1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 unsigned int min_timer_period_us = 500; 98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 99 100 bool kvm_has_tsc_control; 101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 102 u32 kvm_max_guest_tsc_khz; 103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 104 105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 106 static u32 tsc_tolerance_ppm = 250; 107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 108 109 #define KVM_NR_SHARED_MSRS 16 110 111 struct kvm_shared_msrs_global { 112 int nr; 113 u32 msrs[KVM_NR_SHARED_MSRS]; 114 }; 115 116 struct kvm_shared_msrs { 117 struct user_return_notifier urn; 118 bool registered; 119 struct kvm_shared_msr_values { 120 u64 host; 121 u64 curr; 122 } values[KVM_NR_SHARED_MSRS]; 123 }; 124 125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 126 static struct kvm_shared_msrs __percpu *shared_msrs; 127 128 struct kvm_stats_debugfs_item debugfs_entries[] = { 129 { "pf_fixed", VCPU_STAT(pf_fixed) }, 130 { "pf_guest", VCPU_STAT(pf_guest) }, 131 { "tlb_flush", VCPU_STAT(tlb_flush) }, 132 { "invlpg", VCPU_STAT(invlpg) }, 133 { "exits", VCPU_STAT(exits) }, 134 { "io_exits", VCPU_STAT(io_exits) }, 135 { "mmio_exits", VCPU_STAT(mmio_exits) }, 136 { "signal_exits", VCPU_STAT(signal_exits) }, 137 { "irq_window", VCPU_STAT(irq_window_exits) }, 138 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 139 { "halt_exits", VCPU_STAT(halt_exits) }, 140 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 141 { "hypercalls", VCPU_STAT(hypercalls) }, 142 { "request_irq", VCPU_STAT(request_irq_exits) }, 143 { "irq_exits", VCPU_STAT(irq_exits) }, 144 { "host_state_reload", VCPU_STAT(host_state_reload) }, 145 { "efer_reload", VCPU_STAT(efer_reload) }, 146 { "fpu_reload", VCPU_STAT(fpu_reload) }, 147 { "insn_emulation", VCPU_STAT(insn_emulation) }, 148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 149 { "irq_injections", VCPU_STAT(irq_injections) }, 150 { "nmi_injections", VCPU_STAT(nmi_injections) }, 151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 152 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 155 { "mmu_flooded", VM_STAT(mmu_flooded) }, 156 { "mmu_recycled", VM_STAT(mmu_recycled) }, 157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 158 { "mmu_unsync", VM_STAT(mmu_unsync) }, 159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 160 { "largepages", VM_STAT(lpages) }, 161 { NULL } 162 }; 163 164 u64 __read_mostly host_xcr0; 165 166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 167 168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 169 { 170 int i; 171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 172 vcpu->arch.apf.gfns[i] = ~0; 173 } 174 175 static void kvm_on_user_return(struct user_return_notifier *urn) 176 { 177 unsigned slot; 178 struct kvm_shared_msrs *locals 179 = container_of(urn, struct kvm_shared_msrs, urn); 180 struct kvm_shared_msr_values *values; 181 182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 183 values = &locals->values[slot]; 184 if (values->host != values->curr) { 185 wrmsrl(shared_msrs_global.msrs[slot], values->host); 186 values->curr = values->host; 187 } 188 } 189 locals->registered = false; 190 user_return_notifier_unregister(urn); 191 } 192 193 static void shared_msr_update(unsigned slot, u32 msr) 194 { 195 u64 value; 196 unsigned int cpu = smp_processor_id(); 197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 198 199 /* only read, and nobody should modify it at this time, 200 * so don't need lock */ 201 if (slot >= shared_msrs_global.nr) { 202 printk(KERN_ERR "kvm: invalid MSR slot!"); 203 return; 204 } 205 rdmsrl_safe(msr, &value); 206 smsr->values[slot].host = value; 207 smsr->values[slot].curr = value; 208 } 209 210 void kvm_define_shared_msr(unsigned slot, u32 msr) 211 { 212 if (slot >= shared_msrs_global.nr) 213 shared_msrs_global.nr = slot + 1; 214 shared_msrs_global.msrs[slot] = msr; 215 /* we need ensured the shared_msr_global have been updated */ 216 smp_wmb(); 217 } 218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 219 220 static void kvm_shared_msr_cpu_online(void) 221 { 222 unsigned i; 223 224 for (i = 0; i < shared_msrs_global.nr; ++i) 225 shared_msr_update(i, shared_msrs_global.msrs[i]); 226 } 227 228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 229 { 230 unsigned int cpu = smp_processor_id(); 231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 232 233 if (((value ^ smsr->values[slot].curr) & mask) == 0) 234 return; 235 smsr->values[slot].curr = value; 236 wrmsrl(shared_msrs_global.msrs[slot], value); 237 if (!smsr->registered) { 238 smsr->urn.on_user_return = kvm_on_user_return; 239 user_return_notifier_register(&smsr->urn); 240 smsr->registered = true; 241 } 242 } 243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 244 245 static void drop_user_return_notifiers(void *ignore) 246 { 247 unsigned int cpu = smp_processor_id(); 248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 249 250 if (smsr->registered) 251 kvm_on_user_return(&smsr->urn); 252 } 253 254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 255 { 256 return vcpu->arch.apic_base; 257 } 258 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 259 260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 261 { 262 u64 old_state = vcpu->arch.apic_base & 263 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 264 u64 new_state = msr_info->data & 265 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 266 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 267 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 268 269 if (!msr_info->host_initiated && 270 ((msr_info->data & reserved_bits) != 0 || 271 new_state == X2APIC_ENABLE || 272 (new_state == MSR_IA32_APICBASE_ENABLE && 273 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 274 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 275 old_state == 0))) 276 return 1; 277 278 kvm_lapic_set_base(vcpu, msr_info->data); 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 282 283 asmlinkage void kvm_spurious_fault(void) 284 { 285 /* Fault while not rebooting. We want the trace. */ 286 BUG(); 287 } 288 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 289 290 #define EXCPT_BENIGN 0 291 #define EXCPT_CONTRIBUTORY 1 292 #define EXCPT_PF 2 293 294 static int exception_class(int vector) 295 { 296 switch (vector) { 297 case PF_VECTOR: 298 return EXCPT_PF; 299 case DE_VECTOR: 300 case TS_VECTOR: 301 case NP_VECTOR: 302 case SS_VECTOR: 303 case GP_VECTOR: 304 return EXCPT_CONTRIBUTORY; 305 default: 306 break; 307 } 308 return EXCPT_BENIGN; 309 } 310 311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 312 unsigned nr, bool has_error, u32 error_code, 313 bool reinject) 314 { 315 u32 prev_nr; 316 int class1, class2; 317 318 kvm_make_request(KVM_REQ_EVENT, vcpu); 319 320 if (!vcpu->arch.exception.pending) { 321 queue: 322 vcpu->arch.exception.pending = true; 323 vcpu->arch.exception.has_error_code = has_error; 324 vcpu->arch.exception.nr = nr; 325 vcpu->arch.exception.error_code = error_code; 326 vcpu->arch.exception.reinject = reinject; 327 return; 328 } 329 330 /* to check exception */ 331 prev_nr = vcpu->arch.exception.nr; 332 if (prev_nr == DF_VECTOR) { 333 /* triple fault -> shutdown */ 334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 335 return; 336 } 337 class1 = exception_class(prev_nr); 338 class2 = exception_class(nr); 339 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 340 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 341 /* generate double fault per SDM Table 5-5 */ 342 vcpu->arch.exception.pending = true; 343 vcpu->arch.exception.has_error_code = true; 344 vcpu->arch.exception.nr = DF_VECTOR; 345 vcpu->arch.exception.error_code = 0; 346 } else 347 /* replace previous exception with a new one in a hope 348 that instruction re-execution will regenerate lost 349 exception */ 350 goto queue; 351 } 352 353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 354 { 355 kvm_multiple_exception(vcpu, nr, false, 0, false); 356 } 357 EXPORT_SYMBOL_GPL(kvm_queue_exception); 358 359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 360 { 361 kvm_multiple_exception(vcpu, nr, false, 0, true); 362 } 363 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 364 365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 366 { 367 if (err) 368 kvm_inject_gp(vcpu, 0); 369 else 370 kvm_x86_ops->skip_emulated_instruction(vcpu); 371 } 372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 373 374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 375 { 376 ++vcpu->stat.pf_guest; 377 vcpu->arch.cr2 = fault->address; 378 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 379 } 380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 381 382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 383 { 384 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 385 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 386 else 387 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 388 } 389 390 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 391 { 392 atomic_inc(&vcpu->arch.nmi_queued); 393 kvm_make_request(KVM_REQ_NMI, vcpu); 394 } 395 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 396 397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 398 { 399 kvm_multiple_exception(vcpu, nr, true, error_code, false); 400 } 401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 402 403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 404 { 405 kvm_multiple_exception(vcpu, nr, true, error_code, true); 406 } 407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 408 409 /* 410 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 411 * a #GP and return false. 412 */ 413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 414 { 415 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 416 return true; 417 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 418 return false; 419 } 420 EXPORT_SYMBOL_GPL(kvm_require_cpl); 421 422 /* 423 * This function will be used to read from the physical memory of the currently 424 * running guest. The difference to kvm_read_guest_page is that this function 425 * can read from guest physical or from the guest's guest physical memory. 426 */ 427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 428 gfn_t ngfn, void *data, int offset, int len, 429 u32 access) 430 { 431 gfn_t real_gfn; 432 gpa_t ngpa; 433 434 ngpa = gfn_to_gpa(ngfn); 435 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 436 if (real_gfn == UNMAPPED_GVA) 437 return -EFAULT; 438 439 real_gfn = gpa_to_gfn(real_gfn); 440 441 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 442 } 443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 444 445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 446 void *data, int offset, int len, u32 access) 447 { 448 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 449 data, offset, len, access); 450 } 451 452 /* 453 * Load the pae pdptrs. Return true is they are all valid. 454 */ 455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 456 { 457 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 458 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 459 int i; 460 int ret; 461 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 462 463 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 464 offset * sizeof(u64), sizeof(pdpte), 465 PFERR_USER_MASK|PFERR_WRITE_MASK); 466 if (ret < 0) { 467 ret = 0; 468 goto out; 469 } 470 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 471 if (is_present_gpte(pdpte[i]) && 472 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 473 ret = 0; 474 goto out; 475 } 476 } 477 ret = 1; 478 479 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 480 __set_bit(VCPU_EXREG_PDPTR, 481 (unsigned long *)&vcpu->arch.regs_avail); 482 __set_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_dirty); 484 out: 485 486 return ret; 487 } 488 EXPORT_SYMBOL_GPL(load_pdptrs); 489 490 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 491 { 492 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 493 bool changed = true; 494 int offset; 495 gfn_t gfn; 496 int r; 497 498 if (is_long_mode(vcpu) || !is_pae(vcpu)) 499 return false; 500 501 if (!test_bit(VCPU_EXREG_PDPTR, 502 (unsigned long *)&vcpu->arch.regs_avail)) 503 return true; 504 505 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 506 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 507 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 508 PFERR_USER_MASK | PFERR_WRITE_MASK); 509 if (r < 0) 510 goto out; 511 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 512 out: 513 514 return changed; 515 } 516 517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 518 { 519 unsigned long old_cr0 = kvm_read_cr0(vcpu); 520 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 521 X86_CR0_CD | X86_CR0_NW; 522 523 cr0 |= X86_CR0_ET; 524 525 #ifdef CONFIG_X86_64 526 if (cr0 & 0xffffffff00000000UL) 527 return 1; 528 #endif 529 530 cr0 &= ~CR0_RESERVED_BITS; 531 532 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 533 return 1; 534 535 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 536 return 1; 537 538 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 539 #ifdef CONFIG_X86_64 540 if ((vcpu->arch.efer & EFER_LME)) { 541 int cs_db, cs_l; 542 543 if (!is_pae(vcpu)) 544 return 1; 545 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 546 if (cs_l) 547 return 1; 548 } else 549 #endif 550 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 551 kvm_read_cr3(vcpu))) 552 return 1; 553 } 554 555 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 556 return 1; 557 558 kvm_x86_ops->set_cr0(vcpu, cr0); 559 560 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 561 kvm_clear_async_pf_completion_queue(vcpu); 562 kvm_async_pf_hash_reset(vcpu); 563 } 564 565 if ((cr0 ^ old_cr0) & update_bits) 566 kvm_mmu_reset_context(vcpu); 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(kvm_set_cr0); 570 571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 572 { 573 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 574 } 575 EXPORT_SYMBOL_GPL(kvm_lmsw); 576 577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 578 { 579 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 580 !vcpu->guest_xcr0_loaded) { 581 /* kvm_set_xcr() also depends on this */ 582 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 583 vcpu->guest_xcr0_loaded = 1; 584 } 585 } 586 587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 588 { 589 if (vcpu->guest_xcr0_loaded) { 590 if (vcpu->arch.xcr0 != host_xcr0) 591 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 592 vcpu->guest_xcr0_loaded = 0; 593 } 594 } 595 596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 597 { 598 u64 xcr0 = xcr; 599 u64 old_xcr0 = vcpu->arch.xcr0; 600 u64 valid_bits; 601 602 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 603 if (index != XCR_XFEATURE_ENABLED_MASK) 604 return 1; 605 if (!(xcr0 & XSTATE_FP)) 606 return 1; 607 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 608 return 1; 609 610 /* 611 * Do not allow the guest to set bits that we do not support 612 * saving. However, xcr0 bit 0 is always set, even if the 613 * emulated CPU does not support XSAVE (see fx_init). 614 */ 615 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 616 if (xcr0 & ~valid_bits) 617 return 1; 618 619 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) 620 return 1; 621 622 kvm_put_guest_xcr0(vcpu); 623 vcpu->arch.xcr0 = xcr0; 624 625 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) 626 kvm_update_cpuid(vcpu); 627 return 0; 628 } 629 630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 631 { 632 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 633 __kvm_set_xcr(vcpu, index, xcr)) { 634 kvm_inject_gp(vcpu, 0); 635 return 1; 636 } 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(kvm_set_xcr); 640 641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 642 { 643 unsigned long old_cr4 = kvm_read_cr4(vcpu); 644 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 645 X86_CR4_PAE | X86_CR4_SMEP; 646 if (cr4 & CR4_RESERVED_BITS) 647 return 1; 648 649 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 650 return 1; 651 652 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 653 return 1; 654 655 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 656 return 1; 657 658 if (is_long_mode(vcpu)) { 659 if (!(cr4 & X86_CR4_PAE)) 660 return 1; 661 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 662 && ((cr4 ^ old_cr4) & pdptr_bits) 663 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 664 kvm_read_cr3(vcpu))) 665 return 1; 666 667 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 668 if (!guest_cpuid_has_pcid(vcpu)) 669 return 1; 670 671 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 672 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 673 return 1; 674 } 675 676 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 677 return 1; 678 679 if (((cr4 ^ old_cr4) & pdptr_bits) || 680 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 681 kvm_mmu_reset_context(vcpu); 682 683 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 684 kvm_update_cpuid(vcpu); 685 686 return 0; 687 } 688 EXPORT_SYMBOL_GPL(kvm_set_cr4); 689 690 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 691 { 692 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 693 kvm_mmu_sync_roots(vcpu); 694 kvm_mmu_flush_tlb(vcpu); 695 return 0; 696 } 697 698 if (is_long_mode(vcpu)) { 699 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 700 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 701 return 1; 702 } else 703 if (cr3 & CR3_L_MODE_RESERVED_BITS) 704 return 1; 705 } else { 706 if (is_pae(vcpu)) { 707 if (cr3 & CR3_PAE_RESERVED_BITS) 708 return 1; 709 if (is_paging(vcpu) && 710 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 711 return 1; 712 } 713 /* 714 * We don't check reserved bits in nonpae mode, because 715 * this isn't enforced, and VMware depends on this. 716 */ 717 } 718 719 vcpu->arch.cr3 = cr3; 720 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 721 kvm_mmu_new_cr3(vcpu); 722 return 0; 723 } 724 EXPORT_SYMBOL_GPL(kvm_set_cr3); 725 726 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 727 { 728 if (cr8 & CR8_RESERVED_BITS) 729 return 1; 730 if (irqchip_in_kernel(vcpu->kvm)) 731 kvm_lapic_set_tpr(vcpu, cr8); 732 else 733 vcpu->arch.cr8 = cr8; 734 return 0; 735 } 736 EXPORT_SYMBOL_GPL(kvm_set_cr8); 737 738 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 739 { 740 if (irqchip_in_kernel(vcpu->kvm)) 741 return kvm_lapic_get_cr8(vcpu); 742 else 743 return vcpu->arch.cr8; 744 } 745 EXPORT_SYMBOL_GPL(kvm_get_cr8); 746 747 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 748 { 749 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 750 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 751 } 752 753 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 754 { 755 unsigned long dr7; 756 757 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 758 dr7 = vcpu->arch.guest_debug_dr7; 759 else 760 dr7 = vcpu->arch.dr7; 761 kvm_x86_ops->set_dr7(vcpu, dr7); 762 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 763 if (dr7 & DR7_BP_EN_MASK) 764 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 765 } 766 767 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 768 { 769 switch (dr) { 770 case 0 ... 3: 771 vcpu->arch.db[dr] = val; 772 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 773 vcpu->arch.eff_db[dr] = val; 774 break; 775 case 4: 776 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 777 return 1; /* #UD */ 778 /* fall through */ 779 case 6: 780 if (val & 0xffffffff00000000ULL) 781 return -1; /* #GP */ 782 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 783 kvm_update_dr6(vcpu); 784 break; 785 case 5: 786 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 787 return 1; /* #UD */ 788 /* fall through */ 789 default: /* 7 */ 790 if (val & 0xffffffff00000000ULL) 791 return -1; /* #GP */ 792 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 793 kvm_update_dr7(vcpu); 794 break; 795 } 796 797 return 0; 798 } 799 800 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 801 { 802 int res; 803 804 res = __kvm_set_dr(vcpu, dr, val); 805 if (res > 0) 806 kvm_queue_exception(vcpu, UD_VECTOR); 807 else if (res < 0) 808 kvm_inject_gp(vcpu, 0); 809 810 return res; 811 } 812 EXPORT_SYMBOL_GPL(kvm_set_dr); 813 814 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 815 { 816 switch (dr) { 817 case 0 ... 3: 818 *val = vcpu->arch.db[dr]; 819 break; 820 case 4: 821 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 822 return 1; 823 /* fall through */ 824 case 6: 825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 826 *val = vcpu->arch.dr6; 827 else 828 *val = kvm_x86_ops->get_dr6(vcpu); 829 break; 830 case 5: 831 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 832 return 1; 833 /* fall through */ 834 default: /* 7 */ 835 *val = vcpu->arch.dr7; 836 break; 837 } 838 839 return 0; 840 } 841 842 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 843 { 844 if (_kvm_get_dr(vcpu, dr, val)) { 845 kvm_queue_exception(vcpu, UD_VECTOR); 846 return 1; 847 } 848 return 0; 849 } 850 EXPORT_SYMBOL_GPL(kvm_get_dr); 851 852 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 853 { 854 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 855 u64 data; 856 int err; 857 858 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 859 if (err) 860 return err; 861 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 862 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 863 return err; 864 } 865 EXPORT_SYMBOL_GPL(kvm_rdpmc); 866 867 /* 868 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 869 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 870 * 871 * This list is modified at module load time to reflect the 872 * capabilities of the host cpu. This capabilities test skips MSRs that are 873 * kvm-specific. Those are put in the beginning of the list. 874 */ 875 876 #define KVM_SAVE_MSRS_BEGIN 12 877 static u32 msrs_to_save[] = { 878 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 879 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 880 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 881 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 882 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 883 MSR_KVM_PV_EOI_EN, 884 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 885 MSR_STAR, 886 #ifdef CONFIG_X86_64 887 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 888 #endif 889 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 890 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS 891 }; 892 893 static unsigned num_msrs_to_save; 894 895 static const u32 emulated_msrs[] = { 896 MSR_IA32_TSC_ADJUST, 897 MSR_IA32_TSCDEADLINE, 898 MSR_IA32_MISC_ENABLE, 899 MSR_IA32_MCG_STATUS, 900 MSR_IA32_MCG_CTL, 901 }; 902 903 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 904 { 905 if (efer & efer_reserved_bits) 906 return false; 907 908 if (efer & EFER_FFXSR) { 909 struct kvm_cpuid_entry2 *feat; 910 911 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 912 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 913 return false; 914 } 915 916 if (efer & EFER_SVME) { 917 struct kvm_cpuid_entry2 *feat; 918 919 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 920 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 921 return false; 922 } 923 924 return true; 925 } 926 EXPORT_SYMBOL_GPL(kvm_valid_efer); 927 928 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 929 { 930 u64 old_efer = vcpu->arch.efer; 931 932 if (!kvm_valid_efer(vcpu, efer)) 933 return 1; 934 935 if (is_paging(vcpu) 936 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 937 return 1; 938 939 efer &= ~EFER_LMA; 940 efer |= vcpu->arch.efer & EFER_LMA; 941 942 kvm_x86_ops->set_efer(vcpu, efer); 943 944 /* Update reserved bits */ 945 if ((efer ^ old_efer) & EFER_NX) 946 kvm_mmu_reset_context(vcpu); 947 948 return 0; 949 } 950 951 void kvm_enable_efer_bits(u64 mask) 952 { 953 efer_reserved_bits &= ~mask; 954 } 955 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 956 957 958 /* 959 * Writes msr value into into the appropriate "register". 960 * Returns 0 on success, non-0 otherwise. 961 * Assumes vcpu_load() was already called. 