xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 750f8fcb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86 
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89 
90 struct kvm_caps kvm_caps __read_mostly = {
91 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94 
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96 
97 #define emul_to_vcpu(ctxt) \
98 	((struct kvm_vcpu *)(ctxt)->vcpu)
99 
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110 
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112 
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114 
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116 
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119 
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133 
134 #define KVM_X86_OP(func)					     \
135 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
136 				*(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142 
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145 
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149 
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155 
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159 
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168 
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171 
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 
176 static bool __read_mostly force_emulation_prefix = false;
177 module_param(force_emulation_prefix, bool, S_IRUGO);
178 
179 int __read_mostly pi_inject_timer = -1;
180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
181 
182 /* Enable/disable PMU virtualization */
183 bool __read_mostly enable_pmu = true;
184 EXPORT_SYMBOL_GPL(enable_pmu);
185 module_param(enable_pmu, bool, 0444);
186 
187 bool __read_mostly eager_page_split = true;
188 module_param(eager_page_split, bool, 0644);
189 
190 /*
191  * Restoring the host value for MSRs that are only consumed when running in
192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193  * returns to userspace, i.e. the kernel can run with the guest's value.
194  */
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
196 
197 struct kvm_user_return_msrs {
198 	struct user_return_notifier urn;
199 	bool registered;
200 	struct kvm_user_return_msr_values {
201 		u64 host;
202 		u64 curr;
203 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
204 };
205 
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
210 
211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
215 
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
218 
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
221 
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
224 
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227 
228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
229 	KVM_GENERIC_VM_STATS(),
230 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
231 	STATS_DESC_COUNTER(VM, mmu_pte_write),
232 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
233 	STATS_DESC_COUNTER(VM, mmu_flooded),
234 	STATS_DESC_COUNTER(VM, mmu_recycled),
235 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
236 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
237 	STATS_DESC_ICOUNTER(VM, pages_4k),
238 	STATS_DESC_ICOUNTER(VM, pages_2m),
239 	STATS_DESC_ICOUNTER(VM, pages_1g),
240 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
241 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
242 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
243 };
244 
245 const struct kvm_stats_header kvm_vm_stats_header = {
246 	.name_size = KVM_STATS_NAME_SIZE,
247 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
248 	.id_offset = sizeof(struct kvm_stats_header),
249 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
250 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
251 		       sizeof(kvm_vm_stats_desc),
252 };
253 
254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
255 	KVM_GENERIC_VCPU_STATS(),
256 	STATS_DESC_COUNTER(VCPU, pf_taken),
257 	STATS_DESC_COUNTER(VCPU, pf_fixed),
258 	STATS_DESC_COUNTER(VCPU, pf_emulate),
259 	STATS_DESC_COUNTER(VCPU, pf_spurious),
260 	STATS_DESC_COUNTER(VCPU, pf_fast),
261 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
262 	STATS_DESC_COUNTER(VCPU, pf_guest),
263 	STATS_DESC_COUNTER(VCPU, tlb_flush),
264 	STATS_DESC_COUNTER(VCPU, invlpg),
265 	STATS_DESC_COUNTER(VCPU, exits),
266 	STATS_DESC_COUNTER(VCPU, io_exits),
267 	STATS_DESC_COUNTER(VCPU, mmio_exits),
268 	STATS_DESC_COUNTER(VCPU, signal_exits),
269 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
270 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
271 	STATS_DESC_COUNTER(VCPU, l1d_flush),
272 	STATS_DESC_COUNTER(VCPU, halt_exits),
273 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
274 	STATS_DESC_COUNTER(VCPU, irq_exits),
275 	STATS_DESC_COUNTER(VCPU, host_state_reload),
276 	STATS_DESC_COUNTER(VCPU, fpu_reload),
277 	STATS_DESC_COUNTER(VCPU, insn_emulation),
278 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
279 	STATS_DESC_COUNTER(VCPU, hypercalls),
280 	STATS_DESC_COUNTER(VCPU, irq_injections),
281 	STATS_DESC_COUNTER(VCPU, nmi_injections),
282 	STATS_DESC_COUNTER(VCPU, req_event),
283 	STATS_DESC_COUNTER(VCPU, nested_run),
284 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
285 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
286 	STATS_DESC_COUNTER(VCPU, preemption_reported),
287 	STATS_DESC_COUNTER(VCPU, preemption_other),
288 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
289 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
290 };
291 
292 const struct kvm_stats_header kvm_vcpu_stats_header = {
293 	.name_size = KVM_STATS_NAME_SIZE,
294 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
295 	.id_offset = sizeof(struct kvm_stats_header),
296 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
297 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
298 		       sizeof(kvm_vcpu_stats_desc),
299 };
300 
301 u64 __read_mostly host_xcr0;
302 
303 static struct kmem_cache *x86_emulator_cache;
304 
305 /*
306  * When called, it means the previous get/set msr reached an invalid msr.
307  * Return true if we want to ignore/silent this failed msr access.
308  */
309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
310 {
311 	const char *op = write ? "wrmsr" : "rdmsr";
312 
313 	if (ignore_msrs) {
314 		if (report_ignored_msrs)
315 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316 				      op, msr, data);
317 		/* Mask the error */
318 		return true;
319 	} else {
320 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
321 				      op, msr, data);
322 		return false;
323 	}
324 }
325 
326 static struct kmem_cache *kvm_alloc_emulator_cache(void)
327 {
328 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
329 	unsigned int size = sizeof(struct x86_emulate_ctxt);
330 
331 	return kmem_cache_create_usercopy("x86_emulator", size,
332 					  __alignof__(struct x86_emulate_ctxt),
333 					  SLAB_ACCOUNT, useroffset,
334 					  size - useroffset, NULL);
335 }
336 
337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
338 
339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
340 {
341 	int i;
342 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
343 		vcpu->arch.apf.gfns[i] = ~0;
344 }
345 
346 static void kvm_on_user_return(struct user_return_notifier *urn)
347 {
348 	unsigned slot;
349 	struct kvm_user_return_msrs *msrs
350 		= container_of(urn, struct kvm_user_return_msrs, urn);
351 	struct kvm_user_return_msr_values *values;
352 	unsigned long flags;
353 
354 	/*
355 	 * Disabling irqs at this point since the following code could be
356 	 * interrupted and executed through kvm_arch_hardware_disable()
357 	 */
358 	local_irq_save(flags);
359 	if (msrs->registered) {
360 		msrs->registered = false;
361 		user_return_notifier_unregister(urn);
362 	}
363 	local_irq_restore(flags);
364 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
365 		values = &msrs->values[slot];
366 		if (values->host != values->curr) {
367 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
368 			values->curr = values->host;
369 		}
370 	}
371 }
372 
373 static int kvm_probe_user_return_msr(u32 msr)
374 {
375 	u64 val;
376 	int ret;
377 
378 	preempt_disable();
379 	ret = rdmsrl_safe(msr, &val);
380 	if (ret)
381 		goto out;
382 	ret = wrmsrl_safe(msr, val);
383 out:
384 	preempt_enable();
385 	return ret;
386 }
387 
388 int kvm_add_user_return_msr(u32 msr)
389 {
390 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
391 
392 	if (kvm_probe_user_return_msr(msr))
393 		return -1;
394 
395 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
396 	return kvm_nr_uret_msrs++;
397 }
398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
399 
400 int kvm_find_user_return_msr(u32 msr)
401 {
402 	int i;
403 
404 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
405 		if (kvm_uret_msrs_list[i] == msr)
406 			return i;
407 	}
408 	return -1;
409 }
410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
411 
412 static void kvm_user_return_msr_cpu_online(void)
413 {
414 	unsigned int cpu = smp_processor_id();
415 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
416 	u64 value;
417 	int i;
418 
419 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
420 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
421 		msrs->values[i].host = value;
422 		msrs->values[i].curr = value;
423 	}
424 }
425 
426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 	int err;
431 
432 	value = (value & mask) | (msrs->values[slot].host & ~mask);
433 	if (value == msrs->values[slot].curr)
434 		return 0;
435 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
436 	if (err)
437 		return 1;
438 
439 	msrs->values[slot].curr = value;
440 	if (!msrs->registered) {
441 		msrs->urn.on_user_return = kvm_on_user_return;
442 		user_return_notifier_register(&msrs->urn);
443 		msrs->registered = true;
444 	}
445 	return 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
448 
449 static void drop_user_return_notifiers(void)
450 {
451 	unsigned int cpu = smp_processor_id();
452 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
453 
454 	if (msrs->registered)
455 		kvm_on_user_return(&msrs->urn);
456 }
457 
458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
459 {
460 	return vcpu->arch.apic_base;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
463 
464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
465 {
466 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
467 }
468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
469 
470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
471 {
472 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
473 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
474 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
475 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
476 
477 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
478 		return 1;
479 	if (!msr_info->host_initiated) {
480 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
481 			return 1;
482 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
483 			return 1;
484 	}
485 
486 	kvm_lapic_set_base(vcpu, msr_info->data);
487 	kvm_recalculate_apic_map(vcpu->kvm);
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
491 
492 /*
493  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
494  *
495  * Hardware virtualization extension instructions may fault if a reboot turns
496  * off virtualization while processes are running.  Usually after catching the
497  * fault we just panic; during reboot instead the instruction is ignored.
498  */
499 noinstr void kvm_spurious_fault(void)
500 {
501 	/* Fault while not rebooting.  We want the trace. */
502 	BUG_ON(!kvm_rebooting);
503 }
504 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
505 
506 #define EXCPT_BENIGN		0
507 #define EXCPT_CONTRIBUTORY	1
508 #define EXCPT_PF		2
509 
510 static int exception_class(int vector)
511 {
512 	switch (vector) {
513 	case PF_VECTOR:
514 		return EXCPT_PF;
515 	case DE_VECTOR:
516 	case TS_VECTOR:
517 	case NP_VECTOR:
518 	case SS_VECTOR:
519 	case GP_VECTOR:
520 		return EXCPT_CONTRIBUTORY;
521 	default:
522 		break;
523 	}
524 	return EXCPT_BENIGN;
525 }
526 
527 #define EXCPT_FAULT		0
528 #define EXCPT_TRAP		1
529 #define EXCPT_ABORT		2
530 #define EXCPT_INTERRUPT		3
531 
532 static int exception_type(int vector)
533 {
534 	unsigned int mask;
535 
536 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
537 		return EXCPT_INTERRUPT;
538 
539 	mask = 1 << vector;
540 
541 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
542 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
543 		return EXCPT_TRAP;
544 
545 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
546 		return EXCPT_ABORT;
547 
548 	/* Reserved exceptions will result in fault */
549 	return EXCPT_FAULT;
550 }
551 
552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
553 {
554 	unsigned nr = vcpu->arch.exception.nr;
555 	bool has_payload = vcpu->arch.exception.has_payload;
556 	unsigned long payload = vcpu->arch.exception.payload;
557 
558 	if (!has_payload)
559 		return;
560 
561 	switch (nr) {
562 	case DB_VECTOR:
563 		/*
564 		 * "Certain debug exceptions may clear bit 0-3.  The
565 		 * remaining contents of the DR6 register are never
566 		 * cleared by the processor".
567 		 */
568 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
569 		/*
570 		 * In order to reflect the #DB exception payload in guest
571 		 * dr6, three components need to be considered: active low
572 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
573 		 * DR6_BS and DR6_BT)
574 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
575 		 * In the target guest dr6:
576 		 * FIXED_1 bits should always be set.
577 		 * Active low bits should be cleared if 1-setting in payload.
578 		 * Active high bits should be set if 1-setting in payload.
579 		 *
580 		 * Note, the payload is compatible with the pending debug
581 		 * exceptions/exit qualification under VMX, that active_low bits
582 		 * are active high in payload.
583 		 * So they need to be flipped for DR6.
584 		 */
585 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
586 		vcpu->arch.dr6 |= payload;
587 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
588 
589 		/*
590 		 * The #DB payload is defined as compatible with the 'pending
591 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
592 		 * defined in the 'pending debug exceptions' field (enabled
593 		 * breakpoint), it is reserved and must be zero in DR6.
594 		 */
595 		vcpu->arch.dr6 &= ~BIT(12);
596 		break;
597 	case PF_VECTOR:
598 		vcpu->arch.cr2 = payload;
599 		break;
600 	}
601 
602 	vcpu->arch.exception.has_payload = false;
603 	vcpu->arch.exception.payload = 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
606 
607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
608 		unsigned nr, bool has_error, u32 error_code,
609 	        bool has_payload, unsigned long payload, bool reinject)
610 {
611 	u32 prev_nr;
612 	int class1, class2;
613 
614 	kvm_make_request(KVM_REQ_EVENT, vcpu);
615 
616 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
617 	queue:
618 		if (reinject) {
619 			/*
620 			 * On vmentry, vcpu->arch.exception.pending is only
621 			 * true if an event injection was blocked by
622 			 * nested_run_pending.  In that case, however,
623 			 * vcpu_enter_guest requests an immediate exit,
624 			 * and the guest shouldn't proceed far enough to
625 			 * need reinjection.
626 			 */
627 			WARN_ON_ONCE(vcpu->arch.exception.pending);
628 			vcpu->arch.exception.injected = true;
629 			if (WARN_ON_ONCE(has_payload)) {
630 				/*
631 				 * A reinjected event has already
632 				 * delivered its payload.
633 				 */
634 				has_payload = false;
635 				payload = 0;
636 			}
637 		} else {
638 			vcpu->arch.exception.pending = true;
639 			vcpu->arch.exception.injected = false;
640 		}
641 		vcpu->arch.exception.has_error_code = has_error;
642 		vcpu->arch.exception.nr = nr;
643 		vcpu->arch.exception.error_code = error_code;
644 		vcpu->arch.exception.has_payload = has_payload;
645 		vcpu->arch.exception.payload = payload;
646 		if (!is_guest_mode(vcpu))
647 			kvm_deliver_exception_payload(vcpu);
648 		return;
649 	}
650 
651 	/* to check exception */
652 	prev_nr = vcpu->arch.exception.nr;
653 	if (prev_nr == DF_VECTOR) {
654 		/* triple fault -> shutdown */
655 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
656 		return;
657 	}
658 	class1 = exception_class(prev_nr);
659 	class2 = exception_class(nr);
660 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
661 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
662 		/*
663 		 * Generate double fault per SDM Table 5-5.  Set
664 		 * exception.pending = true so that the double fault
665 		 * can trigger a nested vmexit.
666 		 */
667 		vcpu->arch.exception.pending = true;
668 		vcpu->arch.exception.injected = false;
669 		vcpu->arch.exception.has_error_code = true;
670 		vcpu->arch.exception.nr = DF_VECTOR;
671 		vcpu->arch.exception.error_code = 0;
672 		vcpu->arch.exception.has_payload = false;
673 		vcpu->arch.exception.payload = 0;
674 	} else
675 		/* replace previous exception with a new one in a hope
676 		   that instruction re-execution will regenerate lost
677 		   exception */
678 		goto queue;
679 }
680 
681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
682 {
683 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
684 }
685 EXPORT_SYMBOL_GPL(kvm_queue_exception);
686 
687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
688 {
689 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
690 }
691 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
692 
693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
694 			   unsigned long payload)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
699 
700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
701 				    u32 error_code, unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, true, error_code,
704 			       true, payload, false);
705 }
706 
707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
708 {
709 	if (err)
710 		kvm_inject_gp(vcpu, 0);
711 	else
712 		return kvm_skip_emulated_instruction(vcpu);
713 
714 	return 1;
715 }
716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
717 
718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
719 {
720 	if (err) {
721 		kvm_inject_gp(vcpu, 0);
722 		return 1;
723 	}
724 
725 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
726 				       EMULTYPE_COMPLETE_USER_EXIT);
727 }
728 
729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
730 {
731 	++vcpu->stat.pf_guest;
732 	vcpu->arch.exception.nested_apf =
733 		is_guest_mode(vcpu) && fault->async_page_fault;
734 	if (vcpu->arch.exception.nested_apf) {
735 		vcpu->arch.apf.nested_apf_token = fault->address;
736 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
737 	} else {
738 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
739 					fault->address);
740 	}
741 }
742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
743 
744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746 				    struct x86_exception *fault)
747 {
748 	struct kvm_mmu *fault_mmu;
749 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
750 
751 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752 					       vcpu->arch.walk_mmu;
753 
754 	/*
755 	 * Invalidate the TLB entry for the faulting address, if it exists,
756 	 * else the access will fault indefinitely (and to emulate hardware).
757 	 */
758 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
759 	    !(fault->error_code & PFERR_RSVD_MASK))
760 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761 				       fault_mmu->root.hpa);
762 
763 	/*
764 	 * A workaround for KVM's bad exception handling.  If KVM injected an
765 	 * exception into L2, and L2 encountered a #PF while vectoring the
766 	 * injected exception, manually check to see if L1 wants to intercept
767 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
768 	 * In all other cases, defer the check to nested_ops->check_events(),
769 	 * which will correctly handle priority (this does not).  Note, other
770 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
771 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
772 	 * shadow paging.
773 	 *
774 	 * TODO: Rewrite exception handling to track injected and pending
775 	 *       (VM-Exit) exceptions separately.
776 	 */
777 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
778 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
779 		return true;
780 
781 	fault_mmu->inject_page_fault(vcpu, fault);
782 	return false;
783 }
784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
785 
786 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
787 {
788 	atomic_inc(&vcpu->arch.nmi_queued);
789 	kvm_make_request(KVM_REQ_NMI, vcpu);
790 }
791 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
792 
793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
794 {
795 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
796 }
797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
798 
799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
800 {
801 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
802 }
803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
804 
805 /*
806  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
807  * a #GP and return false.
808  */
809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
810 {
811 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
812 		return true;
813 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
814 	return false;
815 }
816 EXPORT_SYMBOL_GPL(kvm_require_cpl);
817 
818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
819 {
820 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
821 		return true;
822 
823 	kvm_queue_exception(vcpu, UD_VECTOR);
824 	return false;
825 }
826 EXPORT_SYMBOL_GPL(kvm_require_dr);
827 
828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
829 {
830 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
831 }
832 
833 /*
834  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
835  */
836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
837 {
838 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
839 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
840 	gpa_t real_gpa;
841 	int i;
842 	int ret;
843 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
844 
845 	/*
846 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
847 	 * to an L1 GPA.
848 	 */
849 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
850 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
851 	if (real_gpa == INVALID_GPA)
852 		return 0;
853 
854 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
855 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
856 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
857 	if (ret < 0)
858 		return 0;
859 
860 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
861 		if ((pdpte[i] & PT_PRESENT_MASK) &&
862 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
863 			return 0;
864 		}
865 	}
866 
867 	/*
868 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
869 	 * Shadow page roots need to be reconstructed instead.
870 	 */
871 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
872 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
873 
874 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
875 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
876 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
877 	vcpu->arch.pdptrs_from_userspace = false;
878 
879 	return 1;
880 }
881 EXPORT_SYMBOL_GPL(load_pdptrs);
882 
883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
884 {
885 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
886 		kvm_clear_async_pf_completion_queue(vcpu);
887 		kvm_async_pf_hash_reset(vcpu);
888 
889 		/*
890 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
891 		 * perspective.
892 		 */
893 		if (!(cr0 & X86_CR0_PG))
894 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
895 	}
896 
897 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
898 		kvm_mmu_reset_context(vcpu);
899 
900 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
901 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
902 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
903 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
904 }
905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
906 
907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
908 {
909 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
910 
911 	cr0 |= X86_CR0_ET;
912 
913 #ifdef CONFIG_X86_64
914 	if (cr0 & 0xffffffff00000000UL)
915 		return 1;
916 #endif
917 
918 	cr0 &= ~CR0_RESERVED_BITS;
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return 1;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return 1;
925 
926 #ifdef CONFIG_X86_64
927 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
928 	    (cr0 & X86_CR0_PG)) {
929 		int cs_db, cs_l;
930 
931 		if (!is_pae(vcpu))
932 			return 1;
933 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
934 		if (cs_l)
935 			return 1;
936 	}
937 #endif
938 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
939 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
940 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
941 		return 1;
942 
943 	if (!(cr0 & X86_CR0_PG) &&
944 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
945 		return 1;
946 
947 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
948 
949 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_cr0);
954 
955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
956 {
957 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
958 }
959 EXPORT_SYMBOL_GPL(kvm_lmsw);
960 
961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
962 {
963 	if (vcpu->arch.guest_state_protected)
964 		return;
965 
966 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967 
968 		if (vcpu->arch.xcr0 != host_xcr0)
969 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
970 
971 		if (vcpu->arch.xsaves_enabled &&
972 		    vcpu->arch.ia32_xss != host_xss)
973 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
974 	}
975 
976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
979 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
980 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
981 		write_pkru(vcpu->arch.pkru);
982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
983 }
984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
985 
986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
987 {
988 	if (vcpu->arch.guest_state_protected)
989 		return;
990 
991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
992 	if (static_cpu_has(X86_FEATURE_PKU) &&
993 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
995 		vcpu->arch.pkru = rdpkru();
996 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
997 			write_pkru(vcpu->arch.host_pkru);
998 	}
999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1000 
1001 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1002 
1003 		if (vcpu->arch.xcr0 != host_xcr0)
1004 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1005 
1006 		if (vcpu->arch.xsaves_enabled &&
1007 		    vcpu->arch.ia32_xss != host_xss)
1008 			wrmsrl(MSR_IA32_XSS, host_xss);
1009 	}
1010 
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1013 
1014 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1015 {
1016 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1017 }
1018 
1019 #ifdef CONFIG_X86_64
1020 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1021 {
1022 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1023 }
1024 #endif
1025 
1026 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1027 {
1028 	u64 xcr0 = xcr;
1029 	u64 old_xcr0 = vcpu->arch.xcr0;
1030 	u64 valid_bits;
1031 
1032 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1033 	if (index != XCR_XFEATURE_ENABLED_MASK)
1034 		return 1;
1035 	if (!(xcr0 & XFEATURE_MASK_FP))
1036 		return 1;
1037 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1038 		return 1;
1039 
1040 	/*
1041 	 * Do not allow the guest to set bits that we do not support
1042 	 * saving.  However, xcr0 bit 0 is always set, even if the
1043 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1044 	 */
1045 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1046 	if (xcr0 & ~valid_bits)
1047 		return 1;
1048 
1049 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1050 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1051 		return 1;
1052 
1053 	if (xcr0 & XFEATURE_MASK_AVX512) {
1054 		if (!(xcr0 & XFEATURE_MASK_YMM))
1055 			return 1;
1056 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1057 			return 1;
1058 	}
1059 
1060 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1061 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1062 		return 1;
1063 
1064 	vcpu->arch.xcr0 = xcr0;
1065 
1066 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1067 		kvm_update_cpuid_runtime(vcpu);
1068 	return 0;
1069 }
1070 
1071 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1072 {
1073 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1074 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1075 		kvm_inject_gp(vcpu, 0);
1076 		return 1;
1077 	}
1078 
1079 	return kvm_skip_emulated_instruction(vcpu);
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1082 
1083 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1084 {
1085 	if (cr4 & cr4_reserved_bits)
1086 		return false;
1087 
1088 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1094 
1095 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1098 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1099 }
1100 
1101 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1102 {
1103 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1104 		kvm_mmu_reset_context(vcpu);
1105 
1106 	/*
1107 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1108 	 * according to the SDM; however, stale prev_roots could be reused
1109 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1110 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1111 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1112 	 * so fall through.
1113 	 */
1114 	if (!tdp_enabled &&
1115 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1116 		kvm_mmu_unload(vcpu);
1117 
1118 	/*
1119 	 * The TLB has to be flushed for all PCIDs if any of the following
1120 	 * (architecturally required) changes happen:
1121 	 * - CR4.PCIDE is changed from 1 to 0
1122 	 * - CR4.PGE is toggled
1123 	 *
1124 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1125 	 */
1126 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1127 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1128 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1129 
1130 	/*
1131 	 * The TLB has to be flushed for the current PCID if any of the
1132 	 * following (architecturally required) changes happen:
1133 	 * - CR4.SMEP is changed from 0 to 1
1134 	 * - CR4.PAE is toggled
1135 	 */
1136 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1137 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1138 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1139 
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1142 
1143 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1144 {
1145 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1146 
1147 	if (!kvm_is_valid_cr4(vcpu, cr4))
1148 		return 1;
1149 
1150 	if (is_long_mode(vcpu)) {
1151 		if (!(cr4 & X86_CR4_PAE))
1152 			return 1;
1153 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1154 			return 1;
1155 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1156 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1157 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1158 		return 1;
1159 
1160 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1161 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1162 			return 1;
1163 
1164 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1165 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1166 			return 1;
1167 	}
1168 
1169 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1170 
1171 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1172 
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1176 
1177 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1178 {
1179 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1180 	unsigned long roots_to_free = 0;
1181 	int i;
1182 
1183 	/*
1184 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1185 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1186 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1187 	 * the invalidation, but the guest's TLB entries need to be flushed as
1188 	 * the CPU may have cached entries in its TLB for the target PCID.
1189 	 */
1190 	if (unlikely(tdp_enabled)) {
1191 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * If neither the current CR3 nor any of the prev_roots use the given
1197 	 * PCID, then nothing needs to be done here because a resync will
1198 	 * happen anyway before switching to any other CR3.
1199 	 */
1200 	if (kvm_get_active_pcid(vcpu) == pcid) {
1201 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1202 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203 	}
1204 
1205 	/*
1206 	 * If PCID is disabled, there is no need to free prev_roots even if the
1207 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1208 	 * with PCIDE=0.
1209 	 */
1210 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1211 		return;
1212 
1213 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1214 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1215 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1216 
1217 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1218 }
1219 
1220 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1221 {
1222 	bool skip_tlb_flush = false;
1223 	unsigned long pcid = 0;
1224 #ifdef CONFIG_X86_64
1225 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1226 
1227 	if (pcid_enabled) {
1228 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1229 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1230 		pcid = cr3 & X86_CR3_PCID_MASK;
1231 	}
1232 #endif
1233 
1234 	/* PDPTRs are always reloaded for PAE paging. */
1235 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1236 		goto handle_tlb_flush;
1237 
1238 	/*
1239 	 * Do not condition the GPA check on long mode, this helper is used to
1240 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1241 	 * the current vCPU mode is accurate.
1242 	 */
1243 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1244 		return 1;
1245 
1246 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1247 		return 1;
1248 
1249 	if (cr3 != kvm_read_cr3(vcpu))
1250 		kvm_mmu_new_pgd(vcpu, cr3);
1251 
1252 	vcpu->arch.cr3 = cr3;
1253 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1254 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1255 
1256 handle_tlb_flush:
1257 	/*
1258 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1259 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1260 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1261 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1262 	 * i.e. only PCID=0 can be relevant.
1263 	 */
1264 	if (!skip_tlb_flush)
1265 		kvm_invalidate_pcid(vcpu, pcid);
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1270 
1271 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1272 {
1273 	if (cr8 & CR8_RESERVED_BITS)
1274 		return 1;
1275 	if (lapic_in_kernel(vcpu))
1276 		kvm_lapic_set_tpr(vcpu, cr8);
1277 	else
1278 		vcpu->arch.cr8 = cr8;
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1282 
1283 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1284 {
1285 	if (lapic_in_kernel(vcpu))
1286 		return kvm_lapic_get_cr8(vcpu);
1287 	else
1288 		return vcpu->arch.cr8;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1291 
1292 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1293 {
1294 	int i;
1295 
1296 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1297 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1298 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1299 	}
1300 }
1301 
1302 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1303 {
1304 	unsigned long dr7;
1305 
1306 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1307 		dr7 = vcpu->arch.guest_debug_dr7;
1308 	else
1309 		dr7 = vcpu->arch.dr7;
1310 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1311 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1312 	if (dr7 & DR7_BP_EN_MASK)
1313 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1316 
1317 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1318 {
1319 	u64 fixed = DR6_FIXED_1;
1320 
1321 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1322 		fixed |= DR6_RTM;
1323 
1324 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1325 		fixed |= DR6_BUS_LOCK;
1326 	return fixed;
1327 }
1328 
1329 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1330 {
1331 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1332 
1333 	switch (dr) {
1334 	case 0 ... 3:
1335 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1336 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1337 			vcpu->arch.eff_db[dr] = val;
1338 		break;
1339 	case 4:
1340 	case 6:
1341 		if (!kvm_dr6_valid(val))
1342 			return 1; /* #GP */
1343 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1344 		break;
1345 	case 5:
1346 	default: /* 7 */
1347 		if (!kvm_dr7_valid(val))
1348 			return 1; /* #GP */
1349 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1350 		kvm_update_dr7(vcpu);
1351 		break;
1352 	}
1353 
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_dr);
1357 
1358 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1359 {
1360 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1361 
1362 	switch (dr) {
1363 	case 0 ... 3:
1364 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1365 		break;
1366 	case 4:
1367 	case 6:
1368 		*val = vcpu->arch.dr6;
1369 		break;
1370 	case 5:
1371 	default: /* 7 */
1372 		*val = vcpu->arch.dr7;
1373 		break;
1374 	}
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_get_dr);
1377 
1378 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1379 {
1380 	u32 ecx = kvm_rcx_read(vcpu);
1381 	u64 data;
1382 
1383 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1384 		kvm_inject_gp(vcpu, 0);
1385 		return 1;
1386 	}
1387 
1388 	kvm_rax_write(vcpu, (u32)data);
1389 	kvm_rdx_write(vcpu, data >> 32);
1390 	return kvm_skip_emulated_instruction(vcpu);
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1393 
1394 /*
1395  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1396  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1397  *
1398  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1399  * extract the supported MSRs from the related const lists.
1400  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1401  * capabilities of the host cpu. This capabilities test skips MSRs that are
1402  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1403  * may depend on host virtualization features rather than host cpu features.
1404  */
1405 
1406 static const u32 msrs_to_save_all[] = {
1407 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1408 	MSR_STAR,
1409 #ifdef CONFIG_X86_64
1410 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1411 #endif
1412 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1413 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1414 	MSR_IA32_SPEC_CTRL,
1415 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1416 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1417 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1418 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1419 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1420 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1421 	MSR_IA32_UMWAIT_CONTROL,
1422 
1423 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1424 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1425 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1426 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1427 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1428 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1429 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1430 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1431 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1432 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1433 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1434 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1435 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1436 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1437 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1438 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1439 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1440 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1441 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1442 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1443 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1444 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1445 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1446 
1447 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1448 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1449 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1450 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1451 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1452 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1453 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1454 };
1455 
1456 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1457 static unsigned num_msrs_to_save;
1458 
1459 static const u32 emulated_msrs_all[] = {
1460 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1461 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1462 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1463 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1464 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1465 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1466 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1467 	HV_X64_MSR_RESET,
1468 	HV_X64_MSR_VP_INDEX,
1469 	HV_X64_MSR_VP_RUNTIME,
1470 	HV_X64_MSR_SCONTROL,
1471 	HV_X64_MSR_STIMER0_CONFIG,
1472 	HV_X64_MSR_VP_ASSIST_PAGE,
1473 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1474 	HV_X64_MSR_TSC_EMULATION_STATUS,
1475 	HV_X64_MSR_SYNDBG_OPTIONS,
1476 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1477 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1478 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1479 
1480 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1481 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1482 
1483 	MSR_IA32_TSC_ADJUST,
1484 	MSR_IA32_TSC_DEADLINE,
1485 	MSR_IA32_ARCH_CAPABILITIES,
1486 	MSR_IA32_PERF_CAPABILITIES,
1487 	MSR_IA32_MISC_ENABLE,
1488 	MSR_IA32_MCG_STATUS,
1489 	MSR_IA32_MCG_CTL,
1490 	MSR_IA32_MCG_EXT_CTL,
1491 	MSR_IA32_SMBASE,
1492 	MSR_SMI_COUNT,
1493 	MSR_PLATFORM_INFO,
1494 	MSR_MISC_FEATURES_ENABLES,
1495 	MSR_AMD64_VIRT_SPEC_CTRL,
1496 	MSR_AMD64_TSC_RATIO,
1497 	MSR_IA32_POWER_CTL,
1498 	MSR_IA32_UCODE_REV,
1499 
1500 	/*
1501 	 * The following list leaves out MSRs whose values are determined
1502 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1503 	 * We always support the "true" VMX control MSRs, even if the host
1504 	 * processor does not, so I am putting these registers here rather
1505 	 * than in msrs_to_save_all.
1506 	 */
1507 	MSR_IA32_VMX_BASIC,
1508 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1509 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1510 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1511 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1512 	MSR_IA32_VMX_MISC,
1513 	MSR_IA32_VMX_CR0_FIXED0,
1514 	MSR_IA32_VMX_CR4_FIXED0,
1515 	MSR_IA32_VMX_VMCS_ENUM,
1516 	MSR_IA32_VMX_PROCBASED_CTLS2,
1517 	MSR_IA32_VMX_EPT_VPID_CAP,
1518 	MSR_IA32_VMX_VMFUNC,
1519 
1520 	MSR_K7_HWCR,
1521 	MSR_KVM_POLL_CONTROL,
1522 };
1523 
1524 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1525 static unsigned num_emulated_msrs;
1526 
1527 /*
1528  * List of msr numbers which are used to expose MSR-based features that
1529  * can be used by a hypervisor to validate requested CPU features.
1530  */
1531 static const u32 msr_based_features_all[] = {
1532 	MSR_IA32_VMX_BASIC,
1533 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1534 	MSR_IA32_VMX_PINBASED_CTLS,
1535 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1536 	MSR_IA32_VMX_PROCBASED_CTLS,
1537 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1538 	MSR_IA32_VMX_EXIT_CTLS,
1539 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1540 	MSR_IA32_VMX_ENTRY_CTLS,
1541 	MSR_IA32_VMX_MISC,
1542 	MSR_IA32_VMX_CR0_FIXED0,
1543 	MSR_IA32_VMX_CR0_FIXED1,
1544 	MSR_IA32_VMX_CR4_FIXED0,
1545 	MSR_IA32_VMX_CR4_FIXED1,
1546 	MSR_IA32_VMX_VMCS_ENUM,
1547 	MSR_IA32_VMX_PROCBASED_CTLS2,
1548 	MSR_IA32_VMX_EPT_VPID_CAP,
1549 	MSR_IA32_VMX_VMFUNC,
1550 
1551 	MSR_F10H_DECFG,
1552 	MSR_IA32_UCODE_REV,
1553 	MSR_IA32_ARCH_CAPABILITIES,
1554 	MSR_IA32_PERF_CAPABILITIES,
1555 };
1556 
1557 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1558 static unsigned int num_msr_based_features;
1559 
1560 static u64 kvm_get_arch_capabilities(void)
1561 {
1562 	u64 data = 0;
1563 
1564 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1565 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1566 
1567 	/*
1568 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1569 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1570 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1571 	 * L1 guests, so it need not worry about its own (L2) guests.
1572 	 */
1573 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1574 
1575 	/*
1576 	 * If we're doing cache flushes (either "always" or "cond")
1577 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1578 	 * If an outer hypervisor is doing the cache flush for us
1579 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1580 	 * capability to the guest too, and if EPT is disabled we're not
1581 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1582 	 * require a nested hypervisor to do a flush of its own.
1583 	 */
1584 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1585 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1586 
1587 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1588 		data |= ARCH_CAP_RDCL_NO;
1589 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1590 		data |= ARCH_CAP_SSB_NO;
1591 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1592 		data |= ARCH_CAP_MDS_NO;
1593 
1594 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1595 		/*
1596 		 * If RTM=0 because the kernel has disabled TSX, the host might
1597 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1598 		 * and therefore knows that there cannot be TAA) but keep
1599 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1600 		 * and we want to allow migrating those guests to tsx=off hosts.
1601 		 */
1602 		data &= ~ARCH_CAP_TAA_NO;
1603 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1604 		data |= ARCH_CAP_TAA_NO;
1605 	} else {
1606 		/*
1607 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1608 		 * host so the guest can choose between disabling TSX or
1609 		 * using VERW to clear CPU buffers.
1610 		 */
1611 	}
1612 
1613 	/* Guests don't need to know "Fill buffer clear control" exists */
1614 	data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1615 
1616 	return data;
1617 }
1618 
1619 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1620 {
1621 	switch (msr->index) {
1622 	case MSR_IA32_ARCH_CAPABILITIES:
1623 		msr->data = kvm_get_arch_capabilities();
1624 		break;
1625 	case MSR_IA32_UCODE_REV:
1626 		rdmsrl_safe(msr->index, &msr->data);
1627 		break;
1628 	default:
1629 		return static_call(kvm_x86_get_msr_feature)(msr);
1630 	}
1631 	return 0;
1632 }
1633 
1634 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1635 {
1636 	struct kvm_msr_entry msr;
1637 	int r;
1638 
1639 	msr.index = index;
1640 	r = kvm_get_msr_feature(&msr);
1641 
1642 	if (r == KVM_MSR_RET_INVALID) {
1643 		/* Unconditionally clear the output for simplicity */
1644 		*data = 0;
1645 		if (kvm_msr_ignored_check(index, 0, false))
1646 			r = 0;
1647 	}
1648 
1649 	if (r)
1650 		return r;
1651 
1652 	*data = msr.data;
1653 
1654 	return 0;
1655 }
1656 
1657 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1658 {
1659 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1660 		return false;
1661 
1662 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1663 		return false;
1664 
1665 	if (efer & (EFER_LME | EFER_LMA) &&
1666 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1667 		return false;
1668 
1669 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1670 		return false;
1671 
1672 	return true;
1673 
1674 }
1675 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1676 {
1677 	if (efer & efer_reserved_bits)
1678 		return false;
1679 
1680 	return __kvm_valid_efer(vcpu, efer);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1683 
1684 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1685 {
1686 	u64 old_efer = vcpu->arch.efer;
1687 	u64 efer = msr_info->data;
1688 	int r;
1689 
1690 	if (efer & efer_reserved_bits)
1691 		return 1;
1692 
1693 	if (!msr_info->host_initiated) {
1694 		if (!__kvm_valid_efer(vcpu, efer))
1695 			return 1;
1696 
1697 		if (is_paging(vcpu) &&
1698 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1699 			return 1;
1700 	}
1701 
1702 	efer &= ~EFER_LMA;
1703 	efer |= vcpu->arch.efer & EFER_LMA;
1704 
1705 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1706 	if (r) {
1707 		WARN_ON(r > 0);
1708 		return r;
1709 	}
1710 
1711 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1712 		kvm_mmu_reset_context(vcpu);
1713 
1714 	return 0;
1715 }
1716 
1717 void kvm_enable_efer_bits(u64 mask)
1718 {
1719        efer_reserved_bits &= ~mask;
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1722 
1723 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1724 {
1725 	struct kvm_x86_msr_filter *msr_filter;
1726 	struct msr_bitmap_range *ranges;
1727 	struct kvm *kvm = vcpu->kvm;
1728 	bool allowed;
1729 	int idx;
1730 	u32 i;
1731 
1732 	/* x2APIC MSRs do not support filtering. */
1733 	if (index >= 0x800 && index <= 0x8ff)
1734 		return true;
1735 
1736 	idx = srcu_read_lock(&kvm->srcu);
1737 
1738 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1739 	if (!msr_filter) {
1740 		allowed = true;
1741 		goto out;
1742 	}
1743 
1744 	allowed = msr_filter->default_allow;
1745 	ranges = msr_filter->ranges;
1746 
1747 	for (i = 0; i < msr_filter->count; i++) {
1748 		u32 start = ranges[i].base;
1749 		u32 end = start + ranges[i].nmsrs;
1750 		u32 flags = ranges[i].flags;
1751 		unsigned long *bitmap = ranges[i].bitmap;
1752 
1753 		if ((index >= start) && (index < end) && (flags & type)) {
1754 			allowed = !!test_bit(index - start, bitmap);
1755 			break;
1756 		}
1757 	}
1758 
1759 out:
1760 	srcu_read_unlock(&kvm->srcu, idx);
1761 
1762 	return allowed;
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1765 
1766 /*
1767  * Write @data into the MSR specified by @index.  Select MSR specific fault
1768  * checks are bypassed if @host_initiated is %true.
1769  * Returns 0 on success, non-0 otherwise.
1770  * Assumes vcpu_load() was already called.
1771  */
1772 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1773 			 bool host_initiated)
1774 {
1775 	struct msr_data msr;
1776 
1777 	switch (index) {
1778 	case MSR_FS_BASE:
1779 	case MSR_GS_BASE:
1780 	case MSR_KERNEL_GS_BASE:
1781 	case MSR_CSTAR:
1782 	case MSR_LSTAR:
1783 		if (is_noncanonical_address(data, vcpu))
1784 			return 1;
1785 		break;
1786 	case MSR_IA32_SYSENTER_EIP:
1787 	case MSR_IA32_SYSENTER_ESP:
1788 		/*
1789 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1790 		 * non-canonical address is written on Intel but not on
1791 		 * AMD (which ignores the top 32-bits, because it does
1792 		 * not implement 64-bit SYSENTER).
1793 		 *
1794 		 * 64-bit code should hence be able to write a non-canonical
1795 		 * value on AMD.  Making the address canonical ensures that
1796 		 * vmentry does not fail on Intel after writing a non-canonical
1797 		 * value, and that something deterministic happens if the guest
1798 		 * invokes 64-bit SYSENTER.
1799 		 */
1800 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1801 		break;
1802 	case MSR_TSC_AUX:
1803 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1804 			return 1;
1805 
1806 		if (!host_initiated &&
1807 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1808 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1809 			return 1;
1810 
1811 		/*
1812 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1813 		 * incomplete and conflicting architectural behavior.  Current
1814 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1815 		 * reserved and always read as zeros.  Enforce Intel's reserved
1816 		 * bits check if and only if the guest CPU is Intel, and clear
1817 		 * the bits in all other cases.  This ensures cross-vendor
1818 		 * migration will provide consistent behavior for the guest.
1819 		 */
1820 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1821 			return 1;
1822 
1823 		data = (u32)data;
1824 		break;
1825 	}
1826 
1827 	msr.data = data;
1828 	msr.index = index;
1829 	msr.host_initiated = host_initiated;
1830 
1831 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1832 }
1833 
1834 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1835 				     u32 index, u64 data, bool host_initiated)
1836 {
1837 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1838 
1839 	if (ret == KVM_MSR_RET_INVALID)
1840 		if (kvm_msr_ignored_check(index, data, true))
1841 			ret = 0;
1842 
1843 	return ret;
1844 }
1845 
1846 /*
1847  * Read the MSR specified by @index into @data.  Select MSR specific fault
1848  * checks are bypassed if @host_initiated is %true.
1849  * Returns 0 on success, non-0 otherwise.
1850  * Assumes vcpu_load() was already called.
1851  */
1852 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1853 		  bool host_initiated)
1854 {
1855 	struct msr_data msr;
1856 	int ret;
1857 
1858 	switch (index) {
1859 	case MSR_TSC_AUX:
1860 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1861 			return 1;
1862 
1863 		if (!host_initiated &&
1864 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1865 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1866 			return 1;
1867 		break;
1868 	}
1869 
1870 	msr.index = index;
1871 	msr.host_initiated = host_initiated;
1872 
1873 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1874 	if (!ret)
1875 		*data = msr.data;
1876 	return ret;
1877 }
1878 
1879 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1880 				     u32 index, u64 *data, bool host_initiated)
1881 {
1882 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1883 
1884 	if (ret == KVM_MSR_RET_INVALID) {
1885 		/* Unconditionally clear *data for simplicity */
1886 		*data = 0;
1887 		if (kvm_msr_ignored_check(index, 0, false))
1888 			ret = 0;
1889 	}
1890 
1891 	return ret;
1892 }
1893 
1894 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1895 {
1896 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1897 		return KVM_MSR_RET_FILTERED;
1898 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1899 }
1900 
1901 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1902 {
1903 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1904 		return KVM_MSR_RET_FILTERED;
1905 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1906 }
1907 
1908 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1909 {
1910 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_get_msr);
1913 
1914 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1915 {
1916 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_set_msr);
1919 
1920 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1921 {
1922 	if (!vcpu->run->msr.error) {
1923 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1924 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1925 	}
1926 }
1927 
1928 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1929 {
1930 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1931 }
1932 
1933 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1934 {
1935 	complete_userspace_rdmsr(vcpu);
1936 	return complete_emulated_msr_access(vcpu);
1937 }
1938 
1939 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1940 {
1941 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1942 }
1943 
1944 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1945 {
1946 	complete_userspace_rdmsr(vcpu);
1947 	return complete_fast_msr_access(vcpu);
1948 }
1949 
1950 static u64 kvm_msr_reason(int r)
1951 {
1952 	switch (r) {
1953 	case KVM_MSR_RET_INVALID:
1954 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1955 	case KVM_MSR_RET_FILTERED:
1956 		return KVM_MSR_EXIT_REASON_FILTER;
1957 	default:
1958 		return KVM_MSR_EXIT_REASON_INVAL;
1959 	}
1960 }
1961 
1962 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1963 			      u32 exit_reason, u64 data,
1964 			      int (*completion)(struct kvm_vcpu *vcpu),
1965 			      int r)
1966 {
1967 	u64 msr_reason = kvm_msr_reason(r);
1968 
1969 	/* Check if the user wanted to know about this MSR fault */
1970 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1971 		return 0;
1972 
1973 	vcpu->run->exit_reason = exit_reason;
1974 	vcpu->run->msr.error = 0;
1975 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1976 	vcpu->run->msr.reason = msr_reason;
1977 	vcpu->run->msr.index = index;
1978 	vcpu->run->msr.data = data;
1979 	vcpu->arch.complete_userspace_io = completion;
1980 
1981 	return 1;
1982 }
1983 
1984 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1985 {
1986 	u32 ecx = kvm_rcx_read(vcpu);
1987 	u64 data;
1988 	int r;
1989 
1990 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1991 
1992 	if (!r) {
1993 		trace_kvm_msr_read(ecx, data);
1994 
1995 		kvm_rax_write(vcpu, data & -1u);
1996 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1997 	} else {
1998 		/* MSR read failed? See if we should ask user space */
1999 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2000 				       complete_fast_rdmsr, r))
2001 			return 0;
2002 		trace_kvm_msr_read_ex(ecx);
2003 	}
2004 
2005 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2006 }
2007 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2008 
2009 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2010 {
2011 	u32 ecx = kvm_rcx_read(vcpu);
2012 	u64 data = kvm_read_edx_eax(vcpu);
2013 	int r;
2014 
2015 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2016 
2017 	if (!r) {
2018 		trace_kvm_msr_write(ecx, data);
2019 	} else {
2020 		/* MSR write failed? See if we should ask user space */
2021 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2022 				       complete_fast_msr_access, r))
2023 			return 0;
2024 		/* Signal all other negative errors to userspace */
2025 		if (r < 0)
2026 			return r;
2027 		trace_kvm_msr_write_ex(ecx, data);
2028 	}
2029 
2030 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2033 
2034 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2035 {
2036 	return kvm_skip_emulated_instruction(vcpu);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2039 
2040 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2041 {
2042 	/* Treat an INVD instruction as a NOP and just skip it. */
2043 	return kvm_emulate_as_nop(vcpu);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2046 
2047 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2048 {
2049 	kvm_queue_exception(vcpu, UD_VECTOR);
2050 	return 1;
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2053 
2054 
2055 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2056 {
2057 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2058 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2059 		return kvm_handle_invalid_op(vcpu);
2060 
2061 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2062 	return kvm_emulate_as_nop(vcpu);
2063 }
2064 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2065 {
2066 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2069 
2070 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2071 {
2072 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2075 
2076 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2077 {
2078 	xfer_to_guest_mode_prepare();
2079 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2080 		xfer_to_guest_mode_work_pending();
2081 }
2082 
2083 /*
2084  * The fast path for frequent and performance sensitive wrmsr emulation,
2085  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2086  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2087  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2088  * other cases which must be called after interrupts are enabled on the host.
