xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 6cd70754)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82 
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87 
88 #define emul_to_vcpu(ctxt) \
89 	((struct kvm_vcpu *)(ctxt)->vcpu)
90 
91 /* EFER defaults:
92  * - enable syscall per default because its emulated by KVM
93  * - enable LME and LMA per default on 64 bit KVM
94  */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101 
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103 
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106 
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114 
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117 
118 #define KVM_X86_OP(func)					     \
119 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
120 				*(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126 
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129 
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133 
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136 
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139 
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32  __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64  __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152 
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156 
157 /*
158  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
159  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
160  * advancement entirely.  Any other value is used as-is and disables adaptive
161  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
162  */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165 
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168 
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172 
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175 
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178 
179 /*
180  * Restoring the host value for MSRs that are only consumed when running in
181  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182  * returns to userspace, i.e. the kernel can run with the guest's value.
183  */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185 
186 struct kvm_user_return_msrs_global {
187 	int nr;
188 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190 
191 struct kvm_user_return_msrs {
192 	struct user_return_notifier urn;
193 	bool registered;
194 	struct kvm_user_return_msr_values {
195 		u64 host;
196 		u64 curr;
197 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199 
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202 
203 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206 				| XFEATURE_MASK_PKRU)
207 
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210 
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213 
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218 
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220 	VCPU_STAT("pf_fixed", pf_fixed),
221 	VCPU_STAT("pf_guest", pf_guest),
222 	VCPU_STAT("tlb_flush", tlb_flush),
223 	VCPU_STAT("invlpg", invlpg),
224 	VCPU_STAT("exits", exits),
225 	VCPU_STAT("io_exits", io_exits),
226 	VCPU_STAT("mmio_exits", mmio_exits),
227 	VCPU_STAT("signal_exits", signal_exits),
228 	VCPU_STAT("irq_window", irq_window_exits),
229 	VCPU_STAT("nmi_window", nmi_window_exits),
230 	VCPU_STAT("halt_exits", halt_exits),
231 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
232 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234 	VCPU_STAT("halt_wakeup", halt_wakeup),
235 	VCPU_STAT("hypercalls", hypercalls),
236 	VCPU_STAT("request_irq", request_irq_exits),
237 	VCPU_STAT("irq_exits", irq_exits),
238 	VCPU_STAT("host_state_reload", host_state_reload),
239 	VCPU_STAT("fpu_reload", fpu_reload),
240 	VCPU_STAT("insn_emulation", insn_emulation),
241 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242 	VCPU_STAT("irq_injections", irq_injections),
243 	VCPU_STAT("nmi_injections", nmi_injections),
244 	VCPU_STAT("req_event", req_event),
245 	VCPU_STAT("l1d_flush", l1d_flush),
246 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249 	VM_STAT("mmu_pte_write", mmu_pte_write),
250 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251 	VM_STAT("mmu_flooded", mmu_flooded),
252 	VM_STAT("mmu_recycled", mmu_recycled),
253 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
254 	VM_STAT("mmu_unsync", mmu_unsync),
255 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
256 	VM_STAT("largepages", lpages, .mode = 0444),
257 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259 	{ NULL }
260 };
261 
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265 
266 static struct kmem_cache *x86_fpu_cache;
267 
268 static struct kmem_cache *x86_emulator_cache;
269 
270 /*
271  * When called, it means the previous get/set msr reached an invalid msr.
272  * Return true if we want to ignore/silent this failed msr access.
273  */
274 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
275 {
276 	const char *op = write ? "wrmsr" : "rdmsr";
277 
278 	if (ignore_msrs) {
279 		if (report_ignored_msrs)
280 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
281 				      op, msr, data);
282 		/* Mask the error */
283 		return true;
284 	} else {
285 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
286 				      op, msr, data);
287 		return false;
288 	}
289 }
290 
291 static struct kmem_cache *kvm_alloc_emulator_cache(void)
292 {
293 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
294 	unsigned int size = sizeof(struct x86_emulate_ctxt);
295 
296 	return kmem_cache_create_usercopy("x86_emulator", size,
297 					  __alignof__(struct x86_emulate_ctxt),
298 					  SLAB_ACCOUNT, useroffset,
299 					  size - useroffset, NULL);
300 }
301 
302 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
303 
304 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
305 {
306 	int i;
307 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
308 		vcpu->arch.apf.gfns[i] = ~0;
309 }
310 
311 static void kvm_on_user_return(struct user_return_notifier *urn)
312 {
313 	unsigned slot;
314 	struct kvm_user_return_msrs *msrs
315 		= container_of(urn, struct kvm_user_return_msrs, urn);
316 	struct kvm_user_return_msr_values *values;
317 	unsigned long flags;
318 
319 	/*
320 	 * Disabling irqs at this point since the following code could be
321 	 * interrupted and executed through kvm_arch_hardware_disable()
322 	 */
323 	local_irq_save(flags);
324 	if (msrs->registered) {
325 		msrs->registered = false;
326 		user_return_notifier_unregister(urn);
327 	}
328 	local_irq_restore(flags);
329 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
330 		values = &msrs->values[slot];
331 		if (values->host != values->curr) {
332 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
333 			values->curr = values->host;
334 		}
335 	}
336 }
337 
338 void kvm_define_user_return_msr(unsigned slot, u32 msr)
339 {
340 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
341 	user_return_msrs_global.msrs[slot] = msr;
342 	if (slot >= user_return_msrs_global.nr)
343 		user_return_msrs_global.nr = slot + 1;
344 }
345 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
346 
347 static void kvm_user_return_msr_cpu_online(void)
348 {
349 	unsigned int cpu = smp_processor_id();
350 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
351 	u64 value;
352 	int i;
353 
354 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
355 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
356 		msrs->values[i].host = value;
357 		msrs->values[i].curr = value;
358 	}
359 }
360 
361 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
362 {
363 	unsigned int cpu = smp_processor_id();
364 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
365 	int err;
366 
367 	value = (value & mask) | (msrs->values[slot].host & ~mask);
368 	if (value == msrs->values[slot].curr)
369 		return 0;
370 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
371 	if (err)
372 		return 1;
373 
374 	msrs->values[slot].curr = value;
375 	if (!msrs->registered) {
376 		msrs->urn.on_user_return = kvm_on_user_return;
377 		user_return_notifier_register(&msrs->urn);
378 		msrs->registered = true;
379 	}
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
383 
384 static void drop_user_return_notifiers(void)
385 {
386 	unsigned int cpu = smp_processor_id();
387 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
388 
389 	if (msrs->registered)
390 		kvm_on_user_return(&msrs->urn);
391 }
392 
393 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
394 {
395 	return vcpu->arch.apic_base;
396 }
397 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
398 
399 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
400 {
401 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
402 }
403 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
404 
405 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
406 {
407 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
408 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
409 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
410 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
411 
412 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
413 		return 1;
414 	if (!msr_info->host_initiated) {
415 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
416 			return 1;
417 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
418 			return 1;
419 	}
420 
421 	kvm_lapic_set_base(vcpu, msr_info->data);
422 	kvm_recalculate_apic_map(vcpu->kvm);
423 	return 0;
424 }
425 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
426 
427 asmlinkage __visible noinstr void kvm_spurious_fault(void)
428 {
429 	/* Fault while not rebooting.  We want the trace. */
430 	BUG_ON(!kvm_rebooting);
431 }
432 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
433 
434 #define EXCPT_BENIGN		0
435 #define EXCPT_CONTRIBUTORY	1
436 #define EXCPT_PF		2
437 
438 static int exception_class(int vector)
439 {
440 	switch (vector) {
441 	case PF_VECTOR:
442 		return EXCPT_PF;
443 	case DE_VECTOR:
444 	case TS_VECTOR:
445 	case NP_VECTOR:
446 	case SS_VECTOR:
447 	case GP_VECTOR:
448 		return EXCPT_CONTRIBUTORY;
449 	default:
450 		break;
451 	}
452 	return EXCPT_BENIGN;
453 }
454 
455 #define EXCPT_FAULT		0
456 #define EXCPT_TRAP		1
457 #define EXCPT_ABORT		2
458 #define EXCPT_INTERRUPT		3
459 
460 static int exception_type(int vector)
461 {
462 	unsigned int mask;
463 
464 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
465 		return EXCPT_INTERRUPT;
466 
467 	mask = 1 << vector;
468 
469 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
470 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
471 		return EXCPT_TRAP;
472 
473 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
474 		return EXCPT_ABORT;
475 
476 	/* Reserved exceptions will result in fault */
477 	return EXCPT_FAULT;
478 }
479 
480 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
481 {
482 	unsigned nr = vcpu->arch.exception.nr;
483 	bool has_payload = vcpu->arch.exception.has_payload;
484 	unsigned long payload = vcpu->arch.exception.payload;
485 
486 	if (!has_payload)
487 		return;
488 
489 	switch (nr) {
490 	case DB_VECTOR:
491 		/*
492 		 * "Certain debug exceptions may clear bit 0-3.  The
493 		 * remaining contents of the DR6 register are never
494 		 * cleared by the processor".
495 		 */
496 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
497 		/*
498 		 * In order to reflect the #DB exception payload in guest
499 		 * dr6, three components need to be considered: active low
500 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
501 		 * DR6_BS and DR6_BT)
502 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
503 		 * In the target guest dr6:
504 		 * FIXED_1 bits should always be set.
505 		 * Active low bits should be cleared if 1-setting in payload.
506 		 * Active high bits should be set if 1-setting in payload.
507 		 *
508 		 * Note, the payload is compatible with the pending debug
509 		 * exceptions/exit qualification under VMX, that active_low bits
510 		 * are active high in payload.
511 		 * So they need to be flipped for DR6.
512 		 */
513 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
514 		vcpu->arch.dr6 |= payload;
515 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
516 
517 		/*
518 		 * The #DB payload is defined as compatible with the 'pending
519 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
520 		 * defined in the 'pending debug exceptions' field (enabled
521 		 * breakpoint), it is reserved and must be zero in DR6.
522 		 */
523 		vcpu->arch.dr6 &= ~BIT(12);
524 		break;
525 	case PF_VECTOR:
526 		vcpu->arch.cr2 = payload;
527 		break;
528 	}
529 
530 	vcpu->arch.exception.has_payload = false;
531 	vcpu->arch.exception.payload = 0;
532 }
533 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
534 
535 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
536 		unsigned nr, bool has_error, u32 error_code,
537 	        bool has_payload, unsigned long payload, bool reinject)
538 {
539 	u32 prev_nr;
540 	int class1, class2;
541 
542 	kvm_make_request(KVM_REQ_EVENT, vcpu);
543 
544 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
545 	queue:
546 		if (has_error && !is_protmode(vcpu))
547 			has_error = false;
548 		if (reinject) {
549 			/*
550 			 * On vmentry, vcpu->arch.exception.pending is only
551 			 * true if an event injection was blocked by
552 			 * nested_run_pending.  In that case, however,
553 			 * vcpu_enter_guest requests an immediate exit,
554 			 * and the guest shouldn't proceed far enough to
555 			 * need reinjection.
556 			 */
557 			WARN_ON_ONCE(vcpu->arch.exception.pending);
558 			vcpu->arch.exception.injected = true;
559 			if (WARN_ON_ONCE(has_payload)) {
560 				/*
561 				 * A reinjected event has already
562 				 * delivered its payload.
563 				 */
564 				has_payload = false;
565 				payload = 0;
566 			}
567 		} else {
568 			vcpu->arch.exception.pending = true;
569 			vcpu->arch.exception.injected = false;
570 		}
571 		vcpu->arch.exception.has_error_code = has_error;
572 		vcpu->arch.exception.nr = nr;
573 		vcpu->arch.exception.error_code = error_code;
574 		vcpu->arch.exception.has_payload = has_payload;
575 		vcpu->arch.exception.payload = payload;
576 		if (!is_guest_mode(vcpu))
577 			kvm_deliver_exception_payload(vcpu);
578 		return;
579 	}
580 
581 	/* to check exception */
582 	prev_nr = vcpu->arch.exception.nr;
583 	if (prev_nr == DF_VECTOR) {
584 		/* triple fault -> shutdown */
585 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
586 		return;
587 	}
588 	class1 = exception_class(prev_nr);
589 	class2 = exception_class(nr);
590 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
591 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
592 		/*
593 		 * Generate double fault per SDM Table 5-5.  Set
594 		 * exception.pending = true so that the double fault
595 		 * can trigger a nested vmexit.
596 		 */
597 		vcpu->arch.exception.pending = true;
598 		vcpu->arch.exception.injected = false;
599 		vcpu->arch.exception.has_error_code = true;
600 		vcpu->arch.exception.nr = DF_VECTOR;
601 		vcpu->arch.exception.error_code = 0;
602 		vcpu->arch.exception.has_payload = false;
603 		vcpu->arch.exception.payload = 0;
604 	} else
605 		/* replace previous exception with a new one in a hope
606 		   that instruction re-execution will regenerate lost
607 		   exception */
608 		goto queue;
609 }
610 
611 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
612 {
613 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception);
616 
617 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
618 {
619 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
622 
623 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
624 			   unsigned long payload)
625 {
626 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
627 }
628 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
629 
630 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
631 				    u32 error_code, unsigned long payload)
632 {
633 	kvm_multiple_exception(vcpu, nr, true, error_code,
634 			       true, payload, false);
635 }
636 
637 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
638 {
639 	if (err)
640 		kvm_inject_gp(vcpu, 0);
641 	else
642 		return kvm_skip_emulated_instruction(vcpu);
643 
644 	return 1;
645 }
646 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
647 
648 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
649 {
650 	++vcpu->stat.pf_guest;
651 	vcpu->arch.exception.nested_apf =
652 		is_guest_mode(vcpu) && fault->async_page_fault;
653 	if (vcpu->arch.exception.nested_apf) {
654 		vcpu->arch.apf.nested_apf_token = fault->address;
655 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
656 	} else {
657 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
658 					fault->address);
659 	}
660 }
661 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
662 
663 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
664 				    struct x86_exception *fault)
665 {
666 	struct kvm_mmu *fault_mmu;
667 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
668 
669 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
670 					       vcpu->arch.walk_mmu;
671 
672 	/*
673 	 * Invalidate the TLB entry for the faulting address, if it exists,
674 	 * else the access will fault indefinitely (and to emulate hardware).
675 	 */
676 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
677 	    !(fault->error_code & PFERR_RSVD_MASK))
678 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
679 				       fault_mmu->root_hpa);
680 
681 	fault_mmu->inject_page_fault(vcpu, fault);
682 	return fault->nested_page_fault;
683 }
684 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
685 
686 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
687 {
688 	atomic_inc(&vcpu->arch.nmi_queued);
689 	kvm_make_request(KVM_REQ_NMI, vcpu);
690 }
691 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
692 
693 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
694 {
695 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
696 }
697 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
698 
699 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
700 {
701 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
702 }
703 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
704 
705 /*
706  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
707  * a #GP and return false.
708  */
709 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
710 {
711 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
712 		return true;
713 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
714 	return false;
715 }
716 EXPORT_SYMBOL_GPL(kvm_require_cpl);
717 
718 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
719 {
720 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
721 		return true;
722 
723 	kvm_queue_exception(vcpu, UD_VECTOR);
724 	return false;
725 }
726 EXPORT_SYMBOL_GPL(kvm_require_dr);
727 
728 /*
729  * This function will be used to read from the physical memory of the currently
730  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
731  * can read from guest physical or from the guest's guest physical memory.
732  */
733 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
734 			    gfn_t ngfn, void *data, int offset, int len,
735 			    u32 access)
736 {
737 	struct x86_exception exception;
738 	gfn_t real_gfn;
739 	gpa_t ngpa;
740 
741 	ngpa     = gfn_to_gpa(ngfn);
742 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
743 	if (real_gfn == UNMAPPED_GVA)
744 		return -EFAULT;
745 
746 	real_gfn = gpa_to_gfn(real_gfn);
747 
748 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
749 }
750 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
751 
752 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
753 			       void *data, int offset, int len, u32 access)
754 {
755 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
756 				       data, offset, len, access);
757 }
758 
759 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
760 {
761 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
762 }
763 
764 /*
765  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
766  */
767 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
768 {
769 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
770 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
771 	int i;
772 	int ret;
773 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
774 
775 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
776 				      offset * sizeof(u64), sizeof(pdpte),
777 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
778 	if (ret < 0) {
779 		ret = 0;
780 		goto out;
781 	}
782 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
783 		if ((pdpte[i] & PT_PRESENT_MASK) &&
784 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
785 			ret = 0;
786 			goto out;
787 		}
788 	}
789 	ret = 1;
790 
791 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
792 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
793 
794 out:
795 
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(load_pdptrs);
799 
800 bool pdptrs_changed(struct kvm_vcpu *vcpu)
801 {
802 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
803 	int offset;
804 	gfn_t gfn;
805 	int r;
806 
807 	if (!is_pae_paging(vcpu))
808 		return false;
809 
810 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
811 		return true;
812 
813 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
814 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
815 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
816 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
817 	if (r < 0)
818 		return true;
819 
820 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
821 }
822 EXPORT_SYMBOL_GPL(pdptrs_changed);
823 
824 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
825 {
826 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
827 
828 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
829 		kvm_clear_async_pf_completion_queue(vcpu);
830 		kvm_async_pf_hash_reset(vcpu);
831 	}
832 
833 	if ((cr0 ^ old_cr0) & update_bits)
834 		kvm_mmu_reset_context(vcpu);
835 
836 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
837 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
838 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
839 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
840 }
841 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
842 
843 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
844 {
845 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
846 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
847 
848 	cr0 |= X86_CR0_ET;
849 
850 #ifdef CONFIG_X86_64
851 	if (cr0 & 0xffffffff00000000UL)
852 		return 1;
853 #endif
854 
855 	cr0 &= ~CR0_RESERVED_BITS;
856 
857 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
858 		return 1;
859 
860 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
861 		return 1;
862 
863 #ifdef CONFIG_X86_64
864 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
865 	    (cr0 & X86_CR0_PG)) {
866 		int cs_db, cs_l;
867 
868 		if (!is_pae(vcpu))
869 			return 1;
870 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
871 		if (cs_l)
872 			return 1;
873 	}
874 #endif
875 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
876 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
877 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
878 		return 1;
879 
880 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
881 		return 1;
882 
883 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
884 
885 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(kvm_set_cr0);
890 
891 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
892 {
893 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
894 }
895 EXPORT_SYMBOL_GPL(kvm_lmsw);
896 
897 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
898 {
899 	if (vcpu->arch.guest_state_protected)
900 		return;
901 
902 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
903 
904 		if (vcpu->arch.xcr0 != host_xcr0)
905 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
906 
907 		if (vcpu->arch.xsaves_enabled &&
908 		    vcpu->arch.ia32_xss != host_xss)
909 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
910 	}
911 
912 	if (static_cpu_has(X86_FEATURE_PKU) &&
913 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
914 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
915 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
916 		__write_pkru(vcpu->arch.pkru);
917 }
918 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
919 
920 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
921 {
922 	if (vcpu->arch.guest_state_protected)
923 		return;
924 
925 	if (static_cpu_has(X86_FEATURE_PKU) &&
926 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
927 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
928 		vcpu->arch.pkru = rdpkru();
929 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
930 			__write_pkru(vcpu->arch.host_pkru);
931 	}
932 
933 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
934 
935 		if (vcpu->arch.xcr0 != host_xcr0)
936 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
937 
938 		if (vcpu->arch.xsaves_enabled &&
939 		    vcpu->arch.ia32_xss != host_xss)
940 			wrmsrl(MSR_IA32_XSS, host_xss);
941 	}
942 
943 }
944 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
945 
946 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
947 {
948 	u64 xcr0 = xcr;
949 	u64 old_xcr0 = vcpu->arch.xcr0;
950 	u64 valid_bits;
951 
952 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
953 	if (index != XCR_XFEATURE_ENABLED_MASK)
954 		return 1;
955 	if (!(xcr0 & XFEATURE_MASK_FP))
956 		return 1;
957 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
958 		return 1;
959 
960 	/*
961 	 * Do not allow the guest to set bits that we do not support
962 	 * saving.  However, xcr0 bit 0 is always set, even if the
963 	 * emulated CPU does not support XSAVE (see fx_init).
964 	 */
965 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
966 	if (xcr0 & ~valid_bits)
967 		return 1;
968 
969 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
970 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
971 		return 1;
972 
973 	if (xcr0 & XFEATURE_MASK_AVX512) {
974 		if (!(xcr0 & XFEATURE_MASK_YMM))
975 			return 1;
976 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
977 			return 1;
978 	}
979 	vcpu->arch.xcr0 = xcr0;
980 
981 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
982 		kvm_update_cpuid_runtime(vcpu);
983 	return 0;
984 }
985 
986 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
987 {
988 	if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
989 		return __kvm_set_xcr(vcpu, index, xcr);
990 
991 	return 1;
992 }
993 EXPORT_SYMBOL_GPL(kvm_set_xcr);
994 
995 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
996 {
997 	if (cr4 & cr4_reserved_bits)
998 		return false;
999 
1000 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1001 		return false;
1002 
1003 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1006 
1007 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1008 {
1009 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1010 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1011 
1012 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1013 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1014 		kvm_mmu_reset_context(vcpu);
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1017 
1018 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1019 {
1020 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1021 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1022 				   X86_CR4_SMEP;
1023 
1024 	if (!kvm_is_valid_cr4(vcpu, cr4))
1025 		return 1;
1026 
1027 	if (is_long_mode(vcpu)) {
1028 		if (!(cr4 & X86_CR4_PAE))
1029 			return 1;
1030 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1031 			return 1;
1032 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1033 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1034 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1035 				   kvm_read_cr3(vcpu)))
1036 		return 1;
1037 
1038 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1039 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1040 			return 1;
1041 
1042 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1043 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1044 			return 1;
1045 	}
1046 
1047 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1048 
1049 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1050 
1051 	return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1054 
1055 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1056 {
1057 	bool skip_tlb_flush = false;
1058 #ifdef CONFIG_X86_64
1059 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1060 
1061 	if (pcid_enabled) {
1062 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1063 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1064 	}
1065 #endif
1066 
1067 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1068 		if (!skip_tlb_flush) {
1069 			kvm_mmu_sync_roots(vcpu);
1070 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1071 		}
1072 		return 0;
1073 	}
1074 
1075 	if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1076 		return 1;
1077 	else if (is_pae_paging(vcpu) &&
1078 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1079 		return 1;
1080 
1081 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1082 	vcpu->arch.cr3 = cr3;
1083 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1088 
1089 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1090 {
1091 	if (cr8 & CR8_RESERVED_BITS)
1092 		return 1;
1093 	if (lapic_in_kernel(vcpu))
1094 		kvm_lapic_set_tpr(vcpu, cr8);
1095 	else
1096 		vcpu->arch.cr8 = cr8;
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1100 
1101 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1102 {
1103 	if (lapic_in_kernel(vcpu))
1104 		return kvm_lapic_get_cr8(vcpu);
1105 	else
1106 		return vcpu->arch.cr8;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1109 
1110 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1111 {
1112 	int i;
1113 
1114 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1115 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1116 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1117 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1118 	}
1119 }
1120 
1121 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1122 {
1123 	unsigned long dr7;
1124 
1125 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126 		dr7 = vcpu->arch.guest_debug_dr7;
1127 	else
1128 		dr7 = vcpu->arch.dr7;
1129 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1130 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1131 	if (dr7 & DR7_BP_EN_MASK)
1132 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1135 
1136 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1137 {
1138 	u64 fixed = DR6_FIXED_1;
1139 
1140 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1141 		fixed |= DR6_RTM;
1142 	return fixed;
1143 }
1144 
1145 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1146 {
1147 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1148 
1149 	switch (dr) {
1150 	case 0 ... 3:
1151 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1152 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1153 			vcpu->arch.eff_db[dr] = val;
1154 		break;
1155 	case 4:
1156 	case 6:
1157 		if (!kvm_dr6_valid(val))
1158 			return 1; /* #GP */
1159 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1160 		break;
1161 	case 5:
1162 	default: /* 7 */
1163 		if (!kvm_dr7_valid(val))
1164 			return 1; /* #GP */
1165 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1166 		kvm_update_dr7(vcpu);
1167 		break;
1168 	}
1169 
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_set_dr);
1173 
1174 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1175 {
1176 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1177 
1178 	switch (dr) {
1179 	case 0 ... 3:
1180 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1181 		break;
1182 	case 4:
1183 	case 6:
1184 		*val = vcpu->arch.dr6;
1185 		break;
1186 	case 5:
1187 	default: /* 7 */
1188 		*val = vcpu->arch.dr7;
1189 		break;
1190 	}
1191 }
1192 EXPORT_SYMBOL_GPL(kvm_get_dr);
1193 
1194 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1195 {
1196 	u32 ecx = kvm_rcx_read(vcpu);
1197 	u64 data;
1198 	int err;
1199 
1200 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1201 	if (err)
1202 		return err;
1203 	kvm_rax_write(vcpu, (u32)data);
1204 	kvm_rdx_write(vcpu, data >> 32);
1205 	return err;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1208 
1209 /*
1210  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1211  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1212  *
1213  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1214  * extract the supported MSRs from the related const lists.
1215  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1216  * capabilities of the host cpu. This capabilities test skips MSRs that are
1217  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1218  * may depend on host virtualization features rather than host cpu features.
1219  */
1220 
1221 static const u32 msrs_to_save_all[] = {
1222 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1223 	MSR_STAR,
1224 #ifdef CONFIG_X86_64
1225 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1226 #endif
1227 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1228 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1229 	MSR_IA32_SPEC_CTRL,
1230 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1231 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1232 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1233 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1234 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1235 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1236 	MSR_IA32_UMWAIT_CONTROL,
1237 
1238 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1239 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1240 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1241 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1242 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1243 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1244 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1245 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1246 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1251 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1252 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1253 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1254 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1255 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1260 };
1261 
1262 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1263 static unsigned num_msrs_to_save;
1264 
1265 static const u32 emulated_msrs_all[] = {
1266 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1267 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1268 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1269 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1270 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1271 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1272 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1273 	HV_X64_MSR_RESET,
1274 	HV_X64_MSR_VP_INDEX,
1275 	HV_X64_MSR_VP_RUNTIME,
1276 	HV_X64_MSR_SCONTROL,
1277 	HV_X64_MSR_STIMER0_CONFIG,
1278 	HV_X64_MSR_VP_ASSIST_PAGE,
1279 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1280 	HV_X64_MSR_TSC_EMULATION_STATUS,
1281 	HV_X64_MSR_SYNDBG_OPTIONS,
1282 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1283 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1284 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1285 
1286 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1287 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1288 
1289 	MSR_IA32_TSC_ADJUST,
1290 	MSR_IA32_TSCDEADLINE,
1291 	MSR_IA32_ARCH_CAPABILITIES,
1292 	MSR_IA32_PERF_CAPABILITIES,
1293 	MSR_IA32_MISC_ENABLE,
1294 	MSR_IA32_MCG_STATUS,
1295 	MSR_IA32_MCG_CTL,
1296 	MSR_IA32_MCG_EXT_CTL,
1297 	MSR_IA32_SMBASE,
1298 	MSR_SMI_COUNT,
1299 	MSR_PLATFORM_INFO,
1300 	MSR_MISC_FEATURES_ENABLES,
1301 	MSR_AMD64_VIRT_SPEC_CTRL,
1302 	MSR_IA32_POWER_CTL,
1303 	MSR_IA32_UCODE_REV,
1304 
1305 	/*
1306 	 * The following list leaves out MSRs whose values are determined
1307 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1308 	 * We always support the "true" VMX control MSRs, even if the host
1309 	 * processor does not, so I am putting these registers here rather
1310 	 * than in msrs_to_save_all.
1311 	 */
1312 	MSR_IA32_VMX_BASIC,
1313 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1314 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1315 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1316 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1317 	MSR_IA32_VMX_MISC,
1318 	MSR_IA32_VMX_CR0_FIXED0,
1319 	MSR_IA32_VMX_CR4_FIXED0,
1320 	MSR_IA32_VMX_VMCS_ENUM,
1321 	MSR_IA32_VMX_PROCBASED_CTLS2,
1322 	MSR_IA32_VMX_EPT_VPID_CAP,
1323 	MSR_IA32_VMX_VMFUNC,
1324 
1325 	MSR_K7_HWCR,
1326 	MSR_KVM_POLL_CONTROL,
1327 };
1328 
1329 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1330 static unsigned num_emulated_msrs;
1331 
1332 /*
1333  * List of msr numbers which are used to expose MSR-based features that
1334  * can be used by a hypervisor to validate requested CPU features.
1335  */
1336 static const u32 msr_based_features_all[] = {
1337 	MSR_IA32_VMX_BASIC,
1338 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1339 	MSR_IA32_VMX_PINBASED_CTLS,
1340 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1341 	MSR_IA32_VMX_PROCBASED_CTLS,
1342 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1343 	MSR_IA32_VMX_EXIT_CTLS,
1344 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1345 	MSR_IA32_VMX_ENTRY_CTLS,
1346 	MSR_IA32_VMX_MISC,
1347 	MSR_IA32_VMX_CR0_FIXED0,
1348 	MSR_IA32_VMX_CR0_FIXED1,
1349 	MSR_IA32_VMX_CR4_FIXED0,
1350 	MSR_IA32_VMX_CR4_FIXED1,
1351 	MSR_IA32_VMX_VMCS_ENUM,
1352 	MSR_IA32_VMX_PROCBASED_CTLS2,
1353 	MSR_IA32_VMX_EPT_VPID_CAP,
1354 	MSR_IA32_VMX_VMFUNC,
1355 
1356 	MSR_F10H_DECFG,
1357 	MSR_IA32_UCODE_REV,
1358 	MSR_IA32_ARCH_CAPABILITIES,
1359 	MSR_IA32_PERF_CAPABILITIES,
1360 };
1361 
1362 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1363 static unsigned int num_msr_based_features;
1364 
1365 static u64 kvm_get_arch_capabilities(void)
1366 {
1367 	u64 data = 0;
1368 
1369 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1370 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1371 
1372 	/*
1373 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1374 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1375 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1376 	 * L1 guests, so it need not worry about its own (L2) guests.
1377 	 */
1378 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1379 
1380 	/*
1381 	 * If we're doing cache flushes (either "always" or "cond")
1382 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1383 	 * If an outer hypervisor is doing the cache flush for us
1384 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1385 	 * capability to the guest too, and if EPT is disabled we're not
1386 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1387 	 * require a nested hypervisor to do a flush of its own.
1388 	 */
1389 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1390 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1391 
1392 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1393 		data |= ARCH_CAP_RDCL_NO;
1394 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1395 		data |= ARCH_CAP_SSB_NO;
1396 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1397 		data |= ARCH_CAP_MDS_NO;
1398 
1399 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1400 		/*
1401 		 * If RTM=0 because the kernel has disabled TSX, the host might
1402 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1403 		 * and therefore knows that there cannot be TAA) but keep
1404 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1405 		 * and we want to allow migrating those guests to tsx=off hosts.
1406 		 */
1407 		data &= ~ARCH_CAP_TAA_NO;
1408 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1409 		data |= ARCH_CAP_TAA_NO;
1410 	} else {
1411 		/*
1412 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1413 		 * host so the guest can choose between disabling TSX or
1414 		 * using VERW to clear CPU buffers.
1415 		 */
1416 	}
1417 
1418 	return data;
1419 }
1420 
1421 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1422 {
1423 	switch (msr->index) {
1424 	case MSR_IA32_ARCH_CAPABILITIES:
1425 		msr->data = kvm_get_arch_capabilities();
1426 		break;
1427 	case MSR_IA32_UCODE_REV:
1428 		rdmsrl_safe(msr->index, &msr->data);
1429 		break;
1430 	default:
1431 		return static_call(kvm_x86_get_msr_feature)(msr);
1432 	}
1433 	return 0;
1434 }
1435 
1436 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1437 {
1438 	struct kvm_msr_entry msr;
1439 	int r;
1440 
1441 	msr.index = index;
1442 	r = kvm_get_msr_feature(&msr);
1443 
1444 	if (r == KVM_MSR_RET_INVALID) {
1445 		/* Unconditionally clear the output for simplicity */
1446 		*data = 0;
1447 		if (kvm_msr_ignored_check(index, 0, false))
1448 			r = 0;
1449 	}
1450 
1451 	if (r)
1452 		return r;
1453 
1454 	*data = msr.data;
1455 
1456 	return 0;
1457 }
1458 
1459 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1460 {
1461 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1462 		return false;
1463 
1464 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1465 		return false;
1466 
1467 	if (efer & (EFER_LME | EFER_LMA) &&
1468 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1469 		return false;
1470 
1471 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1472 		return false;
1473 
1474 	return true;
1475 
1476 }
1477 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1478 {
1479 	if (efer & efer_reserved_bits)
1480 		return false;
1481 
1482 	return __kvm_valid_efer(vcpu, efer);
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1485 
1486 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1487 {
1488 	u64 old_efer = vcpu->arch.efer;
1489 	u64 efer = msr_info->data;
1490 	int r;
1491 
1492 	if (efer & efer_reserved_bits)
1493 		return 1;
1494 
1495 	if (!msr_info->host_initiated) {
1496 		if (!__kvm_valid_efer(vcpu, efer))
1497 			return 1;
1498 
1499 		if (is_paging(vcpu) &&
1500 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1501 			return 1;
1502 	}
1503 
1504 	efer &= ~EFER_LMA;
1505 	efer |= vcpu->arch.efer & EFER_LMA;
1506 
1507 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1508 	if (r) {
1509 		WARN_ON(r > 0);
1510 		return r;
1511 	}
1512 
1513 	/* Update reserved bits */
1514 	if ((efer ^ old_efer) & EFER_NX)
1515 		kvm_mmu_reset_context(vcpu);
1516 
1517 	return 0;
1518 }
1519 
1520 void kvm_enable_efer_bits(u64 mask)
1521 {
1522        efer_reserved_bits &= ~mask;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1525 
1526 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1527 {
1528 	struct kvm_x86_msr_filter *msr_filter;
1529 	struct msr_bitmap_range *ranges;
1530 	struct kvm *kvm = vcpu->kvm;
1531 	bool allowed;
1532 	int idx;
1533 	u32 i;
1534 
1535 	/* x2APIC MSRs do not support filtering. */
1536 	if (index >= 0x800 && index <= 0x8ff)
1537 		return true;
1538 
1539 	idx = srcu_read_lock(&kvm->srcu);
1540 
1541 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1542 	if (!msr_filter) {
1543 		allowed = true;
1544 		goto out;
1545 	}
1546 
1547 	allowed = msr_filter->default_allow;
1548 	ranges = msr_filter->ranges;
1549 
1550 	for (i = 0; i < msr_filter->count; i++) {
1551 		u32 start = ranges[i].base;
1552 		u32 end = start + ranges[i].nmsrs;
1553 		u32 flags = ranges[i].flags;
1554 		unsigned long *bitmap = ranges[i].bitmap;
1555 
1556 		if ((index >= start) && (index < end) && (flags & type)) {
1557 			allowed = !!test_bit(index - start, bitmap);
1558 			break;
1559 		}
1560 	}
1561 
1562 out:
1563 	srcu_read_unlock(&kvm->srcu, idx);
1564 
1565 	return allowed;
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1568 
1569 /*
1570  * Write @data into the MSR specified by @index.  Select MSR specific fault
1571  * checks are bypassed if @host_initiated is %true.
1572  * Returns 0 on success, non-0 otherwise.
1573  * Assumes vcpu_load() was already called.
1574  */
1575 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1576 			 bool host_initiated)
1577 {
1578 	struct msr_data msr;
1579 
1580 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1581 		return KVM_MSR_RET_FILTERED;
1582 
1583 	switch (index) {
1584 	case MSR_FS_BASE:
1585 	case MSR_GS_BASE:
1586 	case MSR_KERNEL_GS_BASE:
1587 	case MSR_CSTAR:
1588 	case MSR_LSTAR:
1589 		if (is_noncanonical_address(data, vcpu))
1590 			return 1;
1591 		break;
1592 	case MSR_IA32_SYSENTER_EIP:
1593 	case MSR_IA32_SYSENTER_ESP:
1594 		/*
1595 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1596 		 * non-canonical address is written on Intel but not on
1597 		 * AMD (which ignores the top 32-bits, because it does
1598 		 * not implement 64-bit SYSENTER).
1599 		 *
1600 		 * 64-bit code should hence be able to write a non-canonical
1601 		 * value on AMD.  Making the address canonical ensures that
1602 		 * vmentry does not fail on Intel after writing a non-canonical
1603 		 * value, and that something deterministic happens if the guest
1604 		 * invokes 64-bit SYSENTER.
1605 		 */
1606 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1607 	}
1608 
1609 	msr.data = data;
1610 	msr.index = index;
1611 	msr.host_initiated = host_initiated;
1612 
1613 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1614 }
1615 
1616 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1617 				     u32 index, u64 data, bool host_initiated)
1618 {
1619 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1620 
1621 	if (ret == KVM_MSR_RET_INVALID)
1622 		if (kvm_msr_ignored_check(index, data, true))
1623 			ret = 0;
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  * Read the MSR specified by @index into @data.  Select MSR specific fault
1630  * checks are bypassed if @host_initiated is %true.
1631  * Returns 0 on success, non-0 otherwise.
1632  * Assumes vcpu_load() was already called.
1633  */
1634 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1635 		  bool host_initiated)
1636 {
1637 	struct msr_data msr;
1638 	int ret;
1639 
1640 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1641 		return KVM_MSR_RET_FILTERED;
1642 
1643 	msr.index = index;
1644 	msr.host_initiated = host_initiated;
1645 
1646 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1647 	if (!ret)
1648 		*data = msr.data;
1649 	return ret;
1650 }
1651 
1652 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1653 				     u32 index, u64 *data, bool host_initiated)
1654 {
1655 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1656 
1657 	if (ret == KVM_MSR_RET_INVALID) {
1658 		/* Unconditionally clear *data for simplicity */
1659 		*data = 0;
1660 		if (kvm_msr_ignored_check(index, 0, false))
1661 			ret = 0;
1662 	}
1663 
1664 	return ret;
1665 }
1666 
1667 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1668 {
1669 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_get_msr);
1672 
1673 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1674 {
1675 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_set_msr);
1678 
1679 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1680 {
1681 	int err = vcpu->run->msr.error;
1682 	if (!err) {
1683 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1684 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1685 	}
1686 
1687 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1688 }
1689 
1690 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1691 {
1692 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1693 }
1694 
1695 static u64 kvm_msr_reason(int r)
1696 {
1697 	switch (r) {
1698 	case KVM_MSR_RET_INVALID:
1699 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1700 	case KVM_MSR_RET_FILTERED:
1701 		return KVM_MSR_EXIT_REASON_FILTER;
1702 	default:
1703 		return KVM_MSR_EXIT_REASON_INVAL;
1704 	}
1705 }
1706 
1707 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1708 			      u32 exit_reason, u64 data,
1709 			      int (*completion)(struct kvm_vcpu *vcpu),
1710 			      int r)
1711 {
1712 	u64 msr_reason = kvm_msr_reason(r);
1713 
1714 	/* Check if the user wanted to know about this MSR fault */
1715 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1716 		return 0;
1717 
1718 	vcpu->run->exit_reason = exit_reason;
1719 	vcpu->run->msr.error = 0;
1720 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1721 	vcpu->run->msr.reason = msr_reason;
1722 	vcpu->run->msr.index = index;
1723 	vcpu->run->msr.data = data;
1724 	vcpu->arch.complete_userspace_io = completion;
1725 
1726 	return 1;
1727 }
1728 
1729 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1730 {
1731 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1732 				   complete_emulated_rdmsr, r);
1733 }
1734 
1735 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1736 {
1737 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1738 				   complete_emulated_wrmsr, r);
1739 }
1740 
1741 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1742 {
1743 	u32 ecx = kvm_rcx_read(vcpu);
1744 	u64 data;
1745 	int r;
1746 
1747 	r = kvm_get_msr(vcpu, ecx, &data);
1748 
1749 	/* MSR read failed? See if we should ask user space */
1750 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1751 		/* Bounce to user space */
1752 		return 0;
1753 	}
1754 
1755 	if (!r) {
1756 		trace_kvm_msr_read(ecx, data);
1757 
1758 		kvm_rax_write(vcpu, data & -1u);
1759 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1760 	} else {
1761 		trace_kvm_msr_read_ex(ecx);
1762 	}
1763 
1764 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1767 
1768 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1769 {
1770 	u32 ecx = kvm_rcx_read(vcpu);
1771 	u64 data = kvm_read_edx_eax(vcpu);
1772 	int r;
1773 
1774 	r = kvm_set_msr(vcpu, ecx, data);
1775 
1776 	/* MSR write failed? See if we should ask user space */
1777 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1778 		/* Bounce to user space */
1779 		return 0;
1780 
1781 	/* Signal all other negative errors to userspace */
1782 	if (r < 0)
1783 		return r;
1784 
1785 	if (!r)
1786 		trace_kvm_msr_write(ecx, data);
1787 	else
1788 		trace_kvm_msr_write_ex(ecx, data);
1789 
1790 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1793 
1794 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1795 {
1796 	xfer_to_guest_mode_prepare();
1797 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1798 		xfer_to_guest_mode_work_pending();
1799 }
1800 
1801 /*
1802  * The fast path for frequent and performance sensitive wrmsr emulation,
1803  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1804  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1805  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1806  * other cases which must be called after interrupts are enabled on the host.
