1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 if (irqchip_in_kernel(vcpu->kvm)) 250 return vcpu->arch.apic_base; 251 else 252 return vcpu->arch.apic_base; 253 } 254 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 255 256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 257 { 258 /* TODO: reserve bits check */ 259 if (irqchip_in_kernel(vcpu->kvm)) 260 kvm_lapic_set_base(vcpu, data); 261 else 262 vcpu->arch.apic_base = data; 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 kvm_x86_ops->set_cr0(vcpu, cr0); 532 533 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 534 kvm_clear_async_pf_completion_queue(vcpu); 535 kvm_async_pf_hash_reset(vcpu); 536 } 537 538 if ((cr0 ^ old_cr0) & update_bits) 539 kvm_mmu_reset_context(vcpu); 540 return 0; 541 } 542 EXPORT_SYMBOL_GPL(kvm_set_cr0); 543 544 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 545 { 546 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 547 } 548 EXPORT_SYMBOL_GPL(kvm_lmsw); 549 550 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 551 { 552 u64 xcr0; 553 554 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 555 if (index != XCR_XFEATURE_ENABLED_MASK) 556 return 1; 557 xcr0 = xcr; 558 if (kvm_x86_ops->get_cpl(vcpu) != 0) 559 return 1; 560 if (!(xcr0 & XSTATE_FP)) 561 return 1; 562 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 563 return 1; 564 if (xcr0 & ~host_xcr0) 565 return 1; 566 vcpu->arch.xcr0 = xcr0; 567 vcpu->guest_xcr0_loaded = 0; 568 return 0; 569 } 570 571 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 572 { 573 if (__kvm_set_xcr(vcpu, index, xcr)) { 574 kvm_inject_gp(vcpu, 0); 575 return 1; 576 } 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(kvm_set_xcr); 580 581 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 582 { 583 unsigned long old_cr4 = kvm_read_cr4(vcpu); 584 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 585 X86_CR4_PAE | X86_CR4_SMEP; 586 if (cr4 & CR4_RESERVED_BITS) 587 return 1; 588 589 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 590 return 1; 591 592 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 593 return 1; 594 595 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 596 return 1; 597 598 if (is_long_mode(vcpu)) { 599 if (!(cr4 & X86_CR4_PAE)) 600 return 1; 601 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 602 && ((cr4 ^ old_cr4) & pdptr_bits) 603 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 604 kvm_read_cr3(vcpu))) 605 return 1; 606 607 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 608 return 1; 609 610 if ((cr4 ^ old_cr4) & pdptr_bits) 611 kvm_mmu_reset_context(vcpu); 612 613 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 614 kvm_update_cpuid(vcpu); 615 616 return 0; 617 } 618 EXPORT_SYMBOL_GPL(kvm_set_cr4); 619 620 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 621 { 622 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 623 kvm_mmu_sync_roots(vcpu); 624 kvm_mmu_flush_tlb(vcpu); 625 return 0; 626 } 627 628 if (is_long_mode(vcpu)) { 629 if (cr3 & CR3_L_MODE_RESERVED_BITS) 630 return 1; 631 } else { 632 if (is_pae(vcpu)) { 633 if (cr3 & CR3_PAE_RESERVED_BITS) 634 return 1; 635 if (is_paging(vcpu) && 636 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 637 return 1; 638 } 639 /* 640 * We don't check reserved bits in nonpae mode, because 641 * this isn't enforced, and VMware depends on this. 642 */ 643 } 644 645 /* 646 * Does the new cr3 value map to physical memory? (Note, we 647 * catch an invalid cr3 even in real-mode, because it would 648 * cause trouble later on when we turn on paging anyway.) 649 * 650 * A real CPU would silently accept an invalid cr3 and would 651 * attempt to use it - with largely undefined (and often hard 652 * to debug) behavior on the guest side. 653 */ 654 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 655 return 1; 656 vcpu->arch.cr3 = cr3; 657 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 658 vcpu->arch.mmu.new_cr3(vcpu); 659 return 0; 660 } 661 EXPORT_SYMBOL_GPL(kvm_set_cr3); 662 663 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 664 { 665 if (cr8 & CR8_RESERVED_BITS) 666 return 1; 667 if (irqchip_in_kernel(vcpu->kvm)) 668 kvm_lapic_set_tpr(vcpu, cr8); 669 else 670 vcpu->arch.cr8 = cr8; 671 return 0; 672 } 673 EXPORT_SYMBOL_GPL(kvm_set_cr8); 674 675 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 676 { 677 if (irqchip_in_kernel(vcpu->kvm)) 678 return kvm_lapic_get_cr8(vcpu); 679 else 680 return vcpu->arch.cr8; 681 } 682 EXPORT_SYMBOL_GPL(kvm_get_cr8); 683 684 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 685 { 686 switch (dr) { 687 case 0 ... 3: 688 vcpu->arch.db[dr] = val; 689 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 690 vcpu->arch.eff_db[dr] = val; 691 break; 692 case 4: 693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 694 return 1; /* #UD */ 695 /* fall through */ 696 case 6: 697 if (val & 0xffffffff00000000ULL) 698 return -1; /* #GP */ 699 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 700 break; 701 case 5: 702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 703 return 1; /* #UD */ 704 /* fall through */ 705 default: /* 7 */ 706 if (val & 0xffffffff00000000ULL) 707 return -1; /* #GP */ 708 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 709 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 710 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 711 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 712 } 713 break; 714 } 715 716 return 0; 717 } 718 719 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 720 { 721 int res; 722 723 res = __kvm_set_dr(vcpu, dr, val); 724 if (res > 0) 725 kvm_queue_exception(vcpu, UD_VECTOR); 726 else if (res < 0) 727 kvm_inject_gp(vcpu, 0); 728 729 return res; 730 } 731 EXPORT_SYMBOL_GPL(kvm_set_dr); 732 733 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 734 { 735 switch (dr) { 736 case 0 ... 3: 737 *val = vcpu->arch.db[dr]; 738 break; 739 case 4: 740 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 741 return 1; 742 /* fall through */ 743 case 6: 744 *val = vcpu->arch.dr6; 745 break; 746 case 5: 747 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 748 return 1; 749 /* fall through */ 750 default: /* 7 */ 751 *val = vcpu->arch.dr7; 752 break; 753 } 754 755 return 0; 756 } 757 758 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 759 { 760 if (_kvm_get_dr(vcpu, dr, val)) { 761 kvm_queue_exception(vcpu, UD_VECTOR); 762 return 1; 763 } 764 return 0; 765 } 766 EXPORT_SYMBOL_GPL(kvm_get_dr); 767 768 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 769 { 770 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 771 u64 data; 772 int err; 773 774 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 775 if (err) 776 return err; 777 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 778 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 779 return err; 780 } 781 EXPORT_SYMBOL_GPL(kvm_rdpmc); 782 783 /* 784 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 785 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 786 * 787 * This list is modified at module load time to reflect the 788 * capabilities of the host cpu. This capabilities test skips MSRs that are 789 * kvm-specific. Those are put in the beginning of the list. 790 */ 791 792 #define KVM_SAVE_MSRS_BEGIN 9 793 static u32 msrs_to_save[] = { 794 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 795 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 796 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 797 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 798 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 799 MSR_STAR, 800 #ifdef CONFIG_X86_64 801 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 802 #endif 803 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 804 }; 805 806 static unsigned num_msrs_to_save; 807 808 static u32 emulated_msrs[] = { 809 MSR_IA32_TSCDEADLINE, 810 MSR_IA32_MISC_ENABLE, 811 MSR_IA32_MCG_STATUS, 812 MSR_IA32_MCG_CTL, 813 }; 814 815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 816 { 817 u64 old_efer = vcpu->arch.efer; 818 819 if (efer & efer_reserved_bits) 820 return 1; 821 822 if (is_paging(vcpu) 823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 824 return 1; 825 826 if (efer & EFER_FFXSR) { 827 struct kvm_cpuid_entry2 *feat; 828 829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 831 return 1; 832 } 833 834 if (efer & EFER_SVME) { 835 struct kvm_cpuid_entry2 *feat; 836 837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 839 return 1; 840 } 841 842 efer &= ~EFER_LMA; 843 efer |= vcpu->arch.efer & EFER_LMA; 844 845 kvm_x86_ops->set_efer(vcpu, efer); 846 847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 848 849 /* Update reserved bits */ 850 if ((efer ^ old_efer) & EFER_NX) 851 kvm_mmu_reset_context(vcpu); 852 853 return 0; 854 } 855 856 void kvm_enable_efer_bits(u64 mask) 857 { 858 efer_reserved_bits &= ~mask; 859 } 860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 861 862 863 /* 864 * Writes msr value into into the appropriate "register". 865 * Returns 0 on success, non-0 otherwise. 866 * Assumes vcpu_load() was already called. 867 */ 868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 869 { 870 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 871 } 872 873 /* 874 * Adapt set_msr() to msr_io()'s calling convention 875 */ 876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 877 { 878 return kvm_set_msr(vcpu, index, *data); 879 } 880 881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 882 { 883 int version; 884 int r; 885 struct pvclock_wall_clock wc; 886 struct timespec boot; 887 888 if (!wall_clock) 889 return; 890 891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 892 if (r) 893 return; 894 895 if (version & 1) 896 ++version; /* first time write, random junk */ 897 898 ++version; 899 900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 901 902 /* 903 * The guest calculates current wall clock time by adding 904 * system time (updated by kvm_guest_time_update below) to the 905 * wall clock specified here. guest system time equals host 906 * system time for us, thus we must fill in host boot time here. 907 */ 908 getboottime(&boot); 909 910 wc.sec = boot.tv_sec; 911 wc.nsec = boot.tv_nsec; 912 wc.version = version; 913 914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 915 916 version++; 917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 918 } 919 920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 921 { 922 uint32_t quotient, remainder; 923 924 /* Don't try to replace with do_div(), this one calculates 925 * "(dividend << 32) / divisor" */ 926 __asm__ ( "divl %4" 927 : "=a" (quotient), "=d" (remainder) 928 : "0" (0), "1" (dividend), "r" (divisor) ); 929 return quotient; 930 } 931 932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 933 s8 *pshift, u32 *pmultiplier) 934 { 935 uint64_t scaled64; 936 int32_t shift = 0; 937 uint64_t tps64; 938 uint32_t tps32; 939 940 tps64 = base_khz * 1000LL; 941 scaled64 = scaled_khz * 1000LL; 942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 943 tps64 >>= 1; 944 shift--; 945 } 946 947 tps32 = (uint32_t)tps64; 948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 950 scaled64 >>= 1; 951 else 952 tps32 <<= 1; 953 shift++; 954 } 955 956 *pshift = shift; 957 *pmultiplier = div_frac(scaled64, tps32); 958 959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 960 __func__, base_khz, scaled_khz, shift, *pmultiplier); 961 } 962 963 static inline u64 get_kernel_ns(void) 964 { 965 struct timespec ts; 966 967 WARN_ON(preemptible()); 968 ktime_get_ts(&ts); 969 monotonic_to_bootbased(&ts); 970 return timespec_to_ns(&ts); 971 } 972 973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 974 unsigned long max_tsc_khz; 975 976 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 977 { 978 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 979 vcpu->arch.virtual_tsc_shift); 980 } 981 982 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 983 { 984 u64 v = (u64)khz * (1000000 + ppm); 985 do_div(v, 1000000); 986 return v; 987 } 988 989 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 990 { 991 u32 thresh_lo, thresh_hi; 992 int use_scaling = 0; 993 994 /* Compute a scale to convert nanoseconds in TSC cycles */ 995 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 996 &vcpu->arch.virtual_tsc_shift, 997 &vcpu->arch.virtual_tsc_mult); 998 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 999 1000 /* 1001 * Compute the variation in TSC rate which is acceptable 1002 * within the range of tolerance and decide if the 1003 * rate being applied is within that bounds of the hardware 1004 * rate. If so, no scaling or compensation need be done. 1005 */ 1006 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1007 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1008 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1009 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1010 use_scaling = 1; 1011 } 1012 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1013 } 1014 1015 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1016 { 1017 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1018 vcpu->arch.virtual_tsc_mult, 1019 vcpu->arch.virtual_tsc_shift); 1020 tsc += vcpu->arch.this_tsc_write; 1021 return tsc; 1022 } 1023 1024 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1025 { 1026 struct kvm *kvm = vcpu->kvm; 1027 u64 offset, ns, elapsed; 1028 unsigned long flags; 1029 s64 usdiff; 1030 1031 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1032 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1033 ns = get_kernel_ns(); 1034 elapsed = ns - kvm->arch.last_tsc_nsec; 1035 1036 /* n.b - signed multiplication and division required */ 1037 usdiff = data - kvm->arch.last_tsc_write; 1038 #ifdef CONFIG_X86_64 1039 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1040 #else 1041 /* do_div() only does unsigned */ 1042 asm("idivl %2; xor %%edx, %%edx" 1043 : "=A"(usdiff) 1044 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1045 #endif 1046 do_div(elapsed, 1000); 1047 usdiff -= elapsed; 1048 if (usdiff < 0) 1049 usdiff = -usdiff; 1050 1051 /* 1052 * Special case: TSC write with a small delta (1 second) of virtual 1053 * cycle time against real time is interpreted as an attempt to 1054 * synchronize the CPU. 1055 * 1056 * For a reliable TSC, we can match TSC offsets, and for an unstable 1057 * TSC, we add elapsed time in this computation. We could let the 1058 * compensation code attempt to catch up if we fall behind, but 1059 * it's better to try to match offsets from the beginning. 1060 */ 1061 if (usdiff < USEC_PER_SEC && 1062 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1063 if (!check_tsc_unstable()) { 1064 offset = kvm->arch.cur_tsc_offset; 1065 pr_debug("kvm: matched tsc offset for %llu\n", data); 1066 } else { 1067 u64 delta = nsec_to_cycles(vcpu, elapsed); 1068 data += delta; 1069 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1070 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1071 } 1072 } else { 1073 /* 1074 * We split periods of matched TSC writes into generations. 1075 * For each generation, we track the original measured 1076 * nanosecond time, offset, and write, so if TSCs are in 1077 * sync, we can match exact offset, and if not, we can match 1078 * exact software computaion in compute_guest_tsc() 1079 * 1080 * These values are tracked in kvm->arch.cur_xxx variables. 1081 */ 1082 kvm->arch.cur_tsc_generation++; 1083 kvm->arch.cur_tsc_nsec = ns; 1084 kvm->arch.cur_tsc_write = data; 1085 kvm->arch.cur_tsc_offset = offset; 1086 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1087 kvm->arch.cur_tsc_generation, data); 1088 } 1089 1090 /* 1091 * We also track th most recent recorded KHZ, write and time to 1092 * allow the matching interval to be extended at each write. 1093 */ 1094 kvm->arch.last_tsc_nsec = ns; 1095 kvm->arch.last_tsc_write = data; 1096 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1097 1098 /* Reset of TSC must disable overshoot protection below */ 1099 vcpu->arch.hv_clock.tsc_timestamp = 0; 1100 vcpu->arch.last_guest_tsc = data; 1101 1102 /* Keep track of which generation this VCPU has synchronized to */ 1103 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1104 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1105 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1106 1107 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1108 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1109 } 1110 1111 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1112 1113 static int kvm_guest_time_update(struct kvm_vcpu *v) 1114 { 1115 unsigned long flags; 1116 struct kvm_vcpu_arch *vcpu = &v->arch; 1117 void *shared_kaddr; 1118 unsigned long this_tsc_khz; 1119 s64 kernel_ns, max_kernel_ns; 1120 u64 tsc_timestamp; 1121 1122 /* Keep irq disabled to prevent changes to the clock */ 1123 local_irq_save(flags); 1124 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1125 kernel_ns = get_kernel_ns(); 1126 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1127 if (unlikely(this_tsc_khz == 0)) { 1128 local_irq_restore(flags); 1129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1130 return 1; 1131 } 1132 1133 /* 1134 * We may have to catch up the TSC to match elapsed wall clock 1135 * time for two reasons, even if kvmclock is used. 1136 * 1) CPU could have been running below the maximum TSC rate 1137 * 2) Broken TSC compensation resets the base at each VCPU 1138 * entry to avoid unknown leaps of TSC even when running 1139 * again on the same CPU. This may cause apparent elapsed 1140 * time to disappear, and the guest to stand still or run 1141 * very slowly. 1142 */ 1143 if (vcpu->tsc_catchup) { 1144 u64 tsc = compute_guest_tsc(v, kernel_ns); 1145 if (tsc > tsc_timestamp) { 1146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1147 tsc_timestamp = tsc; 1148 } 1149 } 1150 1151 local_irq_restore(flags); 1152 1153 if (!vcpu->time_page) 1154 return 0; 1155 1156 /* 1157 * Time as measured by the TSC may go backwards when resetting the base 1158 * tsc_timestamp. The reason for this is that the TSC resolution is 1159 * higher than the resolution of the other clock scales. Thus, many 1160 * possible measurments of the TSC correspond to one measurement of any 1161 * other clock, and so a spread of values is possible. This is not a 1162 * problem for the computation of the nanosecond clock; with TSC rates 1163 * around 1GHZ, there can only be a few cycles which correspond to one 1164 * nanosecond value, and any path through this code will inevitably 1165 * take longer than that. However, with the kernel_ns value itself, 1166 * the precision may be much lower, down to HZ granularity. If the 1167 * first sampling of TSC against kernel_ns ends in the low part of the 1168 * range, and the second in the high end of the range, we can get: 1169 * 1170 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1171 * 1172 * As the sampling errors potentially range in the thousands of cycles, 1173 * it is possible such a time value has already been observed by the 1174 * guest. To protect against this, we must compute the system time as 1175 * observed by the guest and ensure the new system time is greater. 1176 */ 1177 max_kernel_ns = 0; 1178 if (vcpu->hv_clock.tsc_timestamp) { 1179 max_kernel_ns = vcpu->last_guest_tsc - 1180 vcpu->hv_clock.tsc_timestamp; 1181 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1182 vcpu->hv_clock.tsc_to_system_mul, 1183 vcpu->hv_clock.tsc_shift); 1184 max_kernel_ns += vcpu->last_kernel_ns; 1185 } 1186 1187 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1188 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1189 &vcpu->hv_clock.tsc_shift, 1190 &vcpu->hv_clock.tsc_to_system_mul); 1191 vcpu->hw_tsc_khz = this_tsc_khz; 1192 } 1193 1194 if (max_kernel_ns > kernel_ns) 1195 kernel_ns = max_kernel_ns; 1196 1197 /* With all the info we got, fill in the values */ 1198 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1199 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1200 vcpu->last_kernel_ns = kernel_ns; 1201 vcpu->last_guest_tsc = tsc_timestamp; 1202 vcpu->hv_clock.flags = 0; 1203 1204 /* 1205 * The interface expects us to write an even number signaling that the 1206 * update is finished. Since the guest won't see the intermediate 1207 * state, we just increase by 2 at the end. 1208 */ 1209 vcpu->hv_clock.version += 2; 1210 1211 shared_kaddr = kmap_atomic(vcpu->time_page); 1212 1213 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1214 sizeof(vcpu->hv_clock)); 1215 1216 kunmap_atomic(shared_kaddr); 1217 1218 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1219 return 0; 1220 } 1221 1222 static bool msr_mtrr_valid(unsigned msr) 1223 { 1224 switch (msr) { 1225 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1226 case MSR_MTRRfix64K_00000: 1227 case MSR_MTRRfix16K_80000: 1228 case MSR_MTRRfix16K_A0000: 1229 case MSR_MTRRfix4K_C0000: 1230 case MSR_MTRRfix4K_C8000: 1231 case MSR_MTRRfix4K_D0000: 1232 case MSR_MTRRfix4K_D8000: 1233 case MSR_MTRRfix4K_E0000: 1234 case MSR_MTRRfix4K_E8000: 1235 case MSR_MTRRfix4K_F0000: 1236 case MSR_MTRRfix4K_F8000: 1237 case MSR_MTRRdefType: 1238 case MSR_IA32_CR_PAT: 1239 return true; 1240 case 0x2f8: 1241 return true; 1242 } 1243 return false; 1244 } 1245 1246 static bool valid_pat_type(unsigned t) 1247 { 1248 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1249 } 1250 1251 static bool valid_mtrr_type(unsigned t) 1252 { 1253 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1254 } 1255 1256 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1257 { 1258 int i; 1259 1260 if (!msr_mtrr_valid(msr)) 1261 return false; 1262 1263 if (msr == MSR_IA32_CR_PAT) { 1264 for (i = 0; i < 8; i++) 1265 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1266 return false; 1267 return true; 1268 } else if (msr == MSR_MTRRdefType) { 1269 if (data & ~0xcff) 1270 return false; 1271 return valid_mtrr_type(data & 0xff); 1272 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1273 for (i = 0; i < 8 ; i++) 1274 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1275 return false; 1276 return true; 1277 } 1278 1279 /* variable MTRRs */ 1280 return valid_mtrr_type(data & 0xff); 1281 } 1282 1283 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1284 { 1285 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1286 1287 if (!mtrr_valid(vcpu, msr, data)) 1288 return 1; 1289 1290 if (msr == MSR_MTRRdefType) { 1291 vcpu->arch.mtrr_state.def_type = data; 1292 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1293 } else if (msr == MSR_MTRRfix64K_00000) 1294 p[0] = data; 1295 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1296 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1297 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1298 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1299 else if (msr == MSR_IA32_CR_PAT) 1300 vcpu->arch.pat = data; 1301 else { /* Variable MTRRs */ 1302 int idx, is_mtrr_mask; 1303 u64 *pt; 1304 1305 idx = (msr - 0x200) / 2; 1306 is_mtrr_mask = msr - 0x200 - 2 * idx; 1307 if (!is_mtrr_mask) 1308 pt = 1309 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1310 else 1311 pt = 1312 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1313 *pt = data; 1314 } 1315 1316 kvm_mmu_reset_context(vcpu); 1317 return 0; 1318 } 1319 1320 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1321 { 1322 u64 mcg_cap = vcpu->arch.mcg_cap; 1323 unsigned bank_num = mcg_cap & 0xff; 1324 1325 switch (msr) { 1326 case MSR_IA32_MCG_STATUS: 1327 vcpu->arch.mcg_status = data; 1328 break; 1329 case MSR_IA32_MCG_CTL: 1330 if (!