xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 6548d543)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 	HV_X64_MSR_RESET,
1513 	HV_X64_MSR_VP_INDEX,
1514 	HV_X64_MSR_VP_RUNTIME,
1515 	HV_X64_MSR_SCONTROL,
1516 	HV_X64_MSR_STIMER0_CONFIG,
1517 	HV_X64_MSR_VP_ASSIST_PAGE,
1518 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 	HV_X64_MSR_SYNDBG_OPTIONS,
1521 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524 
1525 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527 
1528 	MSR_IA32_TSC_ADJUST,
1529 	MSR_IA32_TSC_DEADLINE,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 	MSR_IA32_MISC_ENABLE,
1533 	MSR_IA32_MCG_STATUS,
1534 	MSR_IA32_MCG_CTL,
1535 	MSR_IA32_MCG_EXT_CTL,
1536 	MSR_IA32_SMBASE,
1537 	MSR_SMI_COUNT,
1538 	MSR_PLATFORM_INFO,
1539 	MSR_MISC_FEATURES_ENABLES,
1540 	MSR_AMD64_VIRT_SPEC_CTRL,
1541 	MSR_AMD64_TSC_RATIO,
1542 	MSR_IA32_POWER_CTL,
1543 	MSR_IA32_UCODE_REV,
1544 
1545 	/*
1546 	 * KVM always supports the "true" VMX control MSRs, even if the host
1547 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548 	 * doesn't strictly require them to exist in the host (ignoring that
1549 	 * KVM would refuse to load in the first place if the core set of MSRs
1550 	 * aren't supported).
1551 	 */
1552 	MSR_IA32_VMX_BASIC,
1553 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 	MSR_IA32_VMX_MISC,
1558 	MSR_IA32_VMX_CR0_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED0,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_K7_HWCR,
1566 	MSR_KVM_POLL_CONTROL,
1567 };
1568 
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571 
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 	MSR_AMD64_DE_CFG,
1579 	MSR_IA32_UCODE_REV,
1580 	MSR_IA32_ARCH_CAPABILITIES,
1581 	MSR_IA32_PERF_CAPABILITIES,
1582 };
1583 
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587 
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 	int i;
1595 
1596 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 		return true;
1598 
1599 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 		if (msr == msr_based_features_all_except_vmx[i])
1601 			return msr != MSR_IA32_UCODE_REV;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617 
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1625 
1626 static u64 kvm_get_arch_capabilities(void)
1627 {
1628 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629 
1630 	/*
1631 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 	 * L1 guests, so it need not worry about its own (L2) guests.
1635 	 */
1636 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637 
1638 	/*
1639 	 * If we're doing cache flushes (either "always" or "cond")
1640 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 	 * If an outer hypervisor is doing the cache flush for us
1642 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 	 * capability to the guest too, and if EPT is disabled we're not
1644 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 	 * require a nested hypervisor to do a flush of its own.
1646 	 */
1647 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649 
1650 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 		data |= ARCH_CAP_RDCL_NO;
1652 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 		data |= ARCH_CAP_SSB_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 		data |= ARCH_CAP_MDS_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 		data |= ARCH_CAP_RFDS_NO;
1658 
1659 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 		/*
1661 		 * If RTM=0 because the kernel has disabled TSX, the host might
1662 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663 		 * and therefore knows that there cannot be TAA) but keep
1664 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 		 * and we want to allow migrating those guests to tsx=off hosts.
1666 		 */
1667 		data &= ~ARCH_CAP_TAA_NO;
1668 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 		data |= ARCH_CAP_TAA_NO;
1670 	} else {
1671 		/*
1672 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 		 * host so the guest can choose between disabling TSX or
1674 		 * using VERW to clear CPU buffers.
1675 		 */
1676 	}
1677 
1678 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 		data |= ARCH_CAP_GDS_NO;
1680 
1681 	return data;
1682 }
1683 
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 	switch (msr->index) {
1687 	case MSR_IA32_ARCH_CAPABILITIES:
1688 		msr->data = kvm_get_arch_capabilities();
1689 		break;
1690 	case MSR_IA32_PERF_CAPABILITIES:
1691 		msr->data = kvm_caps.supported_perf_cap;
1692 		break;
1693 	case MSR_IA32_UCODE_REV:
1694 		rdmsrl_safe(msr->index, &msr->data);
1695 		break;
1696 	default:
1697 		return static_call(kvm_x86_get_msr_feature)(msr);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 	struct kvm_msr_entry msr;
1705 	int r;
1706 
1707 	msr.index = index;
1708 	r = kvm_get_msr_feature(&msr);
1709 
1710 	if (r == KVM_MSR_RET_INVALID) {
1711 		/* Unconditionally clear the output for simplicity */
1712 		*data = 0;
1713 		if (kvm_msr_ignored_check(index, 0, false))
1714 			r = 0;
1715 	}
1716 
1717 	if (r)
1718 		return r;
1719 
1720 	*data = msr.data;
1721 
1722 	return 0;
1723 }
1724 
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 		return false;
1729 
1730 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 		return false;
1732 
1733 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734 		return false;
1735 
1736 	if (efer & (EFER_LME | EFER_LMA) &&
1737 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738 		return false;
1739 
1740 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741 		return false;
1742 
1743 	return true;
1744 
1745 }
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 	if (efer & efer_reserved_bits)
1749 		return false;
1750 
1751 	return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754 
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	u64 old_efer = vcpu->arch.efer;
1758 	u64 efer = msr_info->data;
1759 	int r;
1760 
1761 	if (efer & efer_reserved_bits)
1762 		return 1;
1763 
1764 	if (!msr_info->host_initiated) {
1765 		if (!__kvm_valid_efer(vcpu, efer))
1766 			return 1;
1767 
1768 		if (is_paging(vcpu) &&
1769 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 			return 1;
1771 	}
1772 
1773 	efer &= ~EFER_LMA;
1774 	efer |= vcpu->arch.efer & EFER_LMA;
1775 
1776 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777 	if (r) {
1778 		WARN_ON(r > 0);
1779 		return r;
1780 	}
1781 
1782 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 		kvm_mmu_reset_context(vcpu);
1784 
1785 	return 0;
1786 }
1787 
1788 void kvm_enable_efer_bits(u64 mask)
1789 {
1790        efer_reserved_bits &= ~mask;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793 
1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795 {
1796 	struct kvm_x86_msr_filter *msr_filter;
1797 	struct msr_bitmap_range *ranges;
1798 	struct kvm *kvm = vcpu->kvm;
1799 	bool allowed;
1800 	int idx;
1801 	u32 i;
1802 
1803 	/* x2APIC MSRs do not support filtering. */
1804 	if (index >= 0x800 && index <= 0x8ff)
1805 		return true;
1806 
1807 	idx = srcu_read_lock(&kvm->srcu);
1808 
1809 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810 	if (!msr_filter) {
1811 		allowed = true;
1812 		goto out;
1813 	}
1814 
1815 	allowed = msr_filter->default_allow;
1816 	ranges = msr_filter->ranges;
1817 
1818 	for (i = 0; i < msr_filter->count; i++) {
1819 		u32 start = ranges[i].base;
1820 		u32 end = start + ranges[i].nmsrs;
1821 		u32 flags = ranges[i].flags;
1822 		unsigned long *bitmap = ranges[i].bitmap;
1823 
1824 		if ((index >= start) && (index < end) && (flags & type)) {
1825 			allowed = test_bit(index - start, bitmap);
1826 			break;
1827 		}
1828 	}
1829 
1830 out:
1831 	srcu_read_unlock(&kvm->srcu, idx);
1832 
1833 	return allowed;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836 
1837 /*
1838  * Write @data into the MSR specified by @index.  Select MSR specific fault
1839  * checks are bypassed if @host_initiated is %true.
1840  * Returns 0 on success, non-0 otherwise.
1841  * Assumes vcpu_load() was already called.
1842  */
1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844 			 bool host_initiated)
1845 {
1846 	struct msr_data msr;
1847 
1848 	switch (index) {
1849 	case MSR_FS_BASE:
1850 	case MSR_GS_BASE:
1851 	case MSR_KERNEL_GS_BASE:
1852 	case MSR_CSTAR:
1853 	case MSR_LSTAR:
1854 		if (is_noncanonical_address(data, vcpu))
1855 			return 1;
1856 		break;
1857 	case MSR_IA32_SYSENTER_EIP:
1858 	case MSR_IA32_SYSENTER_ESP:
1859 		/*
1860 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861 		 * non-canonical address is written on Intel but not on
1862 		 * AMD (which ignores the top 32-bits, because it does
1863 		 * not implement 64-bit SYSENTER).
1864 		 *
1865 		 * 64-bit code should hence be able to write a non-canonical
1866 		 * value on AMD.  Making the address canonical ensures that
1867 		 * vmentry does not fail on Intel after writing a non-canonical
1868 		 * value, and that something deterministic happens if the guest
1869 		 * invokes 64-bit SYSENTER.
1870 		 */
1871 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872 		break;
1873 	case MSR_TSC_AUX:
1874 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875 			return 1;
1876 
1877 		if (!host_initiated &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880 			return 1;
1881 
1882 		/*
1883 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884 		 * incomplete and conflicting architectural behavior.  Current
1885 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886 		 * reserved and always read as zeros.  Enforce Intel's reserved
1887 		 * bits check if and only if the guest CPU is Intel, and clear
1888 		 * the bits in all other cases.  This ensures cross-vendor
1889 		 * migration will provide consistent behavior for the guest.
1890 		 */
1891 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892 			return 1;
1893 
1894 		data = (u32)data;
1895 		break;
1896 	}
1897 
1898 	msr.data = data;
1899 	msr.index = index;
1900 	msr.host_initiated = host_initiated;
1901 
1902 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903 }
1904 
1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 				     u32 index, u64 data, bool host_initiated)
1907 {
1908 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909 
1910 	if (ret == KVM_MSR_RET_INVALID)
1911 		if (kvm_msr_ignored_check(index, data, true))
1912 			ret = 0;
1913 
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Read the MSR specified by @index into @data.  Select MSR specific fault
1919  * checks are bypassed if @host_initiated is %true.
1920  * Returns 0 on success, non-0 otherwise.
1921  * Assumes vcpu_load() was already called.
1922  */
1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924 		  bool host_initiated)
1925 {
1926 	struct msr_data msr;
1927 	int ret;
1928 
1929 	switch (index) {
1930 	case MSR_TSC_AUX:
1931 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932 			return 1;
1933 
1934 		if (!host_initiated &&
1935 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937 			return 1;
1938 		break;
1939 	}
1940 
1941 	msr.index = index;
1942 	msr.host_initiated = host_initiated;
1943 
1944 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945 	if (!ret)
1946 		*data = msr.data;
1947 	return ret;
1948 }
1949 
1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951 				     u32 index, u64 *data, bool host_initiated)
1952 {
1953 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954 
1955 	if (ret == KVM_MSR_RET_INVALID) {
1956 		/* Unconditionally clear *data for simplicity */
1957 		*data = 0;
1958 		if (kvm_msr_ignored_check(index, 0, false))
1959 			ret = 0;
1960 	}
1961 
1962 	return ret;
1963 }
1964 
1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968 		return KVM_MSR_RET_FILTERED;
1969 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 }
1971 
1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975 		return KVM_MSR_RET_FILTERED;
1976 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978 
1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980 {
1981 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1984 
1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986 {
1987 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1990 
1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 	if (!vcpu->run->msr.error) {
1994 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996 	}
1997 }
1998 
1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 }
2003 
2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006 	complete_userspace_rdmsr(vcpu);
2007 	return complete_emulated_msr_access(vcpu);
2008 }
2009 
2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011 {
2012 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 }
2014 
2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	complete_userspace_rdmsr(vcpu);
2018 	return complete_fast_msr_access(vcpu);
2019 }
2020 
2021 static u64 kvm_msr_reason(int r)
2022 {
2023 	switch (r) {
2024 	case KVM_MSR_RET_INVALID:
2025 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2026 	case KVM_MSR_RET_FILTERED:
2027 		return KVM_MSR_EXIT_REASON_FILTER;
2028 	default:
2029 		return KVM_MSR_EXIT_REASON_INVAL;
2030 	}
2031 }
2032 
2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034 			      u32 exit_reason, u64 data,
2035 			      int (*completion)(struct kvm_vcpu *vcpu),
2036 			      int r)
2037 {
2038 	u64 msr_reason = kvm_msr_reason(r);
2039 
2040 	/* Check if the user wanted to know about this MSR fault */
2041 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042 		return 0;
2043 
2044 	vcpu->run->exit_reason = exit_reason;
2045 	vcpu->run->msr.error = 0;
2046 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047 	vcpu->run->msr.reason = msr_reason;
2048 	vcpu->run->msr.index = index;
2049 	vcpu->run->msr.data = data;
2050 	vcpu->arch.complete_userspace_io = completion;
2051 
2052 	return 1;
2053 }
2054 
2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057 	u32 ecx = kvm_rcx_read(vcpu);
2058 	u64 data;
2059 	int r;
2060 
2061 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062 
2063 	if (!r) {
2064 		trace_kvm_msr_read(ecx, data);
2065 
2066 		kvm_rax_write(vcpu, data & -1u);
2067 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068 	} else {
2069 		/* MSR read failed? See if we should ask user space */
2070 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071 				       complete_fast_rdmsr, r))
2072 			return 0;
2073 		trace_kvm_msr_read_ex(ecx);
2074 	}
2075 
2076 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079 
2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081 {
2082 	u32 ecx = kvm_rcx_read(vcpu);
2083 	u64 data = kvm_read_edx_eax(vcpu);
2084 	int r;
2085 
2086 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087 
2088 	if (!r) {
2089 		trace_kvm_msr_write(ecx, data);
2090 	} else {
2091 		/* MSR write failed? See if we should ask user space */
2092 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093 				       complete_fast_msr_access, r))
2094 			return 0;
2095 		/* Signal all other negative errors to userspace */
2096 		if (r < 0)
2097 			return r;
2098 		trace_kvm_msr_write_ex(ecx, data);
2099 	}
2100 
2101 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104 
2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106 {
2107 	return kvm_skip_emulated_instruction(vcpu);
2108 }
2109 
2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111 {
2112 	/* Treat an INVD instruction as a NOP and just skip it. */
2113 	return kvm_emulate_as_nop(vcpu);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116 
2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118 {
2119 	kvm_queue_exception(vcpu, UD_VECTOR);
2120 	return 1;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123 
2124 
2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126 {
2127 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129 		return kvm_handle_invalid_op(vcpu);
2130 
2131 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132 	return kvm_emulate_as_nop(vcpu);
2133 }
2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135 {
2136 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139 
2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141 {
2142 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145 
2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147 {
2148 	xfer_to_guest_mode_prepare();
2149 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150 		xfer_to_guest_mode_work_pending();
2151 }
2152 
2153 /*
2154  * The fast path for frequent and performance sensitive wrmsr emulation,
2155  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158  * other cases which must be called after interrupts are enabled on the host.
2159  */
2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163 		return 1;
2164 
2165 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2169 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170 
2171 	return 1;
2172 }
2173 
2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176 	if (!kvm_can_use_hv_timer(vcpu))
2177 		return 1;
2178 
2179 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180 	return 0;
2181 }
2182 
2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184 {
2185 	u32 msr = kvm_rcx_read(vcpu);
2186 	u64 data;
2187 	fastpath_t ret = EXIT_FASTPATH_NONE;
2188 
2189 	kvm_vcpu_srcu_read_lock(vcpu);
2190 
2191 	switch (msr) {
2192 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2193 		data = kvm_read_edx_eax(vcpu);
2194 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195 			kvm_skip_emulated_instruction(vcpu);
2196 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2197 		}
2198 		break;
2199 	case MSR_IA32_TSC_DEADLINE:
2200 		data = kvm_read_edx_eax(vcpu);
2201 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202 			kvm_skip_emulated_instruction(vcpu);
2203 			ret = EXIT_FASTPATH_REENTER_GUEST;
2204 		}
2205 		break;
2206 	default:
2207 		break;
2208 	}
2209 
2210 	if (ret != EXIT_FASTPATH_NONE)
2211 		trace_kvm_msr_write(msr, data);
2212 
2213 	kvm_vcpu_srcu_read_unlock(vcpu);
2214 
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218 
2219 /*
2220  * Adapt set_msr() to msr_io()'s calling convention
2221  */
2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223 {
2224 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225 }
2226 
2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228 {
2229 	u64 val;
2230 
2231 	/*
2232 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2233 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2234 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2235 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2236 	 * all MSRs when emulating RESET.
2237 	 */
2238 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239 		if (do_get_msr(vcpu, index, &val) || *data != val)
2240 			return -EINVAL;
2241 
2242 		return 0;
2243 	}
2244 
2245 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 }
2247 
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2250 	int vclock_mode;
2251 	u64 cycle_last;
2252 	u64 mask;
2253 	u32 mult;
2254 	u32 shift;
2255 	u64 base_cycles;
2256 	u64 offset;
2257 };
2258 
2259 struct pvclock_gtod_data {
2260 	seqcount_t	seq;
2261 
2262 	struct pvclock_clock clock; /* extract of a clocksource struct */
2263 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264 
2265 	ktime_t		offs_boot;
2266 	u64		wall_time_sec;
2267 };
2268 
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2270 
2271 static void update_pvclock_gtod(struct timekeeper *tk)
2272 {
2273 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274 
2275 	write_seqcount_begin(&vdata->seq);
2276 
2277 	/* copy pvclock gtod data */
2278 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2279 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2280 	vdata->clock.mask		= tk->tkr_mono.mask;
2281 	vdata->clock.mult		= tk->tkr_mono.mult;
2282 	vdata->clock.shift		= tk->tkr_mono.shift;
2283 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2284 	vdata->clock.offset		= tk->tkr_mono.base;
2285 
2286 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2287 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2288 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2289 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2290 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2291 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2292 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2293 
2294 	vdata->wall_time_sec            = tk->xtime_sec;
2295 
2296 	vdata->offs_boot		= tk->offs_boot;
2297 
2298 	write_seqcount_end(&vdata->seq);
2299 }
2300 
2301 static s64 get_kvmclock_base_ns(void)
2302 {
2303 	/* Count up from boot time, but with the frequency of the raw clock.  */
2304 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305 }
2306 #else
2307 static s64 get_kvmclock_base_ns(void)
2308 {
2309 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2310 	return ktime_get_boottime_ns();
2311 }
2312 #endif
2313 
2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 {
2316 	int version;
2317 	int r;
2318 	struct pvclock_wall_clock wc;
2319 	u32 wc_sec_hi;
2320 	u64 wall_nsec;
2321 
2322 	if (!wall_clock)
2323 		return;
2324 
2325 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326 	if (r)
2327 		return;
2328 
2329 	if (version & 1)
2330 		++version;  /* first time write, random junk */
2331 
2332 	++version;
2333 
2334 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335 		return;
2336 
2337 	/*
2338 	 * The guest calculates current wall clock time by adding
2339 	 * system time (updated by kvm_guest_time_update below) to the
2340 	 * wall clock specified here.  We do the reverse here.
2341 	 */
2342 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2343 
2344 	wc.nsec = do_div(wall_nsec, 1000000000);
2345 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2346 	wc.version = version;
2347 
2348 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2349 
2350 	if (sec_hi_ofs) {
2351 		wc_sec_hi = wall_nsec >> 32;
2352 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2353 				&wc_sec_hi, sizeof(wc_sec_hi));
2354 	}
2355 
2356 	version++;
2357 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2358 }
2359 
2360 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2361 				  bool old_msr, bool host_initiated)
2362 {
2363 	struct kvm_arch *ka = &vcpu->kvm->arch;
2364 
2365 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2366 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2367 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2368 
2369 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2370 	}
2371 
2372 	vcpu->arch.time = system_time;
2373 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2374 
2375 	/* we verify if the enable bit is set... */
2376 	if (system_time & 1)
2377 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2378 				 sizeof(struct pvclock_vcpu_time_info));
2379 	else
2380 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2381 
2382 	return;
2383 }
2384 
2385 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2386 {
2387 	do_shl32_div32(dividend, divisor);
2388 	return dividend;
2389 }
2390 
2391 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2392 			       s8 *pshift, u32 *pmultiplier)
2393 {
2394 	uint64_t scaled64;
2395 	int32_t  shift = 0;
2396 	uint64_t tps64;
2397 	uint32_t tps32;
2398 
2399 	tps64 = base_hz;
2400 	scaled64 = scaled_hz;
2401 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2402 		tps64 >>= 1;
2403 		shift--;
2404 	}
2405 
2406 	tps32 = (uint32_t)tps64;
2407 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2408 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2409 			scaled64 >>= 1;
2410 		else
2411 			tps32 <<= 1;
2412 		shift++;
2413 	}
2414 
2415 	*pshift = shift;
2416 	*pmultiplier = div_frac(scaled64, tps32);
2417 }
2418 
2419 #ifdef CONFIG_X86_64
2420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2421 #endif
2422 
2423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2424 static unsigned long max_tsc_khz;
2425 
2426 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2427 {
2428 	u64 v = (u64)khz * (1000000 + ppm);
2429 	do_div(v, 1000000);
2430 	return v;
2431 }
2432 
2433 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2434 
2435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2436 {
2437 	u64 ratio;
2438 
2439 	/* Guest TSC same frequency as host TSC? */
2440 	if (!scale) {
2441 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2442 		return 0;
2443 	}
2444 
2445 	/* TSC scaling supported? */
2446 	if (!kvm_caps.has_tsc_control) {
2447 		if (user_tsc_khz > tsc_khz) {
2448 			vcpu->arch.tsc_catchup = 1;
2449 			vcpu->arch.tsc_always_catchup = 1;
2450 			return 0;
2451 		} else {
2452 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2453 			return -1;
2454 		}
2455 	}
2456 
2457 	/* TSC scaling required  - calculate ratio */
2458 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2459 				user_tsc_khz, tsc_khz);
2460 
2461 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2462 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2463 			            user_tsc_khz);
2464 		return -1;
2465 	}
2466 
2467 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2468 	return 0;
2469 }
2470 
2471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2472 {
2473 	u32 thresh_lo, thresh_hi;
2474 	int use_scaling = 0;
2475 
2476 	/* tsc_khz can be zero if TSC calibration fails */
2477 	if (user_tsc_khz == 0) {
2478 		/* set tsc_scaling_ratio to a safe value */
2479 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2480 		return -1;
2481 	}
2482 
2483 	/* Compute a scale to convert nanoseconds in TSC cycles */
2484 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2485 			   &vcpu->arch.virtual_tsc_shift,
2486 			   &vcpu->arch.virtual_tsc_mult);
2487 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2488 
2489 	/*
2490 	 * Compute the variation in TSC rate which is acceptable
2491 	 * within the range of tolerance and decide if the
2492 	 * rate being applied is within that bounds of the hardware
2493 	 * rate.  If so, no scaling or compensation need be done.
2494 	 */
2495 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2496 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2497 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2498 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2499 			 user_tsc_khz, thresh_lo, thresh_hi);
2500 		use_scaling = 1;
2501 	}
2502 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2503 }
2504 
2505 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2506 {
2507 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2508 				      vcpu->arch.virtual_tsc_mult,
2509 				      vcpu->arch.virtual_tsc_shift);
2510 	tsc += vcpu->arch.this_tsc_write;
2511 	return tsc;
2512 }
2513 
2514 #ifdef CONFIG_X86_64
2515 static inline int gtod_is_based_on_tsc(int mode)
2516 {
2517 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2518 }
2519 #endif
2520 
2521 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2522 {
2523 #ifdef CONFIG_X86_64
2524 	bool vcpus_matched;
2525 	struct kvm_arch *ka = &vcpu->kvm->arch;
2526 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2527 
2528 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2529 			 atomic_read(&vcpu->kvm->online_vcpus));
2530 
2531 	/*
2532 	 * Once the masterclock is enabled, always perform request in
2533 	 * order to update it.
2534 	 *
2535 	 * In order to enable masterclock, the host clocksource must be TSC
2536 	 * and the vcpus need to have matched TSCs.  When that happens,
2537 	 * perform request to enable masterclock.
2538 	 */
2539 	if (ka->use_master_clock ||
2540 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2541 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542 
2543 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544 			    atomic_read(&vcpu->kvm->online_vcpus),
2545 		            ka->use_master_clock, gtod->clock.vclock_mode);
2546 #endif
2547 }
2548 
2549 /*
2550  * Multiply tsc by a fixed point number represented by ratio.
2551  *
2552  * The most significant 64-N bits (mult) of ratio represent the
2553  * integral part of the fixed point number; the remaining N bits
2554  * (frac) represent the fractional part, ie. ratio represents a fixed
2555  * point number (mult + frac * 2^(-N)).
2556  *
2557  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558  */
2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560 {
2561 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 }
2563 
2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565 {
2566 	u64 _tsc = tsc;
2567 
2568 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569 		_tsc = __scale_tsc(ratio, tsc);
2570 
2571 	return _tsc;
2572 }
2573 
2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575 {
2576 	u64 tsc;
2577 
2578 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579 
2580 	return target_tsc - tsc;
2581 }
2582 
2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584 {
2585 	return vcpu->arch.l1_tsc_offset +
2586 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589 
2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591 {
2592 	u64 nested_offset;
2593 
2594 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595 		nested_offset = l1_offset;
2596 	else
2597 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598 						kvm_caps.tsc_scaling_ratio_frac_bits);
2599 
2600 	nested_offset += l2_offset;
2601 	return nested_offset;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604 
2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606 {
2607 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2610 
2611 	return l1_multiplier;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614 
2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616 {
2617 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618 				   vcpu->arch.l1_tsc_offset,
2619 				   l1_offset);
2620 
2621 	vcpu->arch.l1_tsc_offset = l1_offset;
2622 
2623 	/*
2624 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2625 	 * according to the spec this should set L1's TSC (as opposed to
2626 	 * setting L1's offset for L2).
2627 	 */
2628 	if (is_guest_mode(vcpu))
2629 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630 			l1_offset,
2631 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633 	else
2634 		vcpu->arch.tsc_offset = l1_offset;
2635 
2636 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 }
2638 
2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640 {
2641 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642 
2643 	/* Userspace is changing the multiplier while L2 is active */
2644 	if (is_guest_mode(vcpu))
2645 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646 			l1_multiplier,
2647 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648 	else
2649 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650 
2651 	if (kvm_caps.has_tsc_control)
2652 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 }
2654 
2655 static inline bool kvm_check_tsc_unstable(void)
2656 {
2657 #ifdef CONFIG_X86_64
2658 	/*
2659 	 * TSC is marked unstable when we're running on Hyper-V,
2660 	 * 'TSC page' clocksource is good.
2661 	 */
2662 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663 		return false;
2664 #endif
2665 	return check_tsc_unstable();
2666 }
2667 
2668 /*
2669  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671  * participates in.
2672  */
2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674 				  u64 ns, bool matched)
2675 {
2676 	struct kvm *kvm = vcpu->kvm;
2677 
2678 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679 
2680 	/*
2681 	 * We also track th most recent recorded KHZ, write and time to
2682 	 * allow the matching interval to be extended at each write.
2683 	 */
2684 	kvm->arch.last_tsc_nsec = ns;
2685 	kvm->arch.last_tsc_write = tsc;
2686 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687 	kvm->arch.last_tsc_offset = offset;
2688 
2689 	vcpu->arch.last_guest_tsc = tsc;
2690 
2691 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2692 
2693 	if (!matched) {
2694 		/*
2695 		 * We split periods of matched TSC writes into generations.
2696 		 * For each generation, we track the original measured
2697 		 * nanosecond time, offset, and write, so if TSCs are in
2698 		 * sync, we can match exact offset, and if not, we can match
2699 		 * exact software computation in compute_guest_tsc()
2700 		 *
2701 		 * These values are tracked in kvm->arch.cur_xxx variables.
2702 		 */
2703 		kvm->arch.cur_tsc_generation++;
2704 		kvm->arch.cur_tsc_nsec = ns;
2705 		kvm->arch.cur_tsc_write = tsc;
2706 		kvm->arch.cur_tsc_offset = offset;
2707 		kvm->arch.nr_vcpus_matched_tsc = 0;
2708 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709 		kvm->arch.nr_vcpus_matched_tsc++;
2710 	}
2711 
2712 	/* Keep track of which generation this VCPU has synchronized to */
2713 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716 
2717 	kvm_track_tsc_matching(vcpu);
2718 }
2719 
2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2721 {
2722 	struct kvm *kvm = vcpu->kvm;
2723 	u64 offset, ns, elapsed;
2724 	unsigned long flags;
2725 	bool matched = false;
2726 	bool synchronizing = false;
2727 
2728 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2729 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2730 	ns = get_kvmclock_base_ns();
2731 	elapsed = ns - kvm->arch.last_tsc_nsec;
2732 
2733 	if (vcpu->arch.virtual_tsc_khz) {
2734 		if (data == 0) {
2735 			/*
2736 			 * detection of vcpu initialization -- need to sync
2737 			 * with other vCPUs. This particularly helps to keep
2738 			 * kvm_clock stable after CPU hotplug
2739 			 */
2740 			synchronizing = true;
2741 		} else {
2742 			u64 tsc_exp = kvm->arch.last_tsc_write +
2743 						nsec_to_cycles(vcpu, elapsed);
2744 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745 			/*
2746 			 * Special case: TSC write with a small delta (1 second)
2747 			 * of virtual cycle time against real time is
2748 			 * interpreted as an attempt to synchronize the CPU.
2749 			 */
2750 			synchronizing = data < tsc_exp + tsc_hz &&
2751 					data + tsc_hz > tsc_exp;
2752 		}
2753 	}
2754 
2755 	/*
2756 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2757 	 * TSC, we add elapsed time in this computation.  We could let the
2758 	 * compensation code attempt to catch up if we fall behind, but
2759 	 * it's better to try to match offsets from the beginning.
2760          */
2761 	if (synchronizing &&
2762 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2763 		if (!kvm_check_tsc_unstable()) {
2764 			offset = kvm->arch.cur_tsc_offset;
2765 		} else {
2766 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2767 			data += delta;
2768 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2769 		}
2770 		matched = true;
2771 	}
2772 
2773 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2774 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2775 }
2776 
2777 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2778 					   s64 adjustment)
2779 {
2780 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2781 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2782 }
2783 
2784 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2785 {
2786 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2787 		WARN_ON(adjustment < 0);
2788 	adjustment = kvm_scale_tsc((u64) adjustment,
2789 				   vcpu->arch.l1_tsc_scaling_ratio);
2790 	adjust_tsc_offset_guest(vcpu, adjustment);
2791 }
2792 
2793 #ifdef CONFIG_X86_64
2794 
2795 static u64 read_tsc(void)
2796 {
2797 	u64 ret = (u64)rdtsc_ordered();
2798 	u64 last = pvclock_gtod_data.clock.cycle_last;
2799 
2800 	if (likely(ret >= last))
2801 		return ret;
2802 
2803 	/*
2804 	 * GCC likes to generate cmov here, but this branch is extremely
2805 	 * predictable (it's just a function of time and the likely is
2806 	 * very likely) and there's a data dependence, so force GCC
2807 	 * to generate a branch instead.  I don't barrier() because
2808 	 * we don't actually need a barrier, and if this function
2809 	 * ever gets inlined it will generate worse code.
2810 	 */
2811 	asm volatile ("");
2812 	return last;
2813 }
2814 
2815 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2816 			  int *mode)
2817 {
2818 	u64 tsc_pg_val;
2819 	long v;
2820 
2821 	switch (clock->vclock_mode) {
2822 	case VDSO_CLOCKMODE_HVCLOCK:
2823 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2824 					 tsc_timestamp, &tsc_pg_val)) {
2825 			/* TSC page valid */
2826 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2827 			v = (tsc_pg_val - clock->cycle_last) &
2828 				clock->mask;
2829 		} else {
2830 			/* TSC page invalid */
2831 			*mode = VDSO_CLOCKMODE_NONE;
2832 		}
2833 		break;
2834 	case VDSO_CLOCKMODE_TSC:
2835 		*mode = VDSO_CLOCKMODE_TSC;
2836 		*tsc_timestamp = read_tsc();
2837 		v = (*tsc_timestamp - clock->cycle_last) &
2838 			clock->mask;
2839 		break;
2840 	default:
2841 		*mode = VDSO_CLOCKMODE_NONE;
2842 	}
2843 
2844 	if (*mode == VDSO_CLOCKMODE_NONE)
2845 		*tsc_timestamp = v = 0;
2846 
2847 	return v * clock->mult;
2848 }
2849 
2850 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2851 {
2852 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2853 	unsigned long seq;
2854 	int mode;
2855 	u64 ns;
2856 
2857 	do {
2858 		seq = read_seqcount_begin(&gtod->seq);
2859 		ns = gtod->raw_clock.base_cycles;
2860 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2861 		ns >>= gtod->raw_clock.shift;
2862 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2863 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2864 	*t = ns;
2865 
2866 	return mode;
2867 }
2868 
2869 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2870 {
2871 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2872 	unsigned long seq;
2873 	int mode;
2874 	u64 ns;
2875 
2876 	do {
2877 		seq = read_seqcount_begin(&gtod->seq);
2878 		ts->tv_sec = gtod->wall_time_sec;
2879 		ns = gtod->clock.base_cycles;
2880 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2881 		ns >>= gtod->clock.shift;
2882 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2883 
2884 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2885 	ts->tv_nsec = ns;
2886 
2887 	return mode;
2888 }
2889 
2890 /* returns true if host is using TSC based clocksource */
2891 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2892 {
2893 	/* checked again under seqlock below */
2894 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2895 		return false;
2896 
2897 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2898 						      tsc_timestamp));
2899 }
2900 
2901 /* returns true if host is using TSC based clocksource */
2902 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2903 					   u64 *tsc_timestamp)
2904 {
2905 	/* checked again under seqlock below */
2906 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2907 		return false;
2908 
2909 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2910 }
2911 #endif
2912 
2913 /*
2914  *
2915  * Assuming a stable TSC across physical CPUS, and a stable TSC
2916  * across virtual CPUs, the following condition is possible.
2917  * Each numbered line represents an event visible to both
2918  * CPUs at the next numbered event.
2919  *
2920  * "timespecX" represents host monotonic time. "tscX" represents
2921  * RDTSC value.
2922  *
2923  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2924  *
2925  * 1.  read timespec0,tsc0
2926  * 2.					| timespec1 = timespec0 + N
2927  * 					| tsc1 = tsc0 + M
2928  * 3. transition to guest		| transition to guest
2929  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2930  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2931  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2932  *
2933  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2934  *
2935  * 	- ret0 < ret1
2936  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2937  *		...
2938  *	- 0 < N - M => M < N
2939  *
2940  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2941  * always the case (the difference between two distinct xtime instances
2942  * might be smaller then the difference between corresponding TSC reads,
2943  * when updating guest vcpus pvclock areas).
2944  *
2945  * To avoid that problem, do not allow visibility of distinct
2946  * system_timestamp/tsc_timestamp values simultaneously: use a master
2947  * copy of host monotonic time values. Update that master copy
2948  * in lockstep.
2949  *
2950  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2951  *
2952  */
2953 
2954 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2955 {
2956 #ifdef CONFIG_X86_64
2957 	struct kvm_arch *ka = &kvm->arch;
2958 	int vclock_mode;
2959 	bool host_tsc_clocksource, vcpus_matched;
2960 
2961 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2962 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2963 			atomic_read(&kvm->online_vcpus));
2964 
2965 	/*
2966 	 * If the host uses TSC clock, then passthrough TSC as stable
2967 	 * to the guest.
2968 	 */
2969 	host_tsc_clocksource = kvm_get_time_and_clockread(
2970 					&ka->master_kernel_ns,
2971 					&ka->master_cycle_now);
2972 
2973 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2974 				&& !ka->backwards_tsc_observed
2975 				&& !ka->boot_vcpu_runs_old_kvmclock;
2976 
2977 	if (ka->use_master_clock)
2978 		atomic_set(&kvm_guest_has_master_clock, 1);
2979 
2980 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2981 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2982 					vcpus_matched);
2983 #endif
2984 }
2985 
2986 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2987 {
2988 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2989 }
2990 
2991 static void __kvm_start_pvclock_update(struct kvm *kvm)
2992 {
2993 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2994 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2995 }
2996 
2997 static void kvm_start_pvclock_update(struct kvm *kvm)
2998 {
2999 	kvm_make_mclock_inprogress_request(kvm);
3000 
3001 	/* no guest entries from this point */
3002 	__kvm_start_pvclock_update(kvm);
3003 }
3004 
3005 static void kvm_end_pvclock_update(struct kvm *kvm)
3006 {
3007 	struct kvm_arch *ka = &kvm->arch;
3008 	struct kvm_vcpu *vcpu;
3009 	unsigned long i;
3010 
3011 	write_seqcount_end(&ka->pvclock_sc);
3012 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3013 	kvm_for_each_vcpu(i, vcpu, kvm)
3014 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3015 
3016 	/* guest entries allowed */
3017 	kvm_for_each_vcpu(i, vcpu, kvm)
3018 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3019 }
3020 
3021 static void kvm_update_masterclock(struct kvm *kvm)
3022 {
3023 	kvm_hv_request_tsc_page_update(kvm);
3024 	kvm_start_pvclock_update(kvm);
3025 	pvclock_update_vm_gtod_copy(kvm);
3026 	kvm_end_pvclock_update(kvm);
3027 }
3028 
3029 /*
3030  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3031  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3032  * can change during boot even if the TSC is constant, as it's possible for KVM
3033  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3034  * notification when calibration completes, but practically speaking calibration
3035  * will complete before userspace is alive enough to create VMs.
3036  */
3037 static unsigned long get_cpu_tsc_khz(void)
3038 {
3039 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3040 		return tsc_khz;
3041 	else
3042 		return __this_cpu_read(cpu_tsc_khz);
3043 }
3044 
3045 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3046 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3047 {
3048 	struct kvm_arch *ka = &kvm->arch;
3049 	struct pvclock_vcpu_time_info hv_clock;
3050 
3051 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3052 	get_cpu();
3053 
3054 	data->flags = 0;
3055 	if (ka->use_master_clock &&
3056 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3057 #ifdef CONFIG_X86_64
3058 		struct timespec64 ts;
3059 
3060 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3061 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3062 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3063 		} else
3064 #endif
3065 		data->host_tsc = rdtsc();
3066 
3067 		data->flags |= KVM_CLOCK_TSC_STABLE;
3068 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3069 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3070 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3071 				   &hv_clock.tsc_shift,
3072 				   &hv_clock.tsc_to_system_mul);
3073 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3074 	} else {
3075 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3076 	}
3077 
3078 	put_cpu();
3079 }
3080 
3081 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3082 {
3083 	struct kvm_arch *ka = &kvm->arch;
3084 	unsigned seq;
3085 
3086 	do {
3087 		seq = read_seqcount_begin(&ka->pvclock_sc);
3088 		__get_kvmclock(kvm, data);
3089 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3090 }
3091 
3092 u64 get_kvmclock_ns(struct kvm *kvm)
3093 {
3094 	struct kvm_clock_data data;
3095 
3096 	get_kvmclock(kvm, &data);
3097 	return data.clock;
3098 }
3099 
3100 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3101 				    struct gfn_to_pfn_cache *gpc,
3102 				    unsigned int offset)
3103 {
3104 	struct kvm_vcpu_arch *vcpu = &v->arch;
3105 	struct pvclock_vcpu_time_info *guest_hv_clock;
3106 	unsigned long flags;
3107 
3108 	read_lock_irqsave(&gpc->lock, flags);
3109 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3110 		read_unlock_irqrestore(&gpc->lock, flags);
3111 
3112 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3113 			return;
3114 
3115 		read_lock_irqsave(&gpc->lock, flags);
3116 	}
3117 
3118 	guest_hv_clock = (void *)(gpc->khva + offset);
3119 
3120 	/*
3121 	 * This VCPU is paused, but it's legal for a guest to read another
3122 	 * VCPU's kvmclock, so we really have to follow the specification where
3123 	 * it says that version is odd if data is being modified, and even after
3124 	 * it is consistent.
3125 	 */
3126 
3127 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3128 	smp_wmb();
3129 
3130 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3131 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3132 
3133 	if (vcpu->pvclock_set_guest_stopped_request) {
3134 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3135 		vcpu->pvclock_set_guest_stopped_request = false;
3136 	}
3137 
3138 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3139 	smp_wmb();
3140 
3141 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3142 
3143 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3144 	read_unlock_irqrestore(&gpc->lock, flags);
3145 
3146 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3147 }
3148 
3149 static int kvm_guest_time_update(struct kvm_vcpu *v)
3150 {
3151 	unsigned long flags, tgt_tsc_khz;
3152 	unsigned seq;
3153 	struct kvm_vcpu_arch *vcpu = &v->arch;
3154 	struct kvm_arch *ka = &v->kvm->arch;
3155 	s64 kernel_ns;
3156 	u64 tsc_timestamp, host_tsc;
3157 	u8 pvclock_flags;
3158 	bool use_master_clock;
3159 
3160 	kernel_ns = 0;
3161 	host_tsc = 0;
3162 
3163 	/*
3164 	 * If the host uses TSC clock, then passthrough TSC as stable
3165 	 * to the guest.
3166 	 */
3167 	do {
3168 		seq = read_seqcount_begin(&ka->pvclock_sc);
3169 		use_master_clock = ka->use_master_clock;
3170 		if (use_master_clock) {
3171 			host_tsc = ka->master_cycle_now;
3172 			kernel_ns = ka->master_kernel_ns;
3173 		}
3174 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3175 
3176 	/* Keep irq disabled to prevent changes to the clock */
3177 	local_irq_save(flags);
3178 	tgt_tsc_khz = get_cpu_tsc_khz();
3179 	if (unlikely(tgt_tsc_khz == 0)) {
3180 		local_irq_restore(flags);
3181 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3182 		return 1;
3183 	}
3184 	if (!use_master_clock) {
3185 		host_tsc = rdtsc();
3186 		kernel_ns = get_kvmclock_base_ns();
3187 	}
3188 
3189 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3190 
3191 	/*
3192 	 * We may have to catch up the TSC to match elapsed wall clock
3193 	 * time for two reasons, even if kvmclock is used.
