
7191 			       "failed to munmap memory\n");
7192 	}
7193 
7194 	if (!kvm->arch.n_requested_mmu_pages)
7195 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7196 
7197 	if (nr_mmu_pages)
7198 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7199 	/*
7200 	 * Write protect all pages for dirty logging.
7201 	 * Existing largepage mappings are destroyed here and new ones will
7202 	 * not be created until the end of the logging.
7203 	 */
7204 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7205 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7206 }
7207 
7208 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7209 {
7210 	kvm_mmu_invalidate_zap_all_pages(kvm);
7211 }
7212 
7213 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7214 				   struct kvm_memory_slot *slot)
7215 {
7216 	kvm_mmu_invalidate_zap_all_pages(kvm);
7217 }
7218 
7219 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7220 {
7221 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7222 		!vcpu->arch.apf.halted)
7223 		|| !list_empty_careful(&vcpu->async_pf.done)
7224 		|| kvm_apic_has_events(vcpu)
7225 		|| vcpu->arch.pv.pv_unhalted
7226 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7227 		(kvm_arch_interrupt_allowed(vcpu) &&
7228 		 kvm_cpu_has_interrupt(vcpu));
7229 }
7230 
7231 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7232 {
7233 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7234 }
7235 
7236 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7237 {
7238 	return kvm_x86_ops->interrupt_allowed(vcpu);
7239 }
7240 
7241 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7242 {
7243 	unsigned long current_rip = kvm_rip_read(vcpu) +
7244 		get_segment_base(vcpu, VCPU_SREG_CS);
7245 
7246 	return current_rip == linear_rip;
7247 }
7248 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7249 
7250 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7251 {
7252 	unsigned long rflags;
7253 
7254 	rflags = kvm_x86_ops->get_rflags(vcpu);
7255 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7256 		rflags &= ~X86_EFLAGS_TF;
7257 	return rflags;
7258 }
7259 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7260 
7261 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7262 {
7263 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7264 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7265 		rflags |= X86_EFLAGS_TF;
7266 	kvm_x86_ops->set_rflags(vcpu, rflags);
7267 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7268 }
7269 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7270 
7271 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7272 {
7273 	int r;
7274 
7275 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7276 	      work->wakeup_all)
7277 		return;
7278 
7279 	r = kvm_mmu_reload(vcpu);
7280 	if (unlikely(r))
7281 		return;
7282 
7283 	if (!vcpu->arch.mmu.direct_map &&
7284 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7285 		return;
7286 
7287 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7288 }
7289 
7290 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7291 {
7292 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7293 }
7294 
7295 static inline u32 kvm_async_pf_next_probe(u32 key)
7296 {
7297 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7298 }
7299 
7300 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7301 {
7302 	u32 key = kvm_async_pf_hash_fn(gfn);
7303 
7304 	while (vcpu->arch.apf.gfns[key] != ~0)
7305 		key = kvm_async_pf_next_probe(key);
7306 
7307 	vcpu->arch.apf.gfns[key] = gfn;
7308 }
7309 
7310 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7311 {
7312 	int i;
7313 	u32 key = kvm_async_pf_hash_fn(gfn);
7314 
7315 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7316 		     (vcpu->arch.apf.gfns[key] != gfn &&
7317 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7318 		key = kvm_async_pf_next_probe(key);
7319 
7320 	return key;
7321 }
7322 
7323 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7324 {
7325 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7326 }
7327 
7328 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7329 {
7330 	u32 i, j, k;
7331 
7332 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7333 	while (true) {
7334 		vcpu->arch.apf.gfns[i] = ~0;
7335 		do {
7336 			j = kvm_async_pf_next_probe(j);
7337 			if (vcpu->arch.apf.gfns[j] == ~0)
7338 				return;
7339 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7340 			/*
7341 			 * k lies cyclically in ]i,j]
7342 			 * |    i.k.j |
7343 			 * |....j i.k.| or  |.k..j i...|
7344 			 */
7345 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7346 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7347 		i = j;
7348 	}
7349 }
7350 
7351 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7352 {
7353 
7354 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7355 				      sizeof(val));
7356 }
7357 
7358 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7359 				     struct kvm_async_pf *work)
7360 {
7361 	struct x86_exception fault;
7362 
7363 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7364 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7365 
7366 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7367 	    (vcpu->arch.apf.send_user_only &&
7368 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7369 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7370 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7371 		fault.vector = PF_VECTOR;
7372 		fault.error_code_valid = true;
7373 		fault.error_code = 0;
7374 		fault.nested_page_fault = false;
7375 		fault.address = work->arch.token;
7376 		kvm_inject_page_fault(vcpu, &fault);
7377 	}
7378 }
7379 
7380 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7381 				 struct kvm_async_pf *work)
7382 {
7383 	struct x86_exception fault;
7384 
7385 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7386 	if (work->wakeup_all)
7387 		work->arch.token = ~0; /* broadcast wakeup */
7388 	else
7389 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7390 
7391 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7392 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7393 		fault.vector = PF_VECTOR;
7394 		fault.error_code_valid = true;
7395 		fault.error_code = 0;
7396 		fault.nested_page_fault = false;
7397 		fault.address = work->arch.token;
7398 		kvm_inject_page_fault(vcpu, &fault);
7399 	}
7400 	vcpu->arch.apf.halted = false;
7401 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7402 }
7403 
7404 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7405 {
7406 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7407 		return true;
7408 	else
7409 		return !kvm_event_needs_reinjection(vcpu) &&
7410 			kvm_x86_ops->interrupt_allowed(vcpu);
7411 }
7412 
7413 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7414 {
7415 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7416 }
7417 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7418 
7419 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7420 {
7421 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7422 }
7423 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7424 
7425 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7426 {
7427 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7428 }
7429 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7430 
7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7444