(mcg_cap & MCG_CTL_P)) 1331 return 1; 1332 if (data != 0 && data != ~(u64)0) 1333 return -1; 1334 vcpu->arch.mcg_ctl = data; 1335 break; 1336 default: 1337 if (msr >= MSR_IA32_MC0_CTL && 1338 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1339 u32 offset = msr - MSR_IA32_MC0_CTL; 1340 /* only 0 or all 1s can be written to IA32_MCi_CTL 1341 * some Linux kernels though clear bit 10 in bank 4 to 1342 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1343 * this to avoid an uncatched #GP in the guest 1344 */ 1345 if ((offset & 0x3) == 0 && 1346 data != 0 && (data | (1 << 10)) != ~(u64)0) 1347 return -1; 1348 vcpu->arch.mce_banks[offset] = data; 1349 break; 1350 } 1351 return 1; 1352 } 1353 return 0; 1354 } 1355 1356 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1357 { 1358 struct kvm *kvm = vcpu->kvm; 1359 int lm = is_long_mode(vcpu); 1360 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1361 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1362 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1363 : kvm->arch.xen_hvm_config.blob_size_32; 1364 u32 page_num = data & ~PAGE_MASK; 1365 u64 page_addr = data & PAGE_MASK; 1366 u8 *page; 1367 int r; 1368 1369 r = -E2BIG; 1370 if (page_num >= blob_size) 1371 goto out; 1372 r = -ENOMEM; 1373 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1374 if (IS_ERR(page)) { 1375 r = PTR_ERR(page); 1376 goto out; 1377 } 1378 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1379 goto out_free; 1380 r = 0; 1381 out_free: 1382 kfree(page); 1383 out: 1384 return r; 1385 } 1386 1387 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1388 { 1389 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1390 } 1391 1392 static bool kvm_hv_msr_partition_wide(u32 msr) 1393 { 1394 bool r = false; 1395 switch (msr) { 1396 case HV_X64_MSR_GUEST_OS_ID: 1397 case HV_X64_MSR_HYPERCALL: 1398 r = true; 1399 break; 1400 } 1401 1402 return r; 1403 } 1404 1405 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1406 { 1407 struct kvm *kvm = vcpu->kvm; 1408 1409 switch (msr) { 1410 case HV_X64_MSR_GUEST_OS_ID: 1411 kvm->arch.hv_guest_os_id = data; 1412 /* setting guest os id to zero disables hypercall page */ 1413 if (!kvm->arch.hv_guest_os_id) 1414 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1415 break; 1416 case HV_X64_MSR_HYPERCALL: { 1417 u64 gfn; 1418 unsigned long addr; 1419 u8 instructions[4]; 1420 1421 /* if guest os id is not set hypercall should remain disabled */ 1422 if (!kvm->arch.hv_guest_os_id) 1423 break; 1424 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1425 kvm->arch.hv_hypercall = data; 1426 break; 1427 } 1428 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1429 addr = gfn_to_hva(kvm, gfn); 1430 if (kvm_is_error_hva(addr)) 1431 return 1; 1432 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1433 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1434 if (__copy_to_user((void __user *)addr, instructions, 4)) 1435 return 1; 1436 kvm->arch.hv_hypercall = data; 1437 break; 1438 } 1439 default: 1440 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1441 "data 0x%llx\n", msr, data); 1442 return 1; 1443 } 1444 return 0; 1445 } 1446 1447 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1448 { 1449 switch (msr) { 1450 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1451 unsigned long addr; 1452 1453 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1454 vcpu->arch.hv_vapic = data; 1455 break; 1456 } 1457 addr = gfn_to_hva(vcpu->kvm, data >> 1458 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1459 if (kvm_is_error_hva(addr)) 1460 return 1; 1461 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1462 return 1; 1463 vcpu->arch.hv_vapic = data; 1464 break; 1465 } 1466 case HV_X64_MSR_EOI: 1467 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1468 case HV_X64_MSR_ICR: 1469 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1470 case HV_X64_MSR_TPR: 1471 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1472 default: 1473 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1474 "data 0x%llx\n", msr, data); 1475 return 1; 1476 } 1477 1478 return 0; 1479 } 1480 1481 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1482 { 1483 gpa_t gpa = data & ~0x3f; 1484 1485 /* Bits 2:5 are resrved, Should be zero */ 1486 if (data & 0x3c) 1487 return 1; 1488 1489 vcpu->arch.apf.msr_val = data; 1490 1491 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1492 kvm_clear_async_pf_completion_queue(vcpu); 1493 kvm_async_pf_hash_reset(vcpu); 1494 return 0; 1495 } 1496 1497 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1498 return 1; 1499 1500 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1501 kvm_async_pf_wakeup_all(vcpu); 1502 return 0; 1503 } 1504 1505 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1506 { 1507 if (vcpu->arch.time_page) { 1508 kvm_release_page_dirty(vcpu->arch.time_page); 1509 vcpu->arch.time_page = NULL; 1510 } 1511 } 1512 1513 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1514 { 1515 u64 delta; 1516 1517 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1518 return; 1519 1520 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1521 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1522 vcpu->arch.st.accum_steal = delta; 1523 } 1524 1525 static void record_steal_time(struct kvm_vcpu *vcpu) 1526 { 1527 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1528 return; 1529 1530 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1531 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1532 return; 1533 1534 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1535 vcpu->arch.st.steal.version += 2; 1536 vcpu->arch.st.accum_steal = 0; 1537 1538 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1539 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1540 } 1541 1542 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1543 { 1544 bool pr = false; 1545 1546 switch (msr) { 1547 case MSR_EFER: 1548 return set_efer(vcpu, data); 1549 case MSR_K7_HWCR: 1550 data &= ~(u64)0x40; /* ignore flush filter disable */ 1551 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1552 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1553 if (data != 0) { 1554 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1555 data); 1556 return 1; 1557 } 1558 break; 1559 case MSR_FAM10H_MMIO_CONF_BASE: 1560 if (data != 0) { 1561 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1562 "0x%llx\n", data); 1563 return 1; 1564 } 1565 break; 1566 case MSR_AMD64_NB_CFG: 1567 break; 1568 case MSR_IA32_DEBUGCTLMSR: 1569 if (!data) { 1570 /* We support the non-activated case already */ 1571 break; 1572 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1573 /* Values other than LBR and BTF are vendor-specific, 1574 thus reserved and should throw a #GP */ 1575 return 1; 1576 } 1577 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1578 __func__, data); 1579 break; 1580 case MSR_IA32_UCODE_REV: 1581 case MSR_IA32_UCODE_WRITE: 1582 case MSR_VM_HSAVE_PA: 1583 case MSR_AMD64_PATCH_LOADER: 1584 break; 1585 case 0x200 ... 0x2ff: 1586 return set_msr_mtrr(vcpu, msr, data); 1587 case MSR_IA32_APICBASE: 1588 kvm_set_apic_base(vcpu, data); 1589 break; 1590 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1591 return kvm_x2apic_msr_write(vcpu, msr, data); 1592 case MSR_IA32_TSCDEADLINE: 1593 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1594 break; 1595 case MSR_IA32_MISC_ENABLE: 1596 vcpu->arch.ia32_misc_enable_msr = data; 1597 break; 1598 case MSR_KVM_WALL_CLOCK_NEW: 1599 case MSR_KVM_WALL_CLOCK: 1600 vcpu->kvm->arch.wall_clock = data; 1601 kvm_write_wall_clock(vcpu->kvm, data); 1602 break; 1603 case MSR_KVM_SYSTEM_TIME_NEW: 1604 case MSR_KVM_SYSTEM_TIME: { 1605 kvmclock_reset(vcpu); 1606 1607 vcpu->arch.time = data; 1608 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1609 1610 /* we verify if the enable bit is set... */ 1611 if (!(data & 1)) 1612 break; 1613 1614 /* ...but clean it before doing the actual write */ 1615 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1616 1617 vcpu->arch.time_page = 1618 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1619 1620 if (is_error_page(vcpu->arch.time_page)) { 1621 kvm_release_page_clean(vcpu->arch.time_page); 1622 vcpu->arch.time_page = NULL; 1623 } 1624 break; 1625 } 1626 case MSR_KVM_ASYNC_PF_EN: 1627 if (kvm_pv_enable_async_pf(vcpu, data)) 1628 return 1; 1629 break; 1630 case MSR_KVM_STEAL_TIME: 1631 1632 if (unlikely(!sched_info_on())) 1633 return 1; 1634 1635 if (data & KVM_STEAL_RESERVED_MASK) 1636 return 1; 1637 1638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1639 data & KVM_STEAL_VALID_BITS)) 1640 return 1; 1641 1642 vcpu->arch.st.msr_val = data; 1643 1644 if (!(data & KVM_MSR_ENABLED)) 1645 break; 1646 1647 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1648 1649 preempt_disable(); 1650 accumulate_steal_time(vcpu); 1651 preempt_enable(); 1652 1653 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1654 1655 break; 1656 1657 case MSR_IA32_MCG_CTL: 1658 case MSR_IA32_MCG_STATUS: 1659 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1660 return set_msr_mce(vcpu, msr, data); 1661 1662 /* Performance counters are not protected by a CPUID bit, 1663 * so we should check all of them in the generic path for the sake of 1664 * cross vendor migration. 1665 * Writing a zero into the event select MSRs disables them, 1666 * which we perfectly emulate ;-). Any other value should be at least 1667 * reported, some guests depend on them. 1668 */ 1669 case MSR_K7_EVNTSEL0: 1670 case MSR_K7_EVNTSEL1: 1671 case MSR_K7_EVNTSEL2: 1672 case MSR_K7_EVNTSEL3: 1673 if (data != 0) 1674 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1675 "0x%x data 0x%llx\n", msr, data); 1676 break; 1677 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1678 * so we ignore writes to make it happy. 1679 */ 1680 case MSR_K7_PERFCTR0: 1681 case MSR_K7_PERFCTR1: 1682 case MSR_K7_PERFCTR2: 1683 case MSR_K7_PERFCTR3: 1684 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1685 "0x%x data 0x%llx\n", msr, data); 1686 break; 1687 case MSR_P6_PERFCTR0: 1688 case MSR_P6_PERFCTR1: 1689 pr = true; 1690 case MSR_P6_EVNTSEL0: 1691 case MSR_P6_EVNTSEL1: 1692 if (kvm_pmu_msr(vcpu, msr)) 1693 return kvm_pmu_set_msr(vcpu, msr, data); 1694 1695 if (pr || data != 0) 1696 pr_unimpl(vcpu, "disabled perfctr wrmsr: " 1697 "0x%x data 0x%llx\n", msr, data); 1698 break; 1699 case MSR_K7_CLK_CTL: 1700 /* 1701 * Ignore all writes to this no longer documented MSR. 1702 * Writes are only relevant for old K7 processors, 1703 * all pre-dating SVM, but a recommended workaround from 1704 * AMD for these chips. It is possible to speicify the 1705 * affected processor models on the command line, hence 1706 * the need to ignore the workaround. 1707 */ 1708 break; 1709 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1710 if (kvm_hv_msr_partition_wide(msr)) { 1711 int r; 1712 mutex_lock(&vcpu->kvm->lock); 1713 r = set_msr_hyperv_pw(vcpu, msr, data); 1714 mutex_unlock(&vcpu->kvm->lock); 1715 return r; 1716 } else 1717 return set_msr_hyperv(vcpu, msr, data); 1718 break; 1719 case MSR_IA32_BBL_CR_CTL3: 1720 /* Drop writes to this legacy MSR -- see rdmsr 1721 * counterpart for further detail. 1722 */ 1723 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1724 break; 1725 case MSR_AMD64_OSVW_ID_LENGTH: 1726 if (!guest_cpuid_has_osvw(vcpu)) 1727 return 1; 1728 vcpu->arch.osvw.length = data; 1729 break; 1730 case MSR_AMD64_OSVW_STATUS: 1731 if (!guest_cpuid_has_osvw(vcpu)) 1732 return 1; 1733 vcpu->arch.osvw.status = data; 1734 break; 1735 default: 1736 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1737 return xen_hvm_config(vcpu, data); 1738 if (kvm_pmu_msr(vcpu, msr)) 1739 return kvm_pmu_set_msr(vcpu, msr, data); 1740 if (!ignore_msrs) { 1741 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1742 msr, data); 1743 return 1; 1744 } else { 1745 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1746 msr, data); 1747 break; 1748 } 1749 } 1750 return 0; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1753 1754 1755 /* 1756 * Reads an msr value (of 'msr_index') into 'pdata'. 1757 * Returns 0 on success, non-0 otherwise. 1758 * Assumes vcpu_load() was already called. 1759 */ 1760 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1761 { 1762 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1763 } 1764 1765 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1766 { 1767 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1768 1769 if (!msr_mtrr_valid(msr)) 1770 return 1; 1771 1772 if (msr == MSR_MTRRdefType) 1773 *pdata = vcpu->arch.mtrr_state.def_type + 1774 (vcpu->arch.mtrr_state.enabled << 10); 1775 else if (msr == MSR_MTRRfix64K_00000) 1776 *pdata = p[0]; 1777 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1778 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1779 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1780 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1781 else if (msr == MSR_IA32_CR_PAT) 1782 *pdata = vcpu->arch.pat; 1783 else { /* Variable MTRRs */ 1784 int idx, is_mtrr_mask; 1785 u64 *pt; 1786 1787 idx = (msr - 0x200) / 2; 1788 is_mtrr_mask = msr - 0x200 - 2 * idx; 1789 if (!is_mtrr_mask) 1790 pt = 1791 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1792 else 1793 pt = 1794 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1795 *pdata = *pt; 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1802 { 1803 u64 data; 1804 u64 mcg_cap = vcpu->arch.mcg_cap; 1805 unsigned bank_num = mcg_cap & 0xff; 1806 1807 switch (msr) { 1808 case MSR_IA32_P5_MC_ADDR: 1809 case MSR_IA32_P5_MC_TYPE: 1810 data = 0; 1811 break; 1812 case MSR_IA32_MCG_CAP: 1813 data = vcpu->arch.mcg_cap; 1814 break; 1815 case MSR_IA32_MCG_CTL: 1816 if (!(mcg_cap & MCG_CTL_P)) 1817 return 1; 1818 data = vcpu->arch.mcg_ctl; 1819 break; 1820 case MSR_IA32_MCG_STATUS: 1821 data = vcpu->arch.mcg_status; 1822 break; 1823 default: 1824 if (msr >= MSR_IA32_MC0_CTL && 1825 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1826 u32 offset = msr - MSR_IA32_MC0_CTL; 1827 data = vcpu->arch.mce_banks[offset]; 1828 break; 1829 } 1830 return 1; 1831 } 1832 *pdata = data; 1833 return 0; 1834 } 1835 1836 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1837 { 1838 u64 data = 0; 1839 struct kvm *kvm = vcpu->kvm; 1840 1841 switch (msr) { 1842 case HV_X64_MSR_GUEST_OS_ID: 1843 data = kvm->arch.hv_guest_os_id; 1844 break; 1845 case HV_X64_MSR_HYPERCALL: 1846 data = kvm->arch.hv_hypercall; 1847 break; 1848 default: 1849 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1850 return 1; 1851 } 1852 1853 *pdata = data; 1854 return 0; 1855 } 1856 1857 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1858 { 1859 u64 data = 0; 1860 1861 switch (msr) { 1862 case HV_X64_MSR_VP_INDEX: { 1863 int r; 1864 struct kvm_vcpu *v; 1865 kvm_for_each_vcpu(r, v, vcpu->kvm) 1866 if (v == vcpu) 1867 data = r; 1868 break; 1869 } 1870 case HV_X64_MSR_EOI: 1871 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1872 case HV_X64_MSR_ICR: 1873 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1874 case HV_X64_MSR_TPR: 1875 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1876 case HV_X64_MSR_APIC_ASSIST_PAGE: 1877 data = vcpu->arch.hv_vapic; 1878 break; 1879 default: 1880 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1881 return 1; 1882 } 1883 *pdata = data; 1884 return 0; 1885 } 1886 1887 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1888 { 1889 u64 data; 1890 1891 switch (msr) { 1892 case MSR_IA32_PLATFORM_ID: 1893 case MSR_IA32_EBL_CR_POWERON: 1894 case MSR_IA32_DEBUGCTLMSR: 1895 case MSR_IA32_LASTBRANCHFROMIP: 1896 case MSR_IA32_LASTBRANCHTOIP: 1897 case MSR_IA32_LASTINTFROMIP: 1898 case MSR_IA32_LASTINTTOIP: 1899 case MSR_K8_SYSCFG: 1900 case MSR_K7_HWCR: 1901 case MSR_VM_HSAVE_PA: 1902 case MSR_K7_EVNTSEL0: 1903 case MSR_K7_PERFCTR0: 1904 case MSR_K8_INT_PENDING_MSG: 1905 case MSR_AMD64_NB_CFG: 1906 case MSR_FAM10H_MMIO_CONF_BASE: 1907 data = 0; 1908 break; 1909 case MSR_P6_PERFCTR0: 1910 case MSR_P6_PERFCTR1: 1911 case MSR_P6_EVNTSEL0: 1912 case MSR_P6_EVNTSEL1: 1913 if (kvm_pmu_msr(vcpu, msr)) 1914 return kvm_pmu_get_msr(vcpu, msr, pdata); 1915 data = 0; 1916 break; 1917 case MSR_IA32_UCODE_REV: 1918 data = 0x100000000ULL; 1919 break; 1920 case MSR_MTRRcap: 1921 data = 0x500 | KVM_NR_VAR_MTRR; 1922 break; 1923 case 0x200 ... 0x2ff: 1924 return get_msr_mtrr(vcpu, msr, pdata); 1925 case 0xcd: /* fsb frequency */ 1926 data = 3; 1927 break; 1928 /* 1929 * MSR_EBC_FREQUENCY_ID 1930 * Conservative value valid for even the basic CPU models. 1931 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1932 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1933 * and 266MHz for model 3, or 4. Set Core Clock 1934 * Frequency to System Bus Frequency Ratio to 1 (bits 1935 * 31:24) even though these are only valid for CPU 1936 * models > 2, however guests may end up dividing or 1937 * multiplying by zero otherwise. 1938 */ 1939 case MSR_EBC_FREQUENCY_ID: 1940 data = 1 << 24; 1941 break; 1942 case MSR_IA32_APICBASE: 1943 data = kvm_get_apic_base(vcpu); 1944 break; 1945 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1946 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1947 break; 1948 case MSR_IA32_TSCDEADLINE: 1949 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1950 break; 1951 case MSR_IA32_MISC_ENABLE: 1952 data = vcpu->arch.ia32_misc_enable_msr; 1953 break; 1954 case MSR_IA32_PERF_STATUS: 1955 /* TSC increment by tick */ 1956 data = 1000ULL; 1957 /* CPU multiplier */ 1958 data |= (((uint64_t)4ULL) << 40); 1959 break; 1960 case MSR_EFER: 1961 data = vcpu->arch.efer; 1962 break; 1963 case MSR_KVM_WALL_CLOCK: 1964 case MSR_KVM_WALL_CLOCK_NEW: 1965 data = vcpu->kvm->arch.wall_clock; 1966 break; 1967 case MSR_KVM_SYSTEM_TIME: 1968 case MSR_KVM_SYSTEM_TIME_NEW: 1969 data = vcpu->arch.time; 1970 break; 1971 case MSR_KVM_ASYNC_PF_EN: 1972 data = vcpu->arch.apf.msr_val; 1973 break; 1974 case MSR_KVM_STEAL_TIME: 1975 data = vcpu->arch.st.msr_val; 1976 break; 1977 case MSR_IA32_P5_MC_ADDR: 1978 case MSR_IA32_P5_MC_TYPE: 1979 case MSR_IA32_MCG_CAP: 1980 case MSR_IA32_MCG_CTL: 1981 case MSR_IA32_MCG_STATUS: 1982 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1983 return get_msr_mce(vcpu, msr, pdata); 1984 case MSR_K7_CLK_CTL: 1985 /* 1986 * Provide expected ramp-up count for K7. All other 1987 * are set to zero, indicating minimum divisors for 1988 * every field. 1989 * 1990 * This prevents guest kernels on AMD host with CPU 1991 * type 6, model 8 and higher from exploding due to 1992 * the rdmsr failing. 