3194 	 *   1) CPU could have been running below the maximum TSC rate
3195 	 *   2) Broken TSC compensation resets the base at each VCPU
3196 	 *      entry to avoid unknown leaps of TSC even when running
3197 	 *      again on the same CPU.  This may cause apparent elapsed
3198 	 *      time to disappear, and the guest to stand still or run
3199 	 *	very slowly.
3200 	 */
3201 	if (vcpu->tsc_catchup) {
3202 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3203 		if (tsc > tsc_timestamp) {
3204 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3205 			tsc_timestamp = tsc;
3206 		}
3207 	}
3208 
3209 	local_irq_restore(flags);
3210 
3211 	/* With all the info we got, fill in the values */
3212 
3213 	if (kvm_caps.has_tsc_control)
3214 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3215 					    v->arch.l1_tsc_scaling_ratio);
3216 
3217 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3218 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3219 				   &vcpu->hv_clock.tsc_shift,
3220 				   &vcpu->hv_clock.tsc_to_system_mul);
3221 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3222 		kvm_xen_update_tsc_info(v);
3223 	}
3224 
3225 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3226 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3227 	vcpu->last_guest_tsc = tsc_timestamp;
3228 
3229 	/* If the host uses TSC clocksource, then it is stable */
3230 	pvclock_flags = 0;
3231 	if (use_master_clock)
3232 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3233 
3234 	vcpu->hv_clock.flags = pvclock_flags;
3235 
3236 	if (vcpu->pv_time.active)
3237 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3238 	if (vcpu->xen.vcpu_info_cache.active)
3239 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3240 					offsetof(struct compat_vcpu_info, time));
3241 	if (vcpu->xen.vcpu_time_info_cache.active)
3242 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3243 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3244 	return 0;
3245 }
3246 
3247 /*
3248  * kvmclock updates which are isolated to a given vcpu, such as
3249  * vcpu->cpu migration, should not allow system_timestamp from
3250  * the rest of the vcpus to remain static. Otherwise ntp frequency
3251  * correction applies to one vcpu's system_timestamp but not
3252  * the others.
3253  *
3254  * So in those cases, request a kvmclock update for all vcpus.
3255  * We need to rate-limit these requests though, as they can
3256  * considerably slow guests that have a large number of vcpus.
3257  * The time for a remote vcpu to update its kvmclock is bound
3258  * by the delay we use to rate-limit the updates.
3259  */
3260 
3261 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3262 
3263 static void kvmclock_update_fn(struct work_struct *work)
3264 {
3265 	unsigned long i;
3266 	struct delayed_work *dwork = to_delayed_work(work);
3267 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3268 					   kvmclock_update_work);
3269 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3270 	struct kvm_vcpu *vcpu;
3271 
3272 	kvm_for_each_vcpu(i, vcpu, kvm) {
3273 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3274 		kvm_vcpu_kick(vcpu);
3275 	}
3276 }
3277 
3278 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3279 {
3280 	struct kvm *kvm = v->kvm;
3281 
3282 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3283 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3284 					KVMCLOCK_UPDATE_DELAY);
3285 }
3286 
3287 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3288 
3289 static void kvmclock_sync_fn(struct work_struct *work)
3290 {
3291 	struct delayed_work *dwork = to_delayed_work(work);
3292 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3293 					   kvmclock_sync_work);
3294 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3295 
3296 	if (!kvmclock_periodic_sync)
3297 		return;
3298 
3299 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3300 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3301 					KVMCLOCK_SYNC_PERIOD);
3302 }
3303 
3304 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3305 static bool is_mci_control_msr(u32 msr)
3306 {
3307 	return (msr & 3) == 0;
3308 }
3309 static bool is_mci_status_msr(u32 msr)
3310 {
3311 	return (msr & 3) == 1;
3312 }
3313 
3314 /*
3315  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3316  */
3317 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3318 {
3319 	/* McStatusWrEn enabled? */
3320 	if (guest_cpuid_is_amd_compatible(vcpu))
3321 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3322 
3323 	return false;
3324 }
3325 
3326 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3327 {
3328 	u64 mcg_cap = vcpu->arch.mcg_cap;
3329 	unsigned bank_num = mcg_cap & 0xff;
3330 	u32 msr = msr_info->index;
3331 	u64 data = msr_info->data;
3332 	u32 offset, last_msr;
3333 
3334 	switch (msr) {
3335 	case MSR_IA32_MCG_STATUS:
3336 		vcpu->arch.mcg_status = data;
3337 		break;
3338 	case MSR_IA32_MCG_CTL:
3339 		if (!(mcg_cap & MCG_CTL_P) &&
3340 		    (data || !msr_info->host_initiated))
3341 			return 1;
3342 		if (data != 0 && data != ~(u64)0)
3343 			return 1;
3344 		vcpu->arch.mcg_ctl = data;
3345 		break;
3346 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3347 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3348 		if (msr > last_msr)
3349 			return 1;
3350 
3351 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3352 			return 1;
3353 		/* An attempt to write a 1 to a reserved bit raises #GP */
3354 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3355 			return 1;
3356 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3357 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3358 		vcpu->arch.mci_ctl2_banks[offset] = data;
3359 		break;
3360 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3361 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3362 		if (msr > last_msr)
3363 			return 1;
3364 
3365 		/*
3366 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3367 		 * values are architecturally undefined.  But, some Linux
3368 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3369 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3370 		 * other bits in order to avoid an uncaught #GP in the guest.
3371 		 *
3372 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3373 		 * single-bit ECC data errors.
3374 		 */
3375 		if (is_mci_control_msr(msr) &&
3376 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3377 			return 1;
3378 
3379 		/*
3380 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3381 		 * AMD-based CPUs allow non-zero values, but if and only if
3382 		 * HWCR[McStatusWrEn] is set.
3383 		 */
3384 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3385 		    data != 0 && !can_set_mci_status(vcpu))
3386 			return 1;
3387 
3388 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3389 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3390 		vcpu->arch.mce_banks[offset] = data;
3391 		break;
3392 	default:
3393 		return 1;
3394 	}
3395 	return 0;
3396 }
3397 
3398 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3399 {
3400 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3401 
3402 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3403 }
3404 
3405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3406 {
3407 	gpa_t gpa = data & ~0x3f;
3408 
3409 	/* Bits 4:5 are reserved, Should be zero */
3410 	if (data & 0x30)
3411 		return 1;
3412 
3413 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3414 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3415 		return 1;
3416 
3417 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3418 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3419 		return 1;
3420 
3421 	if (!lapic_in_kernel(vcpu))
3422 		return data ? 1 : 0;
3423 
3424 	vcpu->arch.apf.msr_en_val = data;
3425 
3426 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3427 		kvm_clear_async_pf_completion_queue(vcpu);
3428 		kvm_async_pf_hash_reset(vcpu);
3429 		return 0;
3430 	}
3431 
3432 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3433 					sizeof(u64)))
3434 		return 1;
3435 
3436 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3437 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3438 
3439 	kvm_async_pf_wakeup_all(vcpu);
3440 
3441 	return 0;
3442 }
3443 
3444 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3445 {
3446 	/* Bits 8-63 are reserved */
3447 	if (data >> 8)
3448 		return 1;
3449 
3450 	if (!lapic_in_kernel(vcpu))
3451 		return 1;
3452 
3453 	vcpu->arch.apf.msr_int_val = data;
3454 
3455 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3456 
3457 	return 0;
3458 }
3459 
3460 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3461 {
3462 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3463 	vcpu->arch.time = 0;
3464 }
3465 
3466 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3467 {
3468 	++vcpu->stat.tlb_flush;
3469 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3470 
3471 	/* Flushing all ASIDs flushes the current ASID... */
3472 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3473 }
3474 
3475 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3476 {
3477 	++vcpu->stat.tlb_flush;
3478 
3479 	if (!tdp_enabled) {
3480 		/*
3481 		 * A TLB flush on behalf of the guest is equivalent to
3482 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3483 		 * a forced sync of the shadow page tables.  Ensure all the
3484 		 * roots are synced and the guest TLB in hardware is clean.
3485 		 */
3486 		kvm_mmu_sync_roots(vcpu);
3487 		kvm_mmu_sync_prev_roots(vcpu);
3488 	}
3489 
3490 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3491 
3492 	/*
3493 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3494 	 * grained flushing.
3495 	 */
3496 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3497 }
3498 
3499 
3500 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3501 {
3502 	++vcpu->stat.tlb_flush;
3503 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3504 }
3505 
3506 /*
3507  * Service "local" TLB flush requests, which are specific to the current MMU
3508  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3509  * TLB flushes that are targeted at an MMU context also need to be serviced
3510  * prior before nested VM-Enter/VM-Exit.
3511  */
3512 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3513 {
3514 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3515 		kvm_vcpu_flush_tlb_current(vcpu);
3516 
3517 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3518 		kvm_vcpu_flush_tlb_guest(vcpu);
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3521 
3522 static void record_steal_time(struct kvm_vcpu *vcpu)
3523 {
3524 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3525 	struct kvm_steal_time __user *st;
3526 	struct kvm_memslots *slots;
3527 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3528 	u64 steal;
3529 	u32 version;
3530 
3531 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3532 		kvm_xen_runstate_set_running(vcpu);
3533 		return;
3534 	}
3535 
3536 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3537 		return;
3538 
3539 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3540 		return;
3541 
3542 	slots = kvm_memslots(vcpu->kvm);
3543 
3544 	if (unlikely(slots->generation != ghc->generation ||
3545 		     gpa != ghc->gpa ||
3546 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3547 		/* We rely on the fact that it fits in a single page. */
3548 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3549 
3550 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3551 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3552 			return;
3553 	}
3554 
3555 	st = (struct kvm_steal_time __user *)ghc->hva;
3556 	/*
3557 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3558 	 * expensive IPIs.
3559 	 */
3560 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3561 		u8 st_preempted = 0;
3562 		int err = -EFAULT;
3563 
3564 		if (!user_access_begin(st, sizeof(*st)))
3565 			return;
3566 
3567 		asm volatile("1: xchgb %0, %2\n"
3568 			     "xor %1, %1\n"
3569 			     "2:\n"
3570 			     _ASM_EXTABLE_UA(1b, 2b)
3571 			     : "+q" (st_preempted),
3572 			       "+&r" (err),
3573 			       "+m" (st->preempted));
3574 		if (err)
3575 			goto out;
3576 
3577 		user_access_end();
3578 
3579 		vcpu->arch.st.preempted = 0;
3580 
3581 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3582 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3583 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3584 			kvm_vcpu_flush_tlb_guest(vcpu);
3585 
3586 		if (!user_access_begin(st, sizeof(*st)))
3587 			goto dirty;
3588 	} else {
3589 		if (!user_access_begin(st, sizeof(*st)))
3590 			return;
3591 
3592 		unsafe_put_user(0, &st->preempted, out);
3593 		vcpu->arch.st.preempted = 0;
3594 	}
3595 
3596 	unsafe_get_user(version, &st->version, out);
3597 	if (version & 1)
3598 		version += 1;  /* first time write, random junk */
3599 
3600 	version += 1;
3601 	unsafe_put_user(version, &st->version, out);
3602 
3603 	smp_wmb();
3604 
3605 	unsafe_get_user(steal, &st->steal, out);
3606 	steal += current->sched_info.run_delay -
3607 		vcpu->arch.st.last_steal;
3608 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3609 	unsafe_put_user(steal, &st->steal, out);
3610 
3611 	version += 1;
3612 	unsafe_put_user(version, &st->version, out);
3613 
3614  out:
3615 	user_access_end();
3616  dirty:
3617 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3618 }
3619 
3620 static bool kvm_is_msr_to_save(u32 msr_index)
3621 {
3622 	unsigned int i;
3623 
3624 	for (i = 0; i < num_msrs_to_save; i++) {
3625 		if (msrs_to_save[i] == msr_index)
3626 			return true;
3627 	}
3628 
3629 	return false;
3630 }
3631 
3632 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3633 {
3634 	u32 msr = msr_info->index;
3635 	u64 data = msr_info->data;
3636 
3637 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3638 		return kvm_xen_write_hypercall_page(vcpu, data);
3639 
3640 	switch (msr) {
3641 	case MSR_AMD64_NB_CFG:
3642 	case MSR_IA32_UCODE_WRITE:
3643 	case MSR_VM_HSAVE_PA:
3644 	case MSR_AMD64_PATCH_LOADER:
3645 	case MSR_AMD64_BU_CFG2:
3646 	case MSR_AMD64_DC_CFG:
3647 	case MSR_AMD64_TW_CFG:
3648 	case MSR_F15H_EX_CFG:
3649 		break;
3650 
3651 	case MSR_IA32_UCODE_REV:
3652 		if (msr_info->host_initiated)
3653 			vcpu->arch.microcode_version = data;
3654 		break;
3655 	case MSR_IA32_ARCH_CAPABILITIES:
3656 		if (!msr_info->host_initiated)
3657 			return 1;
3658 		vcpu->arch.arch_capabilities = data;
3659 		break;
3660 	case MSR_IA32_PERF_CAPABILITIES:
3661 		if (!msr_info->host_initiated)
3662 			return 1;
3663 		if (data & ~kvm_caps.supported_perf_cap)
3664 			return 1;
3665 
3666 		/*
3667 		 * Note, this is not just a performance optimization!  KVM
3668 		 * disallows changing feature MSRs after the vCPU has run; PMU
3669 		 * refresh will bug the VM if called after the vCPU has run.
3670 		 */
3671 		if (vcpu->arch.perf_capabilities == data)
3672 			break;
3673 
3674 		vcpu->arch.perf_capabilities = data;
3675 		kvm_pmu_refresh(vcpu);
3676 		break;
3677 	case MSR_IA32_PRED_CMD:
3678 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3679 			return 1;
3680 
3681 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3682 			return 1;
3683 		if (!data)
3684 			break;
3685 
3686 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3687 		break;
3688 	case MSR_IA32_FLUSH_CMD:
3689 		if (!msr_info->host_initiated &&
3690 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3691 			return 1;
3692 
3693 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3694 			return 1;
3695 		if (!data)
3696 			break;
3697 
3698 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3699 		break;
3700 	case MSR_EFER:
3701 		return set_efer(vcpu, msr_info);
3702 	case MSR_K7_HWCR:
3703 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3704 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3705 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3706 
3707 		/* Handle McStatusWrEn */
3708 		if (data == BIT_ULL(18)) {
3709 			vcpu->arch.msr_hwcr = data;
3710 		} else if (data != 0) {
3711 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3712 			return 1;
3713 		}
3714 		break;
3715 	case MSR_FAM10H_MMIO_CONF_BASE:
3716 		if (data != 0) {
3717 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3718 			return 1;
3719 		}
3720 		break;
3721 	case MSR_IA32_CR_PAT:
3722 		if (!kvm_pat_valid(data))
3723 			return 1;
3724 
3725 		vcpu->arch.pat = data;
3726 		break;
3727 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3728 	case MSR_MTRRdefType:
3729 		return kvm_mtrr_set_msr(vcpu, msr, data);
3730 	case MSR_IA32_APICBASE:
3731 		return kvm_set_apic_base(vcpu, msr_info);
3732 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3733 		return kvm_x2apic_msr_write(vcpu, msr, data);
3734 	case MSR_IA32_TSC_DEADLINE:
3735 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3736 		break;
3737 	case MSR_IA32_TSC_ADJUST:
3738 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3739 			if (!msr_info->host_initiated) {
3740 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3741 				adjust_tsc_offset_guest(vcpu, adj);
3742 				/* Before back to guest, tsc_timestamp must be adjusted
3743 				 * as well, otherwise guest's percpu pvclock time could jump.
3744 				 */
3745 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3746 			}
3747 			vcpu->arch.ia32_tsc_adjust_msr = data;
3748 		}
3749 		break;
3750 	case MSR_IA32_MISC_ENABLE: {
3751 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3752 
3753 		if (!msr_info->host_initiated) {
3754 			/* RO bits */
3755 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3756 				return 1;
3757 
3758 			/* R bits, i.e. writes are ignored, but don't fault. */
3759 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3760 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3761 		}
3762 
3763 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3764 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3765 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3766 				return 1;
3767 			vcpu->arch.ia32_misc_enable_msr = data;
3768 			kvm_update_cpuid_runtime(vcpu);
3769 		} else {
3770 			vcpu->arch.ia32_misc_enable_msr = data;
3771 		}
3772 		break;
3773 	}
3774 	case MSR_IA32_SMBASE:
3775 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3776 			return 1;
3777 		vcpu->arch.smbase = data;
3778 		break;
3779 	case MSR_IA32_POWER_CTL:
3780 		vcpu->arch.msr_ia32_power_ctl = data;
3781 		break;
3782 	case MSR_IA32_TSC:
3783 		if (msr_info->host_initiated) {
3784 			kvm_synchronize_tsc(vcpu, data);
3785 		} else {
3786 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3787 			adjust_tsc_offset_guest(vcpu, adj);
3788 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3789 		}
3790 		break;
3791 	case MSR_IA32_XSS:
3792 		if (!msr_info->host_initiated &&
3793 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3794 			return 1;
3795 		/*
3796 		 * KVM supports exposing PT to the guest, but does not support
3797 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3798 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3799 		 */
3800 		if (data & ~kvm_caps.supported_xss)
3801 			return 1;
3802 		vcpu->arch.ia32_xss = data;
3803 		kvm_update_cpuid_runtime(vcpu);
3804 		break;
3805 	case MSR_SMI_COUNT:
3806 		if (!msr_info->host_initiated)
3807 			return 1;
3808 		vcpu->arch.smi_count = data;
3809 		break;
3810 	case MSR_KVM_WALL_CLOCK_NEW:
3811 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3812 			return 1;
3813 
3814 		vcpu->kvm->arch.wall_clock = data;
3815 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3816 		break;
3817 	case MSR_KVM_WALL_CLOCK:
3818 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3819 			return 1;
3820 
3821 		vcpu->kvm->arch.wall_clock = data;
3822 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3823 		break;
3824 	case MSR_KVM_SYSTEM_TIME_NEW:
3825 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826 			return 1;
3827 
3828 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3829 		break;
3830 	case MSR_KVM_SYSTEM_TIME:
3831 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3832 			return 1;
3833 
3834 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3835 		break;
3836 	case MSR_KVM_ASYNC_PF_EN:
3837 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3838 			return 1;
3839 
3840 		if (kvm_pv_enable_async_pf(vcpu, data))
3841 			return 1;
3842 		break;
3843 	case MSR_KVM_ASYNC_PF_INT:
3844 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3845 			return 1;
3846 
3847 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3848 			return 1;
3849 		break;
3850 	case MSR_KVM_ASYNC_PF_ACK:
3851 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3852 			return 1;
3853 		if (data & 0x1) {
3854 			vcpu->arch.apf.pageready_pending = false;
3855 			kvm_check_async_pf_completion(vcpu);
3856 		}
3857 		break;
3858 	case MSR_KVM_STEAL_TIME:
3859 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3860 			return 1;
3861 
3862 		if (unlikely(!sched_info_on()))
3863 			return 1;
3864 
3865 		if (data & KVM_STEAL_RESERVED_MASK)
3866 			return 1;
3867 
3868 		vcpu->arch.st.msr_val = data;
3869 
3870 		if (!(data & KVM_MSR_ENABLED))
3871 			break;
3872 
3873 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3874 
3875 		break;
3876 	case MSR_KVM_PV_EOI_EN:
3877 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3878 			return 1;
3879 
3880 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3881 			return 1;
3882 		break;
3883 
3884 	case MSR_KVM_POLL_CONTROL:
3885 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3886 			return 1;
3887 
3888 		/* only enable bit supported */
3889 		if (data & (-1ULL << 1))
3890 			return 1;
3891 
3892 		vcpu->arch.msr_kvm_poll_control = data;
3893 		break;
3894 
3895 	case MSR_IA32_MCG_CTL:
3896 	case MSR_IA32_MCG_STATUS:
3897 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3898 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3899 		return set_msr_mce(vcpu, msr_info);
3900 
3901 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3902 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3903 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3904 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3905 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3906 			return kvm_pmu_set_msr(vcpu, msr_info);
3907 
3908 		if (data)
3909 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3910 		break;
3911 	case MSR_K7_CLK_CTL:
3912 		/*
3913 		 * Ignore all writes to this no longer documented MSR.
3914 		 * Writes are only relevant for old K7 processors,
3915 		 * all pre-dating SVM, but a recommended workaround from
3916 		 * AMD for these chips. It is possible to specify the
3917 		 * affected processor models on the command line, hence
3918 		 * the need to ignore the workaround.
3919 		 */
3920 		break;
3921 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3922 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3923 	case HV_X64_MSR_SYNDBG_OPTIONS:
3924 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3925 	case HV_X64_MSR_CRASH_CTL:
3926 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3927 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3928 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3929 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3930 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3931 		return kvm_hv_set_msr_common(vcpu, msr, data,
3932 					     msr_info->host_initiated);
3933 	case MSR_IA32_BBL_CR_CTL3:
3934 		/* Drop writes to this legacy MSR -- see rdmsr
3935 		 * counterpart for further detail.
3936 		 */
3937 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3938 		break;
3939 	case MSR_AMD64_OSVW_ID_LENGTH:
3940 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3941 			return 1;
3942 		vcpu->arch.osvw.length = data;
3943 		break;
3944 	case MSR_AMD64_OSVW_STATUS:
3945 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3946 			return 1;
3947 		vcpu->arch.osvw.status = data;
3948 		break;
3949 	case MSR_PLATFORM_INFO:
3950 		if (!msr_info->host_initiated ||
3951 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3952 		     cpuid_fault_enabled(vcpu)))
3953 			return 1;
3954 		vcpu->arch.msr_platform_info = data;
3955 		break;
3956 	case MSR_MISC_FEATURES_ENABLES:
3957 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3958 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3959 		     !supports_cpuid_fault(vcpu)))
3960 			return 1;
3961 		vcpu->arch.msr_misc_features_enables = data;
3962 		break;
3963 #ifdef CONFIG_X86_64
3964 	case MSR_IA32_XFD:
3965 		if (!msr_info->host_initiated &&
3966 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3967 			return 1;
3968 
3969 		if (data & ~kvm_guest_supported_xfd(vcpu))
3970 			return 1;
3971 
3972 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3973 		break;
3974 	case MSR_IA32_XFD_ERR:
3975 		if (!msr_info->host_initiated &&
3976 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3977 			return 1;
3978 
3979 		if (data & ~kvm_guest_supported_xfd(vcpu))
3980 			return 1;
3981 
3982 		vcpu->arch.guest_fpu.xfd_err = data;
3983 		break;
3984 #endif
3985 	default:
3986 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3987 			return kvm_pmu_set_msr(vcpu, msr_info);
3988 
3989 		/*
3990 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3991 		 * as to-be-saved, even if an MSRs isn't fully supported.
3992 		 */
3993 		if (msr_info->host_initiated && !data &&
3994 		    kvm_is_msr_to_save(msr))
3995 			break;
3996 
3997 		return KVM_MSR_RET_INVALID;
3998 	}
3999 	return 0;
4000 }
4001 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4002 
4003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4004 {
4005 	u64 data;
4006 	u64 mcg_cap = vcpu->arch.mcg_cap;
4007 	unsigned bank_num = mcg_cap & 0xff;
4008 	u32 offset, last_msr;
4009 
4010 	switch (msr) {
4011 	case MSR_IA32_P5_MC_ADDR:
4012 	case MSR_IA32_P5_MC_TYPE:
4013 		data = 0;
4014 		break;
4015 	case MSR_IA32_MCG_CAP:
4016 		data = vcpu->arch.mcg_cap;
4017 		break;
4018 	case MSR_IA32_MCG_CTL:
4019 		if (!(mcg_cap & MCG_CTL_P) && !host)
4020 			return 1;
4021 		data = vcpu->arch.mcg_ctl;
4022 		break;
4023 	case MSR_IA32_MCG_STATUS:
4024 		data = vcpu->arch.mcg_status;
4025 		break;
4026 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4027 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4028 		if (msr > last_msr)
4029 			return 1;
4030 
4031 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4032 			return 1;
4033 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4034 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4035 		data = vcpu->arch.mci_ctl2_banks[offset];
4036 		break;
4037 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4039 		if (msr > last_msr)
4040 			return 1;
4041 
4042 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4043 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4044 		data = vcpu->arch.mce_banks[offset];
4045 		break;
4046 	default:
4047 		return 1;
4048 	}
4049 	*pdata = data;
4050 	return 0;
4051 }
4052 
4053 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4054 {
4055 	switch (msr_info->index) {
4056 	case MSR_IA32_PLATFORM_ID:
4057 	case MSR_IA32_EBL_CR_POWERON:
4058 	case MSR_IA32_LASTBRANCHFROMIP:
4059 	case MSR_IA32_LASTBRANCHTOIP:
4060 	case MSR_IA32_LASTINTFROMIP:
4061 	case MSR_IA32_LASTINTTOIP:
4062 	case MSR_AMD64_SYSCFG:
4063 	case MSR_K8_TSEG_ADDR:
4064 	case MSR_K8_TSEG_MASK:
4065 	case MSR_VM_HSAVE_PA:
4066 	case MSR_K8_INT_PENDING_MSG:
4067 	case MSR_AMD64_NB_CFG:
4068 	case MSR_FAM10H_MMIO_CONF_BASE:
4069 	case MSR_AMD64_BU_CFG2:
4070 	case MSR_IA32_PERF_CTL:
4071 	case MSR_AMD64_DC_CFG:
4072 	case MSR_AMD64_TW_CFG:
4073 	case MSR_F15H_EX_CFG:
4074 	/*
4075 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4076 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4077 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4078 	 * so for existing CPU-specific MSRs.
4079 	 */
4080 	case MSR_RAPL_POWER_UNIT:
4081 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4082 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4083 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4084 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4085 		msr_info->data = 0;
4086 		break;
4087 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4088 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4089 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4090 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4091 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4092 			return kvm_pmu_get_msr(vcpu, msr_info);
4093 		msr_info->data = 0;
4094 		break;
4095 	case MSR_IA32_UCODE_REV:
4096 		msr_info->data = vcpu->arch.microcode_version;
4097 		break;
4098 	case MSR_IA32_ARCH_CAPABILITIES:
4099 		if (!msr_info->host_initiated &&
4100 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4101 			return 1;
4102 		msr_info->data = vcpu->arch.arch_capabilities;
4103 		break;
4104 	case MSR_IA32_PERF_CAPABILITIES:
4105 		if (!msr_info->host_initiated &&
4106 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4107 			return 1;
4108 		msr_info->data = vcpu->arch.perf_capabilities;
4109 		break;
4110 	case MSR_IA32_POWER_CTL:
4111 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4112 		break;
4113 	case MSR_IA32_TSC: {
4114 		/*
4115 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4116 		 * even when not intercepted. AMD manual doesn't explicitly
4117 		 * state this but appears to behave the same.
4118 		 *
4119 		 * On userspace reads and writes, however, we unconditionally
4120 		 * return L1's TSC value to ensure backwards-compatible
4121 		 * behavior for migration.
4122 		 */
4123 		u64 offset, ratio;
4124 
4125 		if (msr_info->host_initiated) {
4126 			offset = vcpu->arch.l1_tsc_offset;
4127 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4128 		} else {
4129 			offset = vcpu->arch.tsc_offset;
4130 			ratio = vcpu->arch.tsc_scaling_ratio;
4131 		}
4132 
4133 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4134 		break;
4135 	}
4136 	case MSR_IA32_CR_PAT:
4137 		msr_info->data = vcpu->arch.pat;
4138 		break;
4139 	case MSR_MTRRcap:
4140 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4141 	case MSR_MTRRdefType:
4142 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4143 	case 0xcd: /* fsb frequency */
4144 		msr_info->data = 3;
4145 		break;
4146 		/*
4147 		 * MSR_EBC_FREQUENCY_ID
4148 		 * Conservative value valid for even the basic CPU models.
4149 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4150 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4151 		 * and 266MHz for model 3, or 4. Set Core Clock
4152 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4153 		 * 31:24) even though these are only valid for CPU
4154 		 * models > 2, however guests may end up dividing or
4155 		 * multiplying by zero otherwise.
4156 		 */
4157 	case MSR_EBC_FREQUENCY_ID:
4158 		msr_info->data = 1 << 24;
4159 		break;
4160 	case MSR_IA32_APICBASE:
4161 		msr_info->data = kvm_get_apic_base(vcpu);
4162 		break;
4163 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4164 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4165 	case MSR_IA32_TSC_DEADLINE:
4166 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4167 		break;
4168 	case MSR_IA32_TSC_ADJUST:
4169 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4170 		break;
4171 	case MSR_IA32_MISC_ENABLE:
4172 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4173 		break;
4174 	case MSR_IA32_SMBASE:
4175 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4176 			return 1;
4177 		msr_info->data = vcpu->arch.smbase;
4178 		break;
4179 	case MSR_SMI_COUNT:
4180 		msr_info->data = vcpu->arch.smi_count;
4181 		break;
4182 	case MSR_IA32_PERF_STATUS:
4183 		/* TSC increment by tick */
4184 		msr_info->data = 1000ULL;
4185 		/* CPU multiplier */
4186 		msr_info->data |= (((uint64_t)4ULL) << 40);
4187 		break;
4188 	case MSR_EFER:
4189 		msr_info->data = vcpu->arch.efer;
4190 		break;
4191 	case MSR_KVM_WALL_CLOCK:
4192 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4193 			return 1;
4194 
4195 		msr_info->data = vcpu->kvm->arch.wall_clock;
4196 		break;
4197 	case MSR_KVM_WALL_CLOCK_NEW:
4198 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4199 			return 1;
4200 
4201 		msr_info->data = vcpu->kvm->arch.wall_clock;
4202 		break;
4203 	case MSR_KVM_SYSTEM_TIME:
4204 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4205 			return 1;
4206 
4207 		msr_info->data = vcpu->arch.time;
4208 		break;
4209 	case MSR_KVM_SYSTEM_TIME_NEW:
4210 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4211 			return 1;
4212 
4213 		msr_info->data = vcpu->arch.time;
4214 		break;
4215 	case MSR_KVM_ASYNC_PF_EN:
4216 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4217 			return 1;
4218 
4219 		msr_info->data = vcpu->arch.apf.msr_en_val;
4220 		break;
4221 	case MSR_KVM_ASYNC_PF_INT:
4222 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4223 			return 1;
4224 
4225 		msr_info->data = vcpu->arch.apf.msr_int_val;
4226 		break;
4227 	case MSR_KVM_ASYNC_PF_ACK:
4228 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4229 			return 1;
4230 
4231 		msr_info->data = 0;
4232 		break;
4233 	case MSR_KVM_STEAL_TIME:
4234 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4235 			return 1;
4236 
4237 		msr_info->data = vcpu->arch.st.msr_val;
4238 		break;
4239 	case MSR_KVM_PV_EOI_EN:
4240 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4241 			return 1;
4242 
4243 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4244 		break;
4245 	case MSR_KVM_POLL_CONTROL:
4246 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4247 			return 1;
4248 
4249 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4250 		break;
4251 	case MSR_IA32_P5_MC_ADDR:
4252 	case MSR_IA32_P5_MC_TYPE:
4253 	case MSR_IA32_MCG_CAP:
4254 	case MSR_IA32_MCG_CTL:
4255 	case MSR_IA32_MCG_STATUS:
4256 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4257 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4258 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4259 				   msr_info->host_initiated);
4260 	case MSR_IA32_XSS:
4261 		if (!msr_info->host_initiated &&
4262 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4263 			return 1;
4264 		msr_info->data = vcpu->arch.ia32_xss;
4265 		break;
4266 	case MSR_K7_CLK_CTL:
4267 		/*
4268 		 * Provide expected ramp-up count for K7. All other
4269 		 * are set to zero, indicating minimum divisors for
4270 		 * every field.
4271 		 *
4272 		 * This prevents guest kernels on AMD host with CPU
4273 		 * type 6, model 8 and higher from exploding due to
4274 		 * the rdmsr failing.
4275 		 */
4276 		msr_info->data = 0x20000000;
4277 		break;
4278 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4279 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4280 	case HV_X64_MSR_SYNDBG_OPTIONS:
4281 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4282 	case HV_X64_MSR_CRASH_CTL:
4283 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4284 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4285 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4286 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4287 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4288 		return kvm_hv_get_msr_common(vcpu,
4289 					     msr_info->index, &msr_info->data,
4290 					     msr_info->host_initiated);
4291 	case MSR_IA32_BBL_CR_CTL3:
4292 		/* This legacy MSR exists but isn't fully documented in current
4293 		 * silicon.  It is however accessed by winxp in very narrow
4294 		 * scenarios where it sets bit #19, itself documented as
4295 		 * a "reserved" bit.  Best effort attempt to source coherent
4296 		 * read data here should the balance of the register be
4297 		 * interpreted by the guest:
4298 		 *
4299 		 * L2 cache control register 3: 64GB range, 256KB size,
4300 		 * enabled, latency 0x1, configured
4301 		 */
4302 		msr_info->data = 0xbe702111;
4303 		break;
4304 	case MSR_AMD64_OSVW_ID_LENGTH:
4305 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4306 			return 1;
4307 		msr_info->data = vcpu->arch.osvw.length;
4308 		break;
4309 	case MSR_AMD64_OSVW_STATUS:
4310 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4311 			return 1;
4312 		msr_info->data = vcpu->arch.osvw.status;
4313 		break;
4314 	case MSR_PLATFORM_INFO:
4315 		if (!msr_info->host_initiated &&
4316 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4317 			return 1;
4318 		msr_info->data = vcpu->arch.msr_platform_info;
4319 		break;
4320 	case MSR_MISC_FEATURES_ENABLES:
4321 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4322 		break;
4323 	case MSR_K7_HWCR:
4324 		msr_info->data = vcpu->arch.msr_hwcr;
4325 		break;
4326 #ifdef CONFIG_X86_64
4327 	case MSR_IA32_XFD:
4328 		if (!msr_info->host_initiated &&
4329 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4330 			return 1;
4331 
4332 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4333 		break;
4334 	case MSR_IA32_XFD_ERR:
4335 		if (!msr_info->host_initiated &&
4336 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4337 			return 1;
4338 
4339 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4340 		break;
4341 #endif
4342 	default:
4343 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4344 			return kvm_pmu_get_msr(vcpu, msr_info);
4345 
4346 		/*
4347 		 * Userspace is allowed to read MSRs that KVM reports as
4348 		 * to-be-saved, even if an MSR isn't fully supported.
4349 		 */
4350 		if (msr_info->host_initiated &&
4351 		    kvm_is_msr_to_save(msr_info->index)) {
4352 			msr_info->data = 0;
4353 			break;
4354 		}
4355 
4356 		return KVM_MSR_RET_INVALID;
4357 	}
4358 	return 0;
4359 }
4360 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4361 
4362 /*
4363  * Read or write a bunch of msrs. All parameters are kernel addresses.
4364  *
4365  * @return number of msrs set successfully.
4366  */
4367 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4368 		    struct kvm_msr_entry *entries,
4369 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4370 				  unsigned index, u64 *data))
4371 {
4372 	int i;
4373 
4374 	for (i = 0; i < msrs->nmsrs; ++i)
4375 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4376 			break;
4377 
4378 	return i;
4379 }
4380 
4381 /*
4382  * Read or write a bunch of msrs. Parameters are user addresses.
4383  *
4384  * @return number of msrs set successfully.
4385  */
4386 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4387 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4388 				unsigned index, u64 *data),
4389 		  int writeback)
4390 {
4391 	struct kvm_msrs msrs;
4392 	struct kvm_msr_entry *entries;
4393 	unsigned size;
4394 	int r;
4395 
4396 	r = -EFAULT;
4397 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4398 		goto out;
4399 
4400 	r = -E2BIG;
4401 	if (msrs.nmsrs >= MAX_IO_MSRS)
4402 		goto out;
4403 
4404 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4405 	entries = memdup_user(user_msrs->entries, size);
4406 	if (IS_ERR(entries)) {
4407 		r = PTR_ERR(entries);
4408 		goto out;
4409 	}
4410 
4411 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4412 
4413 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4414 		r = -EFAULT;
4415 
4416 	kfree(entries);
4417 out:
4418 	return r;
4419 }
4420 
4421 static inline bool kvm_can_mwait_in_guest(void)
4422 {
4423 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4424 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4425 		boot_cpu_has(X86_FEATURE_ARAT);
4426 }
4427 
4428 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4429 					    struct kvm_cpuid2 __user *cpuid_arg)
4430 {
4431 	struct kvm_cpuid2 cpuid;
4432 	int r;
4433 
4434 	r = -EFAULT;
4435 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436 		return r;
4437 
4438 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4439 	if (r)
4440 		return r;
4441 
4442 	r = -EFAULT;
4443 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4444 		return r;
4445 
4446 	return 0;
4447 }
4448 
4449 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4450 {
4451 	int r = 0;
4452 
4453 	switch (ext) {
4454 	case KVM_CAP_IRQCHIP:
4455 	case KVM_CAP_HLT:
4456 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4457 	case KVM_CAP_SET_TSS_ADDR:
4458 	case KVM_CAP_EXT_CPUID:
4459 	case KVM_CAP_EXT_EMUL_CPUID:
4460 	case KVM_CAP_CLOCKSOURCE:
4461 	case KVM_CAP_PIT:
4462 	case KVM_CAP_NOP_IO_DELAY:
4463 	case KVM_CAP_MP_STATE:
4464 	case KVM_CAP_SYNC_MMU:
4465 	case KVM_CAP_USER_NMI:
4466 	case KVM_CAP_REINJECT_CONTROL:
4467 	case KVM_CAP_IRQ_INJECT_STATUS:
4468 	case KVM_CAP_IOEVENTFD:
4469 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4470 	case KVM_CAP_PIT2:
4471 	case KVM_CAP_PIT_STATE2:
4472 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4473 	case KVM_CAP_VCPU_EVENTS:
4474 	case KVM_CAP_HYPERV:
4475 	case KVM_CAP_HYPERV_VAPIC:
4476 	case KVM_CAP_HYPERV_SPIN:
4477 	case KVM_CAP_HYPERV_SYNIC:
4478 	case KVM_CAP_HYPERV_SYNIC2:
4479 	case KVM_CAP_HYPERV_VP_INDEX:
4480 	case KVM_CAP_HYPERV_EVENTFD:
4481 	case KVM_CAP_HYPERV_TLBFLUSH:
4482 	case KVM_CAP_HYPERV_SEND_IPI:
4483 	case KVM_CAP_HYPERV_CPUID:
4484 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4485 	case KVM_CAP_SYS_HYPERV_CPUID:
4486 	case KVM_CAP_PCI_SEGMENT:
4487 	case KVM_CAP_DEBUGREGS:
4488 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4489 	case KVM_CAP_XSAVE:
4490 	case KVM_CAP_ASYNC_PF:
4491 	case KVM_CAP_ASYNC_PF_INT:
4492 	case KVM_CAP_GET_TSC_KHZ:
4493 	case KVM_CAP_KVMCLOCK_CTRL:
4494 	case KVM_CAP_READONLY_MEM:
4495 	case KVM_CAP_HYPERV_TIME:
4496 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4497 	case KVM_CAP_TSC_DEADLINE_TIMER:
4498 	case KVM_CAP_DISABLE_QUIRKS:
4499 	case KVM_CAP_SET_BOOT_CPU_ID:
4500  	case KVM_CAP_SPLIT_IRQCHIP:
4501 	case KVM_CAP_IMMEDIATE_EXIT:
4502 	case KVM_CAP_PMU_EVENT_FILTER:
4503 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4504 	case KVM_CAP_GET_MSR_FEATURES:
4505 	case KVM_CAP_MSR_PLATFORM_INFO:
4506 	case KVM_CAP_EXCEPTION_PAYLOAD:
4507 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4508 	case KVM_CAP_SET_GUEST_DEBUG:
4509 	case KVM_CAP_LAST_CPU:
4510 	case KVM_CAP_X86_USER_SPACE_MSR:
4511 	case KVM_CAP_X86_MSR_FILTER:
4512 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4513 #ifdef CONFIG_X86_SGX_KVM
4514 	case KVM_CAP_SGX_ATTRIBUTE:
4515 #endif
4516 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4517 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4518 	case KVM_CAP_SREGS2:
4519 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4520 	case KVM_CAP_VCPU_ATTRIBUTES:
4521 	case KVM_CAP_SYS_ATTRIBUTES:
4522 	case KVM_CAP_VAPIC:
4523 	case KVM_CAP_ENABLE_CAP:
4524 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4525 	case KVM_CAP_IRQFD_RESAMPLE:
4526 		r = 1;
4527 		break;
4528 	case KVM_CAP_EXIT_HYPERCALL:
4529 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4530 		break;
4531 	case KVM_CAP_SET_GUEST_DEBUG2:
4532 		return KVM_GUESTDBG_VALID_MASK;
4533 #ifdef CONFIG_KVM_XEN
4534 	case KVM_CAP_XEN_HVM:
4535 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4536 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4537 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4538 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4539 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4540 		if (sched_info_on())
4541 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4542 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4543 		break;
4544 #endif
4545 	case KVM_CAP_SYNC_REGS:
4546 		r = KVM_SYNC_X86_VALID_FIELDS;
4547 		break;
4548 	case KVM_CAP_ADJUST_CLOCK:
4549 		r = KVM_CLOCK_VALID_FLAGS;
4550 		break;
4551 	case KVM_CAP_X86_DISABLE_EXITS:
4552 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4553 
4554 		if (!mitigate_smt_rsb) {
4555 			r |= KVM_X86_DISABLE_EXITS_HLT |
4556 			     KVM_X86_DISABLE_EXITS_CSTATE;
4557 
4558 			if (kvm_can_mwait_in_guest())
4559 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4560 		}
4561 		break;
4562 	case KVM_CAP_X86_SMM:
4563 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4564 			break;
4565 
4566 		/* SMBASE is usually relocated above 1M on modern chipsets,
4567 		 * and SMM handlers might indeed rely on 4G segment limits,
4568 		 * so do not report SMM to be available if real mode is
4569 		 * emulated via vm86 mode.  Still, do not go to great lengths
4570 		 * to avoid userspace's usage of the feature, because it is a
4571 		 * fringe case that is not enabled except via specific settings
4572 		 * of the module parameters.
