xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149 
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153 
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156 
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159 
160 #define KVM_NR_SHARED_MSRS 16
161 
162 struct kvm_shared_msrs_global {
163 	int nr;
164 	u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166 
167 struct kvm_shared_msrs {
168 	struct user_return_notifier urn;
169 	bool registered;
170 	struct kvm_shared_msr_values {
171 		u64 host;
172 		u64 curr;
173 	} values[KVM_NR_SHARED_MSRS];
174 };
175 
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178 
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
181 	{ "pf_guest", VCPU_STAT(pf_guest) },
182 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
183 	{ "invlpg", VCPU_STAT(invlpg) },
184 	{ "exits", VCPU_STAT(exits) },
185 	{ "io_exits", VCPU_STAT(io_exits) },
186 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
187 	{ "signal_exits", VCPU_STAT(signal_exits) },
188 	{ "irq_window", VCPU_STAT(irq_window_exits) },
189 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
190 	{ "halt_exits", VCPU_STAT(halt_exits) },
191 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
195 	{ "hypercalls", VCPU_STAT(hypercalls) },
196 	{ "request_irq", VCPU_STAT(request_irq_exits) },
197 	{ "irq_exits", VCPU_STAT(irq_exits) },
198 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
199 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
200 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
201 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202 	{ "irq_injections", VCPU_STAT(irq_injections) },
203 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
204 	{ "req_event", VCPU_STAT(req_event) },
205 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
206 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
208 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
211 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
212 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
214 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215 	{ "largepages", VM_STAT(lpages) },
216 	{ "max_mmu_page_hash_collisions",
217 		VM_STAT(max_mmu_page_hash_collisions) },
218 	{ NULL }
219 };
220 
221 u64 __read_mostly host_xcr0;
222 
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225 
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227 
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230 	int i;
231 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232 		vcpu->arch.apf.gfns[i] = ~0;
233 }
234 
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237 	unsigned slot;
238 	struct kvm_shared_msrs *locals
239 		= container_of(urn, struct kvm_shared_msrs, urn);
240 	struct kvm_shared_msr_values *values;
241 	unsigned long flags;
242 
243 	/*
244 	 * Disabling irqs at this point since the following code could be
245 	 * interrupted and executed through kvm_arch_hardware_disable()
246 	 */
247 	local_irq_save(flags);
248 	if (locals->registered) {
249 		locals->registered = false;
250 		user_return_notifier_unregister(urn);
251 	}
252 	local_irq_restore(flags);
253 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254 		values = &locals->values[slot];
255 		if (values->host != values->curr) {
256 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
257 			values->curr = values->host;
258 		}
259 	}
260 }
261 
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264 	u64 value;
265 	unsigned int cpu = smp_processor_id();
266 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267 
268 	/* only read, and nobody should modify it at this time,
269 	 * so don't need lock */
270 	if (slot >= shared_msrs_global.nr) {
271 		printk(KERN_ERR "kvm: invalid MSR slot!");
272 		return;
273 	}
274 	rdmsrl_safe(msr, &value);
275 	smsr->values[slot].host = value;
276 	smsr->values[slot].curr = value;
277 }
278 
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282 	shared_msrs_global.msrs[slot] = msr;
283 	if (slot >= shared_msrs_global.nr)
284 		shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287 
288 static void kvm_shared_msr_cpu_online(void)
289 {
290 	unsigned i;
291 
292 	for (i = 0; i < shared_msrs_global.nr; ++i)
293 		shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295 
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 	int err;
301 
302 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
303 		return 0;
304 	smsr->values[slot].curr = value;
305 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306 	if (err)
307 		return 1;
308 
309 	if (!smsr->registered) {
310 		smsr->urn.on_user_return = kvm_on_user_return;
311 		user_return_notifier_register(&smsr->urn);
312 		smsr->registered = true;
313 	}
314 	return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317 
318 static void drop_user_return_notifiers(void)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 
323 	if (smsr->registered)
324 		kvm_on_user_return(&smsr->urn);
325 }
326 
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329 	return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332 
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338 
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345 
346 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347 		return 1;
348 	if (!msr_info->host_initiated) {
349 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350 			return 1;
351 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352 			return 1;
353 	}
354 
355 	kvm_lapic_set_base(vcpu, msr_info->data);
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359 
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362 	/* Fault while not rebooting.  We want the trace. */
363 	BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366 
367 #define EXCPT_BENIGN		0
368 #define EXCPT_CONTRIBUTORY	1
369 #define EXCPT_PF		2
370 
371 static int exception_class(int vector)
372 {
373 	switch (vector) {
374 	case PF_VECTOR:
375 		return EXCPT_PF;
376 	case DE_VECTOR:
377 	case TS_VECTOR:
378 	case NP_VECTOR:
379 	case SS_VECTOR:
380 	case GP_VECTOR:
381 		return EXCPT_CONTRIBUTORY;
382 	default:
383 		break;
384 	}
385 	return EXCPT_BENIGN;
386 }
387 
388 #define EXCPT_FAULT		0
389 #define EXCPT_TRAP		1
390 #define EXCPT_ABORT		2
391 #define EXCPT_INTERRUPT		3
392 
393 static int exception_type(int vector)
394 {
395 	unsigned int mask;
396 
397 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398 		return EXCPT_INTERRUPT;
399 
400 	mask = 1 << vector;
401 
402 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
403 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404 		return EXCPT_TRAP;
405 
406 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407 		return EXCPT_ABORT;
408 
409 	/* Reserved exceptions will result in fault */
410 	return EXCPT_FAULT;
411 }
412 
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415 	unsigned nr = vcpu->arch.exception.nr;
416 	bool has_payload = vcpu->arch.exception.has_payload;
417 	unsigned long payload = vcpu->arch.exception.payload;
418 
419 	if (!has_payload)
420 		return;
421 
422 	switch (nr) {
423 	case DB_VECTOR:
424 		/*
425 		 * "Certain debug exceptions may clear bit 0-3.  The
426 		 * remaining contents of the DR6 register are never
427 		 * cleared by the processor".
428 		 */
429 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430 		/*
431 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
432 		 */
433 		vcpu->arch.dr6 |= DR6_RTM;
434 		vcpu->arch.dr6 |= payload;
435 		/*
436 		 * Bit 16 should be set in the payload whenever the #DB
437 		 * exception should clear DR6.RTM. This makes the payload
438 		 * compatible with the pending debug exceptions under VMX.
439 		 * Though not currently documented in the SDM, this also
440 		 * makes the payload compatible with the exit qualification
441 		 * for #DB exceptions under VMX.
442 		 */
443 		vcpu->arch.dr6 ^= payload & DR6_RTM;
444 		break;
445 	case PF_VECTOR:
446 		vcpu->arch.cr2 = payload;
447 		break;
448 	}
449 
450 	vcpu->arch.exception.has_payload = false;
451 	vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454 
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456 		unsigned nr, bool has_error, u32 error_code,
457 	        bool has_payload, unsigned long payload, bool reinject)
458 {
459 	u32 prev_nr;
460 	int class1, class2;
461 
462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
463 
464 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465 	queue:
466 		if (has_error && !is_protmode(vcpu))
467 			has_error = false;
468 		if (reinject) {
469 			/*
470 			 * On vmentry, vcpu->arch.exception.pending is only
471 			 * true if an event injection was blocked by
472 			 * nested_run_pending.  In that case, however,
473 			 * vcpu_enter_guest requests an immediate exit,
474 			 * and the guest shouldn't proceed far enough to
475 			 * need reinjection.
476 			 */
477 			WARN_ON_ONCE(vcpu->arch.exception.pending);
478 			vcpu->arch.exception.injected = true;
479 			if (WARN_ON_ONCE(has_payload)) {
480 				/*
481 				 * A reinjected event has already
482 				 * delivered its payload.
