xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 75016ca3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define emul_to_vcpu(ctxt) \
94 	((struct kvm_vcpu *)(ctxt)->vcpu)
95 
96 /* EFER defaults:
97  * - enable syscall per default because its emulated by KVM
98  * - enable LME and LMA per default on 64 bit KVM
99  */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106 
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108 
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110 
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113 
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
122 
123 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
125 
126 struct kvm_x86_ops kvm_x86_ops __read_mostly;
127 EXPORT_SYMBOL_GPL(kvm_x86_ops);
128 
129 #define KVM_X86_OP(func)					     \
130 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
131 				*(((struct kvm_x86_ops *)0)->func));
132 #define KVM_X86_OP_NULL KVM_X86_OP
133 #include <asm/kvm-x86-ops.h>
134 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
136 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
137 
138 static bool __read_mostly ignore_msrs = 0;
139 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
140 
141 bool __read_mostly report_ignored_msrs = true;
142 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
143 EXPORT_SYMBOL_GPL(report_ignored_msrs);
144 
145 unsigned int min_timer_period_us = 200;
146 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
147 
148 static bool __read_mostly kvmclock_periodic_sync = true;
149 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
150 
151 bool __read_mostly kvm_has_tsc_control;
152 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
153 u32  __read_mostly kvm_max_guest_tsc_khz;
154 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
155 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
156 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
157 u64  __read_mostly kvm_max_tsc_scaling_ratio;
158 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
159 u64 __read_mostly kvm_default_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
161 bool __read_mostly kvm_has_bus_lock_exit;
162 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
163 
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
167 
168 /*
169  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
170  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
171  * advancement entirely.  Any other value is used as-is and disables adaptive
172  * tuning, i.e. allows privileged userspace to set an exact advancement time.
173  */
174 static int __read_mostly lapic_timer_advance_ns = -1;
175 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
176 
177 static bool __read_mostly vector_hashing = true;
178 module_param(vector_hashing, bool, S_IRUGO);
179 
180 bool __read_mostly enable_vmware_backdoor = false;
181 module_param(enable_vmware_backdoor, bool, S_IRUGO);
182 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
183 
184 static bool __read_mostly force_emulation_prefix = false;
185 module_param(force_emulation_prefix, bool, S_IRUGO);
186 
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189 
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194 
195 /*
196  * Restoring the host value for MSRs that are only consumed when running in
197  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
198  * returns to userspace, i.e. the kernel can run with the guest's value.
199  */
200 #define KVM_MAX_NR_USER_RETURN_MSRS 16
201 
202 struct kvm_user_return_msrs {
203 	struct user_return_notifier urn;
204 	bool registered;
205 	struct kvm_user_return_msr_values {
206 		u64 host;
207 		u64 curr;
208 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
209 };
210 
211 u32 __read_mostly kvm_nr_uret_msrs;
212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
214 static struct kvm_user_return_msrs __percpu *user_return_msrs;
215 
216 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
217 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
218 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
219 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
220 
221 u64 __read_mostly host_efer;
222 EXPORT_SYMBOL_GPL(host_efer);
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 u64 __read_mostly host_xss;
231 EXPORT_SYMBOL_GPL(host_xss);
232 u64 __read_mostly supported_xss;
233 EXPORT_SYMBOL_GPL(supported_xss);
234 
235 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
236 	KVM_GENERIC_VM_STATS(),
237 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
238 	STATS_DESC_COUNTER(VM, mmu_pte_write),
239 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
240 	STATS_DESC_COUNTER(VM, mmu_flooded),
241 	STATS_DESC_COUNTER(VM, mmu_recycled),
242 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
243 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
244 	STATS_DESC_ICOUNTER(VM, pages_4k),
245 	STATS_DESC_ICOUNTER(VM, pages_2m),
246 	STATS_DESC_ICOUNTER(VM, pages_1g),
247 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
249 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
250 };
251 
252 const struct kvm_stats_header kvm_vm_stats_header = {
253 	.name_size = KVM_STATS_NAME_SIZE,
254 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
255 	.id_offset = sizeof(struct kvm_stats_header),
256 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
257 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
258 		       sizeof(kvm_vm_stats_desc),
259 };
260 
261 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
262 	KVM_GENERIC_VCPU_STATS(),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_guest),
265 	STATS_DESC_COUNTER(VCPU, tlb_flush),
266 	STATS_DESC_COUNTER(VCPU, invlpg),
267 	STATS_DESC_COUNTER(VCPU, exits),
268 	STATS_DESC_COUNTER(VCPU, io_exits),
269 	STATS_DESC_COUNTER(VCPU, mmio_exits),
270 	STATS_DESC_COUNTER(VCPU, signal_exits),
271 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 	STATS_DESC_COUNTER(VCPU, l1d_flush),
274 	STATS_DESC_COUNTER(VCPU, halt_exits),
275 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 	STATS_DESC_COUNTER(VCPU, irq_exits),
277 	STATS_DESC_COUNTER(VCPU, host_state_reload),
278 	STATS_DESC_COUNTER(VCPU, fpu_reload),
279 	STATS_DESC_COUNTER(VCPU, insn_emulation),
280 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 	STATS_DESC_COUNTER(VCPU, hypercalls),
282 	STATS_DESC_COUNTER(VCPU, irq_injections),
283 	STATS_DESC_COUNTER(VCPU, nmi_injections),
284 	STATS_DESC_COUNTER(VCPU, req_event),
285 	STATS_DESC_COUNTER(VCPU, nested_run),
286 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
289 };
290 
291 const struct kvm_stats_header kvm_vcpu_stats_header = {
292 	.name_size = KVM_STATS_NAME_SIZE,
293 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
294 	.id_offset = sizeof(struct kvm_stats_header),
295 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
296 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
297 		       sizeof(kvm_vcpu_stats_desc),
298 };
299 
300 u64 __read_mostly host_xcr0;
301 u64 __read_mostly supported_xcr0;
302 EXPORT_SYMBOL_GPL(supported_xcr0);
303 
304 static struct kmem_cache *x86_emulator_cache;
305 
306 /*
307  * When called, it means the previous get/set msr reached an invalid msr.
308  * Return true if we want to ignore/silent this failed msr access.
309  */
310 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
311 {
312 	const char *op = write ? "wrmsr" : "rdmsr";
313 
314 	if (ignore_msrs) {
315 		if (report_ignored_msrs)
316 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
317 				      op, msr, data);
318 		/* Mask the error */
319 		return true;
320 	} else {
321 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		return false;
324 	}
325 }
326 
327 static struct kmem_cache *kvm_alloc_emulator_cache(void)
328 {
329 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
330 	unsigned int size = sizeof(struct x86_emulate_ctxt);
331 
332 	return kmem_cache_create_usercopy("x86_emulator", size,
333 					  __alignof__(struct x86_emulate_ctxt),
334 					  SLAB_ACCOUNT, useroffset,
335 					  size - useroffset, NULL);
336 }
337 
338 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
339 
340 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
341 {
342 	int i;
343 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
344 		vcpu->arch.apf.gfns[i] = ~0;
345 }
346 
347 static void kvm_on_user_return(struct user_return_notifier *urn)
348 {
349 	unsigned slot;
350 	struct kvm_user_return_msrs *msrs
351 		= container_of(urn, struct kvm_user_return_msrs, urn);
352 	struct kvm_user_return_msr_values *values;
353 	unsigned long flags;
354 
355 	/*
356 	 * Disabling irqs at this point since the following code could be
357 	 * interrupted and executed through kvm_arch_hardware_disable()
358 	 */
359 	local_irq_save(flags);
360 	if (msrs->registered) {
361 		msrs->registered = false;
362 		user_return_notifier_unregister(urn);
363 	}
364 	local_irq_restore(flags);
365 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
366 		values = &msrs->values[slot];
367 		if (values->host != values->curr) {
368 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
369 			values->curr = values->host;
370 		}
371 	}
372 }
373 
374 static int kvm_probe_user_return_msr(u32 msr)
375 {
376 	u64 val;
377 	int ret;
378 
379 	preempt_disable();
380 	ret = rdmsrl_safe(msr, &val);
381 	if (ret)
382 		goto out;
383 	ret = wrmsrl_safe(msr, val);
384 out:
385 	preempt_enable();
386 	return ret;
387 }
388 
389 int kvm_add_user_return_msr(u32 msr)
390 {
391 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
392 
393 	if (kvm_probe_user_return_msr(msr))
394 		return -1;
395 
396 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
397 	return kvm_nr_uret_msrs++;
398 }
399 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
400 
401 int kvm_find_user_return_msr(u32 msr)
402 {
403 	int i;
404 
405 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
406 		if (kvm_uret_msrs_list[i] == msr)
407 			return i;
408 	}
409 	return -1;
410 }
411 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
412 
413 static void kvm_user_return_msr_cpu_online(void)
414 {
415 	unsigned int cpu = smp_processor_id();
416 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
417 	u64 value;
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
422 		msrs->values[i].host = value;
423 		msrs->values[i].curr = value;
424 	}
425 }
426 
427 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
428 {
429 	unsigned int cpu = smp_processor_id();
430 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 	int err;
432 
433 	value = (value & mask) | (msrs->values[slot].host & ~mask);
434 	if (value == msrs->values[slot].curr)
435 		return 0;
436 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437 	if (err)
438 		return 1;
439 
440 	msrs->values[slot].curr = value;
441 	if (!msrs->registered) {
442 		msrs->urn.on_user_return = kvm_on_user_return;
443 		user_return_notifier_register(&msrs->urn);
444 		msrs->registered = true;
445 	}
446 	return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449 
450 static void drop_user_return_notifiers(void)
451 {
452 	unsigned int cpu = smp_processor_id();
453 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
454 
455 	if (msrs->registered)
456 		kvm_on_user_return(&msrs->urn);
457 }
458 
459 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
460 {
461 	return vcpu->arch.apic_base;
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
464 
465 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
466 {
467 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
470 
471 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
472 {
473 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
474 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
475 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
476 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
477 
478 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
479 		return 1;
480 	if (!msr_info->host_initiated) {
481 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
482 			return 1;
483 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
484 			return 1;
485 	}
486 
487 	kvm_lapic_set_base(vcpu, msr_info->data);
488 	kvm_recalculate_apic_map(vcpu->kvm);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
492 
493 /*
494  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
495  *
496  * Hardware virtualization extension instructions may fault if a reboot turns
497  * off virtualization while processes are running.  Usually after catching the
498  * fault we just panic; during reboot instead the instruction is ignored.
499  */
500 noinstr void kvm_spurious_fault(void)
501 {
502 	/* Fault while not rebooting.  We want the trace. */
503 	BUG_ON(!kvm_rebooting);
504 }
505 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
506 
507 #define EXCPT_BENIGN		0
508 #define EXCPT_CONTRIBUTORY	1
509 #define EXCPT_PF		2
510 
511 static int exception_class(int vector)
512 {
513 	switch (vector) {
514 	case PF_VECTOR:
515 		return EXCPT_PF;
516 	case DE_VECTOR:
517 	case TS_VECTOR:
518 	case NP_VECTOR:
519 	case SS_VECTOR:
520 	case GP_VECTOR:
521 		return EXCPT_CONTRIBUTORY;
522 	default:
523 		break;
524 	}
525 	return EXCPT_BENIGN;
526 }
527 
528 #define EXCPT_FAULT		0
529 #define EXCPT_TRAP		1
530 #define EXCPT_ABORT		2
531 #define EXCPT_INTERRUPT		3
532 
533 static int exception_type(int vector)
534 {
535 	unsigned int mask;
536 
537 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
538 		return EXCPT_INTERRUPT;
539 
540 	mask = 1 << vector;
541 
542 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
543 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
544 		return EXCPT_TRAP;
545 
546 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
547 		return EXCPT_ABORT;
548 
549 	/* Reserved exceptions will result in fault */
550 	return EXCPT_FAULT;
551 }
552 
553 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
554 {
555 	unsigned nr = vcpu->arch.exception.nr;
556 	bool has_payload = vcpu->arch.exception.has_payload;
557 	unsigned long payload = vcpu->arch.exception.payload;
558 
559 	if (!has_payload)
560 		return;
561 
562 	switch (nr) {
563 	case DB_VECTOR:
564 		/*
565 		 * "Certain debug exceptions may clear bit 0-3.  The
566 		 * remaining contents of the DR6 register are never
567 		 * cleared by the processor".
568 		 */
569 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
570 		/*
571 		 * In order to reflect the #DB exception payload in guest
572 		 * dr6, three components need to be considered: active low
573 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
574 		 * DR6_BS and DR6_BT)
575 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
576 		 * In the target guest dr6:
577 		 * FIXED_1 bits should always be set.
578 		 * Active low bits should be cleared if 1-setting in payload.
579 		 * Active high bits should be set if 1-setting in payload.
580 		 *
581 		 * Note, the payload is compatible with the pending debug
582 		 * exceptions/exit qualification under VMX, that active_low bits
583 		 * are active high in payload.
584 		 * So they need to be flipped for DR6.
585 		 */
586 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
587 		vcpu->arch.dr6 |= payload;
588 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
589 
590 		/*
591 		 * The #DB payload is defined as compatible with the 'pending
592 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
593 		 * defined in the 'pending debug exceptions' field (enabled
594 		 * breakpoint), it is reserved and must be zero in DR6.
595 		 */
596 		vcpu->arch.dr6 &= ~BIT(12);
597 		break;
598 	case PF_VECTOR:
599 		vcpu->arch.cr2 = payload;
600 		break;
601 	}
602 
603 	vcpu->arch.exception.has_payload = false;
604 	vcpu->arch.exception.payload = 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
607 
608 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
609 		unsigned nr, bool has_error, u32 error_code,
610 	        bool has_payload, unsigned long payload, bool reinject)
611 {
612 	u32 prev_nr;
613 	int class1, class2;
614 
615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
616 
617 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
618 	queue:
619 		if (reinject) {
620 			/*
621 			 * On vmentry, vcpu->arch.exception.pending is only
622 			 * true if an event injection was blocked by
623 			 * nested_run_pending.  In that case, however,
624 			 * vcpu_enter_guest requests an immediate exit,
625 			 * and the guest shouldn't proceed far enough to
626 			 * need reinjection.
627 			 */
628 			WARN_ON_ONCE(vcpu->arch.exception.pending);
629 			vcpu->arch.exception.injected = true;
630 			if (WARN_ON_ONCE(has_payload)) {
631 				/*
632 				 * A reinjected event has already
633 				 * delivered its payload.
634 				 */
635 				has_payload = false;
636 				payload = 0;
637 			}
638 		} else {
639 			vcpu->arch.exception.pending = true;
640 			vcpu->arch.exception.injected = false;
641 		}
642 		vcpu->arch.exception.has_error_code = has_error;
643 		vcpu->arch.exception.nr = nr;
644 		vcpu->arch.exception.error_code = error_code;
645 		vcpu->arch.exception.has_payload = has_payload;
646 		vcpu->arch.exception.payload = payload;
647 		if (!is_guest_mode(vcpu))
648 			kvm_deliver_exception_payload(vcpu);
649 		return;
650 	}
651 
652 	/* to check exception */
653 	prev_nr = vcpu->arch.exception.nr;
654 	if (prev_nr == DF_VECTOR) {
655 		/* triple fault -> shutdown */
656 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
657 		return;
658 	}
659 	class1 = exception_class(prev_nr);
660 	class2 = exception_class(nr);
661 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
662 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
663 		/*
664 		 * Generate double fault per SDM Table 5-5.  Set
665 		 * exception.pending = true so that the double fault
666 		 * can trigger a nested vmexit.
667 		 */
668 		vcpu->arch.exception.pending = true;
669 		vcpu->arch.exception.injected = false;
670 		vcpu->arch.exception.has_error_code = true;
671 		vcpu->arch.exception.nr = DF_VECTOR;
672 		vcpu->arch.exception.error_code = 0;
673 		vcpu->arch.exception.has_payload = false;
674 		vcpu->arch.exception.payload = 0;
675 	} else
676 		/* replace previous exception with a new one in a hope
677 		   that instruction re-execution will regenerate lost
678 		   exception */
679 		goto queue;
680 }
681 
682 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
685 }
686 EXPORT_SYMBOL_GPL(kvm_queue_exception);
687 
688 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
691 }
692 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
693 
694 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
695 			   unsigned long payload)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
700 
701 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
702 				    u32 error_code, unsigned long payload)
703 {
704 	kvm_multiple_exception(vcpu, nr, true, error_code,
705 			       true, payload, false);
706 }
707 
708 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
709 {
710 	if (err)
711 		kvm_inject_gp(vcpu, 0);
712 	else
713 		return kvm_skip_emulated_instruction(vcpu);
714 
715 	return 1;
716 }
717 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
718 
719 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
720 {
721 	if (err) {
722 		kvm_inject_gp(vcpu, 0);
723 		return 1;
724 	}
725 
726 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
727 				       EMULTYPE_COMPLETE_USER_EXIT);
728 }
729 
730 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
731 {
732 	++vcpu->stat.pf_guest;
733 	vcpu->arch.exception.nested_apf =
734 		is_guest_mode(vcpu) && fault->async_page_fault;
735 	if (vcpu->arch.exception.nested_apf) {
736 		vcpu->arch.apf.nested_apf_token = fault->address;
737 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
738 	} else {
739 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
740 					fault->address);
741 	}
742 }
743 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
744 
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746 				    struct x86_exception *fault)
747 {
748 	struct kvm_mmu *fault_mmu;
749 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
750 
751 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752 					       vcpu->arch.walk_mmu;
753 
754 	/*
755 	 * Invalidate the TLB entry for the faulting address, if it exists,
756 	 * else the access will fault indefinitely (and to emulate hardware).
757 	 */
758 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
759 	    !(fault->error_code & PFERR_RSVD_MASK))
760 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761 				       fault_mmu->root_hpa);
762 
763 	fault_mmu->inject_page_fault(vcpu, fault);
764 	return fault->nested_page_fault;
765 }
766 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
767 
768 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
769 {
770 	atomic_inc(&vcpu->arch.nmi_queued);
771 	kvm_make_request(KVM_REQ_NMI, vcpu);
772 }
773 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
774 
775 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
776 {
777 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
778 }
779 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
780 
781 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
784 }
785 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
786 
787 /*
788  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
789  * a #GP and return false.
790  */
791 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
792 {
793 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
794 		return true;
795 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
796 	return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_require_cpl);
799 
800 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
801 {
802 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
803 		return true;
804 
805 	kvm_queue_exception(vcpu, UD_VECTOR);
806 	return false;
807 }
808 EXPORT_SYMBOL_GPL(kvm_require_dr);
809 
810 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
811 {
812 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
813 }
814 
815 /*
816  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
817  */
818 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
819 {
820 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
821 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
822 	gpa_t real_gpa;
823 	int i;
824 	int ret;
825 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
826 
827 	/*
828 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
829 	 * to an L1 GPA.
830 	 */
831 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
832 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
833 	if (real_gpa == UNMAPPED_GVA)
834 		return 0;
835 
836 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
837 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
838 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
839 	if (ret < 0)
840 		return 0;
841 
842 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
843 		if ((pdpte[i] & PT_PRESENT_MASK) &&
844 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
845 			return 0;
846 		}
847 	}
848 
849 	/*
850 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
851 	 * Shadow page roots need to be reconstructed instead.
852 	 */
853 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
854 		kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
855 
856 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
857 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
858 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
859 	vcpu->arch.pdptrs_from_userspace = false;
860 
861 	return 1;
862 }
863 EXPORT_SYMBOL_GPL(load_pdptrs);
864 
865 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
866 {
867 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
868 		kvm_clear_async_pf_completion_queue(vcpu);
869 		kvm_async_pf_hash_reset(vcpu);
870 	}
871 
872 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
873 		kvm_mmu_reset_context(vcpu);
874 
875 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
876 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
877 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
878 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
879 }
880 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
881 
882 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
883 {
884 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
885 
886 	cr0 |= X86_CR0_ET;
887 
888 #ifdef CONFIG_X86_64
889 	if (cr0 & 0xffffffff00000000UL)
890 		return 1;
891 #endif
892 
893 	cr0 &= ~CR0_RESERVED_BITS;
894 
895 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
896 		return 1;
897 
898 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
899 		return 1;
900 
901 #ifdef CONFIG_X86_64
902 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
903 	    (cr0 & X86_CR0_PG)) {
904 		int cs_db, cs_l;
905 
906 		if (!is_pae(vcpu))
907 			return 1;
908 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
909 		if (cs_l)
910 			return 1;
911 	}
912 #endif
913 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
914 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
915 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
916 		return 1;
917 
918 	if (!(cr0 & X86_CR0_PG) &&
919 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
920 		return 1;
921 
922 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
923 
924 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_cr0);
929 
930 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
931 {
932 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
933 }
934 EXPORT_SYMBOL_GPL(kvm_lmsw);
935 
936 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
937 {
938 	if (vcpu->arch.guest_state_protected)
939 		return;
940 
941 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
942 
943 		if (vcpu->arch.xcr0 != host_xcr0)
944 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
945 
946 		if (vcpu->arch.xsaves_enabled &&
947 		    vcpu->arch.ia32_xss != host_xss)
948 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
949 	}
950 
951 	if (static_cpu_has(X86_FEATURE_PKU) &&
952 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
953 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
954 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
955 		write_pkru(vcpu->arch.pkru);
956 }
957 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
958 
959 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
960 {
961 	if (vcpu->arch.guest_state_protected)
962 		return;
963 
964 	if (static_cpu_has(X86_FEATURE_PKU) &&
965 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
967 		vcpu->arch.pkru = rdpkru();
968 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
969 			write_pkru(vcpu->arch.host_pkru);
970 	}
971 
972 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
973 
974 		if (vcpu->arch.xcr0 != host_xcr0)
975 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
976 
977 		if (vcpu->arch.xsaves_enabled &&
978 		    vcpu->arch.ia32_xss != host_xss)
979 			wrmsrl(MSR_IA32_XSS, host_xss);
980 	}
981 
982 }
983 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
984 
985 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
986 {
987 	u64 xcr0 = xcr;
988 	u64 old_xcr0 = vcpu->arch.xcr0;
989 	u64 valid_bits;
990 
991 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
992 	if (index != XCR_XFEATURE_ENABLED_MASK)
993 		return 1;
994 	if (!(xcr0 & XFEATURE_MASK_FP))
995 		return 1;
996 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
997 		return 1;
998 
999 	/*
1000 	 * Do not allow the guest to set bits that we do not support
1001 	 * saving.  However, xcr0 bit 0 is always set, even if the
1002 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1003 	 */
1004 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1005 	if (xcr0 & ~valid_bits)
1006 		return 1;
1007 
1008 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1009 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1010 		return 1;
1011 
1012 	if (xcr0 & XFEATURE_MASK_AVX512) {
1013 		if (!(xcr0 & XFEATURE_MASK_YMM))
1014 			return 1;
1015 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1016 			return 1;
1017 	}
1018 
1019 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1020 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1021 		return 1;
1022 
1023 	vcpu->arch.xcr0 = xcr0;
1024 
1025 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1026 		kvm_update_cpuid_runtime(vcpu);
1027 	return 0;
1028 }
1029 
1030 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1031 {
1032 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1033 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1034 		kvm_inject_gp(vcpu, 0);
1035 		return 1;
1036 	}
1037 
1038 	return kvm_skip_emulated_instruction(vcpu);
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1041 
1042 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1043 {
1044 	if (cr4 & cr4_reserved_bits)
1045 		return false;
1046 
1047 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1048 		return false;
1049 
1050 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1053 
1054 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1055 {
1056 	/*
1057 	 * If any role bit is changed, the MMU needs to be reset.
1058 	 *
1059 	 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1060 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1061 	 * according to the SDM; however, stale prev_roots could be reused
1062 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1063 	 * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1064 	 * is slow, but changing CR4.PCIDE is a rare case.
1065 	 *
1066 	 * If CR4.PGE is changed, the guest TLB must be flushed.
1067 	 *
1068 	 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1069 	 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1070 	 * the usage of "else if".
1071 	 */
1072 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1073 		kvm_mmu_reset_context(vcpu);
1074 	else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1075 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1076 	else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1077 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1080 
1081 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1082 {
1083 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1084 
1085 	if (!kvm_is_valid_cr4(vcpu, cr4))
1086 		return 1;
1087 
1088 	if (is_long_mode(vcpu)) {
1089 		if (!(cr4 & X86_CR4_PAE))
1090 			return 1;
1091 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1092 			return 1;
1093 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1094 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1095 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1096 		return 1;
1097 
1098 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1099 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1100 			return 1;
1101 
1102 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1103 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1104 			return 1;
1105 	}
1106 
1107 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1108 
1109 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1110 
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1114 
1115 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1116 {
1117 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1118 	unsigned long roots_to_free = 0;
1119 	int i;
1120 
1121 	/*
1122 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1123 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1124 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1125 	 * the invalidation, but the guest's TLB entries need to be flushed as
1126 	 * the CPU may have cached entries in its TLB for the target PCID.
1127 	 */
1128 	if (unlikely(tdp_enabled)) {
1129 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * If neither the current CR3 nor any of the prev_roots use the given
1135 	 * PCID, then nothing needs to be done here because a resync will
1136 	 * happen anyway before switching to any other CR3.
1137 	 */
1138 	if (kvm_get_active_pcid(vcpu) == pcid) {
1139 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1140 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1141 	}
1142 
1143 	/*
1144 	 * If PCID is disabled, there is no need to free prev_roots even if the
1145 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1146 	 * with PCIDE=0.
1147 	 */
1148 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1149 		return;
1150 
1151 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1152 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1153 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1154 
1155 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1156 }
1157 
1158 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1159 {
1160 	bool skip_tlb_flush = false;
1161 	unsigned long pcid = 0;
1162 #ifdef CONFIG_X86_64
1163 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1164 
1165 	if (pcid_enabled) {
1166 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1167 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1168 		pcid = cr3 & X86_CR3_PCID_MASK;
1169 	}
1170 #endif
1171 
1172 	/* PDPTRs are always reloaded for PAE paging. */
1173 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1174 		goto handle_tlb_flush;
1175 
1176 	/*
1177 	 * Do not condition the GPA check on long mode, this helper is used to
1178 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1179 	 * the current vCPU mode is accurate.
1180 	 */
1181 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1182 		return 1;
1183 
1184 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1185 		return 1;
1186 
1187 	if (cr3 != kvm_read_cr3(vcpu))
1188 		kvm_mmu_new_pgd(vcpu, cr3);
1189 
1190 	vcpu->arch.cr3 = cr3;
1191 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1192 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1193 
1194 handle_tlb_flush:
1195 	/*
1196 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1197 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1198 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1199 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1200 	 * i.e. only PCID=0 can be relevant.
1201 	 */
1202 	if (!skip_tlb_flush)
1203 		kvm_invalidate_pcid(vcpu, pcid);
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1208 
1209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1210 {
1211 	if (cr8 & CR8_RESERVED_BITS)
1212 		return 1;
1213 	if (lapic_in_kernel(vcpu))
1214 		kvm_lapic_set_tpr(vcpu, cr8);
1215 	else
1216 		vcpu->arch.cr8 = cr8;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1220 
1221 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1222 {
1223 	if (lapic_in_kernel(vcpu))
1224 		return kvm_lapic_get_cr8(vcpu);
1225 	else
1226 		return vcpu->arch.cr8;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1229 
1230 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1231 {
1232 	int i;
1233 
1234 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1235 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1236 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1237 	}
1238 }
1239 
1240 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1241 {
1242 	unsigned long dr7;
1243 
1244 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1245 		dr7 = vcpu->arch.guest_debug_dr7;
1246 	else
1247 		dr7 = vcpu->arch.dr7;
1248 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1249 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1250 	if (dr7 & DR7_BP_EN_MASK)
1251 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1254 
1255 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1256 {
1257 	u64 fixed = DR6_FIXED_1;
1258 
1259 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1260 		fixed |= DR6_RTM;
1261 
1262 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1263 		fixed |= DR6_BUS_LOCK;
1264 	return fixed;
1265 }
1266 
1267 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1268 {
1269 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1270 
1271 	switch (dr) {
1272 	case 0 ... 3:
1273 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1274 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1275 			vcpu->arch.eff_db[dr] = val;
1276 		break;
1277 	case 4:
1278 	case 6:
1279 		if (!kvm_dr6_valid(val))
1280 			return 1; /* #GP */
1281 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1282 		break;
1283 	case 5:
1284 	default: /* 7 */
1285 		if (!kvm_dr7_valid(val))
1286 			return 1; /* #GP */
1287 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1288 		kvm_update_dr7(vcpu);
1289 		break;
1290 	}
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_set_dr);
1295 
1296 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1297 {
1298 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1299 
1300 	switch (dr) {
1301 	case 0 ... 3:
1302 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1303 		break;
1304 	case 4:
1305 	case 6:
1306 		*val = vcpu->arch.dr6;
1307 		break;
1308 	case 5:
1309 	default: /* 7 */
1310 		*val = vcpu->arch.dr7;
1311 		break;
1312 	}
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_get_dr);
1315 
1316 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1317 {
1318 	u32 ecx = kvm_rcx_read(vcpu);
1319 	u64 data;
1320 
1321 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1322 		kvm_inject_gp(vcpu, 0);
1323 		return 1;
1324 	}
1325 
1326 	kvm_rax_write(vcpu, (u32)data);
1327 	kvm_rdx_write(vcpu, data >> 32);
1328 	return kvm_skip_emulated_instruction(vcpu);
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1331 
1332 /*
1333  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1334  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1335  *
1336  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1337  * extract the supported MSRs from the related const lists.
1338  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1339  * capabilities of the host cpu. This capabilities test skips MSRs that are
1340  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1341  * may depend on host virtualization features rather than host cpu features.
1342  */
1343 
1344 static const u32 msrs_to_save_all[] = {
1345 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1346 	MSR_STAR,
1347 #ifdef CONFIG_X86_64
1348 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1349 #endif
1350 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1351 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1352 	MSR_IA32_SPEC_CTRL,
1353 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1354 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1355 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1356 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1357 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1358 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1359 	MSR_IA32_UMWAIT_CONTROL,
1360 
1361 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1362 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1363 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1364 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1365 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1366 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1367 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1368 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1369 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1370 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1371 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1372 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1373 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1374 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1375 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1376 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1377 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1378 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1379 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1380 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1381 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1382 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1383 
1384 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1385 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1386 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1387 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1388 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1389 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1390 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1391 };
1392 
1393 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1394 static unsigned num_msrs_to_save;
1395 
1396 static const u32 emulated_msrs_all[] = {
1397 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1398 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1399 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1400 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1401 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1402 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1403 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1404 	HV_X64_MSR_RESET,
1405 	HV_X64_MSR_VP_INDEX,
1406 	HV_X64_MSR_VP_RUNTIME,
1407 	HV_X64_MSR_SCONTROL,
1408 	HV_X64_MSR_STIMER0_CONFIG,
1409 	HV_X64_MSR_VP_ASSIST_PAGE,
1410 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1411 	HV_X64_MSR_TSC_EMULATION_STATUS,
1412 	HV_X64_MSR_SYNDBG_OPTIONS,
1413 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1414 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1415 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1416 
1417 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1418 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1419 
1420 	MSR_IA32_TSC_ADJUST,
1421 	MSR_IA32_TSC_DEADLINE,
1422 	MSR_IA32_ARCH_CAPABILITIES,
1423 	MSR_IA32_PERF_CAPABILITIES,
1424 	MSR_IA32_MISC_ENABLE,
1425 	MSR_IA32_MCG_STATUS,
1426 	MSR_IA32_MCG_CTL,
1427 	MSR_IA32_MCG_EXT_CTL,
1428 	MSR_IA32_SMBASE,
1429 	MSR_SMI_COUNT,
1430 	MSR_PLATFORM_INFO,
1431 	MSR_MISC_FEATURES_ENABLES,
1432 	MSR_AMD64_VIRT_SPEC_CTRL,
1433 	MSR_AMD64_TSC_RATIO,
1434 	MSR_IA32_POWER_CTL,
1435 	MSR_IA32_UCODE_REV,
1436 
1437 	/*
1438 	 * The following list leaves out MSRs whose values are determined
1439 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1440 	 * We always support the "true" VMX control MSRs, even if the host
1441 	 * processor does not, so I am putting these registers here rather
1442 	 * than in msrs_to_save_all.
1443 	 */
1444 	MSR_IA32_VMX_BASIC,
1445 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1446 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1447 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1448 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1449 	MSR_IA32_VMX_MISC,
1450 	MSR_IA32_VMX_CR0_FIXED0,
1451 	MSR_IA32_VMX_CR4_FIXED0,
1452 	MSR_IA32_VMX_VMCS_ENUM,
1453 	MSR_IA32_VMX_PROCBASED_CTLS2,
1454 	MSR_IA32_VMX_EPT_VPID_CAP,
1455 	MSR_IA32_VMX_VMFUNC,
1456 
1457 	MSR_K7_HWCR,
1458 	MSR_KVM_POLL_CONTROL,
1459 };
1460 
1461 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1462 static unsigned num_emulated_msrs;
1463 
1464 /*
1465  * List of msr numbers which are used to expose MSR-based features that
1466  * can be used by a hypervisor to validate requested CPU features.
1467  */
1468 static const u32 msr_based_features_all[] = {
1469 	MSR_IA32_VMX_BASIC,
1470 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1471 	MSR_IA32_VMX_PINBASED_CTLS,
1472 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1473 	MSR_IA32_VMX_PROCBASED_CTLS,
1474 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1475 	MSR_IA32_VMX_EXIT_CTLS,
1476 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1477 	MSR_IA32_VMX_ENTRY_CTLS,
1478 	MSR_IA32_VMX_MISC,
1479 	MSR_IA32_VMX_CR0_FIXED0,
1480 	MSR_IA32_VMX_CR0_FIXED1,
1481 	MSR_IA32_VMX_CR4_FIXED0,
1482 	MSR_IA32_VMX_CR4_FIXED1,
1483 	MSR_IA32_VMX_VMCS_ENUM,
1484 	MSR_IA32_VMX_PROCBASED_CTLS2,
1485 	MSR_IA32_VMX_EPT_VPID_CAP,
1486 	MSR_IA32_VMX_VMFUNC,
1487 
1488 	MSR_F10H_DECFG,
1489 	MSR_IA32_UCODE_REV,
1490 	MSR_IA32_ARCH_CAPABILITIES,
1491 	MSR_IA32_PERF_CAPABILITIES,
1492 };
1493 
1494 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1495 static unsigned int num_msr_based_features;
1496 
1497 static u64 kvm_get_arch_capabilities(void)
1498 {
1499 	u64 data = 0;
1500 
1501 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1502 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1503 
1504 	/*
1505 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1506 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1507 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1508 	 * L1 guests, so it need not worry about its own (L2) guests.
1509 	 */
1510 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1511 
1512 	/*
1513 	 * If we're doing cache flushes (either "always" or "cond")
1514 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1515 	 * If an outer hypervisor is doing the cache flush for us
1516 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1517 	 * capability to the guest too, and if EPT is disabled we're not
1518 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1519 	 * require a nested hypervisor to do a flush of its own.
1520 	 */
1521 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1522 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1523 
1524 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1525 		data |= ARCH_CAP_RDCL_NO;
1526 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1527 		data |= ARCH_CAP_SSB_NO;
1528 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1529 		data |= ARCH_CAP_MDS_NO;
1530 
1531 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1532 		/*
1533 		 * If RTM=0 because the kernel has disabled TSX, the host might
1534 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1535 		 * and therefore knows that there cannot be TAA) but keep
1536 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1537 		 * and we want to allow migrating those guests to tsx=off hosts.
1538 		 */
1539 		data &= ~ARCH_CAP_TAA_NO;
1540 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1541 		data |= ARCH_CAP_TAA_NO;
1542 	} else {
1543 		/*
1544 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1545 		 * host so the guest can choose between disabling TSX or
1546 		 * using VERW to clear CPU buffers.
1547 		 */
1548 	}
1549 
1550 	return data;
1551 }
1552 
1553 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1554 {
1555 	switch (msr->index) {
1556 	case MSR_IA32_ARCH_CAPABILITIES:
1557 		msr->data = kvm_get_arch_capabilities();
1558 		break;
1559 	case MSR_IA32_UCODE_REV:
1560 		rdmsrl_safe(msr->index, &msr->data);
1561 		break;
1562 	default:
1563 		return static_call(kvm_x86_get_msr_feature)(msr);
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1569 {
1570 	struct kvm_msr_entry msr;
1571 	int r;
1572 
1573 	msr.index = index;
1574 	r = kvm_get_msr_feature(&msr);
1575 
1576 	if (r == KVM_MSR_RET_INVALID) {
1577 		/* Unconditionally clear the output for simplicity */
1578 		*data = 0;
1579 		if (kvm_msr_ignored_check(index, 0, false))
1580 			r = 0;
1581 	}
1582 
1583 	if (r)
1584 		return r;
1585 
1586 	*data = msr.data;
1587 
1588 	return 0;
1589 }
1590 
1591 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1592 {
1593 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1594 		return false;
1595 
1596 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1597 		return false;
1598 
1599 	if (efer & (EFER_LME | EFER_LMA) &&
1600 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1601 		return false;
1602 
1603 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1604 		return false;
1605 
1606 	return true;
1607 
1608 }
1609 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1610 {
1611 	if (efer & efer_reserved_bits)
1612 		return false;
1613 
1614 	return __kvm_valid_efer(vcpu, efer);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1617 
1618 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1619 {
1620 	u64 old_efer = vcpu->arch.efer;
1621 	u64 efer = msr_info->data;
1622 	int r;
1623 
1624 	if (efer & efer_reserved_bits)
1625 		return 1;
1626 
1627 	if (!msr_info->host_initiated) {
1628 		if (!__kvm_valid_efer(vcpu, efer))
1629 			return 1;
1630 
1631 		if (is_paging(vcpu) &&
1632 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1633 			return 1;
1634 	}
1635 
1636 	efer &= ~EFER_LMA;
1637 	efer |= vcpu->arch.efer & EFER_LMA;
1638 
1639 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1640 	if (r) {
1641 		WARN_ON(r > 0);
1642 		return r;
1643 	}
1644 
1645 	/* Update reserved bits */
1646 	if ((efer ^ old_efer) & EFER_NX)
1647 		kvm_mmu_reset_context(vcpu);
1648 
1649 	return 0;
1650 }
1651 
1652 void kvm_enable_efer_bits(u64 mask)
1653 {
1654        efer_reserved_bits &= ~mask;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1657 
1658 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1659 {
1660 	struct kvm_x86_msr_filter *msr_filter;
1661 	struct msr_bitmap_range *ranges;
1662 	struct kvm *kvm = vcpu->kvm;
1663 	bool allowed;
1664 	int idx;
1665 	u32 i;
1666 
1667 	/* x2APIC MSRs do not support filtering. */
1668 	if (index >= 0x800 && index <= 0x8ff)
1669 		return true;
1670 
1671 	idx = srcu_read_lock(&kvm->srcu);
1672 
1673 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1674 	if (!msr_filter) {
1675 		allowed = true;
1676 		goto out;
1677 	}
1678 
1679 	allowed = msr_filter->default_allow;
1680 	ranges = msr_filter->ranges;
1681 
1682 	for (i = 0; i < msr_filter->count; i++) {
1683 		u32 start = ranges[i].base;
1684 		u32 end = start + ranges[i].nmsrs;
1685 		u32 flags = ranges[i].flags;
1686 		unsigned long *bitmap = ranges[i].bitmap;
1687 
1688 		if ((index >= start) && (index < end) && (flags & type)) {
1689 			allowed = !!test_bit(index - start, bitmap);
1690 			break;
1691 		}
1692 	}
1693 
1694 out:
1695 	srcu_read_unlock(&kvm->srcu, idx);
1696 
1697 	return allowed;
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1700 
1701 /*
1702  * Write @data into the MSR specified by @index.  Select MSR specific fault
1703  * checks are bypassed if @host_initiated is %true.
1704  * Returns 0 on success, non-0 otherwise.
1705  * Assumes vcpu_load() was already called.
1706  */
1707 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1708 			 bool host_initiated)
1709 {
1710 	struct msr_data msr;
1711 
1712 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1713 		return KVM_MSR_RET_FILTERED;
1714 
1715 	switch (index) {
1716 	case MSR_FS_BASE:
1717 	case MSR_GS_BASE:
1718 	case MSR_KERNEL_GS_BASE:
1719 	case MSR_CSTAR:
1720 	case MSR_LSTAR:
1721 		if (is_noncanonical_address(data, vcpu))
1722 			return 1;
1723 		break;
1724 	case MSR_IA32_SYSENTER_EIP:
1725 	case MSR_IA32_SYSENTER_ESP:
1726 		/*
1727 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1728 		 * non-canonical address is written on Intel but not on
1729 		 * AMD (which ignores the top 32-bits, because it does
1730 		 * not implement 64-bit SYSENTER).
1731 		 *
1732 		 * 64-bit code should hence be able to write a non-canonical
1733 		 * value on AMD.  Making the address canonical ensures that
1734 		 * vmentry does not fail on Intel after writing a non-canonical
1735 		 * value, and that something deterministic happens if the guest
1736 		 * invokes 64-bit SYSENTER.
1737 		 */
1738 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1739 		break;
1740 	case MSR_TSC_AUX:
1741 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1742 			return 1;
1743 
1744 		if (!host_initiated &&
1745 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1746 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1747 			return 1;
1748 
1749 		/*
1750 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1751 		 * incomplete and conflicting architectural behavior.  Current
1752 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1753 		 * reserved and always read as zeros.  Enforce Intel's reserved
1754 		 * bits check if and only if the guest CPU is Intel, and clear
1755 		 * the bits in all other cases.  This ensures cross-vendor
1756 		 * migration will provide consistent behavior for the guest.
1757 		 */
1758 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1759 			return 1;
1760 
1761 		data = (u32)data;
1762 		break;
1763 	}
1764 
1765 	msr.data = data;
1766 	msr.index = index;
1767 	msr.host_initiated = host_initiated;
1768 
1769 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1770 }
1771 
1772 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1773 				     u32 index, u64 data, bool host_initiated)
1774 {
1775 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1776 
1777 	if (ret == KVM_MSR_RET_INVALID)
1778 		if (kvm_msr_ignored_check(index, data, true))
1779 			ret = 0;
1780 
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Read the MSR specified by @index into @data.  Select MSR specific fault
1786  * checks are bypassed if @host_initiated is %true.
1787  * Returns 0 on success, non-0 otherwise.
1788  * Assumes vcpu_load() was already called.