1993 */ 1994 data = 0x20000000; 1995 break; 1996 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1997 if (kvm_hv_msr_partition_wide(msr)) { 1998 int r; 1999 mutex_lock(&vcpu->kvm->lock); 2000 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2001 mutex_unlock(&vcpu->kvm->lock); 2002 return r; 2003 } else 2004 return get_msr_hyperv(vcpu, msr, pdata); 2005 break; 2006 case MSR_IA32_BBL_CR_CTL3: 2007 /* This legacy MSR exists but isn't fully documented in current 2008 * silicon. It is however accessed by winxp in very narrow 2009 * scenarios where it sets bit #19, itself documented as 2010 * a "reserved" bit. Best effort attempt to source coherent 2011 * read data here should the balance of the register be 2012 * interpreted by the guest: 2013 * 2014 * L2 cache control register 3: 64GB range, 256KB size, 2015 * enabled, latency 0x1, configured 2016 */ 2017 data = 0xbe702111; 2018 break; 2019 case MSR_AMD64_OSVW_ID_LENGTH: 2020 if (!guest_cpuid_has_osvw(vcpu)) 2021 return 1; 2022 data = vcpu->arch.osvw.length; 2023 break; 2024 case MSR_AMD64_OSVW_STATUS: 2025 if (!guest_cpuid_has_osvw(vcpu)) 2026 return 1; 2027 data = vcpu->arch.osvw.status; 2028 break; 2029 default: 2030 if (kvm_pmu_msr(vcpu, msr)) 2031 return kvm_pmu_get_msr(vcpu, msr, pdata); 2032 if (!ignore_msrs) { 2033 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2034 return 1; 2035 } else { 2036 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2037 data = 0; 2038 } 2039 break; 2040 } 2041 *pdata = data; 2042 return 0; 2043 } 2044 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2045 2046 /* 2047 * Read or write a bunch of msrs. All parameters are kernel addresses. 2048 * 2049 * @return number of msrs set successfully. 2050 */ 2051 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2052 struct kvm_msr_entry *entries, 2053 int (*do_msr)(struct kvm_vcpu *vcpu, 2054 unsigned index, u64 *data)) 2055 { 2056 int i, idx; 2057 2058 idx = srcu_read_lock(&vcpu->kvm->srcu); 2059 for (i = 0; i < msrs->nmsrs; ++i) 2060 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2061 break; 2062 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2063 2064 return i; 2065 } 2066 2067 /* 2068 * Read or write a bunch of msrs. Parameters are user addresses. 2069 * 2070 * @return number of msrs set successfully. 2071 */ 2072 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2073 int (*do_msr)(struct kvm_vcpu *vcpu, 2074 unsigned index, u64 *data), 2075 int writeback) 2076 { 2077 struct kvm_msrs msrs; 2078 struct kvm_msr_entry *entries; 2079 int r, n; 2080 unsigned size; 2081 2082 r = -EFAULT; 2083 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2084 goto out; 2085 2086 r = -E2BIG; 2087 if (msrs.nmsrs >= MAX_IO_MSRS) 2088 goto out; 2089 2090 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2091 entries = memdup_user(user_msrs->entries, size); 2092 if (IS_ERR(entries)) { 2093 r = PTR_ERR(entries); 2094 goto out; 2095 } 2096 2097 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2098 if (r < 0) 2099 goto out_free; 2100 2101 r = -EFAULT; 2102 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2103 goto out_free; 2104 2105 r = n; 2106 2107 out_free: 2108 kfree(entries); 2109 out: 2110 return r; 2111 } 2112 2113 int kvm_dev_ioctl_check_extension(long ext) 2114 { 2115 int r; 2116 2117 switch (ext) { 2118 case KVM_CAP_IRQCHIP: 2119 case KVM_CAP_HLT: 2120 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2121 case KVM_CAP_SET_TSS_ADDR: 2122 case KVM_CAP_EXT_CPUID: 2123 case KVM_CAP_CLOCKSOURCE: 2124 case KVM_CAP_PIT: 2125 case KVM_CAP_NOP_IO_DELAY: 2126 case KVM_CAP_MP_STATE: 2127 case KVM_CAP_SYNC_MMU: 2128 case KVM_CAP_USER_NMI: 2129 case KVM_CAP_REINJECT_CONTROL: 2130 case KVM_CAP_IRQ_INJECT_STATUS: 2131 case KVM_CAP_ASSIGN_DEV_IRQ: 2132 case KVM_CAP_IRQFD: 2133 case KVM_CAP_IOEVENTFD: 2134 case KVM_CAP_PIT2: 2135 case KVM_CAP_PIT_STATE2: 2136 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2137 case KVM_CAP_XEN_HVM: 2138 case KVM_CAP_ADJUST_CLOCK: 2139 case KVM_CAP_VCPU_EVENTS: 2140 case KVM_CAP_HYPERV: 2141 case KVM_CAP_HYPERV_VAPIC: 2142 case KVM_CAP_HYPERV_SPIN: 2143 case KVM_CAP_PCI_SEGMENT: 2144 case KVM_CAP_DEBUGREGS: 2145 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2146 case KVM_CAP_XSAVE: 2147 case KVM_CAP_ASYNC_PF: 2148 case KVM_CAP_GET_TSC_KHZ: 2149 case KVM_CAP_PCI_2_3: 2150 r = 1; 2151 break; 2152 case KVM_CAP_COALESCED_MMIO: 2153 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2154 break; 2155 case KVM_CAP_VAPIC: 2156 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2157 break; 2158 case KVM_CAP_NR_VCPUS: 2159 r = KVM_SOFT_MAX_VCPUS; 2160 break; 2161 case KVM_CAP_MAX_VCPUS: 2162 r = KVM_MAX_VCPUS; 2163 break; 2164 case KVM_CAP_NR_MEMSLOTS: 2165 r = KVM_MEMORY_SLOTS; 2166 break; 2167 case KVM_CAP_PV_MMU: /* obsolete */ 2168 r = 0; 2169 break; 2170 case KVM_CAP_IOMMU: 2171 r = iommu_present(&pci_bus_type); 2172 break; 2173 case KVM_CAP_MCE: 2174 r = KVM_MAX_MCE_BANKS; 2175 break; 2176 case KVM_CAP_XCRS: 2177 r = cpu_has_xsave; 2178 break; 2179 case KVM_CAP_TSC_CONTROL: 2180 r = kvm_has_tsc_control; 2181 break; 2182 case KVM_CAP_TSC_DEADLINE_TIMER: 2183 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2184 break; 2185 default: 2186 r = 0; 2187 break; 2188 } 2189 return r; 2190 2191 } 2192 2193 long kvm_arch_dev_ioctl(struct file *filp, 2194 unsigned int ioctl, unsigned long arg) 2195 { 2196 void __user *argp = (void __user *)arg; 2197 long r; 2198 2199 switch (ioctl) { 2200 case KVM_GET_MSR_INDEX_LIST: { 2201 struct kvm_msr_list __user *user_msr_list = argp; 2202 struct kvm_msr_list msr_list; 2203 unsigned n; 2204 2205 r = -EFAULT; 2206 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2207 goto out; 2208 n = msr_list.nmsrs; 2209 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2210 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2211 goto out; 2212 r = -E2BIG; 2213 if (n < msr_list.nmsrs) 2214 goto out; 2215 r = -EFAULT; 2216 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2217 num_msrs_to_save * sizeof(u32))) 2218 goto out; 2219 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2220 &emulated_msrs, 2221 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2222 goto out; 2223 r = 0; 2224 break; 2225 } 2226 case KVM_GET_SUPPORTED_CPUID: { 2227 struct kvm_cpuid2 __user *cpuid_arg = argp; 2228 struct kvm_cpuid2 cpuid; 2229 2230 r = -EFAULT; 2231 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2232 goto out; 2233 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2234 cpuid_arg->entries); 2235 if (r) 2236 goto out; 2237 2238 r = -EFAULT; 2239 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2240 goto out; 2241 r = 0; 2242 break; 2243 } 2244 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2245 u64 mce_cap; 2246 2247 mce_cap = KVM_MCE_CAP_SUPPORTED; 2248 r = -EFAULT; 2249 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2250 goto out; 2251 r = 0; 2252 break; 2253 } 2254 default: 2255 r = -EINVAL; 2256 } 2257 out: 2258 return r; 2259 } 2260 2261 static void wbinvd_ipi(void *garbage) 2262 { 2263 wbinvd(); 2264 } 2265 2266 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2267 { 2268 return vcpu->kvm->arch.iommu_domain && 2269 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2270 } 2271 2272 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2273 { 2274 /* Address WBINVD may be executed by guest */ 2275 if (need_emulate_wbinvd(vcpu)) { 2276 if (kvm_x86_ops->has_wbinvd_exit()) 2277 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2278 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2279 smp_call_function_single(vcpu->cpu, 2280 wbinvd_ipi, NULL, 1); 2281 } 2282 2283 kvm_x86_ops->vcpu_load(vcpu, cpu); 2284 2285 /* Apply any externally detected TSC adjustments (due to suspend) */ 2286 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2287 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2288 vcpu->arch.tsc_offset_adjustment = 0; 2289 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2290 } 2291 2292 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2293 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2294 native_read_tsc() - vcpu->arch.last_host_tsc; 2295 if (tsc_delta < 0) 2296 mark_tsc_unstable("KVM discovered backwards TSC"); 2297 if (check_tsc_unstable()) { 2298 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2299 vcpu->arch.last_guest_tsc); 2300 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2301 vcpu->arch.tsc_catchup = 1; 2302 } 2303 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2304 if (vcpu->cpu != cpu) 2305 kvm_migrate_timers(vcpu); 2306 vcpu->cpu = cpu; 2307 } 2308 2309 accumulate_steal_time(vcpu); 2310 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2311 } 2312 2313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2314 { 2315 kvm_x86_ops->vcpu_put(vcpu); 2316 kvm_put_guest_fpu(vcpu); 2317 vcpu->arch.last_host_tsc = native_read_tsc(); 2318 } 2319 2320 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2321 struct kvm_lapic_state *s) 2322 { 2323 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2324 2325 return 0; 2326 } 2327 2328 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2329 struct kvm_lapic_state *s) 2330 { 2331 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); 2332 kvm_apic_post_state_restore(vcpu); 2333 update_cr8_intercept(vcpu); 2334 2335 return 0; 2336 } 2337 2338 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2339 struct kvm_interrupt *irq) 2340 { 2341 if (irq->irq < 0 || irq->irq >= 256) 2342 return -EINVAL; 2343 if (irqchip_in_kernel(vcpu->kvm)) 2344 return -ENXIO; 2345 2346 kvm_queue_interrupt(vcpu, irq->irq, false); 2347 kvm_make_request(KVM_REQ_EVENT, vcpu); 2348 2349 return 0; 2350 } 2351 2352 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2353 { 2354 kvm_inject_nmi(vcpu); 2355 2356 return 0; 2357 } 2358 2359 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2360 struct kvm_tpr_access_ctl *tac) 2361 { 2362 if (tac->flags) 2363 return -EINVAL; 2364 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2365 return 0; 2366 } 2367 2368 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2369 u64 mcg_cap) 2370 { 2371 int r; 2372 unsigned bank_num = mcg_cap & 0xff, bank; 2373 2374 r = -EINVAL; 2375 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2376 goto out; 2377 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2378 goto out; 2379 r = 0; 2380 vcpu->arch.mcg_cap = mcg_cap; 2381 /* Init IA32_MCG_CTL to all 1s */ 2382 if (mcg_cap & MCG_CTL_P) 2383 vcpu->arch.mcg_ctl = ~(u64)0; 2384 /* Init IA32_MCi_CTL to all 1s */ 2385 for (bank = 0; bank < bank_num; bank++) 2386 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2387 out: 2388 return r; 2389 } 2390 2391 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2392 struct kvm_x86_mce *mce) 2393 { 2394 u64 mcg_cap = vcpu->arch.mcg_cap; 2395 unsigned bank_num = mcg_cap & 0xff; 2396 u64 *banks = vcpu->arch.mce_banks; 2397 2398 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2399 return -EINVAL; 2400 /* 2401 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2402 * reporting is disabled 2403 */ 2404 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2405 vcpu->arch.mcg_ctl != ~(u64)0) 2406 return 0; 2407 banks += 4 * mce->bank; 2408 /* 2409 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2410 * reporting is disabled for the bank 2411 */ 2412 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2413 return 0; 2414 if (mce->status & MCI_STATUS_UC) { 2415 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2416 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2417 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2418 return 0; 2419 } 2420 if (banks[1] & MCI_STATUS_VAL) 2421 mce->status |= MCI_STATUS_OVER; 2422 banks[2] = mce->addr; 2423 banks[3] = mce->misc; 2424 vcpu->arch.mcg_status = mce->mcg_status; 2425 banks[1] = mce->status; 2426 kvm_queue_exception(vcpu, MC_VECTOR); 2427 } else if (!(banks[1] & MCI_STATUS_VAL) 2428 || !(banks[1] & MCI_STATUS_UC)) { 2429 if (banks[1] & MCI_STATUS_VAL) 2430 mce->status |= MCI_STATUS_OVER; 2431 banks[2] = mce->addr; 2432 banks[3] = mce->misc; 2433 banks[1] = mce->status; 2434 } else 2435 banks[1] |= MCI_STATUS_OVER; 2436 return 0; 2437 } 2438 2439 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2440 struct kvm_vcpu_events *events) 2441 { 2442 process_nmi(vcpu); 2443 events->exception.injected = 2444 vcpu->arch.exception.pending && 2445 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2446 events->exception.nr = vcpu->arch.exception.nr; 2447 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2448 events->exception.pad = 0; 2449 events->exception.error_code = vcpu->arch.exception.error_code; 2450 2451 events->interrupt.injected = 2452 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2453 events->interrupt.nr = vcpu->arch.interrupt.nr; 2454 events->interrupt.soft = 0; 2455 events->interrupt.shadow = 2456 kvm_x86_ops->get_interrupt_shadow(vcpu, 2457 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2458 2459 events->nmi.injected = vcpu->arch.nmi_injected; 2460 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2461 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2462 events->nmi.pad = 0; 2463 2464 events->sipi_vector = vcpu->arch.sipi_vector; 2465 2466 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2467 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2468 | KVM_VCPUEVENT_VALID_SHADOW); 2469 memset(&events->reserved, 0, sizeof(events->reserved)); 2470 } 2471 2472 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2473 struct kvm_vcpu_events *events) 2474 { 2475 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2476 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2477 | KVM_VCPUEVENT_VALID_SHADOW)) 2478 return -EINVAL; 2479 2480 process_nmi(vcpu); 2481 vcpu->arch.exception.pending = events->exception.injected; 2482 vcpu->arch.exception.nr = events->exception.nr; 2483 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2484 vcpu->arch.exception.error_code = events->exception.error_code; 2485 2486 vcpu->arch.interrupt.pending = events->interrupt.injected; 2487 vcpu->arch.interrupt.nr = events->interrupt.nr; 2488 vcpu->arch.interrupt.soft = events->interrupt.soft; 2489 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2490 kvm_x86_ops->set_interrupt_shadow(vcpu, 2491 events->interrupt.shadow); 2492 2493 vcpu->arch.nmi_injected = events->nmi.injected; 2494 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2495 vcpu->arch.nmi_pending = events->nmi.pending; 2496 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2497 2498 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2499 vcpu->arch.sipi_vector = events->sipi_vector; 2500 2501 kvm_make_request(KVM_REQ_EVENT, vcpu); 2502 2503 return 0; 2504 } 2505 2506 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2507 struct kvm_debugregs *dbgregs) 2508 { 2509 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2510 dbgregs->dr6 = vcpu->arch.dr6; 2511 dbgregs->dr7 = vcpu->arch.dr7; 2512 dbgregs->flags = 0; 2513 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2514 } 2515 2516 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2517 struct kvm_debugregs *dbgregs) 2518 { 2519 if (dbgregs->flags) 2520 return -EINVAL; 2521 2522 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2523 vcpu->arch.dr6 = dbgregs->dr6; 2524 vcpu->arch.dr7 = dbgregs->dr7; 2525 2526 return 0; 2527 } 2528 2529 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2530 struct kvm_xsave *guest_xsave) 2531 { 2532 if (cpu_has_xsave) 2533 memcpy(guest_xsave->region, 2534 &vcpu->arch.guest_fpu.state->xsave, 2535 xstate_size); 2536 else { 2537 memcpy(guest_xsave->region, 2538 &vcpu->arch.guest_fpu.state->fxsave, 2539 sizeof(struct i387_fxsave_struct)); 2540 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2541 XSTATE_FPSSE; 2542 } 2543 } 2544 2545 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2546 struct kvm_xsave *guest_xsave) 2547 { 2548 u64 xstate_bv = 2549 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2550 2551 if (cpu_has_xsave) 2552 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2553 guest_xsave->region, xstate_size); 2554 else { 2555 if (xstate_bv & ~XSTATE_FPSSE) 2556 return -EINVAL; 2557 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2558 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2559 } 2560 return 0; 2561 } 2562 2563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2564 struct kvm_xcrs *guest_xcrs) 2565 { 2566 if (!cpu_has_xsave) { 2567 guest_xcrs->nr_xcrs = 0; 2568 return; 2569 } 2570 2571 guest_xcrs->nr_xcrs = 1; 2572 guest_xcrs->flags = 0; 2573 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2574 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2575 } 2576 2577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2578 struct kvm_xcrs *guest_xcrs) 2579 { 2580 int i, r = 0; 2581 2582 if (!cpu_has_xsave) 2583 return -EINVAL; 2584 2585 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2586 return -EINVAL; 2587 2588 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2589 /* Only support XCR0 currently */ 2590 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2591 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2592 guest_xcrs->xcrs[0].value); 2593 break; 2594 } 2595 if (r) 2596 r = -EINVAL; 2597 return r; 2598 } 2599 2600 long kvm_arch_vcpu_ioctl(struct file *filp, 2601 unsigned int ioctl, unsigned long arg) 2602 { 2603 struct kvm_vcpu *vcpu = filp->private_data; 2604 void __user *argp = (void __user *)arg; 2605 int r; 2606 union { 2607 struct kvm_lapic_state *lapic; 2608 struct kvm_xsave *xsave; 2609 struct kvm_xcrs *xcrs; 2610 void *buffer; 2611 } u; 2612 2613 u.buffer = NULL; 2614 switch (ioctl) { 2615 case KVM_GET_LAPIC: { 2616 r = -EINVAL; 2617 if (!vcpu->arch.apic) 2618 goto out; 2619 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2620 2621 r = -ENOMEM; 2622 if (!u.lapic) 2623 goto out; 2624 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2625 if (r) 2626 goto out; 2627 r = -EFAULT; 2628 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2629 goto out; 2630 r = 0; 2631 break; 2632 } 2633 case KVM_SET_LAPIC: { 2634 r = -EINVAL; 2635 if (!vcpu->arch.apic) 2636 goto out; 2637 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2638 if (IS_ERR(u.lapic)) { 2639 r = PTR_ERR(u.lapic); 2640 goto out; 2641 } 2642 2643 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2644 if (r) 2645 goto out; 2646 r = 0; 2647 break; 2648 } 2649 case KVM_INTERRUPT: { 2650 struct kvm_interrupt irq; 2651 2652 r = -EFAULT; 2653 if (copy_from_user(&irq, argp, sizeof irq)) 2654 goto out; 2655 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2656 if (r) 2657 goto out; 2658 r = 0; 2659 break; 2660 } 2661 case KVM_NMI: { 2662 r = kvm_vcpu_ioctl_nmi(vcpu); 2663 if (r) 2664 goto out; 2665 r = 0; 2666 break; 2667 } 2668 case KVM_SET_CPUID: { 2669 struct kvm_cpuid __user *cpuid_arg = argp; 2670 struct kvm_cpuid cpuid; 2671 2672 r = -EFAULT; 2673 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2674 goto out; 2675 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2676 if (r) 2677 goto out; 2678 break; 2679 } 2680 case KVM_SET_CPUID2: { 2681 struct kvm_cpuid2 __user *cpuid_arg = argp; 2682 struct kvm_cpuid2 cpuid; 2683 2684 r = -EFAULT; 2685 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2686 goto out; 2687 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2688 cpuid_arg->entries); 2689 if (r) 2690 goto out; 2691 break; 2692 } 2693 case KVM_GET_CPUID2: { 2694 struct kvm_cpuid2 __user *cpuid_arg = argp; 2695 struct kvm_cpuid2 cpuid; 2696 2697 r = -EFAULT; 2698 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2699 goto out; 2700 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2701 cpuid_arg->entries); 2702 if (r) 2703 goto out; 2704 r = -EFAULT; 2705 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2706 goto out; 2707 r = 0; 2708 break; 2709 } 2710 case KVM_GET_MSRS: 2711 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2712 break; 2713 case KVM_SET_MSRS: 2714 r = msr_io(vcpu, argp, do_set_msr, 0); 2715 break; 2716 case KVM_TPR_ACCESS_REPORTING: { 2717 struct kvm_tpr_access_ctl tac; 2718 2719 r = -EFAULT; 2720 if (copy_from_user(&tac, argp, sizeof tac)) 2721 goto out; 2722 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2723 if (r) 2724 goto out; 2725 r = -EFAULT; 2726 if (copy_to_user(argp, &tac, sizeof tac)) 2727 goto out; 2728 r = 0; 2729 break; 2730 }; 2731 case KVM_SET_VAPIC_ADDR: { 2732 struct kvm_vapic_addr va; 2733 2734 r = -EINVAL; 2735 if (!irqchip_in_kernel(vcpu->kvm)) 2736 goto out; 2737 r = -EFAULT; 2738 if (copy_from_user(&va, argp, sizeof va)) 2739 goto out; 2740 r = 0; 2741 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2742 break; 2743 } 2744 case KVM_X86_SETUP_MCE: { 2745 u64 mcg_cap; 2746 2747 r = -EFAULT; 2748 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2749 goto out; 2750 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2751 break; 2752 } 2753 case KVM_X86_SET_MCE: { 2754 struct kvm_x86_mce mce; 2755 2756 r = -EFAULT; 2757 if (copy_from_user(&mce, argp, sizeof mce)) 2758 goto out; 2759 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2760 break; 2761 } 2762 case KVM_GET_VCPU_EVENTS: { 2763 struct kvm_vcpu_events events; 2764 2765 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2766 2767 r = -EFAULT; 2768 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2769 break; 2770 r = 0; 2771 break; 2772 } 2773 case KVM_SET_VCPU_EVENTS: { 2774 struct kvm_vcpu_events events; 2775 2776 r = -EFAULT; 2777 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2778 break; 2779 2780 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2781 break; 2782 } 2783 case KVM_GET_DEBUGREGS: { 2784 struct kvm_debugregs dbgregs; 2785 2786 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2787 2788 r = -EFAULT; 2789 if (copy_to_user(argp, &dbgregs, 2790 sizeof(struct kvm_debugregs))) 2791 break; 2792 r = 0; 2793 break; 2794 } 2795 case KVM_SET_DEBUGREGS: { 2796 struct kvm_debugregs dbgregs; 2797 2798 r = -EFAULT; 2799 if (copy_from_user(&dbgregs, argp, 2800 sizeof(struct kvm_debugregs))) 2801 break; 2802 2803 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2804 break; 2805 } 2806 case KVM_GET_XSAVE: { 2807 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2808 r = -ENOMEM; 2809 if (!u.xsave) 2810 