xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 76426e23)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78 
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83 
84 #define emul_to_vcpu(ctxt) \
85 	((struct kvm_vcpu *)(ctxt)->vcpu)
86 
87 /* EFER defaults:
88  * - enable syscall per default because its emulated by KVM
89  * - enable LME and LMA per default on 64 bit KVM
90  */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97 
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99 
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 #define KVM_NR_SHARED_MSRS 16
166 
167 struct kvm_shared_msrs_global {
168 	int nr;
169 	u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171 
172 struct kvm_shared_msrs {
173 	struct user_return_notifier urn;
174 	bool registered;
175 	struct kvm_shared_msr_values {
176 		u64 host;
177 		u64 curr;
178 	} values[KVM_NR_SHARED_MSRS];
179 };
180 
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183 
184 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187 				| XFEATURE_MASK_PKRU)
188 
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191 
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195 
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
198 	{ "pf_guest", VCPU_STAT(pf_guest) },
199 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
200 	{ "invlpg", VCPU_STAT(invlpg) },
201 	{ "exits", VCPU_STAT(exits) },
202 	{ "io_exits", VCPU_STAT(io_exits) },
203 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
204 	{ "signal_exits", VCPU_STAT(signal_exits) },
205 	{ "irq_window", VCPU_STAT(irq_window_exits) },
206 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
207 	{ "halt_exits", VCPU_STAT(halt_exits) },
208 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
212 	{ "hypercalls", VCPU_STAT(hypercalls) },
213 	{ "request_irq", VCPU_STAT(request_irq_exits) },
214 	{ "irq_exits", VCPU_STAT(irq_exits) },
215 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
216 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
217 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
218 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219 	{ "irq_injections", VCPU_STAT(irq_injections) },
220 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
221 	{ "req_event", VCPU_STAT(req_event) },
222 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
223 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
225 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
228 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
229 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
231 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
233 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234 	{ "max_mmu_page_hash_collisions",
235 		VM_STAT(max_mmu_page_hash_collisions) },
236 	{ NULL }
237 };
238 
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242 
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245 
246 static struct kmem_cache *x86_emulator_cache;
247 
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251 	unsigned int size = sizeof(struct x86_emulate_ctxt);
252 
253 	return kmem_cache_create_usercopy("x86_emulator", size,
254 					  __alignof__(struct x86_emulate_ctxt),
255 					  SLAB_ACCOUNT, useroffset,
256 					  size - useroffset, NULL);
257 }
258 
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260 
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263 	int i;
264 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265 		vcpu->arch.apf.gfns[i] = ~0;
266 }
267 
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270 	unsigned slot;
271 	struct kvm_shared_msrs *locals
272 		= container_of(urn, struct kvm_shared_msrs, urn);
273 	struct kvm_shared_msr_values *values;
274 	unsigned long flags;
275 
276 	/*
277 	 * Disabling irqs at this point since the following code could be
278 	 * interrupted and executed through kvm_arch_hardware_disable()
279 	 */
280 	local_irq_save(flags);
281 	if (locals->registered) {
282 		locals->registered = false;
283 		user_return_notifier_unregister(urn);
284 	}
285 	local_irq_restore(flags);
286 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287 		values = &locals->values[slot];
288 		if (values->host != values->curr) {
289 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
290 			values->curr = values->host;
291 		}
292 	}
293 }
294 
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298 	shared_msrs_global.msrs[slot] = msr;
299 	if (slot >= shared_msrs_global.nr)
300 		shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303 
304 static void kvm_shared_msr_cpu_online(void)
305 {
306 	unsigned int cpu = smp_processor_id();
307 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308 	u64 value;
309 	int i;
310 
311 	for (i = 0; i < shared_msrs_global.nr; ++i) {
312 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313 		smsr->values[i].host = value;
314 		smsr->values[i].curr = value;
315 	}
316 }
317 
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 	int err;
323 
324 	value = (value & mask) | (smsr->values[slot].host & ~mask);
325 	if (value == smsr->values[slot].curr)
326 		return 0;
327 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328 	if (err)
329 		return 1;
330 
331 	smsr->values[slot].curr = value;
332 	if (!smsr->registered) {
333 		smsr->urn.on_user_return = kvm_on_user_return;
334 		user_return_notifier_register(&smsr->urn);
335 		smsr->registered = true;
336 	}
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340 
341 static void drop_user_return_notifiers(void)
342 {
343 	unsigned int cpu = smp_processor_id();
344 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345 
346 	if (smsr->registered)
347 		kvm_on_user_return(&smsr->urn);
348 }
349 
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352 	return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355 
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361 
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368 
369 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370 		return 1;
371 	if (!msr_info->host_initiated) {
372 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373 			return 1;
374 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375 			return 1;
376 	}
377 
378 	kvm_lapic_set_base(vcpu, msr_info->data);
379 	kvm_recalculate_apic_map(vcpu->kvm);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383 
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386 	/* Fault while not rebooting.  We want the trace. */
387 	BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390 
391 #define EXCPT_BENIGN		0
392 #define EXCPT_CONTRIBUTORY	1
393 #define EXCPT_PF		2
394 
395 static int exception_class(int vector)
396 {
397 	switch (vector) {
398 	case PF_VECTOR:
399 		return EXCPT_PF;
400 	case DE_VECTOR:
401 	case TS_VECTOR:
402 	case NP_VECTOR:
403 	case SS_VECTOR:
404 	case GP_VECTOR:
405 		return EXCPT_CONTRIBUTORY;
406 	default:
407 		break;
408 	}
409 	return EXCPT_BENIGN;
410 }
411 
412 #define EXCPT_FAULT		0
413 #define EXCPT_TRAP		1
414 #define EXCPT_ABORT		2
415 #define EXCPT_INTERRUPT		3
416 
417 static int exception_type(int vector)
418 {
419 	unsigned int mask;
420 
421 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422 		return EXCPT_INTERRUPT;
423 
424 	mask = 1 << vector;
425 
426 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
427 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428 		return EXCPT_TRAP;
429 
430 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431 		return EXCPT_ABORT;
432 
433 	/* Reserved exceptions will result in fault */
434 	return EXCPT_FAULT;
435 }
436 
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439 	unsigned nr = vcpu->arch.exception.nr;
440 	bool has_payload = vcpu->arch.exception.has_payload;
441 	unsigned long payload = vcpu->arch.exception.payload;
442 
443 	if (!has_payload)
444 		return;
445 
446 	switch (nr) {
447 	case DB_VECTOR:
448 		/*
449 		 * "Certain debug exceptions may clear bit 0-3.  The
450 		 * remaining contents of the DR6 register are never
451 		 * cleared by the processor".
452 		 */
453 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454 		/*
455 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
456 		 */
457 		vcpu->arch.dr6 |= DR6_RTM;
458 		vcpu->arch.dr6 |= payload;
459 		/*
460 		 * Bit 16 should be set in the payload whenever the #DB
461 		 * exception should clear DR6.RTM. This makes the payload
462 		 * compatible with the pending debug exceptions under VMX.
463 		 * Though not currently documented in the SDM, this also
464 		 * makes the payload compatible with the exit qualification
465 		 * for #DB exceptions under VMX.
466 		 */
467 		vcpu->arch.dr6 ^= payload & DR6_RTM;
468 
469 		/*
470 		 * The #DB payload is defined as compatible with the 'pending
471 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
472 		 * defined in the 'pending debug exceptions' field (enabled
473 		 * breakpoint), it is reserved and must be zero in DR6.
474 		 */
475 		vcpu->arch.dr6 &= ~BIT(12);
476 		break;
477 	case PF_VECTOR:
478 		vcpu->arch.cr2 = payload;
479 		break;
480 	}
481 
482 	vcpu->arch.exception.has_payload = false;
483 	vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486 
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488 		unsigned nr, bool has_error, u32 error_code,
489 	        bool has_payload, unsigned long payload, bool reinject)
490 {
491 	u32 prev_nr;
492 	int class1, class2;
493 
494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
495 
496 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497 	queue:
498 		if (has_error && !is_protmode(vcpu))
499 			has_error = false;
500 		if (reinject) {
501 			/*
502 			 * On vmentry, vcpu->arch.exception.pending is only
503 			 * true if an event injection was blocked by
504 			 * nested_run_pending.  In that case, however,
505 			 * vcpu_enter_guest requests an immediate exit,
506 			 * and the guest shouldn't proceed far enough to
507 			 * need reinjection.
508 			 */
509 			WARN_ON_ONCE(vcpu->arch.exception.pending);
510 			vcpu->arch.exception.injected = true;
511 			if (WARN_ON_ONCE(has_payload)) {
512 				/*
513 				 * A reinjected event has already
514 				 * delivered its payload.
515 				 */
516 				has_payload = false;
517 				payload = 0;
518 			}
519 		} else {
520 			vcpu->arch.exception.pending = true;
521 			vcpu->arch.exception.injected = false;
522 		}
523 		vcpu->arch.exception.has_error_code = has_error;
524 		vcpu->arch.exception.nr = nr;
525 		vcpu->arch.exception.error_code = error_code;
526 		vcpu->arch.exception.has_payload = has_payload;
527 		vcpu->arch.exception.payload = payload;
528 		if (!is_guest_mode(vcpu))
529 			kvm_deliver_exception_payload(vcpu);
530 		return;
531 	}
532 
533 	/* to check exception */
534 	prev_nr = vcpu->arch.exception.nr;
535 	if (prev_nr == DF_VECTOR) {
536 		/* triple fault -> shutdown */
537 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538 		return;
539 	}
540 	class1 = exception_class(prev_nr);
541 	class2 = exception_class(nr);
542 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544 		/*
545 		 * Generate double fault per SDM Table 5-5.  Set
546 		 * exception.pending = true so that the double fault
547 		 * can trigger a nested vmexit.
548 		 */
549 		vcpu->arch.exception.pending = true;
550 		vcpu->arch.exception.injected = false;
551 		vcpu->arch.exception.has_error_code = true;
552 		vcpu->arch.exception.nr = DF_VECTOR;
553 		vcpu->arch.exception.error_code = 0;
554 		vcpu->arch.exception.has_payload = false;
555 		vcpu->arch.exception.payload = 0;
556 	} else
557 		/* replace previous exception with a new one in a hope
558 		   that instruction re-execution will regenerate lost
559 		   exception */
560 		goto queue;
561 }
562 
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568 
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574 
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576 				  unsigned long payload)
577 {
578 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580 
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582 				    u32 error_code, unsigned long payload)
583 {
584 	kvm_multiple_exception(vcpu, nr, true, error_code,
585 			       true, payload, false);
586 }
587 
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590 	if (err)
591 		kvm_inject_gp(vcpu, 0);
592 	else
593 		return kvm_skip_emulated_instruction(vcpu);
594 
595 	return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598 
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601 	++vcpu->stat.pf_guest;
602 	vcpu->arch.exception.nested_apf =
603 		is_guest_mode(vcpu) && fault->async_page_fault;
604 	if (vcpu->arch.exception.nested_apf) {
605 		vcpu->arch.apf.nested_apf_token = fault->address;
606 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607 	} else {
608 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609 					fault->address);
610 	}
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613 
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618 	else
619 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620 
621 	return fault->nested_page_fault;
622 }
623 
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626 	atomic_inc(&vcpu->arch.nmi_queued);
627 	kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630 
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636 
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642 
643 /*
644  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
645  * a #GP and return false.
646  */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
650 		return true;
651 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652 	return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655 
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659 		return true;
660 
661 	kvm_queue_exception(vcpu, UD_VECTOR);
662 	return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665 
666 /*
667  * This function will be used to read from the physical memory of the currently
668  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669  * can read from guest physical or from the guest's guest physical memory.
670  */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672 			    gfn_t ngfn, void *data, int offset, int len,
673 			    u32 access)
674 {
675 	struct x86_exception exception;
676 	gfn_t real_gfn;
677 	gpa_t ngpa;
678 
679 	ngpa     = gfn_to_gpa(ngfn);
680 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681 	if (real_gfn == UNMAPPED_GVA)
682 		return -EFAULT;
683 
684 	real_gfn = gpa_to_gfn(real_gfn);
685 
686 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689 
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691 			       void *data, int offset, int len, u32 access)
692 {
693 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694 				       data, offset, len, access);
695 }
696 
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700 	       rsvd_bits(1, 2);
701 }
702 
703 /*
704  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
705  */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710 	int i;
711 	int ret;
712 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713 
714 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715 				      offset * sizeof(u64), sizeof(pdpte),
716 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
717 	if (ret < 0) {
718 		ret = 0;
719 		goto out;
720 	}
721 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722 		if ((pdpte[i] & PT_PRESENT_MASK) &&
723 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724 			ret = 0;
725 			goto out;
726 		}
727 	}
728 	ret = 1;
729 
730 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732 
733 out:
734 
735 	return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738 
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742 	int offset;
743 	gfn_t gfn;
744 	int r;
745 
746 	if (!is_pae_paging(vcpu))
747 		return false;
748 
749 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750 		return true;
751 
752 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
756 	if (r < 0)
757 		return true;
758 
759 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762 
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
766 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767 
768 	cr0 |= X86_CR0_ET;
769 
770 #ifdef CONFIG_X86_64
771 	if (cr0 & 0xffffffff00000000UL)
772 		return 1;
773 #endif
774 
775 	cr0 &= ~CR0_RESERVED_BITS;
776 
777 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778 		return 1;
779 
780 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781 		return 1;
782 
783 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785 		if ((vcpu->arch.efer & EFER_LME)) {
786 			int cs_db, cs_l;
787 
788 			if (!is_pae(vcpu))
789 				return 1;
790 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791 			if (cs_l)
792 				return 1;
793 		} else
794 #endif
795 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796 						 kvm_read_cr3(vcpu)))
797 			return 1;
798 	}
799 
800 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801 		return 1;
802 
803 	kvm_x86_ops.set_cr0(vcpu, cr0);
804 
805 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806 		kvm_clear_async_pf_completion_queue(vcpu);
807 		kvm_async_pf_hash_reset(vcpu);
808 	}
809 
810 	if ((cr0 ^ old_cr0) & update_bits)
811 		kvm_mmu_reset_context(vcpu);
812 
813 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817 
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821 
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827 
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831 
832 		if (vcpu->arch.xcr0 != host_xcr0)
833 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834 
835 		if (vcpu->arch.xsaves_enabled &&
836 		    vcpu->arch.ia32_xss != host_xss)
837 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838 	}
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841 
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845 
846 		if (vcpu->arch.xcr0 != host_xcr0)
847 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848 
849 		if (vcpu->arch.xsaves_enabled &&
850 		    vcpu->arch.ia32_xss != host_xss)
851 			wrmsrl(MSR_IA32_XSS, host_xss);
852 	}
853 
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856 
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859 	u64 xcr0 = xcr;
860 	u64 old_xcr0 = vcpu->arch.xcr0;
861 	u64 valid_bits;
862 
863 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
864 	if (index != XCR_XFEATURE_ENABLED_MASK)
865 		return 1;
866 	if (!(xcr0 & XFEATURE_MASK_FP))
867 		return 1;
868 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869 		return 1;
870 
871 	/*
872 	 * Do not allow the guest to set bits that we do not support
873 	 * saving.  However, xcr0 bit 0 is always set, even if the
874 	 * emulated CPU does not support XSAVE (see fx_init).
875 	 */
876 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877 	if (xcr0 & ~valid_bits)
878 		return 1;
879 
880 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882 		return 1;
883 
884 	if (xcr0 & XFEATURE_MASK_AVX512) {
885 		if (!(xcr0 & XFEATURE_MASK_YMM))
886 			return 1;
887 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888 			return 1;
889 	}
890 	vcpu->arch.xcr0 = xcr0;
891 
892 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893 		kvm_update_cpuid(vcpu);
894 	return 0;
895 }
896 
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
900 	    __kvm_set_xcr(vcpu, index, xcr)) {
901 		kvm_inject_gp(vcpu, 0);
902 		return 1;
903 	}
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907 
908 #define __cr4_reserved_bits(__cpu_has, __c)		\
909 ({							\
910 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
911 							\
912 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
913 		__reserved_bits |= X86_CR4_OSXSAVE;	\
914 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
915 		__reserved_bits |= X86_CR4_SMEP;	\
916 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
917 		__reserved_bits |= X86_CR4_SMAP;	\
918 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
919 		__reserved_bits |= X86_CR4_FSGSBASE;	\
920 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
921 		__reserved_bits |= X86_CR4_PKE;		\
922 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
923 		__reserved_bits |= X86_CR4_LA57;	\
924 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
925 		__reserved_bits |= X86_CR4_UMIP;	\
926 	__reserved_bits;				\
927 })
928 
929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
930 {
931 	u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
932 
933 	if (kvm_cpu_cap_has(X86_FEATURE_LA57))
934 		reserved_bits &= ~X86_CR4_LA57;
935 
936 	if (kvm_cpu_cap_has(X86_FEATURE_UMIP))
937 		reserved_bits &= ~X86_CR4_UMIP;
938 
939 	return reserved_bits;
940 }
941 
942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
943 {
944 	if (cr4 & cr4_reserved_bits)
945 		return -EINVAL;
946 
947 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
948 		return -EINVAL;
949 
950 	return 0;
951 }
952 
953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
954 {
955 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
956 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
957 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
958 
959 	if (kvm_valid_cr4(vcpu, cr4))
960 		return 1;
961 
962 	if (is_long_mode(vcpu)) {
963 		if (!(cr4 & X86_CR4_PAE))
964 			return 1;
965 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
966 		   && ((cr4 ^ old_cr4) & pdptr_bits)
967 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
968 				   kvm_read_cr3(vcpu)))
969 		return 1;
970 
971 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
972 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
973 			return 1;
974 
975 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
976 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
977 			return 1;
978 	}
979 
980 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
981 		return 1;
982 
983 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
984 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
985 		kvm_mmu_reset_context(vcpu);
986 
987 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
988 		kvm_update_cpuid(vcpu);
989 
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(kvm_set_cr4);
993 
994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
995 {
996 	bool skip_tlb_flush = false;
997 #ifdef CONFIG_X86_64
998 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
999 
1000 	if (pcid_enabled) {
1001 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1002 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1003 	}
1004 #endif
1005 
1006 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1007 		if (!skip_tlb_flush) {
1008 			kvm_mmu_sync_roots(vcpu);
1009 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1010 		}
1011 		return 0;
1012 	}
1013 
1014 	if (is_long_mode(vcpu) &&
1015 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1016 		return 1;
1017 	else if (is_pae_paging(vcpu) &&
1018 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1019 		return 1;
1020 
1021 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1022 	vcpu->arch.cr3 = cr3;
1023 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1028 
1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1030 {
1031 	if (cr8 & CR8_RESERVED_BITS)
1032 		return 1;
1033 	if (lapic_in_kernel(vcpu))
1034 		kvm_lapic_set_tpr(vcpu, cr8);
1035 	else
1036 		vcpu->arch.cr8 = cr8;
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1040 
1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1042 {
1043 	if (lapic_in_kernel(vcpu))
1044 		return kvm_lapic_get_cr8(vcpu);
1045 	else
1046 		return vcpu->arch.cr8;
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1049 
1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1051 {
1052 	int i;
1053 
1054 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1055 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1056 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1057 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1058 	}
1059 }
1060 
1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1062 {
1063 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1064 		kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6);
1065 }
1066 
1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1068 {
1069 	unsigned long dr7;
1070 
1071 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1072 		dr7 = vcpu->arch.guest_debug_dr7;
1073 	else
1074 		dr7 = vcpu->arch.dr7;
1075 	kvm_x86_ops.set_dr7(vcpu, dr7);
1076 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1077 	if (dr7 & DR7_BP_EN_MASK)
1078 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1079 }
1080 
1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1082 {
1083 	u64 fixed = DR6_FIXED_1;
1084 
1085 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1086 		fixed |= DR6_RTM;
1087 	return fixed;
1088 }
1089 
1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1091 {
1092 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1093 
1094 	switch (dr) {
1095 	case 0 ... 3:
1096 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1097 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1098 			vcpu->arch.eff_db[dr] = val;
1099 		break;
1100 	case 4:
1101 		/* fall through */
1102 	case 6:
1103 		if (val & 0xffffffff00000000ULL)
1104 			return -1; /* #GP */
1105 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1106 		kvm_update_dr6(vcpu);
1107 		break;
1108 	case 5:
1109 		/* fall through */
1110 	default: /* 7 */
1111 		if (!kvm_dr7_valid(val))
1112 			return -1; /* #GP */
1113 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1114 		kvm_update_dr7(vcpu);
1115 		break;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1122 {
1123 	if (__kvm_set_dr(vcpu, dr, val)) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_set_dr);
1130 
1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1132 {
1133 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1134 
1135 	switch (dr) {
1136 	case 0 ... 3:
1137 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1138 		break;
1139 	case 4:
1140 		/* fall through */
1141 	case 6:
1142 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1143 			*val = vcpu->arch.dr6;
1144 		else
1145 			*val = kvm_x86_ops.get_dr6(vcpu);
1146 		break;
1147 	case 5:
1148 		/* fall through */
1149 	default: /* 7 */
1150 		*val = vcpu->arch.dr7;
1151 		break;
1152 	}
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_get_dr);
1156 
1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1158 {
1159 	u32 ecx = kvm_rcx_read(vcpu);
1160 	u64 data;
1161 	int err;
1162 
1163 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1164 	if (err)
1165 		return err;
1166 	kvm_rax_write(vcpu, (u32)data);
1167 	kvm_rdx_write(vcpu, data >> 32);
1168 	return err;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1171 
1172 /*
1173  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1174  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1175  *
1176  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1177  * extract the supported MSRs from the related const lists.
1178  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1179  * capabilities of the host cpu. This capabilities test skips MSRs that are
1180  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1181  * may depend on host virtualization features rather than host cpu features.
1182  */
1183 
1184 static const u32 msrs_to_save_all[] = {
1185 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1186 	MSR_STAR,
1187 #ifdef CONFIG_X86_64
1188 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1189 #endif
1190 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1191 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1192 	MSR_IA32_SPEC_CTRL,
1193 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1194 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1195 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1196 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1197 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1198 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1199 	MSR_IA32_UMWAIT_CONTROL,
1200 
1201 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1202 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1203 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1204 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1205 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1206 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1207 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1208 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1209 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1210 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1211 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1212 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1213 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1214 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1215 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1216 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1217 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1218 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1219 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1220 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1221 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1222 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1223 };
1224 
1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1226 static unsigned num_msrs_to_save;
1227 
1228 static const u32 emulated_msrs_all[] = {
1229 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1230 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1231 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1232 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1233 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1234 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1235 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1236 	HV_X64_MSR_RESET,
1237 	HV_X64_MSR_VP_INDEX,
1238 	HV_X64_MSR_VP_RUNTIME,
1239 	HV_X64_MSR_SCONTROL,
1240 	HV_X64_MSR_STIMER0_CONFIG,
1241 	HV_X64_MSR_VP_ASSIST_PAGE,
1242 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1243 	HV_X64_MSR_TSC_EMULATION_STATUS,
1244 
1245 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1246 	MSR_KVM_PV_EOI_EN,
1247 
1248 	MSR_IA32_TSC_ADJUST,
1249 	MSR_IA32_TSCDEADLINE,
1250 	MSR_IA32_ARCH_CAPABILITIES,
1251 	MSR_IA32_MISC_ENABLE,
1252 	MSR_IA32_MCG_STATUS,
1253 	MSR_IA32_MCG_CTL,
1254 	MSR_IA32_MCG_EXT_CTL,
1255 	MSR_IA32_SMBASE,
1256 	MSR_SMI_COUNT,
1257 	MSR_PLATFORM_INFO,
1258 	MSR_MISC_FEATURES_ENABLES,
1259 	MSR_AMD64_VIRT_SPEC_CTRL,
1260 	MSR_IA32_POWER_CTL,
1261 	MSR_IA32_UCODE_REV,
1262 
1263 	/*
1264 	 * The following list leaves out MSRs whose values are determined
1265 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1266 	 * We always support the "true" VMX control MSRs, even if the host
1267 	 * processor does not, so I am putting these registers here rather
1268 	 * than in msrs_to_save_all.
1269 	 */
1270 	MSR_IA32_VMX_BASIC,
1271 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1272 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1273 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1274 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1275 	MSR_IA32_VMX_MISC,
1276 	MSR_IA32_VMX_CR0_FIXED0,
1277 	MSR_IA32_VMX_CR4_FIXED0,
1278 	MSR_IA32_VMX_VMCS_ENUM,
1279 	MSR_IA32_VMX_PROCBASED_CTLS2,
1280 	MSR_IA32_VMX_EPT_VPID_CAP,
1281 	MSR_IA32_VMX_VMFUNC,
1282 
1283 	MSR_K7_HWCR,
1284 	MSR_KVM_POLL_CONTROL,
1285 };
1286 
1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1288 static unsigned num_emulated_msrs;
1289 
1290 /*
1291  * List of msr numbers which are used to expose MSR-based features that
1292  * can be used by a hypervisor to validate requested CPU features.
1293  */
1294 static const u32 msr_based_features_all[] = {
1295 	MSR_IA32_VMX_BASIC,
1296 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1297 	MSR_IA32_VMX_PINBASED_CTLS,
1298 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1299 	MSR_IA32_VMX_PROCBASED_CTLS,
1300 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1301 	MSR_IA32_VMX_EXIT_CTLS,
1302 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1303 	MSR_IA32_VMX_ENTRY_CTLS,
1304 	MSR_IA32_VMX_MISC,
1305 	MSR_IA32_VMX_CR0_FIXED0,
1306 	MSR_IA32_VMX_CR0_FIXED1,
1307 	MSR_IA32_VMX_CR4_FIXED0,
1308 	MSR_IA32_VMX_CR4_FIXED1,
1309 	MSR_IA32_VMX_VMCS_ENUM,
1310 	MSR_IA32_VMX_PROCBASED_CTLS2,
1311 	MSR_IA32_VMX_EPT_VPID_CAP,
1312 	MSR_IA32_VMX_VMFUNC,
1313 
1314 	MSR_F10H_DECFG,
1315 	MSR_IA32_UCODE_REV,
1316 	MSR_IA32_ARCH_CAPABILITIES,
1317 };
1318 
1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1320 static unsigned int num_msr_based_features;
1321 
1322 static u64 kvm_get_arch_capabilities(void)
1323 {
1324 	u64 data = 0;
1325 
1326 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1327 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1328 
1329 	/*
1330 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1331 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1332 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1333 	 * L1 guests, so it need not worry about its own (L2) guests.
1334 	 */
1335 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1336 
1337 	/*
1338 	 * If we're doing cache flushes (either "always" or "cond")
1339 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1340 	 * If an outer hypervisor is doing the cache flush for us
1341 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1342 	 * capability to the guest too, and if EPT is disabled we're not
1343 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1344 	 * require a nested hypervisor to do a flush of its own.
1345 	 */
1346 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1347 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1348 
1349 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1350 		data |= ARCH_CAP_RDCL_NO;
1351 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1352 		data |= ARCH_CAP_SSB_NO;
1353 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1354 		data |= ARCH_CAP_MDS_NO;
1355 
1356 	/*
1357 	 * On TAA affected systems:
1358 	 *      - nothing to do if TSX is disabled on the host.
1359 	 *      - we emulate TSX_CTRL if present on the host.
1360 	 *	  This lets the guest use VERW to clear CPU buffers.
1361 	 */
1362 	if (!boot_cpu_has(X86_FEATURE_RTM))
1363 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1364 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1365 		data |= ARCH_CAP_TAA_NO;
1366 
1367 	return data;
1368 }
1369 
1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1371 {
1372 	switch (msr->index) {
1373 	case MSR_IA32_ARCH_CAPABILITIES:
1374 		msr->data = kvm_get_arch_capabilities();
1375 		break;
1376 	case MSR_IA32_UCODE_REV:
1377 		rdmsrl_safe(msr->index, &msr->data);
1378 		break;
1379 	default:
1380 		if (kvm_x86_ops.get_msr_feature(msr))
1381 			return 1;
1382 	}
1383 	return 0;
1384 }
1385 
1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1387 {
1388 	struct kvm_msr_entry msr;
1389 	int r;
1390 
1391 	msr.index = index;
1392 	r = kvm_get_msr_feature(&msr);
1393 	if (r)
1394 		return r;
1395 
1396 	*data = msr.data;
1397 
1398 	return 0;
1399 }
1400 
1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1402 {
1403 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1404 		return false;
1405 
1406 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1407 		return false;
1408 
1409 	if (efer & (EFER_LME | EFER_LMA) &&
1410 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1411 		return false;
1412 
1413 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1414 		return false;
1415 
1416 	return true;
1417 
1418 }
1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1420 {
1421 	if (efer & efer_reserved_bits)
1422 		return false;
1423 
1424 	return __kvm_valid_efer(vcpu, efer);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1427 
1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1429 {
1430 	u64 old_efer = vcpu->arch.efer;
1431 	u64 efer = msr_info->data;
1432 
1433 	if (efer & efer_reserved_bits)
1434 		return 1;
1435 
1436 	if (!msr_info->host_initiated) {
1437 		if (!__kvm_valid_efer(vcpu, efer))
1438 			return 1;
1439 
1440 		if (is_paging(vcpu) &&
1441 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1442 			return 1;
1443 	}
1444 
1445 	efer &= ~EFER_LMA;
1446 	efer |= vcpu->arch.efer & EFER_LMA;
1447 
1448 	kvm_x86_ops.set_efer(vcpu, efer);
1449 
1450 	/* Update reserved bits */
1451 	if ((efer ^ old_efer) & EFER_NX)
1452 		kvm_mmu_reset_context(vcpu);
1453 
1454 	return 0;
1455 }
1456 
1457 void kvm_enable_efer_bits(u64 mask)
1458 {
1459        efer_reserved_bits &= ~mask;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1462 
1463 /*
1464  * Write @data into the MSR specified by @index.  Select MSR specific fault
1465  * checks are bypassed if @host_initiated is %true.
1466  * Returns 0 on success, non-0 otherwise.
1467  * Assumes vcpu_load() was already called.
1468  */
1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1470 			 bool host_initiated)
1471 {
1472 	struct msr_data msr;
1473 
1474 	switch (index) {
1475 	case MSR_FS_BASE:
1476 	case MSR_GS_BASE:
1477 	case MSR_KERNEL_GS_BASE:
1478 	case MSR_CSTAR:
1479 	case MSR_LSTAR:
1480 		if (is_noncanonical_address(data, vcpu))
1481 			return 1;
1482 		break;
1483 	case MSR_IA32_SYSENTER_EIP:
1484 	case MSR_IA32_SYSENTER_ESP:
1485 		/*
1486 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1487 		 * non-canonical address is written on Intel but not on
1488 		 * AMD (which ignores the top 32-bits, because it does
1489 		 * not implement 64-bit SYSENTER).
1490 		 *
1491 		 * 64-bit code should hence be able to write a non-canonical
1492 		 * value on AMD.  Making the address canonical ensures that
1493 		 * vmentry does not fail on Intel after writing a non-canonical
1494 		 * value, and that something deterministic happens if the guest
1495 		 * invokes 64-bit SYSENTER.
1496 		 */
1497 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1498 	}
1499 
1500 	msr.data = data;
1501 	msr.index = index;
1502 	msr.host_initiated = host_initiated;
1503 
1504 	return kvm_x86_ops.set_msr(vcpu, &msr);
1505 }
1506 
1507 /*
1508  * Read the MSR specified by @index into @data.  Select MSR specific fault
1509  * checks are bypassed if @host_initiated is %true.
1510  * Returns 0 on success, non-0 otherwise.
1511  * Assumes vcpu_load() was already called.
1512  */
1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1514 		  bool host_initiated)
1515 {
1516 	struct msr_data msr;
1517 	int ret;
1518 
1519 	msr.index = index;
1520 	msr.host_initiated = host_initiated;
1521 
1522 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1523 	if (!ret)
1524 		*data = msr.data;
1525 	return ret;
1526 }
1527 
1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1529 {
1530 	return __kvm_get_msr(vcpu, index, data, false);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_msr);
1533 
1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1535 {
1536 	return __kvm_set_msr(vcpu, index, data, false);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_set_msr);
1539 
1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1541 {
1542 	u32 ecx = kvm_rcx_read(vcpu);
1543 	u64 data;
1544 
1545 	if (kvm_get_msr(vcpu, ecx, &data)) {
1546 		trace_kvm_msr_read_ex(ecx);
1547 		kvm_inject_gp(vcpu, 0);
1548 		return 1;
1549 	}
1550 
1551 	trace_kvm_msr_read(ecx, data);
1552 
1553 	kvm_rax_write(vcpu, data & -1u);
1554 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1555 	return kvm_skip_emulated_instruction(vcpu);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1558 
1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1560 {
1561 	u32 ecx = kvm_rcx_read(vcpu);
1562 	u64 data = kvm_read_edx_eax(vcpu);
1563 
1564 	if (kvm_set_msr(vcpu, ecx, data)) {
1565 		trace_kvm_msr_write_ex(ecx, data);
1566 		kvm_inject_gp(vcpu, 0);
1567 		return 1;
1568 	}
1569 
1570 	trace_kvm_msr_write(ecx, data);
1571 	return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1574 
1575 /*
1576  * The fast path for frequent and performance sensitive wrmsr emulation,
1577  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1578  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1579  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1580  * other cases which must be called after interrupts are enabled on the host.
1581  */
1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1583 {
1584 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1585 		return 1;
1586 
1587 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1588 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1589 		((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1590 
1591 		data &= ~(1 << 12);
1592 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1593 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1594 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1595 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1596 		return 0;
1597 	}
1598 
1599 	return 1;
1600 }
1601 
1602 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1603 {
1604 	u32 msr = kvm_rcx_read(vcpu);
1605 	u64 data;
1606 	int ret = 0;
1607 
1608 	switch (msr) {
1609 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1610 		data = kvm_read_edx_eax(vcpu);
1611 		ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1612 		break;
1613 	default:
1614 		return EXIT_FASTPATH_NONE;
1615 	}
1616 
1617 	if (!ret) {
1618 		trace_kvm_msr_write(msr, data);
1619 		return EXIT_FASTPATH_SKIP_EMUL_INS;
1620 	}
1621 
1622 	return EXIT_FASTPATH_NONE;
1623 }
1624 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1625 
1626 /*
1627  * Adapt set_msr() to msr_io()'s calling convention
1628  */
1629 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1630 {
1631 	return __kvm_get_msr(vcpu, index, data, true);
1632 }
1633 
1634 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1635 {
1636 	return __kvm_set_msr(vcpu, index, *data, true);
1637 }
1638 
1639 #ifdef CONFIG_X86_64
1640 struct pvclock_clock {
1641 	int vclock_mode;
1642 	u64 cycle_last;
1643 	u64 mask;
1644 	u32 mult;
1645 	u32 shift;
1646 	u64 base_cycles;
1647 	u64 offset;
1648 };
1649 
1650 struct pvclock_gtod_data {
1651 	seqcount_t	seq;
1652 
1653 	struct pvclock_clock clock; /* extract of a clocksource struct */
1654 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1655 
1656 	ktime_t		offs_boot;
1657 	u64		wall_time_sec;
1658 };
1659 
1660 static struct pvclock_gtod_data pvclock_gtod_data;
1661 
1662 static void update_pvclock_gtod(struct timekeeper *tk)
1663 {
1664 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1665 
1666 	write_seqcount_begin(&vdata->seq);
1667 
1668 	/* copy pvclock gtod data */
1669 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1670 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1671 	vdata->clock.mask		= tk->tkr_mono.mask;
1672 	vdata->clock.mult		= tk->tkr_mono.mult;
1673 	vdata->clock.shift		= tk->tkr_mono.shift;
1674 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1675 	vdata->clock.offset		= tk->tkr_mono.base;
1676 
1677 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1678 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1679 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1680 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1681 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1682 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1683 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1684 
1685 	vdata->wall_time_sec            = tk->xtime_sec;
1686 
1687 	vdata->offs_boot		= tk->offs_boot;
1688 
1689 	write_seqcount_end(&vdata->seq);
1690 }
1691 
1692 static s64 get_kvmclock_base_ns(void)
1693 {
1694 	/* Count up from boot time, but with the frequency of the raw clock.  */
1695 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1696 }
1697 #else
1698 static s64 get_kvmclock_base_ns(void)
1699 {
1700 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1701 	return ktime_get_boottime_ns();
1702 }
1703 #endif
1704 
1705 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1706 {
1707 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1708 	kvm_vcpu_kick(vcpu);
1709 }
1710 
1711 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1712 {
1713 	int version;
1714 	int r;
1715 	struct pvclock_wall_clock wc;
1716 	u64 wall_nsec;
1717 
1718 	if (!wall_clock)
1719 		return;
1720 
1721 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1722 	if (r)
1723 		return;
1724 
1725 	if (version & 1)
1726 		++version;  /* first time write, random junk */
1727 
1728 	++version;
1729 
1730 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1731 		return;
1732 
1733 	/*
1734 	 * The guest calculates current wall clock time by adding
1735 	 * system time (updated by kvm_guest_time_update below) to the
1736 	 * wall clock specified here.  We do the reverse here.