1789  */
1790 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1791 		  bool host_initiated)
1792 {
1793 	struct msr_data msr;
1794 	int ret;
1795 
1796 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1797 		return KVM_MSR_RET_FILTERED;
1798 
1799 	switch (index) {
1800 	case MSR_TSC_AUX:
1801 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1802 			return 1;
1803 
1804 		if (!host_initiated &&
1805 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1806 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1807 			return 1;
1808 		break;
1809 	}
1810 
1811 	msr.index = index;
1812 	msr.host_initiated = host_initiated;
1813 
1814 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1815 	if (!ret)
1816 		*data = msr.data;
1817 	return ret;
1818 }
1819 
1820 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1821 				     u32 index, u64 *data, bool host_initiated)
1822 {
1823 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1824 
1825 	if (ret == KVM_MSR_RET_INVALID) {
1826 		/* Unconditionally clear *data for simplicity */
1827 		*data = 0;
1828 		if (kvm_msr_ignored_check(index, 0, false))
1829 			ret = 0;
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1836 {
1837 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_get_msr);
1840 
1841 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1842 {
1843 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_set_msr);
1846 
1847 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1848 {
1849 	if (!vcpu->run->msr.error) {
1850 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1851 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1852 	}
1853 }
1854 
1855 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1856 {
1857 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1858 }
1859 
1860 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1861 {
1862 	complete_userspace_rdmsr(vcpu);
1863 	return complete_emulated_msr_access(vcpu);
1864 }
1865 
1866 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1867 {
1868 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1869 }
1870 
1871 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1872 {
1873 	complete_userspace_rdmsr(vcpu);
1874 	return complete_fast_msr_access(vcpu);
1875 }
1876 
1877 static u64 kvm_msr_reason(int r)
1878 {
1879 	switch (r) {
1880 	case KVM_MSR_RET_INVALID:
1881 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1882 	case KVM_MSR_RET_FILTERED:
1883 		return KVM_MSR_EXIT_REASON_FILTER;
1884 	default:
1885 		return KVM_MSR_EXIT_REASON_INVAL;
1886 	}
1887 }
1888 
1889 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1890 			      u32 exit_reason, u64 data,
1891 			      int (*completion)(struct kvm_vcpu *vcpu),
1892 			      int r)
1893 {
1894 	u64 msr_reason = kvm_msr_reason(r);
1895 
1896 	/* Check if the user wanted to know about this MSR fault */
1897 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1898 		return 0;
1899 
1900 	vcpu->run->exit_reason = exit_reason;
1901 	vcpu->run->msr.error = 0;
1902 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1903 	vcpu->run->msr.reason = msr_reason;
1904 	vcpu->run->msr.index = index;
1905 	vcpu->run->msr.data = data;
1906 	vcpu->arch.complete_userspace_io = completion;
1907 
1908 	return 1;
1909 }
1910 
1911 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1912 {
1913 	u32 ecx = kvm_rcx_read(vcpu);
1914 	u64 data;
1915 	int r;
1916 
1917 	r = kvm_get_msr(vcpu, ecx, &data);
1918 
1919 	if (!r) {
1920 		trace_kvm_msr_read(ecx, data);
1921 
1922 		kvm_rax_write(vcpu, data & -1u);
1923 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1924 	} else {
1925 		/* MSR read failed? See if we should ask user space */
1926 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1927 				       complete_fast_rdmsr, r))
1928 			return 0;
1929 		trace_kvm_msr_read_ex(ecx);
1930 	}
1931 
1932 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1935 
1936 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1937 {
1938 	u32 ecx = kvm_rcx_read(vcpu);
1939 	u64 data = kvm_read_edx_eax(vcpu);
1940 	int r;
1941 
1942 	r = kvm_set_msr(vcpu, ecx, data);
1943 
1944 	if (!r) {
1945 		trace_kvm_msr_write(ecx, data);
1946 	} else {
1947 		/* MSR write failed? See if we should ask user space */
1948 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1949 				       complete_fast_msr_access, r))
1950 			return 0;
1951 		/* Signal all other negative errors to userspace */
1952 		if (r < 0)
1953 			return r;
1954 		trace_kvm_msr_write_ex(ecx, data);
1955 	}
1956 
1957 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1960 
1961 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1962 {
1963 	return kvm_skip_emulated_instruction(vcpu);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1966 
1967 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1968 {
1969 	/* Treat an INVD instruction as a NOP and just skip it. */
1970 	return kvm_emulate_as_nop(vcpu);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1973 
1974 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1975 {
1976 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1977 	return kvm_emulate_as_nop(vcpu);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1980 
1981 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1982 {
1983 	kvm_queue_exception(vcpu, UD_VECTOR);
1984 	return 1;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1987 
1988 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1989 {
1990 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1991 	return kvm_emulate_as_nop(vcpu);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1994 
1995 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1996 {
1997 	xfer_to_guest_mode_prepare();
1998 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1999 		xfer_to_guest_mode_work_pending();
2000 }
2001 
2002 /*
2003  * The fast path for frequent and performance sensitive wrmsr emulation,
2004  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2005  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2006  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2007  * other cases which must be called after interrupts are enabled on the host.
2008  */
2009 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2010 {
2011 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2012 		return 1;
2013 
2014 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2015 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2016 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2017 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
2018 
2019 		data &= ~(1 << 12);
2020 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2021 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2022 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2023 		trace_kvm_apic_write(APIC_ICR, (u32)data);
2024 		return 0;
2025 	}
2026 
2027 	return 1;
2028 }
2029 
2030 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2031 {
2032 	if (!kvm_can_use_hv_timer(vcpu))
2033 		return 1;
2034 
2035 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2036 	return 0;
2037 }
2038 
2039 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2040 {
2041 	u32 msr = kvm_rcx_read(vcpu);
2042 	u64 data;
2043 	fastpath_t ret = EXIT_FASTPATH_NONE;
2044 
2045 	switch (msr) {
2046 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2047 		data = kvm_read_edx_eax(vcpu);
2048 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2049 			kvm_skip_emulated_instruction(vcpu);
2050 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2051 		}
2052 		break;
2053 	case MSR_IA32_TSC_DEADLINE:
2054 		data = kvm_read_edx_eax(vcpu);
2055 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2056 			kvm_skip_emulated_instruction(vcpu);
2057 			ret = EXIT_FASTPATH_REENTER_GUEST;
2058 		}
2059 		break;
2060 	default:
2061 		break;
2062 	}
2063 
2064 	if (ret != EXIT_FASTPATH_NONE)
2065 		trace_kvm_msr_write(msr, data);
2066 
2067 	return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2070 
2071 /*
2072  * Adapt set_msr() to msr_io()'s calling convention
2073  */
2074 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2075 {
2076 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2077 }
2078 
2079 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2080 {
2081 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2082 }
2083 
2084 #ifdef CONFIG_X86_64
2085 struct pvclock_clock {
2086 	int vclock_mode;
2087 	u64 cycle_last;
2088 	u64 mask;
2089 	u32 mult;
2090 	u32 shift;
2091 	u64 base_cycles;
2092 	u64 offset;
2093 };
2094 
2095 struct pvclock_gtod_data {
2096 	seqcount_t	seq;
2097 
2098 	struct pvclock_clock clock; /* extract of a clocksource struct */
2099 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2100 
2101 	ktime_t		offs_boot;
2102 	u64		wall_time_sec;
2103 };
2104 
2105 static struct pvclock_gtod_data pvclock_gtod_data;
2106 
2107 static void update_pvclock_gtod(struct timekeeper *tk)
2108 {
2109 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2110 
2111 	write_seqcount_begin(&vdata->seq);
2112 
2113 	/* copy pvclock gtod data */
2114 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2115 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2116 	vdata->clock.mask		= tk->tkr_mono.mask;
2117 	vdata->clock.mult		= tk->tkr_mono.mult;
2118 	vdata->clock.shift		= tk->tkr_mono.shift;
2119 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2120 	vdata->clock.offset		= tk->tkr_mono.base;
2121 
2122 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2123 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2124 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2125 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2126 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2127 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2128 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2129 
2130 	vdata->wall_time_sec            = tk->xtime_sec;
2131 
2132 	vdata->offs_boot		= tk->offs_boot;
2133 
2134 	write_seqcount_end(&vdata->seq);
2135 }
2136 
2137 static s64 get_kvmclock_base_ns(void)
2138 {
2139 	/* Count up from boot time, but with the frequency of the raw clock.  */
2140 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2141 }
2142 #else
2143 static s64 get_kvmclock_base_ns(void)
2144 {
2145 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2146 	return ktime_get_boottime_ns();
2147 }
2148 #endif
2149 
2150 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2151 {
2152 	int version;
2153 	int r;
2154 	struct pvclock_wall_clock wc;
2155 	u32 wc_sec_hi;
2156 	u64 wall_nsec;
2157 
2158 	if (!wall_clock)
2159 		return;
2160 
2161 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2162 	if (r)
2163 		return;
2164 
2165 	if (version & 1)
2166 		++version;  /* first time write, random junk */
2167 
2168 	++version;
2169 
2170 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2171 		return;
2172 
2173 	/*
2174 	 * The guest calculates current wall clock time by adding
2175 	 * system time (updated by kvm_guest_time_update below) to the
2176 	 * wall clock specified here.  We do the reverse here.
2177 	 */
2178 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2179 
2180 	wc.nsec = do_div(wall_nsec, 1000000000);
2181 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2182 	wc.version = version;
2183 
2184 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2185 
2186 	if (sec_hi_ofs) {
2187 		wc_sec_hi = wall_nsec >> 32;
2188 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2189 				&wc_sec_hi, sizeof(wc_sec_hi));
2190 	}
2191 
2192 	version++;
2193 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2194 }
2195 
2196 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2197 				  bool old_msr, bool host_initiated)
2198 {
2199 	struct kvm_arch *ka = &vcpu->kvm->arch;
2200 
2201 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2202 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2203 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2204 
2205 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2206 	}
2207 
2208 	vcpu->arch.time = system_time;
2209 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2210 
2211 	/* we verify if the enable bit is set... */
2212 	vcpu->arch.pv_time_enabled = false;
2213 	if (!(system_time & 1))
2214 		return;
2215 
2216 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2217 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2218 				       sizeof(struct pvclock_vcpu_time_info)))
2219 		vcpu->arch.pv_time_enabled = true;
2220 
2221 	return;
2222 }
2223 
2224 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2225 {
2226 	do_shl32_div32(dividend, divisor);
2227 	return dividend;
2228 }
2229 
2230 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2231 			       s8 *pshift, u32 *pmultiplier)
2232 {
2233 	uint64_t scaled64;
2234 	int32_t  shift = 0;
2235 	uint64_t tps64;
2236 	uint32_t tps32;
2237 
2238 	tps64 = base_hz;
2239 	scaled64 = scaled_hz;
2240 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2241 		tps64 >>= 1;
2242 		shift--;
2243 	}
2244 
2245 	tps32 = (uint32_t)tps64;
2246 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2247 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2248 			scaled64 >>= 1;
2249 		else
2250 			tps32 <<= 1;
2251 		shift++;
2252 	}
2253 
2254 	*pshift = shift;
2255 	*pmultiplier = div_frac(scaled64, tps32);
2256 }
2257 
2258 #ifdef CONFIG_X86_64
2259 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2260 #endif
2261 
2262 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2263 static unsigned long max_tsc_khz;
2264 
2265 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2266 {
2267 	u64 v = (u64)khz * (1000000 + ppm);
2268 	do_div(v, 1000000);
2269 	return v;
2270 }
2271 
2272 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2273 
2274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2275 {
2276 	u64 ratio;
2277 
2278 	/* Guest TSC same frequency as host TSC? */
2279 	if (!scale) {
2280 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2281 		return 0;
2282 	}
2283 
2284 	/* TSC scaling supported? */
2285 	if (!kvm_has_tsc_control) {
2286 		if (user_tsc_khz > tsc_khz) {
2287 			vcpu->arch.tsc_catchup = 1;
2288 			vcpu->arch.tsc_always_catchup = 1;
2289 			return 0;
2290 		} else {
2291 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2292 			return -1;
2293 		}
2294 	}
2295 
2296 	/* TSC scaling required  - calculate ratio */
2297 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2298 				user_tsc_khz, tsc_khz);
2299 
2300 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2301 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2302 			            user_tsc_khz);
2303 		return -1;
2304 	}
2305 
2306 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2307 	return 0;
2308 }
2309 
2310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2311 {
2312 	u32 thresh_lo, thresh_hi;
2313 	int use_scaling = 0;
2314 
2315 	/* tsc_khz can be zero if TSC calibration fails */
2316 	if (user_tsc_khz == 0) {
2317 		/* set tsc_scaling_ratio to a safe value */
2318 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2319 		return -1;
2320 	}
2321 
2322 	/* Compute a scale to convert nanoseconds in TSC cycles */
2323 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2324 			   &vcpu->arch.virtual_tsc_shift,
2325 			   &vcpu->arch.virtual_tsc_mult);
2326 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2327 
2328 	/*
2329 	 * Compute the variation in TSC rate which is acceptable
2330 	 * within the range of tolerance and decide if the
2331 	 * rate being applied is within that bounds of the hardware
2332 	 * rate.  If so, no scaling or compensation need be done.
2333 	 */
2334 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2335 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2336 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2337 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2338 		use_scaling = 1;
2339 	}
2340 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2341 }
2342 
2343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2344 {
2345 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2346 				      vcpu->arch.virtual_tsc_mult,
2347 				      vcpu->arch.virtual_tsc_shift);
2348 	tsc += vcpu->arch.this_tsc_write;
2349 	return tsc;
2350 }
2351 
2352 static inline int gtod_is_based_on_tsc(int mode)
2353 {
2354 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2355 }
2356 
2357 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2358 {
2359 #ifdef CONFIG_X86_64
2360 	bool vcpus_matched;
2361 	struct kvm_arch *ka = &vcpu->kvm->arch;
2362 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2363 
2364 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2365 			 atomic_read(&vcpu->kvm->online_vcpus));
2366 
2367 	/*
2368 	 * Once the masterclock is enabled, always perform request in
2369 	 * order to update it.
2370 	 *
2371 	 * In order to enable masterclock, the host clocksource must be TSC
2372 	 * and the vcpus need to have matched TSCs.  When that happens,
2373 	 * perform request to enable masterclock.
2374 	 */
2375 	if (ka->use_master_clock ||
2376 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2377 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2378 
2379 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2380 			    atomic_read(&vcpu->kvm->online_vcpus),
2381 		            ka->use_master_clock, gtod->clock.vclock_mode);
2382 #endif
2383 }
2384 
2385 /*
2386  * Multiply tsc by a fixed point number represented by ratio.
2387  *
2388  * The most significant 64-N bits (mult) of ratio represent the
2389  * integral part of the fixed point number; the remaining N bits
2390  * (frac) represent the fractional part, ie. ratio represents a fixed
2391  * point number (mult + frac * 2^(-N)).
2392  *
2393  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2394  */
2395 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2396 {
2397 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2398 }
2399 
2400 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2401 {
2402 	u64 _tsc = tsc;
2403 
2404 	if (ratio != kvm_default_tsc_scaling_ratio)
2405 		_tsc = __scale_tsc(ratio, tsc);
2406 
2407 	return _tsc;
2408 }
2409 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2410 
2411 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2412 {
2413 	u64 tsc;
2414 
2415 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2416 
2417 	return target_tsc - tsc;
2418 }
2419 
2420 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2421 {
2422 	return vcpu->arch.l1_tsc_offset +
2423 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2426 
2427 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2428 {
2429 	u64 nested_offset;
2430 
2431 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2432 		nested_offset = l1_offset;
2433 	else
2434 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2435 						kvm_tsc_scaling_ratio_frac_bits);
2436 
2437 	nested_offset += l2_offset;
2438 	return nested_offset;
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2441 
2442 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2443 {
2444 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2445 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2446 				       kvm_tsc_scaling_ratio_frac_bits);
2447 
2448 	return l1_multiplier;
2449 }
2450 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2451 
2452 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2453 {
2454 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2455 				   vcpu->arch.l1_tsc_offset,
2456 				   l1_offset);
2457 
2458 	vcpu->arch.l1_tsc_offset = l1_offset;
2459 
2460 	/*
2461 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2462 	 * according to the spec this should set L1's TSC (as opposed to
2463 	 * setting L1's offset for L2).
2464 	 */
2465 	if (is_guest_mode(vcpu))
2466 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2467 			l1_offset,
2468 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2469 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2470 	else
2471 		vcpu->arch.tsc_offset = l1_offset;
2472 
2473 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2474 }
2475 
2476 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2477 {
2478 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2479 
2480 	/* Userspace is changing the multiplier while L2 is active */
2481 	if (is_guest_mode(vcpu))
2482 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2483 			l1_multiplier,
2484 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2485 	else
2486 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2487 
2488 	if (kvm_has_tsc_control)
2489 		static_call(kvm_x86_write_tsc_multiplier)(
2490 			vcpu, vcpu->arch.tsc_scaling_ratio);
2491 }
2492 
2493 static inline bool kvm_check_tsc_unstable(void)
2494 {
2495 #ifdef CONFIG_X86_64
2496 	/*
2497 	 * TSC is marked unstable when we're running on Hyper-V,
2498 	 * 'TSC page' clocksource is good.
2499 	 */
2500 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2501 		return false;
2502 #endif
2503 	return check_tsc_unstable();
2504 }
2505 
2506 /*
2507  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2508  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2509  * participates in.
2510  */
2511 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2512 				  u64 ns, bool matched)
2513 {
2514 	struct kvm *kvm = vcpu->kvm;
2515 
2516 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2517 
2518 	/*
2519 	 * We also track th most recent recorded KHZ, write and time to
2520 	 * allow the matching interval to be extended at each write.
2521 	 */
2522 	kvm->arch.last_tsc_nsec = ns;
2523 	kvm->arch.last_tsc_write = tsc;
2524 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2525 	kvm->arch.last_tsc_offset = offset;
2526 
2527 	vcpu->arch.last_guest_tsc = tsc;
2528 
2529 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2530 
2531 	if (!matched) {
2532 		/*
2533 		 * We split periods of matched TSC writes into generations.
2534 		 * For each generation, we track the original measured
2535 		 * nanosecond time, offset, and write, so if TSCs are in
2536 		 * sync, we can match exact offset, and if not, we can match
2537 		 * exact software computation in compute_guest_tsc()
2538 		 *
2539 		 * These values are tracked in kvm->arch.cur_xxx variables.
2540 		 */
2541 		kvm->arch.cur_tsc_generation++;
2542 		kvm->arch.cur_tsc_nsec = ns;
2543 		kvm->arch.cur_tsc_write = tsc;
2544 		kvm->arch.cur_tsc_offset = offset;
2545 		kvm->arch.nr_vcpus_matched_tsc = 0;
2546 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2547 		kvm->arch.nr_vcpus_matched_tsc++;
2548 	}
2549 
2550 	/* Keep track of which generation this VCPU has synchronized to */
2551 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2552 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2553 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2554 
2555 	kvm_track_tsc_matching(vcpu);
2556 }
2557 
2558 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2559 {
2560 	struct kvm *kvm = vcpu->kvm;
2561 	u64 offset, ns, elapsed;
2562 	unsigned long flags;
2563 	bool matched = false;
2564 	bool synchronizing = false;
2565 
2566 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2567 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2568 	ns = get_kvmclock_base_ns();
2569 	elapsed = ns - kvm->arch.last_tsc_nsec;
2570 
2571 	if (vcpu->arch.virtual_tsc_khz) {
2572 		if (data == 0) {
2573 			/*
2574 			 * detection of vcpu initialization -- need to sync
2575 			 * with other vCPUs. This particularly helps to keep
2576 			 * kvm_clock stable after CPU hotplug
2577 			 */
2578 			synchronizing = true;
2579 		} else {
2580 			u64 tsc_exp = kvm->arch.last_tsc_write +
2581 						nsec_to_cycles(vcpu, elapsed);
2582 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2583 			/*
2584 			 * Special case: TSC write with a small delta (1 second)
2585 			 * of virtual cycle time against real time is
2586 			 * interpreted as an attempt to synchronize the CPU.
2587 			 */
2588 			synchronizing = data < tsc_exp + tsc_hz &&
2589 					data + tsc_hz > tsc_exp;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2595 	 * TSC, we add elapsed time in this computation.  We could let the
2596 	 * compensation code attempt to catch up if we fall behind, but
2597 	 * it's better to try to match offsets from the beginning.
2598          */
2599 	if (synchronizing &&
2600 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2601 		if (!kvm_check_tsc_unstable()) {
2602 			offset = kvm->arch.cur_tsc_offset;
2603 		} else {
2604 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2605 			data += delta;
2606 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2607 		}
2608 		matched = true;
2609 	}
2610 
2611 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2612 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2613 }
2614 
2615 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2616 					   s64 adjustment)
2617 {
2618 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2619 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2620 }
2621 
2622 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2623 {
2624 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2625 		WARN_ON(adjustment < 0);
2626 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2627 				   vcpu->arch.l1_tsc_scaling_ratio);
2628 	adjust_tsc_offset_guest(vcpu, adjustment);
2629 }
2630 
2631 #ifdef CONFIG_X86_64
2632 
2633 static u64 read_tsc(void)
2634 {
2635 	u64 ret = (u64)rdtsc_ordered();
2636 	u64 last = pvclock_gtod_data.clock.cycle_last;
2637 
2638 	if (likely(ret >= last))
2639 		return ret;
2640 
2641 	/*
2642 	 * GCC likes to generate cmov here, but this branch is extremely
2643 	 * predictable (it's just a function of time and the likely is
2644 	 * very likely) and there's a data dependence, so force GCC
2645 	 * to generate a branch instead.  I don't barrier() because
2646 	 * we don't actually need a barrier, and if this function
2647 	 * ever gets inlined it will generate worse code.
2648 	 */
2649 	asm volatile ("");
2650 	return last;
2651 }
2652 
2653 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2654 			  int *mode)
2655 {
2656 	long v;
2657 	u64 tsc_pg_val;
2658 
2659 	switch (clock->vclock_mode) {
2660 	case VDSO_CLOCKMODE_HVCLOCK:
2661 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2662 						  tsc_timestamp);
2663 		if (tsc_pg_val != U64_MAX) {
2664 			/* TSC page valid */
2665 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2666 			v = (tsc_pg_val - clock->cycle_last) &
2667 				clock->mask;
2668 		} else {
2669 			/* TSC page invalid */
2670 			*mode = VDSO_CLOCKMODE_NONE;
2671 		}
2672 		break;
2673 	case VDSO_CLOCKMODE_TSC:
2674 		*mode = VDSO_CLOCKMODE_TSC;
2675 		*tsc_timestamp = read_tsc();
2676 		v = (*tsc_timestamp - clock->cycle_last) &
2677 			clock->mask;
2678 		break;
2679 	default:
2680 		*mode = VDSO_CLOCKMODE_NONE;
2681 	}
2682 
2683 	if (*mode == VDSO_CLOCKMODE_NONE)
2684 		*tsc_timestamp = v = 0;
2685 
2686 	return v * clock->mult;
2687 }
2688 
2689 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2690 {
2691 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2692 	unsigned long seq;
2693 	int mode;
2694 	u64 ns;
2695 
2696 	do {
2697 		seq = read_seqcount_begin(&gtod->seq);
2698 		ns = gtod->raw_clock.base_cycles;
2699 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2700 		ns >>= gtod->raw_clock.shift;
2701 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2702 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2703 	*t = ns;
2704 
2705 	return mode;
2706 }
2707 
2708 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2709 {
2710 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2711 	unsigned long seq;
2712 	int mode;
2713 	u64 ns;
2714 
2715 	do {
2716 		seq = read_seqcount_begin(&gtod->seq);
2717 		ts->tv_sec = gtod->wall_time_sec;
2718 		ns = gtod->clock.base_cycles;
2719 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2720 		ns >>= gtod->clock.shift;
2721 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2722 
2723 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2724 	ts->tv_nsec = ns;
2725 
2726 	return mode;
2727 }
2728 
2729 /* returns true if host is using TSC based clocksource */
2730 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2731 {
2732 	/* checked again under seqlock below */
2733 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2734 		return false;
2735 
2736 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2737 						      tsc_timestamp));
2738 }
2739 
2740 /* returns true if host is using TSC based clocksource */
2741 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2742 					   u64 *tsc_timestamp)
2743 {
2744 	/* checked again under seqlock below */
2745 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2746 		return false;
2747 
2748 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2749 }
2750 #endif
2751 
2752 /*
2753  *
2754  * Assuming a stable TSC across physical CPUS, and a stable TSC
2755  * across virtual CPUs, the following condition is possible.
2756  * Each numbered line represents an event visible to both
2757  * CPUs at the next numbered event.
2758  *
2759  * "timespecX" represents host monotonic time. "tscX" represents
2760  * RDTSC value.
2761  *
2762  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2763  *
2764  * 1.  read timespec0,tsc0
2765  * 2.					| timespec1 = timespec0 + N
2766  * 					| tsc1 = tsc0 + M
2767  * 3. transition to guest		| transition to guest
2768  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2769  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2770  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2771  *
2772  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2773  *
2774  * 	- ret0 < ret1
2775  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2776  *		...
2777  *	- 0 < N - M => M < N
2778  *
2779  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2780  * always the case (the difference between two distinct xtime instances
2781  * might be smaller then the difference between corresponding TSC reads,
2782  * when updating guest vcpus pvclock areas).
2783  *
2784  * To avoid that problem, do not allow visibility of distinct
2785  * system_timestamp/tsc_timestamp values simultaneously: use a master
2786  * copy of host monotonic time values. Update that master copy
2787  * in lockstep.
2788  *
2789  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2790  *
2791  */
2792 
2793 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2794 {
2795 #ifdef CONFIG_X86_64
2796 	struct kvm_arch *ka = &kvm->arch;
2797 	int vclock_mode;
2798 	bool host_tsc_clocksource, vcpus_matched;
2799 
2800 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2801 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2802 			atomic_read(&kvm->online_vcpus));
2803 
2804 	/*
2805 	 * If the host uses TSC clock, then passthrough TSC as stable
2806 	 * to the guest.
2807 	 */
2808 	host_tsc_clocksource = kvm_get_time_and_clockread(
2809 					&ka->master_kernel_ns,
2810 					&ka->master_cycle_now);
2811 
2812 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2813 				&& !ka->backwards_tsc_observed
2814 				&& !ka->boot_vcpu_runs_old_kvmclock;
2815 
2816 	if (ka->use_master_clock)
2817 		atomic_set(&kvm_guest_has_master_clock, 1);
2818 
2819 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2820 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2821 					vcpus_matched);
2822 #endif
2823 }
2824 
2825 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2826 {
2827 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2828 }
2829 
2830 static void __kvm_start_pvclock_update(struct kvm *kvm)
2831 {
2832 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2833 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2834 }
2835 
2836 static void kvm_start_pvclock_update(struct kvm *kvm)
2837 {
2838 	kvm_make_mclock_inprogress_request(kvm);
2839 
2840 	/* no guest entries from this point */
2841 	__kvm_start_pvclock_update(kvm);
2842 }
2843 
2844 static void kvm_end_pvclock_update(struct kvm *kvm)
2845 {
2846 	struct kvm_arch *ka = &kvm->arch;
2847 	struct kvm_vcpu *vcpu;
2848 	unsigned long i;
2849 
2850 	write_seqcount_end(&ka->pvclock_sc);
2851 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2852 	kvm_for_each_vcpu(i, vcpu, kvm)
2853 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2854 
2855 	/* guest entries allowed */
2856 	kvm_for_each_vcpu(i, vcpu, kvm)
2857 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2858 }
2859 
2860 static void kvm_update_masterclock(struct kvm *kvm)
2861 {
2862 	kvm_hv_invalidate_tsc_page(kvm);
2863 	kvm_start_pvclock_update(kvm);
2864 	pvclock_update_vm_gtod_copy(kvm);
2865 	kvm_end_pvclock_update(kvm);
2866 }
2867 
2868 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2869 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2870 {
2871 	struct kvm_arch *ka = &kvm->arch;
2872 	struct pvclock_vcpu_time_info hv_clock;
2873 
2874 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2875 	get_cpu();
2876 
2877 	data->flags = 0;
2878 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2879 #ifdef CONFIG_X86_64
2880 		struct timespec64 ts;
2881 
2882 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2883 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2884 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2885 		} else
2886 #endif
2887 		data->host_tsc = rdtsc();
2888 
2889 		data->flags |= KVM_CLOCK_TSC_STABLE;
2890 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2891 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2892 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2893 				   &hv_clock.tsc_shift,
2894 				   &hv_clock.tsc_to_system_mul);
2895 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2896 	} else {
2897 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2898 	}
2899 
2900 	put_cpu();
2901 }
2902 
2903 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2904 {
2905 	struct kvm_arch *ka = &kvm->arch;
2906 	unsigned seq;
2907 
2908 	do {
2909 		seq = read_seqcount_begin(&ka->pvclock_sc);
2910 		__get_kvmclock(kvm, data);
2911 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2912 }
2913 
2914 u64 get_kvmclock_ns(struct kvm *kvm)
2915 {
2916 	struct kvm_clock_data data;
2917 
2918 	get_kvmclock(kvm, &data);
2919 	return data.clock;
2920 }
2921 
2922 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2923 				   struct gfn_to_hva_cache *cache,
2924 				   unsigned int offset)
2925 {
2926 	struct kvm_vcpu_arch *vcpu = &v->arch;
2927 	struct pvclock_vcpu_time_info guest_hv_clock;
2928 
2929 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2930 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2931 		return;
2932 
2933 	/* This VCPU is paused, but it's legal for a guest to read another
2934 	 * VCPU's kvmclock, so we really have to follow the specification where
2935 	 * it says that version is odd if data is being modified, and even after
2936 	 * it is consistent.
2937 	 *
2938 	 * Version field updates must be kept separate.  This is because
2939 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2940 	 * writes within a string instruction are weakly ordered.  So there
2941 	 * are three writes overall.
2942 	 *
2943 	 * As a small optimization, only write the version field in the first
2944 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2945 	 * version field is the first in the struct.
2946 	 */
2947 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2948 
2949 	if (guest_hv_clock.version & 1)
2950 		++guest_hv_clock.version;  /* first time write, random junk */
2951 
2952 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2953 	kvm_write_guest_offset_cached(v->kvm, cache,
2954 				      &vcpu->hv_clock, offset,
2955 				      sizeof(vcpu->hv_clock.version));
2956 
2957 	smp_wmb();
2958 
2959 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2960 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2961 
2962 	if (vcpu->pvclock_set_guest_stopped_request) {
2963 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2964 		vcpu->pvclock_set_guest_stopped_request = false;
2965 	}
2966 
2967 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2968 
2969 	kvm_write_guest_offset_cached(v->kvm, cache,
2970 				      &vcpu->hv_clock, offset,
2971 				      sizeof(vcpu->hv_clock));
2972 
2973 	smp_wmb();
2974 
2975 	vcpu->hv_clock.version++;
2976 	kvm_write_guest_offset_cached(v->kvm, cache,
2977 				     &vcpu->hv_clock, offset,
2978 				     sizeof(vcpu->hv_clock.version));
2979 }
2980 
2981 static int kvm_guest_time_update(struct kvm_vcpu *v)
2982 {
2983 	unsigned long flags, tgt_tsc_khz;
2984 	unsigned seq;
2985 	struct kvm_vcpu_arch *vcpu = &v->arch;
2986 	struct kvm_arch *ka = &v->kvm->arch;
2987 	s64 kernel_ns;
2988 	u64 tsc_timestamp, host_tsc;
2989 	u8 pvclock_flags;
2990 	bool use_master_clock;
2991 
2992 	kernel_ns = 0;
2993 	host_tsc = 0;
2994 
2995 	/*
2996 	 * If the host uses TSC clock, then passthrough TSC as stable
2997 	 * to the guest.
2998 	 */
2999 	do {
3000 		seq = read_seqcount_begin(&ka->pvclock_sc);
3001 		use_master_clock = ka->use_master_clock;
3002 		if (use_master_clock) {
3003 			host_tsc = ka->master_cycle_now;
3004 			kernel_ns = ka->master_kernel_ns;
3005 		}
3006 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3007 
3008 	/* Keep irq disabled to prevent changes to the clock */
3009 	local_irq_save(flags);
3010 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3011 	if (unlikely(tgt_tsc_khz == 0)) {
3012 		local_irq_restore(flags);
3013 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3014 		return 1;
3015 	}
3016 	if (!use_master_clock) {
3017 		host_tsc = rdtsc();
3018 		kernel_ns = get_kvmclock_base_ns();
3019 	}
3020 
3021 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3022 
3023 	/*
3024 	 * We may have to catch up the TSC to match elapsed wall clock
3025 	 * time for two reasons, even if kvmclock is used.
3026 	 *   1) CPU could have been running below the maximum TSC rate
3027 	 *   2) Broken TSC compensation resets the base at each VCPU
3028 	 *      entry to avoid unknown leaps of TSC even when running
3029 	 *      again on the same CPU.  This may cause apparent elapsed
3030 	 *      time to disappear, and the guest to stand still or run
3031 	 *	very slowly.
3032 	 */
3033 	if (vcpu->tsc_catchup) {
3034 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3035 		if (tsc > tsc_timestamp) {
3036 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3037 			tsc_timestamp = tsc;
3038 		}
3039 	}
3040 
3041 	local_irq_restore(flags);
3042 
3043 	/* With all the info we got, fill in the values */
3044 
3045 	if (kvm_has_tsc_control)
3046 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3047 					    v->arch.l1_tsc_scaling_ratio);
3048 
3049 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3050 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3051 				   &vcpu->hv_clock.tsc_shift,
3052 				   &vcpu->hv_clock.tsc_to_system_mul);
3053 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3054 	}
3055 
3056 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3057 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3058 	vcpu->last_guest_tsc = tsc_timestamp;
3059 
3060 	/* If the host uses TSC clocksource, then it is stable */
3061 	pvclock_flags = 0;
3062 	if (use_master_clock)
3063 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3064 
3065 	vcpu->hv_clock.flags = pvclock_flags;
3066 
3067 	if (vcpu->pv_time_enabled)
3068 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3069 	if (vcpu->xen.vcpu_info_set)
3070 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3071 				       offsetof(struct compat_vcpu_info, time));
3072 	if (vcpu->xen.vcpu_time_info_set)
3073 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3074 	if (!v->vcpu_idx)
3075 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3076 	return 0;
3077 }
3078 
3079 /*
3080  * kvmclock updates which are isolated to a given vcpu, such as
3081  * vcpu->cpu migration, should not allow system_timestamp from
3082  * the rest of the vcpus to remain static. Otherwise ntp frequency
3083  * correction applies to one vcpu's system_timestamp but not
3084  * the others.
3085  *
3086  * So in those cases, request a kvmclock update for all vcpus.
3087  * We need to rate-limit these requests though, as they can
3088  * considerably slow guests that have a large number of vcpus.
3089  * The time for a remote vcpu to update its kvmclock is bound
3090  * by the delay we use to rate-limit the updates.
3091  */
3092 
3093 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3094 
3095 static void kvmclock_update_fn(struct work_struct *work)
3096 {
3097 	unsigned long i;
3098 	struct delayed_work *dwork = to_delayed_work(work);
3099 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3100 					   kvmclock_update_work);
3101 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3102 	struct kvm_vcpu *vcpu;
3103 
3104 	kvm_for_each_vcpu(i, vcpu, kvm) {
3105 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3106 		kvm_vcpu_kick(vcpu);
3107 	}
3108 }
3109 
3110 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3111 {
3112 	struct kvm *kvm = v->kvm;
3113 
3114 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3115 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3116 					KVMCLOCK_UPDATE_DELAY);
3117 }
3118 
3119 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3120 
3121 static void kvmclock_sync_fn(struct work_struct *work)
3122 {
3123 	struct delayed_work *dwork = to_delayed_work(work);
3124 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3125 					   kvmclock_sync_work);
3126 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3127 
3128 	if (!kvmclock_periodic_sync)
3129 		return;
3130 
3131 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3132 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3133 					KVMCLOCK_SYNC_PERIOD);
3134 }
3135 
3136 /*
3137  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3138  */
3139 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3140 {
3141 	/* McStatusWrEn enabled? */
3142 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3143 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3144 
3145 	return false;
3146 }
3147 
3148 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3149 {
3150 	u64 mcg_cap = vcpu->arch.mcg_cap;
3151 	unsigned bank_num = mcg_cap & 0xff;
3152 	u32 msr = msr_info->index;
3153 	u64 data = msr_info->data;
3154 
3155 	switch (msr) {
3156 	case MSR_IA32_MCG_STATUS:
3157 		vcpu->arch.mcg_status = data;
3158 		break;
3159 	case MSR_IA32_MCG_CTL:
3160 		if (!(mcg_cap & MCG_CTL_P) &&
3161 		    (data || !msr_info->host_initiated))
3162 			return 1;
3163 		if (data != 0 && data != ~(u64)0)
3164 			return 1;
3165 		vcpu->arch.mcg_ctl = data;
3166 		break;
3167 	default:
3168 		if (msr >= MSR_IA32_MC0_CTL &&
3169 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3170 			u32 offset = array_index_nospec(
3171 				msr - MSR_IA32_MC0_CTL,
3172 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3173 
3174 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3175 			 * some Linux kernels though clear bit 10 in bank 4 to
3176 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3177 			 * this to avoid an uncatched #GP in the guest
3178 			 */
3179 			if ((offset & 0x3) == 0 &&
3180 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3181 				return -1;
3182 
3183 			/* MCi_STATUS */
3184 			if (!msr_info->host_initiated &&
3185 			    (offset & 0x3) == 1 && data != 0) {
3186 				if (!can_set_mci_status(vcpu))
3187 					return -1;
3188 			}
3189 
3190 			vcpu->arch.mce_banks[offset] = data;
3191 			break;
3192 		}
3193 		return 1;
3194 	}
3195 	return 0;
3196 }
3197 
3198 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3199 {
3200 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3201 
3202 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3203 }
3204 
3205 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3206 {
3207 	gpa_t gpa = data & ~0x3f;
3208 
3209 	/* Bits 4:5 are reserved, Should be zero */
3210 	if (data & 0x30)
3211 		return 1;
3212 
3213 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3214 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3215 		return 1;
3216 
3217 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3218 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3219 		return 1;
3220 
3221 	if (!lapic_in_kernel(vcpu))
3222 		return data ? 1 : 0;
3223 
3224 	vcpu->arch.apf.msr_en_val = data;
3225 
3226 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3227 		kvm_clear_async_pf_completion_queue(vcpu);
3228 		kvm_async_pf_hash_reset(vcpu);
3229 		return 0;
3230 	}
3231 
3232 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3233 					sizeof(u64)))
3234 		return 1;
3235 
3236 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3237 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3238 
3239 	kvm_async_pf_wakeup_all(vcpu);
3240 
3241 	return 0;
3242 }
3243 
3244 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3245 {
3246 	/* Bits 8-63 are reserved */
3247 	if (data >> 8)
3248 		return 1;
3249 
3250 	if (!lapic_in_kernel(vcpu))
3251 		return 1;
3252 
3253 	vcpu->arch.apf.msr_int_val = data;
3254 
3255 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3256 
3257 	return 0;
3258 }
3259 
3260 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3261 {
3262 	vcpu->arch.pv_time_enabled = false;
3263 	vcpu->arch.time = 0;
3264 }
3265 
3266 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3267 {
3268 	++vcpu->stat.tlb_flush;
3269 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3270 }
3271 
3272 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3273 {
3274 	++vcpu->stat.tlb_flush;
3275 
3276 	if (!tdp_enabled) {
3277 		/*
3278 		 * A TLB flush on behalf of the guest is equivalent to
3279 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3280 		 * a forced sync of the shadow page tables.  Ensure all the
3281 		 * roots are synced and the guest TLB in hardware is clean.
3282 		 */
3283 		kvm_mmu_sync_roots(vcpu);
3284 		kvm_mmu_sync_prev_roots(vcpu);
3285 	}
3286 
3287 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3288 }
3289 
3290 
3291 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3292 {
3293 	++vcpu->stat.tlb_flush;
3294 	static_call(kvm_x86_tlb_flush_current)(vcpu);
3295 }
3296 
3297 /*
3298  * Service "local" TLB flush requests, which are specific to the current MMU
3299  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3300  * TLB flushes that are targeted at an MMU context also need to be serviced
3301  * prior before nested VM-Enter/VM-Exit.
3302  */
3303 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3304 {
3305 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3306 		kvm_vcpu_flush_tlb_current(vcpu);
3307 
3308 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3309 		kvm_vcpu_flush_tlb_guest(vcpu);
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3312 
3313 static void record_steal_time(struct kvm_vcpu *vcpu)
3314 {
3315 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3316 	struct kvm_steal_time __user *st;
3317 	struct kvm_memslots *slots;
3318 	u64 steal;
3319 	u32 version;
3320 
3321 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3322 		kvm_xen_runstate_set_running(vcpu);
3323 		return;
3324 	}
3325 
3326 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3327 		return;
3328 
3329 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3330 		return;
3331 
3332 	slots = kvm_memslots(vcpu->kvm);
3333 
3334 	if (unlikely(slots->generation != ghc->generation ||
3335 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3336 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3337 
3338 		/* We rely on the fact that it fits in a single page. */
3339 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3340 
3341 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3342 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3343 			return;
3344 	}
3345 
3346 	st = (struct kvm_steal_time __user *)ghc->hva;
3347 	/*
3348 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3349 	 * expensive IPIs.