break; 2811 2812 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2813 2814 r = -EFAULT; 2815 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2816 break; 2817 r = 0; 2818 break; 2819 } 2820 case KVM_SET_XSAVE: { 2821 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2822 if (IS_ERR(u.xsave)) { 2823 r = PTR_ERR(u.xsave); 2824 goto out; 2825 } 2826 2827 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2828 break; 2829 } 2830 case KVM_GET_XCRS: { 2831 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2832 r = -ENOMEM; 2833 if (!u.xcrs) 2834 break; 2835 2836 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2837 2838 r = -EFAULT; 2839 if (copy_to_user(argp, u.xcrs, 2840 sizeof(struct kvm_xcrs))) 2841 break; 2842 r = 0; 2843 break; 2844 } 2845 case KVM_SET_XCRS: { 2846 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2847 if (IS_ERR(u.xcrs)) { 2848 r = PTR_ERR(u.xcrs); 2849 goto out; 2850 } 2851 2852 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2853 break; 2854 } 2855 case KVM_SET_TSC_KHZ: { 2856 u32 user_tsc_khz; 2857 2858 r = -EINVAL; 2859 user_tsc_khz = (u32)arg; 2860 2861 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2862 goto out; 2863 2864 if (user_tsc_khz == 0) 2865 user_tsc_khz = tsc_khz; 2866 2867 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2868 2869 r = 0; 2870 goto out; 2871 } 2872 case KVM_GET_TSC_KHZ: { 2873 r = vcpu->arch.virtual_tsc_khz; 2874 goto out; 2875 } 2876 default: 2877 r = -EINVAL; 2878 } 2879 out: 2880 kfree(u.buffer); 2881 return r; 2882 } 2883 2884 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2885 { 2886 return VM_FAULT_SIGBUS; 2887 } 2888 2889 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2890 { 2891 int ret; 2892 2893 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2894 return -1; 2895 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2896 return ret; 2897 } 2898 2899 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2900 u64 ident_addr) 2901 { 2902 kvm->arch.ept_identity_map_addr = ident_addr; 2903 return 0; 2904 } 2905 2906 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2907 u32 kvm_nr_mmu_pages) 2908 { 2909 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2910 return -EINVAL; 2911 2912 mutex_lock(&kvm->slots_lock); 2913 spin_lock(&kvm->mmu_lock); 2914 2915 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2916 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2917 2918 spin_unlock(&kvm->mmu_lock); 2919 mutex_unlock(&kvm->slots_lock); 2920 return 0; 2921 } 2922 2923 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2924 { 2925 return kvm->arch.n_max_mmu_pages; 2926 } 2927 2928 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2929 { 2930 int r; 2931 2932 r = 0; 2933 switch (chip->chip_id) { 2934 case KVM_IRQCHIP_PIC_MASTER: 2935 memcpy(&chip->chip.pic, 2936 &pic_irqchip(kvm)->pics[0], 2937 sizeof(struct kvm_pic_state)); 2938 break; 2939 case KVM_IRQCHIP_PIC_SLAVE: 2940 memcpy(&chip->chip.pic, 2941 &pic_irqchip(kvm)->pics[1], 2942 sizeof(struct kvm_pic_state)); 2943 break; 2944 case KVM_IRQCHIP_IOAPIC: 2945 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2946 break; 2947 default: 2948 r = -EINVAL; 2949 break; 2950 } 2951 return r; 2952 } 2953 2954 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2955 { 2956 int r; 2957 2958 r = 0; 2959 switch (chip->chip_id) { 2960 case KVM_IRQCHIP_PIC_MASTER: 2961 spin_lock(&pic_irqchip(kvm)->lock); 2962 memcpy(&pic_irqchip(kvm)->pics[0], 2963 &chip->chip.pic, 2964 sizeof(struct kvm_pic_state)); 2965 spin_unlock(&pic_irqchip(kvm)->lock); 2966 break; 2967 case KVM_IRQCHIP_PIC_SLAVE: 2968 spin_lock(&pic_irqchip(kvm)->lock); 2969 memcpy(&pic_irqchip(kvm)->pics[1], 2970 &chip->chip.pic, 2971 sizeof(struct kvm_pic_state)); 2972 spin_unlock(&pic_irqchip(kvm)->lock); 2973 break; 2974 case KVM_IRQCHIP_IOAPIC: 2975 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 2976 break; 2977 default: 2978 r = -EINVAL; 2979 break; 2980 } 2981 kvm_pic_update_irq(pic_irqchip(kvm)); 2982 return r; 2983 } 2984 2985 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 2986 { 2987 int r = 0; 2988 2989 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2990 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 2991 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2992 return r; 2993 } 2994 2995 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 2996 { 2997 int r = 0; 2998 2999 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3000 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3001 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3002 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3003 return r; 3004 } 3005 3006 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3007 { 3008 int r = 0; 3009 3010 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3011 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3012 sizeof(ps->channels)); 3013 ps->flags = kvm->arch.vpit->pit_state.flags; 3014 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3015 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3016 return r; 3017 } 3018 3019 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3020 { 3021 int r = 0, start = 0; 3022 u32 prev_legacy, cur_legacy; 3023 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3024 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3025 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3026 if (!prev_legacy && cur_legacy) 3027 start = 1; 3028 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3029 sizeof(kvm->arch.vpit->pit_state.channels)); 3030 kvm->arch.vpit->pit_state.flags = ps->flags; 3031 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3032 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3033 return r; 3034 } 3035 3036 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3037 struct kvm_reinject_control *control) 3038 { 3039 if (!kvm->arch.vpit) 3040 return -ENXIO; 3041 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3042 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; 3043 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3044 return 0; 3045 } 3046 3047 /** 3048 * write_protect_slot - write protect a slot for dirty logging 3049 * @kvm: the kvm instance 3050 * @memslot: the slot we protect 3051 * @dirty_bitmap: the bitmap indicating which pages are dirty 3052 * @nr_dirty_pages: the number of dirty pages 3053 * 3054 * We have two ways to find all sptes to protect: 3055 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and 3056 * checks ones that have a spte mapping a page in the slot. 3057 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap. 3058 * 3059 * Generally speaking, if there are not so many dirty pages compared to the 3060 * number of shadow pages, we should use the latter. 3061 * 3062 * Note that letting others write into a page marked dirty in the old bitmap 3063 * by using the remaining tlb entry is not a problem. That page will become 3064 * write protected again when we flush the tlb and then be reported dirty to 3065 * the user space by copying the old bitmap. 3066 */ 3067 static void write_protect_slot(struct kvm *kvm, 3068 struct kvm_memory_slot *memslot, 3069 unsigned long *dirty_bitmap, 3070 unsigned long nr_dirty_pages) 3071 { 3072 spin_lock(&kvm->mmu_lock); 3073 3074 /* Not many dirty pages compared to # of shadow pages. */ 3075 if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) { 3076 unsigned long gfn_offset; 3077 3078 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) { 3079 unsigned long gfn = memslot->base_gfn + gfn_offset; 3080 3081 kvm_mmu_rmap_write_protect(kvm, gfn, memslot); 3082 } 3083 kvm_flush_remote_tlbs(kvm); 3084 } else 3085 kvm_mmu_slot_remove_write_access(kvm, memslot->id); 3086 3087 spin_unlock(&kvm->mmu_lock); 3088 } 3089 3090 /* 3091 * Get (and clear) the dirty memory log for a memory slot. 3092 */ 3093 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 3094 struct kvm_dirty_log *log) 3095 { 3096 int r; 3097 struct kvm_memory_slot *memslot; 3098 unsigned long n, nr_dirty_pages; 3099 3100 mutex_lock(&kvm->slots_lock); 3101 3102 r = -EINVAL; 3103 if (log->slot >= KVM_MEMORY_SLOTS) 3104 goto out; 3105 3106 memslot = id_to_memslot(kvm->memslots, log->slot); 3107 r = -ENOENT; 3108 if (!memslot->dirty_bitmap) 3109 goto out; 3110 3111 n = kvm_dirty_bitmap_bytes(memslot); 3112 nr_dirty_pages = memslot->nr_dirty_pages; 3113 3114 /* If nothing is dirty, don't bother messing with page tables. */ 3115 if (nr_dirty_pages) { 3116 struct kvm_memslots *slots, *old_slots; 3117 unsigned long *dirty_bitmap, *dirty_bitmap_head; 3118 3119 dirty_bitmap = memslot->dirty_bitmap; 3120 dirty_bitmap_head = memslot->dirty_bitmap_head; 3121 if (dirty_bitmap == dirty_bitmap_head) 3122 dirty_bitmap_head += n / sizeof(long); 3123 memset(dirty_bitmap_head, 0, n); 3124 3125 r = -ENOMEM; 3126 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL); 3127 if (!slots) 3128 goto out; 3129 3130 memslot = id_to_memslot(slots, log->slot); 3131 memslot->nr_dirty_pages = 0; 3132 memslot->dirty_bitmap = dirty_bitmap_head; 3133 update_memslots(slots, NULL); 3134 3135 old_slots = kvm->memslots; 3136 rcu_assign_pointer(kvm->memslots, slots); 3137 synchronize_srcu_expedited(&kvm->srcu); 3138 kfree(old_slots); 3139 3140 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages); 3141 3142 r = -EFAULT; 3143 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) 3144 goto out; 3145 } else { 3146 r = -EFAULT; 3147 if (clear_user(log->dirty_bitmap, n)) 3148 goto out; 3149 } 3150 3151 r = 0; 3152 out: 3153 mutex_unlock(&kvm->slots_lock); 3154 return r; 3155 } 3156 3157 long kvm_arch_vm_ioctl(struct file *filp, 3158 unsigned int ioctl, unsigned long arg) 3159 { 3160 struct kvm *kvm = filp->private_data; 3161 void __user *argp = (void __user *)arg; 3162 int r = -ENOTTY; 3163 /* 3164 * This union makes it completely explicit to gcc-3.x 3165 * that these two variables' stack usage should be 3166 * combined, not added together. 3167 */ 3168 union { 3169 struct kvm_pit_state ps; 3170 struct kvm_pit_state2 ps2; 3171 struct kvm_pit_config pit_config; 3172 } u; 3173 3174 switch (ioctl) { 3175 case KVM_SET_TSS_ADDR: 3176 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3177 if (r < 0) 3178 goto out; 3179 break; 3180 case KVM_SET_IDENTITY_MAP_ADDR: { 3181 u64 ident_addr; 3182 3183 r = -EFAULT; 3184 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3185 goto out; 3186 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3187 if (r < 0) 3188 goto out; 3189 break; 3190 } 3191 case KVM_SET_NR_MMU_PAGES: 3192 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3193 if (r) 3194 goto out; 3195 break; 3196 case KVM_GET_NR_MMU_PAGES: 3197 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3198 break; 3199 case KVM_CREATE_IRQCHIP: { 3200 struct kvm_pic *vpic; 3201 3202 mutex_lock(&kvm->lock); 3203 r = -EEXIST; 3204 if (kvm->arch.vpic) 3205 goto create_irqchip_unlock; 3206 r = -EINVAL; 3207 if (atomic_read(&kvm->online_vcpus)) 3208 goto create_irqchip_unlock; 3209 r = -ENOMEM; 3210 vpic = kvm_create_pic(kvm); 3211 if (vpic) { 3212 r = kvm_ioapic_init(kvm); 3213 if (r) { 3214 mutex_lock(&kvm->slots_lock); 3215 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3216 &vpic->dev_master); 3217 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3218 &vpic->dev_slave); 3219 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3220 &vpic->dev_eclr); 3221 mutex_unlock(&kvm->slots_lock); 3222 kfree(vpic); 3223 goto create_irqchip_unlock; 3224 } 3225 } else 3226 goto create_irqchip_unlock; 3227 smp_wmb(); 3228 kvm->arch.vpic = vpic; 3229 smp_wmb(); 3230 r = kvm_setup_default_irq_routing(kvm); 3231 if (r) { 3232 mutex_lock(&kvm->slots_lock); 3233 mutex_lock(&kvm->irq_lock); 3234 kvm_ioapic_destroy(kvm); 3235 kvm_destroy_pic(kvm); 3236 mutex_unlock(&kvm->irq_lock); 3237 mutex_unlock(&kvm->slots_lock); 3238 } 3239 create_irqchip_unlock: 3240 mutex_unlock(&kvm->lock); 3241 break; 3242 } 3243 case KVM_CREATE_PIT: 3244 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3245 goto create_pit; 3246 case KVM_CREATE_PIT2: 3247 r = -EFAULT; 3248 if (copy_from_user(&u.pit_config, argp, 3249 sizeof(struct kvm_pit_config))) 3250 goto out; 3251 create_pit: 3252 mutex_lock(&kvm->slots_lock); 3253 r = -EEXIST; 3254 if (kvm->arch.vpit) 3255 goto create_pit_unlock; 3256 r = -ENOMEM; 3257 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3258 if (kvm->arch.vpit) 3259 r = 0; 3260 create_pit_unlock: 3261 mutex_unlock(&kvm->slots_lock); 3262 break; 3263 case KVM_IRQ_LINE_STATUS: 3264 case KVM_IRQ_LINE: { 3265 struct kvm_irq_level irq_event; 3266 3267 r = -EFAULT; 3268 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 3269 goto out; 3270 r = -ENXIO; 3271 if (irqchip_in_kernel(kvm)) { 3272 __s32 status; 3273 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3274 irq_event.irq, irq_event.level); 3275 if (ioctl == KVM_IRQ_LINE_STATUS) { 3276 r = -EFAULT; 3277 irq_event.status = status; 3278 if (copy_to_user(argp, &irq_event, 3279 sizeof irq_event)) 3280 goto out; 3281 } 3282 r = 0; 3283 } 3284 break; 3285 } 3286 case KVM_GET_IRQCHIP: { 3287 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3288 struct kvm_irqchip *chip; 3289 3290 chip = memdup_user(argp, sizeof(*chip)); 3291 if (IS_ERR(chip)) { 3292 r = PTR_ERR(chip); 3293 goto out; 3294 } 3295 3296 r = -ENXIO; 3297 if (!irqchip_in_kernel(kvm)) 3298 goto get_irqchip_out; 3299 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3300 if (r) 3301 goto get_irqchip_out; 3302 r = -EFAULT; 3303 if (copy_to_user(argp, chip, sizeof *chip)) 3304 goto get_irqchip_out; 3305 r = 0; 3306 get_irqchip_out: 3307 kfree(chip); 3308 if (r) 3309 goto out; 3310 break; 3311 } 3312 case KVM_SET_IRQCHIP: { 3313 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3314 struct kvm_irqchip *chip; 3315 3316 chip = memdup_user(argp, sizeof(*chip)); 3317 if (IS_ERR(chip)) { 3318 r = PTR_ERR(chip); 3319 goto out; 3320 } 3321 3322 r = -ENXIO; 3323 if (!irqchip_in_kernel(kvm)) 3324 goto set_irqchip_out; 3325 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3326 if (r) 3327 goto set_irqchip_out; 3328 r = 0; 3329 set_irqchip_out: 3330 kfree(chip); 3331 if (r) 3332 goto out; 3333 break; 3334 } 3335 case KVM_GET_PIT: { 3336 r = -EFAULT; 3337 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3338 goto out; 3339 r = -ENXIO; 3340 if (!kvm->arch.vpit) 3341 goto out; 3342 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3343 if (r) 3344 goto out; 3345 r = -EFAULT; 3346 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3347 goto out; 3348 r = 0; 3349 break; 3350 } 3351 case KVM_SET_PIT: { 3352 r = -EFAULT; 3353 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3354 goto out; 3355 r = -ENXIO; 3356 if (!kvm->arch.vpit) 3357 goto out; 3358 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3359 if (r) 3360 goto out; 3361 r = 0; 3362 break; 3363 } 3364 case KVM_GET_PIT2: { 3365 r = -ENXIO; 3366 if (!kvm->arch.vpit) 3367 goto out; 3368 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3369 if (r) 3370 goto out; 3371 r = -EFAULT; 3372 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3373 goto out; 3374 r = 0; 3375 break; 3376 } 3377 case KVM_SET_PIT2: { 3378 r = -EFAULT; 3379 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3380 goto out; 3381 r = -ENXIO; 3382 if (!kvm->arch.vpit) 3383 goto out; 3384 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3385 if (r) 3386 goto out; 3387 r = 0; 3388 break; 3389 } 3390 case KVM_REINJECT_CONTROL: { 3391 struct kvm_reinject_control control; 3392 r = -EFAULT; 3393 if (copy_from_user(&control, argp, sizeof(control))) 3394 goto out; 3395 r = kvm_vm_ioctl_reinject(kvm, &control); 3396 if (r) 3397 goto out; 3398 r = 0; 3399 break; 3400 } 3401 case KVM_XEN_HVM_CONFIG: { 3402 r = -EFAULT; 3403 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3404 sizeof(struct kvm_xen_hvm_config))) 3405 goto out; 3406 r = -EINVAL; 3407 if (kvm->arch.xen_hvm_config.flags) 3408 goto out; 3409 r = 0; 3410 break; 3411 } 3412 case KVM_SET_CLOCK: { 3413 struct kvm_clock_data user_ns; 3414 u64 now_ns; 3415 s64 delta; 3416 3417 r = -EFAULT; 3418 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3419 goto out; 3420 3421 r = -EINVAL; 3422 if (user_ns.flags) 3423 goto out; 3424 3425 r = 0; 3426 local_irq_disable(); 3427 now_ns = get_kernel_ns(); 3428 delta = user_ns.clock - now_ns; 3429 local_irq_enable(); 3430 kvm->arch.kvmclock_offset = delta; 3431 break; 3432 } 3433 case KVM_GET_CLOCK: { 3434 struct kvm_clock_data user_ns; 3435 u64 now_ns; 3436 3437 local_irq_disable(); 3438 now_ns = get_kernel_ns(); 3439 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3440 local_irq_enable(); 3441 user_ns.flags = 0; 3442 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3443 3444 r = -EFAULT; 3445 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3446 goto out; 3447 r = 0; 3448 break; 3449 } 3450 3451 default: 3452 ; 3453 } 3454 out: 3455 return r; 3456 } 3457 3458 static void kvm_init_msr_list(void) 3459 { 3460 u32 dummy[2]; 3461 unsigned i, j; 3462 3463 /* skip the first msrs in the list. KVM-specific */ 3464 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3465 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3466 continue; 3467 if (j < i) 3468 msrs_to_save[j] = msrs_to_save[i]; 3469 j++; 3470 } 3471 num_msrs_to_save = j; 3472 } 3473 3474 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3475 const void *v) 3476 { 3477 int handled = 0; 3478 int n; 3479 3480 do { 3481 n = min(len, 8); 3482 if (!(vcpu->arch.apic && 3483 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3484 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3485 break; 3486 handled += n; 3487 addr += n; 3488 len -= n; 3489 v += n; 3490 } while (len); 3491 3492 return handled; 3493 } 3494 3495 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3496 { 3497 int handled = 0; 3498 int n; 3499 3500 do { 3501 n = min(len, 8); 3502 if (!(vcpu->arch.apic && 3503 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3504 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3505 break; 3506 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3507 handled += n; 3508 addr += n; 3509 len -= n; 3510 v += n; 3511 } while (len); 3512 3513 return handled; 3514 } 3515 3516 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3517 struct kvm_segment *var, int seg) 3518 { 3519 kvm_x86_ops->set_segment(vcpu, var, seg); 3520 } 3521 3522 void kvm_get_segment(struct kvm_vcpu *vcpu, 3523 struct kvm_segment *var, int seg) 3524 { 3525 kvm_x86_ops->get_segment(vcpu, var, seg); 3526 } 3527 3528 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3529 { 3530 gpa_t t_gpa; 3531 struct x86_exception exception; 3532 3533 BUG_ON(!mmu_is_nested(vcpu)); 3534 3535 /* NPT walks are always user-walks */ 3536 access |= PFERR_USER_MASK; 3537 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3538 3539 return t_gpa; 3540 } 3541 3542 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3543 struct x86_exception *exception) 3544 { 3545 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3546 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3547 } 3548 3549 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3550 struct x86_exception *exception) 3551 { 3552 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3553 access |= PFERR_FETCH_MASK; 3554 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3555 } 3556 3557 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3558 struct x86_exception *exception) 3559 { 3560 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3561 access |= PFERR_WRITE_MASK; 3562 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3563 } 3564 3565 /* uses this to access any guest's mapped memory without checking CPL */ 3566 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3567 struct x86_exception *exception) 3568 { 3569 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3570 } 3571 3572 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3573 struct kvm_vcpu *vcpu, u32 access, 3574 struct x86_exception *exception) 3575 { 3576 void *data = val; 3577 int r = X86EMUL_CONTINUE; 3578 3579 while (bytes) { 3580 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3581 exception); 3582 unsigned offset = addr & (PAGE_SIZE-1); 3583 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3584 int ret; 3585 3586 if (gpa == UNMAPPED_GVA) 3587 return X86EMUL_PROPAGATE_FAULT; 3588 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3589 if (ret < 0) { 3590 r = X86EMUL_IO_NEEDED; 3591 goto out; 3592 } 3593 3594 bytes -= toread; 3595 data += toread; 3596 addr += toread; 3597 } 3598 out: 3599 return r; 3600 } 3601 3602 /* used for instruction fetching */ 3603 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3604 gva_t addr, void *val, unsigned int bytes, 3605 struct x86_exception *exception) 3606 { 3607 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3608 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3609 3610 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3611 access | PFERR_FETCH_MASK, 3612 exception); 3613 } 3614 3615 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3616 gva_t addr, void *val, unsigned int bytes, 3617 struct x86_exception *exception) 3618 { 3619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3620 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3621 3622 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3623 exception); 3624 } 3625 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3626 3627 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3628 gva_t addr, void *val, unsigned int bytes, 3629 struct x86_exception *exception) 3630 { 3631 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3632 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3633 } 3634 3635 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3636 gva_t addr, void *val, 3637 unsigned int bytes, 3638 struct x86_exception *exception) 3639 { 3640 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3641 void *data = val; 3642 int r = X86EMUL_CONTINUE; 3643 3644 while (bytes) { 3645 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3646 PFERR_WRITE_MASK, 3647 exception); 3648 unsigned offset = addr & (PAGE_SIZE-1); 3649 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3650 int ret; 3651 3652 if (gpa == UNMAPPED_GVA) 3653 return X86EMUL_PROPAGATE_FAULT; 3654 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3655 if (ret < 0) { 3656 r = X86EMUL_IO_NEEDED; 3657 goto out; 3658 } 3659 3660 bytes -= towrite; 3661 data += towrite; 3662 addr += towrite; 3663 } 3664 out: 3665 return r; 3666 } 3667 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3668 3669 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3670 gpa_t *gpa, struct x86_exception *exception, 3671 bool write) 3672 { 3673 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3674 3675 if (vcpu_match_mmio_gva(vcpu, gva) && 3676 check_write_user_access(vcpu, write, access, 3677 vcpu->arch.access)) { 3678 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3679 (gva & (PAGE_SIZE - 1)); 3680 trace_vcpu_match_mmio(gva, *gpa, write, false); 3681 return 1; 3682 } 3683 3684 if (write) 3685 access |= PFERR_WRITE_MASK; 3686 3687 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3688 3689 if (*gpa == UNMAPPED_GVA) 3690 return -1; 3691 3692 /* For APIC access vmexit */ 3693 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3694 return 1; 3695 3696 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3697 trace_vcpu_match_mmio(gva, *gpa, write, true); 3698 return 1; 3699 } 3700 3701 return 0; 3702 } 3703 3704 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3705 const void *val, int bytes) 3706 { 3707 int ret; 3708 3709 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3710 if (ret < 0) 3711 return 0; 3712 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3713 return 1; 3714 } 3715 3716 struct read_write_emulator_ops { 3717 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3718 int bytes); 3719 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3720 void *val, int bytes); 3721 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3722 int bytes, void *val); 3723 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3724 void *val, int bytes); 3725 bool write; 3726 }; 3727 3728 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3729 { 3730 if (vcpu->mmio_read_completed) { 3731 memcpy(val, vcpu->mmio_data, bytes); 3732 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3733 vcpu->mmio_phys_addr, *(u64 *)val); 3734 vcpu->mmio_read_completed = 0; 3735 return 1; 3736 } 3737 3738 return 0; 3739 } 3740 3741 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3742 void *val, int bytes) 3743 { 3744 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3745 } 3746 3747 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3748 void *val, int bytes) 3749 { 3750 return emulator_write_phys(vcpu, gpa, val, bytes); 3751 } 3752 3753 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3754 { 3755 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3756 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3757 } 3758 3759 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3760 void *val, int bytes) 3761 { 3762 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3763 return X86EMUL_IO_NEEDED; 3764 } 3765 3766 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3767 void *val, int bytes) 3768 { 3769 memcpy(vcpu->mmio_data, val, bytes); 3770 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8); 3771 return X86EMUL_CONTINUE; 3772 } 3773 3774 static struct read_write_emulator_ops read_emultor = { 3775 .read_write_prepare = read_prepare, 3776 .read_write_emulate = read_emulate, 3777 .read_write_mmio = vcpu_mmio_read, 3778 .read_write_exit_mmio = read_exit_mmio, 3779 }; 3780 3781 static struct read_write_emulator_ops write_emultor = { 3782 .read_write_emulate = write_emulate, 3783 .read_write_mmio = write_mmio, 3784 .read_write_exit_mmio = write_exit_mmio, 3785 .write = true, 3786 }; 3787 3788 static int emulator_read_write_onepage(unsigned long addr, void *val, 3789 unsigned int bytes, 3790 struct x86_exception *exception, 3791 struct kvm_vcpu *vcpu, 3792 struct read_write_emulator_ops *ops) 3793 { 3794 gpa_t gpa; 3795 int handled, ret; 3796 bool write = ops->write; 3797 3798 if (ops->read_write_prepare && 3799 ops->read_write_prepare(vcpu, val, bytes)) 3800 return X86EMUL_CONTINUE; 3801 3802 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3803 3804 if (ret < 0) 3805 return X86EMUL_PROPAGATE_FAULT; 3806 3807 /* For APIC access vmexit */ 3808 if (ret) 3809 goto mmio; 3810 3811 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3812 return X86EMUL_CONTINUE; 3813 3814 mmio: 3815 /* 3816 * Is this MMIO handled locally? 3817 */ 3818 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3819 if (handled == bytes) 3820 return X86EMUL_CONTINUE; 3821 3822 gpa += handled; 3823 bytes -= handled; 3824 val += handled; 3825 3826 vcpu->mmio_needed = 1; 3827 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3828 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; 3829 vcpu->mmio_size = bytes; 3830 vcpu->run->mmio.len = min(vcpu->mmio_size, 8); 3831 vcpu->run->mmio.is_write = vcpu->mmio_is_write = write; 3832 vcpu->mmio_index = 0; 3833 3834 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3835 } 3836 3837 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3838 void *val, unsigned int bytes, 3839 struct x86_exception *exception, 3840 struct read_write_emulator_ops *ops) 3841 { 3842 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3843 3844 /* Crossing a page boundary? */ 3845 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3846 int rc, now; 3847 3848 now = -addr & ~PAGE_MASK; 3849 rc = emulator_read_write_onepage(addr, val, now, exception, 3850 vcpu, ops); 3851 3852 if (rc != X86EMUL_CONTINUE) 3853 return rc; 3854 addr += now; 3855 val += now; 3856 bytes -= now; 3857 } 3858 3859 return emulator_read_write_onepage(addr, val, bytes, exception, 3860 vcpu, ops); 3861 } 3862 3863 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3864 unsigned long addr, 3865 void *val, 3866 unsigned int bytes, 3867 struct x86_exception *exception) 3868 { 3869 return emulator_read_write(ctxt, addr, val, bytes, 3870 exception, &read_emultor); 3871 } 3872 3873 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3874 unsigned long addr, 3875 const void *val, 3876 unsigned int bytes, 3877 struct x86_exception *exception) 3878 { 3879 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3880 exception, &write_emultor); 3881 } 3882 3883 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3884 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3885 3886 #ifdef CONFIG_X86_64 3887 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3888 #else 3889 # define CMPXCHG64(ptr, old, new) \ 3890 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3891 #endif 3892 3893 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3894 unsigned long addr, 3895 const void *old, 3896 const void *new, 3897 unsigned int bytes, 3898 struct x86_exception *exception) 3899 { 3900 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3901 gpa_t gpa; 3902 struct page *page; 3903 char *kaddr; 3904 bool exchanged; 3905 3906 /* guests cmpxchg8b have to be emulated atomically */ 3907 if (bytes > 8 || (bytes & (bytes - 1))) 3908 goto emul_write; 3909 3910 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3911 3912 if (gpa == UNMAPPED_GVA || 3913 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3914 goto emul_write; 3915 3916 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3917 goto emul_write; 3918 3919 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3920 if (is_error_page(page)) { 3921 kvm_release_page_clean(page); 3922 goto emul_write; 3923 } 3924 3925 kaddr = kmap_atomic(page); 3926 kaddr += offset_in_page(gpa); 3927 switch (bytes) { 3928 case 1: 3929 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3930 break; 3931 case 2: 3932 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3933 break; 3934 case 4: 3935 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3936 break; 3937 case 8: 3938 exchanged = CMPXCHG64(kaddr, old, new); 3939 break; 3940 default: 3941 BUG(); 3942 } 3943 kunmap_atomic(kaddr); 3944 kvm_release_page_dirty(page); 3945 3946 if (!exchanged) 3947 return X86EMUL_CMPXCHG_FAILED; 3948 3949 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3950 3951 return X86EMUL_CONTINUE; 3952 3953 emul_write: 3954 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3955 3956 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3957 } 3958 3959 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3960 { 3961 /* TODO: String I/O for in kernel device */ 3962 int r; 3963 3964 if (vcpu->arch.pio.in) 3965 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 3966 vcpu->arch.pio.size, pd); 3967 else 3968 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 3969 vcpu->arch.pio.port, vcpu->arch.pio.size, 3970 pd); 3971 return r; 3972 } 3973 3974 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 3975 unsigned short port, void *val, 3976 unsigned int count, bool in) 3977 { 3978 trace_kvm_pio(!in, port, size, count); 3979 3980 vcpu->arch.pio.port = port; 3981 vcpu->arch.pio.in = in; 3982 vcpu->arch.pio.count = count; 3983 vcpu->arch.pio.size = size; 3984 3985 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 3986 vcpu->arch.pio.count = 0; 3987 return 1; 3988 } 3989 3990 vcpu->run->exit_reason = KVM_EXIT_IO; 3991 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 3992 vcpu->run->io.size = size; 3993 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 3994 vcpu->run->io.count = count; 3995 vcpu->run->io.port = port; 3996 3997 return 0; 3998 } 3999 4000 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4001 int size, unsigned short port, void *val, 4002 unsigned int count) 4003 { 4004 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4005 int ret; 4006 4007 if (vcpu->arch.pio.count) 4008 goto data_avail; 4009 4010 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4011 if (ret) { 4012 data_avail: 4013 memcpy(val, vcpu->arch.pio_data, size * count); 4014 vcpu->arch.pio.count = 0; 4015 return 1; 4016 } 4017 4018 return 0; 4019 } 4020 4021 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4022 int size, unsigned short port, 4023 const void *val, unsigned int count) 4024 { 4025 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4026 4027 memcpy(vcpu->arch.pio_data, val, size * count); 4028 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4029 } 4030 4031 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4032 { 4033 return kvm_x86_ops->get_segment_base(vcpu, seg); 4034 } 4035 4036 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4037 { 4038 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4039 } 4040 4041 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4042 { 4043 if (!need_emulate_wbinvd(vcpu)) 4044 return X86EMUL_CONTINUE; 4045 4046 if (kvm_x86_ops->has_wbinvd_exit()) { 4047 int cpu = get_cpu(); 4048 4049 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4050 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4051 wbinvd_ipi, NULL, 1); 4052 put_cpu(); 4053 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4054 } else 4055 wbinvd(); 4056 return X86EMUL_CONTINUE; 4057 } 4058 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4059 4060 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4061 { 4062 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4063 } 4064 4065 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4066 { 4067 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4068 } 4069 4070 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4071 { 4072 4073 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4074 } 4075 4076 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4077 { 4078 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4079 } 4080 4081 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4082 { 4083 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4084 unsigned long value; 4085 4086 switch (cr) { 4087 case 0: 4088 value = kvm_read_cr0(vcpu); 4089 break; 4090 case 2: 4091 value = vcpu->arch.cr2; 4092 break; 4093 case 3: 4094 value = kvm_read_cr3(vcpu); 4095 break; 4096 case 4: 4097 value = kvm_read_cr4(vcpu); 4098 break; 4099 case 8: 4100 value = kvm_get_cr8(vcpu); 4101 break; 4102 default: 4103 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4104 return 0; 4105 } 4106 4107 return value; 4108 } 4109 4110 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4111 { 4112 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4113 int res = 0; 4114 4115 switch (cr) { 4116 case 0: 4117 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4118 break; 4119 case 2: 4120 vcpu->arch.cr2 = val; 4121 break; 4122 case 3: 4123 res = kvm_set_cr3(vcpu, val); 4124 break; 4125 case 4: 4126 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4127 break; 4128 case 8: 4129 res = kvm_set_cr8(vcpu, val); 4130 break; 4131 default: 4132 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4133 res = -1; 4134 } 4135 4136 return res; 4137 } 4138 4139 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4140 { 4141 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4142 } 4143 4144 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4145 { 4146 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4147 } 4148 4149 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4150 { 4151 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4152 } 4153 4154 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4155 { 4156 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4157 } 4158 4159 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4160 { 4161 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4162 } 4163 4164 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4165 { 4166 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4167 } 4168 4169 static unsigned long emulator_get_cached_segment_base( 4170 struct x86_emulate_ctxt *ctxt, int seg) 4171 { 4172 return get_segment_base(emul_to_vcpu(ctxt), seg); 4173 } 4174 4175 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4176 struct desc_struct *desc, u32 *base3, 4177 int seg) 4178 { 4179 struct kvm_segment var; 4180 4181 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4182 *selector = var.selector; 4183 4184 if (var.unusable) 4185 return false; 4186 4187 if (var.g) 4188 var.limit >>= 12; 4189 set_desc_limit(desc, var.limit); 4190 set_desc_base(desc, (unsigned long)var.base); 4191 #ifdef CONFIG_X86_64 4192 if (base3) 4193 *base3 = var.base >> 32; 4194 #endif 4195 desc->type = var.type; 4196 desc->s = var.s; 4197 desc->dpl = var.dpl; 4198 desc->p = var.present; 4199 desc->avl = var.avl; 4200 desc->l = var.l; 4201 desc->d = var.db; 4202 desc->g = var.g; 4203 4204 return true; 4205 } 4206 4207 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4208 struct desc_struct *desc, u32 base3, 4209 int seg) 4210 { 4211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4212 struct kvm_segment var; 4213 4214 var.selector = selector; 4215 var.base = get_desc_base(desc); 4216 #ifdef CONFIG_X86_64 4217 var.base |= ((u64)base3) << 32; 4218 #endif 4219 var.limit = get_desc_limit(desc); 4220 if (desc->g) 4221 var.limit = (var.limit << 12) | 0xfff; 4222 var.type = desc->type; 4223 var.present = desc->p; 4224 var.dpl = desc->dpl; 4225 var.db = desc->d; 4226 var.s = desc->s; 4227 var.l = desc->l; 4228 var.g = desc->g; 4229 var.avl = desc->avl; 4230 var.present = desc->p; 4231 var.unusable = !var.present; 4232 var.padding = 0; 4233 4234 kvm_set_segment(vcpu, &var, seg); 4235 return; 4236 } 4237 4238 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4239 u32 msr_index, u64 *pdata) 4240 { 4241 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4242 } 4243 4244 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4245 u32 msr_index, u64 data) 4246 { 4247 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4248 } 4249 4250 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4251 u32 pmc, u64 *pdata) 4252 { 4253 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4254 } 4255 4256 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4257 { 4258 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4259 } 4260 4261 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4262 { 4263 preempt_disable(); 4264 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4265 /* 4266 * CR0.TS may reference the host fpu state, not the guest fpu state, 4267 * so it may be clear at this point. 4268 */ 4269 clts(); 4270 } 4271 4272 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4273 { 4274 preempt_enable(); 4275 } 4276 4277 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4278 struct x86_instruction_info *info, 4279 enum x86_intercept_stage stage) 4280 { 4281 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4282 } 4283 4284 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4285 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4286 { 4287 struct kvm_cpuid_entry2 *cpuid = NULL; 4288 4289 if (eax && ecx) 4290 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt), 4291 *eax, *ecx); 4292 4293 if (cpuid) { 4294 *eax = cpuid->eax; 4295 *ecx = cpuid->ecx; 4296 if (ebx) 4297 *ebx = cpuid->ebx; 4298 if (edx) 4299 *edx = cpuid->edx; 4300 return true; 4301 } 4302 4303 return false; 4304 } 4305 4306 static struct x86_emulate_ops emulate_ops = { 4307 .read_std = kvm_read_guest_virt_system, 4308 .write_std = kvm_write_guest_virt_system, 4309 .fetch = kvm_fetch_guest_virt, 4310 .read_emulated = emulator_read_emulated, 4311 .write_emulated = emulator_write_emulated, 4312 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4313 .invlpg = emulator_invlpg, 4314 .pio_in_emulated = emulator_pio_in_emulated, 4315 .pio_out_emulated = emulator_pio_out_emulated, 4316 .get_segment = emulator_get_segment, 4317 .set_segment = emulator_set_segment, 4318 .get_cached_segment_base = emulator_get_cached_segment_base, 4319 .get_gdt = emulator_get_gdt, 4320 .get_idt = emulator_get_idt, 4321 .set_gdt = emulator_set_gdt, 4322 .set_idt = emulator_set_idt, 4323 .get_cr = emulator_get_cr, 4324 .set_cr = emulator_set_cr, 4325 .set_rflags = emulator_set_rflags, 4326 .cpl = emulator_get_cpl, 4327 .get_dr = emulator_get_dr, 4328 .set_dr = emulator_set_dr, 4329 .set_msr = emulator_set_msr, 4330 .get_msr = emulator_get_msr, 4331 .read_pmc = emulator_read_pmc, 4332 .halt = emulator_halt, 4333 .wbinvd = emulator_wbinvd, 4334 .fix_hypercall = emulator_fix_hypercall, 4335 .get_fpu = emulator_get_fpu, 4336 .put_fpu = emulator_put_fpu, 4337 .intercept = emulator_intercept, 4338 .get_cpuid = emulator_get_cpuid, 4339 }; 4340 4341 static void cache_all_regs(struct kvm_vcpu *vcpu) 4342 { 4343 kvm_register_read(vcpu, VCPU_REGS_RAX); 4344 kvm_register_read(vcpu, VCPU_REGS_RSP); 4345 kvm_register_read(vcpu, VCPU_REGS_RIP); 4346 vcpu->arch.regs_dirty = ~0; 4347 } 4348 4349 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4350 { 4351 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4352 /* 4353 * an sti; sti; sequence only disable interrupts for the first 4354 * instruction. So, if the last instruction, be it emulated or 4355 * not, left the system with the INT_STI flag enabled, it 4356 * means that the last instruction is an sti. We should not 4357 * leave the flag on in this case. The same goes for mov ss 4358 */ 4359 if (!(int_shadow & mask)) 4360 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4361 } 4362 4363 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4364 { 4365 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4366 if (ctxt->exception.vector == PF_VECTOR) 4367 kvm_propagate_fault(vcpu, &ctxt->exception); 4368 else if (ctxt->exception.error_code_valid) 4369 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4370 ctxt->exception.error_code); 4371 else 4372 kvm_queue_exception(vcpu, ctxt->exception.vector); 4373 } 4374 4375 static void init_decode_cache(struct x86_emulate_ctxt *ctxt, 4376 const unsigned long *regs) 4377 { 4378 memset(&ctxt->twobyte, 0, 4379 (void *)&ctxt->regs - (void *)&ctxt->twobyte); 4380 memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); 4381 4382 ctxt->fetch.start = 0; 4383 ctxt->fetch.end = 0; 4384 ctxt->io_read.pos = 0; 4385 ctxt->io_read.end = 0; 4386 ctxt->mem_read.pos = 0; 4387 ctxt->mem_read.end = 0; 4388 } 4389 4390 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4391 { 4392 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4393 int cs_db, cs_l; 4394 4395 /* 4396 * TODO: fix emulate.c to use guest_read/write_register 4397 * instead of direct ->regs accesses, can save hundred cycles 4398 * on Intel for instructions that don't read/change RSP, for 4399 * for example. 