1807  */
1808 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1809 {
1810 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1811 		return 1;
1812 
1813 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1814 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1815 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1816 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1817 
1818 		data &= ~(1 << 12);
1819 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1820 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1821 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1822 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1823 		return 0;
1824 	}
1825 
1826 	return 1;
1827 }
1828 
1829 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1830 {
1831 	if (!kvm_can_use_hv_timer(vcpu))
1832 		return 1;
1833 
1834 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1835 	return 0;
1836 }
1837 
1838 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1839 {
1840 	u32 msr = kvm_rcx_read(vcpu);
1841 	u64 data;
1842 	fastpath_t ret = EXIT_FASTPATH_NONE;
1843 
1844 	switch (msr) {
1845 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1846 		data = kvm_read_edx_eax(vcpu);
1847 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1848 			kvm_skip_emulated_instruction(vcpu);
1849 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1850 		}
1851 		break;
1852 	case MSR_IA32_TSCDEADLINE:
1853 		data = kvm_read_edx_eax(vcpu);
1854 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1855 			kvm_skip_emulated_instruction(vcpu);
1856 			ret = EXIT_FASTPATH_REENTER_GUEST;
1857 		}
1858 		break;
1859 	default:
1860 		break;
1861 	}
1862 
1863 	if (ret != EXIT_FASTPATH_NONE)
1864 		trace_kvm_msr_write(msr, data);
1865 
1866 	return ret;
1867 }
1868 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1869 
1870 /*
1871  * Adapt set_msr() to msr_io()'s calling convention
1872  */
1873 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1874 {
1875 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1876 }
1877 
1878 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1879 {
1880 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1881 }
1882 
1883 #ifdef CONFIG_X86_64
1884 struct pvclock_clock {
1885 	int vclock_mode;
1886 	u64 cycle_last;
1887 	u64 mask;
1888 	u32 mult;
1889 	u32 shift;
1890 	u64 base_cycles;
1891 	u64 offset;
1892 };
1893 
1894 struct pvclock_gtod_data {
1895 	seqcount_t	seq;
1896 
1897 	struct pvclock_clock clock; /* extract of a clocksource struct */
1898 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1899 
1900 	ktime_t		offs_boot;
1901 	u64		wall_time_sec;
1902 };
1903 
1904 static struct pvclock_gtod_data pvclock_gtod_data;
1905 
1906 static void update_pvclock_gtod(struct timekeeper *tk)
1907 {
1908 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1909 
1910 	write_seqcount_begin(&vdata->seq);
1911 
1912 	/* copy pvclock gtod data */
1913 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1914 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1915 	vdata->clock.mask		= tk->tkr_mono.mask;
1916 	vdata->clock.mult		= tk->tkr_mono.mult;
1917 	vdata->clock.shift		= tk->tkr_mono.shift;
1918 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1919 	vdata->clock.offset		= tk->tkr_mono.base;
1920 
1921 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1922 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1923 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1924 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1925 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1926 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1927 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1928 
1929 	vdata->wall_time_sec            = tk->xtime_sec;
1930 
1931 	vdata->offs_boot		= tk->offs_boot;
1932 
1933 	write_seqcount_end(&vdata->seq);
1934 }
1935 
1936 static s64 get_kvmclock_base_ns(void)
1937 {
1938 	/* Count up from boot time, but with the frequency of the raw clock.  */
1939 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1940 }
1941 #else
1942 static s64 get_kvmclock_base_ns(void)
1943 {
1944 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1945 	return ktime_get_boottime_ns();
1946 }
1947 #endif
1948 
1949 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1950 {
1951 	int version;
1952 	int r;
1953 	struct pvclock_wall_clock wc;
1954 	u32 wc_sec_hi;
1955 	u64 wall_nsec;
1956 
1957 	if (!wall_clock)
1958 		return;
1959 
1960 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1961 	if (r)
1962 		return;
1963 
1964 	if (version & 1)
1965 		++version;  /* first time write, random junk */
1966 
1967 	++version;
1968 
1969 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1970 		return;
1971 
1972 	/*
1973 	 * The guest calculates current wall clock time by adding
1974 	 * system time (updated by kvm_guest_time_update below) to the
1975 	 * wall clock specified here.  We do the reverse here.
1976 	 */
1977 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1978 
1979 	wc.nsec = do_div(wall_nsec, 1000000000);
1980 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1981 	wc.version = version;
1982 
1983 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1984 
1985 	if (sec_hi_ofs) {
1986 		wc_sec_hi = wall_nsec >> 32;
1987 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1988 				&wc_sec_hi, sizeof(wc_sec_hi));
1989 	}
1990 
1991 	version++;
1992 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1993 }
1994 
1995 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1996 				  bool old_msr, bool host_initiated)
1997 {
1998 	struct kvm_arch *ka = &vcpu->kvm->arch;
1999 
2000 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2001 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2002 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2003 
2004 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2005 	}
2006 
2007 	vcpu->arch.time = system_time;
2008 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2009 
2010 	/* we verify if the enable bit is set... */
2011 	vcpu->arch.pv_time_enabled = false;
2012 	if (!(system_time & 1))
2013 		return;
2014 
2015 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2016 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2017 				       sizeof(struct pvclock_vcpu_time_info)))
2018 		vcpu->arch.pv_time_enabled = true;
2019 
2020 	return;
2021 }
2022 
2023 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2024 {
2025 	do_shl32_div32(dividend, divisor);
2026 	return dividend;
2027 }
2028 
2029 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2030 			       s8 *pshift, u32 *pmultiplier)
2031 {
2032 	uint64_t scaled64;
2033 	int32_t  shift = 0;
2034 	uint64_t tps64;
2035 	uint32_t tps32;
2036 
2037 	tps64 = base_hz;
2038 	scaled64 = scaled_hz;
2039 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2040 		tps64 >>= 1;
2041 		shift--;
2042 	}
2043 
2044 	tps32 = (uint32_t)tps64;
2045 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2046 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2047 			scaled64 >>= 1;
2048 		else
2049 			tps32 <<= 1;
2050 		shift++;
2051 	}
2052 
2053 	*pshift = shift;
2054 	*pmultiplier = div_frac(scaled64, tps32);
2055 }
2056 
2057 #ifdef CONFIG_X86_64
2058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2059 #endif
2060 
2061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2062 static unsigned long max_tsc_khz;
2063 
2064 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2065 {
2066 	u64 v = (u64)khz * (1000000 + ppm);
2067 	do_div(v, 1000000);
2068 	return v;
2069 }
2070 
2071 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2072 {
2073 	u64 ratio;
2074 
2075 	/* Guest TSC same frequency as host TSC? */
2076 	if (!scale) {
2077 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2078 		return 0;
2079 	}
2080 
2081 	/* TSC scaling supported? */
2082 	if (!kvm_has_tsc_control) {
2083 		if (user_tsc_khz > tsc_khz) {
2084 			vcpu->arch.tsc_catchup = 1;
2085 			vcpu->arch.tsc_always_catchup = 1;
2086 			return 0;
2087 		} else {
2088 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2089 			return -1;
2090 		}
2091 	}
2092 
2093 	/* TSC scaling required  - calculate ratio */
2094 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2095 				user_tsc_khz, tsc_khz);
2096 
2097 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2098 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2099 			            user_tsc_khz);
2100 		return -1;
2101 	}
2102 
2103 	vcpu->arch.tsc_scaling_ratio = ratio;
2104 	return 0;
2105 }
2106 
2107 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2108 {
2109 	u32 thresh_lo, thresh_hi;
2110 	int use_scaling = 0;
2111 
2112 	/* tsc_khz can be zero if TSC calibration fails */
2113 	if (user_tsc_khz == 0) {
2114 		/* set tsc_scaling_ratio to a safe value */
2115 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2116 		return -1;
2117 	}
2118 
2119 	/* Compute a scale to convert nanoseconds in TSC cycles */
2120 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2121 			   &vcpu->arch.virtual_tsc_shift,
2122 			   &vcpu->arch.virtual_tsc_mult);
2123 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2124 
2125 	/*
2126 	 * Compute the variation in TSC rate which is acceptable
2127 	 * within the range of tolerance and decide if the
2128 	 * rate being applied is within that bounds of the hardware
2129 	 * rate.  If so, no scaling or compensation need be done.
2130 	 */
2131 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2132 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2133 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2134 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2135 		use_scaling = 1;
2136 	}
2137 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2138 }
2139 
2140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2141 {
2142 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2143 				      vcpu->arch.virtual_tsc_mult,
2144 				      vcpu->arch.virtual_tsc_shift);
2145 	tsc += vcpu->arch.this_tsc_write;
2146 	return tsc;
2147 }
2148 
2149 static inline int gtod_is_based_on_tsc(int mode)
2150 {
2151 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2152 }
2153 
2154 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2155 {
2156 #ifdef CONFIG_X86_64
2157 	bool vcpus_matched;
2158 	struct kvm_arch *ka = &vcpu->kvm->arch;
2159 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2160 
2161 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2162 			 atomic_read(&vcpu->kvm->online_vcpus));
2163 
2164 	/*
2165 	 * Once the masterclock is enabled, always perform request in
2166 	 * order to update it.
2167 	 *
2168 	 * In order to enable masterclock, the host clocksource must be TSC
2169 	 * and the vcpus need to have matched TSCs.  When that happens,
2170 	 * perform request to enable masterclock.
2171 	 */
2172 	if (ka->use_master_clock ||
2173 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2174 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2175 
2176 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2177 			    atomic_read(&vcpu->kvm->online_vcpus),
2178 		            ka->use_master_clock, gtod->clock.vclock_mode);
2179 #endif
2180 }
2181 
2182 /*
2183  * Multiply tsc by a fixed point number represented by ratio.
2184  *
2185  * The most significant 64-N bits (mult) of ratio represent the
2186  * integral part of the fixed point number; the remaining N bits
2187  * (frac) represent the fractional part, ie. ratio represents a fixed
2188  * point number (mult + frac * 2^(-N)).
2189  *
2190  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2191  */
2192 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2193 {
2194 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2195 }
2196 
2197 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2198 {
2199 	u64 _tsc = tsc;
2200 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2201 
2202 	if (ratio != kvm_default_tsc_scaling_ratio)
2203 		_tsc = __scale_tsc(ratio, tsc);
2204 
2205 	return _tsc;
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2208 
2209 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2210 {
2211 	u64 tsc;
2212 
2213 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2214 
2215 	return target_tsc - tsc;
2216 }
2217 
2218 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2219 {
2220 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2223 
2224 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2225 {
2226 	vcpu->arch.l1_tsc_offset = offset;
2227 	vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2228 }
2229 
2230 static inline bool kvm_check_tsc_unstable(void)
2231 {
2232 #ifdef CONFIG_X86_64
2233 	/*
2234 	 * TSC is marked unstable when we're running on Hyper-V,
2235 	 * 'TSC page' clocksource is good.
2236 	 */
2237 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2238 		return false;
2239 #endif
2240 	return check_tsc_unstable();
2241 }
2242 
2243 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2244 {
2245 	struct kvm *kvm = vcpu->kvm;
2246 	u64 offset, ns, elapsed;
2247 	unsigned long flags;
2248 	bool matched;
2249 	bool already_matched;
2250 	bool synchronizing = false;
2251 
2252 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2253 	offset = kvm_compute_tsc_offset(vcpu, data);
2254 	ns = get_kvmclock_base_ns();
2255 	elapsed = ns - kvm->arch.last_tsc_nsec;
2256 
2257 	if (vcpu->arch.virtual_tsc_khz) {
2258 		if (data == 0) {
2259 			/*
2260 			 * detection of vcpu initialization -- need to sync
2261 			 * with other vCPUs. This particularly helps to keep
2262 			 * kvm_clock stable after CPU hotplug
2263 			 */
2264 			synchronizing = true;
2265 		} else {
2266 			u64 tsc_exp = kvm->arch.last_tsc_write +
2267 						nsec_to_cycles(vcpu, elapsed);
2268 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2269 			/*
2270 			 * Special case: TSC write with a small delta (1 second)
2271 			 * of virtual cycle time against real time is
2272 			 * interpreted as an attempt to synchronize the CPU.
2273 			 */
2274 			synchronizing = data < tsc_exp + tsc_hz &&
2275 					data + tsc_hz > tsc_exp;
2276 		}
2277 	}
2278 
2279 	/*
2280 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2281 	 * TSC, we add elapsed time in this computation.  We could let the
2282 	 * compensation code attempt to catch up if we fall behind, but
2283 	 * it's better to try to match offsets from the beginning.
2284          */
2285 	if (synchronizing &&
2286 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2287 		if (!kvm_check_tsc_unstable()) {
2288 			offset = kvm->arch.cur_tsc_offset;
2289 		} else {
2290 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2291 			data += delta;
2292 			offset = kvm_compute_tsc_offset(vcpu, data);
2293 		}
2294 		matched = true;
2295 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2296 	} else {
2297 		/*
2298 		 * We split periods of matched TSC writes into generations.
2299 		 * For each generation, we track the original measured
2300 		 * nanosecond time, offset, and write, so if TSCs are in
2301 		 * sync, we can match exact offset, and if not, we can match
2302 		 * exact software computation in compute_guest_tsc()
2303 		 *
2304 		 * These values are tracked in kvm->arch.cur_xxx variables.
2305 		 */
2306 		kvm->arch.cur_tsc_generation++;
2307 		kvm->arch.cur_tsc_nsec = ns;
2308 		kvm->arch.cur_tsc_write = data;
2309 		kvm->arch.cur_tsc_offset = offset;
2310 		matched = false;
2311 	}
2312 
2313 	/*
2314 	 * We also track th most recent recorded KHZ, write and time to
2315 	 * allow the matching interval to be extended at each write.
2316 	 */
2317 	kvm->arch.last_tsc_nsec = ns;
2318 	kvm->arch.last_tsc_write = data;
2319 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2320 
2321 	vcpu->arch.last_guest_tsc = data;
2322 
2323 	/* Keep track of which generation this VCPU has synchronized to */
2324 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2325 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2326 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2327 
2328 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2329 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2330 
2331 	spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2332 	if (!matched) {
2333 		kvm->arch.nr_vcpus_matched_tsc = 0;
2334 	} else if (!already_matched) {
2335 		kvm->arch.nr_vcpus_matched_tsc++;
2336 	}
2337 
2338 	kvm_track_tsc_matching(vcpu);
2339 	spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2340 }
2341 
2342 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2343 					   s64 adjustment)
2344 {
2345 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2346 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2347 }
2348 
2349 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2350 {
2351 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2352 		WARN_ON(adjustment < 0);
2353 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2354 	adjust_tsc_offset_guest(vcpu, adjustment);
2355 }
2356 
2357 #ifdef CONFIG_X86_64
2358 
2359 static u64 read_tsc(void)
2360 {
2361 	u64 ret = (u64)rdtsc_ordered();
2362 	u64 last = pvclock_gtod_data.clock.cycle_last;
2363 
2364 	if (likely(ret >= last))
2365 		return ret;
2366 
2367 	/*
2368 	 * GCC likes to generate cmov here, but this branch is extremely
2369 	 * predictable (it's just a function of time and the likely is
2370 	 * very likely) and there's a data dependence, so force GCC
2371 	 * to generate a branch instead.  I don't barrier() because
2372 	 * we don't actually need a barrier, and if this function
2373 	 * ever gets inlined it will generate worse code.
2374 	 */
2375 	asm volatile ("");
2376 	return last;
2377 }
2378 
2379 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2380 			  int *mode)
2381 {
2382 	long v;
2383 	u64 tsc_pg_val;
2384 
2385 	switch (clock->vclock_mode) {
2386 	case VDSO_CLOCKMODE_HVCLOCK:
2387 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2388 						  tsc_timestamp);
2389 		if (tsc_pg_val != U64_MAX) {
2390 			/* TSC page valid */
2391 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2392 			v = (tsc_pg_val - clock->cycle_last) &
2393 				clock->mask;
2394 		} else {
2395 			/* TSC page invalid */
2396 			*mode = VDSO_CLOCKMODE_NONE;
2397 		}
2398 		break;
2399 	case VDSO_CLOCKMODE_TSC:
2400 		*mode = VDSO_CLOCKMODE_TSC;
2401 		*tsc_timestamp = read_tsc();
2402 		v = (*tsc_timestamp - clock->cycle_last) &
2403 			clock->mask;
2404 		break;
2405 	default:
2406 		*mode = VDSO_CLOCKMODE_NONE;
2407 	}
2408 
2409 	if (*mode == VDSO_CLOCKMODE_NONE)
2410 		*tsc_timestamp = v = 0;
2411 
2412 	return v * clock->mult;
2413 }
2414 
2415 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2416 {
2417 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2418 	unsigned long seq;
2419 	int mode;
2420 	u64 ns;
2421 
2422 	do {
2423 		seq = read_seqcount_begin(&gtod->seq);
2424 		ns = gtod->raw_clock.base_cycles;
2425 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2426 		ns >>= gtod->raw_clock.shift;
2427 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2428 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2429 	*t = ns;
2430 
2431 	return mode;
2432 }
2433 
2434 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2435 {
2436 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2437 	unsigned long seq;
2438 	int mode;
2439 	u64 ns;
2440 
2441 	do {
2442 		seq = read_seqcount_begin(&gtod->seq);
2443 		ts->tv_sec = gtod->wall_time_sec;
2444 		ns = gtod->clock.base_cycles;
2445 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2446 		ns >>= gtod->clock.shift;
2447 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2448 
2449 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2450 	ts->tv_nsec = ns;
2451 
2452 	return mode;
2453 }
2454 
2455 /* returns true if host is using TSC based clocksource */
2456 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2457 {
2458 	/* checked again under seqlock below */
2459 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2460 		return false;
2461 
2462 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2463 						      tsc_timestamp));
2464 }
2465 
2466 /* returns true if host is using TSC based clocksource */
2467 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2468 					   u64 *tsc_timestamp)
2469 {
2470 	/* checked again under seqlock below */
2471 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2472 		return false;
2473 
2474 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2475 }
2476 #endif
2477 
2478 /*
2479  *
2480  * Assuming a stable TSC across physical CPUS, and a stable TSC
2481  * across virtual CPUs, the following condition is possible.
2482  * Each numbered line represents an event visible to both
2483  * CPUs at the next numbered event.
2484  *
2485  * "timespecX" represents host monotonic time. "tscX" represents
2486  * RDTSC value.
2487  *
2488  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2489  *
2490  * 1.  read timespec0,tsc0
2491  * 2.					| timespec1 = timespec0 + N
2492  * 					| tsc1 = tsc0 + M
2493  * 3. transition to guest		| transition to guest
2494  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2495  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2496  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2497  *
2498  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2499  *
2500  * 	- ret0 < ret1
2501  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2502  *		...
2503  *	- 0 < N - M => M < N
2504  *
2505  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2506  * always the case (the difference between two distinct xtime instances
2507  * might be smaller then the difference between corresponding TSC reads,
2508  * when updating guest vcpus pvclock areas).
2509  *
2510  * To avoid that problem, do not allow visibility of distinct
2511  * system_timestamp/tsc_timestamp values simultaneously: use a master
2512  * copy of host monotonic time values. Update that master copy
2513  * in lockstep.
2514  *
2515  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2516  *
2517  */
2518 
2519 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2520 {
2521 #ifdef CONFIG_X86_64
2522 	struct kvm_arch *ka = &kvm->arch;
2523 	int vclock_mode;
2524 	bool host_tsc_clocksource, vcpus_matched;
2525 
2526 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2527 			atomic_read(&kvm->online_vcpus));
2528 
2529 	/*
2530 	 * If the host uses TSC clock, then passthrough TSC as stable
2531 	 * to the guest.
2532 	 */
2533 	host_tsc_clocksource = kvm_get_time_and_clockread(
2534 					&ka->master_kernel_ns,
2535 					&ka->master_cycle_now);
2536 
2537 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2538 				&& !ka->backwards_tsc_observed
2539 				&& !ka->boot_vcpu_runs_old_kvmclock;
2540 
2541 	if (ka->use_master_clock)
2542 		atomic_set(&kvm_guest_has_master_clock, 1);
2543 
2544 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2545 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2546 					vcpus_matched);
2547 #endif
2548 }
2549 
2550 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2551 {
2552 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2553 }
2554 
2555 static void kvm_gen_update_masterclock(struct kvm *kvm)
2556 {
2557 #ifdef CONFIG_X86_64
2558 	int i;
2559 	struct kvm_vcpu *vcpu;
2560 	struct kvm_arch *ka = &kvm->arch;
2561 	unsigned long flags;
2562 
2563 	kvm_hv_invalidate_tsc_page(kvm);
2564 
2565 	kvm_make_mclock_inprogress_request(kvm);
2566 
2567 	/* no guest entries from this point */
2568 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2569 	pvclock_update_vm_gtod_copy(kvm);
2570 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2571 
2572 	kvm_for_each_vcpu(i, vcpu, kvm)
2573 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2574 
2575 	/* guest entries allowed */
2576 	kvm_for_each_vcpu(i, vcpu, kvm)
2577 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2578 #endif
2579 }
2580 
2581 u64 get_kvmclock_ns(struct kvm *kvm)
2582 {
2583 	struct kvm_arch *ka = &kvm->arch;
2584 	struct pvclock_vcpu_time_info hv_clock;
2585 	unsigned long flags;
2586 	u64 ret;
2587 
2588 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2589 	if (!ka->use_master_clock) {
2590 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2591 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2592 	}
2593 
2594 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2595 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2596 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2597 
2598 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2599 	get_cpu();
2600 
2601 	if (__this_cpu_read(cpu_tsc_khz)) {
2602 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2603 				   &hv_clock.tsc_shift,
2604 				   &hv_clock.tsc_to_system_mul);
2605 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2606 	} else
2607 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2608 
2609 	put_cpu();
2610 
2611 	return ret;
2612 }
2613 
2614 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2615 				   struct gfn_to_hva_cache *cache,
2616 				   unsigned int offset)
2617 {
2618 	struct kvm_vcpu_arch *vcpu = &v->arch;
2619 	struct pvclock_vcpu_time_info guest_hv_clock;
2620 
2621 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2622 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2623 		return;
2624 
2625 	/* This VCPU is paused, but it's legal for a guest to read another
2626 	 * VCPU's kvmclock, so we really have to follow the specification where
2627 	 * it says that version is odd if data is being modified, and even after
2628 	 * it is consistent.
2629 	 *
2630 	 * Version field updates must be kept separate.  This is because
2631 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2632 	 * writes within a string instruction are weakly ordered.  So there
2633 	 * are three writes overall.
2634 	 *
2635 	 * As a small optimization, only write the version field in the first
2636 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2637 	 * version field is the first in the struct.
2638 	 */
2639 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2640 
2641 	if (guest_hv_clock.version & 1)
2642 		++guest_hv_clock.version;  /* first time write, random junk */
2643 
2644 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2645 	kvm_write_guest_offset_cached(v->kvm, cache,
2646 				      &vcpu->hv_clock, offset,
2647 				      sizeof(vcpu->hv_clock.version));
2648 
2649 	smp_wmb();
2650 
2651 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2652 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2653 
2654 	if (vcpu->pvclock_set_guest_stopped_request) {
2655 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2656 		vcpu->pvclock_set_guest_stopped_request = false;
2657 	}
2658 
2659 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2660 
2661 	kvm_write_guest_offset_cached(v->kvm, cache,
2662 				      &vcpu->hv_clock, offset,
2663 				      sizeof(vcpu->hv_clock));
2664 
2665 	smp_wmb();
2666 
2667 	vcpu->hv_clock.version++;
2668 	kvm_write_guest_offset_cached(v->kvm, cache,
2669 				     &vcpu->hv_clock, offset,
2670 				     sizeof(vcpu->hv_clock.version));
2671 }
2672 
2673 static int kvm_guest_time_update(struct kvm_vcpu *v)
2674 {
2675 	unsigned long flags, tgt_tsc_khz;
2676 	struct kvm_vcpu_arch *vcpu = &v->arch;
2677 	struct kvm_arch *ka = &v->kvm->arch;
2678 	s64 kernel_ns;
2679 	u64 tsc_timestamp, host_tsc;
2680 	u8 pvclock_flags;
2681 	bool use_master_clock;
2682 
2683 	kernel_ns = 0;
2684 	host_tsc = 0;
2685 
2686 	/*
2687 	 * If the host uses TSC clock, then passthrough TSC as stable
2688 	 * to the guest.
2689 	 */
2690 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2691 	use_master_clock = ka->use_master_clock;
2692 	if (use_master_clock) {
2693 		host_tsc = ka->master_cycle_now;
2694 		kernel_ns = ka->master_kernel_ns;
2695 	}
2696 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2697 
2698 	/* Keep irq disabled to prevent changes to the clock */
2699 	local_irq_save(flags);
2700 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2701 	if (unlikely(tgt_tsc_khz == 0)) {
2702 		local_irq_restore(flags);
2703 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2704 		return 1;
2705 	}
2706 	if (!use_master_clock) {
2707 		host_tsc = rdtsc();
2708 		kernel_ns = get_kvmclock_base_ns();
2709 	}
2710 
2711 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2712 
2713 	/*
2714 	 * We may have to catch up the TSC to match elapsed wall clock
2715 	 * time for two reasons, even if kvmclock is used.
2716 	 *   1) CPU could have been running below the maximum TSC rate
2717 	 *   2) Broken TSC compensation resets the base at each VCPU
2718 	 *      entry to avoid unknown leaps of TSC even when running
2719 	 *      again on the same CPU.  This may cause apparent elapsed
2720 	 *      time to disappear, and the guest to stand still or run
2721 	 *	very slowly.
2722 	 */
2723 	if (vcpu->tsc_catchup) {
2724 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2725 		if (tsc > tsc_timestamp) {
2726 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2727 			tsc_timestamp = tsc;
2728 		}
2729 	}
2730 
2731 	local_irq_restore(flags);
2732 
2733 	/* With all the info we got, fill in the values */
2734 
2735 	if (kvm_has_tsc_control)
2736 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2737 
2738 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2739 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2740 				   &vcpu->hv_clock.tsc_shift,
2741 				   &vcpu->hv_clock.tsc_to_system_mul);
2742 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2743 	}
2744 
2745 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2746 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2747 	vcpu->last_guest_tsc = tsc_timestamp;
2748 
2749 	/* If the host uses TSC clocksource, then it is stable */
2750 	pvclock_flags = 0;
2751 	if (use_master_clock)
2752 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2753 
2754 	vcpu->hv_clock.flags = pvclock_flags;
2755 
2756 	if (vcpu->pv_time_enabled)
2757 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2758 	if (vcpu->xen.vcpu_info_set)
2759 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2760 				       offsetof(struct compat_vcpu_info, time));
2761 	if (vcpu->xen.vcpu_time_info_set)
2762 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2763 	if (v == kvm_get_vcpu(v->kvm, 0))
2764 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2765 	return 0;
2766 }
2767 
2768 /*
2769  * kvmclock updates which are isolated to a given vcpu, such as
2770  * vcpu->cpu migration, should not allow system_timestamp from
2771  * the rest of the vcpus to remain static. Otherwise ntp frequency
2772  * correction applies to one vcpu's system_timestamp but not
2773  * the others.
2774  *
2775  * So in those cases, request a kvmclock update for all vcpus.
2776  * We need to rate-limit these requests though, as they can
2777  * considerably slow guests that have a large number of vcpus.
2778  * The time for a remote vcpu to update its kvmclock is bound
2779  * by the delay we use to rate-limit the updates.
2780  */
2781 
2782 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2783 
2784 static void kvmclock_update_fn(struct work_struct *work)
2785 {
2786 	int i;
2787 	struct delayed_work *dwork = to_delayed_work(work);
2788 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2789 					   kvmclock_update_work);
2790 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2791 	struct kvm_vcpu *vcpu;
2792 
2793 	kvm_for_each_vcpu(i, vcpu, kvm) {
2794 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2795 		kvm_vcpu_kick(vcpu);
2796 	}
2797 }
2798 
2799 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2800 {
2801 	struct kvm *kvm = v->kvm;
2802 
2803 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2804 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2805 					KVMCLOCK_UPDATE_DELAY);
2806 }
2807 
2808 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2809 
2810 static void kvmclock_sync_fn(struct work_struct *work)
2811 {
2812 	struct delayed_work *dwork = to_delayed_work(work);
2813 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2814 					   kvmclock_sync_work);
2815 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2816 
2817 	if (!kvmclock_periodic_sync)
2818 		return;
2819 
2820 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2821 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2822 					KVMCLOCK_SYNC_PERIOD);
2823 }
2824 
2825 /*
2826  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2827  */
2828 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2829 {
2830 	/* McStatusWrEn enabled? */
2831 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2832 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2833 
2834 	return false;
2835 }
2836 
2837 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2838 {
2839 	u64 mcg_cap = vcpu->arch.mcg_cap;
2840 	unsigned bank_num = mcg_cap & 0xff;
2841 	u32 msr = msr_info->index;
2842 	u64 data = msr_info->data;
2843 
2844 	switch (msr) {
2845 	case MSR_IA32_MCG_STATUS:
2846 		vcpu->arch.mcg_status = data;
2847 		break;
2848 	case MSR_IA32_MCG_CTL:
2849 		if (!(mcg_cap & MCG_CTL_P) &&
2850 		    (data || !msr_info->host_initiated))
2851 			return 1;
2852 		if (data != 0 && data != ~(u64)0)
2853 			return 1;
2854 		vcpu->arch.mcg_ctl = data;
2855 		break;
2856 	default:
2857 		if (msr >= MSR_IA32_MC0_CTL &&
2858 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2859 			u32 offset = array_index_nospec(
2860 				msr - MSR_IA32_MC0_CTL,
2861 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2862 
2863 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2864 			 * some Linux kernels though clear bit 10 in bank 4 to
2865 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2866 			 * this to avoid an uncatched #GP in the guest
2867 			 */
2868 			if ((offset & 0x3) == 0 &&
2869 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2870 				return -1;
2871 
2872 			/* MCi_STATUS */
2873 			if (!msr_info->host_initiated &&
2874 			    (offset & 0x3) == 1 && data != 0) {
2875 				if (!can_set_mci_status(vcpu))
2876 					return -1;
2877 			}
2878 
2879 			vcpu->arch.mce_banks[offset] = data;
2880 			break;
2881 		}
2882 		return 1;
2883 	}
2884 	return 0;
2885 }
2886 
2887 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2888 {
2889 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2890 
2891 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2892 }
2893 
2894 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2895 {
2896 	gpa_t gpa = data & ~0x3f;
2897 
2898 	/* Bits 4:5 are reserved, Should be zero */
2899 	if (data & 0x30)
2900 		return 1;
2901 
2902 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2903 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2904 		return 1;
2905 
2906 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2907 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2908 		return 1;
2909 
2910 	if (!lapic_in_kernel(vcpu))
2911 		return data ? 1 : 0;
2912 
2913 	vcpu->arch.apf.msr_en_val = data;
2914 
2915 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2916 		kvm_clear_async_pf_completion_queue(vcpu);
2917 		kvm_async_pf_hash_reset(vcpu);
2918 		return 0;
2919 	}
2920 
2921 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2922 					sizeof(u64)))
2923 		return 1;
2924 
2925 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2926 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2927 
2928 	kvm_async_pf_wakeup_all(vcpu);
2929 
2930 	return 0;
2931 }
2932 
2933 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2934 {
2935 	/* Bits 8-63 are reserved */
2936 	if (data >> 8)
2937 		return 1;
2938 
2939 	if (!lapic_in_kernel(vcpu))
2940 		return 1;
2941 
2942 	vcpu->arch.apf.msr_int_val = data;
2943 
2944 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2945 
2946 	return 0;
2947 }
2948 
2949 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2950 {
2951 	vcpu->arch.pv_time_enabled = false;
2952 	vcpu->arch.time = 0;
2953 }
2954 
2955 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2956 {
2957 	++vcpu->stat.tlb_flush;
2958 	static_call(kvm_x86_tlb_flush_all)(vcpu);
2959 }
2960 
2961 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2962 {
2963 	++vcpu->stat.tlb_flush;
2964 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
2965 }
2966 
2967 static void record_steal_time(struct kvm_vcpu *vcpu)
2968 {
2969 	struct kvm_host_map map;
2970 	struct kvm_steal_time *st;
2971 
2972 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
2973 		kvm_xen_runstate_set_running(vcpu);
2974 		return;
2975 	}
2976 
2977 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2978 		return;
2979 
2980 	/* -EAGAIN is returned in atomic context so we can just return. */
2981 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2982 			&map, &vcpu->arch.st.cache, false))
2983 		return;
2984 
2985 	st = map.hva +
2986 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2987 
2988 	/*
2989 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2990 	 * expensive IPIs.
2991 	 */
2992 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2993 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2994 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2995 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2996 			kvm_vcpu_flush_tlb_guest(vcpu);
2997 	}
2998 
2999 	vcpu->arch.st.preempted = 0;
3000 
3001 	if (st->version & 1)
3002 		st->version += 1;  /* first time write, random junk */
3003 
3004 	st->version += 1;
3005 
3006 	smp_wmb();
3007 
3008 	st->steal += current->sched_info.run_delay -
3009 		vcpu->arch.st.last_steal;
3010 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3011 
3012 	smp_wmb();
3013 
3014 	st->version += 1;
3015 
3016 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3017 }
3018 
3019 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3020 {
3021 	bool pr = false;
3022 	u32 msr = msr_info->index;
3023 	u64 data = msr_info->data;
3024 
3025 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3026 		return kvm_xen_write_hypercall_page(vcpu, data);
3027 
3028 	switch (msr) {
3029 	case MSR_AMD64_NB_CFG:
3030 	case MSR_IA32_UCODE_WRITE:
3031 	case MSR_VM_HSAVE_PA:
3032 	case MSR_AMD64_PATCH_LOADER:
3033 	case MSR_AMD64_BU_CFG2:
3034 	case MSR_AMD64_DC_CFG:
3035 	case MSR_F15H_EX_CFG:
3036 		break;
3037 
3038 	case MSR_IA32_UCODE_REV:
3039 		if (msr_info->host_initiated)
3040 			vcpu->arch.microcode_version = data;
3041 		break;
3042 	case MSR_IA32_ARCH_CAPABILITIES:
3043 		if (!msr_info->host_initiated)
3044 			return 1;
3045 		vcpu->arch.arch_capabilities = data;
3046 		break;
3047 	case MSR_IA32_PERF_CAPABILITIES: {
3048 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3049 
3050 		if (!msr_info->host_initiated)
3051 			return 1;
3052 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3053 			return 1;
3054 		if (data & ~msr_ent.data)
3055 			return 1;
3056 
3057 		vcpu->arch.perf_capabilities = data;
3058 
3059 		return 0;
3060 		}
3061 	case MSR_EFER:
3062 		return set_efer(vcpu, msr_info);
3063 	case MSR_K7_HWCR:
3064 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3065 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3066 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3067 
3068 		/* Handle McStatusWrEn */
3069 		if (data == BIT_ULL(18)) {
3070 			vcpu->arch.msr_hwcr = data;
3071 		} else if (data != 0) {
3072 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3073 				    data);
3074 			return 1;
3075 		}
3076 		break;
3077 	case MSR_FAM10H_MMIO_CONF_BASE:
3078 		if (data != 0) {
3079 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3080 				    "0x%llx\n", data);
3081 			return 1;
3082 		}
3083 		break;
3084 	case 0x200 ... 0x2ff:
3085 		return kvm_mtrr_set_msr(vcpu, msr, data);
3086 	case MSR_IA32_APICBASE:
3087 		return kvm_set_apic_base(vcpu, msr_info);
3088 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3089 		return kvm_x2apic_msr_write(vcpu, msr, data);
3090 	case MSR_IA32_TSCDEADLINE:
3091 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3092 		break;
3093 	case MSR_IA32_TSC_ADJUST:
3094 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3095 			if (!msr_info->host_initiated) {
3096 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3097 				adjust_tsc_offset_guest(vcpu, adj);
3098 			}
3099 			vcpu->arch.ia32_tsc_adjust_msr = data;
3100 		}
3101 		break;
3102 	case MSR_IA32_MISC_ENABLE:
3103 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3104 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3105 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3106 				return 1;
3107 			vcpu->arch.ia32_misc_enable_msr = data;
3108 			kvm_update_cpuid_runtime(vcpu);
3109 		} else {
3110 			vcpu->arch.ia32_misc_enable_msr = data;
3111 		}
3112 		break;
3113 	case MSR_IA32_SMBASE:
3114 		if (!msr_info->host_initiated)
3115 			return 1;
3116 		vcpu->arch.smbase = data;
3117 		break;
3118 	case MSR_IA32_POWER_CTL:
3119 		vcpu->arch.msr_ia32_power_ctl = data;
3120 		break;
3121 	case MSR_IA32_TSC:
3122 		if (msr_info->host_initiated) {
3123 			kvm_synchronize_tsc(vcpu, data);
3124 		} else {
3125 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3126 			adjust_tsc_offset_guest(vcpu, adj);
3127 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3128 		}
3129 		break;
3130 	case MSR_IA32_XSS:
3131 		if (!msr_info->host_initiated &&
3132 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3133 			return 1;
3134 		/*
3135 		 * KVM supports exposing PT to the guest, but does not support
3136 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3137 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3138 		 */
3139 		if (data & ~supported_xss)
3140 			return 1;
3141 		vcpu->arch.ia32_xss = data;
3142 		break;
3143 	case MSR_SMI_COUNT:
3144 		if (!msr_info->host_initiated)
3145 			return 1;
3146 		vcpu->arch.smi_count = data;
3147 		break;
3148 	case MSR_KVM_WALL_CLOCK_NEW:
3149 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3150 			return 1;
3151 
3152 		vcpu->kvm->arch.wall_clock = data;
3153 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3154 		break;
3155 	case MSR_KVM_WALL_CLOCK:
3156 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3157 			return 1;
3158 
3159 		vcpu->kvm->arch.wall_clock = data;
3160 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3161 		break;
3162 	case MSR_KVM_SYSTEM_TIME_NEW:
3163 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3164 			return 1;
3165 
3166 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3167 		break;
3168 	case MSR_KVM_SYSTEM_TIME:
3169 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3170 			return 1;
3171 
3172 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3173 		break;
3174 	case MSR_KVM_ASYNC_PF_EN:
3175 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3176 			return 1;
3177 
3178 		if (kvm_pv_enable_async_pf(vcpu, data))
3179 			return 1;
3180 		break;
3181 	case MSR_KVM_ASYNC_PF_INT:
3182 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3183 			return 1;
3184 
3185 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3186 			return 1;
3187 		break;
3188 	case MSR_KVM_ASYNC_PF_ACK:
3189 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3190 			return 1;
3191 		if (data & 0x1) {
3192 			vcpu->arch.apf.pageready_pending = false;
3193 			kvm_check_async_pf_completion(vcpu);
3194 		}
3195 		break;
3196 	case MSR_KVM_STEAL_TIME:
3197 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3198 			return 1;
3199 
3200 		if (unlikely(!sched_info_on()))
3201 			return 1;
3202 
3203 		if (data & KVM_STEAL_RESERVED_MASK)
3204 			return 1;
3205 
3206 		vcpu->arch.st.msr_val = data;
3207 
3208 		if (!(data & KVM_MSR_ENABLED))
3209 			break;
3210 
3211 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3212 
3213 		break;
3214 	case MSR_KVM_PV_EOI_EN:
3215 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3216 			return 1;
3217 
3218 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3219 			return 1;
3220 		break;
3221 
3222 	case MSR_KVM_POLL_CONTROL:
3223 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3224 			return 1;
3225 
3226 		/* only enable bit supported */
3227 		if (data & (-1ULL << 1))
3228 			return 1;
3229 
3230 		vcpu->arch.msr_kvm_poll_control = data;
3231 		break;
3232 
3233 	case MSR_IA32_MCG_CTL:
3234 	case MSR_IA32_MCG_STATUS:
3235 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3236 		return set_msr_mce(vcpu, msr_info);
3237 
3238 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3239 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3240 		pr = true;
3241 		fallthrough;
3242 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3243 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3244 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3245 			return kvm_pmu_set_msr(vcpu, msr_info);
3246 
3247 		if (pr || data != 0)
3248 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3249 				    "0x%x data 0x%llx\n", msr, data);
3250 		break;
3251 	case MSR_K7_CLK_CTL:
3252 		/*
3253 		 * Ignore all writes to this no longer documented MSR.