483 				 */
484 				has_payload = false;
485 				payload = 0;
486 			}
487 		} else {
488 			vcpu->arch.exception.pending = true;
489 			vcpu->arch.exception.injected = false;
490 		}
491 		vcpu->arch.exception.has_error_code = has_error;
492 		vcpu->arch.exception.nr = nr;
493 		vcpu->arch.exception.error_code = error_code;
494 		vcpu->arch.exception.has_payload = has_payload;
495 		vcpu->arch.exception.payload = payload;
496 		/*
497 		 * In guest mode, payload delivery should be deferred,
498 		 * so that the L1 hypervisor can intercept #PF before
499 		 * CR2 is modified (or intercept #DB before DR6 is
500 		 * modified under nVMX).  However, for ABI
501 		 * compatibility with KVM_GET_VCPU_EVENTS and
502 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
503 		 * delivery unless userspace has enabled this
504 		 * functionality via the per-VM capability,
505 		 * KVM_CAP_EXCEPTION_PAYLOAD.
506 		 */
507 		if (!vcpu->kvm->arch.exception_payload_enabled ||
508 		    !is_guest_mode(vcpu))
509 			kvm_deliver_exception_payload(vcpu);
510 		return;
511 	}
512 
513 	/* to check exception */
514 	prev_nr = vcpu->arch.exception.nr;
515 	if (prev_nr == DF_VECTOR) {
516 		/* triple fault -> shutdown */
517 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518 		return;
519 	}
520 	class1 = exception_class(prev_nr);
521 	class2 = exception_class(nr);
522 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524 		/*
525 		 * Generate double fault per SDM Table 5-5.  Set
526 		 * exception.pending = true so that the double fault
527 		 * can trigger a nested vmexit.
528 		 */
529 		vcpu->arch.exception.pending = true;
530 		vcpu->arch.exception.injected = false;
531 		vcpu->arch.exception.has_error_code = true;
532 		vcpu->arch.exception.nr = DF_VECTOR;
533 		vcpu->arch.exception.error_code = 0;
534 		vcpu->arch.exception.has_payload = false;
535 		vcpu->arch.exception.payload = 0;
536 	} else
537 		/* replace previous exception with a new one in a hope
538 		   that instruction re-execution will regenerate lost
539 		   exception */
540 		goto queue;
541 }
542 
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548 
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554 
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556 				  unsigned long payload)
557 {
558 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560 
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562 				    u32 error_code, unsigned long payload)
563 {
564 	kvm_multiple_exception(vcpu, nr, true, error_code,
565 			       true, payload, false);
566 }
567 
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570 	if (err)
571 		kvm_inject_gp(vcpu, 0);
572 	else
573 		return kvm_skip_emulated_instruction(vcpu);
574 
575 	return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578 
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581 	++vcpu->stat.pf_guest;
582 	vcpu->arch.exception.nested_apf =
583 		is_guest_mode(vcpu) && fault->async_page_fault;
584 	if (vcpu->arch.exception.nested_apf) {
585 		vcpu->arch.apf.nested_apf_token = fault->address;
586 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587 	} else {
588 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589 					fault->address);
590 	}
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593 
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598 	else
599 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600 
601 	return fault->nested_page_fault;
602 }
603 
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606 	atomic_inc(&vcpu->arch.nmi_queued);
607 	kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610 
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616 
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622 
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630 		return true;
631 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632 	return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635 
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639 		return true;
640 
641 	kvm_queue_exception(vcpu, UD_VECTOR);
642 	return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645 
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652 			    gfn_t ngfn, void *data, int offset, int len,
653 			    u32 access)
654 {
655 	struct x86_exception exception;
656 	gfn_t real_gfn;
657 	gpa_t ngpa;
658 
659 	ngpa     = gfn_to_gpa(ngfn);
660 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661 	if (real_gfn == UNMAPPED_GVA)
662 		return -EFAULT;
663 
664 	real_gfn = gpa_to_gfn(real_gfn);
665 
666 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669 
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671 			       void *data, int offset, int len, u32 access)
672 {
673 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674 				       data, offset, len, access);
675 }
676 
677 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
678 {
679 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
680 	       rsvd_bits(1, 2);
681 }
682 
683 /*
684  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
685  */
686 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
687 {
688 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
689 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
690 	int i;
691 	int ret;
692 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
693 
694 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
695 				      offset * sizeof(u64), sizeof(pdpte),
696 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
697 	if (ret < 0) {
698 		ret = 0;
699 		goto out;
700 	}
701 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
702 		if ((pdpte[i] & PT_PRESENT_MASK) &&
703 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
704 			ret = 0;
705 			goto out;
706 		}
707 	}
708 	ret = 1;
709 
710 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
711 	__set_bit(VCPU_EXREG_PDPTR,
712 		  (unsigned long *)&vcpu->arch.regs_avail);
713 	__set_bit(VCPU_EXREG_PDPTR,
714 		  (unsigned long *)&vcpu->arch.regs_dirty);
715 out:
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(load_pdptrs);
720 
721 bool pdptrs_changed(struct kvm_vcpu *vcpu)
722 {
723 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
724 	bool changed = true;
725 	int offset;
726 	gfn_t gfn;
727 	int r;
728 
729 	if (!is_pae_paging(vcpu))
730 		return false;
731 
732 	if (!test_bit(VCPU_EXREG_PDPTR,
733 		      (unsigned long *)&vcpu->arch.regs_avail))
734 		return true;
735 
736 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
737 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
738 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
739 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
740 	if (r < 0)
741 		goto out;
742 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
743 out:
744 
745 	return changed;
746 }
747 EXPORT_SYMBOL_GPL(pdptrs_changed);
748 
749 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
750 {
751 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
752 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
753 
754 	cr0 |= X86_CR0_ET;
755 
756 #ifdef CONFIG_X86_64
757 	if (cr0 & 0xffffffff00000000UL)
758 		return 1;
759 #endif
760 
761 	cr0 &= ~CR0_RESERVED_BITS;
762 
763 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
764 		return 1;
765 
766 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
767 		return 1;
768 
769 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
770 #ifdef CONFIG_X86_64
771 		if ((vcpu->arch.efer & EFER_LME)) {
772 			int cs_db, cs_l;
773 
774 			if (!is_pae(vcpu))
775 				return 1;
776 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
777 			if (cs_l)
778 				return 1;
779 		} else
780 #endif
781 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
782 						 kvm_read_cr3(vcpu)))
783 			return 1;
784 	}
785 
786 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
787 		return 1;
788 
789 	kvm_x86_ops->set_cr0(vcpu, cr0);
790 
791 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
792 		kvm_clear_async_pf_completion_queue(vcpu);
793 		kvm_async_pf_hash_reset(vcpu);
794 	}
795 
796 	if ((cr0 ^ old_cr0) & update_bits)
797 		kvm_mmu_reset_context(vcpu);
798 
799 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
800 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
801 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
802 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(kvm_set_cr0);
807 
808 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
809 {
810 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
811 }
812 EXPORT_SYMBOL_GPL(kvm_lmsw);
813 
814 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
815 {
816 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
817 			!vcpu->guest_xcr0_loaded) {
818 		/* kvm_set_xcr() also depends on this */
819 		if (vcpu->arch.xcr0 != host_xcr0)
820 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
821 		vcpu->guest_xcr0_loaded = 1;
822 	}
823 }
824 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
825 
826 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
827 {
828 	if (vcpu->guest_xcr0_loaded) {
829 		if (vcpu->arch.xcr0 != host_xcr0)
830 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
831 		vcpu->guest_xcr0_loaded = 0;
832 	}
833 }
834 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
835 
836 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
837 {
838 	u64 xcr0 = xcr;
839 	u64 old_xcr0 = vcpu->arch.xcr0;
840 	u64 valid_bits;
841 
842 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
843 	if (index != XCR_XFEATURE_ENABLED_MASK)
844 		return 1;
845 	if (!(xcr0 & XFEATURE_MASK_FP))
846 		return 1;
847 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
848 		return 1;
849 
850 	/*
851 	 * Do not allow the guest to set bits that we do not support
852 	 * saving.  However, xcr0 bit 0 is always set, even if the
853 	 * emulated CPU does not support XSAVE (see fx_init).