4573 		 */
4574 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4575 		break;
4576 	case KVM_CAP_NR_VCPUS:
4577 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4578 		break;
4579 	case KVM_CAP_MAX_VCPUS:
4580 		r = KVM_MAX_VCPUS;
4581 		break;
4582 	case KVM_CAP_MAX_VCPU_ID:
4583 		r = KVM_MAX_VCPU_IDS;
4584 		break;
4585 	case KVM_CAP_PV_MMU:	/* obsolete */
4586 		r = 0;
4587 		break;
4588 	case KVM_CAP_MCE:
4589 		r = KVM_MAX_MCE_BANKS;
4590 		break;
4591 	case KVM_CAP_XCRS:
4592 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4593 		break;
4594 	case KVM_CAP_TSC_CONTROL:
4595 	case KVM_CAP_VM_TSC_CONTROL:
4596 		r = kvm_caps.has_tsc_control;
4597 		break;
4598 	case KVM_CAP_X2APIC_API:
4599 		r = KVM_X2APIC_API_VALID_FLAGS;
4600 		break;
4601 	case KVM_CAP_NESTED_STATE:
4602 		r = kvm_x86_ops.nested_ops->get_state ?
4603 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4604 		break;
4605 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4606 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4607 		break;
4608 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4609 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4610 		break;
4611 	case KVM_CAP_SMALLER_MAXPHYADDR:
4612 		r = (int) allow_smaller_maxphyaddr;
4613 		break;
4614 	case KVM_CAP_STEAL_TIME:
4615 		r = sched_info_on();
4616 		break;
4617 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4618 		if (kvm_caps.has_bus_lock_exit)
4619 			r = KVM_BUS_LOCK_DETECTION_OFF |
4620 			    KVM_BUS_LOCK_DETECTION_EXIT;
4621 		else
4622 			r = 0;
4623 		break;
4624 	case KVM_CAP_XSAVE2: {
4625 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4626 		if (r < sizeof(struct kvm_xsave))
4627 			r = sizeof(struct kvm_xsave);
4628 		break;
4629 	}
4630 	case KVM_CAP_PMU_CAPABILITY:
4631 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4632 		break;
4633 	case KVM_CAP_DISABLE_QUIRKS2:
4634 		r = KVM_X86_VALID_QUIRKS;
4635 		break;
4636 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4637 		r = kvm_caps.has_notify_vmexit;
4638 		break;
4639 	default:
4640 		break;
4641 	}
4642 	return r;
4643 }
4644 
4645 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4646 {
4647 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4648 
4649 	if ((u64)(unsigned long)uaddr != attr->addr)
4650 		return ERR_PTR_USR(-EFAULT);
4651 	return uaddr;
4652 }
4653 
4654 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4655 {
4656 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4657 
4658 	if (attr->group)
4659 		return -ENXIO;
4660 
4661 	if (IS_ERR(uaddr))
4662 		return PTR_ERR(uaddr);
4663 
4664 	switch (attr->attr) {
4665 	case KVM_X86_XCOMP_GUEST_SUPP:
4666 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4667 			return -EFAULT;
4668 		return 0;
4669 	default:
4670 		return -ENXIO;
4671 	}
4672 }
4673 
4674 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4675 {
4676 	if (attr->group)
4677 		return -ENXIO;
4678 
4679 	switch (attr->attr) {
4680 	case KVM_X86_XCOMP_GUEST_SUPP:
4681 		return 0;
4682 	default:
4683 		return -ENXIO;
4684 	}
4685 }
4686 
4687 long kvm_arch_dev_ioctl(struct file *filp,
4688 			unsigned int ioctl, unsigned long arg)
4689 {
4690 	void __user *argp = (void __user *)arg;
4691 	long r;
4692 
4693 	switch (ioctl) {
4694 	case KVM_GET_MSR_INDEX_LIST: {
4695 		struct kvm_msr_list __user *user_msr_list = argp;
4696 		struct kvm_msr_list msr_list;
4697 		unsigned n;
4698 
4699 		r = -EFAULT;
4700 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4701 			goto out;
4702 		n = msr_list.nmsrs;
4703 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4704 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4705 			goto out;
4706 		r = -E2BIG;
4707 		if (n < msr_list.nmsrs)
4708 			goto out;
4709 		r = -EFAULT;
4710 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4711 				 num_msrs_to_save * sizeof(u32)))
4712 			goto out;
4713 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4714 				 &emulated_msrs,
4715 				 num_emulated_msrs * sizeof(u32)))
4716 			goto out;
4717 		r = 0;
4718 		break;
4719 	}
4720 	case KVM_GET_SUPPORTED_CPUID:
4721 	case KVM_GET_EMULATED_CPUID: {
4722 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4723 		struct kvm_cpuid2 cpuid;
4724 
4725 		r = -EFAULT;
4726 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4727 			goto out;
4728 
4729 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4730 					    ioctl);
4731 		if (r)
4732 			goto out;
4733 
4734 		r = -EFAULT;
4735 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4736 			goto out;
4737 		r = 0;
4738 		break;
4739 	}
4740 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4741 		r = -EFAULT;
4742 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4743 				 sizeof(kvm_caps.supported_mce_cap)))
4744 			goto out;
4745 		r = 0;
4746 		break;
4747 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4748 		struct kvm_msr_list __user *user_msr_list = argp;
4749 		struct kvm_msr_list msr_list;
4750 		unsigned int n;
4751 
4752 		r = -EFAULT;
4753 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4754 			goto out;
4755 		n = msr_list.nmsrs;
4756 		msr_list.nmsrs = num_msr_based_features;
4757 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4758 			goto out;
4759 		r = -E2BIG;
4760 		if (n < msr_list.nmsrs)
4761 			goto out;
4762 		r = -EFAULT;
4763 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4764 				 num_msr_based_features * sizeof(u32)))
4765 			goto out;
4766 		r = 0;
4767 		break;
4768 	}
4769 	case KVM_GET_MSRS:
4770 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4771 		break;
4772 	case KVM_GET_SUPPORTED_HV_CPUID:
4773 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4774 		break;
4775 	case KVM_GET_DEVICE_ATTR: {
4776 		struct kvm_device_attr attr;
4777 		r = -EFAULT;
4778 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4779 			break;
4780 		r = kvm_x86_dev_get_attr(&attr);
4781 		break;
4782 	}
4783 	case KVM_HAS_DEVICE_ATTR: {
4784 		struct kvm_device_attr attr;
4785 		r = -EFAULT;
4786 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4787 			break;
4788 		r = kvm_x86_dev_has_attr(&attr);
4789 		break;
4790 	}
4791 	default:
4792 		r = -EINVAL;
4793 		break;
4794 	}
4795 out:
4796 	return r;
4797 }
4798 
4799 static void wbinvd_ipi(void *garbage)
4800 {
4801 	wbinvd();
4802 }
4803 
4804 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4805 {
4806 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4807 }
4808 
4809 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4810 {
4811 	/* Address WBINVD may be executed by guest */
4812 	if (need_emulate_wbinvd(vcpu)) {
4813 		if (static_call(kvm_x86_has_wbinvd_exit)())
4814 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4815 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4816 			smp_call_function_single(vcpu->cpu,
4817 					wbinvd_ipi, NULL, 1);
4818 	}
4819 
4820 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4821 
4822 	/* Save host pkru register if supported */
4823 	vcpu->arch.host_pkru = read_pkru();
4824 
4825 	/* Apply any externally detected TSC adjustments (due to suspend) */
4826 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4827 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4828 		vcpu->arch.tsc_offset_adjustment = 0;
4829 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4830 	}
4831 
4832 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4833 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4834 				rdtsc() - vcpu->arch.last_host_tsc;
4835 		if (tsc_delta < 0)
4836 			mark_tsc_unstable("KVM discovered backwards TSC");
4837 
4838 		if (kvm_check_tsc_unstable()) {
4839 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4840 						vcpu->arch.last_guest_tsc);
4841 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4842 			vcpu->arch.tsc_catchup = 1;
4843 		}
4844 
4845 		if (kvm_lapic_hv_timer_in_use(vcpu))
4846 			kvm_lapic_restart_hv_timer(vcpu);
4847 
4848 		/*
4849 		 * On a host with synchronized TSC, there is no need to update
4850 		 * kvmclock on vcpu->cpu migration
4851 		 */
4852 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4853 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4854 		if (vcpu->cpu != cpu)
4855 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4856 		vcpu->cpu = cpu;
4857 	}
4858 
4859 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4860 }
4861 
4862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4863 {
4864 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4865 	struct kvm_steal_time __user *st;
4866 	struct kvm_memslots *slots;
4867 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4868 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4869 
4870 	/*
4871 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4872 	 * an instruction boundary and will not trigger guest emulation of any
4873 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4874 	 * when this is true, for example allowing the vCPU to be marked
4875 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4876 	 */
4877 	if (!vcpu->arch.at_instruction_boundary) {
4878 		vcpu->stat.preemption_other++;
4879 		return;
4880 	}
4881 
4882 	vcpu->stat.preemption_reported++;
4883 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4884 		return;
4885 
4886 	if (vcpu->arch.st.preempted)
4887 		return;
4888 
4889 	/* This happens on process exit */
4890 	if (unlikely(current->mm != vcpu->kvm->mm))
4891 		return;
4892 
4893 	slots = kvm_memslots(vcpu->kvm);
4894 
4895 	if (unlikely(slots->generation != ghc->generation ||
4896 		     gpa != ghc->gpa ||
4897 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4898 		return;
4899 
4900 	st = (struct kvm_steal_time __user *)ghc->hva;
4901 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4902 
4903 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4904 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4905 
4906 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4907 }
4908 
4909 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4910 {
4911 	int idx;
4912 
4913 	if (vcpu->preempted) {
4914 		if (!vcpu->arch.guest_state_protected)
4915 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4916 
4917 		/*
4918 		 * Take the srcu lock as memslots will be accessed to check the gfn
4919 		 * cache generation against the memslots generation.
4920 		 */
4921 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4922 		if (kvm_xen_msr_enabled(vcpu->kvm))
4923 			kvm_xen_runstate_set_preempted(vcpu);
4924 		else
4925 			kvm_steal_time_set_preempted(vcpu);
4926 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4927 	}
4928 
4929 	static_call(kvm_x86_vcpu_put)(vcpu);
4930 	vcpu->arch.last_host_tsc = rdtsc();
4931 }
4932 
4933 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4934 				    struct kvm_lapic_state *s)
4935 {
4936 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4937 
4938 	return kvm_apic_get_state(vcpu, s);
4939 }
4940 
4941 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4942 				    struct kvm_lapic_state *s)
4943 {
4944 	int r;
4945 
4946 	r = kvm_apic_set_state(vcpu, s);
4947 	if (r)
4948 		return r;
4949 	update_cr8_intercept(vcpu);
4950 
4951 	return 0;
4952 }
4953 
4954 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4955 {
4956 	/*
4957 	 * We can accept userspace's request for interrupt injection
4958 	 * as long as we have a place to store the interrupt number.
4959 	 * The actual injection will happen when the CPU is able to
4960 	 * deliver the interrupt.
4961 	 */
4962 	if (kvm_cpu_has_extint(vcpu))
4963 		return false;
4964 
4965 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4966 	return (!lapic_in_kernel(vcpu) ||
4967 		kvm_apic_accept_pic_intr(vcpu));
4968 }
4969 
4970 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4971 {
4972 	/*
4973 	 * Do not cause an interrupt window exit if an exception
4974 	 * is pending or an event needs reinjection; userspace
4975 	 * might want to inject the interrupt manually using KVM_SET_REGS
4976 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4977 	 * instruction boundary and with no events half-injected.
4978 	 */
4979 	return (kvm_arch_interrupt_allowed(vcpu) &&
4980 		kvm_cpu_accept_dm_intr(vcpu) &&
4981 		!kvm_event_needs_reinjection(vcpu) &&
4982 		!kvm_is_exception_pending(vcpu));
4983 }
4984 
4985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4986 				    struct kvm_interrupt *irq)
4987 {
4988 	if (irq->irq >= KVM_NR_INTERRUPTS)
4989 		return -EINVAL;
4990 
4991 	if (!irqchip_in_kernel(vcpu->kvm)) {
4992 		kvm_queue_interrupt(vcpu, irq->irq, false);
4993 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4994 		return 0;
4995 	}
4996 
4997 	/*
4998 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4999 	 * fail for in-kernel 8259.
5000 	 */
5001 	if (pic_in_kernel(vcpu->kvm))
5002 		return -ENXIO;
5003 
5004 	if (vcpu->arch.pending_external_vector != -1)
5005 		return -EEXIST;
5006 
5007 	vcpu->arch.pending_external_vector = irq->irq;
5008 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5009 	return 0;
5010 }
5011 
5012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5013 {
5014 	kvm_inject_nmi(vcpu);
5015 
5016 	return 0;
5017 }
5018 
5019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5020 					   struct kvm_tpr_access_ctl *tac)
5021 {
5022 	if (tac->flags)
5023 		return -EINVAL;
5024 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5025 	return 0;
5026 }
5027 
5028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5029 					u64 mcg_cap)
5030 {
5031 	int r;
5032 	unsigned bank_num = mcg_cap & 0xff, bank;
5033 
5034 	r = -EINVAL;
5035 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5036 		goto out;
5037 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5038 		goto out;
5039 	r = 0;
5040 	vcpu->arch.mcg_cap = mcg_cap;
5041 	/* Init IA32_MCG_CTL to all 1s */
5042 	if (mcg_cap & MCG_CTL_P)
5043 		vcpu->arch.mcg_ctl = ~(u64)0;
5044 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5045 	for (bank = 0; bank < bank_num; bank++) {
5046 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5047 		if (mcg_cap & MCG_CMCI_P)
5048 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5049 	}
5050 
5051 	kvm_apic_after_set_mcg_cap(vcpu);
5052 
5053 	static_call(kvm_x86_setup_mce)(vcpu);
5054 out:
5055 	return r;
5056 }
5057 
5058 /*
5059  * Validate this is an UCNA (uncorrectable no action) error by checking the
5060  * MCG_STATUS and MCi_STATUS registers:
5061  * - none of the bits for Machine Check Exceptions are set
5062  * - both the VAL (valid) and UC (uncorrectable) bits are set
5063  * MCI_STATUS_PCC - Processor Context Corrupted
5064  * MCI_STATUS_S - Signaled as a Machine Check Exception
5065  * MCI_STATUS_AR - Software recoverable Action Required
5066  */
5067 static bool is_ucna(struct kvm_x86_mce *mce)
5068 {
5069 	return	!mce->mcg_status &&
5070 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5071 		(mce->status & MCI_STATUS_VAL) &&
5072 		(mce->status & MCI_STATUS_UC);
5073 }
5074 
5075 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5076 {
5077 	u64 mcg_cap = vcpu->arch.mcg_cap;
5078 
5079 	banks[1] = mce->status;
5080 	banks[2] = mce->addr;
5081 	banks[3] = mce->misc;
5082 	vcpu->arch.mcg_status = mce->mcg_status;
5083 
5084 	if (!(mcg_cap & MCG_CMCI_P) ||
5085 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5086 		return 0;
5087 
5088 	if (lapic_in_kernel(vcpu))
5089 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5090 
5091 	return 0;
5092 }
5093 
5094 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5095 				      struct kvm_x86_mce *mce)
5096 {
5097 	u64 mcg_cap = vcpu->arch.mcg_cap;
5098 	unsigned bank_num = mcg_cap & 0xff;
5099 	u64 *banks = vcpu->arch.mce_banks;
5100 
5101 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5102 		return -EINVAL;
5103 
5104 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5105 
5106 	if (is_ucna(mce))
5107 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5108 
5109 	/*
5110 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5111 	 * reporting is disabled
5112 	 */
5113 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5114 	    vcpu->arch.mcg_ctl != ~(u64)0)
5115 		return 0;
5116 	/*
5117 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5118 	 * reporting is disabled for the bank
5119 	 */
5120 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5121 		return 0;
5122 	if (mce->status & MCI_STATUS_UC) {
5123 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5124 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5125 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126 			return 0;
5127 		}
5128 		if (banks[1] & MCI_STATUS_VAL)
5129 			mce->status |= MCI_STATUS_OVER;
5130 		banks[2] = mce->addr;
5131 		banks[3] = mce->misc;
5132 		vcpu->arch.mcg_status = mce->mcg_status;
5133 		banks[1] = mce->status;
5134 		kvm_queue_exception(vcpu, MC_VECTOR);
5135 	} else if (!(banks[1] & MCI_STATUS_VAL)
5136 		   || !(banks[1] & MCI_STATUS_UC)) {
5137 		if (banks[1] & MCI_STATUS_VAL)
5138 			mce->status |= MCI_STATUS_OVER;
5139 		banks[2] = mce->addr;
5140 		banks[3] = mce->misc;
5141 		banks[1] = mce->status;
5142 	} else
5143 		banks[1] |= MCI_STATUS_OVER;
5144 	return 0;
5145 }
5146 
5147 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5148 					       struct kvm_vcpu_events *events)
5149 {
5150 	struct kvm_queued_exception *ex;
5151 
5152 	process_nmi(vcpu);
5153 
5154 #ifdef CONFIG_KVM_SMM
5155 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5156 		process_smi(vcpu);
5157 #endif
5158 
5159 	/*
5160 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5161 	 * the only time there can be two queued exceptions is if there's a
5162 	 * non-exiting _injected_ exception, and a pending exiting exception.
5163 	 * In that case, ignore the VM-Exiting exception as it's an extension
5164 	 * of the injected exception.
5165 	 */
5166 	if (vcpu->arch.exception_vmexit.pending &&
5167 	    !vcpu->arch.exception.pending &&
5168 	    !vcpu->arch.exception.injected)
5169 		ex = &vcpu->arch.exception_vmexit;
5170 	else
5171 		ex = &vcpu->arch.exception;
5172 
5173 	/*
5174 	 * In guest mode, payload delivery should be deferred if the exception
5175 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5176 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5177 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5178 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5179 	 * the payload if the capability hasn't been requested.
5180 	 */
5181 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5182 	    ex->pending && ex->has_payload)
5183 		kvm_deliver_exception_payload(vcpu, ex);
5184 
5185 	memset(events, 0, sizeof(*events));
5186 
5187 	/*
5188 	 * The API doesn't provide the instruction length for software
5189 	 * exceptions, so don't report them. As long as the guest RIP
5190 	 * isn't advanced, we should expect to encounter the exception
5191 	 * again.
5192 	 */
5193 	if (!kvm_exception_is_soft(ex->vector)) {
5194 		events->exception.injected = ex->injected;
5195 		events->exception.pending = ex->pending;
5196 		/*
5197 		 * For ABI compatibility, deliberately conflate
5198 		 * pending and injected exceptions when
5199 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5200 		 */
5201 		if (!vcpu->kvm->arch.exception_payload_enabled)
5202 			events->exception.injected |= ex->pending;
5203 	}
5204 	events->exception.nr = ex->vector;
5205 	events->exception.has_error_code = ex->has_error_code;
5206 	events->exception.error_code = ex->error_code;
5207 	events->exception_has_payload = ex->has_payload;
5208 	events->exception_payload = ex->payload;
5209 
5210 	events->interrupt.injected =
5211 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5212 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5213 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5214 
5215 	events->nmi.injected = vcpu->arch.nmi_injected;
5216 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5217 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5218 
5219 	/* events->sipi_vector is never valid when reporting to user space */
5220 
5221 #ifdef CONFIG_KVM_SMM
5222 	events->smi.smm = is_smm(vcpu);
5223 	events->smi.pending = vcpu->arch.smi_pending;
5224 	events->smi.smm_inside_nmi =
5225 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5226 #endif
5227 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5228 
5229 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5230 			 | KVM_VCPUEVENT_VALID_SHADOW
5231 			 | KVM_VCPUEVENT_VALID_SMM);
5232 	if (vcpu->kvm->arch.exception_payload_enabled)
5233 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5234 	if (vcpu->kvm->arch.triple_fault_event) {
5235 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5237 	}
5238 }
5239 
5240 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5241 					      struct kvm_vcpu_events *events)
5242 {
5243 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5244 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5245 			      | KVM_VCPUEVENT_VALID_SHADOW
5246 			      | KVM_VCPUEVENT_VALID_SMM
5247 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5248 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5249 		return -EINVAL;
5250 
5251 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5252 		if (!vcpu->kvm->arch.exception_payload_enabled)
5253 			return -EINVAL;
5254 		if (events->exception.pending)
5255 			events->exception.injected = 0;
5256 		else
5257 			events->exception_has_payload = 0;
5258 	} else {
5259 		events->exception.pending = 0;
5260 		events->exception_has_payload = 0;
5261 	}
5262 
5263 	if ((events->exception.injected || events->exception.pending) &&
5264 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5265 		return -EINVAL;
5266 
5267 	/* INITs are latched while in SMM */
5268 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5269 	    (events->smi.smm || events->smi.pending) &&
5270 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5271 		return -EINVAL;
5272 
5273 	process_nmi(vcpu);
5274 
5275 	/*
5276 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5277 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5278 	 * pending exceptions, already-injected exceptions are not subject to
5279 	 * intercpetion.  Note, userspace that conflates pending and injected
5280 	 * is hosed, and will incorrectly convert an injected exception into a
5281 	 * pending exception, which in turn may cause a spurious VM-Exit.
5282 	 */
5283 	vcpu->arch.exception_from_userspace = events->exception.pending;
5284 
5285 	vcpu->arch.exception_vmexit.pending = false;
5286 
5287 	vcpu->arch.exception.injected = events->exception.injected;
5288 	vcpu->arch.exception.pending = events->exception.pending;
5289 	vcpu->arch.exception.vector = events->exception.nr;
5290 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5291 	vcpu->arch.exception.error_code = events->exception.error_code;
5292 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5293 	vcpu->arch.exception.payload = events->exception_payload;
5294 
5295 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5296 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5297 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5298 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5299 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5300 						events->interrupt.shadow);
5301 
5302 	vcpu->arch.nmi_injected = events->nmi.injected;
5303 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5304 		vcpu->arch.nmi_pending = 0;
5305 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5306 		if (events->nmi.pending)
5307 			kvm_make_request(KVM_REQ_NMI, vcpu);
5308 	}
5309 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5310 
5311 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5312 	    lapic_in_kernel(vcpu))
5313 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5314 
5315 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5316 #ifdef CONFIG_KVM_SMM
5317 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5318 			kvm_leave_nested(vcpu);
5319 			kvm_smm_changed(vcpu, events->smi.smm);
5320 		}
5321 
5322 		vcpu->arch.smi_pending = events->smi.pending;
5323 
5324 		if (events->smi.smm) {
5325 			if (events->smi.smm_inside_nmi)
5326 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5327 			else
5328 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5329 		}
5330 
5331 #else
5332 		if (events->smi.smm || events->smi.pending ||
5333 		    events->smi.smm_inside_nmi)
5334 			return -EINVAL;
5335 #endif
5336 
5337 		if (lapic_in_kernel(vcpu)) {
5338 			if (events->smi.latched_init)
5339 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5340 			else
5341 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342 		}
5343 	}
5344 
5345 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5346 		if (!vcpu->kvm->arch.triple_fault_event)
5347 			return -EINVAL;
5348 		if (events->triple_fault.pending)
5349 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5350 		else
5351 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352 	}
5353 
5354 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5355 
5356 	return 0;
5357 }
5358 
5359 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5360 					     struct kvm_debugregs *dbgregs)
5361 {
5362 	unsigned long val;
5363 
5364 	memset(dbgregs, 0, sizeof(*dbgregs));
5365 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5366 	kvm_get_dr(vcpu, 6, &val);
5367 	dbgregs->dr6 = val;
5368 	dbgregs->dr7 = vcpu->arch.dr7;
5369 }
5370 
5371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5372 					    struct kvm_debugregs *dbgregs)
5373 {
5374 	if (dbgregs->flags)
5375 		return -EINVAL;
5376 
5377 	if (!kvm_dr6_valid(dbgregs->dr6))
5378 		return -EINVAL;
5379 	if (!kvm_dr7_valid(dbgregs->dr7))
5380 		return -EINVAL;
5381 
5382 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5383 	kvm_update_dr0123(vcpu);
5384 	vcpu->arch.dr6 = dbgregs->dr6;
5385 	vcpu->arch.dr7 = dbgregs->dr7;
5386 	kvm_update_dr7(vcpu);
5387 
5388 	return 0;
5389 }
5390 
5391 
5392 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5393 					  u8 *state, unsigned int size)
5394 {
5395 	/*
5396 	 * Only copy state for features that are enabled for the guest.  The
5397 	 * state itself isn't problematic, but setting bits in the header for
5398 	 * features that are supported in *this* host but not exposed to the
5399 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5400 	 * compatible host without the features that are NOT exposed to the
5401 	 * guest.
5402 	 *
5403 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5404 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5405 	 * supported by the host.
5406 	 */
5407 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5408 			     XFEATURE_MASK_FPSSE;
5409 
5410 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5411 		return;
5412 
5413 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5414 				       supported_xcr0, vcpu->arch.pkru);
5415 }
5416 
5417 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5418 					 struct kvm_xsave *guest_xsave)
5419 {
5420 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5421 					     sizeof(guest_xsave->region));
5422 }
5423 
5424 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5425 					struct kvm_xsave *guest_xsave)
5426 {
5427 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5428 		return 0;
5429 
5430 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5431 					      guest_xsave->region,
5432 					      kvm_caps.supported_xcr0,
5433 					      &vcpu->arch.pkru);
5434 }
5435 
5436 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5437 					struct kvm_xcrs *guest_xcrs)
5438 {
5439 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5440 		guest_xcrs->nr_xcrs = 0;
5441 		return;
5442 	}
5443 
5444 	guest_xcrs->nr_xcrs = 1;
5445 	guest_xcrs->flags = 0;
5446 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5447 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5448 }
5449 
5450 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5451 				       struct kvm_xcrs *guest_xcrs)
5452 {
5453 	int i, r = 0;
5454 
5455 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5456 		return -EINVAL;
5457 
5458 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5459 		return -EINVAL;
5460 
5461 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5462 		/* Only support XCR0 currently */
5463 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5464 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5465 				guest_xcrs->xcrs[i].value);
5466 			break;
5467 		}
5468 	if (r)
5469 		r = -EINVAL;
5470 	return r;
5471 }
5472 
5473 /*
5474  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5475  * stopped by the hypervisor.  This function will be called from the host only.
5476  * EINVAL is returned when the host attempts to set the flag for a guest that
5477  * does not support pv clocks.
5478  */
5479 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5480 {
5481 	if (!vcpu->arch.pv_time.active)
5482 		return -EINVAL;
5483 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5484 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5485 	return 0;
5486 }
5487 
5488 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5489 				 struct kvm_device_attr *attr)
5490 {
5491 	int r;
5492 
5493 	switch (attr->attr) {
5494 	case KVM_VCPU_TSC_OFFSET:
5495 		r = 0;
5496 		break;
5497 	default:
5498 		r = -ENXIO;
5499 	}
5500 
5501 	return r;
5502 }
5503 
5504 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5505 				 struct kvm_device_attr *attr)
5506 {
5507 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5508 	int r;
5509 
5510 	if (IS_ERR(uaddr))
5511 		return PTR_ERR(uaddr);
5512 
5513 	switch (attr->attr) {
5514 	case KVM_VCPU_TSC_OFFSET:
5515 		r = -EFAULT;
5516 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5517 			break;
5518 		r = 0;
5519 		break;
5520 	default:
5521 		r = -ENXIO;
5522 	}
5523 
5524 	return r;
5525 }
5526 
5527 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5528 				 struct kvm_device_attr *attr)
5529 {
5530 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5531 	struct kvm *kvm = vcpu->kvm;
5532 	int r;
5533 
5534 	if (IS_ERR(uaddr))
5535 		return PTR_ERR(uaddr);
5536 
5537 	switch (attr->attr) {
5538 	case KVM_VCPU_TSC_OFFSET: {
5539 		u64 offset, tsc, ns;
5540 		unsigned long flags;
5541 		bool matched;
5542 
5543 		r = -EFAULT;
5544 		if (get_user(offset, uaddr))
5545 			break;
5546 
5547 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5548 
5549 		matched = (vcpu->arch.virtual_tsc_khz &&
5550 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5551 			   kvm->arch.last_tsc_offset == offset);
5552 
5553 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5554 		ns = get_kvmclock_base_ns();
5555 
5556 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5557 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5558 
5559 		r = 0;
5560 		break;
5561 	}
5562 	default:
5563 		r = -ENXIO;
5564 	}
5565 
5566 	return r;
5567 }
5568 
5569 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5570 				      unsigned int ioctl,
5571 				      void __user *argp)
5572 {
5573 	struct kvm_device_attr attr;
5574 	int r;
5575 
5576 	if (copy_from_user(&attr, argp, sizeof(attr)))
5577 		return -EFAULT;
5578 
5579 	if (attr.group != KVM_VCPU_TSC_CTRL)
5580 		return -ENXIO;
5581 
5582 	switch (ioctl) {
5583 	case KVM_HAS_DEVICE_ATTR:
5584 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5585 		break;
5586 	case KVM_GET_DEVICE_ATTR:
5587 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5588 		break;
5589 	case KVM_SET_DEVICE_ATTR:
5590 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5591 		break;
5592 	}
5593 
5594 	return r;
5595 }
5596 
5597 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5598 				     struct kvm_enable_cap *cap)
5599 {
5600 	int r;
5601 	uint16_t vmcs_version;
5602 	void __user *user_ptr;
5603 
5604 	if (cap->flags)
5605 		return -EINVAL;
5606 
5607 	switch (cap->cap) {
5608 	case KVM_CAP_HYPERV_SYNIC2:
5609 		if (cap->args[0])
5610 			return -EINVAL;
5611 		fallthrough;
5612 
5613 	case KVM_CAP_HYPERV_SYNIC:
5614 		if (!irqchip_in_kernel(vcpu->kvm))
5615 			return -EINVAL;
5616 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5617 					     KVM_CAP_HYPERV_SYNIC2);
5618 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5619 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5620 			return -ENOTTY;
5621 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5622 		if (!r) {
5623 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5624 			if (copy_to_user(user_ptr, &vmcs_version,
5625 					 sizeof(vmcs_version)))
5626 				r = -EFAULT;
5627 		}
5628 		return r;
5629 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5630 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5631 			return -ENOTTY;
5632 
5633 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5634 
5635 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5636 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5637 
5638 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5639 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5640 		if (vcpu->arch.pv_cpuid.enforce)
5641 			kvm_update_pv_runtime(vcpu);
5642 
5643 		return 0;
5644 	default:
5645 		return -EINVAL;
5646 	}
5647 }
5648 
5649 long kvm_arch_vcpu_ioctl(struct file *filp,
5650 			 unsigned int ioctl, unsigned long arg)
5651 {
5652 	struct kvm_vcpu *vcpu = filp->private_data;
5653 	void __user *argp = (void __user *)arg;
5654 	int r;
5655 	union {
5656 		struct kvm_sregs2 *sregs2;
5657 		struct kvm_lapic_state *lapic;
5658 		struct kvm_xsave *xsave;
5659 		struct kvm_xcrs *xcrs;
5660 		void *buffer;
5661 	} u;
5662 
5663 	vcpu_load(vcpu);
5664 
5665 	u.buffer = NULL;
5666 	switch (ioctl) {
5667 	case KVM_GET_LAPIC: {
5668 		r = -EINVAL;
5669 		if (!lapic_in_kernel(vcpu))
5670 			goto out;
5671 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5672 				GFP_KERNEL_ACCOUNT);
5673 
5674 		r = -ENOMEM;
5675 		if (!u.lapic)
5676 			goto out;
5677 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5678 		if (r)
5679 			goto out;
5680 		r = -EFAULT;
5681 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5682 			goto out;
5683 		r = 0;
5684 		break;
5685 	}
5686 	case KVM_SET_LAPIC: {
5687 		r = -EINVAL;
5688 		if (!lapic_in_kernel(vcpu))
5689 			goto out;
5690 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5691 		if (IS_ERR(u.lapic)) {
5692 			r = PTR_ERR(u.lapic);
5693 			goto out_nofree;
5694 		}
5695 
5696 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5697 		break;
5698 	}
5699 	case KVM_INTERRUPT: {
5700 		struct kvm_interrupt irq;
5701 
5702 		r = -EFAULT;
5703 		if (copy_from_user(&irq, argp, sizeof(irq)))
5704 			goto out;
5705 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5706 		break;
5707 	}
5708 	case KVM_NMI: {
5709 		r = kvm_vcpu_ioctl_nmi(vcpu);
5710 		break;
5711 	}
5712 	case KVM_SMI: {
5713 		r = kvm_inject_smi(vcpu);
5714 		break;
5715 	}
5716 	case KVM_SET_CPUID: {
5717 		struct kvm_cpuid __user *cpuid_arg = argp;
5718 		struct kvm_cpuid cpuid;
5719 
5720 		r = -EFAULT;
5721 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5722 			goto out;
5723 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5724 		break;
5725 	}
5726 	case KVM_SET_CPUID2: {
5727 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5728 		struct kvm_cpuid2 cpuid;
5729 
5730 		r = -EFAULT;
5731 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5732 			goto out;
5733 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5734 					      cpuid_arg->entries);
5735 		break;
5736 	}
5737 	case KVM_GET_CPUID2: {
5738 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5739 		struct kvm_cpuid2 cpuid;
5740 
5741 		r = -EFAULT;
5742 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5743 			goto out;
5744 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5745 					      cpuid_arg->entries);
5746 		if (r)
5747 			goto out;
5748 		r = -EFAULT;
5749 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5750 			goto out;
5751 		r = 0;
5752 		break;
5753 	}
5754 	case KVM_GET_MSRS: {
5755 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5756 		r = msr_io(vcpu, argp, do_get_msr, 1);
5757 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5758 		break;
5759 	}
5760 	case KVM_SET_MSRS: {
5761 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5762 		r = msr_io(vcpu, argp, do_set_msr, 0);
5763 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5764 		break;
5765 	}
5766 	case KVM_TPR_ACCESS_REPORTING: {
5767 		struct kvm_tpr_access_ctl tac;
5768 
5769 		r = -EFAULT;
5770 		if (copy_from_user(&tac, argp, sizeof(tac)))
5771 			goto out;
5772 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5773 		if (r)
5774 			goto out;
5775 		r = -EFAULT;
5776 		if (copy_to_user(argp, &tac, sizeof(tac)))
5777 			goto out;
5778 		r = 0;
5779 		break;
5780 	};
5781 	case KVM_SET_VAPIC_ADDR: {
5782 		struct kvm_vapic_addr va;
5783 		int idx;
5784 
5785 		r = -EINVAL;
5786 		if (!lapic_in_kernel(vcpu))
5787 			goto out;
5788 		r = -EFAULT;
5789 		if (copy_from_user(&va, argp, sizeof(va)))
5790 			goto out;
5791 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5792 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5793 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5794 		break;
5795 	}
5796 	case KVM_X86_SETUP_MCE: {
5797 		u64 mcg_cap;
5798 
5799 		r = -EFAULT;
5800 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5801 			goto out;
5802 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5803 		break;
5804 	}
5805 	case KVM_X86_SET_MCE: {
5806 		struct kvm_x86_mce mce;
5807 
5808 		r = -EFAULT;
5809 		if (copy_from_user(&mce, argp, sizeof(mce)))
5810 			goto out;
5811 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5812 		break;
5813 	}
5814 	case KVM_GET_VCPU_EVENTS: {
5815 		struct kvm_vcpu_events events;
5816 
5817 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5818 
5819 		r = -EFAULT;
5820 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5821 			break;
5822 		r = 0;
5823 		break;
5824 	}
5825 	case KVM_SET_VCPU_EVENTS: {
5826 		struct kvm_vcpu_events events;
5827 
5828 		r = -EFAULT;
5829 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5830 			break;
5831 
5832 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5833 		break;
5834 	}
5835 	case KVM_GET_DEBUGREGS: {
5836 		struct kvm_debugregs dbgregs;
5837 
5838 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5839 
5840 		r = -EFAULT;
5841 		if (copy_to_user(argp, &dbgregs,
5842 				 sizeof(struct kvm_debugregs)))
5843 			break;
5844 		r = 0;
5845 		break;
5846 	}
5847 	case KVM_SET_DEBUGREGS: {
5848 		struct kvm_debugregs dbgregs;
5849 
5850 		r = -EFAULT;
5851 		if (copy_from_user(&dbgregs, argp,
5852 				   sizeof(struct kvm_debugregs)))
5853 			break;
5854 
5855 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5856 		break;
5857 	}
5858 	case KVM_GET_XSAVE: {
5859 		r = -EINVAL;
5860 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5861 			break;
5862 
5863 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5864 		r = -ENOMEM;
5865 		if (!u.xsave)
5866 			break;
5867 
5868 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5869 
5870 		r = -EFAULT;
5871 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5872 			break;
5873 		r = 0;
5874 		break;
5875 	}
5876 	case KVM_SET_XSAVE: {
5877 		int size = vcpu->arch.guest_fpu.uabi_size;
5878 
5879 		u.xsave = memdup_user(argp, size);
5880 		if (IS_ERR(u.xsave)) {
5881 			r = PTR_ERR(u.xsave);
5882 			goto out_nofree;
5883 		}
5884 
5885 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5886 		break;
5887 	}
5888 
5889 	case KVM_GET_XSAVE2: {
5890 		int size = vcpu->arch.guest_fpu.uabi_size;
5891 
5892 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5893 		r = -ENOMEM;
5894 		if (!u.xsave)
5895 			break;
5896 
5897 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5898 
5899 		r = -EFAULT;
5900 		if (copy_to_user(argp, u.xsave, size))
5901 			break;
5902 
5903 		r = 0;
5904 		break;
5905 	}
5906 
5907 	case KVM_GET_XCRS: {
5908 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5909 		r = -ENOMEM;
5910 		if (!u.xcrs)
5911 			break;
5912 
5913 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5914 
5915 		r = -EFAULT;
5916 		if (copy_to_user(argp, u.xcrs,
5917 				 sizeof(struct kvm_xcrs)))
5918 			break;
5919 		r = 0;
5920 		break;
5921 	}
5922 	case KVM_SET_XCRS: {
5923 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5924 		if (IS_ERR(u.xcrs)) {
5925 			r = PTR_ERR(u.xcrs);
5926 			goto out_nofree;
5927 		}
5928 
5929 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5930 		break;
5931 	}
5932 	case KVM_SET_TSC_KHZ: {
5933 		u32 user_tsc_khz;
5934 
5935 		r = -EINVAL;
5936 		user_tsc_khz = (u32)arg;
5937 
5938 		if (kvm_caps.has_tsc_control &&
5939 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5940 			goto out;
5941 
5942 		if (user_tsc_khz == 0)
5943 			user_tsc_khz = tsc_khz;
5944 
5945 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5946 			r = 0;
5947 
5948 		goto out;
5949 	}
5950 	case KVM_GET_TSC_KHZ: {
5951 		r = vcpu->arch.virtual_tsc_khz;
5952 		goto out;
5953 	}
5954 	case KVM_KVMCLOCK_CTRL: {
5955 		r = kvm_set_guest_paused(vcpu);
5956 		goto out;
5957 	}
5958 	case KVM_ENABLE_CAP: {
5959 		struct kvm_enable_cap cap;
5960 
5961 		r = -EFAULT;
5962 		if (copy_from_user(&cap, argp, sizeof(cap)))
5963 			goto out;
5964 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5965 		break;
5966 	}
5967 	case KVM_GET_NESTED_STATE: {
5968 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5969 		u32 user_data_size;
5970 
5971 		r = -EINVAL;
5972 		if (!kvm_x86_ops.nested_ops->get_state)
5973 			break;
5974 
5975 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5976 		r = -EFAULT;
5977 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5978 			break;
5979 
5980 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5981 						     user_data_size);
5982 		if (r < 0)
5983 			break;
5984 
5985 		if (r > user_data_size) {
5986 			if (put_user(r, &user_kvm_nested_state->size))
5987 				r = -EFAULT;
5988 			else
5989 				r = -E2BIG;
5990 			break;
5991 		}
5992 
5993 		r = 0;
5994 		break;
5995 	}
5996 	case KVM_SET_NESTED_STATE: {
5997 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5998 		struct kvm_nested_state kvm_state;
5999 		int idx;
6000 
6001 		r = -EINVAL;
6002 		if (!kvm_x86_ops.nested_ops->set_state)
6003 			break;
6004 
6005 		r = -EFAULT;
6006 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6007 			break;
6008 
6009 		r = -EINVAL;
6010 		if (kvm_state.size < sizeof(kvm_state))
6011 			break;
6012 
6013 		if (kvm_state.flags &
6014 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6015 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6016 		      | KVM_STATE_NESTED_GIF_SET))
6017 			break;
6018 
6019 		/* nested_run_pending implies guest_mode.  */
6020 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6021 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6022 			break;
6023 
6024 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6025 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6026 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6027 		break;
6028 	}
6029 	case KVM_GET_SUPPORTED_HV_CPUID:
6030 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6031 		break;
6032 #ifdef CONFIG_KVM_XEN
6033 	case KVM_XEN_VCPU_GET_ATTR: {
6034 		struct kvm_xen_vcpu_attr xva;
6035 
6036 		r = -EFAULT;
6037 		if (copy_from_user(&xva, argp, sizeof(xva)))
6038 			goto out;
6039 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6040 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6041 			r = -EFAULT;
6042 		break;
6043 	}
6044 	case KVM_XEN_VCPU_SET_ATTR: {
6045 		struct kvm_xen_vcpu_attr xva;
6046 
6047 		r = -EFAULT;
6048 		if (copy_from_user(&xva, argp, sizeof(xva)))
6049 			goto out;
6050 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6051 		break;
6052 	}
6053 #endif
6054 	case KVM_GET_SREGS2: {
6055 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6056 		r = -ENOMEM;
6057 		if (!u.sregs2)
6058 			goto out;
6059 		__get_sregs2(vcpu, u.sregs2);
6060 		r = -EFAULT;
6061 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6062 			goto out;
6063 		r = 0;
6064 		break;
6065 	}
6066 	case KVM_SET_SREGS2: {
6067 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6068 		if (IS_ERR(u.sregs2)) {
6069 			r = PTR_ERR(u.sregs2);
6070 			u.sregs2 = NULL;
6071 			goto out;
6072 		}
6073 		r = __set_sregs2(vcpu, u.sregs2);
6074 		break;
6075 	}
6076 	case KVM_HAS_DEVICE_ATTR:
6077 	case KVM_GET_DEVICE_ATTR:
6078 	case KVM_SET_DEVICE_ATTR:
6079 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6080 		break;
6081 	default:
6082 		r = -EINVAL;
6083 	}
6084 out:
6085 	kfree(u.buffer);
6086 out_nofree:
6087 	vcpu_put(vcpu);
6088 	return r;
6089 }
6090 
6091 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6092 {
6093 	return VM_FAULT_SIGBUS;
6094 }
6095 
6096 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6097 {
6098 	int ret;
6099 
6100 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6101 		return -EINVAL;
6102 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6103 	return ret;
6104 }
6105 
6106 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6107 					      u64 ident_addr)
6108 {
6109 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6110 }
6111 
6112 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6113 					 unsigned long kvm_nr_mmu_pages)
6114 {
6115 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6116 		return -EINVAL;
6117 
6118 	mutex_lock(&kvm->slots_lock);
6119 
6120 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6121 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6122 
6123 	mutex_unlock(&kvm->slots_lock);
6124 	return 0;
6125 }
6126 
6127 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6128 {
6129 	struct kvm_pic *pic = kvm->arch.vpic;
6130 	int r;
6131 
6132 	r = 0;
6133 	switch (chip->chip_id) {
6134 	case KVM_IRQCHIP_PIC_MASTER:
6135 		memcpy(&chip->chip.pic, &pic->pics[0],
6136 			sizeof(struct kvm_pic_state));
6137 		break;
6138 	case KVM_IRQCHIP_PIC_SLAVE:
6139 		memcpy(&chip->chip.pic, &pic->pics[1],
6140 			sizeof(struct kvm_pic_state));
6141 		break;
6142 	case KVM_IRQCHIP_IOAPIC:
6143 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6144 		break;
6145 	default:
6146 		r = -EINVAL;
6147 		break;
6148 	}
6149 	return r;
6150 }
6151 
6152 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6153 {
6154 	struct kvm_pic *pic = kvm->arch.vpic;
6155 	int r;
6156 
6157 	r = 0;
6158 	switch (chip->chip_id) {
6159 	case KVM_IRQCHIP_PIC_MASTER:
6160 		spin_lock(&pic->lock);
6161 		memcpy(&pic->pics[0], &chip->chip.pic,
6162 			sizeof(struct kvm_pic_state));
6163 		spin_unlock(&pic->lock);
6164 		break;
6165 	case KVM_IRQCHIP_PIC_SLAVE:
6166 		spin_lock(&pic->lock);
6167 		memcpy(&pic->pics[1], &chip->chip.pic,
6168 			sizeof(struct kvm_pic_state));
6169 		spin_unlock(&pic->lock);
6170 		break;
6171 	case KVM_IRQCHIP_IOAPIC:
6172 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6173 		break;
6174 	default:
6175 		r = -EINVAL;
6176 		break;
6177 	}
6178 	kvm_pic_update_irq(pic);
6179 	return r;
6180 }
6181 
6182 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6183 {
6184 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6185 
6186 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6187 
6188 	mutex_lock(&kps->lock);
6189 	memcpy(ps, &kps->channels, sizeof(*ps));
6190 	mutex_unlock(&kps->lock);
6191 	return 0;
6192 }
6193 
6194 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6195 {
6196 	int i;
6197 	struct kvm_pit *pit = kvm->arch.vpit;
6198 
6199 	mutex_lock(&pit->pit_state.lock);
6200 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6201 	for (i = 0; i < 3; i++)
6202 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6203 	mutex_unlock(&pit->pit_state.lock);
6204 	return 0;
6205 }
6206 
6207 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6208 {
6209 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6210 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6211 		sizeof(ps->channels));
6212 	ps->flags = kvm->arch.vpit->pit_state.flags;
6213 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6214 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6215 	return 0;
6216 }
6217 
6218 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6219 {
6220 	int start = 0;
6221 	int i;
6222 	u32 prev_legacy, cur_legacy;
6223 	struct kvm_pit *pit = kvm->arch.vpit;
6224 
6225 	mutex_lock(&pit->pit_state.lock);
6226 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6227 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6228 	if (!prev_legacy && cur_legacy)
6229 		start = 1;
6230 	memcpy(&pit->pit_state.channels, &ps->channels,
6231 	       sizeof(pit->pit_state.channels));
6232 	pit->pit_state.flags = ps->flags;
6233 	for (i = 0; i < 3; i++)
6234 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6235 				   start && i == 0);
6236 	mutex_unlock(&pit->pit_state.lock);
6237 	return 0;
6238 }
6239 
6240 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6241 				 struct kvm_reinject_control *control)
6242 {
6243 	struct kvm_pit *pit = kvm->arch.vpit;
6244 
6245 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6246 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6247 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6248 	 */
6249 	mutex_lock(&pit->pit_state.lock);
6250 	kvm_pit_set_reinject(pit, control->pit_reinject);
6251 	mutex_unlock(&pit->pit_state.lock);
6252 
6253 	return 0;
6254 }
6255 
6256 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6257 {
6258 
6259 	/*
6260 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6261 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6262 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6263 	 * VM-Exit.