962 */ 963 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 964 { 965 return kvm_x86_ops->set_msr(vcpu, msr); 966 } 967 968 /* 969 * Adapt set_msr() to msr_io()'s calling convention 970 */ 971 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 972 { 973 struct msr_data msr; 974 975 msr.data = *data; 976 msr.index = index; 977 msr.host_initiated = true; 978 return kvm_set_msr(vcpu, &msr); 979 } 980 981 #ifdef CONFIG_X86_64 982 struct pvclock_gtod_data { 983 seqcount_t seq; 984 985 struct { /* extract of a clocksource struct */ 986 int vclock_mode; 987 cycle_t cycle_last; 988 cycle_t mask; 989 u32 mult; 990 u32 shift; 991 } clock; 992 993 /* open coded 'struct timespec' */ 994 u64 monotonic_time_snsec; 995 time_t monotonic_time_sec; 996 }; 997 998 static struct pvclock_gtod_data pvclock_gtod_data; 999 1000 static void update_pvclock_gtod(struct timekeeper *tk) 1001 { 1002 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1003 1004 write_seqcount_begin(&vdata->seq); 1005 1006 /* copy pvclock gtod data */ 1007 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 1008 vdata->clock.cycle_last = tk->clock->cycle_last; 1009 vdata->clock.mask = tk->clock->mask; 1010 vdata->clock.mult = tk->mult; 1011 vdata->clock.shift = tk->shift; 1012 1013 vdata->monotonic_time_sec = tk->xtime_sec 1014 + tk->wall_to_monotonic.tv_sec; 1015 vdata->monotonic_time_snsec = tk->xtime_nsec 1016 + (tk->wall_to_monotonic.tv_nsec 1017 << tk->shift); 1018 while (vdata->monotonic_time_snsec >= 1019 (((u64)NSEC_PER_SEC) << tk->shift)) { 1020 vdata->monotonic_time_snsec -= 1021 ((u64)NSEC_PER_SEC) << tk->shift; 1022 vdata->monotonic_time_sec++; 1023 } 1024 1025 write_seqcount_end(&vdata->seq); 1026 } 1027 #endif 1028 1029 1030 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1031 { 1032 int version; 1033 int r; 1034 struct pvclock_wall_clock wc; 1035 struct timespec boot; 1036 1037 if (!wall_clock) 1038 return; 1039 1040 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1041 if (r) 1042 return; 1043 1044 if (version & 1) 1045 ++version; /* first time write, random junk */ 1046 1047 ++version; 1048 1049 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1050 1051 /* 1052 * The guest calculates current wall clock time by adding 1053 * system time (updated by kvm_guest_time_update below) to the 1054 * wall clock specified here. guest system time equals host 1055 * system time for us, thus we must fill in host boot time here. 1056 */ 1057 getboottime(&boot); 1058 1059 if (kvm->arch.kvmclock_offset) { 1060 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1061 boot = timespec_sub(boot, ts); 1062 } 1063 wc.sec = boot.tv_sec; 1064 wc.nsec = boot.tv_nsec; 1065 wc.version = version; 1066 1067 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1068 1069 version++; 1070 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1071 } 1072 1073 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1074 { 1075 uint32_t quotient, remainder; 1076 1077 /* Don't try to replace with do_div(), this one calculates 1078 * "(dividend << 32) / divisor" */ 1079 __asm__ ( "divl %4" 1080 : "=a" (quotient), "=d" (remainder) 1081 : "0" (0), "1" (dividend), "r" (divisor) ); 1082 return quotient; 1083 } 1084 1085 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1086 s8 *pshift, u32 *pmultiplier) 1087 { 1088 uint64_t scaled64; 1089 int32_t shift = 0; 1090 uint64_t tps64; 1091 uint32_t tps32; 1092 1093 tps64 = base_khz * 1000LL; 1094 scaled64 = scaled_khz * 1000LL; 1095 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1096 tps64 >>= 1; 1097 shift--; 1098 } 1099 1100 tps32 = (uint32_t)tps64; 1101 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1102 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1103 scaled64 >>= 1; 1104 else 1105 tps32 <<= 1; 1106 shift++; 1107 } 1108 1109 *pshift = shift; 1110 *pmultiplier = div_frac(scaled64, tps32); 1111 1112 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1113 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1114 } 1115 1116 static inline u64 get_kernel_ns(void) 1117 { 1118 struct timespec ts; 1119 1120 WARN_ON(preemptible()); 1121 ktime_get_ts(&ts); 1122 monotonic_to_bootbased(&ts); 1123 return timespec_to_ns(&ts); 1124 } 1125 1126 #ifdef CONFIG_X86_64 1127 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1128 #endif 1129 1130 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1131 unsigned long max_tsc_khz; 1132 1133 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1134 { 1135 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1136 vcpu->arch.virtual_tsc_shift); 1137 } 1138 1139 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1140 { 1141 u64 v = (u64)khz * (1000000 + ppm); 1142 do_div(v, 1000000); 1143 return v; 1144 } 1145 1146 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1147 { 1148 u32 thresh_lo, thresh_hi; 1149 int use_scaling = 0; 1150 1151 /* tsc_khz can be zero if TSC calibration fails */ 1152 if (this_tsc_khz == 0) 1153 return; 1154 1155 /* Compute a scale to convert nanoseconds in TSC cycles */ 1156 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1157 &vcpu->arch.virtual_tsc_shift, 1158 &vcpu->arch.virtual_tsc_mult); 1159 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1160 1161 /* 1162 * Compute the variation in TSC rate which is acceptable 1163 * within the range of tolerance and decide if the 1164 * rate being applied is within that bounds of the hardware 1165 * rate. If so, no scaling or compensation need be done. 1166 */ 1167 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1168 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1169 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1170 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1171 use_scaling = 1; 1172 } 1173 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1174 } 1175 1176 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1177 { 1178 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1179 vcpu->arch.virtual_tsc_mult, 1180 vcpu->arch.virtual_tsc_shift); 1181 tsc += vcpu->arch.this_tsc_write; 1182 return tsc; 1183 } 1184 1185 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1186 { 1187 #ifdef CONFIG_X86_64 1188 bool vcpus_matched; 1189 bool do_request = false; 1190 struct kvm_arch *ka = &vcpu->kvm->arch; 1191 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1192 1193 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1194 atomic_read(&vcpu->kvm->online_vcpus)); 1195 1196 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1197 if (!ka->use_master_clock) 1198 do_request = 1; 1199 1200 if (!vcpus_matched && ka->use_master_clock) 1201 do_request = 1; 1202 1203 if (do_request) 1204 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1205 1206 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1207 atomic_read(&vcpu->kvm->online_vcpus), 1208 ka->use_master_clock, gtod->clock.vclock_mode); 1209 #endif 1210 } 1211 1212 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1213 { 1214 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1215 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1216 } 1217 1218 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1219 { 1220 struct kvm *kvm = vcpu->kvm; 1221 u64 offset, ns, elapsed; 1222 unsigned long flags; 1223 s64 usdiff; 1224 bool matched; 1225 u64 data = msr->data; 1226 1227 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1228 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1229 ns = get_kernel_ns(); 1230 elapsed = ns - kvm->arch.last_tsc_nsec; 1231 1232 if (vcpu->arch.virtual_tsc_khz) { 1233 int faulted = 0; 1234 1235 /* n.b - signed multiplication and division required */ 1236 usdiff = data - kvm->arch.last_tsc_write; 1237 #ifdef CONFIG_X86_64 1238 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1239 #else 1240 /* do_div() only does unsigned */ 1241 asm("1: idivl %[divisor]\n" 1242 "2: xor %%edx, %%edx\n" 1243 " movl $0, %[faulted]\n" 1244 "3:\n" 1245 ".section .fixup,\"ax\"\n" 1246 "4: movl $1, %[faulted]\n" 1247 " jmp 3b\n" 1248 ".previous\n" 1249 1250 _ASM_EXTABLE(1b, 4b) 1251 1252 : "=A"(usdiff), [faulted] "=r" (faulted) 1253 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1254 1255 #endif 1256 do_div(elapsed, 1000); 1257 usdiff -= elapsed; 1258 if (usdiff < 0) 1259 usdiff = -usdiff; 1260 1261 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1262 if (faulted) 1263 usdiff = USEC_PER_SEC; 1264 } else 1265 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1266 1267 /* 1268 * Special case: TSC write with a small delta (1 second) of virtual 1269 * cycle time against real time is interpreted as an attempt to 1270 * synchronize the CPU. 1271 * 1272 * For a reliable TSC, we can match TSC offsets, and for an unstable 1273 * TSC, we add elapsed time in this computation. We could let the 1274 * compensation code attempt to catch up if we fall behind, but 1275 * it's better to try to match offsets from the beginning. 1276 */ 1277 if (usdiff < USEC_PER_SEC && 1278 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1279 if (!check_tsc_unstable()) { 1280 offset = kvm->arch.cur_tsc_offset; 1281 pr_debug("kvm: matched tsc offset for %llu\n", data); 1282 } else { 1283 u64 delta = nsec_to_cycles(vcpu, elapsed); 1284 data += delta; 1285 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1286 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1287 } 1288 matched = true; 1289 } else { 1290 /* 1291 * We split periods of matched TSC writes into generations. 1292 * For each generation, we track the original measured 1293 * nanosecond time, offset, and write, so if TSCs are in 1294 * sync, we can match exact offset, and if not, we can match 1295 * exact software computation in compute_guest_tsc() 1296 * 1297 * These values are tracked in kvm->arch.cur_xxx variables. 1298 */ 1299 kvm->arch.cur_tsc_generation++; 1300 kvm->arch.cur_tsc_nsec = ns; 1301 kvm->arch.cur_tsc_write = data; 1302 kvm->arch.cur_tsc_offset = offset; 1303 matched = false; 1304 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1305 kvm->arch.cur_tsc_generation, data); 1306 } 1307 1308 /* 1309 * We also track th most recent recorded KHZ, write and time to 1310 * allow the matching interval to be extended at each write. 1311 */ 1312 kvm->arch.last_tsc_nsec = ns; 1313 kvm->arch.last_tsc_write = data; 1314 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1315 1316 vcpu->arch.last_guest_tsc = data; 1317 1318 /* Keep track of which generation this VCPU has synchronized to */ 1319 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1320 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1321 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1322 1323 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1324 update_ia32_tsc_adjust_msr(vcpu, offset); 1325 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1326 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1327 1328 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1329 if (matched) 1330 kvm->arch.nr_vcpus_matched_tsc++; 1331 else 1332 kvm->arch.nr_vcpus_matched_tsc = 0; 1333 1334 kvm_track_tsc_matching(vcpu); 1335 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1336 } 1337 1338 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1339 1340 #ifdef CONFIG_X86_64 1341 1342 static cycle_t read_tsc(void) 1343 { 1344 cycle_t ret; 1345 u64 last; 1346 1347 /* 1348 * Empirically, a fence (of type that depends on the CPU) 1349 * before rdtsc is enough to ensure that rdtsc is ordered 1350 * with respect to loads. The various CPU manuals are unclear 1351 * as to whether rdtsc can be reordered with later loads, 1352 * but no one has ever seen it happen. 1353 */ 1354 rdtsc_barrier(); 1355 ret = (cycle_t)vget_cycles(); 1356 1357 last = pvclock_gtod_data.clock.cycle_last; 1358 1359 if (likely(ret >= last)) 1360 return ret; 1361 1362 /* 1363 * GCC likes to generate cmov here, but this branch is extremely 1364 * predictable (it's just a funciton of time and the likely is 1365 * very likely) and there's a data dependence, so force GCC 1366 * to generate a branch instead. I don't barrier() because 1367 * we don't actually need a barrier, and if this function 1368 * ever gets inlined it will generate worse code. 1369 */ 1370 asm volatile (""); 1371 return last; 1372 } 1373 1374 static inline u64 vgettsc(cycle_t *cycle_now) 1375 { 1376 long v; 1377 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1378 1379 *cycle_now = read_tsc(); 1380 1381 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1382 return v * gtod->clock.mult; 1383 } 1384 1385 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1386 { 1387 unsigned long seq; 1388 u64 ns; 1389 int mode; 1390 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1391 1392 ts->tv_nsec = 0; 1393 do { 1394 seq = read_seqcount_begin(>od->seq); 1395 mode = gtod->clock.vclock_mode; 1396 ts->tv_sec = gtod->monotonic_time_sec; 1397 ns = gtod->monotonic_time_snsec; 1398 ns += vgettsc(cycle_now); 1399 ns >>= gtod->clock.shift; 1400 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1401 timespec_add_ns(ts, ns); 1402 1403 return mode; 1404 } 1405 1406 /* returns true if host is using tsc clocksource */ 1407 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1408 { 1409 struct timespec ts; 1410 1411 /* checked again under seqlock below */ 1412 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1413 return false; 1414 1415 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1416 return false; 1417 1418 monotonic_to_bootbased(&ts); 1419 *kernel_ns = timespec_to_ns(&ts); 1420 1421 return true; 1422 } 1423 #endif 1424 1425 /* 1426 * 1427 * Assuming a stable TSC across physical CPUS, and a stable TSC 1428 * across virtual CPUs, the following condition is possible. 1429 * Each numbered line represents an event visible to both 1430 * CPUs at the next numbered event. 1431 * 1432 * "timespecX" represents host monotonic time. "tscX" represents 1433 * RDTSC value. 1434 * 1435 * VCPU0 on CPU0 | VCPU1 on CPU1 1436 * 1437 * 1. read timespec0,tsc0 1438 * 2. | timespec1 = timespec0 + N 1439 * | tsc1 = tsc0 + M 1440 * 3. transition to guest | transition to guest 1441 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1442 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1443 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1444 * 1445 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1446 * 1447 * - ret0 < ret1 1448 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1449 * ... 1450 * - 0 < N - M => M < N 1451 * 1452 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1453 * always the case (the difference between two distinct xtime instances 1454 * might be smaller then the difference between corresponding TSC reads, 1455 * when updating guest vcpus pvclock areas). 1456 * 1457 * To avoid that problem, do not allow visibility of distinct 1458 * system_timestamp/tsc_timestamp values simultaneously: use a master 1459 * copy of host monotonic time values. Update that master copy 1460 * in lockstep. 1461 * 1462 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1463 * 1464 */ 1465 1466 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1467 { 1468 #ifdef CONFIG_X86_64 1469 struct kvm_arch *ka = &kvm->arch; 1470 int vclock_mode; 1471 bool host_tsc_clocksource, vcpus_matched; 1472 1473 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1474 atomic_read(&kvm->online_vcpus)); 1475 1476 /* 1477 * If the host uses TSC clock, then passthrough TSC as stable 1478 * to the guest. 1479 */ 1480 host_tsc_clocksource = kvm_get_time_and_clockread( 1481 &ka->master_kernel_ns, 1482 &ka->master_cycle_now); 1483 1484 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1485 1486 if (ka->use_master_clock) 1487 atomic_set(&kvm_guest_has_master_clock, 1); 1488 1489 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1490 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1491 vcpus_matched); 1492 #endif 1493 } 1494 1495 static void kvm_gen_update_masterclock(struct kvm *kvm) 1496 { 1497 #ifdef CONFIG_X86_64 1498 int i; 1499 struct kvm_vcpu *vcpu; 1500 struct kvm_arch *ka = &kvm->arch; 1501 1502 spin_lock(&ka->pvclock_gtod_sync_lock); 1503 kvm_make_mclock_inprogress_request(kvm); 1504 /* no guest entries from this point */ 1505 pvclock_update_vm_gtod_copy(kvm); 1506 1507 kvm_for_each_vcpu(i, vcpu, kvm) 1508 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1509 1510 /* guest entries allowed */ 1511 kvm_for_each_vcpu(i, vcpu, kvm) 1512 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1513 1514 spin_unlock(&ka->pvclock_gtod_sync_lock); 1515 #endif 1516 } 1517 1518 static int kvm_guest_time_update(struct kvm_vcpu *v) 1519 { 1520 unsigned long flags, this_tsc_khz; 1521 struct kvm_vcpu_arch *vcpu = &v->arch; 1522 struct kvm_arch *ka = &v->kvm->arch; 1523 s64 kernel_ns; 1524 u64 tsc_timestamp, host_tsc; 1525 struct pvclock_vcpu_time_info guest_hv_clock; 1526 u8 pvclock_flags; 1527 bool use_master_clock; 1528 1529 kernel_ns = 0; 1530 host_tsc = 0; 1531 1532 /* 1533 * If the host uses TSC clock, then passthrough TSC as stable 1534 * to the guest. 1535 */ 1536 spin_lock(&ka->pvclock_gtod_sync_lock); 1537 use_master_clock = ka->use_master_clock; 1538 if (use_master_clock) { 1539 host_tsc = ka->master_cycle_now; 1540 kernel_ns = ka->master_kernel_ns; 1541 } 1542 spin_unlock(&ka->pvclock_gtod_sync_lock); 1543 1544 /* Keep irq disabled to prevent changes to the clock */ 1545 local_irq_save(flags); 1546 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1547 if (unlikely(this_tsc_khz == 0)) { 1548 local_irq_restore(flags); 1549 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1550 return 1; 1551 } 1552 if (!use_master_clock) { 1553 host_tsc = native_read_tsc(); 1554 kernel_ns = get_kernel_ns(); 1555 } 1556 1557 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1558 1559 /* 1560 * We may have to catch up the TSC to match elapsed wall clock 1561 * time for two reasons, even if kvmclock is used. 1562 * 1) CPU could have been running below the maximum TSC rate 1563 * 2) Broken TSC compensation resets the base at each VCPU 1564 * entry to avoid unknown leaps of TSC even when running 1565 * again on the same CPU. This may cause apparent elapsed 1566 * time to disappear, and the guest to stand still or run 1567 * very slowly. 1568 */ 1569 if (vcpu->tsc_catchup) { 1570 u64 tsc = compute_guest_tsc(v, kernel_ns); 1571 if (tsc > tsc_timestamp) { 1572 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1573 tsc_timestamp = tsc; 1574 } 1575 } 1576 1577 local_irq_restore(flags); 1578 1579 if (!vcpu->pv_time_enabled) 1580 return 0; 1581 1582 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1583 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1584 &vcpu->hv_clock.tsc_shift, 1585 &vcpu->hv_clock.tsc_to_system_mul); 1586 vcpu->hw_tsc_khz = this_tsc_khz; 1587 } 1588 1589 /* With all the info we got, fill in the values */ 1590 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1591 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1592 vcpu->last_guest_tsc = tsc_timestamp; 1593 1594 /* 1595 * The interface expects us to write an even number signaling that the 1596 * update is finished. Since the guest won't see the intermediate 1597 * state, we just increase by 2 at the end. 1598 */ 1599 vcpu->hv_clock.version += 2; 1600 1601 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1602 &guest_hv_clock, sizeof(guest_hv_clock)))) 1603 return 0; 1604 1605 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1606 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1607 1608 if (vcpu->pvclock_set_guest_stopped_request) { 1609 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1610 vcpu->pvclock_set_guest_stopped_request = false; 1611 } 1612 1613 /* If the host uses TSC clocksource, then it is stable */ 1614 if (use_master_clock) 1615 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1616 1617 vcpu->hv_clock.flags = pvclock_flags; 1618 1619 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1620 &vcpu->hv_clock, 1621 sizeof(vcpu->hv_clock)); 1622 return 0; 1623 } 1624 1625 /* 1626 * kvmclock updates which are isolated to a given vcpu, such as 1627 * vcpu->cpu migration, should not allow system_timestamp from 1628 * the rest of the vcpus to remain static. Otherwise ntp frequency 1629 * correction applies to one vcpu's system_timestamp but not 1630 * the others. 1631 * 1632 * So in those cases, request a kvmclock update for all vcpus. 1633 * We need to rate-limit these requests though, as they can 1634 * considerably slow guests that have a large number of vcpus. 1635 * The time for a remote vcpu to update its kvmclock is bound 1636 * by the delay we use to rate-limit the updates. 1637 */ 1638 1639 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1640 1641 static void kvmclock_update_fn(struct work_struct *work) 1642 { 1643 int i; 1644 struct delayed_work *dwork = to_delayed_work(work); 1645 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1646 kvmclock_update_work); 1647 struct kvm *kvm = container_of(ka, struct kvm, arch); 1648 struct kvm_vcpu *vcpu; 1649 1650 kvm_for_each_vcpu(i, vcpu, kvm) { 1651 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1652 kvm_vcpu_kick(vcpu); 1653 } 1654 } 1655 1656 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1657 { 1658 struct kvm *kvm = v->kvm; 1659 1660 set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests); 1661 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1662 KVMCLOCK_UPDATE_DELAY); 1663 } 1664 1665 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1666 1667 static void kvmclock_sync_fn(struct work_struct *work) 1668 { 1669 struct delayed_work *dwork = to_delayed_work(work); 1670 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1671 kvmclock_sync_work); 1672 struct kvm *kvm = container_of(ka, struct kvm, arch); 1673 1674 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1675 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1676 KVMCLOCK_SYNC_PERIOD); 1677 } 1678 1679 static bool msr_mtrr_valid(unsigned msr) 1680 { 1681 switch (msr) { 1682 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1683 case MSR_MTRRfix64K_00000: 1684 case MSR_MTRRfix16K_80000: 1685 case MSR_MTRRfix16K_A0000: 1686 case MSR_MTRRfix4K_C0000: 1687 case MSR_MTRRfix4K_C8000: 1688 case MSR_MTRRfix4K_D0000: 1689 case MSR_MTRRfix4K_D8000: 1690 case MSR_MTRRfix4K_E0000: 1691 case MSR_MTRRfix4K_E8000: 1692 case MSR_MTRRfix4K_F0000: 1693 case MSR_MTRRfix4K_F8000: 1694 case MSR_MTRRdefType: 1695 case MSR_IA32_CR_PAT: 1696 return true; 1697 case 0x2f8: 1698 return true; 1699 } 1700 return false; 1701 } 1702 1703 static bool valid_pat_type(unsigned t) 1704 { 1705 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1706 } 1707 1708 static bool valid_mtrr_type(unsigned t) 1709 { 1710 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1711 } 1712 1713 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1714 { 1715 int i; 1716 1717 if (!msr_mtrr_valid(msr)) 1718 return false; 1719 1720 if (msr == MSR_IA32_CR_PAT) { 1721 for (i = 0; i < 8; i++) 1722 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1723 return false; 1724 return true; 1725 } else if (msr == MSR_MTRRdefType) { 1726 if (data & ~0xcff) 1727 return false; 1728 return valid_mtrr_type(data & 0xff); 1729 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1730 for (i = 0; i < 8 ; i++) 1731 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1732 return false; 1733 return true; 1734 } 1735 1736 /* variable MTRRs */ 1737 return valid_mtrr_type(data & 0xff); 1738 } 1739 1740 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1741 { 1742 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1743 1744 if (!mtrr_valid(vcpu, msr, data)) 1745 return 1; 1746 1747 if (msr == MSR_MTRRdefType) { 1748 vcpu->arch.mtrr_state.def_type = data; 1749 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1750 } else if (msr == MSR_MTRRfix64K_00000) 1751 p[0] = data; 1752 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1753 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1754 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1755 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1756 else if (msr == MSR_IA32_CR_PAT) 1757 vcpu->arch.pat = data; 1758 else { /* Variable MTRRs */ 1759 int idx, is_mtrr_mask; 1760 u64 *pt; 1761 1762 idx = (msr - 0x200) / 2; 1763 is_mtrr_mask = msr - 0x200 - 2 * idx; 1764 if (!is_mtrr_mask) 1765 pt = 1766 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1767 else 1768 pt = 1769 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1770 *pt = data; 1771 } 1772 1773 kvm_mmu_reset_context(vcpu); 1774 return 0; 1775 } 1776 1777 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1778 { 1779 u64 mcg_cap = vcpu->arch.mcg_cap; 1780 unsigned bank_num = mcg_cap & 0xff; 1781 1782 switch (msr) { 1783 case MSR_IA32_MCG_STATUS: 1784 vcpu->arch.mcg_status = data; 1785 break; 1786 case MSR_IA32_MCG_CTL: 1787 if (!(mcg_cap & MCG_CTL_P)) 1788 return 1; 1789 if (data != 0 && data != ~(u64)0) 1790 return -1; 1791 vcpu->arch.mcg_ctl = data; 1792 break; 1793 default: 1794 if (msr >= MSR_IA32_MC0_CTL && 1795 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1796 u32 offset = msr - MSR_IA32_MC0_CTL; 1797 /* only 0 or all 1s can be written to IA32_MCi_CTL 1798 * some Linux kernels though clear bit 10 in bank 4 to 1799 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1800 * this to avoid an uncatched #GP in the guest 1801 */ 1802 if ((offset & 0x3) == 0 && 1803 data != 0 && (data | (1 << 10)) != ~(u64)0) 1804 return -1; 1805 vcpu->arch.mce_banks[offset] = data; 1806 break; 1807 } 1808 return 1; 1809 } 1810 return 0; 1811 } 1812 1813 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1814 { 1815 struct kvm *kvm = vcpu->kvm; 1816 int lm = is_long_mode(vcpu); 1817 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1818 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1819 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1820 : kvm->arch.xen_hvm_config.blob_size_32; 1821 u32 page_num = data & ~PAGE_MASK; 1822 u64 page_addr = data & PAGE_MASK; 1823 u8 *page; 1824 int r; 1825 1826 r = -E2BIG; 1827 if (page_num >= blob_size) 1828 goto out; 1829 r = -ENOMEM; 1830 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1831 if (IS_ERR(page)) { 1832 r = PTR_ERR(page); 1833 goto out; 1834 } 1835 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1836 goto out_free; 1837 r = 0; 1838 out_free: 1839 kfree(page); 1840 out: 1841 return r; 1842 } 1843 1844 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1845 { 1846 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1847 } 1848 1849 static bool kvm_hv_msr_partition_wide(u32 msr) 1850 { 1851 bool r = false; 1852 switch (msr) { 1853 case HV_X64_MSR_GUEST_OS_ID: 1854 case HV_X64_MSR_HYPERCALL: 1855 case HV_X64_MSR_REFERENCE_TSC: 1856 case HV_X64_MSR_TIME_REF_COUNT: 1857 r = true; 1858 break; 1859 } 1860 1861 return r; 1862 } 1863 1864 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1865 { 1866 struct kvm *kvm = vcpu->kvm; 1867 1868 switch (msr) { 1869 case HV_X64_MSR_GUEST_OS_ID: 1870 kvm->arch.hv_guest_os_id = data; 1871 /* setting guest os id to zero disables hypercall page */ 1872 if (!kvm->arch.hv_guest_os_id) 1873 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1874 break; 1875 case HV_X64_MSR_HYPERCALL: { 1876 u64 gfn; 1877 unsigned long addr; 1878 u8 instructions[4]; 1879 1880 /* if guest os id is not set hypercall should remain disabled */ 1881 if (!kvm->arch.hv_guest_os_id) 1882 break; 1883 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1884 kvm->arch.hv_hypercall = data; 1885 break; 1886 } 1887 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1888 addr = gfn_to_hva(kvm, gfn); 1889 if (kvm_is_error_hva(addr)) 1890 return 1; 1891 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1892 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1893 if (__copy_to_user((void __user *)addr, instructions, 4)) 1894 return 1; 1895 kvm->arch.hv_hypercall = data; 1896 mark_page_dirty(kvm, gfn); 1897 break; 1898 } 1899 case HV_X64_MSR_REFERENCE_TSC: { 1900 u64 gfn; 1901 HV_REFERENCE_TSC_PAGE tsc_ref; 1902 memset(&tsc_ref, 0, sizeof(tsc_ref)); 1903 kvm->arch.hv_tsc_page = data; 1904 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1905 break; 1906 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1907 if (kvm_write_guest(kvm, data, 1908 &tsc_ref, sizeof(tsc_ref))) 1909 return 1; 1910 mark_page_dirty(kvm, gfn); 1911 break; 1912 } 1913 default: 1914 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1915 "data 0x%llx\n", msr, data); 1916 return 1; 1917 } 1918 return 0; 1919 } 1920 1921 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1922 { 1923 switch (msr) { 1924 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1925 u64 gfn; 1926 unsigned long addr; 1927 1928 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1929 vcpu->arch.hv_vapic = data; 1930 break; 1931 } 1932 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; 1933 addr = gfn_to_hva(vcpu->kvm, gfn); 1934 if (kvm_is_error_hva(addr)) 1935 return 1; 1936 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1937 return 1; 1938 vcpu->arch.hv_vapic = data; 1939 mark_page_dirty(vcpu->kvm, gfn); 1940 break; 1941 } 1942 case HV_X64_MSR_EOI: 1943 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1944 case HV_X64_MSR_ICR: 1945 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1946 case HV_X64_MSR_TPR: 1947 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1948 default: 1949 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1950 "data 0x%llx\n", msr, data); 1951 return 1; 1952 } 1953 1954 return 0; 1955 } 1956 1957 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1958 { 1959 gpa_t gpa = data & ~0x3f; 1960 1961 /* Bits 2:5 are reserved, Should be zero */ 1962 if (data & 0x3c) 1963 return 1; 1964 1965 vcpu->arch.apf.msr_val = data; 1966 1967 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1968 kvm_clear_async_pf_completion_queue(vcpu); 1969 kvm_async_pf_hash_reset(vcpu); 1970 return 0; 1971 } 1972 1973 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1974 sizeof(u32))) 1975 return 1; 1976 1977 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1978 kvm_async_pf_wakeup_all(vcpu); 1979 return 0; 1980 } 1981 1982 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1983 { 1984 vcpu->arch.pv_time_enabled = false; 1985 } 1986 1987 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1988 { 1989 u64 delta; 1990 1991 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1992 return; 1993 1994 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1995 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1996 vcpu->arch.st.accum_steal = delta; 1997 } 1998 1999 static void record_steal_time(struct kvm_vcpu *vcpu) 2000 { 2001 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2002 return; 2003 2004 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2005 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2006 return; 2007 2008 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 2009 vcpu->arch.st.steal.version += 2; 2010 vcpu->arch.st.accum_steal = 0; 2011 2012 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2013 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2014 } 2015 2016 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2017 { 2018 bool pr = false; 2019 u32 msr = msr_info->index; 2020 u64 data = msr_info->data; 2021 2022 switch (msr) { 2023 case MSR_AMD64_NB_CFG: 2024 case MSR_IA32_UCODE_REV: 2025 case MSR_IA32_UCODE_WRITE: 2026 case MSR_VM_HSAVE_PA: 2027 case MSR_AMD64_PATCH_LOADER: 2028 case MSR_AMD64_BU_CFG2: 2029 break; 2030 2031 case MSR_EFER: 2032 return set_efer(vcpu, data); 2033 case MSR_K7_HWCR: 2034 data &= ~(u64)0x40; /* ignore flush filter disable */ 2035 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2036 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2037 if (data != 0) { 2038 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2039 data); 2040 return 1; 2041 } 2042 break; 2043 case MSR_FAM10H_MMIO_CONF_BASE: 2044 if (data != 0) { 2045 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2046 "0x%llx\n", data); 2047 return 1; 2048 } 2049 break; 2050 case MSR_IA32_DEBUGCTLMSR: 2051 if (!data) { 2052 /* We support the non-activated case already */ 2053 break; 2054 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2055 /* Values other than LBR and BTF are vendor-specific, 2056 thus reserved and should throw a #GP */ 2057 return 1; 2058 } 2059 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2060 __func__, data); 2061 break; 2062 case 0x200 ... 