854 	 */
855 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
856 	if (xcr0 & ~valid_bits)
857 		return 1;
858 
859 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
860 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
861 		return 1;
862 
863 	if (xcr0 & XFEATURE_MASK_AVX512) {
864 		if (!(xcr0 & XFEATURE_MASK_YMM))
865 			return 1;
866 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
867 			return 1;
868 	}
869 	vcpu->arch.xcr0 = xcr0;
870 
871 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
872 		kvm_update_cpuid(vcpu);
873 	return 0;
874 }
875 
876 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
877 {
878 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
879 	    __kvm_set_xcr(vcpu, index, xcr)) {
880 		kvm_inject_gp(vcpu, 0);
881 		return 1;
882 	}
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_xcr);
886 
887 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
888 {
889 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
890 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
891 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
892 
893 	if (cr4 & CR4_RESERVED_BITS)
894 		return 1;
895 
896 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
897 		return 1;
898 
899 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
900 		return 1;
901 
902 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
903 		return 1;
904 
905 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
906 		return 1;
907 
908 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
909 		return 1;
910 
911 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
912 		return 1;
913 
914 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
915 		return 1;
916 
917 	if (is_long_mode(vcpu)) {
918 		if (!(cr4 & X86_CR4_PAE))
919 			return 1;
920 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
921 		   && ((cr4 ^ old_cr4) & pdptr_bits)
922 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
923 				   kvm_read_cr3(vcpu)))
924 		return 1;
925 
926 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
927 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
928 			return 1;
929 
930 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
931 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
932 			return 1;
933 	}
934 
935 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
936 		return 1;
937 
938 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
939 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
940 		kvm_mmu_reset_context(vcpu);
941 
942 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
943 		kvm_update_cpuid(vcpu);
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(kvm_set_cr4);
948 
949 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
950 {
951 	bool skip_tlb_flush = false;
952 #ifdef CONFIG_X86_64
953 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
954 
955 	if (pcid_enabled) {
956 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
957 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
958 	}
959 #endif
960 
961 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
962 		if (!skip_tlb_flush) {
963 			kvm_mmu_sync_roots(vcpu);
964 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
965 		}
966 		return 0;
967 	}
968 
969 	if (is_long_mode(vcpu) &&
970 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
971 		return 1;
972 	else if (is_pae_paging(vcpu) &&
973 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
974 		return 1;
975 
976 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
977 	vcpu->arch.cr3 = cr3;
978 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
979 
980 	return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_set_cr3);
983 
984 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
985 {
986 	if (cr8 & CR8_RESERVED_BITS)
987 		return 1;
988 	if (lapic_in_kernel(vcpu))
989 		kvm_lapic_set_tpr(vcpu, cr8);
990 	else
991 		vcpu->arch.cr8 = cr8;
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_cr8);
995 
996 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
997 {
998 	if (lapic_in_kernel(vcpu))
999 		return kvm_lapic_get_cr8(vcpu);
1000 	else
1001 		return vcpu->arch.cr8;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1004 
1005 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1006 {
1007 	int i;
1008 
1009 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1010 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1011 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1012 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1013 	}
1014 }
1015 
1016 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1017 {
1018 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1019 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1020 }
1021 
1022 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1023 {
1024 	unsigned long dr7;
1025 
1026 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1027 		dr7 = vcpu->arch.guest_debug_dr7;
1028 	else
1029 		dr7 = vcpu->arch.dr7;
1030 	kvm_x86_ops->set_dr7(vcpu, dr7);
1031 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1032 	if (dr7 & DR7_BP_EN_MASK)
1033 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1034 }
1035 
1036 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1037 {
1038 	u64 fixed = DR6_FIXED_1;
1039 
1040 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1041 		fixed |= DR6_RTM;
1042 	return fixed;
1043 }
1044 
1045 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1046 {
1047 	switch (dr) {
1048 	case 0 ... 3:
1049 		vcpu->arch.db[dr] = val;
1050 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1051 			vcpu->arch.eff_db[dr] = val;
1052 		break;
1053 	case 4:
1054 		/* fall through */
1055 	case 6:
1056 		if (val & 0xffffffff00000000ULL)
1057 			return -1; /* #GP */
1058 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1059 		kvm_update_dr6(vcpu);
1060 		break;
1061 	case 5:
1062 		/* fall through */
1063 	default: /* 7 */
1064 		if (val & 0xffffffff00000000ULL)
1065 			return -1; /* #GP */
1066 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1067 		kvm_update_dr7(vcpu);
1068 		break;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1075 {
1076 	if (__kvm_set_dr(vcpu, dr, val)) {
1077 		kvm_inject_gp(vcpu, 0);
1078 		return 1;
1079 	}
1080 	return 0;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_set_dr);
1083 
1084 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1085 {
1086 	switch (dr) {
1087 	case 0 ... 3:
1088 		*val = vcpu->arch.db[dr];
1089 		break;
1090 	case 4:
1091 		/* fall through */
1092 	case 6:
1093 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1094 			*val = vcpu->arch.dr6;
1095 		else
1096 			*val = kvm_x86_ops->get_dr6(vcpu);
1097 		break;
1098 	case 5:
1099 		/* fall through */
1100 	default: /* 7 */
1101 		*val = vcpu->arch.dr7;
1102 		break;
1103 	}
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_get_dr);
1107 
1108 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1109 {
1110 	u32 ecx = kvm_rcx_read(vcpu);
1111 	u64 data;
1112 	int err;
1113 
1114 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1115 	if (err)
1116 		return err;
1117 	kvm_rax_write(vcpu, (u32)data);
1118 	kvm_rdx_write(vcpu, data >> 32);
1119 	return err;
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1122 
1123 /*
1124  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1125  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1126  *
1127  * This list is modified at module load time to reflect the
1128  * capabilities of the host cpu. This capabilities test skips MSRs that are
1129  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1130  * may depend on host virtualization features rather than host cpu features.
1131  */
1132 
1133 static u32 msrs_to_save[] = {
1134 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1135 	MSR_STAR,
1136 #ifdef CONFIG_X86_64
1137 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1138 #endif
1139 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1140 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1141 	MSR_IA32_SPEC_CTRL,
1142 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1143 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1144 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1145 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1146 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1147 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1148 };
1149 
1150 static unsigned num_msrs_to_save;
1151 
1152 static u32 emulated_msrs[] = {
1153 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1154 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1155 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1156 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1157 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1158 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1159 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1160 	HV_X64_MSR_RESET,
1161 	HV_X64_MSR_VP_INDEX,
1162 	HV_X64_MSR_VP_RUNTIME,
1163 	HV_X64_MSR_SCONTROL,
1164 	HV_X64_MSR_STIMER0_CONFIG,
1165 	HV_X64_MSR_VP_ASSIST_PAGE,
1166 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1167 	HV_X64_MSR_TSC_EMULATION_STATUS,
1168 
1169 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1170 	MSR_KVM_PV_EOI_EN,
1171 
1172 	MSR_IA32_TSC_ADJUST,
1173 	MSR_IA32_TSCDEADLINE,
1174 	MSR_IA32_ARCH_CAPABILITIES,
1175 	MSR_IA32_MISC_ENABLE,
1176 	MSR_IA32_MCG_STATUS,
1177 	MSR_IA32_MCG_CTL,
1178 	MSR_IA32_MCG_EXT_CTL,
1179 	MSR_IA32_SMBASE,
1180 	MSR_SMI_COUNT,
1181 	MSR_PLATFORM_INFO,
1182 	MSR_MISC_FEATURES_ENABLES,
1183 	MSR_AMD64_VIRT_SPEC_CTRL,
1184 	MSR_IA32_POWER_CTL,
1185 
1186 	/*
1187 	 * The following list leaves out MSRs whose values are determined
1188 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1189 	 * We always support the "true" VMX control MSRs, even if the host
1190 	 * processor does not, so I am putting these registers here rather
1191 	 * than in msrs_to_save.