4400 */ 4401 cache_all_regs(vcpu); 4402 4403 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4404 4405 ctxt->eflags = kvm_get_rflags(vcpu); 4406 ctxt->eip = kvm_rip_read(vcpu); 4407 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4408 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4409 cs_l ? X86EMUL_MODE_PROT64 : 4410 cs_db ? X86EMUL_MODE_PROT32 : 4411 X86EMUL_MODE_PROT16; 4412 ctxt->guest_mode = is_guest_mode(vcpu); 4413 4414 init_decode_cache(ctxt, vcpu->arch.regs); 4415 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4416 } 4417 4418 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4419 { 4420 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4421 int ret; 4422 4423 init_emulate_ctxt(vcpu); 4424 4425 ctxt->op_bytes = 2; 4426 ctxt->ad_bytes = 2; 4427 ctxt->_eip = ctxt->eip + inc_eip; 4428 ret = emulate_int_real(ctxt, irq); 4429 4430 if (ret != X86EMUL_CONTINUE) 4431 return EMULATE_FAIL; 4432 4433 ctxt->eip = ctxt->_eip; 4434 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4435 kvm_rip_write(vcpu, ctxt->eip); 4436 kvm_set_rflags(vcpu, ctxt->eflags); 4437 4438 if (irq == NMI_VECTOR) 4439 vcpu->arch.nmi_pending = 0; 4440 else 4441 vcpu->arch.interrupt.pending = false; 4442 4443 return EMULATE_DONE; 4444 } 4445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4446 4447 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4448 { 4449 int r = EMULATE_DONE; 4450 4451 ++vcpu->stat.insn_emulation_fail; 4452 trace_kvm_emulate_insn_failed(vcpu); 4453 if (!is_guest_mode(vcpu)) { 4454 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4455 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4456 vcpu->run->internal.ndata = 0; 4457 r = EMULATE_FAIL; 4458 } 4459 kvm_queue_exception(vcpu, UD_VECTOR); 4460 4461 return r; 4462 } 4463 4464 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4465 { 4466 gpa_t gpa; 4467 4468 if (tdp_enabled) 4469 return false; 4470 4471 /* 4472 * if emulation was due to access to shadowed page table 4473 * and it failed try to unshadow page and re-entetr the 4474 * guest to let CPU execute the instruction. 4475 */ 4476 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4477 return true; 4478 4479 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4480 4481 if (gpa == UNMAPPED_GVA) 4482 return true; /* let cpu generate fault */ 4483 4484 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) 4485 return true; 4486 4487 return false; 4488 } 4489 4490 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4491 unsigned long cr2, int emulation_type) 4492 { 4493 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4494 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4495 4496 last_retry_eip = vcpu->arch.last_retry_eip; 4497 last_retry_addr = vcpu->arch.last_retry_addr; 4498 4499 /* 4500 * If the emulation is caused by #PF and it is non-page_table 4501 * writing instruction, it means the VM-EXIT is caused by shadow 4502 * page protected, we can zap the shadow page and retry this 4503 * instruction directly. 4504 * 4505 * Note: if the guest uses a non-page-table modifying instruction 4506 * on the PDE that points to the instruction, then we will unmap 4507 * the instruction and go to an infinite loop. So, we cache the 4508 * last retried eip and the last fault address, if we meet the eip 4509 * and the address again, we can break out of the potential infinite 4510 * loop. 4511 */ 4512 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4513 4514 if (!(emulation_type & EMULTYPE_RETRY)) 4515 return false; 4516 4517 if (x86_page_table_writing_insn(ctxt)) 4518 return false; 4519 4520 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4521 return false; 4522 4523 vcpu->arch.last_retry_eip = ctxt->eip; 4524 vcpu->arch.last_retry_addr = cr2; 4525 4526 if (!vcpu->arch.mmu.direct_map) 4527 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4528 4529 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4530 4531 return true; 4532 } 4533 4534 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4535 unsigned long cr2, 4536 int emulation_type, 4537 void *insn, 4538 int insn_len) 4539 { 4540 int r; 4541 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4542 bool writeback = true; 4543 4544 kvm_clear_exception_queue(vcpu); 4545 4546 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4547 init_emulate_ctxt(vcpu); 4548 ctxt->interruptibility = 0; 4549 ctxt->have_exception = false; 4550 ctxt->perm_ok = false; 4551 4552 ctxt->only_vendor_specific_insn 4553 = emulation_type & EMULTYPE_TRAP_UD; 4554 4555 r = x86_decode_insn(ctxt, insn, insn_len); 4556 4557 trace_kvm_emulate_insn_start(vcpu); 4558 ++vcpu->stat.insn_emulation; 4559 if (r != EMULATION_OK) { 4560 if (emulation_type & EMULTYPE_TRAP_UD) 4561 return EMULATE_FAIL; 4562 if (reexecute_instruction(vcpu, cr2)) 4563 return EMULATE_DONE; 4564 if (emulation_type & EMULTYPE_SKIP) 4565 return EMULATE_FAIL; 4566 return handle_emulation_failure(vcpu); 4567 } 4568 } 4569 4570 if (emulation_type & EMULTYPE_SKIP) { 4571 kvm_rip_write(vcpu, ctxt->_eip); 4572 return EMULATE_DONE; 4573 } 4574 4575 if (retry_instruction(ctxt, cr2, emulation_type)) 4576 return EMULATE_DONE; 4577 4578 /* this is needed for vmware backdoor interface to work since it 4579 changes registers values during IO operation */ 4580 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4581 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4582 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); 4583 } 4584 4585 restart: 4586 r = x86_emulate_insn(ctxt); 4587 4588 if (r == EMULATION_INTERCEPTED) 4589 return EMULATE_DONE; 4590 4591 if (r == EMULATION_FAILED) { 4592 if (reexecute_instruction(vcpu, cr2)) 4593 return EMULATE_DONE; 4594 4595 return handle_emulation_failure(vcpu); 4596 } 4597 4598 if (ctxt->have_exception) { 4599 inject_emulated_exception(vcpu); 4600 r = EMULATE_DONE; 4601 } else if (vcpu->arch.pio.count) { 4602 if (!vcpu->arch.pio.in) 4603 vcpu->arch.pio.count = 0; 4604 else 4605 writeback = false; 4606 r = EMULATE_DO_MMIO; 4607 } else if (vcpu->mmio_needed) { 4608 if (!vcpu->mmio_is_write) 4609 writeback = false; 4610 r = EMULATE_DO_MMIO; 4611 } else if (r == EMULATION_RESTART) 4612 goto restart; 4613 else 4614 r = EMULATE_DONE; 4615 4616 if (writeback) { 4617 toggle_interruptibility(vcpu, ctxt->interruptibility); 4618 kvm_set_rflags(vcpu, ctxt->eflags); 4619 kvm_make_request(KVM_REQ_EVENT, vcpu); 4620 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4621 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4622 kvm_rip_write(vcpu, ctxt->eip); 4623 } else 4624 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4625 4626 return r; 4627 } 4628 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4629 4630 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4631 { 4632 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4633 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4634 size, port, &val, 1); 4635 /* do not return to emulator after return from userspace */ 4636 vcpu->arch.pio.count = 0; 4637 return ret; 4638 } 4639 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4640 4641 static void tsc_bad(void *info) 4642 { 4643 __this_cpu_write(cpu_tsc_khz, 0); 4644 } 4645 4646 static void tsc_khz_changed(void *data) 4647 { 4648 struct cpufreq_freqs *freq = data; 4649 unsigned long khz = 0; 4650 4651 if (data) 4652 khz = freq->new; 4653 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4654 khz = cpufreq_quick_get(raw_smp_processor_id()); 4655 if (!khz) 4656 khz = tsc_khz; 4657 __this_cpu_write(cpu_tsc_khz, khz); 4658 } 4659 4660 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4661 void *data) 4662 { 4663 struct cpufreq_freqs *freq = data; 4664 struct kvm *kvm; 4665 struct kvm_vcpu *vcpu; 4666 int i, send_ipi = 0; 4667 4668 /* 4669 * We allow guests to temporarily run on slowing clocks, 4670 * provided we notify them after, or to run on accelerating 4671 * clocks, provided we notify them before. Thus time never 4672 * goes backwards. 4673 * 4674 * However, we have a problem. We can't atomically update 4675 * the frequency of a given CPU from this function; it is 4676 * merely a notifier, which can be called from any CPU. 4677 * Changing the TSC frequency at arbitrary points in time 4678 * requires a recomputation of local variables related to 4679 * the TSC for each VCPU. We must flag these local variables 4680 * to be updated and be sure the update takes place with the 4681 * new frequency before any guests proceed. 4682 * 4683 * Unfortunately, the combination of hotplug CPU and frequency 4684 * change creates an intractable locking scenario; the order 4685 * of when these callouts happen is undefined with respect to 4686 * CPU hotplug, and they can race with each other. As such, 4687 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4688 * undefined; you can actually have a CPU frequency change take 4689 * place in between the computation of X and the setting of the 4690 * variable. To protect against this problem, all updates of 4691 * the per_cpu tsc_khz variable are done in an interrupt 4692 * protected IPI, and all callers wishing to update the value 4693 * must wait for a synchronous IPI to complete (which is trivial 4694 * if the caller is on the CPU already). This establishes the 4695 * necessary total order on variable updates. 4696 * 4697 * Note that because a guest time update may take place 4698 * anytime after the setting of the VCPU's request bit, the 4699 * correct TSC value must be set before the request. However, 4700 * to ensure the update actually makes it to any guest which 4701 * starts running in hardware virtualization between the set 4702 * and the acquisition of the spinlock, we must also ping the 4703 * CPU after setting the request bit. 4704 * 4705 */ 4706 4707 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4708 return 0; 4709 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4710 return 0; 4711 4712 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4713 4714 raw_spin_lock(&kvm_lock); 4715 list_for_each_entry(kvm, &vm_list, vm_list) { 4716 kvm_for_each_vcpu(i, vcpu, kvm) { 4717 if (vcpu->cpu != freq->cpu) 4718 continue; 4719 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4720 if (vcpu->cpu != smp_processor_id()) 4721 send_ipi = 1; 4722 } 4723 } 4724 raw_spin_unlock(&kvm_lock); 4725 4726 if (freq->old < freq->new && send_ipi) { 4727 /* 4728 * We upscale the frequency. Must make the guest 4729 * doesn't see old kvmclock values while running with 4730 * the new frequency, otherwise we risk the guest sees 4731 * time go backwards. 4732 * 4733 * In case we update the frequency for another cpu 4734 * (which might be in guest context) send an interrupt 4735 * to kick the cpu out of guest context. Next time 4736 * guest context is entered kvmclock will be updated, 4737 * so the guest will not see stale values. 4738 */ 4739 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4740 } 4741 return 0; 4742 } 4743 4744 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4745 .notifier_call = kvmclock_cpufreq_notifier 4746 }; 4747 4748 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4749 unsigned long action, void *hcpu) 4750 { 4751 unsigned int cpu = (unsigned long)hcpu; 4752 4753 switch (action) { 4754 case CPU_ONLINE: 4755 case CPU_DOWN_FAILED: 4756 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4757 break; 4758 case CPU_DOWN_PREPARE: 4759 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4760 break; 4761 } 4762 return NOTIFY_OK; 4763 } 4764 4765 static struct notifier_block kvmclock_cpu_notifier_block = { 4766 .notifier_call = kvmclock_cpu_notifier, 4767 .priority = -INT_MAX 4768 }; 4769 4770 static void kvm_timer_init(void) 4771 { 4772 int cpu; 4773 4774 max_tsc_khz = tsc_khz; 4775 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4776 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4777 #ifdef CONFIG_CPU_FREQ 4778 struct cpufreq_policy policy; 4779 memset(&policy, 0, sizeof(policy)); 4780 cpu = get_cpu(); 4781 cpufreq_get_policy(&policy, cpu); 4782 if (policy.cpuinfo.max_freq) 4783 max_tsc_khz = policy.cpuinfo.max_freq; 4784 put_cpu(); 4785 #endif 4786 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4787 CPUFREQ_TRANSITION_NOTIFIER); 4788 } 4789 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4790 for_each_online_cpu(cpu) 4791 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4792 } 4793 4794 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4795 4796 int kvm_is_in_guest(void) 4797 { 4798 return __this_cpu_read(current_vcpu) != NULL; 4799 } 4800 4801 static int kvm_is_user_mode(void) 4802 { 4803 int user_mode = 3; 4804 4805 if (__this_cpu_read(current_vcpu)) 4806 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4807 4808 return user_mode != 0; 4809 } 4810 4811 static unsigned long kvm_get_guest_ip(void) 4812 { 4813 unsigned long ip = 0; 4814 4815 if (__this_cpu_read(current_vcpu)) 4816 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4817 4818 return ip; 4819 } 4820 4821 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4822 .is_in_guest = kvm_is_in_guest, 4823 .is_user_mode = kvm_is_user_mode, 4824 .get_guest_ip = kvm_get_guest_ip, 4825 }; 4826 4827 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4828 { 4829 __this_cpu_write(current_vcpu, vcpu); 4830 } 4831 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4832 4833 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4834 { 4835 __this_cpu_write(current_vcpu, NULL); 4836 } 4837 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4838 4839 static void kvm_set_mmio_spte_mask(void) 4840 { 4841 u64 mask; 4842 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4843 4844 /* 4845 * Set the reserved bits and the present bit of an paging-structure 4846 * entry to generate page fault with PFER.RSV = 1. 4847 */ 4848 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4849 mask |= 1ull; 4850 4851 #ifdef CONFIG_X86_64 4852 /* 4853 * If reserved bit is not supported, clear the present bit to disable 4854 * mmio page fault. 4855 */ 4856 if (maxphyaddr == 52) 4857 mask &= ~1ull; 4858 #endif 4859 4860 kvm_mmu_set_mmio_spte_mask(mask); 4861 } 4862 4863 int kvm_arch_init(void *opaque) 4864 { 4865 int r; 4866 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4867 4868 if (kvm_x86_ops) { 4869 printk(KERN_ERR "kvm: already loaded the other module\n"); 4870 r = -EEXIST; 4871 goto out; 4872 } 4873 4874 if (!ops->cpu_has_kvm_support()) { 4875 printk(KERN_ERR "kvm: no hardware support\n"); 4876 r = -EOPNOTSUPP; 4877 goto out; 4878 } 4879 if (ops->disabled_by_bios()) { 4880 printk(KERN_ERR "kvm: disabled by bios\n"); 4881 r = -EOPNOTSUPP; 4882 goto out; 4883 } 4884 4885 r = kvm_mmu_module_init(); 4886 if (r) 4887 goto out; 4888 4889 kvm_set_mmio_spte_mask(); 4890 kvm_init_msr_list(); 4891 4892 kvm_x86_ops = ops; 4893 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4894 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4895 4896 kvm_timer_init(); 4897 4898 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4899 4900 if (cpu_has_xsave) 4901 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4902 4903 return 0; 4904 4905 out: 4906 return r; 4907 } 4908 4909 void kvm_arch_exit(void) 4910 { 4911 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4912 4913 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4914 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4915 CPUFREQ_TRANSITION_NOTIFIER); 4916 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4917 kvm_x86_ops = NULL; 4918 kvm_mmu_module_exit(); 4919 } 4920 4921 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4922 { 4923 ++vcpu->stat.halt_exits; 4924 if (irqchip_in_kernel(vcpu->kvm)) { 4925 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4926 return 1; 4927 } else { 4928 vcpu->run->exit_reason = KVM_EXIT_HLT; 4929 return 0; 4930 } 4931 } 4932 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4933 4934 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4935 { 4936 u64 param, ingpa, outgpa, ret; 4937 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4938 bool fast, longmode; 4939 int cs_db, cs_l; 4940 4941 /* 4942 * hypercall generates UD from non zero cpl and real mode 4943 * per HYPER-V spec 4944 */ 4945 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4946 kvm_queue_exception(vcpu, UD_VECTOR); 4947 return 0; 4948 } 4949 4950 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4951 longmode = is_long_mode(vcpu) && cs_l == 1; 4952 4953 if (!longmode) { 4954 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4955 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4956 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4957 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4958 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4959 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4960 } 4961 #ifdef CONFIG_X86_64 4962 else { 4963 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4964 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4965 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4966 } 4967 #endif 4968 4969 code = param & 0xffff; 4970 fast = (param >> 16) & 0x1; 4971 rep_cnt = (param >> 32) & 0xfff; 4972 rep_idx = (param >> 48) & 0xfff; 4973 4974 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4975 4976 switch (code) { 4977 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 4978 kvm_vcpu_on_spin(vcpu); 4979 break; 4980 default: 4981 res = HV_STATUS_INVALID_HYPERCALL_CODE; 4982 break; 4983 } 4984 4985 ret = res | (((u64)rep_done & 0xfff) << 32); 4986 if (longmode) { 4987 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 4988 } else { 4989 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 4990 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 4991 } 4992 4993 return 1; 4994 } 4995 4996 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 4997 { 4998 unsigned long nr, a0, a1, a2, a3, ret; 4999 int r = 1; 5000 5001 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5002 return kvm_hv_hypercall(vcpu); 5003 5004 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5005 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5006 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5007 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5008 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5009 5010 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5011 5012 if (!is_long_mode(vcpu)) { 5013 nr &= 0xFFFFFFFF; 5014 a0 &= 0xFFFFFFFF; 5015 a1 &= 0xFFFFFFFF; 5016 a2 &= 0xFFFFFFFF; 5017 a3 &= 0xFFFFFFFF; 5018 } 5019 5020 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5021 ret = -KVM_EPERM; 5022 goto out; 5023 } 5024 5025 switch (nr) { 5026 case KVM_HC_VAPIC_POLL_IRQ: 5027 ret = 0; 5028 break; 5029 default: 5030 ret = -KVM_ENOSYS; 5031 break; 5032 } 5033 out: 5034 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5035 ++vcpu->stat.hypercalls; 5036 return r; 5037 } 5038 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5039 5040 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5041 { 5042 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5043 char instruction[3]; 5044 unsigned long rip = kvm_rip_read(vcpu); 5045 5046 /* 5047 * Blow out the MMU to ensure that no other VCPU has an active mapping 5048 * to ensure that the updated hypercall appears atomically across all 5049 * VCPUs. 5050 */ 5051 kvm_mmu_zap_all(vcpu->kvm); 5052 5053 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5054 5055 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5056 } 5057 5058 /* 5059 * Check if userspace requested an interrupt window, and that the 5060 * interrupt window is open. 5061 * 5062 * No need to exit to userspace if we already have an interrupt queued. 5063 */ 5064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5065 { 5066 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5067 vcpu->run->request_interrupt_window && 5068 kvm_arch_interrupt_allowed(vcpu)); 5069 } 5070 5071 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5072 { 5073 struct kvm_run *kvm_run = vcpu->run; 5074 5075 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5076 kvm_run->cr8 = kvm_get_cr8(vcpu); 5077 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5078 if (irqchip_in_kernel(vcpu->kvm)) 5079 kvm_run->ready_for_interrupt_injection = 1; 5080 else 5081 kvm_run->ready_for_interrupt_injection = 5082 kvm_arch_interrupt_allowed(vcpu) && 5083 !kvm_cpu_has_interrupt(vcpu) && 5084 !kvm_event_needs_reinjection(vcpu); 5085 } 5086 5087 static void vapic_enter(struct kvm_vcpu *vcpu) 5088 { 5089 struct kvm_lapic *apic = vcpu->arch.apic; 5090 struct page *page; 5091 5092 if (!apic || !apic->vapic_addr) 5093 return; 5094 5095 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5096 5097 vcpu->arch.apic->vapic_page = page; 5098 } 5099 5100 static void vapic_exit(struct kvm_vcpu *vcpu) 5101 { 5102 struct kvm_lapic *apic = vcpu->arch.apic; 5103 int idx; 5104 5105 if (!apic || !apic->vapic_addr) 5106 return; 5107 5108 idx = srcu_read_lock(&vcpu->kvm->srcu); 5109 kvm_release_page_dirty(apic->vapic_page); 5110 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5111 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5112 } 5113 5114 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5115 { 5116 int max_irr, tpr; 5117 5118 if (!kvm_x86_ops->update_cr8_intercept) 5119 return; 5120 5121 if (!vcpu->arch.apic) 5122 return; 5123 5124 if (!vcpu->arch.apic->vapic_addr) 5125 max_irr = kvm_lapic_find_highest_irr(vcpu); 5126 else 5127 max_irr = -1; 5128 5129 if (max_irr != -1) 5130 max_irr >>= 4; 5131 5132 tpr = kvm_lapic_get_cr8(vcpu); 5133 5134 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5135 } 5136 5137 static void inject_pending_event(struct kvm_vcpu *vcpu) 5138 { 5139 /* try to reinject previous events if any */ 5140 if (vcpu->arch.exception.pending) { 5141 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5142 vcpu->arch.exception.has_error_code, 5143 vcpu->arch.exception.error_code); 5144 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5145 vcpu->arch.exception.has_error_code, 5146 vcpu->arch.exception.error_code, 5147 vcpu->arch.exception.reinject); 5148 return; 5149 } 5150 5151 if (vcpu->arch.nmi_injected) { 5152 kvm_x86_ops->set_nmi(vcpu); 5153 return; 5154 } 5155 5156 if (vcpu->arch.interrupt.pending) { 5157 kvm_x86_ops->set_irq(vcpu); 5158 return; 5159 } 5160 5161 /* try to inject new event if pending */ 5162 if (vcpu->arch.nmi_pending) { 5163 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5164 --vcpu->arch.nmi_pending; 5165 vcpu->arch.nmi_injected = true; 5166 kvm_x86_ops->set_nmi(vcpu); 5167 } 5168 } else if (kvm_cpu_has_interrupt(vcpu)) { 5169 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5170 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5171 false); 5172 kvm_x86_ops->set_irq(vcpu); 5173 } 5174 } 5175 } 5176 5177 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5178 { 5179 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5180 !vcpu->guest_xcr0_loaded) { 5181 /* kvm_set_xcr() also depends on this */ 5182 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5183 vcpu->guest_xcr0_loaded = 1; 5184 } 5185 } 5186 5187 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5188 { 5189 if (vcpu->guest_xcr0_loaded) { 5190 if (vcpu->arch.xcr0 != host_xcr0) 5191 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5192 vcpu->guest_xcr0_loaded = 0; 5193 } 5194 } 5195 5196 static void process_nmi(struct kvm_vcpu *vcpu) 5197 { 5198 unsigned limit = 2; 5199 5200 /* 5201 * x86 is limited to one NMI running, and one NMI pending after it. 5202 * If an NMI is already in progress, limit further NMIs to just one. 5203 * Otherwise, allow two (and we'll inject the first one immediately). 