0x2ff: 2063 return set_msr_mtrr(vcpu, msr, data); 2064 case MSR_IA32_APICBASE: 2065 return kvm_set_apic_base(vcpu, msr_info); 2066 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2067 return kvm_x2apic_msr_write(vcpu, msr, data); 2068 case MSR_IA32_TSCDEADLINE: 2069 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2070 break; 2071 case MSR_IA32_TSC_ADJUST: 2072 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2073 if (!msr_info->host_initiated) { 2074 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2075 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2076 } 2077 vcpu->arch.ia32_tsc_adjust_msr = data; 2078 } 2079 break; 2080 case MSR_IA32_MISC_ENABLE: 2081 vcpu->arch.ia32_misc_enable_msr = data; 2082 break; 2083 case MSR_KVM_WALL_CLOCK_NEW: 2084 case MSR_KVM_WALL_CLOCK: 2085 vcpu->kvm->arch.wall_clock = data; 2086 kvm_write_wall_clock(vcpu->kvm, data); 2087 break; 2088 case MSR_KVM_SYSTEM_TIME_NEW: 2089 case MSR_KVM_SYSTEM_TIME: { 2090 u64 gpa_offset; 2091 kvmclock_reset(vcpu); 2092 2093 vcpu->arch.time = data; 2094 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2095 2096 /* we verify if the enable bit is set... */ 2097 if (!(data & 1)) 2098 break; 2099 2100 gpa_offset = data & ~(PAGE_MASK | 1); 2101 2102 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2103 &vcpu->arch.pv_time, data & ~1ULL, 2104 sizeof(struct pvclock_vcpu_time_info))) 2105 vcpu->arch.pv_time_enabled = false; 2106 else 2107 vcpu->arch.pv_time_enabled = true; 2108 2109 break; 2110 } 2111 case MSR_KVM_ASYNC_PF_EN: 2112 if (kvm_pv_enable_async_pf(vcpu, data)) 2113 return 1; 2114 break; 2115 case MSR_KVM_STEAL_TIME: 2116 2117 if (unlikely(!sched_info_on())) 2118 return 1; 2119 2120 if (data & KVM_STEAL_RESERVED_MASK) 2121 return 1; 2122 2123 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2124 data & KVM_STEAL_VALID_BITS, 2125 sizeof(struct kvm_steal_time))) 2126 return 1; 2127 2128 vcpu->arch.st.msr_val = data; 2129 2130 if (!(data & KVM_MSR_ENABLED)) 2131 break; 2132 2133 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2134 2135 preempt_disable(); 2136 accumulate_steal_time(vcpu); 2137 preempt_enable(); 2138 2139 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2140 2141 break; 2142 case MSR_KVM_PV_EOI_EN: 2143 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2144 return 1; 2145 break; 2146 2147 case MSR_IA32_MCG_CTL: 2148 case MSR_IA32_MCG_STATUS: 2149 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2150 return set_msr_mce(vcpu, msr, data); 2151 2152 /* Performance counters are not protected by a CPUID bit, 2153 * so we should check all of them in the generic path for the sake of 2154 * cross vendor migration. 2155 * Writing a zero into the event select MSRs disables them, 2156 * which we perfectly emulate ;-). Any other value should be at least 2157 * reported, some guests depend on them. 2158 */ 2159 case MSR_K7_EVNTSEL0: 2160 case MSR_K7_EVNTSEL1: 2161 case MSR_K7_EVNTSEL2: 2162 case MSR_K7_EVNTSEL3: 2163 if (data != 0) 2164 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2165 "0x%x data 0x%llx\n", msr, data); 2166 break; 2167 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2168 * so we ignore writes to make it happy. 2169 */ 2170 case MSR_K7_PERFCTR0: 2171 case MSR_K7_PERFCTR1: 2172 case MSR_K7_PERFCTR2: 2173 case MSR_K7_PERFCTR3: 2174 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2175 "0x%x data 0x%llx\n", msr, data); 2176 break; 2177 case MSR_P6_PERFCTR0: 2178 case MSR_P6_PERFCTR1: 2179 pr = true; 2180 case MSR_P6_EVNTSEL0: 2181 case MSR_P6_EVNTSEL1: 2182 if (kvm_pmu_msr(vcpu, msr)) 2183 return kvm_pmu_set_msr(vcpu, msr_info); 2184 2185 if (pr || data != 0) 2186 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2187 "0x%x data 0x%llx\n", msr, data); 2188 break; 2189 case MSR_K7_CLK_CTL: 2190 /* 2191 * Ignore all writes to this no longer documented MSR. 2192 * Writes are only relevant for old K7 processors, 2193 * all pre-dating SVM, but a recommended workaround from 2194 * AMD for these chips. It is possible to specify the 2195 * affected processor models on the command line, hence 2196 * the need to ignore the workaround. 2197 */ 2198 break; 2199 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2200 if (kvm_hv_msr_partition_wide(msr)) { 2201 int r; 2202 mutex_lock(&vcpu->kvm->lock); 2203 r = set_msr_hyperv_pw(vcpu, msr, data); 2204 mutex_unlock(&vcpu->kvm->lock); 2205 return r; 2206 } else 2207 return set_msr_hyperv(vcpu, msr, data); 2208 break; 2209 case MSR_IA32_BBL_CR_CTL3: 2210 /* Drop writes to this legacy MSR -- see rdmsr 2211 * counterpart for further detail. 2212 */ 2213 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2214 break; 2215 case MSR_AMD64_OSVW_ID_LENGTH: 2216 if (!guest_cpuid_has_osvw(vcpu)) 2217 return 1; 2218 vcpu->arch.osvw.length = data; 2219 break; 2220 case MSR_AMD64_OSVW_STATUS: 2221 if (!guest_cpuid_has_osvw(vcpu)) 2222 return 1; 2223 vcpu->arch.osvw.status = data; 2224 break; 2225 default: 2226 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2227 return xen_hvm_config(vcpu, data); 2228 if (kvm_pmu_msr(vcpu, msr)) 2229 return kvm_pmu_set_msr(vcpu, msr_info); 2230 if (!ignore_msrs) { 2231 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2232 msr, data); 2233 return 1; 2234 } else { 2235 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2236 msr, data); 2237 break; 2238 } 2239 } 2240 return 0; 2241 } 2242 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2243 2244 2245 /* 2246 * Reads an msr value (of 'msr_index') into 'pdata'. 2247 * Returns 0 on success, non-0 otherwise. 2248 * Assumes vcpu_load() was already called. 2249 */ 2250 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2251 { 2252 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2253 } 2254 2255 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2256 { 2257 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2258 2259 if (!msr_mtrr_valid(msr)) 2260 return 1; 2261 2262 if (msr == MSR_MTRRdefType) 2263 *pdata = vcpu->arch.mtrr_state.def_type + 2264 (vcpu->arch.mtrr_state.enabled << 10); 2265 else if (msr == MSR_MTRRfix64K_00000) 2266 *pdata = p[0]; 2267 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2268 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2269 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2270 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2271 else if (msr == MSR_IA32_CR_PAT) 2272 *pdata = vcpu->arch.pat; 2273 else { /* Variable MTRRs */ 2274 int idx, is_mtrr_mask; 2275 u64 *pt; 2276 2277 idx = (msr - 0x200) / 2; 2278 is_mtrr_mask = msr - 0x200 - 2 * idx; 2279 if (!is_mtrr_mask) 2280 pt = 2281 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2282 else 2283 pt = 2284 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2285 *pdata = *pt; 2286 } 2287 2288 return 0; 2289 } 2290 2291 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2292 { 2293 u64 data; 2294 u64 mcg_cap = vcpu->arch.mcg_cap; 2295 unsigned bank_num = mcg_cap & 0xff; 2296 2297 switch (msr) { 2298 case MSR_IA32_P5_MC_ADDR: 2299 case MSR_IA32_P5_MC_TYPE: 2300 data = 0; 2301 break; 2302 case MSR_IA32_MCG_CAP: 2303 data = vcpu->arch.mcg_cap; 2304 break; 2305 case MSR_IA32_MCG_CTL: 2306 if (!(mcg_cap & MCG_CTL_P)) 2307 return 1; 2308 data = vcpu->arch.mcg_ctl; 2309 break; 2310 case MSR_IA32_MCG_STATUS: 2311 data = vcpu->arch.mcg_status; 2312 break; 2313 default: 2314 if (msr >= MSR_IA32_MC0_CTL && 2315 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2316 u32 offset = msr - MSR_IA32_MC0_CTL; 2317 data = vcpu->arch.mce_banks[offset]; 2318 break; 2319 } 2320 return 1; 2321 } 2322 *pdata = data; 2323 return 0; 2324 } 2325 2326 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2327 { 2328 u64 data = 0; 2329 struct kvm *kvm = vcpu->kvm; 2330 2331 switch (msr) { 2332 case HV_X64_MSR_GUEST_OS_ID: 2333 data = kvm->arch.hv_guest_os_id; 2334 break; 2335 case HV_X64_MSR_HYPERCALL: 2336 data = kvm->arch.hv_hypercall; 2337 break; 2338 case HV_X64_MSR_TIME_REF_COUNT: { 2339 data = 2340 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); 2341 break; 2342 } 2343 case HV_X64_MSR_REFERENCE_TSC: 2344 data = kvm->arch.hv_tsc_page; 2345 break; 2346 default: 2347 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2348 return 1; 2349 } 2350 2351 *pdata = data; 2352 return 0; 2353 } 2354 2355 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2356 { 2357 u64 data = 0; 2358 2359 switch (msr) { 2360 case HV_X64_MSR_VP_INDEX: { 2361 int r; 2362 struct kvm_vcpu *v; 2363 kvm_for_each_vcpu(r, v, vcpu->kvm) { 2364 if (v == vcpu) { 2365 data = r; 2366 break; 2367 } 2368 } 2369 break; 2370 } 2371 case HV_X64_MSR_EOI: 2372 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2373 case HV_X64_MSR_ICR: 2374 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2375 case HV_X64_MSR_TPR: 2376 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2377 case HV_X64_MSR_APIC_ASSIST_PAGE: 2378 data = vcpu->arch.hv_vapic; 2379 break; 2380 default: 2381 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2382 return 1; 2383 } 2384 *pdata = data; 2385 return 0; 2386 } 2387 2388 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2389 { 2390 u64 data; 2391 2392 switch (msr) { 2393 case MSR_IA32_PLATFORM_ID: 2394 case MSR_IA32_EBL_CR_POWERON: 2395 case MSR_IA32_DEBUGCTLMSR: 2396 case MSR_IA32_LASTBRANCHFROMIP: 2397 case MSR_IA32_LASTBRANCHTOIP: 2398 case MSR_IA32_LASTINTFROMIP: 2399 case MSR_IA32_LASTINTTOIP: 2400 case MSR_K8_SYSCFG: 2401 case MSR_K7_HWCR: 2402 case MSR_VM_HSAVE_PA: 2403 case MSR_K7_EVNTSEL0: 2404 case MSR_K7_PERFCTR0: 2405 case MSR_K8_INT_PENDING_MSG: 2406 case MSR_AMD64_NB_CFG: 2407 case MSR_FAM10H_MMIO_CONF_BASE: 2408 case MSR_AMD64_BU_CFG2: 2409 data = 0; 2410 break; 2411 case MSR_P6_PERFCTR0: 2412 case MSR_P6_PERFCTR1: 2413 case MSR_P6_EVNTSEL0: 2414 case MSR_P6_EVNTSEL1: 2415 if (kvm_pmu_msr(vcpu, msr)) 2416 return kvm_pmu_get_msr(vcpu, msr, pdata); 2417 data = 0; 2418 break; 2419 case MSR_IA32_UCODE_REV: 2420 data = 0x100000000ULL; 2421 break; 2422 case MSR_MTRRcap: 2423 data = 0x500 | KVM_NR_VAR_MTRR; 2424 break; 2425 case 0x200 ... 0x2ff: 2426 return get_msr_mtrr(vcpu, msr, pdata); 2427 case 0xcd: /* fsb frequency */ 2428 data = 3; 2429 break; 2430 /* 2431 * MSR_EBC_FREQUENCY_ID 2432 * Conservative value valid for even the basic CPU models. 2433 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2434 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2435 * and 266MHz for model 3, or 4. Set Core Clock 2436 * Frequency to System Bus Frequency Ratio to 1 (bits 2437 * 31:24) even though these are only valid for CPU 2438 * models > 2, however guests may end up dividing or 2439 * multiplying by zero otherwise. 2440 */ 2441 case MSR_EBC_FREQUENCY_ID: 2442 data = 1 << 24; 2443 break; 2444 case MSR_IA32_APICBASE: 2445 data = kvm_get_apic_base(vcpu); 2446 break; 2447 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2448 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2449 break; 2450 case MSR_IA32_TSCDEADLINE: 2451 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2452 break; 2453 case MSR_IA32_TSC_ADJUST: 2454 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2455 break; 2456 case MSR_IA32_MISC_ENABLE: 2457 data = vcpu->arch.ia32_misc_enable_msr; 2458 break; 2459 case MSR_IA32_PERF_STATUS: 2460 /* TSC increment by tick */ 2461 data = 1000ULL; 2462 /* CPU multiplier */ 2463 data |= (((uint64_t)4ULL) << 40); 2464 break; 2465 case MSR_EFER: 2466 data = vcpu->arch.efer; 2467 break; 2468 case MSR_KVM_WALL_CLOCK: 2469 case MSR_KVM_WALL_CLOCK_NEW: 2470 data = vcpu->kvm->arch.wall_clock; 2471 break; 2472 case MSR_KVM_SYSTEM_TIME: 2473 case MSR_KVM_SYSTEM_TIME_NEW: 2474 data = vcpu->arch.time; 2475 break; 2476 case MSR_KVM_ASYNC_PF_EN: 2477 data = vcpu->arch.apf.msr_val; 2478 break; 2479 case MSR_KVM_STEAL_TIME: 2480 data = vcpu->arch.st.msr_val; 2481 break; 2482 case MSR_KVM_PV_EOI_EN: 2483 data = vcpu->arch.pv_eoi.msr_val; 2484 break; 2485 case MSR_IA32_P5_MC_ADDR: 2486 case MSR_IA32_P5_MC_TYPE: 2487 case MSR_IA32_MCG_CAP: 2488 case MSR_IA32_MCG_CTL: 2489 case MSR_IA32_MCG_STATUS: 2490 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2491 return get_msr_mce(vcpu, msr, pdata); 2492 case MSR_K7_CLK_CTL: 2493 /* 2494 * Provide expected ramp-up count for K7. All other 2495 * are set to zero, indicating minimum divisors for 2496 * every field. 2497 * 2498 * This prevents guest kernels on AMD host with CPU 2499 * type 6, model 8 and higher from exploding due to 2500 * the rdmsr failing. 2501 */ 2502 data = 0x20000000; 2503 break; 2504 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2505 if (kvm_hv_msr_partition_wide(msr)) { 2506 int r; 2507 mutex_lock(&vcpu->kvm->lock); 2508 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2509 mutex_unlock(&vcpu->kvm->lock); 2510 return r; 2511 } else 2512 return get_msr_hyperv(vcpu, msr, pdata); 2513 break; 2514 case MSR_IA32_BBL_CR_CTL3: 2515 /* This legacy MSR exists but isn't fully documented in current 2516 * silicon. It is however accessed by winxp in very narrow 2517 * scenarios where it sets bit #19, itself documented as 2518 * a "reserved" bit. Best effort attempt to source coherent 2519 * read data here should the balance of the register be 2520 * interpreted by the guest: 2521 * 2522 * L2 cache control register 3: 64GB range, 256KB size, 2523 * enabled, latency 0x1, configured 2524 */ 2525 data = 0xbe702111; 2526 break; 2527 case MSR_AMD64_OSVW_ID_LENGTH: 2528 if (!guest_cpuid_has_osvw(vcpu)) 2529 return 1; 2530 data = vcpu->arch.osvw.length; 2531 break; 2532 case MSR_AMD64_OSVW_STATUS: 2533 if (!guest_cpuid_has_osvw(vcpu)) 2534 return 1; 2535 data = vcpu->arch.osvw.status; 2536 break; 2537 default: 2538 if (kvm_pmu_msr(vcpu, msr)) 2539 return kvm_pmu_get_msr(vcpu, msr, pdata); 2540 if (!ignore_msrs) { 2541 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2542 return 1; 2543 } else { 2544 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2545 data = 0; 2546 } 2547 break; 2548 } 2549 *pdata = data; 2550 return 0; 2551 } 2552 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2553 2554 /* 2555 * Read or write a bunch of msrs. All parameters are kernel addresses. 2556 * 2557 * @return number of msrs set successfully. 2558 */ 2559 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2560 struct kvm_msr_entry *entries, 2561 int (*do_msr)(struct kvm_vcpu *vcpu, 2562 unsigned index, u64 *data)) 2563 { 2564 int i, idx; 2565 2566 idx = srcu_read_lock(&vcpu->kvm->srcu); 2567 for (i = 0; i < msrs->nmsrs; ++i) 2568 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2569 break; 2570 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2571 2572 return i; 2573 } 2574 2575 /* 2576 * Read or write a bunch of msrs. Parameters are user addresses. 2577 * 2578 * @return number of msrs set successfully. 2579 */ 2580 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2581 int (*do_msr)(struct kvm_vcpu *vcpu, 2582 unsigned index, u64 *data), 2583 int writeback) 2584 { 2585 struct kvm_msrs msrs; 2586 struct kvm_msr_entry *entries; 2587 int r, n; 2588 unsigned size; 2589 2590 r = -EFAULT; 2591 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2592 goto out; 2593 2594 r = -E2BIG; 2595 if (msrs.nmsrs >= MAX_IO_MSRS) 2596 goto out; 2597 2598 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2599 entries = memdup_user(user_msrs->entries, size); 2600 if (IS_ERR(entries)) { 2601 r = PTR_ERR(entries); 2602 goto out; 2603 } 2604 2605 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2606 if (r < 0) 2607 goto out_free; 2608 2609 r = -EFAULT; 2610 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2611 goto out_free; 2612 2613 r = n; 2614 2615 out_free: 2616 kfree(entries); 2617 out: 2618 return r; 2619 } 2620 2621 int kvm_dev_ioctl_check_extension(long ext) 2622 { 2623 int r; 2624 2625 switch (ext) { 2626 case KVM_CAP_IRQCHIP: 2627 case KVM_CAP_HLT: 2628 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2629 case KVM_CAP_SET_TSS_ADDR: 2630 case KVM_CAP_EXT_CPUID: 2631 case KVM_CAP_EXT_EMUL_CPUID: 2632 case KVM_CAP_CLOCKSOURCE: 2633 case KVM_CAP_PIT: 2634 case KVM_CAP_NOP_IO_DELAY: 2635 case KVM_CAP_MP_STATE: 2636 case KVM_CAP_SYNC_MMU: 2637 case KVM_CAP_USER_NMI: 2638 case KVM_CAP_REINJECT_CONTROL: 2639 case KVM_CAP_IRQ_INJECT_STATUS: 2640 case KVM_CAP_IRQFD: 2641 case KVM_CAP_IOEVENTFD: 2642 case KVM_CAP_PIT2: 2643 case KVM_CAP_PIT_STATE2: 2644 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2645 case KVM_CAP_XEN_HVM: 2646 case KVM_CAP_ADJUST_CLOCK: 2647 case KVM_CAP_VCPU_EVENTS: 2648 case KVM_CAP_HYPERV: 2649 case KVM_CAP_HYPERV_VAPIC: 2650 case KVM_CAP_HYPERV_SPIN: 2651 case KVM_CAP_PCI_SEGMENT: 2652 case KVM_CAP_DEBUGREGS: 2653 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2654 case KVM_CAP_XSAVE: 2655 case KVM_CAP_ASYNC_PF: 2656 case KVM_CAP_GET_TSC_KHZ: 2657 case KVM_CAP_KVMCLOCK_CTRL: 2658 case KVM_CAP_READONLY_MEM: 2659 case KVM_CAP_HYPERV_TIME: 2660 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2661 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2662 case KVM_CAP_ASSIGN_DEV_IRQ: 2663 case KVM_CAP_PCI_2_3: 2664 #endif 2665 r = 1; 2666 break; 2667 case KVM_CAP_COALESCED_MMIO: 2668 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2669 break; 2670 case KVM_CAP_VAPIC: 2671 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2672 break; 2673 case KVM_CAP_NR_VCPUS: 2674 r = KVM_SOFT_MAX_VCPUS; 2675 break; 2676 case KVM_CAP_MAX_VCPUS: 2677 r = KVM_MAX_VCPUS; 2678 break; 2679 case KVM_CAP_NR_MEMSLOTS: 2680 r = KVM_USER_MEM_SLOTS; 2681 break; 2682 case KVM_CAP_PV_MMU: /* obsolete */ 2683 r = 0; 2684 break; 2685 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2686 case KVM_CAP_IOMMU: 2687 r = iommu_present(&pci_bus_type); 2688 break; 2689 #endif 2690 case KVM_CAP_MCE: 2691 r = KVM_MAX_MCE_BANKS; 2692 break; 2693 case KVM_CAP_XCRS: 2694 r = cpu_has_xsave; 2695 break; 2696 case KVM_CAP_TSC_CONTROL: 2697 r = kvm_has_tsc_control; 2698 break; 2699 case KVM_CAP_TSC_DEADLINE_TIMER: 2700 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2701 break; 2702 default: 2703 r = 0; 2704 break; 2705 } 2706 return r; 2707 2708 } 2709 2710 long kvm_arch_dev_ioctl(struct file *filp, 2711 unsigned int ioctl, unsigned long arg) 2712 { 2713 void __user *argp = (void __user *)arg; 2714 long r; 2715 2716 switch (ioctl) { 2717 case KVM_GET_MSR_INDEX_LIST: { 2718 struct kvm_msr_list __user *user_msr_list = argp; 2719 struct kvm_msr_list msr_list; 2720 unsigned n; 2721 2722 r = -EFAULT; 2723 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2724 goto out; 2725 n = msr_list.nmsrs; 2726 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2727 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2728 goto out; 2729 r = -E2BIG; 2730 if (n < msr_list.nmsrs) 2731 goto out; 2732 r = -EFAULT; 2733 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2734 num_msrs_to_save * sizeof(u32))) 2735 goto out; 2736 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2737 &emulated_msrs, 2738 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2739 goto out; 2740 r = 0; 2741 break; 2742 } 2743 case KVM_GET_SUPPORTED_CPUID: 2744 case KVM_GET_EMULATED_CPUID: { 2745 struct kvm_cpuid2 __user *cpuid_arg = argp; 2746 struct kvm_cpuid2 cpuid; 2747 2748 r = -EFAULT; 2749 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2750 goto out; 2751 2752 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2753 ioctl); 2754 if (r) 2755 goto out; 2756 2757 r = -EFAULT; 2758 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2759 goto out; 2760 r = 0; 2761 break; 2762 } 2763 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2764 u64 mce_cap; 2765 2766 mce_cap = KVM_MCE_CAP_SUPPORTED; 2767 r = -EFAULT; 2768 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2769 goto out; 2770 r = 0; 2771 break; 2772 } 2773 default: 2774 r = -EINVAL; 2775 } 2776 out: 2777 return r; 2778 } 2779 2780 static void wbinvd_ipi(void *garbage) 2781 { 2782 wbinvd(); 2783 } 2784 2785 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2786 { 2787 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2788 } 2789 2790 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2791 { 2792 /* Address WBINVD may be executed by guest */ 2793 if (need_emulate_wbinvd(vcpu)) { 2794 if (kvm_x86_ops->has_wbinvd_exit()) 2795 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2796 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2797 smp_call_function_single(vcpu->cpu, 2798 wbinvd_ipi, NULL, 1); 2799 } 2800 2801 kvm_x86_ops->vcpu_load(vcpu, cpu); 2802 2803 /* Apply any externally detected TSC adjustments (due to suspend) */ 2804 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2805 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2806 vcpu->arch.tsc_offset_adjustment = 0; 2807 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2808 } 2809 2810 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2811 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2812 native_read_tsc() - vcpu->arch.last_host_tsc; 2813 if (tsc_delta < 0) 2814 mark_tsc_unstable("KVM discovered backwards TSC"); 2815 if (check_tsc_unstable()) { 2816 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2817 vcpu->arch.last_guest_tsc); 2818 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2819 vcpu->arch.tsc_catchup = 1; 2820 } 2821 /* 2822 * On a host with synchronized TSC, there is no need to update 2823 * kvmclock on vcpu->cpu migration 2824 */ 2825 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2826 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2827 if (vcpu->cpu != cpu) 2828 kvm_migrate_timers(vcpu); 2829 vcpu->cpu = cpu; 2830 } 2831 2832 accumulate_steal_time(vcpu); 2833 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2834 } 2835 2836 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2837 { 2838 kvm_x86_ops->vcpu_put(vcpu); 2839 kvm_put_guest_fpu(vcpu); 2840 vcpu->arch.last_host_tsc = native_read_tsc(); 2841 } 2842 2843 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2844 struct kvm_lapic_state *s) 2845 { 2846 kvm_x86_ops->sync_pir_to_irr(vcpu); 2847 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2848 2849 return 0; 2850 } 2851 2852 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2853 struct kvm_lapic_state *s) 2854 { 2855 kvm_apic_post_state_restore(vcpu, s); 2856 update_cr8_intercept(vcpu); 2857 2858 return 0; 2859 } 2860 2861 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2862 struct kvm_interrupt *irq) 2863 { 2864 if (irq->irq >= KVM_NR_INTERRUPTS) 2865 return -EINVAL; 2866 if (irqchip_in_kernel(vcpu->kvm)) 2867 return -ENXIO; 2868 2869 kvm_queue_interrupt(vcpu, irq->irq, false); 2870 kvm_make_request(KVM_REQ_EVENT, vcpu); 2871 2872 return 0; 2873 } 2874 2875 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2876 { 2877 kvm_inject_nmi(vcpu); 2878 2879 return 0; 2880 } 2881 2882 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2883 struct kvm_tpr_access_ctl *tac) 2884 { 2885 if (tac->flags) 2886 return -EINVAL; 2887 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2888 return 0; 2889 } 2890 2891 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2892 u64 mcg_cap) 2893 { 2894 int r; 2895 unsigned bank_num = mcg_cap & 0xff, bank; 2896 2897 r = -EINVAL; 2898 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2899 goto out; 2900 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2901 goto out; 2902 r = 0; 2903 vcpu->arch.mcg_cap = mcg_cap; 2904 /* Init IA32_MCG_CTL to all 1s */ 2905 if (mcg_cap & MCG_CTL_P) 2906 vcpu->arch.mcg_ctl = ~(u64)0; 2907 /* Init IA32_MCi_CTL to all 1s */ 2908 for (bank = 0; bank < bank_num; bank++) 2909 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2910 out: 2911 return r; 2912 } 2913 2914 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2915 struct kvm_x86_mce *mce) 2916 { 2917 u64 mcg_cap = vcpu->arch.mcg_cap; 2918 unsigned bank_num = mcg_cap & 0xff; 2919 u64 *banks = vcpu->arch.mce_banks; 2920 2921 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2922 return -EINVAL; 2923 /* 2924 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2925 * reporting is disabled 2926 */ 2927 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2928 vcpu->arch.mcg_ctl != ~(u64)0) 2929 return 0; 2930 banks += 4 * mce->bank; 2931 /* 2932 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2933 * reporting is disabled for the bank 2934 */ 2935 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2936 return 0; 2937 if (mce->status & MCI_STATUS_UC) { 2938 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2939 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2940 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2941 return 0; 2942 } 2943 if (banks[1] & MCI_STATUS_VAL) 2944 mce->status |= MCI_STATUS_OVER; 2945 banks[2] = mce->addr; 2946 banks[3] = mce->misc; 2947 vcpu->arch.mcg_status = mce->mcg_status; 2948 banks[1] = mce->status; 2949 kvm_queue_exception(vcpu, MC_VECTOR); 2950 } else if (!