1192 	 */
1193 	MSR_IA32_VMX_BASIC,
1194 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1195 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1196 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1197 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1198 	MSR_IA32_VMX_MISC,
1199 	MSR_IA32_VMX_CR0_FIXED0,
1200 	MSR_IA32_VMX_CR4_FIXED0,
1201 	MSR_IA32_VMX_VMCS_ENUM,
1202 	MSR_IA32_VMX_PROCBASED_CTLS2,
1203 	MSR_IA32_VMX_EPT_VPID_CAP,
1204 	MSR_IA32_VMX_VMFUNC,
1205 
1206 	MSR_K7_HWCR,
1207 	MSR_KVM_POLL_CONTROL,
1208 };
1209 
1210 static unsigned num_emulated_msrs;
1211 
1212 /*
1213  * List of msr numbers which are used to expose MSR-based features that
1214  * can be used by a hypervisor to validate requested CPU features.
1215  */
1216 static u32 msr_based_features[] = {
1217 	MSR_IA32_VMX_BASIC,
1218 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1219 	MSR_IA32_VMX_PINBASED_CTLS,
1220 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1221 	MSR_IA32_VMX_PROCBASED_CTLS,
1222 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1223 	MSR_IA32_VMX_EXIT_CTLS,
1224 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1225 	MSR_IA32_VMX_ENTRY_CTLS,
1226 	MSR_IA32_VMX_MISC,
1227 	MSR_IA32_VMX_CR0_FIXED0,
1228 	MSR_IA32_VMX_CR0_FIXED1,
1229 	MSR_IA32_VMX_CR4_FIXED0,
1230 	MSR_IA32_VMX_CR4_FIXED1,
1231 	MSR_IA32_VMX_VMCS_ENUM,
1232 	MSR_IA32_VMX_PROCBASED_CTLS2,
1233 	MSR_IA32_VMX_EPT_VPID_CAP,
1234 	MSR_IA32_VMX_VMFUNC,
1235 
1236 	MSR_F10H_DECFG,
1237 	MSR_IA32_UCODE_REV,
1238 	MSR_IA32_ARCH_CAPABILITIES,
1239 };
1240 
1241 static unsigned int num_msr_based_features;
1242 
1243 static u64 kvm_get_arch_capabilities(void)
1244 {
1245 	u64 data = 0;
1246 
1247 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1248 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1249 
1250 	/*
1251 	 * If we're doing cache flushes (either "always" or "cond")
1252 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1253 	 * If an outer hypervisor is doing the cache flush for us
1254 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1255 	 * capability to the guest too, and if EPT is disabled we're not
1256 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1257 	 * require a nested hypervisor to do a flush of its own.
1258 	 */
1259 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1260 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1261 
1262 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1263 		data |= ARCH_CAP_RDCL_NO;
1264 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1265 		data |= ARCH_CAP_SSB_NO;
1266 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1267 		data |= ARCH_CAP_MDS_NO;
1268 
1269 	return data;
1270 }
1271 
1272 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1273 {
1274 	switch (msr->index) {
1275 	case MSR_IA32_ARCH_CAPABILITIES:
1276 		msr->data = kvm_get_arch_capabilities();
1277 		break;
1278 	case MSR_IA32_UCODE_REV:
1279 		rdmsrl_safe(msr->index, &msr->data);
1280 		break;
1281 	default:
1282 		if (kvm_x86_ops->get_msr_feature(msr))
1283 			return 1;
1284 	}
1285 	return 0;
1286 }
1287 
1288 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1289 {
1290 	struct kvm_msr_entry msr;
1291 	int r;
1292 
1293 	msr.index = index;
1294 	r = kvm_get_msr_feature(&msr);
1295 	if (r)
1296 		return r;
1297 
1298 	*data = msr.data;
1299 
1300 	return 0;
1301 }
1302 
1303 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1304 {
1305 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1306 		return false;
1307 
1308 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1309 		return false;
1310 
1311 	if (efer & (EFER_LME | EFER_LMA) &&
1312 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1313 		return false;
1314 
1315 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1316 		return false;
1317 
1318 	return true;
1319 
1320 }
1321 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1322 {
1323 	if (efer & efer_reserved_bits)
1324 		return false;
1325 
1326 	return __kvm_valid_efer(vcpu, efer);
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1329 
1330 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1331 {
1332 	u64 old_efer = vcpu->arch.efer;
1333 	u64 efer = msr_info->data;
1334 
1335 	if (efer & efer_reserved_bits)
1336 		return 1;
1337 
1338 	if (!msr_info->host_initiated) {
1339 		if (!__kvm_valid_efer(vcpu, efer))
1340 			return 1;
1341 
1342 		if (is_paging(vcpu) &&
1343 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1344 			return 1;
1345 	}
1346 
1347 	efer &= ~EFER_LMA;
1348 	efer |= vcpu->arch.efer & EFER_LMA;
1349 
1350 	kvm_x86_ops->set_efer(vcpu, efer);
1351 
1352 	/* Update reserved bits */
1353 	if ((efer ^ old_efer) & EFER_NX)
1354 		kvm_mmu_reset_context(vcpu);
1355 
1356 	return 0;
1357 }
1358 
1359 void kvm_enable_efer_bits(u64 mask)
1360 {
1361        efer_reserved_bits &= ~mask;
1362 }
1363 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1364 
1365 /*
1366  * Write @data into the MSR specified by @index.  Select MSR specific fault
1367  * checks are bypassed if @host_initiated is %true.
1368  * Returns 0 on success, non-0 otherwise.
1369  * Assumes vcpu_load() was already called.
1370  */
1371 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1372 			 bool host_initiated)
1373 {
1374 	struct msr_data msr;
1375 
1376 	switch (index) {
1377 	case MSR_FS_BASE:
1378 	case MSR_GS_BASE:
1379 	case MSR_KERNEL_GS_BASE:
1380 	case MSR_CSTAR:
1381 	case MSR_LSTAR:
1382 		if (is_noncanonical_address(data, vcpu))
1383 			return 1;
1384 		break;
1385 	case MSR_IA32_SYSENTER_EIP:
1386 	case MSR_IA32_SYSENTER_ESP:
1387 		/*
1388 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1389 		 * non-canonical address is written on Intel but not on
1390 		 * AMD (which ignores the top 32-bits, because it does
1391 		 * not implement 64-bit SYSENTER).
1392 		 *
1393 		 * 64-bit code should hence be able to write a non-canonical
1394 		 * value on AMD.  Making the address canonical ensures that
1395 		 * vmentry does not fail on Intel after writing a non-canonical
1396 		 * value, and that something deterministic happens if the guest
1397 		 * invokes 64-bit SYSENTER.