2089  */
2090 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2091 {
2092 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2093 		return 1;
2094 
2095 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2096 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2097 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2098 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2099 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2100 
2101 	return 1;
2102 }
2103 
2104 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2105 {
2106 	if (!kvm_can_use_hv_timer(vcpu))
2107 		return 1;
2108 
2109 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2110 	return 0;
2111 }
2112 
2113 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2114 {
2115 	u32 msr = kvm_rcx_read(vcpu);
2116 	u64 data;
2117 	fastpath_t ret = EXIT_FASTPATH_NONE;
2118 
2119 	switch (msr) {
2120 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2121 		data = kvm_read_edx_eax(vcpu);
2122 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2123 			kvm_skip_emulated_instruction(vcpu);
2124 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2125 		}
2126 		break;
2127 	case MSR_IA32_TSC_DEADLINE:
2128 		data = kvm_read_edx_eax(vcpu);
2129 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2130 			kvm_skip_emulated_instruction(vcpu);
2131 			ret = EXIT_FASTPATH_REENTER_GUEST;
2132 		}
2133 		break;
2134 	default:
2135 		break;
2136 	}
2137 
2138 	if (ret != EXIT_FASTPATH_NONE)
2139 		trace_kvm_msr_write(msr, data);
2140 
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2144 
2145 /*
2146  * Adapt set_msr() to msr_io()'s calling convention
2147  */
2148 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2149 {
2150 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2151 }
2152 
2153 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2154 {
2155 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2156 }
2157 
2158 #ifdef CONFIG_X86_64
2159 struct pvclock_clock {
2160 	int vclock_mode;
2161 	u64 cycle_last;
2162 	u64 mask;
2163 	u32 mult;
2164 	u32 shift;
2165 	u64 base_cycles;
2166 	u64 offset;
2167 };
2168 
2169 struct pvclock_gtod_data {
2170 	seqcount_t	seq;
2171 
2172 	struct pvclock_clock clock; /* extract of a clocksource struct */
2173 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2174 
2175 	ktime_t		offs_boot;
2176 	u64		wall_time_sec;
2177 };
2178 
2179 static struct pvclock_gtod_data pvclock_gtod_data;
2180 
2181 static void update_pvclock_gtod(struct timekeeper *tk)
2182 {
2183 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2184 
2185 	write_seqcount_begin(&vdata->seq);
2186 
2187 	/* copy pvclock gtod data */
2188 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2189 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2190 	vdata->clock.mask		= tk->tkr_mono.mask;
2191 	vdata->clock.mult		= tk->tkr_mono.mult;
2192 	vdata->clock.shift		= tk->tkr_mono.shift;
2193 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2194 	vdata->clock.offset		= tk->tkr_mono.base;
2195 
2196 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2197 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2198 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2199 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2200 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2201 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2202 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2203 
2204 	vdata->wall_time_sec            = tk->xtime_sec;
2205 
2206 	vdata->offs_boot		= tk->offs_boot;
2207 
2208 	write_seqcount_end(&vdata->seq);
2209 }
2210 
2211 static s64 get_kvmclock_base_ns(void)
2212 {
2213 	/* Count up from boot time, but with the frequency of the raw clock.  */
2214 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2215 }
2216 #else
2217 static s64 get_kvmclock_base_ns(void)
2218 {
2219 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2220 	return ktime_get_boottime_ns();
2221 }
2222 #endif
2223 
2224 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2225 {
2226 	int version;
2227 	int r;
2228 	struct pvclock_wall_clock wc;
2229 	u32 wc_sec_hi;
2230 	u64 wall_nsec;
2231 
2232 	if (!wall_clock)
2233 		return;
2234 
2235 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2236 	if (r)
2237 		return;
2238 
2239 	if (version & 1)
2240 		++version;  /* first time write, random junk */
2241 
2242 	++version;
2243 
2244 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2245 		return;
2246 
2247 	/*
2248 	 * The guest calculates current wall clock time by adding
2249 	 * system time (updated by kvm_guest_time_update below) to the
2250 	 * wall clock specified here.  We do the reverse here.
2251 	 */
2252 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2253 
2254 	wc.nsec = do_div(wall_nsec, 1000000000);
2255 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2256 	wc.version = version;
2257 
2258 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2259 
2260 	if (sec_hi_ofs) {
2261 		wc_sec_hi = wall_nsec >> 32;
2262 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2263 				&wc_sec_hi, sizeof(wc_sec_hi));
2264 	}
2265 
2266 	version++;
2267 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2268 }
2269 
2270 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2271 				  bool old_msr, bool host_initiated)
2272 {
2273 	struct kvm_arch *ka = &vcpu->kvm->arch;
2274 
2275 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2276 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2277 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2278 
2279 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2280 	}
2281 
2282 	vcpu->arch.time = system_time;
2283 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2284 
2285 	/* we verify if the enable bit is set... */
2286 	if (system_time & 1) {
2287 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2288 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2289 					  sizeof(struct pvclock_vcpu_time_info));
2290 	} else {
2291 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2292 	}
2293 
2294 	return;
2295 }
2296 
2297 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2298 {
2299 	do_shl32_div32(dividend, divisor);
2300 	return dividend;
2301 }
2302 
2303 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2304 			       s8 *pshift, u32 *pmultiplier)
2305 {
2306 	uint64_t scaled64;
2307 	int32_t  shift = 0;
2308 	uint64_t tps64;
2309 	uint32_t tps32;
2310 
2311 	tps64 = base_hz;
2312 	scaled64 = scaled_hz;
2313 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2314 		tps64 >>= 1;
2315 		shift--;
2316 	}
2317 
2318 	tps32 = (uint32_t)tps64;
2319 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2320 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2321 			scaled64 >>= 1;
2322 		else
2323 			tps32 <<= 1;
2324 		shift++;
2325 	}
2326 
2327 	*pshift = shift;
2328 	*pmultiplier = div_frac(scaled64, tps32);
2329 }
2330 
2331 #ifdef CONFIG_X86_64
2332 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2333 #endif
2334 
2335 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2336 static unsigned long max_tsc_khz;
2337 
2338 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2339 {
2340 	u64 v = (u64)khz * (1000000 + ppm);
2341 	do_div(v, 1000000);
2342 	return v;
2343 }
2344 
2345 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2346 
2347 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2348 {
2349 	u64 ratio;
2350 
2351 	/* Guest TSC same frequency as host TSC? */
2352 	if (!scale) {
2353 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2354 		return 0;
2355 	}
2356 
2357 	/* TSC scaling supported? */
2358 	if (!kvm_caps.has_tsc_control) {
2359 		if (user_tsc_khz > tsc_khz) {
2360 			vcpu->arch.tsc_catchup = 1;
2361 			vcpu->arch.tsc_always_catchup = 1;
2362 			return 0;
2363 		} else {
2364 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2365 			return -1;
2366 		}
2367 	}
2368 
2369 	/* TSC scaling required  - calculate ratio */
2370 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2371 				user_tsc_khz, tsc_khz);
2372 
2373 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2374 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2375 			            user_tsc_khz);
2376 		return -1;
2377 	}
2378 
2379 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2380 	return 0;
2381 }
2382 
2383 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2384 {
2385 	u32 thresh_lo, thresh_hi;
2386 	int use_scaling = 0;
2387 
2388 	/* tsc_khz can be zero if TSC calibration fails */
2389 	if (user_tsc_khz == 0) {
2390 		/* set tsc_scaling_ratio to a safe value */
2391 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2392 		return -1;
2393 	}
2394 
2395 	/* Compute a scale to convert nanoseconds in TSC cycles */
2396 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2397 			   &vcpu->arch.virtual_tsc_shift,
2398 			   &vcpu->arch.virtual_tsc_mult);
2399 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2400 
2401 	/*
2402 	 * Compute the variation in TSC rate which is acceptable
2403 	 * within the range of tolerance and decide if the
2404 	 * rate being applied is within that bounds of the hardware
2405 	 * rate.  If so, no scaling or compensation need be done.
2406 	 */
2407 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2408 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2409 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2410 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2411 		use_scaling = 1;
2412 	}
2413 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2414 }
2415 
2416 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2417 {
2418 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2419 				      vcpu->arch.virtual_tsc_mult,
2420 				      vcpu->arch.virtual_tsc_shift);
2421 	tsc += vcpu->arch.this_tsc_write;
2422 	return tsc;
2423 }
2424 
2425 #ifdef CONFIG_X86_64
2426 static inline int gtod_is_based_on_tsc(int mode)
2427 {
2428 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2429 }
2430 #endif
2431 
2432 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2433 {
2434 #ifdef CONFIG_X86_64
2435 	bool vcpus_matched;
2436 	struct kvm_arch *ka = &vcpu->kvm->arch;
2437 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2438 
2439 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2440 			 atomic_read(&vcpu->kvm->online_vcpus));
2441 
2442 	/*
2443 	 * Once the masterclock is enabled, always perform request in
2444 	 * order to update it.
2445 	 *
2446 	 * In order to enable masterclock, the host clocksource must be TSC
2447 	 * and the vcpus need to have matched TSCs.  When that happens,
2448 	 * perform request to enable masterclock.
2449 	 */
2450 	if (ka->use_master_clock ||
2451 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2452 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2453 
2454 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2455 			    atomic_read(&vcpu->kvm->online_vcpus),
2456 		            ka->use_master_clock, gtod->clock.vclock_mode);
2457 #endif
2458 }
2459 
2460 /*
2461  * Multiply tsc by a fixed point number represented by ratio.
2462  *
2463  * The most significant 64-N bits (mult) of ratio represent the
2464  * integral part of the fixed point number; the remaining N bits
2465  * (frac) represent the fractional part, ie. ratio represents a fixed
2466  * point number (mult + frac * 2^(-N)).
2467  *
2468  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2469  */
2470 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2471 {
2472 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2473 }
2474 
2475 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2476 {
2477 	u64 _tsc = tsc;
2478 
2479 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2480 		_tsc = __scale_tsc(ratio, tsc);
2481 
2482 	return _tsc;
2483 }
2484 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2485 
2486 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2487 {
2488 	u64 tsc;
2489 
2490 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2491 
2492 	return target_tsc - tsc;
2493 }
2494 
2495 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2496 {
2497 	return vcpu->arch.l1_tsc_offset +
2498 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2501 
2502 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2503 {
2504 	u64 nested_offset;
2505 
2506 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2507 		nested_offset = l1_offset;
2508 	else
2509 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2510 						kvm_caps.tsc_scaling_ratio_frac_bits);
2511 
2512 	nested_offset += l2_offset;
2513 	return nested_offset;
2514 }
2515 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2516 
2517 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2518 {
2519 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2520 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2521 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2522 
2523 	return l1_multiplier;
2524 }
2525 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2526 
2527 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2528 {
2529 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2530 				   vcpu->arch.l1_tsc_offset,
2531 				   l1_offset);
2532 
2533 	vcpu->arch.l1_tsc_offset = l1_offset;
2534 
2535 	/*
2536 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2537 	 * according to the spec this should set L1's TSC (as opposed to
2538 	 * setting L1's offset for L2).
2539 	 */
2540 	if (is_guest_mode(vcpu))
2541 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2542 			l1_offset,
2543 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2544 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2545 	else
2546 		vcpu->arch.tsc_offset = l1_offset;
2547 
2548 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2549 }
2550 
2551 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2552 {
2553 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2554 
2555 	/* Userspace is changing the multiplier while L2 is active */
2556 	if (is_guest_mode(vcpu))
2557 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2558 			l1_multiplier,
2559 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2560 	else
2561 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2562 
2563 	if (kvm_caps.has_tsc_control)
2564 		static_call(kvm_x86_write_tsc_multiplier)(
2565 			vcpu, vcpu->arch.tsc_scaling_ratio);
2566 }
2567 
2568 static inline bool kvm_check_tsc_unstable(void)
2569 {
2570 #ifdef CONFIG_X86_64
2571 	/*
2572 	 * TSC is marked unstable when we're running on Hyper-V,
2573 	 * 'TSC page' clocksource is good.
2574 	 */
2575 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2576 		return false;
2577 #endif
2578 	return check_tsc_unstable();
2579 }
2580 
2581 /*
2582  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2583  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2584  * participates in.
2585  */
2586 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2587 				  u64 ns, bool matched)
2588 {
2589 	struct kvm *kvm = vcpu->kvm;
2590 
2591 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2592 
2593 	/*
2594 	 * We also track th most recent recorded KHZ, write and time to
2595 	 * allow the matching interval to be extended at each write.
2596 	 */
2597 	kvm->arch.last_tsc_nsec = ns;
2598 	kvm->arch.last_tsc_write = tsc;
2599 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2600 	kvm->arch.last_tsc_offset = offset;
2601 
2602 	vcpu->arch.last_guest_tsc = tsc;
2603 
2604 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2605 
2606 	if (!matched) {
2607 		/*
2608 		 * We split periods of matched TSC writes into generations.
2609 		 * For each generation, we track the original measured
2610 		 * nanosecond time, offset, and write, so if TSCs are in
2611 		 * sync, we can match exact offset, and if not, we can match
2612 		 * exact software computation in compute_guest_tsc()
2613 		 *
2614 		 * These values are tracked in kvm->arch.cur_xxx variables.
2615 		 */
2616 		kvm->arch.cur_tsc_generation++;
2617 		kvm->arch.cur_tsc_nsec = ns;
2618 		kvm->arch.cur_tsc_write = tsc;
2619 		kvm->arch.cur_tsc_offset = offset;
2620 		kvm->arch.nr_vcpus_matched_tsc = 0;
2621 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2622 		kvm->arch.nr_vcpus_matched_tsc++;
2623 	}
2624 
2625 	/* Keep track of which generation this VCPU has synchronized to */
2626 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2627 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2628 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2629 
2630 	kvm_track_tsc_matching(vcpu);
2631 }
2632 
2633 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2634 {
2635 	struct kvm *kvm = vcpu->kvm;
2636 	u64 offset, ns, elapsed;
2637 	unsigned long flags;
2638 	bool matched = false;
2639 	bool synchronizing = false;
2640 
2641 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2642 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2643 	ns = get_kvmclock_base_ns();
2644 	elapsed = ns - kvm->arch.last_tsc_nsec;
2645 
2646 	if (vcpu->arch.virtual_tsc_khz) {
2647 		if (data == 0) {
2648 			/*
2649 			 * detection of vcpu initialization -- need to sync
2650 			 * with other vCPUs. This particularly helps to keep
2651 			 * kvm_clock stable after CPU hotplug
2652 			 */
2653 			synchronizing = true;
2654 		} else {
2655 			u64 tsc_exp = kvm->arch.last_tsc_write +
2656 						nsec_to_cycles(vcpu, elapsed);
2657 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2658 			/*
2659 			 * Special case: TSC write with a small delta (1 second)
2660 			 * of virtual cycle time against real time is
2661 			 * interpreted as an attempt to synchronize the CPU.
2662 			 */
2663 			synchronizing = data < tsc_exp + tsc_hz &&
2664 					data + tsc_hz > tsc_exp;
2665 		}
2666 	}
2667 
2668 	/*
2669 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2670 	 * TSC, we add elapsed time in this computation.  We could let the
2671 	 * compensation code attempt to catch up if we fall behind, but
2672 	 * it's better to try to match offsets from the beginning.
2673          */
2674 	if (synchronizing &&
2675 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2676 		if (!kvm_check_tsc_unstable()) {
2677 			offset = kvm->arch.cur_tsc_offset;
2678 		} else {
2679 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2680 			data += delta;
2681 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2682 		}
2683 		matched = true;
2684 	}
2685 
2686 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2687 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2688 }
2689 
2690 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2691 					   s64 adjustment)
2692 {
2693 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2694 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2695 }
2696 
2697 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2698 {
2699 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2700 		WARN_ON(adjustment < 0);
2701 	adjustment = kvm_scale_tsc((u64) adjustment,
2702 				   vcpu->arch.l1_tsc_scaling_ratio);
2703 	adjust_tsc_offset_guest(vcpu, adjustment);
2704 }
2705 
2706 #ifdef CONFIG_X86_64
2707 
2708 static u64 read_tsc(void)
2709 {
2710 	u64 ret = (u64)rdtsc_ordered();
2711 	u64 last = pvclock_gtod_data.clock.cycle_last;
2712 
2713 	if (likely(ret >= last))
2714 		return ret;
2715 
2716 	/*
2717 	 * GCC likes to generate cmov here, but this branch is extremely
2718 	 * predictable (it's just a function of time and the likely is
2719 	 * very likely) and there's a data dependence, so force GCC
2720 	 * to generate a branch instead.  I don't barrier() because
2721 	 * we don't actually need a barrier, and if this function
2722 	 * ever gets inlined it will generate worse code.
2723 	 */
2724 	asm volatile ("");
2725 	return last;
2726 }
2727 
2728 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2729 			  int *mode)
2730 {
2731 	long v;
2732 	u64 tsc_pg_val;
2733 
2734 	switch (clock->vclock_mode) {
2735 	case VDSO_CLOCKMODE_HVCLOCK:
2736 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2737 						  tsc_timestamp);
2738 		if (tsc_pg_val != U64_MAX) {
2739 			/* TSC page valid */
2740 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2741 			v = (tsc_pg_val - clock->cycle_last) &
2742 				clock->mask;
2743 		} else {
2744 			/* TSC page invalid */
2745 			*mode = VDSO_CLOCKMODE_NONE;
2746 		}
2747 		break;
2748 	case VDSO_CLOCKMODE_TSC:
2749 		*mode = VDSO_CLOCKMODE_TSC;
2750 		*tsc_timestamp = read_tsc();
2751 		v = (*tsc_timestamp - clock->cycle_last) &
2752 			clock->mask;
2753 		break;
2754 	default:
2755 		*mode = VDSO_CLOCKMODE_NONE;
2756 	}
2757 
2758 	if (*mode == VDSO_CLOCKMODE_NONE)
2759 		*tsc_timestamp = v = 0;
2760 
2761 	return v * clock->mult;
2762 }
2763 
2764 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2765 {
2766 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2767 	unsigned long seq;
2768 	int mode;
2769 	u64 ns;
2770 
2771 	do {
2772 		seq = read_seqcount_begin(&gtod->seq);
2773 		ns = gtod->raw_clock.base_cycles;
2774 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2775 		ns >>= gtod->raw_clock.shift;
2776 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2777 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2778 	*t = ns;
2779 
2780 	return mode;
2781 }
2782 
2783 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2784 {
2785 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2786 	unsigned long seq;
2787 	int mode;
2788 	u64 ns;
2789 
2790 	do {
2791 		seq = read_seqcount_begin(&gtod->seq);
2792 		ts->tv_sec = gtod->wall_time_sec;
2793 		ns = gtod->clock.base_cycles;
2794 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2795 		ns >>= gtod->clock.shift;
2796 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2797 
2798 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2799 	ts->tv_nsec = ns;
2800 
2801 	return mode;
2802 }
2803 
2804 /* returns true if host is using TSC based clocksource */
2805 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2806 {
2807 	/* checked again under seqlock below */
2808 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2809 		return false;
2810 
2811 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2812 						      tsc_timestamp));
2813 }
2814 
2815 /* returns true if host is using TSC based clocksource */
2816 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2817 					   u64 *tsc_timestamp)
2818 {
2819 	/* checked again under seqlock below */
2820 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2821 		return false;
2822 
2823 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2824 }
2825 #endif
2826 
2827 /*
2828  *
2829  * Assuming a stable TSC across physical CPUS, and a stable TSC
2830  * across virtual CPUs, the following condition is possible.
2831  * Each numbered line represents an event visible to both
2832  * CPUs at the next numbered event.
2833  *
2834  * "timespecX" represents host monotonic time. "tscX" represents
2835  * RDTSC value.
2836  *
2837  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2838  *
2839  * 1.  read timespec0,tsc0
2840  * 2.					| timespec1 = timespec0 + N
2841  * 					| tsc1 = tsc0 + M
2842  * 3. transition to guest		| transition to guest
2843  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2844  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2845  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2846  *
2847  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2848  *
2849  * 	- ret0 < ret1
2850  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2851  *		...
2852  *	- 0 < N - M => M < N
2853  *
2854  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2855  * always the case (the difference between two distinct xtime instances
2856  * might be smaller then the difference between corresponding TSC reads,
2857  * when updating guest vcpus pvclock areas).
2858  *
2859  * To avoid that problem, do not allow visibility of distinct
2860  * system_timestamp/tsc_timestamp values simultaneously: use a master
2861  * copy of host monotonic time values. Update that master copy
2862  * in lockstep.
2863  *
2864  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2865  *
2866  */
2867 
2868 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2869 {
2870 #ifdef CONFIG_X86_64
2871 	struct kvm_arch *ka = &kvm->arch;
2872 	int vclock_mode;
2873 	bool host_tsc_clocksource, vcpus_matched;
2874 
2875 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2876 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2877 			atomic_read(&kvm->online_vcpus));
2878 
2879 	/*
2880 	 * If the host uses TSC clock, then passthrough TSC as stable
2881 	 * to the guest.
2882 	 */
2883 	host_tsc_clocksource = kvm_get_time_and_clockread(
2884 					&ka->master_kernel_ns,
2885 					&ka->master_cycle_now);
2886 
2887 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2888 				&& !ka->backwards_tsc_observed
2889 				&& !ka->boot_vcpu_runs_old_kvmclock;
2890 
2891 	if (ka->use_master_clock)
2892 		atomic_set(&kvm_guest_has_master_clock, 1);
2893 
2894 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2895 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2896 					vcpus_matched);
2897 #endif
2898 }
2899 
2900 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2901 {
2902 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2903 }
2904 
2905 static void __kvm_start_pvclock_update(struct kvm *kvm)
2906 {
2907 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2908 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2909 }
2910 
2911 static void kvm_start_pvclock_update(struct kvm *kvm)
2912 {
2913 	kvm_make_mclock_inprogress_request(kvm);
2914 
2915 	/* no guest entries from this point */
2916 	__kvm_start_pvclock_update(kvm);
2917 }
2918 
2919 static void kvm_end_pvclock_update(struct kvm *kvm)
2920 {
2921 	struct kvm_arch *ka = &kvm->arch;
2922 	struct kvm_vcpu *vcpu;
2923 	unsigned long i;
2924 
2925 	write_seqcount_end(&ka->pvclock_sc);
2926 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2927 	kvm_for_each_vcpu(i, vcpu, kvm)
2928 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2929 
2930 	/* guest entries allowed */
2931 	kvm_for_each_vcpu(i, vcpu, kvm)
2932 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2933 }
2934 
2935 static void kvm_update_masterclock(struct kvm *kvm)
2936 {
2937 	kvm_hv_request_tsc_page_update(kvm);
2938 	kvm_start_pvclock_update(kvm);
2939 	pvclock_update_vm_gtod_copy(kvm);
2940 	kvm_end_pvclock_update(kvm);
2941 }
2942 
2943 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2944 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2945 {
2946 	struct kvm_arch *ka = &kvm->arch;
2947 	struct pvclock_vcpu_time_info hv_clock;
2948 
2949 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2950 	get_cpu();
2951 
2952 	data->flags = 0;
2953 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2954 #ifdef CONFIG_X86_64
2955 		struct timespec64 ts;
2956 
2957 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2958 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2959 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2960 		} else
2961 #endif
2962 		data->host_tsc = rdtsc();
2963 
2964 		data->flags |= KVM_CLOCK_TSC_STABLE;
2965 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2966 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2967 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2968 				   &hv_clock.tsc_shift,
2969 				   &hv_clock.tsc_to_system_mul);
2970 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2971 	} else {
2972 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2973 	}
2974 
2975 	put_cpu();
2976 }
2977 
2978 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2979 {
2980 	struct kvm_arch *ka = &kvm->arch;
2981 	unsigned seq;
2982 
2983 	do {
2984 		seq = read_seqcount_begin(&ka->pvclock_sc);
2985 		__get_kvmclock(kvm, data);
2986 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2987 }
2988 
2989 u64 get_kvmclock_ns(struct kvm *kvm)
2990 {
2991 	struct kvm_clock_data data;
2992 
2993 	get_kvmclock(kvm, &data);
2994 	return data.clock;
2995 }
2996 
2997 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2998 				    struct gfn_to_pfn_cache *gpc,
2999 				    unsigned int offset)
3000 {
3001 	struct kvm_vcpu_arch *vcpu = &v->arch;
3002 	struct pvclock_vcpu_time_info *guest_hv_clock;
3003 	unsigned long flags;
3004 
3005 	read_lock_irqsave(&gpc->lock, flags);
3006 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3007 					   offset + sizeof(*guest_hv_clock))) {
3008 		read_unlock_irqrestore(&gpc->lock, flags);
3009 
3010 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3011 						 offset + sizeof(*guest_hv_clock)))
3012 			return;
3013 
3014 		read_lock_irqsave(&gpc->lock, flags);
3015 	}
3016 
3017 	guest_hv_clock = (void *)(gpc->khva + offset);
3018 
3019 	/*
3020 	 * This VCPU is paused, but it's legal for a guest to read another
3021 	 * VCPU's kvmclock, so we really have to follow the specification where
3022 	 * it says that version is odd if data is being modified, and even after
3023 	 * it is consistent.
3024 	 */
3025 
3026 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3027 	smp_wmb();
3028 
3029 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3030 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3031 
3032 	if (vcpu->pvclock_set_guest_stopped_request) {
3033 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3034 		vcpu->pvclock_set_guest_stopped_request = false;
3035 	}
3036 
3037 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3038 	smp_wmb();
3039 
3040 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3041 
3042 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3043 	read_unlock_irqrestore(&gpc->lock, flags);
3044 
3045 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3046 }
3047 
3048 static int kvm_guest_time_update(struct kvm_vcpu *v)
3049 {
3050 	unsigned long flags, tgt_tsc_khz;
3051 	unsigned seq;
3052 	struct kvm_vcpu_arch *vcpu = &v->arch;
3053 	struct kvm_arch *ka = &v->kvm->arch;
3054 	s64 kernel_ns;
3055 	u64 tsc_timestamp, host_tsc;
3056 	u8 pvclock_flags;
3057 	bool use_master_clock;
3058 
3059 	kernel_ns = 0;
3060 	host_tsc = 0;
3061 
3062 	/*
3063 	 * If the host uses TSC clock, then passthrough TSC as stable
3064 	 * to the guest.
3065 	 */
3066 	do {
3067 		seq = read_seqcount_begin(&ka->pvclock_sc);
3068 		use_master_clock = ka->use_master_clock;
3069 		if (use_master_clock) {
3070 			host_tsc = ka->master_cycle_now;
3071 			kernel_ns = ka->master_kernel_ns;
3072 		}
3073 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3074 
3075 	/* Keep irq disabled to prevent changes to the clock */
3076 	local_irq_save(flags);
3077 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3078 	if (unlikely(tgt_tsc_khz == 0)) {
3079 		local_irq_restore(flags);
3080 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3081 		return 1;
3082 	}
3083 	if (!use_master_clock) {
3084 		host_tsc = rdtsc();
3085 		kernel_ns = get_kvmclock_base_ns();
3086 	}
3087 
3088 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3089 
3090 	/*
3091 	 * We may have to catch up the TSC to match elapsed wall clock
3092 	 * time for two reasons, even if kvmclock is used.
3093 	 *   1) CPU could have been running below the maximum TSC rate
3094 	 *   2) Broken TSC compensation resets the base at each VCPU
3095 	 *      entry to avoid unknown leaps of TSC even when running
3096 	 *      again on the same CPU.  This may cause apparent elapsed
3097 	 *      time to disappear, and the guest to stand still or run
3098 	 *	very slowly.
3099 	 */
3100 	if (vcpu->tsc_catchup) {
3101 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3102 		if (tsc > tsc_timestamp) {
3103 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3104 			tsc_timestamp = tsc;
3105 		}
3106 	}
3107 
3108 	local_irq_restore(flags);
3109 
3110 	/* With all the info we got, fill in the values */
3111 
3112 	if (kvm_caps.has_tsc_control)
3113 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3114 					    v->arch.l1_tsc_scaling_ratio);
3115 
3116 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3117 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3118 				   &vcpu->hv_clock.tsc_shift,
3119 				   &vcpu->hv_clock.tsc_to_system_mul);
3120 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3121 	}
3122 
3123 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3124 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3125 	vcpu->last_guest_tsc = tsc_timestamp;
3126 
3127 	/* If the host uses TSC clocksource, then it is stable */
3128 	pvclock_flags = 0;
3129 	if (use_master_clock)
3130 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3131 
3132 	vcpu->hv_clock.flags = pvclock_flags;
3133 
3134 	if (vcpu->pv_time.active)
3135 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3136 	if (vcpu->xen.vcpu_info_cache.active)
3137 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3138 					offsetof(struct compat_vcpu_info, time));
3139 	if (vcpu->xen.vcpu_time_info_cache.active)
3140 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3141 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3142 	return 0;
3143 }
3144 
3145 /*
3146  * kvmclock updates which are isolated to a given vcpu, such as
3147  * vcpu->cpu migration, should not allow system_timestamp from
3148  * the rest of the vcpus to remain static. Otherwise ntp frequency
3149  * correction applies to one vcpu's system_timestamp but not
3150  * the others.
3151  *
3152  * So in those cases, request a kvmclock update for all vcpus.
3153  * We need to rate-limit these requests though, as they can
3154  * considerably slow guests that have a large number of vcpus.
3155  * The time for a remote vcpu to update its kvmclock is bound
3156  * by the delay we use to rate-limit the updates.
3157  */
3158 
3159 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3160 
3161 static void kvmclock_update_fn(struct work_struct *work)
3162 {
3163 	unsigned long i;
3164 	struct delayed_work *dwork = to_delayed_work(work);
3165 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3166 					   kvmclock_update_work);
3167 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3168 	struct kvm_vcpu *vcpu;
3169 
3170 	kvm_for_each_vcpu(i, vcpu, kvm) {
3171 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3172 		kvm_vcpu_kick(vcpu);
3173 	}
3174 }
3175 
3176 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3177 {
3178 	struct kvm *kvm = v->kvm;
3179 
3180 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3181 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3182 					KVMCLOCK_UPDATE_DELAY);
3183 }
3184 
3185 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3186 
3187 static void kvmclock_sync_fn(struct work_struct *work)
3188 {
3189 	struct delayed_work *dwork = to_delayed_work(work);
3190 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3191 					   kvmclock_sync_work);
3192 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3193 
3194 	if (!kvmclock_periodic_sync)
3195 		return;
3196 
3197 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3198 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3199 					KVMCLOCK_SYNC_PERIOD);
3200 }
3201 
3202 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3203 static bool is_mci_control_msr(u32 msr)
3204 {
3205 	return (msr & 3) == 0;
3206 }
3207 static bool is_mci_status_msr(u32 msr)
3208 {
3209 	return (msr & 3) == 1;
3210 }
3211 
3212 /*
3213  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3214  */
3215 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3216 {
3217 	/* McStatusWrEn enabled? */
3218 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3219 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3220 
3221 	return false;
3222 }
3223 
3224 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3225 {
3226 	u64 mcg_cap = vcpu->arch.mcg_cap;
3227 	unsigned bank_num = mcg_cap & 0xff;
3228 	u32 msr = msr_info->index;
3229 	u64 data = msr_info->data;
3230 	u32 offset, last_msr;
3231 
3232 	switch (msr) {
3233 	case MSR_IA32_MCG_STATUS:
3234 		vcpu->arch.mcg_status = data;
3235 		break;
3236 	case MSR_IA32_MCG_CTL:
3237 		if (!(mcg_cap & MCG_CTL_P) &&
3238 		    (data || !msr_info->host_initiated))
3239 			return 1;
3240 		if (data != 0 && data != ~(u64)0)
3241 			return 1;
3242 		vcpu->arch.mcg_ctl = data;
3243 		break;
3244 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3245 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3246 		if (msr > last_msr)
3247 			return 1;
3248 
3249 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3250 			return 1;
3251 		/* An attempt to write a 1 to a reserved bit raises #GP */
3252 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3253 			return 1;
3254 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3255 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3256 		vcpu->arch.mci_ctl2_banks[offset] = data;
3257 		break;
3258 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3259 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3260 		if (msr > last_msr)
3261 			return 1;
3262 
3263 		/*
3264 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3265 		 * values are architecturally undefined.  But, some Linux
3266 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3267 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3268 		 * other bits in order to avoid an uncaught #GP in the guest.
3269 		 *
3270 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3271 		 * single-bit ECC data errors.
3272 		 */
3273 		if (is_mci_control_msr(msr) &&
3274 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3275 			return 1;
3276 
3277 		/*
3278 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3279 		 * AMD-based CPUs allow non-zero values, but if and only if
3280 		 * HWCR[McStatusWrEn] is set.
3281 		 */
3282 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3283 		    data != 0 && !can_set_mci_status(vcpu))
3284 			return 1;
3285 
3286 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3287 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3288 		vcpu->arch.mce_banks[offset] = data;
3289 		break;
3290 	default:
3291 		return 1;
3292 	}
3293 	return 0;
3294 }
3295 
3296 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3297 {
3298 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3299 
3300 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3301 }
3302 
3303 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3304 {
3305 	gpa_t gpa = data & ~0x3f;
3306 
3307 	/* Bits 4:5 are reserved, Should be zero */
3308 	if (data & 0x30)
3309 		return 1;
3310 
3311 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3312 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3313 		return 1;
3314 
3315 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3316 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3317 		return 1;
3318 
3319 	if (!lapic_in_kernel(vcpu))
3320 		return data ? 1 : 0;
3321 
3322 	vcpu->arch.apf.msr_en_val = data;
3323 
3324 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3325 		kvm_clear_async_pf_completion_queue(vcpu);
3326 		kvm_async_pf_hash_reset(vcpu);
3327 		return 0;
3328 	}
3329 
3330 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3331 					sizeof(u64)))
3332 		return 1;
3333 
3334 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3335 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3336 
3337 	kvm_async_pf_wakeup_all(vcpu);
3338 
3339 	return 0;
3340 }
3341 
3342 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3343 {
3344 	/* Bits 8-63 are reserved */
3345 	if (data >> 8)
3346 		return 1;
3347 
3348 	if (!lapic_in_kernel(vcpu))
3349 		return 1;
3350 
3351 	vcpu->arch.apf.msr_int_val = data;
3352 
3353 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3354 
3355 	return 0;
3356 }
3357 
3358 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3359 {
3360 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3361 	vcpu->arch.time = 0;
3362 }
3363 
3364 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3365 {
3366 	++vcpu->stat.tlb_flush;
3367 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3368 }
3369 
3370 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3371 {
3372 	++vcpu->stat.tlb_flush;
3373 
3374 	if (!tdp_enabled) {
3375 		/*
3376 		 * A TLB flush on behalf of the guest is equivalent to
3377 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3378 		 * a forced sync of the shadow page tables.  Ensure all the
3379 		 * roots are synced and the guest TLB in hardware is clean.
3380 		 */
3381 		kvm_mmu_sync_roots(vcpu);
3382 		kvm_mmu_sync_prev_roots(vcpu);
3383 	}
3384 
3385 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3386 }
3387 
3388 
3389 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3390 {
3391 	++vcpu->stat.tlb_flush;
3392 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3393 }
3394 
3395 /*
3396  * Service "local" TLB flush requests, which are specific to the current MMU
3397  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3398  * TLB flushes that are targeted at an MMU context also need to be serviced
3399  * prior before nested VM-Enter/VM-Exit.
3400  */
3401 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3402 {
3403 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3404 		kvm_vcpu_flush_tlb_current(vcpu);
3405 
3406 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3407 		kvm_vcpu_flush_tlb_guest(vcpu);
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3410 
3411 static void record_steal_time(struct kvm_vcpu *vcpu)
3412 {
3413 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3414 	struct kvm_steal_time __user *st;
3415 	struct kvm_memslots *slots;
3416 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3417 	u64 steal;
3418 	u32 version;
3419 
3420 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3421 		kvm_xen_runstate_set_running(vcpu);
3422 		return;
3423 	}
3424 
3425 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3426 		return;
3427 
3428 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3429 		return;
3430 
3431 	slots = kvm_memslots(vcpu->kvm);
3432 
3433 	if (unlikely(slots->generation != ghc->generation ||
3434 		     gpa != ghc->gpa ||
3435 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3436 		/* We rely on the fact that it fits in a single page. */
3437 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3438 
3439 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3440 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3441 			return;
3442 	}
3443 
3444 	st = (struct kvm_steal_time __user *)ghc->hva;
3445 	/*
3446 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3447 	 * expensive IPIs.
3448 	 */
3449 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3450 		u8 st_preempted = 0;
3451 		int err = -EFAULT;
3452 
3453 		if (!user_access_begin(st, sizeof(*st)))
3454 			return;
3455 
3456 		asm volatile("1: xchgb %0, %2\n"
3457 			     "xor %1, %1\n"
3458 			     "2:\n"
3459 			     _ASM_EXTABLE_UA(1b, 2b)
3460 			     : "+q" (st_preempted),
3461 			       "+&r" (err),
3462 			       "+m" (st->preempted));
3463 		if (err)
3464 			goto out;
3465 
3466 		user_access_end();
3467 
3468 		vcpu->arch.st.preempted = 0;
3469 
3470 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3471 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3472 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3473 			kvm_vcpu_flush_tlb_guest(vcpu);
3474 
3475 		if (!user_access_begin(st, sizeof(*st)))
3476 			goto dirty;
3477 	} else {
3478 		if (!user_access_begin(st, sizeof(*st)))
3479 			return;
3480 
3481 		unsafe_put_user(0, &st->preempted, out);
3482 		vcpu->arch.st.preempted = 0;
3483 	}
3484 
3485 	unsafe_get_user(version, &st->version, out);
3486 	if (version & 1)
3487 		version += 1;  /* first time write, random junk */
3488 
3489 	version += 1;
3490 	unsafe_put_user(version, &st->version, out);
3491 
3492 	smp_wmb();
3493 
3494 	unsafe_get_user(steal, &st->steal, out);
3495 	steal += current->sched_info.run_delay -
3496 		vcpu->arch.st.last_steal;
3497 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3498 	unsafe_put_user(steal, &st->steal, out);
3499 
3500 	version += 1;
3501 	unsafe_put_user(version, &st->version, out);
3502 
3503  out:
3504 	user_access_end();
3505  dirty:
3506 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3507 }
3508 
3509 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3510 {
3511 	bool pr = false;
3512 	u32 msr = msr_info->index;
3513 	u64 data = msr_info->data;
3514 
3515 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3516 		return kvm_xen_write_hypercall_page(vcpu, data);
3517 
3518 	switch (msr) {
3519 	case MSR_AMD64_NB_CFG:
3520 	case MSR_IA32_UCODE_WRITE:
3521 	case MSR_VM_HSAVE_PA:
3522 	case MSR_AMD64_PATCH_LOADER:
3523 	case MSR_AMD64_BU_CFG2:
3524 	case MSR_AMD64_DC_CFG:
3525 	case MSR_F15H_EX_CFG:
3526 		break;
3527 
3528 	case MSR_IA32_UCODE_REV:
3529 		if (msr_info->host_initiated)
3530 			vcpu->arch.microcode_version = data;
3531 		break;
3532 	case MSR_IA32_ARCH_CAPABILITIES:
3533 		if (!msr_info->host_initiated)
3534 			return 1;
3535 		vcpu->arch.arch_capabilities = data;
3536 		break;
3537 	case MSR_IA32_PERF_CAPABILITIES: {
3538 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3539 
3540 		if (!msr_info->host_initiated)
3541 			return 1;
3542 		if (kvm_get_msr_feature(&msr_ent))
3543 			return 1;
3544 		if (data & ~msr_ent.data)
3545 			return 1;
3546 
3547 		vcpu->arch.perf_capabilities = data;
3548 		kvm_pmu_refresh(vcpu);
3549 		return 0;
3550 	}
3551 	case MSR_EFER:
3552 		return set_efer(vcpu, msr_info);
3553 	case MSR_K7_HWCR:
3554 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3555 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3556 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3557 
3558 		/* Handle McStatusWrEn */
3559 		if (data == BIT_ULL(18)) {
3560 			vcpu->arch.msr_hwcr = data;
3561 		} else if (data != 0) {
3562 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3563 				    data);
3564 			return 1;
3565 		}
3566 		break;
3567 	case MSR_FAM10H_MMIO_CONF_BASE:
3568 		if (data != 0) {
3569 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3570 				    "0x%llx\n", data);
3571 			return 1;
3572 		}
3573 		break;
3574 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3575 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3576 		return kvm_mtrr_set_msr(vcpu, msr, data);
3577 	case MSR_IA32_APICBASE:
3578 		return kvm_set_apic_base(vcpu, msr_info);
3579 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3580 		return kvm_x2apic_msr_write(vcpu, msr, data);
3581 	case MSR_IA32_TSC_DEADLINE:
3582 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3583 		break;
3584 	case MSR_IA32_TSC_ADJUST:
3585 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3586 			if (!msr_info->host_initiated) {
3587 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3588 				adjust_tsc_offset_guest(vcpu, adj);
3589 				/* Before back to guest, tsc_timestamp must be adjusted
3590 				 * as well, otherwise guest's percpu pvclock time could jump.