1737 	 */
1738 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1739 
1740 	wc.nsec = do_div(wall_nsec, 1000000000);
1741 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1742 	wc.version = version;
1743 
1744 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1745 
1746 	version++;
1747 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1748 }
1749 
1750 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1751 {
1752 	do_shl32_div32(dividend, divisor);
1753 	return dividend;
1754 }
1755 
1756 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1757 			       s8 *pshift, u32 *pmultiplier)
1758 {
1759 	uint64_t scaled64;
1760 	int32_t  shift = 0;
1761 	uint64_t tps64;
1762 	uint32_t tps32;
1763 
1764 	tps64 = base_hz;
1765 	scaled64 = scaled_hz;
1766 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1767 		tps64 >>= 1;
1768 		shift--;
1769 	}
1770 
1771 	tps32 = (uint32_t)tps64;
1772 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1773 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1774 			scaled64 >>= 1;
1775 		else
1776 			tps32 <<= 1;
1777 		shift++;
1778 	}
1779 
1780 	*pshift = shift;
1781 	*pmultiplier = div_frac(scaled64, tps32);
1782 }
1783 
1784 #ifdef CONFIG_X86_64
1785 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1786 #endif
1787 
1788 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1789 static unsigned long max_tsc_khz;
1790 
1791 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1792 {
1793 	u64 v = (u64)khz * (1000000 + ppm);
1794 	do_div(v, 1000000);
1795 	return v;
1796 }
1797 
1798 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1799 {
1800 	u64 ratio;
1801 
1802 	/* Guest TSC same frequency as host TSC? */
1803 	if (!scale) {
1804 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1805 		return 0;
1806 	}
1807 
1808 	/* TSC scaling supported? */
1809 	if (!kvm_has_tsc_control) {
1810 		if (user_tsc_khz > tsc_khz) {
1811 			vcpu->arch.tsc_catchup = 1;
1812 			vcpu->arch.tsc_always_catchup = 1;
1813 			return 0;
1814 		} else {
1815 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1816 			return -1;
1817 		}
1818 	}
1819 
1820 	/* TSC scaling required  - calculate ratio */
1821 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1822 				user_tsc_khz, tsc_khz);
1823 
1824 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1825 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1826 			            user_tsc_khz);
1827 		return -1;
1828 	}
1829 
1830 	vcpu->arch.tsc_scaling_ratio = ratio;
1831 	return 0;
1832 }
1833 
1834 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1835 {
1836 	u32 thresh_lo, thresh_hi;
1837 	int use_scaling = 0;
1838 
1839 	/* tsc_khz can be zero if TSC calibration fails */
1840 	if (user_tsc_khz == 0) {
1841 		/* set tsc_scaling_ratio to a safe value */
1842 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1843 		return -1;
1844 	}
1845 
1846 	/* Compute a scale to convert nanoseconds in TSC cycles */
1847 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1848 			   &vcpu->arch.virtual_tsc_shift,
1849 			   &vcpu->arch.virtual_tsc_mult);
1850 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1851 
1852 	/*
1853 	 * Compute the variation in TSC rate which is acceptable
1854 	 * within the range of tolerance and decide if the
1855 	 * rate being applied is within that bounds of the hardware
1856 	 * rate.  If so, no scaling or compensation need be done.
1857 	 */
1858 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1859 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1860 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1861 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1862 		use_scaling = 1;
1863 	}
1864 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1865 }
1866 
1867 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1868 {
1869 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1870 				      vcpu->arch.virtual_tsc_mult,
1871 				      vcpu->arch.virtual_tsc_shift);
1872 	tsc += vcpu->arch.this_tsc_write;
1873 	return tsc;
1874 }
1875 
1876 static inline int gtod_is_based_on_tsc(int mode)
1877 {
1878 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1879 }
1880 
1881 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1882 {
1883 #ifdef CONFIG_X86_64
1884 	bool vcpus_matched;
1885 	struct kvm_arch *ka = &vcpu->kvm->arch;
1886 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1887 
1888 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1889 			 atomic_read(&vcpu->kvm->online_vcpus));
1890 
1891 	/*
1892 	 * Once the masterclock is enabled, always perform request in
1893 	 * order to update it.
1894 	 *
1895 	 * In order to enable masterclock, the host clocksource must be TSC
1896 	 * and the vcpus need to have matched TSCs.  When that happens,
1897 	 * perform request to enable masterclock.
1898 	 */
1899 	if (ka->use_master_clock ||
1900 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1901 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1902 
1903 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1904 			    atomic_read(&vcpu->kvm->online_vcpus),
1905 		            ka->use_master_clock, gtod->clock.vclock_mode);
1906 #endif
1907 }
1908 
1909 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1910 {
1911 	u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1912 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1913 }
1914 
1915 /*
1916  * Multiply tsc by a fixed point number represented by ratio.
1917  *
1918  * The most significant 64-N bits (mult) of ratio represent the
1919  * integral part of the fixed point number; the remaining N bits
1920  * (frac) represent the fractional part, ie. ratio represents a fixed
1921  * point number (mult + frac * 2^(-N)).
1922  *
1923  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1924  */
1925 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1926 {
1927 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1928 }
1929 
1930 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1931 {
1932 	u64 _tsc = tsc;
1933 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1934 
1935 	if (ratio != kvm_default_tsc_scaling_ratio)
1936 		_tsc = __scale_tsc(ratio, tsc);
1937 
1938 	return _tsc;
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1941 
1942 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1943 {
1944 	u64 tsc;
1945 
1946 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1947 
1948 	return target_tsc - tsc;
1949 }
1950 
1951 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1952 {
1953 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1954 
1955 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1958 
1959 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1960 {
1961 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1962 }
1963 
1964 static inline bool kvm_check_tsc_unstable(void)
1965 {
1966 #ifdef CONFIG_X86_64
1967 	/*
1968 	 * TSC is marked unstable when we're running on Hyper-V,
1969 	 * 'TSC page' clocksource is good.
1970 	 */
1971 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
1972 		return false;
1973 #endif
1974 	return check_tsc_unstable();
1975 }
1976 
1977 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1978 {
1979 	struct kvm *kvm = vcpu->kvm;
1980 	u64 offset, ns, elapsed;
1981 	unsigned long flags;
1982 	bool matched;
1983 	bool already_matched;
1984 	u64 data = msr->data;
1985 	bool synchronizing = false;
1986 
1987 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1988 	offset = kvm_compute_tsc_offset(vcpu, data);
1989 	ns = get_kvmclock_base_ns();
1990 	elapsed = ns - kvm->arch.last_tsc_nsec;
1991 
1992 	if (vcpu->arch.virtual_tsc_khz) {
1993 		if (data == 0 && msr->host_initiated) {
1994 			/*
1995 			 * detection of vcpu initialization -- need to sync
1996 			 * with other vCPUs. This particularly helps to keep
1997 			 * kvm_clock stable after CPU hotplug
1998 			 */
1999 			synchronizing = true;
2000 		} else {
2001 			u64 tsc_exp = kvm->arch.last_tsc_write +
2002 						nsec_to_cycles(vcpu, elapsed);
2003 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2004 			/*
2005 			 * Special case: TSC write with a small delta (1 second)
2006 			 * of virtual cycle time against real time is
2007 			 * interpreted as an attempt to synchronize the CPU.
2008 			 */
2009 			synchronizing = data < tsc_exp + tsc_hz &&
2010 					data + tsc_hz > tsc_exp;
2011 		}
2012 	}
2013 
2014 	/*
2015 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2016 	 * TSC, we add elapsed time in this computation.  We could let the
2017 	 * compensation code attempt to catch up if we fall behind, but
2018 	 * it's better to try to match offsets from the beginning.
2019          */
2020 	if (synchronizing &&
2021 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2022 		if (!kvm_check_tsc_unstable()) {
2023 			offset = kvm->arch.cur_tsc_offset;
2024 		} else {
2025 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2026 			data += delta;
2027 			offset = kvm_compute_tsc_offset(vcpu, data);
2028 		}
2029 		matched = true;
2030 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2031 	} else {
2032 		/*
2033 		 * We split periods of matched TSC writes into generations.
2034 		 * For each generation, we track the original measured
2035 		 * nanosecond time, offset, and write, so if TSCs are in
2036 		 * sync, we can match exact offset, and if not, we can match
2037 		 * exact software computation in compute_guest_tsc()
2038 		 *
2039 		 * These values are tracked in kvm->arch.cur_xxx variables.
2040 		 */
2041 		kvm->arch.cur_tsc_generation++;
2042 		kvm->arch.cur_tsc_nsec = ns;
2043 		kvm->arch.cur_tsc_write = data;
2044 		kvm->arch.cur_tsc_offset = offset;
2045 		matched = false;
2046 	}
2047 
2048 	/*
2049 	 * We also track th most recent recorded KHZ, write and time to
2050 	 * allow the matching interval to be extended at each write.
2051 	 */
2052 	kvm->arch.last_tsc_nsec = ns;
2053 	kvm->arch.last_tsc_write = data;
2054 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2055 
2056 	vcpu->arch.last_guest_tsc = data;
2057 
2058 	/* Keep track of which generation this VCPU has synchronized to */
2059 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2060 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2061 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2062 
2063 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2064 		update_ia32_tsc_adjust_msr(vcpu, offset);
2065 
2066 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2067 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2068 
2069 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2070 	if (!matched) {
2071 		kvm->arch.nr_vcpus_matched_tsc = 0;
2072 	} else if (!already_matched) {
2073 		kvm->arch.nr_vcpus_matched_tsc++;
2074 	}
2075 
2076 	kvm_track_tsc_matching(vcpu);
2077 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2078 }
2079 
2080 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2081 
2082 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2083 					   s64 adjustment)
2084 {
2085 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
2086 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2087 }
2088 
2089 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2090 {
2091 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2092 		WARN_ON(adjustment < 0);
2093 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2094 	adjust_tsc_offset_guest(vcpu, adjustment);
2095 }
2096 
2097 #ifdef CONFIG_X86_64
2098 
2099 static u64 read_tsc(void)
2100 {
2101 	u64 ret = (u64)rdtsc_ordered();
2102 	u64 last = pvclock_gtod_data.clock.cycle_last;
2103 
2104 	if (likely(ret >= last))
2105 		return ret;
2106 
2107 	/*
2108 	 * GCC likes to generate cmov here, but this branch is extremely
2109 	 * predictable (it's just a function of time and the likely is
2110 	 * very likely) and there's a data dependence, so force GCC
2111 	 * to generate a branch instead.  I don't barrier() because
2112 	 * we don't actually need a barrier, and if this function
2113 	 * ever gets inlined it will generate worse code.
2114 	 */
2115 	asm volatile ("");
2116 	return last;
2117 }
2118 
2119 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2120 			  int *mode)
2121 {
2122 	long v;
2123 	u64 tsc_pg_val;
2124 
2125 	switch (clock->vclock_mode) {
2126 	case VDSO_CLOCKMODE_HVCLOCK:
2127 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2128 						  tsc_timestamp);
2129 		if (tsc_pg_val != U64_MAX) {
2130 			/* TSC page valid */
2131 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2132 			v = (tsc_pg_val - clock->cycle_last) &
2133 				clock->mask;
2134 		} else {
2135 			/* TSC page invalid */
2136 			*mode = VDSO_CLOCKMODE_NONE;
2137 		}
2138 		break;
2139 	case VDSO_CLOCKMODE_TSC:
2140 		*mode = VDSO_CLOCKMODE_TSC;
2141 		*tsc_timestamp = read_tsc();
2142 		v = (*tsc_timestamp - clock->cycle_last) &
2143 			clock->mask;
2144 		break;
2145 	default:
2146 		*mode = VDSO_CLOCKMODE_NONE;
2147 	}
2148 
2149 	if (*mode == VDSO_CLOCKMODE_NONE)
2150 		*tsc_timestamp = v = 0;
2151 
2152 	return v * clock->mult;
2153 }
2154 
2155 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2156 {
2157 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2158 	unsigned long seq;
2159 	int mode;
2160 	u64 ns;
2161 
2162 	do {
2163 		seq = read_seqcount_begin(&gtod->seq);
2164 		ns = gtod->raw_clock.base_cycles;
2165 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2166 		ns >>= gtod->raw_clock.shift;
2167 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2168 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2169 	*t = ns;
2170 
2171 	return mode;
2172 }
2173 
2174 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2175 {
2176 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2177 	unsigned long seq;
2178 	int mode;
2179 	u64 ns;
2180 
2181 	do {
2182 		seq = read_seqcount_begin(&gtod->seq);
2183 		ts->tv_sec = gtod->wall_time_sec;
2184 		ns = gtod->clock.base_cycles;
2185 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2186 		ns >>= gtod->clock.shift;
2187 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2188 
2189 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2190 	ts->tv_nsec = ns;
2191 
2192 	return mode;
2193 }
2194 
2195 /* returns true if host is using TSC based clocksource */
2196 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2197 {
2198 	/* checked again under seqlock below */
2199 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2200 		return false;
2201 
2202 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2203 						      tsc_timestamp));
2204 }
2205 
2206 /* returns true if host is using TSC based clocksource */
2207 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2208 					   u64 *tsc_timestamp)
2209 {
2210 	/* checked again under seqlock below */
2211 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2212 		return false;
2213 
2214 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2215 }
2216 #endif
2217 
2218 /*
2219  *
2220  * Assuming a stable TSC across physical CPUS, and a stable TSC
2221  * across virtual CPUs, the following condition is possible.
2222  * Each numbered line represents an event visible to both
2223  * CPUs at the next numbered event.
2224  *
2225  * "timespecX" represents host monotonic time. "tscX" represents
2226  * RDTSC value.
2227  *
2228  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2229  *
2230  * 1.  read timespec0,tsc0
2231  * 2.					| timespec1 = timespec0 + N
2232  * 					| tsc1 = tsc0 + M
2233  * 3. transition to guest		| transition to guest
2234  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2235  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2236  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2237  *
2238  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2239  *
2240  * 	- ret0 < ret1
2241  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2242  *		...
2243  *	- 0 < N - M => M < N
2244  *
2245  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2246  * always the case (the difference between two distinct xtime instances
2247  * might be smaller then the difference between corresponding TSC reads,
2248  * when updating guest vcpus pvclock areas).
2249  *
2250  * To avoid that problem, do not allow visibility of distinct
2251  * system_timestamp/tsc_timestamp values simultaneously: use a master
2252  * copy of host monotonic time values. Update that master copy
2253  * in lockstep.
2254  *
2255  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2256  *
2257  */
2258 
2259 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2260 {
2261 #ifdef CONFIG_X86_64
2262 	struct kvm_arch *ka = &kvm->arch;
2263 	int vclock_mode;
2264 	bool host_tsc_clocksource, vcpus_matched;
2265 
2266 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2267 			atomic_read(&kvm->online_vcpus));
2268 
2269 	/*
2270 	 * If the host uses TSC clock, then passthrough TSC as stable
2271 	 * to the guest.
2272 	 */
2273 	host_tsc_clocksource = kvm_get_time_and_clockread(
2274 					&ka->master_kernel_ns,
2275 					&ka->master_cycle_now);
2276 
2277 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2278 				&& !ka->backwards_tsc_observed
2279 				&& !ka->boot_vcpu_runs_old_kvmclock;
2280 
2281 	if (ka->use_master_clock)
2282 		atomic_set(&kvm_guest_has_master_clock, 1);
2283 
2284 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2285 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2286 					vcpus_matched);
2287 #endif
2288 }
2289 
2290 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2291 {
2292 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2293 }
2294 
2295 static void kvm_gen_update_masterclock(struct kvm *kvm)
2296 {
2297 #ifdef CONFIG_X86_64
2298 	int i;
2299 	struct kvm_vcpu *vcpu;
2300 	struct kvm_arch *ka = &kvm->arch;
2301 
2302 	spin_lock(&ka->pvclock_gtod_sync_lock);
2303 	kvm_make_mclock_inprogress_request(kvm);
2304 	/* no guest entries from this point */
2305 	pvclock_update_vm_gtod_copy(kvm);
2306 
2307 	kvm_for_each_vcpu(i, vcpu, kvm)
2308 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2309 
2310 	/* guest entries allowed */
2311 	kvm_for_each_vcpu(i, vcpu, kvm)
2312 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2313 
2314 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2315 #endif
2316 }
2317 
2318 u64 get_kvmclock_ns(struct kvm *kvm)
2319 {
2320 	struct kvm_arch *ka = &kvm->arch;
2321 	struct pvclock_vcpu_time_info hv_clock;
2322 	u64 ret;
2323 
2324 	spin_lock(&ka->pvclock_gtod_sync_lock);
2325 	if (!ka->use_master_clock) {
2326 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2327 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2328 	}
2329 
2330 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2331 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2332 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2333 
2334 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2335 	get_cpu();
2336 
2337 	if (__this_cpu_read(cpu_tsc_khz)) {
2338 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2339 				   &hv_clock.tsc_shift,
2340 				   &hv_clock.tsc_to_system_mul);
2341 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2342 	} else
2343 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2344 
2345 	put_cpu();
2346 
2347 	return ret;
2348 }
2349 
2350 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2351 {
2352 	struct kvm_vcpu_arch *vcpu = &v->arch;
2353 	struct pvclock_vcpu_time_info guest_hv_clock;
2354 
2355 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2356 		&guest_hv_clock, sizeof(guest_hv_clock))))
2357 		return;
2358 
2359 	/* This VCPU is paused, but it's legal for a guest to read another
2360 	 * VCPU's kvmclock, so we really have to follow the specification where
2361 	 * it says that version is odd if data is being modified, and even after
2362 	 * it is consistent.
2363 	 *
2364 	 * Version field updates must be kept separate.  This is because
2365 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2366 	 * writes within a string instruction are weakly ordered.  So there
2367 	 * are three writes overall.
2368 	 *
2369 	 * As a small optimization, only write the version field in the first
2370 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2371 	 * version field is the first in the struct.
2372 	 */
2373 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2374 
2375 	if (guest_hv_clock.version & 1)
2376 		++guest_hv_clock.version;  /* first time write, random junk */
2377 
2378 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2379 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2380 				&vcpu->hv_clock,
2381 				sizeof(vcpu->hv_clock.version));
2382 
2383 	smp_wmb();
2384 
2385 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2386 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2387 
2388 	if (vcpu->pvclock_set_guest_stopped_request) {
2389 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2390 		vcpu->pvclock_set_guest_stopped_request = false;
2391 	}
2392 
2393 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2394 
2395 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2396 				&vcpu->hv_clock,
2397 				sizeof(vcpu->hv_clock));
2398 
2399 	smp_wmb();
2400 
2401 	vcpu->hv_clock.version++;
2402 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2403 				&vcpu->hv_clock,
2404 				sizeof(vcpu->hv_clock.version));
2405 }
2406 
2407 static int kvm_guest_time_update(struct kvm_vcpu *v)
2408 {
2409 	unsigned long flags, tgt_tsc_khz;
2410 	struct kvm_vcpu_arch *vcpu = &v->arch;
2411 	struct kvm_arch *ka = &v->kvm->arch;
2412 	s64 kernel_ns;
2413 	u64 tsc_timestamp, host_tsc;
2414 	u8 pvclock_flags;
2415 	bool use_master_clock;
2416 
2417 	kernel_ns = 0;
2418 	host_tsc = 0;
2419 
2420 	/*
2421 	 * If the host uses TSC clock, then passthrough TSC as stable
2422 	 * to the guest.
2423 	 */
2424 	spin_lock(&ka->pvclock_gtod_sync_lock);
2425 	use_master_clock = ka->use_master_clock;
2426 	if (use_master_clock) {
2427 		host_tsc = ka->master_cycle_now;
2428 		kernel_ns = ka->master_kernel_ns;
2429 	}
2430 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2431 
2432 	/* Keep irq disabled to prevent changes to the clock */
2433 	local_irq_save(flags);
2434 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2435 	if (unlikely(tgt_tsc_khz == 0)) {
2436 		local_irq_restore(flags);
2437 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2438 		return 1;
2439 	}
2440 	if (!use_master_clock) {
2441 		host_tsc = rdtsc();
2442 		kernel_ns = get_kvmclock_base_ns();
2443 	}
2444 
2445 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2446 
2447 	/*
2448 	 * We may have to catch up the TSC to match elapsed wall clock
2449 	 * time for two reasons, even if kvmclock is used.
2450 	 *   1) CPU could have been running below the maximum TSC rate
2451 	 *   2) Broken TSC compensation resets the base at each VCPU
2452 	 *      entry to avoid unknown leaps of TSC even when running
2453 	 *      again on the same CPU.  This may cause apparent elapsed
2454 	 *      time to disappear, and the guest to stand still or run
2455 	 *	very slowly.
2456 	 */
2457 	if (vcpu->tsc_catchup) {
2458 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2459 		if (tsc > tsc_timestamp) {
2460 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2461 			tsc_timestamp = tsc;
2462 		}
2463 	}
2464 
2465 	local_irq_restore(flags);
2466 
2467 	/* With all the info we got, fill in the values */
2468 
2469 	if (kvm_has_tsc_control)
2470 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2471 
2472 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2473 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2474 				   &vcpu->hv_clock.tsc_shift,
2475 				   &vcpu->hv_clock.tsc_to_system_mul);
2476 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2477 	}
2478 
2479 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2480 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2481 	vcpu->last_guest_tsc = tsc_timestamp;
2482 
2483 	/* If the host uses TSC clocksource, then it is stable */
2484 	pvclock_flags = 0;
2485 	if (use_master_clock)
2486 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2487 
2488 	vcpu->hv_clock.flags = pvclock_flags;
2489 
2490 	if (vcpu->pv_time_enabled)
2491 		kvm_setup_pvclock_page(v);
2492 	if (v == kvm_get_vcpu(v->kvm, 0))
2493 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2494 	return 0;
2495 }
2496 
2497 /*
2498  * kvmclock updates which are isolated to a given vcpu, such as
2499  * vcpu->cpu migration, should not allow system_timestamp from
2500  * the rest of the vcpus to remain static. Otherwise ntp frequency
2501  * correction applies to one vcpu's system_timestamp but not
2502  * the others.
2503  *
2504  * So in those cases, request a kvmclock update for all vcpus.
2505  * We need to rate-limit these requests though, as they can
2506  * considerably slow guests that have a large number of vcpus.
2507  * The time for a remote vcpu to update its kvmclock is bound
2508  * by the delay we use to rate-limit the updates.
2509  */
2510 
2511 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2512 
2513 static void kvmclock_update_fn(struct work_struct *work)
2514 {
2515 	int i;
2516 	struct delayed_work *dwork = to_delayed_work(work);
2517 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2518 					   kvmclock_update_work);
2519 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2520 	struct kvm_vcpu *vcpu;
2521 
2522 	kvm_for_each_vcpu(i, vcpu, kvm) {
2523 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2524 		kvm_vcpu_kick(vcpu);
2525 	}
2526 }
2527 
2528 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2529 {
2530 	struct kvm *kvm = v->kvm;
2531 
2532 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2533 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2534 					KVMCLOCK_UPDATE_DELAY);
2535 }
2536 
2537 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2538 
2539 static void kvmclock_sync_fn(struct work_struct *work)
2540 {
2541 	struct delayed_work *dwork = to_delayed_work(work);
2542 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2543 					   kvmclock_sync_work);
2544 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2545 
2546 	if (!kvmclock_periodic_sync)
2547 		return;
2548 
2549 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2550 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2551 					KVMCLOCK_SYNC_PERIOD);
2552 }
2553 
2554 /*
2555  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2556  */
2557 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2558 {
2559 	/* McStatusWrEn enabled? */
2560 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2561 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2562 
2563 	return false;
2564 }
2565 
2566 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2567 {
2568 	u64 mcg_cap = vcpu->arch.mcg_cap;
2569 	unsigned bank_num = mcg_cap & 0xff;
2570 	u32 msr = msr_info->index;
2571 	u64 data = msr_info->data;
2572 
2573 	switch (msr) {
2574 	case MSR_IA32_MCG_STATUS:
2575 		vcpu->arch.mcg_status = data;
2576 		break;
2577 	case MSR_IA32_MCG_CTL:
2578 		if (!(mcg_cap & MCG_CTL_P) &&
2579 		    (data || !msr_info->host_initiated))
2580 			return 1;
2581 		if (data != 0 && data != ~(u64)0)
2582 			return 1;
2583 		vcpu->arch.mcg_ctl = data;
2584 		break;
2585 	default:
2586 		if (msr >= MSR_IA32_MC0_CTL &&
2587 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2588 			u32 offset = array_index_nospec(
2589 				msr - MSR_IA32_MC0_CTL,
2590 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2591 
2592 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2593 			 * some Linux kernels though clear bit 10 in bank 4 to
2594 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2595 			 * this to avoid an uncatched #GP in the guest
2596 			 */
2597 			if ((offset & 0x3) == 0 &&
2598 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2599 				return -1;
2600 
2601 			/* MCi_STATUS */
2602 			if (!msr_info->host_initiated &&
2603 			    (offset & 0x3) == 1 && data != 0) {
2604 				if (!can_set_mci_status(vcpu))
2605 					return -1;
2606 			}
2607 
2608 			vcpu->arch.mce_banks[offset] = data;
2609 			break;
2610 		}
2611 		return 1;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2617 {
2618 	struct kvm *kvm = vcpu->kvm;
2619 	int lm = is_long_mode(vcpu);
2620 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2621 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2622 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2623 		: kvm->arch.xen_hvm_config.blob_size_32;
2624 	u32 page_num = data & ~PAGE_MASK;
2625 	u64 page_addr = data & PAGE_MASK;
2626 	u8 *page;
2627 	int r;
2628 
2629 	r = -E2BIG;
2630 	if (page_num >= blob_size)
2631 		goto out;
2632 	r = -ENOMEM;
2633 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2634 	if (IS_ERR(page)) {
2635 		r = PTR_ERR(page);
2636 		goto out;
2637 	}
2638 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2639 		goto out_free;
2640 	r = 0;
2641 out_free:
2642 	kfree(page);
2643 out:
2644 	return r;
2645 }
2646 
2647 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2648 {
2649 	gpa_t gpa = data & ~0x3f;
2650 
2651 	/* Bits 3:5 are reserved, Should be zero */
2652 	if (data & 0x38)
2653 		return 1;
2654 
2655 	vcpu->arch.apf.msr_val = data;
2656 
2657 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2658 		kvm_clear_async_pf_completion_queue(vcpu);
2659 		kvm_async_pf_hash_reset(vcpu);
2660 		return 0;
2661 	}
2662 
2663 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2664 					sizeof(u32)))
2665 		return 1;
2666 
2667 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2668 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2669 	kvm_async_pf_wakeup_all(vcpu);
2670 	return 0;
2671 }
2672 
2673 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2674 {
2675 	vcpu->arch.pv_time_enabled = false;
2676 	vcpu->arch.time = 0;
2677 }
2678 
2679 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2680 {
2681 	++vcpu->stat.tlb_flush;
2682 	kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
2683 }
2684 
2685 static void record_steal_time(struct kvm_vcpu *vcpu)
2686 {
2687 	struct kvm_host_map map;
2688 	struct kvm_steal_time *st;
2689 
2690 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2691 		return;
2692 
2693 	/* -EAGAIN is returned in atomic context so we can just return. */
2694 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2695 			&map, &vcpu->arch.st.cache, false))
2696 		return;
2697 
2698 	st = map.hva +
2699 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2700 
2701 	/*
2702 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2703 	 * expensive IPIs.
2704 	 */
2705 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2706 		st->preempted & KVM_VCPU_FLUSH_TLB);
2707 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2708 		kvm_vcpu_flush_tlb(vcpu, false);
2709 
2710 	vcpu->arch.st.preempted = 0;
2711 
2712 	if (st->version & 1)
2713 		st->version += 1;  /* first time write, random junk */
2714 
2715 	st->version += 1;
2716 
2717 	smp_wmb();
2718 
2719 	st->steal += current->sched_info.run_delay -
2720 		vcpu->arch.st.last_steal;
2721 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2722 
2723 	smp_wmb();
2724 
2725 	st->version += 1;
2726 
2727 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2728 }
2729 
2730 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2731 {
2732 	bool pr = false;
2733 	u32 msr = msr_info->index;
2734 	u64 data = msr_info->data;
2735 
2736 	switch (msr) {
2737 	case MSR_AMD64_NB_CFG:
2738 	case MSR_IA32_UCODE_WRITE:
2739 	case MSR_VM_HSAVE_PA:
2740 	case MSR_AMD64_PATCH_LOADER:
2741 	case MSR_AMD64_BU_CFG2:
2742 	case MSR_AMD64_DC_CFG:
2743 	case MSR_F15H_EX_CFG:
2744 		break;
2745 
2746 	case MSR_IA32_UCODE_REV:
2747 		if (msr_info->host_initiated)
2748 			vcpu->arch.microcode_version = data;
2749 		break;
2750 	case MSR_IA32_ARCH_CAPABILITIES:
2751 		if (!msr_info->host_initiated)
2752 			return 1;
2753 		vcpu->arch.arch_capabilities = data;
2754 		break;
2755 	case MSR_EFER:
2756 		return set_efer(vcpu, msr_info);
2757 	case MSR_K7_HWCR:
2758 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2759 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2760 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2761 
2762 		/* Handle McStatusWrEn */
2763 		if (data == BIT_ULL(18)) {
2764 			vcpu->arch.msr_hwcr = data;
2765 		} else if (data != 0) {
2766 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2767 				    data);
2768 			return 1;
2769 		}
2770 		break;
2771 	case MSR_FAM10H_MMIO_CONF_BASE:
2772 		if (data != 0) {
2773 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2774 				    "0x%llx\n", data);
2775 			return 1;
2776 		}
2777 		break;
2778 	case MSR_IA32_DEBUGCTLMSR:
2779 		if (!data) {
2780 			/* We support the non-activated case already */
2781 			break;
2782 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2783 			/* Values other than LBR and BTF are vendor-specific,
2784 			   thus reserved and should throw a #GP */
2785 			return 1;
2786 		}
2787 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2788 			    __func__, data);
2789 		break;
2790 	case 0x200 ... 0x2ff:
2791 		return kvm_mtrr_set_msr(vcpu, msr, data);
2792 	case MSR_IA32_APICBASE:
2793 		return kvm_set_apic_base(vcpu, msr_info);
2794 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2795 		return kvm_x2apic_msr_write(vcpu, msr, data);
2796 	case MSR_IA32_TSCDEADLINE:
2797 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2798 		break;
2799 	case MSR_IA32_TSC_ADJUST:
2800 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2801 			if (!msr_info->host_initiated) {
2802 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2803 				adjust_tsc_offset_guest(vcpu, adj);
2804 			}
2805 			vcpu->arch.ia32_tsc_adjust_msr = data;
2806 		}
2807 		break;
2808 	case MSR_IA32_MISC_ENABLE:
2809 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2810 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2811 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2812 				return 1;
2813 			vcpu->arch.ia32_misc_enable_msr = data;
2814 			kvm_update_cpuid(vcpu);
2815 		} else {
2816 			vcpu->arch.ia32_misc_enable_msr = data;
2817 		}
2818 		break;
2819 	case MSR_IA32_SMBASE:
2820 		if (!msr_info->host_initiated)
2821 			return 1;
2822 		vcpu->arch.smbase = data;
2823 		break;
2824 	case MSR_IA32_POWER_CTL:
2825 		vcpu->arch.msr_ia32_power_ctl = data;
2826 		break;
2827 	case MSR_IA32_TSC:
2828 		kvm_write_tsc(vcpu, msr_info);
2829 		break;
2830 	case MSR_IA32_XSS:
2831 		if (!msr_info->host_initiated &&
2832 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2833 			return 1;
2834 		/*
2835 		 * KVM supports exposing PT to the guest, but does not support
2836 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2837 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2838 		 */
2839 		if (data & ~supported_xss)
2840 			return 1;
2841 		vcpu->arch.ia32_xss = data;
2842 		break;
2843 	case MSR_SMI_COUNT:
2844 		if (!msr_info->host_initiated)
2845 			return 1;
2846 		vcpu->arch.smi_count = data;
2847 		break;
2848 	case MSR_KVM_WALL_CLOCK_NEW:
2849 	case MSR_KVM_WALL_CLOCK:
2850 		vcpu->kvm->arch.wall_clock = data;
2851 		kvm_write_wall_clock(vcpu->kvm, data);
2852 		break;
2853 	case MSR_KVM_SYSTEM_TIME_NEW:
2854 	case MSR_KVM_SYSTEM_TIME: {
2855 		struct kvm_arch *ka = &vcpu->kvm->arch;
2856 
2857 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2858 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2859 
2860 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2861 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2862 
2863 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2864 		}
2865 
2866 		vcpu->arch.time = data;
2867 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2868 
2869 		/* we verify if the enable bit is set... */
2870 		vcpu->arch.pv_time_enabled = false;
2871 		if (!(data & 1))
2872 			break;
2873 
2874 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2875 		     &vcpu->arch.pv_time, data & ~1ULL,
2876 		     sizeof(struct pvclock_vcpu_time_info)))
2877 			vcpu->arch.pv_time_enabled = true;
2878 
2879 		break;
2880 	}
2881 	case MSR_KVM_ASYNC_PF_EN:
2882 		if (kvm_pv_enable_async_pf(vcpu, data))
2883 			return 1;
2884 		break;
2885 	case MSR_KVM_STEAL_TIME:
2886 
2887 		if (unlikely(!sched_info_on()))
2888 			return 1;
2889 
2890 		if (data & KVM_STEAL_RESERVED_MASK)
2891 			return 1;
2892 
2893 		vcpu->arch.st.msr_val = data;
2894 
2895 		if (!(data & KVM_MSR_ENABLED))
2896 			break;
2897 
2898 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2899 
2900 		break;
2901 	case MSR_KVM_PV_EOI_EN:
2902 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2903 			return 1;
2904 		break;
2905 
2906 	case MSR_KVM_POLL_CONTROL:
2907 		/* only enable bit supported */
2908 		if (data & (-1ULL << 1))
2909 			return 1;
2910 
2911 		vcpu->arch.msr_kvm_poll_control = data;
2912 		break;
2913 
2914 	case MSR_IA32_MCG_CTL:
2915 	case MSR_IA32_MCG_STATUS:
2916 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2917 		return set_msr_mce(vcpu, msr_info);
2918 
2919 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2920 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2921 		pr = true; /* fall through */
2922 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2923 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2924 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2925 			return kvm_pmu_set_msr(vcpu, msr_info);
2926 
2927 		if (pr || data != 0)
2928 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2929 				    "0x%x data 0x%llx\n", msr, data);
2930 		break;
2931 	case MSR_K7_CLK_CTL:
2932 		/*
2933 		 * Ignore all writes to this no longer documented MSR.