1398 		 */
1399 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1400 	}
1401 
1402 	msr.data = data;
1403 	msr.index = index;
1404 	msr.host_initiated = host_initiated;
1405 
1406 	return kvm_x86_ops->set_msr(vcpu, &msr);
1407 }
1408 
1409 /*
1410  * Read the MSR specified by @index into @data.  Select MSR specific fault
1411  * checks are bypassed if @host_initiated is %true.
1412  * Returns 0 on success, non-0 otherwise.
1413  * Assumes vcpu_load() was already called.
1414  */
1415 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1416 			 bool host_initiated)
1417 {
1418 	struct msr_data msr;
1419 	int ret;
1420 
1421 	msr.index = index;
1422 	msr.host_initiated = host_initiated;
1423 
1424 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1425 	if (!ret)
1426 		*data = msr.data;
1427 	return ret;
1428 }
1429 
1430 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1431 {
1432 	return __kvm_get_msr(vcpu, index, data, false);
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_get_msr);
1435 
1436 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1437 {
1438 	return __kvm_set_msr(vcpu, index, data, false);
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_set_msr);
1441 
1442 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1443 {
1444 	u32 ecx = kvm_rcx_read(vcpu);
1445 	u64 data;
1446 
1447 	if (kvm_get_msr(vcpu, ecx, &data)) {
1448 		trace_kvm_msr_read_ex(ecx);
1449 		kvm_inject_gp(vcpu, 0);
1450 		return 1;
1451 	}
1452 
1453 	trace_kvm_msr_read(ecx, data);
1454 
1455 	kvm_rax_write(vcpu, data & -1u);
1456 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1457 	return kvm_skip_emulated_instruction(vcpu);
1458 }
1459 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1460 
1461 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1462 {
1463 	u32 ecx = kvm_rcx_read(vcpu);
1464 	u64 data = kvm_read_edx_eax(vcpu);
1465 
1466 	if (kvm_set_msr(vcpu, ecx, data)) {
1467 		trace_kvm_msr_write_ex(ecx, data);
1468 		kvm_inject_gp(vcpu, 0);
1469 		return 1;
1470 	}
1471 
1472 	trace_kvm_msr_write(ecx, data);
1473 	return kvm_skip_emulated_instruction(vcpu);
1474 }
1475 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1476 
1477 /*
1478  * Adapt set_msr() to msr_io()'s calling convention
1479  */
1480 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1481 {
1482 	return __kvm_get_msr(vcpu, index, data, true);
1483 }
1484 
1485 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1486 {
1487 	return __kvm_set_msr(vcpu, index, *data, true);
1488 }
1489 
1490 #ifdef CONFIG_X86_64
1491 struct pvclock_gtod_data {
1492 	seqcount_t	seq;
1493 
1494 	struct { /* extract of a clocksource struct */
1495 		int vclock_mode;
1496 		u64	cycle_last;
1497 		u64	mask;
1498 		u32	mult;
1499 		u32	shift;
1500 	} clock;
1501 
1502 	u64		boot_ns;
1503 	u64		nsec_base;
1504 	u64		wall_time_sec;
1505 };
1506 
1507 static struct pvclock_gtod_data pvclock_gtod_data;
1508 
1509 static void update_pvclock_gtod(struct timekeeper *tk)
1510 {
1511 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1512 	u64 boot_ns;
1513 
1514 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1515 
1516 	write_seqcount_begin(&vdata->seq);
1517 
1518 	/* copy pvclock gtod data */
1519 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1520 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1521 	vdata->clock.mask		= tk->tkr_mono.mask;
1522 	vdata->clock.mult		= tk->tkr_mono.mult;
1523 	vdata->clock.shift		= tk->tkr_mono.shift;
1524 
1525 	vdata->boot_ns			= boot_ns;
1526 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1527 
1528 	vdata->wall_time_sec            = tk->xtime_sec;
1529 
1530 	write_seqcount_end(&vdata->seq);
1531 }
1532 #endif
1533 
1534 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1535 {
1536 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1537 	kvm_vcpu_kick(vcpu);
1538 }
1539 
1540 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1541 {
1542 	int version;
1543 	int r;
1544 	struct pvclock_wall_clock wc;
1545 	struct timespec64 boot;
1546 
1547 	if (!wall_clock)
1548 		return;
1549 
1550 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1551 	if (r)
1552 		return;
1553 
1554 	if (version & 1)
1555 		++version;  /* first time write, random junk */
1556 
1557 	++version;
1558 
1559 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1560 		return;
1561 
1562 	/*
1563 	 * The guest calculates current wall clock time by adding
1564 	 * system time (updated by kvm_guest_time_update below) to the
1565 	 * wall clock specified here.  guest system time equals host
1566 	 * system time for us, thus we must fill in host boot time here.
1567 	 */
1568 	getboottime64(&boot);
1569 
1570 	if (kvm->arch.kvmclock_offset) {
1571 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1572 		boot = timespec64_sub(boot, ts);
1573 	}
1574 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1575 	wc.nsec = boot.tv_nsec;
1576 	wc.version = version;
1577 
1578 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1579 
1580 	version++;
1581 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1582 }
1583 
1584 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1585 {
1586 	do_shl32_div32(dividend, divisor);
1587 	return dividend;
1588 }
1589 
1590 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1591 			       s8 *pshift, u32 *pmultiplier)
1592 {
1593 	uint64_t scaled64;
1594 	int32_t  shift = 0;
1595 	uint64_t tps64;
1596 	uint32_t tps32;
1597 
1598 	tps64 = base_hz;
1599 	scaled64 = scaled_hz;
1600 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1601 		tps64 >>= 1;
1602 		shift--;
1603 	}
1604 
1605 	tps32 = (uint32_t)tps64;
1606 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1607 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1608 			scaled64 >>= 1;
1609 		else
1610 			tps32 <<= 1;
1611 		shift++;
1612 	}
1613 
1614 	*pshift = shift;
1615 	*pmultiplier = div_frac(scaled64, tps32);
1616 }
1617 
1618 #ifdef CONFIG_X86_64
1619 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1620 #endif
1621 
1622 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1623 static unsigned long max_tsc_khz;
1624 
1625 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1626 {
1627 	u64 v = (u64)khz * (1000000 + ppm);
1628 	do_div(v, 1000000);
1629 	return v;
1630 }
1631 
1632 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1633 {
1634 	u64 ratio;
1635 
1636 	/* Guest TSC same frequency as host TSC? */
1637 	if (!scale) {
1638 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1639 		return 0;
1640 	}
1641 
1642 	/* TSC scaling supported? */
1643 	if (!kvm_has_tsc_control) {
1644 		if (user_tsc_khz > tsc_khz) {
1645 			vcpu->arch.tsc_catchup = 1;
1646 			vcpu->arch.tsc_always_catchup = 1;
1647 			return 0;
1648 		} else {
1649 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1650 			return -1;
1651 		}
1652 	}
1653 
1654 	/* TSC scaling required  - calculate ratio */
1655 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1656 				user_tsc_khz, tsc_khz);
1657 
1658 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1659 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1660 			            user_tsc_khz);
1661 		return -1;
1662 	}
1663 
1664 	vcpu->arch.tsc_scaling_ratio = ratio;
1665 	return 0;
1666 }
1667 
1668 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1669 {
1670 	u32 thresh_lo, thresh_hi;
1671 	int use_scaling = 0;
1672 
1673 	/* tsc_khz can be zero if TSC calibration fails */
1674 	if (user_tsc_khz == 0) {
1675 		/* set tsc_scaling_ratio to a safe value */
1676 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1677 		return -1;
1678 	}
1679 
1680 	/* Compute a scale to convert nanoseconds in TSC cycles */
1681 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1682 			   &vcpu->arch.virtual_tsc_shift,
1683 			   &vcpu->arch.virtual_tsc_mult);
1684 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1685 
1686 	/*
1687 	 * Compute the variation in TSC rate which is acceptable
1688 	 * within the range of tolerance and decide if the
1689 	 * rate being applied is within that bounds of the hardware
1690 	 * rate.  If so, no scaling or compensation need be done.