3254 		 * Writes are only relevant for old K7 processors,
3255 		 * all pre-dating SVM, but a recommended workaround from
3256 		 * AMD for these chips. It is possible to specify the
3257 		 * affected processor models on the command line, hence
3258 		 * the need to ignore the workaround.
3259 		 */
3260 		break;
3261 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3262 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3263 	case HV_X64_MSR_SYNDBG_OPTIONS:
3264 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3265 	case HV_X64_MSR_CRASH_CTL:
3266 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3267 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3268 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3269 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3270 		return kvm_hv_set_msr_common(vcpu, msr, data,
3271 					     msr_info->host_initiated);
3272 	case MSR_IA32_BBL_CR_CTL3:
3273 		/* Drop writes to this legacy MSR -- see rdmsr
3274 		 * counterpart for further detail.
3275 		 */
3276 		if (report_ignored_msrs)
3277 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3278 				msr, data);
3279 		break;
3280 	case MSR_AMD64_OSVW_ID_LENGTH:
3281 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3282 			return 1;
3283 		vcpu->arch.osvw.length = data;
3284 		break;
3285 	case MSR_AMD64_OSVW_STATUS:
3286 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3287 			return 1;
3288 		vcpu->arch.osvw.status = data;
3289 		break;
3290 	case MSR_PLATFORM_INFO:
3291 		if (!msr_info->host_initiated ||
3292 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3293 		     cpuid_fault_enabled(vcpu)))
3294 			return 1;
3295 		vcpu->arch.msr_platform_info = data;
3296 		break;
3297 	case MSR_MISC_FEATURES_ENABLES:
3298 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3299 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3300 		     !supports_cpuid_fault(vcpu)))
3301 			return 1;
3302 		vcpu->arch.msr_misc_features_enables = data;
3303 		break;
3304 	default:
3305 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3306 			return kvm_pmu_set_msr(vcpu, msr_info);
3307 		return KVM_MSR_RET_INVALID;
3308 	}
3309 	return 0;
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3312 
3313 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3314 {
3315 	u64 data;
3316 	u64 mcg_cap = vcpu->arch.mcg_cap;
3317 	unsigned bank_num = mcg_cap & 0xff;
3318 
3319 	switch (msr) {
3320 	case MSR_IA32_P5_MC_ADDR:
3321 	case MSR_IA32_P5_MC_TYPE:
3322 		data = 0;
3323 		break;
3324 	case MSR_IA32_MCG_CAP:
3325 		data = vcpu->arch.mcg_cap;
3326 		break;
3327 	case MSR_IA32_MCG_CTL:
3328 		if (!(mcg_cap & MCG_CTL_P) && !host)
3329 			return 1;
3330 		data = vcpu->arch.mcg_ctl;
3331 		break;
3332 	case MSR_IA32_MCG_STATUS:
3333 		data = vcpu->arch.mcg_status;
3334 		break;
3335 	default:
3336 		if (msr >= MSR_IA32_MC0_CTL &&
3337 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3338 			u32 offset = array_index_nospec(
3339 				msr - MSR_IA32_MC0_CTL,
3340 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3341 
3342 			data = vcpu->arch.mce_banks[offset];
3343 			break;
3344 		}
3345 		return 1;
3346 	}
3347 	*pdata = data;
3348 	return 0;
3349 }
3350 
3351 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3352 {
3353 	switch (msr_info->index) {
3354 	case MSR_IA32_PLATFORM_ID:
3355 	case MSR_IA32_EBL_CR_POWERON:
3356 	case MSR_IA32_LASTBRANCHFROMIP:
3357 	case MSR_IA32_LASTBRANCHTOIP:
3358 	case MSR_IA32_LASTINTFROMIP:
3359 	case MSR_IA32_LASTINTTOIP:
3360 	case MSR_K8_SYSCFG:
3361 	case MSR_K8_TSEG_ADDR:
3362 	case MSR_K8_TSEG_MASK:
3363 	case MSR_VM_HSAVE_PA:
3364 	case MSR_K8_INT_PENDING_MSG:
3365 	case MSR_AMD64_NB_CFG:
3366 	case MSR_FAM10H_MMIO_CONF_BASE:
3367 	case MSR_AMD64_BU_CFG2:
3368 	case MSR_IA32_PERF_CTL:
3369 	case MSR_AMD64_DC_CFG:
3370 	case MSR_F15H_EX_CFG:
3371 	/*
3372 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3373 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3374 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3375 	 * so for existing CPU-specific MSRs.
3376 	 */
3377 	case MSR_RAPL_POWER_UNIT:
3378 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3379 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3380 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3381 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3382 		msr_info->data = 0;
3383 		break;
3384 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3385 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3386 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3387 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3388 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3389 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3390 			return kvm_pmu_get_msr(vcpu, msr_info);
3391 		msr_info->data = 0;
3392 		break;
3393 	case MSR_IA32_UCODE_REV:
3394 		msr_info->data = vcpu->arch.microcode_version;
3395 		break;
3396 	case MSR_IA32_ARCH_CAPABILITIES:
3397 		if (!msr_info->host_initiated &&
3398 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3399 			return 1;
3400 		msr_info->data = vcpu->arch.arch_capabilities;
3401 		break;
3402 	case MSR_IA32_PERF_CAPABILITIES:
3403 		if (!msr_info->host_initiated &&
3404 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3405 			return 1;
3406 		msr_info->data = vcpu->arch.perf_capabilities;
3407 		break;
3408 	case MSR_IA32_POWER_CTL:
3409 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3410 		break;
3411 	case MSR_IA32_TSC: {
3412 		/*
3413 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3414 		 * even when not intercepted. AMD manual doesn't explicitly
3415 		 * state this but appears to behave the same.
3416 		 *
3417 		 * On userspace reads and writes, however, we unconditionally
3418 		 * return L1's TSC value to ensure backwards-compatible
3419 		 * behavior for migration.
3420 		 */
3421 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3422 							    vcpu->arch.tsc_offset;
3423 
3424 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3425 		break;
3426 	}
3427 	case MSR_MTRRcap:
3428 	case 0x200 ... 0x2ff:
3429 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3430 	case 0xcd: /* fsb frequency */
3431 		msr_info->data = 3;
3432 		break;
3433 		/*
3434 		 * MSR_EBC_FREQUENCY_ID
3435 		 * Conservative value valid for even the basic CPU models.
3436 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3437 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3438 		 * and 266MHz for model 3, or 4. Set Core Clock
3439 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3440 		 * 31:24) even though these are only valid for CPU
3441 		 * models > 2, however guests may end up dividing or
3442 		 * multiplying by zero otherwise.
3443 		 */
3444 	case MSR_EBC_FREQUENCY_ID:
3445 		msr_info->data = 1 << 24;
3446 		break;
3447 	case MSR_IA32_APICBASE:
3448 		msr_info->data = kvm_get_apic_base(vcpu);
3449 		break;
3450 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3451 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3452 	case MSR_IA32_TSCDEADLINE:
3453 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3454 		break;
3455 	case MSR_IA32_TSC_ADJUST:
3456 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3457 		break;
3458 	case MSR_IA32_MISC_ENABLE:
3459 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3460 		break;
3461 	case MSR_IA32_SMBASE:
3462 		if (!msr_info->host_initiated)
3463 			return 1;
3464 		msr_info->data = vcpu->arch.smbase;
3465 		break;
3466 	case MSR_SMI_COUNT:
3467 		msr_info->data = vcpu->arch.smi_count;
3468 		break;
3469 	case MSR_IA32_PERF_STATUS:
3470 		/* TSC increment by tick */
3471 		msr_info->data = 1000ULL;
3472 		/* CPU multiplier */
3473 		msr_info->data |= (((uint64_t)4ULL) << 40);
3474 		break;
3475 	case MSR_EFER:
3476 		msr_info->data = vcpu->arch.efer;
3477 		break;
3478 	case MSR_KVM_WALL_CLOCK:
3479 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3480 			return 1;
3481 
3482 		msr_info->data = vcpu->kvm->arch.wall_clock;
3483 		break;
3484 	case MSR_KVM_WALL_CLOCK_NEW:
3485 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3486 			return 1;
3487 
3488 		msr_info->data = vcpu->kvm->arch.wall_clock;
3489 		break;
3490 	case MSR_KVM_SYSTEM_TIME:
3491 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3492 			return 1;
3493 
3494 		msr_info->data = vcpu->arch.time;
3495 		break;
3496 	case MSR_KVM_SYSTEM_TIME_NEW:
3497 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3498 			return 1;
3499 
3500 		msr_info->data = vcpu->arch.time;
3501 		break;
3502 	case MSR_KVM_ASYNC_PF_EN:
3503 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3504 			return 1;
3505 
3506 		msr_info->data = vcpu->arch.apf.msr_en_val;
3507 		break;
3508 	case MSR_KVM_ASYNC_PF_INT:
3509 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3510 			return 1;
3511 
3512 		msr_info->data = vcpu->arch.apf.msr_int_val;
3513 		break;
3514 	case MSR_KVM_ASYNC_PF_ACK:
3515 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3516 			return 1;
3517 
3518 		msr_info->data = 0;
3519 		break;
3520 	case MSR_KVM_STEAL_TIME:
3521 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3522 			return 1;
3523 
3524 		msr_info->data = vcpu->arch.st.msr_val;
3525 		break;
3526 	case MSR_KVM_PV_EOI_EN:
3527 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3528 			return 1;
3529 
3530 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3531 		break;
3532 	case MSR_KVM_POLL_CONTROL:
3533 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3534 			return 1;
3535 
3536 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3537 		break;
3538 	case MSR_IA32_P5_MC_ADDR:
3539 	case MSR_IA32_P5_MC_TYPE:
3540 	case MSR_IA32_MCG_CAP:
3541 	case MSR_IA32_MCG_CTL:
3542 	case MSR_IA32_MCG_STATUS:
3543 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3544 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3545 				   msr_info->host_initiated);
3546 	case MSR_IA32_XSS:
3547 		if (!msr_info->host_initiated &&
3548 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3549 			return 1;
3550 		msr_info->data = vcpu->arch.ia32_xss;
3551 		break;
3552 	case MSR_K7_CLK_CTL:
3553 		/*
3554 		 * Provide expected ramp-up count for K7. All other
3555 		 * are set to zero, indicating minimum divisors for
3556 		 * every field.
3557 		 *
3558 		 * This prevents guest kernels on AMD host with CPU
3559 		 * type 6, model 8 and higher from exploding due to
3560 		 * the rdmsr failing.
3561 		 */
3562 		msr_info->data = 0x20000000;
3563 		break;
3564 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3565 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3566 	case HV_X64_MSR_SYNDBG_OPTIONS:
3567 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3568 	case HV_X64_MSR_CRASH_CTL:
3569 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3570 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3571 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3572 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3573 		return kvm_hv_get_msr_common(vcpu,
3574 					     msr_info->index, &msr_info->data,
3575 					     msr_info->host_initiated);
3576 	case MSR_IA32_BBL_CR_CTL3:
3577 		/* This legacy MSR exists but isn't fully documented in current
3578 		 * silicon.  It is however accessed by winxp in very narrow
3579 		 * scenarios where it sets bit #19, itself documented as
3580 		 * a "reserved" bit.  Best effort attempt to source coherent
3581 		 * read data here should the balance of the register be
3582 		 * interpreted by the guest:
3583 		 *
3584 		 * L2 cache control register 3: 64GB range, 256KB size,
3585 		 * enabled, latency 0x1, configured
3586 		 */
3587 		msr_info->data = 0xbe702111;
3588 		break;
3589 	case MSR_AMD64_OSVW_ID_LENGTH:
3590 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3591 			return 1;
3592 		msr_info->data = vcpu->arch.osvw.length;
3593 		break;
3594 	case MSR_AMD64_OSVW_STATUS:
3595 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3596 			return 1;
3597 		msr_info->data = vcpu->arch.osvw.status;
3598 		break;
3599 	case MSR_PLATFORM_INFO:
3600 		if (!msr_info->host_initiated &&
3601 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3602 			return 1;
3603 		msr_info->data = vcpu->arch.msr_platform_info;
3604 		break;
3605 	case MSR_MISC_FEATURES_ENABLES:
3606 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3607 		break;
3608 	case MSR_K7_HWCR:
3609 		msr_info->data = vcpu->arch.msr_hwcr;
3610 		break;
3611 	default:
3612 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3613 			return kvm_pmu_get_msr(vcpu, msr_info);
3614 		return KVM_MSR_RET_INVALID;
3615 	}
3616 	return 0;
3617 }
3618 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3619 
3620 /*
3621  * Read or write a bunch of msrs. All parameters are kernel addresses.
3622  *
3623  * @return number of msrs set successfully.
3624  */
3625 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3626 		    struct kvm_msr_entry *entries,
3627 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3628 				  unsigned index, u64 *data))
3629 {
3630 	int i;
3631 
3632 	for (i = 0; i < msrs->nmsrs; ++i)
3633 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3634 			break;
3635 
3636 	return i;
3637 }
3638 
3639 /*
3640  * Read or write a bunch of msrs. Parameters are user addresses.
3641  *
3642  * @return number of msrs set successfully.
3643  */
3644 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3645 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3646 				unsigned index, u64 *data),
3647 		  int writeback)
3648 {
3649 	struct kvm_msrs msrs;
3650 	struct kvm_msr_entry *entries;
3651 	int r, n;
3652 	unsigned size;
3653 
3654 	r = -EFAULT;
3655 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3656 		goto out;
3657 
3658 	r = -E2BIG;
3659 	if (msrs.nmsrs >= MAX_IO_MSRS)
3660 		goto out;
3661 
3662 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3663 	entries = memdup_user(user_msrs->entries, size);
3664 	if (IS_ERR(entries)) {
3665 		r = PTR_ERR(entries);
3666 		goto out;
3667 	}
3668 
3669 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3670 	if (r < 0)
3671 		goto out_free;
3672 
3673 	r = -EFAULT;
3674 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3675 		goto out_free;
3676 
3677 	r = n;
3678 
3679 out_free:
3680 	kfree(entries);
3681 out:
3682 	return r;
3683 }
3684 
3685 static inline bool kvm_can_mwait_in_guest(void)
3686 {
3687 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3688 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3689 		boot_cpu_has(X86_FEATURE_ARAT);
3690 }
3691 
3692 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3693 					    struct kvm_cpuid2 __user *cpuid_arg)
3694 {
3695 	struct kvm_cpuid2 cpuid;
3696 	int r;
3697 
3698 	r = -EFAULT;
3699 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3700 		return r;
3701 
3702 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3703 	if (r)
3704 		return r;
3705 
3706 	r = -EFAULT;
3707 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3708 		return r;
3709 
3710 	return 0;
3711 }
3712 
3713 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3714 {
3715 	int r = 0;
3716 
3717 	switch (ext) {
3718 	case KVM_CAP_IRQCHIP:
3719 	case KVM_CAP_HLT:
3720 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3721 	case KVM_CAP_SET_TSS_ADDR:
3722 	case KVM_CAP_EXT_CPUID:
3723 	case KVM_CAP_EXT_EMUL_CPUID:
3724 	case KVM_CAP_CLOCKSOURCE:
3725 	case KVM_CAP_PIT:
3726 	case KVM_CAP_NOP_IO_DELAY:
3727 	case KVM_CAP_MP_STATE:
3728 	case KVM_CAP_SYNC_MMU:
3729 	case KVM_CAP_USER_NMI:
3730 	case KVM_CAP_REINJECT_CONTROL:
3731 	case KVM_CAP_IRQ_INJECT_STATUS:
3732 	case KVM_CAP_IOEVENTFD:
3733 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3734 	case KVM_CAP_PIT2:
3735 	case KVM_CAP_PIT_STATE2:
3736 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3737 	case KVM_CAP_VCPU_EVENTS:
3738 	case KVM_CAP_HYPERV:
3739 	case KVM_CAP_HYPERV_VAPIC:
3740 	case KVM_CAP_HYPERV_SPIN:
3741 	case KVM_CAP_HYPERV_SYNIC:
3742 	case KVM_CAP_HYPERV_SYNIC2:
3743 	case KVM_CAP_HYPERV_VP_INDEX:
3744 	case KVM_CAP_HYPERV_EVENTFD:
3745 	case KVM_CAP_HYPERV_TLBFLUSH:
3746 	case KVM_CAP_HYPERV_SEND_IPI:
3747 	case KVM_CAP_HYPERV_CPUID:
3748 	case KVM_CAP_SYS_HYPERV_CPUID:
3749 	case KVM_CAP_PCI_SEGMENT:
3750 	case KVM_CAP_DEBUGREGS:
3751 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3752 	case KVM_CAP_XSAVE:
3753 	case KVM_CAP_ASYNC_PF:
3754 	case KVM_CAP_ASYNC_PF_INT:
3755 	case KVM_CAP_GET_TSC_KHZ:
3756 	case KVM_CAP_KVMCLOCK_CTRL:
3757 	case KVM_CAP_READONLY_MEM:
3758 	case KVM_CAP_HYPERV_TIME:
3759 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3760 	case KVM_CAP_TSC_DEADLINE_TIMER:
3761 	case KVM_CAP_DISABLE_QUIRKS:
3762 	case KVM_CAP_SET_BOOT_CPU_ID:
3763  	case KVM_CAP_SPLIT_IRQCHIP:
3764 	case KVM_CAP_IMMEDIATE_EXIT:
3765 	case KVM_CAP_PMU_EVENT_FILTER:
3766 	case KVM_CAP_GET_MSR_FEATURES:
3767 	case KVM_CAP_MSR_PLATFORM_INFO:
3768 	case KVM_CAP_EXCEPTION_PAYLOAD:
3769 	case KVM_CAP_SET_GUEST_DEBUG:
3770 	case KVM_CAP_LAST_CPU:
3771 	case KVM_CAP_X86_USER_SPACE_MSR:
3772 	case KVM_CAP_X86_MSR_FILTER:
3773 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3774 		r = 1;
3775 		break;
3776 #ifdef CONFIG_KVM_XEN
3777 	case KVM_CAP_XEN_HVM:
3778 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3779 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3780 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
3781 		if (sched_info_on())
3782 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3783 		break;
3784 #endif
3785 	case KVM_CAP_SYNC_REGS:
3786 		r = KVM_SYNC_X86_VALID_FIELDS;
3787 		break;
3788 	case KVM_CAP_ADJUST_CLOCK:
3789 		r = KVM_CLOCK_TSC_STABLE;
3790 		break;
3791 	case KVM_CAP_X86_DISABLE_EXITS:
3792 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3793 		      KVM_X86_DISABLE_EXITS_CSTATE;
3794 		if(kvm_can_mwait_in_guest())
3795 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3796 		break;
3797 	case KVM_CAP_X86_SMM:
3798 		/* SMBASE is usually relocated above 1M on modern chipsets,
3799 		 * and SMM handlers might indeed rely on 4G segment limits,
3800 		 * so do not report SMM to be available if real mode is
3801 		 * emulated via vm86 mode.  Still, do not go to great lengths
3802 		 * to avoid userspace's usage of the feature, because it is a
3803 		 * fringe case that is not enabled except via specific settings
3804 		 * of the module parameters.
3805 		 */
3806 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3807 		break;
3808 	case KVM_CAP_VAPIC:
3809 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3810 		break;
3811 	case KVM_CAP_NR_VCPUS:
3812 		r = KVM_SOFT_MAX_VCPUS;
3813 		break;
3814 	case KVM_CAP_MAX_VCPUS:
3815 		r = KVM_MAX_VCPUS;
3816 		break;
3817 	case KVM_CAP_MAX_VCPU_ID:
3818 		r = KVM_MAX_VCPU_ID;
3819 		break;
3820 	case KVM_CAP_PV_MMU:	/* obsolete */
3821 		r = 0;
3822 		break;
3823 	case KVM_CAP_MCE:
3824 		r = KVM_MAX_MCE_BANKS;
3825 		break;
3826 	case KVM_CAP_XCRS:
3827 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3828 		break;
3829 	case KVM_CAP_TSC_CONTROL:
3830 		r = kvm_has_tsc_control;
3831 		break;
3832 	case KVM_CAP_X2APIC_API:
3833 		r = KVM_X2APIC_API_VALID_FLAGS;
3834 		break;
3835 	case KVM_CAP_NESTED_STATE:
3836 		r = kvm_x86_ops.nested_ops->get_state ?
3837 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3838 		break;
3839 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3840 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3841 		break;
3842 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3843 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3844 		break;
3845 	case KVM_CAP_SMALLER_MAXPHYADDR:
3846 		r = (int) allow_smaller_maxphyaddr;
3847 		break;
3848 	case KVM_CAP_STEAL_TIME:
3849 		r = sched_info_on();
3850 		break;
3851 	case KVM_CAP_X86_BUS_LOCK_EXIT:
3852 		if (kvm_has_bus_lock_exit)
3853 			r = KVM_BUS_LOCK_DETECTION_OFF |
3854 			    KVM_BUS_LOCK_DETECTION_EXIT;
3855 		else
3856 			r = 0;
3857 		break;
3858 	default:
3859 		break;
3860 	}
3861 	return r;
3862 
3863 }
3864 
3865 long kvm_arch_dev_ioctl(struct file *filp,
3866 			unsigned int ioctl, unsigned long arg)
3867 {
3868 	void __user *argp = (void __user *)arg;
3869 	long r;
3870 
3871 	switch (ioctl) {
3872 	case KVM_GET_MSR_INDEX_LIST: {
3873 		struct kvm_msr_list __user *user_msr_list = argp;
3874 		struct kvm_msr_list msr_list;
3875 		unsigned n;
3876 
3877 		r = -EFAULT;
3878 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3879 			goto out;
3880 		n = msr_list.nmsrs;
3881 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3882 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3883 			goto out;
3884 		r = -E2BIG;
3885 		if (n < msr_list.nmsrs)
3886 			goto out;
3887 		r = -EFAULT;
3888 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3889 				 num_msrs_to_save * sizeof(u32)))
3890 			goto out;
3891 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3892 				 &emulated_msrs,
3893 				 num_emulated_msrs * sizeof(u32)))
3894 			goto out;
3895 		r = 0;
3896 		break;
3897 	}
3898 	case KVM_GET_SUPPORTED_CPUID:
3899 	case KVM_GET_EMULATED_CPUID: {
3900 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3901 		struct kvm_cpuid2 cpuid;
3902 
3903 		r = -EFAULT;
3904 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3905 			goto out;
3906 
3907 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3908 					    ioctl);
3909 		if (r)
3910 			goto out;
3911 
3912 		r = -EFAULT;
3913 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3914 			goto out;
3915 		r = 0;
3916 		break;
3917 	}
3918 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3919 		r = -EFAULT;
3920 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3921 				 sizeof(kvm_mce_cap_supported)))
3922 			goto out;
3923 		r = 0;
3924 		break;
3925 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3926 		struct kvm_msr_list __user *user_msr_list = argp;
3927 		struct kvm_msr_list msr_list;
3928 		unsigned int n;
3929 
3930 		r = -EFAULT;
3931 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3932 			goto out;
3933 		n = msr_list.nmsrs;
3934 		msr_list.nmsrs = num_msr_based_features;
3935 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3936 			goto out;
3937 		r = -E2BIG;
3938 		if (n < msr_list.nmsrs)
3939 			goto out;
3940 		r = -EFAULT;
3941 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3942 				 num_msr_based_features * sizeof(u32)))
3943 			goto out;
3944 		r = 0;
3945 		break;
3946 	}
3947 	case KVM_GET_MSRS:
3948 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3949 		break;
3950 	case KVM_GET_SUPPORTED_HV_CPUID:
3951 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3952 		break;
3953 	default:
3954 		r = -EINVAL;
3955 		break;
3956 	}
3957 out:
3958 	return r;
3959 }
3960 
3961 static void wbinvd_ipi(void *garbage)
3962 {
3963 	wbinvd();
3964 }
3965 
3966 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3967 {
3968 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3969 }
3970 
3971 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3972 {
3973 	/* Address WBINVD may be executed by guest */
3974 	if (need_emulate_wbinvd(vcpu)) {
3975 		if (static_call(kvm_x86_has_wbinvd_exit)())
3976 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3977 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3978 			smp_call_function_single(vcpu->cpu,
3979 					wbinvd_ipi, NULL, 1);
3980 	}
3981 
3982 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3983 
3984 	/* Save host pkru register if supported */
3985 	vcpu->arch.host_pkru = read_pkru();
3986 
3987 	/* Apply any externally detected TSC adjustments (due to suspend) */
3988 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3989 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3990 		vcpu->arch.tsc_offset_adjustment = 0;
3991 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3992 	}
3993 
3994 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3995 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3996 				rdtsc() - vcpu->arch.last_host_tsc;
3997 		if (tsc_delta < 0)
3998 			mark_tsc_unstable("KVM discovered backwards TSC");
3999 
4000 		if (kvm_check_tsc_unstable()) {
4001 			u64 offset = kvm_compute_tsc_offset(vcpu,
4002 						vcpu->arch.last_guest_tsc);
4003 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4004 			vcpu->arch.tsc_catchup = 1;
4005 		}
4006 
4007 		if (kvm_lapic_hv_timer_in_use(vcpu))
4008 			kvm_lapic_restart_hv_timer(vcpu);
4009 
4010 		/*
4011 		 * On a host with synchronized TSC, there is no need to update
4012 		 * kvmclock on vcpu->cpu migration
4013 		 */
4014 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4015 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4016 		if (vcpu->cpu != cpu)
4017 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4018 		vcpu->cpu = cpu;
4019 	}
4020 
4021 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4022 }
4023 
4024 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4025 {
4026 	struct kvm_host_map map;
4027 	struct kvm_steal_time *st;
4028 	int idx;
4029 
4030 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4031 		return;
4032 
4033 	if (vcpu->arch.st.preempted)
4034 		return;
4035 
4036 	/*
4037 	 * Take the srcu lock as memslots will be accessed to check the gfn
4038 	 * cache generation against the memslots generation.
4039 	 */
4040 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4041 
4042 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4043 			&vcpu->arch.st.cache, true))
4044 		goto out;
4045 
4046 	st = map.hva +
4047 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4048 
4049 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4050 
4051 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4052 
4053 out:
4054 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4055 }
4056 
4057 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4058 {
4059 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4060 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4061 
4062 	if (kvm_xen_msr_enabled(vcpu->kvm))
4063 		kvm_xen_runstate_set_preempted(vcpu);
4064 	else
4065 		kvm_steal_time_set_preempted(vcpu);
4066 
4067 	static_call(kvm_x86_vcpu_put)(vcpu);
4068 	vcpu->arch.last_host_tsc = rdtsc();
4069 	/*
4070 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4071 	 * on every vmexit, but if not, we might have a stale dr6 from the
4072 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4073 	 */
4074 	set_debugreg(0, 6);
4075 }
4076 
4077 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4078 				    struct kvm_lapic_state *s)
4079 {
4080 	if (vcpu->arch.apicv_active)
4081 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4082 
4083 	return kvm_apic_get_state(vcpu, s);
4084 }
4085 
4086 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4087 				    struct kvm_lapic_state *s)
4088 {
4089 	int r;
4090 
4091 	r = kvm_apic_set_state(vcpu, s);
4092 	if (r)
4093 		return r;
4094 	update_cr8_intercept(vcpu);
4095 
4096 	return 0;
4097 }
4098 
4099 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4100 {
4101 	/*
4102 	 * We can accept userspace's request for interrupt injection
4103 	 * as long as we have a place to store the interrupt number.
4104 	 * The actual injection will happen when the CPU is able to
4105 	 * deliver the interrupt.
4106 	 */
4107 	if (kvm_cpu_has_extint(vcpu))
4108 		return false;
4109 
4110 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4111 	return (!lapic_in_kernel(vcpu) ||
4112 		kvm_apic_accept_pic_intr(vcpu));
4113 }
4114 
4115 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4116 {
4117 	return kvm_arch_interrupt_allowed(vcpu) &&
4118 		kvm_cpu_accept_dm_intr(vcpu);
4119 }
4120 
4121 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4122 				    struct kvm_interrupt *irq)
4123 {
4124 	if (irq->irq >= KVM_NR_INTERRUPTS)
4125 		return -EINVAL;
4126 
4127 	if (!irqchip_in_kernel(vcpu->kvm)) {
4128 		kvm_queue_interrupt(vcpu, irq->irq, false);
4129 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4130 		return 0;
4131 	}
4132 
4133 	/*
4134 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4135 	 * fail for in-kernel 8259.
4136 	 */
4137 	if (pic_in_kernel(vcpu->kvm))
4138 		return -ENXIO;
4139 
4140 	if (vcpu->arch.pending_external_vector != -1)
4141 		return -EEXIST;
4142 
4143 	vcpu->arch.pending_external_vector = irq->irq;
4144 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4145 	return 0;
4146 }
4147 
4148 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4149 {
4150 	kvm_inject_nmi(vcpu);
4151 
4152 	return 0;
4153 }
4154 
4155 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4156 {
4157 	kvm_make_request(KVM_REQ_SMI, vcpu);
4158 
4159 	return 0;
4160 }
4161 
4162 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4163 					   struct kvm_tpr_access_ctl *tac)
4164 {
4165 	if (tac->flags)
4166 		return -EINVAL;
4167 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4168 	return 0;
4169 }
4170 
4171 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4172 					u64 mcg_cap)
4173 {
4174 	int r;
4175 	unsigned bank_num = mcg_cap & 0xff, bank;
4176 
4177 	r = -EINVAL;
4178 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4179 		goto out;
4180 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4181 		goto out;
4182 	r = 0;
4183 	vcpu->arch.mcg_cap = mcg_cap;
4184 	/* Init IA32_MCG_CTL to all 1s */
4185 	if (mcg_cap & MCG_CTL_P)
4186 		vcpu->arch.mcg_ctl = ~(u64)0;
4187 	/* Init IA32_MCi_CTL to all 1s */
4188 	for (bank = 0; bank < bank_num; bank++)
4189 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4190 
4191 	static_call(kvm_x86_setup_mce)(vcpu);
4192 out:
4193 	return r;
4194 }
4195 
4196 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4197 				      struct kvm_x86_mce *mce)
4198 {
4199 	u64 mcg_cap = vcpu->arch.mcg_cap;
4200 	unsigned bank_num = mcg_cap & 0xff;
4201 	u64 *banks = vcpu->arch.mce_banks;
4202 
4203 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4204 		return -EINVAL;
4205 	/*
4206 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4207 	 * reporting is disabled
4208 	 */
4209 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4210 	    vcpu->arch.mcg_ctl != ~(u64)0)
4211 		return 0;
4212 	banks += 4 * mce->bank;
4213 	/*
4214 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4215 	 * reporting is disabled for the bank
4216 	 */
4217 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4218 		return 0;
4219 	if (mce->status & MCI_STATUS_UC) {
4220 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4221 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4222 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4223 			return 0;
4224 		}
4225 		if (banks[1] & MCI_STATUS_VAL)
4226 			mce->status |= MCI_STATUS_OVER;
4227 		banks[2] = mce->addr;
4228 		banks[3] = mce->misc;
4229 		vcpu->arch.mcg_status = mce->mcg_status;
4230 		banks[1] = mce->status;
4231 		kvm_queue_exception(vcpu, MC_VECTOR);
4232 	} else if (!(banks[1] & MCI_STATUS_VAL)
4233 		   || !(banks[1] & MCI_STATUS_UC)) {
4234 		if (banks[1] & MCI_STATUS_VAL)
4235 			mce->status |= MCI_STATUS_OVER;
4236 		banks[2] = mce->addr;
4237 		banks[3] = mce->misc;
4238 		banks[1] = mce->status;
4239 	} else
4240 		banks[1] |= MCI_STATUS_OVER;
4241 	return 0;
4242 }
4243 
4244 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4245 					       struct kvm_vcpu_events *events)
4246 {
4247 	process_nmi(vcpu);
4248 
4249 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4250 		process_smi(vcpu);
4251 
4252 	/*
4253 	 * In guest mode, payload delivery should be deferred,
4254 	 * so that the L1 hypervisor can intercept #PF before
4255 	 * CR2 is modified (or intercept #DB before DR6 is
4256 	 * modified under nVMX). Unless the per-VM capability,
4257 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4258 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4259 	 * opportunistically defer the exception payload, deliver it if the
4260 	 * capability hasn't been requested before processing a
4261 	 * KVM_GET_VCPU_EVENTS.
4262 	 */
4263 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4264 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4265 		kvm_deliver_exception_payload(vcpu);
4266 
4267 	/*
4268 	 * The API doesn't provide the instruction length for software
4269 	 * exceptions, so don't report them. As long as the guest RIP
4270 	 * isn't advanced, we should expect to encounter the exception
4271 	 * again.
4272 	 */
4273 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4274 		events->exception.injected = 0;
4275 		events->exception.pending = 0;
4276 	} else {
4277 		events->exception.injected = vcpu->arch.exception.injected;
4278 		events->exception.pending = vcpu->arch.exception.pending;
4279 		/*
4280 		 * For ABI compatibility, deliberately conflate
4281 		 * pending and injected exceptions when
4282 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4283 		 */
4284 		if (!vcpu->kvm->arch.exception_payload_enabled)
4285 			events->exception.injected |=
4286 				vcpu->arch.exception.pending;
4287 	}
4288 	events->exception.nr = vcpu->arch.exception.nr;
4289 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4290 	events->exception.error_code = vcpu->arch.exception.error_code;
4291 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4292 	events->exception_payload = vcpu->arch.exception.payload;
4293 
4294 	events->interrupt.injected =
4295 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4296 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4297 	events->interrupt.soft = 0;
4298 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4299 
4300 	events->nmi.injected = vcpu->arch.nmi_injected;
4301 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4302 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4303 	events->nmi.pad = 0;
4304 
4305 	events->sipi_vector = 0; /* never valid when reporting to user space */
4306 
4307 	events->smi.smm = is_smm(vcpu);
4308 	events->smi.pending = vcpu->arch.smi_pending;
4309 	events->smi.smm_inside_nmi =
4310 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4311 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4312 
4313 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4314 			 | KVM_VCPUEVENT_VALID_SHADOW
4315 			 | KVM_VCPUEVENT_VALID_SMM);
4316 	if (vcpu->kvm->arch.exception_payload_enabled)
4317 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4318 
4319 	memset(&events->reserved, 0, sizeof(events->reserved));
4320 }
4321 
4322 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4323 
4324 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4325 					      struct kvm_vcpu_events *events)
4326 {
4327 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4328 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4329 			      | KVM_VCPUEVENT_VALID_SHADOW
4330 			      | KVM_VCPUEVENT_VALID_SMM
4331 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4332 		return -EINVAL;
4333 
4334 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4335 		if (!vcpu->kvm->arch.exception_payload_enabled)
4336 			return -EINVAL;
4337 		if (events->exception.pending)
4338 			events->exception.injected = 0;
4339 		else
4340 			events->exception_has_payload = 0;
4341 	} else {
4342 		events->exception.pending = 0;
4343 		events->exception_has_payload = 0;
4344 	}
4345 
4346 	if ((events->exception.injected || events->exception.pending) &&
4347 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4348 		return -EINVAL;
4349 
4350 	/* INITs are latched while in SMM */
4351 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4352 	    (events->smi.smm || events->smi.pending) &&
4353 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4354 		return -EINVAL;
4355 
4356 	process_nmi(vcpu);
4357 	vcpu->arch.exception.injected = events->exception.injected;
4358 	vcpu->arch.exception.pending = events->exception.pending;
4359 	vcpu->arch.exception.nr = events->exception.nr;
4360 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4361 	vcpu->arch.exception.error_code = events->exception.error_code;
4362 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4363 	vcpu->arch.exception.payload = events->exception_payload;
4364 
4365 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4366 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4367 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4368 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4369 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4370 						events->interrupt.shadow);
4371 
4372 	vcpu->arch.nmi_injected = events->nmi.injected;
4373 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4374 		vcpu->arch.nmi_pending = events->nmi.pending;
4375 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4376 
4377 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4378 	    lapic_in_kernel(vcpu))
4379 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4380 
4381 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4382 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4383 			if (events->smi.smm)
4384 				vcpu->arch.hflags |= HF_SMM_MASK;
4385 			else
4386 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4387 			kvm_smm_changed(vcpu);
4388 		}
4389 
4390 		vcpu->arch.smi_pending = events->smi.pending;
4391 
4392 		if (events->smi.smm) {
4393 			if (events->smi.smm_inside_nmi)
4394 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4395 			else
4396 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4397 		}
4398 
4399 		if (lapic_in_kernel(vcpu)) {
4400 			if (events->smi.latched_init)
4401 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4402 			else
4403 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4404 		}
4405 	}
4406 
4407 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4408 
4409 	return 0;
4410 }
4411 
4412 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4413 					     struct kvm_debugregs *dbgregs)
4414 {
4415 	unsigned long val;
4416 
4417 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4418 	kvm_get_dr(vcpu, 6, &val);
4419 	dbgregs->dr6 = val;
4420 	dbgregs->dr7 = vcpu->arch.dr7;
4421 	dbgregs->flags = 0;
4422 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4423 }
4424 
4425 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4426 					    struct kvm_debugregs *dbgregs)
4427 {
4428 	if (dbgregs->flags)
4429 		return -EINVAL;
4430 
4431 	if (!kvm_dr6_valid(dbgregs->dr6))
4432 		return -EINVAL;
4433 	if (!kvm_dr7_valid(dbgregs->dr7))
4434 		return -EINVAL;
4435 
4436 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4437 	kvm_update_dr0123(vcpu);
4438 	vcpu->arch.dr6 = dbgregs->dr6;
4439 	vcpu->arch.dr7 = dbgregs->dr7;
4440 	kvm_update_dr7(vcpu);
4441 
4442 	return 0;
4443 }
4444 
4445 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4446 
4447 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4448 {
4449 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4450 	u64 xstate_bv = xsave->header.xfeatures;
4451 	u64 valid;
4452 
4453 	/*
4454 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4455 	 * leaves 0 and 1 in the loop below.