(banks[1] & MCI_STATUS_VAL) 2951 || !(banks[1] & MCI_STATUS_UC)) { 2952 if (banks[1] & MCI_STATUS_VAL) 2953 mce->status |= MCI_STATUS_OVER; 2954 banks[2] = mce->addr; 2955 banks[3] = mce->misc; 2956 banks[1] = mce->status; 2957 } else 2958 banks[1] |= MCI_STATUS_OVER; 2959 return 0; 2960 } 2961 2962 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2963 struct kvm_vcpu_events *events) 2964 { 2965 process_nmi(vcpu); 2966 events->exception.injected = 2967 vcpu->arch.exception.pending && 2968 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2969 events->exception.nr = vcpu->arch.exception.nr; 2970 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2971 events->exception.pad = 0; 2972 events->exception.error_code = vcpu->arch.exception.error_code; 2973 2974 events->interrupt.injected = 2975 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2976 events->interrupt.nr = vcpu->arch.interrupt.nr; 2977 events->interrupt.soft = 0; 2978 events->interrupt.shadow = 2979 kvm_x86_ops->get_interrupt_shadow(vcpu, 2980 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2981 2982 events->nmi.injected = vcpu->arch.nmi_injected; 2983 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2984 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2985 events->nmi.pad = 0; 2986 2987 events->sipi_vector = 0; /* never valid when reporting to user space */ 2988 2989 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2990 | KVM_VCPUEVENT_VALID_SHADOW); 2991 memset(&events->reserved, 0, sizeof(events->reserved)); 2992 } 2993 2994 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2995 struct kvm_vcpu_events *events) 2996 { 2997 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2998 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2999 | KVM_VCPUEVENT_VALID_SHADOW)) 3000 return -EINVAL; 3001 3002 process_nmi(vcpu); 3003 vcpu->arch.exception.pending = events->exception.injected; 3004 vcpu->arch.exception.nr = events->exception.nr; 3005 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3006 vcpu->arch.exception.error_code = events->exception.error_code; 3007 3008 vcpu->arch.interrupt.pending = events->interrupt.injected; 3009 vcpu->arch.interrupt.nr = events->interrupt.nr; 3010 vcpu->arch.interrupt.soft = events->interrupt.soft; 3011 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3012 kvm_x86_ops->set_interrupt_shadow(vcpu, 3013 events->interrupt.shadow); 3014 3015 vcpu->arch.nmi_injected = events->nmi.injected; 3016 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3017 vcpu->arch.nmi_pending = events->nmi.pending; 3018 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3019 3020 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3021 kvm_vcpu_has_lapic(vcpu)) 3022 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3023 3024 kvm_make_request(KVM_REQ_EVENT, vcpu); 3025 3026 return 0; 3027 } 3028 3029 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3030 struct kvm_debugregs *dbgregs) 3031 { 3032 unsigned long val; 3033 3034 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3035 _kvm_get_dr(vcpu, 6, &val); 3036 dbgregs->dr6 = val; 3037 dbgregs->dr7 = vcpu->arch.dr7; 3038 dbgregs->flags = 0; 3039 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3040 } 3041 3042 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3043 struct kvm_debugregs *dbgregs) 3044 { 3045 if (dbgregs->flags) 3046 return -EINVAL; 3047 3048 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3049 vcpu->arch.dr6 = dbgregs->dr6; 3050 kvm_update_dr6(vcpu); 3051 vcpu->arch.dr7 = dbgregs->dr7; 3052 kvm_update_dr7(vcpu); 3053 3054 return 0; 3055 } 3056 3057 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3058 struct kvm_xsave *guest_xsave) 3059 { 3060 if (cpu_has_xsave) { 3061 memcpy(guest_xsave->region, 3062 &vcpu->arch.guest_fpu.state->xsave, 3063 vcpu->arch.guest_xstate_size); 3064 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3065 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3066 } else { 3067 memcpy(guest_xsave->region, 3068 &vcpu->arch.guest_fpu.state->fxsave, 3069 sizeof(struct i387_fxsave_struct)); 3070 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3071 XSTATE_FPSSE; 3072 } 3073 } 3074 3075 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3076 struct kvm_xsave *guest_xsave) 3077 { 3078 u64 xstate_bv = 3079 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3080 3081 if (cpu_has_xsave) { 3082 /* 3083 * Here we allow setting states that are not present in 3084 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3085 * with old userspace. 3086 */ 3087 if (xstate_bv & ~kvm_supported_xcr0()) 3088 return -EINVAL; 3089 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3090 guest_xsave->region, vcpu->arch.guest_xstate_size); 3091 } else { 3092 if (xstate_bv & ~XSTATE_FPSSE) 3093 return -EINVAL; 3094 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3095 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3096 } 3097 return 0; 3098 } 3099 3100 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3101 struct kvm_xcrs *guest_xcrs) 3102 { 3103 if (!cpu_has_xsave) { 3104 guest_xcrs->nr_xcrs = 0; 3105 return; 3106 } 3107 3108 guest_xcrs->nr_xcrs = 1; 3109 guest_xcrs->flags = 0; 3110 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3111 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3112 } 3113 3114 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3115 struct kvm_xcrs *guest_xcrs) 3116 { 3117 int i, r = 0; 3118 3119 if (!cpu_has_xsave) 3120 return -EINVAL; 3121 3122 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3123 return -EINVAL; 3124 3125 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3126 /* Only support XCR0 currently */ 3127 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3128 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3129 guest_xcrs->xcrs[i].value); 3130 break; 3131 } 3132 if (r) 3133 r = -EINVAL; 3134 return r; 3135 } 3136 3137 /* 3138 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3139 * stopped by the hypervisor. This function will be called from the host only. 3140 * EINVAL is returned when the host attempts to set the flag for a guest that 3141 * does not support pv clocks. 3142 */ 3143 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3144 { 3145 if (!vcpu->arch.pv_time_enabled) 3146 return -EINVAL; 3147 vcpu->arch.pvclock_set_guest_stopped_request = true; 3148 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3149 return 0; 3150 } 3151 3152 long kvm_arch_vcpu_ioctl(struct file *filp, 3153 unsigned int ioctl, unsigned long arg) 3154 { 3155 struct kvm_vcpu *vcpu = filp->private_data; 3156 void __user *argp = (void __user *)arg; 3157 int r; 3158 union { 3159 struct kvm_lapic_state *lapic; 3160 struct kvm_xsave *xsave; 3161 struct kvm_xcrs *xcrs; 3162 void *buffer; 3163 } u; 3164 3165 u.buffer = NULL; 3166 switch (ioctl) { 3167 case KVM_GET_LAPIC: { 3168 r = -EINVAL; 3169 if (!vcpu->arch.apic) 3170 goto out; 3171 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3172 3173 r = -ENOMEM; 3174 if (!u.lapic) 3175 goto out; 3176 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3177 if (r) 3178 goto out; 3179 r = -EFAULT; 3180 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3181 goto out; 3182 r = 0; 3183 break; 3184 } 3185 case KVM_SET_LAPIC: { 3186 r = -EINVAL; 3187 if (!vcpu->arch.apic) 3188 goto out; 3189 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3190 if (IS_ERR(u.lapic)) 3191 return PTR_ERR(u.lapic); 3192 3193 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3194 break; 3195 } 3196 case KVM_INTERRUPT: { 3197 struct kvm_interrupt irq; 3198 3199 r = -EFAULT; 3200 if (copy_from_user(&irq, argp, sizeof irq)) 3201 goto out; 3202 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3203 break; 3204 } 3205 case KVM_NMI: { 3206 r = kvm_vcpu_ioctl_nmi(vcpu); 3207 break; 3208 } 3209 case KVM_SET_CPUID: { 3210 struct kvm_cpuid __user *cpuid_arg = argp; 3211 struct kvm_cpuid cpuid; 3212 3213 r = -EFAULT; 3214 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3215 goto out; 3216 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3217 break; 3218 } 3219 case KVM_SET_CPUID2: { 3220 struct kvm_cpuid2 __user *cpuid_arg = argp; 3221 struct kvm_cpuid2 cpuid; 3222 3223 r = -EFAULT; 3224 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3225 goto out; 3226 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3227 cpuid_arg->entries); 3228 break; 3229 } 3230 case KVM_GET_CPUID2: { 3231 struct kvm_cpuid2 __user *cpuid_arg = argp; 3232 struct kvm_cpuid2 cpuid; 3233 3234 r = -EFAULT; 3235 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3236 goto out; 3237 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3238 cpuid_arg->entries); 3239 if (r) 3240 goto out; 3241 r = -EFAULT; 3242 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3243 goto out; 3244 r = 0; 3245 break; 3246 } 3247 case KVM_GET_MSRS: 3248 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3249 break; 3250 case KVM_SET_MSRS: 3251 r = msr_io(vcpu, argp, do_set_msr, 0); 3252 break; 3253 case KVM_TPR_ACCESS_REPORTING: { 3254 struct kvm_tpr_access_ctl tac; 3255 3256 r = -EFAULT; 3257 if (copy_from_user(&tac, argp, sizeof tac)) 3258 goto out; 3259 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3260 if (r) 3261 goto out; 3262 r = -EFAULT; 3263 if (copy_to_user(argp, &tac, sizeof tac)) 3264 goto out; 3265 r = 0; 3266 break; 3267 }; 3268 case KVM_SET_VAPIC_ADDR: { 3269 struct kvm_vapic_addr va; 3270 3271 r = -EINVAL; 3272 if (!irqchip_in_kernel(vcpu->kvm)) 3273 goto out; 3274 r = -EFAULT; 3275 if (copy_from_user(&va, argp, sizeof va)) 3276 goto out; 3277 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3278 break; 3279 } 3280 case KVM_X86_SETUP_MCE: { 3281 u64 mcg_cap; 3282 3283 r = -EFAULT; 3284 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3285 goto out; 3286 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3287 break; 3288 } 3289 case KVM_X86_SET_MCE: { 3290 struct kvm_x86_mce mce; 3291 3292 r = -EFAULT; 3293 if (copy_from_user(&mce, argp, sizeof mce)) 3294 goto out; 3295 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3296 break; 3297 } 3298 case KVM_GET_VCPU_EVENTS: { 3299 struct kvm_vcpu_events events; 3300 3301 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3302 3303 r = -EFAULT; 3304 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3305 break; 3306 r = 0; 3307 break; 3308 } 3309 case KVM_SET_VCPU_EVENTS: { 3310 struct kvm_vcpu_events events; 3311 3312 r = -EFAULT; 3313 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3314 break; 3315 3316 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3317 break; 3318 } 3319 case KVM_GET_DEBUGREGS: { 3320 struct kvm_debugregs dbgregs; 3321 3322 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3323 3324 r = -EFAULT; 3325 if (copy_to_user(argp, &dbgregs, 3326 sizeof(struct kvm_debugregs))) 3327 break; 3328 r = 0; 3329 break; 3330 } 3331 case KVM_SET_DEBUGREGS: { 3332 struct kvm_debugregs dbgregs; 3333 3334 r = -EFAULT; 3335 if (copy_from_user(&dbgregs, argp, 3336 sizeof(struct kvm_debugregs))) 3337 break; 3338 3339 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3340 break; 3341 } 3342 case KVM_GET_XSAVE: { 3343 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3344 r = -ENOMEM; 3345 if (!u.xsave) 3346 break; 3347 3348 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3349 3350 r = -EFAULT; 3351 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3352 break; 3353 r = 0; 3354 break; 3355 } 3356 case KVM_SET_XSAVE: { 3357 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3358 if (IS_ERR(u.xsave)) 3359 return PTR_ERR(u.xsave); 3360 3361 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3362 break; 3363 } 3364 case KVM_GET_XCRS: { 3365 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3366 r = -ENOMEM; 3367 if (!u.xcrs) 3368 break; 3369 3370 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3371 3372 r = -EFAULT; 3373 if (copy_to_user(argp, u.xcrs, 3374 sizeof(struct kvm_xcrs))) 3375 break; 3376 r = 0; 3377 break; 3378 } 3379 case KVM_SET_XCRS: { 3380 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3381 if (IS_ERR(u.xcrs)) 3382 return PTR_ERR(u.xcrs); 3383 3384 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3385 break; 3386 } 3387 case KVM_SET_TSC_KHZ: { 3388 u32 user_tsc_khz; 3389 3390 r = -EINVAL; 3391 user_tsc_khz = (u32)arg; 3392 3393 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3394 goto out; 3395 3396 if (user_tsc_khz == 0) 3397 user_tsc_khz = tsc_khz; 3398 3399 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3400 3401 r = 0; 3402 goto out; 3403 } 3404 case KVM_GET_TSC_KHZ: { 3405 r = vcpu->arch.virtual_tsc_khz; 3406 goto out; 3407 } 3408 case KVM_KVMCLOCK_CTRL: { 3409 r = kvm_set_guest_paused(vcpu); 3410 goto out; 3411 } 3412 default: 3413 r = -EINVAL; 3414 } 3415 out: 3416 kfree(u.buffer); 3417 return r; 3418 } 3419 3420 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3421 { 3422 return VM_FAULT_SIGBUS; 3423 } 3424 3425 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3426 { 3427 int ret; 3428 3429 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3430 return -EINVAL; 3431 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3432 return ret; 3433 } 3434 3435 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3436 u64 ident_addr) 3437 { 3438 kvm->arch.ept_identity_map_addr = ident_addr; 3439 return 0; 3440 } 3441 3442 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3443 u32 kvm_nr_mmu_pages) 3444 { 3445 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3446 return -EINVAL; 3447 3448 mutex_lock(&kvm->slots_lock); 3449 3450 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3451 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3452 3453 mutex_unlock(&kvm->slots_lock); 3454 return 0; 3455 } 3456 3457 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3458 { 3459 return kvm->arch.n_max_mmu_pages; 3460 } 3461 3462 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3463 { 3464 int r; 3465 3466 r = 0; 3467 switch (chip->chip_id) { 3468 case KVM_IRQCHIP_PIC_MASTER: 3469 memcpy(&chip->chip.pic, 3470 &pic_irqchip(kvm)->pics[0], 3471 sizeof(struct kvm_pic_state)); 3472 break; 3473 case KVM_IRQCHIP_PIC_SLAVE: 3474 memcpy(&chip->chip.pic, 3475 &pic_irqchip(kvm)->pics[1], 3476 sizeof(struct kvm_pic_state)); 3477 break; 3478 case KVM_IRQCHIP_IOAPIC: 3479 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3480 break; 3481 default: 3482 r = -EINVAL; 3483 break; 3484 } 3485 return r; 3486 } 3487 3488 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3489 { 3490 int r; 3491 3492 r = 0; 3493 switch (chip->chip_id) { 3494 case KVM_IRQCHIP_PIC_MASTER: 3495 spin_lock(&pic_irqchip(kvm)->lock); 3496 memcpy(&pic_irqchip(kvm)->pics[0], 3497 &chip->chip.pic, 3498 sizeof(struct kvm_pic_state)); 3499 spin_unlock(&pic_irqchip(kvm)->lock); 3500 break; 3501 case KVM_IRQCHIP_PIC_SLAVE: 3502 spin_lock(&pic_irqchip(kvm)->lock); 3503 memcpy(&pic_irqchip(kvm)->pics[1], 3504 &chip->chip.pic, 3505 sizeof(struct kvm_pic_state)); 3506 spin_unlock(&pic_irqchip(kvm)->lock); 3507 break; 3508 case KVM_IRQCHIP_IOAPIC: 3509 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3510 break; 3511 default: 3512 r = -EINVAL; 3513 break; 3514 } 3515 kvm_pic_update_irq(pic_irqchip(kvm)); 3516 return r; 3517 } 3518 3519 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3520 { 3521 int r = 0; 3522 3523 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3524 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3525 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3526 return r; 3527 } 3528 3529 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3530 { 3531 int r = 0; 3532 3533 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3534 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3535 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3536 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3537 return r; 3538 } 3539 3540 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3541 { 3542 int r = 0; 3543 3544 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3545 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3546 sizeof(ps->channels)); 3547 ps->flags = kvm->arch.vpit->pit_state.flags; 3548 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3549 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3550 return r; 3551 } 3552 3553 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3554 { 3555 int r = 0, start = 0; 3556 u32 prev_legacy, cur_legacy; 3557 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3558 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3559 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3560 if (!prev_legacy && cur_legacy) 3561 start = 1; 3562 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3563 sizeof(kvm->arch.vpit->pit_state.channels)); 3564 kvm->arch.vpit->pit_state.flags = ps->flags; 3565 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3566 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3567 return r; 3568 } 3569 3570 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3571 struct kvm_reinject_control *control) 3572 { 3573 if (!kvm->arch.vpit) 3574 return -ENXIO; 3575 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3576 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3577 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3578 return 0; 3579 } 3580 3581 /** 3582 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3583 * @kvm: kvm instance 3584 * @log: slot id and address to which we copy the log 3585 * 3586 * We need to keep it in mind that VCPU threads can write to the bitmap 3587 * concurrently. So, to avoid losing data, we keep the following order for 3588 * each bit: 3589 * 3590 * 1. Take a snapshot of the bit and clear it if needed. 3591 * 2. Write protect the corresponding page. 3592 * 3. Flush TLB's if needed. 3593 * 4. Copy the snapshot to the userspace. 3594 * 3595 * Between 2 and 3, the guest may write to the page using the remaining TLB 3596 * entry. This is not a problem because the page will be reported dirty at 3597 * step 4 using the snapshot taken before and step 3 ensures that successive 3598 * writes will be logged for the next call. 3599 */ 3600 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3601 { 3602 int r; 3603 struct kvm_memory_slot *memslot; 3604 unsigned long n, i; 3605 unsigned long *dirty_bitmap; 3606 unsigned long *dirty_bitmap_buffer; 3607 bool is_dirty = false; 3608 3609 mutex_lock(&kvm->slots_lock); 3610 3611 r = -EINVAL; 3612 if (log->slot >= KVM_USER_MEM_SLOTS) 3613 goto out; 3614 3615 memslot = id_to_memslot(kvm->memslots, log->slot); 3616 3617 dirty_bitmap = memslot->dirty_bitmap; 3618 r = -ENOENT; 3619 if (!dirty_bitmap) 3620 goto out; 3621 3622 n = kvm_dirty_bitmap_bytes(memslot); 3623 3624 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3625 memset(dirty_bitmap_buffer, 0, n); 3626 3627 spin_lock(&kvm->mmu_lock); 3628 3629 for (i = 0; i < n / sizeof(long); i++) { 3630 unsigned long mask; 3631 gfn_t offset; 3632 3633 if (!dirty_bitmap[i]) 3634 continue; 3635 3636 is_dirty = true; 3637 3638 mask = xchg(&dirty_bitmap[i], 0); 3639 dirty_bitmap_buffer[i] = mask; 3640 3641 offset = i * BITS_PER_LONG; 3642 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3643 } 3644 if (is_dirty) 3645 kvm_flush_remote_tlbs(kvm); 3646 3647 spin_unlock(&kvm->mmu_lock); 3648 3649 r = -EFAULT; 3650 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3651 goto out; 3652 3653 r = 0; 3654 out: 3655 mutex_unlock(&kvm->slots_lock); 3656 return r; 3657 } 3658 3659 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3660 bool line_status) 3661 { 3662 if (!irqchip_in_kernel(kvm)) 3663 return -ENXIO; 3664 3665 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3666 irq_event->irq, irq_event->level, 3667 line_status); 3668 return 0; 3669 } 3670 3671 long kvm_arch_vm_ioctl(struct file *filp, 3672 unsigned int ioctl, unsigned long arg) 3673 { 3674 struct kvm *kvm = filp->private_data; 3675 void __user *argp = (void __user *)arg; 3676 int r = -ENOTTY; 3677 /* 3678 * This union makes it completely explicit to gcc-3.x 3679 * that these two variables' stack usage should be 3680 * combined, not added together. 3681 */ 3682 union { 3683 struct kvm_pit_state ps; 3684 struct kvm_pit_state2 ps2; 3685 struct kvm_pit_config pit_config; 3686 } u; 3687 3688 switch (ioctl) { 3689 case KVM_SET_TSS_ADDR: 3690 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3691 break; 3692 case KVM_SET_IDENTITY_MAP_ADDR: { 3693 u64 ident_addr; 3694 3695 r = -EFAULT; 3696 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3697 goto out; 3698 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3699 break; 3700 } 3701 case KVM_SET_NR_MMU_PAGES: 3702 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3703 break; 3704 case KVM_GET_NR_MMU_PAGES: 3705 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3706 break; 3707 case KVM_CREATE_IRQCHIP: { 3708 struct kvm_pic *vpic; 3709 3710 mutex_lock(&kvm->lock); 3711 r = -EEXIST; 3712 if (kvm->arch.vpic) 3713 goto create_irqchip_unlock; 3714 r = -EINVAL; 3715 if (atomic_read(&kvm->online_vcpus)) 3716 goto create_irqchip_unlock; 3717 r = -ENOMEM; 3718 vpic = kvm_create_pic(kvm); 3719 if (vpic) { 3720 r = kvm_ioapic_init(kvm); 3721 if (r) { 3722 mutex_lock(&kvm->slots_lock); 3723 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3724 &vpic->dev_master); 3725 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3726 &vpic->dev_slave); 3727 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3728 &vpic->dev_eclr); 3729 mutex_unlock(&kvm->slots_lock); 3730 kfree(vpic); 3731 goto create_irqchip_unlock; 3732 } 3733 } else 3734 goto create_irqchip_unlock; 3735 smp_wmb(); 3736 kvm->arch.vpic = vpic; 3737 smp_wmb(); 3738 r = kvm_setup_default_irq_routing(kvm); 3739 if (r) { 3740 mutex_lock(&kvm->slots_lock); 3741 mutex_lock(&kvm->irq_lock); 3742 kvm_ioapic_destroy(kvm); 3743 kvm_destroy_pic(kvm); 3744 mutex_unlock(&kvm->irq_lock); 3745 mutex_unlock(&kvm->slots_lock); 3746 } 3747 create_irqchip_unlock: 3748 mutex_unlock(&kvm->lock); 3749 break; 3750 } 3751 case KVM_CREATE_PIT: 3752 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3753 goto create_pit; 3754 case KVM_CREATE_PIT2: 3755 r = -EFAULT; 3756 if (copy_from_user(&u.pit_config, argp, 3757 sizeof(struct kvm_pit_config))) 3758 goto out; 3759 create_pit: 3760 mutex_lock(&kvm->slots_lock); 3761 r = -EEXIST; 3762 if (kvm->arch.vpit) 3763 goto create_pit_unlock; 3764 r = -ENOMEM; 3765 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3766 if (kvm->arch.vpit) 3767 r = 0; 3768 create_pit_unlock: 3769 mutex_unlock(&kvm->slots_lock); 3770 break; 3771 case KVM_GET_IRQCHIP: { 3772 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3773 struct kvm_irqchip *chip; 3774 3775 chip = memdup_user(argp, sizeof(*chip)); 3776 if (IS_ERR(chip)) { 3777 r = PTR_ERR(chip); 3778 goto out; 3779 } 3780 3781 r = -ENXIO; 3782 if (!irqchip_in_kernel(kvm)) 3783 goto get_irqchip_out; 3784 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3785 if (r) 3786 goto get_irqchip_out; 3787 r = -EFAULT; 3788 if (copy_to_user(argp, chip, sizeof *chip)) 3789 goto get_irqchip_out; 3790 r = 0; 3791 get_irqchip_out: 3792 kfree(chip); 3793 break; 3794 } 3795 case KVM_SET_IRQCHIP: { 3796 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3797 struct kvm_irqchip *chip; 3798 3799 chip = memdup_user(argp, sizeof(*chip)); 3800 if (IS_ERR(chip)) { 3801 r = PTR_ERR(chip); 3802 goto out; 3803 } 3804 3805 r = -ENXIO; 3806 if (!irqchip_in_kernel(kvm)) 3807 goto set_irqchip_out; 3808 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3809 if (r) 3810 goto set_irqchip_out; 3811 r = 0; 3812 set_irqchip_out: 3813 kfree(chip); 3814 break; 3815 } 3816 case KVM_GET_PIT: { 3817 r = -EFAULT; 3818 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3819 goto out; 3820 r = -ENXIO; 3821 if (!kvm->arch.vpit) 3822 goto out; 3823 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3824 if (r) 3825 goto out; 3826 r = -EFAULT; 3827 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3828 goto out; 3829 r = 0; 3830 break; 3831 } 3832 case KVM_SET_PIT: { 3833 r = -EFAULT; 3834 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3835 goto out; 3836 r = -ENXIO; 3837 if (!kvm->arch.vpit) 3838 goto out; 3839 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3840 break; 3841 } 3842 case KVM_GET_PIT2: { 3843 r = -ENXIO; 3844 if (!kvm->arch.vpit) 3845 goto out; 3846 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3847 if (r) 3848 goto out; 3849 r = -EFAULT; 3850 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3851 goto out; 3852 r = 0; 3853 break; 3854 } 3855 case KVM_SET_PIT2: { 3856 r = -EFAULT; 3857 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3858 goto out; 3859 r = -ENXIO; 3860 if (!kvm->arch.vpit) 3861 goto out; 3862 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3863 break; 3864 } 3865 case KVM_REINJECT_CONTROL: { 3866 struct kvm_reinject_control control; 3867 r = -EFAULT; 3868 if (copy_from_user(&control, argp, sizeof(control))) 3869 goto out; 3870 r = kvm_vm_ioctl_reinject(kvm, &control); 3871 break; 3872 } 3873 case KVM_XEN_HVM_CONFIG: { 3874 r = -EFAULT; 3875 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3876 sizeof(struct kvm_xen_hvm_config))) 3877 goto out; 3878 r = -EINVAL; 3879 if (kvm->arch.xen_hvm_config.flags) 3880 goto out; 3881 r = 0; 3882 break; 3883 } 3884 case KVM_SET_CLOCK: { 3885 struct kvm_clock_data user_ns; 3886 u64 now_ns; 3887 s64 delta; 3888 3889 r = -EFAULT; 3890 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3891 goto out; 3892 3893 r = -EINVAL; 3894 if (user_ns.flags) 3895 goto out; 3896 3897 r = 0; 3898 local_irq_disable(); 3899 now_ns = get_kernel_ns(); 3900 delta = user_ns.clock - now_ns; 3901 local_irq_enable(); 3902 kvm->arch.kvmclock_offset = delta; 3903 kvm_gen_update_masterclock(kvm); 3904 break; 3905 } 3906 case KVM_GET_CLOCK: { 3907 struct kvm_clock_data user_ns; 3908 u64 now_ns; 3909 3910 local_irq_disable(); 3911 now_ns = get_kernel_ns(); 3912 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3913 local_irq_enable(); 3914 user_ns.flags = 0; 3915 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3916 3917 r = -EFAULT; 3918 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3919 goto out; 3920 r = 0; 3921 break; 3922 } 3923 3924 default: 3925 ; 3926 } 3927 out: 3928 return r; 3929 } 3930 3931 static void kvm_init_msr_list(void) 3932 { 3933 u32 dummy[2]; 3934 unsigned i, j; 3935 3936 /* skip the first msrs in the list. KVM-specific */ 3937 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3938 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3939 continue; 3940 3941 /* 3942 * Even MSRs that are valid in the host may not be exposed 3943 * to the guests in some cases. We could work around this 3944 * in VMX with the generic MSR save/load machinery, but it 3945 * is not really worthwhile since it will really only 3946 * happen with nested virtualization. 