3350 	 */
3351 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3352 		u8 st_preempted = 0;
3353 		int err = -EFAULT;
3354 
3355 		if (!user_access_begin(st, sizeof(*st)))
3356 			return;
3357 
3358 		asm volatile("1: xchgb %0, %2\n"
3359 			     "xor %1, %1\n"
3360 			     "2:\n"
3361 			     _ASM_EXTABLE_UA(1b, 2b)
3362 			     : "+q" (st_preempted),
3363 			       "+&r" (err),
3364 			       "+m" (st->preempted));
3365 		if (err)
3366 			goto out;
3367 
3368 		user_access_end();
3369 
3370 		vcpu->arch.st.preempted = 0;
3371 
3372 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3373 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3374 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3375 			kvm_vcpu_flush_tlb_guest(vcpu);
3376 
3377 		if (!user_access_begin(st, sizeof(*st)))
3378 			goto dirty;
3379 	} else {
3380 		if (!user_access_begin(st, sizeof(*st)))
3381 			return;
3382 
3383 		unsafe_put_user(0, &st->preempted, out);
3384 		vcpu->arch.st.preempted = 0;
3385 	}
3386 
3387 	unsafe_get_user(version, &st->version, out);
3388 	if (version & 1)
3389 		version += 1;  /* first time write, random junk */
3390 
3391 	version += 1;
3392 	unsafe_put_user(version, &st->version, out);
3393 
3394 	smp_wmb();
3395 
3396 	unsafe_get_user(steal, &st->steal, out);
3397 	steal += current->sched_info.run_delay -
3398 		vcpu->arch.st.last_steal;
3399 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3400 	unsafe_put_user(steal, &st->steal, out);
3401 
3402 	version += 1;
3403 	unsafe_put_user(version, &st->version, out);
3404 
3405  out:
3406 	user_access_end();
3407  dirty:
3408 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3409 }
3410 
3411 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3412 {
3413 	bool pr = false;
3414 	u32 msr = msr_info->index;
3415 	u64 data = msr_info->data;
3416 
3417 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3418 		return kvm_xen_write_hypercall_page(vcpu, data);
3419 
3420 	switch (msr) {
3421 	case MSR_AMD64_NB_CFG:
3422 	case MSR_IA32_UCODE_WRITE:
3423 	case MSR_VM_HSAVE_PA:
3424 	case MSR_AMD64_PATCH_LOADER:
3425 	case MSR_AMD64_BU_CFG2:
3426 	case MSR_AMD64_DC_CFG:
3427 	case MSR_F15H_EX_CFG:
3428 		break;
3429 
3430 	case MSR_IA32_UCODE_REV:
3431 		if (msr_info->host_initiated)
3432 			vcpu->arch.microcode_version = data;
3433 		break;
3434 	case MSR_IA32_ARCH_CAPABILITIES:
3435 		if (!msr_info->host_initiated)
3436 			return 1;
3437 		vcpu->arch.arch_capabilities = data;
3438 		break;
3439 	case MSR_IA32_PERF_CAPABILITIES: {
3440 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3441 
3442 		if (!msr_info->host_initiated)
3443 			return 1;
3444 		if (kvm_get_msr_feature(&msr_ent))
3445 			return 1;
3446 		if (data & ~msr_ent.data)
3447 			return 1;
3448 
3449 		vcpu->arch.perf_capabilities = data;
3450 
3451 		return 0;
3452 		}
3453 	case MSR_EFER:
3454 		return set_efer(vcpu, msr_info);
3455 	case MSR_K7_HWCR:
3456 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3457 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3458 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3459 
3460 		/* Handle McStatusWrEn */
3461 		if (data == BIT_ULL(18)) {
3462 			vcpu->arch.msr_hwcr = data;
3463 		} else if (data != 0) {
3464 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3465 				    data);
3466 			return 1;
3467 		}
3468 		break;
3469 	case MSR_FAM10H_MMIO_CONF_BASE:
3470 		if (data != 0) {
3471 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3472 				    "0x%llx\n", data);
3473 			return 1;
3474 		}
3475 		break;
3476 	case 0x200 ... 0x2ff:
3477 		return kvm_mtrr_set_msr(vcpu, msr, data);
3478 	case MSR_IA32_APICBASE:
3479 		return kvm_set_apic_base(vcpu, msr_info);
3480 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3481 		return kvm_x2apic_msr_write(vcpu, msr, data);
3482 	case MSR_IA32_TSC_DEADLINE:
3483 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3484 		break;
3485 	case MSR_IA32_TSC_ADJUST:
3486 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3487 			if (!msr_info->host_initiated) {
3488 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3489 				adjust_tsc_offset_guest(vcpu, adj);
3490 				/* Before back to guest, tsc_timestamp must be adjusted
3491 				 * as well, otherwise guest's percpu pvclock time could jump.
3492 				 */
3493 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3494 			}
3495 			vcpu->arch.ia32_tsc_adjust_msr = data;
3496 		}
3497 		break;
3498 	case MSR_IA32_MISC_ENABLE:
3499 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3500 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3501 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3502 				return 1;
3503 			vcpu->arch.ia32_misc_enable_msr = data;
3504 			kvm_update_cpuid_runtime(vcpu);
3505 		} else {
3506 			vcpu->arch.ia32_misc_enable_msr = data;
3507 		}
3508 		break;
3509 	case MSR_IA32_SMBASE:
3510 		if (!msr_info->host_initiated)
3511 			return 1;
3512 		vcpu->arch.smbase = data;
3513 		break;
3514 	case MSR_IA32_POWER_CTL:
3515 		vcpu->arch.msr_ia32_power_ctl = data;
3516 		break;
3517 	case MSR_IA32_TSC:
3518 		if (msr_info->host_initiated) {
3519 			kvm_synchronize_tsc(vcpu, data);
3520 		} else {
3521 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3522 			adjust_tsc_offset_guest(vcpu, adj);
3523 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3524 		}
3525 		break;
3526 	case MSR_IA32_XSS:
3527 		if (!msr_info->host_initiated &&
3528 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3529 			return 1;
3530 		/*
3531 		 * KVM supports exposing PT to the guest, but does not support
3532 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3533 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3534 		 */
3535 		if (data & ~supported_xss)
3536 			return 1;
3537 		vcpu->arch.ia32_xss = data;
3538 		break;
3539 	case MSR_SMI_COUNT:
3540 		if (!msr_info->host_initiated)
3541 			return 1;
3542 		vcpu->arch.smi_count = data;
3543 		break;
3544 	case MSR_KVM_WALL_CLOCK_NEW:
3545 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3546 			return 1;
3547 
3548 		vcpu->kvm->arch.wall_clock = data;
3549 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3550 		break;
3551 	case MSR_KVM_WALL_CLOCK:
3552 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3553 			return 1;
3554 
3555 		vcpu->kvm->arch.wall_clock = data;
3556 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3557 		break;
3558 	case MSR_KVM_SYSTEM_TIME_NEW:
3559 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3560 			return 1;
3561 
3562 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3563 		break;
3564 	case MSR_KVM_SYSTEM_TIME:
3565 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3566 			return 1;
3567 
3568 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3569 		break;
3570 	case MSR_KVM_ASYNC_PF_EN:
3571 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3572 			return 1;
3573 
3574 		if (kvm_pv_enable_async_pf(vcpu, data))
3575 			return 1;
3576 		break;
3577 	case MSR_KVM_ASYNC_PF_INT:
3578 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3579 			return 1;
3580 
3581 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3582 			return 1;
3583 		break;
3584 	case MSR_KVM_ASYNC_PF_ACK:
3585 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3586 			return 1;
3587 		if (data & 0x1) {
3588 			vcpu->arch.apf.pageready_pending = false;
3589 			kvm_check_async_pf_completion(vcpu);
3590 		}
3591 		break;
3592 	case MSR_KVM_STEAL_TIME:
3593 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3594 			return 1;
3595 
3596 		if (unlikely(!sched_info_on()))
3597 			return 1;
3598 
3599 		if (data & KVM_STEAL_RESERVED_MASK)
3600 			return 1;
3601 
3602 		vcpu->arch.st.msr_val = data;
3603 
3604 		if (!(data & KVM_MSR_ENABLED))
3605 			break;
3606 
3607 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3608 
3609 		break;
3610 	case MSR_KVM_PV_EOI_EN:
3611 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3612 			return 1;
3613 
3614 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3615 			return 1;
3616 		break;
3617 
3618 	case MSR_KVM_POLL_CONTROL:
3619 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3620 			return 1;
3621 
3622 		/* only enable bit supported */
3623 		if (data & (-1ULL << 1))
3624 			return 1;
3625 
3626 		vcpu->arch.msr_kvm_poll_control = data;
3627 		break;
3628 
3629 	case MSR_IA32_MCG_CTL:
3630 	case MSR_IA32_MCG_STATUS:
3631 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3632 		return set_msr_mce(vcpu, msr_info);
3633 
3634 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3635 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3636 		pr = true;
3637 		fallthrough;
3638 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3639 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3640 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3641 			return kvm_pmu_set_msr(vcpu, msr_info);
3642 
3643 		if (pr || data != 0)
3644 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3645 				    "0x%x data 0x%llx\n", msr, data);
3646 		break;
3647 	case MSR_K7_CLK_CTL:
3648 		/*
3649 		 * Ignore all writes to this no longer documented MSR.
3650 		 * Writes are only relevant for old K7 processors,
3651 		 * all pre-dating SVM, but a recommended workaround from
3652 		 * AMD for these chips. It is possible to specify the
3653 		 * affected processor models on the command line, hence
3654 		 * the need to ignore the workaround.
3655 		 */
3656 		break;
3657 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3658 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3659 	case HV_X64_MSR_SYNDBG_OPTIONS:
3660 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3661 	case HV_X64_MSR_CRASH_CTL:
3662 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3663 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3664 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3665 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3666 		return kvm_hv_set_msr_common(vcpu, msr, data,
3667 					     msr_info->host_initiated);
3668 	case MSR_IA32_BBL_CR_CTL3:
3669 		/* Drop writes to this legacy MSR -- see rdmsr
3670 		 * counterpart for further detail.
3671 		 */
3672 		if (report_ignored_msrs)
3673 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3674 				msr, data);
3675 		break;
3676 	case MSR_AMD64_OSVW_ID_LENGTH:
3677 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3678 			return 1;
3679 		vcpu->arch.osvw.length = data;
3680 		break;
3681 	case MSR_AMD64_OSVW_STATUS:
3682 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3683 			return 1;
3684 		vcpu->arch.osvw.status = data;
3685 		break;
3686 	case MSR_PLATFORM_INFO:
3687 		if (!msr_info->host_initiated ||
3688 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3689 		     cpuid_fault_enabled(vcpu)))
3690 			return 1;
3691 		vcpu->arch.msr_platform_info = data;
3692 		break;
3693 	case MSR_MISC_FEATURES_ENABLES:
3694 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3695 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3696 		     !supports_cpuid_fault(vcpu)))
3697 			return 1;
3698 		vcpu->arch.msr_misc_features_enables = data;
3699 		break;
3700 #ifdef CONFIG_X86_64
3701 	case MSR_IA32_XFD:
3702 		if (!msr_info->host_initiated &&
3703 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3704 			return 1;
3705 
3706 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3707 			     vcpu->arch.guest_supported_xcr0))
3708 			return 1;
3709 
3710 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3711 		break;
3712 	case MSR_IA32_XFD_ERR:
3713 		if (!msr_info->host_initiated &&
3714 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3715 			return 1;
3716 
3717 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3718 			     vcpu->arch.guest_supported_xcr0))
3719 			return 1;
3720 
3721 		vcpu->arch.guest_fpu.xfd_err = data;
3722 		break;
3723 #endif
3724 	default:
3725 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3726 			return kvm_pmu_set_msr(vcpu, msr_info);
3727 		return KVM_MSR_RET_INVALID;
3728 	}
3729 	return 0;
3730 }
3731 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3732 
3733 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3734 {
3735 	u64 data;
3736 	u64 mcg_cap = vcpu->arch.mcg_cap;
3737 	unsigned bank_num = mcg_cap & 0xff;
3738 
3739 	switch (msr) {
3740 	case MSR_IA32_P5_MC_ADDR:
3741 	case MSR_IA32_P5_MC_TYPE:
3742 		data = 0;
3743 		break;
3744 	case MSR_IA32_MCG_CAP:
3745 		data = vcpu->arch.mcg_cap;
3746 		break;
3747 	case MSR_IA32_MCG_CTL:
3748 		if (!(mcg_cap & MCG_CTL_P) && !host)
3749 			return 1;
3750 		data = vcpu->arch.mcg_ctl;
3751 		break;
3752 	case MSR_IA32_MCG_STATUS:
3753 		data = vcpu->arch.mcg_status;
3754 		break;
3755 	default:
3756 		if (msr >= MSR_IA32_MC0_CTL &&
3757 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3758 			u32 offset = array_index_nospec(
3759 				msr - MSR_IA32_MC0_CTL,
3760 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3761 
3762 			data = vcpu->arch.mce_banks[offset];
3763 			break;
3764 		}
3765 		return 1;
3766 	}
3767 	*pdata = data;
3768 	return 0;
3769 }
3770 
3771 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3772 {
3773 	switch (msr_info->index) {
3774 	case MSR_IA32_PLATFORM_ID:
3775 	case MSR_IA32_EBL_CR_POWERON:
3776 	case MSR_IA32_LASTBRANCHFROMIP:
3777 	case MSR_IA32_LASTBRANCHTOIP:
3778 	case MSR_IA32_LASTINTFROMIP:
3779 	case MSR_IA32_LASTINTTOIP:
3780 	case MSR_AMD64_SYSCFG:
3781 	case MSR_K8_TSEG_ADDR:
3782 	case MSR_K8_TSEG_MASK:
3783 	case MSR_VM_HSAVE_PA:
3784 	case MSR_K8_INT_PENDING_MSG:
3785 	case MSR_AMD64_NB_CFG:
3786 	case MSR_FAM10H_MMIO_CONF_BASE:
3787 	case MSR_AMD64_BU_CFG2:
3788 	case MSR_IA32_PERF_CTL:
3789 	case MSR_AMD64_DC_CFG:
3790 	case MSR_F15H_EX_CFG:
3791 	/*
3792 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3793 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3794 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3795 	 * so for existing CPU-specific MSRs.
3796 	 */
3797 	case MSR_RAPL_POWER_UNIT:
3798 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3799 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3800 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3801 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3802 		msr_info->data = 0;
3803 		break;
3804 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3805 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3806 			return kvm_pmu_get_msr(vcpu, msr_info);
3807 		if (!msr_info->host_initiated)
3808 			return 1;
3809 		msr_info->data = 0;
3810 		break;
3811 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3812 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3813 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3814 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3815 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3816 			return kvm_pmu_get_msr(vcpu, msr_info);
3817 		msr_info->data = 0;
3818 		break;
3819 	case MSR_IA32_UCODE_REV:
3820 		msr_info->data = vcpu->arch.microcode_version;
3821 		break;
3822 	case MSR_IA32_ARCH_CAPABILITIES:
3823 		if (!msr_info->host_initiated &&
3824 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3825 			return 1;
3826 		msr_info->data = vcpu->arch.arch_capabilities;
3827 		break;
3828 	case MSR_IA32_PERF_CAPABILITIES:
3829 		if (!msr_info->host_initiated &&
3830 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3831 			return 1;
3832 		msr_info->data = vcpu->arch.perf_capabilities;
3833 		break;
3834 	case MSR_IA32_POWER_CTL:
3835 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3836 		break;
3837 	case MSR_IA32_TSC: {
3838 		/*
3839 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3840 		 * even when not intercepted. AMD manual doesn't explicitly
3841 		 * state this but appears to behave the same.
3842 		 *
3843 		 * On userspace reads and writes, however, we unconditionally
3844 		 * return L1's TSC value to ensure backwards-compatible
3845 		 * behavior for migration.
3846 		 */
3847 		u64 offset, ratio;
3848 
3849 		if (msr_info->host_initiated) {
3850 			offset = vcpu->arch.l1_tsc_offset;
3851 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3852 		} else {
3853 			offset = vcpu->arch.tsc_offset;
3854 			ratio = vcpu->arch.tsc_scaling_ratio;
3855 		}
3856 
3857 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3858 		break;
3859 	}
3860 	case MSR_MTRRcap:
3861 	case 0x200 ... 0x2ff:
3862 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3863 	case 0xcd: /* fsb frequency */
3864 		msr_info->data = 3;
3865 		break;
3866 		/*
3867 		 * MSR_EBC_FREQUENCY_ID
3868 		 * Conservative value valid for even the basic CPU models.
3869 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3870 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3871 		 * and 266MHz for model 3, or 4. Set Core Clock
3872 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3873 		 * 31:24) even though these are only valid for CPU
3874 		 * models > 2, however guests may end up dividing or
3875 		 * multiplying by zero otherwise.
3876 		 */
3877 	case MSR_EBC_FREQUENCY_ID:
3878 		msr_info->data = 1 << 24;
3879 		break;
3880 	case MSR_IA32_APICBASE:
3881 		msr_info->data = kvm_get_apic_base(vcpu);
3882 		break;
3883 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3884 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3885 	case MSR_IA32_TSC_DEADLINE:
3886 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3887 		break;
3888 	case MSR_IA32_TSC_ADJUST:
3889 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3890 		break;
3891 	case MSR_IA32_MISC_ENABLE:
3892 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3893 		break;
3894 	case MSR_IA32_SMBASE:
3895 		if (!msr_info->host_initiated)
3896 			return 1;
3897 		msr_info->data = vcpu->arch.smbase;
3898 		break;
3899 	case MSR_SMI_COUNT:
3900 		msr_info->data = vcpu->arch.smi_count;
3901 		break;
3902 	case MSR_IA32_PERF_STATUS:
3903 		/* TSC increment by tick */
3904 		msr_info->data = 1000ULL;
3905 		/* CPU multiplier */
3906 		msr_info->data |= (((uint64_t)4ULL) << 40);
3907 		break;
3908 	case MSR_EFER:
3909 		msr_info->data = vcpu->arch.efer;
3910 		break;
3911 	case MSR_KVM_WALL_CLOCK:
3912 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3913 			return 1;
3914 
3915 		msr_info->data = vcpu->kvm->arch.wall_clock;
3916 		break;
3917 	case MSR_KVM_WALL_CLOCK_NEW:
3918 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3919 			return 1;
3920 
3921 		msr_info->data = vcpu->kvm->arch.wall_clock;
3922 		break;
3923 	case MSR_KVM_SYSTEM_TIME:
3924 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3925 			return 1;
3926 
3927 		msr_info->data = vcpu->arch.time;
3928 		break;
3929 	case MSR_KVM_SYSTEM_TIME_NEW:
3930 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3931 			return 1;
3932 
3933 		msr_info->data = vcpu->arch.time;
3934 		break;
3935 	case MSR_KVM_ASYNC_PF_EN:
3936 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3937 			return 1;
3938 
3939 		msr_info->data = vcpu->arch.apf.msr_en_val;
3940 		break;
3941 	case MSR_KVM_ASYNC_PF_INT:
3942 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3943 			return 1;
3944 
3945 		msr_info->data = vcpu->arch.apf.msr_int_val;
3946 		break;
3947 	case MSR_KVM_ASYNC_PF_ACK:
3948 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3949 			return 1;
3950 
3951 		msr_info->data = 0;
3952 		break;
3953 	case MSR_KVM_STEAL_TIME:
3954 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3955 			return 1;
3956 
3957 		msr_info->data = vcpu->arch.st.msr_val;
3958 		break;
3959 	case MSR_KVM_PV_EOI_EN:
3960 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3961 			return 1;
3962 
3963 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3964 		break;
3965 	case MSR_KVM_POLL_CONTROL:
3966 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3967 			return 1;
3968 
3969 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3970 		break;
3971 	case MSR_IA32_P5_MC_ADDR:
3972 	case MSR_IA32_P5_MC_TYPE:
3973 	case MSR_IA32_MCG_CAP:
3974 	case MSR_IA32_MCG_CTL:
3975 	case MSR_IA32_MCG_STATUS:
3976 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3977 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3978 				   msr_info->host_initiated);
3979 	case MSR_IA32_XSS:
3980 		if (!msr_info->host_initiated &&
3981 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3982 			return 1;
3983 		msr_info->data = vcpu->arch.ia32_xss;
3984 		break;
3985 	case MSR_K7_CLK_CTL:
3986 		/*
3987 		 * Provide expected ramp-up count for K7. All other
3988 		 * are set to zero, indicating minimum divisors for
3989 		 * every field.
3990 		 *
3991 		 * This prevents guest kernels on AMD host with CPU
3992 		 * type 6, model 8 and higher from exploding due to
3993 		 * the rdmsr failing.
3994 		 */
3995 		msr_info->data = 0x20000000;
3996 		break;
3997 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3998 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3999 	case HV_X64_MSR_SYNDBG_OPTIONS:
4000 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4001 	case HV_X64_MSR_CRASH_CTL:
4002 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4003 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4004 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4005 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4006 		return kvm_hv_get_msr_common(vcpu,
4007 					     msr_info->index, &msr_info->data,
4008 					     msr_info->host_initiated);
4009 	case MSR_IA32_BBL_CR_CTL3:
4010 		/* This legacy MSR exists but isn't fully documented in current
4011 		 * silicon.  It is however accessed by winxp in very narrow
4012 		 * scenarios where it sets bit #19, itself documented as
4013 		 * a "reserved" bit.  Best effort attempt to source coherent
4014 		 * read data here should the balance of the register be
4015 		 * interpreted by the guest:
4016 		 *
4017 		 * L2 cache control register 3: 64GB range, 256KB size,
4018 		 * enabled, latency 0x1, configured
4019 		 */
4020 		msr_info->data = 0xbe702111;
4021 		break;
4022 	case MSR_AMD64_OSVW_ID_LENGTH:
4023 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4024 			return 1;
4025 		msr_info->data = vcpu->arch.osvw.length;
4026 		break;
4027 	case MSR_AMD64_OSVW_STATUS:
4028 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4029 			return 1;
4030 		msr_info->data = vcpu->arch.osvw.status;
4031 		break;
4032 	case MSR_PLATFORM_INFO:
4033 		if (!msr_info->host_initiated &&
4034 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4035 			return 1;
4036 		msr_info->data = vcpu->arch.msr_platform_info;
4037 		break;
4038 	case MSR_MISC_FEATURES_ENABLES:
4039 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4040 		break;
4041 	case MSR_K7_HWCR:
4042 		msr_info->data = vcpu->arch.msr_hwcr;
4043 		break;
4044 #ifdef CONFIG_X86_64
4045 	case MSR_IA32_XFD:
4046 		if (!msr_info->host_initiated &&
4047 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4048 			return 1;
4049 
4050 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4051 		break;
4052 	case MSR_IA32_XFD_ERR:
4053 		if (!msr_info->host_initiated &&
4054 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4055 			return 1;
4056 
4057 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4058 		break;
4059 #endif
4060 	default:
4061 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4062 			return kvm_pmu_get_msr(vcpu, msr_info);
4063 		return KVM_MSR_RET_INVALID;
4064 	}
4065 	return 0;
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4068 
4069 /*
4070  * Read or write a bunch of msrs. All parameters are kernel addresses.
4071  *
4072  * @return number of msrs set successfully.
4073  */
4074 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4075 		    struct kvm_msr_entry *entries,
4076 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4077 				  unsigned index, u64 *data))
4078 {
4079 	int i;
4080 
4081 	for (i = 0; i < msrs->nmsrs; ++i)
4082 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4083 			break;
4084 
4085 	return i;
4086 }
4087 
4088 /*
4089  * Read or write a bunch of msrs. Parameters are user addresses.
4090  *
4091  * @return number of msrs set successfully.
4092  */
4093 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4094 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4095 				unsigned index, u64 *data),
4096 		  int writeback)
4097 {
4098 	struct kvm_msrs msrs;
4099 	struct kvm_msr_entry *entries;
4100 	int r, n;
4101 	unsigned size;
4102 
4103 	r = -EFAULT;
4104 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4105 		goto out;
4106 
4107 	r = -E2BIG;
4108 	if (msrs.nmsrs >= MAX_IO_MSRS)
4109 		goto out;
4110 
4111 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4112 	entries = memdup_user(user_msrs->entries, size);
4113 	if (IS_ERR(entries)) {
4114 		r = PTR_ERR(entries);
4115 		goto out;
4116 	}
4117 
4118 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4119 	if (r < 0)
4120 		goto out_free;
4121 
4122 	r = -EFAULT;
4123 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4124 		goto out_free;
4125 
4126 	r = n;
4127 
4128 out_free:
4129 	kfree(entries);
4130 out:
4131 	return r;
4132 }
4133 
4134 static inline bool kvm_can_mwait_in_guest(void)
4135 {
4136 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4137 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4138 		boot_cpu_has(X86_FEATURE_ARAT);
4139 }
4140 
4141 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4142 					    struct kvm_cpuid2 __user *cpuid_arg)
4143 {
4144 	struct kvm_cpuid2 cpuid;
4145 	int r;
4146 
4147 	r = -EFAULT;
4148 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4149 		return r;
4150 
4151 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4152 	if (r)
4153 		return r;
4154 
4155 	r = -EFAULT;
4156 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4157 		return r;
4158 
4159 	return 0;
4160 }
4161 
4162 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4163 {
4164 	int r = 0;
4165 
4166 	switch (ext) {
4167 	case KVM_CAP_IRQCHIP:
4168 	case KVM_CAP_HLT:
4169 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4170 	case KVM_CAP_SET_TSS_ADDR:
4171 	case KVM_CAP_EXT_CPUID:
4172 	case KVM_CAP_EXT_EMUL_CPUID:
4173 	case KVM_CAP_CLOCKSOURCE:
4174 	case KVM_CAP_PIT:
4175 	case KVM_CAP_NOP_IO_DELAY:
4176 	case KVM_CAP_MP_STATE:
4177 	case KVM_CAP_SYNC_MMU:
4178 	case KVM_CAP_USER_NMI:
4179 	case KVM_CAP_REINJECT_CONTROL:
4180 	case KVM_CAP_IRQ_INJECT_STATUS:
4181 	case KVM_CAP_IOEVENTFD:
4182 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4183 	case KVM_CAP_PIT2:
4184 	case KVM_CAP_PIT_STATE2:
4185 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4186 	case KVM_CAP_VCPU_EVENTS:
4187 	case KVM_CAP_HYPERV:
4188 	case KVM_CAP_HYPERV_VAPIC:
4189 	case KVM_CAP_HYPERV_SPIN:
4190 	case KVM_CAP_HYPERV_SYNIC:
4191 	case KVM_CAP_HYPERV_SYNIC2:
4192 	case KVM_CAP_HYPERV_VP_INDEX:
4193 	case KVM_CAP_HYPERV_EVENTFD:
4194 	case KVM_CAP_HYPERV_TLBFLUSH:
4195 	case KVM_CAP_HYPERV_SEND_IPI:
4196 	case KVM_CAP_HYPERV_CPUID:
4197 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4198 	case KVM_CAP_SYS_HYPERV_CPUID:
4199 	case KVM_CAP_PCI_SEGMENT:
4200 	case KVM_CAP_DEBUGREGS:
4201 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4202 	case KVM_CAP_XSAVE:
4203 	case KVM_CAP_ASYNC_PF:
4204 	case KVM_CAP_ASYNC_PF_INT:
4205 	case KVM_CAP_GET_TSC_KHZ:
4206 	case KVM_CAP_KVMCLOCK_CTRL:
4207 	case KVM_CAP_READONLY_MEM:
4208 	case KVM_CAP_HYPERV_TIME:
4209 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4210 	case KVM_CAP_TSC_DEADLINE_TIMER:
4211 	case KVM_CAP_DISABLE_QUIRKS:
4212 	case KVM_CAP_SET_BOOT_CPU_ID:
4213  	case KVM_CAP_SPLIT_IRQCHIP:
4214 	case KVM_CAP_IMMEDIATE_EXIT:
4215 	case KVM_CAP_PMU_EVENT_FILTER:
4216 	case KVM_CAP_GET_MSR_FEATURES:
4217 	case KVM_CAP_MSR_PLATFORM_INFO:
4218 	case KVM_CAP_EXCEPTION_PAYLOAD:
4219 	case KVM_CAP_SET_GUEST_DEBUG:
4220 	case KVM_CAP_LAST_CPU:
4221 	case KVM_CAP_X86_USER_SPACE_MSR:
4222 	case KVM_CAP_X86_MSR_FILTER:
4223 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4224 #ifdef CONFIG_X86_SGX_KVM
4225 	case KVM_CAP_SGX_ATTRIBUTE:
4226 #endif
4227 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4228 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4229 	case KVM_CAP_SREGS2:
4230 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4231 	case KVM_CAP_VCPU_ATTRIBUTES:
4232 		r = 1;
4233 		break;
4234 	case KVM_CAP_EXIT_HYPERCALL:
4235 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4236 		break;
4237 	case KVM_CAP_SET_GUEST_DEBUG2:
4238 		return KVM_GUESTDBG_VALID_MASK;
4239 #ifdef CONFIG_KVM_XEN
4240 	case KVM_CAP_XEN_HVM:
4241 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4242 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4243 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4244 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4245 		if (sched_info_on())
4246 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4247 		break;
4248 #endif
4249 	case KVM_CAP_SYNC_REGS:
4250 		r = KVM_SYNC_X86_VALID_FIELDS;
4251 		break;
4252 	case KVM_CAP_ADJUST_CLOCK:
4253 		r = KVM_CLOCK_VALID_FLAGS;
4254 		break;
4255 	case KVM_CAP_X86_DISABLE_EXITS:
4256 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4257 		      KVM_X86_DISABLE_EXITS_CSTATE;
4258 		if(kvm_can_mwait_in_guest())
4259 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4260 		break;
4261 	case KVM_CAP_X86_SMM:
4262 		/* SMBASE is usually relocated above 1M on modern chipsets,
4263 		 * and SMM handlers might indeed rely on 4G segment limits,
4264 		 * so do not report SMM to be available if real mode is
4265 		 * emulated via vm86 mode.  Still, do not go to great lengths
4266 		 * to avoid userspace's usage of the feature, because it is a
4267 		 * fringe case that is not enabled except via specific settings
4268 		 * of the module parameters.
4269 		 */
4270 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4271 		break;
4272 	case KVM_CAP_VAPIC:
4273 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4274 		break;
4275 	case KVM_CAP_NR_VCPUS:
4276 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4277 		break;
4278 	case KVM_CAP_MAX_VCPUS:
4279 		r = KVM_MAX_VCPUS;
4280 		break;
4281 	case KVM_CAP_MAX_VCPU_ID:
4282 		r = KVM_MAX_VCPU_IDS;
4283 		break;
4284 	case KVM_CAP_PV_MMU:	/* obsolete */
4285 		r = 0;
4286 		break;
4287 	case KVM_CAP_MCE:
4288 		r = KVM_MAX_MCE_BANKS;
4289 		break;
4290 	case KVM_CAP_XCRS:
4291 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4292 		break;
4293 	case KVM_CAP_TSC_CONTROL:
4294 		r = kvm_has_tsc_control;
4295 		break;
4296 	case KVM_CAP_X2APIC_API:
4297 		r = KVM_X2APIC_API_VALID_FLAGS;
4298 		break;
4299 	case KVM_CAP_NESTED_STATE:
4300 		r = kvm_x86_ops.nested_ops->get_state ?
4301 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4302 		break;
4303 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4304 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4305 		break;
4306 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4307 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4308 		break;
4309 	case KVM_CAP_SMALLER_MAXPHYADDR:
4310 		r = (int) allow_smaller_maxphyaddr;
4311 		break;
4312 	case KVM_CAP_STEAL_TIME:
4313 		r = sched_info_on();
4314 		break;
4315 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4316 		if (kvm_has_bus_lock_exit)
4317 			r = KVM_BUS_LOCK_DETECTION_OFF |
4318 			    KVM_BUS_LOCK_DETECTION_EXIT;
4319 		else
4320 			r = 0;
4321 		break;
4322 	case KVM_CAP_XSAVE2: {
4323 		u64 guest_perm = xstate_get_guest_group_perm();
4324 
4325 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4326 		if (r < sizeof(struct kvm_xsave))
4327 			r = sizeof(struct kvm_xsave);
4328 		break;
4329 	}
4330 	default:
4331 		break;
4332 	}
4333 	return r;
4334 
4335 }
4336 
4337 long kvm_arch_dev_ioctl(struct file *filp,
4338 			unsigned int ioctl, unsigned long arg)
4339 {
4340 	void __user *argp = (void __user *)arg;
4341 	long r;
4342 
4343 	switch (ioctl) {
4344 	case KVM_GET_MSR_INDEX_LIST: {
4345 		struct kvm_msr_list __user *user_msr_list = argp;
4346 		struct kvm_msr_list msr_list;
4347 		unsigned n;
4348 
4349 		r = -EFAULT;
4350 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4351 			goto out;
4352 		n = msr_list.nmsrs;
4353 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4354 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4355 			goto out;
4356 		r = -E2BIG;
4357 		if (n < msr_list.nmsrs)
4358 			goto out;
4359 		r = -EFAULT;
4360 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4361 				 num_msrs_to_save * sizeof(u32)))
4362 			goto out;
4363 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4364 				 &emulated_msrs,
4365 				 num_emulated_msrs * sizeof(u32)))
4366 			goto out;
4367 		r = 0;
4368 		break;
4369 	}
4370 	case KVM_GET_SUPPORTED_CPUID:
4371 	case KVM_GET_EMULATED_CPUID: {
4372 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4373 		struct kvm_cpuid2 cpuid;
4374 
4375 		r = -EFAULT;
4376 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4377 			goto out;
4378 
4379 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4380 					    ioctl);
4381 		if (r)
4382 			goto out;
4383 
4384 		r = -EFAULT;
4385 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4386 			goto out;
4387 		r = 0;
4388 		break;
4389 	}
4390 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4391 		r = -EFAULT;
4392 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4393 				 sizeof(kvm_mce_cap_supported)))
4394 			goto out;
4395 		r = 0;
4396 		break;
4397 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4398 		struct kvm_msr_list __user *user_msr_list = argp;
4399 		struct kvm_msr_list msr_list;
4400 		unsigned int n;
4401 
4402 		r = -EFAULT;
4403 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4404 			goto out;
4405 		n = msr_list.nmsrs;
4406 		msr_list.nmsrs = num_msr_based_features;
4407 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4408 			goto out;
4409 		r = -E2BIG;
4410 		if (n < msr_list.nmsrs)
4411 			goto out;
4412 		r = -EFAULT;
4413 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4414 				 num_msr_based_features * sizeof(u32)))
4415 			goto out;
4416 		r = 0;
4417 		break;
4418 	}
4419 	case KVM_GET_MSRS:
4420 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4421 		break;
4422 	case KVM_GET_SUPPORTED_HV_CPUID:
4423 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4424 		break;
4425 	default:
4426 		r = -EINVAL;
4427 		break;
4428 	}
4429 out:
4430 	return r;
4431 }
4432 
4433 static void wbinvd_ipi(void *garbage)
4434 {
4435 	wbinvd();
4436 }
4437 
4438 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4439 {
4440 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4441 }
4442 
4443 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4444 {
4445 	/* Address WBINVD may be executed by guest */
4446 	if (need_emulate_wbinvd(vcpu)) {
4447 		if (static_call(kvm_x86_has_wbinvd_exit)())
4448 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4449 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4450 			smp_call_function_single(vcpu->cpu,
4451 					wbinvd_ipi, NULL, 1);
4452 	}
4453 
4454 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4455 
4456 	/* Save host pkru register if supported */
4457 	vcpu->arch.host_pkru = read_pkru();
4458 
4459 	/* Apply any externally detected TSC adjustments (due to suspend) */
4460 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4461 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4462 		vcpu->arch.tsc_offset_adjustment = 0;
4463 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4464 	}
4465 
4466 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4467 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4468 				rdtsc() - vcpu->arch.last_host_tsc;
4469 		if (tsc_delta < 0)
4470 			mark_tsc_unstable("KVM discovered backwards TSC");
4471 
4472 		if (kvm_check_tsc_unstable()) {
4473 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4474 						vcpu->arch.last_guest_tsc);
4475 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4476 			vcpu->arch.tsc_catchup = 1;
4477 		}
4478 
4479 		if (kvm_lapic_hv_timer_in_use(vcpu))
4480 			kvm_lapic_restart_hv_timer(vcpu);
4481 
4482 		/*
4483 		 * On a host with synchronized TSC, there is no need to update
4484 		 * kvmclock on vcpu->cpu migration
4485 		 */
4486 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4487 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4488 		if (vcpu->cpu != cpu)
4489 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4490 		vcpu->cpu = cpu;
4491 	}
4492 
4493 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4494 }
4495 
4496 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4497 {
4498 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4499 	struct kvm_steal_time __user *st;
4500 	struct kvm_memslots *slots;
4501 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4502 
4503 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4504 		return;
4505 
4506 	if (vcpu->arch.st.preempted)
4507 		return;
4508 
4509 	/* This happens on process exit */
4510 	if (unlikely(current->mm != vcpu->kvm->mm))
4511 		return;
4512 
4513 	slots = kvm_memslots(vcpu->kvm);
4514 
4515 	if (unlikely(slots->generation != ghc->generation ||
4516 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4517 		return;
4518 
4519 	st = (struct kvm_steal_time __user *)ghc->hva;
4520 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4521 
4522 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4523 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4524 
4525 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4526 }
4527 
4528 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4529 {
4530 	int idx;
4531 
4532 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4533 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4534 
4535 	/*
4536 	 * Take the srcu lock as memslots will be accessed to check the gfn
4537 	 * cache generation against the memslots generation.
4538 	 */
4539 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4540 	if (kvm_xen_msr_enabled(vcpu->kvm))
4541 		kvm_xen_runstate_set_preempted(vcpu);
4542 	else
4543 		kvm_steal_time_set_preempted(vcpu);
4544 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4545 
4546 	static_call(kvm_x86_vcpu_put)(vcpu);
4547 	vcpu->arch.last_host_tsc = rdtsc();
4548 }
4549 
4550 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4551 				    struct kvm_lapic_state *s)
4552 {
4553 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4554 
4555 	return kvm_apic_get_state(vcpu, s);
4556 }
4557 
4558 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4559 				    struct kvm_lapic_state *s)
4560 {
4561 	int r;
4562 
4563 	r = kvm_apic_set_state(vcpu, s);
4564 	if (r)
4565 		return r;
4566 	update_cr8_intercept(vcpu);
4567 
4568 	return 0;
4569 }
4570 
4571 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4572 {
4573 	/*
4574 	 * We can accept userspace's request for interrupt injection
4575 	 * as long as we have a place to store the interrupt number.
4576 	 * The actual injection will happen when the CPU is able to
4577 	 * deliver the interrupt.
4578 	 */
4579 	if (kvm_cpu_has_extint(vcpu))
4580 		return false;
4581 
4582 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4583 	return (!lapic_in_kernel(vcpu) ||
4584 		kvm_apic_accept_pic_intr(vcpu));
4585 }
4586 
4587 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4588 {
4589 	/*
4590 	 * Do not cause an interrupt window exit if an exception
4591 	 * is pending or an event needs reinjection; userspace
4592 	 * might want to inject the interrupt manually using KVM_SET_REGS
4593 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4594 	 * instruction boundary and with no events half-injected.
4595 	 */
4596 	return (kvm_arch_interrupt_allowed(vcpu) &&
4597 		kvm_cpu_accept_dm_intr(vcpu) &&
4598 		!kvm_event_needs_reinjection(vcpu) &&
4599 		!vcpu->arch.exception.pending);
4600 }
4601 
4602 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4603 				    struct kvm_interrupt *irq)
4604 {
4605 	if (irq->irq >= KVM_NR_INTERRUPTS)
4606 		return -EINVAL;
4607 
4608 	if (!irqchip_in_kernel(vcpu->kvm)) {
4609 		kvm_queue_interrupt(vcpu, irq->irq, false);
4610 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4611 		return 0;
4612 	}
4613 
4614 	/*
4615 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4616 	 * fail for in-kernel 8259.
4617 	 */
4618 	if (pic_in_kernel(vcpu->kvm))
4619 		return -ENXIO;
4620 
4621 	if (vcpu->arch.pending_external_vector != -1)
4622 		return -EEXIST;
4623 
4624 	vcpu->arch.pending_external_vector = irq->irq;
4625 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4626 	return 0;
4627 }
4628 
4629 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4630 {
4631 	kvm_inject_nmi(vcpu);
4632 
4633 	return 0;
4634 }
4635 
4636 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4637 {
4638 	kvm_make_request(KVM_REQ_SMI, vcpu);
4639 
4640 	return 0;
4641 }
4642 
4643 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4644 					   struct kvm_tpr_access_ctl *tac)
4645 {
4646 	if (tac->flags)
4647 		return -EINVAL;
4648 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4649 	return 0;
4650 }
4651 
4652 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4653 					u64 mcg_cap)
4654 {
4655 	int r;
4656 	unsigned bank_num = mcg_cap & 0xff, bank;
4657 
4658 	r = -EINVAL;
4659 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4660 		goto out;
4661 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4662 		goto out;
4663 	r = 0;
4664 	vcpu->arch.mcg_cap = mcg_cap;
4665 	/* Init IA32_MCG_CTL to all 1s */
4666 	if (mcg_cap & MCG_CTL_P)
4667 		vcpu->arch.mcg_ctl = ~(u64)0;
4668 	/* Init IA32_MCi_CTL to all 1s */
4669 	for (bank = 0; bank < bank_num; bank++)
4670 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4671 
4672 	static_call(kvm_x86_setup_mce)(vcpu);
4673 out:
4674 	return r;
4675 }
4676 
4677 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4678 				      struct kvm_x86_mce *mce)
4679 {
4680 	u64 mcg_cap = vcpu->arch.mcg_cap;
4681 	unsigned bank_num = mcg_cap & 0xff;
4682 	u64 *banks = vcpu->arch.mce_banks;
4683 
4684 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4685 		return -EINVAL;
4686 	/*
4687 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4688 	 * reporting is disabled
4689 	 */
4690 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4691 	    vcpu->arch.mcg_ctl != ~(u64)0)
4692 		return 0;
4693 	banks += 4 * mce->bank;
4694 	/*
4695 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4696 	 * reporting is disabled for the bank
4697 	 */
4698 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4699 		return 0;
4700 	if (mce->status & MCI_STATUS_UC) {
4701 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4702 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4703 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4704 			return 0;
4705 		}
4706 		if (banks[1] & MCI_STATUS_VAL)
4707 			mce->status |= MCI_STATUS_OVER;
4708 		banks[2] = mce->addr;
4709 		banks[3] = mce->misc;
4710 		vcpu->arch.mcg_status = mce->mcg_status;
4711 		banks[1] = mce->status;
4712 		kvm_queue_exception(vcpu, MC_VECTOR);
4713 	} else if (!(banks[1] & MCI_STATUS_VAL)
4714 		   || !(banks[1] & MCI_STATUS_UC)) {
4715 		if (banks[1] & MCI_STATUS_VAL)
4716 			mce->status |= MCI_STATUS_OVER;
4717 		banks[2] = mce->addr;
4718 		banks[3] = mce->misc;
4719 		banks[1] = mce->status;
4720 	} else
4721 		banks[1] |= MCI_STATUS_OVER;
4722 	return 0;
4723 }
4724 
4725 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4726 					       struct kvm_vcpu_events *events)
4727 {
4728 	process_nmi(vcpu);
4729 
4730 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4731 		process_smi(vcpu);
4732 
4733 	/*
4734 	 * In guest mode, payload delivery should be deferred,
4735 	 * so that the L1 hypervisor can intercept #PF before
4736 	 * CR2 is modified (or intercept #DB before DR6 is
4737 	 * modified under nVMX). Unless the per-VM capability,
4738 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4739 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4740 	 * opportunistically defer the exception payload, deliver it if the
4741 	 * capability hasn't been requested before processing a
4742 	 * KVM_GET_VCPU_EVENTS.
4743 	 */
4744 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4745 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4746 		kvm_deliver_exception_payload(vcpu);
4747 
4748 	/*
4749 	 * The API doesn't provide the instruction length for software
4750 	 * exceptions, so don't report them. As long as the guest RIP
4751 	 * isn't advanced, we should expect to encounter the exception
4752 	 * again.