2934 		 * Writes are only relevant for old K7 processors,
2935 		 * all pre-dating SVM, but a recommended workaround from
2936 		 * AMD for these chips. It is possible to specify the
2937 		 * affected processor models on the command line, hence
2938 		 * the need to ignore the workaround.
2939 		 */
2940 		break;
2941 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2942 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2943 	case HV_X64_MSR_CRASH_CTL:
2944 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2945 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2946 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2947 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2948 		return kvm_hv_set_msr_common(vcpu, msr, data,
2949 					     msr_info->host_initiated);
2950 	case MSR_IA32_BBL_CR_CTL3:
2951 		/* Drop writes to this legacy MSR -- see rdmsr
2952 		 * counterpart for further detail.
2953 		 */
2954 		if (report_ignored_msrs)
2955 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2956 				msr, data);
2957 		break;
2958 	case MSR_AMD64_OSVW_ID_LENGTH:
2959 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2960 			return 1;
2961 		vcpu->arch.osvw.length = data;
2962 		break;
2963 	case MSR_AMD64_OSVW_STATUS:
2964 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2965 			return 1;
2966 		vcpu->arch.osvw.status = data;
2967 		break;
2968 	case MSR_PLATFORM_INFO:
2969 		if (!msr_info->host_initiated ||
2970 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2971 		     cpuid_fault_enabled(vcpu)))
2972 			return 1;
2973 		vcpu->arch.msr_platform_info = data;
2974 		break;
2975 	case MSR_MISC_FEATURES_ENABLES:
2976 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2977 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2978 		     !supports_cpuid_fault(vcpu)))
2979 			return 1;
2980 		vcpu->arch.msr_misc_features_enables = data;
2981 		break;
2982 	default:
2983 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2984 			return xen_hvm_config(vcpu, data);
2985 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2986 			return kvm_pmu_set_msr(vcpu, msr_info);
2987 		if (!ignore_msrs) {
2988 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2989 				    msr, data);
2990 			return 1;
2991 		} else {
2992 			if (report_ignored_msrs)
2993 				vcpu_unimpl(vcpu,
2994 					"ignored wrmsr: 0x%x data 0x%llx\n",
2995 					msr, data);
2996 			break;
2997 		}
2998 	}
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3002 
3003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3004 {
3005 	u64 data;
3006 	u64 mcg_cap = vcpu->arch.mcg_cap;
3007 	unsigned bank_num = mcg_cap & 0xff;
3008 
3009 	switch (msr) {
3010 	case MSR_IA32_P5_MC_ADDR:
3011 	case MSR_IA32_P5_MC_TYPE:
3012 		data = 0;
3013 		break;
3014 	case MSR_IA32_MCG_CAP:
3015 		data = vcpu->arch.mcg_cap;
3016 		break;
3017 	case MSR_IA32_MCG_CTL:
3018 		if (!(mcg_cap & MCG_CTL_P) && !host)
3019 			return 1;
3020 		data = vcpu->arch.mcg_ctl;
3021 		break;
3022 	case MSR_IA32_MCG_STATUS:
3023 		data = vcpu->arch.mcg_status;
3024 		break;
3025 	default:
3026 		if (msr >= MSR_IA32_MC0_CTL &&
3027 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3028 			u32 offset = array_index_nospec(
3029 				msr - MSR_IA32_MC0_CTL,
3030 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3031 
3032 			data = vcpu->arch.mce_banks[offset];
3033 			break;
3034 		}
3035 		return 1;
3036 	}
3037 	*pdata = data;
3038 	return 0;
3039 }
3040 
3041 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3042 {
3043 	switch (msr_info->index) {
3044 	case MSR_IA32_PLATFORM_ID:
3045 	case MSR_IA32_EBL_CR_POWERON:
3046 	case MSR_IA32_DEBUGCTLMSR:
3047 	case MSR_IA32_LASTBRANCHFROMIP:
3048 	case MSR_IA32_LASTBRANCHTOIP:
3049 	case MSR_IA32_LASTINTFROMIP:
3050 	case MSR_IA32_LASTINTTOIP:
3051 	case MSR_K8_SYSCFG:
3052 	case MSR_K8_TSEG_ADDR:
3053 	case MSR_K8_TSEG_MASK:
3054 	case MSR_VM_HSAVE_PA:
3055 	case MSR_K8_INT_PENDING_MSG:
3056 	case MSR_AMD64_NB_CFG:
3057 	case MSR_FAM10H_MMIO_CONF_BASE:
3058 	case MSR_AMD64_BU_CFG2:
3059 	case MSR_IA32_PERF_CTL:
3060 	case MSR_AMD64_DC_CFG:
3061 	case MSR_F15H_EX_CFG:
3062 		msr_info->data = 0;
3063 		break;
3064 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3065 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3066 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3067 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3068 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3069 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3070 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3071 		msr_info->data = 0;
3072 		break;
3073 	case MSR_IA32_UCODE_REV:
3074 		msr_info->data = vcpu->arch.microcode_version;
3075 		break;
3076 	case MSR_IA32_ARCH_CAPABILITIES:
3077 		if (!msr_info->host_initiated &&
3078 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3079 			return 1;
3080 		msr_info->data = vcpu->arch.arch_capabilities;
3081 		break;
3082 	case MSR_IA32_POWER_CTL:
3083 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3084 		break;
3085 	case MSR_IA32_TSC:
3086 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3087 		break;
3088 	case MSR_MTRRcap:
3089 	case 0x200 ... 0x2ff:
3090 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3091 	case 0xcd: /* fsb frequency */
3092 		msr_info->data = 3;
3093 		break;
3094 		/*
3095 		 * MSR_EBC_FREQUENCY_ID
3096 		 * Conservative value valid for even the basic CPU models.
3097 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3098 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3099 		 * and 266MHz for model 3, or 4. Set Core Clock
3100 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3101 		 * 31:24) even though these are only valid for CPU
3102 		 * models > 2, however guests may end up dividing or
3103 		 * multiplying by zero otherwise.
3104 		 */
3105 	case MSR_EBC_FREQUENCY_ID:
3106 		msr_info->data = 1 << 24;
3107 		break;
3108 	case MSR_IA32_APICBASE:
3109 		msr_info->data = kvm_get_apic_base(vcpu);
3110 		break;
3111 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3112 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3113 	case MSR_IA32_TSCDEADLINE:
3114 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3115 		break;
3116 	case MSR_IA32_TSC_ADJUST:
3117 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3118 		break;
3119 	case MSR_IA32_MISC_ENABLE:
3120 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3121 		break;
3122 	case MSR_IA32_SMBASE:
3123 		if (!msr_info->host_initiated)
3124 			return 1;
3125 		msr_info->data = vcpu->arch.smbase;
3126 		break;
3127 	case MSR_SMI_COUNT:
3128 		msr_info->data = vcpu->arch.smi_count;
3129 		break;
3130 	case MSR_IA32_PERF_STATUS:
3131 		/* TSC increment by tick */
3132 		msr_info->data = 1000ULL;
3133 		/* CPU multiplier */
3134 		msr_info->data |= (((uint64_t)4ULL) << 40);
3135 		break;
3136 	case MSR_EFER:
3137 		msr_info->data = vcpu->arch.efer;
3138 		break;
3139 	case MSR_KVM_WALL_CLOCK:
3140 	case MSR_KVM_WALL_CLOCK_NEW:
3141 		msr_info->data = vcpu->kvm->arch.wall_clock;
3142 		break;
3143 	case MSR_KVM_SYSTEM_TIME:
3144 	case MSR_KVM_SYSTEM_TIME_NEW:
3145 		msr_info->data = vcpu->arch.time;
3146 		break;
3147 	case MSR_KVM_ASYNC_PF_EN:
3148 		msr_info->data = vcpu->arch.apf.msr_val;
3149 		break;
3150 	case MSR_KVM_STEAL_TIME:
3151 		msr_info->data = vcpu->arch.st.msr_val;
3152 		break;
3153 	case MSR_KVM_PV_EOI_EN:
3154 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3155 		break;
3156 	case MSR_KVM_POLL_CONTROL:
3157 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3158 		break;
3159 	case MSR_IA32_P5_MC_ADDR:
3160 	case MSR_IA32_P5_MC_TYPE:
3161 	case MSR_IA32_MCG_CAP:
3162 	case MSR_IA32_MCG_CTL:
3163 	case MSR_IA32_MCG_STATUS:
3164 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3165 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3166 				   msr_info->host_initiated);
3167 	case MSR_IA32_XSS:
3168 		if (!msr_info->host_initiated &&
3169 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3170 			return 1;
3171 		msr_info->data = vcpu->arch.ia32_xss;
3172 		break;
3173 	case MSR_K7_CLK_CTL:
3174 		/*
3175 		 * Provide expected ramp-up count for K7. All other
3176 		 * are set to zero, indicating minimum divisors for
3177 		 * every field.
3178 		 *
3179 		 * This prevents guest kernels on AMD host with CPU
3180 		 * type 6, model 8 and higher from exploding due to
3181 		 * the rdmsr failing.
3182 		 */
3183 		msr_info->data = 0x20000000;
3184 		break;
3185 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3186 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3187 	case HV_X64_MSR_CRASH_CTL:
3188 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3189 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3190 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3191 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3192 		return kvm_hv_get_msr_common(vcpu,
3193 					     msr_info->index, &msr_info->data,
3194 					     msr_info->host_initiated);
3195 	case MSR_IA32_BBL_CR_CTL3:
3196 		/* This legacy MSR exists but isn't fully documented in current
3197 		 * silicon.  It is however accessed by winxp in very narrow
3198 		 * scenarios where it sets bit #19, itself documented as
3199 		 * a "reserved" bit.  Best effort attempt to source coherent
3200 		 * read data here should the balance of the register be
3201 		 * interpreted by the guest:
3202 		 *
3203 		 * L2 cache control register 3: 64GB range, 256KB size,
3204 		 * enabled, latency 0x1, configured
3205 		 */
3206 		msr_info->data = 0xbe702111;
3207 		break;
3208 	case MSR_AMD64_OSVW_ID_LENGTH:
3209 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3210 			return 1;
3211 		msr_info->data = vcpu->arch.osvw.length;
3212 		break;
3213 	case MSR_AMD64_OSVW_STATUS:
3214 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3215 			return 1;
3216 		msr_info->data = vcpu->arch.osvw.status;
3217 		break;
3218 	case MSR_PLATFORM_INFO:
3219 		if (!msr_info->host_initiated &&
3220 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3221 			return 1;
3222 		msr_info->data = vcpu->arch.msr_platform_info;
3223 		break;
3224 	case MSR_MISC_FEATURES_ENABLES:
3225 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3226 		break;
3227 	case MSR_K7_HWCR:
3228 		msr_info->data = vcpu->arch.msr_hwcr;
3229 		break;
3230 	default:
3231 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3232 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3233 		if (!ignore_msrs) {
3234 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3235 					       msr_info->index);
3236 			return 1;
3237 		} else {
3238 			if (report_ignored_msrs)
3239 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3240 					msr_info->index);
3241 			msr_info->data = 0;
3242 		}
3243 		break;
3244 	}
3245 	return 0;
3246 }
3247 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3248 
3249 /*
3250  * Read or write a bunch of msrs. All parameters are kernel addresses.
3251  *
3252  * @return number of msrs set successfully.
3253  */
3254 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3255 		    struct kvm_msr_entry *entries,
3256 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3257 				  unsigned index, u64 *data))
3258 {
3259 	int i;
3260 
3261 	for (i = 0; i < msrs->nmsrs; ++i)
3262 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3263 			break;
3264 
3265 	return i;
3266 }
3267 
3268 /*
3269  * Read or write a bunch of msrs. Parameters are user addresses.
3270  *
3271  * @return number of msrs set successfully.
3272  */
3273 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3274 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3275 				unsigned index, u64 *data),
3276 		  int writeback)
3277 {
3278 	struct kvm_msrs msrs;
3279 	struct kvm_msr_entry *entries;
3280 	int r, n;
3281 	unsigned size;
3282 
3283 	r = -EFAULT;
3284 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3285 		goto out;
3286 
3287 	r = -E2BIG;
3288 	if (msrs.nmsrs >= MAX_IO_MSRS)
3289 		goto out;
3290 
3291 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3292 	entries = memdup_user(user_msrs->entries, size);
3293 	if (IS_ERR(entries)) {
3294 		r = PTR_ERR(entries);
3295 		goto out;
3296 	}
3297 
3298 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3299 	if (r < 0)
3300 		goto out_free;
3301 
3302 	r = -EFAULT;
3303 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3304 		goto out_free;
3305 
3306 	r = n;
3307 
3308 out_free:
3309 	kfree(entries);
3310 out:
3311 	return r;
3312 }
3313 
3314 static inline bool kvm_can_mwait_in_guest(void)
3315 {
3316 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3317 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3318 		boot_cpu_has(X86_FEATURE_ARAT);
3319 }
3320 
3321 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3322 {
3323 	int r = 0;
3324 
3325 	switch (ext) {
3326 	case KVM_CAP_IRQCHIP:
3327 	case KVM_CAP_HLT:
3328 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3329 	case KVM_CAP_SET_TSS_ADDR:
3330 	case KVM_CAP_EXT_CPUID:
3331 	case KVM_CAP_EXT_EMUL_CPUID:
3332 	case KVM_CAP_CLOCKSOURCE:
3333 	case KVM_CAP_PIT:
3334 	case KVM_CAP_NOP_IO_DELAY:
3335 	case KVM_CAP_MP_STATE:
3336 	case KVM_CAP_SYNC_MMU:
3337 	case KVM_CAP_USER_NMI:
3338 	case KVM_CAP_REINJECT_CONTROL:
3339 	case KVM_CAP_IRQ_INJECT_STATUS:
3340 	case KVM_CAP_IOEVENTFD:
3341 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3342 	case KVM_CAP_PIT2:
3343 	case KVM_CAP_PIT_STATE2:
3344 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3345 	case KVM_CAP_XEN_HVM:
3346 	case KVM_CAP_VCPU_EVENTS:
3347 	case KVM_CAP_HYPERV:
3348 	case KVM_CAP_HYPERV_VAPIC:
3349 	case KVM_CAP_HYPERV_SPIN:
3350 	case KVM_CAP_HYPERV_SYNIC:
3351 	case KVM_CAP_HYPERV_SYNIC2:
3352 	case KVM_CAP_HYPERV_VP_INDEX:
3353 	case KVM_CAP_HYPERV_EVENTFD:
3354 	case KVM_CAP_HYPERV_TLBFLUSH:
3355 	case KVM_CAP_HYPERV_SEND_IPI:
3356 	case KVM_CAP_HYPERV_CPUID:
3357 	case KVM_CAP_PCI_SEGMENT:
3358 	case KVM_CAP_DEBUGREGS:
3359 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3360 	case KVM_CAP_XSAVE:
3361 	case KVM_CAP_ASYNC_PF:
3362 	case KVM_CAP_GET_TSC_KHZ:
3363 	case KVM_CAP_KVMCLOCK_CTRL:
3364 	case KVM_CAP_READONLY_MEM:
3365 	case KVM_CAP_HYPERV_TIME:
3366 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3367 	case KVM_CAP_TSC_DEADLINE_TIMER:
3368 	case KVM_CAP_DISABLE_QUIRKS:
3369 	case KVM_CAP_SET_BOOT_CPU_ID:
3370  	case KVM_CAP_SPLIT_IRQCHIP:
3371 	case KVM_CAP_IMMEDIATE_EXIT:
3372 	case KVM_CAP_PMU_EVENT_FILTER:
3373 	case KVM_CAP_GET_MSR_FEATURES:
3374 	case KVM_CAP_MSR_PLATFORM_INFO:
3375 	case KVM_CAP_EXCEPTION_PAYLOAD:
3376 		r = 1;
3377 		break;
3378 	case KVM_CAP_SYNC_REGS:
3379 		r = KVM_SYNC_X86_VALID_FIELDS;
3380 		break;
3381 	case KVM_CAP_ADJUST_CLOCK:
3382 		r = KVM_CLOCK_TSC_STABLE;
3383 		break;
3384 	case KVM_CAP_X86_DISABLE_EXITS:
3385 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3386 		      KVM_X86_DISABLE_EXITS_CSTATE;
3387 		if(kvm_can_mwait_in_guest())
3388 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3389 		break;
3390 	case KVM_CAP_X86_SMM:
3391 		/* SMBASE is usually relocated above 1M on modern chipsets,
3392 		 * and SMM handlers might indeed rely on 4G segment limits,
3393 		 * so do not report SMM to be available if real mode is
3394 		 * emulated via vm86 mode.  Still, do not go to great lengths
3395 		 * to avoid userspace's usage of the feature, because it is a
3396 		 * fringe case that is not enabled except via specific settings
3397 		 * of the module parameters.
3398 		 */
3399 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3400 		break;
3401 	case KVM_CAP_VAPIC:
3402 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3403 		break;
3404 	case KVM_CAP_NR_VCPUS:
3405 		r = KVM_SOFT_MAX_VCPUS;
3406 		break;
3407 	case KVM_CAP_MAX_VCPUS:
3408 		r = KVM_MAX_VCPUS;
3409 		break;
3410 	case KVM_CAP_MAX_VCPU_ID:
3411 		r = KVM_MAX_VCPU_ID;
3412 		break;
3413 	case KVM_CAP_PV_MMU:	/* obsolete */
3414 		r = 0;
3415 		break;
3416 	case KVM_CAP_MCE:
3417 		r = KVM_MAX_MCE_BANKS;
3418 		break;
3419 	case KVM_CAP_XCRS:
3420 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3421 		break;
3422 	case KVM_CAP_TSC_CONTROL:
3423 		r = kvm_has_tsc_control;
3424 		break;
3425 	case KVM_CAP_X2APIC_API:
3426 		r = KVM_X2APIC_API_VALID_FLAGS;
3427 		break;
3428 	case KVM_CAP_NESTED_STATE:
3429 		r = kvm_x86_ops.get_nested_state ?
3430 			kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
3431 		break;
3432 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3433 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3434 		break;
3435 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3436 		r = kvm_x86_ops.nested_enable_evmcs != NULL;
3437 		break;
3438 	default:
3439 		break;
3440 	}
3441 	return r;
3442 
3443 }
3444 
3445 long kvm_arch_dev_ioctl(struct file *filp,
3446 			unsigned int ioctl, unsigned long arg)
3447 {
3448 	void __user *argp = (void __user *)arg;
3449 	long r;
3450 
3451 	switch (ioctl) {
3452 	case KVM_GET_MSR_INDEX_LIST: {
3453 		struct kvm_msr_list __user *user_msr_list = argp;
3454 		struct kvm_msr_list msr_list;
3455 		unsigned n;
3456 
3457 		r = -EFAULT;
3458 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3459 			goto out;
3460 		n = msr_list.nmsrs;
3461 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3462 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3463 			goto out;
3464 		r = -E2BIG;
3465 		if (n < msr_list.nmsrs)
3466 			goto out;
3467 		r = -EFAULT;
3468 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3469 				 num_msrs_to_save * sizeof(u32)))
3470 			goto out;
3471 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3472 				 &emulated_msrs,
3473 				 num_emulated_msrs * sizeof(u32)))
3474 			goto out;
3475 		r = 0;
3476 		break;
3477 	}
3478 	case KVM_GET_SUPPORTED_CPUID:
3479 	case KVM_GET_EMULATED_CPUID: {
3480 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3481 		struct kvm_cpuid2 cpuid;
3482 
3483 		r = -EFAULT;
3484 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3485 			goto out;
3486 
3487 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3488 					    ioctl);
3489 		if (r)
3490 			goto out;
3491 
3492 		r = -EFAULT;
3493 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3494 			goto out;
3495 		r = 0;
3496 		break;
3497 	}
3498 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3499 		r = -EFAULT;
3500 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3501 				 sizeof(kvm_mce_cap_supported)))
3502 			goto out;
3503 		r = 0;
3504 		break;
3505 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3506 		struct kvm_msr_list __user *user_msr_list = argp;
3507 		struct kvm_msr_list msr_list;
3508 		unsigned int n;
3509 
3510 		r = -EFAULT;
3511 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3512 			goto out;
3513 		n = msr_list.nmsrs;
3514 		msr_list.nmsrs = num_msr_based_features;
3515 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3516 			goto out;
3517 		r = -E2BIG;
3518 		if (n < msr_list.nmsrs)
3519 			goto out;
3520 		r = -EFAULT;
3521 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3522 				 num_msr_based_features * sizeof(u32)))
3523 			goto out;
3524 		r = 0;
3525 		break;
3526 	}
3527 	case KVM_GET_MSRS:
3528 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3529 		break;
3530 	default:
3531 		r = -EINVAL;
3532 		break;
3533 	}
3534 out:
3535 	return r;
3536 }
3537 
3538 static void wbinvd_ipi(void *garbage)
3539 {
3540 	wbinvd();
3541 }
3542 
3543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3544 {
3545 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3546 }
3547 
3548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3549 {
3550 	/* Address WBINVD may be executed by guest */
3551 	if (need_emulate_wbinvd(vcpu)) {
3552 		if (kvm_x86_ops.has_wbinvd_exit())
3553 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3554 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3555 			smp_call_function_single(vcpu->cpu,
3556 					wbinvd_ipi, NULL, 1);
3557 	}
3558 
3559 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3560 
3561 	/* Apply any externally detected TSC adjustments (due to suspend) */
3562 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3563 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3564 		vcpu->arch.tsc_offset_adjustment = 0;
3565 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3566 	}
3567 
3568 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3569 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3570 				rdtsc() - vcpu->arch.last_host_tsc;
3571 		if (tsc_delta < 0)
3572 			mark_tsc_unstable("KVM discovered backwards TSC");
3573 
3574 		if (kvm_check_tsc_unstable()) {
3575 			u64 offset = kvm_compute_tsc_offset(vcpu,
3576 						vcpu->arch.last_guest_tsc);
3577 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3578 			vcpu->arch.tsc_catchup = 1;
3579 		}
3580 
3581 		if (kvm_lapic_hv_timer_in_use(vcpu))
3582 			kvm_lapic_restart_hv_timer(vcpu);
3583 
3584 		/*
3585 		 * On a host with synchronized TSC, there is no need to update
3586 		 * kvmclock on vcpu->cpu migration
3587 		 */
3588 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3589 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3590 		if (vcpu->cpu != cpu)
3591 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3592 		vcpu->cpu = cpu;
3593 	}
3594 
3595 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3596 }
3597 
3598 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3599 {
3600 	struct kvm_host_map map;
3601 	struct kvm_steal_time *st;
3602 
3603 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3604 		return;
3605 
3606 	if (vcpu->arch.st.preempted)
3607 		return;
3608 
3609 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3610 			&vcpu->arch.st.cache, true))
3611 		return;
3612 
3613 	st = map.hva +
3614 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3615 
3616 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3617 
3618 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3619 }
3620 
3621 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3622 {
3623 	int idx;
3624 
3625 	if (vcpu->preempted)
3626 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3627 
3628 	/*
3629 	 * Disable page faults because we're in atomic context here.
3630 	 * kvm_write_guest_offset_cached() would call might_fault()
3631 	 * that relies on pagefault_disable() to tell if there's a
3632 	 * bug. NOTE: the write to guest memory may not go through if
3633 	 * during postcopy live migration or if there's heavy guest
3634 	 * paging.
3635 	 */
3636 	pagefault_disable();
3637 	/*
3638 	 * kvm_memslots() will be called by
3639 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3640 	 */
3641 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3642 	kvm_steal_time_set_preempted(vcpu);
3643 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3644 	pagefault_enable();
3645 	kvm_x86_ops.vcpu_put(vcpu);
3646 	vcpu->arch.last_host_tsc = rdtsc();
3647 	/*
3648 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3649 	 * on every vmexit, but if not, we might have a stale dr6 from the
3650 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3651 	 */
3652 	set_debugreg(0, 6);
3653 }
3654 
3655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3656 				    struct kvm_lapic_state *s)
3657 {
3658 	if (vcpu->arch.apicv_active)
3659 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3660 
3661 	return kvm_apic_get_state(vcpu, s);
3662 }
3663 
3664 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3665 				    struct kvm_lapic_state *s)
3666 {
3667 	int r;
3668 
3669 	r = kvm_apic_set_state(vcpu, s);
3670 	if (r)
3671 		return r;
3672 	update_cr8_intercept(vcpu);
3673 
3674 	return 0;
3675 }
3676 
3677 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3678 {
3679 	return (!lapic_in_kernel(vcpu) ||
3680 		kvm_apic_accept_pic_intr(vcpu));
3681 }
3682 
3683 /*
3684  * if userspace requested an interrupt window, check that the
3685  * interrupt window is open.
3686  *
3687  * No need to exit to userspace if we already have an interrupt queued.
3688  */
3689 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3690 {
3691 	return kvm_arch_interrupt_allowed(vcpu) &&
3692 		!kvm_cpu_has_interrupt(vcpu) &&
3693 		!kvm_event_needs_reinjection(vcpu) &&
3694 		kvm_cpu_accept_dm_intr(vcpu);
3695 }
3696 
3697 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3698 				    struct kvm_interrupt *irq)
3699 {
3700 	if (irq->irq >= KVM_NR_INTERRUPTS)
3701 		return -EINVAL;
3702 
3703 	if (!irqchip_in_kernel(vcpu->kvm)) {
3704 		kvm_queue_interrupt(vcpu, irq->irq, false);
3705 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3706 		return 0;
3707 	}
3708 
3709 	/*
3710 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3711 	 * fail for in-kernel 8259.
3712 	 */
3713 	if (pic_in_kernel(vcpu->kvm))
3714 		return -ENXIO;
3715 
3716 	if (vcpu->arch.pending_external_vector != -1)
3717 		return -EEXIST;
3718 
3719 	vcpu->arch.pending_external_vector = irq->irq;
3720 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3721 	return 0;
3722 }
3723 
3724 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3725 {
3726 	kvm_inject_nmi(vcpu);
3727 
3728 	return 0;
3729 }
3730 
3731 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3732 {
3733 	kvm_make_request(KVM_REQ_SMI, vcpu);
3734 
3735 	return 0;
3736 }
3737 
3738 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3739 					   struct kvm_tpr_access_ctl *tac)
3740 {
3741 	if (tac->flags)
3742 		return -EINVAL;
3743 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3744 	return 0;
3745 }
3746 
3747 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3748 					u64 mcg_cap)
3749 {
3750 	int r;
3751 	unsigned bank_num = mcg_cap & 0xff, bank;
3752 
3753 	r = -EINVAL;
3754 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3755 		goto out;
3756 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3757 		goto out;
3758 	r = 0;
3759 	vcpu->arch.mcg_cap = mcg_cap;
3760 	/* Init IA32_MCG_CTL to all 1s */
3761 	if (mcg_cap & MCG_CTL_P)
3762 		vcpu->arch.mcg_ctl = ~(u64)0;
3763 	/* Init IA32_MCi_CTL to all 1s */
3764 	for (bank = 0; bank < bank_num; bank++)
3765 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3766 
3767 	kvm_x86_ops.setup_mce(vcpu);
3768 out:
3769 	return r;
3770 }
3771 
3772 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3773 				      struct kvm_x86_mce *mce)
3774 {
3775 	u64 mcg_cap = vcpu->arch.mcg_cap;
3776 	unsigned bank_num = mcg_cap & 0xff;
3777 	u64 *banks = vcpu->arch.mce_banks;
3778 
3779 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3780 		return -EINVAL;
3781 	/*
3782 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3783 	 * reporting is disabled
3784 	 */
3785 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3786 	    vcpu->arch.mcg_ctl != ~(u64)0)
3787 		return 0;
3788 	banks += 4 * mce->bank;
3789 	/*
3790 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3791 	 * reporting is disabled for the bank
3792 	 */
3793 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3794 		return 0;
3795 	if (mce->status & MCI_STATUS_UC) {
3796 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3797 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3798 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3799 			return 0;
3800 		}
3801 		if (banks[1] & MCI_STATUS_VAL)
3802 			mce->status |= MCI_STATUS_OVER;
3803 		banks[2] = mce->addr;
3804 		banks[3] = mce->misc;
3805 		vcpu->arch.mcg_status = mce->mcg_status;
3806 		banks[1] = mce->status;
3807 		kvm_queue_exception(vcpu, MC_VECTOR);
3808 	} else if (!(banks[1] & MCI_STATUS_VAL)
3809 		   || !(banks[1] & MCI_STATUS_UC)) {
3810 		if (banks[1] & MCI_STATUS_VAL)
3811 			mce->status |= MCI_STATUS_OVER;
3812 		banks[2] = mce->addr;
3813 		banks[3] = mce->misc;
3814 		banks[1] = mce->status;
3815 	} else
3816 		banks[1] |= MCI_STATUS_OVER;
3817 	return 0;
3818 }
3819 
3820 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3821 					       struct kvm_vcpu_events *events)
3822 {
3823 	process_nmi(vcpu);
3824 
3825 	/*
3826 	 * In guest mode, payload delivery should be deferred,
3827 	 * so that the L1 hypervisor can intercept #PF before
3828 	 * CR2 is modified (or intercept #DB before DR6 is
3829 	 * modified under nVMX). Unless the per-VM capability,
3830 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3831 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3832 	 * opportunistically defer the exception payload, deliver it if the
3833 	 * capability hasn't been requested before processing a
3834 	 * KVM_GET_VCPU_EVENTS.
3835 	 */
3836 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3837 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3838 		kvm_deliver_exception_payload(vcpu);
3839 
3840 	/*
3841 	 * The API doesn't provide the instruction length for software
3842 	 * exceptions, so don't report them. As long as the guest RIP
3843 	 * isn't advanced, we should expect to encounter the exception
3844 	 * again.
3845 	 */
3846 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3847 		events->exception.injected = 0;
3848 		events->exception.pending = 0;
3849 	} else {
3850 		events->exception.injected = vcpu->arch.exception.injected;
3851 		events->exception.pending = vcpu->arch.exception.pending;
3852 		/*
3853 		 * For ABI compatibility, deliberately conflate
3854 		 * pending and injected exceptions when
3855 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3856 		 */
3857 		if (!vcpu->kvm->arch.exception_payload_enabled)
3858 			events->exception.injected |=
3859 				vcpu->arch.exception.pending;
3860 	}
3861 	events->exception.nr = vcpu->arch.exception.nr;
3862 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3863 	events->exception.error_code = vcpu->arch.exception.error_code;
3864 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3865 	events->exception_payload = vcpu->arch.exception.payload;
3866 
3867 	events->interrupt.injected =
3868 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3869 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3870 	events->interrupt.soft = 0;
3871 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3872 
3873 	events->nmi.injected = vcpu->arch.nmi_injected;
3874 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3875 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3876 	events->nmi.pad = 0;
3877 
3878 	events->sipi_vector = 0; /* never valid when reporting to user space */
3879 
3880 	events->smi.smm = is_smm(vcpu);
3881 	events->smi.pending = vcpu->arch.smi_pending;
3882 	events->smi.smm_inside_nmi =
3883 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3884 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3885 
3886 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3887 			 | KVM_VCPUEVENT_VALID_SHADOW
3888 			 | KVM_VCPUEVENT_VALID_SMM);
3889 	if (vcpu->kvm->arch.exception_payload_enabled)
3890 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3891 
3892 	memset(&events->reserved, 0, sizeof(events->reserved));
3893 }
3894 
3895 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3896 
3897 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3898 					      struct kvm_vcpu_events *events)
3899 {
3900 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3901 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3902 			      | KVM_VCPUEVENT_VALID_SHADOW
3903 			      | KVM_VCPUEVENT_VALID_SMM
3904 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3905 		return -EINVAL;
3906 
3907 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3908 		if (!vcpu->kvm->arch.exception_payload_enabled)
3909 			return -EINVAL;
3910 		if (events->exception.pending)
3911 			events->exception.injected = 0;
3912 		else
3913 			events->exception_has_payload = 0;
3914 	} else {
3915 		events->exception.pending = 0;
3916 		events->exception_has_payload = 0;
3917 	}
3918 
3919 	if ((events->exception.injected || events->exception.pending) &&
3920 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3921 		return -EINVAL;
3922 
3923 	/* INITs are latched while in SMM */
3924 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3925 	    (events->smi.smm || events->smi.pending) &&
3926 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3927 		return -EINVAL;
3928 
3929 	process_nmi(vcpu);
3930 	vcpu->arch.exception.injected = events->exception.injected;
3931 	vcpu->arch.exception.pending = events->exception.pending;
3932 	vcpu->arch.exception.nr = events->exception.nr;
3933 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3934 	vcpu->arch.exception.error_code = events->exception.error_code;
3935 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3936 	vcpu->arch.exception.payload = events->exception_payload;
3937 
3938 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3939 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3940 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3941 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3942 		kvm_x86_ops.set_interrupt_shadow(vcpu,
3943 						  events->interrupt.shadow);
3944 
3945 	vcpu->arch.nmi_injected = events->nmi.injected;
3946 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3947 		vcpu->arch.nmi_pending = events->nmi.pending;
3948 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3949 
3950 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3951 	    lapic_in_kernel(vcpu))
3952 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3953 
3954 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3955 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3956 			if (events->smi.smm)
3957 				vcpu->arch.hflags |= HF_SMM_MASK;
3958 			else
3959 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3960 			kvm_smm_changed(vcpu);
3961 		}
3962 
3963 		vcpu->arch.smi_pending = events->smi.pending;
3964 
3965 		if (events->smi.smm) {
3966 			if (events->smi.smm_inside_nmi)
3967 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3968 			else
3969 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3970 		}
3971 
3972 		if (lapic_in_kernel(vcpu)) {
3973 			if (events->smi.latched_init)
3974 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3975 			else
3976 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3977 		}
3978 	}
3979 
3980 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3981 
3982 	return 0;
3983 }
3984 
3985 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3986 					     struct kvm_debugregs *dbgregs)
3987 {
3988 	unsigned long val;
3989 
3990 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3991 	kvm_get_dr(vcpu, 6, &val);
3992 	dbgregs->dr6 = val;
3993 	dbgregs->dr7 = vcpu->arch.dr7;
3994 	dbgregs->flags = 0;
3995 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3996 }
3997 
3998 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3999 					    struct kvm_debugregs *dbgregs)
4000 {
4001 	if (dbgregs->flags)
4002 		return -EINVAL;
4003 
4004 	if (dbgregs->dr6 & ~0xffffffffull)
4005 		return -EINVAL;
4006 	if (dbgregs->dr7 & ~0xffffffffull)
4007 		return -EINVAL;
4008 
4009 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4010 	kvm_update_dr0123(vcpu);
4011 	vcpu->arch.dr6 = dbgregs->dr6;
4012 	kvm_update_dr6(vcpu);
4013 	vcpu->arch.dr7 = dbgregs->dr7;
4014 	kvm_update_dr7(vcpu);
4015 
4016 	return 0;
4017 }
4018 
4019 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4020 
4021 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4022 {
4023 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4024 	u64 xstate_bv = xsave->header.xfeatures;
4025 	u64 valid;
4026 
4027 	/*
4028 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4029 	 * leaves 0 and 1 in the loop below.
4030 	 */
4031 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4032 
4033 	/* Set XSTATE_BV */
4034 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4035 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4036 
4037 	/*
4038 	 * Copy each region from the possibly compacted offset to the
4039 	 * non-compacted offset.
4040 	 */
4041 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4042 	while (valid) {
4043 		u64 xfeature_mask = valid & -valid;
4044 		int xfeature_nr = fls64(xfeature_mask) - 1;
4045 		void *src = get_xsave_addr(xsave, xfeature_nr);
4046 
4047 		if (src) {
4048 			u32 size, offset, ecx, edx;
4049 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4050 				    &size, &offset, &ecx, &edx);
4051 			if (xfeature_nr == XFEATURE_PKRU)
4052 				memcpy(dest + offset, &vcpu->arch.pkru,
4053 				       sizeof(vcpu->arch.pkru));
4054 			else
4055 				memcpy(dest + offset, src, size);
4056 
4057 		}
4058 
4059 		valid -= xfeature_mask;
4060 	}
4061 }
4062 
4063 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4064 {
4065 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4066 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4067 	u64 valid;
4068 
4069 	/*
4070 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4071 	 * leaves 0 and 1 in the loop below.