6264 	 */
6265 	struct kvm_vcpu *vcpu;
6266 	unsigned long i;
6267 
6268 	kvm_for_each_vcpu(i, vcpu, kvm)
6269 		kvm_vcpu_kick(vcpu);
6270 }
6271 
6272 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6273 			bool line_status)
6274 {
6275 	if (!irqchip_in_kernel(kvm))
6276 		return -ENXIO;
6277 
6278 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6279 					irq_event->irq, irq_event->level,
6280 					line_status);
6281 	return 0;
6282 }
6283 
6284 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6285 			    struct kvm_enable_cap *cap)
6286 {
6287 	int r;
6288 
6289 	if (cap->flags)
6290 		return -EINVAL;
6291 
6292 	switch (cap->cap) {
6293 	case KVM_CAP_DISABLE_QUIRKS2:
6294 		r = -EINVAL;
6295 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6296 			break;
6297 		fallthrough;
6298 	case KVM_CAP_DISABLE_QUIRKS:
6299 		kvm->arch.disabled_quirks = cap->args[0];
6300 		r = 0;
6301 		break;
6302 	case KVM_CAP_SPLIT_IRQCHIP: {
6303 		mutex_lock(&kvm->lock);
6304 		r = -EINVAL;
6305 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6306 			goto split_irqchip_unlock;
6307 		r = -EEXIST;
6308 		if (irqchip_in_kernel(kvm))
6309 			goto split_irqchip_unlock;
6310 		if (kvm->created_vcpus)
6311 			goto split_irqchip_unlock;
6312 		r = kvm_setup_empty_irq_routing(kvm);
6313 		if (r)
6314 			goto split_irqchip_unlock;
6315 		/* Pairs with irqchip_in_kernel. */
6316 		smp_wmb();
6317 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6318 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6319 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6320 		r = 0;
6321 split_irqchip_unlock:
6322 		mutex_unlock(&kvm->lock);
6323 		break;
6324 	}
6325 	case KVM_CAP_X2APIC_API:
6326 		r = -EINVAL;
6327 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6328 			break;
6329 
6330 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6331 			kvm->arch.x2apic_format = true;
6332 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6333 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6334 
6335 		r = 0;
6336 		break;
6337 	case KVM_CAP_X86_DISABLE_EXITS:
6338 		r = -EINVAL;
6339 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6340 			break;
6341 
6342 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6343 			kvm->arch.pause_in_guest = true;
6344 
6345 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6346 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6347 
6348 		if (!mitigate_smt_rsb) {
6349 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6350 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6351 				pr_warn_once(SMT_RSB_MSG);
6352 
6353 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6354 			    kvm_can_mwait_in_guest())
6355 				kvm->arch.mwait_in_guest = true;
6356 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6357 				kvm->arch.hlt_in_guest = true;
6358 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6359 				kvm->arch.cstate_in_guest = true;
6360 		}
6361 
6362 		r = 0;
6363 		break;
6364 	case KVM_CAP_MSR_PLATFORM_INFO:
6365 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6366 		r = 0;
6367 		break;
6368 	case KVM_CAP_EXCEPTION_PAYLOAD:
6369 		kvm->arch.exception_payload_enabled = cap->args[0];
6370 		r = 0;
6371 		break;
6372 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6373 		kvm->arch.triple_fault_event = cap->args[0];
6374 		r = 0;
6375 		break;
6376 	case KVM_CAP_X86_USER_SPACE_MSR:
6377 		r = -EINVAL;
6378 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6379 			break;
6380 		kvm->arch.user_space_msr_mask = cap->args[0];
6381 		r = 0;
6382 		break;
6383 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6384 		r = -EINVAL;
6385 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6386 			break;
6387 
6388 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6389 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6390 			break;
6391 
6392 		if (kvm_caps.has_bus_lock_exit &&
6393 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6394 			kvm->arch.bus_lock_detection_enabled = true;
6395 		r = 0;
6396 		break;
6397 #ifdef CONFIG_X86_SGX_KVM
6398 	case KVM_CAP_SGX_ATTRIBUTE: {
6399 		unsigned long allowed_attributes = 0;
6400 
6401 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6402 		if (r)
6403 			break;
6404 
6405 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6406 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6407 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6408 			kvm->arch.sgx_provisioning_allowed = true;
6409 		else
6410 			r = -EINVAL;
6411 		break;
6412 	}
6413 #endif
6414 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6415 		r = -EINVAL;
6416 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6417 			break;
6418 
6419 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6420 		break;
6421 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6422 		r = -EINVAL;
6423 		if (!kvm_x86_ops.vm_move_enc_context_from)
6424 			break;
6425 
6426 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6427 		break;
6428 	case KVM_CAP_EXIT_HYPERCALL:
6429 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6430 			r = -EINVAL;
6431 			break;
6432 		}
6433 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6434 		r = 0;
6435 		break;
6436 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6437 		r = -EINVAL;
6438 		if (cap->args[0] & ~1)
6439 			break;
6440 		kvm->arch.exit_on_emulation_error = cap->args[0];
6441 		r = 0;
6442 		break;
6443 	case KVM_CAP_PMU_CAPABILITY:
6444 		r = -EINVAL;
6445 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6446 			break;
6447 
6448 		mutex_lock(&kvm->lock);
6449 		if (!kvm->created_vcpus) {
6450 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6451 			r = 0;
6452 		}
6453 		mutex_unlock(&kvm->lock);
6454 		break;
6455 	case KVM_CAP_MAX_VCPU_ID:
6456 		r = -EINVAL;
6457 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6458 			break;
6459 
6460 		mutex_lock(&kvm->lock);
6461 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6462 			r = 0;
6463 		} else if (!kvm->arch.max_vcpu_ids) {
6464 			kvm->arch.max_vcpu_ids = cap->args[0];
6465 			r = 0;
6466 		}
6467 		mutex_unlock(&kvm->lock);
6468 		break;
6469 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6470 		r = -EINVAL;
6471 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6472 			break;
6473 		if (!kvm_caps.has_notify_vmexit)
6474 			break;
6475 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6476 			break;
6477 		mutex_lock(&kvm->lock);
6478 		if (!kvm->created_vcpus) {
6479 			kvm->arch.notify_window = cap->args[0] >> 32;
6480 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6481 			r = 0;
6482 		}
6483 		mutex_unlock(&kvm->lock);
6484 		break;
6485 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6486 		r = -EINVAL;
6487 
6488 		/*
6489 		 * Since the risk of disabling NX hugepages is a guest crashing
6490 		 * the system, ensure the userspace process has permission to
6491 		 * reboot the system.
6492 		 *
6493 		 * Note that unlike the reboot() syscall, the process must have
6494 		 * this capability in the root namespace because exposing
6495 		 * /dev/kvm into a container does not limit the scope of the
6496 		 * iTLB multihit bug to that container. In other words,
6497 		 * this must use capable(), not ns_capable().
6498 		 */
6499 		if (!capable(CAP_SYS_BOOT)) {
6500 			r = -EPERM;
6501 			break;
6502 		}
6503 
6504 		if (cap->args[0])
6505 			break;
6506 
6507 		mutex_lock(&kvm->lock);
6508 		if (!kvm->created_vcpus) {
6509 			kvm->arch.disable_nx_huge_pages = true;
6510 			r = 0;
6511 		}
6512 		mutex_unlock(&kvm->lock);
6513 		break;
6514 	default:
6515 		r = -EINVAL;
6516 		break;
6517 	}
6518 	return r;
6519 }
6520 
6521 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6522 {
6523 	struct kvm_x86_msr_filter *msr_filter;
6524 
6525 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6526 	if (!msr_filter)
6527 		return NULL;
6528 
6529 	msr_filter->default_allow = default_allow;
6530 	return msr_filter;
6531 }
6532 
6533 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6534 {
6535 	u32 i;
6536 
6537 	if (!msr_filter)
6538 		return;
6539 
6540 	for (i = 0; i < msr_filter->count; i++)
6541 		kfree(msr_filter->ranges[i].bitmap);
6542 
6543 	kfree(msr_filter);
6544 }
6545 
6546 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6547 			      struct kvm_msr_filter_range *user_range)
6548 {
6549 	unsigned long *bitmap;
6550 	size_t bitmap_size;
6551 
6552 	if (!user_range->nmsrs)
6553 		return 0;
6554 
6555 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6556 		return -EINVAL;
6557 
6558 	if (!user_range->flags)
6559 		return -EINVAL;
6560 
6561 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6562 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6563 		return -EINVAL;
6564 
6565 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6566 	if (IS_ERR(bitmap))
6567 		return PTR_ERR(bitmap);
6568 
6569 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6570 		.flags = user_range->flags,
6571 		.base = user_range->base,
6572 		.nmsrs = user_range->nmsrs,
6573 		.bitmap = bitmap,
6574 	};
6575 
6576 	msr_filter->count++;
6577 	return 0;
6578 }
6579 
6580 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6581 				       struct kvm_msr_filter *filter)
6582 {
6583 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6584 	bool default_allow;
6585 	bool empty = true;
6586 	int r;
6587 	u32 i;
6588 
6589 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6590 		return -EINVAL;
6591 
6592 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6593 		empty &= !filter->ranges[i].nmsrs;
6594 
6595 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6596 	if (empty && !default_allow)
6597 		return -EINVAL;
6598 
6599 	new_filter = kvm_alloc_msr_filter(default_allow);
6600 	if (!new_filter)
6601 		return -ENOMEM;
6602 
6603 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6604 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6605 		if (r) {
6606 			kvm_free_msr_filter(new_filter);
6607 			return r;
6608 		}
6609 	}
6610 
6611 	mutex_lock(&kvm->lock);
6612 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6613 					 mutex_is_locked(&kvm->lock));
6614 	mutex_unlock(&kvm->lock);
6615 	synchronize_srcu(&kvm->srcu);
6616 
6617 	kvm_free_msr_filter(old_filter);
6618 
6619 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6620 
6621 	return 0;
6622 }
6623 
6624 #ifdef CONFIG_KVM_COMPAT
6625 /* for KVM_X86_SET_MSR_FILTER */
6626 struct kvm_msr_filter_range_compat {
6627 	__u32 flags;
6628 	__u32 nmsrs;
6629 	__u32 base;
6630 	__u32 bitmap;
6631 };
6632 
6633 struct kvm_msr_filter_compat {
6634 	__u32 flags;
6635 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6636 };
6637 
6638 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6639 
6640 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6641 			      unsigned long arg)
6642 {
6643 	void __user *argp = (void __user *)arg;
6644 	struct kvm *kvm = filp->private_data;
6645 	long r = -ENOTTY;
6646 
6647 	switch (ioctl) {
6648 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6649 		struct kvm_msr_filter __user *user_msr_filter = argp;
6650 		struct kvm_msr_filter_compat filter_compat;
6651 		struct kvm_msr_filter filter;
6652 		int i;
6653 
6654 		if (copy_from_user(&filter_compat, user_msr_filter,
6655 				   sizeof(filter_compat)))
6656 			return -EFAULT;
6657 
6658 		filter.flags = filter_compat.flags;
6659 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6660 			struct kvm_msr_filter_range_compat *cr;
6661 
6662 			cr = &filter_compat.ranges[i];
6663 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6664 				.flags = cr->flags,
6665 				.nmsrs = cr->nmsrs,
6666 				.base = cr->base,
6667 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6668 			};
6669 		}
6670 
6671 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6672 		break;
6673 	}
6674 	}
6675 
6676 	return r;
6677 }
6678 #endif
6679 
6680 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6681 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6682 {
6683 	struct kvm_vcpu *vcpu;
6684 	unsigned long i;
6685 	int ret = 0;
6686 
6687 	mutex_lock(&kvm->lock);
6688 	kvm_for_each_vcpu(i, vcpu, kvm) {
6689 		if (!vcpu->arch.pv_time.active)
6690 			continue;
6691 
6692 		ret = kvm_set_guest_paused(vcpu);
6693 		if (ret) {
6694 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6695 				vcpu->vcpu_id, ret);
6696 			break;
6697 		}
6698 	}
6699 	mutex_unlock(&kvm->lock);
6700 
6701 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6702 }
6703 
6704 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6705 {
6706 	switch (state) {
6707 	case PM_HIBERNATION_PREPARE:
6708 	case PM_SUSPEND_PREPARE:
6709 		return kvm_arch_suspend_notifier(kvm);
6710 	}
6711 
6712 	return NOTIFY_DONE;
6713 }
6714 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6715 
6716 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6717 {
6718 	struct kvm_clock_data data = { 0 };
6719 
6720 	get_kvmclock(kvm, &data);
6721 	if (copy_to_user(argp, &data, sizeof(data)))
6722 		return -EFAULT;
6723 
6724 	return 0;
6725 }
6726 
6727 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6728 {
6729 	struct kvm_arch *ka = &kvm->arch;
6730 	struct kvm_clock_data data;
6731 	u64 now_raw_ns;
6732 
6733 	if (copy_from_user(&data, argp, sizeof(data)))
6734 		return -EFAULT;
6735 
6736 	/*
6737 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6738 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6739 	 */
6740 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6741 		return -EINVAL;
6742 
6743 	kvm_hv_request_tsc_page_update(kvm);
6744 	kvm_start_pvclock_update(kvm);
6745 	pvclock_update_vm_gtod_copy(kvm);
6746 
6747 	/*
6748 	 * This pairs with kvm_guest_time_update(): when masterclock is
6749 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6750 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6751 	 * is slightly ahead) here we risk going negative on unsigned
6752 	 * 'system_time' when 'data.clock' is very small.
6753 	 */
6754 	if (data.flags & KVM_CLOCK_REALTIME) {
6755 		u64 now_real_ns = ktime_get_real_ns();
6756 
6757 		/*
6758 		 * Avoid stepping the kvmclock backwards.
6759 		 */
6760 		if (now_real_ns > data.realtime)
6761 			data.clock += now_real_ns - data.realtime;
6762 	}
6763 
6764 	if (ka->use_master_clock)
6765 		now_raw_ns = ka->master_kernel_ns;
6766 	else
6767 		now_raw_ns = get_kvmclock_base_ns();
6768 	ka->kvmclock_offset = data.clock - now_raw_ns;
6769 	kvm_end_pvclock_update(kvm);
6770 	return 0;
6771 }
6772 
6773 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6774 {
6775 	struct kvm *kvm = filp->private_data;
6776 	void __user *argp = (void __user *)arg;
6777 	int r = -ENOTTY;
6778 	/*
6779 	 * This union makes it completely explicit to gcc-3.x
6780 	 * that these two variables' stack usage should be
6781 	 * combined, not added together.
6782 	 */
6783 	union {
6784 		struct kvm_pit_state ps;
6785 		struct kvm_pit_state2 ps2;
6786 		struct kvm_pit_config pit_config;
6787 	} u;
6788 
6789 	switch (ioctl) {
6790 	case KVM_SET_TSS_ADDR:
6791 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6792 		break;
6793 	case KVM_SET_IDENTITY_MAP_ADDR: {
6794 		u64 ident_addr;
6795 
6796 		mutex_lock(&kvm->lock);
6797 		r = -EINVAL;
6798 		if (kvm->created_vcpus)
6799 			goto set_identity_unlock;
6800 		r = -EFAULT;
6801 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6802 			goto set_identity_unlock;
6803 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6804 set_identity_unlock:
6805 		mutex_unlock(&kvm->lock);
6806 		break;
6807 	}
6808 	case KVM_SET_NR_MMU_PAGES:
6809 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6810 		break;
6811 	case KVM_CREATE_IRQCHIP: {
6812 		mutex_lock(&kvm->lock);
6813 
6814 		r = -EEXIST;
6815 		if (irqchip_in_kernel(kvm))
6816 			goto create_irqchip_unlock;
6817 
6818 		r = -EINVAL;
6819 		if (kvm->created_vcpus)
6820 			goto create_irqchip_unlock;
6821 
6822 		r = kvm_pic_init(kvm);
6823 		if (r)
6824 			goto create_irqchip_unlock;
6825 
6826 		r = kvm_ioapic_init(kvm);
6827 		if (r) {
6828 			kvm_pic_destroy(kvm);
6829 			goto create_irqchip_unlock;
6830 		}
6831 
6832 		r = kvm_setup_default_irq_routing(kvm);
6833 		if (r) {
6834 			kvm_ioapic_destroy(kvm);
6835 			kvm_pic_destroy(kvm);
6836 			goto create_irqchip_unlock;
6837 		}
6838 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6839 		smp_wmb();
6840 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6841 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6842 	create_irqchip_unlock:
6843 		mutex_unlock(&kvm->lock);
6844 		break;
6845 	}
6846 	case KVM_CREATE_PIT:
6847 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6848 		goto create_pit;
6849 	case KVM_CREATE_PIT2:
6850 		r = -EFAULT;
6851 		if (copy_from_user(&u.pit_config, argp,
6852 				   sizeof(struct kvm_pit_config)))
6853 			goto out;
6854 	create_pit:
6855 		mutex_lock(&kvm->lock);
6856 		r = -EEXIST;
6857 		if (kvm->arch.vpit)
6858 			goto create_pit_unlock;
6859 		r = -ENOMEM;
6860 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6861 		if (kvm->arch.vpit)
6862 			r = 0;
6863 	create_pit_unlock:
6864 		mutex_unlock(&kvm->lock);
6865 		break;
6866 	case KVM_GET_IRQCHIP: {
6867 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6868 		struct kvm_irqchip *chip;
6869 
6870 		chip = memdup_user(argp, sizeof(*chip));
6871 		if (IS_ERR(chip)) {
6872 			r = PTR_ERR(chip);
6873 			goto out;
6874 		}
6875 
6876 		r = -ENXIO;
6877 		if (!irqchip_kernel(kvm))
6878 			goto get_irqchip_out;
6879 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6880 		if (r)
6881 			goto get_irqchip_out;
6882 		r = -EFAULT;
6883 		if (copy_to_user(argp, chip, sizeof(*chip)))
6884 			goto get_irqchip_out;
6885 		r = 0;
6886 	get_irqchip_out:
6887 		kfree(chip);
6888 		break;
6889 	}
6890 	case KVM_SET_IRQCHIP: {
6891 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6892 		struct kvm_irqchip *chip;
6893 
6894 		chip = memdup_user(argp, sizeof(*chip));
6895 		if (IS_ERR(chip)) {
6896 			r = PTR_ERR(chip);
6897 			goto out;
6898 		}
6899 
6900 		r = -ENXIO;
6901 		if (!irqchip_kernel(kvm))
6902 			goto set_irqchip_out;
6903 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6904 	set_irqchip_out:
6905 		kfree(chip);
6906 		break;
6907 	}
6908 	case KVM_GET_PIT: {
6909 		r = -EFAULT;
6910 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6911 			goto out;
6912 		r = -ENXIO;
6913 		if (!kvm->arch.vpit)
6914 			goto out;
6915 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6916 		if (r)
6917 			goto out;
6918 		r = -EFAULT;
6919 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6920 			goto out;
6921 		r = 0;
6922 		break;
6923 	}
6924 	case KVM_SET_PIT: {
6925 		r = -EFAULT;
6926 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6927 			goto out;
6928 		mutex_lock(&kvm->lock);
6929 		r = -ENXIO;
6930 		if (!kvm->arch.vpit)
6931 			goto set_pit_out;
6932 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6933 set_pit_out:
6934 		mutex_unlock(&kvm->lock);
6935 		break;
6936 	}
6937 	case KVM_GET_PIT2: {
6938 		r = -ENXIO;
6939 		if (!kvm->arch.vpit)
6940 			goto out;
6941 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6942 		if (r)
6943 			goto out;
6944 		r = -EFAULT;
6945 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6946 			goto out;
6947 		r = 0;
6948 		break;
6949 	}
6950 	case KVM_SET_PIT2: {
6951 		r = -EFAULT;
6952 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6953 			goto out;
6954 		mutex_lock(&kvm->lock);
6955 		r = -ENXIO;
6956 		if (!kvm->arch.vpit)
6957 			goto set_pit2_out;
6958 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6959 set_pit2_out:
6960 		mutex_unlock(&kvm->lock);
6961 		break;
6962 	}
6963 	case KVM_REINJECT_CONTROL: {
6964 		struct kvm_reinject_control control;
6965 		r =  -EFAULT;
6966 		if (copy_from_user(&control, argp, sizeof(control)))
6967 			goto out;
6968 		r = -ENXIO;
6969 		if (!kvm->arch.vpit)
6970 			goto out;
6971 		r = kvm_vm_ioctl_reinject(kvm, &control);
6972 		break;
6973 	}
6974 	case KVM_SET_BOOT_CPU_ID:
6975 		r = 0;
6976 		mutex_lock(&kvm->lock);
6977 		if (kvm->created_vcpus)
6978 			r = -EBUSY;
6979 		else
6980 			kvm->arch.bsp_vcpu_id = arg;
6981 		mutex_unlock(&kvm->lock);
6982 		break;
6983 #ifdef CONFIG_KVM_XEN
6984 	case KVM_XEN_HVM_CONFIG: {
6985 		struct kvm_xen_hvm_config xhc;
6986 		r = -EFAULT;
6987 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6988 			goto out;
6989 		r = kvm_xen_hvm_config(kvm, &xhc);
6990 		break;
6991 	}
6992 	case KVM_XEN_HVM_GET_ATTR: {
6993 		struct kvm_xen_hvm_attr xha;
6994 
6995 		r = -EFAULT;
6996 		if (copy_from_user(&xha, argp, sizeof(xha)))
6997 			goto out;
6998 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6999 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7000 			r = -EFAULT;
7001 		break;
7002 	}
7003 	case KVM_XEN_HVM_SET_ATTR: {
7004 		struct kvm_xen_hvm_attr xha;
7005 
7006 		r = -EFAULT;
7007 		if (copy_from_user(&xha, argp, sizeof(xha)))
7008 			goto out;
7009 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7010 		break;
7011 	}
7012 	case KVM_XEN_HVM_EVTCHN_SEND: {
7013 		struct kvm_irq_routing_xen_evtchn uxe;
7014 
7015 		r = -EFAULT;
7016 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7017 			goto out;
7018 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7019 		break;
7020 	}
7021 #endif
7022 	case KVM_SET_CLOCK:
7023 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7024 		break;
7025 	case KVM_GET_CLOCK:
7026 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7027 		break;
7028 	case KVM_SET_TSC_KHZ: {
7029 		u32 user_tsc_khz;
7030 
7031 		r = -EINVAL;
7032 		user_tsc_khz = (u32)arg;
7033 
7034 		if (kvm_caps.has_tsc_control &&
7035 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7036 			goto out;
7037 
7038 		if (user_tsc_khz == 0)
7039 			user_tsc_khz = tsc_khz;
7040 
7041 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7042 		r = 0;
7043 
7044 		goto out;
7045 	}
7046 	case KVM_GET_TSC_KHZ: {
7047 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7048 		goto out;
7049 	}
7050 	case KVM_MEMORY_ENCRYPT_OP: {
7051 		r = -ENOTTY;
7052 		if (!kvm_x86_ops.mem_enc_ioctl)
7053 			goto out;
7054 
7055 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7056 		break;
7057 	}
7058 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7059 		struct kvm_enc_region region;
7060 
7061 		r = -EFAULT;
7062 		if (copy_from_user(&region, argp, sizeof(region)))
7063 			goto out;
7064 
7065 		r = -ENOTTY;
7066 		if (!kvm_x86_ops.mem_enc_register_region)
7067 			goto out;
7068 
7069 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7070 		break;
7071 	}
7072 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7073 		struct kvm_enc_region region;
7074 
7075 		r = -EFAULT;
7076 		if (copy_from_user(&region, argp, sizeof(region)))
7077 			goto out;
7078 
7079 		r = -ENOTTY;
7080 		if (!kvm_x86_ops.mem_enc_unregister_region)
7081 			goto out;
7082 
7083 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7084 		break;
7085 	}
7086 	case KVM_HYPERV_EVENTFD: {
7087 		struct kvm_hyperv_eventfd hvevfd;
7088 
7089 		r = -EFAULT;
7090 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7091 			goto out;
7092 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7093 		break;
7094 	}
7095 	case KVM_SET_PMU_EVENT_FILTER:
7096 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7097 		break;
7098 	case KVM_X86_SET_MSR_FILTER: {
7099 		struct kvm_msr_filter __user *user_msr_filter = argp;
7100 		struct kvm_msr_filter filter;
7101 
7102 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7103 			return -EFAULT;
7104 
7105 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7106 		break;
7107 	}
7108 	default:
7109 		r = -ENOTTY;
7110 	}
7111 out:
7112 	return r;
7113 }
7114 
7115 static void kvm_probe_feature_msr(u32 msr_index)
7116 {
7117 	struct kvm_msr_entry msr = {
7118 		.index = msr_index,
7119 	};
7120 
7121 	if (kvm_get_msr_feature(&msr))
7122 		return;
7123 
7124 	msr_based_features[num_msr_based_features++] = msr_index;
7125 }
7126 
7127 static void kvm_probe_msr_to_save(u32 msr_index)
7128 {
7129 	u32 dummy[2];
7130 
7131 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7132 		return;
7133 
7134 	/*
7135 	 * Even MSRs that are valid in the host may not be exposed to guests in
7136 	 * some cases.
7137 	 */
7138 	switch (msr_index) {
7139 	case MSR_IA32_BNDCFGS:
7140 		if (!kvm_mpx_supported())
7141 			return;
7142 		break;
7143 	case MSR_TSC_AUX:
7144 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7145 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7146 			return;
7147 		break;
7148 	case MSR_IA32_UMWAIT_CONTROL:
7149 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7150 			return;
7151 		break;
7152 	case MSR_IA32_RTIT_CTL:
7153 	case MSR_IA32_RTIT_STATUS:
7154 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7155 			return;
7156 		break;
7157 	case MSR_IA32_RTIT_CR3_MATCH:
7158 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7159 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7160 			return;
7161 		break;
7162 	case MSR_IA32_RTIT_OUTPUT_BASE:
7163 	case MSR_IA32_RTIT_OUTPUT_MASK:
7164 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7165 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7166 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7167 			return;
7168 		break;
7169 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7170 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7171 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7172 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7173 			return;
7174 		break;
7175 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7176 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7177 		    kvm_pmu_cap.num_counters_gp)
7178 			return;
7179 		break;
7180 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7181 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7182 		    kvm_pmu_cap.num_counters_gp)
7183 			return;
7184 		break;
7185 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7186 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7187 		    kvm_pmu_cap.num_counters_fixed)
7188 			return;
7189 		break;
7190 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7191 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7192 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7193 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7194 			return;
7195 		break;
7196 	case MSR_IA32_XFD:
7197 	case MSR_IA32_XFD_ERR:
7198 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7199 			return;
7200 		break;
7201 	case MSR_IA32_TSX_CTRL:
7202 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7203 			return;
7204 		break;
7205 	default:
7206 		break;
7207 	}
7208 
7209 	msrs_to_save[num_msrs_to_save++] = msr_index;
7210 }
7211 
7212 static void kvm_init_msr_lists(void)
7213 {
7214 	unsigned i;
7215 
7216 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7217 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7218 
7219 	num_msrs_to_save = 0;
7220 	num_emulated_msrs = 0;
7221 	num_msr_based_features = 0;
7222 
7223 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7224 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7225 
7226 	if (enable_pmu) {
7227 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7228 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7229 	}
7230 
7231 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7232 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7233 			continue;
7234 
7235 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7236 	}
7237 
7238 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7239 		kvm_probe_feature_msr(i);
7240 
7241 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7242 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7243 }
7244 
7245 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7246 			   const void *v)
7247 {
7248 	int handled = 0;
7249 	int n;
7250 
7251 	do {
7252 		n = min(len, 8);
7253 		if (!(lapic_in_kernel(vcpu) &&
7254 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7255 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7256 			break;
7257 		handled += n;
7258 		addr += n;
7259 		len -= n;
7260 		v += n;
7261 	} while (len);
7262 
7263 	return handled;
7264 }
7265 
7266 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7267 {
7268 	int handled = 0;
7269 	int n;
7270 
7271 	do {
7272 		n = min(len, 8);
7273 		if (!(lapic_in_kernel(vcpu) &&
7274 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7275 					 addr, n, v))
7276 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7277 			break;
7278 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7279 		handled += n;
7280 		addr += n;
7281 		len -= n;
7282 		v += n;
7283 	} while (len);
7284 
7285 	return handled;
7286 }
7287 
7288 void kvm_set_segment(struct kvm_vcpu *vcpu,
7289 		     struct kvm_segment *var, int seg)
7290 {
7291 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7292 }
7293 
7294 void kvm_get_segment(struct kvm_vcpu *vcpu,
7295 		     struct kvm_segment *var, int seg)
7296 {
7297 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7298 }
7299 
7300 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7301 			   struct x86_exception *exception)
7302 {
7303 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7304 	gpa_t t_gpa;
7305 
7306 	BUG_ON(!mmu_is_nested(vcpu));
7307 
7308 	/* NPT walks are always user-walks */
7309 	access |= PFERR_USER_MASK;
7310 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7311 
7312 	return t_gpa;
7313 }
7314 
7315 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7316 			      struct x86_exception *exception)
7317 {
7318 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7319 
7320 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7321 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7322 }
7323 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7324 
7325 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7326 			       struct x86_exception *exception)
7327 {
7328 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7329 
7330 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7331 	access |= PFERR_WRITE_MASK;
7332 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7333 }
7334 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7335 
7336 /* uses this to access any guest's mapped memory without checking CPL */
7337 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7338 				struct x86_exception *exception)
7339 {
7340 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7341 
7342 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7343 }
7344 
7345 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7346 				      struct kvm_vcpu *vcpu, u64 access,
7347 				      struct x86_exception *exception)
7348 {
7349 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7350 	void *data = val;
7351 	int r = X86EMUL_CONTINUE;
7352 
7353 	while (bytes) {
7354 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7355 		unsigned offset = addr & (PAGE_SIZE-1);
7356 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7357 		int ret;
7358 
7359 		if (gpa == INVALID_GPA)
7360 			return X86EMUL_PROPAGATE_FAULT;
7361 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7362 					       offset, toread);
7363 		if (ret < 0) {
7364 			r = X86EMUL_IO_NEEDED;
7365 			goto out;
7366 		}
7367 
7368 		bytes -= toread;
7369 		data += toread;
7370 		addr += toread;
7371 	}
7372 out:
7373 	return r;
7374 }
7375 
7376 /* used for instruction fetching */
7377 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7378 				gva_t addr, void *val, unsigned int bytes,
7379 				struct x86_exception *exception)
7380 {
7381 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7382 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7383 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7384 	unsigned offset;
7385 	int ret;
7386 
7387 	/* Inline kvm_read_guest_virt_helper for speed.  */
7388 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7389 				    exception);
7390 	if (unlikely(gpa == INVALID_GPA))
7391 		return X86EMUL_PROPAGATE_FAULT;
7392 
7393 	offset = addr & (PAGE_SIZE-1);
7394 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7395 		bytes = (unsigned)PAGE_SIZE - offset;
7396 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7397 				       offset, bytes);
7398 	if (unlikely(ret < 0))
7399 		return X86EMUL_IO_NEEDED;
7400 
7401 	return X86EMUL_CONTINUE;
7402 }
7403 
7404 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7405 			       gva_t addr, void *val, unsigned int bytes,
7406 			       struct x86_exception *exception)
7407 {
7408 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7409 
7410 	/*
7411 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7412 	 * is returned, but our callers are not ready for that and they blindly
7413 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7414 	 * uninitialized kernel stack memory into cr2 and error code.
7415 	 */
7416 	memset(exception, 0, sizeof(*exception));
7417 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7418 					  exception);
7419 }
7420 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7421 
7422 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7423 			     gva_t addr, void *val, unsigned int bytes,
7424 			     struct x86_exception *exception, bool system)
7425 {
7426 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7427 	u64 access = 0;
7428 
7429 	if (system)
7430 		access |= PFERR_IMPLICIT_ACCESS;
7431 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7432 		access |= PFERR_USER_MASK;
7433 
7434 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7435 }
7436 
7437 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7438 				      struct kvm_vcpu *vcpu, u64 access,
7439 				      struct x86_exception *exception)
7440 {
7441 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7442 	void *data = val;
7443 	int r = X86EMUL_CONTINUE;
7444 
7445 	while (bytes) {
7446 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7447 		unsigned offset = addr & (PAGE_SIZE-1);
7448 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7449 		int ret;
7450 
7451 		if (gpa == INVALID_GPA)
7452 			return X86EMUL_PROPAGATE_FAULT;
7453 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7454 		if (ret < 0) {
7455 			r = X86EMUL_IO_NEEDED;
7456 			goto out;
7457 		}
7458 
7459 		bytes -= towrite;
7460 		data += towrite;
7461 		addr += towrite;
7462 	}
7463 out:
7464 	return r;
7465 }
7466 
7467 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7468 			      unsigned int bytes, struct x86_exception *exception,
7469 			      bool system)
7470 {
7471 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7472 	u64 access = PFERR_WRITE_MASK;
7473 
7474 	if (system)
7475 		access |= PFERR_IMPLICIT_ACCESS;
7476 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7477 		access |= PFERR_USER_MASK;
7478 
7479 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7480 					   access, exception);
7481 }
7482 
7483 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7484 				unsigned int bytes, struct x86_exception *exception)
7485 {
7486 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7487 	vcpu->arch.l1tf_flush_l1d = true;
7488 
7489 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7490 					   PFERR_WRITE_MASK, exception);
7491 }
7492 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7493 
7494 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7495 				void *insn, int insn_len)
7496 {
7497 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7498 							    insn, insn_len);
7499 }
7500 
7501 int handle_ud(struct kvm_vcpu *vcpu)
7502 {
7503 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7504 	int fep_flags = READ_ONCE(force_emulation_prefix);
7505 	int emul_type = EMULTYPE_TRAP_UD;
7506 	char sig[5]; /* ud2; .ascii "kvm" */
7507 	struct x86_exception e;
7508 
7509 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7510 		return 1;
7511 
7512 	if (fep_flags &&
7513 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7514 				sig, sizeof(sig), &e) == 0 &&
7515 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7516 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7517 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7518 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7519 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7520 	}
7521 
7522 	return kvm_emulate_instruction(vcpu, emul_type);
7523 }
7524 EXPORT_SYMBOL_GPL(handle_ud);
7525 
7526 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7527 			    gpa_t gpa, bool write)
7528 {
7529 	/* For APIC access vmexit */
7530 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7531 		return 1;
7532 
7533 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7534 		trace_vcpu_match_mmio(gva, gpa, write, true);
7535 		return 1;
7536 	}
7537 
7538 	return 0;
7539 }
7540 
7541 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7542 				gpa_t *gpa, struct x86_exception *exception,
7543 				bool write)
7544 {
7545 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7546 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7547 		| (write ? PFERR_WRITE_MASK : 0);
7548 
7549 	/*
7550 	 * currently PKRU is only applied to ept enabled guest so
7551 	 * there is no pkey in EPT page table for L1 guest or EPT
7552 	 * shadow page table for L2 guest.
7553 	 */
7554 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7555 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7556 			      vcpu->arch.mmio_access, 0, access))) {
7557 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7558 					(gva & (PAGE_SIZE - 1));
7559 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7560 		return 1;
7561 	}
7562 
7563 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7564 
7565 	if (*gpa == INVALID_GPA)
7566 		return -1;
7567 
7568 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7569 }
7570 
7571 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7572 			const void *val, int bytes)
7573 {
7574 	int ret;
7575 
7576 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7577 	if (ret < 0)
7578 		return 0;
7579 	kvm_page_track_write(vcpu, gpa, val, bytes);
7580 	return 1;
7581 }
7582 
7583 struct read_write_emulator_ops {
7584 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7585 				  int bytes);
7586 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7587 				  void *val, int bytes);
7588 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7589 			       int bytes, void *val);
7590 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591 				    void *val, int bytes);
7592 	bool write;
7593 };
7594 
7595 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7596 {
7597 	if (vcpu->mmio_read_completed) {
7598 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7599 			       vcpu->mmio_fragments[0].gpa, val);
7600 		vcpu->mmio_read_completed = 0;
7601 		return 1;
7602 	}
7603 
7604 	return 0;
7605 }
7606 
7607 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7608 			void *val, int bytes)
7609 {
7610 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7611 }
7612 
7613 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7614 			 void *val, int bytes)
7615 {
7616 	return emulator_write_phys(vcpu, gpa, val, bytes);
7617 }
7618 
7619 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7620 {
7621 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7622 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7623 }
7624 
7625 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7626 			  void *val, int bytes)
7627 {
7628 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7629 	return X86EMUL_IO_NEEDED;
7630 }
7631 
7632 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7633 			   void *val, int bytes)
7634 {
7635 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7636 
7637 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7638 	return X86EMUL_CONTINUE;
7639 }
7640 
7641 static const struct read_write_emulator_ops read_emultor = {
7642 	.read_write_prepare = read_prepare,
7643 	.read_write_emulate = read_emulate,
7644 	.read_write_mmio = vcpu_mmio_read,
7645 	.read_write_exit_mmio = read_exit_mmio,
7646 };
7647 
7648 static const struct read_write_emulator_ops write_emultor = {
7649 	.read_write_emulate = write_emulate,
7650 	.read_write_mmio = write_mmio,
7651 	.read_write_exit_mmio = write_exit_mmio,
7652 	.write = true,
7653 };
7654 
7655 static int emulator_read_write_onepage(unsigned long addr, void *val,
7656 				       unsigned int bytes,
7657 				       struct x86_exception *exception,
7658 				       struct kvm_vcpu *vcpu,
7659 				       const struct read_write_emulator_ops *ops)
7660 {
7661 	gpa_t gpa;
7662 	int handled, ret;
7663 	bool write = ops->write;
7664 	struct kvm_mmio_fragment *frag;
7665 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7666 
7667 	/*
7668 	 * If the exit was due to a NPF we may already have a GPA.