3591 				 */
3592 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3593 			}
3594 			vcpu->arch.ia32_tsc_adjust_msr = data;
3595 		}
3596 		break;
3597 	case MSR_IA32_MISC_ENABLE: {
3598 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3599 
3600 		if (!msr_info->host_initiated) {
3601 			/* RO bits */
3602 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3603 				return 1;
3604 
3605 			/* R bits, i.e. writes are ignored, but don't fault. */
3606 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3607 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3608 		}
3609 
3610 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3611 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3612 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3613 				return 1;
3614 			vcpu->arch.ia32_misc_enable_msr = data;
3615 			kvm_update_cpuid_runtime(vcpu);
3616 		} else {
3617 			vcpu->arch.ia32_misc_enable_msr = data;
3618 		}
3619 		break;
3620 	}
3621 	case MSR_IA32_SMBASE:
3622 		if (!msr_info->host_initiated)
3623 			return 1;
3624 		vcpu->arch.smbase = data;
3625 		break;
3626 	case MSR_IA32_POWER_CTL:
3627 		vcpu->arch.msr_ia32_power_ctl = data;
3628 		break;
3629 	case MSR_IA32_TSC:
3630 		if (msr_info->host_initiated) {
3631 			kvm_synchronize_tsc(vcpu, data);
3632 		} else {
3633 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3634 			adjust_tsc_offset_guest(vcpu, adj);
3635 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3636 		}
3637 		break;
3638 	case MSR_IA32_XSS:
3639 		if (!msr_info->host_initiated &&
3640 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3641 			return 1;
3642 		/*
3643 		 * KVM supports exposing PT to the guest, but does not support
3644 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3645 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3646 		 */
3647 		if (data & ~kvm_caps.supported_xss)
3648 			return 1;
3649 		vcpu->arch.ia32_xss = data;
3650 		kvm_update_cpuid_runtime(vcpu);
3651 		break;
3652 	case MSR_SMI_COUNT:
3653 		if (!msr_info->host_initiated)
3654 			return 1;
3655 		vcpu->arch.smi_count = data;
3656 		break;
3657 	case MSR_KVM_WALL_CLOCK_NEW:
3658 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3659 			return 1;
3660 
3661 		vcpu->kvm->arch.wall_clock = data;
3662 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3663 		break;
3664 	case MSR_KVM_WALL_CLOCK:
3665 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3666 			return 1;
3667 
3668 		vcpu->kvm->arch.wall_clock = data;
3669 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3670 		break;
3671 	case MSR_KVM_SYSTEM_TIME_NEW:
3672 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3673 			return 1;
3674 
3675 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3676 		break;
3677 	case MSR_KVM_SYSTEM_TIME:
3678 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3679 			return 1;
3680 
3681 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3682 		break;
3683 	case MSR_KVM_ASYNC_PF_EN:
3684 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3685 			return 1;
3686 
3687 		if (kvm_pv_enable_async_pf(vcpu, data))
3688 			return 1;
3689 		break;
3690 	case MSR_KVM_ASYNC_PF_INT:
3691 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3692 			return 1;
3693 
3694 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3695 			return 1;
3696 		break;
3697 	case MSR_KVM_ASYNC_PF_ACK:
3698 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3699 			return 1;
3700 		if (data & 0x1) {
3701 			vcpu->arch.apf.pageready_pending = false;
3702 			kvm_check_async_pf_completion(vcpu);
3703 		}
3704 		break;
3705 	case MSR_KVM_STEAL_TIME:
3706 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3707 			return 1;
3708 
3709 		if (unlikely(!sched_info_on()))
3710 			return 1;
3711 
3712 		if (data & KVM_STEAL_RESERVED_MASK)
3713 			return 1;
3714 
3715 		vcpu->arch.st.msr_val = data;
3716 
3717 		if (!(data & KVM_MSR_ENABLED))
3718 			break;
3719 
3720 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3721 
3722 		break;
3723 	case MSR_KVM_PV_EOI_EN:
3724 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3725 			return 1;
3726 
3727 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3728 			return 1;
3729 		break;
3730 
3731 	case MSR_KVM_POLL_CONTROL:
3732 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3733 			return 1;
3734 
3735 		/* only enable bit supported */
3736 		if (data & (-1ULL << 1))
3737 			return 1;
3738 
3739 		vcpu->arch.msr_kvm_poll_control = data;
3740 		break;
3741 
3742 	case MSR_IA32_MCG_CTL:
3743 	case MSR_IA32_MCG_STATUS:
3744 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3745 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3746 		return set_msr_mce(vcpu, msr_info);
3747 
3748 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3749 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3750 		pr = true;
3751 		fallthrough;
3752 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3753 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3754 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3755 			return kvm_pmu_set_msr(vcpu, msr_info);
3756 
3757 		if (pr || data != 0)
3758 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3759 				    "0x%x data 0x%llx\n", msr, data);
3760 		break;
3761 	case MSR_K7_CLK_CTL:
3762 		/*
3763 		 * Ignore all writes to this no longer documented MSR.
3764 		 * Writes are only relevant for old K7 processors,
3765 		 * all pre-dating SVM, but a recommended workaround from
3766 		 * AMD for these chips. It is possible to specify the
3767 		 * affected processor models on the command line, hence
3768 		 * the need to ignore the workaround.
3769 		 */
3770 		break;
3771 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3772 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3773 	case HV_X64_MSR_SYNDBG_OPTIONS:
3774 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3775 	case HV_X64_MSR_CRASH_CTL:
3776 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3777 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3778 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3779 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3780 		return kvm_hv_set_msr_common(vcpu, msr, data,
3781 					     msr_info->host_initiated);
3782 	case MSR_IA32_BBL_CR_CTL3:
3783 		/* Drop writes to this legacy MSR -- see rdmsr
3784 		 * counterpart for further detail.
3785 		 */
3786 		if (report_ignored_msrs)
3787 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3788 				msr, data);
3789 		break;
3790 	case MSR_AMD64_OSVW_ID_LENGTH:
3791 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3792 			return 1;
3793 		vcpu->arch.osvw.length = data;
3794 		break;
3795 	case MSR_AMD64_OSVW_STATUS:
3796 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3797 			return 1;
3798 		vcpu->arch.osvw.status = data;
3799 		break;
3800 	case MSR_PLATFORM_INFO:
3801 		if (!msr_info->host_initiated ||
3802 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3803 		     cpuid_fault_enabled(vcpu)))
3804 			return 1;
3805 		vcpu->arch.msr_platform_info = data;
3806 		break;
3807 	case MSR_MISC_FEATURES_ENABLES:
3808 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3809 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3810 		     !supports_cpuid_fault(vcpu)))
3811 			return 1;
3812 		vcpu->arch.msr_misc_features_enables = data;
3813 		break;
3814 #ifdef CONFIG_X86_64
3815 	case MSR_IA32_XFD:
3816 		if (!msr_info->host_initiated &&
3817 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3818 			return 1;
3819 
3820 		if (data & ~kvm_guest_supported_xfd(vcpu))
3821 			return 1;
3822 
3823 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3824 		break;
3825 	case MSR_IA32_XFD_ERR:
3826 		if (!msr_info->host_initiated &&
3827 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3828 			return 1;
3829 
3830 		if (data & ~kvm_guest_supported_xfd(vcpu))
3831 			return 1;
3832 
3833 		vcpu->arch.guest_fpu.xfd_err = data;
3834 		break;
3835 #endif
3836 	case MSR_IA32_PEBS_ENABLE:
3837 	case MSR_IA32_DS_AREA:
3838 	case MSR_PEBS_DATA_CFG:
3839 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3840 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3841 			return kvm_pmu_set_msr(vcpu, msr_info);
3842 		/*
3843 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3844 		 * as to-be-saved, even if an MSRs isn't fully supported.
3845 		 */
3846 		return !msr_info->host_initiated || data;
3847 	default:
3848 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3849 			return kvm_pmu_set_msr(vcpu, msr_info);
3850 		return KVM_MSR_RET_INVALID;
3851 	}
3852 	return 0;
3853 }
3854 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3855 
3856 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3857 {
3858 	u64 data;
3859 	u64 mcg_cap = vcpu->arch.mcg_cap;
3860 	unsigned bank_num = mcg_cap & 0xff;
3861 	u32 offset, last_msr;
3862 
3863 	switch (msr) {
3864 	case MSR_IA32_P5_MC_ADDR:
3865 	case MSR_IA32_P5_MC_TYPE:
3866 		data = 0;
3867 		break;
3868 	case MSR_IA32_MCG_CAP:
3869 		data = vcpu->arch.mcg_cap;
3870 		break;
3871 	case MSR_IA32_MCG_CTL:
3872 		if (!(mcg_cap & MCG_CTL_P) && !host)
3873 			return 1;
3874 		data = vcpu->arch.mcg_ctl;
3875 		break;
3876 	case MSR_IA32_MCG_STATUS:
3877 		data = vcpu->arch.mcg_status;
3878 		break;
3879 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3880 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3881 		if (msr > last_msr)
3882 			return 1;
3883 
3884 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3885 			return 1;
3886 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3887 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3888 		data = vcpu->arch.mci_ctl2_banks[offset];
3889 		break;
3890 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3891 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3892 		if (msr > last_msr)
3893 			return 1;
3894 
3895 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3896 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3897 		data = vcpu->arch.mce_banks[offset];
3898 		break;
3899 	default:
3900 		return 1;
3901 	}
3902 	*pdata = data;
3903 	return 0;
3904 }
3905 
3906 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3907 {
3908 	switch (msr_info->index) {
3909 	case MSR_IA32_PLATFORM_ID:
3910 	case MSR_IA32_EBL_CR_POWERON:
3911 	case MSR_IA32_LASTBRANCHFROMIP:
3912 	case MSR_IA32_LASTBRANCHTOIP:
3913 	case MSR_IA32_LASTINTFROMIP:
3914 	case MSR_IA32_LASTINTTOIP:
3915 	case MSR_AMD64_SYSCFG:
3916 	case MSR_K8_TSEG_ADDR:
3917 	case MSR_K8_TSEG_MASK:
3918 	case MSR_VM_HSAVE_PA:
3919 	case MSR_K8_INT_PENDING_MSG:
3920 	case MSR_AMD64_NB_CFG:
3921 	case MSR_FAM10H_MMIO_CONF_BASE:
3922 	case MSR_AMD64_BU_CFG2:
3923 	case MSR_IA32_PERF_CTL:
3924 	case MSR_AMD64_DC_CFG:
3925 	case MSR_F15H_EX_CFG:
3926 	/*
3927 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3928 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3929 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3930 	 * so for existing CPU-specific MSRs.
3931 	 */
3932 	case MSR_RAPL_POWER_UNIT:
3933 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3934 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3935 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3936 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3937 		msr_info->data = 0;
3938 		break;
3939 	case MSR_IA32_PEBS_ENABLE:
3940 	case MSR_IA32_DS_AREA:
3941 	case MSR_PEBS_DATA_CFG:
3942 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3943 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3944 			return kvm_pmu_get_msr(vcpu, msr_info);
3945 		/*
3946 		 * Userspace is allowed to read MSRs that KVM reports as
3947 		 * to-be-saved, even if an MSR isn't fully supported.
3948 		 */
3949 		if (!msr_info->host_initiated)
3950 			return 1;
3951 		msr_info->data = 0;
3952 		break;
3953 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3954 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3955 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3956 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3957 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3958 			return kvm_pmu_get_msr(vcpu, msr_info);
3959 		msr_info->data = 0;
3960 		break;
3961 	case MSR_IA32_UCODE_REV:
3962 		msr_info->data = vcpu->arch.microcode_version;
3963 		break;
3964 	case MSR_IA32_ARCH_CAPABILITIES:
3965 		if (!msr_info->host_initiated &&
3966 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3967 			return 1;
3968 		msr_info->data = vcpu->arch.arch_capabilities;
3969 		break;
3970 	case MSR_IA32_PERF_CAPABILITIES:
3971 		if (!msr_info->host_initiated &&
3972 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3973 			return 1;
3974 		msr_info->data = vcpu->arch.perf_capabilities;
3975 		break;
3976 	case MSR_IA32_POWER_CTL:
3977 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3978 		break;
3979 	case MSR_IA32_TSC: {
3980 		/*
3981 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3982 		 * even when not intercepted. AMD manual doesn't explicitly
3983 		 * state this but appears to behave the same.
3984 		 *
3985 		 * On userspace reads and writes, however, we unconditionally
3986 		 * return L1's TSC value to ensure backwards-compatible
3987 		 * behavior for migration.
3988 		 */
3989 		u64 offset, ratio;
3990 
3991 		if (msr_info->host_initiated) {
3992 			offset = vcpu->arch.l1_tsc_offset;
3993 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3994 		} else {
3995 			offset = vcpu->arch.tsc_offset;
3996 			ratio = vcpu->arch.tsc_scaling_ratio;
3997 		}
3998 
3999 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4000 		break;
4001 	}
4002 	case MSR_MTRRcap:
4003 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4004 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4005 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4006 	case 0xcd: /* fsb frequency */
4007 		msr_info->data = 3;
4008 		break;
4009 		/*
4010 		 * MSR_EBC_FREQUENCY_ID
4011 		 * Conservative value valid for even the basic CPU models.
4012 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4013 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4014 		 * and 266MHz for model 3, or 4. Set Core Clock
4015 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4016 		 * 31:24) even though these are only valid for CPU
4017 		 * models > 2, however guests may end up dividing or
4018 		 * multiplying by zero otherwise.
4019 		 */
4020 	case MSR_EBC_FREQUENCY_ID:
4021 		msr_info->data = 1 << 24;
4022 		break;
4023 	case MSR_IA32_APICBASE:
4024 		msr_info->data = kvm_get_apic_base(vcpu);
4025 		break;
4026 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4027 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4028 	case MSR_IA32_TSC_DEADLINE:
4029 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4030 		break;
4031 	case MSR_IA32_TSC_ADJUST:
4032 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4033 		break;
4034 	case MSR_IA32_MISC_ENABLE:
4035 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4036 		break;
4037 	case MSR_IA32_SMBASE:
4038 		if (!msr_info->host_initiated)
4039 			return 1;
4040 		msr_info->data = vcpu->arch.smbase;
4041 		break;
4042 	case MSR_SMI_COUNT:
4043 		msr_info->data = vcpu->arch.smi_count;
4044 		break;
4045 	case MSR_IA32_PERF_STATUS:
4046 		/* TSC increment by tick */
4047 		msr_info->data = 1000ULL;
4048 		/* CPU multiplier */
4049 		msr_info->data |= (((uint64_t)4ULL) << 40);
4050 		break;
4051 	case MSR_EFER:
4052 		msr_info->data = vcpu->arch.efer;
4053 		break;
4054 	case MSR_KVM_WALL_CLOCK:
4055 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4056 			return 1;
4057 
4058 		msr_info->data = vcpu->kvm->arch.wall_clock;
4059 		break;
4060 	case MSR_KVM_WALL_CLOCK_NEW:
4061 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4062 			return 1;
4063 
4064 		msr_info->data = vcpu->kvm->arch.wall_clock;
4065 		break;
4066 	case MSR_KVM_SYSTEM_TIME:
4067 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4068 			return 1;
4069 
4070 		msr_info->data = vcpu->arch.time;
4071 		break;
4072 	case MSR_KVM_SYSTEM_TIME_NEW:
4073 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4074 			return 1;
4075 
4076 		msr_info->data = vcpu->arch.time;
4077 		break;
4078 	case MSR_KVM_ASYNC_PF_EN:
4079 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4080 			return 1;
4081 
4082 		msr_info->data = vcpu->arch.apf.msr_en_val;
4083 		break;
4084 	case MSR_KVM_ASYNC_PF_INT:
4085 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4086 			return 1;
4087 
4088 		msr_info->data = vcpu->arch.apf.msr_int_val;
4089 		break;
4090 	case MSR_KVM_ASYNC_PF_ACK:
4091 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4092 			return 1;
4093 
4094 		msr_info->data = 0;
4095 		break;
4096 	case MSR_KVM_STEAL_TIME:
4097 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4098 			return 1;
4099 
4100 		msr_info->data = vcpu->arch.st.msr_val;
4101 		break;
4102 	case MSR_KVM_PV_EOI_EN:
4103 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4104 			return 1;
4105 
4106 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4107 		break;
4108 	case MSR_KVM_POLL_CONTROL:
4109 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4110 			return 1;
4111 
4112 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4113 		break;
4114 	case MSR_IA32_P5_MC_ADDR:
4115 	case MSR_IA32_P5_MC_TYPE:
4116 	case MSR_IA32_MCG_CAP:
4117 	case MSR_IA32_MCG_CTL:
4118 	case MSR_IA32_MCG_STATUS:
4119 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4120 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4121 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4122 				   msr_info->host_initiated);
4123 	case MSR_IA32_XSS:
4124 		if (!msr_info->host_initiated &&
4125 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4126 			return 1;
4127 		msr_info->data = vcpu->arch.ia32_xss;
4128 		break;
4129 	case MSR_K7_CLK_CTL:
4130 		/*
4131 		 * Provide expected ramp-up count for K7. All other
4132 		 * are set to zero, indicating minimum divisors for
4133 		 * every field.
4134 		 *
4135 		 * This prevents guest kernels on AMD host with CPU
4136 		 * type 6, model 8 and higher from exploding due to
4137 		 * the rdmsr failing.
4138 		 */
4139 		msr_info->data = 0x20000000;
4140 		break;
4141 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4142 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4143 	case HV_X64_MSR_SYNDBG_OPTIONS:
4144 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4145 	case HV_X64_MSR_CRASH_CTL:
4146 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4147 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4148 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4149 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4150 		return kvm_hv_get_msr_common(vcpu,
4151 					     msr_info->index, &msr_info->data,
4152 					     msr_info->host_initiated);
4153 	case MSR_IA32_BBL_CR_CTL3:
4154 		/* This legacy MSR exists but isn't fully documented in current
4155 		 * silicon.  It is however accessed by winxp in very narrow
4156 		 * scenarios where it sets bit #19, itself documented as
4157 		 * a "reserved" bit.  Best effort attempt to source coherent
4158 		 * read data here should the balance of the register be
4159 		 * interpreted by the guest:
4160 		 *
4161 		 * L2 cache control register 3: 64GB range, 256KB size,
4162 		 * enabled, latency 0x1, configured
4163 		 */
4164 		msr_info->data = 0xbe702111;
4165 		break;
4166 	case MSR_AMD64_OSVW_ID_LENGTH:
4167 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4168 			return 1;
4169 		msr_info->data = vcpu->arch.osvw.length;
4170 		break;
4171 	case MSR_AMD64_OSVW_STATUS:
4172 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4173 			return 1;
4174 		msr_info->data = vcpu->arch.osvw.status;
4175 		break;
4176 	case MSR_PLATFORM_INFO:
4177 		if (!msr_info->host_initiated &&
4178 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4179 			return 1;
4180 		msr_info->data = vcpu->arch.msr_platform_info;
4181 		break;
4182 	case MSR_MISC_FEATURES_ENABLES:
4183 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4184 		break;
4185 	case MSR_K7_HWCR:
4186 		msr_info->data = vcpu->arch.msr_hwcr;
4187 		break;
4188 #ifdef CONFIG_X86_64
4189 	case MSR_IA32_XFD:
4190 		if (!msr_info->host_initiated &&
4191 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4192 			return 1;
4193 
4194 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4195 		break;
4196 	case MSR_IA32_XFD_ERR:
4197 		if (!msr_info->host_initiated &&
4198 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4199 			return 1;
4200 
4201 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4202 		break;
4203 #endif
4204 	default:
4205 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4206 			return kvm_pmu_get_msr(vcpu, msr_info);
4207 		return KVM_MSR_RET_INVALID;
4208 	}
4209 	return 0;
4210 }
4211 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4212 
4213 /*
4214  * Read or write a bunch of msrs. All parameters are kernel addresses.
4215  *
4216  * @return number of msrs set successfully.
4217  */
4218 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4219 		    struct kvm_msr_entry *entries,
4220 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4221 				  unsigned index, u64 *data))
4222 {
4223 	int i;
4224 
4225 	for (i = 0; i < msrs->nmsrs; ++i)
4226 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4227 			break;
4228 
4229 	return i;
4230 }
4231 
4232 /*
4233  * Read or write a bunch of msrs. Parameters are user addresses.
4234  *
4235  * @return number of msrs set successfully.
4236  */
4237 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4238 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4239 				unsigned index, u64 *data),
4240 		  int writeback)
4241 {
4242 	struct kvm_msrs msrs;
4243 	struct kvm_msr_entry *entries;
4244 	int r, n;
4245 	unsigned size;
4246 
4247 	r = -EFAULT;
4248 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4249 		goto out;
4250 
4251 	r = -E2BIG;
4252 	if (msrs.nmsrs >= MAX_IO_MSRS)
4253 		goto out;
4254 
4255 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4256 	entries = memdup_user(user_msrs->entries, size);
4257 	if (IS_ERR(entries)) {
4258 		r = PTR_ERR(entries);
4259 		goto out;
4260 	}
4261 
4262 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4263 	if (r < 0)
4264 		goto out_free;
4265 
4266 	r = -EFAULT;
4267 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4268 		goto out_free;
4269 
4270 	r = n;
4271 
4272 out_free:
4273 	kfree(entries);
4274 out:
4275 	return r;
4276 }
4277 
4278 static inline bool kvm_can_mwait_in_guest(void)
4279 {
4280 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4281 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4282 		boot_cpu_has(X86_FEATURE_ARAT);
4283 }
4284 
4285 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4286 					    struct kvm_cpuid2 __user *cpuid_arg)
4287 {
4288 	struct kvm_cpuid2 cpuid;
4289 	int r;
4290 
4291 	r = -EFAULT;
4292 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4293 		return r;
4294 
4295 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4296 	if (r)
4297 		return r;
4298 
4299 	r = -EFAULT;
4300 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4301 		return r;
4302 
4303 	return 0;
4304 }
4305 
4306 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4307 {
4308 	int r = 0;
4309 
4310 	switch (ext) {
4311 	case KVM_CAP_IRQCHIP:
4312 	case KVM_CAP_HLT:
4313 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4314 	case KVM_CAP_SET_TSS_ADDR:
4315 	case KVM_CAP_EXT_CPUID:
4316 	case KVM_CAP_EXT_EMUL_CPUID:
4317 	case KVM_CAP_CLOCKSOURCE:
4318 	case KVM_CAP_PIT:
4319 	case KVM_CAP_NOP_IO_DELAY:
4320 	case KVM_CAP_MP_STATE:
4321 	case KVM_CAP_SYNC_MMU:
4322 	case KVM_CAP_USER_NMI:
4323 	case KVM_CAP_REINJECT_CONTROL:
4324 	case KVM_CAP_IRQ_INJECT_STATUS:
4325 	case KVM_CAP_IOEVENTFD:
4326 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4327 	case KVM_CAP_PIT2:
4328 	case KVM_CAP_PIT_STATE2:
4329 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4330 	case KVM_CAP_VCPU_EVENTS:
4331 	case KVM_CAP_HYPERV:
4332 	case KVM_CAP_HYPERV_VAPIC:
4333 	case KVM_CAP_HYPERV_SPIN:
4334 	case KVM_CAP_HYPERV_SYNIC:
4335 	case KVM_CAP_HYPERV_SYNIC2:
4336 	case KVM_CAP_HYPERV_VP_INDEX:
4337 	case KVM_CAP_HYPERV_EVENTFD:
4338 	case KVM_CAP_HYPERV_TLBFLUSH:
4339 	case KVM_CAP_HYPERV_SEND_IPI:
4340 	case KVM_CAP_HYPERV_CPUID:
4341 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4342 	case KVM_CAP_SYS_HYPERV_CPUID:
4343 	case KVM_CAP_PCI_SEGMENT:
4344 	case KVM_CAP_DEBUGREGS:
4345 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4346 	case KVM_CAP_XSAVE:
4347 	case KVM_CAP_ASYNC_PF:
4348 	case KVM_CAP_ASYNC_PF_INT:
4349 	case KVM_CAP_GET_TSC_KHZ:
4350 	case KVM_CAP_KVMCLOCK_CTRL:
4351 	case KVM_CAP_READONLY_MEM:
4352 	case KVM_CAP_HYPERV_TIME:
4353 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4354 	case KVM_CAP_TSC_DEADLINE_TIMER:
4355 	case KVM_CAP_DISABLE_QUIRKS:
4356 	case KVM_CAP_SET_BOOT_CPU_ID:
4357  	case KVM_CAP_SPLIT_IRQCHIP:
4358 	case KVM_CAP_IMMEDIATE_EXIT:
4359 	case KVM_CAP_PMU_EVENT_FILTER:
4360 	case KVM_CAP_GET_MSR_FEATURES:
4361 	case KVM_CAP_MSR_PLATFORM_INFO:
4362 	case KVM_CAP_EXCEPTION_PAYLOAD:
4363 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4364 	case KVM_CAP_SET_GUEST_DEBUG:
4365 	case KVM_CAP_LAST_CPU:
4366 	case KVM_CAP_X86_USER_SPACE_MSR:
4367 	case KVM_CAP_X86_MSR_FILTER:
4368 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4369 #ifdef CONFIG_X86_SGX_KVM
4370 	case KVM_CAP_SGX_ATTRIBUTE:
4371 #endif
4372 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4373 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4374 	case KVM_CAP_SREGS2:
4375 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4376 	case KVM_CAP_VCPU_ATTRIBUTES:
4377 	case KVM_CAP_SYS_ATTRIBUTES:
4378 	case KVM_CAP_VAPIC:
4379 	case KVM_CAP_ENABLE_CAP:
4380 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4381 		r = 1;
4382 		break;
4383 	case KVM_CAP_EXIT_HYPERCALL:
4384 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4385 		break;
4386 	case KVM_CAP_SET_GUEST_DEBUG2:
4387 		return KVM_GUESTDBG_VALID_MASK;
4388 #ifdef CONFIG_KVM_XEN
4389 	case KVM_CAP_XEN_HVM:
4390 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4391 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4392 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4393 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4394 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4395 		if (sched_info_on())
4396 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4397 		break;
4398 #endif
4399 	case KVM_CAP_SYNC_REGS:
4400 		r = KVM_SYNC_X86_VALID_FIELDS;
4401 		break;
4402 	case KVM_CAP_ADJUST_CLOCK:
4403 		r = KVM_CLOCK_VALID_FLAGS;
4404 		break;
4405 	case KVM_CAP_X86_DISABLE_EXITS:
4406 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4407 		      KVM_X86_DISABLE_EXITS_CSTATE;
4408 		if(kvm_can_mwait_in_guest())
4409 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4410 		break;
4411 	case KVM_CAP_X86_SMM:
4412 		/* SMBASE is usually relocated above 1M on modern chipsets,
4413 		 * and SMM handlers might indeed rely on 4G segment limits,
4414 		 * so do not report SMM to be available if real mode is
4415 		 * emulated via vm86 mode.  Still, do not go to great lengths
4416 		 * to avoid userspace's usage of the feature, because it is a
4417 		 * fringe case that is not enabled except via specific settings
4418 		 * of the module parameters.
4419 		 */
4420 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4421 		break;
4422 	case KVM_CAP_NR_VCPUS:
4423 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4424 		break;
4425 	case KVM_CAP_MAX_VCPUS:
4426 		r = KVM_MAX_VCPUS;
4427 		break;
4428 	case KVM_CAP_MAX_VCPU_ID:
4429 		r = KVM_MAX_VCPU_IDS;
4430 		break;
4431 	case KVM_CAP_PV_MMU:	/* obsolete */
4432 		r = 0;
4433 		break;
4434 	case KVM_CAP_MCE:
4435 		r = KVM_MAX_MCE_BANKS;
4436 		break;
4437 	case KVM_CAP_XCRS:
4438 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4439 		break;
4440 	case KVM_CAP_TSC_CONTROL:
4441 	case KVM_CAP_VM_TSC_CONTROL:
4442 		r = kvm_caps.has_tsc_control;
4443 		break;
4444 	case KVM_CAP_X2APIC_API:
4445 		r = KVM_X2APIC_API_VALID_FLAGS;
4446 		break;
4447 	case KVM_CAP_NESTED_STATE:
4448 		r = kvm_x86_ops.nested_ops->get_state ?
4449 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4450 		break;
4451 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4452 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4453 		break;
4454 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4455 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4456 		break;
4457 	case KVM_CAP_SMALLER_MAXPHYADDR:
4458 		r = (int) allow_smaller_maxphyaddr;
4459 		break;
4460 	case KVM_CAP_STEAL_TIME:
4461 		r = sched_info_on();
4462 		break;
4463 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4464 		if (kvm_caps.has_bus_lock_exit)
4465 			r = KVM_BUS_LOCK_DETECTION_OFF |
4466 			    KVM_BUS_LOCK_DETECTION_EXIT;
4467 		else
4468 			r = 0;
4469 		break;
4470 	case KVM_CAP_XSAVE2: {
4471 		u64 guest_perm = xstate_get_guest_group_perm();
4472 
4473 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4474 		if (r < sizeof(struct kvm_xsave))
4475 			r = sizeof(struct kvm_xsave);
4476 		break;
4477 	}
4478 	case KVM_CAP_PMU_CAPABILITY:
4479 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4480 		break;
4481 	case KVM_CAP_DISABLE_QUIRKS2:
4482 		r = KVM_X86_VALID_QUIRKS;
4483 		break;
4484 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4485 		r = kvm_caps.has_notify_vmexit;
4486 		break;
4487 	default:
4488 		break;
4489 	}
4490 	return r;
4491 }
4492 
4493 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4494 {
4495 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4496 
4497 	if ((u64)(unsigned long)uaddr != attr->addr)
4498 		return ERR_PTR_USR(-EFAULT);
4499 	return uaddr;
4500 }
4501 
4502 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4503 {
4504 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4505 
4506 	if (attr->group)
4507 		return -ENXIO;
4508 
4509 	if (IS_ERR(uaddr))
4510 		return PTR_ERR(uaddr);
4511 
4512 	switch (attr->attr) {
4513 	case KVM_X86_XCOMP_GUEST_SUPP:
4514 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4515 			return -EFAULT;
4516 		return 0;
4517 	default:
4518 		return -ENXIO;
4519 		break;
4520 	}
4521 }
4522 
4523 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4524 {
4525 	if (attr->group)
4526 		return -ENXIO;
4527 
4528 	switch (attr->attr) {
4529 	case KVM_X86_XCOMP_GUEST_SUPP:
4530 		return 0;
4531 	default:
4532 		return -ENXIO;
4533 	}
4534 }
4535 
4536 long kvm_arch_dev_ioctl(struct file *filp,
4537 			unsigned int ioctl, unsigned long arg)
4538 {
4539 	void __user *argp = (void __user *)arg;
4540 	long r;
4541 
4542 	switch (ioctl) {
4543 	case KVM_GET_MSR_INDEX_LIST: {
4544 		struct kvm_msr_list __user *user_msr_list = argp;
4545 		struct kvm_msr_list msr_list;
4546 		unsigned n;
4547 
4548 		r = -EFAULT;
4549 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4550 			goto out;
4551 		n = msr_list.nmsrs;
4552 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4553 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4554 			goto out;
4555 		r = -E2BIG;
4556 		if (n < msr_list.nmsrs)
4557 			goto out;
4558 		r = -EFAULT;
4559 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4560 				 num_msrs_to_save * sizeof(u32)))
4561 			goto out;
4562 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4563 				 &emulated_msrs,
4564 				 num_emulated_msrs * sizeof(u32)))
4565 			goto out;
4566 		r = 0;
4567 		break;
4568 	}
4569 	case KVM_GET_SUPPORTED_CPUID:
4570 	case KVM_GET_EMULATED_CPUID: {
4571 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4572 		struct kvm_cpuid2 cpuid;
4573 
4574 		r = -EFAULT;
4575 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4576 			goto out;
4577 
4578 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4579 					    ioctl);
4580 		if (r)
4581 			goto out;
4582 
4583 		r = -EFAULT;
4584 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4585 			goto out;
4586 		r = 0;
4587 		break;
4588 	}
4589 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4590 		r = -EFAULT;
4591 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4592 				 sizeof(kvm_caps.supported_mce_cap)))
4593 			goto out;
4594 		r = 0;
4595 		break;
4596 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4597 		struct kvm_msr_list __user *user_msr_list = argp;
4598 		struct kvm_msr_list msr_list;
4599 		unsigned int n;
4600 
4601 		r = -EFAULT;
4602 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4603 			goto out;
4604 		n = msr_list.nmsrs;
4605 		msr_list.nmsrs = num_msr_based_features;
4606 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4607 			goto out;
4608 		r = -E2BIG;
4609 		if (n < msr_list.nmsrs)
4610 			goto out;
4611 		r = -EFAULT;
4612 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4613 				 num_msr_based_features * sizeof(u32)))
4614 			goto out;
4615 		r = 0;
4616 		break;
4617 	}
4618 	case KVM_GET_MSRS:
4619 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4620 		break;
4621 	case KVM_GET_SUPPORTED_HV_CPUID:
4622 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4623 		break;
4624 	case KVM_GET_DEVICE_ATTR: {
4625 		struct kvm_device_attr attr;
4626 		r = -EFAULT;
4627 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4628 			break;
4629 		r = kvm_x86_dev_get_attr(&attr);
4630 		break;
4631 	}
4632 	case KVM_HAS_DEVICE_ATTR: {
4633 		struct kvm_device_attr attr;
4634 		r = -EFAULT;
4635 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4636 			break;
4637 		r = kvm_x86_dev_has_attr(&attr);
4638 		break;
4639 	}
4640 	default:
4641 		r = -EINVAL;
4642 		break;
4643 	}
4644 out:
4645 	return r;
4646 }
4647 
4648 static void wbinvd_ipi(void *garbage)
4649 {
4650 	wbinvd();
4651 }
4652 
4653 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4654 {
4655 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4656 }
4657 
4658 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4659 {
4660 	/* Address WBINVD may be executed by guest */
4661 	if (need_emulate_wbinvd(vcpu)) {
4662 		if (static_call(kvm_x86_has_wbinvd_exit)())
4663 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4664 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4665 			smp_call_function_single(vcpu->cpu,
4666 					wbinvd_ipi, NULL, 1);
4667 	}
4668 
4669 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4670 
4671 	/* Save host pkru register if supported */
4672 	vcpu->arch.host_pkru = read_pkru();
4673 
4674 	/* Apply any externally detected TSC adjustments (due to suspend) */
4675 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4676 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4677 		vcpu->arch.tsc_offset_adjustment = 0;
4678 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4679 	}
4680 
4681 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4682 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4683 				rdtsc() - vcpu->arch.last_host_tsc;
4684 		if (tsc_delta < 0)
4685 			mark_tsc_unstable("KVM discovered backwards TSC");
4686 
4687 		if (kvm_check_tsc_unstable()) {
4688 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4689 						vcpu->arch.last_guest_tsc);
4690 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4691 			vcpu->arch.tsc_catchup = 1;
4692 		}
4693 
4694 		if (kvm_lapic_hv_timer_in_use(vcpu))
4695 			kvm_lapic_restart_hv_timer(vcpu);
4696 
4697 		/*
4698 		 * On a host with synchronized TSC, there is no need to update
4699 		 * kvmclock on vcpu->cpu migration
4700 		 */
4701 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4702 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4703 		if (vcpu->cpu != cpu)
4704 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4705 		vcpu->cpu = cpu;
4706 	}
4707 
4708 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4709 }
4710 
4711 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4712 {
4713 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4714 	struct kvm_steal_time __user *st;
4715 	struct kvm_memslots *slots;
4716 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4717 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4718 
4719 	/*
4720 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4721 	 * an instruction boundary and will not trigger guest emulation of any
4722 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4723 	 * when this is true, for example allowing the vCPU to be marked
4724 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4725 	 */
4726 	if (!vcpu->arch.at_instruction_boundary) {
4727 		vcpu->stat.preemption_other++;
4728 		return;
4729 	}
4730 
4731 	vcpu->stat.preemption_reported++;
4732 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4733 		return;
4734 
4735 	if (vcpu->arch.st.preempted)
4736 		return;
4737 
4738 	/* This happens on process exit */
4739 	if (unlikely(current->mm != vcpu->kvm->mm))
4740 		return;
4741 
4742 	slots = kvm_memslots(vcpu->kvm);
4743 
4744 	if (unlikely(slots->generation != ghc->generation ||
4745 		     gpa != ghc->gpa ||
4746 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4747 		return;
4748 
4749 	st = (struct kvm_steal_time __user *)ghc->hva;
4750 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4751 
4752 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4753 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4754 
4755 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4756 }
4757 
4758 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4759 {
4760 	int idx;
4761 
4762 	if (vcpu->preempted) {
4763 		if (!vcpu->arch.guest_state_protected)
4764 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4765 
4766 		/*
4767 		 * Take the srcu lock as memslots will be accessed to check the gfn
4768 		 * cache generation against the memslots generation.
4769 		 */
4770 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4771 		if (kvm_xen_msr_enabled(vcpu->kvm))
4772 			kvm_xen_runstate_set_preempted(vcpu);
4773 		else
4774 			kvm_steal_time_set_preempted(vcpu);
4775 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4776 	}
4777 
4778 	static_call(kvm_x86_vcpu_put)(vcpu);
4779 	vcpu->arch.last_host_tsc = rdtsc();
4780 }
4781 
4782 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4783 				    struct kvm_lapic_state *s)
4784 {
4785 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4786 
4787 	return kvm_apic_get_state(vcpu, s);
4788 }
4789 
4790 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4791 				    struct kvm_lapic_state *s)
4792 {
4793 	int r;
4794 
4795 	r = kvm_apic_set_state(vcpu, s);
4796 	if (r)
4797 		return r;
4798 	update_cr8_intercept(vcpu);
4799 
4800 	return 0;
4801 }
4802 
4803 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4804 {
4805 	/*
4806 	 * We can accept userspace's request for interrupt injection
4807 	 * as long as we have a place to store the interrupt number.
4808 	 * The actual injection will happen when the CPU is able to
4809 	 * deliver the interrupt.
4810 	 */
4811 	if (kvm_cpu_has_extint(vcpu))
4812 		return false;
4813 
4814 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4815 	return (!lapic_in_kernel(vcpu) ||
4816 		kvm_apic_accept_pic_intr(vcpu));
4817 }
4818 
4819 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4820 {
4821 	/*
4822 	 * Do not cause an interrupt window exit if an exception
4823 	 * is pending or an event needs reinjection; userspace
4824 	 * might want to inject the interrupt manually using KVM_SET_REGS
4825 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4826 	 * instruction boundary and with no events half-injected.
4827 	 */
4828 	return (kvm_arch_interrupt_allowed(vcpu) &&
4829 		kvm_cpu_accept_dm_intr(vcpu) &&
4830 		!kvm_event_needs_reinjection(vcpu) &&
4831 		!vcpu->arch.exception.pending);
4832 }
4833 
4834 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4835 				    struct kvm_interrupt *irq)
4836 {
4837 	if (irq->irq >= KVM_NR_INTERRUPTS)
4838 		return -EINVAL;
4839 
4840 	if (!irqchip_in_kernel(vcpu->kvm)) {
4841 		kvm_queue_interrupt(vcpu, irq->irq, false);
4842 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4843 		return 0;
4844 	}
4845 
4846 	/*
4847 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4848 	 * fail for in-kernel 8259.
4849 	 */
4850 	if (pic_in_kernel(vcpu->kvm))
4851 		return -ENXIO;
4852 
4853 	if (vcpu->arch.pending_external_vector != -1)
4854 		return -EEXIST;
4855 
4856 	vcpu->arch.pending_external_vector = irq->irq;
4857 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4858 	return 0;
4859 }
4860 
4861 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4862 {
4863 	kvm_inject_nmi(vcpu);
4864 
4865 	return 0;
4866 }
4867 
4868 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4869 {
4870 	kvm_make_request(KVM_REQ_SMI, vcpu);
4871 
4872 	return 0;
4873 }
4874 
4875 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4876 					   struct kvm_tpr_access_ctl *tac)
4877 {
4878 	if (tac->flags)
4879 		return -EINVAL;
4880 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4881 	return 0;
4882 }
4883 
4884 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4885 					u64 mcg_cap)
4886 {
4887 	int r;
4888 	unsigned bank_num = mcg_cap & 0xff, bank;
4889 
4890 	r = -EINVAL;
4891 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4892 		goto out;
4893 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4894 		goto out;
4895 	r = 0;
4896 	vcpu->arch.mcg_cap = mcg_cap;
4897 	/* Init IA32_MCG_CTL to all 1s */
4898 	if (mcg_cap & MCG_CTL_P)
4899 		vcpu->arch.mcg_ctl = ~(u64)0;
4900 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4901 	for (bank = 0; bank < bank_num; bank++) {
4902 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4903 		if (mcg_cap & MCG_CMCI_P)
4904 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4905 	}
4906 
4907 	kvm_apic_after_set_mcg_cap(vcpu);
4908 
4909 	static_call(kvm_x86_setup_mce)(vcpu);
4910 out:
4911 	return r;
4912 }
4913 
4914 /*
4915  * Validate this is an UCNA (uncorrectable no action) error by checking the
4916  * MCG_STATUS and MCi_STATUS registers:
4917  * - none of the bits for Machine Check Exceptions are set
4918  * - both the VAL (valid) and UC (uncorrectable) bits are set
4919  * MCI_STATUS_PCC - Processor Context Corrupted
4920  * MCI_STATUS_S - Signaled as a Machine Check Exception
4921  * MCI_STATUS_AR - Software recoverable Action Required
4922  */
4923 static bool is_ucna(struct kvm_x86_mce *mce)
4924 {
4925 	return	!mce->mcg_status &&
4926 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4927 		(mce->status & MCI_STATUS_VAL) &&
4928 		(mce->status & MCI_STATUS_UC);
4929 }
4930 
4931 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4932 {
4933 	u64 mcg_cap = vcpu->arch.mcg_cap;
4934 
4935 	banks[1] = mce->status;
4936 	banks[2] = mce->addr;
4937 	banks[3] = mce->misc;
4938 	vcpu->arch.mcg_status = mce->mcg_status;
4939 
4940 	if (!(mcg_cap & MCG_CMCI_P) ||
4941 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4942 		return 0;
4943 
4944 	if (lapic_in_kernel(vcpu))
4945 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4946 
4947 	return 0;
4948 }
4949 
4950 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4951 				      struct kvm_x86_mce *mce)
4952 {
4953 	u64 mcg_cap = vcpu->arch.mcg_cap;
4954 	unsigned bank_num = mcg_cap & 0xff;
4955 	u64 *banks = vcpu->arch.mce_banks;
4956 
4957 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4958 		return -EINVAL;
4959 
4960 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4961 
4962 	if (is_ucna(mce))
4963 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4964 
4965 	/*
4966 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4967 	 * reporting is disabled
4968 	 */
4969 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4970 	    vcpu->arch.mcg_ctl != ~(u64)0)
4971 		return 0;
4972 	/*
4973 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4974 	 * reporting is disabled for the bank
4975 	 */
4976 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4977 		return 0;
4978 	if (mce->status & MCI_STATUS_UC) {
4979 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4980 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4981 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4982 			return 0;
4983 		}
4984 		if (banks[1] & MCI_STATUS_VAL)
4985 			mce->status |= MCI_STATUS_OVER;
4986 		banks[2] = mce->addr;
4987 		banks[3] = mce->misc;
4988 		vcpu->arch.mcg_status = mce->mcg_status;
4989 		banks[1] = mce->status;
4990 		kvm_queue_exception(vcpu, MC_VECTOR);
4991 	} else if (!(banks[1] & MCI_STATUS_VAL)
4992 		   || !(banks[1] & MCI_STATUS_UC)) {
4993 		if (banks[1] & MCI_STATUS_VAL)
4994 			mce->status |= MCI_STATUS_OVER;
4995 		banks[2] = mce->addr;
4996 		banks[3] = mce->misc;
4997 		banks[1] = mce->status;
4998 	} else
4999 		banks[1] |= MCI_STATUS_OVER;
5000 	return 0;
5001 }
5002 
5003 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5004 					       struct kvm_vcpu_events *events)
5005 {
5006 	process_nmi(vcpu);
5007 
5008 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5009 		process_smi(vcpu);
5010 
5011 	/*
5012 	 * In guest mode, payload delivery should be deferred,
5013 	 * so that the L1 hypervisor can intercept #PF before
5014 	 * CR2 is modified (or intercept #DB before DR6 is
5015 	 * modified under nVMX). Unless the per-VM capability,
5016 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5017 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5018 	 * opportunistically defer the exception payload, deliver it if the
5019 	 * capability hasn't been requested before processing a
5020 	 * KVM_GET_VCPU_EVENTS.
5021 	 */
5022 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5023 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5024 		kvm_deliver_exception_payload(vcpu);
5025 
5026 	/*
5027 	 * The API doesn't provide the instruction length for software
5028 	 * exceptions, so don't report them. As long as the guest RIP
5029 	 * isn't advanced, we should expect to encounter the exception
5030 	 * again.