4456 	 */
4457 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4458 
4459 	/* Set XSTATE_BV */
4460 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4461 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4462 
4463 	/*
4464 	 * Copy each region from the possibly compacted offset to the
4465 	 * non-compacted offset.
4466 	 */
4467 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4468 	while (valid) {
4469 		u64 xfeature_mask = valid & -valid;
4470 		int xfeature_nr = fls64(xfeature_mask) - 1;
4471 		void *src = get_xsave_addr(xsave, xfeature_nr);
4472 
4473 		if (src) {
4474 			u32 size, offset, ecx, edx;
4475 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4476 				    &size, &offset, &ecx, &edx);
4477 			if (xfeature_nr == XFEATURE_PKRU)
4478 				memcpy(dest + offset, &vcpu->arch.pkru,
4479 				       sizeof(vcpu->arch.pkru));
4480 			else
4481 				memcpy(dest + offset, src, size);
4482 
4483 		}
4484 
4485 		valid -= xfeature_mask;
4486 	}
4487 }
4488 
4489 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4490 {
4491 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4492 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4493 	u64 valid;
4494 
4495 	/*
4496 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4497 	 * leaves 0 and 1 in the loop below.
4498 	 */
4499 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4500 
4501 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4502 	xsave->header.xfeatures = xstate_bv;
4503 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4504 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4505 
4506 	/*
4507 	 * Copy each region from the non-compacted offset to the
4508 	 * possibly compacted offset.
4509 	 */
4510 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4511 	while (valid) {
4512 		u64 xfeature_mask = valid & -valid;
4513 		int xfeature_nr = fls64(xfeature_mask) - 1;
4514 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4515 
4516 		if (dest) {
4517 			u32 size, offset, ecx, edx;
4518 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4519 				    &size, &offset, &ecx, &edx);
4520 			if (xfeature_nr == XFEATURE_PKRU)
4521 				memcpy(&vcpu->arch.pkru, src + offset,
4522 				       sizeof(vcpu->arch.pkru));
4523 			else
4524 				memcpy(dest, src + offset, size);
4525 		}
4526 
4527 		valid -= xfeature_mask;
4528 	}
4529 }
4530 
4531 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4532 					 struct kvm_xsave *guest_xsave)
4533 {
4534 	if (!vcpu->arch.guest_fpu)
4535 		return;
4536 
4537 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4538 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4539 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4540 	} else {
4541 		memcpy(guest_xsave->region,
4542 			&vcpu->arch.guest_fpu->state.fxsave,
4543 			sizeof(struct fxregs_state));
4544 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4545 			XFEATURE_MASK_FPSSE;
4546 	}
4547 }
4548 
4549 #define XSAVE_MXCSR_OFFSET 24
4550 
4551 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4552 					struct kvm_xsave *guest_xsave)
4553 {
4554 	u64 xstate_bv;
4555 	u32 mxcsr;
4556 
4557 	if (!vcpu->arch.guest_fpu)
4558 		return 0;
4559 
4560 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4561 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4562 
4563 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4564 		/*
4565 		 * Here we allow setting states that are not present in
4566 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4567 		 * with old userspace.
4568 		 */
4569 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4570 			return -EINVAL;
4571 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4572 	} else {
4573 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4574 			mxcsr & ~mxcsr_feature_mask)
4575 			return -EINVAL;
4576 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4577 			guest_xsave->region, sizeof(struct fxregs_state));
4578 	}
4579 	return 0;
4580 }
4581 
4582 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4583 					struct kvm_xcrs *guest_xcrs)
4584 {
4585 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4586 		guest_xcrs->nr_xcrs = 0;
4587 		return;
4588 	}
4589 
4590 	guest_xcrs->nr_xcrs = 1;
4591 	guest_xcrs->flags = 0;
4592 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4593 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4594 }
4595 
4596 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4597 				       struct kvm_xcrs *guest_xcrs)
4598 {
4599 	int i, r = 0;
4600 
4601 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4602 		return -EINVAL;
4603 
4604 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4605 		return -EINVAL;
4606 
4607 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4608 		/* Only support XCR0 currently */
4609 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4610 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4611 				guest_xcrs->xcrs[i].value);
4612 			break;
4613 		}
4614 	if (r)
4615 		r = -EINVAL;
4616 	return r;
4617 }
4618 
4619 /*
4620  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4621  * stopped by the hypervisor.  This function will be called from the host only.
4622  * EINVAL is returned when the host attempts to set the flag for a guest that
4623  * does not support pv clocks.
4624  */
4625 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4626 {
4627 	if (!vcpu->arch.pv_time_enabled)
4628 		return -EINVAL;
4629 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4630 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4631 	return 0;
4632 }
4633 
4634 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4635 				     struct kvm_enable_cap *cap)
4636 {
4637 	int r;
4638 	uint16_t vmcs_version;
4639 	void __user *user_ptr;
4640 
4641 	if (cap->flags)
4642 		return -EINVAL;
4643 
4644 	switch (cap->cap) {
4645 	case KVM_CAP_HYPERV_SYNIC2:
4646 		if (cap->args[0])
4647 			return -EINVAL;
4648 		fallthrough;
4649 
4650 	case KVM_CAP_HYPERV_SYNIC:
4651 		if (!irqchip_in_kernel(vcpu->kvm))
4652 			return -EINVAL;
4653 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4654 					     KVM_CAP_HYPERV_SYNIC2);
4655 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4656 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4657 			return -ENOTTY;
4658 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4659 		if (!r) {
4660 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4661 			if (copy_to_user(user_ptr, &vmcs_version,
4662 					 sizeof(vmcs_version)))
4663 				r = -EFAULT;
4664 		}
4665 		return r;
4666 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4667 		if (!kvm_x86_ops.enable_direct_tlbflush)
4668 			return -ENOTTY;
4669 
4670 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4671 
4672 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4673 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4674 		if (vcpu->arch.pv_cpuid.enforce)
4675 			kvm_update_pv_runtime(vcpu);
4676 
4677 		return 0;
4678 
4679 	default:
4680 		return -EINVAL;
4681 	}
4682 }
4683 
4684 long kvm_arch_vcpu_ioctl(struct file *filp,
4685 			 unsigned int ioctl, unsigned long arg)
4686 {
4687 	struct kvm_vcpu *vcpu = filp->private_data;
4688 	void __user *argp = (void __user *)arg;
4689 	int r;
4690 	union {
4691 		struct kvm_lapic_state *lapic;
4692 		struct kvm_xsave *xsave;
4693 		struct kvm_xcrs *xcrs;
4694 		void *buffer;
4695 	} u;
4696 
4697 	vcpu_load(vcpu);
4698 
4699 	u.buffer = NULL;
4700 	switch (ioctl) {
4701 	case KVM_GET_LAPIC: {
4702 		r = -EINVAL;
4703 		if (!lapic_in_kernel(vcpu))
4704 			goto out;
4705 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4706 				GFP_KERNEL_ACCOUNT);
4707 
4708 		r = -ENOMEM;
4709 		if (!u.lapic)
4710 			goto out;
4711 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4712 		if (r)
4713 			goto out;
4714 		r = -EFAULT;
4715 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4716 			goto out;
4717 		r = 0;
4718 		break;
4719 	}
4720 	case KVM_SET_LAPIC: {
4721 		r = -EINVAL;
4722 		if (!lapic_in_kernel(vcpu))
4723 			goto out;
4724 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4725 		if (IS_ERR(u.lapic)) {
4726 			r = PTR_ERR(u.lapic);
4727 			goto out_nofree;
4728 		}
4729 
4730 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4731 		break;
4732 	}
4733 	case KVM_INTERRUPT: {
4734 		struct kvm_interrupt irq;
4735 
4736 		r = -EFAULT;
4737 		if (copy_from_user(&irq, argp, sizeof(irq)))
4738 			goto out;
4739 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4740 		break;
4741 	}
4742 	case KVM_NMI: {
4743 		r = kvm_vcpu_ioctl_nmi(vcpu);
4744 		break;
4745 	}
4746 	case KVM_SMI: {
4747 		r = kvm_vcpu_ioctl_smi(vcpu);
4748 		break;
4749 	}
4750 	case KVM_SET_CPUID: {
4751 		struct kvm_cpuid __user *cpuid_arg = argp;
4752 		struct kvm_cpuid cpuid;
4753 
4754 		r = -EFAULT;
4755 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4756 			goto out;
4757 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4758 		break;
4759 	}
4760 	case KVM_SET_CPUID2: {
4761 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4762 		struct kvm_cpuid2 cpuid;
4763 
4764 		r = -EFAULT;
4765 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4766 			goto out;
4767 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4768 					      cpuid_arg->entries);
4769 		break;
4770 	}
4771 	case KVM_GET_CPUID2: {
4772 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4773 		struct kvm_cpuid2 cpuid;
4774 
4775 		r = -EFAULT;
4776 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4777 			goto out;
4778 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4779 					      cpuid_arg->entries);
4780 		if (r)
4781 			goto out;
4782 		r = -EFAULT;
4783 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4784 			goto out;
4785 		r = 0;
4786 		break;
4787 	}
4788 	case KVM_GET_MSRS: {
4789 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4790 		r = msr_io(vcpu, argp, do_get_msr, 1);
4791 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4792 		break;
4793 	}
4794 	case KVM_SET_MSRS: {
4795 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4796 		r = msr_io(vcpu, argp, do_set_msr, 0);
4797 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4798 		break;
4799 	}
4800 	case KVM_TPR_ACCESS_REPORTING: {
4801 		struct kvm_tpr_access_ctl tac;
4802 
4803 		r = -EFAULT;
4804 		if (copy_from_user(&tac, argp, sizeof(tac)))
4805 			goto out;
4806 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4807 		if (r)
4808 			goto out;
4809 		r = -EFAULT;
4810 		if (copy_to_user(argp, &tac, sizeof(tac)))
4811 			goto out;
4812 		r = 0;
4813 		break;
4814 	};
4815 	case KVM_SET_VAPIC_ADDR: {
4816 		struct kvm_vapic_addr va;
4817 		int idx;
4818 
4819 		r = -EINVAL;
4820 		if (!lapic_in_kernel(vcpu))
4821 			goto out;
4822 		r = -EFAULT;
4823 		if (copy_from_user(&va, argp, sizeof(va)))
4824 			goto out;
4825 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4826 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4827 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4828 		break;
4829 	}
4830 	case KVM_X86_SETUP_MCE: {
4831 		u64 mcg_cap;
4832 
4833 		r = -EFAULT;
4834 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4835 			goto out;
4836 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4837 		break;
4838 	}
4839 	case KVM_X86_SET_MCE: {
4840 		struct kvm_x86_mce mce;
4841 
4842 		r = -EFAULT;
4843 		if (copy_from_user(&mce, argp, sizeof(mce)))
4844 			goto out;
4845 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4846 		break;
4847 	}
4848 	case KVM_GET_VCPU_EVENTS: {
4849 		struct kvm_vcpu_events events;
4850 
4851 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4852 
4853 		r = -EFAULT;
4854 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4855 			break;
4856 		r = 0;
4857 		break;
4858 	}
4859 	case KVM_SET_VCPU_EVENTS: {
4860 		struct kvm_vcpu_events events;
4861 
4862 		r = -EFAULT;
4863 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4864 			break;
4865 
4866 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4867 		break;
4868 	}
4869 	case KVM_GET_DEBUGREGS: {
4870 		struct kvm_debugregs dbgregs;
4871 
4872 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4873 
4874 		r = -EFAULT;
4875 		if (copy_to_user(argp, &dbgregs,
4876 				 sizeof(struct kvm_debugregs)))
4877 			break;
4878 		r = 0;
4879 		break;
4880 	}
4881 	case KVM_SET_DEBUGREGS: {
4882 		struct kvm_debugregs dbgregs;
4883 
4884 		r = -EFAULT;
4885 		if (copy_from_user(&dbgregs, argp,
4886 				   sizeof(struct kvm_debugregs)))
4887 			break;
4888 
4889 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4890 		break;
4891 	}
4892 	case KVM_GET_XSAVE: {
4893 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4894 		r = -ENOMEM;
4895 		if (!u.xsave)
4896 			break;
4897 
4898 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4899 
4900 		r = -EFAULT;
4901 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4902 			break;
4903 		r = 0;
4904 		break;
4905 	}
4906 	case KVM_SET_XSAVE: {
4907 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4908 		if (IS_ERR(u.xsave)) {
4909 			r = PTR_ERR(u.xsave);
4910 			goto out_nofree;
4911 		}
4912 
4913 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4914 		break;
4915 	}
4916 	case KVM_GET_XCRS: {
4917 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4918 		r = -ENOMEM;
4919 		if (!u.xcrs)
4920 			break;
4921 
4922 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4923 
4924 		r = -EFAULT;
4925 		if (copy_to_user(argp, u.xcrs,
4926 				 sizeof(struct kvm_xcrs)))
4927 			break;
4928 		r = 0;
4929 		break;
4930 	}
4931 	case KVM_SET_XCRS: {
4932 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4933 		if (IS_ERR(u.xcrs)) {
4934 			r = PTR_ERR(u.xcrs);
4935 			goto out_nofree;
4936 		}
4937 
4938 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4939 		break;
4940 	}
4941 	case KVM_SET_TSC_KHZ: {
4942 		u32 user_tsc_khz;
4943 
4944 		r = -EINVAL;
4945 		user_tsc_khz = (u32)arg;
4946 
4947 		if (kvm_has_tsc_control &&
4948 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4949 			goto out;
4950 
4951 		if (user_tsc_khz == 0)
4952 			user_tsc_khz = tsc_khz;
4953 
4954 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4955 			r = 0;
4956 
4957 		goto out;
4958 	}
4959 	case KVM_GET_TSC_KHZ: {
4960 		r = vcpu->arch.virtual_tsc_khz;
4961 		goto out;
4962 	}
4963 	case KVM_KVMCLOCK_CTRL: {
4964 		r = kvm_set_guest_paused(vcpu);
4965 		goto out;
4966 	}
4967 	case KVM_ENABLE_CAP: {
4968 		struct kvm_enable_cap cap;
4969 
4970 		r = -EFAULT;
4971 		if (copy_from_user(&cap, argp, sizeof(cap)))
4972 			goto out;
4973 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4974 		break;
4975 	}
4976 	case KVM_GET_NESTED_STATE: {
4977 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4978 		u32 user_data_size;
4979 
4980 		r = -EINVAL;
4981 		if (!kvm_x86_ops.nested_ops->get_state)
4982 			break;
4983 
4984 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4985 		r = -EFAULT;
4986 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4987 			break;
4988 
4989 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4990 						     user_data_size);
4991 		if (r < 0)
4992 			break;
4993 
4994 		if (r > user_data_size) {
4995 			if (put_user(r, &user_kvm_nested_state->size))
4996 				r = -EFAULT;
4997 			else
4998 				r = -E2BIG;
4999 			break;
5000 		}
5001 
5002 		r = 0;
5003 		break;
5004 	}
5005 	case KVM_SET_NESTED_STATE: {
5006 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5007 		struct kvm_nested_state kvm_state;
5008 		int idx;
5009 
5010 		r = -EINVAL;
5011 		if (!kvm_x86_ops.nested_ops->set_state)
5012 			break;
5013 
5014 		r = -EFAULT;
5015 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5016 			break;
5017 
5018 		r = -EINVAL;
5019 		if (kvm_state.size < sizeof(kvm_state))
5020 			break;
5021 
5022 		if (kvm_state.flags &
5023 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5024 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5025 		      | KVM_STATE_NESTED_GIF_SET))
5026 			break;
5027 
5028 		/* nested_run_pending implies guest_mode.  */
5029 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5030 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5031 			break;
5032 
5033 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5034 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5035 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5036 		break;
5037 	}
5038 	case KVM_GET_SUPPORTED_HV_CPUID:
5039 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5040 		break;
5041 #ifdef CONFIG_KVM_XEN
5042 	case KVM_XEN_VCPU_GET_ATTR: {
5043 		struct kvm_xen_vcpu_attr xva;
5044 
5045 		r = -EFAULT;
5046 		if (copy_from_user(&xva, argp, sizeof(xva)))
5047 			goto out;
5048 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5049 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5050 			r = -EFAULT;
5051 		break;
5052 	}
5053 	case KVM_XEN_VCPU_SET_ATTR: {
5054 		struct kvm_xen_vcpu_attr xva;
5055 
5056 		r = -EFAULT;
5057 		if (copy_from_user(&xva, argp, sizeof(xva)))
5058 			goto out;
5059 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5060 		break;
5061 	}
5062 #endif
5063 	default:
5064 		r = -EINVAL;
5065 	}
5066 out:
5067 	kfree(u.buffer);
5068 out_nofree:
5069 	vcpu_put(vcpu);
5070 	return r;
5071 }
5072 
5073 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5074 {
5075 	return VM_FAULT_SIGBUS;
5076 }
5077 
5078 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5079 {
5080 	int ret;
5081 
5082 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5083 		return -EINVAL;
5084 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5085 	return ret;
5086 }
5087 
5088 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5089 					      u64 ident_addr)
5090 {
5091 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5092 }
5093 
5094 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5095 					 unsigned long kvm_nr_mmu_pages)
5096 {
5097 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5098 		return -EINVAL;
5099 
5100 	mutex_lock(&kvm->slots_lock);
5101 
5102 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5103 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5104 
5105 	mutex_unlock(&kvm->slots_lock);
5106 	return 0;
5107 }
5108 
5109 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5110 {
5111 	return kvm->arch.n_max_mmu_pages;
5112 }
5113 
5114 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5115 {
5116 	struct kvm_pic *pic = kvm->arch.vpic;
5117 	int r;
5118 
5119 	r = 0;
5120 	switch (chip->chip_id) {
5121 	case KVM_IRQCHIP_PIC_MASTER:
5122 		memcpy(&chip->chip.pic, &pic->pics[0],
5123 			sizeof(struct kvm_pic_state));
5124 		break;
5125 	case KVM_IRQCHIP_PIC_SLAVE:
5126 		memcpy(&chip->chip.pic, &pic->pics[1],
5127 			sizeof(struct kvm_pic_state));
5128 		break;
5129 	case KVM_IRQCHIP_IOAPIC:
5130 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5131 		break;
5132 	default:
5133 		r = -EINVAL;
5134 		break;
5135 	}
5136 	return r;
5137 }
5138 
5139 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5140 {
5141 	struct kvm_pic *pic = kvm->arch.vpic;
5142 	int r;
5143 
5144 	r = 0;
5145 	switch (chip->chip_id) {
5146 	case KVM_IRQCHIP_PIC_MASTER:
5147 		spin_lock(&pic->lock);
5148 		memcpy(&pic->pics[0], &chip->chip.pic,
5149 			sizeof(struct kvm_pic_state));
5150 		spin_unlock(&pic->lock);
5151 		break;
5152 	case KVM_IRQCHIP_PIC_SLAVE:
5153 		spin_lock(&pic->lock);
5154 		memcpy(&pic->pics[1], &chip->chip.pic,
5155 			sizeof(struct kvm_pic_state));
5156 		spin_unlock(&pic->lock);
5157 		break;
5158 	case KVM_IRQCHIP_IOAPIC:
5159 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5160 		break;
5161 	default:
5162 		r = -EINVAL;
5163 		break;
5164 	}
5165 	kvm_pic_update_irq(pic);
5166 	return r;
5167 }
5168 
5169 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5170 {
5171 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5172 
5173 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5174 
5175 	mutex_lock(&kps->lock);
5176 	memcpy(ps, &kps->channels, sizeof(*ps));
5177 	mutex_unlock(&kps->lock);
5178 	return 0;
5179 }
5180 
5181 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5182 {
5183 	int i;
5184 	struct kvm_pit *pit = kvm->arch.vpit;
5185 
5186 	mutex_lock(&pit->pit_state.lock);
5187 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5188 	for (i = 0; i < 3; i++)
5189 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5190 	mutex_unlock(&pit->pit_state.lock);
5191 	return 0;
5192 }
5193 
5194 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5195 {
5196 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5197 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5198 		sizeof(ps->channels));
5199 	ps->flags = kvm->arch.vpit->pit_state.flags;
5200 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5201 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5202 	return 0;
5203 }
5204 
5205 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5206 {
5207 	int start = 0;
5208 	int i;
5209 	u32 prev_legacy, cur_legacy;
5210 	struct kvm_pit *pit = kvm->arch.vpit;
5211 
5212 	mutex_lock(&pit->pit_state.lock);
5213 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5214 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5215 	if (!prev_legacy && cur_legacy)
5216 		start = 1;
5217 	memcpy(&pit->pit_state.channels, &ps->channels,
5218 	       sizeof(pit->pit_state.channels));
5219 	pit->pit_state.flags = ps->flags;
5220 	for (i = 0; i < 3; i++)
5221 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5222 				   start && i == 0);
5223 	mutex_unlock(&pit->pit_state.lock);
5224 	return 0;
5225 }
5226 
5227 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5228 				 struct kvm_reinject_control *control)
5229 {
5230 	struct kvm_pit *pit = kvm->arch.vpit;
5231 
5232 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5233 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5234 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5235 	 */
5236 	mutex_lock(&pit->pit_state.lock);
5237 	kvm_pit_set_reinject(pit, control->pit_reinject);
5238 	mutex_unlock(&pit->pit_state.lock);
5239 
5240 	return 0;
5241 }
5242 
5243 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5244 {
5245 
5246 	/*
5247 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5248 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5249 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5250 	 * VM-Exit.
5251 	 */
5252 	struct kvm_vcpu *vcpu;
5253 	int i;
5254 
5255 	kvm_for_each_vcpu(i, vcpu, kvm)
5256 		kvm_vcpu_kick(vcpu);
5257 }
5258 
5259 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5260 			bool line_status)
5261 {
5262 	if (!irqchip_in_kernel(kvm))
5263 		return -ENXIO;
5264 
5265 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5266 					irq_event->irq, irq_event->level,
5267 					line_status);
5268 	return 0;
5269 }
5270 
5271 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5272 			    struct kvm_enable_cap *cap)
5273 {
5274 	int r;
5275 
5276 	if (cap->flags)
5277 		return -EINVAL;
5278 
5279 	switch (cap->cap) {
5280 	case KVM_CAP_DISABLE_QUIRKS:
5281 		kvm->arch.disabled_quirks = cap->args[0];
5282 		r = 0;
5283 		break;
5284 	case KVM_CAP_SPLIT_IRQCHIP: {
5285 		mutex_lock(&kvm->lock);
5286 		r = -EINVAL;
5287 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5288 			goto split_irqchip_unlock;
5289 		r = -EEXIST;
5290 		if (irqchip_in_kernel(kvm))
5291 			goto split_irqchip_unlock;
5292 		if (kvm->created_vcpus)
5293 			goto split_irqchip_unlock;
5294 		r = kvm_setup_empty_irq_routing(kvm);
5295 		if (r)
5296 			goto split_irqchip_unlock;
5297 		/* Pairs with irqchip_in_kernel. */
5298 		smp_wmb();
5299 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5300 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5301 		r = 0;
5302 split_irqchip_unlock:
5303 		mutex_unlock(&kvm->lock);
5304 		break;
5305 	}
5306 	case KVM_CAP_X2APIC_API:
5307 		r = -EINVAL;
5308 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5309 			break;
5310 
5311 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5312 			kvm->arch.x2apic_format = true;
5313 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5314 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5315 
5316 		r = 0;
5317 		break;
5318 	case KVM_CAP_X86_DISABLE_EXITS:
5319 		r = -EINVAL;
5320 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5321 			break;
5322 
5323 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5324 			kvm_can_mwait_in_guest())
5325 			kvm->arch.mwait_in_guest = true;
5326 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5327 			kvm->arch.hlt_in_guest = true;
5328 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5329 			kvm->arch.pause_in_guest = true;
5330 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5331 			kvm->arch.cstate_in_guest = true;
5332 		r = 0;
5333 		break;
5334 	case KVM_CAP_MSR_PLATFORM_INFO:
5335 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5336 		r = 0;
5337 		break;
5338 	case KVM_CAP_EXCEPTION_PAYLOAD:
5339 		kvm->arch.exception_payload_enabled = cap->args[0];
5340 		r = 0;
5341 		break;
5342 	case KVM_CAP_X86_USER_SPACE_MSR:
5343 		kvm->arch.user_space_msr_mask = cap->args[0];
5344 		r = 0;
5345 		break;
5346 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5347 		r = -EINVAL;
5348 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5349 			break;
5350 
5351 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5352 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5353 			break;
5354 
5355 		if (kvm_has_bus_lock_exit &&
5356 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5357 			kvm->arch.bus_lock_detection_enabled = true;
5358 		r = 0;
5359 		break;
5360 	default:
5361 		r = -EINVAL;
5362 		break;
5363 	}
5364 	return r;
5365 }
5366 
5367 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5368 {
5369 	struct kvm_x86_msr_filter *msr_filter;
5370 
5371 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5372 	if (!msr_filter)
5373 		return NULL;
5374 
5375 	msr_filter->default_allow = default_allow;
5376 	return msr_filter;
5377 }
5378 
5379 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5380 {
5381 	u32 i;
5382 
5383 	if (!msr_filter)
5384 		return;
5385 
5386 	for (i = 0; i < msr_filter->count; i++)
5387 		kfree(msr_filter->ranges[i].bitmap);
5388 
5389 	kfree(msr_filter);
5390 }
5391 
5392 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5393 			      struct kvm_msr_filter_range *user_range)
5394 {
5395 	struct msr_bitmap_range range;
5396 	unsigned long *bitmap = NULL;
5397 	size_t bitmap_size;
5398 	int r;
5399 
5400 	if (!user_range->nmsrs)
5401 		return 0;
5402 
5403 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5404 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5405 		return -EINVAL;
5406 
5407 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5408 	if (IS_ERR(bitmap))
5409 		return PTR_ERR(bitmap);
5410 
5411 	range = (struct msr_bitmap_range) {
5412 		.flags = user_range->flags,
5413 		.base = user_range->base,
5414 		.nmsrs = user_range->nmsrs,
5415 		.bitmap = bitmap,
5416 	};
5417 
5418 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5419 		r = -EINVAL;
5420 		goto err;
5421 	}
5422 
5423 	if (!range.flags) {
5424 		r = -EINVAL;
5425 		goto err;
5426 	}
5427 
5428 	/* Everything ok, add this range identifier. */
5429 	msr_filter->ranges[msr_filter->count] = range;
5430 	msr_filter->count++;
5431 
5432 	return 0;
5433 err:
5434 	kfree(bitmap);
5435 	return r;
5436 }
5437 
5438 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5439 {
5440 	struct kvm_msr_filter __user *user_msr_filter = argp;
5441 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5442 	struct kvm_msr_filter filter;
5443 	bool default_allow;
5444 	bool empty = true;
5445 	int r = 0;
5446 	u32 i;
5447 
5448 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5449 		return -EFAULT;
5450 
5451 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5452 		empty &= !filter.ranges[i].nmsrs;
5453 
5454 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5455 	if (empty && !default_allow)
5456 		return -EINVAL;
5457 
5458 	new_filter = kvm_alloc_msr_filter(default_allow);
5459 	if (!new_filter)
5460 		return -ENOMEM;
5461 
5462 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5463 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5464 		if (r) {
5465 			kvm_free_msr_filter(new_filter);
5466 			return r;
5467 		}
5468 	}
5469 
5470 	mutex_lock(&kvm->lock);
5471 
5472 	/* The per-VM filter is protected by kvm->lock... */
5473 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5474 
5475 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5476 	synchronize_srcu(&kvm->srcu);
5477 
5478 	kvm_free_msr_filter(old_filter);
5479 
5480 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5481 	mutex_unlock(&kvm->lock);
5482 
5483 	return 0;
5484 }
5485 
5486 long kvm_arch_vm_ioctl(struct file *filp,
5487 		       unsigned int ioctl, unsigned long arg)
5488 {
5489 	struct kvm *kvm = filp->private_data;
5490 	void __user *argp = (void __user *)arg;
5491 	int r = -ENOTTY;
5492 	/*
5493 	 * This union makes it completely explicit to gcc-3.x
5494 	 * that these two variables' stack usage should be
5495 	 * combined, not added together.
5496 	 */
5497 	union {
5498 		struct kvm_pit_state ps;
5499 		struct kvm_pit_state2 ps2;
5500 		struct kvm_pit_config pit_config;
5501 	} u;
5502 
5503 	switch (ioctl) {
5504 	case KVM_SET_TSS_ADDR:
5505 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5506 		break;
5507 	case KVM_SET_IDENTITY_MAP_ADDR: {
5508 		u64 ident_addr;
5509 
5510 		mutex_lock(&kvm->lock);
5511 		r = -EINVAL;
5512 		if (kvm->created_vcpus)
5513 			goto set_identity_unlock;
5514 		r = -EFAULT;
5515 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5516 			goto set_identity_unlock;
5517 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5518 set_identity_unlock:
5519 		mutex_unlock(&kvm->lock);
5520 		break;
5521 	}
5522 	case KVM_SET_NR_MMU_PAGES:
5523 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5524 		break;
5525 	case KVM_GET_NR_MMU_PAGES:
5526 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5527 		break;
5528 	case KVM_CREATE_IRQCHIP: {
5529 		mutex_lock(&kvm->lock);
5530 
5531 		r = -EEXIST;
5532 		if (irqchip_in_kernel(kvm))
5533 			goto create_irqchip_unlock;
5534 
5535 		r = -EINVAL;
5536 		if (kvm->created_vcpus)
5537 			goto create_irqchip_unlock;
5538 
5539 		r = kvm_pic_init(kvm);
5540 		if (r)
5541 			goto create_irqchip_unlock;
5542 
5543 		r = kvm_ioapic_init(kvm);
5544 		if (r) {
5545 			kvm_pic_destroy(kvm);
5546 			goto create_irqchip_unlock;
5547 		}
5548 
5549 		r = kvm_setup_default_irq_routing(kvm);
5550 		if (r) {
5551 			kvm_ioapic_destroy(kvm);
5552 			kvm_pic_destroy(kvm);
5553 			goto create_irqchip_unlock;
5554 		}
5555 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5556 		smp_wmb();
5557 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5558 	create_irqchip_unlock:
5559 		mutex_unlock(&kvm->lock);
5560 		break;
5561 	}
5562 	case KVM_CREATE_PIT:
5563 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5564 		goto create_pit;
5565 	case KVM_CREATE_PIT2:
5566 		r = -EFAULT;
5567 		if (copy_from_user(&u.pit_config, argp,
5568 				   sizeof(struct kvm_pit_config)))
5569 			goto out;
5570 	create_pit:
5571 		mutex_lock(&kvm->lock);
5572 		r = -EEXIST;
5573 		if (kvm->arch.vpit)
5574 			goto create_pit_unlock;
5575 		r = -ENOMEM;
5576 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5577 		if (kvm->arch.vpit)
5578 			r = 0;
5579 	create_pit_unlock:
5580 		mutex_unlock(&kvm->lock);
5581 		break;
5582 	case KVM_GET_IRQCHIP: {
5583 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5584 		struct kvm_irqchip *chip;
5585 
5586 		chip = memdup_user(argp, sizeof(*chip));
5587 		if (IS_ERR(chip)) {
5588 			r = PTR_ERR(chip);
5589 			goto out;
5590 		}
5591 
5592 		r = -ENXIO;
5593 		if (!irqchip_kernel(kvm))
5594 			goto get_irqchip_out;
5595 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5596 		if (r)
5597 			goto get_irqchip_out;
5598 		r = -EFAULT;
5599 		if (copy_to_user(argp, chip, sizeof(*chip)))
5600 			goto get_irqchip_out;
5601 		r = 0;
5602 	get_irqchip_out:
5603 		kfree(chip);
5604 		break;
5605 	}
5606 	case KVM_SET_IRQCHIP: {
5607 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5608 		struct kvm_irqchip *chip;
5609 
5610 		chip = memdup_user(argp, sizeof(*chip));
5611 		if (IS_ERR(chip)) {
5612 			r = PTR_ERR(chip);
5613 			goto out;
5614 		}
5615 
5616 		r = -ENXIO;
5617 		if (!irqchip_kernel(kvm))
5618 			goto set_irqchip_out;
5619 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5620 	set_irqchip_out:
5621 		kfree(chip);
5622 		break;
5623 	}
5624 	case KVM_GET_PIT: {
5625 		r = -EFAULT;
5626 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5627 			goto out;
5628 		r = -ENXIO;
5629 		if (!kvm->arch.vpit)
5630 			goto out;
5631 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5632 		if (r)
5633 			goto out;
5634 		r = -EFAULT;
5635 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5636 			goto out;
5637 		r = 0;
5638 		break;
5639 	}
5640 	case KVM_SET_PIT: {
5641 		r = -EFAULT;
5642 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5643 			goto out;
5644 		mutex_lock(&kvm->lock);
5645 		r = -ENXIO;
5646 		if (!kvm->arch.vpit)
5647 			goto set_pit_out;
5648 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5649 set_pit_out:
5650 		mutex_unlock(&kvm->lock);
5651 		break;
5652 	}
5653 	case KVM_GET_PIT2: {
5654 		r = -ENXIO;
5655 		if (!kvm->arch.vpit)
5656 			goto out;
5657 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5658 		if (r)
5659 			goto out;
5660 		r = -EFAULT;
5661 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5662 			goto out;
5663 		r = 0;
5664 		break;
5665 	}
5666 	case KVM_SET_PIT2: {
5667 		r = -EFAULT;
5668 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5669 			goto out;
5670 		mutex_lock(&kvm->lock);
5671 		r = -ENXIO;
5672 		if (!kvm->arch.vpit)
5673 			goto set_pit2_out;
5674 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5675 set_pit2_out:
5676 		mutex_unlock(&kvm->lock);
5677 		break;
5678 	}
5679 	case KVM_REINJECT_CONTROL: {
5680 		struct kvm_reinject_control control;
5681 		r =  -EFAULT;
5682 		if (copy_from_user(&control, argp, sizeof(control)))
5683 			goto out;
5684 		r = -ENXIO;
5685 		if (!kvm->arch.vpit)
5686 			goto out;
5687 		r = kvm_vm_ioctl_reinject(kvm, &control);
5688 		break;
5689 	}
5690 	case KVM_SET_BOOT_CPU_ID:
5691 		r = 0;
5692 		mutex_lock(&kvm->lock);
5693 		if (kvm->created_vcpus)
5694 			r = -EBUSY;
5695 		else
5696 			kvm->arch.bsp_vcpu_id = arg;
5697 		mutex_unlock(&kvm->lock);
5698 		break;
5699 #ifdef CONFIG_KVM_XEN
5700 	case KVM_XEN_HVM_CONFIG: {
5701 		struct kvm_xen_hvm_config xhc;
5702 		r = -EFAULT;
5703 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5704 			goto out;
5705 		r = kvm_xen_hvm_config(kvm, &xhc);
5706 		break;
5707 	}
5708 	case KVM_XEN_HVM_GET_ATTR: {
5709 		struct kvm_xen_hvm_attr xha;
5710 
5711 		r = -EFAULT;
5712 		if (copy_from_user(&xha, argp, sizeof(xha)))
5713 			goto out;
5714 		r = kvm_xen_hvm_get_attr(kvm, &xha);
5715 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5716 			r = -EFAULT;
5717 		break;
5718 	}
5719 	case KVM_XEN_HVM_SET_ATTR: {
5720 		struct kvm_xen_hvm_attr xha;
5721 
5722 		r = -EFAULT;
5723 		if (copy_from_user(&xha, argp, sizeof(xha)))
5724 			goto out;
5725 		r = kvm_xen_hvm_set_attr(kvm, &xha);
5726 		break;
5727 	}
5728 #endif
5729 	case KVM_SET_CLOCK: {
5730 		struct kvm_arch *ka = &kvm->arch;
5731 		struct kvm_clock_data user_ns;
5732 		u64 now_ns;
5733 
5734 		r = -EFAULT;
5735 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5736 			goto out;
5737 
5738 		r = -EINVAL;
5739 		if (user_ns.flags)
5740 			goto out;
5741 
5742 		r = 0;
5743 		/*
5744 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5745 		 * kvm_gen_update_masterclock() can be cut down to locked
5746 		 * pvclock_update_vm_gtod_copy().
5747 		 */
5748 		kvm_gen_update_masterclock(kvm);
5749 
5750 		/*
5751 		 * This pairs with kvm_guest_time_update(): when masterclock is
5752 		 * in use, we use master_kernel_ns + kvmclock_offset to set
5753 		 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5754 		 * is slightly ahead) here we risk going negative on unsigned
5755 		 * 'system_time' when 'user_ns.clock' is very small.
5756 		 */
5757 		spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5758 		if (kvm->arch.use_master_clock)
5759 			now_ns = ka->master_kernel_ns;
5760 		else
5761 			now_ns = get_kvmclock_base_ns();
5762 		ka->kvmclock_offset = user_ns.clock - now_ns;
5763 		spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5764 
5765 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5766 		break;
5767 	}
5768 	case KVM_GET_CLOCK: {
5769 		struct kvm_clock_data user_ns;
5770 		u64 now_ns;
5771 
5772 		now_ns = get_kvmclock_ns(kvm);
5773 		user_ns.clock = now_ns;
5774 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5775 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5776 
5777 		r = -EFAULT;
5778 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5779 			goto out;
5780 		r = 0;
5781 		break;
5782 	}
5783 	case KVM_MEMORY_ENCRYPT_OP: {
5784 		r = -ENOTTY;
5785 		if (kvm_x86_ops.mem_enc_op)
5786 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5787 		break;
5788 	}
5789 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5790 		struct kvm_enc_region region;
5791 
5792 		r = -EFAULT;
5793 		if (copy_from_user(&region, argp, sizeof(region)))
5794 			goto out;
5795 
5796 		r = -ENOTTY;
5797 		if (kvm_x86_ops.mem_enc_reg_region)
5798 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5799 		break;
5800 	}
5801 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5802 		struct kvm_enc_region region;
5803 
5804 		r = -EFAULT;
5805 		if (copy_from_user(&region, argp, sizeof(region)))
5806 			goto out;
5807 
5808 		r = -ENOTTY;
5809 		if (kvm_x86_ops.mem_enc_unreg_region)
5810 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5811 		break;
5812 	}
5813 	case KVM_HYPERV_EVENTFD: {
5814 		struct kvm_hyperv_eventfd hvevfd;
5815 
5816 		r = -EFAULT;
5817 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5818 			goto out;
5819 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5820 		break;
5821 	}
5822 	case KVM_SET_PMU_EVENT_FILTER:
5823 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5824 		break;
5825 	case KVM_X86_SET_MSR_FILTER:
5826 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5827 		break;
5828 	default:
5829 		r = -ENOTTY;
5830 	}
5831 out:
5832 	return r;
5833 }
5834 
5835 static void kvm_init_msr_list(void)
5836 {
5837 	struct x86_pmu_capability x86_pmu;
5838 	u32 dummy[2];
5839 	unsigned i;
5840 
5841 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5842 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5843 
5844 	perf_get_x86_pmu_capability(&x86_pmu);
5845 
5846 	num_msrs_to_save = 0;
5847 	num_emulated_msrs = 0;
5848 	num_msr_based_features = 0;
5849 
5850 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5851 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5852 			continue;
5853 
5854 		/*
5855 		 * Even MSRs that are valid in the host may not be exposed
5856 		 * to the guests in some cases.