4072 	 */
4073 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4074 
4075 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4076 	xsave->header.xfeatures = xstate_bv;
4077 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4078 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4079 
4080 	/*
4081 	 * Copy each region from the non-compacted offset to the
4082 	 * possibly compacted offset.
4083 	 */
4084 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4085 	while (valid) {
4086 		u64 xfeature_mask = valid & -valid;
4087 		int xfeature_nr = fls64(xfeature_mask) - 1;
4088 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4089 
4090 		if (dest) {
4091 			u32 size, offset, ecx, edx;
4092 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4093 				    &size, &offset, &ecx, &edx);
4094 			if (xfeature_nr == XFEATURE_PKRU)
4095 				memcpy(&vcpu->arch.pkru, src + offset,
4096 				       sizeof(vcpu->arch.pkru));
4097 			else
4098 				memcpy(dest, src + offset, size);
4099 		}
4100 
4101 		valid -= xfeature_mask;
4102 	}
4103 }
4104 
4105 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4106 					 struct kvm_xsave *guest_xsave)
4107 {
4108 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4109 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4110 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4111 	} else {
4112 		memcpy(guest_xsave->region,
4113 			&vcpu->arch.guest_fpu->state.fxsave,
4114 			sizeof(struct fxregs_state));
4115 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4116 			XFEATURE_MASK_FPSSE;
4117 	}
4118 }
4119 
4120 #define XSAVE_MXCSR_OFFSET 24
4121 
4122 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4123 					struct kvm_xsave *guest_xsave)
4124 {
4125 	u64 xstate_bv =
4126 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4127 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4128 
4129 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4130 		/*
4131 		 * Here we allow setting states that are not present in
4132 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4133 		 * with old userspace.
4134 		 */
4135 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4136 			return -EINVAL;
4137 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4138 	} else {
4139 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4140 			mxcsr & ~mxcsr_feature_mask)
4141 			return -EINVAL;
4142 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4143 			guest_xsave->region, sizeof(struct fxregs_state));
4144 	}
4145 	return 0;
4146 }
4147 
4148 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4149 					struct kvm_xcrs *guest_xcrs)
4150 {
4151 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4152 		guest_xcrs->nr_xcrs = 0;
4153 		return;
4154 	}
4155 
4156 	guest_xcrs->nr_xcrs = 1;
4157 	guest_xcrs->flags = 0;
4158 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4159 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4160 }
4161 
4162 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4163 				       struct kvm_xcrs *guest_xcrs)
4164 {
4165 	int i, r = 0;
4166 
4167 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4168 		return -EINVAL;
4169 
4170 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4171 		return -EINVAL;
4172 
4173 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4174 		/* Only support XCR0 currently */
4175 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4176 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4177 				guest_xcrs->xcrs[i].value);
4178 			break;
4179 		}
4180 	if (r)
4181 		r = -EINVAL;
4182 	return r;
4183 }
4184 
4185 /*
4186  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4187  * stopped by the hypervisor.  This function will be called from the host only.
4188  * EINVAL is returned when the host attempts to set the flag for a guest that
4189  * does not support pv clocks.
4190  */
4191 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4192 {
4193 	if (!vcpu->arch.pv_time_enabled)
4194 		return -EINVAL;
4195 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4196 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4197 	return 0;
4198 }
4199 
4200 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4201 				     struct kvm_enable_cap *cap)
4202 {
4203 	int r;
4204 	uint16_t vmcs_version;
4205 	void __user *user_ptr;
4206 
4207 	if (cap->flags)
4208 		return -EINVAL;
4209 
4210 	switch (cap->cap) {
4211 	case KVM_CAP_HYPERV_SYNIC2:
4212 		if (cap->args[0])
4213 			return -EINVAL;
4214 		/* fall through */
4215 
4216 	case KVM_CAP_HYPERV_SYNIC:
4217 		if (!irqchip_in_kernel(vcpu->kvm))
4218 			return -EINVAL;
4219 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4220 					     KVM_CAP_HYPERV_SYNIC2);
4221 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4222 		if (!kvm_x86_ops.nested_enable_evmcs)
4223 			return -ENOTTY;
4224 		r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
4225 		if (!r) {
4226 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4227 			if (copy_to_user(user_ptr, &vmcs_version,
4228 					 sizeof(vmcs_version)))
4229 				r = -EFAULT;
4230 		}
4231 		return r;
4232 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4233 		if (!kvm_x86_ops.enable_direct_tlbflush)
4234 			return -ENOTTY;
4235 
4236 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4237 
4238 	default:
4239 		return -EINVAL;
4240 	}
4241 }
4242 
4243 long kvm_arch_vcpu_ioctl(struct file *filp,
4244 			 unsigned int ioctl, unsigned long arg)
4245 {
4246 	struct kvm_vcpu *vcpu = filp->private_data;
4247 	void __user *argp = (void __user *)arg;
4248 	int r;
4249 	union {
4250 		struct kvm_lapic_state *lapic;
4251 		struct kvm_xsave *xsave;
4252 		struct kvm_xcrs *xcrs;
4253 		void *buffer;
4254 	} u;
4255 
4256 	vcpu_load(vcpu);
4257 
4258 	u.buffer = NULL;
4259 	switch (ioctl) {
4260 	case KVM_GET_LAPIC: {
4261 		r = -EINVAL;
4262 		if (!lapic_in_kernel(vcpu))
4263 			goto out;
4264 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4265 				GFP_KERNEL_ACCOUNT);
4266 
4267 		r = -ENOMEM;
4268 		if (!u.lapic)
4269 			goto out;
4270 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4271 		if (r)
4272 			goto out;
4273 		r = -EFAULT;
4274 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4275 			goto out;
4276 		r = 0;
4277 		break;
4278 	}
4279 	case KVM_SET_LAPIC: {
4280 		r = -EINVAL;
4281 		if (!lapic_in_kernel(vcpu))
4282 			goto out;
4283 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4284 		if (IS_ERR(u.lapic)) {
4285 			r = PTR_ERR(u.lapic);
4286 			goto out_nofree;
4287 		}
4288 
4289 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4290 		break;
4291 	}
4292 	case KVM_INTERRUPT: {
4293 		struct kvm_interrupt irq;
4294 
4295 		r = -EFAULT;
4296 		if (copy_from_user(&irq, argp, sizeof(irq)))
4297 			goto out;
4298 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4299 		break;
4300 	}
4301 	case KVM_NMI: {
4302 		r = kvm_vcpu_ioctl_nmi(vcpu);
4303 		break;
4304 	}
4305 	case KVM_SMI: {
4306 		r = kvm_vcpu_ioctl_smi(vcpu);
4307 		break;
4308 	}
4309 	case KVM_SET_CPUID: {
4310 		struct kvm_cpuid __user *cpuid_arg = argp;
4311 		struct kvm_cpuid cpuid;
4312 
4313 		r = -EFAULT;
4314 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4315 			goto out;
4316 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4317 		break;
4318 	}
4319 	case KVM_SET_CPUID2: {
4320 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4321 		struct kvm_cpuid2 cpuid;
4322 
4323 		r = -EFAULT;
4324 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4325 			goto out;
4326 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4327 					      cpuid_arg->entries);
4328 		break;
4329 	}
4330 	case KVM_GET_CPUID2: {
4331 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4332 		struct kvm_cpuid2 cpuid;
4333 
4334 		r = -EFAULT;
4335 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4336 			goto out;
4337 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4338 					      cpuid_arg->entries);
4339 		if (r)
4340 			goto out;
4341 		r = -EFAULT;
4342 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4343 			goto out;
4344 		r = 0;
4345 		break;
4346 	}
4347 	case KVM_GET_MSRS: {
4348 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4349 		r = msr_io(vcpu, argp, do_get_msr, 1);
4350 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4351 		break;
4352 	}
4353 	case KVM_SET_MSRS: {
4354 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4355 		r = msr_io(vcpu, argp, do_set_msr, 0);
4356 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4357 		break;
4358 	}
4359 	case KVM_TPR_ACCESS_REPORTING: {
4360 		struct kvm_tpr_access_ctl tac;
4361 
4362 		r = -EFAULT;
4363 		if (copy_from_user(&tac, argp, sizeof(tac)))
4364 			goto out;
4365 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4366 		if (r)
4367 			goto out;
4368 		r = -EFAULT;
4369 		if (copy_to_user(argp, &tac, sizeof(tac)))
4370 			goto out;
4371 		r = 0;
4372 		break;
4373 	};
4374 	case KVM_SET_VAPIC_ADDR: {
4375 		struct kvm_vapic_addr va;
4376 		int idx;
4377 
4378 		r = -EINVAL;
4379 		if (!lapic_in_kernel(vcpu))
4380 			goto out;
4381 		r = -EFAULT;
4382 		if (copy_from_user(&va, argp, sizeof(va)))
4383 			goto out;
4384 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4385 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4386 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4387 		break;
4388 	}
4389 	case KVM_X86_SETUP_MCE: {
4390 		u64 mcg_cap;
4391 
4392 		r = -EFAULT;
4393 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4394 			goto out;
4395 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4396 		break;
4397 	}
4398 	case KVM_X86_SET_MCE: {
4399 		struct kvm_x86_mce mce;
4400 
4401 		r = -EFAULT;
4402 		if (copy_from_user(&mce, argp, sizeof(mce)))
4403 			goto out;
4404 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4405 		break;
4406 	}
4407 	case KVM_GET_VCPU_EVENTS: {
4408 		struct kvm_vcpu_events events;
4409 
4410 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4411 
4412 		r = -EFAULT;
4413 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4414 			break;
4415 		r = 0;
4416 		break;
4417 	}
4418 	case KVM_SET_VCPU_EVENTS: {
4419 		struct kvm_vcpu_events events;
4420 
4421 		r = -EFAULT;
4422 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4423 			break;
4424 
4425 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4426 		break;
4427 	}
4428 	case KVM_GET_DEBUGREGS: {
4429 		struct kvm_debugregs dbgregs;
4430 
4431 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4432 
4433 		r = -EFAULT;
4434 		if (copy_to_user(argp, &dbgregs,
4435 				 sizeof(struct kvm_debugregs)))
4436 			break;
4437 		r = 0;
4438 		break;
4439 	}
4440 	case KVM_SET_DEBUGREGS: {
4441 		struct kvm_debugregs dbgregs;
4442 
4443 		r = -EFAULT;
4444 		if (copy_from_user(&dbgregs, argp,
4445 				   sizeof(struct kvm_debugregs)))
4446 			break;
4447 
4448 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4449 		break;
4450 	}
4451 	case KVM_GET_XSAVE: {
4452 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4453 		r = -ENOMEM;
4454 		if (!u.xsave)
4455 			break;
4456 
4457 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4458 
4459 		r = -EFAULT;
4460 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4461 			break;
4462 		r = 0;
4463 		break;
4464 	}
4465 	case KVM_SET_XSAVE: {
4466 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4467 		if (IS_ERR(u.xsave)) {
4468 			r = PTR_ERR(u.xsave);
4469 			goto out_nofree;
4470 		}
4471 
4472 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4473 		break;
4474 	}
4475 	case KVM_GET_XCRS: {
4476 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4477 		r = -ENOMEM;
4478 		if (!u.xcrs)
4479 			break;
4480 
4481 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4482 
4483 		r = -EFAULT;
4484 		if (copy_to_user(argp, u.xcrs,
4485 				 sizeof(struct kvm_xcrs)))
4486 			break;
4487 		r = 0;
4488 		break;
4489 	}
4490 	case KVM_SET_XCRS: {
4491 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4492 		if (IS_ERR(u.xcrs)) {
4493 			r = PTR_ERR(u.xcrs);
4494 			goto out_nofree;
4495 		}
4496 
4497 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4498 		break;
4499 	}
4500 	case KVM_SET_TSC_KHZ: {
4501 		u32 user_tsc_khz;
4502 
4503 		r = -EINVAL;
4504 		user_tsc_khz = (u32)arg;
4505 
4506 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4507 			goto out;
4508 
4509 		if (user_tsc_khz == 0)
4510 			user_tsc_khz = tsc_khz;
4511 
4512 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4513 			r = 0;
4514 
4515 		goto out;
4516 	}
4517 	case KVM_GET_TSC_KHZ: {
4518 		r = vcpu->arch.virtual_tsc_khz;
4519 		goto out;
4520 	}
4521 	case KVM_KVMCLOCK_CTRL: {
4522 		r = kvm_set_guest_paused(vcpu);
4523 		goto out;
4524 	}
4525 	case KVM_ENABLE_CAP: {
4526 		struct kvm_enable_cap cap;
4527 
4528 		r = -EFAULT;
4529 		if (copy_from_user(&cap, argp, sizeof(cap)))
4530 			goto out;
4531 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4532 		break;
4533 	}
4534 	case KVM_GET_NESTED_STATE: {
4535 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4536 		u32 user_data_size;
4537 
4538 		r = -EINVAL;
4539 		if (!kvm_x86_ops.get_nested_state)
4540 			break;
4541 
4542 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4543 		r = -EFAULT;
4544 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4545 			break;
4546 
4547 		r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
4548 						  user_data_size);
4549 		if (r < 0)
4550 			break;
4551 
4552 		if (r > user_data_size) {
4553 			if (put_user(r, &user_kvm_nested_state->size))
4554 				r = -EFAULT;
4555 			else
4556 				r = -E2BIG;
4557 			break;
4558 		}
4559 
4560 		r = 0;
4561 		break;
4562 	}
4563 	case KVM_SET_NESTED_STATE: {
4564 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4565 		struct kvm_nested_state kvm_state;
4566 		int idx;
4567 
4568 		r = -EINVAL;
4569 		if (!kvm_x86_ops.set_nested_state)
4570 			break;
4571 
4572 		r = -EFAULT;
4573 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4574 			break;
4575 
4576 		r = -EINVAL;
4577 		if (kvm_state.size < sizeof(kvm_state))
4578 			break;
4579 
4580 		if (kvm_state.flags &
4581 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4582 		      | KVM_STATE_NESTED_EVMCS))
4583 			break;
4584 
4585 		/* nested_run_pending implies guest_mode.  */
4586 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4587 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4588 			break;
4589 
4590 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4591 		r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4592 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4593 		break;
4594 	}
4595 	case KVM_GET_SUPPORTED_HV_CPUID: {
4596 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4597 		struct kvm_cpuid2 cpuid;
4598 
4599 		r = -EFAULT;
4600 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4601 			goto out;
4602 
4603 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4604 						cpuid_arg->entries);
4605 		if (r)
4606 			goto out;
4607 
4608 		r = -EFAULT;
4609 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4610 			goto out;
4611 		r = 0;
4612 		break;
4613 	}
4614 	default:
4615 		r = -EINVAL;
4616 	}
4617 out:
4618 	kfree(u.buffer);
4619 out_nofree:
4620 	vcpu_put(vcpu);
4621 	return r;
4622 }
4623 
4624 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4625 {
4626 	return VM_FAULT_SIGBUS;
4627 }
4628 
4629 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4630 {
4631 	int ret;
4632 
4633 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4634 		return -EINVAL;
4635 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4636 	return ret;
4637 }
4638 
4639 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4640 					      u64 ident_addr)
4641 {
4642 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4643 }
4644 
4645 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4646 					 unsigned long kvm_nr_mmu_pages)
4647 {
4648 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4649 		return -EINVAL;
4650 
4651 	mutex_lock(&kvm->slots_lock);
4652 
4653 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4654 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4655 
4656 	mutex_unlock(&kvm->slots_lock);
4657 	return 0;
4658 }
4659 
4660 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4661 {
4662 	return kvm->arch.n_max_mmu_pages;
4663 }
4664 
4665 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4666 {
4667 	struct kvm_pic *pic = kvm->arch.vpic;
4668 	int r;
4669 
4670 	r = 0;
4671 	switch (chip->chip_id) {
4672 	case KVM_IRQCHIP_PIC_MASTER:
4673 		memcpy(&chip->chip.pic, &pic->pics[0],
4674 			sizeof(struct kvm_pic_state));
4675 		break;
4676 	case KVM_IRQCHIP_PIC_SLAVE:
4677 		memcpy(&chip->chip.pic, &pic->pics[1],
4678 			sizeof(struct kvm_pic_state));
4679 		break;
4680 	case KVM_IRQCHIP_IOAPIC:
4681 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4682 		break;
4683 	default:
4684 		r = -EINVAL;
4685 		break;
4686 	}
4687 	return r;
4688 }
4689 
4690 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4691 {
4692 	struct kvm_pic *pic = kvm->arch.vpic;
4693 	int r;
4694 
4695 	r = 0;
4696 	switch (chip->chip_id) {
4697 	case KVM_IRQCHIP_PIC_MASTER:
4698 		spin_lock(&pic->lock);
4699 		memcpy(&pic->pics[0], &chip->chip.pic,
4700 			sizeof(struct kvm_pic_state));
4701 		spin_unlock(&pic->lock);
4702 		break;
4703 	case KVM_IRQCHIP_PIC_SLAVE:
4704 		spin_lock(&pic->lock);
4705 		memcpy(&pic->pics[1], &chip->chip.pic,
4706 			sizeof(struct kvm_pic_state));
4707 		spin_unlock(&pic->lock);
4708 		break;
4709 	case KVM_IRQCHIP_IOAPIC:
4710 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4711 		break;
4712 	default:
4713 		r = -EINVAL;
4714 		break;
4715 	}
4716 	kvm_pic_update_irq(pic);
4717 	return r;
4718 }
4719 
4720 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4721 {
4722 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4723 
4724 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4725 
4726 	mutex_lock(&kps->lock);
4727 	memcpy(ps, &kps->channels, sizeof(*ps));
4728 	mutex_unlock(&kps->lock);
4729 	return 0;
4730 }
4731 
4732 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4733 {
4734 	int i;
4735 	struct kvm_pit *pit = kvm->arch.vpit;
4736 
4737 	mutex_lock(&pit->pit_state.lock);
4738 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4739 	for (i = 0; i < 3; i++)
4740 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4741 	mutex_unlock(&pit->pit_state.lock);
4742 	return 0;
4743 }
4744 
4745 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4746 {
4747 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4748 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4749 		sizeof(ps->channels));
4750 	ps->flags = kvm->arch.vpit->pit_state.flags;
4751 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4752 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4753 	return 0;
4754 }
4755 
4756 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4757 {
4758 	int start = 0;
4759 	int i;
4760 	u32 prev_legacy, cur_legacy;
4761 	struct kvm_pit *pit = kvm->arch.vpit;
4762 
4763 	mutex_lock(&pit->pit_state.lock);
4764 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4765 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4766 	if (!prev_legacy && cur_legacy)
4767 		start = 1;
4768 	memcpy(&pit->pit_state.channels, &ps->channels,
4769 	       sizeof(pit->pit_state.channels));
4770 	pit->pit_state.flags = ps->flags;
4771 	for (i = 0; i < 3; i++)
4772 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4773 				   start && i == 0);
4774 	mutex_unlock(&pit->pit_state.lock);
4775 	return 0;
4776 }
4777 
4778 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4779 				 struct kvm_reinject_control *control)
4780 {
4781 	struct kvm_pit *pit = kvm->arch.vpit;
4782 
4783 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4784 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4785 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4786 	 */
4787 	mutex_lock(&pit->pit_state.lock);
4788 	kvm_pit_set_reinject(pit, control->pit_reinject);
4789 	mutex_unlock(&pit->pit_state.lock);
4790 
4791 	return 0;
4792 }
4793 
4794 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4795 {
4796 	/*
4797 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4798 	 */
4799 	if (kvm_x86_ops.flush_log_dirty)
4800 		kvm_x86_ops.flush_log_dirty(kvm);
4801 }
4802 
4803 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4804 			bool line_status)
4805 {
4806 	if (!irqchip_in_kernel(kvm))
4807 		return -ENXIO;
4808 
4809 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4810 					irq_event->irq, irq_event->level,
4811 					line_status);
4812 	return 0;
4813 }
4814 
4815 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4816 			    struct kvm_enable_cap *cap)
4817 {
4818 	int r;
4819 
4820 	if (cap->flags)
4821 		return -EINVAL;
4822 
4823 	switch (cap->cap) {
4824 	case KVM_CAP_DISABLE_QUIRKS:
4825 		kvm->arch.disabled_quirks = cap->args[0];
4826 		r = 0;
4827 		break;
4828 	case KVM_CAP_SPLIT_IRQCHIP: {
4829 		mutex_lock(&kvm->lock);
4830 		r = -EINVAL;
4831 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4832 			goto split_irqchip_unlock;
4833 		r = -EEXIST;
4834 		if (irqchip_in_kernel(kvm))
4835 			goto split_irqchip_unlock;
4836 		if (kvm->created_vcpus)
4837 			goto split_irqchip_unlock;
4838 		r = kvm_setup_empty_irq_routing(kvm);
4839 		if (r)
4840 			goto split_irqchip_unlock;
4841 		/* Pairs with irqchip_in_kernel. */
4842 		smp_wmb();
4843 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4844 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4845 		r = 0;
4846 split_irqchip_unlock:
4847 		mutex_unlock(&kvm->lock);
4848 		break;
4849 	}
4850 	case KVM_CAP_X2APIC_API:
4851 		r = -EINVAL;
4852 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4853 			break;
4854 
4855 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4856 			kvm->arch.x2apic_format = true;
4857 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4858 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4859 
4860 		r = 0;
4861 		break;
4862 	case KVM_CAP_X86_DISABLE_EXITS:
4863 		r = -EINVAL;
4864 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4865 			break;
4866 
4867 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4868 			kvm_can_mwait_in_guest())
4869 			kvm->arch.mwait_in_guest = true;
4870 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4871 			kvm->arch.hlt_in_guest = true;
4872 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4873 			kvm->arch.pause_in_guest = true;
4874 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4875 			kvm->arch.cstate_in_guest = true;
4876 		r = 0;
4877 		break;
4878 	case KVM_CAP_MSR_PLATFORM_INFO:
4879 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4880 		r = 0;
4881 		break;
4882 	case KVM_CAP_EXCEPTION_PAYLOAD:
4883 		kvm->arch.exception_payload_enabled = cap->args[0];
4884 		r = 0;
4885 		break;
4886 	default:
4887 		r = -EINVAL;
4888 		break;
4889 	}
4890 	return r;
4891 }
4892 
4893 long kvm_arch_vm_ioctl(struct file *filp,
4894 		       unsigned int ioctl, unsigned long arg)
4895 {
4896 	struct kvm *kvm = filp->private_data;
4897 	void __user *argp = (void __user *)arg;
4898 	int r = -ENOTTY;
4899 	/*
4900 	 * This union makes it completely explicit to gcc-3.x
4901 	 * that these two variables' stack usage should be
4902 	 * combined, not added together.
4903 	 */
4904 	union {
4905 		struct kvm_pit_state ps;
4906 		struct kvm_pit_state2 ps2;
4907 		struct kvm_pit_config pit_config;
4908 	} u;
4909 
4910 	switch (ioctl) {
4911 	case KVM_SET_TSS_ADDR:
4912 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4913 		break;
4914 	case KVM_SET_IDENTITY_MAP_ADDR: {
4915 		u64 ident_addr;
4916 
4917 		mutex_lock(&kvm->lock);
4918 		r = -EINVAL;
4919 		if (kvm->created_vcpus)
4920 			goto set_identity_unlock;
4921 		r = -EFAULT;
4922 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4923 			goto set_identity_unlock;
4924 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4925 set_identity_unlock:
4926 		mutex_unlock(&kvm->lock);
4927 		break;
4928 	}
4929 	case KVM_SET_NR_MMU_PAGES:
4930 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4931 		break;
4932 	case KVM_GET_NR_MMU_PAGES:
4933 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4934 		break;
4935 	case KVM_CREATE_IRQCHIP: {
4936 		mutex_lock(&kvm->lock);
4937 
4938 		r = -EEXIST;
4939 		if (irqchip_in_kernel(kvm))
4940 			goto create_irqchip_unlock;
4941 
4942 		r = -EINVAL;
4943 		if (kvm->created_vcpus)
4944 			goto create_irqchip_unlock;
4945 
4946 		r = kvm_pic_init(kvm);
4947 		if (r)
4948 			goto create_irqchip_unlock;
4949 
4950 		r = kvm_ioapic_init(kvm);
4951 		if (r) {
4952 			kvm_pic_destroy(kvm);
4953 			goto create_irqchip_unlock;
4954 		}
4955 
4956 		r = kvm_setup_default_irq_routing(kvm);
4957 		if (r) {
4958 			kvm_ioapic_destroy(kvm);
4959 			kvm_pic_destroy(kvm);
4960 			goto create_irqchip_unlock;
4961 		}
4962 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4963 		smp_wmb();
4964 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4965 	create_irqchip_unlock:
4966 		mutex_unlock(&kvm->lock);
4967 		break;
4968 	}
4969 	case KVM_CREATE_PIT:
4970 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4971 		goto create_pit;
4972 	case KVM_CREATE_PIT2:
4973 		r = -EFAULT;
4974 		if (copy_from_user(&u.pit_config, argp,
4975 				   sizeof(struct kvm_pit_config)))
4976 			goto out;
4977 	create_pit:
4978 		mutex_lock(&kvm->lock);
4979 		r = -EEXIST;
4980 		if (kvm->arch.vpit)
4981 			goto create_pit_unlock;
4982 		r = -ENOMEM;
4983 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4984 		if (kvm->arch.vpit)
4985 			r = 0;
4986 	create_pit_unlock:
4987 		mutex_unlock(&kvm->lock);
4988 		break;
4989 	case KVM_GET_IRQCHIP: {
4990 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4991 		struct kvm_irqchip *chip;
4992 
4993 		chip = memdup_user(argp, sizeof(*chip));
4994 		if (IS_ERR(chip)) {
4995 			r = PTR_ERR(chip);
4996 			goto out;
4997 		}
4998 
4999 		r = -ENXIO;
5000 		if (!irqchip_kernel(kvm))
5001 			goto get_irqchip_out;
5002 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5003 		if (r)
5004 			goto get_irqchip_out;
5005 		r = -EFAULT;
5006 		if (copy_to_user(argp, chip, sizeof(*chip)))
5007 			goto get_irqchip_out;
5008 		r = 0;
5009 	get_irqchip_out:
5010 		kfree(chip);
5011 		break;
5012 	}
5013 	case KVM_SET_IRQCHIP: {
5014 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5015 		struct kvm_irqchip *chip;
5016 
5017 		chip = memdup_user(argp, sizeof(*chip));
5018 		if (IS_ERR(chip)) {
5019 			r = PTR_ERR(chip);
5020 			goto out;
5021 		}
5022 
5023 		r = -ENXIO;
5024 		if (!irqchip_kernel(kvm))
5025 			goto set_irqchip_out;
5026 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5027 	set_irqchip_out:
5028 		kfree(chip);
5029 		break;
5030 	}
5031 	case KVM_GET_PIT: {
5032 		r = -EFAULT;
5033 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5034 			goto out;
5035 		r = -ENXIO;
5036 		if (!kvm->arch.vpit)
5037 			goto out;
5038 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5039 		if (r)
5040 			goto out;
5041 		r = -EFAULT;
5042 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5043 			goto out;
5044 		r = 0;
5045 		break;
5046 	}
5047 	case KVM_SET_PIT: {
5048 		r = -EFAULT;
5049 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5050 			goto out;
5051 		r = -ENXIO;
5052 		if (!kvm->arch.vpit)
5053 			goto out;
5054 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5055 		break;
5056 	}
5057 	case KVM_GET_PIT2: {
5058 		r = -ENXIO;
5059 		if (!kvm->arch.vpit)
5060 			goto out;
5061 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5062 		if (r)
5063 			goto out;
5064 		r = -EFAULT;
5065 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5066 			goto out;
5067 		r = 0;
5068 		break;
5069 	}
5070 	case KVM_SET_PIT2: {
5071 		r = -EFAULT;
5072 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5073 			goto out;
5074 		r = -ENXIO;
5075 		if (!kvm->arch.vpit)
5076 			goto out;
5077 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5078 		break;
5079 	}
5080 	case KVM_REINJECT_CONTROL: {
5081 		struct kvm_reinject_control control;
5082 		r =  -EFAULT;
5083 		if (copy_from_user(&control, argp, sizeof(control)))
5084 			goto out;
5085 		r = -ENXIO;
5086 		if (!kvm->arch.vpit)
5087 			goto out;
5088 		r = kvm_vm_ioctl_reinject(kvm, &control);
5089 		break;
5090 	}
5091 	case KVM_SET_BOOT_CPU_ID:
5092 		r = 0;
5093 		mutex_lock(&kvm->lock);
5094 		if (kvm->created_vcpus)
5095 			r = -EBUSY;
5096 		else
5097 			kvm->arch.bsp_vcpu_id = arg;
5098 		mutex_unlock(&kvm->lock);
5099 		break;
5100 	case KVM_XEN_HVM_CONFIG: {
5101 		struct kvm_xen_hvm_config xhc;
5102 		r = -EFAULT;
5103 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5104 			goto out;
5105 		r = -EINVAL;
5106 		if (xhc.flags)
5107 			goto out;
5108 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5109 		r = 0;
5110 		break;
5111 	}
5112 	case KVM_SET_CLOCK: {
5113 		struct kvm_clock_data user_ns;
5114 		u64 now_ns;
5115 
5116 		r = -EFAULT;
5117 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5118 			goto out;
5119 
5120 		r = -EINVAL;
5121 		if (user_ns.flags)
5122 			goto out;
5123 
5124 		r = 0;
5125 		/*
5126 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5127 		 * kvm_gen_update_masterclock() can be cut down to locked
5128 		 * pvclock_update_vm_gtod_copy().
5129 		 */
5130 		kvm_gen_update_masterclock(kvm);
5131 		now_ns = get_kvmclock_ns(kvm);
5132 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5133 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5134 		break;
5135 	}
5136 	case KVM_GET_CLOCK: {
5137 		struct kvm_clock_data user_ns;
5138 		u64 now_ns;
5139 
5140 		now_ns = get_kvmclock_ns(kvm);
5141 		user_ns.clock = now_ns;
5142 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5143 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5144 
5145 		r = -EFAULT;
5146 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5147 			goto out;
5148 		r = 0;
5149 		break;
5150 	}
5151 	case KVM_MEMORY_ENCRYPT_OP: {
5152 		r = -ENOTTY;
5153 		if (kvm_x86_ops.mem_enc_op)
5154 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5155 		break;
5156 	}
5157 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5158 		struct kvm_enc_region region;
5159 
5160 		r = -EFAULT;
5161 		if (copy_from_user(&region, argp, sizeof(region)))
5162 			goto out;
5163 
5164 		r = -ENOTTY;
5165 		if (kvm_x86_ops.mem_enc_reg_region)
5166 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5167 		break;
5168 	}
5169 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5170 		struct kvm_enc_region region;
5171 
5172 		r = -EFAULT;
5173 		if (copy_from_user(&region, argp, sizeof(region)))
5174 			goto out;
5175 
5176 		r = -ENOTTY;
5177 		if (kvm_x86_ops.mem_enc_unreg_region)
5178 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5179 		break;
5180 	}
5181 	case KVM_HYPERV_EVENTFD: {
5182 		struct kvm_hyperv_eventfd hvevfd;
5183 
5184 		r = -EFAULT;
5185 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5186 			goto out;
5187 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5188 		break;
5189 	}
5190 	case KVM_SET_PMU_EVENT_FILTER:
5191 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5192 		break;
5193 	default:
5194 		r = -ENOTTY;
5195 	}
5196 out:
5197 	return r;
5198 }
5199 
5200 static void kvm_init_msr_list(void)
5201 {
5202 	struct x86_pmu_capability x86_pmu;
5203 	u32 dummy[2];
5204 	unsigned i;
5205 
5206 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5207 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5208 
5209 	perf_get_x86_pmu_capability(&x86_pmu);
5210 
5211 	num_msrs_to_save = 0;
5212 	num_emulated_msrs = 0;
5213 	num_msr_based_features = 0;
5214 
5215 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5216 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5217 			continue;
5218 
5219 		/*
5220 		 * Even MSRs that are valid in the host may not be exposed
5221 		 * to the guests in some cases.
5222 		 */
5223 		switch (msrs_to_save_all[i]) {
5224 		case MSR_IA32_BNDCFGS:
5225 			if (!kvm_mpx_supported())
5226 				continue;
5227 			break;
5228 		case MSR_TSC_AUX:
5229 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5230 				continue;
5231 			break;
5232 		case MSR_IA32_RTIT_CTL:
5233 		case MSR_IA32_RTIT_STATUS:
5234 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5235 				continue;
5236 			break;
5237 		case MSR_IA32_RTIT_CR3_MATCH:
5238 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5239 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5240 				continue;
5241 			break;
5242 		case MSR_IA32_RTIT_OUTPUT_BASE:
5243 		case MSR_IA32_RTIT_OUTPUT_MASK:
5244 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5245 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5246 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5247 				continue;
5248 			break;
5249 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5250 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5251 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5252 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5253 				continue;
5254 			break;
5255 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5256 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5257 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5258 				continue;
5259 			break;
5260 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5261 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5262 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5263 				continue;
5264 		}
5265 		default:
5266 			break;
5267 		}
5268 
5269 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5270 	}
5271 
5272 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5273 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5274 			continue;
5275 
5276 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5277 	}
5278 
5279 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5280 		struct kvm_msr_entry msr;
5281 
5282 		msr.index = msr_based_features_all[i];
5283 		if (kvm_get_msr_feature(&msr))
5284 			continue;
5285 
5286 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5287 	}
5288 }
5289 
5290 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5291 			   const void *v)
5292 {
5293 	int handled = 0;
5294 	int n;
5295 
5296 	do {
5297 		n = min(len, 8);
5298 		if (!(lapic_in_kernel(vcpu) &&
5299 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5300 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5301 			break;
5302 		handled += n;
5303 		addr += n;
5304 		len -= n;
5305 		v += n;
5306 	} while (len);
5307 
5308 	return handled;
5309 }
5310 
5311 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5312 {
5313 	int handled = 0;
5314 	int n;
5315 
5316 	do {
5317 		n = min(len, 8);
5318 		if (!(lapic_in_kernel(vcpu) &&
5319 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5320 					 addr, n, v))
5321 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5322 			break;
5323 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5324 		handled += n;
5325 		addr += n;
5326 		len -= n;
5327 		v += n;
5328 	} while (len);
5329 
5330 	return handled;
5331 }
5332 
5333 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5334 			struct kvm_segment *var, int seg)
5335 {
5336 	kvm_x86_ops.set_segment(vcpu, var, seg);
5337 }
5338 
5339 void kvm_get_segment(struct kvm_vcpu *vcpu,
5340 		     struct kvm_segment *var, int seg)
5341 {
5342 	kvm_x86_ops.get_segment(vcpu, var, seg);
5343 }
5344 
5345 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5346 			   struct x86_exception *exception)
5347 {
5348 	gpa_t t_gpa;
5349 
5350 	BUG_ON(!mmu_is_nested(vcpu));
5351 
5352 	/* NPT walks are always user-walks */
5353 	access |= PFERR_USER_MASK;
5354 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5355 
5356 	return t_gpa;
5357 }
5358 
5359 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5360 			      struct x86_exception *exception)
5361 {
5362 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5363 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5364 }
5365 
5366  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5367 				struct x86_exception *exception)
5368 {
5369 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5370 	access |= PFERR_FETCH_MASK;
5371 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5372 }
5373 
5374 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5375 			       struct x86_exception *exception)
5376 {
5377 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5378 	access |= PFERR_WRITE_MASK;
5379 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5380 }
5381 
5382 /* uses this to access any guest's mapped memory without checking CPL */
5383 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5384 				struct x86_exception *exception)
5385 {
5386 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5387 }
5388 
5389 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5390 				      struct kvm_vcpu *vcpu, u32 access,
5391 				      struct x86_exception *exception)
5392 {
5393 	void *data = val;
5394 	int r = X86EMUL_CONTINUE;
5395 
5396 	while (bytes) {
5397 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5398 							    exception);
5399 		unsigned offset = addr & (PAGE_SIZE-1);
5400 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5401 		int ret;
5402 
5403 		if (gpa == UNMAPPED_GVA)
5404 			return X86EMUL_PROPAGATE_FAULT;
5405 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5406 					       offset, toread);
5407 		if (ret < 0) {
5408 			r = X86EMUL_IO_NEEDED;
5409 			goto out;
5410 		}
5411 
5412 		bytes -= toread;
5413 		data += toread;
5414 		addr += toread;
5415 	}
5416 out:
5417 	return r;
5418 }
5419 
5420 /* used for instruction fetching */
5421 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5422 				gva_t addr, void *val, unsigned int bytes,
5423 				struct x86_exception *exception)
5424 {
5425 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5427 	unsigned offset;
5428 	int ret;
5429 
5430 	/* Inline kvm_read_guest_virt_helper for speed.  */
5431 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5432 						    exception);
5433 	if (unlikely(gpa == UNMAPPED_GVA))
5434 		return X86EMUL_PROPAGATE_FAULT;
5435 
5436 	offset = addr & (PAGE_SIZE-1);
5437 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5438 		bytes = (unsigned)PAGE_SIZE - offset;
5439 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5440 				       offset, bytes);
5441 	if (unlikely(ret < 0))
5442 		return X86EMUL_IO_NEEDED;
5443 
5444 	return X86EMUL_CONTINUE;
5445 }
5446 
5447 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5448 			       gva_t addr, void *val, unsigned int bytes,
5449 			       struct x86_exception *exception)
5450 {
5451 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5452 
5453 	/*
5454 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5455 	 * is returned, but our callers are not ready for that and they blindly
5456 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5457 	 * uninitialized kernel stack memory into cr2 and error code.