5031 	 */
5032 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5033 		events->exception.injected = 0;
5034 		events->exception.pending = 0;
5035 	} else {
5036 		events->exception.injected = vcpu->arch.exception.injected;
5037 		events->exception.pending = vcpu->arch.exception.pending;
5038 		/*
5039 		 * For ABI compatibility, deliberately conflate
5040 		 * pending and injected exceptions when
5041 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5042 		 */
5043 		if (!vcpu->kvm->arch.exception_payload_enabled)
5044 			events->exception.injected |=
5045 				vcpu->arch.exception.pending;
5046 	}
5047 	events->exception.nr = vcpu->arch.exception.nr;
5048 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5049 	events->exception.error_code = vcpu->arch.exception.error_code;
5050 	events->exception_has_payload = vcpu->arch.exception.has_payload;
5051 	events->exception_payload = vcpu->arch.exception.payload;
5052 
5053 	events->interrupt.injected =
5054 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5055 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5056 	events->interrupt.soft = 0;
5057 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5058 
5059 	events->nmi.injected = vcpu->arch.nmi_injected;
5060 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5061 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5062 	events->nmi.pad = 0;
5063 
5064 	events->sipi_vector = 0; /* never valid when reporting to user space */
5065 
5066 	events->smi.smm = is_smm(vcpu);
5067 	events->smi.pending = vcpu->arch.smi_pending;
5068 	events->smi.smm_inside_nmi =
5069 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5070 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5071 
5072 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5073 			 | KVM_VCPUEVENT_VALID_SHADOW
5074 			 | KVM_VCPUEVENT_VALID_SMM);
5075 	if (vcpu->kvm->arch.exception_payload_enabled)
5076 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5077 	if (vcpu->kvm->arch.triple_fault_event) {
5078 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5079 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5080 	}
5081 
5082 	memset(&events->reserved, 0, sizeof(events->reserved));
5083 }
5084 
5085 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5086 
5087 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5088 					      struct kvm_vcpu_events *events)
5089 {
5090 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5091 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5092 			      | KVM_VCPUEVENT_VALID_SHADOW
5093 			      | KVM_VCPUEVENT_VALID_SMM
5094 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5095 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5096 		return -EINVAL;
5097 
5098 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5099 		if (!vcpu->kvm->arch.exception_payload_enabled)
5100 			return -EINVAL;
5101 		if (events->exception.pending)
5102 			events->exception.injected = 0;
5103 		else
5104 			events->exception_has_payload = 0;
5105 	} else {
5106 		events->exception.pending = 0;
5107 		events->exception_has_payload = 0;
5108 	}
5109 
5110 	if ((events->exception.injected || events->exception.pending) &&
5111 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5112 		return -EINVAL;
5113 
5114 	/* INITs are latched while in SMM */
5115 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5116 	    (events->smi.smm || events->smi.pending) &&
5117 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5118 		return -EINVAL;
5119 
5120 	process_nmi(vcpu);
5121 	vcpu->arch.exception.injected = events->exception.injected;
5122 	vcpu->arch.exception.pending = events->exception.pending;
5123 	vcpu->arch.exception.nr = events->exception.nr;
5124 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5125 	vcpu->arch.exception.error_code = events->exception.error_code;
5126 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5127 	vcpu->arch.exception.payload = events->exception_payload;
5128 
5129 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5130 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5131 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5132 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5133 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5134 						events->interrupt.shadow);
5135 
5136 	vcpu->arch.nmi_injected = events->nmi.injected;
5137 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5138 		vcpu->arch.nmi_pending = events->nmi.pending;
5139 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5140 
5141 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5142 	    lapic_in_kernel(vcpu))
5143 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5144 
5145 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5146 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5147 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5148 			kvm_smm_changed(vcpu, events->smi.smm);
5149 		}
5150 
5151 		vcpu->arch.smi_pending = events->smi.pending;
5152 
5153 		if (events->smi.smm) {
5154 			if (events->smi.smm_inside_nmi)
5155 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5156 			else
5157 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5158 		}
5159 
5160 		if (lapic_in_kernel(vcpu)) {
5161 			if (events->smi.latched_init)
5162 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5163 			else
5164 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5165 		}
5166 	}
5167 
5168 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5169 		if (!vcpu->kvm->arch.triple_fault_event)
5170 			return -EINVAL;
5171 		if (events->triple_fault.pending)
5172 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5173 		else
5174 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5175 	}
5176 
5177 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5178 
5179 	return 0;
5180 }
5181 
5182 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5183 					     struct kvm_debugregs *dbgregs)
5184 {
5185 	unsigned long val;
5186 
5187 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5188 	kvm_get_dr(vcpu, 6, &val);
5189 	dbgregs->dr6 = val;
5190 	dbgregs->dr7 = vcpu->arch.dr7;
5191 	dbgregs->flags = 0;
5192 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5193 }
5194 
5195 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5196 					    struct kvm_debugregs *dbgregs)
5197 {
5198 	if (dbgregs->flags)
5199 		return -EINVAL;
5200 
5201 	if (!kvm_dr6_valid(dbgregs->dr6))
5202 		return -EINVAL;
5203 	if (!kvm_dr7_valid(dbgregs->dr7))
5204 		return -EINVAL;
5205 
5206 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5207 	kvm_update_dr0123(vcpu);
5208 	vcpu->arch.dr6 = dbgregs->dr6;
5209 	vcpu->arch.dr7 = dbgregs->dr7;
5210 	kvm_update_dr7(vcpu);
5211 
5212 	return 0;
5213 }
5214 
5215 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5216 					 struct kvm_xsave *guest_xsave)
5217 {
5218 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5219 		return;
5220 
5221 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5222 				       guest_xsave->region,
5223 				       sizeof(guest_xsave->region),
5224 				       vcpu->arch.pkru);
5225 }
5226 
5227 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5228 					  u8 *state, unsigned int size)
5229 {
5230 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5231 		return;
5232 
5233 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5234 				       state, size, vcpu->arch.pkru);
5235 }
5236 
5237 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5238 					struct kvm_xsave *guest_xsave)
5239 {
5240 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5241 		return 0;
5242 
5243 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5244 					      guest_xsave->region,
5245 					      kvm_caps.supported_xcr0,
5246 					      &vcpu->arch.pkru);
5247 }
5248 
5249 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5250 					struct kvm_xcrs *guest_xcrs)
5251 {
5252 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5253 		guest_xcrs->nr_xcrs = 0;
5254 		return;
5255 	}
5256 
5257 	guest_xcrs->nr_xcrs = 1;
5258 	guest_xcrs->flags = 0;
5259 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5260 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5261 }
5262 
5263 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5264 				       struct kvm_xcrs *guest_xcrs)
5265 {
5266 	int i, r = 0;
5267 
5268 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5269 		return -EINVAL;
5270 
5271 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5272 		return -EINVAL;
5273 
5274 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5275 		/* Only support XCR0 currently */
5276 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5277 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5278 				guest_xcrs->xcrs[i].value);
5279 			break;
5280 		}
5281 	if (r)
5282 		r = -EINVAL;
5283 	return r;
5284 }
5285 
5286 /*
5287  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5288  * stopped by the hypervisor.  This function will be called from the host only.
5289  * EINVAL is returned when the host attempts to set the flag for a guest that
5290  * does not support pv clocks.
5291  */
5292 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5293 {
5294 	if (!vcpu->arch.pv_time.active)
5295 		return -EINVAL;
5296 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5297 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5298 	return 0;
5299 }
5300 
5301 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5302 				 struct kvm_device_attr *attr)
5303 {
5304 	int r;
5305 
5306 	switch (attr->attr) {
5307 	case KVM_VCPU_TSC_OFFSET:
5308 		r = 0;
5309 		break;
5310 	default:
5311 		r = -ENXIO;
5312 	}
5313 
5314 	return r;
5315 }
5316 
5317 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5318 				 struct kvm_device_attr *attr)
5319 {
5320 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5321 	int r;
5322 
5323 	if (IS_ERR(uaddr))
5324 		return PTR_ERR(uaddr);
5325 
5326 	switch (attr->attr) {
5327 	case KVM_VCPU_TSC_OFFSET:
5328 		r = -EFAULT;
5329 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5330 			break;
5331 		r = 0;
5332 		break;
5333 	default:
5334 		r = -ENXIO;
5335 	}
5336 
5337 	return r;
5338 }
5339 
5340 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5341 				 struct kvm_device_attr *attr)
5342 {
5343 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5344 	struct kvm *kvm = vcpu->kvm;
5345 	int r;
5346 
5347 	if (IS_ERR(uaddr))
5348 		return PTR_ERR(uaddr);
5349 
5350 	switch (attr->attr) {
5351 	case KVM_VCPU_TSC_OFFSET: {
5352 		u64 offset, tsc, ns;
5353 		unsigned long flags;
5354 		bool matched;
5355 
5356 		r = -EFAULT;
5357 		if (get_user(offset, uaddr))
5358 			break;
5359 
5360 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5361 
5362 		matched = (vcpu->arch.virtual_tsc_khz &&
5363 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5364 			   kvm->arch.last_tsc_offset == offset);
5365 
5366 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5367 		ns = get_kvmclock_base_ns();
5368 
5369 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5370 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5371 
5372 		r = 0;
5373 		break;
5374 	}
5375 	default:
5376 		r = -ENXIO;
5377 	}
5378 
5379 	return r;
5380 }
5381 
5382 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5383 				      unsigned int ioctl,
5384 				      void __user *argp)
5385 {
5386 	struct kvm_device_attr attr;
5387 	int r;
5388 
5389 	if (copy_from_user(&attr, argp, sizeof(attr)))
5390 		return -EFAULT;
5391 
5392 	if (attr.group != KVM_VCPU_TSC_CTRL)
5393 		return -ENXIO;
5394 
5395 	switch (ioctl) {
5396 	case KVM_HAS_DEVICE_ATTR:
5397 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5398 		break;
5399 	case KVM_GET_DEVICE_ATTR:
5400 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5401 		break;
5402 	case KVM_SET_DEVICE_ATTR:
5403 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5404 		break;
5405 	}
5406 
5407 	return r;
5408 }
5409 
5410 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5411 				     struct kvm_enable_cap *cap)
5412 {
5413 	int r;
5414 	uint16_t vmcs_version;
5415 	void __user *user_ptr;
5416 
5417 	if (cap->flags)
5418 		return -EINVAL;
5419 
5420 	switch (cap->cap) {
5421 	case KVM_CAP_HYPERV_SYNIC2:
5422 		if (cap->args[0])
5423 			return -EINVAL;
5424 		fallthrough;
5425 
5426 	case KVM_CAP_HYPERV_SYNIC:
5427 		if (!irqchip_in_kernel(vcpu->kvm))
5428 			return -EINVAL;
5429 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5430 					     KVM_CAP_HYPERV_SYNIC2);
5431 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5432 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5433 			return -ENOTTY;
5434 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5435 		if (!r) {
5436 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5437 			if (copy_to_user(user_ptr, &vmcs_version,
5438 					 sizeof(vmcs_version)))
5439 				r = -EFAULT;
5440 		}
5441 		return r;
5442 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5443 		if (!kvm_x86_ops.enable_direct_tlbflush)
5444 			return -ENOTTY;
5445 
5446 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5447 
5448 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5449 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5450 
5451 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5452 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5453 		if (vcpu->arch.pv_cpuid.enforce)
5454 			kvm_update_pv_runtime(vcpu);
5455 
5456 		return 0;
5457 	default:
5458 		return -EINVAL;
5459 	}
5460 }
5461 
5462 long kvm_arch_vcpu_ioctl(struct file *filp,
5463 			 unsigned int ioctl, unsigned long arg)
5464 {
5465 	struct kvm_vcpu *vcpu = filp->private_data;
5466 	void __user *argp = (void __user *)arg;
5467 	int r;
5468 	union {
5469 		struct kvm_sregs2 *sregs2;
5470 		struct kvm_lapic_state *lapic;
5471 		struct kvm_xsave *xsave;
5472 		struct kvm_xcrs *xcrs;
5473 		void *buffer;
5474 	} u;
5475 
5476 	vcpu_load(vcpu);
5477 
5478 	u.buffer = NULL;
5479 	switch (ioctl) {
5480 	case KVM_GET_LAPIC: {
5481 		r = -EINVAL;
5482 		if (!lapic_in_kernel(vcpu))
5483 			goto out;
5484 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5485 				GFP_KERNEL_ACCOUNT);
5486 
5487 		r = -ENOMEM;
5488 		if (!u.lapic)
5489 			goto out;
5490 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5491 		if (r)
5492 			goto out;
5493 		r = -EFAULT;
5494 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5495 			goto out;
5496 		r = 0;
5497 		break;
5498 	}
5499 	case KVM_SET_LAPIC: {
5500 		r = -EINVAL;
5501 		if (!lapic_in_kernel(vcpu))
5502 			goto out;
5503 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5504 		if (IS_ERR(u.lapic)) {
5505 			r = PTR_ERR(u.lapic);
5506 			goto out_nofree;
5507 		}
5508 
5509 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5510 		break;
5511 	}
5512 	case KVM_INTERRUPT: {
5513 		struct kvm_interrupt irq;
5514 
5515 		r = -EFAULT;
5516 		if (copy_from_user(&irq, argp, sizeof(irq)))
5517 			goto out;
5518 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5519 		break;
5520 	}
5521 	case KVM_NMI: {
5522 		r = kvm_vcpu_ioctl_nmi(vcpu);
5523 		break;
5524 	}
5525 	case KVM_SMI: {
5526 		r = kvm_vcpu_ioctl_smi(vcpu);
5527 		break;
5528 	}
5529 	case KVM_SET_CPUID: {
5530 		struct kvm_cpuid __user *cpuid_arg = argp;
5531 		struct kvm_cpuid cpuid;
5532 
5533 		r = -EFAULT;
5534 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5535 			goto out;
5536 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5537 		break;
5538 	}
5539 	case KVM_SET_CPUID2: {
5540 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5541 		struct kvm_cpuid2 cpuid;
5542 
5543 		r = -EFAULT;
5544 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5545 			goto out;
5546 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5547 					      cpuid_arg->entries);
5548 		break;
5549 	}
5550 	case KVM_GET_CPUID2: {
5551 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5552 		struct kvm_cpuid2 cpuid;
5553 
5554 		r = -EFAULT;
5555 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5556 			goto out;
5557 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5558 					      cpuid_arg->entries);
5559 		if (r)
5560 			goto out;
5561 		r = -EFAULT;
5562 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5563 			goto out;
5564 		r = 0;
5565 		break;
5566 	}
5567 	case KVM_GET_MSRS: {
5568 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5569 		r = msr_io(vcpu, argp, do_get_msr, 1);
5570 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5571 		break;
5572 	}
5573 	case KVM_SET_MSRS: {
5574 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5575 		r = msr_io(vcpu, argp, do_set_msr, 0);
5576 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5577 		break;
5578 	}
5579 	case KVM_TPR_ACCESS_REPORTING: {
5580 		struct kvm_tpr_access_ctl tac;
5581 
5582 		r = -EFAULT;
5583 		if (copy_from_user(&tac, argp, sizeof(tac)))
5584 			goto out;
5585 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5586 		if (r)
5587 			goto out;
5588 		r = -EFAULT;
5589 		if (copy_to_user(argp, &tac, sizeof(tac)))
5590 			goto out;
5591 		r = 0;
5592 		break;
5593 	};
5594 	case KVM_SET_VAPIC_ADDR: {
5595 		struct kvm_vapic_addr va;
5596 		int idx;
5597 
5598 		r = -EINVAL;
5599 		if (!lapic_in_kernel(vcpu))
5600 			goto out;
5601 		r = -EFAULT;
5602 		if (copy_from_user(&va, argp, sizeof(va)))
5603 			goto out;
5604 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5605 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5606 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5607 		break;
5608 	}
5609 	case KVM_X86_SETUP_MCE: {
5610 		u64 mcg_cap;
5611 
5612 		r = -EFAULT;
5613 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5614 			goto out;
5615 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5616 		break;
5617 	}
5618 	case KVM_X86_SET_MCE: {
5619 		struct kvm_x86_mce mce;
5620 
5621 		r = -EFAULT;
5622 		if (copy_from_user(&mce, argp, sizeof(mce)))
5623 			goto out;
5624 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5625 		break;
5626 	}
5627 	case KVM_GET_VCPU_EVENTS: {
5628 		struct kvm_vcpu_events events;
5629 
5630 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5631 
5632 		r = -EFAULT;
5633 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5634 			break;
5635 		r = 0;
5636 		break;
5637 	}
5638 	case KVM_SET_VCPU_EVENTS: {
5639 		struct kvm_vcpu_events events;
5640 
5641 		r = -EFAULT;
5642 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5643 			break;
5644 
5645 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5646 		break;
5647 	}
5648 	case KVM_GET_DEBUGREGS: {
5649 		struct kvm_debugregs dbgregs;
5650 
5651 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5652 
5653 		r = -EFAULT;
5654 		if (copy_to_user(argp, &dbgregs,
5655 				 sizeof(struct kvm_debugregs)))
5656 			break;
5657 		r = 0;
5658 		break;
5659 	}
5660 	case KVM_SET_DEBUGREGS: {
5661 		struct kvm_debugregs dbgregs;
5662 
5663 		r = -EFAULT;
5664 		if (copy_from_user(&dbgregs, argp,
5665 				   sizeof(struct kvm_debugregs)))
5666 			break;
5667 
5668 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5669 		break;
5670 	}
5671 	case KVM_GET_XSAVE: {
5672 		r = -EINVAL;
5673 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5674 			break;
5675 
5676 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5677 		r = -ENOMEM;
5678 		if (!u.xsave)
5679 			break;
5680 
5681 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5682 
5683 		r = -EFAULT;
5684 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5685 			break;
5686 		r = 0;
5687 		break;
5688 	}
5689 	case KVM_SET_XSAVE: {
5690 		int size = vcpu->arch.guest_fpu.uabi_size;
5691 
5692 		u.xsave = memdup_user(argp, size);
5693 		if (IS_ERR(u.xsave)) {
5694 			r = PTR_ERR(u.xsave);
5695 			goto out_nofree;
5696 		}
5697 
5698 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5699 		break;
5700 	}
5701 
5702 	case KVM_GET_XSAVE2: {
5703 		int size = vcpu->arch.guest_fpu.uabi_size;
5704 
5705 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5706 		r = -ENOMEM;
5707 		if (!u.xsave)
5708 			break;
5709 
5710 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5711 
5712 		r = -EFAULT;
5713 		if (copy_to_user(argp, u.xsave, size))
5714 			break;
5715 
5716 		r = 0;
5717 		break;
5718 	}
5719 
5720 	case KVM_GET_XCRS: {
5721 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5722 		r = -ENOMEM;
5723 		if (!u.xcrs)
5724 			break;
5725 
5726 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5727 
5728 		r = -EFAULT;
5729 		if (copy_to_user(argp, u.xcrs,
5730 				 sizeof(struct kvm_xcrs)))
5731 			break;
5732 		r = 0;
5733 		break;
5734 	}
5735 	case KVM_SET_XCRS: {
5736 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5737 		if (IS_ERR(u.xcrs)) {
5738 			r = PTR_ERR(u.xcrs);
5739 			goto out_nofree;
5740 		}
5741 
5742 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5743 		break;
5744 	}
5745 	case KVM_SET_TSC_KHZ: {
5746 		u32 user_tsc_khz;
5747 
5748 		r = -EINVAL;
5749 		user_tsc_khz = (u32)arg;
5750 
5751 		if (kvm_caps.has_tsc_control &&
5752 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5753 			goto out;
5754 
5755 		if (user_tsc_khz == 0)
5756 			user_tsc_khz = tsc_khz;
5757 
5758 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5759 			r = 0;
5760 
5761 		goto out;
5762 	}
5763 	case KVM_GET_TSC_KHZ: {
5764 		r = vcpu->arch.virtual_tsc_khz;
5765 		goto out;
5766 	}
5767 	case KVM_KVMCLOCK_CTRL: {
5768 		r = kvm_set_guest_paused(vcpu);
5769 		goto out;
5770 	}
5771 	case KVM_ENABLE_CAP: {
5772 		struct kvm_enable_cap cap;
5773 
5774 		r = -EFAULT;
5775 		if (copy_from_user(&cap, argp, sizeof(cap)))
5776 			goto out;
5777 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5778 		break;
5779 	}
5780 	case KVM_GET_NESTED_STATE: {
5781 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5782 		u32 user_data_size;
5783 
5784 		r = -EINVAL;
5785 		if (!kvm_x86_ops.nested_ops->get_state)
5786 			break;
5787 
5788 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5789 		r = -EFAULT;
5790 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5791 			break;
5792 
5793 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5794 						     user_data_size);
5795 		if (r < 0)
5796 			break;
5797 
5798 		if (r > user_data_size) {
5799 			if (put_user(r, &user_kvm_nested_state->size))
5800 				r = -EFAULT;
5801 			else
5802 				r = -E2BIG;
5803 			break;
5804 		}
5805 
5806 		r = 0;
5807 		break;
5808 	}
5809 	case KVM_SET_NESTED_STATE: {
5810 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5811 		struct kvm_nested_state kvm_state;
5812 		int idx;
5813 
5814 		r = -EINVAL;
5815 		if (!kvm_x86_ops.nested_ops->set_state)
5816 			break;
5817 
5818 		r = -EFAULT;
5819 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5820 			break;
5821 
5822 		r = -EINVAL;
5823 		if (kvm_state.size < sizeof(kvm_state))
5824 			break;
5825 
5826 		if (kvm_state.flags &
5827 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5828 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5829 		      | KVM_STATE_NESTED_GIF_SET))
5830 			break;
5831 
5832 		/* nested_run_pending implies guest_mode.  */
5833 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5834 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5835 			break;
5836 
5837 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5838 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5839 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5840 		break;
5841 	}
5842 	case KVM_GET_SUPPORTED_HV_CPUID:
5843 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5844 		break;
5845 #ifdef CONFIG_KVM_XEN
5846 	case KVM_XEN_VCPU_GET_ATTR: {
5847 		struct kvm_xen_vcpu_attr xva;
5848 
5849 		r = -EFAULT;
5850 		if (copy_from_user(&xva, argp, sizeof(xva)))
5851 			goto out;
5852 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5853 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5854 			r = -EFAULT;
5855 		break;
5856 	}
5857 	case KVM_XEN_VCPU_SET_ATTR: {
5858 		struct kvm_xen_vcpu_attr xva;
5859 
5860 		r = -EFAULT;
5861 		if (copy_from_user(&xva, argp, sizeof(xva)))
5862 			goto out;
5863 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5864 		break;
5865 	}
5866 #endif
5867 	case KVM_GET_SREGS2: {
5868 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5869 		r = -ENOMEM;
5870 		if (!u.sregs2)
5871 			goto out;
5872 		__get_sregs2(vcpu, u.sregs2);
5873 		r = -EFAULT;
5874 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5875 			goto out;
5876 		r = 0;
5877 		break;
5878 	}
5879 	case KVM_SET_SREGS2: {
5880 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5881 		if (IS_ERR(u.sregs2)) {
5882 			r = PTR_ERR(u.sregs2);
5883 			u.sregs2 = NULL;
5884 			goto out;
5885 		}
5886 		r = __set_sregs2(vcpu, u.sregs2);
5887 		break;
5888 	}
5889 	case KVM_HAS_DEVICE_ATTR:
5890 	case KVM_GET_DEVICE_ATTR:
5891 	case KVM_SET_DEVICE_ATTR:
5892 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5893 		break;
5894 	default:
5895 		r = -EINVAL;
5896 	}
5897 out:
5898 	kfree(u.buffer);
5899 out_nofree:
5900 	vcpu_put(vcpu);
5901 	return r;
5902 }
5903 
5904 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5905 {
5906 	return VM_FAULT_SIGBUS;
5907 }
5908 
5909 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5910 {
5911 	int ret;
5912 
5913 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5914 		return -EINVAL;
5915 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5916 	return ret;
5917 }
5918 
5919 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5920 					      u64 ident_addr)
5921 {
5922 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5923 }
5924 
5925 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5926 					 unsigned long kvm_nr_mmu_pages)
5927 {
5928 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5929 		return -EINVAL;
5930 
5931 	mutex_lock(&kvm->slots_lock);
5932 
5933 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5934 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5935 
5936 	mutex_unlock(&kvm->slots_lock);
5937 	return 0;
5938 }
5939 
5940 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5941 {
5942 	return kvm->arch.n_max_mmu_pages;
5943 }
5944 
5945 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5946 {
5947 	struct kvm_pic *pic = kvm->arch.vpic;
5948 	int r;
5949 
5950 	r = 0;
5951 	switch (chip->chip_id) {
5952 	case KVM_IRQCHIP_PIC_MASTER:
5953 		memcpy(&chip->chip.pic, &pic->pics[0],
5954 			sizeof(struct kvm_pic_state));
5955 		break;
5956 	case KVM_IRQCHIP_PIC_SLAVE:
5957 		memcpy(&chip->chip.pic, &pic->pics[1],
5958 			sizeof(struct kvm_pic_state));
5959 		break;
5960 	case KVM_IRQCHIP_IOAPIC:
5961 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5962 		break;
5963 	default:
5964 		r = -EINVAL;
5965 		break;
5966 	}
5967 	return r;
5968 }
5969 
5970 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5971 {
5972 	struct kvm_pic *pic = kvm->arch.vpic;
5973 	int r;
5974 
5975 	r = 0;
5976 	switch (chip->chip_id) {
5977 	case KVM_IRQCHIP_PIC_MASTER:
5978 		spin_lock(&pic->lock);
5979 		memcpy(&pic->pics[0], &chip->chip.pic,
5980 			sizeof(struct kvm_pic_state));
5981 		spin_unlock(&pic->lock);
5982 		break;
5983 	case KVM_IRQCHIP_PIC_SLAVE:
5984 		spin_lock(&pic->lock);
5985 		memcpy(&pic->pics[1], &chip->chip.pic,
5986 			sizeof(struct kvm_pic_state));
5987 		spin_unlock(&pic->lock);
5988 		break;
5989 	case KVM_IRQCHIP_IOAPIC:
5990 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5991 		break;
5992 	default:
5993 		r = -EINVAL;
5994 		break;
5995 	}
5996 	kvm_pic_update_irq(pic);
5997 	return r;
5998 }
5999 
6000 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6001 {
6002 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6003 
6004 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6005 
6006 	mutex_lock(&kps->lock);
6007 	memcpy(ps, &kps->channels, sizeof(*ps));
6008 	mutex_unlock(&kps->lock);
6009 	return 0;
6010 }
6011 
6012 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6013 {
6014 	int i;
6015 	struct kvm_pit *pit = kvm->arch.vpit;
6016 
6017 	mutex_lock(&pit->pit_state.lock);
6018 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6019 	for (i = 0; i < 3; i++)
6020 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6021 	mutex_unlock(&pit->pit_state.lock);
6022 	return 0;
6023 }
6024 
6025 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6026 {
6027 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6028 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6029 		sizeof(ps->channels));
6030 	ps->flags = kvm->arch.vpit->pit_state.flags;
6031 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6032 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6033 	return 0;
6034 }
6035 
6036 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6037 {
6038 	int start = 0;
6039 	int i;
6040 	u32 prev_legacy, cur_legacy;
6041 	struct kvm_pit *pit = kvm->arch.vpit;
6042 
6043 	mutex_lock(&pit->pit_state.lock);
6044 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6045 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6046 	if (!prev_legacy && cur_legacy)
6047 		start = 1;
6048 	memcpy(&pit->pit_state.channels, &ps->channels,
6049 	       sizeof(pit->pit_state.channels));
6050 	pit->pit_state.flags = ps->flags;
6051 	for (i = 0; i < 3; i++)
6052 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6053 				   start && i == 0);
6054 	mutex_unlock(&pit->pit_state.lock);
6055 	return 0;
6056 }
6057 
6058 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6059 				 struct kvm_reinject_control *control)
6060 {
6061 	struct kvm_pit *pit = kvm->arch.vpit;
6062 
6063 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6064 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6065 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6066 	 */
6067 	mutex_lock(&pit->pit_state.lock);
6068 	kvm_pit_set_reinject(pit, control->pit_reinject);
6069 	mutex_unlock(&pit->pit_state.lock);
6070 
6071 	return 0;
6072 }
6073 
6074 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6075 {
6076 
6077 	/*
6078 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6079 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6080 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6081 	 * VM-Exit.
6082 	 */
6083 	struct kvm_vcpu *vcpu;
6084 	unsigned long i;
6085 
6086 	kvm_for_each_vcpu(i, vcpu, kvm)
6087 		kvm_vcpu_kick(vcpu);
6088 }
6089 
6090 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6091 			bool line_status)
6092 {
6093 	if (!irqchip_in_kernel(kvm))
6094 		return -ENXIO;
6095 
6096 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6097 					irq_event->irq, irq_event->level,
6098 					line_status);
6099 	return 0;
6100 }
6101 
6102 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6103 			    struct kvm_enable_cap *cap)
6104 {
6105 	int r;
6106 
6107 	if (cap->flags)
6108 		return -EINVAL;
6109 
6110 	switch (cap->cap) {
6111 	case KVM_CAP_DISABLE_QUIRKS2:
6112 		r = -EINVAL;
6113 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6114 			break;
6115 		fallthrough;
6116 	case KVM_CAP_DISABLE_QUIRKS:
6117 		kvm->arch.disabled_quirks = cap->args[0];
6118 		r = 0;
6119 		break;
6120 	case KVM_CAP_SPLIT_IRQCHIP: {
6121 		mutex_lock(&kvm->lock);
6122 		r = -EINVAL;
6123 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6124 			goto split_irqchip_unlock;
6125 		r = -EEXIST;
6126 		if (irqchip_in_kernel(kvm))
6127 			goto split_irqchip_unlock;
6128 		if (kvm->created_vcpus)
6129 			goto split_irqchip_unlock;
6130 		r = kvm_setup_empty_irq_routing(kvm);
6131 		if (r)
6132 			goto split_irqchip_unlock;
6133 		/* Pairs with irqchip_in_kernel. */
6134 		smp_wmb();
6135 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6136 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6137 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6138 		r = 0;
6139 split_irqchip_unlock:
6140 		mutex_unlock(&kvm->lock);
6141 		break;
6142 	}
6143 	case KVM_CAP_X2APIC_API:
6144 		r = -EINVAL;
6145 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6146 			break;
6147 
6148 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6149 			kvm->arch.x2apic_format = true;
6150 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6151 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6152 
6153 		r = 0;
6154 		break;
6155 	case KVM_CAP_X86_DISABLE_EXITS:
6156 		r = -EINVAL;
6157 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6158 			break;
6159 
6160 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6161 			kvm_can_mwait_in_guest())
6162 			kvm->arch.mwait_in_guest = true;
6163 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6164 			kvm->arch.hlt_in_guest = true;
6165 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6166 			kvm->arch.pause_in_guest = true;
6167 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6168 			kvm->arch.cstate_in_guest = true;
6169 		r = 0;
6170 		break;
6171 	case KVM_CAP_MSR_PLATFORM_INFO:
6172 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6173 		r = 0;
6174 		break;
6175 	case KVM_CAP_EXCEPTION_PAYLOAD:
6176 		kvm->arch.exception_payload_enabled = cap->args[0];
6177 		r = 0;
6178 		break;
6179 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6180 		kvm->arch.triple_fault_event = cap->args[0];
6181 		r = 0;
6182 		break;
6183 	case KVM_CAP_X86_USER_SPACE_MSR:
6184 		r = -EINVAL;
6185 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6186 				     KVM_MSR_EXIT_REASON_UNKNOWN |
6187 				     KVM_MSR_EXIT_REASON_FILTER))
6188 			break;
6189 		kvm->arch.user_space_msr_mask = cap->args[0];
6190 		r = 0;
6191 		break;
6192 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6193 		r = -EINVAL;
6194 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6195 			break;
6196 
6197 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6198 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6199 			break;
6200 
6201 		if (kvm_caps.has_bus_lock_exit &&
6202 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6203 			kvm->arch.bus_lock_detection_enabled = true;
6204 		r = 0;
6205 		break;
6206 #ifdef CONFIG_X86_SGX_KVM
6207 	case KVM_CAP_SGX_ATTRIBUTE: {
6208 		unsigned long allowed_attributes = 0;
6209 
6210 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6211 		if (r)
6212 			break;
6213 
6214 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6215 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6216 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6217 			kvm->arch.sgx_provisioning_allowed = true;
6218 		else
6219 			r = -EINVAL;
6220 		break;
6221 	}
6222 #endif
6223 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6224 		r = -EINVAL;
6225 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6226 			break;
6227 
6228 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6229 		break;
6230 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6231 		r = -EINVAL;
6232 		if (!kvm_x86_ops.vm_move_enc_context_from)
6233 			break;
6234 
6235 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6236 		break;
6237 	case KVM_CAP_EXIT_HYPERCALL:
6238 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6239 			r = -EINVAL;
6240 			break;
6241 		}
6242 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6243 		r = 0;
6244 		break;
6245 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6246 		r = -EINVAL;
6247 		if (cap->args[0] & ~1)
6248 			break;
6249 		kvm->arch.exit_on_emulation_error = cap->args[0];
6250 		r = 0;
6251 		break;
6252 	case KVM_CAP_PMU_CAPABILITY:
6253 		r = -EINVAL;
6254 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6255 			break;
6256 
6257 		mutex_lock(&kvm->lock);
6258 		if (!kvm->created_vcpus) {
6259 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6260 			r = 0;
6261 		}
6262 		mutex_unlock(&kvm->lock);
6263 		break;
6264 	case KVM_CAP_MAX_VCPU_ID:
6265 		r = -EINVAL;
6266 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6267 			break;
6268 
6269 		mutex_lock(&kvm->lock);
6270 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6271 			r = 0;
6272 		} else if (!kvm->arch.max_vcpu_ids) {
6273 			kvm->arch.max_vcpu_ids = cap->args[0];
6274 			r = 0;
6275 		}
6276 		mutex_unlock(&kvm->lock);
6277 		break;
6278 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6279 		r = -EINVAL;
6280 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6281 			break;
6282 		if (!kvm_caps.has_notify_vmexit)
6283 			break;
6284 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6285 			break;
6286 		mutex_lock(&kvm->lock);
6287 		if (!kvm->created_vcpus) {
6288 			kvm->arch.notify_window = cap->args[0] >> 32;
6289 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6290 			r = 0;
6291 		}
6292 		mutex_unlock(&kvm->lock);
6293 		break;
6294 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6295 		r = -EINVAL;
6296 
6297 		/*
6298 		 * Since the risk of disabling NX hugepages is a guest crashing
6299 		 * the system, ensure the userspace process has permission to
6300 		 * reboot the system.
6301 		 *
6302 		 * Note that unlike the reboot() syscall, the process must have
6303 		 * this capability in the root namespace because exposing
6304 		 * /dev/kvm into a container does not limit the scope of the
6305 		 * iTLB multihit bug to that container. In other words,
6306 		 * this must use capable(), not ns_capable().
6307 		 */
6308 		if (!capable(CAP_SYS_BOOT)) {
6309 			r = -EPERM;
6310 			break;
6311 		}
6312 
6313 		if (cap->args[0])
6314 			break;
6315 
6316 		mutex_lock(&kvm->lock);
6317 		if (!kvm->created_vcpus) {
6318 			kvm->arch.disable_nx_huge_pages = true;
6319 			r = 0;
6320 		}
6321 		mutex_unlock(&kvm->lock);
6322 		break;
6323 	default:
6324 		r = -EINVAL;
6325 		break;
6326 	}
6327 	return r;
6328 }
6329 
6330 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6331 {
6332 	struct kvm_x86_msr_filter *msr_filter;
6333 
6334 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6335 	if (!msr_filter)
6336 		return NULL;
6337 
6338 	msr_filter->default_allow = default_allow;
6339 	return msr_filter;
6340 }
6341 
6342 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6343 {
6344 	u32 i;
6345 
6346 	if (!msr_filter)
6347 		return;
6348 
6349 	for (i = 0; i < msr_filter->count; i++)
6350 		kfree(msr_filter->ranges[i].bitmap);
6351 
6352 	kfree(msr_filter);
6353 }
6354 
6355 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6356 			      struct kvm_msr_filter_range *user_range)
6357 {
6358 	unsigned long *bitmap = NULL;
6359 	size_t bitmap_size;
6360 
6361 	if (!user_range->nmsrs)
6362 		return 0;
6363 
6364 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6365 		return -EINVAL;
6366 
6367 	if (!user_range->flags)
6368 		return -EINVAL;
6369 
6370 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6371 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6372 		return -EINVAL;
6373 
6374 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6375 	if (IS_ERR(bitmap))
6376 		return PTR_ERR(bitmap);
6377 
6378 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6379 		.flags = user_range->flags,
6380 		.base = user_range->base,
6381 		.nmsrs = user_range->nmsrs,
6382 		.bitmap = bitmap,
6383 	};
6384 
6385 	msr_filter->count++;
6386 	return 0;
6387 }
6388 
6389 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6390 {
6391 	struct kvm_msr_filter __user *user_msr_filter = argp;
6392 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6393 	struct kvm_msr_filter filter;
6394 	bool default_allow;
6395 	bool empty = true;
6396 	int r = 0;
6397 	u32 i;
6398 
6399 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6400 		return -EFAULT;
6401 
6402 	if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6403 		return -EINVAL;
6404 
6405 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6406 		empty &= !filter.ranges[i].nmsrs;
6407 
6408 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6409 	if (empty && !default_allow)
6410 		return -EINVAL;
6411 
6412 	new_filter = kvm_alloc_msr_filter(default_allow);
6413 	if (!new_filter)
6414 		return -ENOMEM;
6415 
6416 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6417 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6418 		if (r) {
6419 			kvm_free_msr_filter(new_filter);
6420 			return r;
6421 		}
6422 	}
6423 
6424 	mutex_lock(&kvm->lock);
6425 
6426 	/* The per-VM filter is protected by kvm->lock... */
6427 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6428 
6429 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6430 	synchronize_srcu(&kvm->srcu);
6431 
6432 	kvm_free_msr_filter(old_filter);
6433 
6434 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6435 	mutex_unlock(&kvm->lock);
6436 
6437 	return 0;
6438 }
6439 
6440 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6441 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6442 {
6443 	struct kvm_vcpu *vcpu;
6444 	unsigned long i;
6445 	int ret = 0;
6446 
6447 	mutex_lock(&kvm->lock);
6448 	kvm_for_each_vcpu(i, vcpu, kvm) {
6449 		if (!vcpu->arch.pv_time.active)
6450 			continue;
6451 
6452 		ret = kvm_set_guest_paused(vcpu);
6453 		if (ret) {
6454 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6455 				vcpu->vcpu_id, ret);
6456 			break;
6457 		}
6458 	}
6459 	mutex_unlock(&kvm->lock);
6460 
6461 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6462 }
6463 
6464 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6465 {
6466 	switch (state) {
6467 	case PM_HIBERNATION_PREPARE:
6468 	case PM_SUSPEND_PREPARE:
6469 		return kvm_arch_suspend_notifier(kvm);
6470 	}
6471 
6472 	return NOTIFY_DONE;
6473 }
6474 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6475 
6476 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6477 {
6478 	struct kvm_clock_data data = { 0 };
6479 
6480 	get_kvmclock(kvm, &data);
6481 	if (copy_to_user(argp, &data, sizeof(data)))
6482 		return -EFAULT;
6483 
6484 	return 0;
6485 }
6486 
6487 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6488 {
6489 	struct kvm_arch *ka = &kvm->arch;
6490 	struct kvm_clock_data data;
6491 	u64 now_raw_ns;
6492 
6493 	if (copy_from_user(&data, argp, sizeof(data)))
6494 		return -EFAULT;
6495 
6496 	/*
6497 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6498 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6499 	 */
6500 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6501 		return -EINVAL;
6502 
6503 	kvm_hv_request_tsc_page_update(kvm);
6504 	kvm_start_pvclock_update(kvm);
6505 	pvclock_update_vm_gtod_copy(kvm);
6506 
6507 	/*
6508 	 * This pairs with kvm_guest_time_update(): when masterclock is
6509 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6510 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6511 	 * is slightly ahead) here we risk going negative on unsigned
6512 	 * 'system_time' when 'data.clock' is very small.
6513 	 */
6514 	if (data.flags & KVM_CLOCK_REALTIME) {
6515 		u64 now_real_ns = ktime_get_real_ns();
6516 
6517 		/*
6518 		 * Avoid stepping the kvmclock backwards.
6519 		 */
6520 		if (now_real_ns > data.realtime)
6521 			data.clock += now_real_ns - data.realtime;
6522 	}
6523 
6524 	if (ka->use_master_clock)
6525 		now_raw_ns = ka->master_kernel_ns;
6526 	else
6527 		now_raw_ns = get_kvmclock_base_ns();
6528 	ka->kvmclock_offset = data.clock - now_raw_ns;
6529 	kvm_end_pvclock_update(kvm);
6530 	return 0;
6531 }
6532 
6533 long kvm_arch_vm_ioctl(struct file *filp,
6534 		       unsigned int ioctl, unsigned long arg)
6535 {
6536 	struct kvm *kvm = filp->private_data;
6537 	void __user *argp = (void __user *)arg;
6538 	int r = -ENOTTY;
6539 	/*
6540 	 * This union makes it completely explicit to gcc-3.x
6541 	 * that these two variables' stack usage should be
6542 	 * combined, not added together.
6543 	 */
6544 	union {
6545 		struct kvm_pit_state ps;
6546 		struct kvm_pit_state2 ps2;
6547 		struct kvm_pit_config pit_config;
6548 	} u;
6549 
6550 	switch (ioctl) {
6551 	case KVM_SET_TSS_ADDR:
6552 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6553 		break;
6554 	case KVM_SET_IDENTITY_MAP_ADDR: {
6555 		u64 ident_addr;
6556 
6557 		mutex_lock(&kvm->lock);
6558 		r = -EINVAL;
6559 		if (kvm->created_vcpus)
6560 			goto set_identity_unlock;
6561 		r = -EFAULT;
6562 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6563 			goto set_identity_unlock;
6564 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6565 set_identity_unlock:
6566 		mutex_unlock(&kvm->lock);
6567 		break;
6568 	}
6569 	case KVM_SET_NR_MMU_PAGES:
6570 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6571 		break;
6572 	case KVM_GET_NR_MMU_PAGES:
6573 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6574 		break;
6575 	case KVM_CREATE_IRQCHIP: {
6576 		mutex_lock(&kvm->lock);
6577 
6578 		r = -EEXIST;
6579 		if (irqchip_in_kernel(kvm))
6580 			goto create_irqchip_unlock;
6581 
6582 		r = -EINVAL;
6583 		if (kvm->created_vcpus)
6584 			goto create_irqchip_unlock;
6585 
6586 		r = kvm_pic_init(kvm);
6587 		if (r)
6588 			goto create_irqchip_unlock;
6589 
6590 		r = kvm_ioapic_init(kvm);
6591 		if (r) {
6592 			kvm_pic_destroy(kvm);
6593 			goto create_irqchip_unlock;
6594 		}
6595 
6596 		r = kvm_setup_default_irq_routing(kvm);
6597 		if (r) {
6598 			kvm_ioapic_destroy(kvm);
6599 			kvm_pic_destroy(kvm);
6600 			goto create_irqchip_unlock;
6601 		}
6602 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6603 		smp_wmb();
6604 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6605 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6606 	create_irqchip_unlock:
6607 		mutex_unlock(&kvm->lock);
6608 		break;
6609 	}
6610 	case KVM_CREATE_PIT:
6611 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6612 		goto create_pit;
6613 	case KVM_CREATE_PIT2:
6614 		r = -EFAULT;
6615 		if (copy_from_user(&u.pit_config, argp,
6616 				   sizeof(struct kvm_pit_config)))
6617 			goto out;
6618 	create_pit:
6619 		mutex_lock(&kvm->lock);
6620 		r = -EEXIST;
6621 		if (kvm->arch.vpit)
6622 			goto create_pit_unlock;
6623 		r = -ENOMEM;
6624 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6625 		if (kvm->arch.vpit)
6626 			r = 0;
6627 	create_pit_unlock:
6628 		mutex_unlock(&kvm->lock);
6629 		break;
6630 	case KVM_GET_IRQCHIP: {
6631 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6632 		struct kvm_irqchip *chip;
6633 
6634 		chip = memdup_user(argp, sizeof(*chip));
6635 		if (IS_ERR(chip)) {
6636 			r = PTR_ERR(chip);
6637 			goto out;
6638 		}
6639 
6640 		r = -ENXIO;
6641 		if (!irqchip_kernel(kvm))
6642 			goto get_irqchip_out;
6643 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6644 		if (r)
6645 			goto get_irqchip_out;
6646 		r = -EFAULT;
6647 		if (copy_to_user(argp, chip, sizeof(*chip)))
6648 			goto get_irqchip_out;
6649 		r = 0;
6650 	get_irqchip_out:
6651 		kfree(chip);
6652 		break;
6653 	}
6654 	case KVM_SET_IRQCHIP: {
6655 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6656 		struct kvm_irqchip *chip;
6657 
6658 		chip = memdup_user(argp, sizeof(*chip));
6659 		if (IS_ERR(chip)) {
6660 			r = PTR_ERR(chip);
6661 			goto out;
6662 		}
6663 
6664 		r = -ENXIO;
6665 		if (!irqchip_kernel(kvm))
6666 			goto set_irqchip_out;
6667 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6668 	set_irqchip_out:
6669 		kfree(chip);
6670 		break;
6671 	}
6672 	case KVM_GET_PIT: {
6673 		r = -EFAULT;
6674 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6675 			goto out;
6676 		r = -ENXIO;
6677 		if (!kvm->arch.vpit)
6678 			goto out;
6679 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6680 		if (r)
6681 			goto out;
6682 		r = -EFAULT;
6683 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6684 			goto out;
6685 		r = 0;
6686 		break;
6687 	}
6688 	case KVM_SET_PIT: {
6689 		r = -EFAULT;
6690 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6691 			goto out;
6692 		mutex_lock(&kvm->lock);
6693 		r = -ENXIO;
6694 		if (!kvm->arch.vpit)
6695 			goto set_pit_out;
6696 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6697 set_pit_out:
6698 		mutex_unlock(&kvm->lock);
6699 		break;
6700 	}
6701 	case KVM_GET_PIT2: {
6702 		r = -ENXIO;
6703 		if (!kvm->arch.vpit)
6704 			goto out;
6705 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6706 		if (r)
6707 			goto out;
6708 		r = -EFAULT;
6709 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6710 			goto out;
6711 		r = 0;
6712 		break;
6713 	}
6714 	case KVM_SET_PIT2: {
6715 		r = -EFAULT;
6716 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6717 			goto out;
6718 		mutex_lock(&kvm->lock);
6719 		r = -ENXIO;
6720 		if (!kvm->arch.vpit)
6721 			goto set_pit2_out;
6722 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6723 set_pit2_out:
6724 		mutex_unlock(&kvm->lock);
6725 		break;
6726 	}
6727 	case KVM_REINJECT_CONTROL: {
6728 		struct kvm_reinject_control control;
6729 		r =  -EFAULT;
6730 		if (copy_from_user(&control, argp, sizeof(control)))
6731 			goto out;
6732 		r = -ENXIO;
6733 		if (!kvm->arch.vpit)
6734 			goto out;
6735 		r = kvm_vm_ioctl_reinject(kvm, &control);
6736 		break;
6737 	}
6738 	case KVM_SET_BOOT_CPU_ID:
6739 		r = 0;
6740 		mutex_lock(&kvm->lock);
6741 		if (kvm->created_vcpus)
6742 			r = -EBUSY;
6743 		else
6744 			kvm->arch.bsp_vcpu_id = arg;
6745 		mutex_unlock(&kvm->lock);
6746 		break;
6747 #ifdef CONFIG_KVM_XEN
6748 	case KVM_XEN_HVM_CONFIG: {
6749 		struct kvm_xen_hvm_config xhc;
6750 		r = -EFAULT;
6751 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6752 			goto out;
6753 		r = kvm_xen_hvm_config(kvm, &xhc);
6754 		break;
6755 	}
6756 	case KVM_XEN_HVM_GET_ATTR: {
6757 		struct kvm_xen_hvm_attr xha;
6758 
6759 		r = -EFAULT;
6760 		if (copy_from_user(&xha, argp, sizeof(xha)))
6761 			goto out;
6762 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6763 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6764 			r = -EFAULT;
6765 		break;
6766 	}
6767 	case KVM_XEN_HVM_SET_ATTR: {
6768 		struct kvm_xen_hvm_attr xha;
6769 
6770 		r = -EFAULT;
6771 		if (copy_from_user(&xha, argp, sizeof(xha)))
6772 			goto out;
6773 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6774 		break;
6775 	}
6776 	case KVM_XEN_HVM_EVTCHN_SEND: {
6777 		struct kvm_irq_routing_xen_evtchn uxe;
6778 
6779 		r = -EFAULT;
6780 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6781 			goto out;
6782 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6783 		break;
6784 	}
6785 #endif
6786 	case KVM_SET_CLOCK:
6787 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6788 		break;
6789 	case KVM_GET_CLOCK:
6790 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6791 		break;
6792 	case KVM_SET_TSC_KHZ: {
6793 		u32 user_tsc_khz;
6794 
6795 		r = -EINVAL;
6796 		user_tsc_khz = (u32)arg;
6797 
6798 		if (kvm_caps.has_tsc_control &&
6799 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6800 			goto out;
6801 
6802 		if (user_tsc_khz == 0)
6803 			user_tsc_khz = tsc_khz;
6804 
6805 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6806 		r = 0;
6807 
6808 		goto out;
6809 	}
6810 	case KVM_GET_TSC_KHZ: {
6811 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6812 		goto out;
6813 	}
6814 	case KVM_MEMORY_ENCRYPT_OP: {
6815 		r = -ENOTTY;
6816 		if (!kvm_x86_ops.mem_enc_ioctl)
6817 			goto out;
6818 
6819 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6820 		break;
6821 	}
6822 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6823 		struct kvm_enc_region region;
6824 
6825 		r = -EFAULT;
6826 		if (copy_from_user(&region, argp, sizeof(region)))
6827 			goto out;
6828 
6829 		r = -ENOTTY;
6830 		if (!kvm_x86_ops.mem_enc_register_region)
6831 			goto out;
6832 
6833 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6834 		break;
6835 	}
6836 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6837 		struct kvm_enc_region region;
6838 
6839 		r = -EFAULT;
6840 		if (copy_from_user(&region, argp, sizeof(region)))
6841 			goto out;
6842 
6843 		r = -ENOTTY;
6844 		if (!kvm_x86_ops.mem_enc_unregister_region)
6845 			goto out;
6846 
6847 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6848 		break;
6849 	}
6850 	case KVM_HYPERV_EVENTFD: {
6851 		struct kvm_hyperv_eventfd hvevfd;
6852 
6853 		r = -EFAULT;
6854 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6855 			goto out;
6856 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6857 		break;
6858 	}
6859 	case KVM_SET_PMU_EVENT_FILTER:
6860 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6861 		break;
6862 	case KVM_X86_SET_MSR_FILTER:
6863 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6864 		break;
6865 	default:
6866 		r = -ENOTTY;
6867 	}
6868 out:
6869 	return r;
6870 }
6871 
6872 static void kvm_init_msr_list(void)
6873 {
6874 	u32 dummy[2];
6875 	unsigned i;
6876 
6877 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6878 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6879 
6880 	num_msrs_to_save = 0;
6881 	num_emulated_msrs = 0;
6882 	num_msr_based_features = 0;
6883 
6884 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6885 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6886 			continue;
6887 
6888 		/*
6889 		 * Even MSRs that are valid in the host may not be exposed
6890 		 * to the guests in some cases.