5857 		 */
5858 		switch (msrs_to_save_all[i]) {
5859 		case MSR_IA32_BNDCFGS:
5860 			if (!kvm_mpx_supported())
5861 				continue;
5862 			break;
5863 		case MSR_TSC_AUX:
5864 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5865 				continue;
5866 			break;
5867 		case MSR_IA32_UMWAIT_CONTROL:
5868 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5869 				continue;
5870 			break;
5871 		case MSR_IA32_RTIT_CTL:
5872 		case MSR_IA32_RTIT_STATUS:
5873 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5874 				continue;
5875 			break;
5876 		case MSR_IA32_RTIT_CR3_MATCH:
5877 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5878 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5879 				continue;
5880 			break;
5881 		case MSR_IA32_RTIT_OUTPUT_BASE:
5882 		case MSR_IA32_RTIT_OUTPUT_MASK:
5883 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5884 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5885 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5886 				continue;
5887 			break;
5888 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5889 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5890 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5891 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5892 				continue;
5893 			break;
5894 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5895 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5896 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5897 				continue;
5898 			break;
5899 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5900 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5901 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5902 				continue;
5903 			break;
5904 		default:
5905 			break;
5906 		}
5907 
5908 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5909 	}
5910 
5911 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5912 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5913 			continue;
5914 
5915 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5916 	}
5917 
5918 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5919 		struct kvm_msr_entry msr;
5920 
5921 		msr.index = msr_based_features_all[i];
5922 		if (kvm_get_msr_feature(&msr))
5923 			continue;
5924 
5925 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5926 	}
5927 }
5928 
5929 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5930 			   const void *v)
5931 {
5932 	int handled = 0;
5933 	int n;
5934 
5935 	do {
5936 		n = min(len, 8);
5937 		if (!(lapic_in_kernel(vcpu) &&
5938 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5939 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5940 			break;
5941 		handled += n;
5942 		addr += n;
5943 		len -= n;
5944 		v += n;
5945 	} while (len);
5946 
5947 	return handled;
5948 }
5949 
5950 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5951 {
5952 	int handled = 0;
5953 	int n;
5954 
5955 	do {
5956 		n = min(len, 8);
5957 		if (!(lapic_in_kernel(vcpu) &&
5958 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5959 					 addr, n, v))
5960 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5961 			break;
5962 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5963 		handled += n;
5964 		addr += n;
5965 		len -= n;
5966 		v += n;
5967 	} while (len);
5968 
5969 	return handled;
5970 }
5971 
5972 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5973 			struct kvm_segment *var, int seg)
5974 {
5975 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
5976 }
5977 
5978 void kvm_get_segment(struct kvm_vcpu *vcpu,
5979 		     struct kvm_segment *var, int seg)
5980 {
5981 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
5982 }
5983 
5984 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5985 			   struct x86_exception *exception)
5986 {
5987 	gpa_t t_gpa;
5988 
5989 	BUG_ON(!mmu_is_nested(vcpu));
5990 
5991 	/* NPT walks are always user-walks */
5992 	access |= PFERR_USER_MASK;
5993 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5994 
5995 	return t_gpa;
5996 }
5997 
5998 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5999 			      struct x86_exception *exception)
6000 {
6001 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6002 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6003 }
6004 
6005  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6006 				struct x86_exception *exception)
6007 {
6008 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6009 	access |= PFERR_FETCH_MASK;
6010 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6011 }
6012 
6013 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6014 			       struct x86_exception *exception)
6015 {
6016 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6017 	access |= PFERR_WRITE_MASK;
6018 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6019 }
6020 
6021 /* uses this to access any guest's mapped memory without checking CPL */
6022 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6023 				struct x86_exception *exception)
6024 {
6025 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6026 }
6027 
6028 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6029 				      struct kvm_vcpu *vcpu, u32 access,
6030 				      struct x86_exception *exception)
6031 {
6032 	void *data = val;
6033 	int r = X86EMUL_CONTINUE;
6034 
6035 	while (bytes) {
6036 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6037 							    exception);
6038 		unsigned offset = addr & (PAGE_SIZE-1);
6039 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6040 		int ret;
6041 
6042 		if (gpa == UNMAPPED_GVA)
6043 			return X86EMUL_PROPAGATE_FAULT;
6044 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6045 					       offset, toread);
6046 		if (ret < 0) {
6047 			r = X86EMUL_IO_NEEDED;
6048 			goto out;
6049 		}
6050 
6051 		bytes -= toread;
6052 		data += toread;
6053 		addr += toread;
6054 	}
6055 out:
6056 	return r;
6057 }
6058 
6059 /* used for instruction fetching */
6060 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6061 				gva_t addr, void *val, unsigned int bytes,
6062 				struct x86_exception *exception)
6063 {
6064 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6065 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6066 	unsigned offset;
6067 	int ret;
6068 
6069 	/* Inline kvm_read_guest_virt_helper for speed.  */
6070 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6071 						    exception);
6072 	if (unlikely(gpa == UNMAPPED_GVA))
6073 		return X86EMUL_PROPAGATE_FAULT;
6074 
6075 	offset = addr & (PAGE_SIZE-1);
6076 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6077 		bytes = (unsigned)PAGE_SIZE - offset;
6078 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6079 				       offset, bytes);
6080 	if (unlikely(ret < 0))
6081 		return X86EMUL_IO_NEEDED;
6082 
6083 	return X86EMUL_CONTINUE;
6084 }
6085 
6086 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6087 			       gva_t addr, void *val, unsigned int bytes,
6088 			       struct x86_exception *exception)
6089 {
6090 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6091 
6092 	/*
6093 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6094 	 * is returned, but our callers are not ready for that and they blindly
6095 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6096 	 * uninitialized kernel stack memory into cr2 and error code.
6097 	 */
6098 	memset(exception, 0, sizeof(*exception));
6099 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6100 					  exception);
6101 }
6102 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6103 
6104 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6105 			     gva_t addr, void *val, unsigned int bytes,
6106 			     struct x86_exception *exception, bool system)
6107 {
6108 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6109 	u32 access = 0;
6110 
6111 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6112 		access |= PFERR_USER_MASK;
6113 
6114 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6115 }
6116 
6117 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6118 		unsigned long addr, void *val, unsigned int bytes)
6119 {
6120 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6121 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6122 
6123 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6124 }
6125 
6126 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6127 				      struct kvm_vcpu *vcpu, u32 access,
6128 				      struct x86_exception *exception)
6129 {
6130 	void *data = val;
6131 	int r = X86EMUL_CONTINUE;
6132 
6133 	while (bytes) {
6134 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6135 							     access,
6136 							     exception);
6137 		unsigned offset = addr & (PAGE_SIZE-1);
6138 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6139 		int ret;
6140 
6141 		if (gpa == UNMAPPED_GVA)
6142 			return X86EMUL_PROPAGATE_FAULT;
6143 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6144 		if (ret < 0) {
6145 			r = X86EMUL_IO_NEEDED;
6146 			goto out;
6147 		}
6148 
6149 		bytes -= towrite;
6150 		data += towrite;
6151 		addr += towrite;
6152 	}
6153 out:
6154 	return r;
6155 }
6156 
6157 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6158 			      unsigned int bytes, struct x86_exception *exception,
6159 			      bool system)
6160 {
6161 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6162 	u32 access = PFERR_WRITE_MASK;
6163 
6164 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6165 		access |= PFERR_USER_MASK;
6166 
6167 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6168 					   access, exception);
6169 }
6170 
6171 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6172 				unsigned int bytes, struct x86_exception *exception)
6173 {
6174 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6175 	vcpu->arch.l1tf_flush_l1d = true;
6176 
6177 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6178 					   PFERR_WRITE_MASK, exception);
6179 }
6180 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6181 
6182 int handle_ud(struct kvm_vcpu *vcpu)
6183 {
6184 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6185 	int emul_type = EMULTYPE_TRAP_UD;
6186 	char sig[5]; /* ud2; .ascii "kvm" */
6187 	struct x86_exception e;
6188 
6189 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6190 		return 1;
6191 
6192 	if (force_emulation_prefix &&
6193 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6194 				sig, sizeof(sig), &e) == 0 &&
6195 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6196 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6197 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6198 	}
6199 
6200 	return kvm_emulate_instruction(vcpu, emul_type);
6201 }
6202 EXPORT_SYMBOL_GPL(handle_ud);
6203 
6204 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6205 			    gpa_t gpa, bool write)
6206 {
6207 	/* For APIC access vmexit */
6208 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6209 		return 1;
6210 
6211 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6212 		trace_vcpu_match_mmio(gva, gpa, write, true);
6213 		return 1;
6214 	}
6215 
6216 	return 0;
6217 }
6218 
6219 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6220 				gpa_t *gpa, struct x86_exception *exception,
6221 				bool write)
6222 {
6223 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6224 		| (write ? PFERR_WRITE_MASK : 0);
6225 
6226 	/*
6227 	 * currently PKRU is only applied to ept enabled guest so
6228 	 * there is no pkey in EPT page table for L1 guest or EPT
6229 	 * shadow page table for L2 guest.
6230 	 */
6231 	if (vcpu_match_mmio_gva(vcpu, gva)
6232 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6233 				 vcpu->arch.mmio_access, 0, access)) {
6234 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6235 					(gva & (PAGE_SIZE - 1));
6236 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6237 		return 1;
6238 	}
6239 
6240 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6241 
6242 	if (*gpa == UNMAPPED_GVA)
6243 		return -1;
6244 
6245 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6246 }
6247 
6248 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6249 			const void *val, int bytes)
6250 {
6251 	int ret;
6252 
6253 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6254 	if (ret < 0)
6255 		return 0;
6256 	kvm_page_track_write(vcpu, gpa, val, bytes);
6257 	return 1;
6258 }
6259 
6260 struct read_write_emulator_ops {
6261 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6262 				  int bytes);
6263 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6264 				  void *val, int bytes);
6265 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6266 			       int bytes, void *val);
6267 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6268 				    void *val, int bytes);
6269 	bool write;
6270 };
6271 
6272 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6273 {
6274 	if (vcpu->mmio_read_completed) {
6275 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6276 			       vcpu->mmio_fragments[0].gpa, val);
6277 		vcpu->mmio_read_completed = 0;
6278 		return 1;
6279 	}
6280 
6281 	return 0;
6282 }
6283 
6284 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6285 			void *val, int bytes)
6286 {
6287 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6288 }
6289 
6290 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6291 			 void *val, int bytes)
6292 {
6293 	return emulator_write_phys(vcpu, gpa, val, bytes);
6294 }
6295 
6296 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6297 {
6298 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6299 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6300 }
6301 
6302 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6303 			  void *val, int bytes)
6304 {
6305 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6306 	return X86EMUL_IO_NEEDED;
6307 }
6308 
6309 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6310 			   void *val, int bytes)
6311 {
6312 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6313 
6314 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6315 	return X86EMUL_CONTINUE;
6316 }
6317 
6318 static const struct read_write_emulator_ops read_emultor = {
6319 	.read_write_prepare = read_prepare,
6320 	.read_write_emulate = read_emulate,
6321 	.read_write_mmio = vcpu_mmio_read,
6322 	.read_write_exit_mmio = read_exit_mmio,
6323 };
6324 
6325 static const struct read_write_emulator_ops write_emultor = {
6326 	.read_write_emulate = write_emulate,
6327 	.read_write_mmio = write_mmio,
6328 	.read_write_exit_mmio = write_exit_mmio,
6329 	.write = true,
6330 };
6331 
6332 static int emulator_read_write_onepage(unsigned long addr, void *val,
6333 				       unsigned int bytes,
6334 				       struct x86_exception *exception,
6335 				       struct kvm_vcpu *vcpu,
6336 				       const struct read_write_emulator_ops *ops)
6337 {
6338 	gpa_t gpa;
6339 	int handled, ret;
6340 	bool write = ops->write;
6341 	struct kvm_mmio_fragment *frag;
6342 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6343 
6344 	/*
6345 	 * If the exit was due to a NPF we may already have a GPA.
6346 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6347 	 * Note, this cannot be used on string operations since string
6348 	 * operation using rep will only have the initial GPA from the NPF
6349 	 * occurred.
6350 	 */
6351 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6352 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6353 		gpa = ctxt->gpa_val;
6354 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6355 	} else {
6356 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6357 		if (ret < 0)
6358 			return X86EMUL_PROPAGATE_FAULT;
6359 	}
6360 
6361 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6362 		return X86EMUL_CONTINUE;
6363 
6364 	/*
6365 	 * Is this MMIO handled locally?
6366 	 */
6367 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6368 	if (handled == bytes)
6369 		return X86EMUL_CONTINUE;
6370 
6371 	gpa += handled;
6372 	bytes -= handled;
6373 	val += handled;
6374 
6375 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6376 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6377 	frag->gpa = gpa;
6378 	frag->data = val;
6379 	frag->len = bytes;
6380 	return X86EMUL_CONTINUE;
6381 }
6382 
6383 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6384 			unsigned long addr,
6385 			void *val, unsigned int bytes,
6386 			struct x86_exception *exception,
6387 			const struct read_write_emulator_ops *ops)
6388 {
6389 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6390 	gpa_t gpa;
6391 	int rc;
6392 
6393 	if (ops->read_write_prepare &&
6394 		  ops->read_write_prepare(vcpu, val, bytes))
6395 		return X86EMUL_CONTINUE;
6396 
6397 	vcpu->mmio_nr_fragments = 0;
6398 
6399 	/* Crossing a page boundary? */
6400 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6401 		int now;
6402 
6403 		now = -addr & ~PAGE_MASK;
6404 		rc = emulator_read_write_onepage(addr, val, now, exception,
6405 						 vcpu, ops);
6406 
6407 		if (rc != X86EMUL_CONTINUE)
6408 			return rc;
6409 		addr += now;
6410 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6411 			addr = (u32)addr;
6412 		val += now;
6413 		bytes -= now;
6414 	}
6415 
6416 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6417 					 vcpu, ops);
6418 	if (rc != X86EMUL_CONTINUE)
6419 		return rc;
6420 
6421 	if (!vcpu->mmio_nr_fragments)
6422 		return rc;
6423 
6424 	gpa = vcpu->mmio_fragments[0].gpa;
6425 
6426 	vcpu->mmio_needed = 1;
6427 	vcpu->mmio_cur_fragment = 0;
6428 
6429 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6430 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6431 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6432 	vcpu->run->mmio.phys_addr = gpa;
6433 
6434 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6435 }
6436 
6437 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6438 				  unsigned long addr,
6439 				  void *val,
6440 				  unsigned int bytes,
6441 				  struct x86_exception *exception)
6442 {
6443 	return emulator_read_write(ctxt, addr, val, bytes,
6444 				   exception, &read_emultor);
6445 }
6446 
6447 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6448 			    unsigned long addr,
6449 			    const void *val,
6450 			    unsigned int bytes,
6451 			    struct x86_exception *exception)
6452 {
6453 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6454 				   exception, &write_emultor);
6455 }
6456 
6457 #define CMPXCHG_TYPE(t, ptr, old, new) \
6458 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6459 
6460 #ifdef CONFIG_X86_64
6461 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6462 #else
6463 #  define CMPXCHG64(ptr, old, new) \
6464 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6465 #endif
6466 
6467 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6468 				     unsigned long addr,
6469 				     const void *old,
6470 				     const void *new,
6471 				     unsigned int bytes,
6472 				     struct x86_exception *exception)
6473 {
6474 	struct kvm_host_map map;
6475 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6476 	u64 page_line_mask;
6477 	gpa_t gpa;
6478 	char *kaddr;
6479 	bool exchanged;
6480 
6481 	/* guests cmpxchg8b have to be emulated atomically */
6482 	if (bytes > 8 || (bytes & (bytes - 1)))
6483 		goto emul_write;
6484 
6485 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6486 
6487 	if (gpa == UNMAPPED_GVA ||
6488 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6489 		goto emul_write;
6490 
6491 	/*
6492 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6493 	 * enabled in the host and the access splits a cache line.
6494 	 */
6495 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6496 		page_line_mask = ~(cache_line_size() - 1);
6497 	else
6498 		page_line_mask = PAGE_MASK;
6499 
6500 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6501 		goto emul_write;
6502 
6503 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6504 		goto emul_write;
6505 
6506 	kaddr = map.hva + offset_in_page(gpa);
6507 
6508 	switch (bytes) {
6509 	case 1:
6510 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6511 		break;
6512 	case 2:
6513 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6514 		break;
6515 	case 4:
6516 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6517 		break;
6518 	case 8:
6519 		exchanged = CMPXCHG64(kaddr, old, new);
6520 		break;
6521 	default:
6522 		BUG();
6523 	}
6524 
6525 	kvm_vcpu_unmap(vcpu, &map, true);
6526 
6527 	if (!exchanged)
6528 		return X86EMUL_CMPXCHG_FAILED;
6529 
6530 	kvm_page_track_write(vcpu, gpa, new, bytes);
6531 
6532 	return X86EMUL_CONTINUE;
6533 
6534 emul_write:
6535 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6536 
6537 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6538 }
6539 
6540 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6541 {
6542 	int r = 0, i;
6543 
6544 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6545 		if (vcpu->arch.pio.in)
6546 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6547 					    vcpu->arch.pio.size, pd);
6548 		else
6549 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6550 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6551 					     pd);
6552 		if (r)
6553 			break;
6554 		pd += vcpu->arch.pio.size;
6555 	}
6556 	return r;
6557 }
6558 
6559 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6560 			       unsigned short port, void *val,
6561 			       unsigned int count, bool in)
6562 {
6563 	vcpu->arch.pio.port = port;
6564 	vcpu->arch.pio.in = in;
6565 	vcpu->arch.pio.count  = count;
6566 	vcpu->arch.pio.size = size;
6567 
6568 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6569 		vcpu->arch.pio.count = 0;
6570 		return 1;
6571 	}
6572 
6573 	vcpu->run->exit_reason = KVM_EXIT_IO;
6574 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6575 	vcpu->run->io.size = size;
6576 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6577 	vcpu->run->io.count = count;
6578 	vcpu->run->io.port = port;
6579 
6580 	return 0;
6581 }
6582 
6583 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6584 			   unsigned short port, void *val, unsigned int count)
6585 {
6586 	int ret;
6587 
6588 	if (vcpu->arch.pio.count)
6589 		goto data_avail;
6590 
6591 	memset(vcpu->arch.pio_data, 0, size * count);
6592 
6593 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6594 	if (ret) {
6595 data_avail:
6596 		memcpy(val, vcpu->arch.pio_data, size * count);
6597 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6598 		vcpu->arch.pio.count = 0;
6599 		return 1;
6600 	}
6601 
6602 	return 0;
6603 }
6604 
6605 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6606 				    int size, unsigned short port, void *val,
6607 				    unsigned int count)
6608 {
6609 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6610 
6611 }
6612 
6613 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6614 			    unsigned short port, const void *val,
6615 			    unsigned int count)
6616 {
6617 	memcpy(vcpu->arch.pio_data, val, size * count);
6618 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6619 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6620 }
6621 
6622 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6623 				     int size, unsigned short port,
6624 				     const void *val, unsigned int count)
6625 {
6626 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6627 }
6628 
6629 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6630 {
6631 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6632 }
6633 
6634 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6635 {
6636 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6637 }
6638 
6639 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6640 {
6641 	if (!need_emulate_wbinvd(vcpu))
6642 		return X86EMUL_CONTINUE;
6643 
6644 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6645 		int cpu = get_cpu();
6646 
6647 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6648 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6649 				wbinvd_ipi, NULL, 1);
6650 		put_cpu();
6651 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6652 	} else
6653 		wbinvd();
6654 	return X86EMUL_CONTINUE;
6655 }
6656 
6657 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6658 {
6659 	kvm_emulate_wbinvd_noskip(vcpu);
6660 	return kvm_skip_emulated_instruction(vcpu);
6661 }
6662 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6663 
6664 
6665 
6666 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6667 {
6668 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6669 }
6670 
6671 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6672 			    unsigned long *dest)
6673 {
6674 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6675 }
6676 
6677 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6678 			   unsigned long value)
6679 {
6680 
6681 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6682 }
6683 
6684 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6685 {
6686 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6687 }
6688 
6689 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6690 {
6691 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6692 	unsigned long value;
6693 
6694 	switch (cr) {
6695 	case 0:
6696 		value = kvm_read_cr0(vcpu);
6697 		break;
6698 	case 2:
6699 		value = vcpu->arch.cr2;
6700 		break;
6701 	case 3:
6702 		value = kvm_read_cr3(vcpu);
6703 		break;
6704 	case 4:
6705 		value = kvm_read_cr4(vcpu);
6706 		break;
6707 	case 8:
6708 		value = kvm_get_cr8(vcpu);
6709 		break;
6710 	default:
6711 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6712 		return 0;
6713 	}
6714 
6715 	return value;
6716 }
6717 
6718 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6719 {
6720 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6721 	int res = 0;
6722 
6723 	switch (cr) {
6724 	case 0:
6725 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6726 		break;
6727 	case 2:
6728 		vcpu->arch.cr2 = val;
6729 		break;
6730 	case 3:
6731 		res = kvm_set_cr3(vcpu, val);
6732 		break;
6733 	case 4:
6734 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6735 		break;
6736 	case 8:
6737 		res = kvm_set_cr8(vcpu, val);
6738 		break;
6739 	default:
6740 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6741 		res = -1;
6742 	}
6743 
6744 	return res;
6745 }
6746 
6747 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6748 {
6749 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6750 }
6751 
6752 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6753 {
6754 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6755 }
6756 
6757 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6758 {
6759 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6760 }
6761 
6762 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6763 {
6764 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6765 }
6766 
6767 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6768 {
6769 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6770 }
6771 
6772 static unsigned long emulator_get_cached_segment_base(
6773 	struct x86_emulate_ctxt *ctxt, int seg)
6774 {
6775 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6776 }
6777 
6778 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6779 				 struct desc_struct *desc, u32 *base3,
6780 				 int seg)
6781 {
6782 	struct kvm_segment var;
6783 
6784 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6785 	*selector = var.selector;
6786 
6787 	if (var.unusable) {
6788 		memset(desc, 0, sizeof(*desc));
6789 		if (base3)
6790 			*base3 = 0;
6791 		return false;
6792 	}
6793 
6794 	if (var.g)
6795 		var.limit >>= 12;
6796 	set_desc_limit(desc, var.limit);
6797 	set_desc_base(desc, (unsigned long)var.base);
6798 #ifdef CONFIG_X86_64
6799 	if (base3)
6800 		*base3 = var.base >> 32;
6801 #endif
6802 	desc->type = var.type;
6803 	desc->s = var.s;
6804 	desc->dpl = var.dpl;
6805 	desc->p = var.present;
6806 	desc->avl = var.avl;
6807 	desc->l = var.l;
6808 	desc->d = var.db;
6809 	desc->g = var.g;
6810 
6811 	return true;
6812 }
6813 
6814 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6815 				 struct desc_struct *desc, u32 base3,
6816 				 int seg)
6817 {
6818 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6819 	struct kvm_segment var;
6820 
6821 	var.selector = selector;
6822 	var.base = get_desc_base(desc);
6823 #ifdef CONFIG_X86_64
6824 	var.base |= ((u64)base3) << 32;
6825 #endif
6826 	var.limit = get_desc_limit(desc);
6827 	if (desc->g)
6828 		var.limit = (var.limit << 12) | 0xfff;
6829 	var.type = desc->type;
6830 	var.dpl = desc->dpl;
6831 	var.db = desc->d;
6832 	var.s = desc->s;
6833 	var.l = desc->l;
6834 	var.g = desc->g;
6835 	var.avl = desc->avl;
6836 	var.present = desc->p;
6837 	var.unusable = !var.present;
6838 	var.padding = 0;
6839 
6840 	kvm_set_segment(vcpu, &var, seg);
6841 	return;
6842 }
6843 
6844 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6845 			    u32 msr_index, u64 *pdata)
6846 {
6847 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6848 	int r;
6849 
6850 	r = kvm_get_msr(vcpu, msr_index, pdata);
6851 
6852 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6853 		/* Bounce to user space */
6854 		return X86EMUL_IO_NEEDED;
6855 	}
6856 
6857 	return r;
6858 }
6859 
6860 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6861 			    u32 msr_index, u64 data)
6862 {
6863 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6864 	int r;
6865 
6866 	r = kvm_set_msr(vcpu, msr_index, data);
6867 
6868 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6869 		/* Bounce to user space */
6870 		return X86EMUL_IO_NEEDED;
6871 	}
6872 
6873 	return r;
6874 }
6875 
6876 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6877 {
6878 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6879 
6880 	return vcpu->arch.smbase;
6881 }
6882 
6883 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6884 {
6885 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6886 
6887 	vcpu->arch.smbase = smbase;
6888 }
6889 
6890 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6891 			      u32 pmc)
6892 {
6893 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6894 }
6895 
6896 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6897 			     u32 pmc, u64 *pdata)
6898 {
6899 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6900 }
6901 
6902 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6903 {
6904 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6905 }
6906 
6907 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6908 			      struct x86_instruction_info *info,
6909 			      enum x86_intercept_stage stage)
6910 {
6911 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6912 					    &ctxt->exception);
6913 }
6914 
6915 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6916 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6917 			      bool exact_only)
6918 {
6919 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6920 }
6921 
6922 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6923 {
6924 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6925 }
6926 
6927 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6928 {
6929 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6930 }
6931 
6932 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6933 {
6934 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6935 }
6936 
6937 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6938 {
6939 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6940 }
6941 
6942 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6943 {
6944 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6945 }
6946 
6947 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6948 {
6949 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6950 }
6951 
6952 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6953 {
6954 	return emul_to_vcpu(ctxt)->arch.hflags;
6955 }
6956 
6957 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6958 {
6959 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6960 }
6961 
6962 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6963 				  const char *smstate)
6964 {
6965 	return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6966 }
6967 
6968 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6969 {
6970 	kvm_smm_changed(emul_to_vcpu(ctxt));
6971 }
6972 
6973 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6974 {
6975 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6976 }
6977 
6978 static const struct x86_emulate_ops emulate_ops = {
6979 	.read_gpr            = emulator_read_gpr,
6980 	.write_gpr           = emulator_write_gpr,
6981 	.read_std            = emulator_read_std,
6982 	.write_std           = emulator_write_std,
6983 	.read_phys           = kvm_read_guest_phys_system,
6984 	.fetch               = kvm_fetch_guest_virt,
6985 	.read_emulated       = emulator_read_emulated,
6986 	.write_emulated      = emulator_write_emulated,
6987 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6988 	.invlpg              = emulator_invlpg,
6989 	.pio_in_emulated     = emulator_pio_in_emulated,
6990 	.pio_out_emulated    = emulator_pio_out_emulated,
6991 	.get_segment         = emulator_get_segment,
6992 	.set_segment         = emulator_set_segment,
6993 	.get_cached_segment_base = emulator_get_cached_segment_base,
6994 	.get_gdt             = emulator_get_gdt,
6995 	.get_idt	     = emulator_get_idt,
6996 	.set_gdt             = emulator_set_gdt,
6997 	.set_idt	     = emulator_set_idt,
6998 	.get_cr              = emulator_get_cr,
6999 	.set_cr              = emulator_set_cr,
7000 	.cpl                 = emulator_get_cpl,
7001 	.get_dr              = emulator_get_dr,
7002 	.set_dr              = emulator_set_dr,
7003 	.get_smbase          = emulator_get_smbase,
7004 	.set_smbase          = emulator_set_smbase,
7005 	.set_msr             = emulator_set_msr,
7006 	.get_msr             = emulator_get_msr,
7007 	.check_pmc	     = emulator_check_pmc,
7008 	.read_pmc            = emulator_read_pmc,
7009 	.halt                = emulator_halt,
7010 	.wbinvd              = emulator_wbinvd,
7011 	.fix_hypercall       = emulator_fix_hypercall,
7012 	.intercept           = emulator_intercept,
7013 	.get_cpuid           = emulator_get_cpuid,
7014 	.guest_has_long_mode = emulator_guest_has_long_mode,
7015 	.guest_has_movbe     = emulator_guest_has_movbe,
7016 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7017 	.set_nmi_mask        = emulator_set_nmi_mask,
7018 	.get_hflags          = emulator_get_hflags,
7019 	.set_hflags          = emulator_set_hflags,
7020 	.pre_leave_smm       = emulator_pre_leave_smm,
7021 	.post_leave_smm      = emulator_post_leave_smm,
7022 	.set_xcr             = emulator_set_xcr,
7023 };
7024 
7025 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7026 {
7027 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7028 	/*
7029 	 * an sti; sti; sequence only disable interrupts for the first
7030 	 * instruction. So, if the last instruction, be it emulated or
7031 	 * not, left the system with the INT_STI flag enabled, it
7032 	 * means that the last instruction is an sti. We should not
7033 	 * leave the flag on in this case. The same goes for mov ss
7034 	 */
7035 	if (int_shadow & mask)
7036 		mask = 0;
7037 	if (unlikely(int_shadow || mask)) {
7038 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7039 		if (!mask)
7040 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7041 	}
7042 }
7043 
7044 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7045 {
7046 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7047 	if (ctxt->exception.vector == PF_VECTOR)
7048 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7049 
7050 	if (ctxt->exception.error_code_valid)
7051 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7052 				      ctxt->exception.error_code);
7053 	else
7054 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7055 	return false;
7056 }
7057 
7058 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7059 {
7060 	struct x86_emulate_ctxt *ctxt;
7061 
7062 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7063 	if (!ctxt) {
7064 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7065 		return NULL;
7066 	}
7067 
7068 	ctxt->vcpu = vcpu;
7069 	ctxt->ops = &emulate_ops;
7070 	vcpu->arch.emulate_ctxt = ctxt;
7071 
7072 	return ctxt;
7073 }
7074 
7075 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7076 {
7077 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7078 	int cs_db, cs_l;
7079 
7080 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7081 
7082 	ctxt->gpa_available = false;
7083 	ctxt->eflags = kvm_get_rflags(vcpu);
7084 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7085 
7086 	ctxt->eip = kvm_rip_read(vcpu);
7087 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7088 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7089 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7090 		     cs_db				? X86EMUL_MODE_PROT32 :
7091 							  X86EMUL_MODE_PROT16;
7092 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7093 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7094 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7095 
7096 	init_decode_cache(ctxt);
7097 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7098 }
7099 
7100 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7101 {
7102 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7103 	int ret;
7104 
7105 	init_emulate_ctxt(vcpu);
7106 
7107 	ctxt->op_bytes = 2;
7108 	ctxt->ad_bytes = 2;
7109 	ctxt->_eip = ctxt->eip + inc_eip;
7110 	ret = emulate_int_real(ctxt, irq);
7111 
7112 	if (ret != X86EMUL_CONTINUE) {
7113 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7114 	} else {
7115 		ctxt->eip = ctxt->_eip;
7116 		kvm_rip_write(vcpu, ctxt->eip);
7117 		kvm_set_rflags(vcpu, ctxt->eflags);
7118 	}
7119 }
7120 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7121 
7122 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7123 {
7124 	++vcpu->stat.insn_emulation_fail;
7125 	trace_kvm_emulate_insn_failed(vcpu);
7126 
7127 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7128 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7129 		return 1;
7130 	}
7131 
7132 	if (emulation_type & EMULTYPE_SKIP) {
7133 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7134 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7135 		vcpu->run->internal.ndata = 0;
7136 		return 0;
7137 	}
7138 
7139 	kvm_queue_exception(vcpu, UD_VECTOR);
7140 
7141 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7142 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7143 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7144 		vcpu->run->internal.ndata = 0;
7145 		return 0;
7146 	}
7147 
7148 	return 1;
7149 }
7150 
7151 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7152 				  bool write_fault_to_shadow_pgtable,
7153 				  int emulation_type)
7154 {
7155 	gpa_t gpa = cr2_or_gpa;
7156 	kvm_pfn_t pfn;
7157 
7158 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7159 		return false;
7160 
7161 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7162 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7163 		return false;
7164 
7165 	if (!vcpu->arch.mmu->direct_map) {
7166 		/*
7167 		 * Write permission should be allowed since only
7168 		 * write access need to be emulated.
7169 		 */
7170 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7171 
7172 		/*
7173 		 * If the mapping is invalid in guest, let cpu retry
7174 		 * it to generate fault.
7175 		 */
7176 		if (gpa == UNMAPPED_GVA)
7177 			return true;
7178 	}
7179 
7180 	/*
7181 	 * Do not retry the unhandleable instruction if it faults on the
7182 	 * readonly host memory, otherwise it will goto a infinite loop:
7183 	 * retry instruction -> write #PF -> emulation fail -> retry
7184 	 * instruction -> ...
7185 	 */
7186 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7187 
7188 	/*
7189 	 * If the instruction failed on the error pfn, it can not be fixed,
7190 	 * report the error to userspace.
7191 	 */
7192 	if (is_error_noslot_pfn(pfn))
7193 		return false;
7194 
7195 	kvm_release_pfn_clean(pfn);
7196 
7197 	/* The instructions are well-emulated on direct mmu. */
7198 	if (vcpu->arch.mmu->direct_map) {
7199 		unsigned int indirect_shadow_pages;
7200 
7201 		write_lock(&vcpu->kvm->mmu_lock);
7202 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7203 		write_unlock(&vcpu->kvm->mmu_lock);
7204 
7205 		if (indirect_shadow_pages)
7206 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7207 
7208 		return true;
7209 	}
7210 
7211 	/*
7212 	 * if emulation was due to access to shadowed page table
7213 	 * and it failed try to unshadow page and re-enter the
7214 	 * guest to let CPU execute the instruction.
7215 	 */
7216 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7217 
7218 	/*
7219 	 * If the access faults on its page table, it can not
7220 	 * be fixed by unprotecting shadow page and it should
7221 	 * be reported to userspace.
7222 	 */
7223 	return !write_fault_to_shadow_pgtable;
7224 }
7225 
7226 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7227 			      gpa_t cr2_or_gpa,  int emulation_type)
7228 {
7229 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7230 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7231 
7232 	last_retry_eip = vcpu->arch.last_retry_eip;
7233 	last_retry_addr = vcpu->arch.last_retry_addr;
7234 
7235 	/*
7236 	 * If the emulation is caused by #PF and it is non-page_table
7237 	 * writing instruction, it means the VM-EXIT is caused by shadow
7238 	 * page protected, we can zap the shadow page and retry this
7239 	 * instruction directly.
7240 	 *
7241 	 * Note: if the guest uses a non-page-table modifying instruction
7242 	 * on the PDE that points to the instruction, then we will unmap
7243 	 * the instruction and go to an infinite loop. So, we cache the
7244 	 * last retried eip and the last fault address, if we meet the eip
7245 	 * and the address again, we can break out of the potential infinite
7246 	 * loop.
7247 	 */
7248 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7249 
7250 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7251 		return false;
7252 
7253 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7254 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7255 		return false;
7256 
7257 	if (x86_page_table_writing_insn(ctxt))
7258 		return false;
7259 
7260 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7261 		return false;
7262 
7263 	vcpu->arch.last_retry_eip = ctxt->eip;
7264 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7265 
7266 	if (!vcpu->arch.mmu->direct_map)
7267 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7268 
7269 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7270 
7271 	return true;
7272 }
7273 
7274 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7275 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7276 
7277 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7278 {
7279 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7280 		/* This is a good place to trace that we are exiting SMM.  */
7281 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7282 
7283 		/* Process a latched INIT or SMI, if any.  */
7284 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7285 	}
7286 
7287 	kvm_mmu_reset_context(vcpu);
7288 }
7289 
7290 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7291 				unsigned long *db)
7292 {
7293 	u32 dr6 = 0;
7294 	int i;
7295 	u32 enable, rwlen;
7296 
7297 	enable = dr7;
7298 	rwlen = dr7 >> 16;
7299 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7300 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7301 			dr6 |= (1 << i);
7302 	return dr6;
7303 }
7304 
7305 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7306 {
7307 	struct kvm_run *kvm_run = vcpu->run;
7308 
7309 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7310 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7311 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7312 		kvm_run->debug.arch.exception = DB_VECTOR;
7313 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7314 		return 0;
7315 	}
7316 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7317 	return 1;
7318 }
7319 
7320 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7321 {
7322 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7323 	int r;
7324 
7325 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7326 	if (unlikely(!r))
7327 		return 0;
7328 
7329 	/*
7330 	 * rflags is the old, "raw" value of the flags.  The new value has
7331 	 * not been saved yet.
7332 	 *
7333 	 * This is correct even for TF set by the guest, because "the
7334 	 * processor will not generate this exception after the instruction
7335 	 * that sets the TF flag".
7336 	 */
7337 	if (unlikely(rflags & X86_EFLAGS_TF))
7338 		r = kvm_vcpu_do_singlestep(vcpu);
7339 	return r;
7340 }
7341 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7342 
7343 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7344 {
7345 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7346 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7347 		struct kvm_run *kvm_run = vcpu->run;
7348 		unsigned long eip = kvm_get_linear_rip(vcpu);
7349 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7350 					   vcpu->arch.guest_debug_dr7,
7351 					   vcpu->arch.eff_db);
7352 
7353 		if (dr6 != 0) {
7354 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7355 			kvm_run->debug.arch.pc = eip;
7356 			kvm_run->debug.arch.exception = DB_VECTOR;
7357 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7358 			*r = 0;
7359 			return true;
7360 		}
7361 	}
7362 
7363 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7364 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7365 		unsigned long eip = kvm_get_linear_rip(vcpu);
7366 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7367 					   vcpu->arch.dr7,
7368 					   vcpu->arch.db);
7369 
7370 		if (dr6 != 0) {
7371 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7372 			*r = 1;
7373 			return true;
7374 		}
7375 	}
7376 
7377 	return false;
7378 }
7379 
7380 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7381 {
7382 	switch (ctxt->opcode_len) {
7383 	case 1:
7384 		switch (ctxt->b) {
7385 		case 0xe4:	/* IN */
7386 		case 0xe5:
7387 		case 0xec:
7388 		case 0xed:
7389 		case 0xe6:	/* OUT */
7390 		case 0xe7:
7391 		case 0xee:
7392 		case 0xef:
7393 		case 0x6c:	/* INS */
7394 		case 0x6d:
7395 		case 0x6e:	/* OUTS */
7396 		case 0x6f:
7397 			return true;
7398 		}
7399 		break;
7400 	case 2:
7401 		switch (ctxt->b) {
7402 		case 0x33:	/* RDPMC */
7403 			return true;
7404 		}
7405 		break;
7406 	}
7407 
7408 	return false;
7409 }
7410 
7411 /*
7412  * Decode to be emulated instruction. Return EMULATION_OK if success.
7413  */
7414 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7415 				    void *insn, int insn_len)
7416 {
7417 	int r = EMULATION_OK;
7418 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7419 
7420 	init_emulate_ctxt(vcpu);
7421 
7422 	/*
7423 	 * We will reenter on the same instruction since we do not set
7424 	 * complete_userspace_io. This does not handle watchpoints yet,
7425 	 * those would be handled in the emulate_ops.
7426 	 */
7427 	if (!(emulation_type & EMULTYPE_SKIP) &&
7428 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7429 		return r;
7430 
7431 	ctxt->interruptibility = 0;
7432 	ctxt->have_exception = false;
7433 	ctxt->exception.vector = -1;
7434 	ctxt->perm_ok = false;
7435 
7436 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7437 
7438 	r = x86_decode_insn(ctxt, insn, insn_len);
7439 
7440 	trace_kvm_emulate_insn_start(vcpu);
7441 	++vcpu->stat.insn_emulation;
7442 
7443 	return r;
7444 }
7445 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7446 
7447 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7448 			    int emulation_type, void *insn, int insn_len)
7449 {
7450 	int r;
7451 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7452 	bool writeback = true;
7453 	bool write_fault_to_spt;
7454 
7455 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7456 		return 1;
7457 
7458 	vcpu->arch.l1tf_flush_l1d = true;
7459 
7460 	/*
7461 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7462 	 * never reused.