7669 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7670 	 * Note, this cannot be used on string operations since string
7671 	 * operation using rep will only have the initial GPA from the NPF
7672 	 * occurred.
7673 	 */
7674 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7675 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7676 		gpa = ctxt->gpa_val;
7677 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7678 	} else {
7679 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7680 		if (ret < 0)
7681 			return X86EMUL_PROPAGATE_FAULT;
7682 	}
7683 
7684 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7685 		return X86EMUL_CONTINUE;
7686 
7687 	/*
7688 	 * Is this MMIO handled locally?
7689 	 */
7690 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7691 	if (handled == bytes)
7692 		return X86EMUL_CONTINUE;
7693 
7694 	gpa += handled;
7695 	bytes -= handled;
7696 	val += handled;
7697 
7698 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7699 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7700 	frag->gpa = gpa;
7701 	frag->data = val;
7702 	frag->len = bytes;
7703 	return X86EMUL_CONTINUE;
7704 }
7705 
7706 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7707 			unsigned long addr,
7708 			void *val, unsigned int bytes,
7709 			struct x86_exception *exception,
7710 			const struct read_write_emulator_ops *ops)
7711 {
7712 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7713 	gpa_t gpa;
7714 	int rc;
7715 
7716 	if (ops->read_write_prepare &&
7717 		  ops->read_write_prepare(vcpu, val, bytes))
7718 		return X86EMUL_CONTINUE;
7719 
7720 	vcpu->mmio_nr_fragments = 0;
7721 
7722 	/* Crossing a page boundary? */
7723 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7724 		int now;
7725 
7726 		now = -addr & ~PAGE_MASK;
7727 		rc = emulator_read_write_onepage(addr, val, now, exception,
7728 						 vcpu, ops);
7729 
7730 		if (rc != X86EMUL_CONTINUE)
7731 			return rc;
7732 		addr += now;
7733 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7734 			addr = (u32)addr;
7735 		val += now;
7736 		bytes -= now;
7737 	}
7738 
7739 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7740 					 vcpu, ops);
7741 	if (rc != X86EMUL_CONTINUE)
7742 		return rc;
7743 
7744 	if (!vcpu->mmio_nr_fragments)
7745 		return rc;
7746 
7747 	gpa = vcpu->mmio_fragments[0].gpa;
7748 
7749 	vcpu->mmio_needed = 1;
7750 	vcpu->mmio_cur_fragment = 0;
7751 
7752 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7753 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7754 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7755 	vcpu->run->mmio.phys_addr = gpa;
7756 
7757 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7758 }
7759 
7760 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7761 				  unsigned long addr,
7762 				  void *val,
7763 				  unsigned int bytes,
7764 				  struct x86_exception *exception)
7765 {
7766 	return emulator_read_write(ctxt, addr, val, bytes,
7767 				   exception, &read_emultor);
7768 }
7769 
7770 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7771 			    unsigned long addr,
7772 			    const void *val,
7773 			    unsigned int bytes,
7774 			    struct x86_exception *exception)
7775 {
7776 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7777 				   exception, &write_emultor);
7778 }
7779 
7780 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7781 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7782 
7783 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7784 				     unsigned long addr,
7785 				     const void *old,
7786 				     const void *new,
7787 				     unsigned int bytes,
7788 				     struct x86_exception *exception)
7789 {
7790 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7791 	u64 page_line_mask;
7792 	unsigned long hva;
7793 	gpa_t gpa;
7794 	int r;
7795 
7796 	/* guests cmpxchg8b have to be emulated atomically */
7797 	if (bytes > 8 || (bytes & (bytes - 1)))
7798 		goto emul_write;
7799 
7800 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7801 
7802 	if (gpa == INVALID_GPA ||
7803 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7804 		goto emul_write;
7805 
7806 	/*
7807 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7808 	 * enabled in the host and the access splits a cache line.
7809 	 */
7810 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7811 		page_line_mask = ~(cache_line_size() - 1);
7812 	else
7813 		page_line_mask = PAGE_MASK;
7814 
7815 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7816 		goto emul_write;
7817 
7818 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7819 	if (kvm_is_error_hva(hva))
7820 		goto emul_write;
7821 
7822 	hva += offset_in_page(gpa);
7823 
7824 	switch (bytes) {
7825 	case 1:
7826 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7827 		break;
7828 	case 2:
7829 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7830 		break;
7831 	case 4:
7832 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7833 		break;
7834 	case 8:
7835 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7836 		break;
7837 	default:
7838 		BUG();
7839 	}
7840 
7841 	if (r < 0)
7842 		return X86EMUL_UNHANDLEABLE;
7843 
7844 	/*
7845 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
7846 	 * successful, as the old value is written back on failure.  Note, for
7847 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
7848 	 * back the original value and the access is atomic, but KVM's ABI is
7849 	 * that all writes are dirty logged, regardless of the value written.
7850 	 */
7851 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
7852 
7853 	if (r)
7854 		return X86EMUL_CMPXCHG_FAILED;
7855 
7856 	kvm_page_track_write(vcpu, gpa, new, bytes);
7857 
7858 	return X86EMUL_CONTINUE;
7859 
7860 emul_write:
7861 	pr_warn_once("emulating exchange as write\n");
7862 
7863 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7864 }
7865 
7866 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7867 			       unsigned short port, void *data,
7868 			       unsigned int count, bool in)
7869 {
7870 	unsigned i;
7871 	int r;
7872 
7873 	WARN_ON_ONCE(vcpu->arch.pio.count);
7874 	for (i = 0; i < count; i++) {
7875 		if (in)
7876 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7877 		else
7878 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7879 
7880 		if (r) {
7881 			if (i == 0)
7882 				goto userspace_io;
7883 
7884 			/*
7885 			 * Userspace must have unregistered the device while PIO
7886 			 * was running.  Drop writes / read as 0.
7887 			 */
7888 			if (in)
7889 				memset(data, 0, size * (count - i));
7890 			break;
7891 		}
7892 
7893 		data += size;
7894 	}
7895 	return 1;
7896 
7897 userspace_io:
7898 	vcpu->arch.pio.port = port;
7899 	vcpu->arch.pio.in = in;
7900 	vcpu->arch.pio.count = count;
7901 	vcpu->arch.pio.size = size;
7902 
7903 	if (in)
7904 		memset(vcpu->arch.pio_data, 0, size * count);
7905 	else
7906 		memcpy(vcpu->arch.pio_data, data, size * count);
7907 
7908 	vcpu->run->exit_reason = KVM_EXIT_IO;
7909 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7910 	vcpu->run->io.size = size;
7911 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7912 	vcpu->run->io.count = count;
7913 	vcpu->run->io.port = port;
7914 	return 0;
7915 }
7916 
7917 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7918       			   unsigned short port, void *val, unsigned int count)
7919 {
7920 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7921 	if (r)
7922 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7923 
7924 	return r;
7925 }
7926 
7927 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7928 {
7929 	int size = vcpu->arch.pio.size;
7930 	unsigned int count = vcpu->arch.pio.count;
7931 	memcpy(val, vcpu->arch.pio_data, size * count);
7932 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7933 	vcpu->arch.pio.count = 0;
7934 }
7935 
7936 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7937 				    int size, unsigned short port, void *val,
7938 				    unsigned int count)
7939 {
7940 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7941 	if (vcpu->arch.pio.count) {
7942 		/*
7943 		 * Complete a previous iteration that required userspace I/O.
7944 		 * Note, @count isn't guaranteed to match pio.count as userspace
7945 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7946 		 * shenanigans as KVM doesn't support modifying the rep count,
7947 		 * and the emulator ensures @count doesn't overflow the buffer.
7948 		 */
7949 		complete_emulator_pio_in(vcpu, val);
7950 		return 1;
7951 	}
7952 
7953 	return emulator_pio_in(vcpu, size, port, val, count);
7954 }
7955 
7956 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7957 			    unsigned short port, const void *val,
7958 			    unsigned int count)
7959 {
7960 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7961 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7962 }
7963 
7964 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7965 				     int size, unsigned short port,
7966 				     const void *val, unsigned int count)
7967 {
7968 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7969 }
7970 
7971 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7972 {
7973 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7974 }
7975 
7976 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7977 {
7978 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7979 }
7980 
7981 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7982 {
7983 	if (!need_emulate_wbinvd(vcpu))
7984 		return X86EMUL_CONTINUE;
7985 
7986 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7987 		int cpu = get_cpu();
7988 
7989 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7990 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7991 				wbinvd_ipi, NULL, 1);
7992 		put_cpu();
7993 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7994 	} else
7995 		wbinvd();
7996 	return X86EMUL_CONTINUE;
7997 }
7998 
7999 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8000 {
8001 	kvm_emulate_wbinvd_noskip(vcpu);
8002 	return kvm_skip_emulated_instruction(vcpu);
8003 }
8004 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8005 
8006 
8007 
8008 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8009 {
8010 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8011 }
8012 
8013 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8014 			    unsigned long *dest)
8015 {
8016 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8017 }
8018 
8019 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8020 			   unsigned long value)
8021 {
8022 
8023 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8024 }
8025 
8026 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8027 {
8028 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8029 }
8030 
8031 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8032 {
8033 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8034 	unsigned long value;
8035 
8036 	switch (cr) {
8037 	case 0:
8038 		value = kvm_read_cr0(vcpu);
8039 		break;
8040 	case 2:
8041 		value = vcpu->arch.cr2;
8042 		break;
8043 	case 3:
8044 		value = kvm_read_cr3(vcpu);
8045 		break;
8046 	case 4:
8047 		value = kvm_read_cr4(vcpu);
8048 		break;
8049 	case 8:
8050 		value = kvm_get_cr8(vcpu);
8051 		break;
8052 	default:
8053 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8054 		return 0;
8055 	}
8056 
8057 	return value;
8058 }
8059 
8060 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8061 {
8062 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8063 	int res = 0;
8064 
8065 	switch (cr) {
8066 	case 0:
8067 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8068 		break;
8069 	case 2:
8070 		vcpu->arch.cr2 = val;
8071 		break;
8072 	case 3:
8073 		res = kvm_set_cr3(vcpu, val);
8074 		break;
8075 	case 4:
8076 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8077 		break;
8078 	case 8:
8079 		res = kvm_set_cr8(vcpu, val);
8080 		break;
8081 	default:
8082 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8083 		res = -1;
8084 	}
8085 
8086 	return res;
8087 }
8088 
8089 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8090 {
8091 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8092 }
8093 
8094 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8095 {
8096 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8097 }
8098 
8099 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8100 {
8101 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8102 }
8103 
8104 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8105 {
8106 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8107 }
8108 
8109 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8110 {
8111 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8112 }
8113 
8114 static unsigned long emulator_get_cached_segment_base(
8115 	struct x86_emulate_ctxt *ctxt, int seg)
8116 {
8117 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8118 }
8119 
8120 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8121 				 struct desc_struct *desc, u32 *base3,
8122 				 int seg)
8123 {
8124 	struct kvm_segment var;
8125 
8126 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8127 	*selector = var.selector;
8128 
8129 	if (var.unusable) {
8130 		memset(desc, 0, sizeof(*desc));
8131 		if (base3)
8132 			*base3 = 0;
8133 		return false;
8134 	}
8135 
8136 	if (var.g)
8137 		var.limit >>= 12;
8138 	set_desc_limit(desc, var.limit);
8139 	set_desc_base(desc, (unsigned long)var.base);
8140 #ifdef CONFIG_X86_64
8141 	if (base3)
8142 		*base3 = var.base >> 32;
8143 #endif
8144 	desc->type = var.type;
8145 	desc->s = var.s;
8146 	desc->dpl = var.dpl;
8147 	desc->p = var.present;
8148 	desc->avl = var.avl;
8149 	desc->l = var.l;
8150 	desc->d = var.db;
8151 	desc->g = var.g;
8152 
8153 	return true;
8154 }
8155 
8156 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8157 				 struct desc_struct *desc, u32 base3,
8158 				 int seg)
8159 {
8160 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8161 	struct kvm_segment var;
8162 
8163 	var.selector = selector;
8164 	var.base = get_desc_base(desc);
8165 #ifdef CONFIG_X86_64
8166 	var.base |= ((u64)base3) << 32;
8167 #endif
8168 	var.limit = get_desc_limit(desc);
8169 	if (desc->g)
8170 		var.limit = (var.limit << 12) | 0xfff;
8171 	var.type = desc->type;
8172 	var.dpl = desc->dpl;
8173 	var.db = desc->d;
8174 	var.s = desc->s;
8175 	var.l = desc->l;
8176 	var.g = desc->g;
8177 	var.avl = desc->avl;
8178 	var.present = desc->p;
8179 	var.unusable = !var.present;
8180 	var.padding = 0;
8181 
8182 	kvm_set_segment(vcpu, &var, seg);
8183 	return;
8184 }
8185 
8186 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8187 					u32 msr_index, u64 *pdata)
8188 {
8189 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8190 	int r;
8191 
8192 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8193 	if (r < 0)
8194 		return X86EMUL_UNHANDLEABLE;
8195 
8196 	if (r) {
8197 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8198 				       complete_emulated_rdmsr, r))
8199 			return X86EMUL_IO_NEEDED;
8200 
8201 		trace_kvm_msr_read_ex(msr_index);
8202 		return X86EMUL_PROPAGATE_FAULT;
8203 	}
8204 
8205 	trace_kvm_msr_read(msr_index, *pdata);
8206 	return X86EMUL_CONTINUE;
8207 }
8208 
8209 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8210 					u32 msr_index, u64 data)
8211 {
8212 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8213 	int r;
8214 
8215 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8216 	if (r < 0)
8217 		return X86EMUL_UNHANDLEABLE;
8218 
8219 	if (r) {
8220 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8221 				       complete_emulated_msr_access, r))
8222 			return X86EMUL_IO_NEEDED;
8223 
8224 		trace_kvm_msr_write_ex(msr_index, data);
8225 		return X86EMUL_PROPAGATE_FAULT;
8226 	}
8227 
8228 	trace_kvm_msr_write(msr_index, data);
8229 	return X86EMUL_CONTINUE;
8230 }
8231 
8232 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8233 			    u32 msr_index, u64 *pdata)
8234 {
8235 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8236 }
8237 
8238 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8239 			      u32 pmc)
8240 {
8241 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8242 		return 0;
8243 	return -EINVAL;
8244 }
8245 
8246 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8247 			     u32 pmc, u64 *pdata)
8248 {
8249 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8250 }
8251 
8252 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8253 {
8254 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8255 }
8256 
8257 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8258 			      struct x86_instruction_info *info,
8259 			      enum x86_intercept_stage stage)
8260 {
8261 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8262 					    &ctxt->exception);
8263 }
8264 
8265 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8266 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8267 			      bool exact_only)
8268 {
8269 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8270 }
8271 
8272 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8273 {
8274 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8275 }
8276 
8277 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8278 {
8279 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8280 }
8281 
8282 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8283 {
8284 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8285 }
8286 
8287 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8288 {
8289 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8290 }
8291 
8292 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8293 {
8294 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8295 }
8296 
8297 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8298 {
8299 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8300 }
8301 
8302 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8303 {
8304 	return is_smm(emul_to_vcpu(ctxt));
8305 }
8306 
8307 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8308 {
8309 	return is_guest_mode(emul_to_vcpu(ctxt));
8310 }
8311 
8312 #ifndef CONFIG_KVM_SMM
8313 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8314 {
8315 	WARN_ON_ONCE(1);
8316 	return X86EMUL_UNHANDLEABLE;
8317 }
8318 #endif
8319 
8320 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8321 {
8322 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8323 }
8324 
8325 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8326 {
8327 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8328 }
8329 
8330 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8331 {
8332 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8333 
8334 	if (!kvm->vm_bugged)
8335 		kvm_vm_bugged(kvm);
8336 }
8337 
8338 static const struct x86_emulate_ops emulate_ops = {
8339 	.vm_bugged           = emulator_vm_bugged,
8340 	.read_gpr            = emulator_read_gpr,
8341 	.write_gpr           = emulator_write_gpr,
8342 	.read_std            = emulator_read_std,
8343 	.write_std           = emulator_write_std,
8344 	.fetch               = kvm_fetch_guest_virt,
8345 	.read_emulated       = emulator_read_emulated,
8346 	.write_emulated      = emulator_write_emulated,
8347 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8348 	.invlpg              = emulator_invlpg,
8349 	.pio_in_emulated     = emulator_pio_in_emulated,
8350 	.pio_out_emulated    = emulator_pio_out_emulated,
8351 	.get_segment         = emulator_get_segment,
8352 	.set_segment         = emulator_set_segment,
8353 	.get_cached_segment_base = emulator_get_cached_segment_base,
8354 	.get_gdt             = emulator_get_gdt,
8355 	.get_idt	     = emulator_get_idt,
8356 	.set_gdt             = emulator_set_gdt,
8357 	.set_idt	     = emulator_set_idt,
8358 	.get_cr              = emulator_get_cr,
8359 	.set_cr              = emulator_set_cr,
8360 	.cpl                 = emulator_get_cpl,
8361 	.get_dr              = emulator_get_dr,
8362 	.set_dr              = emulator_set_dr,
8363 	.set_msr_with_filter = emulator_set_msr_with_filter,
8364 	.get_msr_with_filter = emulator_get_msr_with_filter,
8365 	.get_msr             = emulator_get_msr,
8366 	.check_pmc	     = emulator_check_pmc,
8367 	.read_pmc            = emulator_read_pmc,
8368 	.halt                = emulator_halt,
8369 	.wbinvd              = emulator_wbinvd,
8370 	.fix_hypercall       = emulator_fix_hypercall,
8371 	.intercept           = emulator_intercept,
8372 	.get_cpuid           = emulator_get_cpuid,
8373 	.guest_has_movbe     = emulator_guest_has_movbe,
8374 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8375 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8376 	.set_nmi_mask        = emulator_set_nmi_mask,
8377 	.is_smm              = emulator_is_smm,
8378 	.is_guest_mode       = emulator_is_guest_mode,
8379 	.leave_smm           = emulator_leave_smm,
8380 	.triple_fault        = emulator_triple_fault,
8381 	.set_xcr             = emulator_set_xcr,
8382 };
8383 
8384 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8385 {
8386 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8387 	/*
8388 	 * an sti; sti; sequence only disable interrupts for the first
8389 	 * instruction. So, if the last instruction, be it emulated or
8390 	 * not, left the system with the INT_STI flag enabled, it
8391 	 * means that the last instruction is an sti. We should not
8392 	 * leave the flag on in this case. The same goes for mov ss
8393 	 */
8394 	if (int_shadow & mask)
8395 		mask = 0;
8396 	if (unlikely(int_shadow || mask)) {
8397 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8398 		if (!mask)
8399 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8400 	}
8401 }
8402 
8403 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8404 {
8405 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8406 
8407 	if (ctxt->exception.vector == PF_VECTOR)
8408 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8409 	else if (ctxt->exception.error_code_valid)
8410 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8411 				      ctxt->exception.error_code);
8412 	else
8413 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8414 }
8415 
8416 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8417 {
8418 	struct x86_emulate_ctxt *ctxt;
8419 
8420 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8421 	if (!ctxt) {
8422 		pr_err("failed to allocate vcpu's emulator\n");
8423 		return NULL;
8424 	}
8425 
8426 	ctxt->vcpu = vcpu;
8427 	ctxt->ops = &emulate_ops;
8428 	vcpu->arch.emulate_ctxt = ctxt;
8429 
8430 	return ctxt;
8431 }
8432 
8433 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8434 {
8435 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8436 	int cs_db, cs_l;
8437 
8438 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8439 
8440 	ctxt->gpa_available = false;
8441 	ctxt->eflags = kvm_get_rflags(vcpu);
8442 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8443 
8444 	ctxt->eip = kvm_rip_read(vcpu);
8445 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8446 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8447 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8448 		     cs_db				? X86EMUL_MODE_PROT32 :
8449 							  X86EMUL_MODE_PROT16;
8450 	ctxt->interruptibility = 0;
8451 	ctxt->have_exception = false;
8452 	ctxt->exception.vector = -1;
8453 	ctxt->perm_ok = false;
8454 
8455 	init_decode_cache(ctxt);
8456 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8457 }
8458 
8459 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8460 {
8461 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8462 	int ret;
8463 
8464 	init_emulate_ctxt(vcpu);
8465 
8466 	ctxt->op_bytes = 2;
8467 	ctxt->ad_bytes = 2;
8468 	ctxt->_eip = ctxt->eip + inc_eip;
8469 	ret = emulate_int_real(ctxt, irq);
8470 
8471 	if (ret != X86EMUL_CONTINUE) {
8472 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8473 	} else {
8474 		ctxt->eip = ctxt->_eip;
8475 		kvm_rip_write(vcpu, ctxt->eip);
8476 		kvm_set_rflags(vcpu, ctxt->eflags);
8477 	}
8478 }
8479 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8480 
8481 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8482 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8483 {
8484 	struct kvm_run *run = vcpu->run;
8485 	u64 info[5];
8486 	u8 info_start;
8487 
8488 	/*
8489 	 * Zero the whole array used to retrieve the exit info, as casting to
8490 	 * u32 for select entries will leave some chunks uninitialized.
8491 	 */
8492 	memset(&info, 0, sizeof(info));
8493 
8494 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8495 					   &info[2], (u32 *)&info[3],
8496 					   (u32 *)&info[4]);
8497 
8498 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8499 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8500 
8501 	/*
8502 	 * There's currently space for 13 entries, but 5 are used for the exit
8503 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8504 	 * when expanding kvm_run.emulation_failure in the future.
8505 	 */
8506 	if (WARN_ON_ONCE(ndata > 4))
8507 		ndata = 4;
8508 
8509 	/* Always include the flags as a 'data' entry. */
8510 	info_start = 1;
8511 	run->emulation_failure.flags = 0;
8512 
8513 	if (insn_size) {
8514 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8515 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8516 		info_start += 2;
8517 		run->emulation_failure.flags |=
8518 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8519 		run->emulation_failure.insn_size = insn_size;
8520 		memset(run->emulation_failure.insn_bytes, 0x90,
8521 		       sizeof(run->emulation_failure.insn_bytes));
8522 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8523 	}
8524 
8525 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8526 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8527 	       ndata * sizeof(data[0]));
8528 
8529 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8530 }
8531 
8532 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8533 {
8534 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8535 
8536 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8537 				       ctxt->fetch.end - ctxt->fetch.data);
8538 }
8539 
8540 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8541 					  u8 ndata)
8542 {
8543 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8544 }
8545 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8546 
8547 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8548 {
8549 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8550 }
8551 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8552 
8553 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8554 {
8555 	struct kvm *kvm = vcpu->kvm;
8556 
8557 	++vcpu->stat.insn_emulation_fail;
8558 	trace_kvm_emulate_insn_failed(vcpu);
8559 
8560 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8561 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8562 		return 1;
8563 	}
8564 
8565 	if (kvm->arch.exit_on_emulation_error ||
8566 	    (emulation_type & EMULTYPE_SKIP)) {
8567 		prepare_emulation_ctxt_failure_exit(vcpu);
8568 		return 0;
8569 	}
8570 
8571 	kvm_queue_exception(vcpu, UD_VECTOR);
8572 
8573 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8574 		prepare_emulation_ctxt_failure_exit(vcpu);
8575 		return 0;
8576 	}
8577 
8578 	return 1;
8579 }
8580 
8581 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8582 				  int emulation_type)
8583 {
8584 	gpa_t gpa = cr2_or_gpa;
8585 	kvm_pfn_t pfn;
8586 
8587 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8588 		return false;
8589 
8590 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8591 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8592 		return false;
8593 
8594 	if (!vcpu->arch.mmu->root_role.direct) {
8595 		/*
8596 		 * Write permission should be allowed since only
8597 		 * write access need to be emulated.
8598 		 */
8599 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8600 
8601 		/*
8602 		 * If the mapping is invalid in guest, let cpu retry
8603 		 * it to generate fault.
8604 		 */
8605 		if (gpa == INVALID_GPA)
8606 			return true;
8607 	}
8608 
8609 	/*
8610 	 * Do not retry the unhandleable instruction if it faults on the
8611 	 * readonly host memory, otherwise it will goto a infinite loop:
8612 	 * retry instruction -> write #PF -> emulation fail -> retry
8613 	 * instruction -> ...
8614 	 */
8615 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8616 
8617 	/*
8618 	 * If the instruction failed on the error pfn, it can not be fixed,
8619 	 * report the error to userspace.
8620 	 */
8621 	if (is_error_noslot_pfn(pfn))
8622 		return false;
8623 
8624 	kvm_release_pfn_clean(pfn);
8625 
8626 	/* The instructions are well-emulated on direct mmu. */
8627 	if (vcpu->arch.mmu->root_role.direct) {
8628 		unsigned int indirect_shadow_pages;
8629 
8630 		write_lock(&vcpu->kvm->mmu_lock);
8631 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8632 		write_unlock(&vcpu->kvm->mmu_lock);
8633 
8634 		if (indirect_shadow_pages)
8635 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8636 
8637 		return true;
8638 	}
8639 
8640 	/*
8641 	 * if emulation was due to access to shadowed page table
8642 	 * and it failed try to unshadow page and re-enter the
8643 	 * guest to let CPU execute the instruction.
8644 	 */
8645 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8646 
8647 	/*
8648 	 * If the access faults on its page table, it can not
8649 	 * be fixed by unprotecting shadow page and it should
8650 	 * be reported to userspace.
8651 	 */
8652 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8653 }
8654 
8655 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8656 			      gpa_t cr2_or_gpa,  int emulation_type)
8657 {
8658 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8659 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8660 
8661 	last_retry_eip = vcpu->arch.last_retry_eip;
8662 	last_retry_addr = vcpu->arch.last_retry_addr;
8663 
8664 	/*
8665 	 * If the emulation is caused by #PF and it is non-page_table
8666 	 * writing instruction, it means the VM-EXIT is caused by shadow
8667 	 * page protected, we can zap the shadow page and retry this
8668 	 * instruction directly.
8669 	 *
8670 	 * Note: if the guest uses a non-page-table modifying instruction
8671 	 * on the PDE that points to the instruction, then we will unmap
8672 	 * the instruction and go to an infinite loop. So, we cache the
8673 	 * last retried eip and the last fault address, if we meet the eip
8674 	 * and the address again, we can break out of the potential infinite
8675 	 * loop.
8676 	 */
8677 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8678 
8679 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8680 		return false;
8681 
8682 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8683 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8684 		return false;
8685 
8686 	if (x86_page_table_writing_insn(ctxt))
8687 		return false;
8688 
8689 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8690 		return false;
8691 
8692 	vcpu->arch.last_retry_eip = ctxt->eip;
8693 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8694 
8695 	if (!vcpu->arch.mmu->root_role.direct)
8696 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8697 
8698 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8699 
8700 	return true;
8701 }
8702 
8703 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8704 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8705 
8706 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8707 				unsigned long *db)
8708 {
8709 	u32 dr6 = 0;
8710 	int i;
8711 	u32 enable, rwlen;
8712 
8713 	enable = dr7;
8714 	rwlen = dr7 >> 16;
8715 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8716 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8717 			dr6 |= (1 << i);
8718 	return dr6;
8719 }
8720 
8721 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8722 {
8723 	struct kvm_run *kvm_run = vcpu->run;
8724 
8725 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8726 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8727 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8728 		kvm_run->debug.arch.exception = DB_VECTOR;
8729 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8730 		return 0;
8731 	}
8732 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8733 	return 1;
8734 }
8735 
8736 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8737 {
8738 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8739 	int r;
8740 
8741 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8742 	if (unlikely(!r))
8743 		return 0;
8744 
8745 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8746 
8747 	/*
8748 	 * rflags is the old, "raw" value of the flags.  The new value has
8749 	 * not been saved yet.
8750 	 *
8751 	 * This is correct even for TF set by the guest, because "the
8752 	 * processor will not generate this exception after the instruction
8753 	 * that sets the TF flag".
8754 	 */
8755 	if (unlikely(rflags & X86_EFLAGS_TF))
8756 		r = kvm_vcpu_do_singlestep(vcpu);
8757 	return r;
8758 }
8759 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8760 
8761 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8762 {
8763 	u32 shadow;
8764 
8765 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8766 		return true;
8767 
8768 	/*
8769 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8770 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8771 	 * to avoid the relatively expensive CPUID lookup.
8772 	 */
8773 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8774 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8775 	       guest_cpuid_is_intel(vcpu);
8776 }
8777 
8778 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8779 					   int emulation_type, int *r)
8780 {
8781 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8782 
8783 	/*
8784 	 * Do not check for code breakpoints if hardware has already done the
8785 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8786 	 * the instruction has passed all exception checks, and all intercepted
8787 	 * exceptions that trigger emulation have lower priority than code
8788 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8789 	 * means any code breakpoints have already been serviced.
8790 	 *
8791 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8792 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8793 	 * the instruction being emulated.  The intent of forced emulation is
8794 	 * to behave as if KVM intercepted the instruction without an exception
8795 	 * and without a prefix.
8796 	 */
8797 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8798 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8799 		return false;
8800 
8801 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8802 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8803 		struct kvm_run *kvm_run = vcpu->run;
8804 		unsigned long eip = kvm_get_linear_rip(vcpu);
8805 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8806 					   vcpu->arch.guest_debug_dr7,
8807 					   vcpu->arch.eff_db);
8808 
8809 		if (dr6 != 0) {
8810 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8811 			kvm_run->debug.arch.pc = eip;
8812 			kvm_run->debug.arch.exception = DB_VECTOR;
8813 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8814 			*r = 0;
8815 			return true;
8816 		}
8817 	}
8818 
8819 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8820 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8821 		unsigned long eip = kvm_get_linear_rip(vcpu);
8822 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8823 					   vcpu->arch.dr7,
8824 					   vcpu->arch.db);
8825 
8826 		if (dr6 != 0) {
8827 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8828 			*r = 1;
8829 			return true;
8830 		}
8831 	}
8832 
8833 	return false;
8834 }
8835 
8836 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8837 {
8838 	switch (ctxt->opcode_len) {
8839 	case 1:
8840 		switch (ctxt->b) {
8841 		case 0xe4:	/* IN */
8842 		case 0xe5:
8843 		case 0xec:
8844 		case 0xed:
8845 		case 0xe6:	/* OUT */
8846 		case 0xe7:
8847 		case 0xee:
8848 		case 0xef:
8849 		case 0x6c:	/* INS */
8850 		case 0x6d:
8851 		case 0x6e:	/* OUTS */
8852 		case 0x6f:
8853 			return true;
8854 		}
8855 		break;
8856 	case 2:
8857 		switch (ctxt->b) {
8858 		case 0x33:	/* RDPMC */
8859 			return true;
8860 		}
8861 		break;
8862 	}
8863 
8864 	return false;
8865 }
8866 
8867 /*
8868  * Decode an instruction for emulation.  The caller is responsible for handling
8869  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8870  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8871  * code breakpoints have higher priority and thus have already been done by
8872  * hardware.
8873  *
8874  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8875  *     response to a machine check.
8876  */
8877 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8878 				    void *insn, int insn_len)
8879 {
8880 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8881 	int r;
8882 
8883 	init_emulate_ctxt(vcpu);
8884 
8885 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8886 
8887 	trace_kvm_emulate_insn_start(vcpu);
8888 	++vcpu->stat.insn_emulation;
8889 
8890 	return r;
8891 }
8892 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8893 
8894 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8895 			    int emulation_type, void *insn, int insn_len)
8896 {
8897 	int r;
8898 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8899 	bool writeback = true;
8900 
8901 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8902 		return 1;
8903 
8904 	vcpu->arch.l1tf_flush_l1d = true;
8905 
8906 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8907 		kvm_clear_exception_queue(vcpu);
8908 
8909 		/*
8910 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8911 		 * are fault-like and are higher priority than any faults on
8912 		 * the code fetch itself.
8913 		 */
8914 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8915 			return r;
8916 
8917 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8918 						    insn, insn_len);
8919 		if (r != EMULATION_OK)  {
8920 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8921 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8922 				kvm_queue_exception(vcpu, UD_VECTOR);
8923 				return 1;
8924 			}
8925 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8926 						  emulation_type))
8927 				return 1;
8928 
8929 			if (ctxt->have_exception &&
8930 			    !(emulation_type & EMULTYPE_SKIP)) {
8931 				/*
8932 				 * #UD should result in just EMULATION_FAILED, and trap-like
8933 				 * exception should not be encountered during decode.
8934 				 */
8935 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8936 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8937 				inject_emulated_exception(vcpu);
8938 				return 1;
8939 			}
8940 			return handle_emulation_failure(vcpu, emulation_type);
8941 		}
8942 	}
8943 
8944 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8945 	    !is_vmware_backdoor_opcode(ctxt)) {
8946 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8947 		return 1;
8948 	}
8949 
8950 	/*
8951 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8952 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8953 	 * The caller is responsible for updating interruptibility state and
8954 	 * injecting single-step #DBs.
8955 	 */
8956 	if (emulation_type & EMULTYPE_SKIP) {
8957 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8958 			ctxt->eip = (u32)ctxt->_eip;
8959 		else
8960 			ctxt->eip = ctxt->_eip;
8961 
8962 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8963 			r = 1;
8964 			goto writeback;
8965 		}
8966 
8967 		kvm_rip_write(vcpu, ctxt->eip);
8968 		if (ctxt->eflags & X86_EFLAGS_RF)
8969 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8970 		return 1;
8971 	}
8972 
8973 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8974 		return 1;
8975 
8976 	/* this is needed for vmware backdoor interface to work since it
8977 	   changes registers values  during IO operation */
8978 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8979 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8980 		emulator_invalidate_register_cache(ctxt);
8981 	}
8982 
8983 restart:
8984 	if (emulation_type & EMULTYPE_PF) {
8985 		/* Save the faulting GPA (cr2) in the address field */
8986 		ctxt->exception.address = cr2_or_gpa;
8987 
8988 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8989 		if (vcpu->arch.mmu->root_role.direct) {
8990 			ctxt->gpa_available = true;
8991 			ctxt->gpa_val = cr2_or_gpa;
8992 		}
8993 	} else {
8994 		/* Sanitize the address out of an abundance of paranoia. */
8995 		ctxt->exception.address = 0;
8996 	}
8997 
8998 	r = x86_emulate_insn(ctxt);
8999 
9000 	if (r == EMULATION_INTERCEPTED)
9001 		return 1;
9002 
9003 	if (r == EMULATION_FAILED) {
9004 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9005 			return 1;
9006 
9007 		return handle_emulation_failure(vcpu, emulation_type);
9008 	}
9009 
9010 	if (ctxt->have_exception) {
9011 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9012 		vcpu->mmio_needed = false;
9013 		r = 1;
9014 		inject_emulated_exception(vcpu);
9015 	} else if (vcpu->arch.pio.count) {
9016 		if (!vcpu->arch.pio.in) {
9017 			/* FIXME: return into emulator if single-stepping.  */
9018 			vcpu->arch.pio.count = 0;
9019 		} else {
9020 			writeback = false;
9021 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9022 		}
9023 		r = 0;
9024 	} else if (vcpu->mmio_needed) {
9025 		++vcpu->stat.mmio_exits;
9026 
9027 		if (!vcpu->mmio_is_write)
9028 			writeback = false;
9029 		r = 0;
9030 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9031 	} else if (vcpu->arch.complete_userspace_io) {
9032 		writeback = false;
9033 		r = 0;
9034 	} else if (r == EMULATION_RESTART)
9035 		goto restart;
9036 	else
9037 		r = 1;
9038 
9039 writeback:
9040 	if (writeback) {
9041 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9042 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9043 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9044 
9045 		/*
9046 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9047 		 * only supports code breakpoints and general detect #DB, both
9048 		 * of which are fault-like.
9049 		 */
9050 		if (!ctxt->have_exception ||
9051 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9052 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9053 			if (ctxt->is_branch)
9054 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9055 			kvm_rip_write(vcpu, ctxt->eip);
9056 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9057 				r = kvm_vcpu_do_singlestep(vcpu);
9058 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9059 			__kvm_set_rflags(vcpu, ctxt->eflags);
9060 		}
9061 
9062 		/*
9063 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9064 		 * do nothing, and it will be requested again as soon as
9065 		 * the shadow expires.  But we still need to check here,
9066 		 * because POPF has no interrupt shadow.
9067 		 */
9068 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9069 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9070 	} else
9071 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9072 
9073 	return r;
9074 }
9075 
9076 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9077 {
9078 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9079 }
9080 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9081 
9082 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9083 					void *insn, int insn_len)
9084 {
9085 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9086 }
9087 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9088 
9089 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9090 {
9091 	vcpu->arch.pio.count = 0;
9092 	return 1;
9093 }
9094 
9095 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9096 {
9097 	vcpu->arch.pio.count = 0;
9098 
9099 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9100 		return 1;
9101 
9102 	return kvm_skip_emulated_instruction(vcpu);
9103 }
9104 
9105 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9106 			    unsigned short port)
9107 {
9108 	unsigned long val = kvm_rax_read(vcpu);
9109 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9110 
9111 	if (ret)
9112 		return ret;
9113 
9114 	/*
9115 	 * Workaround userspace that relies on old KVM behavior of %rip being
9116 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9117 	 */
9118 	if (port == 0x7e &&
9119 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9120 		vcpu->arch.complete_userspace_io =
9121 			complete_fast_pio_out_port_0x7e;
9122 		kvm_skip_emulated_instruction(vcpu);
9123 	} else {
9124 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9125 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9126 	}
9127 	return 0;
9128 }
9129 
9130 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9131 {
9132 	unsigned long val;
9133 
9134 	/* We should only ever be called with arch.pio.count equal to 1 */
9135 	BUG_ON(vcpu->arch.pio.count != 1);
9136 
9137 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9138 		vcpu->arch.pio.count = 0;
9139 		return 1;
9140 	}
9141 
9142 	/* For size less than 4 we merge, else we zero extend */
9143 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9144 
9145 	complete_emulator_pio_in(vcpu, &val);
9146 	kvm_rax_write(vcpu, val);
9147 
9148 	return kvm_skip_emulated_instruction(vcpu);
9149 }
9150 
9151 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9152 			   unsigned short port)
9153 {
9154 	unsigned long val;
9155 	int ret;
9156 
9157 	/* For size less than 4 we merge, else we zero extend */
9158 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9159 
9160 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9161 	if (ret) {
9162 		kvm_rax_write(vcpu, val);
9163 		return ret;
9164 	}
9165 
9166 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9167 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9168 
9169 	return 0;
9170 }
9171 
9172 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9173 {
9174 	int ret;
9175 
9176 	if (in)
9177 		ret = kvm_fast_pio_in(vcpu, size, port);
9178 	else
9179 		ret = kvm_fast_pio_out(vcpu, size, port);
9180 	return ret && kvm_skip_emulated_instruction(vcpu);
9181 }
9182 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9183 
9184 static int kvmclock_cpu_down_prep(unsigned int cpu)
9185 {
9186 	__this_cpu_write(cpu_tsc_khz, 0);
9187 	return 0;
9188 }
9189 
9190 static void tsc_khz_changed(void *data)
9191 {
9192 	struct cpufreq_freqs *freq = data;
9193 	unsigned long khz;
9194 
9195 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9196 
9197 	if (data)
9198 		khz = freq->new;
9199 	else
9200 		khz = cpufreq_quick_get(raw_smp_processor_id());
9201 	if (!khz)
9202 		khz = tsc_khz;
9203 	__this_cpu_write(cpu_tsc_khz, khz);
9204 }
9205 
9206 #ifdef CONFIG_X86_64
9207 static void kvm_hyperv_tsc_notifier(void)
9208 {
9209 	struct kvm *kvm;
9210 	int cpu;
9211 
9212 	mutex_lock(&kvm_lock);
9213 	list_for_each_entry(kvm, &vm_list, vm_list)
9214 		kvm_make_mclock_inprogress_request(kvm);
9215 
9216 	/* no guest entries from this point */
9217 	hyperv_stop_tsc_emulation();
9218 
9219 	/* TSC frequency always matches when on Hyper-V */
9220 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9221 		for_each_present_cpu(cpu)
9222 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9223 	}
9224 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9225 
9226 	list_for_each_entry(kvm, &vm_list, vm_list) {
9227 		__kvm_start_pvclock_update(kvm);
9228 		pvclock_update_vm_gtod_copy(kvm);
9229 		kvm_end_pvclock_update(kvm);
9230 	}
9231 
9232 	mutex_unlock(&kvm_lock);
9233 }
9234 #endif
9235 
9236 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9237 {
9238 	struct kvm *kvm;
9239 	struct kvm_vcpu *vcpu;
9240 	int send_ipi = 0;
9241 	unsigned long i;
9242 
9243 	/*
9244 	 * We allow guests to temporarily run on slowing clocks,
9245 	 * provided we notify them after, or to run on accelerating
9246 	 * clocks, provided we notify them before.  Thus time never
9247 	 * goes backwards.