3947 */ 3948 switch (msrs_to_save[i]) { 3949 case MSR_IA32_BNDCFGS: 3950 if (!kvm_x86_ops->mpx_supported()) 3951 continue; 3952 break; 3953 default: 3954 break; 3955 } 3956 3957 if (j < i) 3958 msrs_to_save[j] = msrs_to_save[i]; 3959 j++; 3960 } 3961 num_msrs_to_save = j; 3962 } 3963 3964 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3965 const void *v) 3966 { 3967 int handled = 0; 3968 int n; 3969 3970 do { 3971 n = min(len, 8); 3972 if (!(vcpu->arch.apic && 3973 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3974 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3975 break; 3976 handled += n; 3977 addr += n; 3978 len -= n; 3979 v += n; 3980 } while (len); 3981 3982 return handled; 3983 } 3984 3985 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3986 { 3987 int handled = 0; 3988 int n; 3989 3990 do { 3991 n = min(len, 8); 3992 if (!(vcpu->arch.apic && 3993 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3994 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3995 break; 3996 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3997 handled += n; 3998 addr += n; 3999 len -= n; 4000 v += n; 4001 } while (len); 4002 4003 return handled; 4004 } 4005 4006 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4007 struct kvm_segment *var, int seg) 4008 { 4009 kvm_x86_ops->set_segment(vcpu, var, seg); 4010 } 4011 4012 void kvm_get_segment(struct kvm_vcpu *vcpu, 4013 struct kvm_segment *var, int seg) 4014 { 4015 kvm_x86_ops->get_segment(vcpu, var, seg); 4016 } 4017 4018 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 4019 { 4020 gpa_t t_gpa; 4021 struct x86_exception exception; 4022 4023 BUG_ON(!mmu_is_nested(vcpu)); 4024 4025 /* NPT walks are always user-walks */ 4026 access |= PFERR_USER_MASK; 4027 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 4028 4029 return t_gpa; 4030 } 4031 4032 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4033 struct x86_exception *exception) 4034 { 4035 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4036 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4037 } 4038 4039 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4040 struct x86_exception *exception) 4041 { 4042 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4043 access |= PFERR_FETCH_MASK; 4044 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4045 } 4046 4047 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4048 struct x86_exception *exception) 4049 { 4050 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4051 access |= PFERR_WRITE_MASK; 4052 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4053 } 4054 4055 /* uses this to access any guest's mapped memory without checking CPL */ 4056 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4057 struct x86_exception *exception) 4058 { 4059 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4060 } 4061 4062 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4063 struct kvm_vcpu *vcpu, u32 access, 4064 struct x86_exception *exception) 4065 { 4066 void *data = val; 4067 int r = X86EMUL_CONTINUE; 4068 4069 while (bytes) { 4070 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4071 exception); 4072 unsigned offset = addr & (PAGE_SIZE-1); 4073 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4074 int ret; 4075 4076 if (gpa == UNMAPPED_GVA) 4077 return X86EMUL_PROPAGATE_FAULT; 4078 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 4079 if (ret < 0) { 4080 r = X86EMUL_IO_NEEDED; 4081 goto out; 4082 } 4083 4084 bytes -= toread; 4085 data += toread; 4086 addr += toread; 4087 } 4088 out: 4089 return r; 4090 } 4091 4092 /* used for instruction fetching */ 4093 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4094 gva_t addr, void *val, unsigned int bytes, 4095 struct x86_exception *exception) 4096 { 4097 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4098 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4099 4100 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4101 access | PFERR_FETCH_MASK, 4102 exception); 4103 } 4104 4105 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4106 gva_t addr, void *val, unsigned int bytes, 4107 struct x86_exception *exception) 4108 { 4109 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4110 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4111 4112 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4113 exception); 4114 } 4115 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4116 4117 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4118 gva_t addr, void *val, unsigned int bytes, 4119 struct x86_exception *exception) 4120 { 4121 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4122 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4123 } 4124 4125 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4126 gva_t addr, void *val, 4127 unsigned int bytes, 4128 struct x86_exception *exception) 4129 { 4130 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4131 void *data = val; 4132 int r = X86EMUL_CONTINUE; 4133 4134 while (bytes) { 4135 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4136 PFERR_WRITE_MASK, 4137 exception); 4138 unsigned offset = addr & (PAGE_SIZE-1); 4139 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4140 int ret; 4141 4142 if (gpa == UNMAPPED_GVA) 4143 return X86EMUL_PROPAGATE_FAULT; 4144 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4145 if (ret < 0) { 4146 r = X86EMUL_IO_NEEDED; 4147 goto out; 4148 } 4149 4150 bytes -= towrite; 4151 data += towrite; 4152 addr += towrite; 4153 } 4154 out: 4155 return r; 4156 } 4157 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4158 4159 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4160 gpa_t *gpa, struct x86_exception *exception, 4161 bool write) 4162 { 4163 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4164 | (write ? PFERR_WRITE_MASK : 0); 4165 4166 if (vcpu_match_mmio_gva(vcpu, gva) 4167 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 4168 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4169 (gva & (PAGE_SIZE - 1)); 4170 trace_vcpu_match_mmio(gva, *gpa, write, false); 4171 return 1; 4172 } 4173 4174 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4175 4176 if (*gpa == UNMAPPED_GVA) 4177 return -1; 4178 4179 /* For APIC access vmexit */ 4180 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4181 return 1; 4182 4183 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4184 trace_vcpu_match_mmio(gva, *gpa, write, true); 4185 return 1; 4186 } 4187 4188 return 0; 4189 } 4190 4191 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4192 const void *val, int bytes) 4193 { 4194 int ret; 4195 4196 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4197 if (ret < 0) 4198 return 0; 4199 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4200 return 1; 4201 } 4202 4203 struct read_write_emulator_ops { 4204 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4205 int bytes); 4206 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4207 void *val, int bytes); 4208 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4209 int bytes, void *val); 4210 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4211 void *val, int bytes); 4212 bool write; 4213 }; 4214 4215 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4216 { 4217 if (vcpu->mmio_read_completed) { 4218 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4219 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4220 vcpu->mmio_read_completed = 0; 4221 return 1; 4222 } 4223 4224 return 0; 4225 } 4226 4227 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4228 void *val, int bytes) 4229 { 4230 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4231 } 4232 4233 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4234 void *val, int bytes) 4235 { 4236 return emulator_write_phys(vcpu, gpa, val, bytes); 4237 } 4238 4239 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4240 { 4241 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4242 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4243 } 4244 4245 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4246 void *val, int bytes) 4247 { 4248 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4249 return X86EMUL_IO_NEEDED; 4250 } 4251 4252 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4253 void *val, int bytes) 4254 { 4255 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4256 4257 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4258 return X86EMUL_CONTINUE; 4259 } 4260 4261 static const struct read_write_emulator_ops read_emultor = { 4262 .read_write_prepare = read_prepare, 4263 .read_write_emulate = read_emulate, 4264 .read_write_mmio = vcpu_mmio_read, 4265 .read_write_exit_mmio = read_exit_mmio, 4266 }; 4267 4268 static const struct read_write_emulator_ops write_emultor = { 4269 .read_write_emulate = write_emulate, 4270 .read_write_mmio = write_mmio, 4271 .read_write_exit_mmio = write_exit_mmio, 4272 .write = true, 4273 }; 4274 4275 static int emulator_read_write_onepage(unsigned long addr, void *val, 4276 unsigned int bytes, 4277 struct x86_exception *exception, 4278 struct kvm_vcpu *vcpu, 4279 const struct read_write_emulator_ops *ops) 4280 { 4281 gpa_t gpa; 4282 int handled, ret; 4283 bool write = ops->write; 4284 struct kvm_mmio_fragment *frag; 4285 4286 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4287 4288 if (ret < 0) 4289 return X86EMUL_PROPAGATE_FAULT; 4290 4291 /* For APIC access vmexit */ 4292 if (ret) 4293 goto mmio; 4294 4295 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4296 return X86EMUL_CONTINUE; 4297 4298 mmio: 4299 /* 4300 * Is this MMIO handled locally? 4301 */ 4302 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4303 if (handled == bytes) 4304 return X86EMUL_CONTINUE; 4305 4306 gpa += handled; 4307 bytes -= handled; 4308 val += handled; 4309 4310 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4311 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4312 frag->gpa = gpa; 4313 frag->data = val; 4314 frag->len = bytes; 4315 return X86EMUL_CONTINUE; 4316 } 4317 4318 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4319 void *val, unsigned int bytes, 4320 struct x86_exception *exception, 4321 const struct read_write_emulator_ops *ops) 4322 { 4323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4324 gpa_t gpa; 4325 int rc; 4326 4327 if (ops->read_write_prepare && 4328 ops->read_write_prepare(vcpu, val, bytes)) 4329 return X86EMUL_CONTINUE; 4330 4331 vcpu->mmio_nr_fragments = 0; 4332 4333 /* Crossing a page boundary? */ 4334 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4335 int now; 4336 4337 now = -addr & ~PAGE_MASK; 4338 rc = emulator_read_write_onepage(addr, val, now, exception, 4339 vcpu, ops); 4340 4341 if (rc != X86EMUL_CONTINUE) 4342 return rc; 4343 addr += now; 4344 val += now; 4345 bytes -= now; 4346 } 4347 4348 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4349 vcpu, ops); 4350 if (rc != X86EMUL_CONTINUE) 4351 return rc; 4352 4353 if (!vcpu->mmio_nr_fragments) 4354 return rc; 4355 4356 gpa = vcpu->mmio_fragments[0].gpa; 4357 4358 vcpu->mmio_needed = 1; 4359 vcpu->mmio_cur_fragment = 0; 4360 4361 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4362 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4363 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4364 vcpu->run->mmio.phys_addr = gpa; 4365 4366 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4367 } 4368 4369 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4370 unsigned long addr, 4371 void *val, 4372 unsigned int bytes, 4373 struct x86_exception *exception) 4374 { 4375 return emulator_read_write(ctxt, addr, val, bytes, 4376 exception, &read_emultor); 4377 } 4378 4379 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4380 unsigned long addr, 4381 const void *val, 4382 unsigned int bytes, 4383 struct x86_exception *exception) 4384 { 4385 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4386 exception, &write_emultor); 4387 } 4388 4389 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4390 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4391 4392 #ifdef CONFIG_X86_64 4393 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4394 #else 4395 # define CMPXCHG64(ptr, old, new) \ 4396 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4397 #endif 4398 4399 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4400 unsigned long addr, 4401 const void *old, 4402 const void *new, 4403 unsigned int bytes, 4404 struct x86_exception *exception) 4405 { 4406 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4407 gpa_t gpa; 4408 struct page *page; 4409 char *kaddr; 4410 bool exchanged; 4411 4412 /* guests cmpxchg8b have to be emulated atomically */ 4413 if (bytes > 8 || (bytes & (bytes - 1))) 4414 goto emul_write; 4415 4416 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4417 4418 if (gpa == UNMAPPED_GVA || 4419 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4420 goto emul_write; 4421 4422 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4423 goto emul_write; 4424 4425 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4426 if (is_error_page(page)) 4427 goto emul_write; 4428 4429 kaddr = kmap_atomic(page); 4430 kaddr += offset_in_page(gpa); 4431 switch (bytes) { 4432 case 1: 4433 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4434 break; 4435 case 2: 4436 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4437 break; 4438 case 4: 4439 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4440 break; 4441 case 8: 4442 exchanged = CMPXCHG64(kaddr, old, new); 4443 break; 4444 default: 4445 BUG(); 4446 } 4447 kunmap_atomic(kaddr); 4448 kvm_release_page_dirty(page); 4449 4450 if (!exchanged) 4451 return X86EMUL_CMPXCHG_FAILED; 4452 4453 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); 4454 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4455 4456 return X86EMUL_CONTINUE; 4457 4458 emul_write: 4459 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4460 4461 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4462 } 4463 4464 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4465 { 4466 /* TODO: String I/O for in kernel device */ 4467 int r; 4468 4469 if (vcpu->arch.pio.in) 4470 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4471 vcpu->arch.pio.size, pd); 4472 else 4473 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4474 vcpu->arch.pio.port, vcpu->arch.pio.size, 4475 pd); 4476 return r; 4477 } 4478 4479 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4480 unsigned short port, void *val, 4481 unsigned int count, bool in) 4482 { 4483 trace_kvm_pio(!in, port, size, count); 4484 4485 vcpu->arch.pio.port = port; 4486 vcpu->arch.pio.in = in; 4487 vcpu->arch.pio.count = count; 4488 vcpu->arch.pio.size = size; 4489 4490 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4491 vcpu->arch.pio.count = 0; 4492 return 1; 4493 } 4494 4495 vcpu->run->exit_reason = KVM_EXIT_IO; 4496 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4497 vcpu->run->io.size = size; 4498 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4499 vcpu->run->io.count = count; 4500 vcpu->run->io.port = port; 4501 4502 return 0; 4503 } 4504 4505 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4506 int size, unsigned short port, void *val, 4507 unsigned int count) 4508 { 4509 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4510 int ret; 4511 4512 if (vcpu->arch.pio.count) 4513 goto data_avail; 4514 4515 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4516 if (ret) { 4517 data_avail: 4518 memcpy(val, vcpu->arch.pio_data, size * count); 4519 vcpu->arch.pio.count = 0; 4520 return 1; 4521 } 4522 4523 return 0; 4524 } 4525 4526 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4527 int size, unsigned short port, 4528 const void *val, unsigned int count) 4529 { 4530 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4531 4532 memcpy(vcpu->arch.pio_data, val, size * count); 4533 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4534 } 4535 4536 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4537 { 4538 return kvm_x86_ops->get_segment_base(vcpu, seg); 4539 } 4540 4541 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4542 { 4543 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4544 } 4545 4546 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4547 { 4548 if (!need_emulate_wbinvd(vcpu)) 4549 return X86EMUL_CONTINUE; 4550 4551 if (kvm_x86_ops->has_wbinvd_exit()) { 4552 int cpu = get_cpu(); 4553 4554 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4555 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4556 wbinvd_ipi, NULL, 1); 4557 put_cpu(); 4558 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4559 } else 4560 wbinvd(); 4561 return X86EMUL_CONTINUE; 4562 } 4563 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4564 4565 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4566 { 4567 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4568 } 4569 4570 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4571 { 4572 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4573 } 4574 4575 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4576 { 4577 4578 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4579 } 4580 4581 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4582 { 4583 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4584 } 4585 4586 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4587 { 4588 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4589 unsigned long value; 4590 4591 switch (cr) { 4592 case 0: 4593 value = kvm_read_cr0(vcpu); 4594 break; 4595 case 2: 4596 value = vcpu->arch.cr2; 4597 break; 4598 case 3: 4599 value = kvm_read_cr3(vcpu); 4600 break; 4601 case 4: 4602 value = kvm_read_cr4(vcpu); 4603 break; 4604 case 8: 4605 value = kvm_get_cr8(vcpu); 4606 break; 4607 default: 4608 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4609 return 0; 4610 } 4611 4612 return value; 4613 } 4614 4615 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4616 { 4617 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4618 int res = 0; 4619 4620 switch (cr) { 4621 case 0: 4622 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4623 break; 4624 case 2: 4625 vcpu->arch.cr2 = val; 4626 break; 4627 case 3: 4628 res = kvm_set_cr3(vcpu, val); 4629 break; 4630 case 4: 4631 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4632 break; 4633 case 8: 4634 res = kvm_set_cr8(vcpu, val); 4635 break; 4636 default: 4637 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4638 res = -1; 4639 } 4640 4641 return res; 4642 } 4643 4644 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4645 { 4646 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4647 } 4648 4649 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4650 { 4651 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4652 } 4653 4654 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4655 { 4656 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4657 } 4658 4659 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4660 { 4661 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4662 } 4663 4664 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4665 { 4666 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4667 } 4668 4669 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4670 { 4671 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4672 } 4673 4674 static unsigned long emulator_get_cached_segment_base( 4675 struct x86_emulate_ctxt *ctxt, int seg) 4676 { 4677 return get_segment_base(emul_to_vcpu(ctxt), seg); 4678 } 4679 4680 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4681 struct desc_struct *desc, u32 *base3, 4682 int seg) 4683 { 4684 struct kvm_segment var; 4685 4686 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4687 *selector = var.selector; 4688 4689 if (var.unusable) { 4690 memset(desc, 0, sizeof(*desc)); 4691 return false; 4692 } 4693 4694 if (var.g) 4695 var.limit >>= 12; 4696 set_desc_limit(desc, var.limit); 4697 set_desc_base(desc, (unsigned long)var.base); 4698 #ifdef CONFIG_X86_64 4699 if (base3) 4700 *base3 = var.base >> 32; 4701 #endif 4702 desc->type = var.type; 4703 desc->s = var.s; 4704 desc->dpl = var.dpl; 4705 desc->p = var.present; 4706 desc->avl = var.avl; 4707 desc->l = var.l; 4708 desc->d = var.db; 4709 desc->g = var.g; 4710 4711 return true; 4712 } 4713 4714 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4715 struct desc_struct *desc, u32 base3, 4716 int seg) 4717 { 4718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4719 struct kvm_segment var; 4720 4721 var.selector = selector; 4722 var.base = get_desc_base(desc); 4723 #ifdef CONFIG_X86_64 4724 var.base |= ((u64)base3) << 32; 4725 #endif 4726 var.limit = get_desc_limit(desc); 4727 if (desc->g) 4728 var.limit = (var.limit << 12) | 0xfff; 4729 var.type = desc->type; 4730 var.present = desc->p; 4731 var.dpl = desc->dpl; 4732 var.db = desc->d; 4733 var.s = desc->s; 4734 var.l = desc->l; 4735 var.g = desc->g; 4736 var.avl = desc->avl; 4737 var.present = desc->p; 4738 var.unusable = !var.present; 4739 var.padding = 0; 4740 4741 kvm_set_segment(vcpu, &var, seg); 4742 return; 4743 } 4744 4745 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4746 u32 msr_index, u64 *pdata) 4747 { 4748 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4749 } 4750 4751 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4752 u32 msr_index, u64 data) 4753 { 4754 struct msr_data msr; 4755 4756 msr.data = data; 4757 msr.index = msr_index; 4758 msr.host_initiated = false; 4759 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4760 } 4761 4762 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4763 u32 pmc, u64 *pdata) 4764 { 4765 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4766 } 4767 4768 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4769 { 4770 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4771 } 4772 4773 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4774 { 4775 preempt_disable(); 4776 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4777 /* 4778 * CR0.TS may reference the host fpu state, not the guest fpu state, 4779 * so it may be clear at this point. 4780 */ 4781 clts(); 4782 } 4783 4784 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4785 { 4786 preempt_enable(); 4787 } 4788 4789 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4790 struct x86_instruction_info *info, 4791 enum x86_intercept_stage stage) 4792 { 4793 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4794 } 4795 4796 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4797 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4798 { 4799 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4800 } 4801 4802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4803 { 4804 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4805 } 4806 4807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4808 { 4809 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4810 } 4811 4812 static const struct x86_emulate_ops emulate_ops = { 4813 .read_gpr = emulator_read_gpr, 4814 .write_gpr = emulator_write_gpr, 4815 .read_std = kvm_read_guest_virt_system, 4816 .write_std = kvm_write_guest_virt_system, 4817 .fetch = kvm_fetch_guest_virt, 4818 .read_emulated = emulator_read_emulated, 4819 .write_emulated = emulator_write_emulated, 4820 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4821 .invlpg = emulator_invlpg, 4822 .pio_in_emulated = emulator_pio_in_emulated, 4823 .pio_out_emulated = emulator_pio_out_emulated, 4824 .get_segment = emulator_get_segment, 4825 .set_segment = emulator_set_segment, 4826 .get_cached_segment_base = emulator_get_cached_segment_base, 4827 .get_gdt = emulator_get_gdt, 4828 .get_idt = emulator_get_idt, 4829 .set_gdt = emulator_set_gdt, 4830 .set_idt = emulator_set_idt, 4831 .get_cr = emulator_get_cr, 4832 .set_cr = emulator_set_cr, 4833 .set_rflags = emulator_set_rflags, 4834 .cpl = emulator_get_cpl, 4835 .get_dr = emulator_get_dr, 4836 .set_dr = emulator_set_dr, 4837 .set_msr = emulator_set_msr, 4838 .get_msr = emulator_get_msr, 4839 .read_pmc = emulator_read_pmc, 4840 .halt = emulator_halt, 4841 .wbinvd = emulator_wbinvd, 4842 .fix_hypercall = emulator_fix_hypercall, 4843 .get_fpu = emulator_get_fpu, 4844 .put_fpu = emulator_put_fpu, 4845 .intercept = emulator_intercept, 4846 .get_cpuid = emulator_get_cpuid, 4847 }; 4848 4849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4850 { 4851 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4852 /* 4853 * an sti; sti; sequence only disable interrupts for the first 4854 * instruction. So, if the last instruction, be it emulated or 4855 * not, left the system with the INT_STI flag enabled, it 4856 * means that the last instruction is an sti. We should not 4857 * leave the flag on in this case. The same goes for mov ss 4858 */ 4859 if (!