7463 	 */
7464 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7465 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7466 
7467 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7468 		kvm_clear_exception_queue(vcpu);
7469 
7470 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7471 						    insn, insn_len);
7472 		if (r != EMULATION_OK)  {
7473 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7474 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7475 				kvm_queue_exception(vcpu, UD_VECTOR);
7476 				return 1;
7477 			}
7478 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7479 						  write_fault_to_spt,
7480 						  emulation_type))
7481 				return 1;
7482 			if (ctxt->have_exception) {
7483 				/*
7484 				 * #UD should result in just EMULATION_FAILED, and trap-like
7485 				 * exception should not be encountered during decode.
7486 				 */
7487 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7488 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7489 				inject_emulated_exception(vcpu);
7490 				return 1;
7491 			}
7492 			return handle_emulation_failure(vcpu, emulation_type);
7493 		}
7494 	}
7495 
7496 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7497 	    !is_vmware_backdoor_opcode(ctxt)) {
7498 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7499 		return 1;
7500 	}
7501 
7502 	/*
7503 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7504 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7505 	 * updating interruptibility state and injecting single-step #DBs.
7506 	 */
7507 	if (emulation_type & EMULTYPE_SKIP) {
7508 		kvm_rip_write(vcpu, ctxt->_eip);
7509 		if (ctxt->eflags & X86_EFLAGS_RF)
7510 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7511 		return 1;
7512 	}
7513 
7514 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7515 		return 1;
7516 
7517 	/* this is needed for vmware backdoor interface to work since it
7518 	   changes registers values  during IO operation */
7519 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7520 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7521 		emulator_invalidate_register_cache(ctxt);
7522 	}
7523 
7524 restart:
7525 	if (emulation_type & EMULTYPE_PF) {
7526 		/* Save the faulting GPA (cr2) in the address field */
7527 		ctxt->exception.address = cr2_or_gpa;
7528 
7529 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7530 		if (vcpu->arch.mmu->direct_map) {
7531 			ctxt->gpa_available = true;
7532 			ctxt->gpa_val = cr2_or_gpa;
7533 		}
7534 	} else {
7535 		/* Sanitize the address out of an abundance of paranoia. */
7536 		ctxt->exception.address = 0;
7537 	}
7538 
7539 	r = x86_emulate_insn(ctxt);
7540 
7541 	if (r == EMULATION_INTERCEPTED)
7542 		return 1;
7543 
7544 	if (r == EMULATION_FAILED) {
7545 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7546 					emulation_type))
7547 			return 1;
7548 
7549 		return handle_emulation_failure(vcpu, emulation_type);
7550 	}
7551 
7552 	if (ctxt->have_exception) {
7553 		r = 1;
7554 		if (inject_emulated_exception(vcpu))
7555 			return r;
7556 	} else if (vcpu->arch.pio.count) {
7557 		if (!vcpu->arch.pio.in) {
7558 			/* FIXME: return into emulator if single-stepping.  */
7559 			vcpu->arch.pio.count = 0;
7560 		} else {
7561 			writeback = false;
7562 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7563 		}
7564 		r = 0;
7565 	} else if (vcpu->mmio_needed) {
7566 		++vcpu->stat.mmio_exits;
7567 
7568 		if (!vcpu->mmio_is_write)
7569 			writeback = false;
7570 		r = 0;
7571 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7572 	} else if (r == EMULATION_RESTART)
7573 		goto restart;
7574 	else
7575 		r = 1;
7576 
7577 	if (writeback) {
7578 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7579 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7580 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7581 		if (!ctxt->have_exception ||
7582 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7583 			kvm_rip_write(vcpu, ctxt->eip);
7584 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7585 				r = kvm_vcpu_do_singlestep(vcpu);
7586 			if (kvm_x86_ops.update_emulated_instruction)
7587 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7588 			__kvm_set_rflags(vcpu, ctxt->eflags);
7589 		}
7590 
7591 		/*
7592 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7593 		 * do nothing, and it will be requested again as soon as
7594 		 * the shadow expires.  But we still need to check here,
7595 		 * because POPF has no interrupt shadow.
7596 		 */
7597 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7598 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7599 	} else
7600 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7601 
7602 	return r;
7603 }
7604 
7605 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7606 {
7607 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7608 }
7609 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7610 
7611 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7612 					void *insn, int insn_len)
7613 {
7614 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7615 }
7616 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7617 
7618 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7619 {
7620 	vcpu->arch.pio.count = 0;
7621 	return 1;
7622 }
7623 
7624 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7625 {
7626 	vcpu->arch.pio.count = 0;
7627 
7628 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7629 		return 1;
7630 
7631 	return kvm_skip_emulated_instruction(vcpu);
7632 }
7633 
7634 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7635 			    unsigned short port)
7636 {
7637 	unsigned long val = kvm_rax_read(vcpu);
7638 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7639 
7640 	if (ret)
7641 		return ret;
7642 
7643 	/*
7644 	 * Workaround userspace that relies on old KVM behavior of %rip being
7645 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7646 	 */
7647 	if (port == 0x7e &&
7648 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7649 		vcpu->arch.complete_userspace_io =
7650 			complete_fast_pio_out_port_0x7e;
7651 		kvm_skip_emulated_instruction(vcpu);
7652 	} else {
7653 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7654 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7655 	}
7656 	return 0;
7657 }
7658 
7659 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7660 {
7661 	unsigned long val;
7662 
7663 	/* We should only ever be called with arch.pio.count equal to 1 */
7664 	BUG_ON(vcpu->arch.pio.count != 1);
7665 
7666 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7667 		vcpu->arch.pio.count = 0;
7668 		return 1;
7669 	}
7670 
7671 	/* For size less than 4 we merge, else we zero extend */
7672 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7673 
7674 	/*
7675 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7676 	 * the copy and tracing
7677 	 */
7678 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7679 	kvm_rax_write(vcpu, val);
7680 
7681 	return kvm_skip_emulated_instruction(vcpu);
7682 }
7683 
7684 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7685 			   unsigned short port)
7686 {
7687 	unsigned long val;
7688 	int ret;
7689 
7690 	/* For size less than 4 we merge, else we zero extend */
7691 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7692 
7693 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7694 	if (ret) {
7695 		kvm_rax_write(vcpu, val);
7696 		return ret;
7697 	}
7698 
7699 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7700 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7701 
7702 	return 0;
7703 }
7704 
7705 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7706 {
7707 	int ret;
7708 
7709 	if (in)
7710 		ret = kvm_fast_pio_in(vcpu, size, port);
7711 	else
7712 		ret = kvm_fast_pio_out(vcpu, size, port);
7713 	return ret && kvm_skip_emulated_instruction(vcpu);
7714 }
7715 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7716 
7717 static int kvmclock_cpu_down_prep(unsigned int cpu)
7718 {
7719 	__this_cpu_write(cpu_tsc_khz, 0);
7720 	return 0;
7721 }
7722 
7723 static void tsc_khz_changed(void *data)
7724 {
7725 	struct cpufreq_freqs *freq = data;
7726 	unsigned long khz = 0;
7727 
7728 	if (data)
7729 		khz = freq->new;
7730 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7731 		khz = cpufreq_quick_get(raw_smp_processor_id());
7732 	if (!khz)
7733 		khz = tsc_khz;
7734 	__this_cpu_write(cpu_tsc_khz, khz);
7735 }
7736 
7737 #ifdef CONFIG_X86_64
7738 static void kvm_hyperv_tsc_notifier(void)
7739 {
7740 	struct kvm *kvm;
7741 	struct kvm_vcpu *vcpu;
7742 	int cpu;
7743 	unsigned long flags;
7744 
7745 	mutex_lock(&kvm_lock);
7746 	list_for_each_entry(kvm, &vm_list, vm_list)
7747 		kvm_make_mclock_inprogress_request(kvm);
7748 
7749 	hyperv_stop_tsc_emulation();
7750 
7751 	/* TSC frequency always matches when on Hyper-V */
7752 	for_each_present_cpu(cpu)
7753 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7754 	kvm_max_guest_tsc_khz = tsc_khz;
7755 
7756 	list_for_each_entry(kvm, &vm_list, vm_list) {
7757 		struct kvm_arch *ka = &kvm->arch;
7758 
7759 		spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7760 		pvclock_update_vm_gtod_copy(kvm);
7761 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7762 
7763 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7764 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7765 
7766 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7767 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7768 	}
7769 	mutex_unlock(&kvm_lock);
7770 }
7771 #endif
7772 
7773 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7774 {
7775 	struct kvm *kvm;
7776 	struct kvm_vcpu *vcpu;
7777 	int i, send_ipi = 0;
7778 
7779 	/*
7780 	 * We allow guests to temporarily run on slowing clocks,
7781 	 * provided we notify them after, or to run on accelerating
7782 	 * clocks, provided we notify them before.  Thus time never
7783 	 * goes backwards.
7784 	 *
7785 	 * However, we have a problem.  We can't atomically update
7786 	 * the frequency of a given CPU from this function; it is
7787 	 * merely a notifier, which can be called from any CPU.
7788 	 * Changing the TSC frequency at arbitrary points in time
7789 	 * requires a recomputation of local variables related to
7790 	 * the TSC for each VCPU.  We must flag these local variables
7791 	 * to be updated and be sure the update takes place with the
7792 	 * new frequency before any guests proceed.
7793 	 *
7794 	 * Unfortunately, the combination of hotplug CPU and frequency
7795 	 * change creates an intractable locking scenario; the order
7796 	 * of when these callouts happen is undefined with respect to
7797 	 * CPU hotplug, and they can race with each other.  As such,
7798 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7799 	 * undefined; you can actually have a CPU frequency change take
7800 	 * place in between the computation of X and the setting of the
7801 	 * variable.  To protect against this problem, all updates of
7802 	 * the per_cpu tsc_khz variable are done in an interrupt
7803 	 * protected IPI, and all callers wishing to update the value
7804 	 * must wait for a synchronous IPI to complete (which is trivial
7805 	 * if the caller is on the CPU already).  This establishes the
7806 	 * necessary total order on variable updates.
7807 	 *
7808 	 * Note that because a guest time update may take place
7809 	 * anytime after the setting of the VCPU's request bit, the
7810 	 * correct TSC value must be set before the request.  However,
7811 	 * to ensure the update actually makes it to any guest which
7812 	 * starts running in hardware virtualization between the set
7813 	 * and the acquisition of the spinlock, we must also ping the
7814 	 * CPU after setting the request bit.
7815 	 *
7816 	 */
7817 
7818 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7819 
7820 	mutex_lock(&kvm_lock);
7821 	list_for_each_entry(kvm, &vm_list, vm_list) {
7822 		kvm_for_each_vcpu(i, vcpu, kvm) {
7823 			if (vcpu->cpu != cpu)
7824 				continue;
7825 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7826 			if (vcpu->cpu != raw_smp_processor_id())
7827 				send_ipi = 1;
7828 		}
7829 	}
7830 	mutex_unlock(&kvm_lock);
7831 
7832 	if (freq->old < freq->new && send_ipi) {
7833 		/*
7834 		 * We upscale the frequency.  Must make the guest
7835 		 * doesn't see old kvmclock values while running with
7836 		 * the new frequency, otherwise we risk the guest sees
7837 		 * time go backwards.
7838 		 *
7839 		 * In case we update the frequency for another cpu
7840 		 * (which might be in guest context) send an interrupt
7841 		 * to kick the cpu out of guest context.  Next time
7842 		 * guest context is entered kvmclock will be updated,
7843 		 * so the guest will not see stale values.
7844 		 */
7845 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7846 	}
7847 }
7848 
7849 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7850 				     void *data)
7851 {
7852 	struct cpufreq_freqs *freq = data;
7853 	int cpu;
7854 
7855 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7856 		return 0;
7857 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7858 		return 0;
7859 
7860 	for_each_cpu(cpu, freq->policy->cpus)
7861 		__kvmclock_cpufreq_notifier(freq, cpu);
7862 
7863 	return 0;
7864 }
7865 
7866 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7867 	.notifier_call  = kvmclock_cpufreq_notifier
7868 };
7869 
7870 static int kvmclock_cpu_online(unsigned int cpu)
7871 {
7872 	tsc_khz_changed(NULL);
7873 	return 0;
7874 }
7875 
7876 static void kvm_timer_init(void)
7877 {
7878 	max_tsc_khz = tsc_khz;
7879 
7880 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7881 #ifdef CONFIG_CPU_FREQ
7882 		struct cpufreq_policy *policy;
7883 		int cpu;
7884 
7885 		cpu = get_cpu();
7886 		policy = cpufreq_cpu_get(cpu);
7887 		if (policy) {
7888 			if (policy->cpuinfo.max_freq)
7889 				max_tsc_khz = policy->cpuinfo.max_freq;
7890 			cpufreq_cpu_put(policy);
7891 		}
7892 		put_cpu();
7893 #endif
7894 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7895 					  CPUFREQ_TRANSITION_NOTIFIER);
7896 	}
7897 
7898 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7899 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7900 }
7901 
7902 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7903 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7904 
7905 int kvm_is_in_guest(void)
7906 {
7907 	return __this_cpu_read(current_vcpu) != NULL;
7908 }
7909 
7910 static int kvm_is_user_mode(void)
7911 {
7912 	int user_mode = 3;
7913 
7914 	if (__this_cpu_read(current_vcpu))
7915 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7916 
7917 	return user_mode != 0;
7918 }
7919 
7920 static unsigned long kvm_get_guest_ip(void)
7921 {
7922 	unsigned long ip = 0;
7923 
7924 	if (__this_cpu_read(current_vcpu))
7925 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7926 
7927 	return ip;
7928 }
7929 
7930 static void kvm_handle_intel_pt_intr(void)
7931 {
7932 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7933 
7934 	kvm_make_request(KVM_REQ_PMI, vcpu);
7935 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7936 			(unsigned long *)&vcpu->arch.pmu.global_status);
7937 }
7938 
7939 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7940 	.is_in_guest		= kvm_is_in_guest,
7941 	.is_user_mode		= kvm_is_user_mode,
7942 	.get_guest_ip		= kvm_get_guest_ip,
7943 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7944 };
7945 
7946 #ifdef CONFIG_X86_64
7947 static void pvclock_gtod_update_fn(struct work_struct *work)
7948 {
7949 	struct kvm *kvm;
7950 
7951 	struct kvm_vcpu *vcpu;
7952 	int i;
7953 
7954 	mutex_lock(&kvm_lock);
7955 	list_for_each_entry(kvm, &vm_list, vm_list)
7956 		kvm_for_each_vcpu(i, vcpu, kvm)
7957 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7958 	atomic_set(&kvm_guest_has_master_clock, 0);
7959 	mutex_unlock(&kvm_lock);
7960 }
7961 
7962 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7963 
7964 /*
7965  * Notification about pvclock gtod data update.
7966  */
7967 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7968 			       void *priv)
7969 {
7970 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7971 	struct timekeeper *tk = priv;
7972 
7973 	update_pvclock_gtod(tk);
7974 
7975 	/* disable master clock if host does not trust, or does not
7976 	 * use, TSC based clocksource.
7977 	 */
7978 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7979 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7980 		queue_work(system_long_wq, &pvclock_gtod_work);
7981 
7982 	return 0;
7983 }
7984 
7985 static struct notifier_block pvclock_gtod_notifier = {
7986 	.notifier_call = pvclock_gtod_notify,
7987 };
7988 #endif
7989 
7990 int kvm_arch_init(void *opaque)
7991 {
7992 	struct kvm_x86_init_ops *ops = opaque;
7993 	int r;
7994 
7995 	if (kvm_x86_ops.hardware_enable) {
7996 		printk(KERN_ERR "kvm: already loaded the other module\n");
7997 		r = -EEXIST;
7998 		goto out;
7999 	}
8000 
8001 	if (!ops->cpu_has_kvm_support()) {
8002 		pr_err_ratelimited("kvm: no hardware support\n");
8003 		r = -EOPNOTSUPP;
8004 		goto out;
8005 	}
8006 	if (ops->disabled_by_bios()) {
8007 		pr_err_ratelimited("kvm: disabled by bios\n");
8008 		r = -EOPNOTSUPP;
8009 		goto out;
8010 	}
8011 
8012 	/*
8013 	 * KVM explicitly assumes that the guest has an FPU and
8014 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8015 	 * vCPU's FPU state as a fxregs_state struct.
8016 	 */
8017 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8018 		printk(KERN_ERR "kvm: inadequate fpu\n");
8019 		r = -EOPNOTSUPP;
8020 		goto out;
8021 	}
8022 
8023 	r = -ENOMEM;
8024 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8025 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8026 					  NULL);
8027 	if (!x86_fpu_cache) {
8028 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8029 		goto out;
8030 	}
8031 
8032 	x86_emulator_cache = kvm_alloc_emulator_cache();
8033 	if (!x86_emulator_cache) {
8034 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8035 		goto out_free_x86_fpu_cache;
8036 	}
8037 
8038 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8039 	if (!user_return_msrs) {
8040 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8041 		goto out_free_x86_emulator_cache;
8042 	}
8043 
8044 	r = kvm_mmu_module_init();
8045 	if (r)
8046 		goto out_free_percpu;
8047 
8048 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8049 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8050 			PT_PRESENT_MASK, 0, sme_me_mask);
8051 	kvm_timer_init();
8052 
8053 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8054 
8055 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8056 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8057 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8058 	}
8059 
8060 	if (pi_inject_timer == -1)
8061 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8062 #ifdef CONFIG_X86_64
8063 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8064 
8065 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8066 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8067 #endif
8068 
8069 	return 0;
8070 
8071 out_free_percpu:
8072 	free_percpu(user_return_msrs);
8073 out_free_x86_emulator_cache:
8074 	kmem_cache_destroy(x86_emulator_cache);
8075 out_free_x86_fpu_cache:
8076 	kmem_cache_destroy(x86_fpu_cache);
8077 out:
8078 	return r;
8079 }
8080 
8081 void kvm_arch_exit(void)
8082 {
8083 #ifdef CONFIG_X86_64
8084 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8085 		clear_hv_tscchange_cb();
8086 #endif
8087 	kvm_lapic_exit();
8088 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8089 
8090 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8091 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8092 					    CPUFREQ_TRANSITION_NOTIFIER);
8093 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8094 #ifdef CONFIG_X86_64
8095 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8096 #endif
8097 	kvm_x86_ops.hardware_enable = NULL;
8098 	kvm_mmu_module_exit();
8099 	free_percpu(user_return_msrs);
8100 	kmem_cache_destroy(x86_fpu_cache);
8101 #ifdef CONFIG_KVM_XEN
8102 	static_key_deferred_flush(&kvm_xen_enabled);
8103 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8104 #endif
8105 }
8106 
8107 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8108 {
8109 	++vcpu->stat.halt_exits;
8110 	if (lapic_in_kernel(vcpu)) {
8111 		vcpu->arch.mp_state = state;
8112 		return 1;
8113 	} else {
8114 		vcpu->run->exit_reason = reason;
8115 		return 0;
8116 	}
8117 }
8118 
8119 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8120 {
8121 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8122 }
8123 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8124 
8125 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8126 {
8127 	int ret = kvm_skip_emulated_instruction(vcpu);
8128 	/*
8129 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8130 	 * KVM_EXIT_DEBUG here.
8131 	 */
8132 	return kvm_vcpu_halt(vcpu) && ret;
8133 }
8134 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8135 
8136 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8137 {
8138 	int ret = kvm_skip_emulated_instruction(vcpu);
8139 
8140 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8141 }
8142 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8143 
8144 #ifdef CONFIG_X86_64
8145 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8146 			        unsigned long clock_type)
8147 {
8148 	struct kvm_clock_pairing clock_pairing;
8149 	struct timespec64 ts;
8150 	u64 cycle;
8151 	int ret;
8152 
8153 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8154 		return -KVM_EOPNOTSUPP;
8155 
8156 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8157 		return -KVM_EOPNOTSUPP;
8158 
8159 	clock_pairing.sec = ts.tv_sec;
8160 	clock_pairing.nsec = ts.tv_nsec;
8161 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8162 	clock_pairing.flags = 0;
8163 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8164 
8165 	ret = 0;
8166 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8167 			    sizeof(struct kvm_clock_pairing)))
8168 		ret = -KVM_EFAULT;
8169 
8170 	return ret;
8171 }
8172 #endif
8173 
8174 /*
8175  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8176  *
8177  * @apicid - apicid of vcpu to be kicked.
8178  */
8179 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8180 {
8181 	struct kvm_lapic_irq lapic_irq;
8182 
8183 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8184 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8185 	lapic_irq.level = 0;
8186 	lapic_irq.dest_id = apicid;
8187 	lapic_irq.msi_redir_hint = false;
8188 
8189 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8190 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8191 }
8192 
8193 bool kvm_apicv_activated(struct kvm *kvm)
8194 {
8195 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8196 }
8197 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8198 
8199 void kvm_apicv_init(struct kvm *kvm, bool enable)
8200 {
8201 	if (enable)
8202 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8203 			  &kvm->arch.apicv_inhibit_reasons);
8204 	else
8205 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8206 			&kvm->arch.apicv_inhibit_reasons);
8207 }
8208 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8209 
8210 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8211 {
8212 	struct kvm_vcpu *target = NULL;
8213 	struct kvm_apic_map *map;
8214 
8215 	rcu_read_lock();
8216 	map = rcu_dereference(kvm->arch.apic_map);
8217 
8218 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8219 		target = map->phys_map[dest_id]->vcpu;
8220 
8221 	rcu_read_unlock();
8222 
8223 	if (target && READ_ONCE(target->ready))
8224 		kvm_vcpu_yield_to(target);
8225 }
8226 
8227 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8228 {
8229 	unsigned long nr, a0, a1, a2, a3, ret;
8230 	int op_64_bit;
8231 
8232 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8233 		return kvm_xen_hypercall(vcpu);
8234 
8235 	if (kvm_hv_hypercall_enabled(vcpu))
8236 		return kvm_hv_hypercall(vcpu);
8237 
8238 	nr = kvm_rax_read(vcpu);
8239 	a0 = kvm_rbx_read(vcpu);
8240 	a1 = kvm_rcx_read(vcpu);
8241 	a2 = kvm_rdx_read(vcpu);
8242 	a3 = kvm_rsi_read(vcpu);
8243 
8244 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8245 
8246 	op_64_bit = is_64_bit_mode(vcpu);
8247 	if (!op_64_bit) {
8248 		nr &= 0xFFFFFFFF;
8249 		a0 &= 0xFFFFFFFF;
8250 		a1 &= 0xFFFFFFFF;
8251 		a2 &= 0xFFFFFFFF;
8252 		a3 &= 0xFFFFFFFF;
8253 	}
8254 
8255 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8256 		ret = -KVM_EPERM;
8257 		goto out;
8258 	}
8259 
8260 	ret = -KVM_ENOSYS;
8261 
8262 	switch (nr) {
8263 	case KVM_HC_VAPIC_POLL_IRQ:
8264 		ret = 0;
8265 		break;
8266 	case KVM_HC_KICK_CPU:
8267 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8268 			break;
8269 
8270 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8271 		kvm_sched_yield(vcpu->kvm, a1);
8272 		ret = 0;
8273 		break;
8274 #ifdef CONFIG_X86_64
8275 	case KVM_HC_CLOCK_PAIRING:
8276 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8277 		break;
8278 #endif
8279 	case KVM_HC_SEND_IPI:
8280 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8281 			break;
8282 
8283 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8284 		break;
8285 	case KVM_HC_SCHED_YIELD:
8286 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8287 			break;
8288 
8289 		kvm_sched_yield(vcpu->kvm, a0);
8290 		ret = 0;
8291 		break;
8292 	default:
8293 		ret = -KVM_ENOSYS;
8294 		break;
8295 	}
8296 out:
8297 	if (!op_64_bit)
8298 		ret = (u32)ret;
8299 	kvm_rax_write(vcpu, ret);
8300 
8301 	++vcpu->stat.hypercalls;
8302 	return kvm_skip_emulated_instruction(vcpu);
8303 }
8304 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8305 
8306 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8307 {
8308 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8309 	char instruction[3];
8310 	unsigned long rip = kvm_rip_read(vcpu);
8311 
8312 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8313 
8314 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8315 		&ctxt->exception);
8316 }
8317 
8318 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8319 {
8320 	return vcpu->run->request_interrupt_window &&
8321 		likely(!pic_in_kernel(vcpu->kvm));
8322 }
8323 
8324 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8325 {
8326 	struct kvm_run *kvm_run = vcpu->run;
8327 
8328 	/*
8329 	 * if_flag is obsolete and useless, so do not bother
8330 	 * setting it for SEV-ES guests.  Userspace can just
8331 	 * use kvm_run->ready_for_interrupt_injection.
8332 	 */
8333 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8334 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8335 
8336 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8337 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8338 	kvm_run->ready_for_interrupt_injection =
8339 		pic_in_kernel(vcpu->kvm) ||
8340 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8341 
8342 	if (is_smm(vcpu))
8343 		kvm_run->flags |= KVM_RUN_X86_SMM;
8344 }
8345 
8346 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8347 {
8348 	int max_irr, tpr;
8349 
8350 	if (!kvm_x86_ops.update_cr8_intercept)
8351 		return;
8352 
8353 	if (!lapic_in_kernel(vcpu))
8354 		return;
8355 
8356 	if (vcpu->arch.apicv_active)
8357 		return;
8358 
8359 	if (!vcpu->arch.apic->vapic_addr)
8360 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8361 	else
8362 		max_irr = -1;
8363 
8364 	if (max_irr != -1)
8365 		max_irr >>= 4;
8366 
8367 	tpr = kvm_lapic_get_cr8(vcpu);
8368 
8369 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8370 }
8371 
8372 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8373 {
8374 	int r;
8375 	bool can_inject = true;
8376 
8377 	/* try to reinject previous events if any */
8378 
8379 	if (vcpu->arch.exception.injected) {
8380 		static_call(kvm_x86_queue_exception)(vcpu);
8381 		can_inject = false;
8382 	}
8383 	/*
8384 	 * Do not inject an NMI or interrupt if there is a pending
8385 	 * exception.  Exceptions and interrupts are recognized at
8386 	 * instruction boundaries, i.e. the start of an instruction.
8387 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8388 	 * NMIs and interrupts, i.e. traps are recognized before an
8389 	 * NMI/interrupt that's pending on the same instruction.
8390 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8391 	 * priority, but are only generated (pended) during instruction
8392 	 * execution, i.e. a pending fault-like exception means the
8393 	 * fault occurred on the *previous* instruction and must be
8394 	 * serviced prior to recognizing any new events in order to
8395 	 * fully complete the previous instruction.
8396 	 */
8397 	else if (!vcpu->arch.exception.pending) {
8398 		if (vcpu->arch.nmi_injected) {
8399 			static_call(kvm_x86_set_nmi)(vcpu);
8400 			can_inject = false;
8401 		} else if (vcpu->arch.interrupt.injected) {
8402 			static_call(kvm_x86_set_irq)(vcpu);
8403 			can_inject = false;
8404 		}
8405 	}
8406 
8407 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8408 		     vcpu->arch.exception.pending);
8409 
8410 	/*
8411 	 * Call check_nested_events() even if we reinjected a previous event
8412 	 * in order for caller to determine if it should require immediate-exit
8413 	 * from L2 to L1 due to pending L1 events which require exit
8414 	 * from L2 to L1.
8415 	 */
8416 	if (is_guest_mode(vcpu)) {
8417 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8418 		if (r < 0)
8419 			goto busy;
8420 	}
8421 
8422 	/* try to inject new event if pending */
8423 	if (vcpu->arch.exception.pending) {
8424 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8425 					vcpu->arch.exception.has_error_code,
8426 					vcpu->arch.exception.error_code);
8427 
8428 		vcpu->arch.exception.pending = false;
8429 		vcpu->arch.exception.injected = true;
8430 
8431 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8432 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8433 					     X86_EFLAGS_RF);
8434 
8435 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8436 			kvm_deliver_exception_payload(vcpu);
8437 			if (vcpu->arch.dr7 & DR7_GD) {
8438 				vcpu->arch.dr7 &= ~DR7_GD;
8439 				kvm_update_dr7(vcpu);
8440 			}
8441 		}
8442 
8443 		static_call(kvm_x86_queue_exception)(vcpu);
8444 		can_inject = false;
8445 	}
8446 
8447 	/*
8448 	 * Finally, inject interrupt events.  If an event cannot be injected
8449 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8450 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8451 	 * and can architecturally be injected, but we cannot do it right now:
8452 	 * an interrupt could have arrived just now and we have to inject it
8453 	 * as a vmexit, or there could already an event in the queue, which is
8454 	 * indicated by can_inject.  In that case we request an immediate exit
8455 	 * in order to make progress and get back here for another iteration.
8456 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8457 	 */
8458 	if (vcpu->arch.smi_pending) {
8459 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8460 		if (r < 0)
8461 			goto busy;
8462 		if (r) {
8463 			vcpu->arch.smi_pending = false;
8464 			++vcpu->arch.smi_count;
8465 			enter_smm(vcpu);
8466 			can_inject = false;
8467 		} else
8468 			static_call(kvm_x86_enable_smi_window)(vcpu);
8469 	}
8470 
8471 	if (vcpu->arch.nmi_pending) {
8472 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8473 		if (r < 0)
8474 			goto busy;
8475 		if (r) {
8476 			--vcpu->arch.nmi_pending;
8477 			vcpu->arch.nmi_injected = true;
8478 			static_call(kvm_x86_set_nmi)(vcpu);
8479 			can_inject = false;
8480 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8481 		}
8482 		if (vcpu->arch.nmi_pending)
8483 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8484 	}
8485 
8486 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8487 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8488 		if (r < 0)
8489 			goto busy;
8490 		if (r) {
8491 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8492 			static_call(kvm_x86_set_irq)(vcpu);
8493 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8494 		}
8495 		if (kvm_cpu_has_injectable_intr(vcpu))
8496 			static_call(kvm_x86_enable_irq_window)(vcpu);
8497 	}
8498 
8499 	if (is_guest_mode(vcpu) &&
8500 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8501 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8502 		*req_immediate_exit = true;
8503 
8504 	WARN_ON(vcpu->arch.exception.pending);
8505 	return;
8506 
8507 busy:
8508 	*req_immediate_exit = true;
8509 	return;
8510 }
8511 
8512 static void process_nmi(struct kvm_vcpu *vcpu)
8513 {
8514 	unsigned limit = 2;
8515 
8516 	/*
8517 	 * x86 is limited to one NMI running, and one NMI pending after it.
8518 	 * If an NMI is already in progress, limit further NMIs to just one.
8519 	 * Otherwise, allow two (and we'll inject the first one immediately).
8520 	 */
8521 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8522 		limit = 1;
8523 
8524 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8525 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8526 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8527 }
8528 
8529 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8530 {
8531 	u32 flags = 0;
8532 	flags |= seg->g       << 23;
8533 	flags |= seg->db      << 22;
8534 	flags |= seg->l       << 21;
8535 	flags |= seg->avl     << 20;
8536 	flags |= seg->present << 15;
8537 	flags |= seg->dpl     << 13;
8538 	flags |= seg->s       << 12;
8539 	flags |= seg->type    << 8;
8540 	return flags;
8541 }
8542 
8543 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8544 {
8545 	struct kvm_segment seg;
8546 	int offset;
8547 
8548 	kvm_get_segment(vcpu, &seg, n);
8549 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8550 
8551 	if (n < 3)
8552 		offset = 0x7f84 + n * 12;
8553 	else
8554 		offset = 0x7f2c + (n - 3) * 12;
8555 
8556 	put_smstate(u32, buf, offset + 8, seg.base);
8557 	put_smstate(u32, buf, offset + 4, seg.limit);
8558 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8559 }
8560 
8561 #ifdef CONFIG_X86_64
8562 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8563 {
8564 	struct kvm_segment seg;
8565 	int offset;
8566 	u16 flags;
8567 
8568 	kvm_get_segment(vcpu, &seg, n);
8569 	offset = 0x7e00 + n * 16;
8570 
8571 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8572 	put_smstate(u16, buf, offset, seg.selector);
8573 	put_smstate(u16, buf, offset + 2, flags);
8574 	put_smstate(u32, buf, offset + 4, seg.limit);
8575 	put_smstate(u64, buf, offset + 8, seg.base);
8576 }
8577 #endif
8578 
8579 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8580 {
8581 	struct desc_ptr dt;
8582 	struct kvm_segment seg;
8583 	unsigned long val;
8584 	int i;
8585 
8586 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8587 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8588 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8589 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8590 
8591 	for (i = 0; i < 8; i++)
8592 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8593 
8594 	kvm_get_dr(vcpu, 6, &val);
8595 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8596 	kvm_get_dr(vcpu, 7, &val);
8597 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8598 
8599 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8600 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8601 	put_smstate(u32, buf, 0x7f64, seg.base);
8602 	put_smstate(u32, buf, 0x7f60, seg.limit);
8603 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8604 
8605 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8606 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8607 	put_smstate(u32, buf, 0x7f80, seg.base);
8608 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8609 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8610 
8611 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8612 	put_smstate(u32, buf, 0x7f74, dt.address);
8613 	put_smstate(u32, buf, 0x7f70, dt.size);
8614 
8615 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8616 	put_smstate(u32, buf, 0x7f58, dt.address);
8617 	put_smstate(u32, buf, 0x7f54, dt.size);
8618 
8619 	for (i = 0; i < 6; i++)
8620 		enter_smm_save_seg_32(vcpu, buf, i);
8621 
8622 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8623 
8624 	/* revision id */
8625 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8626 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8627 }
8628 
8629 #ifdef CONFIG_X86_64
8630 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8631 {
8632 	struct desc_ptr dt;
8633 	struct kvm_segment seg;
8634 	unsigned long val;
8635 	int i;
8636 
8637 	for (i = 0; i < 16; i++)
8638 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8639 
8640 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8641 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8642 
8643 	kvm_get_dr(vcpu, 6, &val);
8644 	put_smstate(u64, buf, 0x7f68, val);
8645 	kvm_get_dr(vcpu, 7, &val);
8646 	put_smstate(u64, buf, 0x7f60, val);
8647 
8648 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8649 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8650 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8651 
8652 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8653 
8654 	/* revision id */
8655 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8656 
8657 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8658 
8659 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8660 	put_smstate(u16, buf, 0x7e90, seg.selector);
8661 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8662 	put_smstate(u32, buf, 0x7e94, seg.limit);
8663 	put_smstate(u64, buf, 0x7e98, seg.base);
8664 
8665 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8666 	put_smstate(u32, buf, 0x7e84, dt.size);
8667 	put_smstate(u64, buf, 0x7e88, dt.address);
8668 
8669 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8670 	put_smstate(u16, buf, 0x7e70, seg.selector);
8671 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8672 	put_smstate(u32, buf, 0x7e74, seg.limit);
8673 	put_smstate(u64, buf, 0x7e78, seg.base);
8674 
8675 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8676 	put_smstate(u32, buf, 0x7e64, dt.size);
8677 	put_smstate(u64, buf, 0x7e68, dt.address);
8678 
8679 	for (i = 0; i < 6; i++)
8680 		enter_smm_save_seg_64(vcpu, buf, i);
8681 }
8682 #endif
8683 
8684 static void enter_smm(struct kvm_vcpu *vcpu)
8685 {
8686 	struct kvm_segment cs, ds;
8687 	struct desc_ptr dt;
8688 	char buf[512];
8689 	u32 cr0;
8690 
8691 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8692 	memset(buf, 0, 512);
8693 #ifdef CONFIG_X86_64
8694 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8695 		enter_smm_save_state_64(vcpu, buf);
8696 	else
8697 #endif
8698 		enter_smm_save_state_32(vcpu, buf);
8699 
8700 	/*
8701 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8702 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8703 	 * the SMM state-save area.
8704 	 */
8705 	static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8706 
8707 	vcpu->arch.hflags |= HF_SMM_MASK;
8708 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8709 
8710 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8711 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8712 	else
8713 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8714 
8715 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8716 	kvm_rip_write(vcpu, 0x8000);
8717 
8718 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8719 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
8720 	vcpu->arch.cr0 = cr0;
8721 
8722 	static_call(kvm_x86_set_cr4)(vcpu, 0);
8723 
8724 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8725 	dt.address = dt.size = 0;
8726 	static_call(kvm_x86_set_idt)(vcpu, &dt);
8727 
8728 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8729 
8730 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8731 	cs.base = vcpu->arch.smbase;
8732 
8733 	ds.selector = 0;
8734 	ds.base = 0;
8735 
8736 	cs.limit    = ds.limit = 0xffffffff;
8737 	cs.type     = ds.type = 0x3;
8738 	cs.dpl      = ds.dpl = 0;
8739 	cs.db       = ds.db = 0;
8740 	cs.s        = ds.s = 1;
8741 	cs.l        = ds.l = 0;
8742 	cs.g        = ds.g = 1;
8743 	cs.avl      = ds.avl = 0;
8744 	cs.present  = ds.present = 1;
8745 	cs.unusable = ds.unusable = 0;
8746 	cs.padding  = ds.padding = 0;
8747 
8748 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8749 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8750 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8751 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8752 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8753 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8754 
8755 #ifdef CONFIG_X86_64
8756 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8757 		static_call(kvm_x86_set_efer)(vcpu, 0);
8758 #endif
8759 
8760 	kvm_update_cpuid_runtime(vcpu);
8761 	kvm_mmu_reset_context(vcpu);
8762 }
8763 
8764 static void process_smi(struct kvm_vcpu *vcpu)
8765 {
8766 	vcpu->arch.smi_pending = true;
8767 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8768 }
8769 
8770 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8771 				       unsigned long *vcpu_bitmap)
8772 {
8773 	cpumask_var_t cpus;
8774 
8775 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8776 
8777 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8778 				    NULL, vcpu_bitmap, cpus);
8779 
8780 	free_cpumask_var(cpus);
8781 }
8782 
8783 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8784 {
8785 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8786 }
8787 
8788 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8789 {
8790 	if (!lapic_in_kernel(vcpu))
8791 		return;
8792 
8793 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8794 	kvm_apic_update_apicv(vcpu);
8795 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8796 }
8797 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8798 
8799 /*
8800  * NOTE: Do not hold any lock prior to calling this.
8801  *
8802  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8803  * locked, because it calls __x86_set_memory_region() which does
8804  * synchronize_srcu(&kvm->srcu).
8805  */
8806 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8807 {
8808 	struct kvm_vcpu *except;
8809 	unsigned long old, new, expected;
8810 
8811 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8812 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8813 		return;
8814 
8815 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8816 	do {
8817 		expected = new = old;
8818 		if (activate)
8819 			__clear_bit(bit, &new);
8820 		else
8821 			__set_bit(bit, &new);
8822 		if (new == old)
8823 			break;
8824 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8825 	} while (old != expected);
8826 
8827 	if (!!old == !!new)
8828 		return;
8829 
8830 	trace_kvm_apicv_update_request(activate, bit);
8831 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8832 		static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8833 
8834 	/*
8835 	 * Sending request to update APICV for all other vcpus,
8836 	 * while update the calling vcpu immediately instead of
8837 	 * waiting for another #VMEXIT to handle the request.
8838 	 */
8839 	except = kvm_get_running_vcpu();
8840 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8841 					 except);
8842 	if (except)
8843 		kvm_vcpu_update_apicv(except);
8844 }
8845 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8846 
8847 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8848 {
8849 	if (!kvm_apic_present(vcpu))
8850 		return;
8851 
8852 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8853 
8854 	if (irqchip_split(vcpu->kvm))
8855 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8856 	else {
8857 		if (vcpu->arch.apicv_active)
8858 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8859 		if (ioapic_in_kernel(vcpu->kvm))
8860 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8861 	}
8862 
8863 	if (is_guest_mode(vcpu))
8864 		vcpu->arch.load_eoi_exitmap_pending = true;
8865 	else
8866 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8867 }
8868 
8869 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8870 {
8871 	u64 eoi_exit_bitmap[4];
8872 
8873 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8874 		return;
8875 
8876 	if (to_hv_vcpu(vcpu))
8877 		bitmap_or((ulong *)eoi_exit_bitmap,
8878 			  vcpu->arch.ioapic_handled_vectors,
8879 			  to_hv_synic(vcpu)->vec_bitmap, 256);
8880 
8881 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8882 }
8883 
8884 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8885 					    unsigned long start, unsigned long end)
8886 {
8887 	unsigned long apic_address;
8888 
8889 	/*
8890 	 * The physical address of apic access page is stored in the VMCS.