5458 	 */
5459 	memset(exception, 0, sizeof(*exception));
5460 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5461 					  exception);
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5464 
5465 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5466 			     gva_t addr, void *val, unsigned int bytes,
5467 			     struct x86_exception *exception, bool system)
5468 {
5469 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5470 	u32 access = 0;
5471 
5472 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5473 		access |= PFERR_USER_MASK;
5474 
5475 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5476 }
5477 
5478 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5479 		unsigned long addr, void *val, unsigned int bytes)
5480 {
5481 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5482 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5483 
5484 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5485 }
5486 
5487 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5488 				      struct kvm_vcpu *vcpu, u32 access,
5489 				      struct x86_exception *exception)
5490 {
5491 	void *data = val;
5492 	int r = X86EMUL_CONTINUE;
5493 
5494 	while (bytes) {
5495 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5496 							     access,
5497 							     exception);
5498 		unsigned offset = addr & (PAGE_SIZE-1);
5499 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5500 		int ret;
5501 
5502 		if (gpa == UNMAPPED_GVA)
5503 			return X86EMUL_PROPAGATE_FAULT;
5504 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5505 		if (ret < 0) {
5506 			r = X86EMUL_IO_NEEDED;
5507 			goto out;
5508 		}
5509 
5510 		bytes -= towrite;
5511 		data += towrite;
5512 		addr += towrite;
5513 	}
5514 out:
5515 	return r;
5516 }
5517 
5518 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5519 			      unsigned int bytes, struct x86_exception *exception,
5520 			      bool system)
5521 {
5522 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5523 	u32 access = PFERR_WRITE_MASK;
5524 
5525 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5526 		access |= PFERR_USER_MASK;
5527 
5528 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5529 					   access, exception);
5530 }
5531 
5532 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5533 				unsigned int bytes, struct x86_exception *exception)
5534 {
5535 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5536 	vcpu->arch.l1tf_flush_l1d = true;
5537 
5538 	/*
5539 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5540 	 * is returned, but our callers are not ready for that and they blindly
5541 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5542 	 * uninitialized kernel stack memory into cr2 and error code.
5543 	 */
5544 	memset(exception, 0, sizeof(*exception));
5545 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5546 					   PFERR_WRITE_MASK, exception);
5547 }
5548 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5549 
5550 int handle_ud(struct kvm_vcpu *vcpu)
5551 {
5552 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5553 	int emul_type = EMULTYPE_TRAP_UD;
5554 	char sig[5]; /* ud2; .ascii "kvm" */
5555 	struct x86_exception e;
5556 
5557 	if (force_emulation_prefix &&
5558 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5559 				sig, sizeof(sig), &e) == 0 &&
5560 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5561 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5562 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5563 	}
5564 
5565 	return kvm_emulate_instruction(vcpu, emul_type);
5566 }
5567 EXPORT_SYMBOL_GPL(handle_ud);
5568 
5569 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5570 			    gpa_t gpa, bool write)
5571 {
5572 	/* For APIC access vmexit */
5573 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5574 		return 1;
5575 
5576 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5577 		trace_vcpu_match_mmio(gva, gpa, write, true);
5578 		return 1;
5579 	}
5580 
5581 	return 0;
5582 }
5583 
5584 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5585 				gpa_t *gpa, struct x86_exception *exception,
5586 				bool write)
5587 {
5588 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5589 		| (write ? PFERR_WRITE_MASK : 0);
5590 
5591 	/*
5592 	 * currently PKRU is only applied to ept enabled guest so
5593 	 * there is no pkey in EPT page table for L1 guest or EPT
5594 	 * shadow page table for L2 guest.
5595 	 */
5596 	if (vcpu_match_mmio_gva(vcpu, gva)
5597 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5598 				 vcpu->arch.mmio_access, 0, access)) {
5599 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5600 					(gva & (PAGE_SIZE - 1));
5601 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5602 		return 1;
5603 	}
5604 
5605 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5606 
5607 	if (*gpa == UNMAPPED_GVA)
5608 		return -1;
5609 
5610 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5611 }
5612 
5613 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5614 			const void *val, int bytes)
5615 {
5616 	int ret;
5617 
5618 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5619 	if (ret < 0)
5620 		return 0;
5621 	kvm_page_track_write(vcpu, gpa, val, bytes);
5622 	return 1;
5623 }
5624 
5625 struct read_write_emulator_ops {
5626 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5627 				  int bytes);
5628 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5629 				  void *val, int bytes);
5630 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5631 			       int bytes, void *val);
5632 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5633 				    void *val, int bytes);
5634 	bool write;
5635 };
5636 
5637 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5638 {
5639 	if (vcpu->mmio_read_completed) {
5640 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5641 			       vcpu->mmio_fragments[0].gpa, val);
5642 		vcpu->mmio_read_completed = 0;
5643 		return 1;
5644 	}
5645 
5646 	return 0;
5647 }
5648 
5649 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5650 			void *val, int bytes)
5651 {
5652 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5653 }
5654 
5655 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5656 			 void *val, int bytes)
5657 {
5658 	return emulator_write_phys(vcpu, gpa, val, bytes);
5659 }
5660 
5661 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5662 {
5663 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5664 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5665 }
5666 
5667 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5668 			  void *val, int bytes)
5669 {
5670 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5671 	return X86EMUL_IO_NEEDED;
5672 }
5673 
5674 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5675 			   void *val, int bytes)
5676 {
5677 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5678 
5679 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5680 	return X86EMUL_CONTINUE;
5681 }
5682 
5683 static const struct read_write_emulator_ops read_emultor = {
5684 	.read_write_prepare = read_prepare,
5685 	.read_write_emulate = read_emulate,
5686 	.read_write_mmio = vcpu_mmio_read,
5687 	.read_write_exit_mmio = read_exit_mmio,
5688 };
5689 
5690 static const struct read_write_emulator_ops write_emultor = {
5691 	.read_write_emulate = write_emulate,
5692 	.read_write_mmio = write_mmio,
5693 	.read_write_exit_mmio = write_exit_mmio,
5694 	.write = true,
5695 };
5696 
5697 static int emulator_read_write_onepage(unsigned long addr, void *val,
5698 				       unsigned int bytes,
5699 				       struct x86_exception *exception,
5700 				       struct kvm_vcpu *vcpu,
5701 				       const struct read_write_emulator_ops *ops)
5702 {
5703 	gpa_t gpa;
5704 	int handled, ret;
5705 	bool write = ops->write;
5706 	struct kvm_mmio_fragment *frag;
5707 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5708 
5709 	/*
5710 	 * If the exit was due to a NPF we may already have a GPA.
5711 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5712 	 * Note, this cannot be used on string operations since string
5713 	 * operation using rep will only have the initial GPA from the NPF
5714 	 * occurred.
5715 	 */
5716 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5717 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5718 		gpa = ctxt->gpa_val;
5719 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5720 	} else {
5721 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5722 		if (ret < 0)
5723 			return X86EMUL_PROPAGATE_FAULT;
5724 	}
5725 
5726 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5727 		return X86EMUL_CONTINUE;
5728 
5729 	/*
5730 	 * Is this MMIO handled locally?
5731 	 */
5732 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5733 	if (handled == bytes)
5734 		return X86EMUL_CONTINUE;
5735 
5736 	gpa += handled;
5737 	bytes -= handled;
5738 	val += handled;
5739 
5740 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5741 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5742 	frag->gpa = gpa;
5743 	frag->data = val;
5744 	frag->len = bytes;
5745 	return X86EMUL_CONTINUE;
5746 }
5747 
5748 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5749 			unsigned long addr,
5750 			void *val, unsigned int bytes,
5751 			struct x86_exception *exception,
5752 			const struct read_write_emulator_ops *ops)
5753 {
5754 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5755 	gpa_t gpa;
5756 	int rc;
5757 
5758 	if (ops->read_write_prepare &&
5759 		  ops->read_write_prepare(vcpu, val, bytes))
5760 		return X86EMUL_CONTINUE;
5761 
5762 	vcpu->mmio_nr_fragments = 0;
5763 
5764 	/* Crossing a page boundary? */
5765 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5766 		int now;
5767 
5768 		now = -addr & ~PAGE_MASK;
5769 		rc = emulator_read_write_onepage(addr, val, now, exception,
5770 						 vcpu, ops);
5771 
5772 		if (rc != X86EMUL_CONTINUE)
5773 			return rc;
5774 		addr += now;
5775 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5776 			addr = (u32)addr;
5777 		val += now;
5778 		bytes -= now;
5779 	}
5780 
5781 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5782 					 vcpu, ops);
5783 	if (rc != X86EMUL_CONTINUE)
5784 		return rc;
5785 
5786 	if (!vcpu->mmio_nr_fragments)
5787 		return rc;
5788 
5789 	gpa = vcpu->mmio_fragments[0].gpa;
5790 
5791 	vcpu->mmio_needed = 1;
5792 	vcpu->mmio_cur_fragment = 0;
5793 
5794 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5795 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5796 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5797 	vcpu->run->mmio.phys_addr = gpa;
5798 
5799 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5800 }
5801 
5802 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5803 				  unsigned long addr,
5804 				  void *val,
5805 				  unsigned int bytes,
5806 				  struct x86_exception *exception)
5807 {
5808 	return emulator_read_write(ctxt, addr, val, bytes,
5809 				   exception, &read_emultor);
5810 }
5811 
5812 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5813 			    unsigned long addr,
5814 			    const void *val,
5815 			    unsigned int bytes,
5816 			    struct x86_exception *exception)
5817 {
5818 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5819 				   exception, &write_emultor);
5820 }
5821 
5822 #define CMPXCHG_TYPE(t, ptr, old, new) \
5823 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5824 
5825 #ifdef CONFIG_X86_64
5826 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5827 #else
5828 #  define CMPXCHG64(ptr, old, new) \
5829 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5830 #endif
5831 
5832 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5833 				     unsigned long addr,
5834 				     const void *old,
5835 				     const void *new,
5836 				     unsigned int bytes,
5837 				     struct x86_exception *exception)
5838 {
5839 	struct kvm_host_map map;
5840 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5841 	gpa_t gpa;
5842 	char *kaddr;
5843 	bool exchanged;
5844 
5845 	/* guests cmpxchg8b have to be emulated atomically */
5846 	if (bytes > 8 || (bytes & (bytes - 1)))
5847 		goto emul_write;
5848 
5849 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5850 
5851 	if (gpa == UNMAPPED_GVA ||
5852 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5853 		goto emul_write;
5854 
5855 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5856 		goto emul_write;
5857 
5858 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5859 		goto emul_write;
5860 
5861 	kaddr = map.hva + offset_in_page(gpa);
5862 
5863 	switch (bytes) {
5864 	case 1:
5865 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5866 		break;
5867 	case 2:
5868 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5869 		break;
5870 	case 4:
5871 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5872 		break;
5873 	case 8:
5874 		exchanged = CMPXCHG64(kaddr, old, new);
5875 		break;
5876 	default:
5877 		BUG();
5878 	}
5879 
5880 	kvm_vcpu_unmap(vcpu, &map, true);
5881 
5882 	if (!exchanged)
5883 		return X86EMUL_CMPXCHG_FAILED;
5884 
5885 	kvm_page_track_write(vcpu, gpa, new, bytes);
5886 
5887 	return X86EMUL_CONTINUE;
5888 
5889 emul_write:
5890 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5891 
5892 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5893 }
5894 
5895 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5896 {
5897 	int r = 0, i;
5898 
5899 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5900 		if (vcpu->arch.pio.in)
5901 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5902 					    vcpu->arch.pio.size, pd);
5903 		else
5904 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5905 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5906 					     pd);
5907 		if (r)
5908 			break;
5909 		pd += vcpu->arch.pio.size;
5910 	}
5911 	return r;
5912 }
5913 
5914 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5915 			       unsigned short port, void *val,
5916 			       unsigned int count, bool in)
5917 {
5918 	vcpu->arch.pio.port = port;
5919 	vcpu->arch.pio.in = in;
5920 	vcpu->arch.pio.count  = count;
5921 	vcpu->arch.pio.size = size;
5922 
5923 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5924 		vcpu->arch.pio.count = 0;
5925 		return 1;
5926 	}
5927 
5928 	vcpu->run->exit_reason = KVM_EXIT_IO;
5929 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5930 	vcpu->run->io.size = size;
5931 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5932 	vcpu->run->io.count = count;
5933 	vcpu->run->io.port = port;
5934 
5935 	return 0;
5936 }
5937 
5938 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5939 			   unsigned short port, void *val, unsigned int count)
5940 {
5941 	int ret;
5942 
5943 	if (vcpu->arch.pio.count)
5944 		goto data_avail;
5945 
5946 	memset(vcpu->arch.pio_data, 0, size * count);
5947 
5948 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5949 	if (ret) {
5950 data_avail:
5951 		memcpy(val, vcpu->arch.pio_data, size * count);
5952 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5953 		vcpu->arch.pio.count = 0;
5954 		return 1;
5955 	}
5956 
5957 	return 0;
5958 }
5959 
5960 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5961 				    int size, unsigned short port, void *val,
5962 				    unsigned int count)
5963 {
5964 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5965 
5966 }
5967 
5968 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5969 			    unsigned short port, const void *val,
5970 			    unsigned int count)
5971 {
5972 	memcpy(vcpu->arch.pio_data, val, size * count);
5973 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5974 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5975 }
5976 
5977 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5978 				     int size, unsigned short port,
5979 				     const void *val, unsigned int count)
5980 {
5981 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
5982 }
5983 
5984 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5985 {
5986 	return kvm_x86_ops.get_segment_base(vcpu, seg);
5987 }
5988 
5989 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5990 {
5991 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5992 }
5993 
5994 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5995 {
5996 	if (!need_emulate_wbinvd(vcpu))
5997 		return X86EMUL_CONTINUE;
5998 
5999 	if (kvm_x86_ops.has_wbinvd_exit()) {
6000 		int cpu = get_cpu();
6001 
6002 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6003 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6004 				wbinvd_ipi, NULL, 1);
6005 		put_cpu();
6006 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6007 	} else
6008 		wbinvd();
6009 	return X86EMUL_CONTINUE;
6010 }
6011 
6012 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6013 {
6014 	kvm_emulate_wbinvd_noskip(vcpu);
6015 	return kvm_skip_emulated_instruction(vcpu);
6016 }
6017 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6018 
6019 
6020 
6021 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6022 {
6023 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6024 }
6025 
6026 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6027 			   unsigned long *dest)
6028 {
6029 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6030 }
6031 
6032 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6033 			   unsigned long value)
6034 {
6035 
6036 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6037 }
6038 
6039 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6040 {
6041 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6042 }
6043 
6044 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6045 {
6046 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6047 	unsigned long value;
6048 
6049 	switch (cr) {
6050 	case 0:
6051 		value = kvm_read_cr0(vcpu);
6052 		break;
6053 	case 2:
6054 		value = vcpu->arch.cr2;
6055 		break;
6056 	case 3:
6057 		value = kvm_read_cr3(vcpu);
6058 		break;
6059 	case 4:
6060 		value = kvm_read_cr4(vcpu);
6061 		break;
6062 	case 8:
6063 		value = kvm_get_cr8(vcpu);
6064 		break;
6065 	default:
6066 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6067 		return 0;
6068 	}
6069 
6070 	return value;
6071 }
6072 
6073 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6074 {
6075 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6076 	int res = 0;
6077 
6078 	switch (cr) {
6079 	case 0:
6080 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6081 		break;
6082 	case 2:
6083 		vcpu->arch.cr2 = val;
6084 		break;
6085 	case 3:
6086 		res = kvm_set_cr3(vcpu, val);
6087 		break;
6088 	case 4:
6089 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6090 		break;
6091 	case 8:
6092 		res = kvm_set_cr8(vcpu, val);
6093 		break;
6094 	default:
6095 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6096 		res = -1;
6097 	}
6098 
6099 	return res;
6100 }
6101 
6102 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6103 {
6104 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6105 }
6106 
6107 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6108 {
6109 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6110 }
6111 
6112 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6113 {
6114 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6115 }
6116 
6117 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6118 {
6119 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6120 }
6121 
6122 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6123 {
6124 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6125 }
6126 
6127 static unsigned long emulator_get_cached_segment_base(
6128 	struct x86_emulate_ctxt *ctxt, int seg)
6129 {
6130 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6131 }
6132 
6133 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6134 				 struct desc_struct *desc, u32 *base3,
6135 				 int seg)
6136 {
6137 	struct kvm_segment var;
6138 
6139 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6140 	*selector = var.selector;
6141 
6142 	if (var.unusable) {
6143 		memset(desc, 0, sizeof(*desc));
6144 		if (base3)
6145 			*base3 = 0;
6146 		return false;
6147 	}
6148 
6149 	if (var.g)
6150 		var.limit >>= 12;
6151 	set_desc_limit(desc, var.limit);
6152 	set_desc_base(desc, (unsigned long)var.base);
6153 #ifdef CONFIG_X86_64
6154 	if (base3)
6155 		*base3 = var.base >> 32;
6156 #endif
6157 	desc->type = var.type;
6158 	desc->s = var.s;
6159 	desc->dpl = var.dpl;
6160 	desc->p = var.present;
6161 	desc->avl = var.avl;
6162 	desc->l = var.l;
6163 	desc->d = var.db;
6164 	desc->g = var.g;
6165 
6166 	return true;
6167 }
6168 
6169 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6170 				 struct desc_struct *desc, u32 base3,
6171 				 int seg)
6172 {
6173 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6174 	struct kvm_segment var;
6175 
6176 	var.selector = selector;
6177 	var.base = get_desc_base(desc);
6178 #ifdef CONFIG_X86_64
6179 	var.base |= ((u64)base3) << 32;
6180 #endif
6181 	var.limit = get_desc_limit(desc);
6182 	if (desc->g)
6183 		var.limit = (var.limit << 12) | 0xfff;
6184 	var.type = desc->type;
6185 	var.dpl = desc->dpl;
6186 	var.db = desc->d;
6187 	var.s = desc->s;
6188 	var.l = desc->l;
6189 	var.g = desc->g;
6190 	var.avl = desc->avl;
6191 	var.present = desc->p;
6192 	var.unusable = !var.present;
6193 	var.padding = 0;
6194 
6195 	kvm_set_segment(vcpu, &var, seg);
6196 	return;
6197 }
6198 
6199 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6200 			    u32 msr_index, u64 *pdata)
6201 {
6202 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6203 }
6204 
6205 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6206 			    u32 msr_index, u64 data)
6207 {
6208 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6209 }
6210 
6211 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6212 {
6213 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6214 
6215 	return vcpu->arch.smbase;
6216 }
6217 
6218 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6219 {
6220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6221 
6222 	vcpu->arch.smbase = smbase;
6223 }
6224 
6225 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6226 			      u32 pmc)
6227 {
6228 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6229 }
6230 
6231 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6232 			     u32 pmc, u64 *pdata)
6233 {
6234 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6235 }
6236 
6237 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6238 {
6239 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6240 }
6241 
6242 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6243 			      struct x86_instruction_info *info,
6244 			      enum x86_intercept_stage stage)
6245 {
6246 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6247 					    &ctxt->exception);
6248 }
6249 
6250 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6251 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6252 			      bool exact_only)
6253 {
6254 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6255 }
6256 
6257 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6258 {
6259 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6260 }
6261 
6262 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6263 {
6264 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6265 }
6266 
6267 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6268 {
6269 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6270 }
6271 
6272 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6273 {
6274 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6275 }
6276 
6277 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6278 {
6279 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6280 }
6281 
6282 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6283 {
6284 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6285 }
6286 
6287 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6288 {
6289 	return emul_to_vcpu(ctxt)->arch.hflags;
6290 }
6291 
6292 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6293 {
6294 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6295 }
6296 
6297 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6298 				  const char *smstate)
6299 {
6300 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6301 }
6302 
6303 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6304 {
6305 	kvm_smm_changed(emul_to_vcpu(ctxt));
6306 }
6307 
6308 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6309 {
6310 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6311 }
6312 
6313 static const struct x86_emulate_ops emulate_ops = {
6314 	.read_gpr            = emulator_read_gpr,
6315 	.write_gpr           = emulator_write_gpr,
6316 	.read_std            = emulator_read_std,
6317 	.write_std           = emulator_write_std,
6318 	.read_phys           = kvm_read_guest_phys_system,
6319 	.fetch               = kvm_fetch_guest_virt,
6320 	.read_emulated       = emulator_read_emulated,
6321 	.write_emulated      = emulator_write_emulated,
6322 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6323 	.invlpg              = emulator_invlpg,
6324 	.pio_in_emulated     = emulator_pio_in_emulated,
6325 	.pio_out_emulated    = emulator_pio_out_emulated,
6326 	.get_segment         = emulator_get_segment,
6327 	.set_segment         = emulator_set_segment,
6328 	.get_cached_segment_base = emulator_get_cached_segment_base,
6329 	.get_gdt             = emulator_get_gdt,
6330 	.get_idt	     = emulator_get_idt,
6331 	.set_gdt             = emulator_set_gdt,
6332 	.set_idt	     = emulator_set_idt,
6333 	.get_cr              = emulator_get_cr,
6334 	.set_cr              = emulator_set_cr,
6335 	.cpl                 = emulator_get_cpl,
6336 	.get_dr              = emulator_get_dr,
6337 	.set_dr              = emulator_set_dr,
6338 	.get_smbase          = emulator_get_smbase,
6339 	.set_smbase          = emulator_set_smbase,
6340 	.set_msr             = emulator_set_msr,
6341 	.get_msr             = emulator_get_msr,
6342 	.check_pmc	     = emulator_check_pmc,
6343 	.read_pmc            = emulator_read_pmc,
6344 	.halt                = emulator_halt,
6345 	.wbinvd              = emulator_wbinvd,
6346 	.fix_hypercall       = emulator_fix_hypercall,
6347 	.intercept           = emulator_intercept,
6348 	.get_cpuid           = emulator_get_cpuid,
6349 	.guest_has_long_mode = emulator_guest_has_long_mode,
6350 	.guest_has_movbe     = emulator_guest_has_movbe,
6351 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6352 	.set_nmi_mask        = emulator_set_nmi_mask,
6353 	.get_hflags          = emulator_get_hflags,
6354 	.set_hflags          = emulator_set_hflags,
6355 	.pre_leave_smm       = emulator_pre_leave_smm,
6356 	.post_leave_smm      = emulator_post_leave_smm,
6357 	.set_xcr             = emulator_set_xcr,
6358 };
6359 
6360 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6361 {
6362 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6363 	/*
6364 	 * an sti; sti; sequence only disable interrupts for the first
6365 	 * instruction. So, if the last instruction, be it emulated or
6366 	 * not, left the system with the INT_STI flag enabled, it
6367 	 * means that the last instruction is an sti. We should not
6368 	 * leave the flag on in this case. The same goes for mov ss
6369 	 */
6370 	if (int_shadow & mask)
6371 		mask = 0;
6372 	if (unlikely(int_shadow || mask)) {
6373 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6374 		if (!mask)
6375 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6376 	}
6377 }
6378 
6379 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6380 {
6381 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6382 	if (ctxt->exception.vector == PF_VECTOR)
6383 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6384 
6385 	if (ctxt->exception.error_code_valid)
6386 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6387 				      ctxt->exception.error_code);
6388 	else
6389 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6390 	return false;
6391 }
6392 
6393 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6394 {
6395 	struct x86_emulate_ctxt *ctxt;
6396 
6397 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6398 	if (!ctxt) {
6399 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6400 		return NULL;
6401 	}
6402 
6403 	ctxt->vcpu = vcpu;
6404 	ctxt->ops = &emulate_ops;
6405 	vcpu->arch.emulate_ctxt = ctxt;
6406 
6407 	return ctxt;
6408 }
6409 
6410 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6411 {
6412 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6413 	int cs_db, cs_l;
6414 
6415 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6416 
6417 	ctxt->gpa_available = false;
6418 	ctxt->eflags = kvm_get_rflags(vcpu);
6419 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6420 
6421 	ctxt->eip = kvm_rip_read(vcpu);
6422 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6423 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6424 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6425 		     cs_db				? X86EMUL_MODE_PROT32 :
6426 							  X86EMUL_MODE_PROT16;
6427 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6428 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6429 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6430 
6431 	init_decode_cache(ctxt);
6432 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6433 }
6434 
6435 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6436 {
6437 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6438 	int ret;
6439 
6440 	init_emulate_ctxt(vcpu);
6441 
6442 	ctxt->op_bytes = 2;
6443 	ctxt->ad_bytes = 2;
6444 	ctxt->_eip = ctxt->eip + inc_eip;
6445 	ret = emulate_int_real(ctxt, irq);
6446 
6447 	if (ret != X86EMUL_CONTINUE) {
6448 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6449 	} else {
6450 		ctxt->eip = ctxt->_eip;
6451 		kvm_rip_write(vcpu, ctxt->eip);
6452 		kvm_set_rflags(vcpu, ctxt->eflags);
6453 	}
6454 }
6455 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6456 
6457 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6458 {
6459 	++vcpu->stat.insn_emulation_fail;
6460 	trace_kvm_emulate_insn_failed(vcpu);
6461 
6462 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6463 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6464 		return 1;
6465 	}
6466 
6467 	if (emulation_type & EMULTYPE_SKIP) {
6468 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6469 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6470 		vcpu->run->internal.ndata = 0;
6471 		return 0;
6472 	}
6473 
6474 	kvm_queue_exception(vcpu, UD_VECTOR);
6475 
6476 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6477 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6478 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6479 		vcpu->run->internal.ndata = 0;
6480 		return 0;
6481 	}
6482 
6483 	return 1;
6484 }
6485 
6486 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6487 				  bool write_fault_to_shadow_pgtable,
6488 				  int emulation_type)
6489 {
6490 	gpa_t gpa = cr2_or_gpa;
6491 	kvm_pfn_t pfn;
6492 
6493 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6494 		return false;
6495 
6496 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6497 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6498 		return false;
6499 
6500 	if (!vcpu->arch.mmu->direct_map) {
6501 		/*
6502 		 * Write permission should be allowed since only
6503 		 * write access need to be emulated.
6504 		 */
6505 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6506 
6507 		/*
6508 		 * If the mapping is invalid in guest, let cpu retry
6509 		 * it to generate fault.
6510 		 */
6511 		if (gpa == UNMAPPED_GVA)
6512 			return true;
6513 	}
6514 
6515 	/*
6516 	 * Do not retry the unhandleable instruction if it faults on the
6517 	 * readonly host memory, otherwise it will goto a infinite loop:
6518 	 * retry instruction -> write #PF -> emulation fail -> retry
6519 	 * instruction -> ...
6520 	 */
6521 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6522 
6523 	/*
6524 	 * If the instruction failed on the error pfn, it can not be fixed,
6525 	 * report the error to userspace.
6526 	 */
6527 	if (is_error_noslot_pfn(pfn))
6528 		return false;
6529 
6530 	kvm_release_pfn_clean(pfn);
6531 
6532 	/* The instructions are well-emulated on direct mmu. */
6533 	if (vcpu->arch.mmu->direct_map) {
6534 		unsigned int indirect_shadow_pages;
6535 
6536 		spin_lock(&vcpu->kvm->mmu_lock);
6537 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6538 		spin_unlock(&vcpu->kvm->mmu_lock);
6539 
6540 		if (indirect_shadow_pages)
6541 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6542 
6543 		return true;
6544 	}
6545 
6546 	/*
6547 	 * if emulation was due to access to shadowed page table
6548 	 * and it failed try to unshadow page and re-enter the
6549 	 * guest to let CPU execute the instruction.
6550 	 */
6551 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6552 
6553 	/*
6554 	 * If the access faults on its page table, it can not
6555 	 * be fixed by unprotecting shadow page and it should
6556 	 * be reported to userspace.
6557 	 */
6558 	return !write_fault_to_shadow_pgtable;
6559 }
6560 
6561 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6562 			      gpa_t cr2_or_gpa,  int emulation_type)
6563 {
6564 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6565 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6566 
6567 	last_retry_eip = vcpu->arch.last_retry_eip;
6568 	last_retry_addr = vcpu->arch.last_retry_addr;
6569 
6570 	/*
6571 	 * If the emulation is caused by #PF and it is non-page_table
6572 	 * writing instruction, it means the VM-EXIT is caused by shadow
6573 	 * page protected, we can zap the shadow page and retry this
6574 	 * instruction directly.
6575 	 *
6576 	 * Note: if the guest uses a non-page-table modifying instruction
6577 	 * on the PDE that points to the instruction, then we will unmap
6578 	 * the instruction and go to an infinite loop. So, we cache the
6579 	 * last retried eip and the last fault address, if we meet the eip
6580 	 * and the address again, we can break out of the potential infinite
6581 	 * loop.
6582 	 */
6583 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6584 
6585 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6586 		return false;
6587 
6588 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6589 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6590 		return false;
6591 
6592 	if (x86_page_table_writing_insn(ctxt))
6593 		return false;
6594 
6595 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6596 		return false;
6597 
6598 	vcpu->arch.last_retry_eip = ctxt->eip;
6599 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6600 
6601 	if (!vcpu->arch.mmu->direct_map)
6602 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6603 
6604 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6605 
6606 	return true;
6607 }
6608 
6609 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6610 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6611 
6612 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6613 {
6614 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6615 		/* This is a good place to trace that we are exiting SMM.  */
6616 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6617 
6618 		/* Process a latched INIT or SMI, if any.  */
6619 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6620 	}
6621 
6622 	kvm_mmu_reset_context(vcpu);
6623 }
6624 
6625 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6626 				unsigned long *db)
6627 {
6628 	u32 dr6 = 0;
6629 	int i;
6630 	u32 enable, rwlen;
6631 
6632 	enable = dr7;
6633 	rwlen = dr7 >> 16;
6634 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6635 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6636 			dr6 |= (1 << i);
6637 	return dr6;
6638 }
6639 
6640 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6641 {
6642 	struct kvm_run *kvm_run = vcpu->run;
6643 
6644 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6645 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6646 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6647 		kvm_run->debug.arch.exception = DB_VECTOR;
6648 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6649 		return 0;
6650 	}
6651 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6652 	return 1;
6653 }
6654 
6655 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6656 {
6657 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6658 	int r;
6659 
6660 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6661 	if (unlikely(!r))
6662 		return 0;
6663 
6664 	/*
6665 	 * rflags is the old, "raw" value of the flags.  The new value has
6666 	 * not been saved yet.
6667 	 *
6668 	 * This is correct even for TF set by the guest, because "the
6669 	 * processor will not generate this exception after the instruction
6670 	 * that sets the TF flag".
6671 	 */
6672 	if (unlikely(rflags & X86_EFLAGS_TF))
6673 		r = kvm_vcpu_do_singlestep(vcpu);
6674 	return r;
6675 }
6676 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6677 
6678 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6679 {
6680 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6681 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6682 		struct kvm_run *kvm_run = vcpu->run;
6683 		unsigned long eip = kvm_get_linear_rip(vcpu);
6684 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6685 					   vcpu->arch.guest_debug_dr7,
6686 					   vcpu->arch.eff_db);
6687 
6688 		if (dr6 != 0) {
6689 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6690 			kvm_run->debug.arch.pc = eip;
6691 			kvm_run->debug.arch.exception = DB_VECTOR;
6692 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6693 			*r = 0;
6694 			return true;
6695 		}
6696 	}
6697 
6698 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6699 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6700 		unsigned long eip = kvm_get_linear_rip(vcpu);
6701 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6702 					   vcpu->arch.dr7,
6703 					   vcpu->arch.db);
6704 
6705 		if (dr6 != 0) {
6706 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6707 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6708 			kvm_queue_exception(vcpu, DB_VECTOR);
6709 			*r = 1;
6710 			return true;
6711 		}
6712 	}
6713 
6714 	return false;
6715 }
6716 
6717 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6718 {
6719 	switch (ctxt->opcode_len) {
6720 	case 1:
6721 		switch (ctxt->b) {
6722 		case 0xe4:	/* IN */
6723 		case 0xe5:
6724 		case 0xec:
6725 		case 0xed:
6726 		case 0xe6:	/* OUT */
6727 		case 0xe7:
6728 		case 0xee:
6729 		case 0xef:
6730 		case 0x6c:	/* INS */
6731 		case 0x6d:
6732 		case 0x6e:	/* OUTS */
6733 		case 0x6f:
6734 			return true;
6735 		}
6736 		break;
6737 	case 2:
6738 		switch (ctxt->b) {
6739 		case 0x33:	/* RDPMC */
6740 			return true;
6741 		}
6742 		break;
6743 	}
6744 
6745 	return false;
6746 }
6747 
6748 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6749 			    int emulation_type, void *insn, int insn_len)
6750 {
6751 	int r;
6752 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6753 	bool writeback = true;
6754 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6755 
6756 	vcpu->arch.l1tf_flush_l1d = true;
6757 
6758 	/*
6759 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6760 	 * never reused.
6761 	 */
6762 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6763 	kvm_clear_exception_queue(vcpu);
6764 
6765 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6766 		init_emulate_ctxt(vcpu);
6767 
6768 		/*
6769 		 * We will reenter on the same instruction since
6770 		 * we do not set complete_userspace_io.  This does not
6771 		 * handle watchpoints yet, those would be handled in
6772 		 * the emulate_ops.
6773 		 */
6774 		if (!(emulation_type & EMULTYPE_SKIP) &&
6775 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6776 			return r;
6777 
6778 		ctxt->interruptibility = 0;
6779 		ctxt->have_exception = false;
6780 		ctxt->exception.vector = -1;
6781 		ctxt->perm_ok = false;
6782 
6783 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6784 
6785 		r = x86_decode_insn(ctxt, insn, insn_len);
6786 
6787 		trace_kvm_emulate_insn_start(vcpu);
6788 		++vcpu->stat.insn_emulation;
6789 		if (r != EMULATION_OK)  {
6790 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6791 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6792 				kvm_queue_exception(vcpu, UD_VECTOR);
6793 				return 1;
6794 			}
6795 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6796 						  write_fault_to_spt,
6797 						  emulation_type))
6798 				return 1;
6799 			if (ctxt->have_exception) {
6800 				/*
6801 				 * #UD should result in just EMULATION_FAILED, and trap-like
6802 				 * exception should not be encountered during decode.