6891 		 */
6892 		switch (msrs_to_save_all[i]) {
6893 		case MSR_IA32_BNDCFGS:
6894 			if (!kvm_mpx_supported())
6895 				continue;
6896 			break;
6897 		case MSR_TSC_AUX:
6898 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6899 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6900 				continue;
6901 			break;
6902 		case MSR_IA32_UMWAIT_CONTROL:
6903 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6904 				continue;
6905 			break;
6906 		case MSR_IA32_RTIT_CTL:
6907 		case MSR_IA32_RTIT_STATUS:
6908 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6909 				continue;
6910 			break;
6911 		case MSR_IA32_RTIT_CR3_MATCH:
6912 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6913 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6914 				continue;
6915 			break;
6916 		case MSR_IA32_RTIT_OUTPUT_BASE:
6917 		case MSR_IA32_RTIT_OUTPUT_MASK:
6918 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6919 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6920 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6921 				continue;
6922 			break;
6923 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6924 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6925 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6926 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6927 				continue;
6928 			break;
6929 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6930 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6931 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6932 				continue;
6933 			break;
6934 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6935 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6936 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6937 				continue;
6938 			break;
6939 		case MSR_IA32_XFD:
6940 		case MSR_IA32_XFD_ERR:
6941 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6942 				continue;
6943 			break;
6944 		default:
6945 			break;
6946 		}
6947 
6948 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6949 	}
6950 
6951 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6952 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6953 			continue;
6954 
6955 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6956 	}
6957 
6958 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6959 		struct kvm_msr_entry msr;
6960 
6961 		msr.index = msr_based_features_all[i];
6962 		if (kvm_get_msr_feature(&msr))
6963 			continue;
6964 
6965 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6966 	}
6967 }
6968 
6969 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6970 			   const void *v)
6971 {
6972 	int handled = 0;
6973 	int n;
6974 
6975 	do {
6976 		n = min(len, 8);
6977 		if (!(lapic_in_kernel(vcpu) &&
6978 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6979 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6980 			break;
6981 		handled += n;
6982 		addr += n;
6983 		len -= n;
6984 		v += n;
6985 	} while (len);
6986 
6987 	return handled;
6988 }
6989 
6990 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6991 {
6992 	int handled = 0;
6993 	int n;
6994 
6995 	do {
6996 		n = min(len, 8);
6997 		if (!(lapic_in_kernel(vcpu) &&
6998 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6999 					 addr, n, v))
7000 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7001 			break;
7002 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7003 		handled += n;
7004 		addr += n;
7005 		len -= n;
7006 		v += n;
7007 	} while (len);
7008 
7009 	return handled;
7010 }
7011 
7012 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7013 			struct kvm_segment *var, int seg)
7014 {
7015 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7016 }
7017 
7018 void kvm_get_segment(struct kvm_vcpu *vcpu,
7019 		     struct kvm_segment *var, int seg)
7020 {
7021 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7022 }
7023 
7024 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7025 			   struct x86_exception *exception)
7026 {
7027 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7028 	gpa_t t_gpa;
7029 
7030 	BUG_ON(!mmu_is_nested(vcpu));
7031 
7032 	/* NPT walks are always user-walks */
7033 	access |= PFERR_USER_MASK;
7034 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7035 
7036 	return t_gpa;
7037 }
7038 
7039 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7040 			      struct x86_exception *exception)
7041 {
7042 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7043 
7044 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7045 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7046 }
7047 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7048 
7049  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7050 				struct x86_exception *exception)
7051 {
7052 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7053 
7054 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7055 	access |= PFERR_FETCH_MASK;
7056 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7057 }
7058 
7059 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7060 			       struct x86_exception *exception)
7061 {
7062 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7063 
7064 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7065 	access |= PFERR_WRITE_MASK;
7066 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7067 }
7068 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7069 
7070 /* uses this to access any guest's mapped memory without checking CPL */
7071 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7072 				struct x86_exception *exception)
7073 {
7074 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7075 
7076 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7077 }
7078 
7079 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7080 				      struct kvm_vcpu *vcpu, u64 access,
7081 				      struct x86_exception *exception)
7082 {
7083 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7084 	void *data = val;
7085 	int r = X86EMUL_CONTINUE;
7086 
7087 	while (bytes) {
7088 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7089 		unsigned offset = addr & (PAGE_SIZE-1);
7090 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7091 		int ret;
7092 
7093 		if (gpa == INVALID_GPA)
7094 			return X86EMUL_PROPAGATE_FAULT;
7095 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7096 					       offset, toread);
7097 		if (ret < 0) {
7098 			r = X86EMUL_IO_NEEDED;
7099 			goto out;
7100 		}
7101 
7102 		bytes -= toread;
7103 		data += toread;
7104 		addr += toread;
7105 	}
7106 out:
7107 	return r;
7108 }
7109 
7110 /* used for instruction fetching */
7111 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7112 				gva_t addr, void *val, unsigned int bytes,
7113 				struct x86_exception *exception)
7114 {
7115 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7116 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7117 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7118 	unsigned offset;
7119 	int ret;
7120 
7121 	/* Inline kvm_read_guest_virt_helper for speed.  */
7122 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7123 				    exception);
7124 	if (unlikely(gpa == INVALID_GPA))
7125 		return X86EMUL_PROPAGATE_FAULT;
7126 
7127 	offset = addr & (PAGE_SIZE-1);
7128 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7129 		bytes = (unsigned)PAGE_SIZE - offset;
7130 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7131 				       offset, bytes);
7132 	if (unlikely(ret < 0))
7133 		return X86EMUL_IO_NEEDED;
7134 
7135 	return X86EMUL_CONTINUE;
7136 }
7137 
7138 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7139 			       gva_t addr, void *val, unsigned int bytes,
7140 			       struct x86_exception *exception)
7141 {
7142 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7143 
7144 	/*
7145 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7146 	 * is returned, but our callers are not ready for that and they blindly
7147 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7148 	 * uninitialized kernel stack memory into cr2 and error code.
7149 	 */
7150 	memset(exception, 0, sizeof(*exception));
7151 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7152 					  exception);
7153 }
7154 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7155 
7156 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7157 			     gva_t addr, void *val, unsigned int bytes,
7158 			     struct x86_exception *exception, bool system)
7159 {
7160 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7161 	u64 access = 0;
7162 
7163 	if (system)
7164 		access |= PFERR_IMPLICIT_ACCESS;
7165 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7166 		access |= PFERR_USER_MASK;
7167 
7168 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7169 }
7170 
7171 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7172 		unsigned long addr, void *val, unsigned int bytes)
7173 {
7174 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7175 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7176 
7177 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7178 }
7179 
7180 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7181 				      struct kvm_vcpu *vcpu, u64 access,
7182 				      struct x86_exception *exception)
7183 {
7184 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7185 	void *data = val;
7186 	int r = X86EMUL_CONTINUE;
7187 
7188 	while (bytes) {
7189 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7190 		unsigned offset = addr & (PAGE_SIZE-1);
7191 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7192 		int ret;
7193 
7194 		if (gpa == INVALID_GPA)
7195 			return X86EMUL_PROPAGATE_FAULT;
7196 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7197 		if (ret < 0) {
7198 			r = X86EMUL_IO_NEEDED;
7199 			goto out;
7200 		}
7201 
7202 		bytes -= towrite;
7203 		data += towrite;
7204 		addr += towrite;
7205 	}
7206 out:
7207 	return r;
7208 }
7209 
7210 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7211 			      unsigned int bytes, struct x86_exception *exception,
7212 			      bool system)
7213 {
7214 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7215 	u64 access = PFERR_WRITE_MASK;
7216 
7217 	if (system)
7218 		access |= PFERR_IMPLICIT_ACCESS;
7219 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7220 		access |= PFERR_USER_MASK;
7221 
7222 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7223 					   access, exception);
7224 }
7225 
7226 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7227 				unsigned int bytes, struct x86_exception *exception)
7228 {
7229 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7230 	vcpu->arch.l1tf_flush_l1d = true;
7231 
7232 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7233 					   PFERR_WRITE_MASK, exception);
7234 }
7235 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7236 
7237 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7238 				void *insn, int insn_len)
7239 {
7240 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7241 							    insn, insn_len);
7242 }
7243 
7244 int handle_ud(struct kvm_vcpu *vcpu)
7245 {
7246 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7247 	int emul_type = EMULTYPE_TRAP_UD;
7248 	char sig[5]; /* ud2; .ascii "kvm" */
7249 	struct x86_exception e;
7250 
7251 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7252 		return 1;
7253 
7254 	if (force_emulation_prefix &&
7255 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7256 				sig, sizeof(sig), &e) == 0 &&
7257 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7258 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7259 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7260 	}
7261 
7262 	return kvm_emulate_instruction(vcpu, emul_type);
7263 }
7264 EXPORT_SYMBOL_GPL(handle_ud);
7265 
7266 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7267 			    gpa_t gpa, bool write)
7268 {
7269 	/* For APIC access vmexit */
7270 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7271 		return 1;
7272 
7273 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7274 		trace_vcpu_match_mmio(gva, gpa, write, true);
7275 		return 1;
7276 	}
7277 
7278 	return 0;
7279 }
7280 
7281 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7282 				gpa_t *gpa, struct x86_exception *exception,
7283 				bool write)
7284 {
7285 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7286 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7287 		| (write ? PFERR_WRITE_MASK : 0);
7288 
7289 	/*
7290 	 * currently PKRU is only applied to ept enabled guest so
7291 	 * there is no pkey in EPT page table for L1 guest or EPT
7292 	 * shadow page table for L2 guest.
7293 	 */
7294 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7295 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7296 			      vcpu->arch.mmio_access, 0, access))) {
7297 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7298 					(gva & (PAGE_SIZE - 1));
7299 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7300 		return 1;
7301 	}
7302 
7303 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7304 
7305 	if (*gpa == INVALID_GPA)
7306 		return -1;
7307 
7308 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7309 }
7310 
7311 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7312 			const void *val, int bytes)
7313 {
7314 	int ret;
7315 
7316 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7317 	if (ret < 0)
7318 		return 0;
7319 	kvm_page_track_write(vcpu, gpa, val, bytes);
7320 	return 1;
7321 }
7322 
7323 struct read_write_emulator_ops {
7324 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7325 				  int bytes);
7326 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7327 				  void *val, int bytes);
7328 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7329 			       int bytes, void *val);
7330 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7331 				    void *val, int bytes);
7332 	bool write;
7333 };
7334 
7335 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7336 {
7337 	if (vcpu->mmio_read_completed) {
7338 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7339 			       vcpu->mmio_fragments[0].gpa, val);
7340 		vcpu->mmio_read_completed = 0;
7341 		return 1;
7342 	}
7343 
7344 	return 0;
7345 }
7346 
7347 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7348 			void *val, int bytes)
7349 {
7350 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7351 }
7352 
7353 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7354 			 void *val, int bytes)
7355 {
7356 	return emulator_write_phys(vcpu, gpa, val, bytes);
7357 }
7358 
7359 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7360 {
7361 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7362 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7363 }
7364 
7365 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7366 			  void *val, int bytes)
7367 {
7368 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7369 	return X86EMUL_IO_NEEDED;
7370 }
7371 
7372 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7373 			   void *val, int bytes)
7374 {
7375 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7376 
7377 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7378 	return X86EMUL_CONTINUE;
7379 }
7380 
7381 static const struct read_write_emulator_ops read_emultor = {
7382 	.read_write_prepare = read_prepare,
7383 	.read_write_emulate = read_emulate,
7384 	.read_write_mmio = vcpu_mmio_read,
7385 	.read_write_exit_mmio = read_exit_mmio,
7386 };
7387 
7388 static const struct read_write_emulator_ops write_emultor = {
7389 	.read_write_emulate = write_emulate,
7390 	.read_write_mmio = write_mmio,
7391 	.read_write_exit_mmio = write_exit_mmio,
7392 	.write = true,
7393 };
7394 
7395 static int emulator_read_write_onepage(unsigned long addr, void *val,
7396 				       unsigned int bytes,
7397 				       struct x86_exception *exception,
7398 				       struct kvm_vcpu *vcpu,
7399 				       const struct read_write_emulator_ops *ops)
7400 {
7401 	gpa_t gpa;
7402 	int handled, ret;
7403 	bool write = ops->write;
7404 	struct kvm_mmio_fragment *frag;
7405 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7406 
7407 	/*
7408 	 * If the exit was due to a NPF we may already have a GPA.
7409 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7410 	 * Note, this cannot be used on string operations since string
7411 	 * operation using rep will only have the initial GPA from the NPF
7412 	 * occurred.
7413 	 */
7414 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7415 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7416 		gpa = ctxt->gpa_val;
7417 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7418 	} else {
7419 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7420 		if (ret < 0)
7421 			return X86EMUL_PROPAGATE_FAULT;
7422 	}
7423 
7424 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7425 		return X86EMUL_CONTINUE;
7426 
7427 	/*
7428 	 * Is this MMIO handled locally?
7429 	 */
7430 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7431 	if (handled == bytes)
7432 		return X86EMUL_CONTINUE;
7433 
7434 	gpa += handled;
7435 	bytes -= handled;
7436 	val += handled;
7437 
7438 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7439 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7440 	frag->gpa = gpa;
7441 	frag->data = val;
7442 	frag->len = bytes;
7443 	return X86EMUL_CONTINUE;
7444 }
7445 
7446 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7447 			unsigned long addr,
7448 			void *val, unsigned int bytes,
7449 			struct x86_exception *exception,
7450 			const struct read_write_emulator_ops *ops)
7451 {
7452 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7453 	gpa_t gpa;
7454 	int rc;
7455 
7456 	if (ops->read_write_prepare &&
7457 		  ops->read_write_prepare(vcpu, val, bytes))
7458 		return X86EMUL_CONTINUE;
7459 
7460 	vcpu->mmio_nr_fragments = 0;
7461 
7462 	/* Crossing a page boundary? */
7463 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7464 		int now;
7465 
7466 		now = -addr & ~PAGE_MASK;
7467 		rc = emulator_read_write_onepage(addr, val, now, exception,
7468 						 vcpu, ops);
7469 
7470 		if (rc != X86EMUL_CONTINUE)
7471 			return rc;
7472 		addr += now;
7473 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7474 			addr = (u32)addr;
7475 		val += now;
7476 		bytes -= now;
7477 	}
7478 
7479 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7480 					 vcpu, ops);
7481 	if (rc != X86EMUL_CONTINUE)
7482 		return rc;
7483 
7484 	if (!vcpu->mmio_nr_fragments)
7485 		return rc;
7486 
7487 	gpa = vcpu->mmio_fragments[0].gpa;
7488 
7489 	vcpu->mmio_needed = 1;
7490 	vcpu->mmio_cur_fragment = 0;
7491 
7492 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7493 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7494 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7495 	vcpu->run->mmio.phys_addr = gpa;
7496 
7497 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7498 }
7499 
7500 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7501 				  unsigned long addr,
7502 				  void *val,
7503 				  unsigned int bytes,
7504 				  struct x86_exception *exception)
7505 {
7506 	return emulator_read_write(ctxt, addr, val, bytes,
7507 				   exception, &read_emultor);
7508 }
7509 
7510 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7511 			    unsigned long addr,
7512 			    const void *val,
7513 			    unsigned int bytes,
7514 			    struct x86_exception *exception)
7515 {
7516 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7517 				   exception, &write_emultor);
7518 }
7519 
7520 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7521 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7522 
7523 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7524 				     unsigned long addr,
7525 				     const void *old,
7526 				     const void *new,
7527 				     unsigned int bytes,
7528 				     struct x86_exception *exception)
7529 {
7530 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7531 	u64 page_line_mask;
7532 	unsigned long hva;
7533 	gpa_t gpa;
7534 	int r;
7535 
7536 	/* guests cmpxchg8b have to be emulated atomically */
7537 	if (bytes > 8 || (bytes & (bytes - 1)))
7538 		goto emul_write;
7539 
7540 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7541 
7542 	if (gpa == INVALID_GPA ||
7543 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7544 		goto emul_write;
7545 
7546 	/*
7547 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7548 	 * enabled in the host and the access splits a cache line.
7549 	 */
7550 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7551 		page_line_mask = ~(cache_line_size() - 1);
7552 	else
7553 		page_line_mask = PAGE_MASK;
7554 
7555 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7556 		goto emul_write;
7557 
7558 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7559 	if (kvm_is_error_hva(hva))
7560 		goto emul_write;
7561 
7562 	hva += offset_in_page(gpa);
7563 
7564 	switch (bytes) {
7565 	case 1:
7566 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7567 		break;
7568 	case 2:
7569 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7570 		break;
7571 	case 4:
7572 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7573 		break;
7574 	case 8:
7575 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7576 		break;
7577 	default:
7578 		BUG();
7579 	}
7580 
7581 	if (r < 0)
7582 		return X86EMUL_UNHANDLEABLE;
7583 	if (r)
7584 		return X86EMUL_CMPXCHG_FAILED;
7585 
7586 	kvm_page_track_write(vcpu, gpa, new, bytes);
7587 
7588 	return X86EMUL_CONTINUE;
7589 
7590 emul_write:
7591 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7592 
7593 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7594 }
7595 
7596 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7597 			       unsigned short port, void *data,
7598 			       unsigned int count, bool in)
7599 {
7600 	unsigned i;
7601 	int r;
7602 
7603 	WARN_ON_ONCE(vcpu->arch.pio.count);
7604 	for (i = 0; i < count; i++) {
7605 		if (in)
7606 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7607 		else
7608 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7609 
7610 		if (r) {
7611 			if (i == 0)
7612 				goto userspace_io;
7613 
7614 			/*
7615 			 * Userspace must have unregistered the device while PIO
7616 			 * was running.  Drop writes / read as 0.
7617 			 */
7618 			if (in)
7619 				memset(data, 0, size * (count - i));
7620 			break;
7621 		}
7622 
7623 		data += size;
7624 	}
7625 	return 1;
7626 
7627 userspace_io:
7628 	vcpu->arch.pio.port = port;
7629 	vcpu->arch.pio.in = in;
7630 	vcpu->arch.pio.count = count;
7631 	vcpu->arch.pio.size = size;
7632 
7633 	if (in)
7634 		memset(vcpu->arch.pio_data, 0, size * count);
7635 	else
7636 		memcpy(vcpu->arch.pio_data, data, size * count);
7637 
7638 	vcpu->run->exit_reason = KVM_EXIT_IO;
7639 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7640 	vcpu->run->io.size = size;
7641 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7642 	vcpu->run->io.count = count;
7643 	vcpu->run->io.port = port;
7644 	return 0;
7645 }
7646 
7647 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7648       			   unsigned short port, void *val, unsigned int count)
7649 {
7650 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7651 	if (r)
7652 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7653 
7654 	return r;
7655 }
7656 
7657 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7658 {
7659 	int size = vcpu->arch.pio.size;
7660 	unsigned int count = vcpu->arch.pio.count;
7661 	memcpy(val, vcpu->arch.pio_data, size * count);
7662 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7663 	vcpu->arch.pio.count = 0;
7664 }
7665 
7666 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7667 				    int size, unsigned short port, void *val,
7668 				    unsigned int count)
7669 {
7670 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7671 	if (vcpu->arch.pio.count) {
7672 		/*
7673 		 * Complete a previous iteration that required userspace I/O.
7674 		 * Note, @count isn't guaranteed to match pio.count as userspace
7675 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7676 		 * shenanigans as KVM doesn't support modifying the rep count,
7677 		 * and the emulator ensures @count doesn't overflow the buffer.
7678 		 */
7679 		complete_emulator_pio_in(vcpu, val);
7680 		return 1;
7681 	}
7682 
7683 	return emulator_pio_in(vcpu, size, port, val, count);
7684 }
7685 
7686 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7687 			    unsigned short port, const void *val,
7688 			    unsigned int count)
7689 {
7690 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7691 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7692 }
7693 
7694 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7695 				     int size, unsigned short port,
7696 				     const void *val, unsigned int count)
7697 {
7698 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7699 }
7700 
7701 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7702 {
7703 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7704 }
7705 
7706 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7707 {
7708 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7709 }
7710 
7711 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7712 {
7713 	if (!need_emulate_wbinvd(vcpu))
7714 		return X86EMUL_CONTINUE;
7715 
7716 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7717 		int cpu = get_cpu();
7718 
7719 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7720 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7721 				wbinvd_ipi, NULL, 1);
7722 		put_cpu();
7723 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7724 	} else
7725 		wbinvd();
7726 	return X86EMUL_CONTINUE;
7727 }
7728 
7729 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7730 {
7731 	kvm_emulate_wbinvd_noskip(vcpu);
7732 	return kvm_skip_emulated_instruction(vcpu);
7733 }
7734 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7735 
7736 
7737 
7738 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7739 {
7740 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7741 }
7742 
7743 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7744 			    unsigned long *dest)
7745 {
7746 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7747 }
7748 
7749 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7750 			   unsigned long value)
7751 {
7752 
7753 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7754 }
7755 
7756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7757 {
7758 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7759 }
7760 
7761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7762 {
7763 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7764 	unsigned long value;
7765 
7766 	switch (cr) {
7767 	case 0:
7768 		value = kvm_read_cr0(vcpu);
7769 		break;
7770 	case 2:
7771 		value = vcpu->arch.cr2;
7772 		break;
7773 	case 3:
7774 		value = kvm_read_cr3(vcpu);
7775 		break;
7776 	case 4:
7777 		value = kvm_read_cr4(vcpu);
7778 		break;
7779 	case 8:
7780 		value = kvm_get_cr8(vcpu);
7781 		break;
7782 	default:
7783 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7784 		return 0;
7785 	}
7786 
7787 	return value;
7788 }
7789 
7790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7791 {
7792 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7793 	int res = 0;
7794 
7795 	switch (cr) {
7796 	case 0:
7797 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7798 		break;
7799 	case 2:
7800 		vcpu->arch.cr2 = val;
7801 		break;
7802 	case 3:
7803 		res = kvm_set_cr3(vcpu, val);
7804 		break;
7805 	case 4:
7806 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7807 		break;
7808 	case 8:
7809 		res = kvm_set_cr8(vcpu, val);
7810 		break;
7811 	default:
7812 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7813 		res = -1;
7814 	}
7815 
7816 	return res;
7817 }
7818 
7819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7820 {
7821 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7822 }
7823 
7824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7825 {
7826 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7827 }
7828 
7829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7830 {
7831 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7832 }
7833 
7834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7835 {
7836 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7837 }
7838 
7839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7840 {
7841 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7842 }
7843 
7844 static unsigned long emulator_get_cached_segment_base(
7845 	struct x86_emulate_ctxt *ctxt, int seg)
7846 {
7847 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7848 }
7849 
7850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7851 				 struct desc_struct *desc, u32 *base3,
7852 				 int seg)
7853 {
7854 	struct kvm_segment var;
7855 
7856 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7857 	*selector = var.selector;
7858 
7859 	if (var.unusable) {
7860 		memset(desc, 0, sizeof(*desc));
7861 		if (base3)
7862 			*base3 = 0;
7863 		return false;
7864 	}
7865 
7866 	if (var.g)
7867 		var.limit >>= 12;
7868 	set_desc_limit(desc, var.limit);
7869 	set_desc_base(desc, (unsigned long)var.base);
7870 #ifdef CONFIG_X86_64
7871 	if (base3)
7872 		*base3 = var.base >> 32;
7873 #endif
7874 	desc->type = var.type;
7875 	desc->s = var.s;
7876 	desc->dpl = var.dpl;
7877 	desc->p = var.present;
7878 	desc->avl = var.avl;
7879 	desc->l = var.l;
7880 	desc->d = var.db;
7881 	desc->g = var.g;
7882 
7883 	return true;
7884 }
7885 
7886 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7887 				 struct desc_struct *desc, u32 base3,
7888 				 int seg)
7889 {
7890 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7891 	struct kvm_segment var;
7892 
7893 	var.selector = selector;
7894 	var.base = get_desc_base(desc);
7895 #ifdef CONFIG_X86_64
7896 	var.base |= ((u64)base3) << 32;
7897 #endif
7898 	var.limit = get_desc_limit(desc);
7899 	if (desc->g)
7900 		var.limit = (var.limit << 12) | 0xfff;
7901 	var.type = desc->type;
7902 	var.dpl = desc->dpl;
7903 	var.db = desc->d;
7904 	var.s = desc->s;
7905 	var.l = desc->l;
7906 	var.g = desc->g;
7907 	var.avl = desc->avl;
7908 	var.present = desc->p;
7909 	var.unusable = !var.present;
7910 	var.padding = 0;
7911 
7912 	kvm_set_segment(vcpu, &var, seg);
7913 	return;
7914 }
7915 
7916 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7917 					u32 msr_index, u64 *pdata)
7918 {
7919 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7920 	int r;
7921 
7922 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7923 	if (r < 0)
7924 		return X86EMUL_UNHANDLEABLE;
7925 
7926 	if (r) {
7927 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7928 				       complete_emulated_rdmsr, r))
7929 			return X86EMUL_IO_NEEDED;
7930 
7931 		trace_kvm_msr_read_ex(msr_index);
7932 		return X86EMUL_PROPAGATE_FAULT;
7933 	}
7934 
7935 	trace_kvm_msr_read(msr_index, *pdata);
7936 	return X86EMUL_CONTINUE;
7937 }
7938 
7939 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7940 					u32 msr_index, u64 data)
7941 {
7942 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7943 	int r;
7944 
7945 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7946 	if (r < 0)
7947 		return X86EMUL_UNHANDLEABLE;
7948 
7949 	if (r) {
7950 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7951 				       complete_emulated_msr_access, r))
7952 			return X86EMUL_IO_NEEDED;
7953 
7954 		trace_kvm_msr_write_ex(msr_index, data);
7955 		return X86EMUL_PROPAGATE_FAULT;
7956 	}
7957 
7958 	trace_kvm_msr_write(msr_index, data);
7959 	return X86EMUL_CONTINUE;
7960 }
7961 
7962 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7963 			    u32 msr_index, u64 *pdata)
7964 {
7965 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7966 }
7967 
7968 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7969 			    u32 msr_index, u64 data)
7970 {
7971 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7972 }
7973 
7974 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7975 {
7976 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7977 
7978 	return vcpu->arch.smbase;
7979 }
7980 
7981 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7982 {
7983 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7984 
7985 	vcpu->arch.smbase = smbase;
7986 }
7987 
7988 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7989 			      u32 pmc)
7990 {
7991 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7992 		return 0;
7993 	return -EINVAL;
7994 }
7995 
7996 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7997 			     u32 pmc, u64 *pdata)
7998 {
7999 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8000 }
8001 
8002 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8003 {
8004 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8005 }
8006 
8007 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8008 			      struct x86_instruction_info *info,
8009 			      enum x86_intercept_stage stage)
8010 {
8011 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8012 					    &ctxt->exception);
8013 }
8014 
8015 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8016 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8017 			      bool exact_only)
8018 {
8019 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8020 }
8021 
8022 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8023 {
8024 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8025 }
8026 
8027 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8028 {
8029 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8030 }
8031 
8032 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8033 {
8034 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8035 }
8036 
8037 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8038 {
8039 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8040 }
8041 
8042 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8043 {
8044 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8045 }
8046 
8047 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8048 {
8049 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8050 }
8051 
8052 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8053 {
8054 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8055 }
8056 
8057 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8058 {
8059 	return emul_to_vcpu(ctxt)->arch.hflags;
8060 }
8061 
8062 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8063 {
8064 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8065 
8066 	kvm_smm_changed(vcpu, false);
8067 }
8068 
8069 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8070 				  const char *smstate)
8071 {
8072 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8073 }
8074 
8075 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8076 {
8077 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8078 }
8079 
8080 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8081 {
8082 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8083 }
8084 
8085 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8086 {
8087 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8088 
8089 	if (!kvm->vm_bugged)
8090 		kvm_vm_bugged(kvm);
8091 }
8092 
8093 static const struct x86_emulate_ops emulate_ops = {
8094 	.vm_bugged           = emulator_vm_bugged,
8095 	.read_gpr            = emulator_read_gpr,
8096 	.write_gpr           = emulator_write_gpr,
8097 	.read_std            = emulator_read_std,
8098 	.write_std           = emulator_write_std,
8099 	.read_phys           = kvm_read_guest_phys_system,
8100 	.fetch               = kvm_fetch_guest_virt,
8101 	.read_emulated       = emulator_read_emulated,
8102 	.write_emulated      = emulator_write_emulated,
8103 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8104 	.invlpg              = emulator_invlpg,
8105 	.pio_in_emulated     = emulator_pio_in_emulated,
8106 	.pio_out_emulated    = emulator_pio_out_emulated,
8107 	.get_segment         = emulator_get_segment,
8108 	.set_segment         = emulator_set_segment,
8109 	.get_cached_segment_base = emulator_get_cached_segment_base,
8110 	.get_gdt             = emulator_get_gdt,
8111 	.get_idt	     = emulator_get_idt,
8112 	.set_gdt             = emulator_set_gdt,
8113 	.set_idt	     = emulator_set_idt,
8114 	.get_cr              = emulator_get_cr,
8115 	.set_cr              = emulator_set_cr,
8116 	.cpl                 = emulator_get_cpl,
8117 	.get_dr              = emulator_get_dr,
8118 	.set_dr              = emulator_set_dr,
8119 	.get_smbase          = emulator_get_smbase,
8120 	.set_smbase          = emulator_set_smbase,
8121 	.set_msr_with_filter = emulator_set_msr_with_filter,
8122 	.get_msr_with_filter = emulator_get_msr_with_filter,
8123 	.set_msr             = emulator_set_msr,
8124 	.get_msr             = emulator_get_msr,
8125 	.check_pmc	     = emulator_check_pmc,
8126 	.read_pmc            = emulator_read_pmc,
8127 	.halt                = emulator_halt,
8128 	.wbinvd              = emulator_wbinvd,
8129 	.fix_hypercall       = emulator_fix_hypercall,
8130 	.intercept           = emulator_intercept,
8131 	.get_cpuid           = emulator_get_cpuid,
8132 	.guest_has_long_mode = emulator_guest_has_long_mode,
8133 	.guest_has_movbe     = emulator_guest_has_movbe,
8134 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8135 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8136 	.set_nmi_mask        = emulator_set_nmi_mask,
8137 	.get_hflags          = emulator_get_hflags,
8138 	.exiting_smm         = emulator_exiting_smm,
8139 	.leave_smm           = emulator_leave_smm,
8140 	.triple_fault        = emulator_triple_fault,
8141 	.set_xcr             = emulator_set_xcr,
8142 };
8143 
8144 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8145 {
8146 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8147 	/*
8148 	 * an sti; sti; sequence only disable interrupts for the first
8149 	 * instruction. So, if the last instruction, be it emulated or
8150 	 * not, left the system with the INT_STI flag enabled, it
8151 	 * means that the last instruction is an sti. We should not
8152 	 * leave the flag on in this case. The same goes for mov ss
8153 	 */
8154 	if (int_shadow & mask)
8155 		mask = 0;
8156 	if (unlikely(int_shadow || mask)) {
8157 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8158 		if (!mask)
8159 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8160 	}
8161 }
8162 
8163 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8164 {
8165 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8166 	if (ctxt->exception.vector == PF_VECTOR)
8167 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8168 
8169 	if (ctxt->exception.error_code_valid)
8170 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8171 				      ctxt->exception.error_code);
8172 	else
8173 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8174 	return false;
8175 }
8176 
8177 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8178 {
8179 	struct x86_emulate_ctxt *ctxt;
8180 
8181 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8182 	if (!ctxt) {
8183 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8184 		return NULL;
8185 	}
8186 
8187 	ctxt->vcpu = vcpu;
8188 	ctxt->ops = &emulate_ops;
8189 	vcpu->arch.emulate_ctxt = ctxt;
8190 
8191 	return ctxt;
8192 }
8193 
8194 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8195 {
8196 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8197 	int cs_db, cs_l;
8198 
8199 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8200 
8201 	ctxt->gpa_available = false;
8202 	ctxt->eflags = kvm_get_rflags(vcpu);
8203 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8204 
8205 	ctxt->eip = kvm_rip_read(vcpu);
8206 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8207 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8208 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8209 		     cs_db				? X86EMUL_MODE_PROT32 :
8210 							  X86EMUL_MODE_PROT16;
8211 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8212 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8213 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8214 
8215 	ctxt->interruptibility = 0;
8216 	ctxt->have_exception = false;
8217 	ctxt->exception.vector = -1;
8218 	ctxt->perm_ok = false;
8219 
8220 	init_decode_cache(ctxt);
8221 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8222 }
8223 
8224 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8225 {
8226 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8227 	int ret;
8228 
8229 	init_emulate_ctxt(vcpu);
8230 
8231 	ctxt->op_bytes = 2;
8232 	ctxt->ad_bytes = 2;
8233 	ctxt->_eip = ctxt->eip + inc_eip;
8234 	ret = emulate_int_real(ctxt, irq);
8235 
8236 	if (ret != X86EMUL_CONTINUE) {
8237 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8238 	} else {
8239 		ctxt->eip = ctxt->_eip;
8240 		kvm_rip_write(vcpu, ctxt->eip);
8241 		kvm_set_rflags(vcpu, ctxt->eflags);
8242 	}
8243 }
8244 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8245 
8246 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8247 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8248 {
8249 	struct kvm_run *run = vcpu->run;
8250 	u64 info[5];
8251 	u8 info_start;
8252 
8253 	/*
8254 	 * Zero the whole array used to retrieve the exit info, as casting to
8255 	 * u32 for select entries will leave some chunks uninitialized.
8256 	 */
8257 	memset(&info, 0, sizeof(info));
8258 
8259 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8260 					   &info[2], (u32 *)&info[3],
8261 					   (u32 *)&info[4]);
8262 
8263 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8264 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8265 
8266 	/*
8267 	 * There's currently space for 13 entries, but 5 are used for the exit
8268 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8269 	 * when expanding kvm_run.emulation_failure in the future.
8270 	 */
8271 	if (WARN_ON_ONCE(ndata > 4))
8272 		ndata = 4;
8273 
8274 	/* Always include the flags as a 'data' entry. */
8275 	info_start = 1;
8276 	run->emulation_failure.flags = 0;
8277 
8278 	if (insn_size) {
8279 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8280 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8281 		info_start += 2;
8282 		run->emulation_failure.flags |=
8283 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8284 		run->emulation_failure.insn_size = insn_size;
8285 		memset(run->emulation_failure.insn_bytes, 0x90,
8286 		       sizeof(run->emulation_failure.insn_bytes));
8287 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8288 	}
8289 
8290 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8291 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8292 	       ndata * sizeof(data[0]));
8293 
8294 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8295 }
8296 
8297 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8298 {
8299 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8300 
8301 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8302 				       ctxt->fetch.end - ctxt->fetch.data);
8303 }
8304 
8305 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8306 					  u8 ndata)
8307 {
8308 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8309 }
8310 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8311 
8312 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8313 {
8314 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8315 }
8316 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8317 
8318 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8319 {
8320 	struct kvm *kvm = vcpu->kvm;
8321 
8322 	++vcpu->stat.insn_emulation_fail;
8323 	trace_kvm_emulate_insn_failed(vcpu);
8324 
8325 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8326 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8327 		return 1;
8328 	}
8329 
8330 	if (kvm->arch.exit_on_emulation_error ||
8331 	    (emulation_type & EMULTYPE_SKIP)) {
8332 		prepare_emulation_ctxt_failure_exit(vcpu);
8333 		return 0;
8334 	}
8335 
8336 	kvm_queue_exception(vcpu, UD_VECTOR);
8337 
8338 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8339 		prepare_emulation_ctxt_failure_exit(vcpu);
8340 		return 0;
8341 	}
8342 
8343 	return 1;
8344 }
8345 
8346 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8347 				  bool write_fault_to_shadow_pgtable,
8348 				  int emulation_type)
8349 {
8350 	gpa_t gpa = cr2_or_gpa;
8351 	kvm_pfn_t pfn;
8352 
8353 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8354 		return false;
8355 
8356 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8357 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8358 		return false;
8359 
8360 	if (!vcpu->arch.mmu->root_role.direct) {
8361 		/*
8362 		 * Write permission should be allowed since only
8363 		 * write access need to be emulated.
8364 		 */
8365 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8366 
8367 		/*
8368 		 * If the mapping is invalid in guest, let cpu retry
8369 		 * it to generate fault.
8370 		 */
8371 		if (gpa == INVALID_GPA)
8372 			return true;
8373 	}
8374 
8375 	/*
8376 	 * Do not retry the unhandleable instruction if it faults on the
8377 	 * readonly host memory, otherwise it will goto a infinite loop:
8378 	 * retry instruction -> write #PF -> emulation fail -> retry
8379 	 * instruction -> ...
8380 	 */
8381 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8382 
8383 	/*
8384 	 * If the instruction failed on the error pfn, it can not be fixed,
8385 	 * report the error to userspace.
8386 	 */
8387 	if (is_error_noslot_pfn(pfn))
8388 		return false;
8389 
8390 	kvm_release_pfn_clean(pfn);
8391 
8392 	/* The instructions are well-emulated on direct mmu. */
8393 	if (vcpu->arch.mmu->root_role.direct) {
8394 		unsigned int indirect_shadow_pages;
8395 
8396 		write_lock(&vcpu->kvm->mmu_lock);
8397 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8398 		write_unlock(&vcpu->kvm->mmu_lock);
8399 
8400 		if (indirect_shadow_pages)
8401 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8402 
8403 		return true;
8404 	}
8405 
8406 	/*
8407 	 * if emulation was due to access to shadowed page table
8408 	 * and it failed try to unshadow page and re-enter the
8409 	 * guest to let CPU execute the instruction.
8410 	 */
8411 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8412 
8413 	/*
8414 	 * If the access faults on its page table, it can not
8415 	 * be fixed by unprotecting shadow page and it should
8416 	 * be reported to userspace.
8417 	 */
8418 	return !write_fault_to_shadow_pgtable;
8419 }
8420 
8421 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8422 			      gpa_t cr2_or_gpa,  int emulation_type)
8423 {
8424 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8425 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8426 
8427 	last_retry_eip = vcpu->arch.last_retry_eip;
8428 	last_retry_addr = vcpu->arch.last_retry_addr;
8429 
8430 	/*
8431 	 * If the emulation is caused by #PF and it is non-page_table
8432 	 * writing instruction, it means the VM-EXIT is caused by shadow
8433 	 * page protected, we can zap the shadow page and retry this
8434 	 * instruction directly.
8435 	 *
8436 	 * Note: if the guest uses a non-page-table modifying instruction
8437 	 * on the PDE that points to the instruction, then we will unmap
8438 	 * the instruction and go to an infinite loop. So, we cache the
8439 	 * last retried eip and the last fault address, if we meet the eip
8440 	 * and the address again, we can break out of the potential infinite
8441 	 * loop.
8442 	 */
8443 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8444 
8445 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8446 		return false;
8447 
8448 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8449 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8450 		return false;
8451 
8452 	if (x86_page_table_writing_insn(ctxt))
8453 		return false;
8454 
8455 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8456 		return false;
8457 
8458 	vcpu->arch.last_retry_eip = ctxt->eip;
8459 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8460 
8461 	if (!vcpu->arch.mmu->root_role.direct)
8462 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8463 
8464 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8465 
8466 	return true;
8467 }
8468 
8469 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8470 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8471 
8472 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8473 {
8474 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8475 
8476 	if (entering_smm) {
8477 		vcpu->arch.hflags |= HF_SMM_MASK;
8478 	} else {
8479 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8480 
8481 		/* Process a latched INIT or SMI, if any.  */
8482 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8483 
8484 		/*
8485 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8486 		 * on SMM exit we still need to reload them from
8487 		 * guest memory
8488 		 */
8489 		vcpu->arch.pdptrs_from_userspace = false;
8490 	}
8491 
8492 	kvm_mmu_reset_context(vcpu);
8493 }
8494 
8495 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8496 				unsigned long *db)
8497 {
8498 	u32 dr6 = 0;
8499 	int i;
8500 	u32 enable, rwlen;
8501 
8502 	enable = dr7;
8503 	rwlen = dr7 >> 16;
8504 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8505 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8506 			dr6 |= (1 << i);
8507 	return dr6;
8508 }
8509 
8510 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8511 {
8512 	struct kvm_run *kvm_run = vcpu->run;
8513 
8514 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8515 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8516 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8517 		kvm_run->debug.arch.exception = DB_VECTOR;
8518 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8519 		return 0;
8520 	}
8521 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8522 	return 1;
8523 }
8524 
8525 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8526 {
8527 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8528 	int r;
8529 
8530 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8531 	if (unlikely(!r))
8532 		return 0;
8533 
8534 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8535 
8536 	/*
8537 	 * rflags is the old, "raw" value of the flags.  The new value has
8538 	 * not been saved yet.
8539 	 *
8540 	 * This is correct even for TF set by the guest, because "the
8541 	 * processor will not generate this exception after the instruction
8542 	 * that sets the TF flag".