4753 	 */
4754 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4755 		events->exception.injected = 0;
4756 		events->exception.pending = 0;
4757 	} else {
4758 		events->exception.injected = vcpu->arch.exception.injected;
4759 		events->exception.pending = vcpu->arch.exception.pending;
4760 		/*
4761 		 * For ABI compatibility, deliberately conflate
4762 		 * pending and injected exceptions when
4763 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4764 		 */
4765 		if (!vcpu->kvm->arch.exception_payload_enabled)
4766 			events->exception.injected |=
4767 				vcpu->arch.exception.pending;
4768 	}
4769 	events->exception.nr = vcpu->arch.exception.nr;
4770 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4771 	events->exception.error_code = vcpu->arch.exception.error_code;
4772 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4773 	events->exception_payload = vcpu->arch.exception.payload;
4774 
4775 	events->interrupt.injected =
4776 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4777 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4778 	events->interrupt.soft = 0;
4779 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4780 
4781 	events->nmi.injected = vcpu->arch.nmi_injected;
4782 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4783 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4784 	events->nmi.pad = 0;
4785 
4786 	events->sipi_vector = 0; /* never valid when reporting to user space */
4787 
4788 	events->smi.smm = is_smm(vcpu);
4789 	events->smi.pending = vcpu->arch.smi_pending;
4790 	events->smi.smm_inside_nmi =
4791 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4792 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4793 
4794 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4795 			 | KVM_VCPUEVENT_VALID_SHADOW
4796 			 | KVM_VCPUEVENT_VALID_SMM);
4797 	if (vcpu->kvm->arch.exception_payload_enabled)
4798 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4799 
4800 	memset(&events->reserved, 0, sizeof(events->reserved));
4801 }
4802 
4803 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4804 
4805 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4806 					      struct kvm_vcpu_events *events)
4807 {
4808 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4809 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4810 			      | KVM_VCPUEVENT_VALID_SHADOW
4811 			      | KVM_VCPUEVENT_VALID_SMM
4812 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4813 		return -EINVAL;
4814 
4815 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4816 		if (!vcpu->kvm->arch.exception_payload_enabled)
4817 			return -EINVAL;
4818 		if (events->exception.pending)
4819 			events->exception.injected = 0;
4820 		else
4821 			events->exception_has_payload = 0;
4822 	} else {
4823 		events->exception.pending = 0;
4824 		events->exception_has_payload = 0;
4825 	}
4826 
4827 	if ((events->exception.injected || events->exception.pending) &&
4828 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4829 		return -EINVAL;
4830 
4831 	/* INITs are latched while in SMM */
4832 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4833 	    (events->smi.smm || events->smi.pending) &&
4834 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4835 		return -EINVAL;
4836 
4837 	process_nmi(vcpu);
4838 	vcpu->arch.exception.injected = events->exception.injected;
4839 	vcpu->arch.exception.pending = events->exception.pending;
4840 	vcpu->arch.exception.nr = events->exception.nr;
4841 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4842 	vcpu->arch.exception.error_code = events->exception.error_code;
4843 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4844 	vcpu->arch.exception.payload = events->exception_payload;
4845 
4846 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4847 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4848 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4849 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4850 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4851 						events->interrupt.shadow);
4852 
4853 	vcpu->arch.nmi_injected = events->nmi.injected;
4854 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4855 		vcpu->arch.nmi_pending = events->nmi.pending;
4856 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4857 
4858 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4859 	    lapic_in_kernel(vcpu))
4860 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4861 
4862 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4863 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4864 			kvm_smm_changed(vcpu, events->smi.smm);
4865 
4866 		vcpu->arch.smi_pending = events->smi.pending;
4867 
4868 		if (events->smi.smm) {
4869 			if (events->smi.smm_inside_nmi)
4870 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4871 			else
4872 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4873 		}
4874 
4875 		if (lapic_in_kernel(vcpu)) {
4876 			if (events->smi.latched_init)
4877 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4878 			else
4879 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4880 		}
4881 	}
4882 
4883 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4884 
4885 	return 0;
4886 }
4887 
4888 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4889 					     struct kvm_debugregs *dbgregs)
4890 {
4891 	unsigned long val;
4892 
4893 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4894 	kvm_get_dr(vcpu, 6, &val);
4895 	dbgregs->dr6 = val;
4896 	dbgregs->dr7 = vcpu->arch.dr7;
4897 	dbgregs->flags = 0;
4898 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4899 }
4900 
4901 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4902 					    struct kvm_debugregs *dbgregs)
4903 {
4904 	if (dbgregs->flags)
4905 		return -EINVAL;
4906 
4907 	if (!kvm_dr6_valid(dbgregs->dr6))
4908 		return -EINVAL;
4909 	if (!kvm_dr7_valid(dbgregs->dr7))
4910 		return -EINVAL;
4911 
4912 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4913 	kvm_update_dr0123(vcpu);
4914 	vcpu->arch.dr6 = dbgregs->dr6;
4915 	vcpu->arch.dr7 = dbgregs->dr7;
4916 	kvm_update_dr7(vcpu);
4917 
4918 	return 0;
4919 }
4920 
4921 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4922 					 struct kvm_xsave *guest_xsave)
4923 {
4924 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4925 		return;
4926 
4927 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4928 				       guest_xsave->region,
4929 				       sizeof(guest_xsave->region),
4930 				       vcpu->arch.pkru);
4931 }
4932 
4933 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
4934 					  u8 *state, unsigned int size)
4935 {
4936 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4937 		return;
4938 
4939 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4940 				       state, size, vcpu->arch.pkru);
4941 }
4942 
4943 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4944 					struct kvm_xsave *guest_xsave)
4945 {
4946 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4947 		return 0;
4948 
4949 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4950 					      guest_xsave->region,
4951 					      supported_xcr0, &vcpu->arch.pkru);
4952 }
4953 
4954 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4955 					struct kvm_xcrs *guest_xcrs)
4956 {
4957 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4958 		guest_xcrs->nr_xcrs = 0;
4959 		return;
4960 	}
4961 
4962 	guest_xcrs->nr_xcrs = 1;
4963 	guest_xcrs->flags = 0;
4964 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4965 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4966 }
4967 
4968 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4969 				       struct kvm_xcrs *guest_xcrs)
4970 {
4971 	int i, r = 0;
4972 
4973 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4974 		return -EINVAL;
4975 
4976 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4977 		return -EINVAL;
4978 
4979 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4980 		/* Only support XCR0 currently */
4981 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4982 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4983 				guest_xcrs->xcrs[i].value);
4984 			break;
4985 		}
4986 	if (r)
4987 		r = -EINVAL;
4988 	return r;
4989 }
4990 
4991 /*
4992  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4993  * stopped by the hypervisor.  This function will be called from the host only.
4994  * EINVAL is returned when the host attempts to set the flag for a guest that
4995  * does not support pv clocks.
4996  */
4997 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4998 {
4999 	if (!vcpu->arch.pv_time_enabled)
5000 		return -EINVAL;
5001 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5002 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5003 	return 0;
5004 }
5005 
5006 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5007 				 struct kvm_device_attr *attr)
5008 {
5009 	int r;
5010 
5011 	switch (attr->attr) {
5012 	case KVM_VCPU_TSC_OFFSET:
5013 		r = 0;
5014 		break;
5015 	default:
5016 		r = -ENXIO;
5017 	}
5018 
5019 	return r;
5020 }
5021 
5022 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5023 				 struct kvm_device_attr *attr)
5024 {
5025 	u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5026 	int r;
5027 
5028 	if ((u64)(unsigned long)uaddr != attr->addr)
5029 		return -EFAULT;
5030 
5031 	switch (attr->attr) {
5032 	case KVM_VCPU_TSC_OFFSET:
5033 		r = -EFAULT;
5034 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5035 			break;
5036 		r = 0;
5037 		break;
5038 	default:
5039 		r = -ENXIO;
5040 	}
5041 
5042 	return r;
5043 }
5044 
5045 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5046 				 struct kvm_device_attr *attr)
5047 {
5048 	u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5049 	struct kvm *kvm = vcpu->kvm;
5050 	int r;
5051 
5052 	if ((u64)(unsigned long)uaddr != attr->addr)
5053 		return -EFAULT;
5054 
5055 	switch (attr->attr) {
5056 	case KVM_VCPU_TSC_OFFSET: {
5057 		u64 offset, tsc, ns;
5058 		unsigned long flags;
5059 		bool matched;
5060 
5061 		r = -EFAULT;
5062 		if (get_user(offset, uaddr))
5063 			break;
5064 
5065 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5066 
5067 		matched = (vcpu->arch.virtual_tsc_khz &&
5068 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5069 			   kvm->arch.last_tsc_offset == offset);
5070 
5071 		tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5072 		ns = get_kvmclock_base_ns();
5073 
5074 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5075 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5076 
5077 		r = 0;
5078 		break;
5079 	}
5080 	default:
5081 		r = -ENXIO;
5082 	}
5083 
5084 	return r;
5085 }
5086 
5087 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5088 				      unsigned int ioctl,
5089 				      void __user *argp)
5090 {
5091 	struct kvm_device_attr attr;
5092 	int r;
5093 
5094 	if (copy_from_user(&attr, argp, sizeof(attr)))
5095 		return -EFAULT;
5096 
5097 	if (attr.group != KVM_VCPU_TSC_CTRL)
5098 		return -ENXIO;
5099 
5100 	switch (ioctl) {
5101 	case KVM_HAS_DEVICE_ATTR:
5102 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5103 		break;
5104 	case KVM_GET_DEVICE_ATTR:
5105 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5106 		break;
5107 	case KVM_SET_DEVICE_ATTR:
5108 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5109 		break;
5110 	}
5111 
5112 	return r;
5113 }
5114 
5115 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5116 				     struct kvm_enable_cap *cap)
5117 {
5118 	int r;
5119 	uint16_t vmcs_version;
5120 	void __user *user_ptr;
5121 
5122 	if (cap->flags)
5123 		return -EINVAL;
5124 
5125 	switch (cap->cap) {
5126 	case KVM_CAP_HYPERV_SYNIC2:
5127 		if (cap->args[0])
5128 			return -EINVAL;
5129 		fallthrough;
5130 
5131 	case KVM_CAP_HYPERV_SYNIC:
5132 		if (!irqchip_in_kernel(vcpu->kvm))
5133 			return -EINVAL;
5134 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5135 					     KVM_CAP_HYPERV_SYNIC2);
5136 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5137 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5138 			return -ENOTTY;
5139 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5140 		if (!r) {
5141 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5142 			if (copy_to_user(user_ptr, &vmcs_version,
5143 					 sizeof(vmcs_version)))
5144 				r = -EFAULT;
5145 		}
5146 		return r;
5147 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5148 		if (!kvm_x86_ops.enable_direct_tlbflush)
5149 			return -ENOTTY;
5150 
5151 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5152 
5153 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5154 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5155 
5156 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5157 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5158 		if (vcpu->arch.pv_cpuid.enforce)
5159 			kvm_update_pv_runtime(vcpu);
5160 
5161 		return 0;
5162 	default:
5163 		return -EINVAL;
5164 	}
5165 }
5166 
5167 long kvm_arch_vcpu_ioctl(struct file *filp,
5168 			 unsigned int ioctl, unsigned long arg)
5169 {
5170 	struct kvm_vcpu *vcpu = filp->private_data;
5171 	void __user *argp = (void __user *)arg;
5172 	int r;
5173 	union {
5174 		struct kvm_sregs2 *sregs2;
5175 		struct kvm_lapic_state *lapic;
5176 		struct kvm_xsave *xsave;
5177 		struct kvm_xcrs *xcrs;
5178 		void *buffer;
5179 	} u;
5180 
5181 	vcpu_load(vcpu);
5182 
5183 	u.buffer = NULL;
5184 	switch (ioctl) {
5185 	case KVM_GET_LAPIC: {
5186 		r = -EINVAL;
5187 		if (!lapic_in_kernel(vcpu))
5188 			goto out;
5189 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5190 				GFP_KERNEL_ACCOUNT);
5191 
5192 		r = -ENOMEM;
5193 		if (!u.lapic)
5194 			goto out;
5195 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5196 		if (r)
5197 			goto out;
5198 		r = -EFAULT;
5199 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5200 			goto out;
5201 		r = 0;
5202 		break;
5203 	}
5204 	case KVM_SET_LAPIC: {
5205 		r = -EINVAL;
5206 		if (!lapic_in_kernel(vcpu))
5207 			goto out;
5208 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5209 		if (IS_ERR(u.lapic)) {
5210 			r = PTR_ERR(u.lapic);
5211 			goto out_nofree;
5212 		}
5213 
5214 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5215 		break;
5216 	}
5217 	case KVM_INTERRUPT: {
5218 		struct kvm_interrupt irq;
5219 
5220 		r = -EFAULT;
5221 		if (copy_from_user(&irq, argp, sizeof(irq)))
5222 			goto out;
5223 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5224 		break;
5225 	}
5226 	case KVM_NMI: {
5227 		r = kvm_vcpu_ioctl_nmi(vcpu);
5228 		break;
5229 	}
5230 	case KVM_SMI: {
5231 		r = kvm_vcpu_ioctl_smi(vcpu);
5232 		break;
5233 	}
5234 	case KVM_SET_CPUID: {
5235 		struct kvm_cpuid __user *cpuid_arg = argp;
5236 		struct kvm_cpuid cpuid;
5237 
5238 		r = -EFAULT;
5239 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5240 			goto out;
5241 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5242 		break;
5243 	}
5244 	case KVM_SET_CPUID2: {
5245 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5246 		struct kvm_cpuid2 cpuid;
5247 
5248 		r = -EFAULT;
5249 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5250 			goto out;
5251 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5252 					      cpuid_arg->entries);
5253 		break;
5254 	}
5255 	case KVM_GET_CPUID2: {
5256 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5257 		struct kvm_cpuid2 cpuid;
5258 
5259 		r = -EFAULT;
5260 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5261 			goto out;
5262 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5263 					      cpuid_arg->entries);
5264 		if (r)
5265 			goto out;
5266 		r = -EFAULT;
5267 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5268 			goto out;
5269 		r = 0;
5270 		break;
5271 	}
5272 	case KVM_GET_MSRS: {
5273 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5274 		r = msr_io(vcpu, argp, do_get_msr, 1);
5275 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5276 		break;
5277 	}
5278 	case KVM_SET_MSRS: {
5279 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5280 		r = msr_io(vcpu, argp, do_set_msr, 0);
5281 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5282 		break;
5283 	}
5284 	case KVM_TPR_ACCESS_REPORTING: {
5285 		struct kvm_tpr_access_ctl tac;
5286 
5287 		r = -EFAULT;
5288 		if (copy_from_user(&tac, argp, sizeof(tac)))
5289 			goto out;
5290 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5291 		if (r)
5292 			goto out;
5293 		r = -EFAULT;
5294 		if (copy_to_user(argp, &tac, sizeof(tac)))
5295 			goto out;
5296 		r = 0;
5297 		break;
5298 	};
5299 	case KVM_SET_VAPIC_ADDR: {
5300 		struct kvm_vapic_addr va;
5301 		int idx;
5302 
5303 		r = -EINVAL;
5304 		if (!lapic_in_kernel(vcpu))
5305 			goto out;
5306 		r = -EFAULT;
5307 		if (copy_from_user(&va, argp, sizeof(va)))
5308 			goto out;
5309 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5310 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5311 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5312 		break;
5313 	}
5314 	case KVM_X86_SETUP_MCE: {
5315 		u64 mcg_cap;
5316 
5317 		r = -EFAULT;
5318 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5319 			goto out;
5320 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5321 		break;
5322 	}
5323 	case KVM_X86_SET_MCE: {
5324 		struct kvm_x86_mce mce;
5325 
5326 		r = -EFAULT;
5327 		if (copy_from_user(&mce, argp, sizeof(mce)))
5328 			goto out;
5329 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5330 		break;
5331 	}
5332 	case KVM_GET_VCPU_EVENTS: {
5333 		struct kvm_vcpu_events events;
5334 
5335 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5336 
5337 		r = -EFAULT;
5338 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5339 			break;
5340 		r = 0;
5341 		break;
5342 	}
5343 	case KVM_SET_VCPU_EVENTS: {
5344 		struct kvm_vcpu_events events;
5345 
5346 		r = -EFAULT;
5347 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5348 			break;
5349 
5350 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5351 		break;
5352 	}
5353 	case KVM_GET_DEBUGREGS: {
5354 		struct kvm_debugregs dbgregs;
5355 
5356 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5357 
5358 		r = -EFAULT;
5359 		if (copy_to_user(argp, &dbgregs,
5360 				 sizeof(struct kvm_debugregs)))
5361 			break;
5362 		r = 0;
5363 		break;
5364 	}
5365 	case KVM_SET_DEBUGREGS: {
5366 		struct kvm_debugregs dbgregs;
5367 
5368 		r = -EFAULT;
5369 		if (copy_from_user(&dbgregs, argp,
5370 				   sizeof(struct kvm_debugregs)))
5371 			break;
5372 
5373 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5374 		break;
5375 	}
5376 	case KVM_GET_XSAVE: {
5377 		r = -EINVAL;
5378 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5379 			break;
5380 
5381 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5382 		r = -ENOMEM;
5383 		if (!u.xsave)
5384 			break;
5385 
5386 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5387 
5388 		r = -EFAULT;
5389 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5390 			break;
5391 		r = 0;
5392 		break;
5393 	}
5394 	case KVM_SET_XSAVE: {
5395 		int size = vcpu->arch.guest_fpu.uabi_size;
5396 
5397 		u.xsave = memdup_user(argp, size);
5398 		if (IS_ERR(u.xsave)) {
5399 			r = PTR_ERR(u.xsave);
5400 			goto out_nofree;
5401 		}
5402 
5403 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5404 		break;
5405 	}
5406 
5407 	case KVM_GET_XSAVE2: {
5408 		int size = vcpu->arch.guest_fpu.uabi_size;
5409 
5410 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5411 		r = -ENOMEM;
5412 		if (!u.xsave)
5413 			break;
5414 
5415 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5416 
5417 		r = -EFAULT;
5418 		if (copy_to_user(argp, u.xsave, size))
5419 			break;
5420 
5421 		r = 0;
5422 		break;
5423 	}
5424 
5425 	case KVM_GET_XCRS: {
5426 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5427 		r = -ENOMEM;
5428 		if (!u.xcrs)
5429 			break;
5430 
5431 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5432 
5433 		r = -EFAULT;
5434 		if (copy_to_user(argp, u.xcrs,
5435 				 sizeof(struct kvm_xcrs)))
5436 			break;
5437 		r = 0;
5438 		break;
5439 	}
5440 	case KVM_SET_XCRS: {
5441 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5442 		if (IS_ERR(u.xcrs)) {
5443 			r = PTR_ERR(u.xcrs);
5444 			goto out_nofree;
5445 		}
5446 
5447 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5448 		break;
5449 	}
5450 	case KVM_SET_TSC_KHZ: {
5451 		u32 user_tsc_khz;
5452 
5453 		r = -EINVAL;
5454 		user_tsc_khz = (u32)arg;
5455 
5456 		if (kvm_has_tsc_control &&
5457 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5458 			goto out;
5459 
5460 		if (user_tsc_khz == 0)
5461 			user_tsc_khz = tsc_khz;
5462 
5463 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5464 			r = 0;
5465 
5466 		goto out;
5467 	}
5468 	case KVM_GET_TSC_KHZ: {
5469 		r = vcpu->arch.virtual_tsc_khz;
5470 		goto out;
5471 	}
5472 	case KVM_KVMCLOCK_CTRL: {
5473 		r = kvm_set_guest_paused(vcpu);
5474 		goto out;
5475 	}
5476 	case KVM_ENABLE_CAP: {
5477 		struct kvm_enable_cap cap;
5478 
5479 		r = -EFAULT;
5480 		if (copy_from_user(&cap, argp, sizeof(cap)))
5481 			goto out;
5482 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5483 		break;
5484 	}
5485 	case KVM_GET_NESTED_STATE: {
5486 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5487 		u32 user_data_size;
5488 
5489 		r = -EINVAL;
5490 		if (!kvm_x86_ops.nested_ops->get_state)
5491 			break;
5492 
5493 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5494 		r = -EFAULT;
5495 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5496 			break;
5497 
5498 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5499 						     user_data_size);
5500 		if (r < 0)
5501 			break;
5502 
5503 		if (r > user_data_size) {
5504 			if (put_user(r, &user_kvm_nested_state->size))
5505 				r = -EFAULT;
5506 			else
5507 				r = -E2BIG;
5508 			break;
5509 		}
5510 
5511 		r = 0;
5512 		break;
5513 	}
5514 	case KVM_SET_NESTED_STATE: {
5515 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5516 		struct kvm_nested_state kvm_state;
5517 		int idx;
5518 
5519 		r = -EINVAL;
5520 		if (!kvm_x86_ops.nested_ops->set_state)
5521 			break;
5522 
5523 		r = -EFAULT;
5524 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5525 			break;
5526 
5527 		r = -EINVAL;
5528 		if (kvm_state.size < sizeof(kvm_state))
5529 			break;
5530 
5531 		if (kvm_state.flags &
5532 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5533 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5534 		      | KVM_STATE_NESTED_GIF_SET))
5535 			break;
5536 
5537 		/* nested_run_pending implies guest_mode.  */
5538 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5539 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5540 			break;
5541 
5542 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5543 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5544 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5545 		break;
5546 	}
5547 	case KVM_GET_SUPPORTED_HV_CPUID:
5548 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5549 		break;
5550 #ifdef CONFIG_KVM_XEN
5551 	case KVM_XEN_VCPU_GET_ATTR: {
5552 		struct kvm_xen_vcpu_attr xva;
5553 
5554 		r = -EFAULT;
5555 		if (copy_from_user(&xva, argp, sizeof(xva)))
5556 			goto out;
5557 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5558 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5559 			r = -EFAULT;
5560 		break;
5561 	}
5562 	case KVM_XEN_VCPU_SET_ATTR: {
5563 		struct kvm_xen_vcpu_attr xva;
5564 
5565 		r = -EFAULT;
5566 		if (copy_from_user(&xva, argp, sizeof(xva)))
5567 			goto out;
5568 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5569 		break;
5570 	}
5571 #endif
5572 	case KVM_GET_SREGS2: {
5573 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5574 		r = -ENOMEM;
5575 		if (!u.sregs2)
5576 			goto out;
5577 		__get_sregs2(vcpu, u.sregs2);
5578 		r = -EFAULT;
5579 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5580 			goto out;
5581 		r = 0;
5582 		break;
5583 	}
5584 	case KVM_SET_SREGS2: {
5585 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5586 		if (IS_ERR(u.sregs2)) {
5587 			r = PTR_ERR(u.sregs2);
5588 			u.sregs2 = NULL;
5589 			goto out;
5590 		}
5591 		r = __set_sregs2(vcpu, u.sregs2);
5592 		break;
5593 	}
5594 	case KVM_HAS_DEVICE_ATTR:
5595 	case KVM_GET_DEVICE_ATTR:
5596 	case KVM_SET_DEVICE_ATTR:
5597 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5598 		break;
5599 	default:
5600 		r = -EINVAL;
5601 	}
5602 out:
5603 	kfree(u.buffer);
5604 out_nofree:
5605 	vcpu_put(vcpu);
5606 	return r;
5607 }
5608 
5609 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5610 {
5611 	return VM_FAULT_SIGBUS;
5612 }
5613 
5614 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5615 {
5616 	int ret;
5617 
5618 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5619 		return -EINVAL;
5620 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5621 	return ret;
5622 }
5623 
5624 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5625 					      u64 ident_addr)
5626 {
5627 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5628 }
5629 
5630 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5631 					 unsigned long kvm_nr_mmu_pages)
5632 {
5633 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5634 		return -EINVAL;
5635 
5636 	mutex_lock(&kvm->slots_lock);
5637 
5638 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5639 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5640 
5641 	mutex_unlock(&kvm->slots_lock);
5642 	return 0;
5643 }
5644 
5645 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5646 {
5647 	return kvm->arch.n_max_mmu_pages;
5648 }
5649 
5650 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5651 {
5652 	struct kvm_pic *pic = kvm->arch.vpic;
5653 	int r;
5654 
5655 	r = 0;
5656 	switch (chip->chip_id) {
5657 	case KVM_IRQCHIP_PIC_MASTER:
5658 		memcpy(&chip->chip.pic, &pic->pics[0],
5659 			sizeof(struct kvm_pic_state));
5660 		break;
5661 	case KVM_IRQCHIP_PIC_SLAVE:
5662 		memcpy(&chip->chip.pic, &pic->pics[1],
5663 			sizeof(struct kvm_pic_state));
5664 		break;
5665 	case KVM_IRQCHIP_IOAPIC:
5666 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5667 		break;
5668 	default:
5669 		r = -EINVAL;
5670 		break;
5671 	}
5672 	return r;
5673 }
5674 
5675 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5676 {
5677 	struct kvm_pic *pic = kvm->arch.vpic;
5678 	int r;
5679 
5680 	r = 0;
5681 	switch (chip->chip_id) {
5682 	case KVM_IRQCHIP_PIC_MASTER:
5683 		spin_lock(&pic->lock);
5684 		memcpy(&pic->pics[0], &chip->chip.pic,
5685 			sizeof(struct kvm_pic_state));
5686 		spin_unlock(&pic->lock);
5687 		break;
5688 	case KVM_IRQCHIP_PIC_SLAVE:
5689 		spin_lock(&pic->lock);
5690 		memcpy(&pic->pics[1], &chip->chip.pic,
5691 			sizeof(struct kvm_pic_state));
5692 		spin_unlock(&pic->lock);
5693 		break;
5694 	case KVM_IRQCHIP_IOAPIC:
5695 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5696 		break;
5697 	default:
5698 		r = -EINVAL;
5699 		break;
5700 	}
5701 	kvm_pic_update_irq(pic);
5702 	return r;
5703 }
5704 
5705 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5706 {
5707 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5708 
5709 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5710 
5711 	mutex_lock(&kps->lock);
5712 	memcpy(ps, &kps->channels, sizeof(*ps));
5713 	mutex_unlock(&kps->lock);
5714 	return 0;
5715 }
5716 
5717 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5718 {
5719 	int i;
5720 	struct kvm_pit *pit = kvm->arch.vpit;
5721 
5722 	mutex_lock(&pit->pit_state.lock);
5723 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5724 	for (i = 0; i < 3; i++)
5725 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5726 	mutex_unlock(&pit->pit_state.lock);
5727 	return 0;
5728 }
5729 
5730 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5731 {
5732 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5733 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5734 		sizeof(ps->channels));
5735 	ps->flags = kvm->arch.vpit->pit_state.flags;
5736 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5737 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5738 	return 0;
5739 }
5740 
5741 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5742 {
5743 	int start = 0;
5744 	int i;
5745 	u32 prev_legacy, cur_legacy;
5746 	struct kvm_pit *pit = kvm->arch.vpit;
5747 
5748 	mutex_lock(&pit->pit_state.lock);
5749 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5750 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5751 	if (!prev_legacy && cur_legacy)
5752 		start = 1;
5753 	memcpy(&pit->pit_state.channels, &ps->channels,
5754 	       sizeof(pit->pit_state.channels));
5755 	pit->pit_state.flags = ps->flags;
5756 	for (i = 0; i < 3; i++)
5757 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5758 				   start && i == 0);
5759 	mutex_unlock(&pit->pit_state.lock);
5760 	return 0;
5761 }
5762 
5763 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5764 				 struct kvm_reinject_control *control)
5765 {
5766 	struct kvm_pit *pit = kvm->arch.vpit;
5767 
5768 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5769 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5770 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5771 	 */
5772 	mutex_lock(&pit->pit_state.lock);
5773 	kvm_pit_set_reinject(pit, control->pit_reinject);
5774 	mutex_unlock(&pit->pit_state.lock);
5775 
5776 	return 0;
5777 }
5778 
5779 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5780 {
5781 
5782 	/*
5783 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5784 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5785 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5786 	 * VM-Exit.
5787 	 */
5788 	struct kvm_vcpu *vcpu;
5789 	unsigned long i;
5790 
5791 	kvm_for_each_vcpu(i, vcpu, kvm)
5792 		kvm_vcpu_kick(vcpu);
5793 }
5794 
5795 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5796 			bool line_status)
5797 {
5798 	if (!irqchip_in_kernel(kvm))
5799 		return -ENXIO;
5800 
5801 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5802 					irq_event->irq, irq_event->level,
5803 					line_status);
5804 	return 0;
5805 }
5806 
5807 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5808 			    struct kvm_enable_cap *cap)
5809 {
5810 	int r;
5811 
5812 	if (cap->flags)
5813 		return -EINVAL;
5814 
5815 	switch (cap->cap) {
5816 	case KVM_CAP_DISABLE_QUIRKS:
5817 		kvm->arch.disabled_quirks = cap->args[0];
5818 		r = 0;
5819 		break;
5820 	case KVM_CAP_SPLIT_IRQCHIP: {
5821 		mutex_lock(&kvm->lock);
5822 		r = -EINVAL;
5823 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5824 			goto split_irqchip_unlock;
5825 		r = -EEXIST;
5826 		if (irqchip_in_kernel(kvm))
5827 			goto split_irqchip_unlock;
5828 		if (kvm->created_vcpus)
5829 			goto split_irqchip_unlock;
5830 		r = kvm_setup_empty_irq_routing(kvm);
5831 		if (r)
5832 			goto split_irqchip_unlock;
5833 		/* Pairs with irqchip_in_kernel. */
5834 		smp_wmb();
5835 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5836 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5837 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5838 		r = 0;
5839 split_irqchip_unlock:
5840 		mutex_unlock(&kvm->lock);
5841 		break;
5842 	}
5843 	case KVM_CAP_X2APIC_API:
5844 		r = -EINVAL;
5845 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5846 			break;
5847 
5848 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5849 			kvm->arch.x2apic_format = true;
5850 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5851 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5852 
5853 		r = 0;
5854 		break;
5855 	case KVM_CAP_X86_DISABLE_EXITS:
5856 		r = -EINVAL;
5857 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5858 			break;
5859 
5860 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5861 			kvm_can_mwait_in_guest())
5862 			kvm->arch.mwait_in_guest = true;
5863 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5864 			kvm->arch.hlt_in_guest = true;
5865 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5866 			kvm->arch.pause_in_guest = true;
5867 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5868 			kvm->arch.cstate_in_guest = true;
5869 		r = 0;
5870 		break;
5871 	case KVM_CAP_MSR_PLATFORM_INFO:
5872 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5873 		r = 0;
5874 		break;
5875 	case KVM_CAP_EXCEPTION_PAYLOAD:
5876 		kvm->arch.exception_payload_enabled = cap->args[0];
5877 		r = 0;
5878 		break;
5879 	case KVM_CAP_X86_USER_SPACE_MSR:
5880 		kvm->arch.user_space_msr_mask = cap->args[0];
5881 		r = 0;
5882 		break;
5883 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5884 		r = -EINVAL;
5885 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5886 			break;
5887 
5888 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5889 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5890 			break;
5891 
5892 		if (kvm_has_bus_lock_exit &&
5893 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5894 			kvm->arch.bus_lock_detection_enabled = true;
5895 		r = 0;
5896 		break;
5897 #ifdef CONFIG_X86_SGX_KVM
5898 	case KVM_CAP_SGX_ATTRIBUTE: {
5899 		unsigned long allowed_attributes = 0;
5900 
5901 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5902 		if (r)
5903 			break;
5904 
5905 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5906 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5907 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5908 			kvm->arch.sgx_provisioning_allowed = true;
5909 		else
5910 			r = -EINVAL;
5911 		break;
5912 	}
5913 #endif
5914 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5915 		r = -EINVAL;
5916 		if (kvm_x86_ops.vm_copy_enc_context_from)
5917 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5918 		return r;
5919 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5920 		r = -EINVAL;
5921 		if (kvm_x86_ops.vm_move_enc_context_from)
5922 			r = kvm_x86_ops.vm_move_enc_context_from(
5923 				kvm, cap->args[0]);
5924 		return r;
5925 	case KVM_CAP_EXIT_HYPERCALL:
5926 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5927 			r = -EINVAL;
5928 			break;
5929 		}
5930 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5931 		r = 0;
5932 		break;
5933 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5934 		r = -EINVAL;
5935 		if (cap->args[0] & ~1)
5936 			break;
5937 		kvm->arch.exit_on_emulation_error = cap->args[0];
5938 		r = 0;
5939 		break;
5940 	default:
5941 		r = -EINVAL;
5942 		break;
5943 	}
5944 	return r;
5945 }
5946 
5947 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5948 {
5949 	struct kvm_x86_msr_filter *msr_filter;
5950 
5951 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5952 	if (!msr_filter)
5953 		return NULL;
5954 
5955 	msr_filter->default_allow = default_allow;
5956 	return msr_filter;
5957 }
5958 
5959 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5960 {
5961 	u32 i;
5962 
5963 	if (!msr_filter)
5964 		return;
5965 
5966 	for (i = 0; i < msr_filter->count; i++)
5967 		kfree(msr_filter->ranges[i].bitmap);
5968 
5969 	kfree(msr_filter);
5970 }
5971 
5972 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5973 			      struct kvm_msr_filter_range *user_range)
5974 {
5975 	unsigned long *bitmap = NULL;
5976 	size_t bitmap_size;
5977 
5978 	if (!user_range->nmsrs)
5979 		return 0;
5980 
5981 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5982 		return -EINVAL;
5983 
5984 	if (!user_range->flags)
5985 		return -EINVAL;
5986 
5987 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5988 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5989 		return -EINVAL;
5990 
5991 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5992 	if (IS_ERR(bitmap))
5993 		return PTR_ERR(bitmap);
5994 
5995 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5996 		.flags = user_range->flags,
5997 		.base = user_range->base,
5998 		.nmsrs = user_range->nmsrs,
5999 		.bitmap = bitmap,
6000 	};
6001 
6002 	msr_filter->count++;
6003 	return 0;
6004 }
6005 
6006 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6007 {
6008 	struct kvm_msr_filter __user *user_msr_filter = argp;
6009 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6010 	struct kvm_msr_filter filter;
6011 	bool default_allow;
6012 	bool empty = true;
6013 	int r = 0;
6014 	u32 i;
6015 
6016 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6017 		return -EFAULT;
6018 
6019 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6020 		empty &= !filter.ranges[i].nmsrs;
6021 
6022 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6023 	if (empty && !default_allow)
6024 		return -EINVAL;
6025 
6026 	new_filter = kvm_alloc_msr_filter(default_allow);
6027 	if (!new_filter)
6028 		return -ENOMEM;
6029 
6030 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6031 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6032 		if (r) {
6033 			kvm_free_msr_filter(new_filter);
6034 			return r;
6035 		}
6036 	}
6037 
6038 	mutex_lock(&kvm->lock);
6039 
6040 	/* The per-VM filter is protected by kvm->lock... */
6041 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6042 
6043 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6044 	synchronize_srcu(&kvm->srcu);
6045 
6046 	kvm_free_msr_filter(old_filter);
6047 
6048 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6049 	mutex_unlock(&kvm->lock);
6050 
6051 	return 0;
6052 }
6053 
6054 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6055 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6056 {
6057 	struct kvm_vcpu *vcpu;
6058 	unsigned long i;
6059 	int ret = 0;
6060 
6061 	mutex_lock(&kvm->lock);
6062 	kvm_for_each_vcpu(i, vcpu, kvm) {
6063 		if (!vcpu->arch.pv_time_enabled)
6064 			continue;
6065 
6066 		ret = kvm_set_guest_paused(vcpu);
6067 		if (ret) {
6068 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6069 				vcpu->vcpu_id, ret);
6070 			break;
6071 		}
6072 	}
6073 	mutex_unlock(&kvm->lock);
6074 
6075 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6076 }
6077 
6078 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6079 {
6080 	switch (state) {
6081 	case PM_HIBERNATION_PREPARE:
6082 	case PM_SUSPEND_PREPARE:
6083 		return kvm_arch_suspend_notifier(kvm);
6084 	}
6085 
6086 	return NOTIFY_DONE;
6087 }
6088 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6089 
6090 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6091 {
6092 	struct kvm_clock_data data = { 0 };
6093 
6094 	get_kvmclock(kvm, &data);
6095 	if (copy_to_user(argp, &data, sizeof(data)))
6096 		return -EFAULT;
6097 
6098 	return 0;
6099 }
6100 
6101 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6102 {
6103 	struct kvm_arch *ka = &kvm->arch;
6104 	struct kvm_clock_data data;
6105 	u64 now_raw_ns;
6106 
6107 	if (copy_from_user(&data, argp, sizeof(data)))
6108 		return -EFAULT;
6109 
6110 	/*
6111 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6112 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6113 	 */
6114 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6115 		return -EINVAL;
6116 
6117 	kvm_hv_invalidate_tsc_page(kvm);
6118 	kvm_start_pvclock_update(kvm);
6119 	pvclock_update_vm_gtod_copy(kvm);
6120 
6121 	/*
6122 	 * This pairs with kvm_guest_time_update(): when masterclock is
6123 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6124 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6125 	 * is slightly ahead) here we risk going negative on unsigned
6126 	 * 'system_time' when 'data.clock' is very small.
6127 	 */
6128 	if (data.flags & KVM_CLOCK_REALTIME) {
6129 		u64 now_real_ns = ktime_get_real_ns();
6130 
6131 		/*
6132 		 * Avoid stepping the kvmclock backwards.
6133 		 */
6134 		if (now_real_ns > data.realtime)
6135 			data.clock += now_real_ns - data.realtime;
6136 	}
6137 
6138 	if (ka->use_master_clock)
6139 		now_raw_ns = ka->master_kernel_ns;
6140 	else
6141 		now_raw_ns = get_kvmclock_base_ns();
6142 	ka->kvmclock_offset = data.clock - now_raw_ns;
6143 	kvm_end_pvclock_update(kvm);
6144 	return 0;
6145 }
6146 
6147 long kvm_arch_vm_ioctl(struct file *filp,
6148 		       unsigned int ioctl, unsigned long arg)
6149 {
6150 	struct kvm *kvm = filp->private_data;
6151 	void __user *argp = (void __user *)arg;
6152 	int r = -ENOTTY;
6153 	/*
6154 	 * This union makes it completely explicit to gcc-3.x
6155 	 * that these two variables' stack usage should be
6156 	 * combined, not added together.
6157 	 */
6158 	union {
6159 		struct kvm_pit_state ps;
6160 		struct kvm_pit_state2 ps2;
6161 		struct kvm_pit_config pit_config;
6162 	} u;
6163 
6164 	switch (ioctl) {
6165 	case KVM_SET_TSS_ADDR:
6166 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6167 		break;
6168 	case KVM_SET_IDENTITY_MAP_ADDR: {
6169 		u64 ident_addr;
6170 
6171 		mutex_lock(&kvm->lock);
6172 		r = -EINVAL;
6173 		if (kvm->created_vcpus)
6174 			goto set_identity_unlock;
6175 		r = -EFAULT;
6176 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6177 			goto set_identity_unlock;
6178 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6179 set_identity_unlock:
6180 		mutex_unlock(&kvm->lock);
6181 		break;
6182 	}
6183 	case KVM_SET_NR_MMU_PAGES:
6184 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6185 		break;
6186 	case KVM_GET_NR_MMU_PAGES:
6187 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6188 		break;
6189 	case KVM_CREATE_IRQCHIP: {
6190 		mutex_lock(&kvm->lock);
6191 
6192 		r = -EEXIST;
6193 		if (irqchip_in_kernel(kvm))
6194 			goto create_irqchip_unlock;
6195 
6196 		r = -EINVAL;
6197 		if (kvm->created_vcpus)
6198 			goto create_irqchip_unlock;
6199 
6200 		r = kvm_pic_init(kvm);
6201 		if (r)
6202 			goto create_irqchip_unlock;
6203 
6204 		r = kvm_ioapic_init(kvm);
6205 		if (r) {
6206 			kvm_pic_destroy(kvm);
6207 			goto create_irqchip_unlock;
6208 		}
6209 
6210 		r = kvm_setup_default_irq_routing(kvm);
6211 		if (r) {
6212 			kvm_ioapic_destroy(kvm);
6213 			kvm_pic_destroy(kvm);
6214 			goto create_irqchip_unlock;
6215 		}
6216 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6217 		smp_wmb();
6218 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6219 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6220 	create_irqchip_unlock:
6221 		mutex_unlock(&kvm->lock);
6222 		break;
6223 	}
6224 	case KVM_CREATE_PIT:
6225 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6226 		goto create_pit;
6227 	case KVM_CREATE_PIT2:
6228 		r = -EFAULT;
6229 		if (copy_from_user(&u.pit_config, argp,
6230 				   sizeof(struct kvm_pit_config)))
6231 			goto out;
6232 	create_pit:
6233 		mutex_lock(&kvm->lock);
6234 		r = -EEXIST;
6235 		if (kvm->arch.vpit)
6236 			goto create_pit_unlock;
6237 		r = -ENOMEM;
6238 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6239 		if (kvm->arch.vpit)
6240 			r = 0;
6241 	create_pit_unlock:
6242 		mutex_unlock(&kvm->lock);
6243 		break;
6244 	case KVM_GET_IRQCHIP: {
6245 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6246 		struct kvm_irqchip *chip;
6247 
6248 		chip = memdup_user(argp, sizeof(*chip));
6249 		if (IS_ERR(chip)) {
6250 			r = PTR_ERR(chip);
6251 			goto out;
6252 		}
6253 
6254 		r = -ENXIO;
6255 		if (!irqchip_kernel(kvm))
6256 			goto get_irqchip_out;
6257 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6258 		if (r)
6259 			goto get_irqchip_out;
6260 		r = -EFAULT;
6261 		if (copy_to_user(argp, chip, sizeof(*chip)))
6262 			goto get_irqchip_out;
6263 		r = 0;
6264 	get_irqchip_out:
6265 		kfree(chip);
6266 		break;
6267 	}
6268 	case KVM_SET_IRQCHIP: {
6269 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6270 		struct kvm_irqchip *chip;
6271 
6272 		chip = memdup_user(argp, sizeof(*chip));
6273 		if (IS_ERR(chip)) {
6274 			r = PTR_ERR(chip);
6275 			goto out;
6276 		}
6277 
6278 		r = -ENXIO;
6279 		if (!irqchip_kernel(kvm))
6280 			goto set_irqchip_out;
6281 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6282 	set_irqchip_out:
6283 		kfree(chip);
6284 		break;
6285 	}
6286 	case KVM_GET_PIT: {
6287 		r = -EFAULT;
6288 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6289 			goto out;
6290 		r = -ENXIO;
6291 		if (!kvm->arch.vpit)
6292 			goto out;
6293 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6294 		if (r)
6295 			goto out;
6296 		r = -EFAULT;
6297 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6298 			goto out;
6299 		r = 0;
6300 		break;
6301 	}
6302 	case KVM_SET_PIT: {
6303 		r = -EFAULT;
6304 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6305 			goto out;
6306 		mutex_lock(&kvm->lock);
6307 		r = -ENXIO;
6308 		if (!kvm->arch.vpit)
6309 			goto set_pit_out;
6310 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6311 set_pit_out:
6312 		mutex_unlock(&kvm->lock);
6313 		break;
6314 	}
6315 	case KVM_GET_PIT2: {
6316 		r = -ENXIO;
6317 		if (!kvm->arch.vpit)
6318 			goto out;
6319 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6320 		if (r)
6321 			goto out;
6322 		r = -EFAULT;
6323 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6324 			goto out;
6325 		r = 0;
6326 		break;
6327 	}
6328 	case KVM_SET_PIT2: {
6329 		r = -EFAULT;
6330 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6331 			goto out;
6332 		mutex_lock(&kvm->lock);
6333 		r = -ENXIO;
6334 		if (!kvm->arch.vpit)
6335 			goto set_pit2_out;
6336 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6337 set_pit2_out:
6338 		mutex_unlock(&kvm->lock);
6339 		break;
6340 	}
6341 	case KVM_REINJECT_CONTROL: {
6342 		struct kvm_reinject_control control;
6343 		r =  -EFAULT;
6344 		if (copy_from_user(&control, argp, sizeof(control)))
6345 			goto out;
6346 		r = -ENXIO;
6347 		if (!kvm->arch.vpit)
6348 			goto out;
6349 		r = kvm_vm_ioctl_reinject(kvm, &control);
6350 		break;
6351 	}
6352 	case KVM_SET_BOOT_CPU_ID:
6353 		r = 0;
6354 		mutex_lock(&kvm->lock);
6355 		if (kvm->created_vcpus)
6356 			r = -EBUSY;
6357 		else
6358 			kvm->arch.bsp_vcpu_id = arg;
6359 		mutex_unlock(&kvm->lock);
6360 		break;
6361 #ifdef CONFIG_KVM_XEN
6362 	case KVM_XEN_HVM_CONFIG: {
6363 		struct kvm_xen_hvm_config xhc;
6364 		r = -EFAULT;
6365 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6366 			goto out;
6367 		r = kvm_xen_hvm_config(kvm, &xhc);
6368 		break;
6369 	}
6370 	case KVM_XEN_HVM_GET_ATTR: {
6371 		struct kvm_xen_hvm_attr xha;
6372 
6373 		r = -EFAULT;
6374 		if (copy_from_user(&xha, argp, sizeof(xha)))
6375 			goto out;
6376 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6377 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6378 			r = -EFAULT;
6379 		break;
6380 	}
6381 	case KVM_XEN_HVM_SET_ATTR: {
6382 		struct kvm_xen_hvm_attr xha;
6383 
6384 		r = -EFAULT;
6385 		if (copy_from_user(&xha, argp, sizeof(xha)))
6386 			goto out;
6387 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6388 		break;
6389 	}
6390 #endif
6391 	case KVM_SET_CLOCK:
6392 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6393 		break;
6394 	case KVM_GET_CLOCK:
6395 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6396 		break;
6397 	case KVM_MEMORY_ENCRYPT_OP: {
6398 		r = -ENOTTY;
6399 		if (kvm_x86_ops.mem_enc_op)
6400 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6401 		break;
6402 	}
6403 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6404 		struct kvm_enc_region region;
6405 
6406 		r = -EFAULT;
6407 		if (copy_from_user(&region, argp, sizeof(region)))
6408 			goto out;
6409 
6410 		r = -ENOTTY;
6411 		if (kvm_x86_ops.mem_enc_reg_region)
6412 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6413 		break;
6414 	}
6415 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6416 		struct kvm_enc_region region;
6417 
6418 		r = -EFAULT;
6419 		if (copy_from_user(&region, argp, sizeof(region)))
6420 			goto out;
6421 
6422 		r = -ENOTTY;
6423 		if (kvm_x86_ops.mem_enc_unreg_region)
6424 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6425 		break;
6426 	}
6427 	case KVM_HYPERV_EVENTFD: {
6428 		struct kvm_hyperv_eventfd hvevfd;
6429 
6430 		r = -EFAULT;
6431 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6432 			goto out;
6433 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6434 		break;
6435 	}
6436 	case KVM_SET_PMU_EVENT_FILTER:
6437 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6438 		break;
6439 	case KVM_X86_SET_MSR_FILTER:
6440 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6441 		break;
6442 	default:
6443 		r = -ENOTTY;
6444 	}
6445 out:
6446 	return r;
6447 }
6448 
6449 static void kvm_init_msr_list(void)
6450 {
6451 	struct x86_pmu_capability x86_pmu;
6452 	u32 dummy[2];
6453 	unsigned i;
6454 
6455 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6456 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6457 
6458 	perf_get_x86_pmu_capability(&x86_pmu);
6459 
6460 	num_msrs_to_save = 0;
6461 	num_emulated_msrs = 0;
6462 	num_msr_based_features = 0;
6463 
6464 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6465 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6466 			continue;
6467 
6468 		/*
6469 		 * Even MSRs that are valid in the host may not be exposed
6470 		 * to the guests in some cases.