(int_shadow & mask)) 4860 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4861 } 4862 4863 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4864 { 4865 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4866 if (ctxt->exception.vector == PF_VECTOR) 4867 kvm_propagate_fault(vcpu, &ctxt->exception); 4868 else if (ctxt->exception.error_code_valid) 4869 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4870 ctxt->exception.error_code); 4871 else 4872 kvm_queue_exception(vcpu, ctxt->exception.vector); 4873 } 4874 4875 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4876 { 4877 memset(&ctxt->opcode_len, 0, 4878 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); 4879 4880 ctxt->fetch.start = 0; 4881 ctxt->fetch.end = 0; 4882 ctxt->io_read.pos = 0; 4883 ctxt->io_read.end = 0; 4884 ctxt->mem_read.pos = 0; 4885 ctxt->mem_read.end = 0; 4886 } 4887 4888 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4889 { 4890 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4891 int cs_db, cs_l; 4892 4893 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4894 4895 ctxt->eflags = kvm_get_rflags(vcpu); 4896 ctxt->eip = kvm_rip_read(vcpu); 4897 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4898 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4899 cs_l ? X86EMUL_MODE_PROT64 : 4900 cs_db ? X86EMUL_MODE_PROT32 : 4901 X86EMUL_MODE_PROT16; 4902 ctxt->guest_mode = is_guest_mode(vcpu); 4903 4904 init_decode_cache(ctxt); 4905 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4906 } 4907 4908 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4909 { 4910 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4911 int ret; 4912 4913 init_emulate_ctxt(vcpu); 4914 4915 ctxt->op_bytes = 2; 4916 ctxt->ad_bytes = 2; 4917 ctxt->_eip = ctxt->eip + inc_eip; 4918 ret = emulate_int_real(ctxt, irq); 4919 4920 if (ret != X86EMUL_CONTINUE) 4921 return EMULATE_FAIL; 4922 4923 ctxt->eip = ctxt->_eip; 4924 kvm_rip_write(vcpu, ctxt->eip); 4925 kvm_set_rflags(vcpu, ctxt->eflags); 4926 4927 if (irq == NMI_VECTOR) 4928 vcpu->arch.nmi_pending = 0; 4929 else 4930 vcpu->arch.interrupt.pending = false; 4931 4932 return EMULATE_DONE; 4933 } 4934 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4935 4936 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4937 { 4938 int r = EMULATE_DONE; 4939 4940 ++vcpu->stat.insn_emulation_fail; 4941 trace_kvm_emulate_insn_failed(vcpu); 4942 if (!is_guest_mode(vcpu)) { 4943 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4944 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4945 vcpu->run->internal.ndata = 0; 4946 r = EMULATE_FAIL; 4947 } 4948 kvm_queue_exception(vcpu, UD_VECTOR); 4949 4950 return r; 4951 } 4952 4953 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4954 bool write_fault_to_shadow_pgtable, 4955 int emulation_type) 4956 { 4957 gpa_t gpa = cr2; 4958 pfn_t pfn; 4959 4960 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4961 return false; 4962 4963 if (!vcpu->arch.mmu.direct_map) { 4964 /* 4965 * Write permission should be allowed since only 4966 * write access need to be emulated. 4967 */ 4968 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4969 4970 /* 4971 * If the mapping is invalid in guest, let cpu retry 4972 * it to generate fault. 4973 */ 4974 if (gpa == UNMAPPED_GVA) 4975 return true; 4976 } 4977 4978 /* 4979 * Do not retry the unhandleable instruction if it faults on the 4980 * readonly host memory, otherwise it will goto a infinite loop: 4981 * retry instruction -> write #PF -> emulation fail -> retry 4982 * instruction -> ... 4983 */ 4984 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4985 4986 /* 4987 * If the instruction failed on the error pfn, it can not be fixed, 4988 * report the error to userspace. 4989 */ 4990 if (is_error_noslot_pfn(pfn)) 4991 return false; 4992 4993 kvm_release_pfn_clean(pfn); 4994 4995 /* The instructions are well-emulated on direct mmu. */ 4996 if (vcpu->arch.mmu.direct_map) { 4997 unsigned int indirect_shadow_pages; 4998 4999 spin_lock(&vcpu->kvm->mmu_lock); 5000 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5001 spin_unlock(&vcpu->kvm->mmu_lock); 5002 5003 if (indirect_shadow_pages) 5004 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5005 5006 return true; 5007 } 5008 5009 /* 5010 * if emulation was due to access to shadowed page table 5011 * and it failed try to unshadow page and re-enter the 5012 * guest to let CPU execute the instruction. 5013 */ 5014 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5015 5016 /* 5017 * If the access faults on its page table, it can not 5018 * be fixed by unprotecting shadow page and it should 5019 * be reported to userspace. 5020 */ 5021 return !write_fault_to_shadow_pgtable; 5022 } 5023 5024 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5025 unsigned long cr2, int emulation_type) 5026 { 5027 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5028 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5029 5030 last_retry_eip = vcpu->arch.last_retry_eip; 5031 last_retry_addr = vcpu->arch.last_retry_addr; 5032 5033 /* 5034 * If the emulation is caused by #PF and it is non-page_table 5035 * writing instruction, it means the VM-EXIT is caused by shadow 5036 * page protected, we can zap the shadow page and retry this 5037 * instruction directly. 5038 * 5039 * Note: if the guest uses a non-page-table modifying instruction 5040 * on the PDE that points to the instruction, then we will unmap 5041 * the instruction and go to an infinite loop. So, we cache the 5042 * last retried eip and the last fault address, if we meet the eip 5043 * and the address again, we can break out of the potential infinite 5044 * loop. 5045 */ 5046 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5047 5048 if (!(emulation_type & EMULTYPE_RETRY)) 5049 return false; 5050 5051 if (x86_page_table_writing_insn(ctxt)) 5052 return false; 5053 5054 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5055 return false; 5056 5057 vcpu->arch.last_retry_eip = ctxt->eip; 5058 vcpu->arch.last_retry_addr = cr2; 5059 5060 if (!vcpu->arch.mmu.direct_map) 5061 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5062 5063 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5064 5065 return true; 5066 } 5067 5068 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5069 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5070 5071 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5072 unsigned long *db) 5073 { 5074 u32 dr6 = 0; 5075 int i; 5076 u32 enable, rwlen; 5077 5078 enable = dr7; 5079 rwlen = dr7 >> 16; 5080 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5081 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5082 dr6 |= (1 << i); 5083 return dr6; 5084 } 5085 5086 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 5087 { 5088 struct kvm_run *kvm_run = vcpu->run; 5089 5090 /* 5091 * Use the "raw" value to see if TF was passed to the processor. 5092 * Note that the new value of the flags has not been saved yet. 5093 * 5094 * This is correct even for TF set by the guest, because "the 5095 * processor will not generate this exception after the instruction 5096 * that sets the TF flag". 5097 */ 5098 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5099 5100 if (unlikely(rflags & X86_EFLAGS_TF)) { 5101 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5102 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5103 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5104 kvm_run->debug.arch.exception = DB_VECTOR; 5105 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5106 *r = EMULATE_USER_EXIT; 5107 } else { 5108 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5109 /* 5110 * "Certain debug exceptions may clear bit 0-3. The 5111 * remaining contents of the DR6 register are never 5112 * cleared by the processor". 5113 */ 5114 vcpu->arch.dr6 &= ~15; 5115 vcpu->arch.dr6 |= DR6_BS; 5116 kvm_queue_exception(vcpu, DB_VECTOR); 5117 } 5118 } 5119 } 5120 5121 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5122 { 5123 struct kvm_run *kvm_run = vcpu->run; 5124 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5125 u32 dr6 = 0; 5126 5127 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5128 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5129 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5130 vcpu->arch.guest_debug_dr7, 5131 vcpu->arch.eff_db); 5132 5133 if (dr6 != 0) { 5134 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5135 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5136 get_segment_base(vcpu, VCPU_SREG_CS); 5137 5138 kvm_run->debug.arch.exception = DB_VECTOR; 5139 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5140 *r = EMULATE_USER_EXIT; 5141 return true; 5142 } 5143 } 5144 5145 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5146 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5147 vcpu->arch.dr7, 5148 vcpu->arch.db); 5149 5150 if (dr6 != 0) { 5151 vcpu->arch.dr6 &= ~15; 5152 vcpu->arch.dr6 |= dr6; 5153 kvm_queue_exception(vcpu, DB_VECTOR); 5154 *r = EMULATE_DONE; 5155 return true; 5156 } 5157 } 5158 5159 return false; 5160 } 5161 5162 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5163 unsigned long cr2, 5164 int emulation_type, 5165 void *insn, 5166 int insn_len) 5167 { 5168 int r; 5169 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5170 bool writeback = true; 5171 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5172 5173 /* 5174 * Clear write_fault_to_shadow_pgtable here to ensure it is 5175 * never reused. 5176 */ 5177 vcpu->arch.write_fault_to_shadow_pgtable = false; 5178 kvm_clear_exception_queue(vcpu); 5179 5180 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5181 init_emulate_ctxt(vcpu); 5182 5183 /* 5184 * We will reenter on the same instruction since 5185 * we do not set complete_userspace_io. This does not 5186 * handle watchpoints yet, those would be handled in 5187 * the emulate_ops. 5188 */ 5189 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5190 return r; 5191 5192 ctxt->interruptibility = 0; 5193 ctxt->have_exception = false; 5194 ctxt->perm_ok = false; 5195 5196 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5197 5198 r = x86_decode_insn(ctxt, insn, insn_len); 5199 5200 trace_kvm_emulate_insn_start(vcpu); 5201 ++vcpu->stat.insn_emulation; 5202 if (r != EMULATION_OK) { 5203 if (emulation_type & EMULTYPE_TRAP_UD) 5204 return EMULATE_FAIL; 5205 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5206 emulation_type)) 5207 return EMULATE_DONE; 5208 if (emulation_type & EMULTYPE_SKIP) 5209 return EMULATE_FAIL; 5210 return handle_emulation_failure(vcpu); 5211 } 5212 } 5213 5214 if (emulation_type & EMULTYPE_SKIP) { 5215 kvm_rip_write(vcpu, ctxt->_eip); 5216 return EMULATE_DONE; 5217 } 5218 5219 if (retry_instruction(ctxt, cr2, emulation_type)) 5220 return EMULATE_DONE; 5221 5222 /* this is needed for vmware backdoor interface to work since it 5223 changes registers values during IO operation */ 5224 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5225 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5226 emulator_invalidate_register_cache(ctxt); 5227 } 5228 5229 restart: 5230 r = x86_emulate_insn(ctxt); 5231 5232 if (r == EMULATION_INTERCEPTED) 5233 return EMULATE_DONE; 5234 5235 if (r == EMULATION_FAILED) { 5236 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5237 emulation_type)) 5238 return EMULATE_DONE; 5239 5240 return handle_emulation_failure(vcpu); 5241 } 5242 5243 if (ctxt->have_exception) { 5244 inject_emulated_exception(vcpu); 5245 r = EMULATE_DONE; 5246 } else if (vcpu->arch.pio.count) { 5247 if (!vcpu->arch.pio.in) { 5248 /* FIXME: return into emulator if single-stepping. */ 5249 vcpu->arch.pio.count = 0; 5250 } else { 5251 writeback = false; 5252 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5253 } 5254 r = EMULATE_USER_EXIT; 5255 } else if (vcpu->mmio_needed) { 5256 if (!vcpu->mmio_is_write) 5257 writeback = false; 5258 r = EMULATE_USER_EXIT; 5259 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5260 } else if (r == EMULATION_RESTART) 5261 goto restart; 5262 else 5263 r = EMULATE_DONE; 5264 5265 if (writeback) { 5266 toggle_interruptibility(vcpu, ctxt->interruptibility); 5267 kvm_make_request(KVM_REQ_EVENT, vcpu); 5268 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5269 kvm_rip_write(vcpu, ctxt->eip); 5270 if (r == EMULATE_DONE) 5271 kvm_vcpu_check_singlestep(vcpu, &r); 5272 kvm_set_rflags(vcpu, ctxt->eflags); 5273 } else 5274 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5275 5276 return r; 5277 } 5278 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5279 5280 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5281 { 5282 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5283 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5284 size, port, &val, 1); 5285 /* do not return to emulator after return from userspace */ 5286 vcpu->arch.pio.count = 0; 5287 return ret; 5288 } 5289 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5290 5291 static void tsc_bad(void *info) 5292 { 5293 __this_cpu_write(cpu_tsc_khz, 0); 5294 } 5295 5296 static void tsc_khz_changed(void *data) 5297 { 5298 struct cpufreq_freqs *freq = data; 5299 unsigned long khz = 0; 5300 5301 if (data) 5302 khz = freq->new; 5303 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5304 khz = cpufreq_quick_get(raw_smp_processor_id()); 5305 if (!khz) 5306 khz = tsc_khz; 5307 __this_cpu_write(cpu_tsc_khz, khz); 5308 } 5309 5310 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5311 void *data) 5312 { 5313 struct cpufreq_freqs *freq = data; 5314 struct kvm *kvm; 5315 struct kvm_vcpu *vcpu; 5316 int i, send_ipi = 0; 5317 5318 /* 5319 * We allow guests to temporarily run on slowing clocks, 5320 * provided we notify them after, or to run on accelerating 5321 * clocks, provided we notify them before. Thus time never 5322 * goes backwards. 5323 * 5324 * However, we have a problem. We can't atomically update 5325 * the frequency of a given CPU from this function; it is 5326 * merely a notifier, which can be called from any CPU. 5327 * Changing the TSC frequency at arbitrary points in time 5328 * requires a recomputation of local variables related to 5329 * the TSC for each VCPU. We must flag these local variables 5330 * to be updated and be sure the update takes place with the 5331 * new frequency before any guests proceed. 5332 * 5333 * Unfortunately, the combination of hotplug CPU and frequency 5334 * change creates an intractable locking scenario; the order 5335 * of when these callouts happen is undefined with respect to 5336 * CPU hotplug, and they can race with each other. As such, 5337 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5338 * undefined; you can actually have a CPU frequency change take 5339 * place in between the computation of X and the setting of the 5340 * variable. To protect against this problem, all updates of 5341 * the per_cpu tsc_khz variable are done in an interrupt 5342 * protected IPI, and all callers wishing to update the value 5343 * must wait for a synchronous IPI to complete (which is trivial 5344 * if the caller is on the CPU already). This establishes the 5345 * necessary total order on variable updates. 5346 * 5347 * Note that because a guest time update may take place 5348 * anytime after the setting of the VCPU's request bit, the 5349 * correct TSC value must be set before the request. However, 5350 * to ensure the update actually makes it to any guest which 5351 * starts running in hardware virtualization between the set 5352 * and the acquisition of the spinlock, we must also ping the 5353 * CPU after setting the request bit. 5354 * 5355 */ 5356 5357 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5358 return 0; 5359 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5360 return 0; 5361 5362 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5363 5364 spin_lock(&kvm_lock); 5365 list_for_each_entry(kvm, &vm_list, vm_list) { 5366 kvm_for_each_vcpu(i, vcpu, kvm) { 5367 if (vcpu->cpu != freq->cpu) 5368 continue; 5369 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5370 if (vcpu->cpu != smp_processor_id()) 5371 send_ipi = 1; 5372 } 5373 } 5374 spin_unlock(&kvm_lock); 5375 5376 if (freq->old < freq->new && send_ipi) { 5377 /* 5378 * We upscale the frequency. Must make the guest 5379 * doesn't see old kvmclock values while running with 5380 * the new frequency, otherwise we risk the guest sees 5381 * time go backwards. 5382 * 5383 * In case we update the frequency for another cpu 5384 * (which might be in guest context) send an interrupt 5385 * to kick the cpu out of guest context. Next time 5386 * guest context is entered kvmclock will be updated, 5387 * so the guest will not see stale values. 5388 */ 5389 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5390 } 5391 return 0; 5392 } 5393 5394 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5395 .notifier_call = kvmclock_cpufreq_notifier 5396 }; 5397 5398 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5399 unsigned long action, void *hcpu) 5400 { 5401 unsigned int cpu = (unsigned long)hcpu; 5402 5403 switch (action) { 5404 case CPU_ONLINE: 5405 case CPU_DOWN_FAILED: 5406 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5407 break; 5408 case CPU_DOWN_PREPARE: 5409 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5410 break; 5411 } 5412 return NOTIFY_OK; 5413 } 5414 5415 static struct notifier_block kvmclock_cpu_notifier_block = { 5416 .notifier_call = kvmclock_cpu_notifier, 5417 .priority = -INT_MAX 5418 }; 5419 5420 static void kvm_timer_init(void) 5421 { 5422 int cpu; 5423 5424 max_tsc_khz = tsc_khz; 5425 5426 cpu_notifier_register_begin(); 5427 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5428 #ifdef CONFIG_CPU_FREQ 5429 struct cpufreq_policy policy; 5430 memset(&policy, 0, sizeof(policy)); 5431 cpu = get_cpu(); 5432 cpufreq_get_policy(&policy, cpu); 5433 if (policy.cpuinfo.max_freq) 5434 max_tsc_khz = policy.cpuinfo.max_freq; 5435 put_cpu(); 5436 #endif 5437 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5438 CPUFREQ_TRANSITION_NOTIFIER); 5439 } 5440 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5441 for_each_online_cpu(cpu) 5442 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5443 5444 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5445 cpu_notifier_register_done(); 5446 5447 } 5448 5449 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5450 5451 int kvm_is_in_guest(void) 5452 { 5453 return __this_cpu_read(current_vcpu) != NULL; 5454 } 5455 5456 static int kvm_is_user_mode(void) 5457 { 5458 int user_mode = 3; 5459 5460 if (__this_cpu_read(current_vcpu)) 5461 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5462 5463 return user_mode != 0; 5464 } 5465 5466 static unsigned long kvm_get_guest_ip(void) 5467 { 5468 unsigned long ip = 0; 5469 5470 if (__this_cpu_read(current_vcpu)) 5471 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5472 5473 return ip; 5474 } 5475 5476 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5477 .is_in_guest = kvm_is_in_guest, 5478 .is_user_mode = kvm_is_user_mode, 5479 .get_guest_ip = kvm_get_guest_ip, 5480 }; 5481 5482 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5483 { 5484 __this_cpu_write(current_vcpu, vcpu); 5485 } 5486 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5487 5488 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5489 { 5490 __this_cpu_write(current_vcpu, NULL); 5491 } 5492 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5493 5494 static void kvm_set_mmio_spte_mask(void) 5495 { 5496 u64 mask; 5497 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5498 5499 /* 5500 * Set the reserved bits and the present bit of an paging-structure 5501 * entry to generate page fault with PFER.RSV = 1. 5502 */ 5503 /* Mask the reserved physical address bits. */ 5504 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5505 5506 /* Bit 62 is always reserved for 32bit host. */ 5507 mask |= 0x3ull << 62; 5508 5509 /* Set the present bit. */ 5510 mask |= 1ull; 5511 5512 #ifdef CONFIG_X86_64 5513 /* 5514 * If reserved bit is not supported, clear the present bit to disable 5515 * mmio page fault. 5516 */ 5517 if (maxphyaddr == 52) 5518 mask &= ~1ull; 5519 #endif 5520 5521 kvm_mmu_set_mmio_spte_mask(mask); 5522 } 5523 5524 #ifdef CONFIG_X86_64 5525 static void pvclock_gtod_update_fn(struct work_struct *work) 5526 { 5527 struct kvm *kvm; 5528 5529 struct kvm_vcpu *vcpu; 5530 int i; 5531 5532 spin_lock(&kvm_lock); 5533 list_for_each_entry(kvm, &vm_list, vm_list) 5534 kvm_for_each_vcpu(i, vcpu, kvm) 5535 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5536 atomic_set(&kvm_guest_has_master_clock, 0); 5537 spin_unlock(&kvm_lock); 5538 } 5539 5540 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5541 5542 /* 5543 * Notification about pvclock gtod data update. 5544 */ 5545 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5546 void *priv) 5547 { 5548 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5549 struct timekeeper *tk = priv; 5550 5551 update_pvclock_gtod(tk); 5552 5553 /* disable master clock if host does not trust, or does not 5554 * use, TSC clocksource 5555 */ 5556 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5557 atomic_read(&kvm_guest_has_master_clock) != 0) 5558 queue_work(system_long_wq, &pvclock_gtod_work); 5559 5560 return 0; 5561 } 5562 5563 static struct notifier_block pvclock_gtod_notifier = { 5564 .notifier_call = pvclock_gtod_notify, 5565 }; 5566 #endif 5567 5568 int kvm_arch_init(void *opaque) 5569 { 5570 int r; 5571 struct kvm_x86_ops *ops = opaque; 5572 5573 if (kvm_x86_ops) { 5574 printk(KERN_ERR "kvm: already loaded the other module\n"); 5575 r = -EEXIST; 5576 goto out; 5577 } 5578 5579 if (!ops->cpu_has_kvm_support()) { 5580 printk(KERN_ERR "kvm: no hardware support\n"); 5581 r = -EOPNOTSUPP; 5582 goto out; 5583 } 5584 if (ops->disabled_by_bios()) { 5585 printk(KERN_ERR "kvm: disabled by bios\n"); 5586 r = -EOPNOTSUPP; 5587 goto out; 5588 } 5589 5590 r = -ENOMEM; 5591 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5592 if (!shared_msrs) { 5593 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5594 goto out; 5595 } 5596 5597 r = kvm_mmu_module_init(); 5598 if (r) 5599 goto out_free_percpu; 5600 5601 kvm_set_mmio_spte_mask(); 5602 5603 kvm_x86_ops = ops; 5604 kvm_init_msr_list(); 5605 5606 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5607 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5608 5609 kvm_timer_init(); 5610 5611 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5612 5613 if (cpu_has_xsave) 5614 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5615 5616 kvm_lapic_init(); 5617 #ifdef CONFIG_X86_64 5618 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5619 #endif 5620 5621 return 0; 5622 5623 out_free_percpu: 5624 free_percpu(shared_msrs); 5625 out: 5626 return r; 5627 } 5628 5629 void kvm_arch_exit(void) 5630 { 5631 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5632 5633 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5634 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5635 CPUFREQ_TRANSITION_NOTIFIER); 5636 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5637 #ifdef CONFIG_X86_64 5638 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5639 #endif 5640 kvm_x86_ops = NULL; 5641 kvm_mmu_module_exit(); 5642 free_percpu(shared_msrs); 5643 } 5644 5645 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5646 { 5647 ++vcpu->stat.halt_exits; 5648 if (irqchip_in_kernel(vcpu->kvm)) { 5649 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5650 return 1; 5651 } else { 5652 vcpu->run->exit_reason = KVM_EXIT_HLT; 5653 return 0; 5654 } 5655 } 5656 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5657 5658 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5659 { 5660 u64 param, ingpa, outgpa, ret; 5661 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5662 bool fast, longmode; 5663 int cs_db, cs_l; 5664 5665 /* 5666 * hypercall generates UD from non zero cpl and real mode 5667 * per HYPER-V spec 5668 */ 5669 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5670 kvm_queue_exception(vcpu, UD_VECTOR); 5671 return 0; 5672 } 5673 5674 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5675 longmode = is_long_mode(vcpu) && cs_l == 1; 5676 5677 if (!longmode) { 5678 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5679 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5680 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5681 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5682 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5683 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5684 } 5685 #ifdef CONFIG_X86_64 5686 else { 5687 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5688 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5689 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5690 } 5691 #endif 5692 5693 code = param & 0xffff; 5694 fast = (param >> 16) & 0x1; 5695 rep_cnt = (param >> 32) & 0xfff; 5696 rep_idx = (param >> 48) & 0xfff; 5697 5698 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5699 5700 switch (code) { 5701 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5702 kvm_vcpu_on_spin(vcpu); 5703 break; 5704 default: 5705 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5706 break; 5707 } 5708 5709 ret = res | (((u64)rep_done & 0xfff) << 32); 5710 if (longmode) { 5711 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5712 } else { 5713 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5714 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5715 } 5716 5717 return 1; 5718 } 5719 5720 /* 5721 * kvm_pv_kick_cpu_op: Kick a vcpu. 5722 * 5723 * @apicid - apicid of vcpu to be kicked. 