8543 	 */
8544 	if (unlikely(rflags & X86_EFLAGS_TF))
8545 		r = kvm_vcpu_do_singlestep(vcpu);
8546 	return r;
8547 }
8548 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8549 
8550 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8551 					   int emulation_type, int *r)
8552 {
8553 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8554 
8555 	/*
8556 	 * Do not check for code breakpoints if hardware has already done the
8557 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8558 	 * the instruction has passed all exception checks, and all intercepted
8559 	 * exceptions that trigger emulation have lower priority than code
8560 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8561 	 * means any code breakpoints have already been serviced.
8562 	 *
8563 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8564 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8565 	 * the instruction being emulated.  The intent of forced emulation is
8566 	 * to behave as if KVM intercepted the instruction without an exception
8567 	 * and without a prefix.
8568 	 */
8569 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8570 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8571 		return false;
8572 
8573 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8574 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8575 		struct kvm_run *kvm_run = vcpu->run;
8576 		unsigned long eip = kvm_get_linear_rip(vcpu);
8577 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8578 					   vcpu->arch.guest_debug_dr7,
8579 					   vcpu->arch.eff_db);
8580 
8581 		if (dr6 != 0) {
8582 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8583 			kvm_run->debug.arch.pc = eip;
8584 			kvm_run->debug.arch.exception = DB_VECTOR;
8585 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8586 			*r = 0;
8587 			return true;
8588 		}
8589 	}
8590 
8591 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8592 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8593 		unsigned long eip = kvm_get_linear_rip(vcpu);
8594 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8595 					   vcpu->arch.dr7,
8596 					   vcpu->arch.db);
8597 
8598 		if (dr6 != 0) {
8599 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8600 			*r = 1;
8601 			return true;
8602 		}
8603 	}
8604 
8605 	return false;
8606 }
8607 
8608 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8609 {
8610 	switch (ctxt->opcode_len) {
8611 	case 1:
8612 		switch (ctxt->b) {
8613 		case 0xe4:	/* IN */
8614 		case 0xe5:
8615 		case 0xec:
8616 		case 0xed:
8617 		case 0xe6:	/* OUT */
8618 		case 0xe7:
8619 		case 0xee:
8620 		case 0xef:
8621 		case 0x6c:	/* INS */
8622 		case 0x6d:
8623 		case 0x6e:	/* OUTS */
8624 		case 0x6f:
8625 			return true;
8626 		}
8627 		break;
8628 	case 2:
8629 		switch (ctxt->b) {
8630 		case 0x33:	/* RDPMC */
8631 			return true;
8632 		}
8633 		break;
8634 	}
8635 
8636 	return false;
8637 }
8638 
8639 /*
8640  * Decode an instruction for emulation.  The caller is responsible for handling
8641  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8642  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8643  * code breakpoints have higher priority and thus have already been done by
8644  * hardware.
8645  *
8646  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8647  *     response to a machine check.
8648  */
8649 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8650 				    void *insn, int insn_len)
8651 {
8652 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8653 	int r;
8654 
8655 	init_emulate_ctxt(vcpu);
8656 
8657 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8658 
8659 	trace_kvm_emulate_insn_start(vcpu);
8660 	++vcpu->stat.insn_emulation;
8661 
8662 	return r;
8663 }
8664 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8665 
8666 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8667 			    int emulation_type, void *insn, int insn_len)
8668 {
8669 	int r;
8670 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8671 	bool writeback = true;
8672 	bool write_fault_to_spt;
8673 
8674 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8675 		return 1;
8676 
8677 	vcpu->arch.l1tf_flush_l1d = true;
8678 
8679 	/*
8680 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8681 	 * never reused.
8682 	 */
8683 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8684 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8685 
8686 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8687 		kvm_clear_exception_queue(vcpu);
8688 
8689 		/*
8690 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8691 		 * are fault-like and are higher priority than any faults on
8692 		 * the code fetch itself.
8693 		 */
8694 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8695 			return r;
8696 
8697 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8698 						    insn, insn_len);
8699 		if (r != EMULATION_OK)  {
8700 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8701 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8702 				kvm_queue_exception(vcpu, UD_VECTOR);
8703 				return 1;
8704 			}
8705 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8706 						  write_fault_to_spt,
8707 						  emulation_type))
8708 				return 1;
8709 			if (ctxt->have_exception) {
8710 				/*
8711 				 * #UD should result in just EMULATION_FAILED, and trap-like
8712 				 * exception should not be encountered during decode.
8713 				 */
8714 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8715 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8716 				inject_emulated_exception(vcpu);
8717 				return 1;
8718 			}
8719 			return handle_emulation_failure(vcpu, emulation_type);
8720 		}
8721 	}
8722 
8723 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8724 	    !is_vmware_backdoor_opcode(ctxt)) {
8725 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8726 		return 1;
8727 	}
8728 
8729 	/*
8730 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8731 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8732 	 * The caller is responsible for updating interruptibility state and
8733 	 * injecting single-step #DBs.
8734 	 */
8735 	if (emulation_type & EMULTYPE_SKIP) {
8736 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8737 			ctxt->eip = (u32)ctxt->_eip;
8738 		else
8739 			ctxt->eip = ctxt->_eip;
8740 
8741 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8742 			r = 1;
8743 			goto writeback;
8744 		}
8745 
8746 		kvm_rip_write(vcpu, ctxt->eip);
8747 		if (ctxt->eflags & X86_EFLAGS_RF)
8748 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8749 		return 1;
8750 	}
8751 
8752 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8753 		return 1;
8754 
8755 	/* this is needed for vmware backdoor interface to work since it
8756 	   changes registers values  during IO operation */
8757 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8758 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8759 		emulator_invalidate_register_cache(ctxt);
8760 	}
8761 
8762 restart:
8763 	if (emulation_type & EMULTYPE_PF) {
8764 		/* Save the faulting GPA (cr2) in the address field */
8765 		ctxt->exception.address = cr2_or_gpa;
8766 
8767 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8768 		if (vcpu->arch.mmu->root_role.direct) {
8769 			ctxt->gpa_available = true;
8770 			ctxt->gpa_val = cr2_or_gpa;
8771 		}
8772 	} else {
8773 		/* Sanitize the address out of an abundance of paranoia. */
8774 		ctxt->exception.address = 0;
8775 	}
8776 
8777 	r = x86_emulate_insn(ctxt);
8778 
8779 	if (r == EMULATION_INTERCEPTED)
8780 		return 1;
8781 
8782 	if (r == EMULATION_FAILED) {
8783 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8784 					emulation_type))
8785 			return 1;
8786 
8787 		return handle_emulation_failure(vcpu, emulation_type);
8788 	}
8789 
8790 	if (ctxt->have_exception) {
8791 		r = 1;
8792 		if (inject_emulated_exception(vcpu))
8793 			return r;
8794 	} else if (vcpu->arch.pio.count) {
8795 		if (!vcpu->arch.pio.in) {
8796 			/* FIXME: return into emulator if single-stepping.  */
8797 			vcpu->arch.pio.count = 0;
8798 		} else {
8799 			writeback = false;
8800 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8801 		}
8802 		r = 0;
8803 	} else if (vcpu->mmio_needed) {
8804 		++vcpu->stat.mmio_exits;
8805 
8806 		if (!vcpu->mmio_is_write)
8807 			writeback = false;
8808 		r = 0;
8809 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8810 	} else if (vcpu->arch.complete_userspace_io) {
8811 		writeback = false;
8812 		r = 0;
8813 	} else if (r == EMULATION_RESTART)
8814 		goto restart;
8815 	else
8816 		r = 1;
8817 
8818 writeback:
8819 	if (writeback) {
8820 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8821 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8822 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8823 		if (!ctxt->have_exception ||
8824 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8825 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8826 			if (ctxt->is_branch)
8827 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8828 			kvm_rip_write(vcpu, ctxt->eip);
8829 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8830 				r = kvm_vcpu_do_singlestep(vcpu);
8831 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8832 			__kvm_set_rflags(vcpu, ctxt->eflags);
8833 		}
8834 
8835 		/*
8836 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8837 		 * do nothing, and it will be requested again as soon as
8838 		 * the shadow expires.  But we still need to check here,
8839 		 * because POPF has no interrupt shadow.
8840 		 */
8841 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8842 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8843 	} else
8844 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8845 
8846 	return r;
8847 }
8848 
8849 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8850 {
8851 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8852 }
8853 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8854 
8855 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8856 					void *insn, int insn_len)
8857 {
8858 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8859 }
8860 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8861 
8862 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8863 {
8864 	vcpu->arch.pio.count = 0;
8865 	return 1;
8866 }
8867 
8868 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8869 {
8870 	vcpu->arch.pio.count = 0;
8871 
8872 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8873 		return 1;
8874 
8875 	return kvm_skip_emulated_instruction(vcpu);
8876 }
8877 
8878 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8879 			    unsigned short port)
8880 {
8881 	unsigned long val = kvm_rax_read(vcpu);
8882 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8883 
8884 	if (ret)
8885 		return ret;
8886 
8887 	/*
8888 	 * Workaround userspace that relies on old KVM behavior of %rip being
8889 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8890 	 */
8891 	if (port == 0x7e &&
8892 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8893 		vcpu->arch.complete_userspace_io =
8894 			complete_fast_pio_out_port_0x7e;
8895 		kvm_skip_emulated_instruction(vcpu);
8896 	} else {
8897 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8898 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8899 	}
8900 	return 0;
8901 }
8902 
8903 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8904 {
8905 	unsigned long val;
8906 
8907 	/* We should only ever be called with arch.pio.count equal to 1 */
8908 	BUG_ON(vcpu->arch.pio.count != 1);
8909 
8910 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8911 		vcpu->arch.pio.count = 0;
8912 		return 1;
8913 	}
8914 
8915 	/* For size less than 4 we merge, else we zero extend */
8916 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8917 
8918 	complete_emulator_pio_in(vcpu, &val);
8919 	kvm_rax_write(vcpu, val);
8920 
8921 	return kvm_skip_emulated_instruction(vcpu);
8922 }
8923 
8924 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8925 			   unsigned short port)
8926 {
8927 	unsigned long val;
8928 	int ret;
8929 
8930 	/* For size less than 4 we merge, else we zero extend */
8931 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8932 
8933 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8934 	if (ret) {
8935 		kvm_rax_write(vcpu, val);
8936 		return ret;
8937 	}
8938 
8939 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8940 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8941 
8942 	return 0;
8943 }
8944 
8945 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8946 {
8947 	int ret;
8948 
8949 	if (in)
8950 		ret = kvm_fast_pio_in(vcpu, size, port);
8951 	else
8952 		ret = kvm_fast_pio_out(vcpu, size, port);
8953 	return ret && kvm_skip_emulated_instruction(vcpu);
8954 }
8955 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8956 
8957 static int kvmclock_cpu_down_prep(unsigned int cpu)
8958 {
8959 	__this_cpu_write(cpu_tsc_khz, 0);
8960 	return 0;
8961 }
8962 
8963 static void tsc_khz_changed(void *data)
8964 {
8965 	struct cpufreq_freqs *freq = data;
8966 	unsigned long khz = 0;
8967 
8968 	if (data)
8969 		khz = freq->new;
8970 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8971 		khz = cpufreq_quick_get(raw_smp_processor_id());
8972 	if (!khz)
8973 		khz = tsc_khz;
8974 	__this_cpu_write(cpu_tsc_khz, khz);
8975 }
8976 
8977 #ifdef CONFIG_X86_64
8978 static void kvm_hyperv_tsc_notifier(void)
8979 {
8980 	struct kvm *kvm;
8981 	int cpu;
8982 
8983 	mutex_lock(&kvm_lock);
8984 	list_for_each_entry(kvm, &vm_list, vm_list)
8985 		kvm_make_mclock_inprogress_request(kvm);
8986 
8987 	/* no guest entries from this point */
8988 	hyperv_stop_tsc_emulation();
8989 
8990 	/* TSC frequency always matches when on Hyper-V */
8991 	for_each_present_cpu(cpu)
8992 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8993 	kvm_caps.max_guest_tsc_khz = tsc_khz;
8994 
8995 	list_for_each_entry(kvm, &vm_list, vm_list) {
8996 		__kvm_start_pvclock_update(kvm);
8997 		pvclock_update_vm_gtod_copy(kvm);
8998 		kvm_end_pvclock_update(kvm);
8999 	}
9000 
9001 	mutex_unlock(&kvm_lock);
9002 }
9003 #endif
9004 
9005 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9006 {
9007 	struct kvm *kvm;
9008 	struct kvm_vcpu *vcpu;
9009 	int send_ipi = 0;
9010 	unsigned long i;
9011 
9012 	/*
9013 	 * We allow guests to temporarily run on slowing clocks,
9014 	 * provided we notify them after, or to run on accelerating
9015 	 * clocks, provided we notify them before.  Thus time never
9016 	 * goes backwards.
9017 	 *
9018 	 * However, we have a problem.  We can't atomically update
9019 	 * the frequency of a given CPU from this function; it is
9020 	 * merely a notifier, which can be called from any CPU.
9021 	 * Changing the TSC frequency at arbitrary points in time
9022 	 * requires a recomputation of local variables related to
9023 	 * the TSC for each VCPU.  We must flag these local variables
9024 	 * to be updated and be sure the update takes place with the
9025 	 * new frequency before any guests proceed.
9026 	 *
9027 	 * Unfortunately, the combination of hotplug CPU and frequency
9028 	 * change creates an intractable locking scenario; the order
9029 	 * of when these callouts happen is undefined with respect to
9030 	 * CPU hotplug, and they can race with each other.  As such,
9031 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9032 	 * undefined; you can actually have a CPU frequency change take
9033 	 * place in between the computation of X and the setting of the
9034 	 * variable.  To protect against this problem, all updates of
9035 	 * the per_cpu tsc_khz variable are done in an interrupt
9036 	 * protected IPI, and all callers wishing to update the value
9037 	 * must wait for a synchronous IPI to complete (which is trivial
9038 	 * if the caller is on the CPU already).  This establishes the
9039 	 * necessary total order on variable updates.
9040 	 *
9041 	 * Note that because a guest time update may take place
9042 	 * anytime after the setting of the VCPU's request bit, the
9043 	 * correct TSC value must be set before the request.  However,
9044 	 * to ensure the update actually makes it to any guest which
9045 	 * starts running in hardware virtualization between the set
9046 	 * and the acquisition of the spinlock, we must also ping the
9047 	 * CPU after setting the request bit.
9048 	 *
9049 	 */
9050 
9051 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9052 
9053 	mutex_lock(&kvm_lock);
9054 	list_for_each_entry(kvm, &vm_list, vm_list) {
9055 		kvm_for_each_vcpu(i, vcpu, kvm) {
9056 			if (vcpu->cpu != cpu)
9057 				continue;
9058 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9059 			if (vcpu->cpu != raw_smp_processor_id())
9060 				send_ipi = 1;
9061 		}
9062 	}
9063 	mutex_unlock(&kvm_lock);
9064 
9065 	if (freq->old < freq->new && send_ipi) {
9066 		/*
9067 		 * We upscale the frequency.  Must make the guest
9068 		 * doesn't see old kvmclock values while running with
9069 		 * the new frequency, otherwise we risk the guest sees
9070 		 * time go backwards.
9071 		 *
9072 		 * In case we update the frequency for another cpu
9073 		 * (which might be in guest context) send an interrupt
9074 		 * to kick the cpu out of guest context.  Next time
9075 		 * guest context is entered kvmclock will be updated,
9076 		 * so the guest will not see stale values.
9077 		 */
9078 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9079 	}
9080 }
9081 
9082 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9083 				     void *data)
9084 {
9085 	struct cpufreq_freqs *freq = data;
9086 	int cpu;
9087 
9088 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9089 		return 0;
9090 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9091 		return 0;
9092 
9093 	for_each_cpu(cpu, freq->policy->cpus)
9094 		__kvmclock_cpufreq_notifier(freq, cpu);
9095 
9096 	return 0;
9097 }
9098 
9099 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9100 	.notifier_call  = kvmclock_cpufreq_notifier
9101 };
9102 
9103 static int kvmclock_cpu_online(unsigned int cpu)
9104 {
9105 	tsc_khz_changed(NULL);
9106 	return 0;
9107 }
9108 
9109 static void kvm_timer_init(void)
9110 {
9111 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9112 		max_tsc_khz = tsc_khz;
9113 
9114 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9115 			struct cpufreq_policy *policy;
9116 			int cpu;
9117 
9118 			cpu = get_cpu();
9119 			policy = cpufreq_cpu_get(cpu);
9120 			if (policy) {
9121 				if (policy->cpuinfo.max_freq)
9122 					max_tsc_khz = policy->cpuinfo.max_freq;
9123 				cpufreq_cpu_put(policy);
9124 			}
9125 			put_cpu();
9126 		}
9127 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9128 					  CPUFREQ_TRANSITION_NOTIFIER);
9129 	}
9130 
9131 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9132 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9133 }
9134 
9135 #ifdef CONFIG_X86_64
9136 static void pvclock_gtod_update_fn(struct work_struct *work)
9137 {
9138 	struct kvm *kvm;
9139 	struct kvm_vcpu *vcpu;
9140 	unsigned long i;
9141 
9142 	mutex_lock(&kvm_lock);
9143 	list_for_each_entry(kvm, &vm_list, vm_list)
9144 		kvm_for_each_vcpu(i, vcpu, kvm)
9145 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9146 	atomic_set(&kvm_guest_has_master_clock, 0);
9147 	mutex_unlock(&kvm_lock);
9148 }
9149 
9150 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9151 
9152 /*
9153  * Indirection to move queue_work() out of the tk_core.seq write held
9154  * region to prevent possible deadlocks against time accessors which
9155  * are invoked with work related locks held.
9156  */
9157 static void pvclock_irq_work_fn(struct irq_work *w)
9158 {
9159 	queue_work(system_long_wq, &pvclock_gtod_work);
9160 }
9161 
9162 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9163 
9164 /*
9165  * Notification about pvclock gtod data update.
9166  */
9167 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9168 			       void *priv)
9169 {
9170 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9171 	struct timekeeper *tk = priv;
9172 
9173 	update_pvclock_gtod(tk);
9174 
9175 	/*
9176 	 * Disable master clock if host does not trust, or does not use,
9177 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9178 	 * this is invoked with tk_core.seq write held.
9179 	 */
9180 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9181 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9182 		irq_work_queue(&pvclock_irq_work);
9183 	return 0;
9184 }
9185 
9186 static struct notifier_block pvclock_gtod_notifier = {
9187 	.notifier_call = pvclock_gtod_notify,
9188 };
9189 #endif
9190 
9191 int kvm_arch_init(void *opaque)
9192 {
9193 	struct kvm_x86_init_ops *ops = opaque;
9194 	u64 host_pat;
9195 	int r;
9196 
9197 	if (kvm_x86_ops.hardware_enable) {
9198 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9199 		return -EEXIST;
9200 	}
9201 
9202 	if (!ops->cpu_has_kvm_support()) {
9203 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9204 				   ops->runtime_ops->name);
9205 		return -EOPNOTSUPP;
9206 	}
9207 	if (ops->disabled_by_bios()) {
9208 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9209 				   ops->runtime_ops->name);
9210 		return -EOPNOTSUPP;
9211 	}
9212 
9213 	/*
9214 	 * KVM explicitly assumes that the guest has an FPU and
9215 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9216 	 * vCPU's FPU state as a fxregs_state struct.
9217 	 */
9218 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9219 		printk(KERN_ERR "kvm: inadequate fpu\n");
9220 		return -EOPNOTSUPP;
9221 	}
9222 
9223 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9224 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9225 		return -EOPNOTSUPP;
9226 	}
9227 
9228 	/*
9229 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9230 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9231 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9232 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9233 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9234 	 */
9235 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9236 	    (host_pat & GENMASK(2, 0)) != 6) {
9237 		pr_err("kvm: host PAT[0] is not WB\n");
9238 		return -EIO;
9239 	}
9240 
9241 	x86_emulator_cache = kvm_alloc_emulator_cache();
9242 	if (!x86_emulator_cache) {
9243 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9244 		return -ENOMEM;
9245 	}
9246 
9247 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9248 	if (!user_return_msrs) {
9249 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9250 		r = -ENOMEM;
9251 		goto out_free_x86_emulator_cache;
9252 	}
9253 	kvm_nr_uret_msrs = 0;
9254 
9255 	r = kvm_mmu_vendor_module_init();
9256 	if (r)
9257 		goto out_free_percpu;
9258 
9259 	kvm_timer_init();
9260 
9261 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9262 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9263 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9264 	}
9265 
9266 	if (pi_inject_timer == -1)
9267 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9268 #ifdef CONFIG_X86_64
9269 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9270 
9271 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9272 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9273 #endif
9274 
9275 	return 0;
9276 
9277 out_free_percpu:
9278 	free_percpu(user_return_msrs);
9279 out_free_x86_emulator_cache:
9280 	kmem_cache_destroy(x86_emulator_cache);
9281 	return r;
9282 }
9283 
9284 void kvm_arch_exit(void)
9285 {
9286 #ifdef CONFIG_X86_64
9287 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9288 		clear_hv_tscchange_cb();
9289 #endif
9290 	kvm_lapic_exit();
9291 
9292 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9293 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9294 					    CPUFREQ_TRANSITION_NOTIFIER);
9295 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9296 #ifdef CONFIG_X86_64
9297 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9298 	irq_work_sync(&pvclock_irq_work);
9299 	cancel_work_sync(&pvclock_gtod_work);
9300 #endif
9301 	kvm_x86_ops.hardware_enable = NULL;
9302 	kvm_mmu_vendor_module_exit();
9303 	free_percpu(user_return_msrs);
9304 	kmem_cache_destroy(x86_emulator_cache);
9305 #ifdef CONFIG_KVM_XEN
9306 	static_key_deferred_flush(&kvm_xen_enabled);
9307 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9308 #endif
9309 }
9310 
9311 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9312 {
9313 	/*
9314 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9315 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9316 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9317 	 * managed by userspace, in which case userspace is responsible for
9318 	 * handling wake events.
9319 	 */
9320 	++vcpu->stat.halt_exits;
9321 	if (lapic_in_kernel(vcpu)) {
9322 		vcpu->arch.mp_state = state;
9323 		return 1;
9324 	} else {
9325 		vcpu->run->exit_reason = reason;
9326 		return 0;
9327 	}
9328 }
9329 
9330 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9331 {
9332 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9333 }
9334 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9335 
9336 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9337 {
9338 	int ret = kvm_skip_emulated_instruction(vcpu);
9339 	/*
9340 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9341 	 * KVM_EXIT_DEBUG here.
9342 	 */
9343 	return kvm_emulate_halt_noskip(vcpu) && ret;
9344 }
9345 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9346 
9347 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9348 {
9349 	int ret = kvm_skip_emulated_instruction(vcpu);
9350 
9351 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9352 					KVM_EXIT_AP_RESET_HOLD) && ret;
9353 }
9354 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9355 
9356 #ifdef CONFIG_X86_64
9357 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9358 			        unsigned long clock_type)
9359 {
9360 	struct kvm_clock_pairing clock_pairing;
9361 	struct timespec64 ts;
9362 	u64 cycle;
9363 	int ret;
9364 
9365 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9366 		return -KVM_EOPNOTSUPP;
9367 
9368 	/*
9369 	 * When tsc is in permanent catchup mode guests won't be able to use
9370 	 * pvclock_read_retry loop to get consistent view of pvclock
9371 	 */
9372 	if (vcpu->arch.tsc_always_catchup)
9373 		return -KVM_EOPNOTSUPP;
9374 
9375 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9376 		return -KVM_EOPNOTSUPP;
9377 
9378 	clock_pairing.sec = ts.tv_sec;
9379 	clock_pairing.nsec = ts.tv_nsec;
9380 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9381 	clock_pairing.flags = 0;
9382 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9383 
9384 	ret = 0;
9385 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9386 			    sizeof(struct kvm_clock_pairing)))
9387 		ret = -KVM_EFAULT;
9388 
9389 	return ret;
9390 }
9391 #endif
9392 
9393 /*
9394  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9395  *
9396  * @apicid - apicid of vcpu to be kicked.
9397  */
9398 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9399 {
9400 	/*
9401 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9402 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9403 	 */
9404 	struct kvm_lapic_irq lapic_irq = {
9405 		.delivery_mode = APIC_DM_REMRD,
9406 		.dest_mode = APIC_DEST_PHYSICAL,
9407 		.shorthand = APIC_DEST_NOSHORT,
9408 		.dest_id = apicid,
9409 	};
9410 
9411 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9412 }
9413 
9414 bool kvm_apicv_activated(struct kvm *kvm)
9415 {
9416 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9417 }
9418 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9419 
9420 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9421 {
9422 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9423 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9424 
9425 	return (vm_reasons | vcpu_reasons) == 0;
9426 }
9427 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9428 
9429 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9430 				       enum kvm_apicv_inhibit reason, bool set)
9431 {
9432 	if (set)
9433 		__set_bit(reason, inhibits);
9434 	else
9435 		__clear_bit(reason, inhibits);
9436 
9437 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9438 }
9439 
9440 static void kvm_apicv_init(struct kvm *kvm)
9441 {
9442 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9443 
9444 	init_rwsem(&kvm->arch.apicv_update_lock);
9445 
9446 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9447 
9448 	if (!enable_apicv)
9449 		set_or_clear_apicv_inhibit(inhibits,
9450 					   APICV_INHIBIT_REASON_DISABLE, true);
9451 }
9452 
9453 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9454 {
9455 	struct kvm_vcpu *target = NULL;
9456 	struct kvm_apic_map *map;
9457 
9458 	vcpu->stat.directed_yield_attempted++;
9459 
9460 	if (single_task_running())
9461 		goto no_yield;
9462 
9463 	rcu_read_lock();
9464 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9465 
9466 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9467 		target = map->phys_map[dest_id]->vcpu;
9468 
9469 	rcu_read_unlock();
9470 
9471 	if (!target || !READ_ONCE(target->ready))
9472 		goto no_yield;
9473 
9474 	/* Ignore requests to yield to self */
9475 	if (vcpu == target)
9476 		goto no_yield;
9477 
9478 	if (kvm_vcpu_yield_to(target) <= 0)
9479 		goto no_yield;
9480 
9481 	vcpu->stat.directed_yield_successful++;
9482 
9483 no_yield:
9484 	return;
9485 }
9486 
9487 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9488 {
9489 	u64 ret = vcpu->run->hypercall.ret;
9490 
9491 	if (!is_64_bit_mode(vcpu))
9492 		ret = (u32)ret;
9493 	kvm_rax_write(vcpu, ret);
9494 	++vcpu->stat.hypercalls;
9495 	return kvm_skip_emulated_instruction(vcpu);
9496 }
9497 
9498 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9499 {
9500 	unsigned long nr, a0, a1, a2, a3, ret;
9501 	int op_64_bit;
9502 
9503 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9504 		return kvm_xen_hypercall(vcpu);
9505 
9506 	if (kvm_hv_hypercall_enabled(vcpu))
9507 		return kvm_hv_hypercall(vcpu);
9508 
9509 	nr = kvm_rax_read(vcpu);
9510 	a0 = kvm_rbx_read(vcpu);
9511 	a1 = kvm_rcx_read(vcpu);
9512 	a2 = kvm_rdx_read(vcpu);
9513 	a3 = kvm_rsi_read(vcpu);
9514 
9515 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9516 
9517 	op_64_bit = is_64_bit_hypercall(vcpu);
9518 	if (!op_64_bit) {
9519 		nr &= 0xFFFFFFFF;
9520 		a0 &= 0xFFFFFFFF;
9521 		a1 &= 0xFFFFFFFF;
9522 		a2 &= 0xFFFFFFFF;
9523 		a3 &= 0xFFFFFFFF;
9524 	}
9525 
9526 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9527 		ret = -KVM_EPERM;
9528 		goto out;
9529 	}
9530 
9531 	ret = -KVM_ENOSYS;
9532 
9533 	switch (nr) {
9534 	case KVM_HC_VAPIC_POLL_IRQ:
9535 		ret = 0;
9536 		break;
9537 	case KVM_HC_KICK_CPU:
9538 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9539 			break;
9540 
9541 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9542 		kvm_sched_yield(vcpu, a1);
9543 		ret = 0;
9544 		break;
9545 #ifdef CONFIG_X86_64
9546 	case KVM_HC_CLOCK_PAIRING:
9547 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9548 		break;
9549 #endif
9550 	case KVM_HC_SEND_IPI:
9551 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9552 			break;
9553 
9554 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9555 		break;
9556 	case KVM_HC_SCHED_YIELD:
9557 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9558 			break;
9559 
9560 		kvm_sched_yield(vcpu, a0);
9561 		ret = 0;
9562 		break;
9563 	case KVM_HC_MAP_GPA_RANGE: {
9564 		u64 gpa = a0, npages = a1, attrs = a2;
9565 
9566 		ret = -KVM_ENOSYS;
9567 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9568 			break;
9569 
9570 		if (!PAGE_ALIGNED(gpa) || !npages ||
9571 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9572 			ret = -KVM_EINVAL;
9573 			break;
9574 		}
9575 
9576 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9577 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9578 		vcpu->run->hypercall.args[0]  = gpa;
9579 		vcpu->run->hypercall.args[1]  = npages;
9580 		vcpu->run->hypercall.args[2]  = attrs;
9581 		vcpu->run->hypercall.longmode = op_64_bit;
9582 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9583 		return 0;
9584 	}
9585 	default:
9586 		ret = -KVM_ENOSYS;
9587 		break;
9588 	}
9589 out:
9590 	if (!op_64_bit)
9591 		ret = (u32)ret;
9592 	kvm_rax_write(vcpu, ret);
9593 
9594 	++vcpu->stat.hypercalls;
9595 	return kvm_skip_emulated_instruction(vcpu);
9596 }
9597 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9598 
9599 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9600 {
9601 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9602 	char instruction[3];
9603 	unsigned long rip = kvm_rip_read(vcpu);
9604 
9605 	/*
9606 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9607 	 * the pieces.
9608 	 */
9609 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9610 		ctxt->exception.error_code_valid = false;
9611 		ctxt->exception.vector = UD_VECTOR;
9612 		ctxt->have_exception = true;
9613 		return X86EMUL_PROPAGATE_FAULT;
9614 	}
9615 
9616 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9617 
9618 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9619 		&ctxt->exception);
9620 }
9621 
9622 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9623 {
9624 	return vcpu->run->request_interrupt_window &&
9625 		likely(!pic_in_kernel(vcpu->kvm));
9626 }
9627 
9628 /* Called within kvm->srcu read side.  */
9629 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9630 {
9631 	struct kvm_run *kvm_run = vcpu->run;
9632 
9633 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9634 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9635 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9636 
9637 	kvm_run->ready_for_interrupt_injection =
9638 		pic_in_kernel(vcpu->kvm) ||
9639 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9640 
9641 	if (is_smm(vcpu))
9642 		kvm_run->flags |= KVM_RUN_X86_SMM;
9643 }
9644 
9645 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9646 {
9647 	int max_irr, tpr;
9648 
9649 	if (!kvm_x86_ops.update_cr8_intercept)
9650 		return;
9651 
9652 	if (!lapic_in_kernel(vcpu))
9653 		return;
9654 
9655 	if (vcpu->arch.apic->apicv_active)
9656 		return;
9657 
9658 	if (!vcpu->arch.apic->vapic_addr)
9659 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9660 	else
9661 		max_irr = -1;
9662 
9663 	if (max_irr != -1)
9664 		max_irr >>= 4;
9665 
9666 	tpr = kvm_lapic_get_cr8(vcpu);
9667 
9668 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9669 }
9670 
9671 
9672 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9673 {
9674 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9675 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9676 		return 1;
9677 	}
9678 
9679 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9680 }
9681 
9682 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9683 {
9684 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
9685 				vcpu->arch.exception.has_error_code,
9686 				vcpu->arch.exception.error_code,
9687 				vcpu->arch.exception.injected);
9688 
9689 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9690 		vcpu->arch.exception.error_code = false;
9691 	static_call(kvm_x86_queue_exception)(vcpu);
9692 }
9693 
9694 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9695 {
9696 	int r;
9697 	bool can_inject = true;
9698 
9699 	/* try to reinject previous events if any */
9700 
9701 	if (vcpu->arch.exception.injected) {
9702 		kvm_inject_exception(vcpu);
9703 		can_inject = false;
9704 	}
9705 	/*
9706 	 * Do not inject an NMI or interrupt if there is a pending
9707 	 * exception.  Exceptions and interrupts are recognized at
9708 	 * instruction boundaries, i.e. the start of an instruction.
9709 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9710 	 * NMIs and interrupts, i.e. traps are recognized before an
9711 	 * NMI/interrupt that's pending on the same instruction.
9712 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9713 	 * priority, but are only generated (pended) during instruction
9714 	 * execution, i.e. a pending fault-like exception means the
9715 	 * fault occurred on the *previous* instruction and must be
9716 	 * serviced prior to recognizing any new events in order to
9717 	 * fully complete the previous instruction.
9718 	 */
9719 	else if (!vcpu->arch.exception.pending) {
9720 		if (vcpu->arch.nmi_injected) {
9721 			static_call(kvm_x86_inject_nmi)(vcpu);
9722 			can_inject = false;
9723 		} else if (vcpu->arch.interrupt.injected) {
9724 			static_call(kvm_x86_inject_irq)(vcpu, true);
9725 			can_inject = false;
9726 		}
9727 	}
9728 
9729 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9730 		     vcpu->arch.exception.pending);
9731 
9732 	/*
9733 	 * Call check_nested_events() even if we reinjected a previous event
9734 	 * in order for caller to determine if it should require immediate-exit
9735 	 * from L2 to L1 due to pending L1 events which require exit
9736 	 * from L2 to L1.
9737 	 */
9738 	if (is_guest_mode(vcpu)) {
9739 		r = kvm_check_nested_events(vcpu);
9740 		if (r < 0)
9741 			goto out;
9742 	}
9743 
9744 	/* try to inject new event if pending */
9745 	if (vcpu->arch.exception.pending) {
9746 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9747 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9748 					     X86_EFLAGS_RF);
9749 
9750 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9751 			kvm_deliver_exception_payload(vcpu);
9752 			if (vcpu->arch.dr7 & DR7_GD) {
9753 				vcpu->arch.dr7 &= ~DR7_GD;
9754 				kvm_update_dr7(vcpu);
9755 			}
9756 		}
9757 
9758 		kvm_inject_exception(vcpu);
9759 
9760 		vcpu->arch.exception.pending = false;
9761 		vcpu->arch.exception.injected = true;
9762 
9763 		can_inject = false;
9764 	}
9765 
9766 	/* Don't inject interrupts if the user asked to avoid doing so */
9767 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9768 		return 0;
9769 
9770 	/*
9771 	 * Finally, inject interrupt events.  If an event cannot be injected
9772 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9773 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9774 	 * and can architecturally be injected, but we cannot do it right now:
9775 	 * an interrupt could have arrived just now and we have to inject it
9776 	 * as a vmexit, or there could already an event in the queue, which is
9777 	 * indicated by can_inject.  In that case we request an immediate exit
9778 	 * in order to make progress and get back here for another iteration.
9779 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9780 	 */
9781 	if (vcpu->arch.smi_pending) {
9782 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9783 		if (r < 0)
9784 			goto out;
9785 		if (r) {
9786 			vcpu->arch.smi_pending = false;
9787 			++vcpu->arch.smi_count;
9788 			enter_smm(vcpu);
9789 			can_inject = false;
9790 		} else
9791 			static_call(kvm_x86_enable_smi_window)(vcpu);
9792 	}
9793 
9794 	if (vcpu->arch.nmi_pending) {
9795 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9796 		if (r < 0)
9797 			goto out;
9798 		if (r) {
9799 			--vcpu->arch.nmi_pending;
9800 			vcpu->arch.nmi_injected = true;
9801 			static_call(kvm_x86_inject_nmi)(vcpu);
9802 			can_inject = false;
9803 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9804 		}
9805 		if (vcpu->arch.nmi_pending)
9806 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9807 	}
9808 
9809 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9810 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9811 		if (r < 0)
9812 			goto out;
9813 		if (r) {
9814 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9815 			static_call(kvm_x86_inject_irq)(vcpu, false);
9816 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9817 		}
9818 		if (kvm_cpu_has_injectable_intr(vcpu))
9819 			static_call(kvm_x86_enable_irq_window)(vcpu);
9820 	}
9821 
9822 	if (is_guest_mode(vcpu) &&
9823 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9824 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9825 		*req_immediate_exit = true;
9826 
9827 	WARN_ON(vcpu->arch.exception.pending);
9828 	return 0;
9829 
9830 out:
9831 	if (r == -EBUSY) {
9832 		*req_immediate_exit = true;
9833 		r = 0;
9834 	}
9835 	return r;
9836 }
9837 
9838 static void process_nmi(struct kvm_vcpu *vcpu)
9839 {
9840 	unsigned limit = 2;
9841 
9842 	/*
9843 	 * x86 is limited to one NMI running, and one NMI pending after it.
9844 	 * If an NMI is already in progress, limit further NMIs to just one.
9845 	 * Otherwise, allow two (and we'll inject the first one immediately).
9846 	 */
9847 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9848 		limit = 1;
9849 
9850 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9851 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9852 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9853 }
9854 
9855 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9856 {
9857 	u32 flags = 0;
9858 	flags |= seg->g       << 23;
9859 	flags |= seg->db      << 22;
9860 	flags |= seg->l       << 21;
9861 	flags |= seg->avl     << 20;
9862 	flags |= seg->present << 15;
9863 	flags |= seg->dpl     << 13;
9864 	flags |= seg->s       << 12;
9865 	flags |= seg->type    << 8;
9866 	return flags;
9867 }
9868 
9869 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9870 {
9871 	struct kvm_segment seg;
9872 	int offset;
9873 
9874 	kvm_get_segment(vcpu, &seg, n);
9875 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9876 
9877 	if (n < 3)
9878 		offset = 0x7f84 + n * 12;
9879 	else
9880 		offset = 0x7f2c + (n - 3) * 12;
9881 
9882 	put_smstate(u32, buf, offset + 8, seg.base);
9883 	put_smstate(u32, buf, offset + 4, seg.limit);
9884 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9885 }
9886 
9887 #ifdef CONFIG_X86_64
9888 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9889 {
9890 	struct kvm_segment seg;
9891 	int offset;
9892 	u16 flags;
9893 
9894 	kvm_get_segment(vcpu, &seg, n);
9895 	offset = 0x7e00 + n * 16;
9896 
9897 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9898 	put_smstate(u16, buf, offset, seg.selector);
9899 	put_smstate(u16, buf, offset + 2, flags);
9900 	put_smstate(u32, buf, offset + 4, seg.limit);
9901 	put_smstate(u64, buf, offset + 8, seg.base);
9902 }
9903 #endif
9904 
9905 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9906 {
9907 	struct desc_ptr dt;
9908 	struct kvm_segment seg;
9909 	unsigned long val;
9910 	int i;
9911 
9912 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9913 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9914 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9915 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9916 
9917 	for (i = 0; i < 8; i++)
9918 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9919 
9920 	kvm_get_dr(vcpu, 6, &val);
9921 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9922 	kvm_get_dr(vcpu, 7, &val);
9923 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9924 
9925 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9926 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9927 	put_smstate(u32, buf, 0x7f64, seg.base);
9928 	put_smstate(u32, buf, 0x7f60, seg.limit);
9929 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9930 
9931 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9932 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9933 	put_smstate(u32, buf, 0x7f80, seg.base);
9934 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9935 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9936 
9937 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9938 	put_smstate(u32, buf, 0x7f74, dt.address);
9939 	put_smstate(u32, buf, 0x7f70, dt.size);
9940 
9941 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9942 	put_smstate(u32, buf, 0x7f58, dt.address);
9943 	put_smstate(u32, buf, 0x7f54, dt.size);
9944 
9945 	for (i = 0; i < 6; i++)
9946 		enter_smm_save_seg_32(vcpu, buf, i);
9947 
9948 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9949 
9950 	/* revision id */
9951 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9952 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9953 }
9954 
9955 #ifdef CONFIG_X86_64
9956 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9957 {
9958 	struct desc_ptr dt;
9959 	struct kvm_segment seg;
9960 	unsigned long val;
9961 	int i;
9962 
9963 	for (i = 0; i < 16; i++)
9964 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9965 
9966 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9967 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9968 
9969 	kvm_get_dr(vcpu, 6, &val);
9970 	put_smstate(u64, buf, 0x7f68, val);
9971 	kvm_get_dr(vcpu, 7, &val);
9972 	put_smstate(u64, buf, 0x7f60, val);
9973 
9974 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9975 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9976 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9977 
9978 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9979 
9980 	/* revision id */
9981 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9982 
9983 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9984 
9985 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9986 	put_smstate(u16, buf, 0x7e90, seg.selector);
9987 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9988 	put_smstate(u32, buf, 0x7e94, seg.limit);
9989 	put_smstate(u64, buf, 0x7e98, seg.base);
9990 
9991 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9992 	put_smstate(u32, buf, 0x7e84, dt.size);
9993 	put_smstate(u64, buf, 0x7e88, dt.address);
9994 
9995 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9996 	put_smstate(u16, buf, 0x7e70, seg.selector);
9997 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9998 	put_smstate(u32, buf, 0x7e74, seg.limit);
9999 	put_smstate(u64, buf, 0x7e78, seg.base);
10000 
10001 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10002 	put_smstate(u32, buf, 0x7e64, dt.size);
10003 	put_smstate(u64, buf, 0x7e68, dt.address);
10004 
10005 	for (i = 0; i < 6; i++)
10006 		enter_smm_save_seg_64(vcpu, buf, i);
10007 }
10008 #endif
10009 
10010 static void enter_smm(struct kvm_vcpu *vcpu)
10011 {
10012 	struct kvm_segment cs, ds;
10013 	struct desc_ptr dt;
10014 	unsigned long cr0;
10015 	char buf[512];
10016 
10017 	memset(buf, 0, 512);
10018 #ifdef CONFIG_X86_64
10019 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10020 		enter_smm_save_state_64(vcpu, buf);
10021 	else
10022 #endif
10023 		enter_smm_save_state_32(vcpu, buf);
10024 
10025 	/*
10026 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10027 	 * state (e.g. leave guest mode) after we've saved the state into the
10028 	 * SMM state-save area.
10029 	 */
10030 	static_call(kvm_x86_enter_smm)(vcpu, buf);
10031 
10032 	kvm_smm_changed(vcpu, true);
10033 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10034 
10035 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10036 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10037 	else
10038 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10039 
10040 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10041 	kvm_rip_write(vcpu, 0x8000);
10042 
10043 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10044 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
10045 	vcpu->arch.cr0 = cr0;
10046 
10047 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10048 
10049 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
10050 	dt.address = dt.size = 0;
10051 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10052 
10053 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10054 
10055 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10056 	cs.base = vcpu->arch.smbase;
10057 
10058 	ds.selector = 0;
10059 	ds.base = 0;
10060 
10061 	cs.limit    = ds.limit = 0xffffffff;
10062 	cs.type     = ds.type = 0x3;
10063 	cs.dpl      = ds.dpl = 0;
10064 	cs.db       = ds.db = 0;
10065 	cs.s        = ds.s = 1;
10066 	cs.l        = ds.l = 0;
10067 	cs.g        = ds.g = 1;
10068 	cs.avl      = ds.avl = 0;
10069 	cs.present  = ds.present = 1;
10070 	cs.unusable = ds.unusable = 0;
10071 	cs.padding  = ds.padding = 0;
10072 
10073 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10074 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10075 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10076 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10077 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10078 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10079 
10080 #ifdef CONFIG_X86_64
10081 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10082 		static_call(kvm_x86_set_efer)(vcpu, 0);
10083 #endif
10084 
10085 	kvm_update_cpuid_runtime(vcpu);
10086 	kvm_mmu_reset_context(vcpu);
10087 }
10088 
10089 static void process_smi(struct kvm_vcpu *vcpu)
10090 {
10091 	vcpu->arch.smi_pending = true;
10092 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10093 }
10094 
10095 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10096 				       unsigned long *vcpu_bitmap)
10097 {
10098 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10099 }
10100 
10101 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10102 {
10103 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10104 }
10105 
10106 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10107 {
10108 	struct kvm_lapic *apic = vcpu->arch.apic;
10109 	bool activate;
10110 
10111 	if (!lapic_in_kernel(vcpu))
10112 		return;
10113 
10114 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10115 	preempt_disable();
10116 
10117 	/* Do not activate APICV when APIC is disabled */
10118 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10119 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10120 
10121 	if (apic->apicv_active == activate)
10122 		goto out;
10123 
10124 	apic->apicv_active = activate;
10125 	kvm_apic_update_apicv(vcpu);
10126 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10127 
10128 	/*
10129 	 * When APICv gets disabled, we may still have injected interrupts
10130 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10131 	 * still active when the interrupt got accepted. Make sure
10132 	 * inject_pending_event() is called to check for that.
10133 	 */
10134 	if (!apic->apicv_active)
10135 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10136 
10137 out:
10138 	preempt_enable();
10139 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10140 }
10141 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10142 
10143 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10144 				      enum kvm_apicv_inhibit reason, bool set)
10145 {
10146 	unsigned long old, new;
10147 
10148 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10149 
10150 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10151 		return;
10152 
10153 	old = new = kvm->arch.apicv_inhibit_reasons;
10154 
10155 	set_or_clear_apicv_inhibit(&new, reason, set);
10156 
10157 	if (!!old != !!new) {
10158 		/*
10159 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10160 		 * false positives in the sanity check WARN in svm_vcpu_run().