9248 	 *
9249 	 * However, we have a problem.  We can't atomically update
9250 	 * the frequency of a given CPU from this function; it is
9251 	 * merely a notifier, which can be called from any CPU.
9252 	 * Changing the TSC frequency at arbitrary points in time
9253 	 * requires a recomputation of local variables related to
9254 	 * the TSC for each VCPU.  We must flag these local variables
9255 	 * to be updated and be sure the update takes place with the
9256 	 * new frequency before any guests proceed.
9257 	 *
9258 	 * Unfortunately, the combination of hotplug CPU and frequency
9259 	 * change creates an intractable locking scenario; the order
9260 	 * of when these callouts happen is undefined with respect to
9261 	 * CPU hotplug, and they can race with each other.  As such,
9262 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9263 	 * undefined; you can actually have a CPU frequency change take
9264 	 * place in between the computation of X and the setting of the
9265 	 * variable.  To protect against this problem, all updates of
9266 	 * the per_cpu tsc_khz variable are done in an interrupt
9267 	 * protected IPI, and all callers wishing to update the value
9268 	 * must wait for a synchronous IPI to complete (which is trivial
9269 	 * if the caller is on the CPU already).  This establishes the
9270 	 * necessary total order on variable updates.
9271 	 *
9272 	 * Note that because a guest time update may take place
9273 	 * anytime after the setting of the VCPU's request bit, the
9274 	 * correct TSC value must be set before the request.  However,
9275 	 * to ensure the update actually makes it to any guest which
9276 	 * starts running in hardware virtualization between the set
9277 	 * and the acquisition of the spinlock, we must also ping the
9278 	 * CPU after setting the request bit.
9279 	 *
9280 	 */
9281 
9282 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9283 
9284 	mutex_lock(&kvm_lock);
9285 	list_for_each_entry(kvm, &vm_list, vm_list) {
9286 		kvm_for_each_vcpu(i, vcpu, kvm) {
9287 			if (vcpu->cpu != cpu)
9288 				continue;
9289 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9290 			if (vcpu->cpu != raw_smp_processor_id())
9291 				send_ipi = 1;
9292 		}
9293 	}
9294 	mutex_unlock(&kvm_lock);
9295 
9296 	if (freq->old < freq->new && send_ipi) {
9297 		/*
9298 		 * We upscale the frequency.  Must make the guest
9299 		 * doesn't see old kvmclock values while running with
9300 		 * the new frequency, otherwise we risk the guest sees
9301 		 * time go backwards.
9302 		 *
9303 		 * In case we update the frequency for another cpu
9304 		 * (which might be in guest context) send an interrupt
9305 		 * to kick the cpu out of guest context.  Next time
9306 		 * guest context is entered kvmclock will be updated,
9307 		 * so the guest will not see stale values.
9308 		 */
9309 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9310 	}
9311 }
9312 
9313 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9314 				     void *data)
9315 {
9316 	struct cpufreq_freqs *freq = data;
9317 	int cpu;
9318 
9319 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9320 		return 0;
9321 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9322 		return 0;
9323 
9324 	for_each_cpu(cpu, freq->policy->cpus)
9325 		__kvmclock_cpufreq_notifier(freq, cpu);
9326 
9327 	return 0;
9328 }
9329 
9330 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9331 	.notifier_call  = kvmclock_cpufreq_notifier
9332 };
9333 
9334 static int kvmclock_cpu_online(unsigned int cpu)
9335 {
9336 	tsc_khz_changed(NULL);
9337 	return 0;
9338 }
9339 
9340 static void kvm_timer_init(void)
9341 {
9342 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9343 		max_tsc_khz = tsc_khz;
9344 
9345 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9346 			struct cpufreq_policy *policy;
9347 			int cpu;
9348 
9349 			cpu = get_cpu();
9350 			policy = cpufreq_cpu_get(cpu);
9351 			if (policy) {
9352 				if (policy->cpuinfo.max_freq)
9353 					max_tsc_khz = policy->cpuinfo.max_freq;
9354 				cpufreq_cpu_put(policy);
9355 			}
9356 			put_cpu();
9357 		}
9358 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9359 					  CPUFREQ_TRANSITION_NOTIFIER);
9360 
9361 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9362 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9363 	}
9364 }
9365 
9366 #ifdef CONFIG_X86_64
9367 static void pvclock_gtod_update_fn(struct work_struct *work)
9368 {
9369 	struct kvm *kvm;
9370 	struct kvm_vcpu *vcpu;
9371 	unsigned long i;
9372 
9373 	mutex_lock(&kvm_lock);
9374 	list_for_each_entry(kvm, &vm_list, vm_list)
9375 		kvm_for_each_vcpu(i, vcpu, kvm)
9376 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9377 	atomic_set(&kvm_guest_has_master_clock, 0);
9378 	mutex_unlock(&kvm_lock);
9379 }
9380 
9381 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9382 
9383 /*
9384  * Indirection to move queue_work() out of the tk_core.seq write held
9385  * region to prevent possible deadlocks against time accessors which
9386  * are invoked with work related locks held.
9387  */
9388 static void pvclock_irq_work_fn(struct irq_work *w)
9389 {
9390 	queue_work(system_long_wq, &pvclock_gtod_work);
9391 }
9392 
9393 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9394 
9395 /*
9396  * Notification about pvclock gtod data update.
9397  */
9398 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9399 			       void *priv)
9400 {
9401 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9402 	struct timekeeper *tk = priv;
9403 
9404 	update_pvclock_gtod(tk);
9405 
9406 	/*
9407 	 * Disable master clock if host does not trust, or does not use,
9408 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9409 	 * this is invoked with tk_core.seq write held.
9410 	 */
9411 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9412 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9413 		irq_work_queue(&pvclock_irq_work);
9414 	return 0;
9415 }
9416 
9417 static struct notifier_block pvclock_gtod_notifier = {
9418 	.notifier_call = pvclock_gtod_notify,
9419 };
9420 #endif
9421 
9422 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9423 {
9424 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9425 
9426 #define __KVM_X86_OP(func) \
9427 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9428 #define KVM_X86_OP(func) \
9429 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9430 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9431 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9432 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9433 					   (void *)__static_call_return0);
9434 #include <asm/kvm-x86-ops.h>
9435 #undef __KVM_X86_OP
9436 
9437 	kvm_pmu_ops_update(ops->pmu_ops);
9438 }
9439 
9440 static int kvm_x86_check_processor_compatibility(void)
9441 {
9442 	int cpu = smp_processor_id();
9443 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9444 
9445 	/*
9446 	 * Compatibility checks are done when loading KVM and when enabling
9447 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9448 	 * compatible, i.e. KVM should never perform a compatibility check on
9449 	 * an offline CPU.
9450 	 */
9451 	WARN_ON(!cpu_online(cpu));
9452 
9453 	if (__cr4_reserved_bits(cpu_has, c) !=
9454 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9455 		return -EIO;
9456 
9457 	return static_call(kvm_x86_check_processor_compatibility)();
9458 }
9459 
9460 static void kvm_x86_check_cpu_compat(void *ret)
9461 {
9462 	*(int *)ret = kvm_x86_check_processor_compatibility();
9463 }
9464 
9465 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9466 {
9467 	u64 host_pat;
9468 	int r, cpu;
9469 
9470 	if (kvm_x86_ops.hardware_enable) {
9471 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9472 		return -EEXIST;
9473 	}
9474 
9475 	/*
9476 	 * KVM explicitly assumes that the guest has an FPU and
9477 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9478 	 * vCPU's FPU state as a fxregs_state struct.
9479 	 */
9480 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9481 		pr_err("inadequate fpu\n");
9482 		return -EOPNOTSUPP;
9483 	}
9484 
9485 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9486 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9487 		return -EOPNOTSUPP;
9488 	}
9489 
9490 	/*
9491 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9492 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9493 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9494 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9495 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9496 	 */
9497 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9498 	    (host_pat & GENMASK(2, 0)) != 6) {
9499 		pr_err("host PAT[0] is not WB\n");
9500 		return -EIO;
9501 	}
9502 
9503 	x86_emulator_cache = kvm_alloc_emulator_cache();
9504 	if (!x86_emulator_cache) {
9505 		pr_err("failed to allocate cache for x86 emulator\n");
9506 		return -ENOMEM;
9507 	}
9508 
9509 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9510 	if (!user_return_msrs) {
9511 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9512 		r = -ENOMEM;
9513 		goto out_free_x86_emulator_cache;
9514 	}
9515 	kvm_nr_uret_msrs = 0;
9516 
9517 	r = kvm_mmu_vendor_module_init();
9518 	if (r)
9519 		goto out_free_percpu;
9520 
9521 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9522 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9523 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9524 	}
9525 
9526 	rdmsrl_safe(MSR_EFER, &host_efer);
9527 
9528 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9529 		rdmsrl(MSR_IA32_XSS, host_xss);
9530 
9531 	kvm_init_pmu_capability(ops->pmu_ops);
9532 
9533 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9534 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9535 
9536 	r = ops->hardware_setup();
9537 	if (r != 0)
9538 		goto out_mmu_exit;
9539 
9540 	kvm_ops_update(ops);
9541 
9542 	for_each_online_cpu(cpu) {
9543 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9544 		if (r < 0)
9545 			goto out_unwind_ops;
9546 	}
9547 
9548 	/*
9549 	 * Point of no return!  DO NOT add error paths below this point unless
9550 	 * absolutely necessary, as most operations from this point forward
9551 	 * require unwinding.
9552 	 */
9553 	kvm_timer_init();
9554 
9555 	if (pi_inject_timer == -1)
9556 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9557 #ifdef CONFIG_X86_64
9558 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9559 
9560 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9561 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9562 #endif
9563 
9564 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9565 
9566 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9567 		kvm_caps.supported_xss = 0;
9568 
9569 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9570 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9571 #undef __kvm_cpu_cap_has
9572 
9573 	if (kvm_caps.has_tsc_control) {
9574 		/*
9575 		 * Make sure the user can only configure tsc_khz values that
9576 		 * fit into a signed integer.
9577 		 * A min value is not calculated because it will always
9578 		 * be 1 on all machines.
9579 		 */
9580 		u64 max = min(0x7fffffffULL,
9581 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9582 		kvm_caps.max_guest_tsc_khz = max;
9583 	}
9584 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9585 	kvm_init_msr_lists();
9586 	return 0;
9587 
9588 out_unwind_ops:
9589 	kvm_x86_ops.hardware_enable = NULL;
9590 	static_call(kvm_x86_hardware_unsetup)();
9591 out_mmu_exit:
9592 	kvm_mmu_vendor_module_exit();
9593 out_free_percpu:
9594 	free_percpu(user_return_msrs);
9595 out_free_x86_emulator_cache:
9596 	kmem_cache_destroy(x86_emulator_cache);
9597 	return r;
9598 }
9599 
9600 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9601 {
9602 	int r;
9603 
9604 	mutex_lock(&vendor_module_lock);
9605 	r = __kvm_x86_vendor_init(ops);
9606 	mutex_unlock(&vendor_module_lock);
9607 
9608 	return r;
9609 }
9610 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9611 
9612 void kvm_x86_vendor_exit(void)
9613 {
9614 	kvm_unregister_perf_callbacks();
9615 
9616 #ifdef CONFIG_X86_64
9617 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9618 		clear_hv_tscchange_cb();
9619 #endif
9620 	kvm_lapic_exit();
9621 
9622 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9623 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9624 					    CPUFREQ_TRANSITION_NOTIFIER);
9625 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9626 	}
9627 #ifdef CONFIG_X86_64
9628 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9629 	irq_work_sync(&pvclock_irq_work);
9630 	cancel_work_sync(&pvclock_gtod_work);
9631 #endif
9632 	static_call(kvm_x86_hardware_unsetup)();
9633 	kvm_mmu_vendor_module_exit();
9634 	free_percpu(user_return_msrs);
9635 	kmem_cache_destroy(x86_emulator_cache);
9636 #ifdef CONFIG_KVM_XEN
9637 	static_key_deferred_flush(&kvm_xen_enabled);
9638 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9639 #endif
9640 	mutex_lock(&vendor_module_lock);
9641 	kvm_x86_ops.hardware_enable = NULL;
9642 	mutex_unlock(&vendor_module_lock);
9643 }
9644 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9645 
9646 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9647 {
9648 	/*
9649 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9650 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9651 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9652 	 * managed by userspace, in which case userspace is responsible for
9653 	 * handling wake events.
9654 	 */
9655 	++vcpu->stat.halt_exits;
9656 	if (lapic_in_kernel(vcpu)) {
9657 		vcpu->arch.mp_state = state;
9658 		return 1;
9659 	} else {
9660 		vcpu->run->exit_reason = reason;
9661 		return 0;
9662 	}
9663 }
9664 
9665 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9666 {
9667 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9668 }
9669 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9670 
9671 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9672 {
9673 	int ret = kvm_skip_emulated_instruction(vcpu);
9674 	/*
9675 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9676 	 * KVM_EXIT_DEBUG here.
9677 	 */
9678 	return kvm_emulate_halt_noskip(vcpu) && ret;
9679 }
9680 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9681 
9682 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9683 {
9684 	int ret = kvm_skip_emulated_instruction(vcpu);
9685 
9686 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9687 					KVM_EXIT_AP_RESET_HOLD) && ret;
9688 }
9689 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9690 
9691 #ifdef CONFIG_X86_64
9692 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9693 			        unsigned long clock_type)
9694 {
9695 	struct kvm_clock_pairing clock_pairing;
9696 	struct timespec64 ts;
9697 	u64 cycle;
9698 	int ret;
9699 
9700 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9701 		return -KVM_EOPNOTSUPP;
9702 
9703 	/*
9704 	 * When tsc is in permanent catchup mode guests won't be able to use
9705 	 * pvclock_read_retry loop to get consistent view of pvclock
9706 	 */
9707 	if (vcpu->arch.tsc_always_catchup)
9708 		return -KVM_EOPNOTSUPP;
9709 
9710 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9711 		return -KVM_EOPNOTSUPP;
9712 
9713 	clock_pairing.sec = ts.tv_sec;
9714 	clock_pairing.nsec = ts.tv_nsec;
9715 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9716 	clock_pairing.flags = 0;
9717 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9718 
9719 	ret = 0;
9720 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9721 			    sizeof(struct kvm_clock_pairing)))
9722 		ret = -KVM_EFAULT;
9723 
9724 	return ret;
9725 }
9726 #endif
9727 
9728 /*
9729  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9730  *
9731  * @apicid - apicid of vcpu to be kicked.
9732  */
9733 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9734 {
9735 	/*
9736 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9737 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9738 	 */
9739 	struct kvm_lapic_irq lapic_irq = {
9740 		.delivery_mode = APIC_DM_REMRD,
9741 		.dest_mode = APIC_DEST_PHYSICAL,
9742 		.shorthand = APIC_DEST_NOSHORT,
9743 		.dest_id = apicid,
9744 	};
9745 
9746 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9747 }
9748 
9749 bool kvm_apicv_activated(struct kvm *kvm)
9750 {
9751 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9752 }
9753 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9754 
9755 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9756 {
9757 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9758 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9759 
9760 	return (vm_reasons | vcpu_reasons) == 0;
9761 }
9762 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9763 
9764 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9765 				       enum kvm_apicv_inhibit reason, bool set)
9766 {
9767 	if (set)
9768 		__set_bit(reason, inhibits);
9769 	else
9770 		__clear_bit(reason, inhibits);
9771 
9772 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9773 }
9774 
9775 static void kvm_apicv_init(struct kvm *kvm)
9776 {
9777 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9778 
9779 	init_rwsem(&kvm->arch.apicv_update_lock);
9780 
9781 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9782 
9783 	if (!enable_apicv)
9784 		set_or_clear_apicv_inhibit(inhibits,
9785 					   APICV_INHIBIT_REASON_DISABLE, true);
9786 }
9787 
9788 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9789 {
9790 	struct kvm_vcpu *target = NULL;
9791 	struct kvm_apic_map *map;
9792 
9793 	vcpu->stat.directed_yield_attempted++;
9794 
9795 	if (single_task_running())
9796 		goto no_yield;
9797 
9798 	rcu_read_lock();
9799 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9800 
9801 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9802 		target = map->phys_map[dest_id]->vcpu;
9803 
9804 	rcu_read_unlock();
9805 
9806 	if (!target || !READ_ONCE(target->ready))
9807 		goto no_yield;
9808 
9809 	/* Ignore requests to yield to self */
9810 	if (vcpu == target)
9811 		goto no_yield;
9812 
9813 	if (kvm_vcpu_yield_to(target) <= 0)
9814 		goto no_yield;
9815 
9816 	vcpu->stat.directed_yield_successful++;
9817 
9818 no_yield:
9819 	return;
9820 }
9821 
9822 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9823 {
9824 	u64 ret = vcpu->run->hypercall.ret;
9825 
9826 	if (!is_64_bit_mode(vcpu))
9827 		ret = (u32)ret;
9828 	kvm_rax_write(vcpu, ret);
9829 	++vcpu->stat.hypercalls;
9830 	return kvm_skip_emulated_instruction(vcpu);
9831 }
9832 
9833 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9834 {
9835 	unsigned long nr, a0, a1, a2, a3, ret;
9836 	int op_64_bit;
9837 
9838 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9839 		return kvm_xen_hypercall(vcpu);
9840 
9841 	if (kvm_hv_hypercall_enabled(vcpu))
9842 		return kvm_hv_hypercall(vcpu);
9843 
9844 	nr = kvm_rax_read(vcpu);
9845 	a0 = kvm_rbx_read(vcpu);
9846 	a1 = kvm_rcx_read(vcpu);
9847 	a2 = kvm_rdx_read(vcpu);
9848 	a3 = kvm_rsi_read(vcpu);
9849 
9850 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9851 
9852 	op_64_bit = is_64_bit_hypercall(vcpu);
9853 	if (!op_64_bit) {
9854 		nr &= 0xFFFFFFFF;
9855 		a0 &= 0xFFFFFFFF;
9856 		a1 &= 0xFFFFFFFF;
9857 		a2 &= 0xFFFFFFFF;
9858 		a3 &= 0xFFFFFFFF;
9859 	}
9860 
9861 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9862 		ret = -KVM_EPERM;
9863 		goto out;
9864 	}
9865 
9866 	ret = -KVM_ENOSYS;
9867 
9868 	switch (nr) {
9869 	case KVM_HC_VAPIC_POLL_IRQ:
9870 		ret = 0;
9871 		break;
9872 	case KVM_HC_KICK_CPU:
9873 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9874 			break;
9875 
9876 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9877 		kvm_sched_yield(vcpu, a1);
9878 		ret = 0;
9879 		break;
9880 #ifdef CONFIG_X86_64
9881 	case KVM_HC_CLOCK_PAIRING:
9882 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9883 		break;
9884 #endif
9885 	case KVM_HC_SEND_IPI:
9886 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9887 			break;
9888 
9889 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9890 		break;
9891 	case KVM_HC_SCHED_YIELD:
9892 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9893 			break;
9894 
9895 		kvm_sched_yield(vcpu, a0);
9896 		ret = 0;
9897 		break;
9898 	case KVM_HC_MAP_GPA_RANGE: {
9899 		u64 gpa = a0, npages = a1, attrs = a2;
9900 
9901 		ret = -KVM_ENOSYS;
9902 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9903 			break;
9904 
9905 		if (!PAGE_ALIGNED(gpa) || !npages ||
9906 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9907 			ret = -KVM_EINVAL;
9908 			break;
9909 		}
9910 
9911 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9912 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9913 		vcpu->run->hypercall.args[0]  = gpa;
9914 		vcpu->run->hypercall.args[1]  = npages;
9915 		vcpu->run->hypercall.args[2]  = attrs;
9916 		vcpu->run->hypercall.flags    = 0;
9917 		if (op_64_bit)
9918 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9919 
9920 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9921 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9922 		return 0;
9923 	}
9924 	default:
9925 		ret = -KVM_ENOSYS;
9926 		break;
9927 	}
9928 out:
9929 	if (!op_64_bit)
9930 		ret = (u32)ret;
9931 	kvm_rax_write(vcpu, ret);
9932 
9933 	++vcpu->stat.hypercalls;
9934 	return kvm_skip_emulated_instruction(vcpu);
9935 }
9936 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9937 
9938 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9939 {
9940 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9941 	char instruction[3];
9942 	unsigned long rip = kvm_rip_read(vcpu);
9943 
9944 	/*
9945 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9946 	 * the pieces.
9947 	 */
9948 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9949 		ctxt->exception.error_code_valid = false;
9950 		ctxt->exception.vector = UD_VECTOR;
9951 		ctxt->have_exception = true;
9952 		return X86EMUL_PROPAGATE_FAULT;
9953 	}
9954 
9955 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9956 
9957 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9958 		&ctxt->exception);
9959 }
9960 
9961 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9962 {
9963 	return vcpu->run->request_interrupt_window &&
9964 		likely(!pic_in_kernel(vcpu->kvm));
9965 }
9966 
9967 /* Called within kvm->srcu read side.  */
9968 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9969 {
9970 	struct kvm_run *kvm_run = vcpu->run;
9971 
9972 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9973 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9974 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9975 
9976 	kvm_run->ready_for_interrupt_injection =
9977 		pic_in_kernel(vcpu->kvm) ||
9978 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9979 
9980 	if (is_smm(vcpu))
9981 		kvm_run->flags |= KVM_RUN_X86_SMM;
9982 }
9983 
9984 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9985 {
9986 	int max_irr, tpr;
9987 
9988 	if (!kvm_x86_ops.update_cr8_intercept)
9989 		return;
9990 
9991 	if (!lapic_in_kernel(vcpu))
9992 		return;
9993 
9994 	if (vcpu->arch.apic->apicv_active)
9995 		return;
9996 
9997 	if (!vcpu->arch.apic->vapic_addr)
9998 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9999 	else
10000 		max_irr = -1;
10001 
10002 	if (max_irr != -1)
10003 		max_irr >>= 4;
10004 
10005 	tpr = kvm_lapic_get_cr8(vcpu);
10006 
10007 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10008 }
10009 
10010 
10011 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10012 {
10013 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10014 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10015 		return 1;
10016 	}
10017 
10018 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10019 }
10020 
10021 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10022 {
10023 	/*
10024 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10025 	 * exceptions don't report error codes.  The presence of an error code
10026 	 * is carried with the exception and only stripped when the exception
10027 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10028 	 * report an error code despite the CPU being in Real Mode.
10029 	 */
10030 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10031 
10032 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10033 				vcpu->arch.exception.has_error_code,
10034 				vcpu->arch.exception.error_code,
10035 				vcpu->arch.exception.injected);
10036 
10037 	static_call(kvm_x86_inject_exception)(vcpu);
10038 }
10039 
10040 /*
10041  * Check for any event (interrupt or exception) that is ready to be injected,
10042  * and if there is at least one event, inject the event with the highest
10043  * priority.  This handles both "pending" events, i.e. events that have never
10044  * been injected into the guest, and "injected" events, i.e. events that were
10045  * injected as part of a previous VM-Enter, but weren't successfully delivered
10046  * and need to be re-injected.
10047  *
10048  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10049  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10050  * be able to inject exceptions in the "middle" of an instruction, and so must
10051  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10052  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10053  * boundaries is necessary and correct.
10054  *
10055  * For simplicity, KVM uses a single path to inject all events (except events
10056  * that are injected directly from L1 to L2) and doesn't explicitly track
10057  * instruction boundaries for asynchronous events.  However, because VM-Exits
10058  * that can occur during instruction execution typically result in KVM skipping
10059  * the instruction or injecting an exception, e.g. instruction and exception
10060  * intercepts, and because pending exceptions have higher priority than pending
10061  * interrupts, KVM still honors instruction boundaries in most scenarios.
10062  *
10063  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10064  * the instruction or inject an exception, then KVM can incorrecty inject a new
10065  * asynchrounous event if the event became pending after the CPU fetched the
10066  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10067  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10068  * injected on the restarted instruction instead of being deferred until the
10069  * instruction completes.
10070  *
10071  * In practice, this virtualization hole is unlikely to be observed by the
10072  * guest, and even less likely to cause functional problems.  To detect the
10073  * hole, the guest would have to trigger an event on a side effect of an early
10074  * phase of instruction execution, e.g. on the instruction fetch from memory.
10075  * And for it to be a functional problem, the guest would need to depend on the
10076  * ordering between that side effect, the instruction completing, _and_ the
10077  * delivery of the asynchronous event.
10078  */
10079 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10080 				       bool *req_immediate_exit)
10081 {
10082 	bool can_inject;
10083 	int r;
10084 
10085 	/*
10086 	 * Process nested events first, as nested VM-Exit supercedes event
10087 	 * re-injection.  If there's an event queued for re-injection, it will
10088 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10089 	 */
10090 	if (is_guest_mode(vcpu))
10091 		r = kvm_check_nested_events(vcpu);
10092 	else
10093 		r = 0;
10094 
10095 	/*
10096 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10097 	 * to/from L2 is needed, as any event that has already been injected
10098 	 * into L2 needs to complete its lifecycle before injecting a new event.
10099 	 *
10100 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10101 	 * This collision arises if an exception occurred while vectoring the
10102 	 * injected event, KVM intercepted said exception, and KVM ultimately
10103 	 * determined the fault belongs to the guest and queues the exception
10104 	 * for injection back into the guest.
10105 	 *
10106 	 * "Injected" interrupts can also collide with pending exceptions if
10107 	 * userspace ignores the "ready for injection" flag and blindly queues
10108 	 * an interrupt.  In that case, prioritizing the exception is correct,
10109 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10110 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10111 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10112 	 * priority, they're only generated (pended) during instruction
10113 	 * execution, and interrupts are recognized at instruction boundaries.
10114 	 * Thus a pending fault-like exception means the fault occurred on the
10115 	 * *previous* instruction and must be serviced prior to recognizing any
10116 	 * new events in order to fully complete the previous instruction.
10117 	 */
10118 	if (vcpu->arch.exception.injected)
10119 		kvm_inject_exception(vcpu);
10120 	else if (kvm_is_exception_pending(vcpu))
10121 		; /* see above */
10122 	else if (vcpu->arch.nmi_injected)
10123 		static_call(kvm_x86_inject_nmi)(vcpu);
10124 	else if (vcpu->arch.interrupt.injected)
10125 		static_call(kvm_x86_inject_irq)(vcpu, true);
10126 
10127 	/*
10128 	 * Exceptions that morph to VM-Exits are handled above, and pending
10129 	 * exceptions on top of injected exceptions that do not VM-Exit should
10130 	 * either morph to #DF or, sadly, override the injected exception.
10131 	 */
10132 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10133 		     vcpu->arch.exception.pending);
10134 
10135 	/*
10136 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10137 	 * nested VM-Enter or event re-injection so that a different pending
10138 	 * event can be serviced (or if KVM needs to exit to userspace).
10139 	 *
10140 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10141 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10142 	 * there may now be events that can be injected into L1.
10143 	 */
10144 	if (r < 0)
10145 		goto out;
10146 
10147 	/*
10148 	 * A pending exception VM-Exit should either result in nested VM-Exit
10149 	 * or force an immediate re-entry and exit to/from L2, and exception
10150 	 * VM-Exits cannot be injected (flag should _never_ be set).
10151 	 */
10152 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10153 		     vcpu->arch.exception_vmexit.pending);
10154 
10155 	/*
10156 	 * New events, other than exceptions, cannot be injected if KVM needs
10157 	 * to re-inject a previous event.  See above comments on re-injecting
10158 	 * for why pending exceptions get priority.
10159 	 */
10160 	can_inject = !kvm_event_needs_reinjection(vcpu);
10161 
10162 	if (vcpu->arch.exception.pending) {
10163 		/*
10164 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10165 		 * value pushed on the stack.  Trap-like exception and all #DBs
10166 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10167 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10168 		 *
10169 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10170 		 * describe the behavior of General Detect #DBs, which are
10171 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10172 		 */
10173 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10174 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10175 					     X86_EFLAGS_RF);
10176 
10177 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10178 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10179 			if (vcpu->arch.dr7 & DR7_GD) {
10180 				vcpu->arch.dr7 &= ~DR7_GD;
10181 				kvm_update_dr7(vcpu);
10182 			}
10183 		}
10184 
10185 		kvm_inject_exception(vcpu);
10186 
10187 		vcpu->arch.exception.pending = false;
10188 		vcpu->arch.exception.injected = true;
10189 
10190 		can_inject = false;
10191 	}
10192 
10193 	/* Don't inject interrupts if the user asked to avoid doing so */
10194 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10195 		return 0;
10196 
10197 	/*
10198 	 * Finally, inject interrupt events.  If an event cannot be injected
10199 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10200 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10201 	 * and can architecturally be injected, but we cannot do it right now:
10202 	 * an interrupt could have arrived just now and we have to inject it
10203 	 * as a vmexit, or there could already an event in the queue, which is
10204 	 * indicated by can_inject.  In that case we request an immediate exit
10205 	 * in order to make progress and get back here for another iteration.
10206 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10207 	 */
10208 #ifdef CONFIG_KVM_SMM
10209 	if (vcpu->arch.smi_pending) {
10210 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10211 		if (r < 0)
10212 			goto out;
10213 		if (r) {
10214 			vcpu->arch.smi_pending = false;
10215 			++vcpu->arch.smi_count;
10216 			enter_smm(vcpu);
10217 			can_inject = false;
10218 		} else
10219 			static_call(kvm_x86_enable_smi_window)(vcpu);
10220 	}
10221 #endif
10222 
10223 	if (vcpu->arch.nmi_pending) {
10224 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10225 		if (r < 0)
10226 			goto out;
10227 		if (r) {
10228 			--vcpu->arch.nmi_pending;
10229 			vcpu->arch.nmi_injected = true;
10230 			static_call(kvm_x86_inject_nmi)(vcpu);
10231 			can_inject = false;
10232 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10233 		}
10234 		if (vcpu->arch.nmi_pending)
10235 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10236 	}
10237 
10238 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10239 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10240 		if (r < 0)
10241 			goto out;
10242 		if (r) {
10243 			int irq = kvm_cpu_get_interrupt(vcpu);
10244 
10245 			if (!WARN_ON_ONCE(irq == -1)) {
10246 				kvm_queue_interrupt(vcpu, irq, false);
10247 				static_call(kvm_x86_inject_irq)(vcpu, false);
10248 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10249 			}
10250 		}
10251 		if (kvm_cpu_has_injectable_intr(vcpu))
10252 			static_call(kvm_x86_enable_irq_window)(vcpu);
10253 	}
10254 
10255 	if (is_guest_mode(vcpu) &&
10256 	    kvm_x86_ops.nested_ops->has_events &&
10257 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10258 		*req_immediate_exit = true;
10259 
10260 	/*
10261 	 * KVM must never queue a new exception while injecting an event; KVM
10262 	 * is done emulating and should only propagate the to-be-injected event
10263 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10264 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10265 	 * exception and start the cycle all over.
10266 	 *
10267 	 * Exempt triple faults as they have special handling and won't put the
10268 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10269 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10270 	 * Mode events (see kvm_inject_realmode_interrupt()).
10271 	 */
10272 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10273 		     vcpu->arch.exception_vmexit.pending);
10274 	return 0;
10275 
10276 out:
10277 	if (r == -EBUSY) {
10278 		*req_immediate_exit = true;
10279 		r = 0;
10280 	}
10281 	return r;
10282 }
10283 
10284 static void process_nmi(struct kvm_vcpu *vcpu)
10285 {
10286 	unsigned int limit;
10287 
10288 	/*
10289 	 * x86 is limited to one NMI pending, but because KVM can't react to
10290 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10291 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10292 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10293 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10294 	 * waiting for a previous NMI injection to complete (which effectively
10295 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10296 	 * will request an NMI window to handle the second NMI.
10297 	 */
10298 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10299 		limit = 1;
10300 	else
10301 		limit = 2;
10302 
10303 	/*
10304 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10305 	 * tracked in vcpu->arch.nmi_pending.
10306 	 */
10307 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10308 		limit--;
10309 
10310 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10311 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10312 
10313 	if (vcpu->arch.nmi_pending &&
10314 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10315 		vcpu->arch.nmi_pending--;
10316 
10317 	if (vcpu->arch.nmi_pending)
10318 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10319 }
10320 
10321 /* Return total number of NMIs pending injection to the VM */
10322 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10323 {
10324 	return vcpu->arch.nmi_pending +
10325 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10326 }
10327 
10328 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10329 				       unsigned long *vcpu_bitmap)
10330 {
10331 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10332 }
10333 
10334 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10335 {
10336 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10337 }
10338 
10339 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10340 {
10341 	struct kvm_lapic *apic = vcpu->arch.apic;
10342 	bool activate;
10343 
10344 	if (!lapic_in_kernel(vcpu))
10345 		return;
10346 
10347 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10348 	preempt_disable();
10349 
10350 	/* Do not activate APICV when APIC is disabled */
10351 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10352 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10353 
10354 	if (apic->apicv_active == activate)
10355 		goto out;
10356 
10357 	apic->apicv_active = activate;
10358 	kvm_apic_update_apicv(vcpu);
10359 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10360 
10361 	/*
10362 	 * When APICv gets disabled, we may still have injected interrupts
10363 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10364 	 * still active when the interrupt got accepted. Make sure
10365 	 * kvm_check_and_inject_events() is called to check for that.
10366 	 */
10367 	if (!apic->apicv_active)
10368 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10369 
10370 out:
10371 	preempt_enable();
10372 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10373 }
10374 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10375 
10376 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10377 {
10378 	if (!lapic_in_kernel(vcpu))
10379 		return;
10380 
10381 	/*
10382 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10383 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10384 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10385 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10386 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10387 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10388 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10389 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10390 	 * access page is sticky.
10391 	 */
10392 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10393 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10394 		kvm_inhibit_apic_access_page(vcpu);
10395 
10396 	__kvm_vcpu_update_apicv(vcpu);
10397 }
10398 
10399 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10400 				      enum kvm_apicv_inhibit reason, bool set)
10401 {
10402 	unsigned long old, new;
10403 
10404 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10405 
10406 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10407 		return;
10408 
10409 	old = new = kvm->arch.apicv_inhibit_reasons;
10410 
10411 	set_or_clear_apicv_inhibit(&new, reason, set);
10412 
10413 	if (!!old != !!new) {
10414 		/*
10415 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10416 		 * false positives in the sanity check WARN in svm_vcpu_run().
10417 		 * This task will wait for all vCPUs to ack the kick IRQ before
10418 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10419 		 * block on acquiring apicv_update_lock so that vCPUs can't
10420 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10421 		 *
10422 		 * Note, holding apicv_update_lock and taking it in the read
10423 		 * side (handling the request) also prevents other vCPUs from
10424 		 * servicing the request with a stale apicv_inhibit_reasons.
10425 		 */
10426 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10427 		kvm->arch.apicv_inhibit_reasons = new;
10428 		if (new) {
10429 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10430 			int idx = srcu_read_lock(&kvm->srcu);
10431 
10432 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10433 			srcu_read_unlock(&kvm->srcu, idx);
10434 		}
10435 	} else {
10436 		kvm->arch.apicv_inhibit_reasons = new;
10437 	}
10438 }
10439 
10440 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10441 				    enum kvm_apicv_inhibit reason, bool set)
10442 {
10443 	if (!enable_apicv)
10444 		return;
10445 
10446 	down_write(&kvm->arch.apicv_update_lock);
10447 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10448 	up_write(&kvm->arch.apicv_update_lock);
10449 }
10450 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10451 
10452 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10453 {
10454 	if (!kvm_apic_present(vcpu))
10455 		return;
10456 
10457 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10458 
10459 	if (irqchip_split(vcpu->kvm))
10460 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10461 	else {
10462 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10463 		if (ioapic_in_kernel(vcpu->kvm))
10464 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10465 	}
10466 
10467 	if (is_guest_mode(vcpu))
10468 		vcpu->arch.load_eoi_exitmap_pending = true;
10469 	else
10470 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10471 }
10472 
10473 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10474 {
10475 	u64 eoi_exit_bitmap[4];
10476 
10477 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10478 		return;
10479 
10480 	if (to_hv_vcpu(vcpu)) {
10481 		bitmap_or((ulong *)eoi_exit_bitmap,
10482 			  vcpu->arch.ioapic_handled_vectors,
10483 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10484 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10485 		return;
10486 	}
10487 
10488 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10489 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10490 }
10491 
10492 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10493 {
10494 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10495 }
10496 
10497 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10498 {
10499 	if (!lapic_in_kernel(vcpu))
10500 		return;
10501 
10502 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10503 }
10504 
10505 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10506 {
10507 	smp_send_reschedule(vcpu->cpu);
10508 }
10509 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10510 
10511 /*
10512  * Called within kvm->srcu read side.
10513  * Returns 1 to let vcpu_run() continue the guest execution loop without
10514  * exiting to the userspace.  Otherwise, the value will be returned to the
10515  * userspace.
10516  */
10517 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10518 {
10519 	int r;
10520 	bool req_int_win =
10521 		dm_request_for_irq_injection(vcpu) &&
10522 		kvm_cpu_accept_dm_intr(vcpu);
10523 	fastpath_t exit_fastpath;
10524 
10525 	bool req_immediate_exit = false;
10526 
10527 	if (kvm_request_pending(vcpu)) {
10528 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10529 			r = -EIO;
10530 			goto out;
10531 		}
10532 
10533 		if (kvm_dirty_ring_check_request(vcpu)) {
10534 			r = 0;
10535 			goto out;
10536 		}
10537 
10538 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10539 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10540 				r = 0;
10541 				goto out;
10542 			}
10543 		}
10544 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10545 			kvm_mmu_free_obsolete_roots(vcpu);
10546 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10547 			__kvm_migrate_timers(vcpu);
10548 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10549 			kvm_update_masterclock(vcpu->kvm);
10550 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10551 			kvm_gen_kvmclock_update(vcpu);
10552 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10553 			r = kvm_guest_time_update(vcpu);
10554 			if (unlikely(r))
10555 				goto out;
10556 		}
10557 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10558 			kvm_mmu_sync_roots(vcpu);
10559 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10560 			kvm_mmu_load_pgd(vcpu);
10561 
10562 		/*
10563 		 * Note, the order matters here, as flushing "all" TLB entries
10564 		 * also flushes the "current" TLB entries, i.e. servicing the
10565 		 * flush "all" will clear any request to flush "current".
10566 		 */
10567 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10568 			kvm_vcpu_flush_tlb_all(vcpu);
10569 
10570 		kvm_service_local_tlb_flush_requests(vcpu);
10571 
10572 		/*
10573 		 * Fall back to a "full" guest flush if Hyper-V's precise
10574 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10575 		 * the flushes are considered "remote" and not "local" because
10576 		 * the requests can be initiated from other vCPUs.
10577 		 */
10578 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10579 		    kvm_hv_vcpu_flush_tlb(vcpu))
10580 			kvm_vcpu_flush_tlb_guest(vcpu);
10581 
10582 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10583 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10584 			r = 0;
10585 			goto out;
10586 		}
10587 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10588 			if (is_guest_mode(vcpu))
10589 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10590 
10591 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10592 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10593 				vcpu->mmio_needed = 0;
10594 				r = 0;
10595 				goto out;
10596 			}
10597 		}
10598 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10599 			/* Page is swapped out. Do synthetic halt */
10600 			vcpu->arch.apf.halted = true;
10601 			r = 1;
10602 			goto out;
10603 		}
10604 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10605 			record_steal_time(vcpu);
10606 #ifdef CONFIG_KVM_SMM
10607 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10608 			process_smi(vcpu);
10609 #endif
10610 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10611 			process_nmi(vcpu);
10612 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10613 			kvm_pmu_handle_event(vcpu);
10614 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10615 			kvm_pmu_deliver_pmi(vcpu);
10616 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10617 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10618 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10619 				     vcpu->arch.ioapic_handled_vectors)) {
10620 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10621 				vcpu->run->eoi.vector =
10622 						vcpu->arch.pending_ioapic_eoi;
10623 				r = 0;
10624 				goto out;
10625 			}
10626 		}
10627 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10628 			vcpu_scan_ioapic(vcpu);
10629 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10630 			vcpu_load_eoi_exitmap(vcpu);
10631 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10632 			kvm_vcpu_reload_apic_access_page(vcpu);
10633 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10634 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10635 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10636 			vcpu->run->system_event.ndata = 0;
10637 			r = 0;
10638 			goto out;
10639 		}
10640 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10641 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10642 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10643 			vcpu->run->system_event.ndata = 0;
10644 			r = 0;
10645 			goto out;
10646 		}
10647 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10648 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10649 
10650 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10651 			vcpu->run->hyperv = hv_vcpu->exit;
10652 			r = 0;
10653 			goto out;
10654 		}
10655 
10656 		/*
10657 		 * KVM_REQ_HV_STIMER has to be processed after
10658 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10659 		 * depend on the guest clock being up-to-date
10660 		 */
10661 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10662 			kvm_hv_process_stimers(vcpu);
10663 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10664 			kvm_vcpu_update_apicv(vcpu);
10665 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10666 			kvm_check_async_pf_completion(vcpu);
10667 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10668 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10669 
10670 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10671 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10672 	}
10673 
10674 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10675 	    kvm_xen_has_interrupt(vcpu)) {
10676 		++vcpu->stat.req_event;
10677 		r = kvm_apic_accept_events(vcpu);
10678 		if (r < 0) {
10679 			r = 0;
10680 			goto out;
10681 		}
10682 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10683 			r = 1;
10684 			goto out;
10685 		}
10686 
10687 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10688 		if (r < 0) {
10689 			r = 0;
10690 			goto out;
10691 		}
10692 		if (req_int_win)
10693 			static_call(kvm_x86_enable_irq_window)(vcpu);
10694 
10695 		if (kvm_lapic_enabled(vcpu)) {
10696 			update_cr8_intercept(vcpu);
10697 			kvm_lapic_sync_to_vapic(vcpu);
10698 		}
10699 	}
10700 
10701 	r = kvm_mmu_reload(vcpu);
10702 	if (unlikely(r)) {
10703 		goto cancel_injection;
10704 	}
10705 
10706 	preempt_disable();
10707 
10708 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10709 
10710 	/*
10711 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10712 	 * IPI are then delayed after guest entry, which ensures that they
10713 	 * result in virtual interrupt delivery.