1691 	 */
1692 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1693 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1694 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1695 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1696 		use_scaling = 1;
1697 	}
1698 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1699 }
1700 
1701 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1702 {
1703 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1704 				      vcpu->arch.virtual_tsc_mult,
1705 				      vcpu->arch.virtual_tsc_shift);
1706 	tsc += vcpu->arch.this_tsc_write;
1707 	return tsc;
1708 }
1709 
1710 static inline int gtod_is_based_on_tsc(int mode)
1711 {
1712 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1713 }
1714 
1715 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1716 {
1717 #ifdef CONFIG_X86_64
1718 	bool vcpus_matched;
1719 	struct kvm_arch *ka = &vcpu->kvm->arch;
1720 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1721 
1722 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1723 			 atomic_read(&vcpu->kvm->online_vcpus));
1724 
1725 	/*
1726 	 * Once the masterclock is enabled, always perform request in
1727 	 * order to update it.
1728 	 *
1729 	 * In order to enable masterclock, the host clocksource must be TSC
1730 	 * and the vcpus need to have matched TSCs.  When that happens,
1731 	 * perform request to enable masterclock.
1732 	 */
1733 	if (ka->use_master_clock ||
1734 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1735 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1736 
1737 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1738 			    atomic_read(&vcpu->kvm->online_vcpus),
1739 		            ka->use_master_clock, gtod->clock.vclock_mode);
1740 #endif
1741 }
1742 
1743 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1744 {
1745 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1746 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1747 }
1748 
1749 /*
1750  * Multiply tsc by a fixed point number represented by ratio.
1751  *
1752  * The most significant 64-N bits (mult) of ratio represent the
1753  * integral part of the fixed point number; the remaining N bits
1754  * (frac) represent the fractional part, ie. ratio represents a fixed
1755  * point number (mult + frac * 2^(-N)).
1756  *
1757  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1758  */
1759 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1760 {
1761 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1762 }
1763 
1764 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1765 {
1766 	u64 _tsc = tsc;
1767 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1768 
1769 	if (ratio != kvm_default_tsc_scaling_ratio)
1770 		_tsc = __scale_tsc(ratio, tsc);
1771 
1772 	return _tsc;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1775 
1776 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1777 {
1778 	u64 tsc;
1779 
1780 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1781 
1782 	return target_tsc - tsc;
1783 }
1784 
1785 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1786 {
1787 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1788 
1789 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1792 
1793 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1794 {
1795 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1796 }
1797 
1798 static inline bool kvm_check_tsc_unstable(void)
1799 {
1800 #ifdef CONFIG_X86_64
1801 	/*
1802 	 * TSC is marked unstable when we're running on Hyper-V,
1803 	 * 'TSC page' clocksource is good.
1804 	 */
1805 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1806 		return false;
1807 #endif
1808 	return check_tsc_unstable();
1809 }
1810 
1811 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1812 {
1813 	struct kvm *kvm = vcpu->kvm;
1814 	u64 offset, ns, elapsed;
1815 	unsigned long flags;
1816 	bool matched;
1817 	bool already_matched;
1818 	u64 data = msr->data;
1819 	bool synchronizing = false;
1820 
1821 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1822 	offset = kvm_compute_tsc_offset(vcpu, data);
1823 	ns = ktime_get_boottime_ns();
1824 	elapsed = ns - kvm->arch.last_tsc_nsec;
1825 
1826 	if (vcpu->arch.virtual_tsc_khz) {
1827 		if (data == 0 && msr->host_initiated) {
1828 			/*
1829 			 * detection of vcpu initialization -- need to sync
1830 			 * with other vCPUs. This particularly helps to keep
1831 			 * kvm_clock stable after CPU hotplug
1832 			 */
1833 			synchronizing = true;
1834 		} else {
1835 			u64 tsc_exp = kvm->arch.last_tsc_write +
1836 						nsec_to_cycles(vcpu, elapsed);
1837 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1838 			/*
1839 			 * Special case: TSC write with a small delta (1 second)
1840 			 * of virtual cycle time against real time is
1841 			 * interpreted as an attempt to synchronize the CPU.
1842 			 */
1843 			synchronizing = data < tsc_exp + tsc_hz &&
1844 					data + tsc_hz > tsc_exp;
1845 		}
1846 	}
1847 
1848 	/*
1849 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1850 	 * TSC, we add elapsed time in this computation.  We could let the
1851 	 * compensation code attempt to catch up if we fall behind, but
1852 	 * it's better to try to match offsets from the beginning.
1853          */
1854 	if (synchronizing &&
1855 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1856 		if (!kvm_check_tsc_unstable()) {
1857 			offset = kvm->arch.cur_tsc_offset;
1858 		} else {
1859 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1860 			data += delta;
1861 			offset = kvm_compute_tsc_offset(vcpu, data);
1862 		}
1863 		matched = true;
1864 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1865 	} else {
1866 		/*
1867 		 * We split periods of matched TSC writes into generations.
1868 		 * For each generation, we track the original measured
1869 		 * nanosecond time, offset, and write, so if TSCs are in
1870 		 * sync, we can match exact offset, and if not, we can match
1871 		 * exact software computation in compute_guest_tsc()
1872 		 *
1873 		 * These values are tracked in kvm->arch.cur_xxx variables.
1874 		 */
1875 		kvm->arch.cur_tsc_generation++;
1876 		kvm->arch.cur_tsc_nsec = ns;
1877 		kvm->arch.cur_tsc_write = data;
1878 		kvm->arch.cur_tsc_offset = offset;
1879 		matched = false;
1880 	}
1881 
1882 	/*
1883 	 * We also track th most recent recorded KHZ, write and time to
1884 	 * allow the matching interval to be extended at each write.
1885 	 */
1886 	kvm->arch.last_tsc_nsec = ns;
1887 	kvm->arch.last_tsc_write = data;
1888 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1889 
1890 	vcpu->arch.last_guest_tsc = data;
1891 
1892 	/* Keep track of which generation this VCPU has synchronized to */
1893 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1894 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1895 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1896 
1897 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1898 		update_ia32_tsc_adjust_msr(vcpu, offset);
1899 
1900 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1901 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1902 
1903 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1904 	if (!matched) {
1905 		kvm->arch.nr_vcpus_matched_tsc = 0;
1906 	} else if (!already_matched) {
1907 		kvm->arch.nr_vcpus_matched_tsc++;
1908 	}
1909 
1910 	kvm_track_tsc_matching(vcpu);
1911 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1912 }
1913 
1914 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1915 
1916 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1917 					   s64 adjustment)
1918 {
1919 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1920 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1921 }
1922 
1923 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1924 {
1925 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1926 		WARN_ON(adjustment < 0);
1927 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1928 	adjust_tsc_offset_guest(vcpu, adjustment);
1929 }
1930 
1931 #ifdef CONFIG_X86_64
1932 
1933 static u64 read_tsc(void)
1934 {
1935 	u64 ret = (u64)rdtsc_ordered();
1936 	u64 last = pvclock_gtod_data.clock.cycle_last;
1937 
1938 	if (likely(ret >= last))
1939 		return ret;
1940 
1941 	/*
1942 	 * GCC likes to generate cmov here, but this branch is extremely
1943 	 * predictable (it's just a function of time and the likely is
1944 	 * very likely) and there's a data dependence, so force GCC
1945 	 * to generate a branch instead.  I don't barrier() because
1946 	 * we don't actually need a barrier, and if this function
1947 	 * ever gets inlined it will generate worse code.