10161 		 * This task will wait for all vCPUs to ack the kick IRQ before
10162 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10163 		 * block on acquiring apicv_update_lock so that vCPUs can't
10164 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10165 		 *
10166 		 * Note, holding apicv_update_lock and taking it in the read
10167 		 * side (handling the request) also prevents other vCPUs from
10168 		 * servicing the request with a stale apicv_inhibit_reasons.
10169 		 */
10170 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10171 		kvm->arch.apicv_inhibit_reasons = new;
10172 		if (new) {
10173 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10174 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10175 		}
10176 	} else {
10177 		kvm->arch.apicv_inhibit_reasons = new;
10178 	}
10179 }
10180 
10181 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10182 				    enum kvm_apicv_inhibit reason, bool set)
10183 {
10184 	if (!enable_apicv)
10185 		return;
10186 
10187 	down_write(&kvm->arch.apicv_update_lock);
10188 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10189 	up_write(&kvm->arch.apicv_update_lock);
10190 }
10191 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10192 
10193 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10194 {
10195 	if (!kvm_apic_present(vcpu))
10196 		return;
10197 
10198 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10199 
10200 	if (irqchip_split(vcpu->kvm))
10201 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10202 	else {
10203 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10204 		if (ioapic_in_kernel(vcpu->kvm))
10205 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10206 	}
10207 
10208 	if (is_guest_mode(vcpu))
10209 		vcpu->arch.load_eoi_exitmap_pending = true;
10210 	else
10211 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10212 }
10213 
10214 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10215 {
10216 	u64 eoi_exit_bitmap[4];
10217 
10218 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10219 		return;
10220 
10221 	if (to_hv_vcpu(vcpu)) {
10222 		bitmap_or((ulong *)eoi_exit_bitmap,
10223 			  vcpu->arch.ioapic_handled_vectors,
10224 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10225 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10226 		return;
10227 	}
10228 
10229 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10230 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10231 }
10232 
10233 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10234 					    unsigned long start, unsigned long end)
10235 {
10236 	unsigned long apic_address;
10237 
10238 	/*
10239 	 * The physical address of apic access page is stored in the VMCS.
10240 	 * Update it when it becomes invalid.
10241 	 */
10242 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10243 	if (start <= apic_address && apic_address < end)
10244 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10245 }
10246 
10247 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10248 {
10249 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10250 }
10251 
10252 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10253 {
10254 	if (!lapic_in_kernel(vcpu))
10255 		return;
10256 
10257 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10258 }
10259 
10260 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10261 {
10262 	smp_send_reschedule(vcpu->cpu);
10263 }
10264 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10265 
10266 /*
10267  * Called within kvm->srcu read side.
10268  * Returns 1 to let vcpu_run() continue the guest execution loop without
10269  * exiting to the userspace.  Otherwise, the value will be returned to the
10270  * userspace.
10271  */
10272 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10273 {
10274 	int r;
10275 	bool req_int_win =
10276 		dm_request_for_irq_injection(vcpu) &&
10277 		kvm_cpu_accept_dm_intr(vcpu);
10278 	fastpath_t exit_fastpath;
10279 
10280 	bool req_immediate_exit = false;
10281 
10282 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10283 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10284 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10285 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10286 		trace_kvm_dirty_ring_exit(vcpu);
10287 		r = 0;
10288 		goto out;
10289 	}
10290 
10291 	if (kvm_request_pending(vcpu)) {
10292 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10293 			r = -EIO;
10294 			goto out;
10295 		}
10296 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10297 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10298 				r = 0;
10299 				goto out;
10300 			}
10301 		}
10302 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10303 			kvm_mmu_free_obsolete_roots(vcpu);
10304 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10305 			__kvm_migrate_timers(vcpu);
10306 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10307 			kvm_update_masterclock(vcpu->kvm);
10308 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10309 			kvm_gen_kvmclock_update(vcpu);
10310 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10311 			r = kvm_guest_time_update(vcpu);
10312 			if (unlikely(r))
10313 				goto out;
10314 		}
10315 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10316 			kvm_mmu_sync_roots(vcpu);
10317 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10318 			kvm_mmu_load_pgd(vcpu);
10319 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10320 			kvm_vcpu_flush_tlb_all(vcpu);
10321 
10322 			/* Flushing all ASIDs flushes the current ASID... */
10323 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10324 		}
10325 		kvm_service_local_tlb_flush_requests(vcpu);
10326 
10327 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10328 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10329 			r = 0;
10330 			goto out;
10331 		}
10332 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10333 			if (is_guest_mode(vcpu)) {
10334 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10335 			} else {
10336 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10337 				vcpu->mmio_needed = 0;
10338 				r = 0;
10339 				goto out;
10340 			}
10341 		}
10342 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10343 			/* Page is swapped out. Do synthetic halt */
10344 			vcpu->arch.apf.halted = true;
10345 			r = 1;
10346 			goto out;
10347 		}
10348 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10349 			record_steal_time(vcpu);
10350 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10351 			process_smi(vcpu);
10352 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10353 			process_nmi(vcpu);
10354 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10355 			kvm_pmu_handle_event(vcpu);
10356 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10357 			kvm_pmu_deliver_pmi(vcpu);
10358 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10359 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10360 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10361 				     vcpu->arch.ioapic_handled_vectors)) {
10362 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10363 				vcpu->run->eoi.vector =
10364 						vcpu->arch.pending_ioapic_eoi;
10365 				r = 0;
10366 				goto out;
10367 			}
10368 		}
10369 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10370 			vcpu_scan_ioapic(vcpu);
10371 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10372 			vcpu_load_eoi_exitmap(vcpu);
10373 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10374 			kvm_vcpu_reload_apic_access_page(vcpu);
10375 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10376 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10377 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10378 			vcpu->run->system_event.ndata = 0;
10379 			r = 0;
10380 			goto out;
10381 		}
10382 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10383 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10384 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10385 			vcpu->run->system_event.ndata = 0;
10386 			r = 0;
10387 			goto out;
10388 		}
10389 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10390 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10391 
10392 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10393 			vcpu->run->hyperv = hv_vcpu->exit;
10394 			r = 0;
10395 			goto out;
10396 		}
10397 
10398 		/*
10399 		 * KVM_REQ_HV_STIMER has to be processed after
10400 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10401 		 * depend on the guest clock being up-to-date
10402 		 */
10403 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10404 			kvm_hv_process_stimers(vcpu);
10405 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10406 			kvm_vcpu_update_apicv(vcpu);
10407 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10408 			kvm_check_async_pf_completion(vcpu);
10409 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10410 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10411 
10412 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10413 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10414 	}
10415 
10416 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10417 	    kvm_xen_has_interrupt(vcpu)) {
10418 		++vcpu->stat.req_event;
10419 		r = kvm_apic_accept_events(vcpu);
10420 		if (r < 0) {
10421 			r = 0;
10422 			goto out;
10423 		}
10424 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10425 			r = 1;
10426 			goto out;
10427 		}
10428 
10429 		r = inject_pending_event(vcpu, &req_immediate_exit);
10430 		if (r < 0) {
10431 			r = 0;
10432 			goto out;
10433 		}
10434 		if (req_int_win)
10435 			static_call(kvm_x86_enable_irq_window)(vcpu);
10436 
10437 		if (kvm_lapic_enabled(vcpu)) {
10438 			update_cr8_intercept(vcpu);
10439 			kvm_lapic_sync_to_vapic(vcpu);
10440 		}
10441 	}
10442 
10443 	r = kvm_mmu_reload(vcpu);
10444 	if (unlikely(r)) {
10445 		goto cancel_injection;
10446 	}
10447 
10448 	preempt_disable();
10449 
10450 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10451 
10452 	/*
10453 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10454 	 * IPI are then delayed after guest entry, which ensures that they
10455 	 * result in virtual interrupt delivery.
10456 	 */
10457 	local_irq_disable();
10458 
10459 	/* Store vcpu->apicv_active before vcpu->mode.  */
10460 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10461 
10462 	kvm_vcpu_srcu_read_unlock(vcpu);
10463 
10464 	/*
10465 	 * 1) We should set ->mode before checking ->requests.  Please see
10466 	 * the comment in kvm_vcpu_exiting_guest_mode().
10467 	 *
10468 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10469 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10470 	 * (see vmx_deliver_posted_interrupt).
10471 	 *
10472 	 * 3) This also orders the write to mode from any reads to the page
10473 	 * tables done while the VCPU is running.  Please see the comment
10474 	 * in kvm_flush_remote_tlbs.
10475 	 */
10476 	smp_mb__after_srcu_read_unlock();
10477 
10478 	/*
10479 	 * Process pending posted interrupts to handle the case where the
10480 	 * notification IRQ arrived in the host, or was never sent (because the
10481 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10482 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10483 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10484 	 */
10485 	if (kvm_lapic_enabled(vcpu))
10486 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10487 
10488 	if (kvm_vcpu_exit_request(vcpu)) {
10489 		vcpu->mode = OUTSIDE_GUEST_MODE;
10490 		smp_wmb();
10491 		local_irq_enable();
10492 		preempt_enable();
10493 		kvm_vcpu_srcu_read_lock(vcpu);
10494 		r = 1;
10495 		goto cancel_injection;
10496 	}
10497 
10498 	if (req_immediate_exit) {
10499 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10500 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10501 	}
10502 
10503 	fpregs_assert_state_consistent();
10504 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10505 		switch_fpu_return();
10506 
10507 	if (vcpu->arch.guest_fpu.xfd_err)
10508 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10509 
10510 	if (unlikely(vcpu->arch.switch_db_regs)) {
10511 		set_debugreg(0, 7);
10512 		set_debugreg(vcpu->arch.eff_db[0], 0);
10513 		set_debugreg(vcpu->arch.eff_db[1], 1);
10514 		set_debugreg(vcpu->arch.eff_db[2], 2);
10515 		set_debugreg(vcpu->arch.eff_db[3], 3);
10516 	} else if (unlikely(hw_breakpoint_active())) {
10517 		set_debugreg(0, 7);
10518 	}
10519 
10520 	guest_timing_enter_irqoff();
10521 
10522 	for (;;) {
10523 		/*
10524 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10525 		 * update must kick and wait for all vCPUs before toggling the
10526 		 * per-VM state, and responsing vCPUs must wait for the update
10527 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10528 		 */
10529 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10530 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10531 
10532 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10533 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10534 			break;
10535 
10536 		if (kvm_lapic_enabled(vcpu))
10537 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10538 
10539 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10540 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10541 			break;
10542 		}
10543 	}
10544 
10545 	/*
10546 	 * Do this here before restoring debug registers on the host.  And
10547 	 * since we do this before handling the vmexit, a DR access vmexit
10548 	 * can (a) read the correct value of the debug registers, (b) set
10549 	 * KVM_DEBUGREG_WONT_EXIT again.
10550 	 */
10551 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10552 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10553 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10554 		kvm_update_dr0123(vcpu);
10555 		kvm_update_dr7(vcpu);
10556 	}
10557 
10558 	/*
10559 	 * If the guest has used debug registers, at least dr7
10560 	 * will be disabled while returning to the host.
10561 	 * If we don't have active breakpoints in the host, we don't
10562 	 * care about the messed up debug address registers. But if
10563 	 * we have some of them active, restore the old state.
10564 	 */
10565 	if (hw_breakpoint_active())
10566 		hw_breakpoint_restore();
10567 
10568 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10569 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10570 
10571 	vcpu->mode = OUTSIDE_GUEST_MODE;
10572 	smp_wmb();
10573 
10574 	/*
10575 	 * Sync xfd before calling handle_exit_irqoff() which may
10576 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10577 	 * in #NM irqoff handler).
10578 	 */
10579 	if (vcpu->arch.xfd_no_write_intercept)
10580 		fpu_sync_guest_vmexit_xfd_state();
10581 
10582 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10583 
10584 	if (vcpu->arch.guest_fpu.xfd_err)
10585 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10586 
10587 	/*
10588 	 * Consume any pending interrupts, including the possible source of
10589 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10590 	 * An instruction is required after local_irq_enable() to fully unblock
10591 	 * interrupts on processors that implement an interrupt shadow, the
10592 	 * stat.exits increment will do nicely.
10593 	 */
10594 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10595 	local_irq_enable();
10596 	++vcpu->stat.exits;
10597 	local_irq_disable();
10598 	kvm_after_interrupt(vcpu);
10599 
10600 	/*
10601 	 * Wait until after servicing IRQs to account guest time so that any
10602 	 * ticks that occurred while running the guest are properly accounted
10603 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10604 	 * of accounting via context tracking, but the loss of accuracy is
10605 	 * acceptable for all known use cases.
10606 	 */
10607 	guest_timing_exit_irqoff();
10608 
10609 	local_irq_enable();
10610 	preempt_enable();
10611 
10612 	kvm_vcpu_srcu_read_lock(vcpu);
10613 
10614 	/*
10615 	 * Profile KVM exit RIPs:
10616 	 */
10617 	if (unlikely(prof_on == KVM_PROFILING)) {
10618 		unsigned long rip = kvm_rip_read(vcpu);
10619 		profile_hit(KVM_PROFILING, (void *)rip);
10620 	}
10621 
10622 	if (unlikely(vcpu->arch.tsc_always_catchup))
10623 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10624 
10625 	if (vcpu->arch.apic_attention)
10626 		kvm_lapic_sync_from_vapic(vcpu);
10627 
10628 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10629 	return r;
10630 
10631 cancel_injection:
10632 	if (req_immediate_exit)
10633 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10634 	static_call(kvm_x86_cancel_injection)(vcpu);
10635 	if (unlikely(vcpu->arch.apic_attention))
10636 		kvm_lapic_sync_from_vapic(vcpu);
10637 out:
10638 	return r;
10639 }
10640 
10641 /* Called within kvm->srcu read side.  */
10642 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10643 {
10644 	bool hv_timer;
10645 
10646 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10647 		/*
10648 		 * Switch to the software timer before halt-polling/blocking as
10649 		 * the guest's timer may be a break event for the vCPU, and the
10650 		 * hypervisor timer runs only when the CPU is in guest mode.
10651 		 * Switch before halt-polling so that KVM recognizes an expired
10652 		 * timer before blocking.
10653 		 */
10654 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10655 		if (hv_timer)
10656 			kvm_lapic_switch_to_sw_timer(vcpu);
10657 
10658 		kvm_vcpu_srcu_read_unlock(vcpu);
10659 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10660 			kvm_vcpu_halt(vcpu);
10661 		else
10662 			kvm_vcpu_block(vcpu);
10663 		kvm_vcpu_srcu_read_lock(vcpu);
10664 
10665 		if (hv_timer)
10666 			kvm_lapic_switch_to_hv_timer(vcpu);
10667 
10668 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10669 			return 1;
10670 	}
10671 
10672 	if (kvm_apic_accept_events(vcpu) < 0)
10673 		return 0;
10674 	switch(vcpu->arch.mp_state) {
10675 	case KVM_MP_STATE_HALTED:
10676 	case KVM_MP_STATE_AP_RESET_HOLD:
10677 		vcpu->arch.pv.pv_unhalted = false;
10678 		vcpu->arch.mp_state =
10679 			KVM_MP_STATE_RUNNABLE;
10680 		fallthrough;
10681 	case KVM_MP_STATE_RUNNABLE:
10682 		vcpu->arch.apf.halted = false;
10683 		break;
10684 	case KVM_MP_STATE_INIT_RECEIVED:
10685 		break;
10686 	default:
10687 		return -EINTR;
10688 	}
10689 	return 1;
10690 }
10691 
10692 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10693 {
10694 	if (is_guest_mode(vcpu))
10695 		kvm_check_nested_events(vcpu);
10696 
10697 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10698 		!vcpu->arch.apf.halted);
10699 }
10700 
10701 /* Called within kvm->srcu read side.  */
10702 static int vcpu_run(struct kvm_vcpu *vcpu)
10703 {
10704 	int r;
10705 
10706 	vcpu->arch.l1tf_flush_l1d = true;
10707 
10708 	for (;;) {
10709 		/*
10710 		 * If another guest vCPU requests a PV TLB flush in the middle
10711 		 * of instruction emulation, the rest of the emulation could
10712 		 * use a stale page translation. Assume that any code after
10713 		 * this point can start executing an instruction.
10714 		 */
10715 		vcpu->arch.at_instruction_boundary = false;
10716 		if (kvm_vcpu_running(vcpu)) {
10717 			r = vcpu_enter_guest(vcpu);
10718 		} else {
10719 			r = vcpu_block(vcpu);
10720 		}
10721 
10722 		if (r <= 0)
10723 			break;
10724 
10725 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10726 		if (kvm_xen_has_pending_events(vcpu))
10727 			kvm_xen_inject_pending_events(vcpu);
10728 
10729 		if (kvm_cpu_has_pending_timer(vcpu))
10730 			kvm_inject_pending_timer_irqs(vcpu);
10731 
10732 		if (dm_request_for_irq_injection(vcpu) &&
10733 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10734 			r = 0;
10735 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10736 			++vcpu->stat.request_irq_exits;
10737 			break;
10738 		}
10739 
10740 		if (__xfer_to_guest_mode_work_pending()) {
10741 			kvm_vcpu_srcu_read_unlock(vcpu);
10742 			r = xfer_to_guest_mode_handle_work(vcpu);
10743 			kvm_vcpu_srcu_read_lock(vcpu);
10744 			if (r)
10745 				return r;
10746 		}
10747 	}
10748 
10749 	return r;
10750 }
10751 
10752 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10753 {
10754 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10755 }
10756 
10757 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10758 {
10759 	BUG_ON(!vcpu->arch.pio.count);
10760 
10761 	return complete_emulated_io(vcpu);
10762 }
10763 
10764 /*
10765  * Implements the following, as a state machine:
10766  *
10767  * read:
10768  *   for each fragment
10769  *     for each mmio piece in the fragment
10770  *       write gpa, len
10771  *       exit
10772  *       copy data
10773  *   execute insn
10774  *
10775  * write:
10776  *   for each fragment
10777  *     for each mmio piece in the fragment
10778  *       write gpa, len
10779  *       copy data
10780  *       exit
10781  */
10782 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10783 {
10784 	struct kvm_run *run = vcpu->run;
10785 	struct kvm_mmio_fragment *frag;
10786 	unsigned len;
10787 
10788 	BUG_ON(!vcpu->mmio_needed);
10789 
10790 	/* Complete previous fragment */
10791 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10792 	len = min(8u, frag->len);
10793 	if (!vcpu->mmio_is_write)
10794 		memcpy(frag->data, run->mmio.data, len);
10795 
10796 	if (frag->len <= 8) {
10797 		/* Switch to the next fragment. */
10798 		frag++;
10799 		vcpu->mmio_cur_fragment++;
10800 	} else {
10801 		/* Go forward to the next mmio piece. */
10802 		frag->data += len;
10803 		frag->gpa += len;
10804 		frag->len -= len;
10805 	}
10806 
10807 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10808 		vcpu->mmio_needed = 0;
10809 
10810 		/* FIXME: return into emulator if single-stepping.  */
10811 		if (vcpu->mmio_is_write)
10812 			return 1;
10813 		vcpu->mmio_read_completed = 1;
10814 		return complete_emulated_io(vcpu);
10815 	}
10816 
10817 	run->exit_reason = KVM_EXIT_MMIO;
10818 	run->mmio.phys_addr = frag->gpa;
10819 	if (vcpu->mmio_is_write)
10820 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10821 	run->mmio.len = min(8u, frag->len);
10822 	run->mmio.is_write = vcpu->mmio_is_write;
10823 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10824 	return 0;
10825 }
10826 
10827 /* Swap (qemu) user FPU context for the guest FPU context. */
10828 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10829 {
10830 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10831 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10832 	trace_kvm_fpu(1);
10833 }
10834 
10835 /* When vcpu_run ends, restore user space FPU context. */
10836 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10837 {
10838 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10839 	++vcpu->stat.fpu_reload;
10840 	trace_kvm_fpu(0);
10841 }
10842 
10843 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10844 {
10845 	struct kvm_run *kvm_run = vcpu->run;
10846 	int r;
10847 
10848 	vcpu_load(vcpu);
10849 	kvm_sigset_activate(vcpu);
10850 	kvm_run->flags = 0;
10851 	kvm_load_guest_fpu(vcpu);
10852 
10853 	kvm_vcpu_srcu_read_lock(vcpu);
10854 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10855 		if (kvm_run->immediate_exit) {
10856 			r = -EINTR;
10857 			goto out;
10858 		}
10859 		/*
10860 		 * It should be impossible for the hypervisor timer to be in
10861 		 * use before KVM has ever run the vCPU.
10862 		 */
10863 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10864 
10865 		kvm_vcpu_srcu_read_unlock(vcpu);
10866 		kvm_vcpu_block(vcpu);
10867 		kvm_vcpu_srcu_read_lock(vcpu);
10868 
10869 		if (kvm_apic_accept_events(vcpu) < 0) {
10870 			r = 0;
10871 			goto out;
10872 		}
10873 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10874 		r = -EAGAIN;
10875 		if (signal_pending(current)) {
10876 			r = -EINTR;
10877 			kvm_run->exit_reason = KVM_EXIT_INTR;
10878 			++vcpu->stat.signal_exits;
10879 		}
10880 		goto out;
10881 	}
10882 
10883 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10884 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10885 		r = -EINVAL;
10886 		goto out;
10887 	}
10888 
10889 	if (kvm_run->kvm_dirty_regs) {
10890 		r = sync_regs(vcpu);
10891 		if (r != 0)
10892 			goto out;
10893 	}
10894 
10895 	/* re-sync apic's tpr */
10896 	if (!lapic_in_kernel(vcpu)) {
10897 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10898 			r = -EINVAL;
10899 			goto out;
10900 		}
10901 	}
10902 
10903 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10904 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10905 		vcpu->arch.complete_userspace_io = NULL;
10906 		r = cui(vcpu);
10907 		if (r <= 0)
10908 			goto out;
10909 	} else {
10910 		WARN_ON_ONCE(vcpu->arch.pio.count);
10911 		WARN_ON_ONCE(vcpu->mmio_needed);
10912 	}
10913 
10914 	if (kvm_run->immediate_exit) {
10915 		r = -EINTR;
10916 		goto out;
10917 	}
10918 
10919 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10920 	if (r <= 0)
10921 		goto out;
10922 
10923 	r = vcpu_run(vcpu);
10924 
10925 out:
10926 	kvm_put_guest_fpu(vcpu);
10927 	if (kvm_run->kvm_valid_regs)
10928 		store_regs(vcpu);
10929 	post_kvm_run_save(vcpu);
10930 	kvm_vcpu_srcu_read_unlock(vcpu);
10931 
10932 	kvm_sigset_deactivate(vcpu);
10933 	vcpu_put(vcpu);
10934 	return r;
10935 }
10936 
10937 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10938 {
10939 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10940 		/*
10941 		 * We are here if userspace calls get_regs() in the middle of
10942 		 * instruction emulation. Registers state needs to be copied
10943 		 * back from emulation context to vcpu. Userspace shouldn't do
10944 		 * that usually, but some bad designed PV devices (vmware
10945 		 * backdoor interface) need this to work
10946 		 */
10947 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10948 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10949 	}
10950 	regs->rax = kvm_rax_read(vcpu);
10951 	regs->rbx = kvm_rbx_read(vcpu);
10952 	regs->rcx = kvm_rcx_read(vcpu);
10953 	regs->rdx = kvm_rdx_read(vcpu);
10954 	regs->rsi = kvm_rsi_read(vcpu);
10955 	regs->rdi = kvm_rdi_read(vcpu);
10956 	regs->rsp = kvm_rsp_read(vcpu);
10957 	regs->rbp = kvm_rbp_read(vcpu);
10958 #ifdef CONFIG_X86_64
10959 	regs->r8 = kvm_r8_read(vcpu);
10960 	regs->r9 = kvm_r9_read(vcpu);
10961 	regs->r10 = kvm_r10_read(vcpu);
10962 	regs->r11 = kvm_r11_read(vcpu);
10963 	regs->r12 = kvm_r12_read(vcpu);
10964 	regs->r13 = kvm_r13_read(vcpu);
10965 	regs->r14 = kvm_r14_read(vcpu);
10966 	regs->r15 = kvm_r15_read(vcpu);
10967 #endif
10968 
10969 	regs->rip = kvm_rip_read(vcpu);
10970 	regs->rflags = kvm_get_rflags(vcpu);
10971 }
10972 
10973 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10974 {
10975 	vcpu_load(vcpu);
10976 	__get_regs(vcpu, regs);
10977 	vcpu_put(vcpu);
10978 	return 0;
10979 }
10980 
10981 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10982 {
10983 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10984 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10985 
10986 	kvm_rax_write(vcpu, regs->rax);
10987 	kvm_rbx_write(vcpu, regs->rbx);
10988 	kvm_rcx_write(vcpu, regs->rcx);
10989 	kvm_rdx_write(vcpu, regs->rdx);
10990 	kvm_rsi_write(vcpu, regs->rsi);
10991 	kvm_rdi_write(vcpu, regs->rdi);
10992 	kvm_rsp_write(vcpu, regs->rsp);
10993 	kvm_rbp_write(vcpu, regs->rbp);
10994 #ifdef CONFIG_X86_64
10995 	kvm_r8_write(vcpu, regs->r8);
10996 	kvm_r9_write(vcpu, regs->r9);
10997 	kvm_r10_write(vcpu, regs->r10);
10998 	kvm_r11_write(vcpu, regs->r11);
10999 	kvm_r12_write(vcpu, regs->r12);
11000 	kvm_r13_write(vcpu, regs->r13);
11001 	kvm_r14_write(vcpu, regs->r14);
11002 	kvm_r15_write(vcpu, regs->r15);
11003 #endif
11004 
11005 	kvm_rip_write(vcpu, regs->rip);
11006 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11007 
11008 	vcpu->arch.exception.pending = false;
11009 
11010 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11011 }
11012 
11013 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11014 {
11015 	vcpu_load(vcpu);
11016 	__set_regs(vcpu, regs);
11017 	vcpu_put(vcpu);
11018 	return 0;
11019 }
11020 
11021 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11022 {
11023 	struct desc_ptr dt;
11024 
11025 	if (vcpu->arch.guest_state_protected)
11026 		goto skip_protected_regs;
11027 
11028 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11029 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11030 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11031 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11032 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11033 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11034 
11035 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11036 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11037 
11038 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11039 	sregs->idt.limit = dt.size;
11040 	sregs->idt.base = dt.address;
11041 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11042 	sregs->gdt.limit = dt.size;
11043 	sregs->gdt.base = dt.address;
11044 
11045 	sregs->cr2 = vcpu->arch.cr2;
11046 	sregs->cr3 = kvm_read_cr3(vcpu);
11047 
11048 skip_protected_regs:
11049 	sregs->cr0 = kvm_read_cr0(vcpu);
11050 	sregs->cr4 = kvm_read_cr4(vcpu);
11051 	sregs->cr8 = kvm_get_cr8(vcpu);
11052 	sregs->efer = vcpu->arch.efer;
11053 	sregs->apic_base = kvm_get_apic_base(vcpu);
11054 }
11055 
11056 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11057 {
11058 	__get_sregs_common(vcpu, sregs);
11059 
11060 	if (vcpu->arch.guest_state_protected)
11061 		return;
11062 
11063 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11064 		set_bit(vcpu->arch.interrupt.nr,
11065 			(unsigned long *)sregs->interrupt_bitmap);
11066 }
11067 
11068 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11069 {
11070 	int i;
11071 
11072 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11073 
11074 	if (vcpu->arch.guest_state_protected)
11075 		return;
11076 
11077 	if (is_pae_paging(vcpu)) {
11078 		for (i = 0 ; i < 4 ; i++)
11079 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11080 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11081 	}
11082 }
11083 
11084 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11085 				  struct kvm_sregs *sregs)
11086 {
11087 	vcpu_load(vcpu);
11088 	__get_sregs(vcpu, sregs);
11089 	vcpu_put(vcpu);
11090 	return 0;
11091 }
11092 
11093 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11094 				    struct kvm_mp_state *mp_state)
11095 {
11096 	int r;
11097 
11098 	vcpu_load(vcpu);
11099 	if (kvm_mpx_supported())
11100 		kvm_load_guest_fpu(vcpu);
11101 
11102 	r = kvm_apic_accept_events(vcpu);
11103 	if (r < 0)
11104 		goto out;
11105 	r = 0;
11106 
11107 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11108 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11109 	    vcpu->arch.pv.pv_unhalted)
11110 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11111 	else
11112 		mp_state->mp_state = vcpu->arch.mp_state;
11113 
11114 out:
11115 	if (kvm_mpx_supported())
11116 		kvm_put_guest_fpu(vcpu);
11117 	vcpu_put(vcpu);
11118 	return r;
11119 }
11120 
11121 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11122 				    struct kvm_mp_state *mp_state)
11123 {
11124 	int ret = -EINVAL;
11125 
11126 	vcpu_load(vcpu);
11127 
11128 	if (!lapic_in_kernel(vcpu) &&
11129 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
11130 		goto out;
11131 
11132 	/*
11133 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11134 	 * INIT state; latched init should be reported using
11135 	 * KVM_SET_VCPU_EVENTS, so reject it here.
11136 	 */
11137 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11138 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11139 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11140 		goto out;
11141 
11142 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11143 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11144 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11145 	} else
11146 		vcpu->arch.mp_state = mp_state->mp_state;
11147 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11148 
11149 	ret = 0;
11150 out:
11151 	vcpu_put(vcpu);
11152 	return ret;
11153 }
11154 
11155 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11156 		    int reason, bool has_error_code, u32 error_code)
11157 {
11158 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11159 	int ret;
11160 
11161 	init_emulate_ctxt(vcpu);
11162 
11163 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11164 				   has_error_code, error_code);
11165 	if (ret) {
11166 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11167 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11168 		vcpu->run->internal.ndata = 0;
11169 		return 0;
11170 	}
11171 
11172 	kvm_rip_write(vcpu, ctxt->eip);
11173 	kvm_set_rflags(vcpu, ctxt->eflags);
11174 	return 1;
11175 }
11176 EXPORT_SYMBOL_GPL(kvm_task_switch);
11177 
11178 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11179 {
11180 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11181 		/*
11182 		 * When EFER.LME and CR0.PG are set, the processor is in
11183 		 * 64-bit mode (though maybe in a 32-bit code segment).
11184 		 * CR4.PAE and EFER.LMA must be set.
11185 		 */
11186 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11187 			return false;
11188 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11189 			return false;
11190 	} else {
11191 		/*
11192 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11193 		 * segment cannot be 64-bit.
11194 		 */
11195 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11196 			return false;
11197 	}
11198 
11199 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11200 }
11201 
11202 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11203 		int *mmu_reset_needed, bool update_pdptrs)
11204 {
11205 	struct msr_data apic_base_msr;
11206 	int idx;
11207 	struct desc_ptr dt;
11208 
11209 	if (!kvm_is_valid_sregs(vcpu, sregs))
11210 		return -EINVAL;
11211 
11212 	apic_base_msr.data = sregs->apic_base;
11213 	apic_base_msr.host_initiated = true;
11214 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11215 		return -EINVAL;
11216 
11217 	if (vcpu->arch.guest_state_protected)
11218 		return 0;
11219 
11220 	dt.size = sregs->idt.limit;
11221 	dt.address = sregs->idt.base;
11222 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11223 	dt.size = sregs->gdt.limit;
11224 	dt.address = sregs->gdt.base;
11225 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11226 
11227 	vcpu->arch.cr2 = sregs->cr2;
11228 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11229 	vcpu->arch.cr3 = sregs->cr3;
11230 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11231 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11232 
11233 	kvm_set_cr8(vcpu, sregs->cr8);
11234 
11235 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11236 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11237 
11238 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11239 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11240 	vcpu->arch.cr0 = sregs->cr0;
11241 
11242 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11243 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11244 
11245 	if (update_pdptrs) {
11246 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11247 		if (is_pae_paging(vcpu)) {
11248 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11249 			*mmu_reset_needed = 1;
11250 		}
11251 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11252 	}
11253 
11254 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11255 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11256 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11257 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11258 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11259 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11260 
11261 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11262 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11263 
11264 	update_cr8_intercept(vcpu);
11265 
11266 	/* Older userspace won't unhalt the vcpu on reset. */
11267 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11268 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11269 	    !is_protmode(vcpu))
11270 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11271 
11272 	return 0;
11273 }
11274 
11275 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11276 {
11277 	int pending_vec, max_bits;
11278 	int mmu_reset_needed = 0;
11279 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11280 
11281 	if (ret)
11282 		return ret;
11283 
11284 	if (mmu_reset_needed)
11285 		kvm_mmu_reset_context(vcpu);
11286 
11287 	max_bits = KVM_NR_INTERRUPTS;
11288 	pending_vec = find_first_bit(
11289 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11290 
11291 	if (pending_vec < max_bits) {
11292 		kvm_queue_interrupt(vcpu, pending_vec, false);
11293 		pr_debug("Set back pending irq %d\n", pending_vec);
11294 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11295 	}
11296 	return 0;
11297 }
11298 
11299 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11300 {
11301 	int mmu_reset_needed = 0;
11302 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11303 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11304 		!(sregs2->efer & EFER_LMA);
11305 	int i, ret;
11306 
11307 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11308 		return -EINVAL;
11309 
11310 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11311 		return -EINVAL;
11312 
11313 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11314 				 &mmu_reset_needed, !valid_pdptrs);
11315 	if (ret)
11316 		return ret;
11317 
11318 	if (valid_pdptrs) {
11319 		for (i = 0; i < 4 ; i++)
11320 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11321 
11322 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11323 		mmu_reset_needed = 1;
11324 		vcpu->arch.pdptrs_from_userspace = true;
11325 	}
11326 	if (mmu_reset_needed)
11327 		kvm_mmu_reset_context(vcpu);
11328 	return 0;
11329 }
11330 
11331 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11332 				  struct kvm_sregs *sregs)
11333 {
11334 	int ret;
11335 
11336 	vcpu_load(vcpu);
11337 	ret = __set_sregs(vcpu, sregs);
11338 	vcpu_put(vcpu);
11339 	return ret;
11340 }
11341 
11342 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11343 {
11344 	bool set = false;
11345 	struct kvm_vcpu *vcpu;
11346 	unsigned long i;
11347 
11348 	if (!enable_apicv)
11349 		return;
11350 
11351 	down_write(&kvm->arch.apicv_update_lock);
11352 
11353 	kvm_for_each_vcpu(i, vcpu, kvm) {
11354 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11355 			set = true;
11356 			break;
11357 		}
11358 	}
11359 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11360 	up_write(&kvm->arch.apicv_update_lock);
11361 }
11362 
11363 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11364 					struct kvm_guest_debug *dbg)
11365 {
11366 	unsigned long rflags;
11367 	int i, r;
11368 
11369 	if (vcpu->arch.guest_state_protected)
11370 		return -EINVAL;
11371 
11372 	vcpu_load(vcpu);
11373 
11374 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11375 		r = -EBUSY;
11376 		if (vcpu->arch.exception.pending)
11377 			goto out;
11378 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11379 			kvm_queue_exception(vcpu, DB_VECTOR);
11380 		else
11381 			kvm_queue_exception(vcpu, BP_VECTOR);
11382 	}
11383 
11384 	/*
11385 	 * Read rflags as long as potentially injected trace flags are still
11386 	 * filtered out.
11387 	 */
11388 	rflags = kvm_get_rflags(vcpu);
11389 
11390 	vcpu->guest_debug = dbg->control;
11391 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11392 		vcpu->guest_debug = 0;
11393 
11394 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11395 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11396 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11397 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11398 	} else {
11399 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11400 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11401 	}
11402 	kvm_update_dr7(vcpu);
11403 
11404 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11405 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11406 
11407 	/*
11408 	 * Trigger an rflags update that will inject or remove the trace
11409 	 * flags.
11410 	 */
11411 	kvm_set_rflags(vcpu, rflags);
11412 
11413 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11414 
11415 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11416 
11417 	r = 0;
11418 
11419 out:
11420 	vcpu_put(vcpu);
11421 	return r;
11422 }
11423 
11424 /*
11425  * Translate a guest virtual address to a guest physical address.
11426  */
11427 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11428 				    struct kvm_translation *tr)
11429 {
11430 	unsigned long vaddr = tr->linear_address;
11431 	gpa_t gpa;
11432 	int idx;
11433 
11434 	vcpu_load(vcpu);
11435 
11436 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11437 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11438 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11439 	tr->physical_address = gpa;
11440 	tr->valid = gpa != INVALID_GPA;
11441 	tr->writeable = 1;
11442 	tr->usermode = 0;
11443 
11444 	vcpu_put(vcpu);
11445 	return 0;
11446 }
11447 
11448 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11449 {
11450 	struct fxregs_state *fxsave;
11451 
11452 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11453 		return 0;
11454 
11455 	vcpu_load(vcpu);
11456 
11457 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11458 	memcpy(fpu->fpr, fxsave->st_space, 128);
11459 	fpu->fcw = fxsave->cwd;
11460 	fpu->fsw = fxsave->swd;
11461 	fpu->ftwx = fxsave->twd;
11462 	fpu->last_opcode = fxsave->fop;
11463 	fpu->last_ip = fxsave->rip;
11464 	fpu->last_dp = fxsave->rdp;
11465 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11466 
11467 	vcpu_put(vcpu);
11468 	return 0;
11469 }
11470 
11471 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11472 {
11473 	struct fxregs_state *fxsave;
11474 
11475 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11476 		return 0;
11477 
11478 	vcpu_load(vcpu);
11479 
11480 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11481 
11482 	memcpy(fxsave->st_space, fpu->fpr, 128);
11483 	fxsave->cwd = fpu->fcw;
11484 	fxsave->swd = fpu->fsw;
11485 	fxsave->twd = fpu->ftwx;
11486 	fxsave->fop = fpu->last_opcode;
11487 	fxsave->rip = fpu->last_ip;
11488 	fxsave->rdp = fpu->last_dp;
11489 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11490 
11491 	vcpu_put(vcpu);
11492 	return 0;
11493 }
11494 
11495 static void store_regs(struct kvm_vcpu *vcpu)
11496 {
11497 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11498 
11499 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11500 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11501 
11502 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11503 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11504 
11505 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11506 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11507 				vcpu, &vcpu->run->s.regs.events);
11508 }
11509 
11510 static int sync_regs(struct kvm_vcpu *vcpu)
11511 {
11512 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11513 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11514 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11515 	}
11516 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11517 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11518 			return -EINVAL;
11519 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11520 	}
11521 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11522 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11523 				vcpu, &vcpu->run->s.regs.events))
11524 			return -EINVAL;
11525 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11526 	}
11527 
11528 	return 0;
11529 }
11530 
11531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11532 {
11533 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11534 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11535 			     "guest TSC will not be reliable\n");
11536 
11537 	if (!kvm->arch.max_vcpu_ids)
11538 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11539 
11540 	if (id >= kvm->arch.max_vcpu_ids)
11541 		return -EINVAL;
11542 
11543 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11544 }
11545 
11546 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11547 {
11548 	struct page *page;
11549 	int r;
11550 
11551 	vcpu->arch.last_vmentry_cpu = -1;
11552 	vcpu->arch.regs_avail = ~0;
11553 	vcpu->arch.regs_dirty = ~0;
11554 
11555 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11556 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11557 	else
11558 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11559 
11560 	r = kvm_mmu_create(vcpu);
11561 	if (r < 0)
11562 		return r;
11563 
11564 	if (irqchip_in_kernel(vcpu->kvm)) {
11565 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11566 		if (r < 0)
11567 			goto fail_mmu_destroy;
11568 
11569 		/*
11570 		 * Defer evaluating inhibits until the vCPU is first run, as
11571 		 * this vCPU will not get notified of any changes until this
11572 		 * vCPU is visible to other vCPUs (marked online and added to
11573 		 * the set of vCPUs).  Opportunistically mark APICv active as
11574 		 * VMX in particularly is highly unlikely to have inhibits.
11575 		 * Ignore the current per-VM APICv state so that vCPU creation
11576 		 * is guaranteed to run with a deterministic value, the request
11577 		 * will ensure the vCPU gets the correct state before VM-Entry.
11578 		 */
11579 		if (enable_apicv) {
11580 			vcpu->arch.apic->apicv_active = true;
11581 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11582 		}
11583 	} else
11584 		static_branch_inc(&kvm_has_noapic_vcpu);
11585 
11586 	r = -ENOMEM;
11587 
11588 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11589 	if (!page)
11590 		goto fail_free_lapic;
11591 	vcpu->arch.pio_data = page_address(page);
11592 
11593 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11594 				       GFP_KERNEL_ACCOUNT);
11595 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11596 					    GFP_KERNEL_ACCOUNT);
11597 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11598 		goto fail_free_pio_data;
11599 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11600 
11601 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11602 				GFP_KERNEL_ACCOUNT))
11603 		goto fail_free_mce_banks;
11604 
11605 	if (!alloc_emulate_ctxt(vcpu))
11606 		goto free_wbinvd_dirty_mask;
11607 
11608 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11609 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11610 		goto free_emulate_ctxt;
11611 	}
11612 
11613 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11614 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11615 
11616 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11617 
11618 	kvm_async_pf_hash_reset(vcpu);
11619 	kvm_pmu_init(vcpu);
11620 
11621 	vcpu->arch.pending_external_vector = -1;
11622 	vcpu->arch.preempted_in_kernel = false;
11623 
11624 #if IS_ENABLED(CONFIG_HYPERV)
11625 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11626 #endif
11627 
11628 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11629 	if (r)
11630 		goto free_guest_fpu;
11631 
11632 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11633 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11634 	kvm_xen_init_vcpu(vcpu);
11635 	kvm_vcpu_mtrr_init(vcpu);
11636 	vcpu_load(vcpu);
11637 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11638 	kvm_vcpu_reset(vcpu, false);
11639 	kvm_init_mmu(vcpu);
11640 	vcpu_put(vcpu);
11641 	return 0;
11642 
11643 free_guest_fpu:
11644 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11645 free_emulate_ctxt:
11646 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11647 free_wbinvd_dirty_mask:
11648 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11649 fail_free_mce_banks:
11650 	kfree(vcpu->arch.mce_banks);
11651 	kfree(vcpu->arch.mci_ctl2_banks);
11652 fail_free_pio_data:
11653 	free_page((unsigned long)vcpu->arch.pio_data);
11654 fail_free_lapic:
11655 	kvm_free_lapic(vcpu);
11656 fail_mmu_destroy:
11657 	kvm_mmu_destroy(vcpu);
11658 	return r;
11659 }
11660 
11661 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11662 {
11663 	struct kvm *kvm = vcpu->kvm;
11664 
11665 	if (mutex_lock_killable(&vcpu->mutex))
11666 		return;
11667 	vcpu_load(vcpu);
11668 	kvm_synchronize_tsc(vcpu, 0);
11669 	vcpu_put(vcpu);
11670 
11671 	/* poll control enabled by default */
11672 	vcpu->arch.msr_kvm_poll_control = 1;
11673 
11674 	mutex_unlock(&vcpu->mutex);
11675 
11676 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11677 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11678 						KVMCLOCK_SYNC_PERIOD);
11679 }
11680 
11681 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11682 {
11683 	int idx;
11684 
11685 	kvmclock_reset(vcpu);
11686 
11687 	static_call(kvm_x86_vcpu_free)(vcpu);
11688 
11689 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11690 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11691 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11692 
11693 	kvm_xen_destroy_vcpu(vcpu);
11694 	kvm_hv_vcpu_uninit(vcpu);
11695 	kvm_pmu_destroy(vcpu);
11696 	kfree(vcpu->arch.mce_banks);
11697 	kfree(vcpu->arch.mci_ctl2_banks);
11698 	kvm_free_lapic(vcpu);
11699 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11700 	kvm_mmu_destroy(vcpu);
11701 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11702 	free_page((unsigned long)vcpu->arch.pio_data);
11703 	kvfree(vcpu->arch.cpuid_entries);
11704 	if (!lapic_in_kernel(vcpu))
11705 		static_branch_dec(&kvm_has_noapic_vcpu);
11706 }
11707 
11708 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11709 {
11710 	struct kvm_cpuid_entry2 *cpuid_0x1;
11711 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11712 	unsigned long new_cr0;
11713 
11714 	/*
11715 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11716 	 * to handle side effects.  RESET emulation hits those flows and relies
11717 	 * on emulated/virtualized registers, including those that are loaded
11718 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11719 	 * to detect improper or missing initialization.
11720 	 */
11721 	WARN_ON_ONCE(!init_event &&
11722 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11723 
11724 	kvm_lapic_reset(vcpu, init_event);
11725 
11726 	vcpu->arch.hflags = 0;
11727 
11728 	vcpu->arch.smi_pending = 0;
11729 	vcpu->arch.smi_count = 0;
11730 	atomic_set(&vcpu->arch.nmi_queued, 0);
11731 	vcpu->arch.nmi_pending = 0;
11732 	vcpu->arch.nmi_injected = false;
11733 	kvm_clear_interrupt_queue(vcpu);
11734 	kvm_clear_exception_queue(vcpu);
11735 
11736 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11737 	kvm_update_dr0123(vcpu);
11738 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11739 	vcpu->arch.dr7 = DR7_FIXED_1;
11740 	kvm_update_dr7(vcpu);
11741 
11742 	vcpu->arch.cr2 = 0;
11743 
11744 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11745 	vcpu->arch.apf.msr_en_val = 0;
11746 	vcpu->arch.apf.msr_int_val = 0;
11747 	vcpu->arch.st.msr_val = 0;
11748 
11749 	kvmclock_reset(vcpu);
11750 
11751 	kvm_clear_async_pf_completion_queue(vcpu);
11752 	kvm_async_pf_hash_reset(vcpu);
11753 	vcpu->arch.apf.halted = false;
11754 
11755 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11756 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11757 
11758 		/*
11759 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11760 		 * called with loaded FPU and does not let userspace fix the state.