8891 	 * Update it when it becomes invalid.
8892 	 */
8893 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8894 	if (start <= apic_address && apic_address < end)
8895 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8896 }
8897 
8898 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8899 {
8900 	if (!lapic_in_kernel(vcpu))
8901 		return;
8902 
8903 	if (!kvm_x86_ops.set_apic_access_page_addr)
8904 		return;
8905 
8906 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8907 }
8908 
8909 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8910 {
8911 	smp_send_reschedule(vcpu->cpu);
8912 }
8913 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8914 
8915 /*
8916  * Returns 1 to let vcpu_run() continue the guest execution loop without
8917  * exiting to the userspace.  Otherwise, the value will be returned to the
8918  * userspace.
8919  */
8920 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8921 {
8922 	int r;
8923 	bool req_int_win =
8924 		dm_request_for_irq_injection(vcpu) &&
8925 		kvm_cpu_accept_dm_intr(vcpu);
8926 	fastpath_t exit_fastpath;
8927 
8928 	bool req_immediate_exit = false;
8929 
8930 	/* Forbid vmenter if vcpu dirty ring is soft-full */
8931 	if (unlikely(vcpu->kvm->dirty_ring_size &&
8932 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8933 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8934 		trace_kvm_dirty_ring_exit(vcpu);
8935 		r = 0;
8936 		goto out;
8937 	}
8938 
8939 	if (kvm_request_pending(vcpu)) {
8940 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8941 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8942 				r = 0;
8943 				goto out;
8944 			}
8945 		}
8946 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8947 			kvm_mmu_unload(vcpu);
8948 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8949 			__kvm_migrate_timers(vcpu);
8950 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8951 			kvm_gen_update_masterclock(vcpu->kvm);
8952 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8953 			kvm_gen_kvmclock_update(vcpu);
8954 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8955 			r = kvm_guest_time_update(vcpu);
8956 			if (unlikely(r))
8957 				goto out;
8958 		}
8959 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8960 			kvm_mmu_sync_roots(vcpu);
8961 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8962 			kvm_mmu_load_pgd(vcpu);
8963 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8964 			kvm_vcpu_flush_tlb_all(vcpu);
8965 
8966 			/* Flushing all ASIDs flushes the current ASID... */
8967 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8968 		}
8969 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8970 			kvm_vcpu_flush_tlb_current(vcpu);
8971 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8972 			kvm_vcpu_flush_tlb_guest(vcpu);
8973 
8974 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8975 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8976 			r = 0;
8977 			goto out;
8978 		}
8979 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8980 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8981 			vcpu->mmio_needed = 0;
8982 			r = 0;
8983 			goto out;
8984 		}
8985 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8986 			/* Page is swapped out. Do synthetic halt */
8987 			vcpu->arch.apf.halted = true;
8988 			r = 1;
8989 			goto out;
8990 		}
8991 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8992 			record_steal_time(vcpu);
8993 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8994 			process_smi(vcpu);
8995 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8996 			process_nmi(vcpu);
8997 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8998 			kvm_pmu_handle_event(vcpu);
8999 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9000 			kvm_pmu_deliver_pmi(vcpu);
9001 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9002 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9003 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9004 				     vcpu->arch.ioapic_handled_vectors)) {
9005 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9006 				vcpu->run->eoi.vector =
9007 						vcpu->arch.pending_ioapic_eoi;
9008 				r = 0;
9009 				goto out;
9010 			}
9011 		}
9012 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9013 			vcpu_scan_ioapic(vcpu);
9014 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9015 			vcpu_load_eoi_exitmap(vcpu);
9016 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9017 			kvm_vcpu_reload_apic_access_page(vcpu);
9018 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9019 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9020 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9021 			r = 0;
9022 			goto out;
9023 		}
9024 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9025 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9026 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9027 			r = 0;
9028 			goto out;
9029 		}
9030 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9031 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9032 
9033 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9034 			vcpu->run->hyperv = hv_vcpu->exit;
9035 			r = 0;
9036 			goto out;
9037 		}
9038 
9039 		/*
9040 		 * KVM_REQ_HV_STIMER has to be processed after
9041 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9042 		 * depend on the guest clock being up-to-date
9043 		 */
9044 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9045 			kvm_hv_process_stimers(vcpu);
9046 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9047 			kvm_vcpu_update_apicv(vcpu);
9048 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9049 			kvm_check_async_pf_completion(vcpu);
9050 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9051 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9052 
9053 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9054 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9055 	}
9056 
9057 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9058 	    kvm_xen_has_interrupt(vcpu)) {
9059 		++vcpu->stat.req_event;
9060 		kvm_apic_accept_events(vcpu);
9061 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9062 			r = 1;
9063 			goto out;
9064 		}
9065 
9066 		inject_pending_event(vcpu, &req_immediate_exit);
9067 		if (req_int_win)
9068 			static_call(kvm_x86_enable_irq_window)(vcpu);
9069 
9070 		if (kvm_lapic_enabled(vcpu)) {
9071 			update_cr8_intercept(vcpu);
9072 			kvm_lapic_sync_to_vapic(vcpu);
9073 		}
9074 	}
9075 
9076 	r = kvm_mmu_reload(vcpu);
9077 	if (unlikely(r)) {
9078 		goto cancel_injection;
9079 	}
9080 
9081 	preempt_disable();
9082 
9083 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9084 
9085 	/*
9086 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9087 	 * IPI are then delayed after guest entry, which ensures that they
9088 	 * result in virtual interrupt delivery.
9089 	 */
9090 	local_irq_disable();
9091 	vcpu->mode = IN_GUEST_MODE;
9092 
9093 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9094 
9095 	/*
9096 	 * 1) We should set ->mode before checking ->requests.  Please see
9097 	 * the comment in kvm_vcpu_exiting_guest_mode().
9098 	 *
9099 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9100 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9101 	 * (see vmx_deliver_posted_interrupt).
9102 	 *
9103 	 * 3) This also orders the write to mode from any reads to the page
9104 	 * tables done while the VCPU is running.  Please see the comment
9105 	 * in kvm_flush_remote_tlbs.
9106 	 */
9107 	smp_mb__after_srcu_read_unlock();
9108 
9109 	/*
9110 	 * This handles the case where a posted interrupt was
9111 	 * notified with kvm_vcpu_kick.
9112 	 */
9113 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9114 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9115 
9116 	if (kvm_vcpu_exit_request(vcpu)) {
9117 		vcpu->mode = OUTSIDE_GUEST_MODE;
9118 		smp_wmb();
9119 		local_irq_enable();
9120 		preempt_enable();
9121 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9122 		r = 1;
9123 		goto cancel_injection;
9124 	}
9125 
9126 	if (req_immediate_exit) {
9127 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9128 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9129 	}
9130 
9131 	fpregs_assert_state_consistent();
9132 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9133 		switch_fpu_return();
9134 
9135 	if (unlikely(vcpu->arch.switch_db_regs)) {
9136 		set_debugreg(0, 7);
9137 		set_debugreg(vcpu->arch.eff_db[0], 0);
9138 		set_debugreg(vcpu->arch.eff_db[1], 1);
9139 		set_debugreg(vcpu->arch.eff_db[2], 2);
9140 		set_debugreg(vcpu->arch.eff_db[3], 3);
9141 		set_debugreg(vcpu->arch.dr6, 6);
9142 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9143 	}
9144 
9145 	for (;;) {
9146 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9147 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9148 			break;
9149 
9150                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9151 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9152 			break;
9153 		}
9154 
9155 		if (vcpu->arch.apicv_active)
9156 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9157         }
9158 
9159 	/*
9160 	 * Do this here before restoring debug registers on the host.  And
9161 	 * since we do this before handling the vmexit, a DR access vmexit
9162 	 * can (a) read the correct value of the debug registers, (b) set
9163 	 * KVM_DEBUGREG_WONT_EXIT again.
9164 	 */
9165 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9166 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9167 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9168 		kvm_update_dr0123(vcpu);
9169 		kvm_update_dr7(vcpu);
9170 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9171 	}
9172 
9173 	/*
9174 	 * If the guest has used debug registers, at least dr7
9175 	 * will be disabled while returning to the host.
9176 	 * If we don't have active breakpoints in the host, we don't
9177 	 * care about the messed up debug address registers. But if
9178 	 * we have some of them active, restore the old state.
9179 	 */
9180 	if (hw_breakpoint_active())
9181 		hw_breakpoint_restore();
9182 
9183 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9184 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9185 
9186 	vcpu->mode = OUTSIDE_GUEST_MODE;
9187 	smp_wmb();
9188 
9189 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9190 
9191 	/*
9192 	 * Consume any pending interrupts, including the possible source of
9193 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9194 	 * An instruction is required after local_irq_enable() to fully unblock
9195 	 * interrupts on processors that implement an interrupt shadow, the
9196 	 * stat.exits increment will do nicely.
9197 	 */
9198 	kvm_before_interrupt(vcpu);
9199 	local_irq_enable();
9200 	++vcpu->stat.exits;
9201 	local_irq_disable();
9202 	kvm_after_interrupt(vcpu);
9203 
9204 	if (lapic_in_kernel(vcpu)) {
9205 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9206 		if (delta != S64_MIN) {
9207 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9208 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9209 		}
9210 	}
9211 
9212 	local_irq_enable();
9213 	preempt_enable();
9214 
9215 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9216 
9217 	/*
9218 	 * Profile KVM exit RIPs:
9219 	 */
9220 	if (unlikely(prof_on == KVM_PROFILING)) {
9221 		unsigned long rip = kvm_rip_read(vcpu);
9222 		profile_hit(KVM_PROFILING, (void *)rip);
9223 	}
9224 
9225 	if (unlikely(vcpu->arch.tsc_always_catchup))
9226 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9227 
9228 	if (vcpu->arch.apic_attention)
9229 		kvm_lapic_sync_from_vapic(vcpu);
9230 
9231 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9232 	return r;
9233 
9234 cancel_injection:
9235 	if (req_immediate_exit)
9236 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9237 	static_call(kvm_x86_cancel_injection)(vcpu);
9238 	if (unlikely(vcpu->arch.apic_attention))
9239 		kvm_lapic_sync_from_vapic(vcpu);
9240 out:
9241 	return r;
9242 }
9243 
9244 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9245 {
9246 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9247 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9248 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9249 		kvm_vcpu_block(vcpu);
9250 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9251 
9252 		if (kvm_x86_ops.post_block)
9253 			static_call(kvm_x86_post_block)(vcpu);
9254 
9255 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9256 			return 1;
9257 	}
9258 
9259 	kvm_apic_accept_events(vcpu);
9260 	switch(vcpu->arch.mp_state) {
9261 	case KVM_MP_STATE_HALTED:
9262 	case KVM_MP_STATE_AP_RESET_HOLD:
9263 		vcpu->arch.pv.pv_unhalted = false;
9264 		vcpu->arch.mp_state =
9265 			KVM_MP_STATE_RUNNABLE;
9266 		fallthrough;
9267 	case KVM_MP_STATE_RUNNABLE:
9268 		vcpu->arch.apf.halted = false;
9269 		break;
9270 	case KVM_MP_STATE_INIT_RECEIVED:
9271 		break;
9272 	default:
9273 		return -EINTR;
9274 	}
9275 	return 1;
9276 }
9277 
9278 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9279 {
9280 	if (is_guest_mode(vcpu))
9281 		kvm_x86_ops.nested_ops->check_events(vcpu);
9282 
9283 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9284 		!vcpu->arch.apf.halted);
9285 }
9286 
9287 static int vcpu_run(struct kvm_vcpu *vcpu)
9288 {
9289 	int r;
9290 	struct kvm *kvm = vcpu->kvm;
9291 
9292 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9293 	vcpu->arch.l1tf_flush_l1d = true;
9294 
9295 	for (;;) {
9296 		if (kvm_vcpu_running(vcpu)) {
9297 			r = vcpu_enter_guest(vcpu);
9298 		} else {
9299 			r = vcpu_block(kvm, vcpu);
9300 		}
9301 
9302 		if (r <= 0)
9303 			break;
9304 
9305 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9306 		if (kvm_cpu_has_pending_timer(vcpu))
9307 			kvm_inject_pending_timer_irqs(vcpu);
9308 
9309 		if (dm_request_for_irq_injection(vcpu) &&
9310 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9311 			r = 0;
9312 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9313 			++vcpu->stat.request_irq_exits;
9314 			break;
9315 		}
9316 
9317 		if (__xfer_to_guest_mode_work_pending()) {
9318 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9319 			r = xfer_to_guest_mode_handle_work(vcpu);
9320 			if (r)
9321 				return r;
9322 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9323 		}
9324 	}
9325 
9326 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9327 
9328 	return r;
9329 }
9330 
9331 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9332 {
9333 	int r;
9334 
9335 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9336 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9337 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9338 	return r;
9339 }
9340 
9341 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9342 {
9343 	BUG_ON(!vcpu->arch.pio.count);
9344 
9345 	return complete_emulated_io(vcpu);
9346 }
9347 
9348 /*
9349  * Implements the following, as a state machine:
9350  *
9351  * read:
9352  *   for each fragment
9353  *     for each mmio piece in the fragment
9354  *       write gpa, len
9355  *       exit
9356  *       copy data
9357  *   execute insn
9358  *
9359  * write:
9360  *   for each fragment
9361  *     for each mmio piece in the fragment
9362  *       write gpa, len
9363  *       copy data
9364  *       exit
9365  */
9366 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9367 {
9368 	struct kvm_run *run = vcpu->run;
9369 	struct kvm_mmio_fragment *frag;
9370 	unsigned len;
9371 
9372 	BUG_ON(!vcpu->mmio_needed);
9373 
9374 	/* Complete previous fragment */
9375 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9376 	len = min(8u, frag->len);
9377 	if (!vcpu->mmio_is_write)
9378 		memcpy(frag->data, run->mmio.data, len);
9379 
9380 	if (frag->len <= 8) {
9381 		/* Switch to the next fragment. */
9382 		frag++;
9383 		vcpu->mmio_cur_fragment++;
9384 	} else {
9385 		/* Go forward to the next mmio piece. */
9386 		frag->data += len;
9387 		frag->gpa += len;
9388 		frag->len -= len;
9389 	}
9390 
9391 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9392 		vcpu->mmio_needed = 0;
9393 
9394 		/* FIXME: return into emulator if single-stepping.  */
9395 		if (vcpu->mmio_is_write)
9396 			return 1;
9397 		vcpu->mmio_read_completed = 1;
9398 		return complete_emulated_io(vcpu);
9399 	}
9400 
9401 	run->exit_reason = KVM_EXIT_MMIO;
9402 	run->mmio.phys_addr = frag->gpa;
9403 	if (vcpu->mmio_is_write)
9404 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9405 	run->mmio.len = min(8u, frag->len);
9406 	run->mmio.is_write = vcpu->mmio_is_write;
9407 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9408 	return 0;
9409 }
9410 
9411 static void kvm_save_current_fpu(struct fpu *fpu)
9412 {
9413 	/*
9414 	 * If the target FPU state is not resident in the CPU registers, just
9415 	 * memcpy() from current, else save CPU state directly to the target.
9416 	 */
9417 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9418 		memcpy(&fpu->state, &current->thread.fpu.state,
9419 		       fpu_kernel_xstate_size);
9420 	else
9421 		copy_fpregs_to_fpstate(fpu);
9422 }
9423 
9424 /* Swap (qemu) user FPU context for the guest FPU context. */
9425 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9426 {
9427 	fpregs_lock();
9428 
9429 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9430 
9431 	/*
9432 	 * Guests with protected state can't have it set by the hypervisor,
9433 	 * so skip trying to set it.
9434 	 */
9435 	if (vcpu->arch.guest_fpu)
9436 		/* PKRU is separately restored in kvm_x86_ops.run. */
9437 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9438 					~XFEATURE_MASK_PKRU);
9439 
9440 	fpregs_mark_activate();
9441 	fpregs_unlock();
9442 
9443 	trace_kvm_fpu(1);
9444 }
9445 
9446 /* When vcpu_run ends, restore user space FPU context. */
9447 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9448 {
9449 	fpregs_lock();
9450 
9451 	/*
9452 	 * Guests with protected state can't have it read by the hypervisor,
9453 	 * so skip trying to save it.
9454 	 */
9455 	if (vcpu->arch.guest_fpu)
9456 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9457 
9458 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9459 
9460 	fpregs_mark_activate();
9461 	fpregs_unlock();
9462 
9463 	++vcpu->stat.fpu_reload;
9464 	trace_kvm_fpu(0);
9465 }
9466 
9467 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9468 {
9469 	struct kvm_run *kvm_run = vcpu->run;
9470 	int r;
9471 
9472 	vcpu_load(vcpu);
9473 	kvm_sigset_activate(vcpu);
9474 	kvm_run->flags = 0;
9475 	kvm_load_guest_fpu(vcpu);
9476 
9477 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9478 		if (kvm_run->immediate_exit) {
9479 			r = -EINTR;
9480 			goto out;
9481 		}
9482 		kvm_vcpu_block(vcpu);
9483 		kvm_apic_accept_events(vcpu);
9484 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9485 		r = -EAGAIN;
9486 		if (signal_pending(current)) {
9487 			r = -EINTR;
9488 			kvm_run->exit_reason = KVM_EXIT_INTR;
9489 			++vcpu->stat.signal_exits;
9490 		}
9491 		goto out;
9492 	}
9493 
9494 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9495 		r = -EINVAL;
9496 		goto out;
9497 	}
9498 
9499 	if (kvm_run->kvm_dirty_regs) {
9500 		r = sync_regs(vcpu);
9501 		if (r != 0)
9502 			goto out;
9503 	}
9504 
9505 	/* re-sync apic's tpr */
9506 	if (!lapic_in_kernel(vcpu)) {
9507 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9508 			r = -EINVAL;
9509 			goto out;
9510 		}
9511 	}
9512 
9513 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9514 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9515 		vcpu->arch.complete_userspace_io = NULL;
9516 		r = cui(vcpu);
9517 		if (r <= 0)
9518 			goto out;
9519 	} else
9520 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9521 
9522 	if (kvm_run->immediate_exit)
9523 		r = -EINTR;
9524 	else
9525 		r = vcpu_run(vcpu);
9526 
9527 out:
9528 	kvm_put_guest_fpu(vcpu);
9529 	if (kvm_run->kvm_valid_regs)
9530 		store_regs(vcpu);
9531 	post_kvm_run_save(vcpu);
9532 	kvm_sigset_deactivate(vcpu);
9533 
9534 	vcpu_put(vcpu);
9535 	return r;
9536 }
9537 
9538 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9539 {
9540 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9541 		/*
9542 		 * We are here if userspace calls get_regs() in the middle of
9543 		 * instruction emulation. Registers state needs to be copied
9544 		 * back from emulation context to vcpu. Userspace shouldn't do
9545 		 * that usually, but some bad designed PV devices (vmware
9546 		 * backdoor interface) need this to work
9547 		 */
9548 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9549 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9550 	}
9551 	regs->rax = kvm_rax_read(vcpu);
9552 	regs->rbx = kvm_rbx_read(vcpu);
9553 	regs->rcx = kvm_rcx_read(vcpu);
9554 	regs->rdx = kvm_rdx_read(vcpu);
9555 	regs->rsi = kvm_rsi_read(vcpu);
9556 	regs->rdi = kvm_rdi_read(vcpu);
9557 	regs->rsp = kvm_rsp_read(vcpu);
9558 	regs->rbp = kvm_rbp_read(vcpu);
9559 #ifdef CONFIG_X86_64
9560 	regs->r8 = kvm_r8_read(vcpu);
9561 	regs->r9 = kvm_r9_read(vcpu);
9562 	regs->r10 = kvm_r10_read(vcpu);
9563 	regs->r11 = kvm_r11_read(vcpu);
9564 	regs->r12 = kvm_r12_read(vcpu);
9565 	regs->r13 = kvm_r13_read(vcpu);
9566 	regs->r14 = kvm_r14_read(vcpu);
9567 	regs->r15 = kvm_r15_read(vcpu);
9568 #endif
9569 
9570 	regs->rip = kvm_rip_read(vcpu);
9571 	regs->rflags = kvm_get_rflags(vcpu);
9572 }
9573 
9574 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9575 {
9576 	vcpu_load(vcpu);
9577 	__get_regs(vcpu, regs);
9578 	vcpu_put(vcpu);
9579 	return 0;
9580 }
9581 
9582 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9583 {
9584 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9585 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9586 
9587 	kvm_rax_write(vcpu, regs->rax);
9588 	kvm_rbx_write(vcpu, regs->rbx);
9589 	kvm_rcx_write(vcpu, regs->rcx);
9590 	kvm_rdx_write(vcpu, regs->rdx);
9591 	kvm_rsi_write(vcpu, regs->rsi);
9592 	kvm_rdi_write(vcpu, regs->rdi);
9593 	kvm_rsp_write(vcpu, regs->rsp);
9594 	kvm_rbp_write(vcpu, regs->rbp);
9595 #ifdef CONFIG_X86_64
9596 	kvm_r8_write(vcpu, regs->r8);
9597 	kvm_r9_write(vcpu, regs->r9);
9598 	kvm_r10_write(vcpu, regs->r10);
9599 	kvm_r11_write(vcpu, regs->r11);
9600 	kvm_r12_write(vcpu, regs->r12);
9601 	kvm_r13_write(vcpu, regs->r13);
9602 	kvm_r14_write(vcpu, regs->r14);
9603 	kvm_r15_write(vcpu, regs->r15);
9604 #endif
9605 
9606 	kvm_rip_write(vcpu, regs->rip);
9607 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9608 
9609 	vcpu->arch.exception.pending = false;
9610 
9611 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9612 }
9613 
9614 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9615 {
9616 	vcpu_load(vcpu);
9617 	__set_regs(vcpu, regs);
9618 	vcpu_put(vcpu);
9619 	return 0;
9620 }
9621 
9622 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9623 {
9624 	struct kvm_segment cs;
9625 
9626 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9627 	*db = cs.db;
9628 	*l = cs.l;
9629 }
9630 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9631 
9632 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9633 {
9634 	struct desc_ptr dt;
9635 
9636 	if (vcpu->arch.guest_state_protected)
9637 		goto skip_protected_regs;
9638 
9639 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9640 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9641 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9642 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9643 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9644 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9645 
9646 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9647 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9648 
9649 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9650 	sregs->idt.limit = dt.size;
9651 	sregs->idt.base = dt.address;
9652 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9653 	sregs->gdt.limit = dt.size;
9654 	sregs->gdt.base = dt.address;
9655 
9656 	sregs->cr2 = vcpu->arch.cr2;
9657 	sregs->cr3 = kvm_read_cr3(vcpu);
9658 
9659 skip_protected_regs:
9660 	sregs->cr0 = kvm_read_cr0(vcpu);
9661 	sregs->cr4 = kvm_read_cr4(vcpu);
9662 	sregs->cr8 = kvm_get_cr8(vcpu);
9663 	sregs->efer = vcpu->arch.efer;
9664 	sregs->apic_base = kvm_get_apic_base(vcpu);
9665 
9666 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9667 
9668 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9669 		set_bit(vcpu->arch.interrupt.nr,
9670 			(unsigned long *)sregs->interrupt_bitmap);
9671 }
9672 
9673 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9674 				  struct kvm_sregs *sregs)
9675 {
9676 	vcpu_load(vcpu);
9677 	__get_sregs(vcpu, sregs);
9678 	vcpu_put(vcpu);
9679 	return 0;
9680 }
9681 
9682 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9683 				    struct kvm_mp_state *mp_state)
9684 {
9685 	vcpu_load(vcpu);
9686 	if (kvm_mpx_supported())
9687 		kvm_load_guest_fpu(vcpu);
9688 
9689 	kvm_apic_accept_events(vcpu);
9690 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9691 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9692 	    vcpu->arch.pv.pv_unhalted)
9693 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9694 	else
9695 		mp_state->mp_state = vcpu->arch.mp_state;
9696 
9697 	if (kvm_mpx_supported())
9698 		kvm_put_guest_fpu(vcpu);
9699 	vcpu_put(vcpu);
9700 	return 0;
9701 }
9702 
9703 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9704 				    struct kvm_mp_state *mp_state)
9705 {
9706 	int ret = -EINVAL;
9707 
9708 	vcpu_load(vcpu);
9709 
9710 	if (!lapic_in_kernel(vcpu) &&
9711 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9712 		goto out;
9713 
9714 	/*
9715 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9716 	 * INIT state; latched init should be reported using
9717 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9718 	 */
9719 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9720 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9721 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9722 		goto out;
9723 
9724 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9725 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9726 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9727 	} else
9728 		vcpu->arch.mp_state = mp_state->mp_state;
9729 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9730 
9731 	ret = 0;
9732 out:
9733 	vcpu_put(vcpu);
9734 	return ret;
9735 }
9736 
9737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9738 		    int reason, bool has_error_code, u32 error_code)
9739 {
9740 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9741 	int ret;
9742 
9743 	init_emulate_ctxt(vcpu);
9744 
9745 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9746 				   has_error_code, error_code);
9747 	if (ret) {
9748 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9749 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9750 		vcpu->run->internal.ndata = 0;
9751 		return 0;
9752 	}
9753 
9754 	kvm_rip_write(vcpu, ctxt->eip);
9755 	kvm_set_rflags(vcpu, ctxt->eflags);
9756 	return 1;
9757 }
9758 EXPORT_SYMBOL_GPL(kvm_task_switch);
9759 
9760 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9761 {
9762 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9763 		/*
9764 		 * When EFER.LME and CR0.PG are set, the processor is in
9765 		 * 64-bit mode (though maybe in a 32-bit code segment).
9766 		 * CR4.PAE and EFER.LMA must be set.
9767 		 */
9768 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9769 			return false;
9770 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9771 			return false;
9772 	} else {
9773 		/*
9774 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9775 		 * segment cannot be 64-bit.
9776 		 */
9777 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9778 			return false;
9779 	}
9780 
9781 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9782 }
9783 
9784 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9785 {
9786 	struct msr_data apic_base_msr;
9787 	int mmu_reset_needed = 0;
9788 	int pending_vec, max_bits, idx;
9789 	struct desc_ptr dt;
9790 	int ret = -EINVAL;
9791 
9792 	if (!kvm_is_valid_sregs(vcpu, sregs))
9793 		goto out;
9794 
9795 	apic_base_msr.data = sregs->apic_base;
9796 	apic_base_msr.host_initiated = true;
9797 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9798 		goto out;
9799 
9800 	if (vcpu->arch.guest_state_protected)
9801 		goto skip_protected_regs;
9802 
9803 	dt.size = sregs->idt.limit;
9804 	dt.address = sregs->idt.base;
9805 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9806 	dt.size = sregs->gdt.limit;
9807 	dt.address = sregs->gdt.base;
9808 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
9809 
9810 	vcpu->arch.cr2 = sregs->cr2;
9811 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9812 	vcpu->arch.cr3 = sregs->cr3;
9813 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9814 
9815 	kvm_set_cr8(vcpu, sregs->cr8);
9816 
9817 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9818 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9819 
9820 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9821 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9822 	vcpu->arch.cr0 = sregs->cr0;
9823 
9824 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9825 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9826 
9827 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9828 	if (is_pae_paging(vcpu)) {
9829 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9830 		mmu_reset_needed = 1;
9831 	}
9832 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9833 
9834 	if (mmu_reset_needed)
9835 		kvm_mmu_reset_context(vcpu);
9836 
9837 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9838 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9839 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9840 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9841 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9842 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9843 
9844 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9845 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9846 
9847 	update_cr8_intercept(vcpu);
9848 
9849 	/* Older userspace won't unhalt the vcpu on reset. */
9850 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9851 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9852 	    !is_protmode(vcpu))
9853 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9854 
9855 skip_protected_regs:
9856 	max_bits = KVM_NR_INTERRUPTS;
9857 	pending_vec = find_first_bit(
9858 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9859 	if (pending_vec < max_bits) {
9860 		kvm_queue_interrupt(vcpu, pending_vec, false);
9861 		pr_debug("Set back pending irq %d\n", pending_vec);
9862 	}
9863 
9864 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9865 
9866 	ret = 0;
9867 out:
9868 	return ret;
9869 }
9870 
9871 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9872 				  struct kvm_sregs *sregs)
9873 {
9874 	int ret;
9875 
9876 	vcpu_load(vcpu);
9877 	ret = __set_sregs(vcpu, sregs);
9878 	vcpu_put(vcpu);
9879 	return ret;
9880 }
9881 
9882 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9883 					struct kvm_guest_debug *dbg)
9884 {
9885 	unsigned long rflags;
9886 	int i, r;
9887 
9888 	if (vcpu->arch.guest_state_protected)
9889 		return -EINVAL;
9890 
9891 	vcpu_load(vcpu);
9892 
9893 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9894 		r = -EBUSY;
9895 		if (vcpu->arch.exception.pending)
9896 			goto out;
9897 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9898 			kvm_queue_exception(vcpu, DB_VECTOR);
9899 		else
9900 			kvm_queue_exception(vcpu, BP_VECTOR);
9901 	}
9902 
9903 	/*
9904 	 * Read rflags as long as potentially injected trace flags are still
9905 	 * filtered out.
9906 	 */
9907 	rflags = kvm_get_rflags(vcpu);
9908 
9909 	vcpu->guest_debug = dbg->control;
9910 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9911 		vcpu->guest_debug = 0;
9912 
9913 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9914 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9915 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9916 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9917 	} else {
9918 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9919 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9920 	}
9921 	kvm_update_dr7(vcpu);
9922 
9923 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9924 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9925 			get_segment_base(vcpu, VCPU_SREG_CS);
9926 
9927 	/*
9928 	 * Trigger an rflags update that will inject or remove the trace
9929 	 * flags.
9930 	 */
9931 	kvm_set_rflags(vcpu, rflags);
9932 
9933 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
9934 
9935 	r = 0;
9936 
9937 out:
9938 	vcpu_put(vcpu);
9939 	return r;
9940 }
9941 
9942 /*
9943  * Translate a guest virtual address to a guest physical address.
9944  */
9945 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9946 				    struct kvm_translation *tr)
9947 {
9948 	unsigned long vaddr = tr->linear_address;
9949 	gpa_t gpa;
9950 	int idx;
9951 
9952 	vcpu_load(vcpu);
9953 
9954 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9955 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9956 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9957 	tr->physical_address = gpa;
9958 	tr->valid = gpa != UNMAPPED_GVA;
9959 	tr->writeable = 1;
9960 	tr->usermode = 0;
9961 
9962 	vcpu_put(vcpu);
9963 	return 0;
9964 }
9965 
9966 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9967 {
9968 	struct fxregs_state *fxsave;
9969 
9970 	if (!vcpu->arch.guest_fpu)
9971 		return 0;
9972 
9973 	vcpu_load(vcpu);
9974 
9975 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9976 	memcpy(fpu->fpr, fxsave->st_space, 128);
9977 	fpu->fcw = fxsave->cwd;
9978 	fpu->fsw = fxsave->swd;
9979 	fpu->ftwx = fxsave->twd;
9980 	fpu->last_opcode = fxsave->fop;
9981 	fpu->last_ip = fxsave->rip;
9982 	fpu->last_dp = fxsave->rdp;
9983 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9984 
9985 	vcpu_put(vcpu);
9986 	return 0;
9987 }
9988 
9989 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9990 {
9991 	struct fxregs_state *fxsave;
9992 
9993 	if (!vcpu->arch.guest_fpu)
9994 		return 0;
9995 
9996 	vcpu_load(vcpu);
9997 
9998 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9999 
10000 	memcpy(fxsave->st_space, fpu->fpr, 128);
10001 	fxsave->cwd = fpu->fcw;
10002 	fxsave->swd = fpu->fsw;
10003 	fxsave->twd = fpu->ftwx;
10004 	fxsave->fop = fpu->last_opcode;
10005 	fxsave->rip = fpu->last_ip;
10006 	fxsave->rdp = fpu->last_dp;
10007 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10008 
10009 	vcpu_put(vcpu);
10010 	return 0;
10011 }
10012 
10013 static void store_regs(struct kvm_vcpu *vcpu)
10014 {
10015 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10016 
10017 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10018 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10019 
10020 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10021 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10022 
10023 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10024 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10025 				vcpu, &vcpu->run->s.regs.events);
10026 }
10027 
10028 static int sync_regs(struct kvm_vcpu *vcpu)
10029 {
10030 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10031 		return -EINVAL;
10032 
10033 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10034 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10035 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10036 	}
10037 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10038 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10039 			return -EINVAL;
10040 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10041 	}
10042 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10043 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10044 				vcpu, &vcpu->run->s.regs.events))
10045 			return -EINVAL;
10046 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10047 	}
10048 
10049 	return 0;
10050 }
10051 
10052 static void fx_init(struct kvm_vcpu *vcpu)
10053 {
10054 	if (!vcpu->arch.guest_fpu)
10055 		return;
10056 
10057 	fpstate_init(&vcpu->arch.guest_fpu->state);
10058 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10059 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10060 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10061 
10062 	/*
10063 	 * Ensure guest xcr0 is valid for loading
10064 	 */
10065 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10066 
10067 	vcpu->arch.cr0 |= X86_CR0_ET;
10068 }
10069 
10070 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10071 {
10072 	if (vcpu->arch.guest_fpu) {
10073 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10074 		vcpu->arch.guest_fpu = NULL;
10075 	}
10076 }
10077 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10078 
10079 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10080 {
10081 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10082 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10083 			     "guest TSC will not be reliable\n");
10084 
10085 	return 0;
10086 }
10087 
10088 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10089 {
10090 	struct page *page;
10091 	int r;
10092 
10093 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10094 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10095 	else
10096 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10097 
10098 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10099 
10100 	r = kvm_mmu_create(vcpu);
10101 	if (r < 0)
10102 		return r;
10103 
10104 	if (irqchip_in_kernel(vcpu->kvm)) {
10105 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10106 		if (r < 0)
10107 			goto fail_mmu_destroy;
10108 		if (kvm_apicv_activated(vcpu->kvm))
10109 			vcpu->arch.apicv_active = true;
10110 	} else
10111 		static_branch_inc(&kvm_has_noapic_vcpu);
10112 
10113 	r = -ENOMEM;
10114 
10115 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10116 	if (!page)
10117 		goto fail_free_lapic;
10118 	vcpu->arch.pio_data = page_address(page);
10119 
10120 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10121 				       GFP_KERNEL_ACCOUNT);
10122 	if (!vcpu->arch.mce_banks)
10123 		goto fail_free_pio_data;
10124 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10125 
10126 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10127 				GFP_KERNEL_ACCOUNT))
10128 		goto fail_free_mce_banks;
10129 
10130 	if (!alloc_emulate_ctxt(vcpu))
10131 		goto free_wbinvd_dirty_mask;
10132 
10133 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10134 						GFP_KERNEL_ACCOUNT);
10135 	if (!vcpu->arch.user_fpu) {
10136 		pr_err("kvm: failed to allocate userspace's fpu\n");
10137 		goto free_emulate_ctxt;
10138 	}
10139 
10140 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10141 						 GFP_KERNEL_ACCOUNT);
10142 	if (!vcpu->arch.guest_fpu) {
10143 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10144 		goto free_user_fpu;
10145 	}
10146 	fx_init(vcpu);
10147 
10148 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10149 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10150 
10151 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10152 
10153 	kvm_async_pf_hash_reset(vcpu);
10154 	kvm_pmu_init(vcpu);
10155 
10156 	vcpu->arch.pending_external_vector = -1;
10157 	vcpu->arch.preempted_in_kernel = false;
10158 
10159 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10160 	if (r)
10161 		goto free_guest_fpu;
10162 
10163 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10164 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10165 	kvm_vcpu_mtrr_init(vcpu);
10166 	vcpu_load(vcpu);
10167 	kvm_vcpu_reset(vcpu, false);
10168 	kvm_init_mmu(vcpu, false);
10169 	vcpu_put(vcpu);
10170 	return 0;
10171 
10172 free_guest_fpu:
10173 	kvm_free_guest_fpu(vcpu);
10174 free_user_fpu:
10175 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10176 free_emulate_ctxt:
10177 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10178 free_wbinvd_dirty_mask:
10179 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10180 fail_free_mce_banks:
10181 	kfree(vcpu->arch.mce_banks);
10182 fail_free_pio_data:
10183 	free_page((unsigned long)vcpu->arch.pio_data);
10184 fail_free_lapic:
10185 	kvm_free_lapic(vcpu);
10186 fail_mmu_destroy:
10187 	kvm_mmu_destroy(vcpu);
10188 	return r;
10189 }
10190 
10191 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10192 {
10193 	struct kvm *kvm = vcpu->kvm;
10194 
10195 	if (mutex_lock_killable(&vcpu->mutex))
10196 		return;
10197 	vcpu_load(vcpu);
10198 	kvm_synchronize_tsc(vcpu, 0);
10199 	vcpu_put(vcpu);
10200 
10201 	/* poll control enabled by default */
10202 	vcpu->arch.msr_kvm_poll_control = 1;
10203 
10204 	mutex_unlock(&vcpu->mutex);
10205 
10206 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10207 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10208 						KVMCLOCK_SYNC_PERIOD);
10209 }
10210 
10211 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10212 {
10213 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10214 	int idx;
10215 
10216 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10217 
10218 	kvmclock_reset(vcpu);
10219 
10220 	static_call(kvm_x86_vcpu_free)(vcpu);
10221 
10222 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10223 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10224 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10225 	kvm_free_guest_fpu(vcpu);
10226 
10227 	kvm_hv_vcpu_uninit(vcpu);
10228 	kvm_pmu_destroy(vcpu);
10229 	kfree(vcpu->arch.mce_banks);
10230 	kvm_free_lapic(vcpu);
10231 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10232 	kvm_mmu_destroy(vcpu);
10233 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10234 	free_page((unsigned long)vcpu->arch.pio_data);
10235 	kvfree(vcpu->arch.cpuid_entries);
10236 	if (!lapic_in_kernel(vcpu))
10237 		static_branch_dec(&kvm_has_noapic_vcpu);
10238 }
10239 
10240 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10241 {
10242 	kvm_lapic_reset(vcpu, init_event);
10243 
10244 	vcpu->arch.hflags = 0;
10245 
10246 	vcpu->arch.smi_pending = 0;
10247 	vcpu->arch.smi_count = 0;
10248 	atomic_set(&vcpu->arch.nmi_queued, 0);
10249 	vcpu->arch.nmi_pending = 0;
10250 	vcpu->arch.nmi_injected = false;
10251 	kvm_clear_interrupt_queue(vcpu);
10252 	kvm_clear_exception_queue(vcpu);
10253 
10254 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10255 	kvm_update_dr0123(vcpu);
10256 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10257 	vcpu->arch.dr7 = DR7_FIXED_1;
10258 	kvm_update_dr7(vcpu);
10259 
10260 	vcpu->arch.cr2 = 0;
10261 
10262 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10263 	vcpu->arch.apf.msr_en_val = 0;
10264 	vcpu->arch.apf.msr_int_val = 0;
10265 	vcpu->arch.st.msr_val = 0;
10266 
10267 	kvmclock_reset(vcpu);
10268 
10269 	kvm_clear_async_pf_completion_queue(vcpu);
10270 	kvm_async_pf_hash_reset(vcpu);
10271 	vcpu->arch.apf.halted = false;
10272 
10273 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10274 		void *mpx_state_buffer;
10275 
10276 		/*
10277 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10278 		 * called with loaded FPU and does not let userspace fix the state.