5724 */ 5725 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5726 { 5727 struct kvm_lapic_irq lapic_irq; 5728 5729 lapic_irq.shorthand = 0; 5730 lapic_irq.dest_mode = 0; 5731 lapic_irq.dest_id = apicid; 5732 5733 lapic_irq.delivery_mode = APIC_DM_REMRD; 5734 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5735 } 5736 5737 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5738 { 5739 unsigned long nr, a0, a1, a2, a3, ret; 5740 int r = 1; 5741 5742 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5743 return kvm_hv_hypercall(vcpu); 5744 5745 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5746 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5747 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5748 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5749 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5750 5751 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5752 5753 if (!is_long_mode(vcpu)) { 5754 nr &= 0xFFFFFFFF; 5755 a0 &= 0xFFFFFFFF; 5756 a1 &= 0xFFFFFFFF; 5757 a2 &= 0xFFFFFFFF; 5758 a3 &= 0xFFFFFFFF; 5759 } 5760 5761 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5762 ret = -KVM_EPERM; 5763 goto out; 5764 } 5765 5766 switch (nr) { 5767 case KVM_HC_VAPIC_POLL_IRQ: 5768 ret = 0; 5769 break; 5770 case KVM_HC_KICK_CPU: 5771 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5772 ret = 0; 5773 break; 5774 default: 5775 ret = -KVM_ENOSYS; 5776 break; 5777 } 5778 out: 5779 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5780 ++vcpu->stat.hypercalls; 5781 return r; 5782 } 5783 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5784 5785 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5786 { 5787 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5788 char instruction[3]; 5789 unsigned long rip = kvm_rip_read(vcpu); 5790 5791 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5792 5793 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5794 } 5795 5796 /* 5797 * Check if userspace requested an interrupt window, and that the 5798 * interrupt window is open. 5799 * 5800 * No need to exit to userspace if we already have an interrupt queued. 5801 */ 5802 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5803 { 5804 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5805 vcpu->run->request_interrupt_window && 5806 kvm_arch_interrupt_allowed(vcpu)); 5807 } 5808 5809 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5810 { 5811 struct kvm_run *kvm_run = vcpu->run; 5812 5813 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5814 kvm_run->cr8 = kvm_get_cr8(vcpu); 5815 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5816 if (irqchip_in_kernel(vcpu->kvm)) 5817 kvm_run->ready_for_interrupt_injection = 1; 5818 else 5819 kvm_run->ready_for_interrupt_injection = 5820 kvm_arch_interrupt_allowed(vcpu) && 5821 !kvm_cpu_has_interrupt(vcpu) && 5822 !kvm_event_needs_reinjection(vcpu); 5823 } 5824 5825 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5826 { 5827 int max_irr, tpr; 5828 5829 if (!kvm_x86_ops->update_cr8_intercept) 5830 return; 5831 5832 if (!vcpu->arch.apic) 5833 return; 5834 5835 if (!vcpu->arch.apic->vapic_addr) 5836 max_irr = kvm_lapic_find_highest_irr(vcpu); 5837 else 5838 max_irr = -1; 5839 5840 if (max_irr != -1) 5841 max_irr >>= 4; 5842 5843 tpr = kvm_lapic_get_cr8(vcpu); 5844 5845 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5846 } 5847 5848 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 5849 { 5850 int r; 5851 5852 /* try to reinject previous events if any */ 5853 if (vcpu->arch.exception.pending) { 5854 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5855 vcpu->arch.exception.has_error_code, 5856 vcpu->arch.exception.error_code); 5857 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5858 vcpu->arch.exception.has_error_code, 5859 vcpu->arch.exception.error_code, 5860 vcpu->arch.exception.reinject); 5861 return 0; 5862 } 5863 5864 if (vcpu->arch.nmi_injected) { 5865 kvm_x86_ops->set_nmi(vcpu); 5866 return 0; 5867 } 5868 5869 if (vcpu->arch.interrupt.pending) { 5870 kvm_x86_ops->set_irq(vcpu); 5871 return 0; 5872 } 5873 5874 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 5875 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 5876 if (r != 0) 5877 return r; 5878 } 5879 5880 /* try to inject new event if pending */ 5881 if (vcpu->arch.nmi_pending) { 5882 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5883 --vcpu->arch.nmi_pending; 5884 vcpu->arch.nmi_injected = true; 5885 kvm_x86_ops->set_nmi(vcpu); 5886 } 5887 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5888 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5889 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5890 false); 5891 kvm_x86_ops->set_irq(vcpu); 5892 } 5893 } 5894 return 0; 5895 } 5896 5897 static void process_nmi(struct kvm_vcpu *vcpu) 5898 { 5899 unsigned limit = 2; 5900 5901 /* 5902 * x86 is limited to one NMI running, and one NMI pending after it. 5903 * If an NMI is already in progress, limit further NMIs to just one. 5904 * Otherwise, allow two (and we'll inject the first one immediately). 5905 */ 5906 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5907 limit = 1; 5908 5909 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5910 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5911 kvm_make_request(KVM_REQ_EVENT, vcpu); 5912 } 5913 5914 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5915 { 5916 u64 eoi_exit_bitmap[4]; 5917 u32 tmr[8]; 5918 5919 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5920 return; 5921 5922 memset(eoi_exit_bitmap, 0, 32); 5923 memset(tmr, 0, 32); 5924 5925 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5926 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5927 kvm_apic_update_tmr(vcpu, tmr); 5928 } 5929 5930 /* 5931 * Returns 1 to let __vcpu_run() continue the guest execution loop without 5932 * exiting to the userspace. Otherwise, the value will be returned to the 5933 * userspace. 5934 */ 5935 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5936 { 5937 int r; 5938 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5939 vcpu->run->request_interrupt_window; 5940 bool req_immediate_exit = false; 5941 5942 if (vcpu->requests) { 5943 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5944 kvm_mmu_unload(vcpu); 5945 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5946 __kvm_migrate_timers(vcpu); 5947 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5948 kvm_gen_update_masterclock(vcpu->kvm); 5949 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5950 kvm_gen_kvmclock_update(vcpu); 5951 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5952 r = kvm_guest_time_update(vcpu); 5953 if (unlikely(r)) 5954 goto out; 5955 } 5956 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5957 kvm_mmu_sync_roots(vcpu); 5958 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5959 kvm_x86_ops->tlb_flush(vcpu); 5960 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5961 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5962 r = 0; 5963 goto out; 5964 } 5965 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5966 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5967 r = 0; 5968 goto out; 5969 } 5970 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5971 vcpu->fpu_active = 0; 5972 kvm_x86_ops->fpu_deactivate(vcpu); 5973 } 5974 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5975 /* Page is swapped out. Do synthetic halt */ 5976 vcpu->arch.apf.halted = true; 5977 r = 1; 5978 goto out; 5979 } 5980 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5981 record_steal_time(vcpu); 5982 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5983 process_nmi(vcpu); 5984 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5985 kvm_handle_pmu_event(vcpu); 5986 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5987 kvm_deliver_pmi(vcpu); 5988 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5989 vcpu_scan_ioapic(vcpu); 5990 } 5991 5992 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5993 kvm_apic_accept_events(vcpu); 5994 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5995 r = 1; 5996 goto out; 5997 } 5998 5999 if (inject_pending_event(vcpu, req_int_win) != 0) 6000 req_immediate_exit = true; 6001 /* enable NMI/IRQ window open exits if needed */ 6002 else if (vcpu->arch.nmi_pending) 6003 kvm_x86_ops->enable_nmi_window(vcpu); 6004 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6005 kvm_x86_ops->enable_irq_window(vcpu); 6006 6007 if (kvm_lapic_enabled(vcpu)) { 6008 /* 6009 * Update architecture specific hints for APIC 6010 * virtual interrupt delivery. 6011 */ 6012 if (kvm_x86_ops->hwapic_irr_update) 6013 kvm_x86_ops->hwapic_irr_update(vcpu, 6014 kvm_lapic_find_highest_irr(vcpu)); 6015 update_cr8_intercept(vcpu); 6016 kvm_lapic_sync_to_vapic(vcpu); 6017 } 6018 } 6019 6020 r = kvm_mmu_reload(vcpu); 6021 if (unlikely(r)) { 6022 goto cancel_injection; 6023 } 6024 6025 preempt_disable(); 6026 6027 kvm_x86_ops->prepare_guest_switch(vcpu); 6028 if (vcpu->fpu_active) 6029 kvm_load_guest_fpu(vcpu); 6030 kvm_load_guest_xcr0(vcpu); 6031 6032 vcpu->mode = IN_GUEST_MODE; 6033 6034 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6035 6036 /* We should set ->mode before check ->requests, 6037 * see the comment in make_all_cpus_request. 6038 */ 6039 smp_mb__after_srcu_read_unlock(); 6040 6041 local_irq_disable(); 6042 6043 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6044 || need_resched() || signal_pending(current)) { 6045 vcpu->mode = OUTSIDE_GUEST_MODE; 6046 smp_wmb(); 6047 local_irq_enable(); 6048 preempt_enable(); 6049 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6050 r = 1; 6051 goto cancel_injection; 6052 } 6053 6054 if (req_immediate_exit) 6055 smp_send_reschedule(vcpu->cpu); 6056 6057 kvm_guest_enter(); 6058 6059 if (unlikely(vcpu->arch.switch_db_regs)) { 6060 set_debugreg(0, 7); 6061 set_debugreg(vcpu->arch.eff_db[0], 0); 6062 set_debugreg(vcpu->arch.eff_db[1], 1); 6063 set_debugreg(vcpu->arch.eff_db[2], 2); 6064 set_debugreg(vcpu->arch.eff_db[3], 3); 6065 set_debugreg(vcpu->arch.dr6, 6); 6066 } 6067 6068 trace_kvm_entry(vcpu->vcpu_id); 6069 kvm_x86_ops->run(vcpu); 6070 6071 /* 6072 * Do this here before restoring debug registers on the host. And 6073 * since we do this before handling the vmexit, a DR access vmexit 6074 * can (a) read the correct value of the debug registers, (b) set 6075 * KVM_DEBUGREG_WONT_EXIT again. 6076 */ 6077 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6078 int i; 6079 6080 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6081 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6082 for (i = 0; i < KVM_NR_DB_REGS; i++) 6083 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6084 } 6085 6086 /* 6087 * If the guest has used debug registers, at least dr7 6088 * will be disabled while returning to the host. 6089 * If we don't have active breakpoints in the host, we don't 6090 * care about the messed up debug address registers. But if 6091 * we have some of them active, restore the old state. 6092 */ 6093 if (hw_breakpoint_active()) 6094 hw_breakpoint_restore(); 6095 6096 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6097 native_read_tsc()); 6098 6099 vcpu->mode = OUTSIDE_GUEST_MODE; 6100 smp_wmb(); 6101 6102 /* Interrupt is enabled by handle_external_intr() */ 6103 kvm_x86_ops->handle_external_intr(vcpu); 6104 6105 ++vcpu->stat.exits; 6106 6107 /* 6108 * We must have an instruction between local_irq_enable() and 6109 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6110 * the interrupt shadow. The stat.exits increment will do nicely. 6111 * But we need to prevent reordering, hence this barrier(): 6112 */ 6113 barrier(); 6114 6115 kvm_guest_exit(); 6116 6117 preempt_enable(); 6118 6119 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6120 6121 /* 6122 * Profile KVM exit RIPs: 6123 */ 6124 if (unlikely(prof_on == KVM_PROFILING)) { 6125 unsigned long rip = kvm_rip_read(vcpu); 6126 profile_hit(KVM_PROFILING, (void *)rip); 6127 } 6128 6129 if (unlikely(vcpu->arch.tsc_always_catchup)) 6130 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6131 6132 if (vcpu->arch.apic_attention) 6133 kvm_lapic_sync_from_vapic(vcpu); 6134 6135 r = kvm_x86_ops->handle_exit(vcpu); 6136 return r; 6137 6138 cancel_injection: 6139 kvm_x86_ops->cancel_injection(vcpu); 6140 if (unlikely(vcpu->arch.apic_attention)) 6141 kvm_lapic_sync_from_vapic(vcpu); 6142 out: 6143 return r; 6144 } 6145 6146 6147 static int __vcpu_run(struct kvm_vcpu *vcpu) 6148 { 6149 int r; 6150 struct kvm *kvm = vcpu->kvm; 6151 6152 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6153 6154 r = 1; 6155 while (r > 0) { 6156 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6157 !vcpu->arch.apf.halted) 6158 r = vcpu_enter_guest(vcpu); 6159 else { 6160 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6161 kvm_vcpu_block(vcpu); 6162 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6163 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6164 kvm_apic_accept_events(vcpu); 6165 switch(vcpu->arch.mp_state) { 6166 case KVM_MP_STATE_HALTED: 6167 vcpu->arch.pv.pv_unhalted = false; 6168 vcpu->arch.mp_state = 6169 KVM_MP_STATE_RUNNABLE; 6170 case KVM_MP_STATE_RUNNABLE: 6171 vcpu->arch.apf.halted = false; 6172 break; 6173 case KVM_MP_STATE_INIT_RECEIVED: 6174 break; 6175 default: 6176 r = -EINTR; 6177 break; 6178 } 6179 } 6180 } 6181 6182 if (r <= 0) 6183 break; 6184 6185 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6186 if (kvm_cpu_has_pending_timer(vcpu)) 6187 kvm_inject_pending_timer_irqs(vcpu); 6188 6189 if (dm_request_for_irq_injection(vcpu)) { 6190 r = -EINTR; 6191 vcpu->run->exit_reason = KVM_EXIT_INTR; 6192 ++vcpu->stat.request_irq_exits; 6193 } 6194 6195 kvm_check_async_pf_completion(vcpu); 6196 6197 if (signal_pending(current)) { 6198 r = -EINTR; 6199 vcpu->run->exit_reason = KVM_EXIT_INTR; 6200 ++vcpu->stat.signal_exits; 6201 } 6202 if (need_resched()) { 6203 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6204 cond_resched(); 6205 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6206 } 6207 } 6208 6209 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6210 6211 return r; 6212 } 6213 6214 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6215 { 6216 int r; 6217 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6218 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6219 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6220 if (r != EMULATE_DONE) 6221 return 0; 6222 return 1; 6223 } 6224 6225 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6226 { 6227 BUG_ON(!vcpu->arch.pio.count); 6228 6229 return complete_emulated_io(vcpu); 6230 } 6231 6232 /* 6233 * Implements the following, as a state machine: 6234 * 6235 * read: 6236 * for each fragment 6237 * for each mmio piece in the fragment 6238 * write gpa, len 6239 * exit 6240 * copy data 6241 * execute insn 6242 * 6243 * write: 6244 * for each fragment 6245 * for each mmio piece in the fragment 6246 * write gpa, len 6247 * copy data 6248 * exit 6249 */ 6250 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6251 { 6252 struct kvm_run *run = vcpu->run; 6253 struct kvm_mmio_fragment *frag; 6254 unsigned len; 6255 6256 BUG_ON(!vcpu->mmio_needed); 6257 6258 /* Complete previous fragment */ 6259 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6260 len = min(8u, frag->len); 6261 if (!vcpu->mmio_is_write) 6262 memcpy(frag->data, run->mmio.data, len); 6263 6264 if (frag->len <= 8) { 6265 /* Switch to the next fragment. */ 6266 frag++; 6267 vcpu->mmio_cur_fragment++; 6268 } else { 6269 /* Go forward to the next mmio piece. */ 6270 frag->data += len; 6271 frag->gpa += len; 6272 frag->len -= len; 6273 } 6274 6275 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6276 vcpu->mmio_needed = 0; 6277 6278 /* FIXME: return into emulator if single-stepping. */ 6279 if (vcpu->mmio_is_write) 6280 return 1; 6281 vcpu->mmio_read_completed = 1; 6282 return complete_emulated_io(vcpu); 6283 } 6284 6285 run->exit_reason = KVM_EXIT_MMIO; 6286 run->mmio.phys_addr = frag->gpa; 6287 if (vcpu->mmio_is_write) 6288 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6289 run->mmio.len = min(8u, frag->len); 6290 run->mmio.is_write = vcpu->mmio_is_write; 6291 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6292 return 0; 6293 } 6294 6295 6296 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6297 { 6298 int r; 6299 sigset_t sigsaved; 6300 6301 if (!tsk_used_math(current) && init_fpu(current)) 6302 return -ENOMEM; 6303 6304 if (vcpu->sigset_active) 6305 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6306 6307 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6308 kvm_vcpu_block(vcpu); 6309 kvm_apic_accept_events(vcpu); 6310 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6311 r = -EAGAIN; 6312 goto out; 6313 } 6314 6315 /* re-sync apic's tpr */ 6316 if (!irqchip_in_kernel(vcpu->kvm)) { 6317 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6318 r = -EINVAL; 6319 goto out; 6320 } 6321 } 6322 6323 if (unlikely(vcpu->arch.complete_userspace_io)) { 6324 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6325 vcpu->arch.complete_userspace_io = NULL; 6326 r = cui(vcpu); 6327 if (r <= 0) 6328 goto out; 6329 } else 6330 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6331 6332 r = __vcpu_run(vcpu); 6333 6334 out: 6335 post_kvm_run_save(vcpu); 6336 if (vcpu->sigset_active) 6337 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6338 6339 return r; 6340 } 6341 6342 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6343 { 6344 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6345 /* 6346 * We are here if userspace calls get_regs() in the middle of 6347 * instruction emulation. Registers state needs to be copied 6348 * back from emulation context to vcpu. Userspace shouldn't do 6349 * that usually, but some bad designed PV devices (vmware 6350 * backdoor interface) need this to work 6351 */ 6352 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6353 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6354 } 6355 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6356 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6357 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6358 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6359 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6360 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6361 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6362 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6363 #ifdef CONFIG_X86_64 6364 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6365 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6366 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6367 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6368 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6369 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6370 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6371 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6372 #endif 6373 6374 regs->rip = kvm_rip_read(vcpu); 6375 regs->rflags = kvm_get_rflags(vcpu); 6376 6377 return 0; 6378 } 6379 6380 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6381 { 6382 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6383 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6384 6385 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6386 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6387 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6388 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6389 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6390 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6391 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6392 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6393 #ifdef CONFIG_X86_64 6394 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6395 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6396 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6397 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6398 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6399 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6400 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6401 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6402 #endif 6403 6404 kvm_rip_write(vcpu, regs->rip); 6405 kvm_set_rflags(vcpu, regs->rflags); 6406 6407 vcpu->arch.exception.pending = false; 6408 6409 kvm_make_request(KVM_REQ_EVENT, vcpu); 6410 6411 return 0; 6412 } 6413 6414 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6415 { 6416 struct kvm_segment cs; 6417 6418 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6419 *db = cs.db; 6420 *l = cs.l; 6421 } 6422 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6423 6424 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6425 struct kvm_sregs *sregs) 6426 { 6427 struct desc_ptr dt; 6428 6429 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6430 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6431 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6432 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6433 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6434 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6435 6436 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6437 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6438 6439 kvm_x86_ops->get_idt(vcpu, &dt); 6440 sregs->idt.limit = dt.size; 6441 sregs->idt.base = dt.address; 6442 kvm_x86_ops->get_gdt(vcpu, &dt); 6443 sregs->gdt.limit = dt.size; 6444 sregs->gdt.base = dt.address; 6445 6446 sregs->cr0 = kvm_read_cr0(vcpu); 6447 sregs->cr2 = vcpu->arch.cr2; 6448 sregs->cr3 = kvm_read_cr3(vcpu); 6449 sregs->cr4 = kvm_read_cr4(vcpu); 6450 sregs->cr8 = kvm_get_cr8(vcpu); 6451 sregs->efer = vcpu->arch.efer; 6452 sregs->apic_base = kvm_get_apic_base(vcpu); 6453 6454 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6455 6456 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6457 set_bit(vcpu->arch.interrupt.nr, 6458 (unsigned long *)sregs->interrupt_bitmap); 6459 6460 return 0; 6461 } 6462 6463 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6464 struct kvm_mp_state *mp_state) 6465 { 6466 kvm_apic_accept_events(vcpu); 6467 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6468 vcpu->arch.pv.pv_unhalted) 6469 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6470 else 6471 mp_state->mp_state = vcpu->arch.mp_state; 6472 6473 return 0; 6474 } 6475 6476 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6477 struct kvm_mp_state *mp_state) 6478 { 6479 if (!kvm_vcpu_has_lapic(vcpu) && 6480 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6481 return -EINVAL; 6482 6483 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6484 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6485 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6486 } else 6487 vcpu->arch.mp_state = mp_state->mp_state; 6488 kvm_make_request(KVM_REQ_EVENT, vcpu); 6489 return 0; 6490 } 6491 6492 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6493 int reason, bool has_error_code, u32 error_code) 6494 { 6495 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6496 int ret; 6497 6498 init_emulate_ctxt(vcpu); 6499 6500 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6501 has_error_code, error_code); 6502 6503 if (ret) 6504 return EMULATE_FAIL; 6505 6506 kvm_rip_write(vcpu, ctxt->eip); 6507 kvm_set_rflags(vcpu, ctxt->eflags); 6508 kvm_make_request(KVM_REQ_EVENT, vcpu); 6509 return EMULATE_DONE; 6510 } 6511 EXPORT_SYMBOL_GPL(kvm_task_switch); 6512 6513 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6514 struct kvm_sregs *sregs) 6515 { 6516 struct msr_data apic_base_msr; 6517 int mmu_reset_needed = 0; 6518 int pending_vec, max_bits, idx; 6519 struct desc_ptr dt; 6520 6521 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6522 return -EINVAL; 6523 6524 dt.size = sregs->idt.limit; 6525 dt.address = sregs->idt.base; 6526 kvm_x86_ops->set_idt(vcpu, &dt); 6527 dt.size = sregs->gdt.limit; 6528 dt.address = sregs->gdt.base; 6529 kvm_x86_ops->set_gdt(vcpu, &dt); 6530 6531 vcpu->arch.cr2 = sregs->cr2; 6532 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6533 vcpu->arch.cr3 = sregs->cr3; 6534 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6535 6536 kvm_set_cr8(vcpu, sregs->cr8); 6537 6538 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6539 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6540 apic_base_msr.data = sregs->apic_base; 6541 apic_base_msr.host_initiated = true; 6542 kvm_set_apic_base(vcpu, &apic_base_msr); 6543 6544 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6545 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6546 vcpu->arch.cr0 = sregs->cr0; 6547 6548 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6549 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6550 if (sregs->cr4 & X86_CR4_OSXSAVE) 6551 kvm_update_cpuid(vcpu); 6552 6553 idx = srcu_read_lock(&vcpu->kvm->srcu); 6554 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6555 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6556 mmu_reset_needed = 1; 6557 } 6558 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6559 6560 if (mmu_reset_needed) 6561 kvm_mmu_reset_context(vcpu); 6562 6563 max_bits = KVM_NR_INTERRUPTS; 6564 pending_vec = find_first_bit( 6565 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6566 if (pending_vec < max_bits) { 6567 kvm_queue_interrupt(vcpu, pending_vec, false); 6568 pr_debug("Set back pending irq %d\n", pending_vec); 6569 } 6570 6571 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6572 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6573 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6574 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6575 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6576 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6577 6578 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6579 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6580 6581 update_cr8_intercept(vcpu); 6582 6583 /* Older userspace won't unhalt the vcpu on reset. */ 6584 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6585 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6586 !is_protmode(vcpu)) 6587 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6588 6589 kvm_make_request(KVM_REQ_EVENT, vcpu); 6590 6591 return 0; 6592 } 6593 6594 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6595 struct kvm_guest_debug *dbg) 6596 { 6597 unsigned long rflags; 6598 int i, r; 6599 6600 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6601 r = -EBUSY; 6602 if (vcpu->arch.exception.pending) 6603 goto out; 6604 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6605 kvm_queue_exception(vcpu, DB_VECTOR); 6606 else 6607 kvm_queue_exception(vcpu, BP_VECTOR); 6608 } 6609 6610 /* 6611 * Read rflags as long as potentially injected trace flags are still 6612 * filtered out. 6613 */ 6614 rflags = kvm_get_rflags(vcpu); 6615 6616 vcpu->guest_debug = dbg->control; 6617 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6618 vcpu->guest_debug = 0; 6619 6620 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6621 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6622 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6623 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6624 } else { 6625 for (i = 0; i < KVM_NR_DB_REGS; i++) 6626 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6627 } 6628 kvm_update_dr7(vcpu); 6629 6630 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6631 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6632 get_segment_base(vcpu, VCPU_SREG_CS); 6633 6634 /* 6635 * Trigger an rflags update that will inject or remove the trace 6636 * flags. 