6803 				 */
6804 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6805 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6806 				inject_emulated_exception(vcpu);
6807 				return 1;
6808 			}
6809 			return handle_emulation_failure(vcpu, emulation_type);
6810 		}
6811 	}
6812 
6813 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6814 	    !is_vmware_backdoor_opcode(ctxt)) {
6815 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6816 		return 1;
6817 	}
6818 
6819 	/*
6820 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6821 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6822 	 * updating interruptibility state and injecting single-step #DBs.
6823 	 */
6824 	if (emulation_type & EMULTYPE_SKIP) {
6825 		kvm_rip_write(vcpu, ctxt->_eip);
6826 		if (ctxt->eflags & X86_EFLAGS_RF)
6827 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6828 		return 1;
6829 	}
6830 
6831 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6832 		return 1;
6833 
6834 	/* this is needed for vmware backdoor interface to work since it
6835 	   changes registers values  during IO operation */
6836 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6837 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6838 		emulator_invalidate_register_cache(ctxt);
6839 	}
6840 
6841 restart:
6842 	if (emulation_type & EMULTYPE_PF) {
6843 		/* Save the faulting GPA (cr2) in the address field */
6844 		ctxt->exception.address = cr2_or_gpa;
6845 
6846 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6847 		if (vcpu->arch.mmu->direct_map) {
6848 			ctxt->gpa_available = true;
6849 			ctxt->gpa_val = cr2_or_gpa;
6850 		}
6851 	} else {
6852 		/* Sanitize the address out of an abundance of paranoia. */
6853 		ctxt->exception.address = 0;
6854 	}
6855 
6856 	r = x86_emulate_insn(ctxt);
6857 
6858 	if (r == EMULATION_INTERCEPTED)
6859 		return 1;
6860 
6861 	if (r == EMULATION_FAILED) {
6862 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6863 					emulation_type))
6864 			return 1;
6865 
6866 		return handle_emulation_failure(vcpu, emulation_type);
6867 	}
6868 
6869 	if (ctxt->have_exception) {
6870 		r = 1;
6871 		if (inject_emulated_exception(vcpu))
6872 			return r;
6873 	} else if (vcpu->arch.pio.count) {
6874 		if (!vcpu->arch.pio.in) {
6875 			/* FIXME: return into emulator if single-stepping.  */
6876 			vcpu->arch.pio.count = 0;
6877 		} else {
6878 			writeback = false;
6879 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6880 		}
6881 		r = 0;
6882 	} else if (vcpu->mmio_needed) {
6883 		++vcpu->stat.mmio_exits;
6884 
6885 		if (!vcpu->mmio_is_write)
6886 			writeback = false;
6887 		r = 0;
6888 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6889 	} else if (r == EMULATION_RESTART)
6890 		goto restart;
6891 	else
6892 		r = 1;
6893 
6894 	if (writeback) {
6895 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6896 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6897 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6898 		if (!ctxt->have_exception ||
6899 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6900 			kvm_rip_write(vcpu, ctxt->eip);
6901 			if (r && ctxt->tf)
6902 				r = kvm_vcpu_do_singlestep(vcpu);
6903 			if (kvm_x86_ops.update_emulated_instruction)
6904 				kvm_x86_ops.update_emulated_instruction(vcpu);
6905 			__kvm_set_rflags(vcpu, ctxt->eflags);
6906 		}
6907 
6908 		/*
6909 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6910 		 * do nothing, and it will be requested again as soon as
6911 		 * the shadow expires.  But we still need to check here,
6912 		 * because POPF has no interrupt shadow.
6913 		 */
6914 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6915 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6916 	} else
6917 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6918 
6919 	return r;
6920 }
6921 
6922 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6923 {
6924 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6925 }
6926 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6927 
6928 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6929 					void *insn, int insn_len)
6930 {
6931 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6932 }
6933 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6934 
6935 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6936 {
6937 	vcpu->arch.pio.count = 0;
6938 	return 1;
6939 }
6940 
6941 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6942 {
6943 	vcpu->arch.pio.count = 0;
6944 
6945 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6946 		return 1;
6947 
6948 	return kvm_skip_emulated_instruction(vcpu);
6949 }
6950 
6951 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6952 			    unsigned short port)
6953 {
6954 	unsigned long val = kvm_rax_read(vcpu);
6955 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6956 
6957 	if (ret)
6958 		return ret;
6959 
6960 	/*
6961 	 * Workaround userspace that relies on old KVM behavior of %rip being
6962 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6963 	 */
6964 	if (port == 0x7e &&
6965 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6966 		vcpu->arch.complete_userspace_io =
6967 			complete_fast_pio_out_port_0x7e;
6968 		kvm_skip_emulated_instruction(vcpu);
6969 	} else {
6970 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6971 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6972 	}
6973 	return 0;
6974 }
6975 
6976 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6977 {
6978 	unsigned long val;
6979 
6980 	/* We should only ever be called with arch.pio.count equal to 1 */
6981 	BUG_ON(vcpu->arch.pio.count != 1);
6982 
6983 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6984 		vcpu->arch.pio.count = 0;
6985 		return 1;
6986 	}
6987 
6988 	/* For size less than 4 we merge, else we zero extend */
6989 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6990 
6991 	/*
6992 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
6993 	 * the copy and tracing
6994 	 */
6995 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
6996 	kvm_rax_write(vcpu, val);
6997 
6998 	return kvm_skip_emulated_instruction(vcpu);
6999 }
7000 
7001 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7002 			   unsigned short port)
7003 {
7004 	unsigned long val;
7005 	int ret;
7006 
7007 	/* For size less than 4 we merge, else we zero extend */
7008 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7009 
7010 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7011 	if (ret) {
7012 		kvm_rax_write(vcpu, val);
7013 		return ret;
7014 	}
7015 
7016 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7017 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7018 
7019 	return 0;
7020 }
7021 
7022 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7023 {
7024 	int ret;
7025 
7026 	if (in)
7027 		ret = kvm_fast_pio_in(vcpu, size, port);
7028 	else
7029 		ret = kvm_fast_pio_out(vcpu, size, port);
7030 	return ret && kvm_skip_emulated_instruction(vcpu);
7031 }
7032 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7033 
7034 static int kvmclock_cpu_down_prep(unsigned int cpu)
7035 {
7036 	__this_cpu_write(cpu_tsc_khz, 0);
7037 	return 0;
7038 }
7039 
7040 static void tsc_khz_changed(void *data)
7041 {
7042 	struct cpufreq_freqs *freq = data;
7043 	unsigned long khz = 0;
7044 
7045 	if (data)
7046 		khz = freq->new;
7047 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7048 		khz = cpufreq_quick_get(raw_smp_processor_id());
7049 	if (!khz)
7050 		khz = tsc_khz;
7051 	__this_cpu_write(cpu_tsc_khz, khz);
7052 }
7053 
7054 #ifdef CONFIG_X86_64
7055 static void kvm_hyperv_tsc_notifier(void)
7056 {
7057 	struct kvm *kvm;
7058 	struct kvm_vcpu *vcpu;
7059 	int cpu;
7060 
7061 	mutex_lock(&kvm_lock);
7062 	list_for_each_entry(kvm, &vm_list, vm_list)
7063 		kvm_make_mclock_inprogress_request(kvm);
7064 
7065 	hyperv_stop_tsc_emulation();
7066 
7067 	/* TSC frequency always matches when on Hyper-V */
7068 	for_each_present_cpu(cpu)
7069 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7070 	kvm_max_guest_tsc_khz = tsc_khz;
7071 
7072 	list_for_each_entry(kvm, &vm_list, vm_list) {
7073 		struct kvm_arch *ka = &kvm->arch;
7074 
7075 		spin_lock(&ka->pvclock_gtod_sync_lock);
7076 
7077 		pvclock_update_vm_gtod_copy(kvm);
7078 
7079 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7080 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7081 
7082 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7083 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7084 
7085 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7086 	}
7087 	mutex_unlock(&kvm_lock);
7088 }
7089 #endif
7090 
7091 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7092 {
7093 	struct kvm *kvm;
7094 	struct kvm_vcpu *vcpu;
7095 	int i, send_ipi = 0;
7096 
7097 	/*
7098 	 * We allow guests to temporarily run on slowing clocks,
7099 	 * provided we notify them after, or to run on accelerating
7100 	 * clocks, provided we notify them before.  Thus time never
7101 	 * goes backwards.
7102 	 *
7103 	 * However, we have a problem.  We can't atomically update
7104 	 * the frequency of a given CPU from this function; it is
7105 	 * merely a notifier, which can be called from any CPU.
7106 	 * Changing the TSC frequency at arbitrary points in time
7107 	 * requires a recomputation of local variables related to
7108 	 * the TSC for each VCPU.  We must flag these local variables
7109 	 * to be updated and be sure the update takes place with the
7110 	 * new frequency before any guests proceed.
7111 	 *
7112 	 * Unfortunately, the combination of hotplug CPU and frequency
7113 	 * change creates an intractable locking scenario; the order
7114 	 * of when these callouts happen is undefined with respect to
7115 	 * CPU hotplug, and they can race with each other.  As such,
7116 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7117 	 * undefined; you can actually have a CPU frequency change take
7118 	 * place in between the computation of X and the setting of the
7119 	 * variable.  To protect against this problem, all updates of
7120 	 * the per_cpu tsc_khz variable are done in an interrupt
7121 	 * protected IPI, and all callers wishing to update the value
7122 	 * must wait for a synchronous IPI to complete (which is trivial
7123 	 * if the caller is on the CPU already).  This establishes the
7124 	 * necessary total order on variable updates.
7125 	 *
7126 	 * Note that because a guest time update may take place
7127 	 * anytime after the setting of the VCPU's request bit, the
7128 	 * correct TSC value must be set before the request.  However,
7129 	 * to ensure the update actually makes it to any guest which
7130 	 * starts running in hardware virtualization between the set
7131 	 * and the acquisition of the spinlock, we must also ping the
7132 	 * CPU after setting the request bit.
7133 	 *
7134 	 */
7135 
7136 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7137 
7138 	mutex_lock(&kvm_lock);
7139 	list_for_each_entry(kvm, &vm_list, vm_list) {
7140 		kvm_for_each_vcpu(i, vcpu, kvm) {
7141 			if (vcpu->cpu != cpu)
7142 				continue;
7143 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7144 			if (vcpu->cpu != raw_smp_processor_id())
7145 				send_ipi = 1;
7146 		}
7147 	}
7148 	mutex_unlock(&kvm_lock);
7149 
7150 	if (freq->old < freq->new && send_ipi) {
7151 		/*
7152 		 * We upscale the frequency.  Must make the guest
7153 		 * doesn't see old kvmclock values while running with
7154 		 * the new frequency, otherwise we risk the guest sees
7155 		 * time go backwards.
7156 		 *
7157 		 * In case we update the frequency for another cpu
7158 		 * (which might be in guest context) send an interrupt
7159 		 * to kick the cpu out of guest context.  Next time
7160 		 * guest context is entered kvmclock will be updated,
7161 		 * so the guest will not see stale values.
7162 		 */
7163 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7164 	}
7165 }
7166 
7167 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7168 				     void *data)
7169 {
7170 	struct cpufreq_freqs *freq = data;
7171 	int cpu;
7172 
7173 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7174 		return 0;
7175 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7176 		return 0;
7177 
7178 	for_each_cpu(cpu, freq->policy->cpus)
7179 		__kvmclock_cpufreq_notifier(freq, cpu);
7180 
7181 	return 0;
7182 }
7183 
7184 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7185 	.notifier_call  = kvmclock_cpufreq_notifier
7186 };
7187 
7188 static int kvmclock_cpu_online(unsigned int cpu)
7189 {
7190 	tsc_khz_changed(NULL);
7191 	return 0;
7192 }
7193 
7194 static void kvm_timer_init(void)
7195 {
7196 	max_tsc_khz = tsc_khz;
7197 
7198 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7199 #ifdef CONFIG_CPU_FREQ
7200 		struct cpufreq_policy *policy;
7201 		int cpu;
7202 
7203 		cpu = get_cpu();
7204 		policy = cpufreq_cpu_get(cpu);
7205 		if (policy) {
7206 			if (policy->cpuinfo.max_freq)
7207 				max_tsc_khz = policy->cpuinfo.max_freq;
7208 			cpufreq_cpu_put(policy);
7209 		}
7210 		put_cpu();
7211 #endif
7212 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7213 					  CPUFREQ_TRANSITION_NOTIFIER);
7214 	}
7215 
7216 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7217 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7218 }
7219 
7220 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7221 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7222 
7223 int kvm_is_in_guest(void)
7224 {
7225 	return __this_cpu_read(current_vcpu) != NULL;
7226 }
7227 
7228 static int kvm_is_user_mode(void)
7229 {
7230 	int user_mode = 3;
7231 
7232 	if (__this_cpu_read(current_vcpu))
7233 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7234 
7235 	return user_mode != 0;
7236 }
7237 
7238 static unsigned long kvm_get_guest_ip(void)
7239 {
7240 	unsigned long ip = 0;
7241 
7242 	if (__this_cpu_read(current_vcpu))
7243 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7244 
7245 	return ip;
7246 }
7247 
7248 static void kvm_handle_intel_pt_intr(void)
7249 {
7250 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7251 
7252 	kvm_make_request(KVM_REQ_PMI, vcpu);
7253 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7254 			(unsigned long *)&vcpu->arch.pmu.global_status);
7255 }
7256 
7257 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7258 	.is_in_guest		= kvm_is_in_guest,
7259 	.is_user_mode		= kvm_is_user_mode,
7260 	.get_guest_ip		= kvm_get_guest_ip,
7261 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7262 };
7263 
7264 #ifdef CONFIG_X86_64
7265 static void pvclock_gtod_update_fn(struct work_struct *work)
7266 {
7267 	struct kvm *kvm;
7268 
7269 	struct kvm_vcpu *vcpu;
7270 	int i;
7271 
7272 	mutex_lock(&kvm_lock);
7273 	list_for_each_entry(kvm, &vm_list, vm_list)
7274 		kvm_for_each_vcpu(i, vcpu, kvm)
7275 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7276 	atomic_set(&kvm_guest_has_master_clock, 0);
7277 	mutex_unlock(&kvm_lock);
7278 }
7279 
7280 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7281 
7282 /*
7283  * Notification about pvclock gtod data update.
7284  */
7285 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7286 			       void *priv)
7287 {
7288 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7289 	struct timekeeper *tk = priv;
7290 
7291 	update_pvclock_gtod(tk);
7292 
7293 	/* disable master clock if host does not trust, or does not
7294 	 * use, TSC based clocksource.
7295 	 */
7296 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7297 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7298 		queue_work(system_long_wq, &pvclock_gtod_work);
7299 
7300 	return 0;
7301 }
7302 
7303 static struct notifier_block pvclock_gtod_notifier = {
7304 	.notifier_call = pvclock_gtod_notify,
7305 };
7306 #endif
7307 
7308 int kvm_arch_init(void *opaque)
7309 {
7310 	struct kvm_x86_init_ops *ops = opaque;
7311 	int r;
7312 
7313 	if (kvm_x86_ops.hardware_enable) {
7314 		printk(KERN_ERR "kvm: already loaded the other module\n");
7315 		r = -EEXIST;
7316 		goto out;
7317 	}
7318 
7319 	if (!ops->cpu_has_kvm_support()) {
7320 		pr_err_ratelimited("kvm: no hardware support\n");
7321 		r = -EOPNOTSUPP;
7322 		goto out;
7323 	}
7324 	if (ops->disabled_by_bios()) {
7325 		pr_err_ratelimited("kvm: disabled by bios\n");
7326 		r = -EOPNOTSUPP;
7327 		goto out;
7328 	}
7329 
7330 	/*
7331 	 * KVM explicitly assumes that the guest has an FPU and
7332 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7333 	 * vCPU's FPU state as a fxregs_state struct.
7334 	 */
7335 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7336 		printk(KERN_ERR "kvm: inadequate fpu\n");
7337 		r = -EOPNOTSUPP;
7338 		goto out;
7339 	}
7340 
7341 	r = -ENOMEM;
7342 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7343 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7344 					  NULL);
7345 	if (!x86_fpu_cache) {
7346 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7347 		goto out;
7348 	}
7349 
7350 	x86_emulator_cache = kvm_alloc_emulator_cache();
7351 	if (!x86_emulator_cache) {
7352 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7353 		goto out_free_x86_fpu_cache;
7354 	}
7355 
7356 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7357 	if (!shared_msrs) {
7358 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7359 		goto out_free_x86_emulator_cache;
7360 	}
7361 
7362 	r = kvm_mmu_module_init();
7363 	if (r)
7364 		goto out_free_percpu;
7365 
7366 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7367 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7368 			PT_PRESENT_MASK, 0, sme_me_mask);
7369 	kvm_timer_init();
7370 
7371 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7372 
7373 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7374 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7375 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7376 	}
7377 
7378 	kvm_lapic_init();
7379 	if (pi_inject_timer == -1)
7380 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7381 #ifdef CONFIG_X86_64
7382 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7383 
7384 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7385 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7386 #endif
7387 
7388 	return 0;
7389 
7390 out_free_percpu:
7391 	free_percpu(shared_msrs);
7392 out_free_x86_emulator_cache:
7393 	kmem_cache_destroy(x86_emulator_cache);
7394 out_free_x86_fpu_cache:
7395 	kmem_cache_destroy(x86_fpu_cache);
7396 out:
7397 	return r;
7398 }
7399 
7400 void kvm_arch_exit(void)
7401 {
7402 #ifdef CONFIG_X86_64
7403 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7404 		clear_hv_tscchange_cb();
7405 #endif
7406 	kvm_lapic_exit();
7407 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7408 
7409 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7410 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7411 					    CPUFREQ_TRANSITION_NOTIFIER);
7412 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7413 #ifdef CONFIG_X86_64
7414 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7415 #endif
7416 	kvm_x86_ops.hardware_enable = NULL;
7417 	kvm_mmu_module_exit();
7418 	free_percpu(shared_msrs);
7419 	kmem_cache_destroy(x86_fpu_cache);
7420 }
7421 
7422 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7423 {
7424 	++vcpu->stat.halt_exits;
7425 	if (lapic_in_kernel(vcpu)) {
7426 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7427 		return 1;
7428 	} else {
7429 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7430 		return 0;
7431 	}
7432 }
7433 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7434 
7435 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7436 {
7437 	int ret = kvm_skip_emulated_instruction(vcpu);
7438 	/*
7439 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7440 	 * KVM_EXIT_DEBUG here.
7441 	 */
7442 	return kvm_vcpu_halt(vcpu) && ret;
7443 }
7444 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7445 
7446 #ifdef CONFIG_X86_64
7447 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7448 			        unsigned long clock_type)
7449 {
7450 	struct kvm_clock_pairing clock_pairing;
7451 	struct timespec64 ts;
7452 	u64 cycle;
7453 	int ret;
7454 
7455 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7456 		return -KVM_EOPNOTSUPP;
7457 
7458 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7459 		return -KVM_EOPNOTSUPP;
7460 
7461 	clock_pairing.sec = ts.tv_sec;
7462 	clock_pairing.nsec = ts.tv_nsec;
7463 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7464 	clock_pairing.flags = 0;
7465 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7466 
7467 	ret = 0;
7468 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7469 			    sizeof(struct kvm_clock_pairing)))
7470 		ret = -KVM_EFAULT;
7471 
7472 	return ret;
7473 }
7474 #endif
7475 
7476 /*
7477  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7478  *
7479  * @apicid - apicid of vcpu to be kicked.
7480  */
7481 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7482 {
7483 	struct kvm_lapic_irq lapic_irq;
7484 
7485 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7486 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7487 	lapic_irq.level = 0;
7488 	lapic_irq.dest_id = apicid;
7489 	lapic_irq.msi_redir_hint = false;
7490 
7491 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7492 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7493 }
7494 
7495 bool kvm_apicv_activated(struct kvm *kvm)
7496 {
7497 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7498 }
7499 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7500 
7501 void kvm_apicv_init(struct kvm *kvm, bool enable)
7502 {
7503 	if (enable)
7504 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7505 			  &kvm->arch.apicv_inhibit_reasons);
7506 	else
7507 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7508 			&kvm->arch.apicv_inhibit_reasons);
7509 }
7510 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7511 
7512 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7513 {
7514 	struct kvm_vcpu *target = NULL;
7515 	struct kvm_apic_map *map;
7516 
7517 	rcu_read_lock();
7518 	map = rcu_dereference(kvm->arch.apic_map);
7519 
7520 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7521 		target = map->phys_map[dest_id]->vcpu;
7522 
7523 	rcu_read_unlock();
7524 
7525 	if (target && READ_ONCE(target->ready))
7526 		kvm_vcpu_yield_to(target);
7527 }
7528 
7529 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7530 {
7531 	unsigned long nr, a0, a1, a2, a3, ret;
7532 	int op_64_bit;
7533 
7534 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7535 		return kvm_hv_hypercall(vcpu);
7536 
7537 	nr = kvm_rax_read(vcpu);
7538 	a0 = kvm_rbx_read(vcpu);
7539 	a1 = kvm_rcx_read(vcpu);
7540 	a2 = kvm_rdx_read(vcpu);
7541 	a3 = kvm_rsi_read(vcpu);
7542 
7543 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7544 
7545 	op_64_bit = is_64_bit_mode(vcpu);
7546 	if (!op_64_bit) {
7547 		nr &= 0xFFFFFFFF;
7548 		a0 &= 0xFFFFFFFF;
7549 		a1 &= 0xFFFFFFFF;
7550 		a2 &= 0xFFFFFFFF;
7551 		a3 &= 0xFFFFFFFF;
7552 	}
7553 
7554 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7555 		ret = -KVM_EPERM;
7556 		goto out;
7557 	}
7558 
7559 	switch (nr) {
7560 	case KVM_HC_VAPIC_POLL_IRQ:
7561 		ret = 0;
7562 		break;
7563 	case KVM_HC_KICK_CPU:
7564 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7565 		kvm_sched_yield(vcpu->kvm, a1);
7566 		ret = 0;
7567 		break;
7568 #ifdef CONFIG_X86_64
7569 	case KVM_HC_CLOCK_PAIRING:
7570 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7571 		break;
7572 #endif
7573 	case KVM_HC_SEND_IPI:
7574 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7575 		break;
7576 	case KVM_HC_SCHED_YIELD:
7577 		kvm_sched_yield(vcpu->kvm, a0);
7578 		ret = 0;
7579 		break;
7580 	default:
7581 		ret = -KVM_ENOSYS;
7582 		break;
7583 	}
7584 out:
7585 	if (!op_64_bit)
7586 		ret = (u32)ret;
7587 	kvm_rax_write(vcpu, ret);
7588 
7589 	++vcpu->stat.hypercalls;
7590 	return kvm_skip_emulated_instruction(vcpu);
7591 }
7592 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7593 
7594 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7595 {
7596 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7597 	char instruction[3];
7598 	unsigned long rip = kvm_rip_read(vcpu);
7599 
7600 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7601 
7602 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7603 		&ctxt->exception);
7604 }
7605 
7606 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7607 {
7608 	return vcpu->run->request_interrupt_window &&
7609 		likely(!pic_in_kernel(vcpu->kvm));
7610 }
7611 
7612 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7613 {
7614 	struct kvm_run *kvm_run = vcpu->run;
7615 
7616 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7617 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7618 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7619 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7620 	kvm_run->ready_for_interrupt_injection =
7621 		pic_in_kernel(vcpu->kvm) ||
7622 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7623 }
7624 
7625 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7626 {
7627 	int max_irr, tpr;
7628 
7629 	if (!kvm_x86_ops.update_cr8_intercept)
7630 		return;
7631 
7632 	if (!lapic_in_kernel(vcpu))
7633 		return;
7634 
7635 	if (vcpu->arch.apicv_active)
7636 		return;
7637 
7638 	if (!vcpu->arch.apic->vapic_addr)
7639 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7640 	else
7641 		max_irr = -1;
7642 
7643 	if (max_irr != -1)
7644 		max_irr >>= 4;
7645 
7646 	tpr = kvm_lapic_get_cr8(vcpu);
7647 
7648 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7649 }
7650 
7651 static int inject_pending_event(struct kvm_vcpu *vcpu)
7652 {
7653 	int r;
7654 
7655 	/* try to reinject previous events if any */
7656 
7657 	if (vcpu->arch.exception.injected)
7658 		kvm_x86_ops.queue_exception(vcpu);
7659 	/*
7660 	 * Do not inject an NMI or interrupt if there is a pending
7661 	 * exception.  Exceptions and interrupts are recognized at
7662 	 * instruction boundaries, i.e. the start of an instruction.
7663 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7664 	 * NMIs and interrupts, i.e. traps are recognized before an
7665 	 * NMI/interrupt that's pending on the same instruction.
7666 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7667 	 * priority, but are only generated (pended) during instruction
7668 	 * execution, i.e. a pending fault-like exception means the
7669 	 * fault occurred on the *previous* instruction and must be
7670 	 * serviced prior to recognizing any new events in order to
7671 	 * fully complete the previous instruction.
7672 	 */
7673 	else if (!vcpu->arch.exception.pending) {
7674 		if (vcpu->arch.nmi_injected)
7675 			kvm_x86_ops.set_nmi(vcpu);
7676 		else if (vcpu->arch.interrupt.injected)
7677 			kvm_x86_ops.set_irq(vcpu);
7678 	}
7679 
7680 	/*
7681 	 * Call check_nested_events() even if we reinjected a previous event
7682 	 * in order for caller to determine if it should require immediate-exit
7683 	 * from L2 to L1 due to pending L1 events which require exit
7684 	 * from L2 to L1.
7685 	 */
7686 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7687 		r = kvm_x86_ops.check_nested_events(vcpu);
7688 		if (r != 0)
7689 			return r;
7690 	}
7691 
7692 	/* try to inject new event if pending */
7693 	if (vcpu->arch.exception.pending) {
7694 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7695 					vcpu->arch.exception.has_error_code,
7696 					vcpu->arch.exception.error_code);
7697 
7698 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7699 		vcpu->arch.exception.pending = false;
7700 		vcpu->arch.exception.injected = true;
7701 
7702 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7703 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7704 					     X86_EFLAGS_RF);
7705 
7706 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7707 			/*
7708 			 * This code assumes that nSVM doesn't use
7709 			 * check_nested_events(). If it does, the
7710 			 * DR6/DR7 changes should happen before L1
7711 			 * gets a #VMEXIT for an intercepted #DB in
7712 			 * L2.  (Under VMX, on the other hand, the
7713 			 * DR6/DR7 changes should not happen in the
7714 			 * event of a VM-exit to L1 for an intercepted
7715 			 * #DB in L2.)
7716 			 */
7717 			kvm_deliver_exception_payload(vcpu);
7718 			if (vcpu->arch.dr7 & DR7_GD) {
7719 				vcpu->arch.dr7 &= ~DR7_GD;
7720 				kvm_update_dr7(vcpu);
7721 			}
7722 		}
7723 
7724 		kvm_x86_ops.queue_exception(vcpu);
7725 	}
7726 
7727 	/* Don't consider new event if we re-injected an event */
7728 	if (kvm_event_needs_reinjection(vcpu))
7729 		return 0;
7730 
7731 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7732 	    kvm_x86_ops.smi_allowed(vcpu)) {
7733 		vcpu->arch.smi_pending = false;
7734 		++vcpu->arch.smi_count;
7735 		enter_smm(vcpu);
7736 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
7737 		--vcpu->arch.nmi_pending;
7738 		vcpu->arch.nmi_injected = true;
7739 		kvm_x86_ops.set_nmi(vcpu);
7740 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7741 		/*
7742 		 * Because interrupts can be injected asynchronously, we are
7743 		 * calling check_nested_events again here to avoid a race condition.
7744 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7745 		 * proposal and current concerns.  Perhaps we should be setting
7746 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7747 		 */
7748 		if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7749 			r = kvm_x86_ops.check_nested_events(vcpu);
7750 			if (r != 0)
7751 				return r;
7752 		}
7753 		if (kvm_x86_ops.interrupt_allowed(vcpu)) {
7754 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7755 					    false);
7756 			kvm_x86_ops.set_irq(vcpu);
7757 		}
7758 	}
7759 
7760 	return 0;
7761 }
7762 
7763 static void process_nmi(struct kvm_vcpu *vcpu)
7764 {
7765 	unsigned limit = 2;
7766 
7767 	/*
7768 	 * x86 is limited to one NMI running, and one NMI pending after it.
7769 	 * If an NMI is already in progress, limit further NMIs to just one.
7770 	 * Otherwise, allow two (and we'll inject the first one immediately).
7771 	 */
7772 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7773 		limit = 1;
7774 
7775 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7776 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7777 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7778 }
7779 
7780 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7781 {
7782 	u32 flags = 0;
7783 	flags |= seg->g       << 23;
7784 	flags |= seg->db      << 22;
7785 	flags |= seg->l       << 21;
7786 	flags |= seg->avl     << 20;
7787 	flags |= seg->present << 15;
7788 	flags |= seg->dpl     << 13;
7789 	flags |= seg->s       << 12;
7790 	flags |= seg->type    << 8;
7791 	return flags;
7792 }
7793 
7794 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7795 {
7796 	struct kvm_segment seg;
7797 	int offset;
7798 
7799 	kvm_get_segment(vcpu, &seg, n);
7800 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7801 
7802 	if (n < 3)
7803 		offset = 0x7f84 + n * 12;
7804 	else
7805 		offset = 0x7f2c + (n - 3) * 12;
7806 
7807 	put_smstate(u32, buf, offset + 8, seg.base);
7808 	put_smstate(u32, buf, offset + 4, seg.limit);
7809 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7810 }
7811 
7812 #ifdef CONFIG_X86_64
7813 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7814 {
7815 	struct kvm_segment seg;
7816 	int offset;
7817 	u16 flags;
7818 
7819 	kvm_get_segment(vcpu, &seg, n);
7820 	offset = 0x7e00 + n * 16;
7821 
7822 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7823 	put_smstate(u16, buf, offset, seg.selector);
7824 	put_smstate(u16, buf, offset + 2, flags);
7825 	put_smstate(u32, buf, offset + 4, seg.limit);
7826 	put_smstate(u64, buf, offset + 8, seg.base);
7827 }
7828 #endif
7829 
7830 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7831 {
7832 	struct desc_ptr dt;
7833 	struct kvm_segment seg;
7834 	unsigned long val;
7835 	int i;
7836 
7837 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7838 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7839 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7840 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7841 
7842 	for (i = 0; i < 8; i++)
7843 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7844 
7845 	kvm_get_dr(vcpu, 6, &val);
7846 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7847 	kvm_get_dr(vcpu, 7, &val);
7848 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7849 
7850 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7851 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7852 	put_smstate(u32, buf, 0x7f64, seg.base);
7853 	put_smstate(u32, buf, 0x7f60, seg.limit);
7854 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7855 
7856 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7857 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7858 	put_smstate(u32, buf, 0x7f80, seg.base);
7859 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7860 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7861 
7862 	kvm_x86_ops.get_gdt(vcpu, &dt);
7863 	put_smstate(u32, buf, 0x7f74, dt.address);
7864 	put_smstate(u32, buf, 0x7f70, dt.size);
7865 
7866 	kvm_x86_ops.get_idt(vcpu, &dt);
7867 	put_smstate(u32, buf, 0x7f58, dt.address);
7868 	put_smstate(u32, buf, 0x7f54, dt.size);
7869 
7870 	for (i = 0; i < 6; i++)
7871 		enter_smm_save_seg_32(vcpu, buf, i);
7872 
7873 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7874 
7875 	/* revision id */
7876 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7877 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7878 }
7879 
7880 #ifdef CONFIG_X86_64
7881 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7882 {
7883 	struct desc_ptr dt;
7884 	struct kvm_segment seg;
7885 	unsigned long val;
7886 	int i;
7887 
7888 	for (i = 0; i < 16; i++)
7889 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7890 
7891 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7892 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7893 
7894 	kvm_get_dr(vcpu, 6, &val);
7895 	put_smstate(u64, buf, 0x7f68, val);
7896 	kvm_get_dr(vcpu, 7, &val);
7897 	put_smstate(u64, buf, 0x7f60, val);
7898 
7899 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7900 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7901 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7902 
7903 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7904 
7905 	/* revision id */
7906 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7907 
7908 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7909 
7910 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7911 	put_smstate(u16, buf, 0x7e90, seg.selector);
7912 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7913 	put_smstate(u32, buf, 0x7e94, seg.limit);
7914 	put_smstate(u64, buf, 0x7e98, seg.base);
7915 
7916 	kvm_x86_ops.get_idt(vcpu, &dt);
7917 	put_smstate(u32, buf, 0x7e84, dt.size);
7918 	put_smstate(u64, buf, 0x7e88, dt.address);
7919 
7920 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7921 	put_smstate(u16, buf, 0x7e70, seg.selector);
7922 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7923 	put_smstate(u32, buf, 0x7e74, seg.limit);
7924 	put_smstate(u64, buf, 0x7e78, seg.base);
7925 
7926 	kvm_x86_ops.get_gdt(vcpu, &dt);
7927 	put_smstate(u32, buf, 0x7e64, dt.size);
7928 	put_smstate(u64, buf, 0x7e68, dt.address);
7929 
7930 	for (i = 0; i < 6; i++)
7931 		enter_smm_save_seg_64(vcpu, buf, i);
7932 }
7933 #endif
7934 
7935 static void enter_smm(struct kvm_vcpu *vcpu)
7936 {
7937 	struct kvm_segment cs, ds;
7938 	struct desc_ptr dt;
7939 	char buf[512];
7940 	u32 cr0;
7941 
7942 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7943 	memset(buf, 0, 512);
7944 #ifdef CONFIG_X86_64
7945 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7946 		enter_smm_save_state_64(vcpu, buf);
7947 	else
7948 #endif
7949 		enter_smm_save_state_32(vcpu, buf);
7950 
7951 	/*
7952 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7953 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7954 	 * the SMM state-save area.
7955 	 */
7956 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
7957 
7958 	vcpu->arch.hflags |= HF_SMM_MASK;
7959 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7960 
7961 	if (kvm_x86_ops.get_nmi_mask(vcpu))
7962 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7963 	else
7964 		kvm_x86_ops.set_nmi_mask(vcpu, true);
7965 
7966 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7967 	kvm_rip_write(vcpu, 0x8000);
7968 
7969 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7970 	kvm_x86_ops.set_cr0(vcpu, cr0);
7971 	vcpu->arch.cr0 = cr0;
7972 
7973 	kvm_x86_ops.set_cr4(vcpu, 0);
7974 
7975 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7976 	dt.address = dt.size = 0;
7977 	kvm_x86_ops.set_idt(vcpu, &dt);
7978 
7979 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7980 
7981 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7982 	cs.base = vcpu->arch.smbase;
7983 
7984 	ds.selector = 0;
7985 	ds.base = 0;
7986 
7987 	cs.limit    = ds.limit = 0xffffffff;
7988 	cs.type     = ds.type = 0x3;
7989 	cs.dpl      = ds.dpl = 0;
7990 	cs.db       = ds.db = 0;
7991 	cs.s        = ds.s = 1;
7992 	cs.l        = ds.l = 0;
7993 	cs.g        = ds.g = 1;
7994 	cs.avl      = ds.avl = 0;
7995 	cs.present  = ds.present = 1;
7996 	cs.unusable = ds.unusable = 0;
7997 	cs.padding  = ds.padding = 0;
7998 
7999 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8000 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8001 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8002 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8003 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8004 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8005 
8006 #ifdef CONFIG_X86_64
8007 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8008 		kvm_x86_ops.set_efer(vcpu, 0);
8009 #endif
8010 
8011 	kvm_update_cpuid(vcpu);
8012 	kvm_mmu_reset_context(vcpu);
8013 }
8014 
8015 static void process_smi(struct kvm_vcpu *vcpu)
8016 {
8017 	vcpu->arch.smi_pending = true;
8018 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8019 }
8020 
8021 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8022 				       unsigned long *vcpu_bitmap)
8023 {
8024 	cpumask_var_t cpus;
8025 
8026 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8027 
8028 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8029 				    vcpu_bitmap, cpus);
8030 
8031 	free_cpumask_var(cpus);
8032 }
8033 
8034 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8035 {
8036 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8037 }
8038 
8039 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8040 {
8041 	if (!lapic_in_kernel(vcpu))
8042 		return;
8043 
8044 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8045 	kvm_apic_update_apicv(vcpu);
8046 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8047 }
8048 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8049 
8050 /*
8051  * NOTE: Do not hold any lock prior to calling this.