5204 */ 5205 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5206 limit = 1; 5207 5208 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5209 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5210 kvm_make_request(KVM_REQ_EVENT, vcpu); 5211 } 5212 5213 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5214 { 5215 int r; 5216 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5217 vcpu->run->request_interrupt_window; 5218 bool req_immediate_exit = 0; 5219 5220 if (vcpu->requests) { 5221 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5222 kvm_mmu_unload(vcpu); 5223 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5224 __kvm_migrate_timers(vcpu); 5225 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5226 r = kvm_guest_time_update(vcpu); 5227 if (unlikely(r)) 5228 goto out; 5229 } 5230 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5231 kvm_mmu_sync_roots(vcpu); 5232 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5233 kvm_x86_ops->tlb_flush(vcpu); 5234 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5235 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5236 r = 0; 5237 goto out; 5238 } 5239 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5240 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5241 r = 0; 5242 goto out; 5243 } 5244 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5245 vcpu->fpu_active = 0; 5246 kvm_x86_ops->fpu_deactivate(vcpu); 5247 } 5248 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5249 /* Page is swapped out. Do synthetic halt */ 5250 vcpu->arch.apf.halted = true; 5251 r = 1; 5252 goto out; 5253 } 5254 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5255 record_steal_time(vcpu); 5256 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5257 process_nmi(vcpu); 5258 req_immediate_exit = 5259 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5260 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5261 kvm_handle_pmu_event(vcpu); 5262 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5263 kvm_deliver_pmi(vcpu); 5264 } 5265 5266 r = kvm_mmu_reload(vcpu); 5267 if (unlikely(r)) 5268 goto out; 5269 5270 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5271 inject_pending_event(vcpu); 5272 5273 /* enable NMI/IRQ window open exits if needed */ 5274 if (vcpu->arch.nmi_pending) 5275 kvm_x86_ops->enable_nmi_window(vcpu); 5276 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5277 kvm_x86_ops->enable_irq_window(vcpu); 5278 5279 if (kvm_lapic_enabled(vcpu)) { 5280 update_cr8_intercept(vcpu); 5281 kvm_lapic_sync_to_vapic(vcpu); 5282 } 5283 } 5284 5285 preempt_disable(); 5286 5287 kvm_x86_ops->prepare_guest_switch(vcpu); 5288 if (vcpu->fpu_active) 5289 kvm_load_guest_fpu(vcpu); 5290 kvm_load_guest_xcr0(vcpu); 5291 5292 vcpu->mode = IN_GUEST_MODE; 5293 5294 /* We should set ->mode before check ->requests, 5295 * see the comment in make_all_cpus_request. 5296 */ 5297 smp_mb(); 5298 5299 local_irq_disable(); 5300 5301 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5302 || need_resched() || signal_pending(current)) { 5303 vcpu->mode = OUTSIDE_GUEST_MODE; 5304 smp_wmb(); 5305 local_irq_enable(); 5306 preempt_enable(); 5307 kvm_x86_ops->cancel_injection(vcpu); 5308 r = 1; 5309 goto out; 5310 } 5311 5312 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5313 5314 if (req_immediate_exit) 5315 smp_send_reschedule(vcpu->cpu); 5316 5317 kvm_guest_enter(); 5318 5319 if (unlikely(vcpu->arch.switch_db_regs)) { 5320 set_debugreg(0, 7); 5321 set_debugreg(vcpu->arch.eff_db[0], 0); 5322 set_debugreg(vcpu->arch.eff_db[1], 1); 5323 set_debugreg(vcpu->arch.eff_db[2], 2); 5324 set_debugreg(vcpu->arch.eff_db[3], 3); 5325 } 5326 5327 trace_kvm_entry(vcpu->vcpu_id); 5328 kvm_x86_ops->run(vcpu); 5329 5330 /* 5331 * If the guest has used debug registers, at least dr7 5332 * will be disabled while returning to the host. 5333 * If we don't have active breakpoints in the host, we don't 5334 * care about the messed up debug address registers. But if 5335 * we have some of them active, restore the old state. 5336 */ 5337 if (hw_breakpoint_active()) 5338 hw_breakpoint_restore(); 5339 5340 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5341 5342 vcpu->mode = OUTSIDE_GUEST_MODE; 5343 smp_wmb(); 5344 local_irq_enable(); 5345 5346 ++vcpu->stat.exits; 5347 5348 /* 5349 * We must have an instruction between local_irq_enable() and 5350 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5351 * the interrupt shadow. The stat.exits increment will do nicely. 5352 * But we need to prevent reordering, hence this barrier(): 5353 */ 5354 barrier(); 5355 5356 kvm_guest_exit(); 5357 5358 preempt_enable(); 5359 5360 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5361 5362 /* 5363 * Profile KVM exit RIPs: 5364 */ 5365 if (unlikely(prof_on == KVM_PROFILING)) { 5366 unsigned long rip = kvm_rip_read(vcpu); 5367 profile_hit(KVM_PROFILING, (void *)rip); 5368 } 5369 5370 if (unlikely(vcpu->arch.tsc_always_catchup)) 5371 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5372 5373 kvm_lapic_sync_from_vapic(vcpu); 5374 5375 r = kvm_x86_ops->handle_exit(vcpu); 5376 out: 5377 return r; 5378 } 5379 5380 5381 static int __vcpu_run(struct kvm_vcpu *vcpu) 5382 { 5383 int r; 5384 struct kvm *kvm = vcpu->kvm; 5385 5386 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5387 pr_debug("vcpu %d received sipi with vector # %x\n", 5388 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5389 kvm_lapic_reset(vcpu); 5390 r = kvm_arch_vcpu_reset(vcpu); 5391 if (r) 5392 return r; 5393 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5394 } 5395 5396 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5397 vapic_enter(vcpu); 5398 5399 r = 1; 5400 while (r > 0) { 5401 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5402 !vcpu->arch.apf.halted) 5403 r = vcpu_enter_guest(vcpu); 5404 else { 5405 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5406 kvm_vcpu_block(vcpu); 5407 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5408 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5409 { 5410 switch(vcpu->arch.mp_state) { 5411 case KVM_MP_STATE_HALTED: 5412 vcpu->arch.mp_state = 5413 KVM_MP_STATE_RUNNABLE; 5414 case KVM_MP_STATE_RUNNABLE: 5415 vcpu->arch.apf.halted = false; 5416 break; 5417 case KVM_MP_STATE_SIPI_RECEIVED: 5418 default: 5419 r = -EINTR; 5420 break; 5421 } 5422 } 5423 } 5424 5425 if (r <= 0) 5426 break; 5427 5428 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5429 if (kvm_cpu_has_pending_timer(vcpu)) 5430 kvm_inject_pending_timer_irqs(vcpu); 5431 5432 if (dm_request_for_irq_injection(vcpu)) { 5433 r = -EINTR; 5434 vcpu->run->exit_reason = KVM_EXIT_INTR; 5435 ++vcpu->stat.request_irq_exits; 5436 } 5437 5438 kvm_check_async_pf_completion(vcpu); 5439 5440 if (signal_pending(current)) { 5441 r = -EINTR; 5442 vcpu->run->exit_reason = KVM_EXIT_INTR; 5443 ++vcpu->stat.signal_exits; 5444 } 5445 if (need_resched()) { 5446 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5447 kvm_resched(vcpu); 5448 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5449 } 5450 } 5451 5452 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5453 5454 vapic_exit(vcpu); 5455 5456 return r; 5457 } 5458 5459 static int complete_mmio(struct kvm_vcpu *vcpu) 5460 { 5461 struct kvm_run *run = vcpu->run; 5462 int r; 5463 5464 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5465 return 1; 5466 5467 if (vcpu->mmio_needed) { 5468 vcpu->mmio_needed = 0; 5469 if (!vcpu->mmio_is_write) 5470 memcpy(vcpu->mmio_data + vcpu->mmio_index, 5471 run->mmio.data, 8); 5472 vcpu->mmio_index += 8; 5473 if (vcpu->mmio_index < vcpu->mmio_size) { 5474 run->exit_reason = KVM_EXIT_MMIO; 5475 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index; 5476 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8); 5477 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8); 5478 run->mmio.is_write = vcpu->mmio_is_write; 5479 vcpu->mmio_needed = 1; 5480 return 0; 5481 } 5482 if (vcpu->mmio_is_write) 5483 return 1; 5484 vcpu->mmio_read_completed = 1; 5485 } 5486 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5487 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5488 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5489 if (r != EMULATE_DONE) 5490 return 0; 5491 return 1; 5492 } 5493 5494 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5495 { 5496 int r; 5497 sigset_t sigsaved; 5498 5499 if (!tsk_used_math(current) && init_fpu(current)) 5500 return -ENOMEM; 5501 5502 if (vcpu->sigset_active) 5503 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5504 5505 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5506 kvm_vcpu_block(vcpu); 5507 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5508 r = -EAGAIN; 5509 goto out; 5510 } 5511 5512 /* re-sync apic's tpr */ 5513 if (!irqchip_in_kernel(vcpu->kvm)) { 5514 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5515 r = -EINVAL; 5516 goto out; 5517 } 5518 } 5519 5520 r = complete_mmio(vcpu); 5521 if (r <= 0) 5522 goto out; 5523 5524 r = __vcpu_run(vcpu); 5525 5526 out: 5527 post_kvm_run_save(vcpu); 5528 if (vcpu->sigset_active) 5529 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5530 5531 return r; 5532 } 5533 5534 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5535 { 5536 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5537 /* 5538 * We are here if userspace calls get_regs() in the middle of 5539 * instruction emulation. Registers state needs to be copied 5540 * back from emulation context to vcpu. Usrapace shouldn't do 5541 * that usually, but some bad designed PV devices (vmware 5542 * backdoor interface) need this to work 5543 */ 5544 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5545 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5546 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5547 } 5548 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5549 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5550 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5551 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5552 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5553 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5554 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5555 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5556 #ifdef CONFIG_X86_64 5557 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5558 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5559 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5560 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5561 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5562 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5563 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5564 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5565 #endif 5566 5567 regs->rip = kvm_rip_read(vcpu); 5568 regs->rflags = kvm_get_rflags(vcpu); 5569 5570 return 0; 5571 } 5572 5573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5574 { 5575 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5576 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5577 5578 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5579 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5580 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5581 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5582 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5583 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5584 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5585 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5586 #ifdef CONFIG_X86_64 5587 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5588 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5589 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5590 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5591 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5592 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5593 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5594 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5595 #endif 5596 5597 kvm_rip_write(vcpu, regs->rip); 5598 kvm_set_rflags(vcpu, regs->rflags); 5599 5600 vcpu->arch.exception.pending = false; 5601 5602 kvm_make_request(KVM_REQ_EVENT, vcpu); 5603 5604 return 0; 5605 } 5606 5607 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5608 { 5609 struct kvm_segment cs; 5610 5611 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5612 *db = cs.db; 5613 *l = cs.l; 5614 } 5615 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5616 5617 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5618 struct kvm_sregs *sregs) 5619 { 5620 struct desc_ptr dt; 5621 5622 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5623 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5624 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5625 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5626 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5627 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5628 5629 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5630 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5631 5632 kvm_x86_ops->get_idt(vcpu, &dt); 5633 sregs->idt.limit = dt.size; 5634 sregs->idt.base = dt.address; 5635 kvm_x86_ops->get_gdt(vcpu, &dt); 5636 sregs->gdt.limit = dt.size; 5637 sregs->gdt.base = dt.address; 5638 5639 sregs->cr0 = kvm_read_cr0(vcpu); 5640 sregs->cr2 = vcpu->arch.cr2; 5641 sregs->cr3 = kvm_read_cr3(vcpu); 5642 sregs->cr4 = kvm_read_cr4(vcpu); 5643 sregs->cr8 = kvm_get_cr8(vcpu); 5644 sregs->efer = vcpu->arch.efer; 5645 sregs->apic_base = kvm_get_apic_base(vcpu); 5646 5647 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5648 5649 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5650 set_bit(vcpu->arch.interrupt.nr, 5651 (unsigned long *)sregs->interrupt_bitmap); 5652 5653 return 0; 5654 } 5655 5656 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5657 struct kvm_mp_state *mp_state) 5658 { 5659 mp_state->mp_state = vcpu->arch.mp_state; 5660 return 0; 5661 } 5662 5663 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5664 struct kvm_mp_state *mp_state) 5665 { 5666 vcpu->arch.mp_state = mp_state->mp_state; 5667 kvm_make_request(KVM_REQ_EVENT, vcpu); 5668 return 0; 5669 } 5670 5671 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5672 int reason, bool has_error_code, u32 error_code) 5673 { 5674 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5675 int ret; 5676 5677 init_emulate_ctxt(vcpu); 5678 5679 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5680 has_error_code, error_code); 5681 5682 if (ret) 5683 return EMULATE_FAIL; 5684 5685 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5686 kvm_rip_write(vcpu, ctxt->eip); 5687 kvm_set_rflags(vcpu, ctxt->eflags); 5688 kvm_make_request(KVM_REQ_EVENT, vcpu); 5689 return EMULATE_DONE; 5690 } 5691 EXPORT_SYMBOL_GPL(kvm_task_switch); 5692 5693 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5694 struct kvm_sregs *sregs) 5695 { 5696 int mmu_reset_needed = 0; 5697 int pending_vec, max_bits, idx; 5698 struct desc_ptr dt; 5699 5700 dt.size = sregs->idt.limit; 5701 dt.address = sregs->idt.base; 5702 kvm_x86_ops->set_idt(vcpu, &dt); 5703 dt.size = sregs->gdt.limit; 5704 dt.address = sregs->gdt.base; 5705 kvm_x86_ops->set_gdt(vcpu, &dt); 5706 5707 vcpu->arch.cr2 = sregs->cr2; 5708 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5709 vcpu->arch.cr3 = sregs->cr3; 5710 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5711 5712 kvm_set_cr8(vcpu, sregs->cr8); 5713 5714 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5715 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5716 kvm_set_apic_base(vcpu, sregs->apic_base); 5717 5718 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5719 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5720 vcpu->arch.cr0 = sregs->cr0; 5721 5722 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5723 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5724 if (sregs->cr4 & X86_CR4_OSXSAVE) 5725 kvm_update_cpuid(vcpu); 5726 5727 idx = srcu_read_lock(&vcpu->kvm->srcu); 5728 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5729 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5730 mmu_reset_needed = 1; 5731 } 5732 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5733 5734 if (mmu_reset_needed) 5735 kvm_mmu_reset_context(vcpu); 5736 5737 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5738 pending_vec = find_first_bit( 5739 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5740 if (pending_vec < max_bits) { 5741 kvm_queue_interrupt(vcpu, pending_vec, false); 5742 pr_debug("Set back pending irq %d\n", pending_vec); 5743 } 5744 5745 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5746 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5747 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5748 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5749 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5750 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5751 5752 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5753 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5754 5755 update_cr8_intercept(vcpu); 5756 5757 /* Older userspace won't unhalt the vcpu on reset. */ 5758 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5759 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5760 !is_protmode(vcpu)) 5761 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5762 5763 kvm_make_request(KVM_REQ_EVENT, vcpu); 5764 5765 return 0; 5766 } 5767 5768 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5769 struct kvm_guest_debug *dbg) 5770 { 5771 unsigned long rflags; 5772 int i, r; 5773 5774 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5775 r = -EBUSY; 5776 if (vcpu->arch.exception.pending) 5777 goto out; 5778 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5779 kvm_queue_exception(vcpu, DB_VECTOR); 5780 else 5781 kvm_queue_exception(vcpu, BP_VECTOR); 5782 } 5783 5784 /* 5785 * Read rflags as long as potentially injected trace flags are still 5786 * filtered out. 5787 */ 5788 rflags = kvm_get_rflags(vcpu); 5789 5790 vcpu->guest_debug = dbg->control; 5791 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5792 vcpu->guest_debug = 0; 5793 5794 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5795 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5796 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5797 vcpu->arch.switch_db_regs = 5798 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5799 } else { 5800 for (i = 0; i < KVM_NR_DB_REGS; i++) 5801 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5802 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5803 } 5804 5805 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5806 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5807 get_segment_base(vcpu, VCPU_SREG_CS); 5808 5809 /* 5810 * Trigger an rflags update that will inject or remove the trace 5811 * flags. 5812 */ 5813 kvm_set_rflags(vcpu, rflags); 5814 5815 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5816 5817 r = 0; 5818 5819 out: 5820 5821 return r; 5822 } 5823 5824 /* 5825 * Translate a guest virtual address to a guest physical address. 