6471 		 */
6472 		switch (msrs_to_save_all[i]) {
6473 		case MSR_IA32_BNDCFGS:
6474 			if (!kvm_mpx_supported())
6475 				continue;
6476 			break;
6477 		case MSR_TSC_AUX:
6478 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6479 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6480 				continue;
6481 			break;
6482 		case MSR_IA32_UMWAIT_CONTROL:
6483 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6484 				continue;
6485 			break;
6486 		case MSR_IA32_RTIT_CTL:
6487 		case MSR_IA32_RTIT_STATUS:
6488 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6489 				continue;
6490 			break;
6491 		case MSR_IA32_RTIT_CR3_MATCH:
6492 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6493 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6494 				continue;
6495 			break;
6496 		case MSR_IA32_RTIT_OUTPUT_BASE:
6497 		case MSR_IA32_RTIT_OUTPUT_MASK:
6498 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6499 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6500 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6501 				continue;
6502 			break;
6503 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6504 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6505 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6506 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6507 				continue;
6508 			break;
6509 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6510 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6511 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6512 				continue;
6513 			break;
6514 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6515 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6516 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6517 				continue;
6518 			break;
6519 		case MSR_IA32_XFD:
6520 		case MSR_IA32_XFD_ERR:
6521 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6522 				continue;
6523 			break;
6524 		default:
6525 			break;
6526 		}
6527 
6528 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6529 	}
6530 
6531 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6532 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6533 			continue;
6534 
6535 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6536 	}
6537 
6538 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6539 		struct kvm_msr_entry msr;
6540 
6541 		msr.index = msr_based_features_all[i];
6542 		if (kvm_get_msr_feature(&msr))
6543 			continue;
6544 
6545 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6546 	}
6547 }
6548 
6549 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6550 			   const void *v)
6551 {
6552 	int handled = 0;
6553 	int n;
6554 
6555 	do {
6556 		n = min(len, 8);
6557 		if (!(lapic_in_kernel(vcpu) &&
6558 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6559 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6560 			break;
6561 		handled += n;
6562 		addr += n;
6563 		len -= n;
6564 		v += n;
6565 	} while (len);
6566 
6567 	return handled;
6568 }
6569 
6570 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6571 {
6572 	int handled = 0;
6573 	int n;
6574 
6575 	do {
6576 		n = min(len, 8);
6577 		if (!(lapic_in_kernel(vcpu) &&
6578 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6579 					 addr, n, v))
6580 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6581 			break;
6582 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6583 		handled += n;
6584 		addr += n;
6585 		len -= n;
6586 		v += n;
6587 	} while (len);
6588 
6589 	return handled;
6590 }
6591 
6592 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6593 			struct kvm_segment *var, int seg)
6594 {
6595 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6596 }
6597 
6598 void kvm_get_segment(struct kvm_vcpu *vcpu,
6599 		     struct kvm_segment *var, int seg)
6600 {
6601 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6602 }
6603 
6604 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6605 			   struct x86_exception *exception)
6606 {
6607 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6608 	gpa_t t_gpa;
6609 
6610 	BUG_ON(!mmu_is_nested(vcpu));
6611 
6612 	/* NPT walks are always user-walks */
6613 	access |= PFERR_USER_MASK;
6614 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6615 
6616 	return t_gpa;
6617 }
6618 
6619 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6620 			      struct x86_exception *exception)
6621 {
6622 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6623 
6624 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6625 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6626 }
6627 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6628 
6629  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6630 				struct x86_exception *exception)
6631 {
6632 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6633 
6634 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6635 	access |= PFERR_FETCH_MASK;
6636 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6637 }
6638 
6639 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6640 			       struct x86_exception *exception)
6641 {
6642 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6643 
6644 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6645 	access |= PFERR_WRITE_MASK;
6646 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6647 }
6648 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6649 
6650 /* uses this to access any guest's mapped memory without checking CPL */
6651 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6652 				struct x86_exception *exception)
6653 {
6654 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6655 
6656 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6657 }
6658 
6659 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6660 				      struct kvm_vcpu *vcpu, u32 access,
6661 				      struct x86_exception *exception)
6662 {
6663 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6664 	void *data = val;
6665 	int r = X86EMUL_CONTINUE;
6666 
6667 	while (bytes) {
6668 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6669 		unsigned offset = addr & (PAGE_SIZE-1);
6670 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6671 		int ret;
6672 
6673 		if (gpa == UNMAPPED_GVA)
6674 			return X86EMUL_PROPAGATE_FAULT;
6675 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6676 					       offset, toread);
6677 		if (ret < 0) {
6678 			r = X86EMUL_IO_NEEDED;
6679 			goto out;
6680 		}
6681 
6682 		bytes -= toread;
6683 		data += toread;
6684 		addr += toread;
6685 	}
6686 out:
6687 	return r;
6688 }
6689 
6690 /* used for instruction fetching */
6691 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6692 				gva_t addr, void *val, unsigned int bytes,
6693 				struct x86_exception *exception)
6694 {
6695 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6696 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6697 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6698 	unsigned offset;
6699 	int ret;
6700 
6701 	/* Inline kvm_read_guest_virt_helper for speed.  */
6702 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6703 				    exception);
6704 	if (unlikely(gpa == UNMAPPED_GVA))
6705 		return X86EMUL_PROPAGATE_FAULT;
6706 
6707 	offset = addr & (PAGE_SIZE-1);
6708 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6709 		bytes = (unsigned)PAGE_SIZE - offset;
6710 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6711 				       offset, bytes);
6712 	if (unlikely(ret < 0))
6713 		return X86EMUL_IO_NEEDED;
6714 
6715 	return X86EMUL_CONTINUE;
6716 }
6717 
6718 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6719 			       gva_t addr, void *val, unsigned int bytes,
6720 			       struct x86_exception *exception)
6721 {
6722 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6723 
6724 	/*
6725 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6726 	 * is returned, but our callers are not ready for that and they blindly
6727 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6728 	 * uninitialized kernel stack memory into cr2 and error code.
6729 	 */
6730 	memset(exception, 0, sizeof(*exception));
6731 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6732 					  exception);
6733 }
6734 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6735 
6736 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6737 			     gva_t addr, void *val, unsigned int bytes,
6738 			     struct x86_exception *exception, bool system)
6739 {
6740 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6741 	u32 access = 0;
6742 
6743 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6744 		access |= PFERR_USER_MASK;
6745 
6746 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6747 }
6748 
6749 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6750 		unsigned long addr, void *val, unsigned int bytes)
6751 {
6752 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6753 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6754 
6755 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6756 }
6757 
6758 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6759 				      struct kvm_vcpu *vcpu, u32 access,
6760 				      struct x86_exception *exception)
6761 {
6762 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6763 	void *data = val;
6764 	int r = X86EMUL_CONTINUE;
6765 
6766 	while (bytes) {
6767 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6768 		unsigned offset = addr & (PAGE_SIZE-1);
6769 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6770 		int ret;
6771 
6772 		if (gpa == UNMAPPED_GVA)
6773 			return X86EMUL_PROPAGATE_FAULT;
6774 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6775 		if (ret < 0) {
6776 			r = X86EMUL_IO_NEEDED;
6777 			goto out;
6778 		}
6779 
6780 		bytes -= towrite;
6781 		data += towrite;
6782 		addr += towrite;
6783 	}
6784 out:
6785 	return r;
6786 }
6787 
6788 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6789 			      unsigned int bytes, struct x86_exception *exception,
6790 			      bool system)
6791 {
6792 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6793 	u32 access = PFERR_WRITE_MASK;
6794 
6795 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6796 		access |= PFERR_USER_MASK;
6797 
6798 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6799 					   access, exception);
6800 }
6801 
6802 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6803 				unsigned int bytes, struct x86_exception *exception)
6804 {
6805 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6806 	vcpu->arch.l1tf_flush_l1d = true;
6807 
6808 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6809 					   PFERR_WRITE_MASK, exception);
6810 }
6811 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6812 
6813 int handle_ud(struct kvm_vcpu *vcpu)
6814 {
6815 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6816 	int emul_type = EMULTYPE_TRAP_UD;
6817 	char sig[5]; /* ud2; .ascii "kvm" */
6818 	struct x86_exception e;
6819 
6820 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6821 		return 1;
6822 
6823 	if (force_emulation_prefix &&
6824 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6825 				sig, sizeof(sig), &e) == 0 &&
6826 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6827 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6828 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6829 	}
6830 
6831 	return kvm_emulate_instruction(vcpu, emul_type);
6832 }
6833 EXPORT_SYMBOL_GPL(handle_ud);
6834 
6835 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6836 			    gpa_t gpa, bool write)
6837 {
6838 	/* For APIC access vmexit */
6839 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6840 		return 1;
6841 
6842 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6843 		trace_vcpu_match_mmio(gva, gpa, write, true);
6844 		return 1;
6845 	}
6846 
6847 	return 0;
6848 }
6849 
6850 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6851 				gpa_t *gpa, struct x86_exception *exception,
6852 				bool write)
6853 {
6854 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6855 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6856 		| (write ? PFERR_WRITE_MASK : 0);
6857 
6858 	/*
6859 	 * currently PKRU is only applied to ept enabled guest so
6860 	 * there is no pkey in EPT page table for L1 guest or EPT
6861 	 * shadow page table for L2 guest.
6862 	 */
6863 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6864 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6865 			      vcpu->arch.mmio_access, 0, access))) {
6866 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6867 					(gva & (PAGE_SIZE - 1));
6868 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6869 		return 1;
6870 	}
6871 
6872 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6873 
6874 	if (*gpa == UNMAPPED_GVA)
6875 		return -1;
6876 
6877 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6878 }
6879 
6880 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6881 			const void *val, int bytes)
6882 {
6883 	int ret;
6884 
6885 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6886 	if (ret < 0)
6887 		return 0;
6888 	kvm_page_track_write(vcpu, gpa, val, bytes);
6889 	return 1;
6890 }
6891 
6892 struct read_write_emulator_ops {
6893 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6894 				  int bytes);
6895 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6896 				  void *val, int bytes);
6897 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6898 			       int bytes, void *val);
6899 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6900 				    void *val, int bytes);
6901 	bool write;
6902 };
6903 
6904 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6905 {
6906 	if (vcpu->mmio_read_completed) {
6907 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6908 			       vcpu->mmio_fragments[0].gpa, val);
6909 		vcpu->mmio_read_completed = 0;
6910 		return 1;
6911 	}
6912 
6913 	return 0;
6914 }
6915 
6916 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6917 			void *val, int bytes)
6918 {
6919 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6920 }
6921 
6922 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6923 			 void *val, int bytes)
6924 {
6925 	return emulator_write_phys(vcpu, gpa, val, bytes);
6926 }
6927 
6928 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6929 {
6930 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6931 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6932 }
6933 
6934 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6935 			  void *val, int bytes)
6936 {
6937 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6938 	return X86EMUL_IO_NEEDED;
6939 }
6940 
6941 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6942 			   void *val, int bytes)
6943 {
6944 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6945 
6946 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6947 	return X86EMUL_CONTINUE;
6948 }
6949 
6950 static const struct read_write_emulator_ops read_emultor = {
6951 	.read_write_prepare = read_prepare,
6952 	.read_write_emulate = read_emulate,
6953 	.read_write_mmio = vcpu_mmio_read,
6954 	.read_write_exit_mmio = read_exit_mmio,
6955 };
6956 
6957 static const struct read_write_emulator_ops write_emultor = {
6958 	.read_write_emulate = write_emulate,
6959 	.read_write_mmio = write_mmio,
6960 	.read_write_exit_mmio = write_exit_mmio,
6961 	.write = true,
6962 };
6963 
6964 static int emulator_read_write_onepage(unsigned long addr, void *val,
6965 				       unsigned int bytes,
6966 				       struct x86_exception *exception,
6967 				       struct kvm_vcpu *vcpu,
6968 				       const struct read_write_emulator_ops *ops)
6969 {
6970 	gpa_t gpa;
6971 	int handled, ret;
6972 	bool write = ops->write;
6973 	struct kvm_mmio_fragment *frag;
6974 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6975 
6976 	/*
6977 	 * If the exit was due to a NPF we may already have a GPA.
6978 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6979 	 * Note, this cannot be used on string operations since string
6980 	 * operation using rep will only have the initial GPA from the NPF
6981 	 * occurred.
6982 	 */
6983 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6984 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6985 		gpa = ctxt->gpa_val;
6986 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6987 	} else {
6988 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6989 		if (ret < 0)
6990 			return X86EMUL_PROPAGATE_FAULT;
6991 	}
6992 
6993 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6994 		return X86EMUL_CONTINUE;
6995 
6996 	/*
6997 	 * Is this MMIO handled locally?
6998 	 */
6999 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7000 	if (handled == bytes)
7001 		return X86EMUL_CONTINUE;
7002 
7003 	gpa += handled;
7004 	bytes -= handled;
7005 	val += handled;
7006 
7007 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7008 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7009 	frag->gpa = gpa;
7010 	frag->data = val;
7011 	frag->len = bytes;
7012 	return X86EMUL_CONTINUE;
7013 }
7014 
7015 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7016 			unsigned long addr,
7017 			void *val, unsigned int bytes,
7018 			struct x86_exception *exception,
7019 			const struct read_write_emulator_ops *ops)
7020 {
7021 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7022 	gpa_t gpa;
7023 	int rc;
7024 
7025 	if (ops->read_write_prepare &&
7026 		  ops->read_write_prepare(vcpu, val, bytes))
7027 		return X86EMUL_CONTINUE;
7028 
7029 	vcpu->mmio_nr_fragments = 0;
7030 
7031 	/* Crossing a page boundary? */
7032 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7033 		int now;
7034 
7035 		now = -addr & ~PAGE_MASK;
7036 		rc = emulator_read_write_onepage(addr, val, now, exception,
7037 						 vcpu, ops);
7038 
7039 		if (rc != X86EMUL_CONTINUE)
7040 			return rc;
7041 		addr += now;
7042 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7043 			addr = (u32)addr;
7044 		val += now;
7045 		bytes -= now;
7046 	}
7047 
7048 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7049 					 vcpu, ops);
7050 	if (rc != X86EMUL_CONTINUE)
7051 		return rc;
7052 
7053 	if (!vcpu->mmio_nr_fragments)
7054 		return rc;
7055 
7056 	gpa = vcpu->mmio_fragments[0].gpa;
7057 
7058 	vcpu->mmio_needed = 1;
7059 	vcpu->mmio_cur_fragment = 0;
7060 
7061 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7062 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7063 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7064 	vcpu->run->mmio.phys_addr = gpa;
7065 
7066 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7067 }
7068 
7069 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7070 				  unsigned long addr,
7071 				  void *val,
7072 				  unsigned int bytes,
7073 				  struct x86_exception *exception)
7074 {
7075 	return emulator_read_write(ctxt, addr, val, bytes,
7076 				   exception, &read_emultor);
7077 }
7078 
7079 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7080 			    unsigned long addr,
7081 			    const void *val,
7082 			    unsigned int bytes,
7083 			    struct x86_exception *exception)
7084 {
7085 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7086 				   exception, &write_emultor);
7087 }
7088 
7089 #define CMPXCHG_TYPE(t, ptr, old, new) \
7090 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7091 
7092 #ifdef CONFIG_X86_64
7093 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7094 #else
7095 #  define CMPXCHG64(ptr, old, new) \
7096 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7097 #endif
7098 
7099 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7100 				     unsigned long addr,
7101 				     const void *old,
7102 				     const void *new,
7103 				     unsigned int bytes,
7104 				     struct x86_exception *exception)
7105 {
7106 	struct kvm_host_map map;
7107 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7108 	u64 page_line_mask;
7109 	gpa_t gpa;
7110 	char *kaddr;
7111 	bool exchanged;
7112 
7113 	/* guests cmpxchg8b have to be emulated atomically */
7114 	if (bytes > 8 || (bytes & (bytes - 1)))
7115 		goto emul_write;
7116 
7117 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7118 
7119 	if (gpa == UNMAPPED_GVA ||
7120 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7121 		goto emul_write;
7122 
7123 	/*
7124 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7125 	 * enabled in the host and the access splits a cache line.
7126 	 */
7127 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7128 		page_line_mask = ~(cache_line_size() - 1);
7129 	else
7130 		page_line_mask = PAGE_MASK;
7131 
7132 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7133 		goto emul_write;
7134 
7135 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7136 		goto emul_write;
7137 
7138 	kaddr = map.hva + offset_in_page(gpa);
7139 
7140 	switch (bytes) {
7141 	case 1:
7142 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7143 		break;
7144 	case 2:
7145 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7146 		break;
7147 	case 4:
7148 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7149 		break;
7150 	case 8:
7151 		exchanged = CMPXCHG64(kaddr, old, new);
7152 		break;
7153 	default:
7154 		BUG();
7155 	}
7156 
7157 	kvm_vcpu_unmap(vcpu, &map, true);
7158 
7159 	if (!exchanged)
7160 		return X86EMUL_CMPXCHG_FAILED;
7161 
7162 	kvm_page_track_write(vcpu, gpa, new, bytes);
7163 
7164 	return X86EMUL_CONTINUE;
7165 
7166 emul_write:
7167 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7168 
7169 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7170 }
7171 
7172 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7173 {
7174 	int r = 0, i;
7175 
7176 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7177 		if (vcpu->arch.pio.in)
7178 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7179 					    vcpu->arch.pio.size, pd);
7180 		else
7181 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7182 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7183 					     pd);
7184 		if (r)
7185 			break;
7186 		pd += vcpu->arch.pio.size;
7187 	}
7188 	return r;
7189 }
7190 
7191 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7192 			       unsigned short port,
7193 			       unsigned int count, bool in)
7194 {
7195 	vcpu->arch.pio.port = port;
7196 	vcpu->arch.pio.in = in;
7197 	vcpu->arch.pio.count  = count;
7198 	vcpu->arch.pio.size = size;
7199 
7200 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7201 		return 1;
7202 
7203 	vcpu->run->exit_reason = KVM_EXIT_IO;
7204 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7205 	vcpu->run->io.size = size;
7206 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7207 	vcpu->run->io.count = count;
7208 	vcpu->run->io.port = port;
7209 
7210 	return 0;
7211 }
7212 
7213 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7214 			     unsigned short port, unsigned int count)
7215 {
7216 	WARN_ON(vcpu->arch.pio.count);
7217 	memset(vcpu->arch.pio_data, 0, size * count);
7218 	return emulator_pio_in_out(vcpu, size, port, count, true);
7219 }
7220 
7221 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7222 {
7223 	int size = vcpu->arch.pio.size;
7224 	unsigned count = vcpu->arch.pio.count;
7225 	memcpy(val, vcpu->arch.pio_data, size * count);
7226 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7227 	vcpu->arch.pio.count = 0;
7228 }
7229 
7230 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7231 			   unsigned short port, void *val, unsigned int count)
7232 {
7233 	if (vcpu->arch.pio.count) {
7234 		/*
7235 		 * Complete a previous iteration that required userspace I/O.
7236 		 * Note, @count isn't guaranteed to match pio.count as userspace
7237 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7238 		 * shenanigans as KVM doesn't support modifying the rep count,
7239 		 * and the emulator ensures @count doesn't overflow the buffer.
7240 		 */
7241 	} else {
7242 		int r = __emulator_pio_in(vcpu, size, port, count);
7243 		if (!r)
7244 			return r;
7245 
7246 		/* Results already available, fall through.  */
7247 	}
7248 
7249 	complete_emulator_pio_in(vcpu, val);
7250 	return 1;
7251 }
7252 
7253 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7254 				    int size, unsigned short port, void *val,
7255 				    unsigned int count)
7256 {
7257 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7258 
7259 }
7260 
7261 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7262 			    unsigned short port, const void *val,
7263 			    unsigned int count)
7264 {
7265 	int ret;
7266 
7267 	memcpy(vcpu->arch.pio_data, val, size * count);
7268 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7269 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7270 	if (ret)
7271                 vcpu->arch.pio.count = 0;
7272 
7273         return ret;
7274 }
7275 
7276 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7277 				     int size, unsigned short port,
7278 				     const void *val, unsigned int count)
7279 {
7280 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7281 }
7282 
7283 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7284 {
7285 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7286 }
7287 
7288 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7289 {
7290 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7291 }
7292 
7293 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7294 {
7295 	if (!need_emulate_wbinvd(vcpu))
7296 		return X86EMUL_CONTINUE;
7297 
7298 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7299 		int cpu = get_cpu();
7300 
7301 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7302 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7303 				wbinvd_ipi, NULL, 1);
7304 		put_cpu();
7305 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7306 	} else
7307 		wbinvd();
7308 	return X86EMUL_CONTINUE;
7309 }
7310 
7311 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7312 {
7313 	kvm_emulate_wbinvd_noskip(vcpu);
7314 	return kvm_skip_emulated_instruction(vcpu);
7315 }
7316 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7317 
7318 
7319 
7320 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7321 {
7322 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7323 }
7324 
7325 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7326 			    unsigned long *dest)
7327 {
7328 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7329 }
7330 
7331 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7332 			   unsigned long value)
7333 {
7334 
7335 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7336 }
7337 
7338 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7339 {
7340 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7341 }
7342 
7343 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7344 {
7345 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7346 	unsigned long value;
7347 
7348 	switch (cr) {
7349 	case 0:
7350 		value = kvm_read_cr0(vcpu);
7351 		break;
7352 	case 2:
7353 		value = vcpu->arch.cr2;
7354 		break;
7355 	case 3:
7356 		value = kvm_read_cr3(vcpu);
7357 		break;
7358 	case 4:
7359 		value = kvm_read_cr4(vcpu);
7360 		break;
7361 	case 8:
7362 		value = kvm_get_cr8(vcpu);
7363 		break;
7364 	default:
7365 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7366 		return 0;
7367 	}
7368 
7369 	return value;
7370 }
7371 
7372 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7373 {
7374 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7375 	int res = 0;
7376 
7377 	switch (cr) {
7378 	case 0:
7379 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7380 		break;
7381 	case 2:
7382 		vcpu->arch.cr2 = val;
7383 		break;
7384 	case 3:
7385 		res = kvm_set_cr3(vcpu, val);
7386 		break;
7387 	case 4:
7388 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7389 		break;
7390 	case 8:
7391 		res = kvm_set_cr8(vcpu, val);
7392 		break;
7393 	default:
7394 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7395 		res = -1;
7396 	}
7397 
7398 	return res;
7399 }
7400 
7401 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7402 {
7403 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7404 }
7405 
7406 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7407 {
7408 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7409 }
7410 
7411 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7412 {
7413 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7414 }
7415 
7416 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7417 {
7418 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7419 }
7420 
7421 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7422 {
7423 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7424 }
7425 
7426 static unsigned long emulator_get_cached_segment_base(
7427 	struct x86_emulate_ctxt *ctxt, int seg)
7428 {
7429 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7430 }
7431 
7432 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7433 				 struct desc_struct *desc, u32 *base3,
7434 				 int seg)
7435 {
7436 	struct kvm_segment var;
7437 
7438 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7439 	*selector = var.selector;
7440 
7441 	if (var.unusable) {
7442 		memset(desc, 0, sizeof(*desc));
7443 		if (base3)
7444 			*base3 = 0;
7445 		return false;
7446 	}
7447 
7448 	if (var.g)
7449 		var.limit >>= 12;
7450 	set_desc_limit(desc, var.limit);
7451 	set_desc_base(desc, (unsigned long)var.base);
7452 #ifdef CONFIG_X86_64
7453 	if (base3)
7454 		*base3 = var.base >> 32;
7455 #endif
7456 	desc->type = var.type;
7457 	desc->s = var.s;
7458 	desc->dpl = var.dpl;
7459 	desc->p = var.present;
7460 	desc->avl = var.avl;
7461 	desc->l = var.l;
7462 	desc->d = var.db;
7463 	desc->g = var.g;
7464 
7465 	return true;
7466 }
7467 
7468 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7469 				 struct desc_struct *desc, u32 base3,
7470 				 int seg)
7471 {
7472 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7473 	struct kvm_segment var;
7474 
7475 	var.selector = selector;
7476 	var.base = get_desc_base(desc);
7477 #ifdef CONFIG_X86_64
7478 	var.base |= ((u64)base3) << 32;
7479 #endif
7480 	var.limit = get_desc_limit(desc);
7481 	if (desc->g)
7482 		var.limit = (var.limit << 12) | 0xfff;
7483 	var.type = desc->type;
7484 	var.dpl = desc->dpl;
7485 	var.db = desc->d;
7486 	var.s = desc->s;
7487 	var.l = desc->l;
7488 	var.g = desc->g;
7489 	var.avl = desc->avl;
7490 	var.present = desc->p;
7491 	var.unusable = !var.present;
7492 	var.padding = 0;
7493 
7494 	kvm_set_segment(vcpu, &var, seg);
7495 	return;
7496 }
7497 
7498 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7499 			    u32 msr_index, u64 *pdata)
7500 {
7501 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7502 	int r;
7503 
7504 	r = kvm_get_msr(vcpu, msr_index, pdata);
7505 
7506 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7507 				    complete_emulated_rdmsr, r)) {
7508 		/* Bounce to user space */
7509 		return X86EMUL_IO_NEEDED;
7510 	}
7511 
7512 	return r;
7513 }
7514 
7515 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7516 			    u32 msr_index, u64 data)
7517 {
7518 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7519 	int r;
7520 
7521 	r = kvm_set_msr(vcpu, msr_index, data);
7522 
7523 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7524 				    complete_emulated_msr_access, r)) {
7525 		/* Bounce to user space */
7526 		return X86EMUL_IO_NEEDED;
7527 	}
7528 
7529 	return r;
7530 }
7531 
7532 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7533 {
7534 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7535 
7536 	return vcpu->arch.smbase;
7537 }
7538 
7539 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7540 {
7541 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7542 
7543 	vcpu->arch.smbase = smbase;
7544 }
7545 
7546 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7547 			      u32 pmc)
7548 {
7549 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7550 		return 0;
7551 	return -EINVAL;
7552 }
7553 
7554 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7555 			     u32 pmc, u64 *pdata)
7556 {
7557 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7558 }
7559 
7560 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7561 {
7562 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7563 }
7564 
7565 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7566 			      struct x86_instruction_info *info,
7567 			      enum x86_intercept_stage stage)
7568 {
7569 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7570 					    &ctxt->exception);
7571 }
7572 
7573 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7574 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7575 			      bool exact_only)
7576 {
7577 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7578 }
7579 
7580 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7581 {
7582 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7583 }
7584 
7585 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7586 {
7587 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7588 }
7589 
7590 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7591 {
7592 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7593 }
7594 
7595 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7596 {
7597 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7598 }
7599 
7600 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7601 {
7602 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7603 }
7604 
7605 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7606 {
7607 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7608 }
7609 
7610 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7611 {
7612 	return emul_to_vcpu(ctxt)->arch.hflags;
7613 }
7614 
7615 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7616 {
7617 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7618 
7619 	kvm_smm_changed(vcpu, false);
7620 }
7621 
7622 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7623 				  const char *smstate)
7624 {
7625 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7626 }
7627 
7628 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7629 {
7630 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7631 }
7632 
7633 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7634 {
7635 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7636 }
7637 
7638 static const struct x86_emulate_ops emulate_ops = {
7639 	.read_gpr            = emulator_read_gpr,
7640 	.write_gpr           = emulator_write_gpr,
7641 	.read_std            = emulator_read_std,
7642 	.write_std           = emulator_write_std,
7643 	.read_phys           = kvm_read_guest_phys_system,
7644 	.fetch               = kvm_fetch_guest_virt,
7645 	.read_emulated       = emulator_read_emulated,
7646 	.write_emulated      = emulator_write_emulated,
7647 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7648 	.invlpg              = emulator_invlpg,
7649 	.pio_in_emulated     = emulator_pio_in_emulated,
7650 	.pio_out_emulated    = emulator_pio_out_emulated,
7651 	.get_segment         = emulator_get_segment,
7652 	.set_segment         = emulator_set_segment,
7653 	.get_cached_segment_base = emulator_get_cached_segment_base,
7654 	.get_gdt             = emulator_get_gdt,
7655 	.get_idt	     = emulator_get_idt,
7656 	.set_gdt             = emulator_set_gdt,
7657 	.set_idt	     = emulator_set_idt,
7658 	.get_cr              = emulator_get_cr,
7659 	.set_cr              = emulator_set_cr,
7660 	.cpl                 = emulator_get_cpl,
7661 	.get_dr              = emulator_get_dr,
7662 	.set_dr              = emulator_set_dr,
7663 	.get_smbase          = emulator_get_smbase,
7664 	.set_smbase          = emulator_set_smbase,
7665 	.set_msr             = emulator_set_msr,
7666 	.get_msr             = emulator_get_msr,
7667 	.check_pmc	     = emulator_check_pmc,
7668 	.read_pmc            = emulator_read_pmc,
7669 	.halt                = emulator_halt,
7670 	.wbinvd              = emulator_wbinvd,
7671 	.fix_hypercall       = emulator_fix_hypercall,
7672 	.intercept           = emulator_intercept,
7673 	.get_cpuid           = emulator_get_cpuid,
7674 	.guest_has_long_mode = emulator_guest_has_long_mode,
7675 	.guest_has_movbe     = emulator_guest_has_movbe,
7676 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7677 	.set_nmi_mask        = emulator_set_nmi_mask,
7678 	.get_hflags          = emulator_get_hflags,
7679 	.exiting_smm         = emulator_exiting_smm,
7680 	.leave_smm           = emulator_leave_smm,
7681 	.triple_fault        = emulator_triple_fault,
7682 	.set_xcr             = emulator_set_xcr,
7683 };
7684 
7685 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7686 {
7687 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7688 	/*
7689 	 * an sti; sti; sequence only disable interrupts for the first
7690 	 * instruction. So, if the last instruction, be it emulated or
7691 	 * not, left the system with the INT_STI flag enabled, it
7692 	 * means that the last instruction is an sti. We should not
7693 	 * leave the flag on in this case. The same goes for mov ss
7694 	 */
7695 	if (int_shadow & mask)
7696 		mask = 0;
7697 	if (unlikely(int_shadow || mask)) {
7698 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7699 		if (!mask)
7700 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7701 	}
7702 }
7703 
7704 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7705 {
7706 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7707 	if (ctxt->exception.vector == PF_VECTOR)
7708 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7709 
7710 	if (ctxt->exception.error_code_valid)
7711 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7712 				      ctxt->exception.error_code);
7713 	else
7714 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7715 	return false;
7716 }
7717 
7718 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7719 {
7720 	struct x86_emulate_ctxt *ctxt;
7721 
7722 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7723 	if (!ctxt) {
7724 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7725 		return NULL;
7726 	}
7727 
7728 	ctxt->vcpu = vcpu;
7729 	ctxt->ops = &emulate_ops;
7730 	vcpu->arch.emulate_ctxt = ctxt;
7731 
7732 	return ctxt;
7733 }
7734 
7735 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7736 {
7737 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7738 	int cs_db, cs_l;
7739 
7740 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7741 
7742 	ctxt->gpa_available = false;
7743 	ctxt->eflags = kvm_get_rflags(vcpu);
7744 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7745 
7746 	ctxt->eip = kvm_rip_read(vcpu);
7747 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7748 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7749 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7750 		     cs_db				? X86EMUL_MODE_PROT32 :
7751 							  X86EMUL_MODE_PROT16;
7752 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7753 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7754 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7755 
7756 	ctxt->interruptibility = 0;
7757 	ctxt->have_exception = false;
7758 	ctxt->exception.vector = -1;
7759 	ctxt->perm_ok = false;
7760 
7761 	init_decode_cache(ctxt);
7762 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7763 }
7764 
7765 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7766 {
7767 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7768 	int ret;
7769 
7770 	init_emulate_ctxt(vcpu);
7771 
7772 	ctxt->op_bytes = 2;
7773 	ctxt->ad_bytes = 2;
7774 	ctxt->_eip = ctxt->eip + inc_eip;
7775 	ret = emulate_int_real(ctxt, irq);
7776 
7777 	if (ret != X86EMUL_CONTINUE) {
7778 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7779 	} else {
7780 		ctxt->eip = ctxt->_eip;
7781 		kvm_rip_write(vcpu, ctxt->eip);
7782 		kvm_set_rflags(vcpu, ctxt->eflags);
7783 	}
7784 }
7785 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7786 
7787 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7788 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7789 {
7790 	struct kvm_run *run = vcpu->run;
7791 	u64 info[5];
7792 	u8 info_start;
7793 
7794 	/*
7795 	 * Zero the whole array used to retrieve the exit info, as casting to
7796 	 * u32 for select entries will leave some chunks uninitialized.
7797 	 */
7798 	memset(&info, 0, sizeof(info));
7799 
7800 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7801 					   &info[2], (u32 *)&info[3],
7802 					   (u32 *)&info[4]);
7803 
7804 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7805 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7806 
7807 	/*
7808 	 * There's currently space for 13 entries, but 5 are used for the exit
7809 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7810 	 * when expanding kvm_run.emulation_failure in the future.
7811 	 */
7812 	if (WARN_ON_ONCE(ndata > 4))
7813 		ndata = 4;
7814 
7815 	/* Always include the flags as a 'data' entry. */
7816 	info_start = 1;
7817 	run->emulation_failure.flags = 0;
7818 
7819 	if (insn_size) {
7820 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7821 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7822 		info_start += 2;
7823 		run->emulation_failure.flags |=
7824 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7825 		run->emulation_failure.insn_size = insn_size;
7826 		memset(run->emulation_failure.insn_bytes, 0x90,
7827 		       sizeof(run->emulation_failure.insn_bytes));
7828 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7829 	}
7830 
7831 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7832 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7833 	       ndata * sizeof(data[0]));
7834 
7835 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7836 }
7837 
7838 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7839 {
7840 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7841 
7842 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7843 				       ctxt->fetch.end - ctxt->fetch.data);
7844 }
7845 
7846 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7847 					  u8 ndata)
7848 {
7849 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7850 }
7851 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7852 
7853 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7854 {
7855 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7856 }
7857 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7858 
7859 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7860 {
7861 	struct kvm *kvm = vcpu->kvm;
7862 
7863 	++vcpu->stat.insn_emulation_fail;
7864 	trace_kvm_emulate_insn_failed(vcpu);
7865 
7866 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7867 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7868 		return 1;
7869 	}
7870 
7871 	if (kvm->arch.exit_on_emulation_error ||
7872 	    (emulation_type & EMULTYPE_SKIP)) {
7873 		prepare_emulation_ctxt_failure_exit(vcpu);
7874 		return 0;
7875 	}
7876 
7877 	kvm_queue_exception(vcpu, UD_VECTOR);
7878 
7879 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7880 		prepare_emulation_ctxt_failure_exit(vcpu);
7881 		return 0;
7882 	}
7883 
7884 	return 1;
7885 }
7886 
7887 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7888 				  bool write_fault_to_shadow_pgtable,
7889 				  int emulation_type)
7890 {
7891 	gpa_t gpa = cr2_or_gpa;
7892 	kvm_pfn_t pfn;
7893 
7894 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7895 		return false;
7896 
7897 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7898 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7899 		return false;
7900 
7901 	if (!vcpu->arch.mmu->direct_map) {
7902 		/*
7903 		 * Write permission should be allowed since only
7904 		 * write access need to be emulated.
7905 		 */
7906 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7907 
7908 		/*
7909 		 * If the mapping is invalid in guest, let cpu retry
7910 		 * it to generate fault.
7911 		 */
7912 		if (gpa == UNMAPPED_GVA)
7913 			return true;
7914 	}
7915 
7916 	/*
7917 	 * Do not retry the unhandleable instruction if it faults on the
7918 	 * readonly host memory, otherwise it will goto a infinite loop:
7919 	 * retry instruction -> write #PF -> emulation fail -> retry
7920 	 * instruction -> ...
7921 	 */
7922 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7923 
7924 	/*
7925 	 * If the instruction failed on the error pfn, it can not be fixed,
7926 	 * report the error to userspace.
7927 	 */
7928 	if (is_error_noslot_pfn(pfn))
7929 		return false;
7930 
7931 	kvm_release_pfn_clean(pfn);
7932 
7933 	/* The instructions are well-emulated on direct mmu. */
7934 	if (vcpu->arch.mmu->direct_map) {
7935 		unsigned int indirect_shadow_pages;
7936 
7937 		write_lock(&vcpu->kvm->mmu_lock);
7938 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7939 		write_unlock(&vcpu->kvm->mmu_lock);
7940 
7941 		if (indirect_shadow_pages)
7942 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7943 
7944 		return true;
7945 	}
7946 
7947 	/*
7948 	 * if emulation was due to access to shadowed page table
7949 	 * and it failed try to unshadow page and re-enter the
7950 	 * guest to let CPU execute the instruction.
7951 	 */
7952 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7953 
7954 	/*
7955 	 * If the access faults on its page table, it can not
7956 	 * be fixed by unprotecting shadow page and it should
7957 	 * be reported to userspace.
7958 	 */
7959 	return !write_fault_to_shadow_pgtable;
7960 }
7961 
7962 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7963 			      gpa_t cr2_or_gpa,  int emulation_type)
7964 {
7965 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7966 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7967 
7968 	last_retry_eip = vcpu->arch.last_retry_eip;
7969 	last_retry_addr = vcpu->arch.last_retry_addr;
7970 
7971 	/*
7972 	 * If the emulation is caused by #PF and it is non-page_table
7973 	 * writing instruction, it means the VM-EXIT is caused by shadow
7974 	 * page protected, we can zap the shadow page and retry this
7975 	 * instruction directly.
7976 	 *
7977 	 * Note: if the guest uses a non-page-table modifying instruction
7978 	 * on the PDE that points to the instruction, then we will unmap
7979 	 * the instruction and go to an infinite loop. So, we cache the
7980 	 * last retried eip and the last fault address, if we meet the eip
7981 	 * and the address again, we can break out of the potential infinite
7982 	 * loop.
7983 	 */
7984 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7985 
7986 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7987 		return false;
7988 
7989 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7990 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7991 		return false;
7992 
7993 	if (x86_page_table_writing_insn(ctxt))
7994 		return false;
7995 
7996 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7997 		return false;
7998 
7999 	vcpu->arch.last_retry_eip = ctxt->eip;
8000 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8001 
8002 	if (!vcpu->arch.mmu->direct_map)
8003 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8004 
8005 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8006 
8007 	return true;
8008 }
8009 
8010 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8011 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8012 
8013 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8014 {
8015 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8016 
8017 	if (entering_smm) {
8018 		vcpu->arch.hflags |= HF_SMM_MASK;
8019 	} else {
8020 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8021 
8022 		/* Process a latched INIT or SMI, if any.  */
8023 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8024 
8025 		/*
8026 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8027 		 * on SMM exit we still need to reload them from
8028 		 * guest memory
8029 		 */
8030 		vcpu->arch.pdptrs_from_userspace = false;
8031 	}
8032 
8033 	kvm_mmu_reset_context(vcpu);
8034 }
8035 
8036 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8037 				unsigned long *db)
8038 {
8039 	u32 dr6 = 0;
8040 	int i;
8041 	u32 enable, rwlen;
8042 
8043 	enable = dr7;
8044 	rwlen = dr7 >> 16;
8045 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8046 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8047 			dr6 |= (1 << i);
8048 	return dr6;
8049 }
8050 
8051 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8052 {
8053 	struct kvm_run *kvm_run = vcpu->run;
8054 
8055 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8056 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8057 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8058 		kvm_run->debug.arch.exception = DB_VECTOR;
8059 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8060 		return 0;
8061 	}
8062 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8063 	return 1;
8064 }
8065 
8066 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8067 {
8068 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8069 	int r;
8070 
8071 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8072 	if (unlikely(!r))
8073 		return 0;
8074 
8075 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8076 
8077 	/*
8078 	 * rflags is the old, "raw" value of the flags.  The new value has
8079 	 * not been saved yet.