8052  *
8053  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8054  * locked, because it calls __x86_set_memory_region() which does
8055  * synchronize_srcu(&kvm->srcu).
8056  */
8057 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8058 {
8059 	unsigned long old, new, expected;
8060 
8061 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8062 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8063 		return;
8064 
8065 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8066 	do {
8067 		expected = new = old;
8068 		if (activate)
8069 			__clear_bit(bit, &new);
8070 		else
8071 			__set_bit(bit, &new);
8072 		if (new == old)
8073 			break;
8074 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8075 	} while (old != expected);
8076 
8077 	if (!!old == !!new)
8078 		return;
8079 
8080 	trace_kvm_apicv_update_request(activate, bit);
8081 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8082 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8083 	kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8084 }
8085 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8086 
8087 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8088 {
8089 	if (!kvm_apic_present(vcpu))
8090 		return;
8091 
8092 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8093 
8094 	if (irqchip_split(vcpu->kvm))
8095 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8096 	else {
8097 		if (vcpu->arch.apicv_active)
8098 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8099 		if (ioapic_in_kernel(vcpu->kvm))
8100 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8101 	}
8102 
8103 	if (is_guest_mode(vcpu))
8104 		vcpu->arch.load_eoi_exitmap_pending = true;
8105 	else
8106 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8107 }
8108 
8109 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8110 {
8111 	u64 eoi_exit_bitmap[4];
8112 
8113 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8114 		return;
8115 
8116 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8117 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8118 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8119 }
8120 
8121 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8122 		unsigned long start, unsigned long end,
8123 		bool blockable)
8124 {
8125 	unsigned long apic_address;
8126 
8127 	/*
8128 	 * The physical address of apic access page is stored in the VMCS.
8129 	 * Update it when it becomes invalid.
8130 	 */
8131 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8132 	if (start <= apic_address && apic_address < end)
8133 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8134 
8135 	return 0;
8136 }
8137 
8138 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8139 {
8140 	struct page *page = NULL;
8141 
8142 	if (!lapic_in_kernel(vcpu))
8143 		return;
8144 
8145 	if (!kvm_x86_ops.set_apic_access_page_addr)
8146 		return;
8147 
8148 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8149 	if (is_error_page(page))
8150 		return;
8151 	kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
8152 
8153 	/*
8154 	 * Do not pin apic access page in memory, the MMU notifier
8155 	 * will call us again if it is migrated or swapped out.
8156 	 */
8157 	put_page(page);
8158 }
8159 
8160 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8161 {
8162 	smp_send_reschedule(vcpu->cpu);
8163 }
8164 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8165 
8166 /*
8167  * Returns 1 to let vcpu_run() continue the guest execution loop without
8168  * exiting to the userspace.  Otherwise, the value will be returned to the
8169  * userspace.
8170  */
8171 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8172 {
8173 	int r;
8174 	bool req_int_win =
8175 		dm_request_for_irq_injection(vcpu) &&
8176 		kvm_cpu_accept_dm_intr(vcpu);
8177 	enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8178 
8179 	bool req_immediate_exit = false;
8180 
8181 	if (kvm_request_pending(vcpu)) {
8182 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8183 			if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
8184 				r = 0;
8185 				goto out;
8186 			}
8187 		}
8188 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8189 			kvm_mmu_unload(vcpu);
8190 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8191 			__kvm_migrate_timers(vcpu);
8192 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8193 			kvm_gen_update_masterclock(vcpu->kvm);
8194 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8195 			kvm_gen_kvmclock_update(vcpu);
8196 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8197 			r = kvm_guest_time_update(vcpu);
8198 			if (unlikely(r))
8199 				goto out;
8200 		}
8201 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8202 			kvm_mmu_sync_roots(vcpu);
8203 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8204 			kvm_mmu_load_pgd(vcpu);
8205 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8206 			kvm_vcpu_flush_tlb(vcpu, true);
8207 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8208 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8209 			r = 0;
8210 			goto out;
8211 		}
8212 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8213 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8214 			vcpu->mmio_needed = 0;
8215 			r = 0;
8216 			goto out;
8217 		}
8218 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8219 			/* Page is swapped out. Do synthetic halt */
8220 			vcpu->arch.apf.halted = true;
8221 			r = 1;
8222 			goto out;
8223 		}
8224 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8225 			record_steal_time(vcpu);
8226 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8227 			process_smi(vcpu);
8228 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8229 			process_nmi(vcpu);
8230 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8231 			kvm_pmu_handle_event(vcpu);
8232 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8233 			kvm_pmu_deliver_pmi(vcpu);
8234 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8235 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8236 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8237 				     vcpu->arch.ioapic_handled_vectors)) {
8238 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8239 				vcpu->run->eoi.vector =
8240 						vcpu->arch.pending_ioapic_eoi;
8241 				r = 0;
8242 				goto out;
8243 			}
8244 		}
8245 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8246 			vcpu_scan_ioapic(vcpu);
8247 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8248 			vcpu_load_eoi_exitmap(vcpu);
8249 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8250 			kvm_vcpu_reload_apic_access_page(vcpu);
8251 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8252 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8253 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8254 			r = 0;
8255 			goto out;
8256 		}
8257 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8258 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8259 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8260 			r = 0;
8261 			goto out;
8262 		}
8263 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8264 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8265 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8266 			r = 0;
8267 			goto out;
8268 		}
8269 
8270 		/*
8271 		 * KVM_REQ_HV_STIMER has to be processed after
8272 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8273 		 * depend on the guest clock being up-to-date
8274 		 */
8275 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8276 			kvm_hv_process_stimers(vcpu);
8277 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8278 			kvm_vcpu_update_apicv(vcpu);
8279 	}
8280 
8281 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8282 		++vcpu->stat.req_event;
8283 		kvm_apic_accept_events(vcpu);
8284 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8285 			r = 1;
8286 			goto out;
8287 		}
8288 
8289 		if (inject_pending_event(vcpu) != 0)
8290 			req_immediate_exit = true;
8291 		else {
8292 			/* Enable SMI/NMI/IRQ window open exits if needed.
8293 			 *
8294 			 * SMIs have three cases:
8295 			 * 1) They can be nested, and then there is nothing to
8296 			 *    do here because RSM will cause a vmexit anyway.
8297 			 * 2) There is an ISA-specific reason why SMI cannot be
8298 			 *    injected, and the moment when this changes can be
8299 			 *    intercepted.
8300 			 * 3) Or the SMI can be pending because
8301 			 *    inject_pending_event has completed the injection
8302 			 *    of an IRQ or NMI from the previous vmexit, and
8303 			 *    then we request an immediate exit to inject the
8304 			 *    SMI.
8305 			 */
8306 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8307 				if (!kvm_x86_ops.enable_smi_window(vcpu))
8308 					req_immediate_exit = true;
8309 			if (vcpu->arch.nmi_pending)
8310 				kvm_x86_ops.enable_nmi_window(vcpu);
8311 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8312 				kvm_x86_ops.enable_irq_window(vcpu);
8313 			WARN_ON(vcpu->arch.exception.pending);
8314 		}
8315 
8316 		if (kvm_lapic_enabled(vcpu)) {
8317 			update_cr8_intercept(vcpu);
8318 			kvm_lapic_sync_to_vapic(vcpu);
8319 		}
8320 	}
8321 
8322 	r = kvm_mmu_reload(vcpu);
8323 	if (unlikely(r)) {
8324 		goto cancel_injection;
8325 	}
8326 
8327 	preempt_disable();
8328 
8329 	kvm_x86_ops.prepare_guest_switch(vcpu);
8330 
8331 	/*
8332 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8333 	 * IPI are then delayed after guest entry, which ensures that they
8334 	 * result in virtual interrupt delivery.
8335 	 */
8336 	local_irq_disable();
8337 	vcpu->mode = IN_GUEST_MODE;
8338 
8339 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8340 
8341 	/*
8342 	 * 1) We should set ->mode before checking ->requests.  Please see
8343 	 * the comment in kvm_vcpu_exiting_guest_mode().
8344 	 *
8345 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8346 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8347 	 * (see vmx_deliver_posted_interrupt).
8348 	 *
8349 	 * 3) This also orders the write to mode from any reads to the page
8350 	 * tables done while the VCPU is running.  Please see the comment
8351 	 * in kvm_flush_remote_tlbs.
8352 	 */
8353 	smp_mb__after_srcu_read_unlock();
8354 
8355 	/*
8356 	 * This handles the case where a posted interrupt was
8357 	 * notified with kvm_vcpu_kick.
8358 	 */
8359 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8360 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8361 
8362 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8363 	    || need_resched() || signal_pending(current)) {
8364 		vcpu->mode = OUTSIDE_GUEST_MODE;
8365 		smp_wmb();
8366 		local_irq_enable();
8367 		preempt_enable();
8368 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8369 		r = 1;
8370 		goto cancel_injection;
8371 	}
8372 
8373 	if (req_immediate_exit) {
8374 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8375 		kvm_x86_ops.request_immediate_exit(vcpu);
8376 	}
8377 
8378 	trace_kvm_entry(vcpu->vcpu_id);
8379 	guest_enter_irqoff();
8380 
8381 	fpregs_assert_state_consistent();
8382 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8383 		switch_fpu_return();
8384 
8385 	if (unlikely(vcpu->arch.switch_db_regs)) {
8386 		set_debugreg(0, 7);
8387 		set_debugreg(vcpu->arch.eff_db[0], 0);
8388 		set_debugreg(vcpu->arch.eff_db[1], 1);
8389 		set_debugreg(vcpu->arch.eff_db[2], 2);
8390 		set_debugreg(vcpu->arch.eff_db[3], 3);
8391 		set_debugreg(vcpu->arch.dr6, 6);
8392 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8393 	}
8394 
8395 	kvm_x86_ops.run(vcpu);
8396 
8397 	/*
8398 	 * Do this here before restoring debug registers on the host.  And
8399 	 * since we do this before handling the vmexit, a DR access vmexit
8400 	 * can (a) read the correct value of the debug registers, (b) set
8401 	 * KVM_DEBUGREG_WONT_EXIT again.
8402 	 */
8403 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8404 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8405 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8406 		kvm_update_dr0123(vcpu);
8407 		kvm_update_dr6(vcpu);
8408 		kvm_update_dr7(vcpu);
8409 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8410 	}
8411 
8412 	/*
8413 	 * If the guest has used debug registers, at least dr7
8414 	 * will be disabled while returning to the host.
8415 	 * If we don't have active breakpoints in the host, we don't
8416 	 * care about the messed up debug address registers. But if
8417 	 * we have some of them active, restore the old state.
8418 	 */
8419 	if (hw_breakpoint_active())
8420 		hw_breakpoint_restore();
8421 
8422 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8423 
8424 	vcpu->mode = OUTSIDE_GUEST_MODE;
8425 	smp_wmb();
8426 
8427 	kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
8428 
8429 	/*
8430 	 * Consume any pending interrupts, including the possible source of
8431 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8432 	 * An instruction is required after local_irq_enable() to fully unblock
8433 	 * interrupts on processors that implement an interrupt shadow, the
8434 	 * stat.exits increment will do nicely.
8435 	 */
8436 	kvm_before_interrupt(vcpu);
8437 	local_irq_enable();
8438 	++vcpu->stat.exits;
8439 	local_irq_disable();
8440 	kvm_after_interrupt(vcpu);
8441 
8442 	guest_exit_irqoff();
8443 	if (lapic_in_kernel(vcpu)) {
8444 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8445 		if (delta != S64_MIN) {
8446 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8447 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8448 		}
8449 	}
8450 
8451 	local_irq_enable();
8452 	preempt_enable();
8453 
8454 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8455 
8456 	/*
8457 	 * Profile KVM exit RIPs:
8458 	 */
8459 	if (unlikely(prof_on == KVM_PROFILING)) {
8460 		unsigned long rip = kvm_rip_read(vcpu);
8461 		profile_hit(KVM_PROFILING, (void *)rip);
8462 	}
8463 
8464 	if (unlikely(vcpu->arch.tsc_always_catchup))
8465 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8466 
8467 	if (vcpu->arch.apic_attention)
8468 		kvm_lapic_sync_from_vapic(vcpu);
8469 
8470 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8471 	return r;
8472 
8473 cancel_injection:
8474 	kvm_x86_ops.cancel_injection(vcpu);
8475 	if (unlikely(vcpu->arch.apic_attention))
8476 		kvm_lapic_sync_from_vapic(vcpu);
8477 out:
8478 	return r;
8479 }
8480 
8481 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8482 {
8483 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8484 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8485 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8486 		kvm_vcpu_block(vcpu);
8487 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8488 
8489 		if (kvm_x86_ops.post_block)
8490 			kvm_x86_ops.post_block(vcpu);
8491 
8492 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8493 			return 1;
8494 	}
8495 
8496 	kvm_apic_accept_events(vcpu);
8497 	switch(vcpu->arch.mp_state) {
8498 	case KVM_MP_STATE_HALTED:
8499 		vcpu->arch.pv.pv_unhalted = false;
8500 		vcpu->arch.mp_state =
8501 			KVM_MP_STATE_RUNNABLE;
8502 		/* fall through */
8503 	case KVM_MP_STATE_RUNNABLE:
8504 		vcpu->arch.apf.halted = false;
8505 		break;
8506 	case KVM_MP_STATE_INIT_RECEIVED:
8507 		break;
8508 	default:
8509 		return -EINTR;
8510 	}
8511 	return 1;
8512 }
8513 
8514 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8515 {
8516 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8517 		kvm_x86_ops.check_nested_events(vcpu);
8518 
8519 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8520 		!vcpu->arch.apf.halted);
8521 }
8522 
8523 static int vcpu_run(struct kvm_vcpu *vcpu)
8524 {
8525 	int r;
8526 	struct kvm *kvm = vcpu->kvm;
8527 
8528 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8529 	vcpu->arch.l1tf_flush_l1d = true;
8530 
8531 	for (;;) {
8532 		if (kvm_vcpu_running(vcpu)) {
8533 			r = vcpu_enter_guest(vcpu);
8534 		} else {
8535 			r = vcpu_block(kvm, vcpu);
8536 		}
8537 
8538 		if (r <= 0)
8539 			break;
8540 
8541 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8542 		if (kvm_cpu_has_pending_timer(vcpu))
8543 			kvm_inject_pending_timer_irqs(vcpu);
8544 
8545 		if (dm_request_for_irq_injection(vcpu) &&
8546 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8547 			r = 0;
8548 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8549 			++vcpu->stat.request_irq_exits;
8550 			break;
8551 		}
8552 
8553 		kvm_check_async_pf_completion(vcpu);
8554 
8555 		if (signal_pending(current)) {
8556 			r = -EINTR;
8557 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8558 			++vcpu->stat.signal_exits;
8559 			break;
8560 		}
8561 		if (need_resched()) {
8562 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8563 			cond_resched();
8564 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8565 		}
8566 	}
8567 
8568 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8569 
8570 	return r;
8571 }
8572 
8573 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8574 {
8575 	int r;
8576 
8577 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8578 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8579 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8580 	return r;
8581 }
8582 
8583 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8584 {
8585 	BUG_ON(!vcpu->arch.pio.count);
8586 
8587 	return complete_emulated_io(vcpu);
8588 }
8589 
8590 /*
8591  * Implements the following, as a state machine:
8592  *
8593  * read:
8594  *   for each fragment
8595  *     for each mmio piece in the fragment
8596  *       write gpa, len
8597  *       exit
8598  *       copy data
8599  *   execute insn
8600  *
8601  * write:
8602  *   for each fragment
8603  *     for each mmio piece in the fragment
8604  *       write gpa, len
8605  *       copy data
8606  *       exit
8607  */
8608 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8609 {
8610 	struct kvm_run *run = vcpu->run;
8611 	struct kvm_mmio_fragment *frag;
8612 	unsigned len;
8613 
8614 	BUG_ON(!vcpu->mmio_needed);
8615 
8616 	/* Complete previous fragment */
8617 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8618 	len = min(8u, frag->len);
8619 	if (!vcpu->mmio_is_write)
8620 		memcpy(frag->data, run->mmio.data, len);
8621 
8622 	if (frag->len <= 8) {
8623 		/* Switch to the next fragment. */
8624 		frag++;
8625 		vcpu->mmio_cur_fragment++;
8626 	} else {
8627 		/* Go forward to the next mmio piece. */
8628 		frag->data += len;
8629 		frag->gpa += len;
8630 		frag->len -= len;
8631 	}
8632 
8633 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8634 		vcpu->mmio_needed = 0;
8635 
8636 		/* FIXME: return into emulator if single-stepping.  */
8637 		if (vcpu->mmio_is_write)
8638 			return 1;
8639 		vcpu->mmio_read_completed = 1;
8640 		return complete_emulated_io(vcpu);
8641 	}
8642 
8643 	run->exit_reason = KVM_EXIT_MMIO;
8644 	run->mmio.phys_addr = frag->gpa;
8645 	if (vcpu->mmio_is_write)
8646 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8647 	run->mmio.len = min(8u, frag->len);
8648 	run->mmio.is_write = vcpu->mmio_is_write;
8649 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8650 	return 0;
8651 }
8652 
8653 static void kvm_save_current_fpu(struct fpu *fpu)
8654 {
8655 	/*
8656 	 * If the target FPU state is not resident in the CPU registers, just
8657 	 * memcpy() from current, else save CPU state directly to the target.
8658 	 */
8659 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8660 		memcpy(&fpu->state, &current->thread.fpu.state,
8661 		       fpu_kernel_xstate_size);
8662 	else
8663 		copy_fpregs_to_fpstate(fpu);
8664 }
8665 
8666 /* Swap (qemu) user FPU context for the guest FPU context. */
8667 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8668 {
8669 	fpregs_lock();
8670 
8671 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8672 
8673 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8674 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8675 				~XFEATURE_MASK_PKRU);
8676 
8677 	fpregs_mark_activate();
8678 	fpregs_unlock();
8679 
8680 	trace_kvm_fpu(1);
8681 }
8682 
8683 /* When vcpu_run ends, restore user space FPU context. */
8684 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8685 {
8686 	fpregs_lock();
8687 
8688 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8689 
8690 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8691 
8692 	fpregs_mark_activate();
8693 	fpregs_unlock();
8694 
8695 	++vcpu->stat.fpu_reload;
8696 	trace_kvm_fpu(0);
8697 }
8698 
8699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8700 {
8701 	int r;
8702 
8703 	vcpu_load(vcpu);
8704 	kvm_sigset_activate(vcpu);
8705 	kvm_load_guest_fpu(vcpu);
8706 
8707 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8708 		if (kvm_run->immediate_exit) {
8709 			r = -EINTR;
8710 			goto out;
8711 		}
8712 		kvm_vcpu_block(vcpu);
8713 		kvm_apic_accept_events(vcpu);
8714 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8715 		r = -EAGAIN;
8716 		if (signal_pending(current)) {
8717 			r = -EINTR;
8718 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8719 			++vcpu->stat.signal_exits;
8720 		}
8721 		goto out;
8722 	}
8723 
8724 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8725 		r = -EINVAL;
8726 		goto out;
8727 	}
8728 
8729 	if (vcpu->run->kvm_dirty_regs) {
8730 		r = sync_regs(vcpu);
8731 		if (r != 0)
8732 			goto out;
8733 	}
8734 
8735 	/* re-sync apic's tpr */
8736 	if (!lapic_in_kernel(vcpu)) {
8737 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8738 			r = -EINVAL;
8739 			goto out;
8740 		}
8741 	}
8742 
8743 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8744 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8745 		vcpu->arch.complete_userspace_io = NULL;
8746 		r = cui(vcpu);
8747 		if (r <= 0)
8748 			goto out;
8749 	} else
8750 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8751 
8752 	if (kvm_run->immediate_exit)
8753 		r = -EINTR;
8754 	else
8755 		r = vcpu_run(vcpu);
8756 
8757 out:
8758 	kvm_put_guest_fpu(vcpu);
8759 	if (vcpu->run->kvm_valid_regs)
8760 		store_regs(vcpu);
8761 	post_kvm_run_save(vcpu);
8762 	kvm_sigset_deactivate(vcpu);
8763 
8764 	vcpu_put(vcpu);
8765 	return r;
8766 }
8767 
8768 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8769 {
8770 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8771 		/*
8772 		 * We are here if userspace calls get_regs() in the middle of
8773 		 * instruction emulation. Registers state needs to be copied
8774 		 * back from emulation context to vcpu. Userspace shouldn't do
8775 		 * that usually, but some bad designed PV devices (vmware
8776 		 * backdoor interface) need this to work
8777 		 */
8778 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8779 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8780 	}
8781 	regs->rax = kvm_rax_read(vcpu);
8782 	regs->rbx = kvm_rbx_read(vcpu);
8783 	regs->rcx = kvm_rcx_read(vcpu);
8784 	regs->rdx = kvm_rdx_read(vcpu);
8785 	regs->rsi = kvm_rsi_read(vcpu);
8786 	regs->rdi = kvm_rdi_read(vcpu);
8787 	regs->rsp = kvm_rsp_read(vcpu);
8788 	regs->rbp = kvm_rbp_read(vcpu);
8789 #ifdef CONFIG_X86_64
8790 	regs->r8 = kvm_r8_read(vcpu);
8791 	regs->r9 = kvm_r9_read(vcpu);
8792 	regs->r10 = kvm_r10_read(vcpu);
8793 	regs->r11 = kvm_r11_read(vcpu);
8794 	regs->r12 = kvm_r12_read(vcpu);
8795 	regs->r13 = kvm_r13_read(vcpu);
8796 	regs->r14 = kvm_r14_read(vcpu);
8797 	regs->r15 = kvm_r15_read(vcpu);
8798 #endif
8799 
8800 	regs->rip = kvm_rip_read(vcpu);
8801 	regs->rflags = kvm_get_rflags(vcpu);
8802 }
8803 
8804 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8805 {
8806 	vcpu_load(vcpu);
8807 	__get_regs(vcpu, regs);
8808 	vcpu_put(vcpu);
8809 	return 0;
8810 }
8811 
8812 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8813 {
8814 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8815 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8816 
8817 	kvm_rax_write(vcpu, regs->rax);
8818 	kvm_rbx_write(vcpu, regs->rbx);
8819 	kvm_rcx_write(vcpu, regs->rcx);
8820 	kvm_rdx_write(vcpu, regs->rdx);
8821 	kvm_rsi_write(vcpu, regs->rsi);
8822 	kvm_rdi_write(vcpu, regs->rdi);
8823 	kvm_rsp_write(vcpu, regs->rsp);
8824 	kvm_rbp_write(vcpu, regs->rbp);
8825 #ifdef CONFIG_X86_64
8826 	kvm_r8_write(vcpu, regs->r8);
8827 	kvm_r9_write(vcpu, regs->r9);
8828 	kvm_r10_write(vcpu, regs->r10);
8829 	kvm_r11_write(vcpu, regs->r11);
8830 	kvm_r12_write(vcpu, regs->r12);
8831 	kvm_r13_write(vcpu, regs->r13);
8832 	kvm_r14_write(vcpu, regs->r14);
8833 	kvm_r15_write(vcpu, regs->r15);
8834 #endif
8835 
8836 	kvm_rip_write(vcpu, regs->rip);
8837 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8838 
8839 	vcpu->arch.exception.pending = false;
8840 
8841 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8842 }
8843 
8844 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8845 {
8846 	vcpu_load(vcpu);
8847 	__set_regs(vcpu, regs);
8848 	vcpu_put(vcpu);
8849 	return 0;
8850 }
8851 
8852 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8853 {
8854 	struct kvm_segment cs;
8855 
8856 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8857 	*db = cs.db;
8858 	*l = cs.l;
8859 }
8860 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8861 
8862 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8863 {
8864 	struct desc_ptr dt;
8865 
8866 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8867 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8868 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8869 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8870 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8871 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8872 
8873 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8874 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8875 
8876 	kvm_x86_ops.get_idt(vcpu, &dt);
8877 	sregs->idt.limit = dt.size;
8878 	sregs->idt.base = dt.address;
8879 	kvm_x86_ops.get_gdt(vcpu, &dt);
8880 	sregs->gdt.limit = dt.size;
8881 	sregs->gdt.base = dt.address;
8882 
8883 	sregs->cr0 = kvm_read_cr0(vcpu);
8884 	sregs->cr2 = vcpu->arch.cr2;
8885 	sregs->cr3 = kvm_read_cr3(vcpu);
8886 	sregs->cr4 = kvm_read_cr4(vcpu);
8887 	sregs->cr8 = kvm_get_cr8(vcpu);
8888 	sregs->efer = vcpu->arch.efer;
8889 	sregs->apic_base = kvm_get_apic_base(vcpu);
8890 
8891 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8892 
8893 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8894 		set_bit(vcpu->arch.interrupt.nr,
8895 			(unsigned long *)sregs->interrupt_bitmap);
8896 }
8897 
8898 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8899 				  struct kvm_sregs *sregs)
8900 {
8901 	vcpu_load(vcpu);
8902 	__get_sregs(vcpu, sregs);
8903 	vcpu_put(vcpu);
8904 	return 0;
8905 }
8906 
8907 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8908 				    struct kvm_mp_state *mp_state)
8909 {
8910 	vcpu_load(vcpu);
8911 	if (kvm_mpx_supported())
8912 		kvm_load_guest_fpu(vcpu);
8913 
8914 	kvm_apic_accept_events(vcpu);
8915 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8916 					vcpu->arch.pv.pv_unhalted)
8917 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8918 	else
8919 		mp_state->mp_state = vcpu->arch.mp_state;
8920 
8921 	if (kvm_mpx_supported())
8922 		kvm_put_guest_fpu(vcpu);
8923 	vcpu_put(vcpu);
8924 	return 0;
8925 }
8926 
8927 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8928 				    struct kvm_mp_state *mp_state)
8929 {
8930 	int ret = -EINVAL;
8931 
8932 	vcpu_load(vcpu);
8933 
8934 	if (!lapic_in_kernel(vcpu) &&
8935 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8936 		goto out;
8937 
8938 	/*
8939 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8940 	 * INIT state; latched init should be reported using
8941 	 * KVM_SET_VCPU_EVENTS, so reject it here.
8942 	 */
8943 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8944 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8945 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8946 		goto out;
8947 
8948 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8949 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8950 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8951 	} else
8952 		vcpu->arch.mp_state = mp_state->mp_state;
8953 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8954 
8955 	ret = 0;
8956 out:
8957 	vcpu_put(vcpu);
8958 	return ret;
8959 }
8960 
8961 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8962 		    int reason, bool has_error_code, u32 error_code)
8963 {
8964 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8965 	int ret;
8966 
8967 	init_emulate_ctxt(vcpu);
8968 
8969 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8970 				   has_error_code, error_code);
8971 	if (ret) {
8972 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8973 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8974 		vcpu->run->internal.ndata = 0;
8975 		return 0;
8976 	}
8977 
8978 	kvm_rip_write(vcpu, ctxt->eip);
8979 	kvm_set_rflags(vcpu, ctxt->eflags);
8980 	return 1;
8981 }
8982 EXPORT_SYMBOL_GPL(kvm_task_switch);
8983 
8984 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8985 {
8986 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8987 		/*
8988 		 * When EFER.LME and CR0.PG are set, the processor is in
8989 		 * 64-bit mode (though maybe in a 32-bit code segment).
8990 		 * CR4.PAE and EFER.LMA must be set.
8991 		 */
8992 		if (!(sregs->cr4 & X86_CR4_PAE)
8993 		    || !(sregs->efer & EFER_LMA))
8994 			return -EINVAL;
8995 	} else {
8996 		/*
8997 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8998 		 * segment cannot be 64-bit.
8999 		 */
9000 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9001 			return -EINVAL;
9002 	}
9003 
9004 	return kvm_valid_cr4(vcpu, sregs->cr4);
9005 }
9006 
9007 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9008 {
9009 	struct msr_data apic_base_msr;
9010 	int mmu_reset_needed = 0;
9011 	int cpuid_update_needed = 0;
9012 	int pending_vec, max_bits, idx;
9013 	struct desc_ptr dt;
9014 	int ret = -EINVAL;
9015 
9016 	if (kvm_valid_sregs(vcpu, sregs))
9017 		goto out;
9018 
9019 	apic_base_msr.data = sregs->apic_base;
9020 	apic_base_msr.host_initiated = true;
9021 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9022 		goto out;
9023 
9024 	dt.size = sregs->idt.limit;
9025 	dt.address = sregs->idt.base;
9026 	kvm_x86_ops.set_idt(vcpu, &dt);
9027 	dt.size = sregs->gdt.limit;
9028 	dt.address = sregs->gdt.base;
9029 	kvm_x86_ops.set_gdt(vcpu, &dt);
9030 
9031 	vcpu->arch.cr2 = sregs->cr2;
9032 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9033 	vcpu->arch.cr3 = sregs->cr3;
9034 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9035 
9036 	kvm_set_cr8(vcpu, sregs->cr8);
9037 
9038 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9039 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9040 
9041 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9042 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9043 	vcpu->arch.cr0 = sregs->cr0;
9044 
9045 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9046 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9047 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9048 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9049 	if (cpuid_update_needed)
9050 		kvm_update_cpuid(vcpu);
9051 
9052 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9053 	if (is_pae_paging(vcpu)) {
9054 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9055 		mmu_reset_needed = 1;
9056 	}
9057 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9058 
9059 	if (mmu_reset_needed)
9060 		kvm_mmu_reset_context(vcpu);
9061 
9062 	max_bits = KVM_NR_INTERRUPTS;
9063 	pending_vec = find_first_bit(
9064 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9065 	if (pending_vec < max_bits) {
9066 		kvm_queue_interrupt(vcpu, pending_vec, false);
9067 		pr_debug("Set back pending irq %d\n", pending_vec);
9068 	}
9069 
9070 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9071 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9072 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9073 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9074 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9075 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9076 
9077 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9078 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9079 
9080 	update_cr8_intercept(vcpu);
9081 
9082 	/* Older userspace won't unhalt the vcpu on reset. */
9083 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9084 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9085 	    !is_protmode(vcpu))
9086 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9087 
9088 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9089 
9090 	ret = 0;
9091 out:
9092 	return ret;
9093 }
9094 
9095 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9096 				  struct kvm_sregs *sregs)
9097 {
9098 	int ret;
9099 
9100 	vcpu_load(vcpu);
9101 	ret = __set_sregs(vcpu, sregs);
9102 	vcpu_put(vcpu);
9103 	return ret;
9104 }
9105 
9106 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9107 					struct kvm_guest_debug *dbg)
9108 {
9109 	unsigned long rflags;
9110 	int i, r;
9111 
9112 	vcpu_load(vcpu);
9113 
9114 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9115 		r = -EBUSY;
9116 		if (vcpu->arch.exception.pending)
9117 			goto out;
9118 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9119 			kvm_queue_exception(vcpu, DB_VECTOR);
9120 		else
9121 			kvm_queue_exception(vcpu, BP_VECTOR);
9122 	}
9123 
9124 	/*
9125 	 * Read rflags as long as potentially injected trace flags are still
9126 	 * filtered out.
9127 	 */
9128 	rflags = kvm_get_rflags(vcpu);
9129 
9130 	vcpu->guest_debug = dbg->control;
9131 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9132 		vcpu->guest_debug = 0;
9133 
9134 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9135 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9136 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9137 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9138 	} else {
9139 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9140 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9141 	}
9142 	kvm_update_dr7(vcpu);
9143 
9144 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9145 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9146 			get_segment_base(vcpu, VCPU_SREG_CS);
9147 
9148 	/*
9149 	 * Trigger an rflags update that will inject or remove the trace
9150 	 * flags.
9151 	 */
9152 	kvm_set_rflags(vcpu, rflags);
9153 
9154 	kvm_x86_ops.update_bp_intercept(vcpu);
9155 
9156 	r = 0;
9157 
9158 out:
9159 	vcpu_put(vcpu);
9160 	return r;
9161 }
9162 
9163 /*
9164  * Translate a guest virtual address to a guest physical address.