10714 	 */
10715 	local_irq_disable();
10716 
10717 	/* Store vcpu->apicv_active before vcpu->mode.  */
10718 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10719 
10720 	kvm_vcpu_srcu_read_unlock(vcpu);
10721 
10722 	/*
10723 	 * 1) We should set ->mode before checking ->requests.  Please see
10724 	 * the comment in kvm_vcpu_exiting_guest_mode().
10725 	 *
10726 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10727 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10728 	 * (see vmx_deliver_posted_interrupt).
10729 	 *
10730 	 * 3) This also orders the write to mode from any reads to the page
10731 	 * tables done while the VCPU is running.  Please see the comment
10732 	 * in kvm_flush_remote_tlbs.
10733 	 */
10734 	smp_mb__after_srcu_read_unlock();
10735 
10736 	/*
10737 	 * Process pending posted interrupts to handle the case where the
10738 	 * notification IRQ arrived in the host, or was never sent (because the
10739 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10740 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10741 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10742 	 */
10743 	if (kvm_lapic_enabled(vcpu))
10744 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10745 
10746 	if (kvm_vcpu_exit_request(vcpu)) {
10747 		vcpu->mode = OUTSIDE_GUEST_MODE;
10748 		smp_wmb();
10749 		local_irq_enable();
10750 		preempt_enable();
10751 		kvm_vcpu_srcu_read_lock(vcpu);
10752 		r = 1;
10753 		goto cancel_injection;
10754 	}
10755 
10756 	if (req_immediate_exit) {
10757 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10758 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10759 	}
10760 
10761 	fpregs_assert_state_consistent();
10762 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10763 		switch_fpu_return();
10764 
10765 	if (vcpu->arch.guest_fpu.xfd_err)
10766 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10767 
10768 	if (unlikely(vcpu->arch.switch_db_regs)) {
10769 		set_debugreg(0, 7);
10770 		set_debugreg(vcpu->arch.eff_db[0], 0);
10771 		set_debugreg(vcpu->arch.eff_db[1], 1);
10772 		set_debugreg(vcpu->arch.eff_db[2], 2);
10773 		set_debugreg(vcpu->arch.eff_db[3], 3);
10774 	} else if (unlikely(hw_breakpoint_active())) {
10775 		set_debugreg(0, 7);
10776 	}
10777 
10778 	guest_timing_enter_irqoff();
10779 
10780 	for (;;) {
10781 		/*
10782 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10783 		 * update must kick and wait for all vCPUs before toggling the
10784 		 * per-VM state, and responsing vCPUs must wait for the update
10785 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10786 		 */
10787 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10788 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10789 
10790 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10791 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10792 			break;
10793 
10794 		if (kvm_lapic_enabled(vcpu))
10795 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10796 
10797 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10798 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10799 			break;
10800 		}
10801 
10802 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10803 		++vcpu->stat.exits;
10804 	}
10805 
10806 	/*
10807 	 * Do this here before restoring debug registers on the host.  And
10808 	 * since we do this before handling the vmexit, a DR access vmexit
10809 	 * can (a) read the correct value of the debug registers, (b) set
10810 	 * KVM_DEBUGREG_WONT_EXIT again.
10811 	 */
10812 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10813 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10814 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10815 		kvm_update_dr0123(vcpu);
10816 		kvm_update_dr7(vcpu);
10817 	}
10818 
10819 	/*
10820 	 * If the guest has used debug registers, at least dr7
10821 	 * will be disabled while returning to the host.
10822 	 * If we don't have active breakpoints in the host, we don't
10823 	 * care about the messed up debug address registers. But if
10824 	 * we have some of them active, restore the old state.
10825 	 */
10826 	if (hw_breakpoint_active())
10827 		hw_breakpoint_restore();
10828 
10829 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10830 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10831 
10832 	vcpu->mode = OUTSIDE_GUEST_MODE;
10833 	smp_wmb();
10834 
10835 	/*
10836 	 * Sync xfd before calling handle_exit_irqoff() which may
10837 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10838 	 * in #NM irqoff handler).
10839 	 */
10840 	if (vcpu->arch.xfd_no_write_intercept)
10841 		fpu_sync_guest_vmexit_xfd_state();
10842 
10843 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10844 
10845 	if (vcpu->arch.guest_fpu.xfd_err)
10846 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10847 
10848 	/*
10849 	 * Consume any pending interrupts, including the possible source of
10850 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10851 	 * An instruction is required after local_irq_enable() to fully unblock
10852 	 * interrupts on processors that implement an interrupt shadow, the
10853 	 * stat.exits increment will do nicely.
10854 	 */
10855 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10856 	local_irq_enable();
10857 	++vcpu->stat.exits;
10858 	local_irq_disable();
10859 	kvm_after_interrupt(vcpu);
10860 
10861 	/*
10862 	 * Wait until after servicing IRQs to account guest time so that any
10863 	 * ticks that occurred while running the guest are properly accounted
10864 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10865 	 * of accounting via context tracking, but the loss of accuracy is
10866 	 * acceptable for all known use cases.
10867 	 */
10868 	guest_timing_exit_irqoff();
10869 
10870 	local_irq_enable();
10871 	preempt_enable();
10872 
10873 	kvm_vcpu_srcu_read_lock(vcpu);
10874 
10875 	/*
10876 	 * Profile KVM exit RIPs:
10877 	 */
10878 	if (unlikely(prof_on == KVM_PROFILING)) {
10879 		unsigned long rip = kvm_rip_read(vcpu);
10880 		profile_hit(KVM_PROFILING, (void *)rip);
10881 	}
10882 
10883 	if (unlikely(vcpu->arch.tsc_always_catchup))
10884 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10885 
10886 	if (vcpu->arch.apic_attention)
10887 		kvm_lapic_sync_from_vapic(vcpu);
10888 
10889 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10890 	return r;
10891 
10892 cancel_injection:
10893 	if (req_immediate_exit)
10894 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10895 	static_call(kvm_x86_cancel_injection)(vcpu);
10896 	if (unlikely(vcpu->arch.apic_attention))
10897 		kvm_lapic_sync_from_vapic(vcpu);
10898 out:
10899 	return r;
10900 }
10901 
10902 /* Called within kvm->srcu read side.  */
10903 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10904 {
10905 	bool hv_timer;
10906 
10907 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10908 		/*
10909 		 * Switch to the software timer before halt-polling/blocking as
10910 		 * the guest's timer may be a break event for the vCPU, and the
10911 		 * hypervisor timer runs only when the CPU is in guest mode.
10912 		 * Switch before halt-polling so that KVM recognizes an expired
10913 		 * timer before blocking.
10914 		 */
10915 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10916 		if (hv_timer)
10917 			kvm_lapic_switch_to_sw_timer(vcpu);
10918 
10919 		kvm_vcpu_srcu_read_unlock(vcpu);
10920 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10921 			kvm_vcpu_halt(vcpu);
10922 		else
10923 			kvm_vcpu_block(vcpu);
10924 		kvm_vcpu_srcu_read_lock(vcpu);
10925 
10926 		if (hv_timer)
10927 			kvm_lapic_switch_to_hv_timer(vcpu);
10928 
10929 		/*
10930 		 * If the vCPU is not runnable, a signal or another host event
10931 		 * of some kind is pending; service it without changing the
10932 		 * vCPU's activity state.
10933 		 */
10934 		if (!kvm_arch_vcpu_runnable(vcpu))
10935 			return 1;
10936 	}
10937 
10938 	/*
10939 	 * Evaluate nested events before exiting the halted state.  This allows
10940 	 * the halt state to be recorded properly in the VMCS12's activity
10941 	 * state field (AMD does not have a similar field and a VM-Exit always
10942 	 * causes a spurious wakeup from HLT).
10943 	 */
10944 	if (is_guest_mode(vcpu)) {
10945 		if (kvm_check_nested_events(vcpu) < 0)
10946 			return 0;
10947 	}
10948 
10949 	if (kvm_apic_accept_events(vcpu) < 0)
10950 		return 0;
10951 	switch(vcpu->arch.mp_state) {
10952 	case KVM_MP_STATE_HALTED:
10953 	case KVM_MP_STATE_AP_RESET_HOLD:
10954 		vcpu->arch.pv.pv_unhalted = false;
10955 		vcpu->arch.mp_state =
10956 			KVM_MP_STATE_RUNNABLE;
10957 		fallthrough;
10958 	case KVM_MP_STATE_RUNNABLE:
10959 		vcpu->arch.apf.halted = false;
10960 		break;
10961 	case KVM_MP_STATE_INIT_RECEIVED:
10962 		break;
10963 	default:
10964 		WARN_ON_ONCE(1);
10965 		break;
10966 	}
10967 	return 1;
10968 }
10969 
10970 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10971 {
10972 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10973 		!vcpu->arch.apf.halted);
10974 }
10975 
10976 /* Called within kvm->srcu read side.  */
10977 static int vcpu_run(struct kvm_vcpu *vcpu)
10978 {
10979 	int r;
10980 
10981 	vcpu->arch.l1tf_flush_l1d = true;
10982 
10983 	for (;;) {
10984 		/*
10985 		 * If another guest vCPU requests a PV TLB flush in the middle
10986 		 * of instruction emulation, the rest of the emulation could
10987 		 * use a stale page translation. Assume that any code after
10988 		 * this point can start executing an instruction.
10989 		 */
10990 		vcpu->arch.at_instruction_boundary = false;
10991 		if (kvm_vcpu_running(vcpu)) {
10992 			r = vcpu_enter_guest(vcpu);
10993 		} else {
10994 			r = vcpu_block(vcpu);
10995 		}
10996 
10997 		if (r <= 0)
10998 			break;
10999 
11000 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11001 		if (kvm_xen_has_pending_events(vcpu))
11002 			kvm_xen_inject_pending_events(vcpu);
11003 
11004 		if (kvm_cpu_has_pending_timer(vcpu))
11005 			kvm_inject_pending_timer_irqs(vcpu);
11006 
11007 		if (dm_request_for_irq_injection(vcpu) &&
11008 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11009 			r = 0;
11010 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11011 			++vcpu->stat.request_irq_exits;
11012 			break;
11013 		}
11014 
11015 		if (__xfer_to_guest_mode_work_pending()) {
11016 			kvm_vcpu_srcu_read_unlock(vcpu);
11017 			r = xfer_to_guest_mode_handle_work(vcpu);
11018 			kvm_vcpu_srcu_read_lock(vcpu);
11019 			if (r)
11020 				return r;
11021 		}
11022 	}
11023 
11024 	return r;
11025 }
11026 
11027 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11028 {
11029 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11030 }
11031 
11032 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11033 {
11034 	BUG_ON(!vcpu->arch.pio.count);
11035 
11036 	return complete_emulated_io(vcpu);
11037 }
11038 
11039 /*
11040  * Implements the following, as a state machine:
11041  *
11042  * read:
11043  *   for each fragment
11044  *     for each mmio piece in the fragment
11045  *       write gpa, len
11046  *       exit
11047  *       copy data
11048  *   execute insn
11049  *
11050  * write:
11051  *   for each fragment
11052  *     for each mmio piece in the fragment
11053  *       write gpa, len
11054  *       copy data
11055  *       exit
11056  */
11057 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11058 {
11059 	struct kvm_run *run = vcpu->run;
11060 	struct kvm_mmio_fragment *frag;
11061 	unsigned len;
11062 
11063 	BUG_ON(!vcpu->mmio_needed);
11064 
11065 	/* Complete previous fragment */
11066 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11067 	len = min(8u, frag->len);
11068 	if (!vcpu->mmio_is_write)
11069 		memcpy(frag->data, run->mmio.data, len);
11070 
11071 	if (frag->len <= 8) {
11072 		/* Switch to the next fragment. */
11073 		frag++;
11074 		vcpu->mmio_cur_fragment++;
11075 	} else {
11076 		/* Go forward to the next mmio piece. */
11077 		frag->data += len;
11078 		frag->gpa += len;
11079 		frag->len -= len;
11080 	}
11081 
11082 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11083 		vcpu->mmio_needed = 0;
11084 
11085 		/* FIXME: return into emulator if single-stepping.  */
11086 		if (vcpu->mmio_is_write)
11087 			return 1;
11088 		vcpu->mmio_read_completed = 1;
11089 		return complete_emulated_io(vcpu);
11090 	}
11091 
11092 	run->exit_reason = KVM_EXIT_MMIO;
11093 	run->mmio.phys_addr = frag->gpa;
11094 	if (vcpu->mmio_is_write)
11095 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11096 	run->mmio.len = min(8u, frag->len);
11097 	run->mmio.is_write = vcpu->mmio_is_write;
11098 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11099 	return 0;
11100 }
11101 
11102 /* Swap (qemu) user FPU context for the guest FPU context. */
11103 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11104 {
11105 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11106 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11107 	trace_kvm_fpu(1);
11108 }
11109 
11110 /* When vcpu_run ends, restore user space FPU context. */
11111 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11112 {
11113 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11114 	++vcpu->stat.fpu_reload;
11115 	trace_kvm_fpu(0);
11116 }
11117 
11118 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11119 {
11120 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11121 	struct kvm_run *kvm_run = vcpu->run;
11122 	int r;
11123 
11124 	vcpu_load(vcpu);
11125 	kvm_sigset_activate(vcpu);
11126 	kvm_run->flags = 0;
11127 	kvm_load_guest_fpu(vcpu);
11128 
11129 	kvm_vcpu_srcu_read_lock(vcpu);
11130 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11131 		if (kvm_run->immediate_exit) {
11132 			r = -EINTR;
11133 			goto out;
11134 		}
11135 
11136 		/*
11137 		 * Don't bother switching APIC timer emulation from the
11138 		 * hypervisor timer to the software timer, the only way for the
11139 		 * APIC timer to be active is if userspace stuffed vCPU state,
11140 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11141 		 * will transition the vCPU out of UNINITIALIZED (without more
11142 		 * state stuffing from userspace), which will reset the local
11143 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11144 		 * already expired).
11145 		 */
11146 		kvm_vcpu_srcu_read_unlock(vcpu);
11147 		kvm_vcpu_block(vcpu);
11148 		kvm_vcpu_srcu_read_lock(vcpu);
11149 
11150 		if (kvm_apic_accept_events(vcpu) < 0) {
11151 			r = 0;
11152 			goto out;
11153 		}
11154 		r = -EAGAIN;
11155 		if (signal_pending(current)) {
11156 			r = -EINTR;
11157 			kvm_run->exit_reason = KVM_EXIT_INTR;
11158 			++vcpu->stat.signal_exits;
11159 		}
11160 		goto out;
11161 	}
11162 
11163 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11164 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11165 		r = -EINVAL;
11166 		goto out;
11167 	}
11168 
11169 	if (kvm_run->kvm_dirty_regs) {
11170 		r = sync_regs(vcpu);
11171 		if (r != 0)
11172 			goto out;
11173 	}
11174 
11175 	/* re-sync apic's tpr */
11176 	if (!lapic_in_kernel(vcpu)) {
11177 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11178 			r = -EINVAL;
11179 			goto out;
11180 		}
11181 	}
11182 
11183 	/*
11184 	 * If userspace set a pending exception and L2 is active, convert it to
11185 	 * a pending VM-Exit if L1 wants to intercept the exception.
11186 	 */
11187 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11188 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11189 							ex->error_code)) {
11190 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11191 					   ex->has_error_code, ex->error_code,
11192 					   ex->has_payload, ex->payload);
11193 		ex->injected = false;
11194 		ex->pending = false;
11195 	}
11196 	vcpu->arch.exception_from_userspace = false;
11197 
11198 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11199 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11200 		vcpu->arch.complete_userspace_io = NULL;
11201 		r = cui(vcpu);
11202 		if (r <= 0)
11203 			goto out;
11204 	} else {
11205 		WARN_ON_ONCE(vcpu->arch.pio.count);
11206 		WARN_ON_ONCE(vcpu->mmio_needed);
11207 	}
11208 
11209 	if (kvm_run->immediate_exit) {
11210 		r = -EINTR;
11211 		goto out;
11212 	}
11213 
11214 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11215 	if (r <= 0)
11216 		goto out;
11217 
11218 	r = vcpu_run(vcpu);
11219 
11220 out:
11221 	kvm_put_guest_fpu(vcpu);
11222 	if (kvm_run->kvm_valid_regs)
11223 		store_regs(vcpu);
11224 	post_kvm_run_save(vcpu);
11225 	kvm_vcpu_srcu_read_unlock(vcpu);
11226 
11227 	kvm_sigset_deactivate(vcpu);
11228 	vcpu_put(vcpu);
11229 	return r;
11230 }
11231 
11232 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11233 {
11234 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11235 		/*
11236 		 * We are here if userspace calls get_regs() in the middle of
11237 		 * instruction emulation. Registers state needs to be copied
11238 		 * back from emulation context to vcpu. Userspace shouldn't do
11239 		 * that usually, but some bad designed PV devices (vmware
11240 		 * backdoor interface) need this to work
11241 		 */
11242 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11243 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11244 	}
11245 	regs->rax = kvm_rax_read(vcpu);
11246 	regs->rbx = kvm_rbx_read(vcpu);
11247 	regs->rcx = kvm_rcx_read(vcpu);
11248 	regs->rdx = kvm_rdx_read(vcpu);
11249 	regs->rsi = kvm_rsi_read(vcpu);
11250 	regs->rdi = kvm_rdi_read(vcpu);
11251 	regs->rsp = kvm_rsp_read(vcpu);
11252 	regs->rbp = kvm_rbp_read(vcpu);
11253 #ifdef CONFIG_X86_64
11254 	regs->r8 = kvm_r8_read(vcpu);
11255 	regs->r9 = kvm_r9_read(vcpu);
11256 	regs->r10 = kvm_r10_read(vcpu);
11257 	regs->r11 = kvm_r11_read(vcpu);
11258 	regs->r12 = kvm_r12_read(vcpu);
11259 	regs->r13 = kvm_r13_read(vcpu);
11260 	regs->r14 = kvm_r14_read(vcpu);
11261 	regs->r15 = kvm_r15_read(vcpu);
11262 #endif
11263 
11264 	regs->rip = kvm_rip_read(vcpu);
11265 	regs->rflags = kvm_get_rflags(vcpu);
11266 }
11267 
11268 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11269 {
11270 	vcpu_load(vcpu);
11271 	__get_regs(vcpu, regs);
11272 	vcpu_put(vcpu);
11273 	return 0;
11274 }
11275 
11276 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11277 {
11278 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11279 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11280 
11281 	kvm_rax_write(vcpu, regs->rax);
11282 	kvm_rbx_write(vcpu, regs->rbx);
11283 	kvm_rcx_write(vcpu, regs->rcx);
11284 	kvm_rdx_write(vcpu, regs->rdx);
11285 	kvm_rsi_write(vcpu, regs->rsi);
11286 	kvm_rdi_write(vcpu, regs->rdi);
11287 	kvm_rsp_write(vcpu, regs->rsp);
11288 	kvm_rbp_write(vcpu, regs->rbp);
11289 #ifdef CONFIG_X86_64
11290 	kvm_r8_write(vcpu, regs->r8);
11291 	kvm_r9_write(vcpu, regs->r9);
11292 	kvm_r10_write(vcpu, regs->r10);
11293 	kvm_r11_write(vcpu, regs->r11);
11294 	kvm_r12_write(vcpu, regs->r12);
11295 	kvm_r13_write(vcpu, regs->r13);
11296 	kvm_r14_write(vcpu, regs->r14);
11297 	kvm_r15_write(vcpu, regs->r15);
11298 #endif
11299 
11300 	kvm_rip_write(vcpu, regs->rip);
11301 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11302 
11303 	vcpu->arch.exception.pending = false;
11304 	vcpu->arch.exception_vmexit.pending = false;
11305 
11306 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11307 }
11308 
11309 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11310 {
11311 	vcpu_load(vcpu);
11312 	__set_regs(vcpu, regs);
11313 	vcpu_put(vcpu);
11314 	return 0;
11315 }
11316 
11317 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11318 {
11319 	struct desc_ptr dt;
11320 
11321 	if (vcpu->arch.guest_state_protected)
11322 		goto skip_protected_regs;
11323 
11324 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11325 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11326 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11327 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11328 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11329 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11330 
11331 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11332 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11333 
11334 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11335 	sregs->idt.limit = dt.size;
11336 	sregs->idt.base = dt.address;
11337 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11338 	sregs->gdt.limit = dt.size;
11339 	sregs->gdt.base = dt.address;
11340 
11341 	sregs->cr2 = vcpu->arch.cr2;
11342 	sregs->cr3 = kvm_read_cr3(vcpu);
11343 
11344 skip_protected_regs:
11345 	sregs->cr0 = kvm_read_cr0(vcpu);
11346 	sregs->cr4 = kvm_read_cr4(vcpu);
11347 	sregs->cr8 = kvm_get_cr8(vcpu);
11348 	sregs->efer = vcpu->arch.efer;
11349 	sregs->apic_base = kvm_get_apic_base(vcpu);
11350 }
11351 
11352 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11353 {
11354 	__get_sregs_common(vcpu, sregs);
11355 
11356 	if (vcpu->arch.guest_state_protected)
11357 		return;
11358 
11359 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11360 		set_bit(vcpu->arch.interrupt.nr,
11361 			(unsigned long *)sregs->interrupt_bitmap);
11362 }
11363 
11364 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11365 {
11366 	int i;
11367 
11368 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11369 
11370 	if (vcpu->arch.guest_state_protected)
11371 		return;
11372 
11373 	if (is_pae_paging(vcpu)) {
11374 		for (i = 0 ; i < 4 ; i++)
11375 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11376 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11377 	}
11378 }
11379 
11380 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11381 				  struct kvm_sregs *sregs)
11382 {
11383 	vcpu_load(vcpu);
11384 	__get_sregs(vcpu, sregs);
11385 	vcpu_put(vcpu);
11386 	return 0;
11387 }
11388 
11389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11390 				    struct kvm_mp_state *mp_state)
11391 {
11392 	int r;
11393 
11394 	vcpu_load(vcpu);
11395 	if (kvm_mpx_supported())
11396 		kvm_load_guest_fpu(vcpu);
11397 
11398 	r = kvm_apic_accept_events(vcpu);
11399 	if (r < 0)
11400 		goto out;
11401 	r = 0;
11402 
11403 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11404 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11405 	    vcpu->arch.pv.pv_unhalted)
11406 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11407 	else
11408 		mp_state->mp_state = vcpu->arch.mp_state;
11409 
11410 out:
11411 	if (kvm_mpx_supported())
11412 		kvm_put_guest_fpu(vcpu);
11413 	vcpu_put(vcpu);
11414 	return r;
11415 }
11416 
11417 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11418 				    struct kvm_mp_state *mp_state)
11419 {
11420 	int ret = -EINVAL;
11421 
11422 	vcpu_load(vcpu);
11423 
11424 	switch (mp_state->mp_state) {
11425 	case KVM_MP_STATE_UNINITIALIZED:
11426 	case KVM_MP_STATE_HALTED:
11427 	case KVM_MP_STATE_AP_RESET_HOLD:
11428 	case KVM_MP_STATE_INIT_RECEIVED:
11429 	case KVM_MP_STATE_SIPI_RECEIVED:
11430 		if (!lapic_in_kernel(vcpu))
11431 			goto out;
11432 		break;
11433 
11434 	case KVM_MP_STATE_RUNNABLE:
11435 		break;
11436 
11437 	default:
11438 		goto out;
11439 	}
11440 
11441 	/*
11442 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11443 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11444 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11445 	 * if an SMI is pending as well.
11446 	 */
11447 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11448 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11449 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11450 		goto out;
11451 
11452 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11453 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11454 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11455 	} else
11456 		vcpu->arch.mp_state = mp_state->mp_state;
11457 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11458 
11459 	ret = 0;
11460 out:
11461 	vcpu_put(vcpu);
11462 	return ret;
11463 }
11464 
11465 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11466 		    int reason, bool has_error_code, u32 error_code)
11467 {
11468 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11469 	int ret;
11470 
11471 	init_emulate_ctxt(vcpu);
11472 
11473 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11474 				   has_error_code, error_code);
11475 	if (ret) {
11476 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11477 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11478 		vcpu->run->internal.ndata = 0;
11479 		return 0;
11480 	}
11481 
11482 	kvm_rip_write(vcpu, ctxt->eip);
11483 	kvm_set_rflags(vcpu, ctxt->eflags);
11484 	return 1;
11485 }
11486 EXPORT_SYMBOL_GPL(kvm_task_switch);
11487 
11488 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11489 {
11490 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11491 		/*
11492 		 * When EFER.LME and CR0.PG are set, the processor is in
11493 		 * 64-bit mode (though maybe in a 32-bit code segment).
11494 		 * CR4.PAE and EFER.LMA must be set.
11495 		 */
11496 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11497 			return false;
11498 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11499 			return false;
11500 	} else {
11501 		/*
11502 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11503 		 * segment cannot be 64-bit.
11504 		 */
11505 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11506 			return false;
11507 	}
11508 
11509 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11510 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11511 }
11512 
11513 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11514 		int *mmu_reset_needed, bool update_pdptrs)
11515 {
11516 	struct msr_data apic_base_msr;
11517 	int idx;
11518 	struct desc_ptr dt;
11519 
11520 	if (!kvm_is_valid_sregs(vcpu, sregs))
11521 		return -EINVAL;
11522 
11523 	apic_base_msr.data = sregs->apic_base;
11524 	apic_base_msr.host_initiated = true;
11525 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11526 		return -EINVAL;
11527 
11528 	if (vcpu->arch.guest_state_protected)
11529 		return 0;
11530 
11531 	dt.size = sregs->idt.limit;
11532 	dt.address = sregs->idt.base;
11533 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11534 	dt.size = sregs->gdt.limit;
11535 	dt.address = sregs->gdt.base;
11536 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11537 
11538 	vcpu->arch.cr2 = sregs->cr2;
11539 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11540 	vcpu->arch.cr3 = sregs->cr3;
11541 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11542 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11543 
11544 	kvm_set_cr8(vcpu, sregs->cr8);
11545 
11546 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11547 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11548 
11549 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11550 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11551 	vcpu->arch.cr0 = sregs->cr0;
11552 
11553 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11554 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11555 
11556 	if (update_pdptrs) {
11557 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11558 		if (is_pae_paging(vcpu)) {
11559 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11560 			*mmu_reset_needed = 1;
11561 		}
11562 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11563 	}
11564 
11565 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11566 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11567 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11568 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11569 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11570 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11571 
11572 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11573 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11574 
11575 	update_cr8_intercept(vcpu);
11576 
11577 	/* Older userspace won't unhalt the vcpu on reset. */
11578 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11579 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11580 	    !is_protmode(vcpu))
11581 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11582 
11583 	return 0;
11584 }
11585 
11586 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11587 {
11588 	int pending_vec, max_bits;
11589 	int mmu_reset_needed = 0;
11590 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11591 
11592 	if (ret)
11593 		return ret;
11594 
11595 	if (mmu_reset_needed)
11596 		kvm_mmu_reset_context(vcpu);
11597 
11598 	max_bits = KVM_NR_INTERRUPTS;
11599 	pending_vec = find_first_bit(
11600 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11601 
11602 	if (pending_vec < max_bits) {
11603 		kvm_queue_interrupt(vcpu, pending_vec, false);
11604 		pr_debug("Set back pending irq %d\n", pending_vec);
11605 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11606 	}
11607 	return 0;
11608 }
11609 
11610 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11611 {
11612 	int mmu_reset_needed = 0;
11613 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11614 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11615 		!(sregs2->efer & EFER_LMA);
11616 	int i, ret;
11617 
11618 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11619 		return -EINVAL;
11620 
11621 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11622 		return -EINVAL;
11623 
11624 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11625 				 &mmu_reset_needed, !valid_pdptrs);
11626 	if (ret)
11627 		return ret;
11628 
11629 	if (valid_pdptrs) {
11630 		for (i = 0; i < 4 ; i++)
11631 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11632 
11633 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11634 		mmu_reset_needed = 1;
11635 		vcpu->arch.pdptrs_from_userspace = true;
11636 	}
11637 	if (mmu_reset_needed)
11638 		kvm_mmu_reset_context(vcpu);
11639 	return 0;
11640 }
11641 
11642 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11643 				  struct kvm_sregs *sregs)
11644 {
11645 	int ret;
11646 
11647 	vcpu_load(vcpu);
11648 	ret = __set_sregs(vcpu, sregs);
11649 	vcpu_put(vcpu);
11650 	return ret;
11651 }
11652 
11653 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11654 {
11655 	bool set = false;
11656 	struct kvm_vcpu *vcpu;
11657 	unsigned long i;
11658 
11659 	if (!enable_apicv)
11660 		return;
11661 
11662 	down_write(&kvm->arch.apicv_update_lock);
11663 
11664 	kvm_for_each_vcpu(i, vcpu, kvm) {
11665 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11666 			set = true;
11667 			break;
11668 		}
11669 	}
11670 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11671 	up_write(&kvm->arch.apicv_update_lock);
11672 }
11673 
11674 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11675 					struct kvm_guest_debug *dbg)
11676 {
11677 	unsigned long rflags;
11678 	int i, r;
11679 
11680 	if (vcpu->arch.guest_state_protected)
11681 		return -EINVAL;
11682 
11683 	vcpu_load(vcpu);
11684 
11685 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11686 		r = -EBUSY;
11687 		if (kvm_is_exception_pending(vcpu))
11688 			goto out;
11689 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11690 			kvm_queue_exception(vcpu, DB_VECTOR);
11691 		else
11692 			kvm_queue_exception(vcpu, BP_VECTOR);
11693 	}
11694 
11695 	/*
11696 	 * Read rflags as long as potentially injected trace flags are still
11697 	 * filtered out.
11698 	 */
11699 	rflags = kvm_get_rflags(vcpu);
11700 
11701 	vcpu->guest_debug = dbg->control;
11702 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11703 		vcpu->guest_debug = 0;
11704 
11705 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11706 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11707 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11708 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11709 	} else {
11710 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11711 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11712 	}
11713 	kvm_update_dr7(vcpu);
11714 
11715 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11716 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11717 
11718 	/*
11719 	 * Trigger an rflags update that will inject or remove the trace
11720 	 * flags.
11721 	 */
11722 	kvm_set_rflags(vcpu, rflags);
11723 
11724 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11725 
11726 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11727 
11728 	r = 0;
11729 
11730 out:
11731 	vcpu_put(vcpu);
11732 	return r;
11733 }
11734 
11735 /*
11736  * Translate a guest virtual address to a guest physical address.
11737  */
11738 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11739 				    struct kvm_translation *tr)
11740 {
11741 	unsigned long vaddr = tr->linear_address;
11742 	gpa_t gpa;
11743 	int idx;
11744 
11745 	vcpu_load(vcpu);
11746 
11747 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11748 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11749 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11750 	tr->physical_address = gpa;
11751 	tr->valid = gpa != INVALID_GPA;
11752 	tr->writeable = 1;
11753 	tr->usermode = 0;
11754 
11755 	vcpu_put(vcpu);
11756 	return 0;
11757 }
11758 
11759 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11760 {
11761 	struct fxregs_state *fxsave;
11762 
11763 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11764 		return 0;
11765 
11766 	vcpu_load(vcpu);
11767 
11768 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11769 	memcpy(fpu->fpr, fxsave->st_space, 128);
11770 	fpu->fcw = fxsave->cwd;
11771 	fpu->fsw = fxsave->swd;
11772 	fpu->ftwx = fxsave->twd;
11773 	fpu->last_opcode = fxsave->fop;
11774 	fpu->last_ip = fxsave->rip;
11775 	fpu->last_dp = fxsave->rdp;
11776 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11777 
11778 	vcpu_put(vcpu);
11779 	return 0;
11780 }
11781 
11782 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11783 {
11784 	struct fxregs_state *fxsave;
11785 
11786 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11787 		return 0;
11788 
11789 	vcpu_load(vcpu);
11790 
11791 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11792 
11793 	memcpy(fxsave->st_space, fpu->fpr, 128);
11794 	fxsave->cwd = fpu->fcw;
11795 	fxsave->swd = fpu->fsw;
11796 	fxsave->twd = fpu->ftwx;
11797 	fxsave->fop = fpu->last_opcode;
11798 	fxsave->rip = fpu->last_ip;
11799 	fxsave->rdp = fpu->last_dp;
11800 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11801 
11802 	vcpu_put(vcpu);
11803 	return 0;
11804 }
11805 
11806 static void store_regs(struct kvm_vcpu *vcpu)
11807 {
11808 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11809 
11810 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11811 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11812 
11813 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11814 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11815 
11816 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11817 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11818 				vcpu, &vcpu->run->s.regs.events);
11819 }
11820 
11821 static int sync_regs(struct kvm_vcpu *vcpu)
11822 {
11823 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11824 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11825 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11826 	}
11827 
11828 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11829 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11830 
11831 		if (__set_sregs(vcpu, &sregs))
11832 			return -EINVAL;
11833 
11834 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11835 	}
11836 
11837 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11838 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11839 
11840 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11841 			return -EINVAL;
11842 
11843 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11844 	}
11845 
11846 	return 0;
11847 }
11848 
11849 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11850 {
11851 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11852 		pr_warn_once("SMP vm created on host with unstable TSC; "
11853 			     "guest TSC will not be reliable\n");
11854 
11855 	if (!kvm->arch.max_vcpu_ids)
11856 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11857 
11858 	if (id >= kvm->arch.max_vcpu_ids)
11859 		return -EINVAL;
11860 
11861 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11862 }
11863 
11864 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11865 {
11866 	struct page *page;
11867 	int r;
11868 
11869 	vcpu->arch.last_vmentry_cpu = -1;
11870 	vcpu->arch.regs_avail = ~0;
11871 	vcpu->arch.regs_dirty = ~0;
11872 
11873 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11874 
11875 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11876 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11877 	else
11878 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11879 
11880 	r = kvm_mmu_create(vcpu);
11881 	if (r < 0)
11882 		return r;
11883 
11884 	if (irqchip_in_kernel(vcpu->kvm)) {
11885 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11886 		if (r < 0)
11887 			goto fail_mmu_destroy;
11888 
11889 		/*
11890 		 * Defer evaluating inhibits until the vCPU is first run, as
11891 		 * this vCPU will not get notified of any changes until this
11892 		 * vCPU is visible to other vCPUs (marked online and added to
11893 		 * the set of vCPUs).  Opportunistically mark APICv active as
11894 		 * VMX in particularly is highly unlikely to have inhibits.
11895 		 * Ignore the current per-VM APICv state so that vCPU creation
11896 		 * is guaranteed to run with a deterministic value, the request
11897 		 * will ensure the vCPU gets the correct state before VM-Entry.
11898 		 */
11899 		if (enable_apicv) {
11900 			vcpu->arch.apic->apicv_active = true;
11901 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11902 		}
11903 	} else
11904 		static_branch_inc(&kvm_has_noapic_vcpu);
11905 
11906 	r = -ENOMEM;
11907 
11908 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11909 	if (!page)
11910 		goto fail_free_lapic;
11911 	vcpu->arch.pio_data = page_address(page);
11912 
11913 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11914 				       GFP_KERNEL_ACCOUNT);
11915 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11916 					    GFP_KERNEL_ACCOUNT);
11917 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11918 		goto fail_free_mce_banks;
11919 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11920 
11921 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11922 				GFP_KERNEL_ACCOUNT))
11923 		goto fail_free_mce_banks;
11924 
11925 	if (!alloc_emulate_ctxt(vcpu))
11926 		goto free_wbinvd_dirty_mask;
11927 
11928 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11929 		pr_err("failed to allocate vcpu's fpu\n");
11930 		goto free_emulate_ctxt;
11931 	}
11932 
11933 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11934 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11935 
11936 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11937 
11938 	kvm_async_pf_hash_reset(vcpu);
11939 
11940 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11941 	kvm_pmu_init(vcpu);
11942 
11943 	vcpu->arch.pending_external_vector = -1;
11944 	vcpu->arch.preempted_in_kernel = false;
11945 
11946 #if IS_ENABLED(CONFIG_HYPERV)
11947 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11948 #endif
11949 
11950 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11951 	if (r)
11952 		goto free_guest_fpu;
11953 
11954 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11955 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11956 	kvm_xen_init_vcpu(vcpu);
11957 	kvm_vcpu_mtrr_init(vcpu);
11958 	vcpu_load(vcpu);
11959 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11960 	kvm_vcpu_reset(vcpu, false);
11961 	kvm_init_mmu(vcpu);
11962 	vcpu_put(vcpu);
11963 	return 0;
11964 
11965 free_guest_fpu:
11966 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11967 free_emulate_ctxt:
11968 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11969 free_wbinvd_dirty_mask:
11970 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11971 fail_free_mce_banks:
11972 	kfree(vcpu->arch.mce_banks);
11973 	kfree(vcpu->arch.mci_ctl2_banks);
11974 	free_page((unsigned long)vcpu->arch.pio_data);
11975 fail_free_lapic:
11976 	kvm_free_lapic(vcpu);
11977 fail_mmu_destroy:
11978 	kvm_mmu_destroy(vcpu);
11979 	return r;
11980 }
11981 
11982 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11983 {
11984 	struct kvm *kvm = vcpu->kvm;
11985 
11986 	if (mutex_lock_killable(&vcpu->mutex))
11987 		return;
11988 	vcpu_load(vcpu);
11989 	kvm_synchronize_tsc(vcpu, 0);
11990 	vcpu_put(vcpu);
11991 
11992 	/* poll control enabled by default */
11993 	vcpu->arch.msr_kvm_poll_control = 1;
11994 
11995 	mutex_unlock(&vcpu->mutex);
11996 
11997 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11998 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11999 						KVMCLOCK_SYNC_PERIOD);
12000 }
12001 
12002 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12003 {
12004 	int idx;
12005 
12006 	kvmclock_reset(vcpu);
12007 
12008 	static_call(kvm_x86_vcpu_free)(vcpu);
12009 
12010 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12011 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12012 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12013 
12014 	kvm_xen_destroy_vcpu(vcpu);
12015 	kvm_hv_vcpu_uninit(vcpu);
12016 	kvm_pmu_destroy(vcpu);
12017 	kfree(vcpu->arch.mce_banks);
12018 	kfree(vcpu->arch.mci_ctl2_banks);
12019 	kvm_free_lapic(vcpu);
12020 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12021 	kvm_mmu_destroy(vcpu);
12022 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12023 	free_page((unsigned long)vcpu->arch.pio_data);
12024 	kvfree(vcpu->arch.cpuid_entries);
12025 	if (!lapic_in_kernel(vcpu))
12026 		static_branch_dec(&kvm_has_noapic_vcpu);
12027 }
12028 
12029 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12030 {
12031 	struct kvm_cpuid_entry2 *cpuid_0x1;
12032 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12033 	unsigned long new_cr0;
12034 
12035 	/*
12036 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12037 	 * to handle side effects.  RESET emulation hits those flows and relies
12038 	 * on emulated/virtualized registers, including those that are loaded
12039 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12040 	 * to detect improper or missing initialization.
12041 	 */
12042 	WARN_ON_ONCE(!init_event &&
12043 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12044 
12045 	/*
12046 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12047 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12048 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12049 	 * bits), i.e. virtualization is disabled.
12050 	 */
12051 	if (is_guest_mode(vcpu))
12052 		kvm_leave_nested(vcpu);
12053 
12054 	kvm_lapic_reset(vcpu, init_event);
12055 
12056 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12057 	vcpu->arch.hflags = 0;
12058 
12059 	vcpu->arch.smi_pending = 0;
12060 	vcpu->arch.smi_count = 0;
12061 	atomic_set(&vcpu->arch.nmi_queued, 0);
12062 	vcpu->arch.nmi_pending = 0;
12063 	vcpu->arch.nmi_injected = false;
12064 	kvm_clear_interrupt_queue(vcpu);
12065 	kvm_clear_exception_queue(vcpu);
12066 
12067 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12068 	kvm_update_dr0123(vcpu);
12069 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12070 	vcpu->arch.dr7 = DR7_FIXED_1;
12071 	kvm_update_dr7(vcpu);
12072 
12073 	vcpu->arch.cr2 = 0;
12074 
12075 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12076 	vcpu->arch.apf.msr_en_val = 0;
12077 	vcpu->arch.apf.msr_int_val = 0;
12078 	vcpu->arch.st.msr_val = 0;
12079 
12080 	kvmclock_reset(vcpu);
12081 
12082 	kvm_clear_async_pf_completion_queue(vcpu);
12083 	kvm_async_pf_hash_reset(vcpu);
12084 	vcpu->arch.apf.halted = false;
12085 
12086 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12087 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12088 
12089 		/*
12090 		 * All paths that lead to INIT are required to load the guest's
12091 		 * FPU state (because most paths are buried in KVM_RUN).
12092 		 */
12093 		if (init_event)
12094 			kvm_put_guest_fpu(vcpu);
12095 
12096 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12097 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12098 
12099 		if (init_event)
12100 			kvm_load_guest_fpu(vcpu);
12101 	}
12102 
12103 	if (!init_event) {
12104 		kvm_pmu_reset(vcpu);
12105 		vcpu->arch.smbase = 0x30000;
12106 
12107 		vcpu->arch.msr_misc_features_enables = 0;
12108 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12109 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12110 
12111 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12112 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12113 	}
12114 
12115 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12116 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12117 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12118 
12119 	/*
12120 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12121 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12122 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12123 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12124 	 * on RESET.  But, go through the motions in case that's ever remedied.