1948 	 */
1949 	asm volatile ("");
1950 	return last;
1951 }
1952 
1953 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1954 {
1955 	long v;
1956 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1957 	u64 tsc_pg_val;
1958 
1959 	switch (gtod->clock.vclock_mode) {
1960 	case VCLOCK_HVCLOCK:
1961 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1962 						  tsc_timestamp);
1963 		if (tsc_pg_val != U64_MAX) {
1964 			/* TSC page valid */
1965 			*mode = VCLOCK_HVCLOCK;
1966 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1967 				gtod->clock.mask;
1968 		} else {
1969 			/* TSC page invalid */
1970 			*mode = VCLOCK_NONE;
1971 		}
1972 		break;
1973 	case VCLOCK_TSC:
1974 		*mode = VCLOCK_TSC;
1975 		*tsc_timestamp = read_tsc();
1976 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1977 			gtod->clock.mask;
1978 		break;
1979 	default:
1980 		*mode = VCLOCK_NONE;
1981 	}
1982 
1983 	if (*mode == VCLOCK_NONE)
1984 		*tsc_timestamp = v = 0;
1985 
1986 	return v * gtod->clock.mult;
1987 }
1988 
1989 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1990 {
1991 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1992 	unsigned long seq;
1993 	int mode;
1994 	u64 ns;
1995 
1996 	do {
1997 		seq = read_seqcount_begin(&gtod->seq);
1998 		ns = gtod->nsec_base;
1999 		ns += vgettsc(tsc_timestamp, &mode);
2000 		ns >>= gtod->clock.shift;
2001 		ns += gtod->boot_ns;
2002 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2003 	*t = ns;
2004 
2005 	return mode;
2006 }
2007 
2008 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2009 {
2010 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2011 	unsigned long seq;
2012 	int mode;
2013 	u64 ns;
2014 
2015 	do {
2016 		seq = read_seqcount_begin(&gtod->seq);
2017 		ts->tv_sec = gtod->wall_time_sec;
2018 		ns = gtod->nsec_base;
2019 		ns += vgettsc(tsc_timestamp, &mode);
2020 		ns >>= gtod->clock.shift;
2021 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2022 
2023 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2024 	ts->tv_nsec = ns;
2025 
2026 	return mode;
2027 }
2028 
2029 /* returns true if host is using TSC based clocksource */
2030 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2031 {
2032 	/* checked again under seqlock below */
2033 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2034 		return false;
2035 
2036 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2037 						      tsc_timestamp));
2038 }
2039 
2040 /* returns true if host is using TSC based clocksource */
2041 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2042 					   u64 *tsc_timestamp)
2043 {
2044 	/* checked again under seqlock below */
2045 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2046 		return false;
2047 
2048 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2049 }
2050 #endif
2051 
2052 /*
2053  *
2054  * Assuming a stable TSC across physical CPUS, and a stable TSC
2055  * across virtual CPUs, the following condition is possible.
2056  * Each numbered line represents an event visible to both
2057  * CPUs at the next numbered event.
2058  *
2059  * "timespecX" represents host monotonic time. "tscX" represents
2060  * RDTSC value.
2061  *
2062  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2063  *
2064  * 1.  read timespec0,tsc0
2065  * 2.					| timespec1 = timespec0 + N
2066  * 					| tsc1 = tsc0 + M
2067  * 3. transition to guest		| transition to guest
2068  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2069  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2070  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2071  *
2072  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2073  *
2074  * 	- ret0 < ret1
2075  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2076  *		...
2077  *	- 0 < N - M => M < N
2078  *
2079  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2080  * always the case (the difference between two distinct xtime instances
2081  * might be smaller then the difference between corresponding TSC reads,
2082  * when updating guest vcpus pvclock areas).
2083  *
2084  * To avoid that problem, do not allow visibility of distinct
2085  * system_timestamp/tsc_timestamp values simultaneously: use a master
2086  * copy of host monotonic time values. Update that master copy
2087  * in lockstep.
2088  *
2089  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2090  *
2091  */
2092 
2093 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2094 {
2095 #ifdef CONFIG_X86_64
2096 	struct kvm_arch *ka = &kvm->arch;
2097 	int vclock_mode;
2098 	bool host_tsc_clocksource, vcpus_matched;
2099 
2100 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2101 			atomic_read(&kvm->online_vcpus));
2102 
2103 	/*
2104 	 * If the host uses TSC clock, then passthrough TSC as stable
2105 	 * to the guest.
2106 	 */
2107 	host_tsc_clocksource = kvm_get_time_and_clockread(
2108 					&ka->master_kernel_ns,
2109 					&ka->master_cycle_now);
2110 
2111 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2112 				&& !ka->backwards_tsc_observed
2113 				&& !ka->boot_vcpu_runs_old_kvmclock;
2114 
2115 	if (ka->use_master_clock)
2116 		atomic_set(&kvm_guest_has_master_clock, 1);
2117 
2118 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2119 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2120 					vcpus_matched);
2121 #endif
2122 }
2123 
2124 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2125 {
2126 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2127 }
2128 
2129 static void kvm_gen_update_masterclock(struct kvm *kvm)
2130 {
2131 #ifdef CONFIG_X86_64
2132 	int i;
2133 	struct kvm_vcpu *vcpu;
2134 	struct kvm_arch *ka = &kvm->arch;
2135 
2136 	spin_lock(&ka->pvclock_gtod_sync_lock);
2137 	kvm_make_mclock_inprogress_request(kvm);
2138 	/* no guest entries from this point */
2139 	pvclock_update_vm_gtod_copy(kvm);
2140 
2141 	kvm_for_each_vcpu(i, vcpu, kvm)
2142 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2143 
2144 	/* guest entries allowed */
2145 	kvm_for_each_vcpu(i, vcpu, kvm)
2146 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2147 
2148 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2149 #endif
2150 }
2151 
2152 u64 get_kvmclock_ns(struct kvm *kvm)
2153 {
2154 	struct kvm_arch *ka = &kvm->arch;
2155 	struct pvclock_vcpu_time_info hv_clock;
2156 	u64 ret;
2157 
2158 	spin_lock(&ka->pvclock_gtod_sync_lock);
2159 	if (!ka->use_master_clock) {
2160 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2161 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2162 	}
2163 
2164 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2165 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2166 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2167 
2168 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2169 	get_cpu();
2170 
2171 	if (__this_cpu_read(cpu_tsc_khz)) {
2172 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2173 				   &hv_clock.tsc_shift,
2174 				   &hv_clock.tsc_to_system_mul);
2175 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2176 	} else
2177 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2178 
2179 	put_cpu();
2180 
2181 	return ret;
2182 }
2183 
2184 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2185 {
2186 	struct kvm_vcpu_arch *vcpu = &v->arch;
2187 	struct pvclock_vcpu_time_info guest_hv_clock;
2188 
2189 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2190 		&guest_hv_clock, sizeof(guest_hv_clock))))
2191 		return;
2192 
2193 	/* This VCPU is paused, but it's legal for a guest to read another
2194 	 * VCPU's kvmclock, so we really have to follow the specification where
2195 	 * it says that version is odd if data is being modified, and even after
2196 	 * it is consistent.
2197 	 *
2198 	 * Version field updates must be kept separate.  This is because
2199 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2200 	 * writes within a string instruction are weakly ordered.  So there
2201 	 * are three writes overall.
2202 	 *
2203 	 * As a small optimization, only write the version field in the first
2204 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2205 	 * version field is the first in the struct.