6637 */ 6638 kvm_set_rflags(vcpu, rflags); 6639 6640 kvm_x86_ops->update_db_bp_intercept(vcpu); 6641 6642 r = 0; 6643 6644 out: 6645 6646 return r; 6647 } 6648 6649 /* 6650 * Translate a guest virtual address to a guest physical address. 6651 */ 6652 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6653 struct kvm_translation *tr) 6654 { 6655 unsigned long vaddr = tr->linear_address; 6656 gpa_t gpa; 6657 int idx; 6658 6659 idx = srcu_read_lock(&vcpu->kvm->srcu); 6660 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6661 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6662 tr->physical_address = gpa; 6663 tr->valid = gpa != UNMAPPED_GVA; 6664 tr->writeable = 1; 6665 tr->usermode = 0; 6666 6667 return 0; 6668 } 6669 6670 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6671 { 6672 struct i387_fxsave_struct *fxsave = 6673 &vcpu->arch.guest_fpu.state->fxsave; 6674 6675 memcpy(fpu->fpr, fxsave->st_space, 128); 6676 fpu->fcw = fxsave->cwd; 6677 fpu->fsw = fxsave->swd; 6678 fpu->ftwx = fxsave->twd; 6679 fpu->last_opcode = fxsave->fop; 6680 fpu->last_ip = fxsave->rip; 6681 fpu->last_dp = fxsave->rdp; 6682 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6683 6684 return 0; 6685 } 6686 6687 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6688 { 6689 struct i387_fxsave_struct *fxsave = 6690 &vcpu->arch.guest_fpu.state->fxsave; 6691 6692 memcpy(fxsave->st_space, fpu->fpr, 128); 6693 fxsave->cwd = fpu->fcw; 6694 fxsave->swd = fpu->fsw; 6695 fxsave->twd = fpu->ftwx; 6696 fxsave->fop = fpu->last_opcode; 6697 fxsave->rip = fpu->last_ip; 6698 fxsave->rdp = fpu->last_dp; 6699 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6700 6701 return 0; 6702 } 6703 6704 int fx_init(struct kvm_vcpu *vcpu) 6705 { 6706 int err; 6707 6708 err = fpu_alloc(&vcpu->arch.guest_fpu); 6709 if (err) 6710 return err; 6711 6712 fpu_finit(&vcpu->arch.guest_fpu); 6713 6714 /* 6715 * Ensure guest xcr0 is valid for loading 6716 */ 6717 vcpu->arch.xcr0 = XSTATE_FP; 6718 6719 vcpu->arch.cr0 |= X86_CR0_ET; 6720 6721 return 0; 6722 } 6723 EXPORT_SYMBOL_GPL(fx_init); 6724 6725 static void fx_free(struct kvm_vcpu *vcpu) 6726 { 6727 fpu_free(&vcpu->arch.guest_fpu); 6728 } 6729 6730 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6731 { 6732 if (vcpu->guest_fpu_loaded) 6733 return; 6734 6735 /* 6736 * Restore all possible states in the guest, 6737 * and assume host would use all available bits. 6738 * Guest xcr0 would be loaded later. 6739 */ 6740 kvm_put_guest_xcr0(vcpu); 6741 vcpu->guest_fpu_loaded = 1; 6742 __kernel_fpu_begin(); 6743 fpu_restore_checking(&vcpu->arch.guest_fpu); 6744 trace_kvm_fpu(1); 6745 } 6746 6747 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6748 { 6749 kvm_put_guest_xcr0(vcpu); 6750 6751 if (!vcpu->guest_fpu_loaded) 6752 return; 6753 6754 vcpu->guest_fpu_loaded = 0; 6755 fpu_save_init(&vcpu->arch.guest_fpu); 6756 __kernel_fpu_end(); 6757 ++vcpu->stat.fpu_reload; 6758 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6759 trace_kvm_fpu(0); 6760 } 6761 6762 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6763 { 6764 kvmclock_reset(vcpu); 6765 6766 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6767 fx_free(vcpu); 6768 kvm_x86_ops->vcpu_free(vcpu); 6769 } 6770 6771 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6772 unsigned int id) 6773 { 6774 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6775 printk_once(KERN_WARNING 6776 "kvm: SMP vm created on host with unstable TSC; " 6777 "guest TSC will not be reliable\n"); 6778 return kvm_x86_ops->vcpu_create(kvm, id); 6779 } 6780 6781 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6782 { 6783 int r; 6784 6785 vcpu->arch.mtrr_state.have_fixed = 1; 6786 r = vcpu_load(vcpu); 6787 if (r) 6788 return r; 6789 kvm_vcpu_reset(vcpu); 6790 kvm_mmu_setup(vcpu); 6791 vcpu_put(vcpu); 6792 6793 return r; 6794 } 6795 6796 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6797 { 6798 int r; 6799 struct msr_data msr; 6800 struct kvm *kvm = vcpu->kvm; 6801 6802 r = vcpu_load(vcpu); 6803 if (r) 6804 return r; 6805 msr.data = 0x0; 6806 msr.index = MSR_IA32_TSC; 6807 msr.host_initiated = true; 6808 kvm_write_tsc(vcpu, &msr); 6809 vcpu_put(vcpu); 6810 6811 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 6812 KVMCLOCK_SYNC_PERIOD); 6813 6814 return r; 6815 } 6816 6817 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6818 { 6819 int r; 6820 vcpu->arch.apf.msr_val = 0; 6821 6822 r = vcpu_load(vcpu); 6823 BUG_ON(r); 6824 kvm_mmu_unload(vcpu); 6825 vcpu_put(vcpu); 6826 6827 fx_free(vcpu); 6828 kvm_x86_ops->vcpu_free(vcpu); 6829 } 6830 6831 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6832 { 6833 atomic_set(&vcpu->arch.nmi_queued, 0); 6834 vcpu->arch.nmi_pending = 0; 6835 vcpu->arch.nmi_injected = false; 6836 6837 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6838 vcpu->arch.dr6 = DR6_FIXED_1; 6839 kvm_update_dr6(vcpu); 6840 vcpu->arch.dr7 = DR7_FIXED_1; 6841 kvm_update_dr7(vcpu); 6842 6843 kvm_make_request(KVM_REQ_EVENT, vcpu); 6844 vcpu->arch.apf.msr_val = 0; 6845 vcpu->arch.st.msr_val = 0; 6846 6847 kvmclock_reset(vcpu); 6848 6849 kvm_clear_async_pf_completion_queue(vcpu); 6850 kvm_async_pf_hash_reset(vcpu); 6851 vcpu->arch.apf.halted = false; 6852 6853 kvm_pmu_reset(vcpu); 6854 6855 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6856 vcpu->arch.regs_avail = ~0; 6857 vcpu->arch.regs_dirty = ~0; 6858 6859 kvm_x86_ops->vcpu_reset(vcpu); 6860 } 6861 6862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6863 { 6864 struct kvm_segment cs; 6865 6866 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6867 cs.selector = vector << 8; 6868 cs.base = vector << 12; 6869 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6870 kvm_rip_write(vcpu, 0); 6871 } 6872 6873 int kvm_arch_hardware_enable(void *garbage) 6874 { 6875 struct kvm *kvm; 6876 struct kvm_vcpu *vcpu; 6877 int i; 6878 int ret; 6879 u64 local_tsc; 6880 u64 max_tsc = 0; 6881 bool stable, backwards_tsc = false; 6882 6883 kvm_shared_msr_cpu_online(); 6884 ret = kvm_x86_ops->hardware_enable(garbage); 6885 if (ret != 0) 6886 return ret; 6887 6888 local_tsc = native_read_tsc(); 6889 stable = !check_tsc_unstable(); 6890 list_for_each_entry(kvm, &vm_list, vm_list) { 6891 kvm_for_each_vcpu(i, vcpu, kvm) { 6892 if (!stable && vcpu->cpu == smp_processor_id()) 6893 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6894 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6895 backwards_tsc = true; 6896 if (vcpu->arch.last_host_tsc > max_tsc) 6897 max_tsc = vcpu->arch.last_host_tsc; 6898 } 6899 } 6900 } 6901 6902 /* 6903 * Sometimes, even reliable TSCs go backwards. This happens on 6904 * platforms that reset TSC during suspend or hibernate actions, but 6905 * maintain synchronization. We must compensate. Fortunately, we can 6906 * detect that condition here, which happens early in CPU bringup, 6907 * before any KVM threads can be running. Unfortunately, we can't 6908 * bring the TSCs fully up to date with real time, as we aren't yet far 6909 * enough into CPU bringup that we know how much real time has actually 6910 * elapsed; our helper function, get_kernel_ns() will be using boot 6911 * variables that haven't been updated yet. 6912 * 6913 * So we simply find the maximum observed TSC above, then record the 6914 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6915 * the adjustment will be applied. Note that we accumulate 6916 * adjustments, in case multiple suspend cycles happen before some VCPU 6917 * gets a chance to run again. In the event that no KVM threads get a 6918 * chance to run, we will miss the entire elapsed period, as we'll have 6919 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6920 * loose cycle time. This isn't too big a deal, since the loss will be 6921 * uniform across all VCPUs (not to mention the scenario is extremely 6922 * unlikely). It is possible that a second hibernate recovery happens 6923 * much faster than a first, causing the observed TSC here to be 6924 * smaller; this would require additional padding adjustment, which is 6925 * why we set last_host_tsc to the local tsc observed here. 6926 * 6927 * N.B. - this code below runs only on platforms with reliable TSC, 6928 * as that is the only way backwards_tsc is set above. Also note 6929 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6930 * have the same delta_cyc adjustment applied if backwards_tsc 6931 * is detected. Note further, this adjustment is only done once, 6932 * as we reset last_host_tsc on all VCPUs to stop this from being 6933 * called multiple times (one for each physical CPU bringup). 6934 * 6935 * Platforms with unreliable TSCs don't have to deal with this, they 6936 * will be compensated by the logic in vcpu_load, which sets the TSC to 6937 * catchup mode. This will catchup all VCPUs to real time, but cannot 6938 * guarantee that they stay in perfect synchronization. 6939 */ 6940 if (backwards_tsc) { 6941 u64 delta_cyc = max_tsc - local_tsc; 6942 list_for_each_entry(kvm, &vm_list, vm_list) { 6943 kvm_for_each_vcpu(i, vcpu, kvm) { 6944 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6945 vcpu->arch.last_host_tsc = local_tsc; 6946 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6947 &vcpu->requests); 6948 } 6949 6950 /* 6951 * We have to disable TSC offset matching.. if you were 6952 * booting a VM while issuing an S4 host suspend.... 6953 * you may have some problem. Solving this issue is 6954 * left as an exercise to the reader. 6955 */ 6956 kvm->arch.last_tsc_nsec = 0; 6957 kvm->arch.last_tsc_write = 0; 6958 } 6959 6960 } 6961 return 0; 6962 } 6963 6964 void kvm_arch_hardware_disable(void *garbage) 6965 { 6966 kvm_x86_ops->hardware_disable(garbage); 6967 drop_user_return_notifiers(garbage); 6968 } 6969 6970 int kvm_arch_hardware_setup(void) 6971 { 6972 return kvm_x86_ops->hardware_setup(); 6973 } 6974 6975 void kvm_arch_hardware_unsetup(void) 6976 { 6977 kvm_x86_ops->hardware_unsetup(); 6978 } 6979 6980 void kvm_arch_check_processor_compat(void *rtn) 6981 { 6982 kvm_x86_ops->check_processor_compatibility(rtn); 6983 } 6984 6985 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6986 { 6987 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6988 } 6989 6990 struct static_key kvm_no_apic_vcpu __read_mostly; 6991 6992 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6993 { 6994 struct page *page; 6995 struct kvm *kvm; 6996 int r; 6997 6998 BUG_ON(vcpu->kvm == NULL); 6999 kvm = vcpu->kvm; 7000 7001 vcpu->arch.pv.pv_unhalted = false; 7002 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7003 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 7004 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7005 else 7006 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7007 7008 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7009 if (!page) { 7010 r = -ENOMEM; 7011 goto fail; 7012 } 7013 vcpu->arch.pio_data = page_address(page); 7014 7015 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7016 7017 r = kvm_mmu_create(vcpu); 7018 if (r < 0) 7019 goto fail_free_pio_data; 7020 7021 if (irqchip_in_kernel(kvm)) { 7022 r = kvm_create_lapic(vcpu); 7023 if (r < 0) 7024 goto fail_mmu_destroy; 7025 } else 7026 static_key_slow_inc(&kvm_no_apic_vcpu); 7027 7028 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7029 GFP_KERNEL); 7030 if (!vcpu->arch.mce_banks) { 7031 r = -ENOMEM; 7032 goto fail_free_lapic; 7033 } 7034 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7035 7036 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7037 r = -ENOMEM; 7038 goto fail_free_mce_banks; 7039 } 7040 7041 r = fx_init(vcpu); 7042 if (r) 7043 goto fail_free_wbinvd_dirty_mask; 7044 7045 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7046 vcpu->arch.pv_time_enabled = false; 7047 7048 vcpu->arch.guest_supported_xcr0 = 0; 7049 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7050 7051 kvm_async_pf_hash_reset(vcpu); 7052 kvm_pmu_init(vcpu); 7053 7054 return 0; 7055 fail_free_wbinvd_dirty_mask: 7056 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7057 fail_free_mce_banks: 7058 kfree(vcpu->arch.mce_banks); 7059 fail_free_lapic: 7060 kvm_free_lapic(vcpu); 7061 fail_mmu_destroy: 7062 kvm_mmu_destroy(vcpu); 7063 fail_free_pio_data: 7064 free_page((unsigned long)vcpu->arch.pio_data); 7065 fail: 7066 return r; 7067 } 7068 7069 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7070 { 7071 int idx; 7072 7073 kvm_pmu_destroy(vcpu); 7074 kfree(vcpu->arch.mce_banks); 7075 kvm_free_lapic(vcpu); 7076 idx = srcu_read_lock(&vcpu->kvm->srcu); 7077 kvm_mmu_destroy(vcpu); 7078 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7079 free_page((unsigned long)vcpu->arch.pio_data); 7080 if (!irqchip_in_kernel(vcpu->kvm)) 7081 static_key_slow_dec(&kvm_no_apic_vcpu); 7082 } 7083 7084 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7085 { 7086 if (type) 7087 return -EINVAL; 7088 7089 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7090 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7091 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7092 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7093 7094 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7095 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7096 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7097 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7098 &kvm->arch.irq_sources_bitmap); 7099 7100 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7101 mutex_init(&kvm->arch.apic_map_lock); 7102 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7103 7104 pvclock_update_vm_gtod_copy(kvm); 7105 7106 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7107 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7108 7109 return 0; 7110 } 7111 7112 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7113 { 7114 int r; 7115 r = vcpu_load(vcpu); 7116 BUG_ON(r); 7117 kvm_mmu_unload(vcpu); 7118 vcpu_put(vcpu); 7119 } 7120 7121 static void kvm_free_vcpus(struct kvm *kvm) 7122 { 7123 unsigned int i; 7124 struct kvm_vcpu *vcpu; 7125 7126 /* 7127 * Unpin any mmu pages first. 7128 */ 7129 kvm_for_each_vcpu(i, vcpu, kvm) { 7130 kvm_clear_async_pf_completion_queue(vcpu); 7131 kvm_unload_vcpu_mmu(vcpu); 7132 } 7133 kvm_for_each_vcpu(i, vcpu, kvm) 7134 kvm_arch_vcpu_free(vcpu); 7135 7136 mutex_lock(&kvm->lock); 7137 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7138 kvm->vcpus[i] = NULL; 7139 7140 atomic_set(&kvm->online_vcpus, 0); 7141 mutex_unlock(&kvm->lock); 7142 } 7143 7144 void kvm_arch_sync_events(struct kvm *kvm) 7145 { 7146 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7147 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7148 kvm_free_all_assigned_devices(kvm); 7149 kvm_free_pit(kvm); 7150 } 7151 7152 void kvm_arch_destroy_vm(struct kvm *kvm) 7153 { 7154 if (current->mm == kvm->mm) { 7155 /* 7156 * Free memory regions allocated on behalf of userspace, 7157 * unless the the memory map has changed due to process exit 7158 * or fd copying. 7159 */ 7160 struct kvm_userspace_memory_region mem; 7161 memset(&mem, 0, sizeof(mem)); 7162 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7163 kvm_set_memory_region(kvm, &mem); 7164 7165 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7166 kvm_set_memory_region(kvm, &mem); 7167 7168 mem.slot = TSS_PRIVATE_MEMSLOT; 7169 kvm_set_memory_region(kvm, &mem); 7170 } 7171 kvm_iommu_unmap_guest(kvm); 7172 kfree(kvm->arch.vpic); 7173 kfree(kvm->arch.vioapic); 7174 kvm_free_vcpus(kvm); 7175 if (kvm->arch.apic_access_page) 7176 put_page(kvm->arch.apic_access_page); 7177 if (kvm->arch.ept_identity_pagetable) 7178 put_page(kvm->arch.ept_identity_pagetable); 7179 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7180 } 7181 7182 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7183 struct kvm_memory_slot *dont) 7184 { 7185 int i; 7186 7187 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7188 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7189 kvm_kvfree(free->arch.rmap[i]); 7190 free->arch.rmap[i] = NULL; 7191 } 7192 if (i == 0) 7193 continue; 7194 7195 if (!dont || free->arch.lpage_info[i - 1] != 7196 dont->arch.lpage_info[i - 1]) { 7197 kvm_kvfree(free->arch.lpage_info[i - 1]); 7198 free->arch.lpage_info[i - 1] = NULL; 7199 } 7200 } 7201 } 7202 7203 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7204 unsigned long npages) 7205 { 7206 int i; 7207 7208 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7209 unsigned long ugfn; 7210 int lpages; 7211 int level = i + 1; 7212 7213 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7214 slot->base_gfn, level) + 1; 7215 7216 slot->arch.rmap[i] = 7217 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7218 if (!slot->arch.rmap[i]) 7219 goto out_free; 7220 if (i == 0) 7221 continue; 7222 7223 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7224 sizeof(*slot->arch.lpage_info[i - 1])); 7225 if (!slot->arch.lpage_info[i - 1]) 7226 goto out_free; 7227 7228 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7229 slot->arch.lpage_info[i - 1][0].write_count = 1; 7230 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7231 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7232 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7233 /* 7234 * If the gfn and userspace address are not aligned wrt each 7235 * other, or if explicitly asked to, disable large page 7236 * support for this slot 7237 */ 7238 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7239 !kvm_largepages_enabled()) { 7240 unsigned long j; 7241 7242 for (j = 0; j < lpages; ++j) 7243 slot->arch.lpage_info[i - 1][j].write_count = 1; 7244 } 7245 } 7246 7247 return 0; 7248 7249 out_free: 7250 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7251 kvm_kvfree(slot->arch.rmap[i]); 7252 slot->arch.rmap[i] = NULL; 7253 if (i == 0) 7254 continue; 7255 7256 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7257 slot->arch.lpage_info[i - 1] = NULL; 7258 } 7259 return -ENOMEM; 7260 } 7261 7262 void kvm_arch_memslots_updated(struct kvm *kvm) 7263 { 7264 /* 7265 * memslots->generation has been incremented. 7266 * mmio generation may have reached its maximum value. 7267 */ 7268 kvm_mmu_invalidate_mmio_sptes(kvm); 7269 } 7270 7271 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7272 struct kvm_memory_slot *memslot, 7273 struct kvm_userspace_memory_region *mem, 7274 enum kvm_mr_change change) 7275 { 7276 /* 7277 * Only private memory slots need to be mapped here since 7278 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7279 */ 7280 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7281 unsigned long userspace_addr; 7282 7283 /* 7284 * MAP_SHARED to prevent internal slot pages from being moved 7285 * by fork()/COW. 7286 */ 7287 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7288 PROT_READ | PROT_WRITE, 7289 MAP_SHARED | MAP_ANONYMOUS, 0); 7290 7291 if (IS_ERR((void *)userspace_addr)) 7292 return PTR_ERR((void *)userspace_addr); 7293 7294 memslot->userspace_addr = userspace_addr; 7295 } 7296 7297 return 0; 7298 } 7299 7300 void kvm_arch_commit_memory_region(struct kvm *kvm, 7301 struct kvm_userspace_memory_region *mem, 7302 const struct kvm_memory_slot *old, 7303 enum kvm_mr_change change) 7304 { 7305 7306 int nr_mmu_pages = 0; 7307 7308 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7309 int ret; 7310 7311 ret = vm_munmap(old->userspace_addr, 7312 old->npages * PAGE_SIZE); 7313 if (ret < 0) 7314 printk(KERN_WARNING 7315 "kvm_vm_ioctl_set_memory_region: " 7316 "failed to munmap memory\n"); 7317 } 7318 7319 if (!kvm->arch.n_requested_mmu_pages) 7320 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7321 7322 if (nr_mmu_pages) 7323 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7324 /* 7325 * Write protect all pages for dirty logging. 7326 * Existing largepage mappings are destroyed here and new ones will 7327 * not be created until the end of the logging. 7328 */ 7329 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7330 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7331 } 7332 7333 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7334 { 7335 kvm_mmu_invalidate_zap_all_pages(kvm); 7336 } 7337 7338 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7339 struct kvm_memory_slot *slot) 7340 { 7341 kvm_mmu_invalidate_zap_all_pages(kvm); 7342 } 7343 7344 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7345 { 7346 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7347 kvm_x86_ops->check_nested_events(vcpu, false); 7348 7349 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7350 !vcpu->arch.apf.halted) 7351 || !list_empty_careful(&vcpu->async_pf.done) 7352 || kvm_apic_has_events(vcpu) 7353 || vcpu->arch.pv.pv_unhalted 7354 || atomic_read(&vcpu->arch.nmi_queued) || 7355 (kvm_arch_interrupt_allowed(vcpu) && 7356 kvm_cpu_has_interrupt(vcpu)); 7357 } 7358 7359 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7360 { 7361 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7362 } 7363 7364 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7365 { 7366 return kvm_x86_ops->interrupt_allowed(vcpu); 7367 } 7368 7369 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7370 { 7371 unsigned long current_rip = kvm_rip_read(vcpu) + 7372 get_segment_base(vcpu, VCPU_SREG_CS); 7373 7374 return current_rip == linear_rip; 7375 } 7376 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7377 7378 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7379 { 7380 unsigned long rflags; 7381 7382 rflags = kvm_x86_ops->get_rflags(vcpu); 7383 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7384 rflags &= ~X86_EFLAGS_TF; 7385 return rflags; 7386 } 7387 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7388 7389 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7390 { 7391 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7392 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7393 rflags |= X86_EFLAGS_TF; 7394 kvm_x86_ops->set_rflags(vcpu, rflags); 7395 kvm_make_request(KVM_REQ_EVENT, vcpu); 7396 } 7397 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7398 7399 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7400 { 7401 int r; 7402 7403 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7404 work->wakeup_all) 7405 return; 7406 7407 r = kvm_mmu_reload(vcpu); 7408 if (unlikely(r)) 7409 return; 7410 7411 if (!vcpu->arch.mmu.direct_map && 7412 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7413 return; 7414 7415 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7416 } 7417 7418 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7419 { 7420 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7421 } 7422 7423 static inline u32 kvm_async_pf_next_probe(u32 key) 7424 { 7425 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7426 } 7427 7428 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7429 { 7430 u32 key = kvm_async_pf_hash_fn(gfn); 7431 7432 while (vcpu->arch.apf.gfns[key] != ~0) 7433 key = kvm_async_pf_next_probe(key); 7434 7435 vcpu->arch.apf.gfns[key] = gfn; 7436 } 7437 7438 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7439 { 7440 int i; 7441 u32 key = kvm_async_pf_hash_fn(gfn); 7442 7443 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7444 (vcpu->arch.apf.gfns[key] != gfn && 7445 vcpu->arch.apf.gfns[key] != ~0); i++) 7446 key = kvm_async_pf_next_probe(key); 7447 7448 return key; 7449 } 7450 7451 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7452 { 7453 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7454 } 7455 7456 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7457 { 7458 u32 i, j, k; 7459 7460 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7461 while (true) { 7462 vcpu->arch.apf.gfns[i] = ~0; 7463 do { 7464 j = kvm_async_pf_next_probe(j); 7465 if (vcpu->arch.apf.gfns[j] == ~0) 7466 return; 7467 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7468 /* 7469 * k lies cyclically in ]i,j] 7470 * | i.k.j | 7471 * |....j i.k.| or |.k..j i...| 7472 */ 7473 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7474 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7475 i = j; 7476 } 7477 } 7478 7479 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7480 { 7481 7482 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7483 sizeof(val)); 7484 } 7485 7486 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7487 struct kvm_async_pf *work) 7488 { 7489 struct x86_exception fault; 7490 7491 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7492 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7493 7494 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7495 (vcpu->arch.apf.send_user_only && 7496 kvm_x86_ops->get_cpl(vcpu) == 0)) 7497 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7498 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7499 fault.vector = PF_VECTOR; 7500 fault.error_code_valid = true; 7501 fault.error_code = 0; 7502 fault.nested_page_fault = false; 7503 fault.address = work->arch.token; 7504 kvm_inject_page_fault(vcpu, &fault); 7505 } 7506 } 7507 7508 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7509 struct kvm_async_pf *work) 7510 { 7511 struct x86_exception fault; 7512 7513 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7514 if (work->wakeup_all) 7515 work->arch.token = ~0; /* broadcast wakeup */ 7516 else 7517 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7518 7519 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7520 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7521 fault.vector = PF_VECTOR; 7522 fault.error_code_valid = true; 7523 fault.error_code = 0; 7524 fault.nested_page_fault = false; 7525 fault.address = work->arch.token; 7526 kvm_inject_page_fault(vcpu, &fault); 7527 } 7528 vcpu->arch.apf.halted = false; 7529 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7530 } 7531 7532 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7533 { 7534 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7535 return true; 7536 else 7537 return !kvm_event_needs_reinjection(vcpu) && 7538 kvm_x86_ops->interrupt_allowed(vcpu); 7539 } 7540 7541 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7542 { 7543 atomic_inc(&kvm->arch.noncoherent_dma_count); 7544 } 7545 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7546 7547 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7548 { 7549 atomic_dec(&kvm->arch.noncoherent_dma_count); 7550 } 7551 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7552 7553 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7554 { 7555 return atomic_read(&kvm->arch.noncoherent_dma_count); 7556 } 7557 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7558 7559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7572