8080 	 *
8081 	 * This is correct even for TF set by the guest, because "the
8082 	 * processor will not generate this exception after the instruction
8083 	 * that sets the TF flag".
8084 	 */
8085 	if (unlikely(rflags & X86_EFLAGS_TF))
8086 		r = kvm_vcpu_do_singlestep(vcpu);
8087 	return r;
8088 }
8089 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8090 
8091 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8092 {
8093 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8094 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8095 		struct kvm_run *kvm_run = vcpu->run;
8096 		unsigned long eip = kvm_get_linear_rip(vcpu);
8097 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8098 					   vcpu->arch.guest_debug_dr7,
8099 					   vcpu->arch.eff_db);
8100 
8101 		if (dr6 != 0) {
8102 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8103 			kvm_run->debug.arch.pc = eip;
8104 			kvm_run->debug.arch.exception = DB_VECTOR;
8105 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8106 			*r = 0;
8107 			return true;
8108 		}
8109 	}
8110 
8111 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8112 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8113 		unsigned long eip = kvm_get_linear_rip(vcpu);
8114 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8115 					   vcpu->arch.dr7,
8116 					   vcpu->arch.db);
8117 
8118 		if (dr6 != 0) {
8119 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8120 			*r = 1;
8121 			return true;
8122 		}
8123 	}
8124 
8125 	return false;
8126 }
8127 
8128 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8129 {
8130 	switch (ctxt->opcode_len) {
8131 	case 1:
8132 		switch (ctxt->b) {
8133 		case 0xe4:	/* IN */
8134 		case 0xe5:
8135 		case 0xec:
8136 		case 0xed:
8137 		case 0xe6:	/* OUT */
8138 		case 0xe7:
8139 		case 0xee:
8140 		case 0xef:
8141 		case 0x6c:	/* INS */
8142 		case 0x6d:
8143 		case 0x6e:	/* OUTS */
8144 		case 0x6f:
8145 			return true;
8146 		}
8147 		break;
8148 	case 2:
8149 		switch (ctxt->b) {
8150 		case 0x33:	/* RDPMC */
8151 			return true;
8152 		}
8153 		break;
8154 	}
8155 
8156 	return false;
8157 }
8158 
8159 /*
8160  * Decode to be emulated instruction. Return EMULATION_OK if success.
8161  */
8162 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8163 				    void *insn, int insn_len)
8164 {
8165 	int r = EMULATION_OK;
8166 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8167 
8168 	init_emulate_ctxt(vcpu);
8169 
8170 	/*
8171 	 * We will reenter on the same instruction since we do not set
8172 	 * complete_userspace_io. This does not handle watchpoints yet,
8173 	 * those would be handled in the emulate_ops.
8174 	 */
8175 	if (!(emulation_type & EMULTYPE_SKIP) &&
8176 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8177 		return r;
8178 
8179 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8180 
8181 	trace_kvm_emulate_insn_start(vcpu);
8182 	++vcpu->stat.insn_emulation;
8183 
8184 	return r;
8185 }
8186 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8187 
8188 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8189 			    int emulation_type, void *insn, int insn_len)
8190 {
8191 	int r;
8192 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8193 	bool writeback = true;
8194 	bool write_fault_to_spt;
8195 
8196 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8197 		return 1;
8198 
8199 	vcpu->arch.l1tf_flush_l1d = true;
8200 
8201 	/*
8202 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8203 	 * never reused.
8204 	 */
8205 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8206 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8207 
8208 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8209 		kvm_clear_exception_queue(vcpu);
8210 
8211 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8212 						    insn, insn_len);
8213 		if (r != EMULATION_OK)  {
8214 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8215 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8216 				kvm_queue_exception(vcpu, UD_VECTOR);
8217 				return 1;
8218 			}
8219 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8220 						  write_fault_to_spt,
8221 						  emulation_type))
8222 				return 1;
8223 			if (ctxt->have_exception) {
8224 				/*
8225 				 * #UD should result in just EMULATION_FAILED, and trap-like
8226 				 * exception should not be encountered during decode.
8227 				 */
8228 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8229 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8230 				inject_emulated_exception(vcpu);
8231 				return 1;
8232 			}
8233 			return handle_emulation_failure(vcpu, emulation_type);
8234 		}
8235 	}
8236 
8237 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8238 	    !is_vmware_backdoor_opcode(ctxt)) {
8239 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8240 		return 1;
8241 	}
8242 
8243 	/*
8244 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8245 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8246 	 * The caller is responsible for updating interruptibility state and
8247 	 * injecting single-step #DBs.
8248 	 */
8249 	if (emulation_type & EMULTYPE_SKIP) {
8250 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8251 			ctxt->eip = (u32)ctxt->_eip;
8252 		else
8253 			ctxt->eip = ctxt->_eip;
8254 
8255 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8256 			r = 1;
8257 			goto writeback;
8258 		}
8259 
8260 		kvm_rip_write(vcpu, ctxt->eip);
8261 		if (ctxt->eflags & X86_EFLAGS_RF)
8262 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8263 		return 1;
8264 	}
8265 
8266 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8267 		return 1;
8268 
8269 	/* this is needed for vmware backdoor interface to work since it
8270 	   changes registers values  during IO operation */
8271 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8272 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8273 		emulator_invalidate_register_cache(ctxt);
8274 	}
8275 
8276 restart:
8277 	if (emulation_type & EMULTYPE_PF) {
8278 		/* Save the faulting GPA (cr2) in the address field */
8279 		ctxt->exception.address = cr2_or_gpa;
8280 
8281 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8282 		if (vcpu->arch.mmu->direct_map) {
8283 			ctxt->gpa_available = true;
8284 			ctxt->gpa_val = cr2_or_gpa;
8285 		}
8286 	} else {
8287 		/* Sanitize the address out of an abundance of paranoia. */
8288 		ctxt->exception.address = 0;
8289 	}
8290 
8291 	r = x86_emulate_insn(ctxt);
8292 
8293 	if (r == EMULATION_INTERCEPTED)
8294 		return 1;
8295 
8296 	if (r == EMULATION_FAILED) {
8297 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8298 					emulation_type))
8299 			return 1;
8300 
8301 		return handle_emulation_failure(vcpu, emulation_type);
8302 	}
8303 
8304 	if (ctxt->have_exception) {
8305 		r = 1;
8306 		if (inject_emulated_exception(vcpu))
8307 			return r;
8308 	} else if (vcpu->arch.pio.count) {
8309 		if (!vcpu->arch.pio.in) {
8310 			/* FIXME: return into emulator if single-stepping.  */
8311 			vcpu->arch.pio.count = 0;
8312 		} else {
8313 			writeback = false;
8314 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8315 		}
8316 		r = 0;
8317 	} else if (vcpu->mmio_needed) {
8318 		++vcpu->stat.mmio_exits;
8319 
8320 		if (!vcpu->mmio_is_write)
8321 			writeback = false;
8322 		r = 0;
8323 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8324 	} else if (vcpu->arch.complete_userspace_io) {
8325 		writeback = false;
8326 		r = 0;
8327 	} else if (r == EMULATION_RESTART)
8328 		goto restart;
8329 	else
8330 		r = 1;
8331 
8332 writeback:
8333 	if (writeback) {
8334 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8335 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8336 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8337 		if (!ctxt->have_exception ||
8338 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8339 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8340 			if (ctxt->is_branch)
8341 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8342 			kvm_rip_write(vcpu, ctxt->eip);
8343 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8344 				r = kvm_vcpu_do_singlestep(vcpu);
8345 			if (kvm_x86_ops.update_emulated_instruction)
8346 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
8347 			__kvm_set_rflags(vcpu, ctxt->eflags);
8348 		}
8349 
8350 		/*
8351 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8352 		 * do nothing, and it will be requested again as soon as
8353 		 * the shadow expires.  But we still need to check here,
8354 		 * because POPF has no interrupt shadow.
8355 		 */
8356 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8357 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8358 	} else
8359 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8360 
8361 	return r;
8362 }
8363 
8364 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8365 {
8366 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8367 }
8368 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8369 
8370 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8371 					void *insn, int insn_len)
8372 {
8373 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8374 }
8375 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8376 
8377 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8378 {
8379 	vcpu->arch.pio.count = 0;
8380 	return 1;
8381 }
8382 
8383 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8384 {
8385 	vcpu->arch.pio.count = 0;
8386 
8387 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8388 		return 1;
8389 
8390 	return kvm_skip_emulated_instruction(vcpu);
8391 }
8392 
8393 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8394 			    unsigned short port)
8395 {
8396 	unsigned long val = kvm_rax_read(vcpu);
8397 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8398 
8399 	if (ret)
8400 		return ret;
8401 
8402 	/*
8403 	 * Workaround userspace that relies on old KVM behavior of %rip being
8404 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8405 	 */
8406 	if (port == 0x7e &&
8407 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8408 		vcpu->arch.complete_userspace_io =
8409 			complete_fast_pio_out_port_0x7e;
8410 		kvm_skip_emulated_instruction(vcpu);
8411 	} else {
8412 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8413 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8414 	}
8415 	return 0;
8416 }
8417 
8418 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8419 {
8420 	unsigned long val;
8421 
8422 	/* We should only ever be called with arch.pio.count equal to 1 */
8423 	BUG_ON(vcpu->arch.pio.count != 1);
8424 
8425 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8426 		vcpu->arch.pio.count = 0;
8427 		return 1;
8428 	}
8429 
8430 	/* For size less than 4 we merge, else we zero extend */
8431 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8432 
8433 	/*
8434 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8435 	 * the copy and tracing
8436 	 */
8437 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8438 	kvm_rax_write(vcpu, val);
8439 
8440 	return kvm_skip_emulated_instruction(vcpu);
8441 }
8442 
8443 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8444 			   unsigned short port)
8445 {
8446 	unsigned long val;
8447 	int ret;
8448 
8449 	/* For size less than 4 we merge, else we zero extend */
8450 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8451 
8452 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8453 	if (ret) {
8454 		kvm_rax_write(vcpu, val);
8455 		return ret;
8456 	}
8457 
8458 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8459 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8460 
8461 	return 0;
8462 }
8463 
8464 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8465 {
8466 	int ret;
8467 
8468 	if (in)
8469 		ret = kvm_fast_pio_in(vcpu, size, port);
8470 	else
8471 		ret = kvm_fast_pio_out(vcpu, size, port);
8472 	return ret && kvm_skip_emulated_instruction(vcpu);
8473 }
8474 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8475 
8476 static int kvmclock_cpu_down_prep(unsigned int cpu)
8477 {
8478 	__this_cpu_write(cpu_tsc_khz, 0);
8479 	return 0;
8480 }
8481 
8482 static void tsc_khz_changed(void *data)
8483 {
8484 	struct cpufreq_freqs *freq = data;
8485 	unsigned long khz = 0;
8486 
8487 	if (data)
8488 		khz = freq->new;
8489 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8490 		khz = cpufreq_quick_get(raw_smp_processor_id());
8491 	if (!khz)
8492 		khz = tsc_khz;
8493 	__this_cpu_write(cpu_tsc_khz, khz);
8494 }
8495 
8496 #ifdef CONFIG_X86_64
8497 static void kvm_hyperv_tsc_notifier(void)
8498 {
8499 	struct kvm *kvm;
8500 	int cpu;
8501 
8502 	mutex_lock(&kvm_lock);
8503 	list_for_each_entry(kvm, &vm_list, vm_list)
8504 		kvm_make_mclock_inprogress_request(kvm);
8505 
8506 	/* no guest entries from this point */
8507 	hyperv_stop_tsc_emulation();
8508 
8509 	/* TSC frequency always matches when on Hyper-V */
8510 	for_each_present_cpu(cpu)
8511 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8512 	kvm_max_guest_tsc_khz = tsc_khz;
8513 
8514 	list_for_each_entry(kvm, &vm_list, vm_list) {
8515 		__kvm_start_pvclock_update(kvm);
8516 		pvclock_update_vm_gtod_copy(kvm);
8517 		kvm_end_pvclock_update(kvm);
8518 	}
8519 
8520 	mutex_unlock(&kvm_lock);
8521 }
8522 #endif
8523 
8524 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8525 {
8526 	struct kvm *kvm;
8527 	struct kvm_vcpu *vcpu;
8528 	int send_ipi = 0;
8529 	unsigned long i;
8530 
8531 	/*
8532 	 * We allow guests to temporarily run on slowing clocks,
8533 	 * provided we notify them after, or to run on accelerating
8534 	 * clocks, provided we notify them before.  Thus time never
8535 	 * goes backwards.
8536 	 *
8537 	 * However, we have a problem.  We can't atomically update
8538 	 * the frequency of a given CPU from this function; it is
8539 	 * merely a notifier, which can be called from any CPU.
8540 	 * Changing the TSC frequency at arbitrary points in time
8541 	 * requires a recomputation of local variables related to
8542 	 * the TSC for each VCPU.  We must flag these local variables
8543 	 * to be updated and be sure the update takes place with the
8544 	 * new frequency before any guests proceed.
8545 	 *
8546 	 * Unfortunately, the combination of hotplug CPU and frequency
8547 	 * change creates an intractable locking scenario; the order
8548 	 * of when these callouts happen is undefined with respect to
8549 	 * CPU hotplug, and they can race with each other.  As such,
8550 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8551 	 * undefined; you can actually have a CPU frequency change take
8552 	 * place in between the computation of X and the setting of the
8553 	 * variable.  To protect against this problem, all updates of
8554 	 * the per_cpu tsc_khz variable are done in an interrupt
8555 	 * protected IPI, and all callers wishing to update the value
8556 	 * must wait for a synchronous IPI to complete (which is trivial
8557 	 * if the caller is on the CPU already).  This establishes the
8558 	 * necessary total order on variable updates.
8559 	 *
8560 	 * Note that because a guest time update may take place
8561 	 * anytime after the setting of the VCPU's request bit, the
8562 	 * correct TSC value must be set before the request.  However,
8563 	 * to ensure the update actually makes it to any guest which
8564 	 * starts running in hardware virtualization between the set
8565 	 * and the acquisition of the spinlock, we must also ping the
8566 	 * CPU after setting the request bit.
8567 	 *
8568 	 */
8569 
8570 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8571 
8572 	mutex_lock(&kvm_lock);
8573 	list_for_each_entry(kvm, &vm_list, vm_list) {
8574 		kvm_for_each_vcpu(i, vcpu, kvm) {
8575 			if (vcpu->cpu != cpu)
8576 				continue;
8577 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8578 			if (vcpu->cpu != raw_smp_processor_id())
8579 				send_ipi = 1;
8580 		}
8581 	}
8582 	mutex_unlock(&kvm_lock);
8583 
8584 	if (freq->old < freq->new && send_ipi) {
8585 		/*
8586 		 * We upscale the frequency.  Must make the guest
8587 		 * doesn't see old kvmclock values while running with
8588 		 * the new frequency, otherwise we risk the guest sees
8589 		 * time go backwards.
8590 		 *
8591 		 * In case we update the frequency for another cpu
8592 		 * (which might be in guest context) send an interrupt
8593 		 * to kick the cpu out of guest context.  Next time
8594 		 * guest context is entered kvmclock will be updated,
8595 		 * so the guest will not see stale values.
8596 		 */
8597 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8598 	}
8599 }
8600 
8601 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8602 				     void *data)
8603 {
8604 	struct cpufreq_freqs *freq = data;
8605 	int cpu;
8606 
8607 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8608 		return 0;
8609 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8610 		return 0;
8611 
8612 	for_each_cpu(cpu, freq->policy->cpus)
8613 		__kvmclock_cpufreq_notifier(freq, cpu);
8614 
8615 	return 0;
8616 }
8617 
8618 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8619 	.notifier_call  = kvmclock_cpufreq_notifier
8620 };
8621 
8622 static int kvmclock_cpu_online(unsigned int cpu)
8623 {
8624 	tsc_khz_changed(NULL);
8625 	return 0;
8626 }
8627 
8628 static void kvm_timer_init(void)
8629 {
8630 	max_tsc_khz = tsc_khz;
8631 
8632 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8633 #ifdef CONFIG_CPU_FREQ
8634 		struct cpufreq_policy *policy;
8635 		int cpu;
8636 
8637 		cpu = get_cpu();
8638 		policy = cpufreq_cpu_get(cpu);
8639 		if (policy) {
8640 			if (policy->cpuinfo.max_freq)
8641 				max_tsc_khz = policy->cpuinfo.max_freq;
8642 			cpufreq_cpu_put(policy);
8643 		}
8644 		put_cpu();
8645 #endif
8646 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8647 					  CPUFREQ_TRANSITION_NOTIFIER);
8648 	}
8649 
8650 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8651 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8652 }
8653 
8654 #ifdef CONFIG_X86_64
8655 static void pvclock_gtod_update_fn(struct work_struct *work)
8656 {
8657 	struct kvm *kvm;
8658 	struct kvm_vcpu *vcpu;
8659 	unsigned long i;
8660 
8661 	mutex_lock(&kvm_lock);
8662 	list_for_each_entry(kvm, &vm_list, vm_list)
8663 		kvm_for_each_vcpu(i, vcpu, kvm)
8664 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8665 	atomic_set(&kvm_guest_has_master_clock, 0);
8666 	mutex_unlock(&kvm_lock);
8667 }
8668 
8669 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8670 
8671 /*
8672  * Indirection to move queue_work() out of the tk_core.seq write held
8673  * region to prevent possible deadlocks against time accessors which
8674  * are invoked with work related locks held.
8675  */
8676 static void pvclock_irq_work_fn(struct irq_work *w)
8677 {
8678 	queue_work(system_long_wq, &pvclock_gtod_work);
8679 }
8680 
8681 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8682 
8683 /*
8684  * Notification about pvclock gtod data update.
8685  */
8686 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8687 			       void *priv)
8688 {
8689 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8690 	struct timekeeper *tk = priv;
8691 
8692 	update_pvclock_gtod(tk);
8693 
8694 	/*
8695 	 * Disable master clock if host does not trust, or does not use,
8696 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8697 	 * this is invoked with tk_core.seq write held.
8698 	 */
8699 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8700 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8701 		irq_work_queue(&pvclock_irq_work);
8702 	return 0;
8703 }
8704 
8705 static struct notifier_block pvclock_gtod_notifier = {
8706 	.notifier_call = pvclock_gtod_notify,
8707 };
8708 #endif
8709 
8710 int kvm_arch_init(void *opaque)
8711 {
8712 	struct kvm_x86_init_ops *ops = opaque;
8713 	int r;
8714 
8715 	if (kvm_x86_ops.hardware_enable) {
8716 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8717 		r = -EEXIST;
8718 		goto out;
8719 	}
8720 
8721 	if (!ops->cpu_has_kvm_support()) {
8722 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8723 				   ops->runtime_ops->name);
8724 		r = -EOPNOTSUPP;
8725 		goto out;
8726 	}
8727 	if (ops->disabled_by_bios()) {
8728 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8729 				   ops->runtime_ops->name);
8730 		r = -EOPNOTSUPP;
8731 		goto out;
8732 	}
8733 
8734 	/*
8735 	 * KVM explicitly assumes that the guest has an FPU and
8736 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8737 	 * vCPU's FPU state as a fxregs_state struct.
8738 	 */
8739 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8740 		printk(KERN_ERR "kvm: inadequate fpu\n");
8741 		r = -EOPNOTSUPP;
8742 		goto out;
8743 	}
8744 
8745 	r = -ENOMEM;
8746 
8747 	x86_emulator_cache = kvm_alloc_emulator_cache();
8748 	if (!x86_emulator_cache) {
8749 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8750 		goto out;
8751 	}
8752 
8753 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8754 	if (!user_return_msrs) {
8755 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8756 		goto out_free_x86_emulator_cache;
8757 	}
8758 	kvm_nr_uret_msrs = 0;
8759 
8760 	r = kvm_mmu_module_init();
8761 	if (r)
8762 		goto out_free_percpu;
8763 
8764 	kvm_timer_init();
8765 
8766 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8767 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8768 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8769 	}
8770 
8771 	if (pi_inject_timer == -1)
8772 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8773 #ifdef CONFIG_X86_64
8774 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8775 
8776 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8777 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8778 #endif
8779 
8780 	return 0;
8781 
8782 out_free_percpu:
8783 	free_percpu(user_return_msrs);
8784 out_free_x86_emulator_cache:
8785 	kmem_cache_destroy(x86_emulator_cache);
8786 out:
8787 	return r;
8788 }
8789 
8790 void kvm_arch_exit(void)
8791 {
8792 #ifdef CONFIG_X86_64
8793 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8794 		clear_hv_tscchange_cb();
8795 #endif
8796 	kvm_lapic_exit();
8797 
8798 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8799 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8800 					    CPUFREQ_TRANSITION_NOTIFIER);
8801 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8802 #ifdef CONFIG_X86_64
8803 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8804 	irq_work_sync(&pvclock_irq_work);
8805 	cancel_work_sync(&pvclock_gtod_work);
8806 #endif
8807 	kvm_x86_ops.hardware_enable = NULL;
8808 	kvm_mmu_module_exit();
8809 	free_percpu(user_return_msrs);
8810 	kmem_cache_destroy(x86_emulator_cache);
8811 #ifdef CONFIG_KVM_XEN
8812 	static_key_deferred_flush(&kvm_xen_enabled);
8813 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8814 #endif
8815 }
8816 
8817 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8818 {
8819 	/*
8820 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8821 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8822 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8823 	 * managed by userspace, in which case userspace is responsible for
8824 	 * handling wake events.
8825 	 */
8826 	++vcpu->stat.halt_exits;
8827 	if (lapic_in_kernel(vcpu)) {
8828 		vcpu->arch.mp_state = state;
8829 		return 1;
8830 	} else {
8831 		vcpu->run->exit_reason = reason;
8832 		return 0;
8833 	}
8834 }
8835 
8836 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8837 {
8838 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8839 }
8840 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8841 
8842 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8843 {
8844 	int ret = kvm_skip_emulated_instruction(vcpu);
8845 	/*
8846 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8847 	 * KVM_EXIT_DEBUG here.
8848 	 */
8849 	return kvm_emulate_halt_noskip(vcpu) && ret;
8850 }
8851 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8852 
8853 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8854 {
8855 	int ret = kvm_skip_emulated_instruction(vcpu);
8856 
8857 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8858 					KVM_EXIT_AP_RESET_HOLD) && ret;
8859 }
8860 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8861 
8862 #ifdef CONFIG_X86_64
8863 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8864 			        unsigned long clock_type)
8865 {
8866 	struct kvm_clock_pairing clock_pairing;
8867 	struct timespec64 ts;
8868 	u64 cycle;
8869 	int ret;
8870 
8871 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8872 		return -KVM_EOPNOTSUPP;
8873 
8874 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8875 		return -KVM_EOPNOTSUPP;
8876 
8877 	clock_pairing.sec = ts.tv_sec;
8878 	clock_pairing.nsec = ts.tv_nsec;
8879 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8880 	clock_pairing.flags = 0;
8881 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8882 
8883 	ret = 0;
8884 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8885 			    sizeof(struct kvm_clock_pairing)))
8886 		ret = -KVM_EFAULT;
8887 
8888 	return ret;
8889 }
8890 #endif
8891 
8892 /*
8893  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8894  *
8895  * @apicid - apicid of vcpu to be kicked.
8896  */
8897 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8898 {
8899 	struct kvm_lapic_irq lapic_irq;
8900 
8901 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8902 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8903 	lapic_irq.level = 0;
8904 	lapic_irq.dest_id = apicid;
8905 	lapic_irq.msi_redir_hint = false;
8906 
8907 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8908 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8909 }
8910 
8911 bool kvm_apicv_activated(struct kvm *kvm)
8912 {
8913 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8914 }
8915 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8916 
8917 static void kvm_apicv_init(struct kvm *kvm)
8918 {
8919 	init_rwsem(&kvm->arch.apicv_update_lock);
8920 
8921 	set_bit(APICV_INHIBIT_REASON_ABSENT,
8922 		&kvm->arch.apicv_inhibit_reasons);
8923 	if (!enable_apicv)
8924 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8925 			&kvm->arch.apicv_inhibit_reasons);
8926 }
8927 
8928 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8929 {
8930 	struct kvm_vcpu *target = NULL;
8931 	struct kvm_apic_map *map;
8932 
8933 	vcpu->stat.directed_yield_attempted++;
8934 
8935 	if (single_task_running())
8936 		goto no_yield;
8937 
8938 	rcu_read_lock();
8939 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8940 
8941 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8942 		target = map->phys_map[dest_id]->vcpu;
8943 
8944 	rcu_read_unlock();
8945 
8946 	if (!target || !READ_ONCE(target->ready))
8947 		goto no_yield;
8948 
8949 	/* Ignore requests to yield to self */
8950 	if (vcpu == target)
8951 		goto no_yield;
8952 
8953 	if (kvm_vcpu_yield_to(target) <= 0)
8954 		goto no_yield;
8955 
8956 	vcpu->stat.directed_yield_successful++;
8957 
8958 no_yield:
8959 	return;
8960 }
8961 
8962 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8963 {
8964 	u64 ret = vcpu->run->hypercall.ret;
8965 
8966 	if (!is_64_bit_mode(vcpu))
8967 		ret = (u32)ret;
8968 	kvm_rax_write(vcpu, ret);
8969 	++vcpu->stat.hypercalls;
8970 	return kvm_skip_emulated_instruction(vcpu);
8971 }
8972 
8973 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8974 {
8975 	unsigned long nr, a0, a1, a2, a3, ret;
8976 	int op_64_bit;
8977 
8978 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8979 		return kvm_xen_hypercall(vcpu);
8980 
8981 	if (kvm_hv_hypercall_enabled(vcpu))
8982 		return kvm_hv_hypercall(vcpu);
8983 
8984 	nr = kvm_rax_read(vcpu);
8985 	a0 = kvm_rbx_read(vcpu);
8986 	a1 = kvm_rcx_read(vcpu);
8987 	a2 = kvm_rdx_read(vcpu);
8988 	a3 = kvm_rsi_read(vcpu);
8989 
8990 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8991 
8992 	op_64_bit = is_64_bit_hypercall(vcpu);
8993 	if (!op_64_bit) {
8994 		nr &= 0xFFFFFFFF;
8995 		a0 &= 0xFFFFFFFF;
8996 		a1 &= 0xFFFFFFFF;
8997 		a2 &= 0xFFFFFFFF;
8998 		a3 &= 0xFFFFFFFF;
8999 	}
9000 
9001 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9002 		ret = -KVM_EPERM;
9003 		goto out;
9004 	}
9005 
9006 	ret = -KVM_ENOSYS;
9007 
9008 	switch (nr) {
9009 	case KVM_HC_VAPIC_POLL_IRQ:
9010 		ret = 0;
9011 		break;
9012 	case KVM_HC_KICK_CPU:
9013 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9014 			break;
9015 
9016 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9017 		kvm_sched_yield(vcpu, a1);
9018 		ret = 0;
9019 		break;
9020 #ifdef CONFIG_X86_64
9021 	case KVM_HC_CLOCK_PAIRING:
9022 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9023 		break;
9024 #endif
9025 	case KVM_HC_SEND_IPI:
9026 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9027 			break;
9028 
9029 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9030 		break;
9031 	case KVM_HC_SCHED_YIELD:
9032 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9033 			break;
9034 
9035 		kvm_sched_yield(vcpu, a0);
9036 		ret = 0;
9037 		break;
9038 	case KVM_HC_MAP_GPA_RANGE: {
9039 		u64 gpa = a0, npages = a1, attrs = a2;
9040 
9041 		ret = -KVM_ENOSYS;
9042 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9043 			break;
9044 
9045 		if (!PAGE_ALIGNED(gpa) || !npages ||
9046 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9047 			ret = -KVM_EINVAL;
9048 			break;
9049 		}
9050 
9051 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9052 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9053 		vcpu->run->hypercall.args[0]  = gpa;
9054 		vcpu->run->hypercall.args[1]  = npages;
9055 		vcpu->run->hypercall.args[2]  = attrs;
9056 		vcpu->run->hypercall.longmode = op_64_bit;
9057 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9058 		return 0;
9059 	}
9060 	default:
9061 		ret = -KVM_ENOSYS;
9062 		break;
9063 	}
9064 out:
9065 	if (!op_64_bit)
9066 		ret = (u32)ret;
9067 	kvm_rax_write(vcpu, ret);
9068 
9069 	++vcpu->stat.hypercalls;
9070 	return kvm_skip_emulated_instruction(vcpu);
9071 }
9072 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9073 
9074 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9075 {
9076 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9077 	char instruction[3];
9078 	unsigned long rip = kvm_rip_read(vcpu);
9079 
9080 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9081 
9082 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9083 		&ctxt->exception);
9084 }
9085 
9086 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9087 {
9088 	return vcpu->run->request_interrupt_window &&
9089 		likely(!pic_in_kernel(vcpu->kvm));
9090 }
9091 
9092 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9093 {
9094 	struct kvm_run *kvm_run = vcpu->run;
9095 
9096 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9097 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9098 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9099 
9100 	/*
9101 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9102 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9103 	 * held, to protect against changes in the vcpu_info address.
9104 	 */
9105 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9106 	kvm_run->ready_for_interrupt_injection =
9107 		pic_in_kernel(vcpu->kvm) ||
9108 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9109 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9110 
9111 	if (is_smm(vcpu))
9112 		kvm_run->flags |= KVM_RUN_X86_SMM;
9113 }
9114 
9115 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9116 {
9117 	int max_irr, tpr;
9118 
9119 	if (!kvm_x86_ops.update_cr8_intercept)
9120 		return;
9121 
9122 	if (!lapic_in_kernel(vcpu))
9123 		return;
9124 
9125 	if (vcpu->arch.apicv_active)
9126 		return;
9127 
9128 	if (!vcpu->arch.apic->vapic_addr)
9129 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9130 	else
9131 		max_irr = -1;
9132 
9133 	if (max_irr != -1)
9134 		max_irr >>= 4;
9135 
9136 	tpr = kvm_lapic_get_cr8(vcpu);
9137 
9138 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9139 }
9140 
9141 
9142 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9143 {
9144 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9145 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9146 		return 1;
9147 	}
9148 
9149 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9150 }
9151 
9152 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9153 {
9154 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9155 		vcpu->arch.exception.error_code = false;
9156 	static_call(kvm_x86_queue_exception)(vcpu);
9157 }
9158 
9159 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9160 {
9161 	int r;
9162 	bool can_inject = true;
9163 
9164 	/* try to reinject previous events if any */
9165 
9166 	if (vcpu->arch.exception.injected) {
9167 		kvm_inject_exception(vcpu);
9168 		can_inject = false;
9169 	}
9170 	/*
9171 	 * Do not inject an NMI or interrupt if there is a pending
9172 	 * exception.  Exceptions and interrupts are recognized at
9173 	 * instruction boundaries, i.e. the start of an instruction.
9174 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9175 	 * NMIs and interrupts, i.e. traps are recognized before an
9176 	 * NMI/interrupt that's pending on the same instruction.
9177 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9178 	 * priority, but are only generated (pended) during instruction
9179 	 * execution, i.e. a pending fault-like exception means the
9180 	 * fault occurred on the *previous* instruction and must be
9181 	 * serviced prior to recognizing any new events in order to
9182 	 * fully complete the previous instruction.
9183 	 */
9184 	else if (!vcpu->arch.exception.pending) {
9185 		if (vcpu->arch.nmi_injected) {
9186 			static_call(kvm_x86_set_nmi)(vcpu);
9187 			can_inject = false;
9188 		} else if (vcpu->arch.interrupt.injected) {
9189 			static_call(kvm_x86_set_irq)(vcpu);
9190 			can_inject = false;
9191 		}
9192 	}
9193 
9194 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9195 		     vcpu->arch.exception.pending);
9196 
9197 	/*
9198 	 * Call check_nested_events() even if we reinjected a previous event
9199 	 * in order for caller to determine if it should require immediate-exit
9200 	 * from L2 to L1 due to pending L1 events which require exit
9201 	 * from L2 to L1.
9202 	 */
9203 	if (is_guest_mode(vcpu)) {
9204 		r = kvm_check_nested_events(vcpu);
9205 		if (r < 0)
9206 			goto out;
9207 	}
9208 
9209 	/* try to inject new event if pending */
9210 	if (vcpu->arch.exception.pending) {
9211 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9212 					vcpu->arch.exception.has_error_code,
9213 					vcpu->arch.exception.error_code);
9214 
9215 		vcpu->arch.exception.pending = false;
9216 		vcpu->arch.exception.injected = true;
9217 
9218 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9219 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9220 					     X86_EFLAGS_RF);
9221 
9222 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9223 			kvm_deliver_exception_payload(vcpu);
9224 			if (vcpu->arch.dr7 & DR7_GD) {
9225 				vcpu->arch.dr7 &= ~DR7_GD;
9226 				kvm_update_dr7(vcpu);
9227 			}
9228 		}
9229 
9230 		kvm_inject_exception(vcpu);
9231 		can_inject = false;
9232 	}
9233 
9234 	/* Don't inject interrupts if the user asked to avoid doing so */
9235 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9236 		return 0;
9237 
9238 	/*
9239 	 * Finally, inject interrupt events.  If an event cannot be injected
9240 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9241 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9242 	 * and can architecturally be injected, but we cannot do it right now:
9243 	 * an interrupt could have arrived just now and we have to inject it
9244 	 * as a vmexit, or there could already an event in the queue, which is
9245 	 * indicated by can_inject.  In that case we request an immediate exit
9246 	 * in order to make progress and get back here for another iteration.
9247 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9248 	 */
9249 	if (vcpu->arch.smi_pending) {
9250 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9251 		if (r < 0)
9252 			goto out;
9253 		if (r) {
9254 			vcpu->arch.smi_pending = false;
9255 			++vcpu->arch.smi_count;
9256 			enter_smm(vcpu);
9257 			can_inject = false;
9258 		} else
9259 			static_call(kvm_x86_enable_smi_window)(vcpu);
9260 	}
9261 
9262 	if (vcpu->arch.nmi_pending) {
9263 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9264 		if (r < 0)
9265 			goto out;
9266 		if (r) {
9267 			--vcpu->arch.nmi_pending;
9268 			vcpu->arch.nmi_injected = true;
9269 			static_call(kvm_x86_set_nmi)(vcpu);
9270 			can_inject = false;
9271 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9272 		}
9273 		if (vcpu->arch.nmi_pending)
9274 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9275 	}
9276 
9277 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9278 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9279 		if (r < 0)
9280 			goto out;
9281 		if (r) {
9282 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9283 			static_call(kvm_x86_set_irq)(vcpu);
9284 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9285 		}
9286 		if (kvm_cpu_has_injectable_intr(vcpu))
9287 			static_call(kvm_x86_enable_irq_window)(vcpu);
9288 	}
9289 
9290 	if (is_guest_mode(vcpu) &&
9291 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9292 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9293 		*req_immediate_exit = true;
9294 
9295 	WARN_ON(vcpu->arch.exception.pending);
9296 	return 0;
9297 
9298 out:
9299 	if (r == -EBUSY) {
9300 		*req_immediate_exit = true;
9301 		r = 0;
9302 	}
9303 	return r;
9304 }
9305 
9306 static void process_nmi(struct kvm_vcpu *vcpu)
9307 {
9308 	unsigned limit = 2;
9309 
9310 	/*
9311 	 * x86 is limited to one NMI running, and one NMI pending after it.
9312 	 * If an NMI is already in progress, limit further NMIs to just one.
9313 	 * Otherwise, allow two (and we'll inject the first one immediately).
9314 	 */
9315 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9316 		limit = 1;
9317 
9318 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9319 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9320 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9321 }
9322 
9323 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9324 {
9325 	u32 flags = 0;
9326 	flags |= seg->g       << 23;
9327 	flags |= seg->db      << 22;
9328 	flags |= seg->l       << 21;
9329 	flags |= seg->avl     << 20;
9330 	flags |= seg->present << 15;
9331 	flags |= seg->dpl     << 13;
9332 	flags |= seg->s       << 12;
9333 	flags |= seg->type    << 8;
9334 	return flags;
9335 }
9336 
9337 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9338 {
9339 	struct kvm_segment seg;
9340 	int offset;
9341 
9342 	kvm_get_segment(vcpu, &seg, n);
9343 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9344 
9345 	if (n < 3)
9346 		offset = 0x7f84 + n * 12;
9347 	else
9348 		offset = 0x7f2c + (n - 3) * 12;
9349 
9350 	put_smstate(u32, buf, offset + 8, seg.base);
9351 	put_smstate(u32, buf, offset + 4, seg.limit);
9352 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9353 }
9354 
9355 #ifdef CONFIG_X86_64
9356 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9357 {
9358 	struct kvm_segment seg;
9359 	int offset;
9360 	u16 flags;
9361 
9362 	kvm_get_segment(vcpu, &seg, n);
9363 	offset = 0x7e00 + n * 16;
9364 
9365 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9366 	put_smstate(u16, buf, offset, seg.selector);
9367 	put_smstate(u16, buf, offset + 2, flags);
9368 	put_smstate(u32, buf, offset + 4, seg.limit);
9369 	put_smstate(u64, buf, offset + 8, seg.base);
9370 }
9371 #endif
9372 
9373 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9374 {
9375 	struct desc_ptr dt;
9376 	struct kvm_segment seg;
9377 	unsigned long val;
9378 	int i;
9379 
9380 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9381 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9382 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9383 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9384 
9385 	for (i = 0; i < 8; i++)
9386 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9387 
9388 	kvm_get_dr(vcpu, 6, &val);
9389 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9390 	kvm_get_dr(vcpu, 7, &val);
9391 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9392 
9393 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9394 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9395 	put_smstate(u32, buf, 0x7f64, seg.base);
9396 	put_smstate(u32, buf, 0x7f60, seg.limit);
9397 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9398 
9399 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9400 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9401 	put_smstate(u32, buf, 0x7f80, seg.base);
9402 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9403 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9404 
9405 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9406 	put_smstate(u32, buf, 0x7f74, dt.address);
9407 	put_smstate(u32, buf, 0x7f70, dt.size);
9408 
9409 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9410 	put_smstate(u32, buf, 0x7f58, dt.address);
9411 	put_smstate(u32, buf, 0x7f54, dt.size);
9412 
9413 	for (i = 0; i < 6; i++)
9414 		enter_smm_save_seg_32(vcpu, buf, i);
9415 
9416 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9417 
9418 	/* revision id */
9419 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9420 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9421 }
9422 
9423 #ifdef CONFIG_X86_64
9424 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9425 {
9426 	struct desc_ptr dt;
9427 	struct kvm_segment seg;
9428 	unsigned long val;
9429 	int i;
9430 
9431 	for (i = 0; i < 16; i++)
9432 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9433 
9434 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9435 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9436 
9437 	kvm_get_dr(vcpu, 6, &val);
9438 	put_smstate(u64, buf, 0x7f68, val);
9439 	kvm_get_dr(vcpu, 7, &val);
9440 	put_smstate(u64, buf, 0x7f60, val);
9441 
9442 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9443 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9444 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9445 
9446 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9447 
9448 	/* revision id */
9449 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9450 
9451 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9452 
9453 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9454 	put_smstate(u16, buf, 0x7e90, seg.selector);
9455 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9456 	put_smstate(u32, buf, 0x7e94, seg.limit);
9457 	put_smstate(u64, buf, 0x7e98, seg.base);
9458 
9459 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9460 	put_smstate(u32, buf, 0x7e84, dt.size);
9461 	put_smstate(u64, buf, 0x7e88, dt.address);
9462 
9463 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9464 	put_smstate(u16, buf, 0x7e70, seg.selector);
9465 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9466 	put_smstate(u32, buf, 0x7e74, seg.limit);
9467 	put_smstate(u64, buf, 0x7e78, seg.base);
9468 
9469 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9470 	put_smstate(u32, buf, 0x7e64, dt.size);
9471 	put_smstate(u64, buf, 0x7e68, dt.address);
9472 
9473 	for (i = 0; i < 6; i++)
9474 		enter_smm_save_seg_64(vcpu, buf, i);
9475 }
9476 #endif
9477 
9478 static void enter_smm(struct kvm_vcpu *vcpu)
9479 {
9480 	struct kvm_segment cs, ds;
9481 	struct desc_ptr dt;
9482 	unsigned long cr0;
9483 	char buf[512];
9484 
9485 	memset(buf, 0, 512);
9486 #ifdef CONFIG_X86_64
9487 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9488 		enter_smm_save_state_64(vcpu, buf);
9489 	else
9490 #endif
9491 		enter_smm_save_state_32(vcpu, buf);
9492 
9493 	/*
9494 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9495 	 * state (e.g. leave guest mode) after we've saved the state into the
9496 	 * SMM state-save area.
9497 	 */
9498 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9499 
9500 	kvm_smm_changed(vcpu, true);
9501 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9502 
9503 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9504 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9505 	else
9506 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9507 
9508 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9509 	kvm_rip_write(vcpu, 0x8000);
9510 
9511 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9512 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9513 	vcpu->arch.cr0 = cr0;
9514 
9515 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9516 
9517 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9518 	dt.address = dt.size = 0;
9519 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9520 
9521 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9522 
9523 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9524 	cs.base = vcpu->arch.smbase;
9525 
9526 	ds.selector = 0;
9527 	ds.base = 0;
9528 
9529 	cs.limit    = ds.limit = 0xffffffff;
9530 	cs.type     = ds.type = 0x3;
9531 	cs.dpl      = ds.dpl = 0;
9532 	cs.db       = ds.db = 0;
9533 	cs.s        = ds.s = 1;
9534 	cs.l        = ds.l = 0;
9535 	cs.g        = ds.g = 1;
9536 	cs.avl      = ds.avl = 0;
9537 	cs.present  = ds.present = 1;
9538 	cs.unusable = ds.unusable = 0;
9539 	cs.padding  = ds.padding = 0;
9540 
9541 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9542 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9543 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9544 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9545 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9546 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9547 
9548 #ifdef CONFIG_X86_64
9549 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9550 		static_call(kvm_x86_set_efer)(vcpu, 0);
9551 #endif
9552 
9553 	kvm_update_cpuid_runtime(vcpu);
9554 	kvm_mmu_reset_context(vcpu);
9555 }
9556 
9557 static void process_smi(struct kvm_vcpu *vcpu)
9558 {
9559 	vcpu->arch.smi_pending = true;
9560 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9561 }
9562 
9563 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9564 				       unsigned long *vcpu_bitmap)
9565 {
9566 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9567 }
9568 
9569 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9570 {
9571 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9572 }
9573 
9574 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9575 {
9576 	bool activate;
9577 
9578 	if (!lapic_in_kernel(vcpu))
9579 		return;
9580 
9581 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9582 
9583 	activate = kvm_apicv_activated(vcpu->kvm);
9584 	if (vcpu->arch.apicv_active == activate)
9585 		goto out;
9586 
9587 	vcpu->arch.apicv_active = activate;
9588 	kvm_apic_update_apicv(vcpu);
9589 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9590 
9591 	/*
9592 	 * When APICv gets disabled, we may still have injected interrupts
9593 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9594 	 * still active when the interrupt got accepted. Make sure
9595 	 * inject_pending_event() is called to check for that.