12125 	 */
12126 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12127 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12128 
12129 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12130 
12131 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12132 	kvm_rip_write(vcpu, 0xfff0);
12133 
12134 	vcpu->arch.cr3 = 0;
12135 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12136 
12137 	/*
12138 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12139 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12140 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12141 	 */
12142 	new_cr0 = X86_CR0_ET;
12143 	if (init_event)
12144 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12145 	else
12146 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12147 
12148 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12149 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12150 	static_call(kvm_x86_set_efer)(vcpu, 0);
12151 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12152 
12153 	/*
12154 	 * On the standard CR0/CR4/EFER modification paths, there are several
12155 	 * complex conditions determining whether the MMU has to be reset and/or
12156 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12157 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12158 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12159 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12160 	 */
12161 	if (old_cr0 & X86_CR0_PG) {
12162 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12163 		kvm_mmu_reset_context(vcpu);
12164 	}
12165 
12166 	/*
12167 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12168 	 * APM states the TLBs are untouched by INIT, but it also states that
12169 	 * the TLBs are flushed on "External initialization of the processor."
12170 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12171 	 * benefit in relying on the guest to flush the TLB immediately after
12172 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12173 	 * performance perspective.
12174 	 */
12175 	if (init_event)
12176 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12177 }
12178 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12179 
12180 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12181 {
12182 	struct kvm_segment cs;
12183 
12184 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12185 	cs.selector = vector << 8;
12186 	cs.base = vector << 12;
12187 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12188 	kvm_rip_write(vcpu, 0);
12189 }
12190 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12191 
12192 int kvm_arch_hardware_enable(void)
12193 {
12194 	struct kvm *kvm;
12195 	struct kvm_vcpu *vcpu;
12196 	unsigned long i;
12197 	int ret;
12198 	u64 local_tsc;
12199 	u64 max_tsc = 0;
12200 	bool stable, backwards_tsc = false;
12201 
12202 	kvm_user_return_msr_cpu_online();
12203 
12204 	ret = kvm_x86_check_processor_compatibility();
12205 	if (ret)
12206 		return ret;
12207 
12208 	ret = static_call(kvm_x86_hardware_enable)();
12209 	if (ret != 0)
12210 		return ret;
12211 
12212 	local_tsc = rdtsc();
12213 	stable = !kvm_check_tsc_unstable();
12214 	list_for_each_entry(kvm, &vm_list, vm_list) {
12215 		kvm_for_each_vcpu(i, vcpu, kvm) {
12216 			if (!stable && vcpu->cpu == smp_processor_id())
12217 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12218 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12219 				backwards_tsc = true;
12220 				if (vcpu->arch.last_host_tsc > max_tsc)
12221 					max_tsc = vcpu->arch.last_host_tsc;
12222 			}
12223 		}
12224 	}
12225 
12226 	/*
12227 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12228 	 * platforms that reset TSC during suspend or hibernate actions, but
12229 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12230 	 * detect that condition here, which happens early in CPU bringup,
12231 	 * before any KVM threads can be running.  Unfortunately, we can't
12232 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12233 	 * enough into CPU bringup that we know how much real time has actually
12234 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12235 	 * variables that haven't been updated yet.
12236 	 *
12237 	 * So we simply find the maximum observed TSC above, then record the
12238 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12239 	 * the adjustment will be applied.  Note that we accumulate
12240 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12241 	 * gets a chance to run again.  In the event that no KVM threads get a
12242 	 * chance to run, we will miss the entire elapsed period, as we'll have
12243 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12244 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12245 	 * uniform across all VCPUs (not to mention the scenario is extremely
12246 	 * unlikely). It is possible that a second hibernate recovery happens
12247 	 * much faster than a first, causing the observed TSC here to be
12248 	 * smaller; this would require additional padding adjustment, which is
12249 	 * why we set last_host_tsc to the local tsc observed here.
12250 	 *
12251 	 * N.B. - this code below runs only on platforms with reliable TSC,
12252 	 * as that is the only way backwards_tsc is set above.  Also note
12253 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12254 	 * have the same delta_cyc adjustment applied if backwards_tsc
12255 	 * is detected.  Note further, this adjustment is only done once,
12256 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12257 	 * called multiple times (one for each physical CPU bringup).
12258 	 *
12259 	 * Platforms with unreliable TSCs don't have to deal with this, they
12260 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12261 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12262 	 * guarantee that they stay in perfect synchronization.
12263 	 */
12264 	if (backwards_tsc) {
12265 		u64 delta_cyc = max_tsc - local_tsc;
12266 		list_for_each_entry(kvm, &vm_list, vm_list) {
12267 			kvm->arch.backwards_tsc_observed = true;
12268 			kvm_for_each_vcpu(i, vcpu, kvm) {
12269 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12270 				vcpu->arch.last_host_tsc = local_tsc;
12271 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12272 			}
12273 
12274 			/*
12275 			 * We have to disable TSC offset matching.. if you were
12276 			 * booting a VM while issuing an S4 host suspend....
12277 			 * you may have some problem.  Solving this issue is
12278 			 * left as an exercise to the reader.
12279 			 */
12280 			kvm->arch.last_tsc_nsec = 0;
12281 			kvm->arch.last_tsc_write = 0;
12282 		}
12283 
12284 	}
12285 	return 0;
12286 }
12287 
12288 void kvm_arch_hardware_disable(void)
12289 {
12290 	static_call(kvm_x86_hardware_disable)();
12291 	drop_user_return_notifiers();
12292 }
12293 
12294 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12295 {
12296 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12297 }
12298 
12299 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12300 {
12301 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12302 }
12303 
12304 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12305 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12306 
12307 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12308 {
12309 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12310 
12311 	vcpu->arch.l1tf_flush_l1d = true;
12312 	if (pmu->version && unlikely(pmu->event_count)) {
12313 		pmu->need_cleanup = true;
12314 		kvm_make_request(KVM_REQ_PMU, vcpu);
12315 	}
12316 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12317 }
12318 
12319 void kvm_arch_free_vm(struct kvm *kvm)
12320 {
12321 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12322 	__kvm_arch_free_vm(kvm);
12323 }
12324 
12325 
12326 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12327 {
12328 	int ret;
12329 	unsigned long flags;
12330 
12331 	if (type)
12332 		return -EINVAL;
12333 
12334 	ret = kvm_page_track_init(kvm);
12335 	if (ret)
12336 		goto out;
12337 
12338 	kvm_mmu_init_vm(kvm);
12339 
12340 	ret = static_call(kvm_x86_vm_init)(kvm);
12341 	if (ret)
12342 		goto out_uninit_mmu;
12343 
12344 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12345 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12346 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12347 
12348 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12349 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12350 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12351 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12352 		&kvm->arch.irq_sources_bitmap);
12353 
12354 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12355 	mutex_init(&kvm->arch.apic_map_lock);
12356 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12357 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12358 
12359 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12360 	pvclock_update_vm_gtod_copy(kvm);
12361 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12362 
12363 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12364 	kvm->arch.guest_can_read_msr_platform_info = true;
12365 	kvm->arch.enable_pmu = enable_pmu;
12366 
12367 #if IS_ENABLED(CONFIG_HYPERV)
12368 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12369 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12370 #endif
12371 
12372 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12373 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12374 
12375 	kvm_apicv_init(kvm);
12376 	kvm_hv_init_vm(kvm);
12377 	kvm_xen_init_vm(kvm);
12378 
12379 	return 0;
12380 
12381 out_uninit_mmu:
12382 	kvm_mmu_uninit_vm(kvm);
12383 	kvm_page_track_cleanup(kvm);
12384 out:
12385 	return ret;
12386 }
12387 
12388 int kvm_arch_post_init_vm(struct kvm *kvm)
12389 {
12390 	return kvm_mmu_post_init_vm(kvm);
12391 }
12392 
12393 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12394 {
12395 	vcpu_load(vcpu);
12396 	kvm_mmu_unload(vcpu);
12397 	vcpu_put(vcpu);
12398 }
12399 
12400 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12401 {
12402 	unsigned long i;
12403 	struct kvm_vcpu *vcpu;
12404 
12405 	kvm_for_each_vcpu(i, vcpu, kvm) {
12406 		kvm_clear_async_pf_completion_queue(vcpu);
12407 		kvm_unload_vcpu_mmu(vcpu);
12408 	}
12409 }
12410 
12411 void kvm_arch_sync_events(struct kvm *kvm)
12412 {
12413 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12414 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12415 	kvm_free_pit(kvm);
12416 }
12417 
12418 /**
12419  * __x86_set_memory_region: Setup KVM internal memory slot
12420  *
12421  * @kvm: the kvm pointer to the VM.
12422  * @id: the slot ID to setup.
12423  * @gpa: the GPA to install the slot (unused when @size == 0).
12424  * @size: the size of the slot. Set to zero to uninstall a slot.
12425  *
12426  * This function helps to setup a KVM internal memory slot.  Specify
12427  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12428  * slot.  The return code can be one of the following:
12429  *
12430  *   HVA:           on success (uninstall will return a bogus HVA)
12431  *   -errno:        on error
12432  *
12433  * The caller should always use IS_ERR() to check the return value
12434  * before use.  Note, the KVM internal memory slots are guaranteed to
12435  * remain valid and unchanged until the VM is destroyed, i.e., the
12436  * GPA->HVA translation will not change.  However, the HVA is a user
12437  * address, i.e. its accessibility is not guaranteed, and must be
12438  * accessed via __copy_{to,from}_user().
12439  */
12440 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12441 				      u32 size)
12442 {
12443 	int i, r;
12444 	unsigned long hva, old_npages;
12445 	struct kvm_memslots *slots = kvm_memslots(kvm);
12446 	struct kvm_memory_slot *slot;
12447 
12448 	/* Called with kvm->slots_lock held.  */
12449 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12450 		return ERR_PTR_USR(-EINVAL);
12451 
12452 	slot = id_to_memslot(slots, id);
12453 	if (size) {
12454 		if (slot && slot->npages)
12455 			return ERR_PTR_USR(-EEXIST);
12456 
12457 		/*
12458 		 * MAP_SHARED to prevent internal slot pages from being moved
12459 		 * by fork()/COW.
12460 		 */
12461 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12462 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12463 		if (IS_ERR_VALUE(hva))
12464 			return (void __user *)hva;
12465 	} else {
12466 		if (!slot || !slot->npages)
12467 			return NULL;
12468 
12469 		old_npages = slot->npages;
12470 		hva = slot->userspace_addr;
12471 	}
12472 
12473 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12474 		struct kvm_userspace_memory_region m;
12475 
12476 		m.slot = id | (i << 16);
12477 		m.flags = 0;
12478 		m.guest_phys_addr = gpa;
12479 		m.userspace_addr = hva;
12480 		m.memory_size = size;
12481 		r = __kvm_set_memory_region(kvm, &m);
12482 		if (r < 0)
12483 			return ERR_PTR_USR(r);
12484 	}
12485 
12486 	if (!size)
12487 		vm_munmap(hva, old_npages * PAGE_SIZE);
12488 
12489 	return (void __user *)hva;
12490 }
12491 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12492 
12493 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12494 {
12495 	kvm_mmu_pre_destroy_vm(kvm);
12496 }
12497 
12498 void kvm_arch_destroy_vm(struct kvm *kvm)
12499 {
12500 	if (current->mm == kvm->mm) {
12501 		/*
12502 		 * Free memory regions allocated on behalf of userspace,
12503 		 * unless the memory map has changed due to process exit
12504 		 * or fd copying.
12505 		 */
12506 		mutex_lock(&kvm->slots_lock);
12507 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12508 					0, 0);
12509 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12510 					0, 0);
12511 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12512 		mutex_unlock(&kvm->slots_lock);
12513 	}
12514 	kvm_unload_vcpu_mmus(kvm);
12515 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12516 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12517 	kvm_pic_destroy(kvm);
12518 	kvm_ioapic_destroy(kvm);
12519 	kvm_destroy_vcpus(kvm);
12520 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12521 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12522 	kvm_mmu_uninit_vm(kvm);
12523 	kvm_page_track_cleanup(kvm);
12524 	kvm_xen_destroy_vm(kvm);
12525 	kvm_hv_destroy_vm(kvm);
12526 }
12527 
12528 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12529 {
12530 	int i;
12531 
12532 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12533 		kvfree(slot->arch.rmap[i]);
12534 		slot->arch.rmap[i] = NULL;
12535 	}
12536 }
12537 
12538 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12539 {
12540 	int i;
12541 
12542 	memslot_rmap_free(slot);
12543 
12544 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12545 		kvfree(slot->arch.lpage_info[i - 1]);
12546 		slot->arch.lpage_info[i - 1] = NULL;
12547 	}
12548 
12549 	kvm_page_track_free_memslot(slot);
12550 }
12551 
12552 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12553 {
12554 	const int sz = sizeof(*slot->arch.rmap[0]);
12555 	int i;
12556 
12557 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12558 		int level = i + 1;
12559 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12560 
12561 		if (slot->arch.rmap[i])
12562 			continue;
12563 
12564 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12565 		if (!slot->arch.rmap[i]) {
12566 			memslot_rmap_free(slot);
12567 			return -ENOMEM;
12568 		}
12569 	}
12570 
12571 	return 0;
12572 }
12573 
12574 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12575 				      struct kvm_memory_slot *slot)
12576 {
12577 	unsigned long npages = slot->npages;
12578 	int i, r;
12579 
12580 	/*
12581 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12582 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12583 	 * the new memslot is successful.
12584 	 */
12585 	memset(&slot->arch, 0, sizeof(slot->arch));
12586 
12587 	if (kvm_memslots_have_rmaps(kvm)) {
12588 		r = memslot_rmap_alloc(slot, npages);
12589 		if (r)
12590 			return r;
12591 	}
12592 
12593 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12594 		struct kvm_lpage_info *linfo;
12595 		unsigned long ugfn;
12596 		int lpages;
12597 		int level = i + 1;
12598 
12599 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12600 
12601 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12602 		if (!linfo)
12603 			goto out_free;
12604 
12605 		slot->arch.lpage_info[i - 1] = linfo;
12606 
12607 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12608 			linfo[0].disallow_lpage = 1;
12609 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12610 			linfo[lpages - 1].disallow_lpage = 1;
12611 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12612 		/*
12613 		 * If the gfn and userspace address are not aligned wrt each
12614 		 * other, disable large page support for this slot.
12615 		 */
12616 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12617 			unsigned long j;
12618 
12619 			for (j = 0; j < lpages; ++j)
12620 				linfo[j].disallow_lpage = 1;
12621 		}
12622 	}
12623 
12624 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12625 		goto out_free;
12626 
12627 	return 0;
12628 
12629 out_free:
12630 	memslot_rmap_free(slot);
12631 
12632 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12633 		kvfree(slot->arch.lpage_info[i - 1]);
12634 		slot->arch.lpage_info[i - 1] = NULL;
12635 	}
12636 	return -ENOMEM;
12637 }
12638 
12639 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12640 {
12641 	struct kvm_vcpu *vcpu;
12642 	unsigned long i;
12643 
12644 	/*
12645 	 * memslots->generation has been incremented.
12646 	 * mmio generation may have reached its maximum value.
12647 	 */
12648 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12649 
12650 	/* Force re-initialization of steal_time cache */
12651 	kvm_for_each_vcpu(i, vcpu, kvm)
12652 		kvm_vcpu_kick(vcpu);
12653 }
12654 
12655 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12656 				   const struct kvm_memory_slot *old,
12657 				   struct kvm_memory_slot *new,
12658 				   enum kvm_mr_change change)
12659 {
12660 	/*
12661 	 * KVM doesn't support moving memslots when there are external page
12662 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12663 	 */
12664 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12665 		return -EINVAL;
12666 
12667 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12668 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12669 			return -EINVAL;
12670 
12671 		return kvm_alloc_memslot_metadata(kvm, new);
12672 	}
12673 
12674 	if (change == KVM_MR_FLAGS_ONLY)
12675 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12676 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12677 		return -EIO;
12678 
12679 	return 0;
12680 }
12681 
12682 
12683 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12684 {
12685 	int nr_slots;
12686 
12687 	if (!kvm_x86_ops.cpu_dirty_log_size)
12688 		return;
12689 
12690 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12691 	if ((enable && nr_slots == 1) || !nr_slots)
12692 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12693 }
12694 
12695 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12696 				     struct kvm_memory_slot *old,
12697 				     const struct kvm_memory_slot *new,
12698 				     enum kvm_mr_change change)
12699 {
12700 	u32 old_flags = old ? old->flags : 0;
12701 	u32 new_flags = new ? new->flags : 0;
12702 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12703 
12704 	/*
12705 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12706 	 * applies to all operations.
12707 	 */
12708 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12709 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12710 
12711 	/*
12712 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12713 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12714 	 *
12715 	 * For a memslot with dirty logging disabled:
12716 	 * CREATE:      No dirty mappings will already exist.
12717 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12718 	 *		kvm_arch_flush_shadow_memslot()
12719 	 *
12720 	 * For a memslot with dirty logging enabled:
12721 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12722 	 *		and no dirty bits to clear.
12723 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12724 	 *		kvm_arch_flush_shadow_memslot().
12725 	 */
12726 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12727 		return;
12728 
12729 	/*
12730 	 * READONLY and non-flags changes were filtered out above, and the only
12731 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12732 	 * logging isn't being toggled on or off.
12733 	 */
12734 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12735 		return;
12736 
12737 	if (!log_dirty_pages) {
12738 		/*
12739 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12740 		 * large sptes have to be split.  If live migration succeeds,
12741 		 * the guest in the source machine will be destroyed and large
12742 		 * sptes will be created in the destination.  However, if the
12743 		 * guest continues to run in the source machine (for example if
12744 		 * live migration fails), small sptes will remain around and
12745 		 * cause bad performance.
12746 		 *
12747 		 * Scan sptes if dirty logging has been stopped, dropping those
12748 		 * which can be collapsed into a single large-page spte.  Later
12749 		 * page faults will create the large-page sptes.
12750 		 */
12751 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12752 	} else {
12753 		/*
12754 		 * Initially-all-set does not require write protecting any page,
12755 		 * because they're all assumed to be dirty.
12756 		 */
12757 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12758 			return;
12759 
12760 		if (READ_ONCE(eager_page_split))
12761 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12762 
12763 		if (kvm_x86_ops.cpu_dirty_log_size) {
12764 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12765 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12766 		} else {
12767 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12768 		}
12769 
12770 		/*
12771 		 * Unconditionally flush the TLBs after enabling dirty logging.
12772 		 * A flush is almost always going to be necessary (see below),
12773 		 * and unconditionally flushing allows the helpers to omit
12774 		 * the subtly complex checks when removing write access.
12775 		 *
12776 		 * Do the flush outside of mmu_lock to reduce the amount of
12777 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12778 		 * safe as KVM only needs to guarantee the slot is fully
12779 		 * write-protected before returning to userspace, i.e. before
12780 		 * userspace can consume the dirty status.
12781 		 *
12782 		 * Flushing outside of mmu_lock requires KVM to be careful when
12783 		 * making decisions based on writable status of an SPTE, e.g. a
12784 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12785 		 *
12786 		 * Specifically, KVM also write-protects guest page tables to
12787 		 * monitor changes when using shadow paging, and must guarantee
12788 		 * no CPUs can write to those page before mmu_lock is dropped.
12789 		 * Because CPUs may have stale TLB entries at this point, a
12790 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12791 		 *
12792 		 * KVM also allows making SPTES writable outside of mmu_lock,
12793 		 * e.g. to allow dirty logging without taking mmu_lock.
12794 		 *
12795 		 * To handle these scenarios, KVM uses a separate software-only
12796 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12797 		 * a guest page table being write-protected (KVM clears the
12798 		 * MMU-writable flag when write-protecting for shadow paging).
12799 		 *
12800 		 * The use of MMU-writable is also the primary motivation for
12801 		 * the unconditional flush.  Because KVM must guarantee that a
12802 		 * CPU doesn't contain stale, writable TLB entries for a
12803 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12804 		 * MMU-writable SPTE regardless of whether the actual hardware
12805 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12806 		 * to flush, while unconditionally flushing allows the "remove
12807 		 * write access" helpers to ignore MMU-writable entirely.
12808 		 *
12809 		 * See is_writable_pte() for more details (the case involving
12810 		 * access-tracked SPTEs is particularly relevant).
12811 		 */
12812 		kvm_flush_remote_tlbs_memslot(kvm, new);
12813 	}
12814 }
12815 
12816 void kvm_arch_commit_memory_region(struct kvm *kvm,
12817 				struct kvm_memory_slot *old,
12818 				const struct kvm_memory_slot *new,
12819 				enum kvm_mr_change change)
12820 {
12821 	if (change == KVM_MR_DELETE)
12822 		kvm_page_track_delete_slot(kvm, old);
12823 
12824 	if (!kvm->arch.n_requested_mmu_pages &&
12825 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12826 		unsigned long nr_mmu_pages;
12827 
12828 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12829 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12830 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12831 	}
12832 
12833 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12834 
12835 	/* Free the arrays associated with the old memslot. */
12836 	if (change == KVM_MR_MOVE)
12837 		kvm_arch_free_memslot(kvm, old);
12838 }
12839 
12840 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12841 {
12842 	return (is_guest_mode(vcpu) &&
12843 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12844 }
12845 
12846 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12847 {
12848 	if (!list_empty_careful(&vcpu->async_pf.done))
12849 		return true;
12850 
12851 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12852 	    kvm_apic_init_sipi_allowed(vcpu))
12853 		return true;
12854 
12855 	if (vcpu->arch.pv.pv_unhalted)
12856 		return true;
12857 
12858 	if (kvm_is_exception_pending(vcpu))
12859 		return true;
12860 
12861 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12862 	    (vcpu->arch.nmi_pending &&
12863 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12864 		return true;
12865 
12866 #ifdef CONFIG_KVM_SMM
12867 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12868 	    (vcpu->arch.smi_pending &&
12869 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12870 		return true;
12871 #endif
12872 
12873 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12874 		return true;
12875 
12876 	if (kvm_arch_interrupt_allowed(vcpu) &&
12877 	    (kvm_cpu_has_interrupt(vcpu) ||
12878 	    kvm_guest_apic_has_interrupt(vcpu)))
12879 		return true;
12880 
12881 	if (kvm_hv_has_stimer_pending(vcpu))
12882 		return true;
12883 
12884 	if (is_guest_mode(vcpu) &&
12885 	    kvm_x86_ops.nested_ops->has_events &&
12886 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12887 		return true;
12888 
12889 	if (kvm_xen_has_pending_events(vcpu))
12890 		return true;
12891 
12892 	return false;
12893 }
12894 
12895 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12896 {
12897 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12898 }
12899 
12900 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12901 {
12902 	if (kvm_vcpu_apicv_active(vcpu) &&
12903 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12904 		return true;
12905 
12906 	return false;
12907 }
12908 
12909 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12910 {
12911 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12912 		return true;
12913 
12914 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12915 #ifdef CONFIG_KVM_SMM
12916 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12917 #endif
12918 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12919 		return true;
12920 
12921 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12922 }
12923 
12924 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12925 {
12926 	if (vcpu->arch.guest_state_protected)
12927 		return true;
12928 
12929 	return vcpu->arch.preempted_in_kernel;
12930 }
12931 
12932 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12933 {
12934 	return kvm_rip_read(vcpu);
12935 }
12936 
12937 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12938 {
12939 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12940 }
12941 
12942 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12943 {
12944 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12945 }
12946 
12947 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12948 {
12949 	/* Can't read the RIP when guest state is protected, just return 0 */
12950 	if (vcpu->arch.guest_state_protected)
12951 		return 0;
12952 
12953 	if (is_64_bit_mode(vcpu))
12954 		return kvm_rip_read(vcpu);
12955 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12956 		     kvm_rip_read(vcpu));
12957 }
12958 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12959 
12960 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12961 {
12962 	return kvm_get_linear_rip(vcpu) == linear_rip;
12963 }
12964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12965 
12966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12967 {
12968 	unsigned long rflags;
12969 
12970 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12971 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12972 		rflags &= ~X86_EFLAGS_TF;
12973 	return rflags;
12974 }
12975 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12976 
12977 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12978 {
12979 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12980 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12981 		rflags |= X86_EFLAGS_TF;
12982 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12983 }
12984 
12985 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12986 {
12987 	__kvm_set_rflags(vcpu, rflags);
12988 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12989 }
12990 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12991 
12992 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12993 {
12994 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12995 
12996 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12997 }
12998 
12999 static inline u32 kvm_async_pf_next_probe(u32 key)
13000 {
13001 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13002 }
13003 
13004 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13005 {
13006 	u32 key = kvm_async_pf_hash_fn(gfn);
13007 
13008 	while (vcpu->arch.apf.gfns[key] != ~0)
13009 		key = kvm_async_pf_next_probe(key);
13010 
13011 	vcpu->arch.apf.gfns[key] = gfn;
13012 }
13013 
13014 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13015 {
13016 	int i;
13017 	u32 key = kvm_async_pf_hash_fn(gfn);
13018 
13019 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13020 		     (vcpu->arch.apf.gfns[key] != gfn &&
13021 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13022 		key = kvm_async_pf_next_probe(key);
13023 
13024 	return key;
13025 }
13026 
13027 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13028 {
13029 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13030 }
13031 
13032 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13033 {
13034 	u32 i, j, k;
13035 
13036 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13037 
13038 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13039 		return;
13040 
13041 	while (true) {
13042 		vcpu->arch.apf.gfns[i] = ~0;
13043 		do {
13044 			j = kvm_async_pf_next_probe(j);
13045 			if (vcpu->arch.apf.gfns[j] == ~0)
13046 				return;
13047 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13048 			/*
13049 			 * k lies cyclically in ]i,j]
13050 			 * |    i.k.j |
13051 			 * |....j i.k.| or  |.k..j i...|
13052 			 */
13053 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13054 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13055 		i = j;
13056 	}
13057 }
13058 
13059 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13060 {
13061 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13062 
13063 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13064 				      sizeof(reason));
13065 }
13066 
13067 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13068 {
13069 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13070 
13071 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13072 					     &token, offset, sizeof(token));
13073 }
13074 
13075 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13076 {
13077 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13078 	u32 val;
13079 
13080 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13081 					 &val, offset, sizeof(val)))
13082 		return false;
13083 
13084 	return !val;
13085 }
13086 
13087 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13088 {
13089 
13090 	if (!kvm_pv_async_pf_enabled(vcpu))
13091 		return false;
13092 
13093 	if (vcpu->arch.apf.send_user_only &&
13094 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13095 		return false;
13096 
13097 	if (is_guest_mode(vcpu)) {
13098 		/*
13099 		 * L1 needs to opt into the special #PF vmexits that are
13100 		 * used to deliver async page faults.
13101 		 */
13102 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13103 	} else {
13104 		/*
13105 		 * Play it safe in case the guest temporarily disables paging.
13106 		 * The real mode IDT in particular is unlikely to have a #PF
13107 		 * exception setup.
13108 		 */
13109 		return is_paging(vcpu);
13110 	}
13111 }
13112 
13113 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13114 {
13115 	if (unlikely(!lapic_in_kernel(vcpu) ||
13116 		     kvm_event_needs_reinjection(vcpu) ||
13117 		     kvm_is_exception_pending(vcpu)))
13118 		return false;
13119 
13120 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13121 		return false;
13122 
13123 	/*
13124 	 * If interrupts are off we cannot even use an artificial
13125 	 * halt state.
13126 	 */
13127 	return kvm_arch_interrupt_allowed(vcpu);
13128 }
13129 
13130 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13131 				     struct kvm_async_pf *work)
13132 {
13133 	struct x86_exception fault;
13134 
13135 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13136 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13137 
13138 	if (kvm_can_deliver_async_pf(vcpu) &&
13139 	    !apf_put_user_notpresent(vcpu)) {
13140 		fault.vector = PF_VECTOR;
13141 		fault.error_code_valid = true;
13142 		fault.error_code = 0;
13143 		fault.nested_page_fault = false;
13144 		fault.address = work->arch.token;
13145 		fault.async_page_fault = true;
13146 		kvm_inject_page_fault(vcpu, &fault);
13147 		return true;
13148 	} else {
13149 		/*
13150 		 * It is not possible to deliver a paravirtualized asynchronous
13151 		 * page fault, but putting the guest in an artificial halt state
13152 		 * can be beneficial nevertheless: if an interrupt arrives, we
13153 		 * can deliver it timely and perhaps the guest will schedule
13154 		 * another process.  When the instruction that triggered a page
13155 		 * fault is retried, hopefully the page will be ready in the host.
13156 		 */
13157 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13158 		return false;
13159 	}
13160 }
13161 
13162 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13163 				 struct kvm_async_pf *work)
13164 {
13165 	struct kvm_lapic_irq irq = {
13166 		.delivery_mode = APIC_DM_FIXED,
13167 		.vector = vcpu->arch.apf.vec
13168 	};
13169 
13170 	if (work->wakeup_all)
13171 		work->arch.token = ~0; /* broadcast wakeup */
13172 	else
13173 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13174 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13175 
13176 	if ((work->wakeup_all || work->notpresent_injected) &&
13177 	    kvm_pv_async_pf_enabled(vcpu) &&
13178 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13179 		vcpu->arch.apf.pageready_pending = true;
13180 		kvm_apic_set_irq(vcpu, &irq, NULL);
13181 	}
13182 
13183 	vcpu->arch.apf.halted = false;
13184 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13185 }
13186 
13187 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13188 {
13189 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13190 	if (!vcpu->arch.apf.pageready_pending)
13191 		kvm_vcpu_kick(vcpu);
13192 }
13193 
13194 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13195 {
13196 	if (!kvm_pv_async_pf_enabled(vcpu))
13197 		return true;
13198 	else
13199 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13200 }
13201 
13202 void kvm_arch_start_assignment(struct kvm *kvm)
13203 {
13204 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13205 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13206 }
13207 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13208 
13209 void kvm_arch_end_assignment(struct kvm *kvm)
13210 {
13211 	atomic_dec(&kvm->arch.assigned_device_count);
13212 }
13213 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13214 
13215 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13216 {
13217 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13218 }
13219 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13220 
13221 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13222 {
13223 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13224 }
13225 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13226 
13227 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13228 {
13229 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13230 }
13231 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13232 
13233 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13234 {
13235 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13236 }
13237 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13238 
13239 bool kvm_arch_has_irq_bypass(void)
13240 {
13241 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13242 }
13243 
13244 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13245 				      struct irq_bypass_producer *prod)
13246 {
13247 	struct kvm_kernel_irqfd *irqfd =
13248 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13249 	int ret;
13250 
13251 	irqfd->producer = prod;
13252 	kvm_arch_start_assignment(irqfd->kvm);
13253 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13254 					 prod->irq, irqfd->gsi, 1);
13255 
13256 	if (ret)
13257 		kvm_arch_end_assignment(irqfd->kvm);
13258 
13259 	return ret;
13260 }
13261 
13262 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13263 				      struct irq_bypass_producer *prod)
13264 {
13265 	int ret;
13266 	struct kvm_kernel_irqfd *irqfd =
13267 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13268 
13269 	WARN_ON(irqfd->producer != prod);
13270 	irqfd->producer = NULL;
13271 
13272 	/*
13273 	 * When producer of consumer is unregistered, we change back to
13274 	 * remapped mode, so we can re-use the current implementation
13275 	 * when the irq is masked/disabled or the consumer side (KVM
13276 	 * int this case doesn't want to receive the interrupts.
13277 	*/
13278 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13279 	if (ret)
13280 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13281 		       " fails: %d\n", irqfd->consumer.token, ret);
13282 
13283 	kvm_arch_end_assignment(irqfd->kvm);
13284 }
13285 
13286 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13287 				   uint32_t guest_irq, bool set)
13288 {
13289 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13290 }
13291 
13292 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13293 				  struct kvm_kernel_irq_routing_entry *new)
13294 {
13295 	if (new->type != KVM_IRQ_ROUTING_MSI)
13296 		return true;
13297 
13298 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13299 }
13300 
13301 bool kvm_vector_hashing_enabled(void)
13302 {
13303 	return vector_hashing;
13304 }
13305 
13306 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13307 {
13308 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13309 }
13310 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13311 
13312 
13313 int kvm_spec_ctrl_test_value(u64 value)
13314 {
13315 	/*
13316 	 * test that setting IA32_SPEC_CTRL to given value
13317 	 * is allowed by the host processor
13318 	 */
13319 
13320 	u64 saved_value;
13321 	unsigned long flags;
13322 	int ret = 0;
13323 
13324 	local_irq_save(flags);
13325 
13326 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13327 		ret = 1;
13328 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13329 		ret = 1;
13330 	else
13331 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13332 
13333 	local_irq_restore(flags);
13334 
13335 	return ret;
13336 }
13337 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13338 
13339 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13340 {
13341 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13342 	struct x86_exception fault;
13343 	u64 access = error_code &
13344 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13345 
13346 	if (!(error_code & PFERR_PRESENT_MASK) ||
13347 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13348 		/*
13349 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13350 		 * tables probably do not match the TLB.  Just proceed
13351 		 * with the error code that the processor gave.
13352 		 */
13353 		fault.vector = PF_VECTOR;
13354 		fault.error_code_valid = true;
13355 		fault.error_code = error_code;
13356 		fault.nested_page_fault = false;
13357 		fault.address = gva;
13358 		fault.async_page_fault = false;
13359 	}
13360 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13361 }
13362 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13363 
13364 /*
13365  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13366  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13367  * indicates whether exit to userspace is needed.
13368  */
13369 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13370 			      struct x86_exception *e)
13371 {
13372 	if (r == X86EMUL_PROPAGATE_FAULT) {
13373 		if (KVM_BUG_ON(!e, vcpu->kvm))
13374 			return -EIO;
13375 
13376 		kvm_inject_emulated_page_fault(vcpu, e);
13377 		return 1;
13378 	}
13379 
13380 	/*
13381 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13382 	 * while handling a VMX instruction KVM could've handled the request
13383 	 * correctly by exiting to userspace and performing I/O but there
13384 	 * doesn't seem to be a real use-case behind such requests, just return
13385 	 * KVM_EXIT_INTERNAL_ERROR for now.
13386 	 */
13387 	kvm_prepare_emulation_failure_exit(vcpu);
13388 
13389 	return 0;
13390 }
13391 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13392 
13393 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13394 {
13395 	bool pcid_enabled;
13396 	struct x86_exception e;
13397 	struct {
13398 		u64 pcid;
13399 		u64 gla;
13400 	} operand;
13401 	int r;
13402 
13403 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13404 	if (r != X86EMUL_CONTINUE)
13405 		return kvm_handle_memory_failure(vcpu, r, &e);
13406 
13407 	if (operand.pcid >> 12 != 0) {
13408 		kvm_inject_gp(vcpu, 0);
13409 		return 1;
13410 	}
13411 
13412 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13413 
13414 	switch (type) {
13415 	case INVPCID_TYPE_INDIV_ADDR:
13416 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13417 		    is_noncanonical_address(operand.gla, vcpu)) {
13418 			kvm_inject_gp(vcpu, 0);
13419 			return 1;
13420 		}
13421 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13422 		return kvm_skip_emulated_instruction(vcpu);
13423 
13424 	case INVPCID_TYPE_SINGLE_CTXT:
13425 		if (!pcid_enabled && (operand.pcid != 0)) {
13426 			kvm_inject_gp(vcpu, 0);
13427 			return 1;
13428 		}
13429 
13430 		kvm_invalidate_pcid(vcpu, operand.pcid);
13431 		return kvm_skip_emulated_instruction(vcpu);
13432 
13433 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13434 		/*
13435 		 * Currently, KVM doesn't mark global entries in the shadow
13436 		 * page tables, so a non-global flush just degenerates to a
13437 		 * global flush. If needed, we could optimize this later by
13438 		 * keeping track of global entries in shadow page tables.
13439 		 */
13440 
13441 		fallthrough;
13442 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13443 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13444 		return kvm_skip_emulated_instruction(vcpu);
13445 
13446 	default:
13447 		kvm_inject_gp(vcpu, 0);
13448 		return 1;
13449 	}
13450 }
13451 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13452 
13453 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13454 {
13455 	struct kvm_run *run = vcpu->run;
13456 	struct kvm_mmio_fragment *frag;
13457 	unsigned int len;
13458 
13459 	BUG_ON(!vcpu->mmio_needed);
13460 
13461 	/* Complete previous fragment */
13462 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13463 	len = min(8u, frag->len);
13464 	if (!vcpu->mmio_is_write)
13465 		memcpy(frag->data, run->mmio.data, len);
13466 
13467 	if (frag->len <= 8) {
13468 		/* Switch to the next fragment. */
13469 		frag++;
13470 		vcpu->mmio_cur_fragment++;
13471 	} else {
13472 		/* Go forward to the next mmio piece. */
13473 		frag->data += len;
13474 		frag->gpa += len;
13475 		frag->len -= len;
13476 	}
13477 
13478 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13479 		vcpu->mmio_needed = 0;
13480 
13481 		// VMG change, at this point, we're always done
13482 		// RIP has already been advanced
13483 		return 1;
13484 	}
13485 
13486 	// More MMIO is needed
13487 	run->mmio.phys_addr = frag->gpa;
13488 	run->mmio.len = min(8u, frag->len);
13489 	run->mmio.is_write = vcpu->mmio_is_write;
13490 	if (run->mmio.is_write)
13491 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13492 	run->exit_reason = KVM_EXIT_MMIO;
13493 
13494 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13495 
13496 	return 0;
13497 }
13498 
13499 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13500 			  void *data)
13501 {
13502 	int handled;
13503 	struct kvm_mmio_fragment *frag;
13504 
13505 	if (!data)
13506 		return -EINVAL;
13507 
13508 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13509 	if (handled == bytes)
13510 		return 1;
13511 
13512 	bytes -= handled;
13513 	gpa += handled;
13514 	data += handled;
13515 
13516 	/*TODO: Check if need to increment number of frags */
13517 	frag = vcpu->mmio_fragments;
13518 	vcpu->mmio_nr_fragments = 1;
13519 	frag->len = bytes;
13520 	frag->gpa = gpa;
13521 	frag->data = data;
13522 
13523 	vcpu->mmio_needed = 1;
13524 	vcpu->mmio_cur_fragment = 0;
13525 
13526 	vcpu->run->mmio.phys_addr = gpa;
13527 	vcpu->run->mmio.len = min(8u, frag->len);
13528 	vcpu->run->mmio.is_write = 1;
13529 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13530 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13531 
13532 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13533 
13534 	return 0;
13535 }
13536 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13537 
13538 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13539 			 void *data)
13540 {
13541 	int handled;
13542 	struct kvm_mmio_fragment *frag;
13543 
13544 	if (!data)
13545 		return -EINVAL;
13546 
13547 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13548 	if (handled == bytes)
13549 		return 1;
13550 
13551 	bytes -= handled;
13552 	gpa += handled;
13553 	data += handled;
13554 
13555 	/*TODO: Check if need to increment number of frags */
13556 	frag = vcpu->mmio_fragments;
13557 	vcpu->mmio_nr_fragments = 1;
13558 	frag->len = bytes;
13559 	frag->gpa = gpa;
13560 	frag->data = data;
13561 
13562 	vcpu->mmio_needed = 1;
13563 	vcpu->mmio_cur_fragment = 0;
13564 
13565 	vcpu->run->mmio.phys_addr = gpa;
13566 	vcpu->run->mmio.len = min(8u, frag->len);
13567 	vcpu->run->mmio.is_write = 0;
13568 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13569 
13570 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13571 
13572 	return 0;
13573 }
13574 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13575 
13576 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13577 {
13578 	vcpu->arch.sev_pio_count -= count;
13579 	vcpu->arch.sev_pio_data += count * size;
13580 }
13581 
13582 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13583 			   unsigned int port);
13584 
13585 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13586 {
13587 	int size = vcpu->arch.pio.size;
13588 	int port = vcpu->arch.pio.port;
13589 
13590 	vcpu->arch.pio.count = 0;
13591 	if (vcpu->arch.sev_pio_count)
13592 		return kvm_sev_es_outs(vcpu, size, port);
13593 	return 1;
13594 }
13595 
13596 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13597 			   unsigned int port)
13598 {
13599 	for (;;) {
13600 		unsigned int count =
13601 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13602 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13603 
13604 		/* memcpy done already by emulator_pio_out.  */
13605 		advance_sev_es_emulated_pio(vcpu, count, size);
13606 		if (!ret)
13607 			break;
13608 
13609 		/* Emulation done by the kernel.  */
13610 		if (!vcpu->arch.sev_pio_count)
13611 			return 1;
13612 	}
13613 
13614 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13615 	return 0;
13616 }
13617 
13618 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13619 			  unsigned int port);
13620 
13621 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13622 {
13623 	unsigned count = vcpu->arch.pio.count;
13624 	int size = vcpu->arch.pio.size;
13625 	int port = vcpu->arch.pio.port;
13626 
13627 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13628 	advance_sev_es_emulated_pio(vcpu, count, size);
13629 	if (vcpu->arch.sev_pio_count)
13630 		return kvm_sev_es_ins(vcpu, size, port);
13631 	return 1;
13632 }
13633 
13634 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13635 			  unsigned int port)
13636 {
13637 	for (;;) {
13638 		unsigned int count =
13639 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13640 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13641 			break;
13642 
13643 		/* Emulation done by the kernel.  */
13644 		advance_sev_es_emulated_pio(vcpu, count, size);
13645 		if (!vcpu->arch.sev_pio_count)
13646 			return 1;
13647 	}
13648 
13649 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13650 	return 0;
13651 }
13652 
13653 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13654 			 unsigned int port, void *data,  unsigned int count,
13655 			 int in)
13656 {
13657 	vcpu->arch.sev_pio_data = data;
13658 	vcpu->arch.sev_pio_count = count;
13659 	return in ? kvm_sev_es_ins(vcpu, size, port)
13660 		  : kvm_sev_es_outs(vcpu, size, port);
13661 }
13662 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13663 
13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13693 
13694 static int __init kvm_x86_init(void)
13695 {
13696 	kvm_mmu_x86_module_init();
13697 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13698 	return 0;
13699 }
13700 module_init(kvm_x86_init);
13701 
13702 static void __exit kvm_x86_exit(void)
13703 {
13704 	/*
13705 	 * If module_init() is implemented, module_exit() must also be
13706 	 * implemented to allow module unload.
13707 	 */
13708 }
13709 module_exit(kvm_x86_exit);
13710