5826 */ 5827 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5828 struct kvm_translation *tr) 5829 { 5830 unsigned long vaddr = tr->linear_address; 5831 gpa_t gpa; 5832 int idx; 5833 5834 idx = srcu_read_lock(&vcpu->kvm->srcu); 5835 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5836 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5837 tr->physical_address = gpa; 5838 tr->valid = gpa != UNMAPPED_GVA; 5839 tr->writeable = 1; 5840 tr->usermode = 0; 5841 5842 return 0; 5843 } 5844 5845 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5846 { 5847 struct i387_fxsave_struct *fxsave = 5848 &vcpu->arch.guest_fpu.state->fxsave; 5849 5850 memcpy(fpu->fpr, fxsave->st_space, 128); 5851 fpu->fcw = fxsave->cwd; 5852 fpu->fsw = fxsave->swd; 5853 fpu->ftwx = fxsave->twd; 5854 fpu->last_opcode = fxsave->fop; 5855 fpu->last_ip = fxsave->rip; 5856 fpu->last_dp = fxsave->rdp; 5857 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5858 5859 return 0; 5860 } 5861 5862 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5863 { 5864 struct i387_fxsave_struct *fxsave = 5865 &vcpu->arch.guest_fpu.state->fxsave; 5866 5867 memcpy(fxsave->st_space, fpu->fpr, 128); 5868 fxsave->cwd = fpu->fcw; 5869 fxsave->swd = fpu->fsw; 5870 fxsave->twd = fpu->ftwx; 5871 fxsave->fop = fpu->last_opcode; 5872 fxsave->rip = fpu->last_ip; 5873 fxsave->rdp = fpu->last_dp; 5874 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5875 5876 return 0; 5877 } 5878 5879 int fx_init(struct kvm_vcpu *vcpu) 5880 { 5881 int err; 5882 5883 err = fpu_alloc(&vcpu->arch.guest_fpu); 5884 if (err) 5885 return err; 5886 5887 fpu_finit(&vcpu->arch.guest_fpu); 5888 5889 /* 5890 * Ensure guest xcr0 is valid for loading 5891 */ 5892 vcpu->arch.xcr0 = XSTATE_FP; 5893 5894 vcpu->arch.cr0 |= X86_CR0_ET; 5895 5896 return 0; 5897 } 5898 EXPORT_SYMBOL_GPL(fx_init); 5899 5900 static void fx_free(struct kvm_vcpu *vcpu) 5901 { 5902 fpu_free(&vcpu->arch.guest_fpu); 5903 } 5904 5905 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5906 { 5907 if (vcpu->guest_fpu_loaded) 5908 return; 5909 5910 /* 5911 * Restore all possible states in the guest, 5912 * and assume host would use all available bits. 5913 * Guest xcr0 would be loaded later. 5914 */ 5915 kvm_put_guest_xcr0(vcpu); 5916 vcpu->guest_fpu_loaded = 1; 5917 unlazy_fpu(current); 5918 fpu_restore_checking(&vcpu->arch.guest_fpu); 5919 trace_kvm_fpu(1); 5920 } 5921 5922 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5923 { 5924 kvm_put_guest_xcr0(vcpu); 5925 5926 if (!vcpu->guest_fpu_loaded) 5927 return; 5928 5929 vcpu->guest_fpu_loaded = 0; 5930 fpu_save_init(&vcpu->arch.guest_fpu); 5931 ++vcpu->stat.fpu_reload; 5932 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5933 trace_kvm_fpu(0); 5934 } 5935 5936 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5937 { 5938 kvmclock_reset(vcpu); 5939 5940 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5941 fx_free(vcpu); 5942 kvm_x86_ops->vcpu_free(vcpu); 5943 } 5944 5945 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 5946 unsigned int id) 5947 { 5948 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 5949 printk_once(KERN_WARNING 5950 "kvm: SMP vm created on host with unstable TSC; " 5951 "guest TSC will not be reliable\n"); 5952 return kvm_x86_ops->vcpu_create(kvm, id); 5953 } 5954 5955 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 5956 { 5957 int r; 5958 5959 vcpu->arch.mtrr_state.have_fixed = 1; 5960 vcpu_load(vcpu); 5961 r = kvm_arch_vcpu_reset(vcpu); 5962 if (r == 0) 5963 r = kvm_mmu_setup(vcpu); 5964 vcpu_put(vcpu); 5965 5966 return r; 5967 } 5968 5969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 5970 { 5971 vcpu->arch.apf.msr_val = 0; 5972 5973 vcpu_load(vcpu); 5974 kvm_mmu_unload(vcpu); 5975 vcpu_put(vcpu); 5976 5977 fx_free(vcpu); 5978 kvm_x86_ops->vcpu_free(vcpu); 5979 } 5980 5981 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 5982 { 5983 atomic_set(&vcpu->arch.nmi_queued, 0); 5984 vcpu->arch.nmi_pending = 0; 5985 vcpu->arch.nmi_injected = false; 5986 5987 vcpu->arch.switch_db_regs = 0; 5988 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 5989 vcpu->arch.dr6 = DR6_FIXED_1; 5990 vcpu->arch.dr7 = DR7_FIXED_1; 5991 5992 kvm_make_request(KVM_REQ_EVENT, vcpu); 5993 vcpu->arch.apf.msr_val = 0; 5994 vcpu->arch.st.msr_val = 0; 5995 5996 kvmclock_reset(vcpu); 5997 5998 kvm_clear_async_pf_completion_queue(vcpu); 5999 kvm_async_pf_hash_reset(vcpu); 6000 vcpu->arch.apf.halted = false; 6001 6002 kvm_pmu_reset(vcpu); 6003 6004 return kvm_x86_ops->vcpu_reset(vcpu); 6005 } 6006 6007 int kvm_arch_hardware_enable(void *garbage) 6008 { 6009 struct kvm *kvm; 6010 struct kvm_vcpu *vcpu; 6011 int i; 6012 int ret; 6013 u64 local_tsc; 6014 u64 max_tsc = 0; 6015 bool stable, backwards_tsc = false; 6016 6017 kvm_shared_msr_cpu_online(); 6018 ret = kvm_x86_ops->hardware_enable(garbage); 6019 if (ret != 0) 6020 return ret; 6021 6022 local_tsc = native_read_tsc(); 6023 stable = !check_tsc_unstable(); 6024 list_for_each_entry(kvm, &vm_list, vm_list) { 6025 kvm_for_each_vcpu(i, vcpu, kvm) { 6026 if (!stable && vcpu->cpu == smp_processor_id()) 6027 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6028 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6029 backwards_tsc = true; 6030 if (vcpu->arch.last_host_tsc > max_tsc) 6031 max_tsc = vcpu->arch.last_host_tsc; 6032 } 6033 } 6034 } 6035 6036 /* 6037 * Sometimes, even reliable TSCs go backwards. This happens on 6038 * platforms that reset TSC during suspend or hibernate actions, but 6039 * maintain synchronization. We must compensate. Fortunately, we can 6040 * detect that condition here, which happens early in CPU bringup, 6041 * before any KVM threads can be running. Unfortunately, we can't 6042 * bring the TSCs fully up to date with real time, as we aren't yet far 6043 * enough into CPU bringup that we know how much real time has actually 6044 * elapsed; our helper function, get_kernel_ns() will be using boot 6045 * variables that haven't been updated yet. 6046 * 6047 * So we simply find the maximum observed TSC above, then record the 6048 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6049 * the adjustment will be applied. Note that we accumulate 6050 * adjustments, in case multiple suspend cycles happen before some VCPU 6051 * gets a chance to run again. In the event that no KVM threads get a 6052 * chance to run, we will miss the entire elapsed period, as we'll have 6053 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6054 * loose cycle time. This isn't too big a deal, since the loss will be 6055 * uniform across all VCPUs (not to mention the scenario is extremely 6056 * unlikely). It is possible that a second hibernate recovery happens 6057 * much faster than a first, causing the observed TSC here to be 6058 * smaller; this would require additional padding adjustment, which is 6059 * why we set last_host_tsc to the local tsc observed here. 6060 * 6061 * N.B. - this code below runs only on platforms with reliable TSC, 6062 * as that is the only way backwards_tsc is set above. Also note 6063 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6064 * have the same delta_cyc adjustment applied if backwards_tsc 6065 * is detected. Note further, this adjustment is only done once, 6066 * as we reset last_host_tsc on all VCPUs to stop this from being 6067 * called multiple times (one for each physical CPU bringup). 6068 * 6069 * Platforms with unnreliable TSCs don't have to deal with this, they 6070 * will be compensated by the logic in vcpu_load, which sets the TSC to 6071 * catchup mode. This will catchup all VCPUs to real time, but cannot 6072 * guarantee that they stay in perfect synchronization. 6073 */ 6074 if (backwards_tsc) { 6075 u64 delta_cyc = max_tsc - local_tsc; 6076 list_for_each_entry(kvm, &vm_list, vm_list) { 6077 kvm_for_each_vcpu(i, vcpu, kvm) { 6078 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6079 vcpu->arch.last_host_tsc = local_tsc; 6080 } 6081 6082 /* 6083 * We have to disable TSC offset matching.. if you were 6084 * booting a VM while issuing an S4 host suspend.... 6085 * you may have some problem. Solving this issue is 6086 * left as an exercise to the reader. 6087 */ 6088 kvm->arch.last_tsc_nsec = 0; 6089 kvm->arch.last_tsc_write = 0; 6090 } 6091 6092 } 6093 return 0; 6094 } 6095 6096 void kvm_arch_hardware_disable(void *garbage) 6097 { 6098 kvm_x86_ops->hardware_disable(garbage); 6099 drop_user_return_notifiers(garbage); 6100 } 6101 6102 int kvm_arch_hardware_setup(void) 6103 { 6104 return kvm_x86_ops->hardware_setup(); 6105 } 6106 6107 void kvm_arch_hardware_unsetup(void) 6108 { 6109 kvm_x86_ops->hardware_unsetup(); 6110 } 6111 6112 void kvm_arch_check_processor_compat(void *rtn) 6113 { 6114 kvm_x86_ops->check_processor_compatibility(rtn); 6115 } 6116 6117 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6118 { 6119 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6120 } 6121 6122 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6123 { 6124 struct page *page; 6125 struct kvm *kvm; 6126 int r; 6127 6128 BUG_ON(vcpu->kvm == NULL); 6129 kvm = vcpu->kvm; 6130 6131 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6132 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6133 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6134 else 6135 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6136 6137 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6138 if (!page) { 6139 r = -ENOMEM; 6140 goto fail; 6141 } 6142 vcpu->arch.pio_data = page_address(page); 6143 6144 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6145 6146 r = kvm_mmu_create(vcpu); 6147 if (r < 0) 6148 goto fail_free_pio_data; 6149 6150 if (irqchip_in_kernel(kvm)) { 6151 r = kvm_create_lapic(vcpu); 6152 if (r < 0) 6153 goto fail_mmu_destroy; 6154 } 6155 6156 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6157 GFP_KERNEL); 6158 if (!vcpu->arch.mce_banks) { 6159 r = -ENOMEM; 6160 goto fail_free_lapic; 6161 } 6162 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6163 6164 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6165 goto fail_free_mce_banks; 6166 6167 kvm_async_pf_hash_reset(vcpu); 6168 kvm_pmu_init(vcpu); 6169 6170 return 0; 6171 fail_free_mce_banks: 6172 kfree(vcpu->arch.mce_banks); 6173 fail_free_lapic: 6174 kvm_free_lapic(vcpu); 6175 fail_mmu_destroy: 6176 kvm_mmu_destroy(vcpu); 6177 fail_free_pio_data: 6178 free_page((unsigned long)vcpu->arch.pio_data); 6179 fail: 6180 return r; 6181 } 6182 6183 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6184 { 6185 int idx; 6186 6187 kvm_pmu_destroy(vcpu); 6188 kfree(vcpu->arch.mce_banks); 6189 kvm_free_lapic(vcpu); 6190 idx = srcu_read_lock(&vcpu->kvm->srcu); 6191 kvm_mmu_destroy(vcpu); 6192 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6193 free_page((unsigned long)vcpu->arch.pio_data); 6194 } 6195 6196 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6197 { 6198 if (type) 6199 return -EINVAL; 6200 6201 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6202 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6203 6204 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6205 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6206 6207 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6208 6209 return 0; 6210 } 6211 6212 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6213 { 6214 vcpu_load(vcpu); 6215 kvm_mmu_unload(vcpu); 6216 vcpu_put(vcpu); 6217 } 6218 6219 static void kvm_free_vcpus(struct kvm *kvm) 6220 { 6221 unsigned int i; 6222 struct kvm_vcpu *vcpu; 6223 6224 /* 6225 * Unpin any mmu pages first. 6226 */ 6227 kvm_for_each_vcpu(i, vcpu, kvm) { 6228 kvm_clear_async_pf_completion_queue(vcpu); 6229 kvm_unload_vcpu_mmu(vcpu); 6230 } 6231 kvm_for_each_vcpu(i, vcpu, kvm) 6232 kvm_arch_vcpu_free(vcpu); 6233 6234 mutex_lock(&kvm->lock); 6235 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6236 kvm->vcpus[i] = NULL; 6237 6238 atomic_set(&kvm->online_vcpus, 0); 6239 mutex_unlock(&kvm->lock); 6240 } 6241 6242 void kvm_arch_sync_events(struct kvm *kvm) 6243 { 6244 kvm_free_all_assigned_devices(kvm); 6245 kvm_free_pit(kvm); 6246 } 6247 6248 void kvm_arch_destroy_vm(struct kvm *kvm) 6249 { 6250 kvm_iommu_unmap_guest(kvm); 6251 kfree(kvm->arch.vpic); 6252 kfree(kvm->arch.vioapic); 6253 kvm_free_vcpus(kvm); 6254 if (kvm->arch.apic_access_page) 6255 put_page(kvm->arch.apic_access_page); 6256 if (kvm->arch.ept_identity_pagetable) 6257 put_page(kvm->arch.ept_identity_pagetable); 6258 } 6259 6260 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6261 struct kvm_memory_slot *dont) 6262 { 6263 int i; 6264 6265 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6266 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) { 6267 vfree(free->arch.lpage_info[i]); 6268 free->arch.lpage_info[i] = NULL; 6269 } 6270 } 6271 } 6272 6273 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6274 { 6275 int i; 6276 6277 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6278 unsigned long ugfn; 6279 int lpages; 6280 int level = i + 2; 6281 6282 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6283 slot->base_gfn, level) + 1; 6284 6285 slot->arch.lpage_info[i] = 6286 vzalloc(lpages * sizeof(*slot->arch.lpage_info[i])); 6287 if (!slot->arch.lpage_info[i]) 6288 goto out_free; 6289 6290 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6291 slot->arch.lpage_info[i][0].write_count = 1; 6292 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6293 slot->arch.lpage_info[i][lpages - 1].write_count = 1; 6294 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6295 /* 6296 * If the gfn and userspace address are not aligned wrt each 6297 * other, or if explicitly asked to, disable large page 6298 * support for this slot 6299 */ 6300 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6301 !kvm_largepages_enabled()) { 6302 unsigned long j; 6303 6304 for (j = 0; j < lpages; ++j) 6305 slot->arch.lpage_info[i][j].write_count = 1; 6306 } 6307 } 6308 6309 return 0; 6310 6311 out_free: 6312 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6313 vfree(slot->arch.lpage_info[i]); 6314 slot->arch.lpage_info[i] = NULL; 6315 } 6316 return -ENOMEM; 6317 } 6318 6319 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6320 struct kvm_memory_slot *memslot, 6321 struct kvm_memory_slot old, 6322 struct kvm_userspace_memory_region *mem, 6323 int user_alloc) 6324 { 6325 int npages = memslot->npages; 6326 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6327 6328 /* Prevent internal slot pages from being moved by fork()/COW. */ 6329 if (memslot->id >= KVM_MEMORY_SLOTS) 6330 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6331 6332 /*To keep backward compatibility with older userspace, 6333 *x86 needs to hanlde !user_alloc case. 6334 */ 6335 if (!user_alloc) { 6336 if (npages && !old.rmap) { 6337 unsigned long userspace_addr; 6338 6339 userspace_addr = vm_mmap(NULL, 0, 6340 npages * PAGE_SIZE, 6341 PROT_READ | PROT_WRITE, 6342 map_flags, 6343 0); 6344 6345 if (IS_ERR((void *)userspace_addr)) 6346 return PTR_ERR((void *)userspace_addr); 6347 6348 memslot->userspace_addr = userspace_addr; 6349 } 6350 } 6351 6352 6353 return 0; 6354 } 6355 6356 void kvm_arch_commit_memory_region(struct kvm *kvm, 6357 struct kvm_userspace_memory_region *mem, 6358 struct kvm_memory_slot old, 6359 int user_alloc) 6360 { 6361 6362 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6363 6364 if (!user_alloc && !old.user_alloc && old.rmap && !npages) { 6365 int ret; 6366 6367 ret = vm_munmap(old.userspace_addr, 6368 old.npages * PAGE_SIZE); 6369 if (ret < 0) 6370 printk(KERN_WARNING 6371 "kvm_vm_ioctl_set_memory_region: " 6372 "failed to munmap memory\n"); 6373 } 6374 6375 if (!kvm->arch.n_requested_mmu_pages) 6376 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6377 6378 spin_lock(&kvm->mmu_lock); 6379 if (nr_mmu_pages) 6380 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6381 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6382 spin_unlock(&kvm->mmu_lock); 6383 } 6384 6385 void kvm_arch_flush_shadow(struct kvm *kvm) 6386 { 6387 kvm_mmu_zap_all(kvm); 6388 kvm_reload_remote_mmus(kvm); 6389 } 6390 6391 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6392 { 6393 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6394 !vcpu->arch.apf.halted) 6395 || !list_empty_careful(&vcpu->async_pf.done) 6396 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6397 || atomic_read(&vcpu->arch.nmi_queued) || 6398 (kvm_arch_interrupt_allowed(vcpu) && 6399 kvm_cpu_has_interrupt(vcpu)); 6400 } 6401 6402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 6403 { 6404 int me; 6405 int cpu = vcpu->cpu; 6406 6407 if (waitqueue_active(&vcpu->wq)) { 6408 wake_up_interruptible(&vcpu->wq); 6409 ++vcpu->stat.halt_wakeup; 6410 } 6411 6412 me = get_cpu(); 6413 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 6414 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE) 6415 smp_send_reschedule(cpu); 6416 put_cpu(); 6417 } 6418 6419 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6420 { 6421 return kvm_x86_ops->interrupt_allowed(vcpu); 6422 } 6423 6424 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6425 { 6426 unsigned long current_rip = kvm_rip_read(vcpu) + 6427 get_segment_base(vcpu, VCPU_SREG_CS); 6428 6429 return current_rip == linear_rip; 6430 } 6431 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6432 6433 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6434 { 6435 unsigned long rflags; 6436 6437 rflags = kvm_x86_ops->get_rflags(vcpu); 6438 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6439 rflags &= ~X86_EFLAGS_TF; 6440 return rflags; 6441 } 6442 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6443 6444 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6445 { 6446 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6447 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6448 rflags |= X86_EFLAGS_TF; 6449 kvm_x86_ops->set_rflags(vcpu, rflags); 6450 kvm_make_request(KVM_REQ_EVENT, vcpu); 6451 } 6452 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6453 6454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6455 { 6456 int r; 6457 6458 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6459 is_error_page(work->page)) 6460 return; 6461 6462 r = kvm_mmu_reload(vcpu); 6463 if (unlikely(r)) 6464 return; 6465 6466 if (!vcpu->arch.mmu.direct_map && 6467 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6468 return; 6469 6470 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6471 } 6472 6473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6474 { 6475 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6476 } 6477 6478 static inline u32 kvm_async_pf_next_probe(u32 key) 6479 { 6480 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6481 } 6482 6483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6484 { 6485 u32 key = kvm_async_pf_hash_fn(gfn); 6486 6487 while (vcpu->arch.apf.gfns[key] != ~0) 6488 key = kvm_async_pf_next_probe(key); 6489 6490 vcpu->arch.apf.gfns[key] = gfn; 6491 } 6492 6493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6494 { 6495 int i; 6496 u32 key = kvm_async_pf_hash_fn(gfn); 6497 6498 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6499 (vcpu->arch.apf.gfns[key] != gfn && 6500 vcpu->arch.apf.gfns[key] != ~0); i++) 6501 key = kvm_async_pf_next_probe(key); 6502 6503 return key; 6504 } 6505 6506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6507 { 6508 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6509 } 6510 6511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6512 { 6513 u32 i, j, k; 6514 6515 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6516 while (true) { 6517 vcpu->arch.apf.gfns[i] = ~0; 6518 do { 6519 j = kvm_async_pf_next_probe(j); 6520 if (vcpu->arch.apf.gfns[j] == ~0) 6521 return; 6522 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6523 /* 6524 * k lies cyclically in ]i,j] 6525 * | i.k.j | 6526 * |....j i.k.| or |.k..j i...| 6527 */ 6528 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6529 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6530 i = j; 6531 } 6532 } 6533 6534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6535 { 6536 6537 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6538 sizeof(val)); 6539 } 6540 6541 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6542 struct kvm_async_pf *work) 6543 { 6544 struct x86_exception fault; 6545 6546 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6547 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6548 6549 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6550 (vcpu->arch.apf.send_user_only && 6551 kvm_x86_ops->get_cpl(vcpu) == 0)) 6552 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6553 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6554 fault.vector = PF_VECTOR; 6555 fault.error_code_valid = true; 6556 fault.error_code = 0; 6557 fault.nested_page_fault = false; 6558 fault.address = work->arch.token; 6559 kvm_inject_page_fault(vcpu, &fault); 6560 } 6561 } 6562 6563 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6564 struct kvm_async_pf *work) 6565 { 6566 struct x86_exception fault; 6567 6568 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6569 if (is_error_page(work->page)) 6570 work->arch.token = ~0; /* broadcast wakeup */ 6571 else 6572 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6573 6574 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6575 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6576 fault.vector = PF_VECTOR; 6577 fault.error_code_valid = true; 6578 fault.error_code = 0; 6579 fault.nested_page_fault = false; 6580 fault.address = work->arch.token; 6581 kvm_inject_page_fault(vcpu, &fault); 6582 } 6583 vcpu->arch.apf.halted = false; 6584 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6585 } 6586 6587 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6588 { 6589 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6590 return true; 6591 else 6592 return !kvm_event_needs_reinjection(vcpu) && 6593 kvm_x86_ops->interrupt_allowed(vcpu); 6594 } 6595 6596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6608