9596 	 */
9597 	if (!vcpu->arch.apicv_active)
9598 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9599 
9600 out:
9601 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9602 }
9603 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9604 
9605 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9606 {
9607 	unsigned long old, new;
9608 
9609 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9610 
9611 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9612 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9613 		return;
9614 
9615 	old = new = kvm->arch.apicv_inhibit_reasons;
9616 
9617 	if (activate)
9618 		__clear_bit(bit, &new);
9619 	else
9620 		__set_bit(bit, &new);
9621 
9622 	if (!!old != !!new) {
9623 		trace_kvm_apicv_update_request(activate, bit);
9624 		/*
9625 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9626 		 * false positives in the sanity check WARN in svm_vcpu_run().
9627 		 * This task will wait for all vCPUs to ack the kick IRQ before
9628 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9629 		 * block on acquiring apicv_update_lock so that vCPUs can't
9630 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9631 		 *
9632 		 * Note, holding apicv_update_lock and taking it in the read
9633 		 * side (handling the request) also prevents other vCPUs from
9634 		 * servicing the request with a stale apicv_inhibit_reasons.
9635 		 */
9636 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9637 		kvm->arch.apicv_inhibit_reasons = new;
9638 		if (new) {
9639 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9640 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9641 		}
9642 	} else
9643 		kvm->arch.apicv_inhibit_reasons = new;
9644 }
9645 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9646 
9647 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9648 {
9649 	down_write(&kvm->arch.apicv_update_lock);
9650 	__kvm_request_apicv_update(kvm, activate, bit);
9651 	up_write(&kvm->arch.apicv_update_lock);
9652 }
9653 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9654 
9655 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9656 {
9657 	if (!kvm_apic_present(vcpu))
9658 		return;
9659 
9660 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9661 
9662 	if (irqchip_split(vcpu->kvm))
9663 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9664 	else {
9665 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9666 		if (ioapic_in_kernel(vcpu->kvm))
9667 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9668 	}
9669 
9670 	if (is_guest_mode(vcpu))
9671 		vcpu->arch.load_eoi_exitmap_pending = true;
9672 	else
9673 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9674 }
9675 
9676 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9677 {
9678 	u64 eoi_exit_bitmap[4];
9679 
9680 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9681 		return;
9682 
9683 	if (to_hv_vcpu(vcpu)) {
9684 		bitmap_or((ulong *)eoi_exit_bitmap,
9685 			  vcpu->arch.ioapic_handled_vectors,
9686 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9687 		static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9688 		return;
9689 	}
9690 
9691 	static_call(kvm_x86_load_eoi_exitmap)(
9692 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9693 }
9694 
9695 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9696 					    unsigned long start, unsigned long end)
9697 {
9698 	unsigned long apic_address;
9699 
9700 	/*
9701 	 * The physical address of apic access page is stored in the VMCS.
9702 	 * Update it when it becomes invalid.
9703 	 */
9704 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9705 	if (start <= apic_address && apic_address < end)
9706 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9707 }
9708 
9709 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9710 {
9711 	if (!lapic_in_kernel(vcpu))
9712 		return;
9713 
9714 	if (!kvm_x86_ops.set_apic_access_page_addr)
9715 		return;
9716 
9717 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9718 }
9719 
9720 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9721 {
9722 	smp_send_reschedule(vcpu->cpu);
9723 }
9724 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9725 
9726 /*
9727  * Returns 1 to let vcpu_run() continue the guest execution loop without
9728  * exiting to the userspace.  Otherwise, the value will be returned to the
9729  * userspace.
9730  */
9731 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9732 {
9733 	int r;
9734 	bool req_int_win =
9735 		dm_request_for_irq_injection(vcpu) &&
9736 		kvm_cpu_accept_dm_intr(vcpu);
9737 	fastpath_t exit_fastpath;
9738 
9739 	bool req_immediate_exit = false;
9740 
9741 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9742 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9743 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9744 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9745 		trace_kvm_dirty_ring_exit(vcpu);
9746 		r = 0;
9747 		goto out;
9748 	}
9749 
9750 	if (kvm_request_pending(vcpu)) {
9751 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9752 			r = -EIO;
9753 			goto out;
9754 		}
9755 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9756 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9757 				r = 0;
9758 				goto out;
9759 			}
9760 		}
9761 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9762 			kvm_mmu_unload(vcpu);
9763 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9764 			__kvm_migrate_timers(vcpu);
9765 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9766 			kvm_update_masterclock(vcpu->kvm);
9767 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9768 			kvm_gen_kvmclock_update(vcpu);
9769 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9770 			r = kvm_guest_time_update(vcpu);
9771 			if (unlikely(r))
9772 				goto out;
9773 		}
9774 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9775 			kvm_mmu_sync_roots(vcpu);
9776 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9777 			kvm_mmu_load_pgd(vcpu);
9778 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9779 			kvm_vcpu_flush_tlb_all(vcpu);
9780 
9781 			/* Flushing all ASIDs flushes the current ASID... */
9782 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9783 		}
9784 		kvm_service_local_tlb_flush_requests(vcpu);
9785 
9786 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9787 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9788 			r = 0;
9789 			goto out;
9790 		}
9791 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9792 			if (is_guest_mode(vcpu)) {
9793 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9794 			} else {
9795 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9796 				vcpu->mmio_needed = 0;
9797 				r = 0;
9798 				goto out;
9799 			}
9800 		}
9801 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9802 			/* Page is swapped out. Do synthetic halt */
9803 			vcpu->arch.apf.halted = true;
9804 			r = 1;
9805 			goto out;
9806 		}
9807 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9808 			record_steal_time(vcpu);
9809 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9810 			process_smi(vcpu);
9811 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9812 			process_nmi(vcpu);
9813 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9814 			kvm_pmu_handle_event(vcpu);
9815 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9816 			kvm_pmu_deliver_pmi(vcpu);
9817 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9818 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9819 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9820 				     vcpu->arch.ioapic_handled_vectors)) {
9821 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9822 				vcpu->run->eoi.vector =
9823 						vcpu->arch.pending_ioapic_eoi;
9824 				r = 0;
9825 				goto out;
9826 			}
9827 		}
9828 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9829 			vcpu_scan_ioapic(vcpu);
9830 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9831 			vcpu_load_eoi_exitmap(vcpu);
9832 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9833 			kvm_vcpu_reload_apic_access_page(vcpu);
9834 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9835 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9836 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9837 			r = 0;
9838 			goto out;
9839 		}
9840 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9841 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9842 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9843 			r = 0;
9844 			goto out;
9845 		}
9846 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9847 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9848 
9849 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9850 			vcpu->run->hyperv = hv_vcpu->exit;
9851 			r = 0;
9852 			goto out;
9853 		}
9854 
9855 		/*
9856 		 * KVM_REQ_HV_STIMER has to be processed after
9857 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9858 		 * depend on the guest clock being up-to-date
9859 		 */
9860 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9861 			kvm_hv_process_stimers(vcpu);
9862 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9863 			kvm_vcpu_update_apicv(vcpu);
9864 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9865 			kvm_check_async_pf_completion(vcpu);
9866 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9867 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9868 
9869 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9870 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9871 	}
9872 
9873 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9874 	    kvm_xen_has_interrupt(vcpu)) {
9875 		++vcpu->stat.req_event;
9876 		r = kvm_apic_accept_events(vcpu);
9877 		if (r < 0) {
9878 			r = 0;
9879 			goto out;
9880 		}
9881 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9882 			r = 1;
9883 			goto out;
9884 		}
9885 
9886 		r = inject_pending_event(vcpu, &req_immediate_exit);
9887 		if (r < 0) {
9888 			r = 0;
9889 			goto out;
9890 		}
9891 		if (req_int_win)
9892 			static_call(kvm_x86_enable_irq_window)(vcpu);
9893 
9894 		if (kvm_lapic_enabled(vcpu)) {
9895 			update_cr8_intercept(vcpu);
9896 			kvm_lapic_sync_to_vapic(vcpu);
9897 		}
9898 	}
9899 
9900 	r = kvm_mmu_reload(vcpu);
9901 	if (unlikely(r)) {
9902 		goto cancel_injection;
9903 	}
9904 
9905 	preempt_disable();
9906 
9907 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9908 
9909 	/*
9910 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9911 	 * IPI are then delayed after guest entry, which ensures that they
9912 	 * result in virtual interrupt delivery.
9913 	 */
9914 	local_irq_disable();
9915 	vcpu->mode = IN_GUEST_MODE;
9916 
9917 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9918 
9919 	/*
9920 	 * 1) We should set ->mode before checking ->requests.  Please see
9921 	 * the comment in kvm_vcpu_exiting_guest_mode().
9922 	 *
9923 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9924 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9925 	 * (see vmx_deliver_posted_interrupt).
9926 	 *
9927 	 * 3) This also orders the write to mode from any reads to the page
9928 	 * tables done while the VCPU is running.  Please see the comment
9929 	 * in kvm_flush_remote_tlbs.
9930 	 */
9931 	smp_mb__after_srcu_read_unlock();
9932 
9933 	/*
9934 	 * Process pending posted interrupts to handle the case where the
9935 	 * notification IRQ arrived in the host, or was never sent (because the
9936 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
9937 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
9938 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
9939 	 */
9940 	if (kvm_lapic_enabled(vcpu))
9941 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9942 
9943 	if (kvm_vcpu_exit_request(vcpu)) {
9944 		vcpu->mode = OUTSIDE_GUEST_MODE;
9945 		smp_wmb();
9946 		local_irq_enable();
9947 		preempt_enable();
9948 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9949 		r = 1;
9950 		goto cancel_injection;
9951 	}
9952 
9953 	if (req_immediate_exit) {
9954 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9955 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9956 	}
9957 
9958 	fpregs_assert_state_consistent();
9959 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9960 		switch_fpu_return();
9961 
9962 	if (vcpu->arch.guest_fpu.xfd_err)
9963 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
9964 
9965 	if (unlikely(vcpu->arch.switch_db_regs)) {
9966 		set_debugreg(0, 7);
9967 		set_debugreg(vcpu->arch.eff_db[0], 0);
9968 		set_debugreg(vcpu->arch.eff_db[1], 1);
9969 		set_debugreg(vcpu->arch.eff_db[2], 2);
9970 		set_debugreg(vcpu->arch.eff_db[3], 3);
9971 	} else if (unlikely(hw_breakpoint_active())) {
9972 		set_debugreg(0, 7);
9973 	}
9974 
9975 	for (;;) {
9976 		/*
9977 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
9978 		 * update must kick and wait for all vCPUs before toggling the
9979 		 * per-VM state, and responsing vCPUs must wait for the update
9980 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
9981 		 */
9982 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9983 
9984 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9985 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9986 			break;
9987 
9988 		if (kvm_lapic_enabled(vcpu))
9989 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9990 
9991 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9992 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9993 			break;
9994 		}
9995 	}
9996 
9997 	/*
9998 	 * Do this here before restoring debug registers on the host.  And
9999 	 * since we do this before handling the vmexit, a DR access vmexit
10000 	 * can (a) read the correct value of the debug registers, (b) set
10001 	 * KVM_DEBUGREG_WONT_EXIT again.
10002 	 */
10003 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10004 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10005 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10006 		kvm_update_dr0123(vcpu);
10007 		kvm_update_dr7(vcpu);
10008 	}
10009 
10010 	/*
10011 	 * If the guest has used debug registers, at least dr7
10012 	 * will be disabled while returning to the host.
10013 	 * If we don't have active breakpoints in the host, we don't
10014 	 * care about the messed up debug address registers. But if
10015 	 * we have some of them active, restore the old state.
10016 	 */
10017 	if (hw_breakpoint_active())
10018 		hw_breakpoint_restore();
10019 
10020 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10021 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10022 
10023 	vcpu->mode = OUTSIDE_GUEST_MODE;
10024 	smp_wmb();
10025 
10026 	/*
10027 	 * Sync xfd before calling handle_exit_irqoff() which may
10028 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10029 	 * in #NM irqoff handler).
10030 	 */
10031 	if (vcpu->arch.xfd_no_write_intercept)
10032 		fpu_sync_guest_vmexit_xfd_state();
10033 
10034 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10035 
10036 	if (vcpu->arch.guest_fpu.xfd_err)
10037 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10038 
10039 	/*
10040 	 * Consume any pending interrupts, including the possible source of
10041 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10042 	 * An instruction is required after local_irq_enable() to fully unblock
10043 	 * interrupts on processors that implement an interrupt shadow, the
10044 	 * stat.exits increment will do nicely.
10045 	 */
10046 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10047 	local_irq_enable();
10048 	++vcpu->stat.exits;
10049 	local_irq_disable();
10050 	kvm_after_interrupt(vcpu);
10051 
10052 	/*
10053 	 * Wait until after servicing IRQs to account guest time so that any
10054 	 * ticks that occurred while running the guest are properly accounted
10055 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10056 	 * of accounting via context tracking, but the loss of accuracy is
10057 	 * acceptable for all known use cases.
10058 	 */
10059 	vtime_account_guest_exit();
10060 
10061 	if (lapic_in_kernel(vcpu)) {
10062 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10063 		if (delta != S64_MIN) {
10064 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10065 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10066 		}
10067 	}
10068 
10069 	local_irq_enable();
10070 	preempt_enable();
10071 
10072 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10073 
10074 	/*
10075 	 * Profile KVM exit RIPs:
10076 	 */
10077 	if (unlikely(prof_on == KVM_PROFILING)) {
10078 		unsigned long rip = kvm_rip_read(vcpu);
10079 		profile_hit(KVM_PROFILING, (void *)rip);
10080 	}
10081 
10082 	if (unlikely(vcpu->arch.tsc_always_catchup))
10083 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10084 
10085 	if (vcpu->arch.apic_attention)
10086 		kvm_lapic_sync_from_vapic(vcpu);
10087 
10088 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10089 	return r;
10090 
10091 cancel_injection:
10092 	if (req_immediate_exit)
10093 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10094 	static_call(kvm_x86_cancel_injection)(vcpu);
10095 	if (unlikely(vcpu->arch.apic_attention))
10096 		kvm_lapic_sync_from_vapic(vcpu);
10097 out:
10098 	return r;
10099 }
10100 
10101 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10102 {
10103 	bool hv_timer;
10104 
10105 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10106 		/*
10107 		 * Switch to the software timer before halt-polling/blocking as
10108 		 * the guest's timer may be a break event for the vCPU, and the
10109 		 * hypervisor timer runs only when the CPU is in guest mode.
10110 		 * Switch before halt-polling so that KVM recognizes an expired
10111 		 * timer before blocking.
10112 		 */
10113 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10114 		if (hv_timer)
10115 			kvm_lapic_switch_to_sw_timer(vcpu);
10116 
10117 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10118 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10119 			kvm_vcpu_halt(vcpu);
10120 		else
10121 			kvm_vcpu_block(vcpu);
10122 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10123 
10124 		if (hv_timer)
10125 			kvm_lapic_switch_to_hv_timer(vcpu);
10126 
10127 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10128 			return 1;
10129 	}
10130 
10131 	if (kvm_apic_accept_events(vcpu) < 0)
10132 		return 0;
10133 	switch(vcpu->arch.mp_state) {
10134 	case KVM_MP_STATE_HALTED:
10135 	case KVM_MP_STATE_AP_RESET_HOLD:
10136 		vcpu->arch.pv.pv_unhalted = false;
10137 		vcpu->arch.mp_state =
10138 			KVM_MP_STATE_RUNNABLE;
10139 		fallthrough;
10140 	case KVM_MP_STATE_RUNNABLE:
10141 		vcpu->arch.apf.halted = false;
10142 		break;
10143 	case KVM_MP_STATE_INIT_RECEIVED:
10144 		break;
10145 	default:
10146 		return -EINTR;
10147 	}
10148 	return 1;
10149 }
10150 
10151 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10152 {
10153 	if (is_guest_mode(vcpu))
10154 		kvm_check_nested_events(vcpu);
10155 
10156 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10157 		!vcpu->arch.apf.halted);
10158 }
10159 
10160 static int vcpu_run(struct kvm_vcpu *vcpu)
10161 {
10162 	int r;
10163 	struct kvm *kvm = vcpu->kvm;
10164 
10165 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10166 	vcpu->arch.l1tf_flush_l1d = true;
10167 
10168 	for (;;) {
10169 		if (kvm_vcpu_running(vcpu)) {
10170 			r = vcpu_enter_guest(vcpu);
10171 		} else {
10172 			r = vcpu_block(kvm, vcpu);
10173 		}
10174 
10175 		if (r <= 0)
10176 			break;
10177 
10178 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10179 		if (kvm_cpu_has_pending_timer(vcpu))
10180 			kvm_inject_pending_timer_irqs(vcpu);
10181 
10182 		if (dm_request_for_irq_injection(vcpu) &&
10183 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10184 			r = 0;
10185 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10186 			++vcpu->stat.request_irq_exits;
10187 			break;
10188 		}
10189 
10190 		if (__xfer_to_guest_mode_work_pending()) {
10191 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10192 			r = xfer_to_guest_mode_handle_work(vcpu);
10193 			if (r)
10194 				return r;
10195 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10196 		}
10197 	}
10198 
10199 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10200 
10201 	return r;
10202 }
10203 
10204 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10205 {
10206 	int r;
10207 
10208 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10209 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10210 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10211 	return r;
10212 }
10213 
10214 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10215 {
10216 	BUG_ON(!vcpu->arch.pio.count);
10217 
10218 	return complete_emulated_io(vcpu);
10219 }
10220 
10221 /*
10222  * Implements the following, as a state machine:
10223  *
10224  * read:
10225  *   for each fragment
10226  *     for each mmio piece in the fragment
10227  *       write gpa, len
10228  *       exit
10229  *       copy data
10230  *   execute insn
10231  *
10232  * write:
10233  *   for each fragment
10234  *     for each mmio piece in the fragment
10235  *       write gpa, len
10236  *       copy data
10237  *       exit
10238  */
10239 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10240 {
10241 	struct kvm_run *run = vcpu->run;
10242 	struct kvm_mmio_fragment *frag;
10243 	unsigned len;
10244 
10245 	BUG_ON(!vcpu->mmio_needed);
10246 
10247 	/* Complete previous fragment */
10248 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10249 	len = min(8u, frag->len);
10250 	if (!vcpu->mmio_is_write)
10251 		memcpy(frag->data, run->mmio.data, len);
10252 
10253 	if (frag->len <= 8) {
10254 		/* Switch to the next fragment. */
10255 		frag++;
10256 		vcpu->mmio_cur_fragment++;
10257 	} else {
10258 		/* Go forward to the next mmio piece. */
10259 		frag->data += len;
10260 		frag->gpa += len;
10261 		frag->len -= len;
10262 	}
10263 
10264 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10265 		vcpu->mmio_needed = 0;
10266 
10267 		/* FIXME: return into emulator if single-stepping.  */
10268 		if (vcpu->mmio_is_write)
10269 			return 1;
10270 		vcpu->mmio_read_completed = 1;
10271 		return complete_emulated_io(vcpu);
10272 	}
10273 
10274 	run->exit_reason = KVM_EXIT_MMIO;
10275 	run->mmio.phys_addr = frag->gpa;
10276 	if (vcpu->mmio_is_write)
10277 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10278 	run->mmio.len = min(8u, frag->len);
10279 	run->mmio.is_write = vcpu->mmio_is_write;
10280 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10281 	return 0;
10282 }
10283 
10284 /* Swap (qemu) user FPU context for the guest FPU context. */
10285 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10286 {
10287 	/*
10288 	 * Exclude PKRU from restore as restored separately in
10289 	 * kvm_x86_ops.run().
10290 	 */
10291 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10292 	trace_kvm_fpu(1);
10293 }
10294 
10295 /* When vcpu_run ends, restore user space FPU context. */
10296 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10297 {
10298 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10299 	++vcpu->stat.fpu_reload;
10300 	trace_kvm_fpu(0);
10301 }
10302 
10303 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10304 {
10305 	struct kvm_run *kvm_run = vcpu->run;
10306 	int r;
10307 
10308 	vcpu_load(vcpu);
10309 	kvm_sigset_activate(vcpu);
10310 	kvm_run->flags = 0;
10311 	kvm_load_guest_fpu(vcpu);
10312 
10313 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10314 		if (kvm_run->immediate_exit) {
10315 			r = -EINTR;
10316 			goto out;
10317 		}
10318 		/*
10319 		 * It should be impossible for the hypervisor timer to be in
10320 		 * use before KVM has ever run the vCPU.
10321 		 */
10322 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10323 		kvm_vcpu_block(vcpu);
10324 		if (kvm_apic_accept_events(vcpu) < 0) {
10325 			r = 0;
10326 			goto out;
10327 		}
10328 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10329 		r = -EAGAIN;
10330 		if (signal_pending(current)) {
10331 			r = -EINTR;
10332 			kvm_run->exit_reason = KVM_EXIT_INTR;
10333 			++vcpu->stat.signal_exits;
10334 		}
10335 		goto out;
10336 	}
10337 
10338 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10339 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10340 		r = -EINVAL;
10341 		goto out;
10342 	}
10343 
10344 	if (kvm_run->kvm_dirty_regs) {
10345 		r = sync_regs(vcpu);
10346 		if (r != 0)
10347 			goto out;
10348 	}
10349 
10350 	/* re-sync apic's tpr */
10351 	if (!lapic_in_kernel(vcpu)) {
10352 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10353 			r = -EINVAL;
10354 			goto out;
10355 		}
10356 	}
10357 
10358 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10359 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10360 		vcpu->arch.complete_userspace_io = NULL;
10361 		r = cui(vcpu);
10362 		if (r <= 0)
10363 			goto out;
10364 	} else
10365 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10366 
10367 	if (kvm_run->immediate_exit) {
10368 		r = -EINTR;
10369 		goto out;
10370 	}
10371 
10372 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10373 	if (r <= 0)
10374 		goto out;
10375 
10376 	r = vcpu_run(vcpu);
10377 
10378 out:
10379 	kvm_put_guest_fpu(vcpu);
10380 	if (kvm_run->kvm_valid_regs)
10381 		store_regs(vcpu);
10382 	post_kvm_run_save(vcpu);
10383 	kvm_sigset_deactivate(vcpu);
10384 
10385 	vcpu_put(vcpu);
10386 	return r;
10387 }
10388 
10389 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10390 {
10391 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10392 		/*
10393 		 * We are here if userspace calls get_regs() in the middle of
10394 		 * instruction emulation. Registers state needs to be copied
10395 		 * back from emulation context to vcpu. Userspace shouldn't do
10396 		 * that usually, but some bad designed PV devices (vmware
10397 		 * backdoor interface) need this to work
10398 		 */
10399 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10400 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10401 	}
10402 	regs->rax = kvm_rax_read(vcpu);
10403 	regs->rbx = kvm_rbx_read(vcpu);
10404 	regs->rcx = kvm_rcx_read(vcpu);
10405 	regs->rdx = kvm_rdx_read(vcpu);
10406 	regs->rsi = kvm_rsi_read(vcpu);
10407 	regs->rdi = kvm_rdi_read(vcpu);
10408 	regs->rsp = kvm_rsp_read(vcpu);
10409 	regs->rbp = kvm_rbp_read(vcpu);
10410 #ifdef CONFIG_X86_64
10411 	regs->r8 = kvm_r8_read(vcpu);
10412 	regs->r9 = kvm_r9_read(vcpu);
10413 	regs->r10 = kvm_r10_read(vcpu);
10414 	regs->r11 = kvm_r11_read(vcpu);
10415 	regs->r12 = kvm_r12_read(vcpu);
10416 	regs->r13 = kvm_r13_read(vcpu);
10417 	regs->r14 = kvm_r14_read(vcpu);
10418 	regs->r15 = kvm_r15_read(vcpu);
10419 #endif
10420 
10421 	regs->rip = kvm_rip_read(vcpu);
10422 	regs->rflags = kvm_get_rflags(vcpu);
10423 }
10424 
10425 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10426 {
10427 	vcpu_load(vcpu);
10428 	__get_regs(vcpu, regs);
10429 	vcpu_put(vcpu);
10430 	return 0;
10431 }
10432 
10433 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10434 {
10435 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10436 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10437 
10438 	kvm_rax_write(vcpu, regs->rax);
10439 	kvm_rbx_write(vcpu, regs->rbx);
10440 	kvm_rcx_write(vcpu, regs->rcx);
10441 	kvm_rdx_write(vcpu, regs->rdx);
10442 	kvm_rsi_write(vcpu, regs->rsi);
10443 	kvm_rdi_write(vcpu, regs->rdi);
10444 	kvm_rsp_write(vcpu, regs->rsp);
10445 	kvm_rbp_write(vcpu, regs->rbp);
10446 #ifdef CONFIG_X86_64
10447 	kvm_r8_write(vcpu, regs->r8);
10448 	kvm_r9_write(vcpu, regs->r9);
10449 	kvm_r10_write(vcpu, regs->r10);
10450 	kvm_r11_write(vcpu, regs->r11);
10451 	kvm_r12_write(vcpu, regs->r12);
10452 	kvm_r13_write(vcpu, regs->r13);
10453 	kvm_r14_write(vcpu, regs->r14);
10454 	kvm_r15_write(vcpu, regs->r15);
10455 #endif
10456 
10457 	kvm_rip_write(vcpu, regs->rip);
10458 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10459 
10460 	vcpu->arch.exception.pending = false;
10461 
10462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10463 }
10464 
10465 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10466 {
10467 	vcpu_load(vcpu);
10468 	__set_regs(vcpu, regs);
10469 	vcpu_put(vcpu);
10470 	return 0;
10471 }
10472 
10473 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10474 {
10475 	struct kvm_segment cs;
10476 
10477 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10478 	*db = cs.db;
10479 	*l = cs.l;
10480 }
10481 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10482 
10483 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10484 {
10485 	struct desc_ptr dt;
10486 
10487 	if (vcpu->arch.guest_state_protected)
10488 		goto skip_protected_regs;
10489 
10490 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10491 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10492 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10493 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10494 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10495 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10496 
10497 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10498 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10499 
10500 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10501 	sregs->idt.limit = dt.size;
10502 	sregs->idt.base = dt.address;
10503 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10504 	sregs->gdt.limit = dt.size;
10505 	sregs->gdt.base = dt.address;
10506 
10507 	sregs->cr2 = vcpu->arch.cr2;
10508 	sregs->cr3 = kvm_read_cr3(vcpu);
10509 
10510 skip_protected_regs:
10511 	sregs->cr0 = kvm_read_cr0(vcpu);
10512 	sregs->cr4 = kvm_read_cr4(vcpu);
10513 	sregs->cr8 = kvm_get_cr8(vcpu);
10514 	sregs->efer = vcpu->arch.efer;
10515 	sregs->apic_base = kvm_get_apic_base(vcpu);
10516 }
10517 
10518 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10519 {
10520 	__get_sregs_common(vcpu, sregs);
10521 
10522 	if (vcpu->arch.guest_state_protected)
10523 		return;
10524 
10525 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10526 		set_bit(vcpu->arch.interrupt.nr,
10527 			(unsigned long *)sregs->interrupt_bitmap);
10528 }
10529 
10530 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10531 {
10532 	int i;
10533 
10534 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10535 
10536 	if (vcpu->arch.guest_state_protected)
10537 		return;
10538 
10539 	if (is_pae_paging(vcpu)) {
10540 		for (i = 0 ; i < 4 ; i++)
10541 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10542 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10543 	}
10544 }
10545 
10546 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10547 				  struct kvm_sregs *sregs)
10548 {
10549 	vcpu_load(vcpu);
10550 	__get_sregs(vcpu, sregs);
10551 	vcpu_put(vcpu);
10552 	return 0;
10553 }
10554 
10555 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10556 				    struct kvm_mp_state *mp_state)
10557 {
10558 	int r;
10559 
10560 	vcpu_load(vcpu);
10561 	if (kvm_mpx_supported())
10562 		kvm_load_guest_fpu(vcpu);
10563 
10564 	r = kvm_apic_accept_events(vcpu);
10565 	if (r < 0)
10566 		goto out;
10567 	r = 0;
10568 
10569 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10570 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10571 	    vcpu->arch.pv.pv_unhalted)
10572 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10573 	else
10574 		mp_state->mp_state = vcpu->arch.mp_state;
10575 
10576 out:
10577 	if (kvm_mpx_supported())
10578 		kvm_put_guest_fpu(vcpu);
10579 	vcpu_put(vcpu);
10580 	return r;
10581 }
10582 
10583 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10584 				    struct kvm_mp_state *mp_state)
10585 {
10586 	int ret = -EINVAL;
10587 
10588 	vcpu_load(vcpu);
10589 
10590 	if (!lapic_in_kernel(vcpu) &&
10591 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10592 		goto out;
10593 
10594 	/*
10595 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10596 	 * INIT state; latched init should be reported using
10597 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10598 	 */
10599 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10600 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10601 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10602 		goto out;
10603 
10604 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10605 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10606 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10607 	} else
10608 		vcpu->arch.mp_state = mp_state->mp_state;
10609 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10610 
10611 	ret = 0;
10612 out:
10613 	vcpu_put(vcpu);
10614 	return ret;
10615 }
10616 
10617 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10618 		    int reason, bool has_error_code, u32 error_code)
10619 {
10620 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10621 	int ret;
10622 
10623 	init_emulate_ctxt(vcpu);
10624 
10625 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10626 				   has_error_code, error_code);
10627 	if (ret) {
10628 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10629 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10630 		vcpu->run->internal.ndata = 0;
10631 		return 0;
10632 	}
10633 
10634 	kvm_rip_write(vcpu, ctxt->eip);
10635 	kvm_set_rflags(vcpu, ctxt->eflags);
10636 	return 1;
10637 }
10638 EXPORT_SYMBOL_GPL(kvm_task_switch);
10639 
10640 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10641 {
10642 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10643 		/*
10644 		 * When EFER.LME and CR0.PG are set, the processor is in
10645 		 * 64-bit mode (though maybe in a 32-bit code segment).
10646 		 * CR4.PAE and EFER.LMA must be set.
10647 		 */
10648 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10649 			return false;
10650 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10651 			return false;
10652 	} else {
10653 		/*
10654 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10655 		 * segment cannot be 64-bit.
10656 		 */
10657 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10658 			return false;
10659 	}
10660 
10661 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10662 }
10663 
10664 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10665 		int *mmu_reset_needed, bool update_pdptrs)
10666 {
10667 	struct msr_data apic_base_msr;
10668 	int idx;
10669 	struct desc_ptr dt;
10670 
10671 	if (!kvm_is_valid_sregs(vcpu, sregs))
10672 		return -EINVAL;
10673 
10674 	apic_base_msr.data = sregs->apic_base;
10675 	apic_base_msr.host_initiated = true;
10676 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10677 		return -EINVAL;
10678 
10679 	if (vcpu->arch.guest_state_protected)
10680 		return 0;
10681 
10682 	dt.size = sregs->idt.limit;
10683 	dt.address = sregs->idt.base;
10684 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10685 	dt.size = sregs->gdt.limit;
10686 	dt.address = sregs->gdt.base;
10687 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10688 
10689 	vcpu->arch.cr2 = sregs->cr2;
10690 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10691 	vcpu->arch.cr3 = sregs->cr3;
10692 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10693 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10694 
10695 	kvm_set_cr8(vcpu, sregs->cr8);
10696 
10697 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10698 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10699 
10700 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10701 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10702 	vcpu->arch.cr0 = sregs->cr0;
10703 
10704 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10705 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10706 
10707 	if (update_pdptrs) {
10708 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10709 		if (is_pae_paging(vcpu)) {
10710 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10711 			*mmu_reset_needed = 1;
10712 		}
10713 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10714 	}
10715 
10716 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10717 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10718 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10719 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10720 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10721 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10722 
10723 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10724 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10725 
10726 	update_cr8_intercept(vcpu);
10727 
10728 	/* Older userspace won't unhalt the vcpu on reset. */
10729 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10730 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10731 	    !is_protmode(vcpu))
10732 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10733 
10734 	return 0;
10735 }
10736 
10737 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10738 {
10739 	int pending_vec, max_bits;
10740 	int mmu_reset_needed = 0;
10741 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10742 
10743 	if (ret)
10744 		return ret;
10745 
10746 	if (mmu_reset_needed)
10747 		kvm_mmu_reset_context(vcpu);
10748 
10749 	max_bits = KVM_NR_INTERRUPTS;
10750 	pending_vec = find_first_bit(
10751 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10752 
10753 	if (pending_vec < max_bits) {
10754 		kvm_queue_interrupt(vcpu, pending_vec, false);
10755 		pr_debug("Set back pending irq %d\n", pending_vec);
10756 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10757 	}
10758 	return 0;
10759 }
10760 
10761 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10762 {
10763 	int mmu_reset_needed = 0;
10764 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10765 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10766 		!(sregs2->efer & EFER_LMA);
10767 	int i, ret;
10768 
10769 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10770 		return -EINVAL;
10771 
10772 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10773 		return -EINVAL;
10774 
10775 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10776 				 &mmu_reset_needed, !valid_pdptrs);
10777 	if (ret)
10778 		return ret;
10779 
10780 	if (valid_pdptrs) {
10781 		for (i = 0; i < 4 ; i++)
10782 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10783 
10784 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10785 		mmu_reset_needed = 1;
10786 		vcpu->arch.pdptrs_from_userspace = true;
10787 	}
10788 	if (mmu_reset_needed)
10789 		kvm_mmu_reset_context(vcpu);
10790 	return 0;
10791 }
10792 
10793 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10794 				  struct kvm_sregs *sregs)
10795 {
10796 	int ret;
10797 
10798 	vcpu_load(vcpu);
10799 	ret = __set_sregs(vcpu, sregs);
10800 	vcpu_put(vcpu);
10801 	return ret;
10802 }
10803 
10804 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10805 {
10806 	bool inhibit = false;
10807 	struct kvm_vcpu *vcpu;
10808 	unsigned long i;
10809 
10810 	down_write(&kvm->arch.apicv_update_lock);
10811 
10812 	kvm_for_each_vcpu(i, vcpu, kvm) {
10813 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10814 			inhibit = true;
10815 			break;
10816 		}
10817 	}
10818 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10819 	up_write(&kvm->arch.apicv_update_lock);
10820 }
10821 
10822 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10823 					struct kvm_guest_debug *dbg)
10824 {
10825 	unsigned long rflags;
10826 	int i, r;
10827 
10828 	if (vcpu->arch.guest_state_protected)
10829 		return -EINVAL;
10830 
10831 	vcpu_load(vcpu);
10832 
10833 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10834 		r = -EBUSY;
10835 		if (vcpu->arch.exception.pending)
10836 			goto out;
10837 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10838 			kvm_queue_exception(vcpu, DB_VECTOR);
10839 		else
10840 			kvm_queue_exception(vcpu, BP_VECTOR);
10841 	}
10842 
10843 	/*
10844 	 * Read rflags as long as potentially injected trace flags are still
10845 	 * filtered out.
10846 	 */
10847 	rflags = kvm_get_rflags(vcpu);
10848 
10849 	vcpu->guest_debug = dbg->control;
10850 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10851 		vcpu->guest_debug = 0;
10852 
10853 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10854 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10855 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10856 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10857 	} else {
10858 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10859 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10860 	}
10861 	kvm_update_dr7(vcpu);
10862 
10863 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10864 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10865 
10866 	/*
10867 	 * Trigger an rflags update that will inject or remove the trace
10868 	 * flags.
10869 	 */
10870 	kvm_set_rflags(vcpu, rflags);
10871 
10872 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10873 
10874 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10875 
10876 	r = 0;
10877 
10878 out:
10879 	vcpu_put(vcpu);
10880 	return r;
10881 }
10882 
10883 /*
10884  * Translate a guest virtual address to a guest physical address.
10885  */
10886 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10887 				    struct kvm_translation *tr)
10888 {
10889 	unsigned long vaddr = tr->linear_address;
10890 	gpa_t gpa;
10891 	int idx;
10892 
10893 	vcpu_load(vcpu);
10894 
10895 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10896 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10897 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10898 	tr->physical_address = gpa;
10899 	tr->valid = gpa != UNMAPPED_GVA;
10900 	tr->writeable = 1;
10901 	tr->usermode = 0;
10902 
10903 	vcpu_put(vcpu);
10904 	return 0;
10905 }
10906 
10907 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10908 {
10909 	struct fxregs_state *fxsave;
10910 
10911 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10912 		return 0;
10913 
10914 	vcpu_load(vcpu);
10915 
10916 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10917 	memcpy(fpu->fpr, fxsave->st_space, 128);
10918 	fpu->fcw = fxsave->cwd;
10919 	fpu->fsw = fxsave->swd;
10920 	fpu->ftwx = fxsave->twd;
10921 	fpu->last_opcode = fxsave->fop;
10922 	fpu->last_ip = fxsave->rip;
10923 	fpu->last_dp = fxsave->rdp;
10924 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10925 
10926 	vcpu_put(vcpu);
10927 	return 0;
10928 }
10929 
10930 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10931 {
10932 	struct fxregs_state *fxsave;
10933 
10934 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10935 		return 0;
10936 
10937 	vcpu_load(vcpu);
10938 
10939 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10940 
10941 	memcpy(fxsave->st_space, fpu->fpr, 128);
10942 	fxsave->cwd = fpu->fcw;
10943 	fxsave->swd = fpu->fsw;
10944 	fxsave->twd = fpu->ftwx;
10945 	fxsave->fop = fpu->last_opcode;
10946 	fxsave->rip = fpu->last_ip;
10947 	fxsave->rdp = fpu->last_dp;
10948 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10949 
10950 	vcpu_put(vcpu);
10951 	return 0;
10952 }
10953 
10954 static void store_regs(struct kvm_vcpu *vcpu)
10955 {
10956 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10957 
10958 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10959 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10960 
10961 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10962 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10963 
10964 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10965 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10966 				vcpu, &vcpu->run->s.regs.events);
10967 }
10968 
10969 static int sync_regs(struct kvm_vcpu *vcpu)
10970 {
10971 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10972 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10973 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10974 	}
10975 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10976 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10977 			return -EINVAL;
10978 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10979 	}
10980 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10981 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10982 				vcpu, &vcpu->run->s.regs.events))
10983 			return -EINVAL;
10984 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10985 	}
10986 
10987 	return 0;
10988 }
10989 
10990 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10991 {
10992 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10993 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10994 			     "guest TSC will not be reliable\n");
10995 
10996 	return 0;
10997 }
10998 
10999 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11000 {
11001 	struct page *page;
11002 	int r;
11003 
11004 	vcpu->arch.last_vmentry_cpu = -1;
11005 	vcpu->arch.regs_avail = ~0;
11006 	vcpu->arch.regs_dirty = ~0;
11007 
11008 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11009 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11010 	else
11011 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11012 
11013 	r = kvm_mmu_create(vcpu);
11014 	if (r < 0)
11015 		return r;
11016 
11017 	if (irqchip_in_kernel(vcpu->kvm)) {
11018 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11019 		if (r < 0)
11020 			goto fail_mmu_destroy;
11021 		if (kvm_apicv_activated(vcpu->kvm))
11022 			vcpu->arch.apicv_active = true;
11023 	} else
11024 		static_branch_inc(&kvm_has_noapic_vcpu);
11025 
11026 	r = -ENOMEM;
11027 
11028 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11029 	if (!page)
11030 		goto fail_free_lapic;
11031 	vcpu->arch.pio_data = page_address(page);
11032 
11033 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11034 				       GFP_KERNEL_ACCOUNT);
11035 	if (!vcpu->arch.mce_banks)
11036 		goto fail_free_pio_data;
11037 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11038 
11039 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11040 				GFP_KERNEL_ACCOUNT))
11041 		goto fail_free_mce_banks;
11042 
11043 	if (!alloc_emulate_ctxt(vcpu))
11044 		goto free_wbinvd_dirty_mask;
11045 
11046 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11047 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11048 		goto free_emulate_ctxt;
11049 	}
11050 
11051 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11052 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11053 
11054 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11055 
11056 	kvm_async_pf_hash_reset(vcpu);
11057 	kvm_pmu_init(vcpu);
11058 
11059 	vcpu->arch.pending_external_vector = -1;
11060 	vcpu->arch.preempted_in_kernel = false;
11061 
11062 #if IS_ENABLED(CONFIG_HYPERV)
11063 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11064 #endif
11065 
11066 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11067 	if (r)
11068 		goto free_guest_fpu;
11069 
11070 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11071 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11072 	kvm_vcpu_mtrr_init(vcpu);
11073 	vcpu_load(vcpu);
11074 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11075 	kvm_vcpu_reset(vcpu, false);
11076 	kvm_init_mmu(vcpu);
11077 	vcpu_put(vcpu);
11078 	return 0;
11079 
11080 free_guest_fpu:
11081 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11082 free_emulate_ctxt:
11083 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11084 free_wbinvd_dirty_mask:
11085 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11086 fail_free_mce_banks:
11087 	kfree(vcpu->arch.mce_banks);
11088 fail_free_pio_data:
11089 	free_page((unsigned long)vcpu->arch.pio_data);
11090 fail_free_lapic:
11091 	kvm_free_lapic(vcpu);
11092 fail_mmu_destroy:
11093 	kvm_mmu_destroy(vcpu);
11094 	return r;
11095 }
11096 
11097 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11098 {
11099 	struct kvm *kvm = vcpu->kvm;
11100 
11101 	if (mutex_lock_killable(&vcpu->mutex))
11102 		return;
11103 	vcpu_load(vcpu);
11104 	kvm_synchronize_tsc(vcpu, 0);
11105 	vcpu_put(vcpu);
11106 
11107 	/* poll control enabled by default */
11108 	vcpu->arch.msr_kvm_poll_control = 1;
11109 
11110 	mutex_unlock(&vcpu->mutex);
11111 
11112 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11113 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11114 						KVMCLOCK_SYNC_PERIOD);
11115 }
11116 
11117 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11118 {
11119 	int idx;
11120 
11121 	kvmclock_reset(vcpu);
11122 
11123 	static_call(kvm_x86_vcpu_free)(vcpu);
11124 
11125 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11126 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11127 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11128 
11129 	kvm_hv_vcpu_uninit(vcpu);
11130 	kvm_pmu_destroy(vcpu);
11131 	kfree(vcpu->arch.mce_banks);
11132 	kvm_free_lapic(vcpu);
11133 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11134 	kvm_mmu_destroy(vcpu);
11135 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11136 	free_page((unsigned long)vcpu->arch.pio_data);
11137 	kvfree(vcpu->arch.cpuid_entries);
11138 	if (!lapic_in_kernel(vcpu))
11139 		static_branch_dec(&kvm_has_noapic_vcpu);
11140 }
11141 
11142 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11143 {
11144 	struct kvm_cpuid_entry2 *cpuid_0x1;
11145 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11146 	unsigned long new_cr0;
11147 
11148 	/*
11149 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11150 	 * to handle side effects.  RESET emulation hits those flows and relies
11151 	 * on emulated/virtualized registers, including those that are loaded
11152 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11153 	 * to detect improper or missing initialization.