10279 		 */
10280 		if (init_event)
10281 			kvm_put_guest_fpu(vcpu);
10282 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10283 					XFEATURE_BNDREGS);
10284 		if (mpx_state_buffer)
10285 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10286 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10287 					XFEATURE_BNDCSR);
10288 		if (mpx_state_buffer)
10289 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10290 		if (init_event)
10291 			kvm_load_guest_fpu(vcpu);
10292 	}
10293 
10294 	if (!init_event) {
10295 		kvm_pmu_reset(vcpu);
10296 		vcpu->arch.smbase = 0x30000;
10297 
10298 		vcpu->arch.msr_misc_features_enables = 0;
10299 
10300 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10301 	}
10302 
10303 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10304 	vcpu->arch.regs_avail = ~0;
10305 	vcpu->arch.regs_dirty = ~0;
10306 
10307 	vcpu->arch.ia32_xss = 0;
10308 
10309 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10310 }
10311 
10312 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10313 {
10314 	struct kvm_segment cs;
10315 
10316 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10317 	cs.selector = vector << 8;
10318 	cs.base = vector << 12;
10319 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10320 	kvm_rip_write(vcpu, 0);
10321 }
10322 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10323 
10324 int kvm_arch_hardware_enable(void)
10325 {
10326 	struct kvm *kvm;
10327 	struct kvm_vcpu *vcpu;
10328 	int i;
10329 	int ret;
10330 	u64 local_tsc;
10331 	u64 max_tsc = 0;
10332 	bool stable, backwards_tsc = false;
10333 
10334 	kvm_user_return_msr_cpu_online();
10335 	ret = static_call(kvm_x86_hardware_enable)();
10336 	if (ret != 0)
10337 		return ret;
10338 
10339 	local_tsc = rdtsc();
10340 	stable = !kvm_check_tsc_unstable();
10341 	list_for_each_entry(kvm, &vm_list, vm_list) {
10342 		kvm_for_each_vcpu(i, vcpu, kvm) {
10343 			if (!stable && vcpu->cpu == smp_processor_id())
10344 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10345 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10346 				backwards_tsc = true;
10347 				if (vcpu->arch.last_host_tsc > max_tsc)
10348 					max_tsc = vcpu->arch.last_host_tsc;
10349 			}
10350 		}
10351 	}
10352 
10353 	/*
10354 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10355 	 * platforms that reset TSC during suspend or hibernate actions, but
10356 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10357 	 * detect that condition here, which happens early in CPU bringup,
10358 	 * before any KVM threads can be running.  Unfortunately, we can't
10359 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10360 	 * enough into CPU bringup that we know how much real time has actually
10361 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10362 	 * variables that haven't been updated yet.
10363 	 *
10364 	 * So we simply find the maximum observed TSC above, then record the
10365 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10366 	 * the adjustment will be applied.  Note that we accumulate
10367 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10368 	 * gets a chance to run again.  In the event that no KVM threads get a
10369 	 * chance to run, we will miss the entire elapsed period, as we'll have
10370 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10371 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10372 	 * uniform across all VCPUs (not to mention the scenario is extremely
10373 	 * unlikely). It is possible that a second hibernate recovery happens
10374 	 * much faster than a first, causing the observed TSC here to be
10375 	 * smaller; this would require additional padding adjustment, which is
10376 	 * why we set last_host_tsc to the local tsc observed here.
10377 	 *
10378 	 * N.B. - this code below runs only on platforms with reliable TSC,
10379 	 * as that is the only way backwards_tsc is set above.  Also note
10380 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10381 	 * have the same delta_cyc adjustment applied if backwards_tsc
10382 	 * is detected.  Note further, this adjustment is only done once,
10383 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10384 	 * called multiple times (one for each physical CPU bringup).
10385 	 *
10386 	 * Platforms with unreliable TSCs don't have to deal with this, they
10387 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10388 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10389 	 * guarantee that they stay in perfect synchronization.
10390 	 */
10391 	if (backwards_tsc) {
10392 		u64 delta_cyc = max_tsc - local_tsc;
10393 		list_for_each_entry(kvm, &vm_list, vm_list) {
10394 			kvm->arch.backwards_tsc_observed = true;
10395 			kvm_for_each_vcpu(i, vcpu, kvm) {
10396 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10397 				vcpu->arch.last_host_tsc = local_tsc;
10398 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10399 			}
10400 
10401 			/*
10402 			 * We have to disable TSC offset matching.. if you were
10403 			 * booting a VM while issuing an S4 host suspend....
10404 			 * you may have some problem.  Solving this issue is
10405 			 * left as an exercise to the reader.
10406 			 */
10407 			kvm->arch.last_tsc_nsec = 0;
10408 			kvm->arch.last_tsc_write = 0;
10409 		}
10410 
10411 	}
10412 	return 0;
10413 }
10414 
10415 void kvm_arch_hardware_disable(void)
10416 {
10417 	static_call(kvm_x86_hardware_disable)();
10418 	drop_user_return_notifiers();
10419 }
10420 
10421 int kvm_arch_hardware_setup(void *opaque)
10422 {
10423 	struct kvm_x86_init_ops *ops = opaque;
10424 	int r;
10425 
10426 	rdmsrl_safe(MSR_EFER, &host_efer);
10427 
10428 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10429 		rdmsrl(MSR_IA32_XSS, host_xss);
10430 
10431 	r = ops->hardware_setup();
10432 	if (r != 0)
10433 		return r;
10434 
10435 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10436 	kvm_ops_static_call_update();
10437 
10438 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10439 		supported_xss = 0;
10440 
10441 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10442 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10443 #undef __kvm_cpu_cap_has
10444 
10445 	if (kvm_has_tsc_control) {
10446 		/*
10447 		 * Make sure the user can only configure tsc_khz values that
10448 		 * fit into a signed integer.
10449 		 * A min value is not calculated because it will always
10450 		 * be 1 on all machines.
10451 		 */
10452 		u64 max = min(0x7fffffffULL,
10453 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10454 		kvm_max_guest_tsc_khz = max;
10455 
10456 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10457 	}
10458 
10459 	kvm_init_msr_list();
10460 	return 0;
10461 }
10462 
10463 void kvm_arch_hardware_unsetup(void)
10464 {
10465 	static_call(kvm_x86_hardware_unsetup)();
10466 }
10467 
10468 int kvm_arch_check_processor_compat(void *opaque)
10469 {
10470 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10471 	struct kvm_x86_init_ops *ops = opaque;
10472 
10473 	WARN_ON(!irqs_disabled());
10474 
10475 	if (__cr4_reserved_bits(cpu_has, c) !=
10476 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10477 		return -EIO;
10478 
10479 	return ops->check_processor_compatibility();
10480 }
10481 
10482 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10483 {
10484 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10485 }
10486 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10487 
10488 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10489 {
10490 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10491 }
10492 
10493 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10494 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10495 
10496 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10497 {
10498 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10499 
10500 	vcpu->arch.l1tf_flush_l1d = true;
10501 	if (pmu->version && unlikely(pmu->event_count)) {
10502 		pmu->need_cleanup = true;
10503 		kvm_make_request(KVM_REQ_PMU, vcpu);
10504 	}
10505 	static_call(kvm_x86_sched_in)(vcpu, cpu);
10506 }
10507 
10508 void kvm_arch_free_vm(struct kvm *kvm)
10509 {
10510 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
10511 	vfree(kvm);
10512 }
10513 
10514 
10515 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10516 {
10517 	if (type)
10518 		return -EINVAL;
10519 
10520 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10521 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10522 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10523 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10524 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10525 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10526 
10527 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10528 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10529 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10530 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10531 		&kvm->arch.irq_sources_bitmap);
10532 
10533 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10534 	mutex_init(&kvm->arch.apic_map_lock);
10535 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10536 
10537 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10538 	pvclock_update_vm_gtod_copy(kvm);
10539 
10540 	kvm->arch.guest_can_read_msr_platform_info = true;
10541 
10542 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10543 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10544 
10545 	kvm_hv_init_vm(kvm);
10546 	kvm_page_track_init(kvm);
10547 	kvm_mmu_init_vm(kvm);
10548 
10549 	return static_call(kvm_x86_vm_init)(kvm);
10550 }
10551 
10552 int kvm_arch_post_init_vm(struct kvm *kvm)
10553 {
10554 	return kvm_mmu_post_init_vm(kvm);
10555 }
10556 
10557 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10558 {
10559 	vcpu_load(vcpu);
10560 	kvm_mmu_unload(vcpu);
10561 	vcpu_put(vcpu);
10562 }
10563 
10564 static void kvm_free_vcpus(struct kvm *kvm)
10565 {
10566 	unsigned int i;
10567 	struct kvm_vcpu *vcpu;
10568 
10569 	/*
10570 	 * Unpin any mmu pages first.
10571 	 */
10572 	kvm_for_each_vcpu(i, vcpu, kvm) {
10573 		kvm_clear_async_pf_completion_queue(vcpu);
10574 		kvm_unload_vcpu_mmu(vcpu);
10575 	}
10576 	kvm_for_each_vcpu(i, vcpu, kvm)
10577 		kvm_vcpu_destroy(vcpu);
10578 
10579 	mutex_lock(&kvm->lock);
10580 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10581 		kvm->vcpus[i] = NULL;
10582 
10583 	atomic_set(&kvm->online_vcpus, 0);
10584 	mutex_unlock(&kvm->lock);
10585 }
10586 
10587 void kvm_arch_sync_events(struct kvm *kvm)
10588 {
10589 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10590 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10591 	kvm_free_pit(kvm);
10592 }
10593 
10594 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10595 
10596 /**
10597  * __x86_set_memory_region: Setup KVM internal memory slot
10598  *
10599  * @kvm: the kvm pointer to the VM.
10600  * @id: the slot ID to setup.
10601  * @gpa: the GPA to install the slot (unused when @size == 0).
10602  * @size: the size of the slot. Set to zero to uninstall a slot.
10603  *
10604  * This function helps to setup a KVM internal memory slot.  Specify
10605  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10606  * slot.  The return code can be one of the following:
10607  *
10608  *   HVA:           on success (uninstall will return a bogus HVA)
10609  *   -errno:        on error
10610  *
10611  * The caller should always use IS_ERR() to check the return value
10612  * before use.  Note, the KVM internal memory slots are guaranteed to
10613  * remain valid and unchanged until the VM is destroyed, i.e., the
10614  * GPA->HVA translation will not change.  However, the HVA is a user
10615  * address, i.e. its accessibility is not guaranteed, and must be
10616  * accessed via __copy_{to,from}_user().
10617  */
10618 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10619 				      u32 size)
10620 {
10621 	int i, r;
10622 	unsigned long hva, old_npages;
10623 	struct kvm_memslots *slots = kvm_memslots(kvm);
10624 	struct kvm_memory_slot *slot;
10625 
10626 	/* Called with kvm->slots_lock held.  */
10627 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10628 		return ERR_PTR_USR(-EINVAL);
10629 
10630 	slot = id_to_memslot(slots, id);
10631 	if (size) {
10632 		if (slot && slot->npages)
10633 			return ERR_PTR_USR(-EEXIST);
10634 
10635 		/*
10636 		 * MAP_SHARED to prevent internal slot pages from being moved
10637 		 * by fork()/COW.
10638 		 */
10639 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10640 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10641 		if (IS_ERR((void *)hva))
10642 			return (void __user *)hva;
10643 	} else {
10644 		if (!slot || !slot->npages)
10645 			return NULL;
10646 
10647 		old_npages = slot->npages;
10648 		hva = slot->userspace_addr;
10649 	}
10650 
10651 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10652 		struct kvm_userspace_memory_region m;
10653 
10654 		m.slot = id | (i << 16);
10655 		m.flags = 0;
10656 		m.guest_phys_addr = gpa;
10657 		m.userspace_addr = hva;
10658 		m.memory_size = size;
10659 		r = __kvm_set_memory_region(kvm, &m);
10660 		if (r < 0)
10661 			return ERR_PTR_USR(r);
10662 	}
10663 
10664 	if (!size)
10665 		vm_munmap(hva, old_npages * PAGE_SIZE);
10666 
10667 	return (void __user *)hva;
10668 }
10669 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10670 
10671 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10672 {
10673 	kvm_mmu_pre_destroy_vm(kvm);
10674 }
10675 
10676 void kvm_arch_destroy_vm(struct kvm *kvm)
10677 {
10678 	if (current->mm == kvm->mm) {
10679 		/*
10680 		 * Free memory regions allocated on behalf of userspace,
10681 		 * unless the the memory map has changed due to process exit
10682 		 * or fd copying.
10683 		 */
10684 		mutex_lock(&kvm->slots_lock);
10685 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10686 					0, 0);
10687 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10688 					0, 0);
10689 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10690 		mutex_unlock(&kvm->slots_lock);
10691 	}
10692 	static_call_cond(kvm_x86_vm_destroy)(kvm);
10693 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10694 	kvm_pic_destroy(kvm);
10695 	kvm_ioapic_destroy(kvm);
10696 	kvm_free_vcpus(kvm);
10697 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10698 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10699 	kvm_mmu_uninit_vm(kvm);
10700 	kvm_page_track_cleanup(kvm);
10701 	kvm_xen_destroy_vm(kvm);
10702 	kvm_hv_destroy_vm(kvm);
10703 }
10704 
10705 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10706 {
10707 	int i;
10708 
10709 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10710 		kvfree(slot->arch.rmap[i]);
10711 		slot->arch.rmap[i] = NULL;
10712 
10713 		if (i == 0)
10714 			continue;
10715 
10716 		kvfree(slot->arch.lpage_info[i - 1]);
10717 		slot->arch.lpage_info[i - 1] = NULL;
10718 	}
10719 
10720 	kvm_page_track_free_memslot(slot);
10721 }
10722 
10723 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10724 				      unsigned long npages)
10725 {
10726 	int i;
10727 
10728 	/*
10729 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10730 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10731 	 * the new memslot is successful.
10732 	 */
10733 	memset(&slot->arch, 0, sizeof(slot->arch));
10734 
10735 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10736 		struct kvm_lpage_info *linfo;
10737 		unsigned long ugfn;
10738 		int lpages;
10739 		int level = i + 1;
10740 
10741 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10742 				      slot->base_gfn, level) + 1;
10743 
10744 		slot->arch.rmap[i] =
10745 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10746 				 GFP_KERNEL_ACCOUNT);
10747 		if (!slot->arch.rmap[i])
10748 			goto out_free;
10749 		if (i == 0)
10750 			continue;
10751 
10752 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10753 		if (!linfo)
10754 			goto out_free;
10755 
10756 		slot->arch.lpage_info[i - 1] = linfo;
10757 
10758 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10759 			linfo[0].disallow_lpage = 1;
10760 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10761 			linfo[lpages - 1].disallow_lpage = 1;
10762 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10763 		/*
10764 		 * If the gfn and userspace address are not aligned wrt each
10765 		 * other, disable large page support for this slot.
10766 		 */
10767 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10768 			unsigned long j;
10769 
10770 			for (j = 0; j < lpages; ++j)
10771 				linfo[j].disallow_lpage = 1;
10772 		}
10773 	}
10774 
10775 	if (kvm_page_track_create_memslot(slot, npages))
10776 		goto out_free;
10777 
10778 	return 0;
10779 
10780 out_free:
10781 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10782 		kvfree(slot->arch.rmap[i]);
10783 		slot->arch.rmap[i] = NULL;
10784 		if (i == 0)
10785 			continue;
10786 
10787 		kvfree(slot->arch.lpage_info[i - 1]);
10788 		slot->arch.lpage_info[i - 1] = NULL;
10789 	}
10790 	return -ENOMEM;
10791 }
10792 
10793 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10794 {
10795 	struct kvm_vcpu *vcpu;
10796 	int i;
10797 
10798 	/*
10799 	 * memslots->generation has been incremented.
10800 	 * mmio generation may have reached its maximum value.
10801 	 */
10802 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10803 
10804 	/* Force re-initialization of steal_time cache */
10805 	kvm_for_each_vcpu(i, vcpu, kvm)
10806 		kvm_vcpu_kick(vcpu);
10807 }
10808 
10809 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10810 				struct kvm_memory_slot *memslot,
10811 				const struct kvm_userspace_memory_region *mem,
10812 				enum kvm_mr_change change)
10813 {
10814 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10815 		return kvm_alloc_memslot_metadata(memslot,
10816 						  mem->memory_size >> PAGE_SHIFT);
10817 	return 0;
10818 }
10819 
10820 
10821 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10822 {
10823 	struct kvm_arch *ka = &kvm->arch;
10824 
10825 	if (!kvm_x86_ops.cpu_dirty_log_size)
10826 		return;
10827 
10828 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10829 	    (!enable && --ka->cpu_dirty_logging_count == 0))
10830 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10831 
10832 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10833 }
10834 
10835 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10836 				     struct kvm_memory_slot *old,
10837 				     struct kvm_memory_slot *new,
10838 				     enum kvm_mr_change change)
10839 {
10840 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10841 
10842 	/*
10843 	 * Update CPU dirty logging if dirty logging is being toggled.  This
10844 	 * applies to all operations.
10845 	 */
10846 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10847 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10848 
10849 	/*
10850 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
10851 	 * made writable) or CREATE/MOVE/DELETE of a slot.
10852 	 *
10853 	 * For a memslot with dirty logging disabled:
10854 	 * CREATE:      No dirty mappings will already exist.
10855 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10856 	 *		kvm_arch_flush_shadow_memslot()
10857 	 *
10858 	 * For a memslot with dirty logging enabled:
10859 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
10860 	 *		and no dirty bits to clear.
10861 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10862 	 *		kvm_arch_flush_shadow_memslot().
10863 	 */
10864 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10865 		return;
10866 
10867 	/*
10868 	 * READONLY and non-flags changes were filtered out above, and the only
10869 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10870 	 * logging isn't being toggled on or off.
10871 	 */
10872 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10873 		return;
10874 
10875 	if (!log_dirty_pages) {
10876 		/*
10877 		 * Dirty logging tracks sptes in 4k granularity, meaning that
10878 		 * large sptes have to be split.  If live migration succeeds,
10879 		 * the guest in the source machine will be destroyed and large
10880 		 * sptes will be created in the destination.  However, if the
10881 		 * guest continues to run in the source machine (for example if
10882 		 * live migration fails), small sptes will remain around and
10883 		 * cause bad performance.
10884 		 *
10885 		 * Scan sptes if dirty logging has been stopped, dropping those
10886 		 * which can be collapsed into a single large-page spte.  Later
10887 		 * page faults will create the large-page sptes.
10888 		 */
10889 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10890 	} else {
10891 		/* By default, write-protect everything to log writes. */
10892 		int level = PG_LEVEL_4K;
10893 
10894 		if (kvm_x86_ops.cpu_dirty_log_size) {
10895 			/*
10896 			 * Clear all dirty bits, unless pages are treated as
10897 			 * dirty from the get-go.
10898 			 */
10899 			if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
10900 				kvm_mmu_slot_leaf_clear_dirty(kvm, new);
10901 
10902 			/*
10903 			 * Write-protect large pages on write so that dirty
10904 			 * logging happens at 4k granularity.  No need to
10905 			 * write-protect small SPTEs since write accesses are
10906 			 * logged by the CPU via dirty bits.
10907 			 */
10908 			level = PG_LEVEL_2M;
10909 		} else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
10910 			/*
10911 			 * If we're with initial-all-set, we don't need
10912 			 * to write protect any small page because
10913 			 * they're reported as dirty already.  However
10914 			 * we still need to write-protect huge pages
10915 			 * so that the page split can happen lazily on
10916 			 * the first write to the huge page.
10917 			 */
10918 			level = PG_LEVEL_2M;
10919 		}
10920 		kvm_mmu_slot_remove_write_access(kvm, new, level);
10921 	}
10922 }
10923 
10924 void kvm_arch_commit_memory_region(struct kvm *kvm,
10925 				const struct kvm_userspace_memory_region *mem,
10926 				struct kvm_memory_slot *old,
10927 				const struct kvm_memory_slot *new,
10928 				enum kvm_mr_change change)
10929 {
10930 	if (!kvm->arch.n_requested_mmu_pages)
10931 		kvm_mmu_change_mmu_pages(kvm,
10932 				kvm_mmu_calculate_default_mmu_pages(kvm));
10933 
10934 	/*
10935 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10936 	 */
10937 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10938 
10939 	/* Free the arrays associated with the old memslot. */
10940 	if (change == KVM_MR_MOVE)
10941 		kvm_arch_free_memslot(kvm, old);
10942 }
10943 
10944 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10945 {
10946 	kvm_mmu_zap_all(kvm);
10947 }
10948 
10949 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10950 				   struct kvm_memory_slot *slot)
10951 {
10952 	kvm_page_track_flush_slot(kvm, slot);
10953 }
10954 
10955 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10956 {
10957 	return (is_guest_mode(vcpu) &&
10958 			kvm_x86_ops.guest_apic_has_interrupt &&
10959 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10960 }
10961 
10962 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10963 {
10964 	if (!list_empty_careful(&vcpu->async_pf.done))
10965 		return true;
10966 
10967 	if (kvm_apic_has_events(vcpu))
10968 		return true;
10969 
10970 	if (vcpu->arch.pv.pv_unhalted)
10971 		return true;
10972 
10973 	if (vcpu->arch.exception.pending)
10974 		return true;
10975 
10976 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10977 	    (vcpu->arch.nmi_pending &&
10978 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10979 		return true;
10980 
10981 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10982 	    (vcpu->arch.smi_pending &&
10983 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
10984 		return true;
10985 
10986 	if (kvm_arch_interrupt_allowed(vcpu) &&
10987 	    (kvm_cpu_has_interrupt(vcpu) ||
10988 	    kvm_guest_apic_has_interrupt(vcpu)))
10989 		return true;
10990 
10991 	if (kvm_hv_has_stimer_pending(vcpu))
10992 		return true;
10993 
10994 	if (is_guest_mode(vcpu) &&
10995 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10996 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10997 		return true;
10998 
10999 	return false;
11000 }
11001 
11002 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11003 {
11004 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11005 }
11006 
11007 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11008 {
11009 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11010 		return true;
11011 
11012 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11013 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11014 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11015 		return true;
11016 
11017 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11018 		return true;
11019 
11020 	return false;
11021 }
11022 
11023 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11024 {
11025 	return vcpu->arch.preempted_in_kernel;
11026 }
11027 
11028 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11029 {
11030 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11031 }
11032 
11033 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11034 {
11035 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11036 }
11037 
11038 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11039 {
11040 	/* Can't read the RIP when guest state is protected, just return 0 */
11041 	if (vcpu->arch.guest_state_protected)
11042 		return 0;
11043 
11044 	if (is_64_bit_mode(vcpu))
11045 		return kvm_rip_read(vcpu);
11046 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11047 		     kvm_rip_read(vcpu));
11048 }
11049 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11050 
11051 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11052 {
11053 	return kvm_get_linear_rip(vcpu) == linear_rip;
11054 }
11055 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11056 
11057 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11058 {
11059 	unsigned long rflags;
11060 
11061 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11062 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11063 		rflags &= ~X86_EFLAGS_TF;
11064 	return rflags;
11065 }
11066 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11067 
11068 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11069 {
11070 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11071 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11072 		rflags |= X86_EFLAGS_TF;
11073 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11074 }
11075 
11076 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11077 {
11078 	__kvm_set_rflags(vcpu, rflags);
11079 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11080 }
11081 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11082 
11083 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11084 {
11085 	int r;
11086 
11087 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11088 	      work->wakeup_all)
11089 		return;
11090 
11091 	r = kvm_mmu_reload(vcpu);
11092 	if (unlikely(r))
11093 		return;
11094 
11095 	if (!vcpu->arch.mmu->direct_map &&
11096 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11097 		return;
11098 
11099 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11100 }
11101 
11102 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11103 {
11104 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11105 
11106 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11107 }
11108 
11109 static inline u32 kvm_async_pf_next_probe(u32 key)
11110 {
11111 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11112 }
11113 
11114 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11115 {
11116 	u32 key = kvm_async_pf_hash_fn(gfn);
11117 
11118 	while (vcpu->arch.apf.gfns[key] != ~0)
11119 		key = kvm_async_pf_next_probe(key);
11120 
11121 	vcpu->arch.apf.gfns[key] = gfn;
11122 }
11123 
11124 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11125 {
11126 	int i;
11127 	u32 key = kvm_async_pf_hash_fn(gfn);
11128 
11129 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11130 		     (vcpu->arch.apf.gfns[key] != gfn &&
11131 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11132 		key = kvm_async_pf_next_probe(key);
11133 
11134 	return key;
11135 }
11136 
11137 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11138 {
11139 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11140 }
11141 
11142 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11143 {
11144 	u32 i, j, k;
11145 
11146 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11147 
11148 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11149 		return;
11150 
11151 	while (true) {
11152 		vcpu->arch.apf.gfns[i] = ~0;
11153 		do {
11154 			j = kvm_async_pf_next_probe(j);
11155 			if (vcpu->arch.apf.gfns[j] == ~0)
11156 				return;
11157 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11158 			/*
11159 			 * k lies cyclically in ]i,j]
11160 			 * |    i.k.j |
11161 			 * |....j i.k.| or  |.k..j i...|
11162 			 */
11163 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11164 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11165 		i = j;
11166 	}
11167 }
11168 
11169 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11170 {
11171 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11172 
11173 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11174 				      sizeof(reason));
11175 }
11176 
11177 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11178 {
11179 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11180 
11181 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11182 					     &token, offset, sizeof(token));
11183 }
11184 
11185 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11186 {
11187 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11188 	u32 val;
11189 
11190 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11191 					 &val, offset, sizeof(val)))
11192 		return false;
11193 
11194 	return !val;
11195 }
11196 
11197 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11198 {
11199 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11200 		return false;
11201 
11202 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11203 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11204 		return false;
11205 
11206 	return true;
11207 }
11208 
11209 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11210 {
11211 	if (unlikely(!lapic_in_kernel(vcpu) ||
11212 		     kvm_event_needs_reinjection(vcpu) ||
11213 		     vcpu->arch.exception.pending))
11214 		return false;
11215 
11216 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11217 		return false;
11218 
11219 	/*
11220 	 * If interrupts are off we cannot even use an artificial
11221 	 * halt state.
11222 	 */
11223 	return kvm_arch_interrupt_allowed(vcpu);
11224 }
11225 
11226 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11227 				     struct kvm_async_pf *work)
11228 {
11229 	struct x86_exception fault;
11230 
11231 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11232 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11233 
11234 	if (kvm_can_deliver_async_pf(vcpu) &&
11235 	    !apf_put_user_notpresent(vcpu)) {
11236 		fault.vector = PF_VECTOR;
11237 		fault.error_code_valid = true;
11238 		fault.error_code = 0;
11239 		fault.nested_page_fault = false;
11240 		fault.address = work->arch.token;
11241 		fault.async_page_fault = true;
11242 		kvm_inject_page_fault(vcpu, &fault);
11243 		return true;
11244 	} else {
11245 		/*
11246 		 * It is not possible to deliver a paravirtualized asynchronous
11247 		 * page fault, but putting the guest in an artificial halt state
11248 		 * can be beneficial nevertheless: if an interrupt arrives, we
11249 		 * can deliver it timely and perhaps the guest will schedule
11250 		 * another process.  When the instruction that triggered a page
11251 		 * fault is retried, hopefully the page will be ready in the host.
11252 		 */
11253 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11254 		return false;
11255 	}
11256 }
11257 
11258 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11259 				 struct kvm_async_pf *work)
11260 {
11261 	struct kvm_lapic_irq irq = {
11262 		.delivery_mode = APIC_DM_FIXED,
11263 		.vector = vcpu->arch.apf.vec
11264 	};
11265 
11266 	if (work->wakeup_all)
11267 		work->arch.token = ~0; /* broadcast wakeup */
11268 	else
11269 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11270 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11271 
11272 	if ((work->wakeup_all || work->notpresent_injected) &&
11273 	    kvm_pv_async_pf_enabled(vcpu) &&
11274 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11275 		vcpu->arch.apf.pageready_pending = true;
11276 		kvm_apic_set_irq(vcpu, &irq, NULL);
11277 	}
11278 
11279 	vcpu->arch.apf.halted = false;
11280 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11281 }
11282 
11283 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11284 {
11285 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11286 	if (!vcpu->arch.apf.pageready_pending)
11287 		kvm_vcpu_kick(vcpu);
11288 }
11289 
11290 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11291 {
11292 	if (!kvm_pv_async_pf_enabled(vcpu))
11293 		return true;
11294 	else
11295 		return apf_pageready_slot_free(vcpu);
11296 }
11297 
11298 void kvm_arch_start_assignment(struct kvm *kvm)
11299 {
11300 	atomic_inc(&kvm->arch.assigned_device_count);
11301 }
11302 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11303 
11304 void kvm_arch_end_assignment(struct kvm *kvm)
11305 {
11306 	atomic_dec(&kvm->arch.assigned_device_count);
11307 }
11308 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11309 
11310 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11311 {
11312 	return atomic_read(&kvm->arch.assigned_device_count);
11313 }
11314 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11315 
11316 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11317 {
11318 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11319 }
11320 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11321 
11322 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11323 {
11324 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11325 }
11326 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11327 
11328 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11329 {
11330 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11331 }
11332 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11333 
11334 bool kvm_arch_has_irq_bypass(void)
11335 {
11336 	return true;
11337 }
11338 
11339 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11340 				      struct irq_bypass_producer *prod)
11341 {
11342 	struct kvm_kernel_irqfd *irqfd =
11343 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11344 	int ret;
11345 
11346 	irqfd->producer = prod;
11347 	kvm_arch_start_assignment(irqfd->kvm);
11348 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11349 					 prod->irq, irqfd->gsi, 1);
11350 
11351 	if (ret)
11352 		kvm_arch_end_assignment(irqfd->kvm);
11353 
11354 	return ret;
11355 }
11356 
11357 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11358 				      struct irq_bypass_producer *prod)
11359 {
11360 	int ret;
11361 	struct kvm_kernel_irqfd *irqfd =
11362 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11363 
11364 	WARN_ON(irqfd->producer != prod);
11365 	irqfd->producer = NULL;
11366 
11367 	/*
11368 	 * When producer of consumer is unregistered, we change back to
11369 	 * remapped mode, so we can re-use the current implementation
11370 	 * when the irq is masked/disabled or the consumer side (KVM
11371 	 * int this case doesn't want to receive the interrupts.
11372 	*/
11373 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11374 	if (ret)
11375 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11376 		       " fails: %d\n", irqfd->consumer.token, ret);
11377 
11378 	kvm_arch_end_assignment(irqfd->kvm);
11379 }
11380 
11381 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11382 				   uint32_t guest_irq, bool set)
11383 {
11384 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11385 }
11386 
11387 bool kvm_vector_hashing_enabled(void)
11388 {
11389 	return vector_hashing;
11390 }
11391 
11392 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11393 {
11394 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11395 }
11396 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11397 
11398 
11399 int kvm_spec_ctrl_test_value(u64 value)
11400 {
11401 	/*
11402 	 * test that setting IA32_SPEC_CTRL to given value
11403 	 * is allowed by the host processor
11404 	 */
11405 
11406 	u64 saved_value;
11407 	unsigned long flags;
11408 	int ret = 0;
11409 
11410 	local_irq_save(flags);
11411 
11412 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11413 		ret = 1;
11414 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11415 		ret = 1;
11416 	else
11417 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11418 
11419 	local_irq_restore(flags);
11420 
11421 	return ret;
11422 }
11423 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11424 
11425 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11426 {
11427 	struct x86_exception fault;
11428 	u32 access = error_code &
11429 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11430 
11431 	if (!(error_code & PFERR_PRESENT_MASK) ||
11432 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11433 		/*
11434 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11435 		 * tables probably do not match the TLB.  Just proceed
11436 		 * with the error code that the processor gave.
11437 		 */
11438 		fault.vector = PF_VECTOR;
11439 		fault.error_code_valid = true;
11440 		fault.error_code = error_code;
11441 		fault.nested_page_fault = false;
11442 		fault.address = gva;
11443 	}
11444 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11445 }
11446 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11447 
11448 /*
11449  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11450  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11451  * indicates whether exit to userspace is needed.
11452  */
11453 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11454 			      struct x86_exception *e)
11455 {
11456 	if (r == X86EMUL_PROPAGATE_FAULT) {
11457 		kvm_inject_emulated_page_fault(vcpu, e);
11458 		return 1;
11459 	}
11460 
11461 	/*
11462 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11463 	 * while handling a VMX instruction KVM could've handled the request
11464 	 * correctly by exiting to userspace and performing I/O but there
11465 	 * doesn't seem to be a real use-case behind such requests, just return
11466 	 * KVM_EXIT_INTERNAL_ERROR for now.
11467 	 */
11468 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11469 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11470 	vcpu->run->internal.ndata = 0;
11471 
11472 	return 0;
11473 }
11474 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11475 
11476 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11477 {
11478 	bool pcid_enabled;
11479 	struct x86_exception e;
11480 	unsigned i;
11481 	unsigned long roots_to_free = 0;
11482 	struct {
11483 		u64 pcid;
11484 		u64 gla;
11485 	} operand;
11486 	int r;
11487 
11488 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11489 	if (r != X86EMUL_CONTINUE)
11490 		return kvm_handle_memory_failure(vcpu, r, &e);
11491 
11492 	if (operand.pcid >> 12 != 0) {
11493 		kvm_inject_gp(vcpu, 0);
11494 		return 1;
11495 	}
11496 
11497 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11498 
11499 	switch (type) {
11500 	case INVPCID_TYPE_INDIV_ADDR:
11501 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11502 		    is_noncanonical_address(operand.gla, vcpu)) {
11503 			kvm_inject_gp(vcpu, 0);
11504 			return 1;
11505 		}
11506 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11507 		return kvm_skip_emulated_instruction(vcpu);
11508 
11509 	case INVPCID_TYPE_SINGLE_CTXT:
11510 		if (!pcid_enabled && (operand.pcid != 0)) {
11511 			kvm_inject_gp(vcpu, 0);
11512 			return 1;
11513 		}
11514 
11515 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11516 			kvm_mmu_sync_roots(vcpu);
11517 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11518 		}
11519 
11520 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11521 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11522 			    == operand.pcid)
11523 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11524 
11525 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11526 		/*
11527 		 * If neither the current cr3 nor any of the prev_roots use the
11528 		 * given PCID, then nothing needs to be done here because a
11529 		 * resync will happen anyway before switching to any other CR3.
11530 		 */
11531 
11532 		return kvm_skip_emulated_instruction(vcpu);
11533 
11534 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11535 		/*
11536 		 * Currently, KVM doesn't mark global entries in the shadow
11537 		 * page tables, so a non-global flush just degenerates to a
11538 		 * global flush. If needed, we could optimize this later by
11539 		 * keeping track of global entries in shadow page tables.
11540 		 */
11541 
11542 		fallthrough;
11543 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11544 		kvm_mmu_unload(vcpu);
11545 		return kvm_skip_emulated_instruction(vcpu);
11546 
11547 	default:
11548 		BUG(); /* We have already checked above that type <= 3 */
11549 	}
11550 }
11551 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11552 
11553 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11554 {
11555 	struct kvm_run *run = vcpu->run;
11556 	struct kvm_mmio_fragment *frag;
11557 	unsigned int len;
11558 
11559 	BUG_ON(!vcpu->mmio_needed);
11560 
11561 	/* Complete previous fragment */
11562 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11563 	len = min(8u, frag->len);
11564 	if (!vcpu->mmio_is_write)
11565 		memcpy(frag->data, run->mmio.data, len);
11566 
11567 	if (frag->len <= 8) {
11568 		/* Switch to the next fragment. */
11569 		frag++;
11570 		vcpu->mmio_cur_fragment++;
11571 	} else {
11572 		/* Go forward to the next mmio piece. */
11573 		frag->data += len;
11574 		frag->gpa += len;
11575 		frag->len -= len;
11576 	}
11577 
11578 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11579 		vcpu->mmio_needed = 0;
11580 
11581 		// VMG change, at this point, we're always done
11582 		// RIP has already been advanced
11583 		return 1;
11584 	}
11585 
11586 	// More MMIO is needed
11587 	run->mmio.phys_addr = frag->gpa;
11588 	run->mmio.len = min(8u, frag->len);
11589 	run->mmio.is_write = vcpu->mmio_is_write;
11590 	if (run->mmio.is_write)
11591 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11592 	run->exit_reason = KVM_EXIT_MMIO;
11593 
11594 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11595 
11596 	return 0;
11597 }
11598 
11599 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11600 			  void *data)
11601 {
11602 	int handled;
11603 	struct kvm_mmio_fragment *frag;
11604 
11605 	if (!data)
11606 		return -EINVAL;
11607 
11608 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11609 	if (handled == bytes)
11610 		return 1;
11611 
11612 	bytes -= handled;
11613 	gpa += handled;
11614 	data += handled;
11615 
11616 	/*TODO: Check if need to increment number of frags */
11617 	frag = vcpu->mmio_fragments;
11618 	vcpu->mmio_nr_fragments = 1;
11619 	frag->len = bytes;
11620 	frag->gpa = gpa;
11621 	frag->data = data;
11622 
11623 	vcpu->mmio_needed = 1;
11624 	vcpu->mmio_cur_fragment = 0;
11625 
11626 	vcpu->run->mmio.phys_addr = gpa;
11627 	vcpu->run->mmio.len = min(8u, frag->len);
11628 	vcpu->run->mmio.is_write = 1;
11629 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11630 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11631 
11632 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11633 
11634 	return 0;
11635 }
11636 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11637 
11638 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11639 			 void *data)
11640 {
11641 	int handled;
11642 	struct kvm_mmio_fragment *frag;
11643 
11644 	if (!data)
11645 		return -EINVAL;
11646 
11647 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11648 	if (handled == bytes)
11649 		return 1;
11650 
11651 	bytes -= handled;
11652 	gpa += handled;
11653 	data += handled;
11654 
11655 	/*TODO: Check if need to increment number of frags */
11656 	frag = vcpu->mmio_fragments;
11657 	vcpu->mmio_nr_fragments = 1;
11658 	frag->len = bytes;
11659 	frag->gpa = gpa;
11660 	frag->data = data;
11661 
11662 	vcpu->mmio_needed = 1;
11663 	vcpu->mmio_cur_fragment = 0;
11664 
11665 	vcpu->run->mmio.phys_addr = gpa;
11666 	vcpu->run->mmio.len = min(8u, frag->len);
11667 	vcpu->run->mmio.is_write = 0;
11668 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11669 
11670 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11671 
11672 	return 0;
11673 }
11674 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11675 
11676 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11677 {
11678 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11679 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11680 	vcpu->arch.pio.count = 0;
11681 
11682 	return 1;
11683 }
11684 
11685 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11686 			   unsigned int port, void *data,  unsigned int count)
11687 {
11688 	int ret;
11689 
11690 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11691 					data, count);
11692 	if (ret)
11693 		return ret;
11694 
11695 	vcpu->arch.pio.count = 0;
11696 
11697 	return 0;
11698 }
11699 
11700 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11701 			  unsigned int port, void *data, unsigned int count)
11702 {
11703 	int ret;
11704 
11705 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11706 				       data, count);
11707 	if (ret) {
11708 		vcpu->arch.pio.count = 0;
11709 	} else {
11710 		vcpu->arch.guest_ins_data = data;
11711 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11712 	}
11713 
11714 	return 0;
11715 }
11716 
11717 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11718 			 unsigned int port, void *data,  unsigned int count,
11719 			 int in)
11720 {
11721 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11722 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11723 }
11724 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11725 
11726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11748 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11749 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11750 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11751 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11752 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11753