11761 		 */
11762 		if (init_event)
11763 			kvm_put_guest_fpu(vcpu);
11764 
11765 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11766 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11767 
11768 		if (init_event)
11769 			kvm_load_guest_fpu(vcpu);
11770 	}
11771 
11772 	if (!init_event) {
11773 		kvm_pmu_reset(vcpu);
11774 		vcpu->arch.smbase = 0x30000;
11775 
11776 		vcpu->arch.msr_misc_features_enables = 0;
11777 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11778 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11779 
11780 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11781 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11782 	}
11783 
11784 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11785 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11786 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11787 
11788 	/*
11789 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11790 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11791 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11792 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11793 	 * on RESET.  But, go through the motions in case that's ever remedied.
11794 	 */
11795 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11796 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11797 
11798 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11799 
11800 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11801 	kvm_rip_write(vcpu, 0xfff0);
11802 
11803 	vcpu->arch.cr3 = 0;
11804 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11805 
11806 	/*
11807 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11808 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11809 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11810 	 */
11811 	new_cr0 = X86_CR0_ET;
11812 	if (init_event)
11813 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11814 	else
11815 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11816 
11817 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11818 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11819 	static_call(kvm_x86_set_efer)(vcpu, 0);
11820 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11821 
11822 	/*
11823 	 * On the standard CR0/CR4/EFER modification paths, there are several
11824 	 * complex conditions determining whether the MMU has to be reset and/or
11825 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11826 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11827 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11828 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11829 	 */
11830 	if (old_cr0 & X86_CR0_PG) {
11831 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11832 		kvm_mmu_reset_context(vcpu);
11833 	}
11834 
11835 	/*
11836 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11837 	 * APM states the TLBs are untouched by INIT, but it also states that
11838 	 * the TLBs are flushed on "External initialization of the processor."
11839 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11840 	 * benefit in relying on the guest to flush the TLB immediately after
11841 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11842 	 * performance perspective.
11843 	 */
11844 	if (init_event)
11845 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11846 }
11847 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11848 
11849 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11850 {
11851 	struct kvm_segment cs;
11852 
11853 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11854 	cs.selector = vector << 8;
11855 	cs.base = vector << 12;
11856 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11857 	kvm_rip_write(vcpu, 0);
11858 }
11859 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11860 
11861 int kvm_arch_hardware_enable(void)
11862 {
11863 	struct kvm *kvm;
11864 	struct kvm_vcpu *vcpu;
11865 	unsigned long i;
11866 	int ret;
11867 	u64 local_tsc;
11868 	u64 max_tsc = 0;
11869 	bool stable, backwards_tsc = false;
11870 
11871 	kvm_user_return_msr_cpu_online();
11872 	ret = static_call(kvm_x86_hardware_enable)();
11873 	if (ret != 0)
11874 		return ret;
11875 
11876 	local_tsc = rdtsc();
11877 	stable = !kvm_check_tsc_unstable();
11878 	list_for_each_entry(kvm, &vm_list, vm_list) {
11879 		kvm_for_each_vcpu(i, vcpu, kvm) {
11880 			if (!stable && vcpu->cpu == smp_processor_id())
11881 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11882 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11883 				backwards_tsc = true;
11884 				if (vcpu->arch.last_host_tsc > max_tsc)
11885 					max_tsc = vcpu->arch.last_host_tsc;
11886 			}
11887 		}
11888 	}
11889 
11890 	/*
11891 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11892 	 * platforms that reset TSC during suspend or hibernate actions, but
11893 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11894 	 * detect that condition here, which happens early in CPU bringup,
11895 	 * before any KVM threads can be running.  Unfortunately, we can't
11896 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11897 	 * enough into CPU bringup that we know how much real time has actually
11898 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11899 	 * variables that haven't been updated yet.
11900 	 *
11901 	 * So we simply find the maximum observed TSC above, then record the
11902 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11903 	 * the adjustment will be applied.  Note that we accumulate
11904 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11905 	 * gets a chance to run again.  In the event that no KVM threads get a
11906 	 * chance to run, we will miss the entire elapsed period, as we'll have
11907 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11908 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11909 	 * uniform across all VCPUs (not to mention the scenario is extremely
11910 	 * unlikely). It is possible that a second hibernate recovery happens
11911 	 * much faster than a first, causing the observed TSC here to be
11912 	 * smaller; this would require additional padding adjustment, which is
11913 	 * why we set last_host_tsc to the local tsc observed here.
11914 	 *
11915 	 * N.B. - this code below runs only on platforms with reliable TSC,
11916 	 * as that is the only way backwards_tsc is set above.  Also note
11917 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11918 	 * have the same delta_cyc adjustment applied if backwards_tsc
11919 	 * is detected.  Note further, this adjustment is only done once,
11920 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11921 	 * called multiple times (one for each physical CPU bringup).
11922 	 *
11923 	 * Platforms with unreliable TSCs don't have to deal with this, they
11924 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11925 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11926 	 * guarantee that they stay in perfect synchronization.
11927 	 */
11928 	if (backwards_tsc) {
11929 		u64 delta_cyc = max_tsc - local_tsc;
11930 		list_for_each_entry(kvm, &vm_list, vm_list) {
11931 			kvm->arch.backwards_tsc_observed = true;
11932 			kvm_for_each_vcpu(i, vcpu, kvm) {
11933 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11934 				vcpu->arch.last_host_tsc = local_tsc;
11935 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11936 			}
11937 
11938 			/*
11939 			 * We have to disable TSC offset matching.. if you were
11940 			 * booting a VM while issuing an S4 host suspend....
11941 			 * you may have some problem.  Solving this issue is
11942 			 * left as an exercise to the reader.
11943 			 */
11944 			kvm->arch.last_tsc_nsec = 0;
11945 			kvm->arch.last_tsc_write = 0;
11946 		}
11947 
11948 	}
11949 	return 0;
11950 }
11951 
11952 void kvm_arch_hardware_disable(void)
11953 {
11954 	static_call(kvm_x86_hardware_disable)();
11955 	drop_user_return_notifiers();
11956 }
11957 
11958 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11959 {
11960 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11961 
11962 #define __KVM_X86_OP(func) \
11963 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11964 #define KVM_X86_OP(func) \
11965 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11966 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11967 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11968 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11969 					   (void *)__static_call_return0);
11970 #include <asm/kvm-x86-ops.h>
11971 #undef __KVM_X86_OP
11972 
11973 	kvm_pmu_ops_update(ops->pmu_ops);
11974 }
11975 
11976 int kvm_arch_hardware_setup(void *opaque)
11977 {
11978 	struct kvm_x86_init_ops *ops = opaque;
11979 	int r;
11980 
11981 	rdmsrl_safe(MSR_EFER, &host_efer);
11982 
11983 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11984 		rdmsrl(MSR_IA32_XSS, host_xss);
11985 
11986 	kvm_init_pmu_capability();
11987 
11988 	r = ops->hardware_setup();
11989 	if (r != 0)
11990 		return r;
11991 
11992 	kvm_ops_update(ops);
11993 
11994 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11995 
11996 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11997 		kvm_caps.supported_xss = 0;
11998 
11999 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12000 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12001 #undef __kvm_cpu_cap_has
12002 
12003 	if (kvm_caps.has_tsc_control) {
12004 		/*
12005 		 * Make sure the user can only configure tsc_khz values that
12006 		 * fit into a signed integer.
12007 		 * A min value is not calculated because it will always
12008 		 * be 1 on all machines.
12009 		 */
12010 		u64 max = min(0x7fffffffULL,
12011 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12012 		kvm_caps.max_guest_tsc_khz = max;
12013 	}
12014 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12015 	kvm_init_msr_list();
12016 	return 0;
12017 }
12018 
12019 void kvm_arch_hardware_unsetup(void)
12020 {
12021 	kvm_unregister_perf_callbacks();
12022 
12023 	static_call(kvm_x86_hardware_unsetup)();
12024 }
12025 
12026 int kvm_arch_check_processor_compat(void *opaque)
12027 {
12028 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12029 	struct kvm_x86_init_ops *ops = opaque;
12030 
12031 	WARN_ON(!irqs_disabled());
12032 
12033 	if (__cr4_reserved_bits(cpu_has, c) !=
12034 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12035 		return -EIO;
12036 
12037 	return ops->check_processor_compatibility();
12038 }
12039 
12040 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12041 {
12042 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12043 }
12044 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12045 
12046 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12047 {
12048 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12049 }
12050 
12051 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12052 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12053 
12054 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12055 {
12056 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12057 
12058 	vcpu->arch.l1tf_flush_l1d = true;
12059 	if (pmu->version && unlikely(pmu->event_count)) {
12060 		pmu->need_cleanup = true;
12061 		kvm_make_request(KVM_REQ_PMU, vcpu);
12062 	}
12063 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12064 }
12065 
12066 void kvm_arch_free_vm(struct kvm *kvm)
12067 {
12068 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12069 	__kvm_arch_free_vm(kvm);
12070 }
12071 
12072 
12073 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12074 {
12075 	int ret;
12076 	unsigned long flags;
12077 
12078 	if (type)
12079 		return -EINVAL;
12080 
12081 	ret = kvm_page_track_init(kvm);
12082 	if (ret)
12083 		goto out;
12084 
12085 	ret = kvm_mmu_init_vm(kvm);
12086 	if (ret)
12087 		goto out_page_track;
12088 
12089 	ret = static_call(kvm_x86_vm_init)(kvm);
12090 	if (ret)
12091 		goto out_uninit_mmu;
12092 
12093 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12094 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12095 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12096 
12097 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12098 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12099 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12100 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12101 		&kvm->arch.irq_sources_bitmap);
12102 
12103 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12104 	mutex_init(&kvm->arch.apic_map_lock);
12105 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12106 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12107 
12108 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12109 	pvclock_update_vm_gtod_copy(kvm);
12110 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12111 
12112 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12113 	kvm->arch.guest_can_read_msr_platform_info = true;
12114 	kvm->arch.enable_pmu = enable_pmu;
12115 
12116 #if IS_ENABLED(CONFIG_HYPERV)
12117 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12118 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12119 #endif
12120 
12121 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12122 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12123 
12124 	kvm_apicv_init(kvm);
12125 	kvm_hv_init_vm(kvm);
12126 	kvm_xen_init_vm(kvm);
12127 
12128 	return 0;
12129 
12130 out_uninit_mmu:
12131 	kvm_mmu_uninit_vm(kvm);
12132 out_page_track:
12133 	kvm_page_track_cleanup(kvm);
12134 out:
12135 	return ret;
12136 }
12137 
12138 int kvm_arch_post_init_vm(struct kvm *kvm)
12139 {
12140 	return kvm_mmu_post_init_vm(kvm);
12141 }
12142 
12143 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12144 {
12145 	vcpu_load(vcpu);
12146 	kvm_mmu_unload(vcpu);
12147 	vcpu_put(vcpu);
12148 }
12149 
12150 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12151 {
12152 	unsigned long i;
12153 	struct kvm_vcpu *vcpu;
12154 
12155 	kvm_for_each_vcpu(i, vcpu, kvm) {
12156 		kvm_clear_async_pf_completion_queue(vcpu);
12157 		kvm_unload_vcpu_mmu(vcpu);
12158 	}
12159 }
12160 
12161 void kvm_arch_sync_events(struct kvm *kvm)
12162 {
12163 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12164 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12165 	kvm_free_pit(kvm);
12166 }
12167 
12168 /**
12169  * __x86_set_memory_region: Setup KVM internal memory slot
12170  *
12171  * @kvm: the kvm pointer to the VM.
12172  * @id: the slot ID to setup.
12173  * @gpa: the GPA to install the slot (unused when @size == 0).
12174  * @size: the size of the slot. Set to zero to uninstall a slot.
12175  *
12176  * This function helps to setup a KVM internal memory slot.  Specify
12177  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12178  * slot.  The return code can be one of the following:
12179  *
12180  *   HVA:           on success (uninstall will return a bogus HVA)
12181  *   -errno:        on error
12182  *
12183  * The caller should always use IS_ERR() to check the return value
12184  * before use.  Note, the KVM internal memory slots are guaranteed to
12185  * remain valid and unchanged until the VM is destroyed, i.e., the
12186  * GPA->HVA translation will not change.  However, the HVA is a user
12187  * address, i.e. its accessibility is not guaranteed, and must be
12188  * accessed via __copy_{to,from}_user().
12189  */
12190 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12191 				      u32 size)
12192 {
12193 	int i, r;
12194 	unsigned long hva, old_npages;
12195 	struct kvm_memslots *slots = kvm_memslots(kvm);
12196 	struct kvm_memory_slot *slot;
12197 
12198 	/* Called with kvm->slots_lock held.  */
12199 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12200 		return ERR_PTR_USR(-EINVAL);
12201 
12202 	slot = id_to_memslot(slots, id);
12203 	if (size) {
12204 		if (slot && slot->npages)
12205 			return ERR_PTR_USR(-EEXIST);
12206 
12207 		/*
12208 		 * MAP_SHARED to prevent internal slot pages from being moved
12209 		 * by fork()/COW.
12210 		 */
12211 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12212 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12213 		if (IS_ERR((void *)hva))
12214 			return (void __user *)hva;
12215 	} else {
12216 		if (!slot || !slot->npages)
12217 			return NULL;
12218 
12219 		old_npages = slot->npages;
12220 		hva = slot->userspace_addr;
12221 	}
12222 
12223 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12224 		struct kvm_userspace_memory_region m;
12225 
12226 		m.slot = id | (i << 16);
12227 		m.flags = 0;
12228 		m.guest_phys_addr = gpa;
12229 		m.userspace_addr = hva;
12230 		m.memory_size = size;
12231 		r = __kvm_set_memory_region(kvm, &m);
12232 		if (r < 0)
12233 			return ERR_PTR_USR(r);
12234 	}
12235 
12236 	if (!size)
12237 		vm_munmap(hva, old_npages * PAGE_SIZE);
12238 
12239 	return (void __user *)hva;
12240 }
12241 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12242 
12243 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12244 {
12245 	kvm_mmu_pre_destroy_vm(kvm);
12246 }
12247 
12248 void kvm_arch_destroy_vm(struct kvm *kvm)
12249 {
12250 	if (current->mm == kvm->mm) {
12251 		/*
12252 		 * Free memory regions allocated on behalf of userspace,
12253 		 * unless the memory map has changed due to process exit
12254 		 * or fd copying.
12255 		 */
12256 		mutex_lock(&kvm->slots_lock);
12257 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12258 					0, 0);
12259 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12260 					0, 0);
12261 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12262 		mutex_unlock(&kvm->slots_lock);
12263 	}
12264 	kvm_unload_vcpu_mmus(kvm);
12265 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12266 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12267 	kvm_pic_destroy(kvm);
12268 	kvm_ioapic_destroy(kvm);
12269 	kvm_destroy_vcpus(kvm);
12270 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12271 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12272 	kvm_mmu_uninit_vm(kvm);
12273 	kvm_page_track_cleanup(kvm);
12274 	kvm_xen_destroy_vm(kvm);
12275 	kvm_hv_destroy_vm(kvm);
12276 }
12277 
12278 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12279 {
12280 	int i;
12281 
12282 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12283 		kvfree(slot->arch.rmap[i]);
12284 		slot->arch.rmap[i] = NULL;
12285 	}
12286 }
12287 
12288 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12289 {
12290 	int i;
12291 
12292 	memslot_rmap_free(slot);
12293 
12294 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12295 		kvfree(slot->arch.lpage_info[i - 1]);
12296 		slot->arch.lpage_info[i - 1] = NULL;
12297 	}
12298 
12299 	kvm_page_track_free_memslot(slot);
12300 }
12301 
12302 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12303 {
12304 	const int sz = sizeof(*slot->arch.rmap[0]);
12305 	int i;
12306 
12307 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12308 		int level = i + 1;
12309 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12310 
12311 		if (slot->arch.rmap[i])
12312 			continue;
12313 
12314 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12315 		if (!slot->arch.rmap[i]) {
12316 			memslot_rmap_free(slot);
12317 			return -ENOMEM;
12318 		}
12319 	}
12320 
12321 	return 0;
12322 }
12323 
12324 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12325 				      struct kvm_memory_slot *slot)
12326 {
12327 	unsigned long npages = slot->npages;
12328 	int i, r;
12329 
12330 	/*
12331 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12332 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12333 	 * the new memslot is successful.
12334 	 */
12335 	memset(&slot->arch, 0, sizeof(slot->arch));
12336 
12337 	if (kvm_memslots_have_rmaps(kvm)) {
12338 		r = memslot_rmap_alloc(slot, npages);
12339 		if (r)
12340 			return r;
12341 	}
12342 
12343 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12344 		struct kvm_lpage_info *linfo;
12345 		unsigned long ugfn;
12346 		int lpages;
12347 		int level = i + 1;
12348 
12349 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12350 
12351 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12352 		if (!linfo)
12353 			goto out_free;
12354 
12355 		slot->arch.lpage_info[i - 1] = linfo;
12356 
12357 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12358 			linfo[0].disallow_lpage = 1;
12359 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12360 			linfo[lpages - 1].disallow_lpage = 1;
12361 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12362 		/*
12363 		 * If the gfn and userspace address are not aligned wrt each
12364 		 * other, disable large page support for this slot.
12365 		 */
12366 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12367 			unsigned long j;
12368 
12369 			for (j = 0; j < lpages; ++j)
12370 				linfo[j].disallow_lpage = 1;
12371 		}
12372 	}
12373 
12374 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12375 		goto out_free;
12376 
12377 	return 0;
12378 
12379 out_free:
12380 	memslot_rmap_free(slot);
12381 
12382 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12383 		kvfree(slot->arch.lpage_info[i - 1]);
12384 		slot->arch.lpage_info[i - 1] = NULL;
12385 	}
12386 	return -ENOMEM;
12387 }
12388 
12389 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12390 {
12391 	struct kvm_vcpu *vcpu;
12392 	unsigned long i;
12393 
12394 	/*
12395 	 * memslots->generation has been incremented.
12396 	 * mmio generation may have reached its maximum value.
12397 	 */
12398 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12399 
12400 	/* Force re-initialization of steal_time cache */
12401 	kvm_for_each_vcpu(i, vcpu, kvm)
12402 		kvm_vcpu_kick(vcpu);
12403 }
12404 
12405 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12406 				   const struct kvm_memory_slot *old,
12407 				   struct kvm_memory_slot *new,
12408 				   enum kvm_mr_change change)
12409 {
12410 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12411 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12412 			return -EINVAL;
12413 
12414 		return kvm_alloc_memslot_metadata(kvm, new);
12415 	}
12416 
12417 	if (change == KVM_MR_FLAGS_ONLY)
12418 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12419 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12420 		return -EIO;
12421 
12422 	return 0;
12423 }
12424 
12425 
12426 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12427 {
12428 	struct kvm_arch *ka = &kvm->arch;
12429 
12430 	if (!kvm_x86_ops.cpu_dirty_log_size)
12431 		return;
12432 
12433 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12434 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12435 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12436 
12437 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12438 }
12439 
12440 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12441 				     struct kvm_memory_slot *old,
12442 				     const struct kvm_memory_slot *new,
12443 				     enum kvm_mr_change change)
12444 {
12445 	u32 old_flags = old ? old->flags : 0;
12446 	u32 new_flags = new ? new->flags : 0;
12447 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12448 
12449 	/*
12450 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12451 	 * applies to all operations.
12452 	 */
12453 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12454 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12455 
12456 	/*
12457 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12458 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12459 	 *
12460 	 * For a memslot with dirty logging disabled:
12461 	 * CREATE:      No dirty mappings will already exist.
12462 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12463 	 *		kvm_arch_flush_shadow_memslot()
12464 	 *
12465 	 * For a memslot with dirty logging enabled:
12466 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12467 	 *		and no dirty bits to clear.
12468 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12469 	 *		kvm_arch_flush_shadow_memslot().
12470 	 */
12471 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12472 		return;
12473 
12474 	/*
12475 	 * READONLY and non-flags changes were filtered out above, and the only
12476 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12477 	 * logging isn't being toggled on or off.
12478 	 */
12479 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12480 		return;
12481 
12482 	if (!log_dirty_pages) {
12483 		/*
12484 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12485 		 * large sptes have to be split.  If live migration succeeds,
12486 		 * the guest in the source machine will be destroyed and large
12487 		 * sptes will be created in the destination.  However, if the
12488 		 * guest continues to run in the source machine (for example if
12489 		 * live migration fails), small sptes will remain around and
12490 		 * cause bad performance.
12491 		 *
12492 		 * Scan sptes if dirty logging has been stopped, dropping those
12493 		 * which can be collapsed into a single large-page spte.  Later
12494 		 * page faults will create the large-page sptes.
12495 		 */
12496 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12497 	} else {
12498 		/*
12499 		 * Initially-all-set does not require write protecting any page,
12500 		 * because they're all assumed to be dirty.
12501 		 */
12502 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12503 			return;
12504 
12505 		if (READ_ONCE(eager_page_split))
12506 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12507 
12508 		if (kvm_x86_ops.cpu_dirty_log_size) {
12509 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12510 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12511 		} else {
12512 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12513 		}
12514 
12515 		/*
12516 		 * Unconditionally flush the TLBs after enabling dirty logging.
12517 		 * A flush is almost always going to be necessary (see below),
12518 		 * and unconditionally flushing allows the helpers to omit
12519 		 * the subtly complex checks when removing write access.
12520 		 *
12521 		 * Do the flush outside of mmu_lock to reduce the amount of
12522 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12523 		 * safe as KVM only needs to guarantee the slot is fully
12524 		 * write-protected before returning to userspace, i.e. before
12525 		 * userspace can consume the dirty status.
12526 		 *
12527 		 * Flushing outside of mmu_lock requires KVM to be careful when
12528 		 * making decisions based on writable status of an SPTE, e.g. a
12529 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12530 		 *
12531 		 * Specifically, KVM also write-protects guest page tables to
12532 		 * monitor changes when using shadow paging, and must guarantee
12533 		 * no CPUs can write to those page before mmu_lock is dropped.
12534 		 * Because CPUs may have stale TLB entries at this point, a
12535 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12536 		 *
12537 		 * KVM also allows making SPTES writable outside of mmu_lock,
12538 		 * e.g. to allow dirty logging without taking mmu_lock.
12539 		 *
12540 		 * To handle these scenarios, KVM uses a separate software-only
12541 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12542 		 * a guest page table being write-protected (KVM clears the
12543 		 * MMU-writable flag when write-protecting for shadow paging).
12544 		 *
12545 		 * The use of MMU-writable is also the primary motivation for
12546 		 * the unconditional flush.  Because KVM must guarantee that a
12547 		 * CPU doesn't contain stale, writable TLB entries for a
12548 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12549 		 * MMU-writable SPTE regardless of whether the actual hardware
12550 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12551 		 * to flush, while unconditionally flushing allows the "remove
12552 		 * write access" helpers to ignore MMU-writable entirely.
12553 		 *
12554 		 * See is_writable_pte() for more details (the case involving
12555 		 * access-tracked SPTEs is particularly relevant).
12556 		 */
12557 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12558 	}
12559 }
12560 
12561 void kvm_arch_commit_memory_region(struct kvm *kvm,
12562 				struct kvm_memory_slot *old,
12563 				const struct kvm_memory_slot *new,
12564 				enum kvm_mr_change change)
12565 {
12566 	if (!kvm->arch.n_requested_mmu_pages &&
12567 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12568 		unsigned long nr_mmu_pages;
12569 
12570 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12571 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12572 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12573 	}
12574 
12575 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12576 
12577 	/* Free the arrays associated with the old memslot. */
12578 	if (change == KVM_MR_MOVE)
12579 		kvm_arch_free_memslot(kvm, old);
12580 }
12581 
12582 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12583 {
12584 	kvm_mmu_zap_all(kvm);
12585 }
12586 
12587 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12588 				   struct kvm_memory_slot *slot)
12589 {
12590 	kvm_page_track_flush_slot(kvm, slot);
12591 }
12592 
12593 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12594 {
12595 	return (is_guest_mode(vcpu) &&
12596 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12597 }
12598 
12599 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12600 {
12601 	if (!list_empty_careful(&vcpu->async_pf.done))
12602 		return true;
12603 
12604 	if (kvm_apic_has_events(vcpu))
12605 		return true;
12606 
12607 	if (vcpu->arch.pv.pv_unhalted)
12608 		return true;
12609 
12610 	if (vcpu->arch.exception.pending)
12611 		return true;
12612 
12613 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12614 	    (vcpu->arch.nmi_pending &&
12615 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12616 		return true;
12617 
12618 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12619 	    (vcpu->arch.smi_pending &&
12620 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12621 		return true;
12622 
12623 	if (kvm_arch_interrupt_allowed(vcpu) &&
12624 	    (kvm_cpu_has_interrupt(vcpu) ||
12625 	    kvm_guest_apic_has_interrupt(vcpu)))
12626 		return true;
12627 
12628 	if (kvm_hv_has_stimer_pending(vcpu))
12629 		return true;
12630 
12631 	if (is_guest_mode(vcpu) &&
12632 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12633 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12634 		return true;
12635 
12636 	if (kvm_xen_has_pending_events(vcpu))
12637 		return true;
12638 
12639 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12640 		return true;
12641 
12642 	return false;
12643 }
12644 
12645 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12646 {
12647 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12648 }
12649 
12650 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12651 {
12652 	if (kvm_vcpu_apicv_active(vcpu) &&
12653 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12654 		return true;
12655 
12656 	return false;
12657 }
12658 
12659 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12660 {
12661 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12662 		return true;
12663 
12664 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12665 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12666 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12667 		return true;
12668 
12669 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12670 }
12671 
12672 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12673 {
12674 	if (vcpu->arch.guest_state_protected)
12675 		return true;
12676 
12677 	return vcpu->arch.preempted_in_kernel;
12678 }
12679 
12680 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12681 {
12682 	return kvm_rip_read(vcpu);
12683 }
12684 
12685 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12686 {
12687 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12688 }
12689 
12690 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12691 {
12692 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12693 }
12694 
12695 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12696 {
12697 	/* Can't read the RIP when guest state is protected, just return 0 */
12698 	if (vcpu->arch.guest_state_protected)
12699 		return 0;
12700 
12701 	if (is_64_bit_mode(vcpu))
12702 		return kvm_rip_read(vcpu);
12703 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12704 		     kvm_rip_read(vcpu));
12705 }
12706 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12707 
12708 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12709 {
12710 	return kvm_get_linear_rip(vcpu) == linear_rip;
12711 }
12712 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12713 
12714 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12715 {
12716 	unsigned long rflags;
12717 
12718 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12719 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12720 		rflags &= ~X86_EFLAGS_TF;
12721 	return rflags;
12722 }
12723 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12724 
12725 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12726 {
12727 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12728 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12729 		rflags |= X86_EFLAGS_TF;
12730 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12731 }
12732 
12733 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12734 {
12735 	__kvm_set_rflags(vcpu, rflags);
12736 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12737 }
12738 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12739 
12740 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12741 {
12742 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12743 
12744 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12745 }
12746 
12747 static inline u32 kvm_async_pf_next_probe(u32 key)
12748 {
12749 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12750 }
12751 
12752 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12753 {
12754 	u32 key = kvm_async_pf_hash_fn(gfn);
12755 
12756 	while (vcpu->arch.apf.gfns[key] != ~0)
12757 		key = kvm_async_pf_next_probe(key);
12758 
12759 	vcpu->arch.apf.gfns[key] = gfn;
12760 }
12761 
12762 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12763 {
12764 	int i;
12765 	u32 key = kvm_async_pf_hash_fn(gfn);
12766 
12767 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12768 		     (vcpu->arch.apf.gfns[key] != gfn &&
12769 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12770 		key = kvm_async_pf_next_probe(key);
12771 
12772 	return key;
12773 }
12774 
12775 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12776 {
12777 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12778 }
12779 
12780 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12781 {
12782 	u32 i, j, k;
12783 
12784 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12785 
12786 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12787 		return;
12788 
12789 	while (true) {
12790 		vcpu->arch.apf.gfns[i] = ~0;
12791 		do {
12792 			j = kvm_async_pf_next_probe(j);
12793 			if (vcpu->arch.apf.gfns[j] == ~0)
12794 				return;
12795 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12796 			/*
12797 			 * k lies cyclically in ]i,j]
12798 			 * |    i.k.j |
12799 			 * |....j i.k.| or  |.k..j i...|
12800 			 */
12801 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12802 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12803 		i = j;
12804 	}
12805 }
12806 
12807 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12808 {
12809 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12810 
12811 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12812 				      sizeof(reason));
12813 }
12814 
12815 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12816 {
12817 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12818 
12819 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12820 					     &token, offset, sizeof(token));
12821 }
12822 
12823 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12824 {
12825 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12826 	u32 val;
12827 
12828 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12829 					 &val, offset, sizeof(val)))
12830 		return false;
12831 
12832 	return !val;
12833 }
12834 
12835 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12836 {
12837 
12838 	if (!kvm_pv_async_pf_enabled(vcpu))
12839 		return false;
12840 
12841 	if (vcpu->arch.apf.send_user_only &&
12842 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12843 		return false;
12844 
12845 	if (is_guest_mode(vcpu)) {
12846 		/*
12847 		 * L1 needs to opt into the special #PF vmexits that are
12848 		 * used to deliver async page faults.
12849 		 */
12850 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12851 	} else {
12852 		/*
12853 		 * Play it safe in case the guest temporarily disables paging.
12854 		 * The real mode IDT in particular is unlikely to have a #PF
12855 		 * exception setup.
12856 		 */
12857 		return is_paging(vcpu);
12858 	}
12859 }
12860 
12861 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12862 {
12863 	if (unlikely(!lapic_in_kernel(vcpu) ||
12864 		     kvm_event_needs_reinjection(vcpu) ||
12865 		     vcpu->arch.exception.pending))
12866 		return false;
12867 
12868 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12869 		return false;
12870 
12871 	/*
12872 	 * If interrupts are off we cannot even use an artificial
12873 	 * halt state.
12874 	 */
12875 	return kvm_arch_interrupt_allowed(vcpu);
12876 }
12877 
12878 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12879 				     struct kvm_async_pf *work)
12880 {
12881 	struct x86_exception fault;
12882 
12883 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12884 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12885 
12886 	if (kvm_can_deliver_async_pf(vcpu) &&
12887 	    !apf_put_user_notpresent(vcpu)) {
12888 		fault.vector = PF_VECTOR;
12889 		fault.error_code_valid = true;
12890 		fault.error_code = 0;
12891 		fault.nested_page_fault = false;
12892 		fault.address = work->arch.token;
12893 		fault.async_page_fault = true;
12894 		kvm_inject_page_fault(vcpu, &fault);
12895 		return true;
12896 	} else {
12897 		/*
12898 		 * It is not possible to deliver a paravirtualized asynchronous
12899 		 * page fault, but putting the guest in an artificial halt state
12900 		 * can be beneficial nevertheless: if an interrupt arrives, we
12901 		 * can deliver it timely and perhaps the guest will schedule
12902 		 * another process.  When the instruction that triggered a page
12903 		 * fault is retried, hopefully the page will be ready in the host.
12904 		 */
12905 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12906 		return false;
12907 	}
12908 }
12909 
12910 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12911 				 struct kvm_async_pf *work)
12912 {
12913 	struct kvm_lapic_irq irq = {
12914 		.delivery_mode = APIC_DM_FIXED,
12915 		.vector = vcpu->arch.apf.vec
12916 	};
12917 
12918 	if (work->wakeup_all)
12919 		work->arch.token = ~0; /* broadcast wakeup */
12920 	else
12921 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12922 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12923 
12924 	if ((work->wakeup_all || work->notpresent_injected) &&
12925 	    kvm_pv_async_pf_enabled(vcpu) &&
12926 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12927 		vcpu->arch.apf.pageready_pending = true;
12928 		kvm_apic_set_irq(vcpu, &irq, NULL);
12929 	}
12930 
12931 	vcpu->arch.apf.halted = false;
12932 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12933 }
12934 
12935 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12936 {
12937 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12938 	if (!vcpu->arch.apf.pageready_pending)
12939 		kvm_vcpu_kick(vcpu);
12940 }
12941 
12942 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12943 {
12944 	if (!kvm_pv_async_pf_enabled(vcpu))
12945 		return true;
12946 	else
12947 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12948 }
12949 
12950 void kvm_arch_start_assignment(struct kvm *kvm)
12951 {
12952 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12953 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12954 }
12955 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12956 
12957 void kvm_arch_end_assignment(struct kvm *kvm)
12958 {
12959 	atomic_dec(&kvm->arch.assigned_device_count);
12960 }
12961 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12962 
12963 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12964 {
12965 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12966 }
12967 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12968 
12969 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12970 {
12971 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12972 }
12973 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12974 
12975 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12976 {
12977 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12978 }
12979 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12980 
12981 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12982 {
12983 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12984 }
12985 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12986 
12987 bool kvm_arch_has_irq_bypass(void)
12988 {
12989 	return true;
12990 }
12991 
12992 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12993 				      struct irq_bypass_producer *prod)
12994 {
12995 	struct kvm_kernel_irqfd *irqfd =
12996 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12997 	int ret;
12998 
12999 	irqfd->producer = prod;
13000 	kvm_arch_start_assignment(irqfd->kvm);
13001 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13002 					 prod->irq, irqfd->gsi, 1);
13003 
13004 	if (ret)
13005 		kvm_arch_end_assignment(irqfd->kvm);
13006 
13007 	return ret;
13008 }
13009 
13010 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13011 				      struct irq_bypass_producer *prod)
13012 {
13013 	int ret;
13014 	struct kvm_kernel_irqfd *irqfd =
13015 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13016 
13017 	WARN_ON(irqfd->producer != prod);
13018 	irqfd->producer = NULL;
13019 
13020 	/*
13021 	 * When producer of consumer is unregistered, we change back to
13022 	 * remapped mode, so we can re-use the current implementation
13023 	 * when the irq is masked/disabled or the consumer side (KVM
13024 	 * int this case doesn't want to receive the interrupts.
13025 	*/
13026 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13027 	if (ret)
13028 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13029 		       " fails: %d\n", irqfd->consumer.token, ret);
13030 
13031 	kvm_arch_end_assignment(irqfd->kvm);
13032 }
13033 
13034 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13035 				   uint32_t guest_irq, bool set)
13036 {
13037 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13038 }
13039 
13040 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13041 				  struct kvm_kernel_irq_routing_entry *new)
13042 {
13043 	if (new->type != KVM_IRQ_ROUTING_MSI)
13044 		return true;
13045 
13046 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13047 }
13048 
13049 bool kvm_vector_hashing_enabled(void)
13050 {
13051 	return vector_hashing;
13052 }
13053 
13054 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13055 {
13056 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13057 }
13058 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13059 
13060 
13061 int kvm_spec_ctrl_test_value(u64 value)
13062 {
13063 	/*
13064 	 * test that setting IA32_SPEC_CTRL to given value
13065 	 * is allowed by the host processor
13066 	 */
13067 
13068 	u64 saved_value;
13069 	unsigned long flags;
13070 	int ret = 0;
13071 
13072 	local_irq_save(flags);
13073 
13074 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13075 		ret = 1;
13076 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13077 		ret = 1;
13078 	else
13079 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13080 
13081 	local_irq_restore(flags);
13082 
13083 	return ret;
13084 }
13085 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13086 
13087 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13088 {
13089 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13090 	struct x86_exception fault;
13091 	u64 access = error_code &
13092 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13093 
13094 	if (!(error_code & PFERR_PRESENT_MASK) ||
13095 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13096 		/*
13097 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13098 		 * tables probably do not match the TLB.  Just proceed
13099 		 * with the error code that the processor gave.
13100 		 */
13101 		fault.vector = PF_VECTOR;
13102 		fault.error_code_valid = true;
13103 		fault.error_code = error_code;
13104 		fault.nested_page_fault = false;
13105 		fault.address = gva;
13106 		fault.async_page_fault = false;
13107 	}
13108 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13109 }
13110 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13111 
13112 /*
13113  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13114  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13115  * indicates whether exit to userspace is needed.
13116  */
13117 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13118 			      struct x86_exception *e)
13119 {
13120 	if (r == X86EMUL_PROPAGATE_FAULT) {
13121 		kvm_inject_emulated_page_fault(vcpu, e);
13122 		return 1;
13123 	}
13124 
13125 	/*
13126 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13127 	 * while handling a VMX instruction KVM could've handled the request
13128 	 * correctly by exiting to userspace and performing I/O but there
13129 	 * doesn't seem to be a real use-case behind such requests, just return
13130 	 * KVM_EXIT_INTERNAL_ERROR for now.
13131 	 */
13132 	kvm_prepare_emulation_failure_exit(vcpu);
13133 
13134 	return 0;
13135 }
13136 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13137 
13138 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13139 {
13140 	bool pcid_enabled;
13141 	struct x86_exception e;
13142 	struct {
13143 		u64 pcid;
13144 		u64 gla;
13145 	} operand;
13146 	int r;
13147 
13148 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13149 	if (r != X86EMUL_CONTINUE)
13150 		return kvm_handle_memory_failure(vcpu, r, &e);
13151 
13152 	if (operand.pcid >> 12 != 0) {
13153 		kvm_inject_gp(vcpu, 0);
13154 		return 1;
13155 	}
13156 
13157 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13158 
13159 	switch (type) {
13160 	case INVPCID_TYPE_INDIV_ADDR:
13161 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13162 		    is_noncanonical_address(operand.gla, vcpu)) {
13163 			kvm_inject_gp(vcpu, 0);
13164 			return 1;
13165 		}
13166 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13167 		return kvm_skip_emulated_instruction(vcpu);
13168 
13169 	case INVPCID_TYPE_SINGLE_CTXT:
13170 		if (!pcid_enabled && (operand.pcid != 0)) {
13171 			kvm_inject_gp(vcpu, 0);
13172 			return 1;
13173 		}
13174 
13175 		kvm_invalidate_pcid(vcpu, operand.pcid);
13176 		return kvm_skip_emulated_instruction(vcpu);
13177 
13178 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13179 		/*
13180 		 * Currently, KVM doesn't mark global entries in the shadow
13181 		 * page tables, so a non-global flush just degenerates to a
13182 		 * global flush. If needed, we could optimize this later by
13183 		 * keeping track of global entries in shadow page tables.
13184 		 */
13185 
13186 		fallthrough;
13187 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13188 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13189 		return kvm_skip_emulated_instruction(vcpu);
13190 
13191 	default:
13192 		kvm_inject_gp(vcpu, 0);
13193 		return 1;
13194 	}
13195 }
13196 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13197 
13198 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13199 {
13200 	struct kvm_run *run = vcpu->run;
13201 	struct kvm_mmio_fragment *frag;
13202 	unsigned int len;
13203 
13204 	BUG_ON(!vcpu->mmio_needed);
13205 
13206 	/* Complete previous fragment */
13207 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13208 	len = min(8u, frag->len);
13209 	if (!vcpu->mmio_is_write)
13210 		memcpy(frag->data, run->mmio.data, len);
13211 
13212 	if (frag->len <= 8) {
13213 		/* Switch to the next fragment. */
13214 		frag++;
13215 		vcpu->mmio_cur_fragment++;
13216 	} else {
13217 		/* Go forward to the next mmio piece. */
13218 		frag->data += len;
13219 		frag->gpa += len;
13220 		frag->len -= len;
13221 	}
13222 
13223 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13224 		vcpu->mmio_needed = 0;
13225 
13226 		// VMG change, at this point, we're always done
13227 		// RIP has already been advanced
13228 		return 1;
13229 	}
13230 
13231 	// More MMIO is needed
13232 	run->mmio.phys_addr = frag->gpa;
13233 	run->mmio.len = min(8u, frag->len);
13234 	run->mmio.is_write = vcpu->mmio_is_write;
13235 	if (run->mmio.is_write)
13236 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13237 	run->exit_reason = KVM_EXIT_MMIO;
13238 
13239 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13240 
13241 	return 0;
13242 }
13243 
13244 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13245 			  void *data)
13246 {
13247 	int handled;
13248 	struct kvm_mmio_fragment *frag;
13249 
13250 	if (!data)
13251 		return -EINVAL;
13252 
13253 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13254 	if (handled == bytes)
13255 		return 1;
13256 
13257 	bytes -= handled;
13258 	gpa += handled;
13259 	data += handled;
13260 
13261 	/*TODO: Check if need to increment number of frags */
13262 	frag = vcpu->mmio_fragments;
13263 	vcpu->mmio_nr_fragments = 1;
13264 	frag->len = bytes;
13265 	frag->gpa = gpa;
13266 	frag->data = data;
13267 
13268 	vcpu->mmio_needed = 1;
13269 	vcpu->mmio_cur_fragment = 0;
13270 
13271 	vcpu->run->mmio.phys_addr = gpa;
13272 	vcpu->run->mmio.len = min(8u, frag->len);
13273 	vcpu->run->mmio.is_write = 1;
13274 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13275 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13276 
13277 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13278 
13279 	return 0;
13280 }
13281 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13282 
13283 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13284 			 void *data)
13285 {
13286 	int handled;
13287 	struct kvm_mmio_fragment *frag;
13288 
13289 	if (!data)
13290 		return -EINVAL;
13291 
13292 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13293 	if (handled == bytes)
13294 		return 1;
13295 
13296 	bytes -= handled;
13297 	gpa += handled;
13298 	data += handled;
13299 
13300 	/*TODO: Check if need to increment number of frags */
13301 	frag = vcpu->mmio_fragments;
13302 	vcpu->mmio_nr_fragments = 1;
13303 	frag->len = bytes;
13304 	frag->gpa = gpa;
13305 	frag->data = data;
13306 
13307 	vcpu->mmio_needed = 1;
13308 	vcpu->mmio_cur_fragment = 0;
13309 
13310 	vcpu->run->mmio.phys_addr = gpa;
13311 	vcpu->run->mmio.len = min(8u, frag->len);
13312 	vcpu->run->mmio.is_write = 0;
13313 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13314 
13315 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13316 
13317 	return 0;
13318 }
13319 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13320 
13321 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13322 {
13323 	vcpu->arch.sev_pio_count -= count;
13324 	vcpu->arch.sev_pio_data += count * size;
13325 }
13326 
13327 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13328 			   unsigned int port);
13329 
13330 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13331 {
13332 	int size = vcpu->arch.pio.size;
13333 	int port = vcpu->arch.pio.port;
13334 
13335 	vcpu->arch.pio.count = 0;
13336 	if (vcpu->arch.sev_pio_count)
13337 		return kvm_sev_es_outs(vcpu, size, port);
13338 	return 1;
13339 }
13340 
13341 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13342 			   unsigned int port)
13343 {
13344 	for (;;) {
13345 		unsigned int count =
13346 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13347 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13348 
13349 		/* memcpy done already by emulator_pio_out.  */
13350 		advance_sev_es_emulated_pio(vcpu, count, size);
13351 		if (!ret)
13352 			break;
13353 
13354 		/* Emulation done by the kernel.  */
13355 		if (!vcpu->arch.sev_pio_count)
13356 			return 1;
13357 	}
13358 
13359 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13360 	return 0;
13361 }
13362 
13363 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13364 			  unsigned int port);
13365 
13366 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13367 {
13368 	unsigned count = vcpu->arch.pio.count;
13369 	int size = vcpu->arch.pio.size;
13370 	int port = vcpu->arch.pio.port;
13371 
13372 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13373 	advance_sev_es_emulated_pio(vcpu, count, size);
13374 	if (vcpu->arch.sev_pio_count)
13375 		return kvm_sev_es_ins(vcpu, size, port);
13376 	return 1;
13377 }
13378 
13379 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13380 			  unsigned int port)
13381 {
13382 	for (;;) {
13383 		unsigned int count =
13384 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13385 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13386 			break;
13387 
13388 		/* Emulation done by the kernel.  */
13389 		advance_sev_es_emulated_pio(vcpu, count, size);
13390 		if (!vcpu->arch.sev_pio_count)
13391 			return 1;
13392 	}
13393 
13394 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13395 	return 0;
13396 }
13397 
13398 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13399 			 unsigned int port, void *data,  unsigned int count,
13400 			 int in)
13401 {
13402 	vcpu->arch.sev_pio_data = data;
13403 	vcpu->arch.sev_pio_count = count;
13404 	return in ? kvm_sev_es_ins(vcpu, size, port)
13405 		  : kvm_sev_es_outs(vcpu, size, port);
13406 }
13407 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13408 
13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13438 
13439 static int __init kvm_x86_init(void)
13440 {
13441 	kvm_mmu_x86_module_init();
13442 	return 0;
13443 }
13444 module_init(kvm_x86_init);
13445 
13446 static void __exit kvm_x86_exit(void)
13447 {
13448 	/*
13449 	 * If module_init() is implemented, module_exit() must also be
13450 	 * implemented to allow module unload.
13451 	 */
13452 }
13453 module_exit(kvm_x86_exit);
13454