11154 	 */
11155 	WARN_ON_ONCE(!init_event &&
11156 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11157 
11158 	kvm_lapic_reset(vcpu, init_event);
11159 
11160 	vcpu->arch.hflags = 0;
11161 
11162 	vcpu->arch.smi_pending = 0;
11163 	vcpu->arch.smi_count = 0;
11164 	atomic_set(&vcpu->arch.nmi_queued, 0);
11165 	vcpu->arch.nmi_pending = 0;
11166 	vcpu->arch.nmi_injected = false;
11167 	kvm_clear_interrupt_queue(vcpu);
11168 	kvm_clear_exception_queue(vcpu);
11169 
11170 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11171 	kvm_update_dr0123(vcpu);
11172 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11173 	vcpu->arch.dr7 = DR7_FIXED_1;
11174 	kvm_update_dr7(vcpu);
11175 
11176 	vcpu->arch.cr2 = 0;
11177 
11178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11179 	vcpu->arch.apf.msr_en_val = 0;
11180 	vcpu->arch.apf.msr_int_val = 0;
11181 	vcpu->arch.st.msr_val = 0;
11182 
11183 	kvmclock_reset(vcpu);
11184 
11185 	kvm_clear_async_pf_completion_queue(vcpu);
11186 	kvm_async_pf_hash_reset(vcpu);
11187 	vcpu->arch.apf.halted = false;
11188 
11189 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11190 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11191 
11192 		/*
11193 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11194 		 * called with loaded FPU and does not let userspace fix the state.
11195 		 */
11196 		if (init_event)
11197 			kvm_put_guest_fpu(vcpu);
11198 
11199 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11200 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11201 
11202 		if (init_event)
11203 			kvm_load_guest_fpu(vcpu);
11204 	}
11205 
11206 	if (!init_event) {
11207 		kvm_pmu_reset(vcpu);
11208 		vcpu->arch.smbase = 0x30000;
11209 
11210 		vcpu->arch.msr_misc_features_enables = 0;
11211 
11212 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11213 	}
11214 
11215 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11216 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11217 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11218 
11219 	/*
11220 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11221 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11222 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11223 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11224 	 * on RESET.  But, go through the motions in case that's ever remedied.
11225 	 */
11226 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11227 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11228 
11229 	vcpu->arch.ia32_xss = 0;
11230 
11231 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11232 
11233 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11234 	kvm_rip_write(vcpu, 0xfff0);
11235 
11236 	vcpu->arch.cr3 = 0;
11237 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11238 
11239 	/*
11240 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11241 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11242 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11243 	 */
11244 	new_cr0 = X86_CR0_ET;
11245 	if (init_event)
11246 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11247 	else
11248 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11249 
11250 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11251 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11252 	static_call(kvm_x86_set_efer)(vcpu, 0);
11253 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11254 
11255 	/*
11256 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11257 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11258 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11259 	 * checked because it is unconditionally cleared on INIT and all other
11260 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11261 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11262 	 */
11263 	if (old_cr0 & X86_CR0_PG)
11264 		kvm_mmu_reset_context(vcpu);
11265 
11266 	/*
11267 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11268 	 * APM states the TLBs are untouched by INIT, but it also states that
11269 	 * the TLBs are flushed on "External initialization of the processor."
11270 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11271 	 * benefit in relying on the guest to flush the TLB immediately after
11272 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11273 	 * performance perspective.
11274 	 */
11275 	if (init_event)
11276 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11277 }
11278 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11279 
11280 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11281 {
11282 	struct kvm_segment cs;
11283 
11284 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11285 	cs.selector = vector << 8;
11286 	cs.base = vector << 12;
11287 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11288 	kvm_rip_write(vcpu, 0);
11289 }
11290 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11291 
11292 int kvm_arch_hardware_enable(void)
11293 {
11294 	struct kvm *kvm;
11295 	struct kvm_vcpu *vcpu;
11296 	unsigned long i;
11297 	int ret;
11298 	u64 local_tsc;
11299 	u64 max_tsc = 0;
11300 	bool stable, backwards_tsc = false;
11301 
11302 	kvm_user_return_msr_cpu_online();
11303 	ret = static_call(kvm_x86_hardware_enable)();
11304 	if (ret != 0)
11305 		return ret;
11306 
11307 	local_tsc = rdtsc();
11308 	stable = !kvm_check_tsc_unstable();
11309 	list_for_each_entry(kvm, &vm_list, vm_list) {
11310 		kvm_for_each_vcpu(i, vcpu, kvm) {
11311 			if (!stable && vcpu->cpu == smp_processor_id())
11312 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11313 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11314 				backwards_tsc = true;
11315 				if (vcpu->arch.last_host_tsc > max_tsc)
11316 					max_tsc = vcpu->arch.last_host_tsc;
11317 			}
11318 		}
11319 	}
11320 
11321 	/*
11322 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11323 	 * platforms that reset TSC during suspend or hibernate actions, but
11324 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11325 	 * detect that condition here, which happens early in CPU bringup,
11326 	 * before any KVM threads can be running.  Unfortunately, we can't
11327 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11328 	 * enough into CPU bringup that we know how much real time has actually
11329 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11330 	 * variables that haven't been updated yet.
11331 	 *
11332 	 * So we simply find the maximum observed TSC above, then record the
11333 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11334 	 * the adjustment will be applied.  Note that we accumulate
11335 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11336 	 * gets a chance to run again.  In the event that no KVM threads get a
11337 	 * chance to run, we will miss the entire elapsed period, as we'll have
11338 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11339 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11340 	 * uniform across all VCPUs (not to mention the scenario is extremely
11341 	 * unlikely). It is possible that a second hibernate recovery happens
11342 	 * much faster than a first, causing the observed TSC here to be
11343 	 * smaller; this would require additional padding adjustment, which is
11344 	 * why we set last_host_tsc to the local tsc observed here.
11345 	 *
11346 	 * N.B. - this code below runs only on platforms with reliable TSC,
11347 	 * as that is the only way backwards_tsc is set above.  Also note
11348 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11349 	 * have the same delta_cyc adjustment applied if backwards_tsc
11350 	 * is detected.  Note further, this adjustment is only done once,
11351 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11352 	 * called multiple times (one for each physical CPU bringup).
11353 	 *
11354 	 * Platforms with unreliable TSCs don't have to deal with this, they
11355 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11356 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11357 	 * guarantee that they stay in perfect synchronization.
11358 	 */
11359 	if (backwards_tsc) {
11360 		u64 delta_cyc = max_tsc - local_tsc;
11361 		list_for_each_entry(kvm, &vm_list, vm_list) {
11362 			kvm->arch.backwards_tsc_observed = true;
11363 			kvm_for_each_vcpu(i, vcpu, kvm) {
11364 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11365 				vcpu->arch.last_host_tsc = local_tsc;
11366 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11367 			}
11368 
11369 			/*
11370 			 * We have to disable TSC offset matching.. if you were
11371 			 * booting a VM while issuing an S4 host suspend....
11372 			 * you may have some problem.  Solving this issue is
11373 			 * left as an exercise to the reader.
11374 			 */
11375 			kvm->arch.last_tsc_nsec = 0;
11376 			kvm->arch.last_tsc_write = 0;
11377 		}
11378 
11379 	}
11380 	return 0;
11381 }
11382 
11383 void kvm_arch_hardware_disable(void)
11384 {
11385 	static_call(kvm_x86_hardware_disable)();
11386 	drop_user_return_notifiers();
11387 }
11388 
11389 int kvm_arch_hardware_setup(void *opaque)
11390 {
11391 	struct kvm_x86_init_ops *ops = opaque;
11392 	int r;
11393 
11394 	rdmsrl_safe(MSR_EFER, &host_efer);
11395 
11396 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11397 		rdmsrl(MSR_IA32_XSS, host_xss);
11398 
11399 	r = ops->hardware_setup();
11400 	if (r != 0)
11401 		return r;
11402 
11403 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11404 	kvm_ops_static_call_update();
11405 
11406 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11407 
11408 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11409 		supported_xss = 0;
11410 
11411 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11412 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11413 #undef __kvm_cpu_cap_has
11414 
11415 	if (kvm_has_tsc_control) {
11416 		/*
11417 		 * Make sure the user can only configure tsc_khz values that
11418 		 * fit into a signed integer.
11419 		 * A min value is not calculated because it will always
11420 		 * be 1 on all machines.
11421 		 */
11422 		u64 max = min(0x7fffffffULL,
11423 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11424 		kvm_max_guest_tsc_khz = max;
11425 
11426 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11427 	}
11428 
11429 	kvm_init_msr_list();
11430 	return 0;
11431 }
11432 
11433 void kvm_arch_hardware_unsetup(void)
11434 {
11435 	kvm_unregister_perf_callbacks();
11436 
11437 	static_call(kvm_x86_hardware_unsetup)();
11438 }
11439 
11440 int kvm_arch_check_processor_compat(void *opaque)
11441 {
11442 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11443 	struct kvm_x86_init_ops *ops = opaque;
11444 
11445 	WARN_ON(!irqs_disabled());
11446 
11447 	if (__cr4_reserved_bits(cpu_has, c) !=
11448 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11449 		return -EIO;
11450 
11451 	return ops->check_processor_compatibility();
11452 }
11453 
11454 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11455 {
11456 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11457 }
11458 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11459 
11460 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11461 {
11462 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11463 }
11464 
11465 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11466 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11467 
11468 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11469 {
11470 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11471 
11472 	vcpu->arch.l1tf_flush_l1d = true;
11473 	if (pmu->version && unlikely(pmu->event_count)) {
11474 		pmu->need_cleanup = true;
11475 		kvm_make_request(KVM_REQ_PMU, vcpu);
11476 	}
11477 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11478 }
11479 
11480 void kvm_arch_free_vm(struct kvm *kvm)
11481 {
11482 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11483 	__kvm_arch_free_vm(kvm);
11484 }
11485 
11486 
11487 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11488 {
11489 	int ret;
11490 	unsigned long flags;
11491 
11492 	if (type)
11493 		return -EINVAL;
11494 
11495 	ret = kvm_page_track_init(kvm);
11496 	if (ret)
11497 		return ret;
11498 
11499 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11500 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11501 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11502 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11503 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11504 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11505 
11506 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11507 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11508 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11509 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11510 		&kvm->arch.irq_sources_bitmap);
11511 
11512 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11513 	mutex_init(&kvm->arch.apic_map_lock);
11514 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11515 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11516 
11517 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11518 	pvclock_update_vm_gtod_copy(kvm);
11519 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11520 
11521 	kvm->arch.guest_can_read_msr_platform_info = true;
11522 
11523 #if IS_ENABLED(CONFIG_HYPERV)
11524 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11525 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11526 #endif
11527 
11528 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11529 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11530 
11531 	kvm_apicv_init(kvm);
11532 	kvm_hv_init_vm(kvm);
11533 	kvm_mmu_init_vm(kvm);
11534 	kvm_xen_init_vm(kvm);
11535 
11536 	return static_call(kvm_x86_vm_init)(kvm);
11537 }
11538 
11539 int kvm_arch_post_init_vm(struct kvm *kvm)
11540 {
11541 	return kvm_mmu_post_init_vm(kvm);
11542 }
11543 
11544 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11545 {
11546 	vcpu_load(vcpu);
11547 	kvm_mmu_unload(vcpu);
11548 	vcpu_put(vcpu);
11549 }
11550 
11551 static void kvm_free_vcpus(struct kvm *kvm)
11552 {
11553 	unsigned long i;
11554 	struct kvm_vcpu *vcpu;
11555 
11556 	/*
11557 	 * Unpin any mmu pages first.
11558 	 */
11559 	kvm_for_each_vcpu(i, vcpu, kvm) {
11560 		kvm_clear_async_pf_completion_queue(vcpu);
11561 		kvm_unload_vcpu_mmu(vcpu);
11562 	}
11563 
11564 	kvm_destroy_vcpus(kvm);
11565 }
11566 
11567 void kvm_arch_sync_events(struct kvm *kvm)
11568 {
11569 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11570 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11571 	kvm_free_pit(kvm);
11572 }
11573 
11574 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11575 
11576 /**
11577  * __x86_set_memory_region: Setup KVM internal memory slot
11578  *
11579  * @kvm: the kvm pointer to the VM.
11580  * @id: the slot ID to setup.
11581  * @gpa: the GPA to install the slot (unused when @size == 0).
11582  * @size: the size of the slot. Set to zero to uninstall a slot.
11583  *
11584  * This function helps to setup a KVM internal memory slot.  Specify
11585  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11586  * slot.  The return code can be one of the following:
11587  *
11588  *   HVA:           on success (uninstall will return a bogus HVA)
11589  *   -errno:        on error
11590  *
11591  * The caller should always use IS_ERR() to check the return value
11592  * before use.  Note, the KVM internal memory slots are guaranteed to
11593  * remain valid and unchanged until the VM is destroyed, i.e., the
11594  * GPA->HVA translation will not change.  However, the HVA is a user
11595  * address, i.e. its accessibility is not guaranteed, and must be
11596  * accessed via __copy_{to,from}_user().
11597  */
11598 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11599 				      u32 size)
11600 {
11601 	int i, r;
11602 	unsigned long hva, old_npages;
11603 	struct kvm_memslots *slots = kvm_memslots(kvm);
11604 	struct kvm_memory_slot *slot;
11605 
11606 	/* Called with kvm->slots_lock held.  */
11607 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11608 		return ERR_PTR_USR(-EINVAL);
11609 
11610 	slot = id_to_memslot(slots, id);
11611 	if (size) {
11612 		if (slot && slot->npages)
11613 			return ERR_PTR_USR(-EEXIST);
11614 
11615 		/*
11616 		 * MAP_SHARED to prevent internal slot pages from being moved
11617 		 * by fork()/COW.
11618 		 */
11619 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11620 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11621 		if (IS_ERR((void *)hva))
11622 			return (void __user *)hva;
11623 	} else {
11624 		if (!slot || !slot->npages)
11625 			return NULL;
11626 
11627 		old_npages = slot->npages;
11628 		hva = slot->userspace_addr;
11629 	}
11630 
11631 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11632 		struct kvm_userspace_memory_region m;
11633 
11634 		m.slot = id | (i << 16);
11635 		m.flags = 0;
11636 		m.guest_phys_addr = gpa;
11637 		m.userspace_addr = hva;
11638 		m.memory_size = size;
11639 		r = __kvm_set_memory_region(kvm, &m);
11640 		if (r < 0)
11641 			return ERR_PTR_USR(r);
11642 	}
11643 
11644 	if (!size)
11645 		vm_munmap(hva, old_npages * PAGE_SIZE);
11646 
11647 	return (void __user *)hva;
11648 }
11649 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11650 
11651 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11652 {
11653 	kvm_mmu_pre_destroy_vm(kvm);
11654 }
11655 
11656 void kvm_arch_destroy_vm(struct kvm *kvm)
11657 {
11658 	if (current->mm == kvm->mm) {
11659 		/*
11660 		 * Free memory regions allocated on behalf of userspace,
11661 		 * unless the the memory map has changed due to process exit
11662 		 * or fd copying.
11663 		 */
11664 		mutex_lock(&kvm->slots_lock);
11665 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11666 					0, 0);
11667 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11668 					0, 0);
11669 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11670 		mutex_unlock(&kvm->slots_lock);
11671 	}
11672 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11673 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11674 	kvm_pic_destroy(kvm);
11675 	kvm_ioapic_destroy(kvm);
11676 	kvm_free_vcpus(kvm);
11677 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11678 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11679 	kvm_mmu_uninit_vm(kvm);
11680 	kvm_page_track_cleanup(kvm);
11681 	kvm_xen_destroy_vm(kvm);
11682 	kvm_hv_destroy_vm(kvm);
11683 }
11684 
11685 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11686 {
11687 	int i;
11688 
11689 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11690 		kvfree(slot->arch.rmap[i]);
11691 		slot->arch.rmap[i] = NULL;
11692 	}
11693 }
11694 
11695 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11696 {
11697 	int i;
11698 
11699 	memslot_rmap_free(slot);
11700 
11701 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11702 		kvfree(slot->arch.lpage_info[i - 1]);
11703 		slot->arch.lpage_info[i - 1] = NULL;
11704 	}
11705 
11706 	kvm_page_track_free_memslot(slot);
11707 }
11708 
11709 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11710 {
11711 	const int sz = sizeof(*slot->arch.rmap[0]);
11712 	int i;
11713 
11714 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11715 		int level = i + 1;
11716 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11717 
11718 		if (slot->arch.rmap[i])
11719 			continue;
11720 
11721 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11722 		if (!slot->arch.rmap[i]) {
11723 			memslot_rmap_free(slot);
11724 			return -ENOMEM;
11725 		}
11726 	}
11727 
11728 	return 0;
11729 }
11730 
11731 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11732 				      struct kvm_memory_slot *slot)
11733 {
11734 	unsigned long npages = slot->npages;
11735 	int i, r;
11736 
11737 	/*
11738 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11739 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11740 	 * the new memslot is successful.
11741 	 */
11742 	memset(&slot->arch, 0, sizeof(slot->arch));
11743 
11744 	if (kvm_memslots_have_rmaps(kvm)) {
11745 		r = memslot_rmap_alloc(slot, npages);
11746 		if (r)
11747 			return r;
11748 	}
11749 
11750 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11751 		struct kvm_lpage_info *linfo;
11752 		unsigned long ugfn;
11753 		int lpages;
11754 		int level = i + 1;
11755 
11756 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11757 
11758 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11759 		if (!linfo)
11760 			goto out_free;
11761 
11762 		slot->arch.lpage_info[i - 1] = linfo;
11763 
11764 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11765 			linfo[0].disallow_lpage = 1;
11766 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11767 			linfo[lpages - 1].disallow_lpage = 1;
11768 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11769 		/*
11770 		 * If the gfn and userspace address are not aligned wrt each
11771 		 * other, disable large page support for this slot.
11772 		 */
11773 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11774 			unsigned long j;
11775 
11776 			for (j = 0; j < lpages; ++j)
11777 				linfo[j].disallow_lpage = 1;
11778 		}
11779 	}
11780 
11781 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11782 		goto out_free;
11783 
11784 	return 0;
11785 
11786 out_free:
11787 	memslot_rmap_free(slot);
11788 
11789 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11790 		kvfree(slot->arch.lpage_info[i - 1]);
11791 		slot->arch.lpage_info[i - 1] = NULL;
11792 	}
11793 	return -ENOMEM;
11794 }
11795 
11796 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11797 {
11798 	struct kvm_vcpu *vcpu;
11799 	unsigned long i;
11800 
11801 	/*
11802 	 * memslots->generation has been incremented.
11803 	 * mmio generation may have reached its maximum value.
11804 	 */
11805 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11806 
11807 	/* Force re-initialization of steal_time cache */
11808 	kvm_for_each_vcpu(i, vcpu, kvm)
11809 		kvm_vcpu_kick(vcpu);
11810 }
11811 
11812 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11813 				   const struct kvm_memory_slot *old,
11814 				   struct kvm_memory_slot *new,
11815 				   enum kvm_mr_change change)
11816 {
11817 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11818 		return kvm_alloc_memslot_metadata(kvm, new);
11819 
11820 	if (change == KVM_MR_FLAGS_ONLY)
11821 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
11822 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11823 		return -EIO;
11824 
11825 	return 0;
11826 }
11827 
11828 
11829 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11830 {
11831 	struct kvm_arch *ka = &kvm->arch;
11832 
11833 	if (!kvm_x86_ops.cpu_dirty_log_size)
11834 		return;
11835 
11836 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11837 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11838 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11839 
11840 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11841 }
11842 
11843 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11844 				     struct kvm_memory_slot *old,
11845 				     const struct kvm_memory_slot *new,
11846 				     enum kvm_mr_change change)
11847 {
11848 	u32 old_flags = old ? old->flags : 0;
11849 	u32 new_flags = new ? new->flags : 0;
11850 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11851 
11852 	/*
11853 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11854 	 * applies to all operations.
11855 	 */
11856 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11857 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11858 
11859 	/*
11860 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11861 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11862 	 *
11863 	 * For a memslot with dirty logging disabled:
11864 	 * CREATE:      No dirty mappings will already exist.
11865 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11866 	 *		kvm_arch_flush_shadow_memslot()
11867 	 *
11868 	 * For a memslot with dirty logging enabled:
11869 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11870 	 *		and no dirty bits to clear.
11871 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11872 	 *		kvm_arch_flush_shadow_memslot().
11873 	 */
11874 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11875 		return;
11876 
11877 	/*
11878 	 * READONLY and non-flags changes were filtered out above, and the only
11879 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11880 	 * logging isn't being toggled on or off.
11881 	 */
11882 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11883 		return;
11884 
11885 	if (!log_dirty_pages) {
11886 		/*
11887 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11888 		 * large sptes have to be split.  If live migration succeeds,
11889 		 * the guest in the source machine will be destroyed and large
11890 		 * sptes will be created in the destination.  However, if the
11891 		 * guest continues to run in the source machine (for example if
11892 		 * live migration fails), small sptes will remain around and
11893 		 * cause bad performance.
11894 		 *
11895 		 * Scan sptes if dirty logging has been stopped, dropping those
11896 		 * which can be collapsed into a single large-page spte.  Later
11897 		 * page faults will create the large-page sptes.
11898 		 */
11899 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11900 	} else {
11901 		/*
11902 		 * Initially-all-set does not require write protecting any page,
11903 		 * because they're all assumed to be dirty.
11904 		 */
11905 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11906 			return;
11907 
11908 		if (kvm_x86_ops.cpu_dirty_log_size) {
11909 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11910 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11911 		} else {
11912 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11913 		}
11914 	}
11915 }
11916 
11917 void kvm_arch_commit_memory_region(struct kvm *kvm,
11918 				struct kvm_memory_slot *old,
11919 				const struct kvm_memory_slot *new,
11920 				enum kvm_mr_change change)
11921 {
11922 	if (!kvm->arch.n_requested_mmu_pages &&
11923 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
11924 		unsigned long nr_mmu_pages;
11925 
11926 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
11927 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
11928 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
11929 	}
11930 
11931 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
11932 
11933 	/* Free the arrays associated with the old memslot. */
11934 	if (change == KVM_MR_MOVE)
11935 		kvm_arch_free_memslot(kvm, old);
11936 }
11937 
11938 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11939 {
11940 	kvm_mmu_zap_all(kvm);
11941 }
11942 
11943 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11944 				   struct kvm_memory_slot *slot)
11945 {
11946 	kvm_page_track_flush_slot(kvm, slot);
11947 }
11948 
11949 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11950 {
11951 	return (is_guest_mode(vcpu) &&
11952 			kvm_x86_ops.guest_apic_has_interrupt &&
11953 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11954 }
11955 
11956 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11957 {
11958 	if (!list_empty_careful(&vcpu->async_pf.done))
11959 		return true;
11960 
11961 	if (kvm_apic_has_events(vcpu))
11962 		return true;
11963 
11964 	if (vcpu->arch.pv.pv_unhalted)
11965 		return true;
11966 
11967 	if (vcpu->arch.exception.pending)
11968 		return true;
11969 
11970 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11971 	    (vcpu->arch.nmi_pending &&
11972 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11973 		return true;
11974 
11975 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11976 	    (vcpu->arch.smi_pending &&
11977 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
11978 		return true;
11979 
11980 	if (kvm_arch_interrupt_allowed(vcpu) &&
11981 	    (kvm_cpu_has_interrupt(vcpu) ||
11982 	    kvm_guest_apic_has_interrupt(vcpu)))
11983 		return true;
11984 
11985 	if (kvm_hv_has_stimer_pending(vcpu))
11986 		return true;
11987 
11988 	if (is_guest_mode(vcpu) &&
11989 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11990 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11991 		return true;
11992 
11993 	return false;
11994 }
11995 
11996 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11997 {
11998 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11999 }
12000 
12001 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12002 {
12003 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12004 		return true;
12005 
12006 	return false;
12007 }
12008 
12009 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12010 {
12011 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12012 		return true;
12013 
12014 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12015 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12016 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12017 		return true;
12018 
12019 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12020 }
12021 
12022 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12023 {
12024 	if (vcpu->arch.guest_state_protected)
12025 		return true;
12026 
12027 	return vcpu->arch.preempted_in_kernel;
12028 }
12029 
12030 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12031 {
12032 	return kvm_rip_read(vcpu);
12033 }
12034 
12035 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12036 {
12037 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12038 }
12039 
12040 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12041 {
12042 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12043 }
12044 
12045 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12046 {
12047 	/* Can't read the RIP when guest state is protected, just return 0 */
12048 	if (vcpu->arch.guest_state_protected)
12049 		return 0;
12050 
12051 	if (is_64_bit_mode(vcpu))
12052 		return kvm_rip_read(vcpu);
12053 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12054 		     kvm_rip_read(vcpu));
12055 }
12056 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12057 
12058 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12059 {
12060 	return kvm_get_linear_rip(vcpu) == linear_rip;
12061 }
12062 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12063 
12064 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12065 {
12066 	unsigned long rflags;
12067 
12068 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12069 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12070 		rflags &= ~X86_EFLAGS_TF;
12071 	return rflags;
12072 }
12073 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12074 
12075 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12076 {
12077 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12078 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12079 		rflags |= X86_EFLAGS_TF;
12080 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12081 }
12082 
12083 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12084 {
12085 	__kvm_set_rflags(vcpu, rflags);
12086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12087 }
12088 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12089 
12090 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12091 {
12092 	int r;
12093 
12094 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12095 	      work->wakeup_all)
12096 		return;
12097 
12098 	r = kvm_mmu_reload(vcpu);
12099 	if (unlikely(r))
12100 		return;
12101 
12102 	if (!vcpu->arch.mmu->direct_map &&
12103 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12104 		return;
12105 
12106 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12107 }
12108 
12109 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12110 {
12111 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12112 
12113 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12114 }
12115 
12116 static inline u32 kvm_async_pf_next_probe(u32 key)
12117 {
12118 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12119 }
12120 
12121 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12122 {
12123 	u32 key = kvm_async_pf_hash_fn(gfn);
12124 
12125 	while (vcpu->arch.apf.gfns[key] != ~0)
12126 		key = kvm_async_pf_next_probe(key);
12127 
12128 	vcpu->arch.apf.gfns[key] = gfn;
12129 }
12130 
12131 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12132 {
12133 	int i;
12134 	u32 key = kvm_async_pf_hash_fn(gfn);
12135 
12136 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12137 		     (vcpu->arch.apf.gfns[key] != gfn &&
12138 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12139 		key = kvm_async_pf_next_probe(key);
12140 
12141 	return key;
12142 }
12143 
12144 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12145 {
12146 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12147 }
12148 
12149 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12150 {
12151 	u32 i, j, k;
12152 
12153 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12154 
12155 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12156 		return;
12157 
12158 	while (true) {
12159 		vcpu->arch.apf.gfns[i] = ~0;
12160 		do {
12161 			j = kvm_async_pf_next_probe(j);
12162 			if (vcpu->arch.apf.gfns[j] == ~0)
12163 				return;
12164 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12165 			/*
12166 			 * k lies cyclically in ]i,j]
12167 			 * |    i.k.j |
12168 			 * |....j i.k.| or  |.k..j i...|
12169 			 */
12170 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12171 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12172 		i = j;
12173 	}
12174 }
12175 
12176 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12177 {
12178 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12179 
12180 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12181 				      sizeof(reason));
12182 }
12183 
12184 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12185 {
12186 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12187 
12188 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12189 					     &token, offset, sizeof(token));
12190 }
12191 
12192 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12193 {
12194 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12195 	u32 val;
12196 
12197 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12198 					 &val, offset, sizeof(val)))
12199 		return false;
12200 
12201 	return !val;
12202 }
12203 
12204 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12205 {
12206 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12207 		return false;
12208 
12209 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12210 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12211 		return false;
12212 
12213 	return true;
12214 }
12215 
12216 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12217 {
12218 	if (unlikely(!lapic_in_kernel(vcpu) ||
12219 		     kvm_event_needs_reinjection(vcpu) ||
12220 		     vcpu->arch.exception.pending))
12221 		return false;
12222 
12223 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12224 		return false;
12225 
12226 	/*
12227 	 * If interrupts are off we cannot even use an artificial
12228 	 * halt state.
12229 	 */
12230 	return kvm_arch_interrupt_allowed(vcpu);
12231 }
12232 
12233 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12234 				     struct kvm_async_pf *work)
12235 {
12236 	struct x86_exception fault;
12237 
12238 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12239 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12240 
12241 	if (kvm_can_deliver_async_pf(vcpu) &&
12242 	    !apf_put_user_notpresent(vcpu)) {
12243 		fault.vector = PF_VECTOR;
12244 		fault.error_code_valid = true;
12245 		fault.error_code = 0;
12246 		fault.nested_page_fault = false;
12247 		fault.address = work->arch.token;
12248 		fault.async_page_fault = true;
12249 		kvm_inject_page_fault(vcpu, &fault);
12250 		return true;
12251 	} else {
12252 		/*
12253 		 * It is not possible to deliver a paravirtualized asynchronous
12254 		 * page fault, but putting the guest in an artificial halt state
12255 		 * can be beneficial nevertheless: if an interrupt arrives, we
12256 		 * can deliver it timely and perhaps the guest will schedule
12257 		 * another process.  When the instruction that triggered a page
12258 		 * fault is retried, hopefully the page will be ready in the host.
12259 		 */
12260 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12261 		return false;
12262 	}
12263 }
12264 
12265 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12266 				 struct kvm_async_pf *work)
12267 {
12268 	struct kvm_lapic_irq irq = {
12269 		.delivery_mode = APIC_DM_FIXED,
12270 		.vector = vcpu->arch.apf.vec
12271 	};
12272 
12273 	if (work->wakeup_all)
12274 		work->arch.token = ~0; /* broadcast wakeup */
12275 	else
12276 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12277 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12278 
12279 	if ((work->wakeup_all || work->notpresent_injected) &&
12280 	    kvm_pv_async_pf_enabled(vcpu) &&
12281 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12282 		vcpu->arch.apf.pageready_pending = true;
12283 		kvm_apic_set_irq(vcpu, &irq, NULL);
12284 	}
12285 
12286 	vcpu->arch.apf.halted = false;
12287 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12288 }
12289 
12290 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12291 {
12292 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12293 	if (!vcpu->arch.apf.pageready_pending)
12294 		kvm_vcpu_kick(vcpu);
12295 }
12296 
12297 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12298 {
12299 	if (!kvm_pv_async_pf_enabled(vcpu))
12300 		return true;
12301 	else
12302 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12303 }
12304 
12305 void kvm_arch_start_assignment(struct kvm *kvm)
12306 {
12307 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12308 		static_call_cond(kvm_x86_start_assignment)(kvm);
12309 }
12310 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12311 
12312 void kvm_arch_end_assignment(struct kvm *kvm)
12313 {
12314 	atomic_dec(&kvm->arch.assigned_device_count);
12315 }
12316 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12317 
12318 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12319 {
12320 	return atomic_read(&kvm->arch.assigned_device_count);
12321 }
12322 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12323 
12324 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12325 {
12326 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12327 }
12328 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12329 
12330 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12331 {
12332 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12333 }
12334 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12335 
12336 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12337 {
12338 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12339 }
12340 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12341 
12342 bool kvm_arch_has_irq_bypass(void)
12343 {
12344 	return true;
12345 }
12346 
12347 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12348 				      struct irq_bypass_producer *prod)
12349 {
12350 	struct kvm_kernel_irqfd *irqfd =
12351 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12352 	int ret;
12353 
12354 	irqfd->producer = prod;
12355 	kvm_arch_start_assignment(irqfd->kvm);
12356 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12357 					 prod->irq, irqfd->gsi, 1);
12358 
12359 	if (ret)
12360 		kvm_arch_end_assignment(irqfd->kvm);
12361 
12362 	return ret;
12363 }
12364 
12365 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12366 				      struct irq_bypass_producer *prod)
12367 {
12368 	int ret;
12369 	struct kvm_kernel_irqfd *irqfd =
12370 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12371 
12372 	WARN_ON(irqfd->producer != prod);
12373 	irqfd->producer = NULL;
12374 
12375 	/*
12376 	 * When producer of consumer is unregistered, we change back to
12377 	 * remapped mode, so we can re-use the current implementation
12378 	 * when the irq is masked/disabled or the consumer side (KVM
12379 	 * int this case doesn't want to receive the interrupts.
12380 	*/
12381 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12382 	if (ret)
12383 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12384 		       " fails: %d\n", irqfd->consumer.token, ret);
12385 
12386 	kvm_arch_end_assignment(irqfd->kvm);
12387 }
12388 
12389 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12390 				   uint32_t guest_irq, bool set)
12391 {
12392 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12393 }
12394 
12395 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12396 				  struct kvm_kernel_irq_routing_entry *new)
12397 {
12398 	if (new->type != KVM_IRQ_ROUTING_MSI)
12399 		return true;
12400 
12401 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12402 }
12403 
12404 bool kvm_vector_hashing_enabled(void)
12405 {
12406 	return vector_hashing;
12407 }
12408 
12409 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12410 {
12411 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12412 }
12413 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12414 
12415 
12416 int kvm_spec_ctrl_test_value(u64 value)
12417 {
12418 	/*
12419 	 * test that setting IA32_SPEC_CTRL to given value
12420 	 * is allowed by the host processor
12421 	 */
12422 
12423 	u64 saved_value;
12424 	unsigned long flags;
12425 	int ret = 0;
12426 
12427 	local_irq_save(flags);
12428 
12429 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12430 		ret = 1;
12431 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12432 		ret = 1;
12433 	else
12434 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12435 
12436 	local_irq_restore(flags);
12437 
12438 	return ret;
12439 }
12440 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12441 
12442 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12443 {
12444 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12445 	struct x86_exception fault;
12446 	u32 access = error_code &
12447 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12448 
12449 	if (!(error_code & PFERR_PRESENT_MASK) ||
12450 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12451 		/*
12452 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12453 		 * tables probably do not match the TLB.  Just proceed
12454 		 * with the error code that the processor gave.
12455 		 */
12456 		fault.vector = PF_VECTOR;
12457 		fault.error_code_valid = true;
12458 		fault.error_code = error_code;
12459 		fault.nested_page_fault = false;
12460 		fault.address = gva;
12461 	}
12462 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12463 }
12464 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12465 
12466 /*
12467  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12468  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12469  * indicates whether exit to userspace is needed.
12470  */
12471 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12472 			      struct x86_exception *e)
12473 {
12474 	if (r == X86EMUL_PROPAGATE_FAULT) {
12475 		kvm_inject_emulated_page_fault(vcpu, e);
12476 		return 1;
12477 	}
12478 
12479 	/*
12480 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12481 	 * while handling a VMX instruction KVM could've handled the request
12482 	 * correctly by exiting to userspace and performing I/O but there
12483 	 * doesn't seem to be a real use-case behind such requests, just return
12484 	 * KVM_EXIT_INTERNAL_ERROR for now.
12485 	 */
12486 	kvm_prepare_emulation_failure_exit(vcpu);
12487 
12488 	return 0;
12489 }
12490 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12491 
12492 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12493 {
12494 	bool pcid_enabled;
12495 	struct x86_exception e;
12496 	struct {
12497 		u64 pcid;
12498 		u64 gla;
12499 	} operand;
12500 	int r;
12501 
12502 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12503 	if (r != X86EMUL_CONTINUE)
12504 		return kvm_handle_memory_failure(vcpu, r, &e);
12505 
12506 	if (operand.pcid >> 12 != 0) {
12507 		kvm_inject_gp(vcpu, 0);
12508 		return 1;
12509 	}
12510 
12511 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12512 
12513 	switch (type) {
12514 	case INVPCID_TYPE_INDIV_ADDR:
12515 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12516 		    is_noncanonical_address(operand.gla, vcpu)) {
12517 			kvm_inject_gp(vcpu, 0);
12518 			return 1;
12519 		}
12520 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12521 		return kvm_skip_emulated_instruction(vcpu);
12522 
12523 	case INVPCID_TYPE_SINGLE_CTXT:
12524 		if (!pcid_enabled && (operand.pcid != 0)) {
12525 			kvm_inject_gp(vcpu, 0);
12526 			return 1;
12527 		}
12528 
12529 		kvm_invalidate_pcid(vcpu, operand.pcid);
12530 		return kvm_skip_emulated_instruction(vcpu);
12531 
12532 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12533 		/*
12534 		 * Currently, KVM doesn't mark global entries in the shadow
12535 		 * page tables, so a non-global flush just degenerates to a
12536 		 * global flush. If needed, we could optimize this later by
12537 		 * keeping track of global entries in shadow page tables.
12538 		 */
12539 
12540 		fallthrough;
12541 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12542 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12543 		return kvm_skip_emulated_instruction(vcpu);
12544 
12545 	default:
12546 		kvm_inject_gp(vcpu, 0);
12547 		return 1;
12548 	}
12549 }
12550 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12551 
12552 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12553 {
12554 	struct kvm_run *run = vcpu->run;
12555 	struct kvm_mmio_fragment *frag;
12556 	unsigned int len;
12557 
12558 	BUG_ON(!vcpu->mmio_needed);
12559 
12560 	/* Complete previous fragment */
12561 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12562 	len = min(8u, frag->len);
12563 	if (!vcpu->mmio_is_write)
12564 		memcpy(frag->data, run->mmio.data, len);
12565 
12566 	if (frag->len <= 8) {
12567 		/* Switch to the next fragment. */
12568 		frag++;
12569 		vcpu->mmio_cur_fragment++;
12570 	} else {
12571 		/* Go forward to the next mmio piece. */
12572 		frag->data += len;
12573 		frag->gpa += len;
12574 		frag->len -= len;
12575 	}
12576 
12577 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12578 		vcpu->mmio_needed = 0;
12579 
12580 		// VMG change, at this point, we're always done
12581 		// RIP has already been advanced
12582 		return 1;
12583 	}
12584 
12585 	// More MMIO is needed
12586 	run->mmio.phys_addr = frag->gpa;
12587 	run->mmio.len = min(8u, frag->len);
12588 	run->mmio.is_write = vcpu->mmio_is_write;
12589 	if (run->mmio.is_write)
12590 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12591 	run->exit_reason = KVM_EXIT_MMIO;
12592 
12593 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12594 
12595 	return 0;
12596 }
12597 
12598 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12599 			  void *data)
12600 {
12601 	int handled;
12602 	struct kvm_mmio_fragment *frag;
12603 
12604 	if (!data)
12605 		return -EINVAL;
12606 
12607 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12608 	if (handled == bytes)
12609 		return 1;
12610 
12611 	bytes -= handled;
12612 	gpa += handled;
12613 	data += handled;
12614 
12615 	/*TODO: Check if need to increment number of frags */
12616 	frag = vcpu->mmio_fragments;
12617 	vcpu->mmio_nr_fragments = 1;
12618 	frag->len = bytes;
12619 	frag->gpa = gpa;
12620 	frag->data = data;
12621 
12622 	vcpu->mmio_needed = 1;
12623 	vcpu->mmio_cur_fragment = 0;
12624 
12625 	vcpu->run->mmio.phys_addr = gpa;
12626 	vcpu->run->mmio.len = min(8u, frag->len);
12627 	vcpu->run->mmio.is_write = 1;
12628 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12629 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12630 
12631 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12632 
12633 	return 0;
12634 }
12635 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12636 
12637 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12638 			 void *data)
12639 {
12640 	int handled;
12641 	struct kvm_mmio_fragment *frag;
12642 
12643 	if (!data)
12644 		return -EINVAL;
12645 
12646 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12647 	if (handled == bytes)
12648 		return 1;
12649 
12650 	bytes -= handled;
12651 	gpa += handled;
12652 	data += handled;
12653 
12654 	/*TODO: Check if need to increment number of frags */
12655 	frag = vcpu->mmio_fragments;
12656 	vcpu->mmio_nr_fragments = 1;
12657 	frag->len = bytes;
12658 	frag->gpa = gpa;
12659 	frag->data = data;
12660 
12661 	vcpu->mmio_needed = 1;
12662 	vcpu->mmio_cur_fragment = 0;
12663 
12664 	vcpu->run->mmio.phys_addr = gpa;
12665 	vcpu->run->mmio.len = min(8u, frag->len);
12666 	vcpu->run->mmio.is_write = 0;
12667 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12668 
12669 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12670 
12671 	return 0;
12672 }
12673 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12674 
12675 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12676 			   unsigned int port);
12677 
12678 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12679 {
12680 	int size = vcpu->arch.pio.size;
12681 	int port = vcpu->arch.pio.port;
12682 
12683 	vcpu->arch.pio.count = 0;
12684 	if (vcpu->arch.sev_pio_count)
12685 		return kvm_sev_es_outs(vcpu, size, port);
12686 	return 1;
12687 }
12688 
12689 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12690 			   unsigned int port)
12691 {
12692 	for (;;) {
12693 		unsigned int count =
12694 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12695 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12696 
12697 		/* memcpy done already by emulator_pio_out.  */
12698 		vcpu->arch.sev_pio_count -= count;
12699 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12700 		if (!ret)
12701 			break;
12702 
12703 		/* Emulation done by the kernel.  */
12704 		if (!vcpu->arch.sev_pio_count)
12705 			return 1;
12706 	}
12707 
12708 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12709 	return 0;
12710 }
12711 
12712 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12713 			  unsigned int port);
12714 
12715 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12716 {
12717 	unsigned count = vcpu->arch.pio.count;
12718 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12719 	vcpu->arch.sev_pio_count -= count;
12720 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12721 }
12722 
12723 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12724 {
12725 	int size = vcpu->arch.pio.size;
12726 	int port = vcpu->arch.pio.port;
12727 
12728 	advance_sev_es_emulated_ins(vcpu);
12729 	if (vcpu->arch.sev_pio_count)
12730 		return kvm_sev_es_ins(vcpu, size, port);
12731 	return 1;
12732 }
12733 
12734 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12735 			  unsigned int port)
12736 {
12737 	for (;;) {
12738 		unsigned int count =
12739 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12740 		if (!__emulator_pio_in(vcpu, size, port, count))
12741 			break;
12742 
12743 		/* Emulation done by the kernel.  */
12744 		advance_sev_es_emulated_ins(vcpu);
12745 		if (!vcpu->arch.sev_pio_count)
12746 			return 1;
12747 	}
12748 
12749 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12750 	return 0;
12751 }
12752 
12753 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12754 			 unsigned int port, void *data,  unsigned int count,
12755 			 int in)
12756 {
12757 	vcpu->arch.sev_pio_data = data;
12758 	vcpu->arch.sev_pio_count = count;
12759 	return in ? kvm_sev_es_ins(vcpu, size, port)
12760 		  : kvm_sev_es_outs(vcpu, size, port);
12761 }
12762 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12763 
12764 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12765 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12766 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12767 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12768 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12769 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12770 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12771 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12772 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12773 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12782 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12783 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12792