9165  */
9166 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9167 				    struct kvm_translation *tr)
9168 {
9169 	unsigned long vaddr = tr->linear_address;
9170 	gpa_t gpa;
9171 	int idx;
9172 
9173 	vcpu_load(vcpu);
9174 
9175 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9176 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9177 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9178 	tr->physical_address = gpa;
9179 	tr->valid = gpa != UNMAPPED_GVA;
9180 	tr->writeable = 1;
9181 	tr->usermode = 0;
9182 
9183 	vcpu_put(vcpu);
9184 	return 0;
9185 }
9186 
9187 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9188 {
9189 	struct fxregs_state *fxsave;
9190 
9191 	vcpu_load(vcpu);
9192 
9193 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9194 	memcpy(fpu->fpr, fxsave->st_space, 128);
9195 	fpu->fcw = fxsave->cwd;
9196 	fpu->fsw = fxsave->swd;
9197 	fpu->ftwx = fxsave->twd;
9198 	fpu->last_opcode = fxsave->fop;
9199 	fpu->last_ip = fxsave->rip;
9200 	fpu->last_dp = fxsave->rdp;
9201 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9202 
9203 	vcpu_put(vcpu);
9204 	return 0;
9205 }
9206 
9207 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9208 {
9209 	struct fxregs_state *fxsave;
9210 
9211 	vcpu_load(vcpu);
9212 
9213 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9214 
9215 	memcpy(fxsave->st_space, fpu->fpr, 128);
9216 	fxsave->cwd = fpu->fcw;
9217 	fxsave->swd = fpu->fsw;
9218 	fxsave->twd = fpu->ftwx;
9219 	fxsave->fop = fpu->last_opcode;
9220 	fxsave->rip = fpu->last_ip;
9221 	fxsave->rdp = fpu->last_dp;
9222 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9223 
9224 	vcpu_put(vcpu);
9225 	return 0;
9226 }
9227 
9228 static void store_regs(struct kvm_vcpu *vcpu)
9229 {
9230 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9231 
9232 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9233 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9234 
9235 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9236 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9237 
9238 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9239 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9240 				vcpu, &vcpu->run->s.regs.events);
9241 }
9242 
9243 static int sync_regs(struct kvm_vcpu *vcpu)
9244 {
9245 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9246 		return -EINVAL;
9247 
9248 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9249 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9250 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9251 	}
9252 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9253 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9254 			return -EINVAL;
9255 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9256 	}
9257 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9258 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9259 				vcpu, &vcpu->run->s.regs.events))
9260 			return -EINVAL;
9261 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9262 	}
9263 
9264 	return 0;
9265 }
9266 
9267 static void fx_init(struct kvm_vcpu *vcpu)
9268 {
9269 	fpstate_init(&vcpu->arch.guest_fpu->state);
9270 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9271 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9272 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9273 
9274 	/*
9275 	 * Ensure guest xcr0 is valid for loading
9276 	 */
9277 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9278 
9279 	vcpu->arch.cr0 |= X86_CR0_ET;
9280 }
9281 
9282 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9283 {
9284 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9285 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9286 			     "guest TSC will not be reliable\n");
9287 
9288 	return 0;
9289 }
9290 
9291 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9292 {
9293 	struct page *page;
9294 	int r;
9295 
9296 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9297 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9298 	else
9299 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9300 
9301 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9302 
9303 	r = kvm_mmu_create(vcpu);
9304 	if (r < 0)
9305 		return r;
9306 
9307 	if (irqchip_in_kernel(vcpu->kvm)) {
9308 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9309 		if (r < 0)
9310 			goto fail_mmu_destroy;
9311 		if (kvm_apicv_activated(vcpu->kvm))
9312 			vcpu->arch.apicv_active = true;
9313 	} else
9314 		static_key_slow_inc(&kvm_no_apic_vcpu);
9315 
9316 	r = -ENOMEM;
9317 
9318 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9319 	if (!page)
9320 		goto fail_free_lapic;
9321 	vcpu->arch.pio_data = page_address(page);
9322 
9323 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9324 				       GFP_KERNEL_ACCOUNT);
9325 	if (!vcpu->arch.mce_banks)
9326 		goto fail_free_pio_data;
9327 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9328 
9329 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9330 				GFP_KERNEL_ACCOUNT))
9331 		goto fail_free_mce_banks;
9332 
9333 	if (!alloc_emulate_ctxt(vcpu))
9334 		goto free_wbinvd_dirty_mask;
9335 
9336 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9337 						GFP_KERNEL_ACCOUNT);
9338 	if (!vcpu->arch.user_fpu) {
9339 		pr_err("kvm: failed to allocate userspace's fpu\n");
9340 		goto free_emulate_ctxt;
9341 	}
9342 
9343 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9344 						 GFP_KERNEL_ACCOUNT);
9345 	if (!vcpu->arch.guest_fpu) {
9346 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9347 		goto free_user_fpu;
9348 	}
9349 	fx_init(vcpu);
9350 
9351 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9352 
9353 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9354 
9355 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9356 
9357 	kvm_async_pf_hash_reset(vcpu);
9358 	kvm_pmu_init(vcpu);
9359 
9360 	vcpu->arch.pending_external_vector = -1;
9361 	vcpu->arch.preempted_in_kernel = false;
9362 
9363 	kvm_hv_vcpu_init(vcpu);
9364 
9365 	r = kvm_x86_ops.vcpu_create(vcpu);
9366 	if (r)
9367 		goto free_guest_fpu;
9368 
9369 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9370 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9371 	kvm_vcpu_mtrr_init(vcpu);
9372 	vcpu_load(vcpu);
9373 	kvm_vcpu_reset(vcpu, false);
9374 	kvm_init_mmu(vcpu, false);
9375 	vcpu_put(vcpu);
9376 	return 0;
9377 
9378 free_guest_fpu:
9379 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9380 free_user_fpu:
9381 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9382 free_emulate_ctxt:
9383 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9384 free_wbinvd_dirty_mask:
9385 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9386 fail_free_mce_banks:
9387 	kfree(vcpu->arch.mce_banks);
9388 fail_free_pio_data:
9389 	free_page((unsigned long)vcpu->arch.pio_data);
9390 fail_free_lapic:
9391 	kvm_free_lapic(vcpu);
9392 fail_mmu_destroy:
9393 	kvm_mmu_destroy(vcpu);
9394 	return r;
9395 }
9396 
9397 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9398 {
9399 	struct msr_data msr;
9400 	struct kvm *kvm = vcpu->kvm;
9401 
9402 	kvm_hv_vcpu_postcreate(vcpu);
9403 
9404 	if (mutex_lock_killable(&vcpu->mutex))
9405 		return;
9406 	vcpu_load(vcpu);
9407 	msr.data = 0x0;
9408 	msr.index = MSR_IA32_TSC;
9409 	msr.host_initiated = true;
9410 	kvm_write_tsc(vcpu, &msr);
9411 	vcpu_put(vcpu);
9412 
9413 	/* poll control enabled by default */
9414 	vcpu->arch.msr_kvm_poll_control = 1;
9415 
9416 	mutex_unlock(&vcpu->mutex);
9417 
9418 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9419 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9420 						KVMCLOCK_SYNC_PERIOD);
9421 }
9422 
9423 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9424 {
9425 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9426 	int idx;
9427 
9428 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9429 
9430 	kvmclock_reset(vcpu);
9431 
9432 	kvm_x86_ops.vcpu_free(vcpu);
9433 
9434 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9435 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9436 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9437 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9438 
9439 	kvm_hv_vcpu_uninit(vcpu);
9440 	kvm_pmu_destroy(vcpu);
9441 	kfree(vcpu->arch.mce_banks);
9442 	kvm_free_lapic(vcpu);
9443 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9444 	kvm_mmu_destroy(vcpu);
9445 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9446 	free_page((unsigned long)vcpu->arch.pio_data);
9447 	if (!lapic_in_kernel(vcpu))
9448 		static_key_slow_dec(&kvm_no_apic_vcpu);
9449 }
9450 
9451 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9452 {
9453 	kvm_lapic_reset(vcpu, init_event);
9454 
9455 	vcpu->arch.hflags = 0;
9456 
9457 	vcpu->arch.smi_pending = 0;
9458 	vcpu->arch.smi_count = 0;
9459 	atomic_set(&vcpu->arch.nmi_queued, 0);
9460 	vcpu->arch.nmi_pending = 0;
9461 	vcpu->arch.nmi_injected = false;
9462 	kvm_clear_interrupt_queue(vcpu);
9463 	kvm_clear_exception_queue(vcpu);
9464 
9465 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9466 	kvm_update_dr0123(vcpu);
9467 	vcpu->arch.dr6 = DR6_INIT;
9468 	kvm_update_dr6(vcpu);
9469 	vcpu->arch.dr7 = DR7_FIXED_1;
9470 	kvm_update_dr7(vcpu);
9471 
9472 	vcpu->arch.cr2 = 0;
9473 
9474 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9475 	vcpu->arch.apf.msr_val = 0;
9476 	vcpu->arch.st.msr_val = 0;
9477 
9478 	kvmclock_reset(vcpu);
9479 
9480 	kvm_clear_async_pf_completion_queue(vcpu);
9481 	kvm_async_pf_hash_reset(vcpu);
9482 	vcpu->arch.apf.halted = false;
9483 
9484 	if (kvm_mpx_supported()) {
9485 		void *mpx_state_buffer;
9486 
9487 		/*
9488 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9489 		 * called with loaded FPU and does not let userspace fix the state.
9490 		 */
9491 		if (init_event)
9492 			kvm_put_guest_fpu(vcpu);
9493 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9494 					XFEATURE_BNDREGS);
9495 		if (mpx_state_buffer)
9496 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9497 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9498 					XFEATURE_BNDCSR);
9499 		if (mpx_state_buffer)
9500 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9501 		if (init_event)
9502 			kvm_load_guest_fpu(vcpu);
9503 	}
9504 
9505 	if (!init_event) {
9506 		kvm_pmu_reset(vcpu);
9507 		vcpu->arch.smbase = 0x30000;
9508 
9509 		vcpu->arch.msr_misc_features_enables = 0;
9510 
9511 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9512 	}
9513 
9514 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9515 	vcpu->arch.regs_avail = ~0;
9516 	vcpu->arch.regs_dirty = ~0;
9517 
9518 	vcpu->arch.ia32_xss = 0;
9519 
9520 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9521 }
9522 
9523 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9524 {
9525 	struct kvm_segment cs;
9526 
9527 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9528 	cs.selector = vector << 8;
9529 	cs.base = vector << 12;
9530 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9531 	kvm_rip_write(vcpu, 0);
9532 }
9533 
9534 int kvm_arch_hardware_enable(void)
9535 {
9536 	struct kvm *kvm;
9537 	struct kvm_vcpu *vcpu;
9538 	int i;
9539 	int ret;
9540 	u64 local_tsc;
9541 	u64 max_tsc = 0;
9542 	bool stable, backwards_tsc = false;
9543 
9544 	kvm_shared_msr_cpu_online();
9545 	ret = kvm_x86_ops.hardware_enable();
9546 	if (ret != 0)
9547 		return ret;
9548 
9549 	local_tsc = rdtsc();
9550 	stable = !kvm_check_tsc_unstable();
9551 	list_for_each_entry(kvm, &vm_list, vm_list) {
9552 		kvm_for_each_vcpu(i, vcpu, kvm) {
9553 			if (!stable && vcpu->cpu == smp_processor_id())
9554 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9555 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9556 				backwards_tsc = true;
9557 				if (vcpu->arch.last_host_tsc > max_tsc)
9558 					max_tsc = vcpu->arch.last_host_tsc;
9559 			}
9560 		}
9561 	}
9562 
9563 	/*
9564 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9565 	 * platforms that reset TSC during suspend or hibernate actions, but
9566 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9567 	 * detect that condition here, which happens early in CPU bringup,
9568 	 * before any KVM threads can be running.  Unfortunately, we can't
9569 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9570 	 * enough into CPU bringup that we know how much real time has actually
9571 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9572 	 * variables that haven't been updated yet.
9573 	 *
9574 	 * So we simply find the maximum observed TSC above, then record the
9575 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9576 	 * the adjustment will be applied.  Note that we accumulate
9577 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9578 	 * gets a chance to run again.  In the event that no KVM threads get a
9579 	 * chance to run, we will miss the entire elapsed period, as we'll have
9580 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9581 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9582 	 * uniform across all VCPUs (not to mention the scenario is extremely
9583 	 * unlikely). It is possible that a second hibernate recovery happens
9584 	 * much faster than a first, causing the observed TSC here to be
9585 	 * smaller; this would require additional padding adjustment, which is
9586 	 * why we set last_host_tsc to the local tsc observed here.
9587 	 *
9588 	 * N.B. - this code below runs only on platforms with reliable TSC,
9589 	 * as that is the only way backwards_tsc is set above.  Also note
9590 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9591 	 * have the same delta_cyc adjustment applied if backwards_tsc
9592 	 * is detected.  Note further, this adjustment is only done once,
9593 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9594 	 * called multiple times (one for each physical CPU bringup).
9595 	 *
9596 	 * Platforms with unreliable TSCs don't have to deal with this, they
9597 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9598 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9599 	 * guarantee that they stay in perfect synchronization.
9600 	 */
9601 	if (backwards_tsc) {
9602 		u64 delta_cyc = max_tsc - local_tsc;
9603 		list_for_each_entry(kvm, &vm_list, vm_list) {
9604 			kvm->arch.backwards_tsc_observed = true;
9605 			kvm_for_each_vcpu(i, vcpu, kvm) {
9606 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9607 				vcpu->arch.last_host_tsc = local_tsc;
9608 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9609 			}
9610 
9611 			/*
9612 			 * We have to disable TSC offset matching.. if you were
9613 			 * booting a VM while issuing an S4 host suspend....
9614 			 * you may have some problem.  Solving this issue is
9615 			 * left as an exercise to the reader.
9616 			 */
9617 			kvm->arch.last_tsc_nsec = 0;
9618 			kvm->arch.last_tsc_write = 0;
9619 		}
9620 
9621 	}
9622 	return 0;
9623 }
9624 
9625 void kvm_arch_hardware_disable(void)
9626 {
9627 	kvm_x86_ops.hardware_disable();
9628 	drop_user_return_notifiers();
9629 }
9630 
9631 int kvm_arch_hardware_setup(void *opaque)
9632 {
9633 	struct kvm_x86_init_ops *ops = opaque;
9634 	int r;
9635 
9636 	rdmsrl_safe(MSR_EFER, &host_efer);
9637 
9638 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9639 		rdmsrl(MSR_IA32_XSS, host_xss);
9640 
9641 	r = ops->hardware_setup();
9642 	if (r != 0)
9643 		return r;
9644 
9645 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9646 
9647 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9648 		supported_xss = 0;
9649 
9650 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9651 
9652 	if (kvm_has_tsc_control) {
9653 		/*
9654 		 * Make sure the user can only configure tsc_khz values that
9655 		 * fit into a signed integer.
9656 		 * A min value is not calculated because it will always
9657 		 * be 1 on all machines.
9658 		 */
9659 		u64 max = min(0x7fffffffULL,
9660 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9661 		kvm_max_guest_tsc_khz = max;
9662 
9663 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9664 	}
9665 
9666 	kvm_init_msr_list();
9667 	return 0;
9668 }
9669 
9670 void kvm_arch_hardware_unsetup(void)
9671 {
9672 	kvm_x86_ops.hardware_unsetup();
9673 }
9674 
9675 int kvm_arch_check_processor_compat(void *opaque)
9676 {
9677 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9678 	struct kvm_x86_init_ops *ops = opaque;
9679 
9680 	WARN_ON(!irqs_disabled());
9681 
9682 	if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9683 		return -EIO;
9684 
9685 	return ops->check_processor_compatibility();
9686 }
9687 
9688 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9689 {
9690 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9691 }
9692 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9693 
9694 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9695 {
9696 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9697 }
9698 
9699 struct static_key kvm_no_apic_vcpu __read_mostly;
9700 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9701 
9702 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9703 {
9704 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9705 
9706 	vcpu->arch.l1tf_flush_l1d = true;
9707 	if (pmu->version && unlikely(pmu->event_count)) {
9708 		pmu->need_cleanup = true;
9709 		kvm_make_request(KVM_REQ_PMU, vcpu);
9710 	}
9711 	kvm_x86_ops.sched_in(vcpu, cpu);
9712 }
9713 
9714 void kvm_arch_free_vm(struct kvm *kvm)
9715 {
9716 	kfree(kvm->arch.hyperv.hv_pa_pg);
9717 	vfree(kvm);
9718 }
9719 
9720 
9721 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9722 {
9723 	if (type)
9724 		return -EINVAL;
9725 
9726 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9727 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9728 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9729 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9730 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9731 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9732 
9733 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9734 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9735 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9736 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9737 		&kvm->arch.irq_sources_bitmap);
9738 
9739 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9740 	mutex_init(&kvm->arch.apic_map_lock);
9741 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9742 
9743 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9744 	pvclock_update_vm_gtod_copy(kvm);
9745 
9746 	kvm->arch.guest_can_read_msr_platform_info = true;
9747 
9748 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9749 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9750 
9751 	kvm_hv_init_vm(kvm);
9752 	kvm_page_track_init(kvm);
9753 	kvm_mmu_init_vm(kvm);
9754 
9755 	return kvm_x86_ops.vm_init(kvm);
9756 }
9757 
9758 int kvm_arch_post_init_vm(struct kvm *kvm)
9759 {
9760 	return kvm_mmu_post_init_vm(kvm);
9761 }
9762 
9763 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9764 {
9765 	vcpu_load(vcpu);
9766 	kvm_mmu_unload(vcpu);
9767 	vcpu_put(vcpu);
9768 }
9769 
9770 static void kvm_free_vcpus(struct kvm *kvm)
9771 {
9772 	unsigned int i;
9773 	struct kvm_vcpu *vcpu;
9774 
9775 	/*
9776 	 * Unpin any mmu pages first.
9777 	 */
9778 	kvm_for_each_vcpu(i, vcpu, kvm) {
9779 		kvm_clear_async_pf_completion_queue(vcpu);
9780 		kvm_unload_vcpu_mmu(vcpu);
9781 	}
9782 	kvm_for_each_vcpu(i, vcpu, kvm)
9783 		kvm_vcpu_destroy(vcpu);
9784 
9785 	mutex_lock(&kvm->lock);
9786 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9787 		kvm->vcpus[i] = NULL;
9788 
9789 	atomic_set(&kvm->online_vcpus, 0);
9790 	mutex_unlock(&kvm->lock);
9791 }
9792 
9793 void kvm_arch_sync_events(struct kvm *kvm)
9794 {
9795 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9796 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9797 	kvm_free_pit(kvm);
9798 }
9799 
9800 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9801 {
9802 	int i, r;
9803 	unsigned long hva, uninitialized_var(old_npages);
9804 	struct kvm_memslots *slots = kvm_memslots(kvm);
9805 	struct kvm_memory_slot *slot;
9806 
9807 	/* Called with kvm->slots_lock held.  */
9808 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9809 		return -EINVAL;
9810 
9811 	slot = id_to_memslot(slots, id);
9812 	if (size) {
9813 		if (slot && slot->npages)
9814 			return -EEXIST;
9815 
9816 		/*
9817 		 * MAP_SHARED to prevent internal slot pages from being moved
9818 		 * by fork()/COW.
9819 		 */
9820 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9821 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9822 		if (IS_ERR((void *)hva))
9823 			return PTR_ERR((void *)hva);
9824 	} else {
9825 		if (!slot || !slot->npages)
9826 			return 0;
9827 
9828 		/*
9829 		 * Stuff a non-canonical value to catch use-after-delete.  This
9830 		 * ends up being 0 on 32-bit KVM, but there's no better
9831 		 * alternative.
9832 		 */
9833 		hva = (unsigned long)(0xdeadull << 48);
9834 		old_npages = slot->npages;
9835 	}
9836 
9837 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9838 		struct kvm_userspace_memory_region m;
9839 
9840 		m.slot = id | (i << 16);
9841 		m.flags = 0;
9842 		m.guest_phys_addr = gpa;
9843 		m.userspace_addr = hva;
9844 		m.memory_size = size;
9845 		r = __kvm_set_memory_region(kvm, &m);
9846 		if (r < 0)
9847 			return r;
9848 	}
9849 
9850 	if (!size)
9851 		vm_munmap(hva, old_npages * PAGE_SIZE);
9852 
9853 	return 0;
9854 }
9855 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9856 
9857 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9858 {
9859 	kvm_mmu_pre_destroy_vm(kvm);
9860 }
9861 
9862 void kvm_arch_destroy_vm(struct kvm *kvm)
9863 {
9864 	if (current->mm == kvm->mm) {
9865 		/*
9866 		 * Free memory regions allocated on behalf of userspace,
9867 		 * unless the the memory map has changed due to process exit
9868 		 * or fd copying.
9869 		 */
9870 		mutex_lock(&kvm->slots_lock);
9871 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9872 					0, 0);
9873 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9874 					0, 0);
9875 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9876 		mutex_unlock(&kvm->slots_lock);
9877 	}
9878 	if (kvm_x86_ops.vm_destroy)
9879 		kvm_x86_ops.vm_destroy(kvm);
9880 	kvm_pic_destroy(kvm);
9881 	kvm_ioapic_destroy(kvm);
9882 	kvm_free_vcpus(kvm);
9883 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9884 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9885 	kvm_mmu_uninit_vm(kvm);
9886 	kvm_page_track_cleanup(kvm);
9887 	kvm_hv_destroy_vm(kvm);
9888 }
9889 
9890 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9891 {
9892 	int i;
9893 
9894 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9895 		kvfree(slot->arch.rmap[i]);
9896 		slot->arch.rmap[i] = NULL;
9897 
9898 		if (i == 0)
9899 			continue;
9900 
9901 		kvfree(slot->arch.lpage_info[i - 1]);
9902 		slot->arch.lpage_info[i - 1] = NULL;
9903 	}
9904 
9905 	kvm_page_track_free_memslot(slot);
9906 }
9907 
9908 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9909 				      unsigned long npages)
9910 {
9911 	int i;
9912 
9913 	/*
9914 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9915 	 * old arrays will be freed by __kvm_set_memory_region() if installing
9916 	 * the new memslot is successful.
9917 	 */
9918 	memset(&slot->arch, 0, sizeof(slot->arch));
9919 
9920 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9921 		struct kvm_lpage_info *linfo;
9922 		unsigned long ugfn;
9923 		int lpages;
9924 		int level = i + 1;
9925 
9926 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9927 				      slot->base_gfn, level) + 1;
9928 
9929 		slot->arch.rmap[i] =
9930 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9931 				 GFP_KERNEL_ACCOUNT);
9932 		if (!slot->arch.rmap[i])
9933 			goto out_free;
9934 		if (i == 0)
9935 			continue;
9936 
9937 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9938 		if (!linfo)
9939 			goto out_free;
9940 
9941 		slot->arch.lpage_info[i - 1] = linfo;
9942 
9943 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9944 			linfo[0].disallow_lpage = 1;
9945 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9946 			linfo[lpages - 1].disallow_lpage = 1;
9947 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9948 		/*
9949 		 * If the gfn and userspace address are not aligned wrt each
9950 		 * other, disable large page support for this slot.
9951 		 */
9952 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9953 			unsigned long j;
9954 
9955 			for (j = 0; j < lpages; ++j)
9956 				linfo[j].disallow_lpage = 1;
9957 		}
9958 	}
9959 
9960 	if (kvm_page_track_create_memslot(slot, npages))
9961 		goto out_free;
9962 
9963 	return 0;
9964 
9965 out_free:
9966 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9967 		kvfree(slot->arch.rmap[i]);
9968 		slot->arch.rmap[i] = NULL;
9969 		if (i == 0)
9970 			continue;
9971 
9972 		kvfree(slot->arch.lpage_info[i - 1]);
9973 		slot->arch.lpage_info[i - 1] = NULL;
9974 	}
9975 	return -ENOMEM;
9976 }
9977 
9978 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9979 {
9980 	struct kvm_vcpu *vcpu;
9981 	int i;
9982 
9983 	/*
9984 	 * memslots->generation has been incremented.
9985 	 * mmio generation may have reached its maximum value.
9986 	 */
9987 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9988 
9989 	/* Force re-initialization of steal_time cache */
9990 	kvm_for_each_vcpu(i, vcpu, kvm)
9991 		kvm_vcpu_kick(vcpu);
9992 }
9993 
9994 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9995 				struct kvm_memory_slot *memslot,
9996 				const struct kvm_userspace_memory_region *mem,
9997 				enum kvm_mr_change change)
9998 {
9999 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10000 		return kvm_alloc_memslot_metadata(memslot,
10001 						  mem->memory_size >> PAGE_SHIFT);
10002 	return 0;
10003 }
10004 
10005 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10006 				     struct kvm_memory_slot *new)
10007 {
10008 	/* Still write protect RO slot */
10009 	if (new->flags & KVM_MEM_READONLY) {
10010 		kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10011 		return;
10012 	}
10013 
10014 	/*
10015 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
10016 	 *
10017 	 * kvm_x86_ops.slot_disable_log_dirty is called when:
10018 	 *
10019 	 *  - KVM_MR_CREATE with dirty logging is disabled
10020 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10021 	 *
10022 	 * The reason is, in case of PML, we need to set D-bit for any slots
10023 	 * with dirty logging disabled in order to eliminate unnecessary GPA
10024 	 * logging in PML buffer (and potential PML buffer full VMEXIT). This
10025 	 * guarantees leaving PML enabled during guest's lifetime won't have
10026 	 * any additional overhead from PML when guest is running with dirty
10027 	 * logging disabled for memory slots.
10028 	 *
10029 	 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
10030 	 * to dirty logging mode.
10031 	 *
10032 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10033 	 *
10034 	 * In case of write protect:
10035 	 *
10036 	 * Write protect all pages for dirty logging.
10037 	 *
10038 	 * All the sptes including the large sptes which point to this
10039 	 * slot are set to readonly. We can not create any new large
10040 	 * spte on this slot until the end of the logging.
10041 	 *
10042 	 * See the comments in fast_page_fault().
10043 	 */
10044 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10045 		if (kvm_x86_ops.slot_enable_log_dirty) {
10046 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10047 		} else {
10048 			int level =
10049 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10050 				PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10051 
10052 			/*
10053 			 * If we're with initial-all-set, we don't need
10054 			 * to write protect any small page because
10055 			 * they're reported as dirty already.  However
10056 			 * we still need to write-protect huge pages
10057 			 * so that the page split can happen lazily on
10058 			 * the first write to the huge page.
10059 			 */
10060 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10061 		}
10062 	} else {
10063 		if (kvm_x86_ops.slot_disable_log_dirty)
10064 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10065 	}
10066 }
10067 
10068 void kvm_arch_commit_memory_region(struct kvm *kvm,
10069 				const struct kvm_userspace_memory_region *mem,
10070 				struct kvm_memory_slot *old,
10071 				const struct kvm_memory_slot *new,
10072 				enum kvm_mr_change change)
10073 {
10074 	if (!kvm->arch.n_requested_mmu_pages)
10075 		kvm_mmu_change_mmu_pages(kvm,
10076 				kvm_mmu_calculate_default_mmu_pages(kvm));
10077 
10078 	/*
10079 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10080 	 * sptes have to be split.  If live migration is successful, the guest
10081 	 * in the source machine will be destroyed and large sptes will be
10082 	 * created in the destination. However, if the guest continues to run
10083 	 * in the source machine (for example if live migration fails), small
10084 	 * sptes will remain around and cause bad performance.
10085 	 *
10086 	 * Scan sptes if dirty logging has been stopped, dropping those
10087 	 * which can be collapsed into a single large-page spte.  Later
10088 	 * page faults will create the large-page sptes.
10089 	 *
10090 	 * There is no need to do this in any of the following cases:
10091 	 * CREATE:	No dirty mappings will already exist.
10092 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
10093 	 *		kvm_arch_flush_shadow_memslot()
10094 	 */
10095 	if (change == KVM_MR_FLAGS_ONLY &&
10096 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10097 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10098 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10099 
10100 	/*
10101 	 * Set up write protection and/or dirty logging for the new slot.
10102 	 *
10103 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10104 	 * been zapped so no dirty logging staff is needed for old slot. For
10105 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10106 	 * new and it's also covered when dealing with the new slot.
10107 	 *
10108 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10109 	 */
10110 	if (change != KVM_MR_DELETE)
10111 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10112 
10113 	/* Free the arrays associated with the old memslot. */
10114 	if (change == KVM_MR_MOVE)
10115 		kvm_arch_free_memslot(kvm, old);
10116 }
10117 
10118 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10119 {
10120 	kvm_mmu_zap_all(kvm);
10121 }
10122 
10123 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10124 				   struct kvm_memory_slot *slot)
10125 {
10126 	kvm_page_track_flush_slot(kvm, slot);
10127 }
10128 
10129 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10130 {
10131 	return (is_guest_mode(vcpu) &&
10132 			kvm_x86_ops.guest_apic_has_interrupt &&
10133 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10134 }
10135 
10136 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10137 {
10138 	if (!list_empty_careful(&vcpu->async_pf.done))
10139 		return true;
10140 
10141 	if (kvm_apic_has_events(vcpu))
10142 		return true;
10143 
10144 	if (vcpu->arch.pv.pv_unhalted)
10145 		return true;
10146 
10147 	if (vcpu->arch.exception.pending)
10148 		return true;
10149 
10150 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10151 	    (vcpu->arch.nmi_pending &&
10152 	     kvm_x86_ops.nmi_allowed(vcpu)))
10153 		return true;
10154 
10155 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10156 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10157 		return true;
10158 
10159 	if (kvm_arch_interrupt_allowed(vcpu) &&
10160 	    (kvm_cpu_has_interrupt(vcpu) ||
10161 	    kvm_guest_apic_has_interrupt(vcpu)))
10162 		return true;
10163 
10164 	if (kvm_hv_has_stimer_pending(vcpu))
10165 		return true;
10166 
10167 	return false;
10168 }
10169 
10170 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10171 {
10172 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10173 }
10174 
10175 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10176 {
10177 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10178 		return true;
10179 
10180 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10181 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10182 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10183 		return true;
10184 
10185 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10186 		return true;
10187 
10188 	return false;
10189 }
10190 
10191 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10192 {
10193 	return vcpu->arch.preempted_in_kernel;
10194 }
10195 
10196 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10197 {
10198 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10199 }
10200 
10201 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10202 {
10203 	return kvm_x86_ops.interrupt_allowed(vcpu);
10204 }
10205 
10206 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10207 {
10208 	if (is_64_bit_mode(vcpu))
10209 		return kvm_rip_read(vcpu);
10210 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10211 		     kvm_rip_read(vcpu));
10212 }
10213 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10214 
10215 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10216 {
10217 	return kvm_get_linear_rip(vcpu) == linear_rip;
10218 }
10219 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10220 
10221 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10222 {
10223 	unsigned long rflags;
10224 
10225 	rflags = kvm_x86_ops.get_rflags(vcpu);
10226 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10227 		rflags &= ~X86_EFLAGS_TF;
10228 	return rflags;
10229 }
10230 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10231 
10232 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10233 {
10234 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10235 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10236 		rflags |= X86_EFLAGS_TF;
10237 	kvm_x86_ops.set_rflags(vcpu, rflags);
10238 }
10239 
10240 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10241 {
10242 	__kvm_set_rflags(vcpu, rflags);
10243 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10244 }
10245 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10246 
10247 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10248 {
10249 	int r;
10250 
10251 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10252 	      work->wakeup_all)
10253 		return;
10254 
10255 	r = kvm_mmu_reload(vcpu);
10256 	if (unlikely(r))
10257 		return;
10258 
10259 	if (!vcpu->arch.mmu->direct_map &&
10260 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10261 		return;
10262 
10263 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10264 }
10265 
10266 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10267 {
10268 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10269 }
10270 
10271 static inline u32 kvm_async_pf_next_probe(u32 key)
10272 {
10273 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10274 }
10275 
10276 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10277 {
10278 	u32 key = kvm_async_pf_hash_fn(gfn);
10279 
10280 	while (vcpu->arch.apf.gfns[key] != ~0)
10281 		key = kvm_async_pf_next_probe(key);
10282 
10283 	vcpu->arch.apf.gfns[key] = gfn;
10284 }
10285 
10286 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10287 {
10288 	int i;
10289 	u32 key = kvm_async_pf_hash_fn(gfn);
10290 
10291 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10292 		     (vcpu->arch.apf.gfns[key] != gfn &&
10293 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10294 		key = kvm_async_pf_next_probe(key);
10295 
10296 	return key;
10297 }
10298 
10299 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10300 {
10301 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10302 }
10303 
10304 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10305 {
10306 	u32 i, j, k;
10307 
10308 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10309 	while (true) {
10310 		vcpu->arch.apf.gfns[i] = ~0;
10311 		do {
10312 			j = kvm_async_pf_next_probe(j);
10313 			if (vcpu->arch.apf.gfns[j] == ~0)
10314 				return;
10315 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10316 			/*
10317 			 * k lies cyclically in ]i,j]
10318 			 * |    i.k.j |
10319 			 * |....j i.k.| or  |.k..j i...|
10320 			 */
10321 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10322 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10323 		i = j;
10324 	}
10325 }
10326 
10327 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10328 {
10329 
10330 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10331 				      sizeof(val));
10332 }
10333 
10334 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10335 {
10336 
10337 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10338 				      sizeof(u32));
10339 }
10340 
10341 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10342 {
10343 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10344 		return false;
10345 
10346 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10347 	    (vcpu->arch.apf.send_user_only &&
10348 	     kvm_x86_ops.get_cpl(vcpu) == 0))
10349 		return false;
10350 
10351 	return true;
10352 }
10353 
10354 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10355 {
10356 	if (unlikely(!lapic_in_kernel(vcpu) ||
10357 		     kvm_event_needs_reinjection(vcpu) ||
10358 		     vcpu->arch.exception.pending))
10359 		return false;
10360 
10361 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10362 		return false;
10363 
10364 	/*
10365 	 * If interrupts are off we cannot even use an artificial
10366 	 * halt state.
10367 	 */
10368 	return kvm_x86_ops.interrupt_allowed(vcpu);
10369 }
10370 
10371 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10372 				     struct kvm_async_pf *work)
10373 {
10374 	struct x86_exception fault;
10375 
10376 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10377 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10378 
10379 	if (kvm_can_deliver_async_pf(vcpu) &&
10380 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10381 		fault.vector = PF_VECTOR;
10382 		fault.error_code_valid = true;
10383 		fault.error_code = 0;
10384 		fault.nested_page_fault = false;
10385 		fault.address = work->arch.token;
10386 		fault.async_page_fault = true;
10387 		kvm_inject_page_fault(vcpu, &fault);
10388 	} else {
10389 		/*
10390 		 * It is not possible to deliver a paravirtualized asynchronous
10391 		 * page fault, but putting the guest in an artificial halt state
10392 		 * can be beneficial nevertheless: if an interrupt arrives, we
10393 		 * can deliver it timely and perhaps the guest will schedule
10394 		 * another process.  When the instruction that triggered a page
10395 		 * fault is retried, hopefully the page will be ready in the host.
10396 		 */
10397 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10398 	}
10399 }
10400 
10401 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10402 				 struct kvm_async_pf *work)
10403 {
10404 	struct x86_exception fault;
10405 	u32 val;
10406 
10407 	if (work->wakeup_all)
10408 		work->arch.token = ~0; /* broadcast wakeup */
10409 	else
10410 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10411 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10412 
10413 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10414 	    !apf_get_user(vcpu, &val)) {
10415 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10416 		    vcpu->arch.exception.pending &&
10417 		    vcpu->arch.exception.nr == PF_VECTOR &&
10418 		    !apf_put_user(vcpu, 0)) {
10419 			vcpu->arch.exception.injected = false;
10420 			vcpu->arch.exception.pending = false;
10421 			vcpu->arch.exception.nr = 0;
10422 			vcpu->arch.exception.has_error_code = false;
10423 			vcpu->arch.exception.error_code = 0;
10424 			vcpu->arch.exception.has_payload = false;
10425 			vcpu->arch.exception.payload = 0;
10426 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10427 			fault.vector = PF_VECTOR;
10428 			fault.error_code_valid = true;
10429 			fault.error_code = 0;
10430 			fault.nested_page_fault = false;
10431 			fault.address = work->arch.token;
10432 			fault.async_page_fault = true;
10433 			kvm_inject_page_fault(vcpu, &fault);
10434 		}
10435 	}
10436 	vcpu->arch.apf.halted = false;
10437 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10438 }
10439 
10440 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10441 {
10442 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10443 		return true;
10444 	else
10445 		return kvm_can_do_async_pf(vcpu);
10446 }
10447 
10448 void kvm_arch_start_assignment(struct kvm *kvm)
10449 {
10450 	atomic_inc(&kvm->arch.assigned_device_count);
10451 }
10452 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10453 
10454 void kvm_arch_end_assignment(struct kvm *kvm)
10455 {
10456 	atomic_dec(&kvm->arch.assigned_device_count);
10457 }
10458 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10459 
10460 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10461 {
10462 	return atomic_read(&kvm->arch.assigned_device_count);
10463 }
10464 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10465 
10466 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10467 {
10468 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10469 }
10470 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10471 
10472 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10473 {
10474 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10475 }
10476 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10477 
10478 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10479 {
10480 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10481 }
10482 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10483 
10484 bool kvm_arch_has_irq_bypass(void)
10485 {
10486 	return true;
10487 }
10488 
10489 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10490 				      struct irq_bypass_producer *prod)
10491 {
10492 	struct kvm_kernel_irqfd *irqfd =
10493 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10494 
10495 	irqfd->producer = prod;
10496 
10497 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10498 					   prod->irq, irqfd->gsi, 1);
10499 }
10500 
10501 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10502 				      struct irq_bypass_producer *prod)
10503 {
10504 	int ret;
10505 	struct kvm_kernel_irqfd *irqfd =
10506 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10507 
10508 	WARN_ON(irqfd->producer != prod);
10509 	irqfd->producer = NULL;
10510 
10511 	/*
10512 	 * When producer of consumer is unregistered, we change back to
10513 	 * remapped mode, so we can re-use the current implementation
10514 	 * when the irq is masked/disabled or the consumer side (KVM
10515 	 * int this case doesn't want to receive the interrupts.
10516 	*/
10517 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10518 	if (ret)
10519 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10520 		       " fails: %d\n", irqfd->consumer.token, ret);
10521 }
10522 
10523 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10524 				   uint32_t guest_irq, bool set)
10525 {
10526 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10527 }
10528 
10529 bool kvm_vector_hashing_enabled(void)
10530 {
10531 	return vector_hashing;
10532 }
10533 
10534 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10535 {
10536 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10537 }
10538 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10539 
10540 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10541 {
10542 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10543 
10544 	/* The STIBP bit doesn't fault even if it's not advertised */
10545 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10546 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10547 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10548 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10549 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10550 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10551 
10552 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10553 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10554 		bits &= ~SPEC_CTRL_SSBD;
10555 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10556 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10557 		bits &= ~SPEC_CTRL_SSBD;
10558 
10559 	return bits;
10560 }
10561 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10562 
10563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10585