2206 	 */
2207 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2208 
2209 	if (guest_hv_clock.version & 1)
2210 		++guest_hv_clock.version;  /* first time write, random junk */
2211 
2212 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2213 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2214 				&vcpu->hv_clock,
2215 				sizeof(vcpu->hv_clock.version));
2216 
2217 	smp_wmb();
2218 
2219 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2220 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2221 
2222 	if (vcpu->pvclock_set_guest_stopped_request) {
2223 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2224 		vcpu->pvclock_set_guest_stopped_request = false;
2225 	}
2226 
2227 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2228 
2229 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2230 				&vcpu->hv_clock,
2231 				sizeof(vcpu->hv_clock));
2232 
2233 	smp_wmb();
2234 
2235 	vcpu->hv_clock.version++;
2236 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2237 				&vcpu->hv_clock,
2238 				sizeof(vcpu->hv_clock.version));
2239 }
2240 
2241 static int kvm_guest_time_update(struct kvm_vcpu *v)
2242 {
2243 	unsigned long flags, tgt_tsc_khz;
2244 	struct kvm_vcpu_arch *vcpu = &v->arch;
2245 	struct kvm_arch *ka = &v->kvm->arch;
2246 	s64 kernel_ns;
2247 	u64 tsc_timestamp, host_tsc;
2248 	u8 pvclock_flags;
2249 	bool use_master_clock;
2250 
2251 	kernel_ns = 0;
2252 	host_tsc = 0;
2253 
2254 	/*
2255 	 * If the host uses TSC clock, then passthrough TSC as stable
2256 	 * to the guest.
2257 	 */
2258 	spin_lock(&ka->pvclock_gtod_sync_lock);
2259 	use_master_clock = ka->use_master_clock;
2260 	if (use_master_clock) {
2261 		host_tsc = ka->master_cycle_now;
2262 		kernel_ns = ka->master_kernel_ns;
2263 	}
2264 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2265 
2266 	/* Keep irq disabled to prevent changes to the clock */
2267 	local_irq_save(flags);
2268 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2269 	if (unlikely(tgt_tsc_khz == 0)) {
2270 		local_irq_restore(flags);
2271 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2272 		return 1;
2273 	}
2274 	if (!use_master_clock) {
2275 		host_tsc = rdtsc();
2276 		kernel_ns = ktime_get_boottime_ns();
2277 	}
2278 
2279 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2280 
2281 	/*
2282 	 * We may have to catch up the TSC to match elapsed wall clock
2283 	 * time for two reasons, even if kvmclock is used.
2284 	 *   1) CPU could have been running below the maximum TSC rate
2285 	 *   2) Broken TSC compensation resets the base at each VCPU
2286 	 *      entry to avoid unknown leaps of TSC even when running
2287 	 *      again on the same CPU.  This may cause apparent elapsed
2288 	 *      time to disappear, and the guest to stand still or run
2289 	 *	very slowly.
2290 	 */
2291 	if (vcpu->tsc_catchup) {
2292 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2293 		if (tsc > tsc_timestamp) {
2294 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2295 			tsc_timestamp = tsc;
2296 		}
2297 	}
2298 
2299 	local_irq_restore(flags);
2300 
2301 	/* With all the info we got, fill in the values */
2302 
2303 	if (kvm_has_tsc_control)
2304 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2305 
2306 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2307 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2308 				   &vcpu->hv_clock.tsc_shift,
2309 				   &vcpu->hv_clock.tsc_to_system_mul);
2310 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2311 	}
2312 
2313 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2314 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2315 	vcpu->last_guest_tsc = tsc_timestamp;
2316 
2317 	/* If the host uses TSC clocksource, then it is stable */
2318 	pvclock_flags = 0;
2319 	if (use_master_clock)
2320 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2321 
2322 	vcpu->hv_clock.flags = pvclock_flags;
2323 
2324 	if (vcpu->pv_time_enabled)
2325 		kvm_setup_pvclock_page(v);
2326 	if (v == kvm_get_vcpu(v->kvm, 0))
2327 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2328 	return 0;
2329 }
2330 
2331 /*
2332  * kvmclock updates which are isolated to a given vcpu, such as
2333  * vcpu->cpu migration, should not allow system_timestamp from
2334  * the rest of the vcpus to remain static. Otherwise ntp frequency
2335  * correction applies to one vcpu's system_timestamp but not
2336  * the others.
2337  *
2338  * So in those cases, request a kvmclock update for all vcpus.
2339  * We need to rate-limit these requests though, as they can
2340  * considerably slow guests that have a large number of vcpus.
2341  * The time for a remote vcpu to update its kvmclock is bound
2342  * by the delay we use to rate-limit the updates.
2343  */
2344 
2345 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2346 
2347 static void kvmclock_update_fn(struct work_struct *work)
2348 {
2349 	int i;
2350 	struct delayed_work *dwork = to_delayed_work(work);
2351 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2352 					   kvmclock_update_work);
2353 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2354 	struct kvm_vcpu *vcpu;
2355 
2356 	kvm_for_each_vcpu(i, vcpu, kvm) {
2357 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2358 		kvm_vcpu_kick(vcpu);
2359 	}
2360 }
2361 
2362 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2363 {
2364 	struct kvm *kvm = v->kvm;
2365 
2366 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2367 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2368 					KVMCLOCK_UPDATE_DELAY);
2369 }
2370 
2371 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2372 
2373 static void kvmclock_sync_fn(struct work_struct *work)
2374 {
2375 	struct delayed_work *dwork = to_delayed_work(work);
2376 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2377 					   kvmclock_sync_work);
2378 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2379 
2380 	if (!kvmclock_periodic_sync)
2381 		return;
2382 
2383 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2384 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2385 					KVMCLOCK_SYNC_PERIOD);
2386 }
2387 
2388 /*
2389  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2390  */
2391 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2392 {
2393 	/* McStatusWrEn enabled? */
2394 	if (guest_cpuid_is_amd(vcpu))
2395 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2396 
2397 	return false;
2398 }
2399 
2400 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402 	u64 mcg_cap = vcpu->arch.mcg_cap;
2403 	unsigned bank_num = mcg_cap & 0xff;
2404 	u32 msr = msr_info->index;
2405 	u64 data = msr_info->data;
2406 
2407 	switch (msr) {
2408 	case MSR_IA32_MCG_STATUS:
2409 		vcpu->arch.mcg_status = data;
2410 		break;
2411 	case MSR_IA32_MCG_CTL:
2412 		if (!(mcg_cap & MCG_CTL_P) &&
2413 		    (data || !msr_info->host_initiated))
2414 			return 1;
2415 		if (data != 0 && data != ~(u64)0)
2416 			return 1;
2417 		vcpu->arch.mcg_ctl = data;
2418 		break;
2419 	default:
2420 		if (msr >= MSR_IA32_MC0_CTL &&
2421 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2422 			u32 offset = msr - MSR_IA32_MC0_CTL;
2423 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2424 			 * some Linux kernels though clear bit 10 in bank 4 to
2425 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2426 			 * this to avoid an uncatched #GP in the guest
2427 			 */
2428 			if ((offset & 0x3) == 0 &&
2429 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2430 				return -1;
2431 
2432 			/* MCi_STATUS */
2433 			if (!msr_info->host_initiated &&
2434 			    (offset & 0x3) == 1 && data != 0) {
2435 				if (!can_set_mci_status(vcpu))
2436 					return -1;
2437 			}
2438 
2439 			vcpu->arch.mce_banks[offset] = data;
2440 			break;
2441 		}
2442 		return 1;
2443 	}
2444 	return 0;
2445 }
2446 
2447 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2448 {
2449 	struct kvm *kvm = vcpu->kvm;
2450 	int lm = is_long_mode(vcpu);
2451 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2452 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2453 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2454 		: kvm->arch.xen_hvm_config.blob_size_32;
2455 	u32 page_num = data & ~PAGE_MASK;
2456 	u64 page_addr = data & PAGE_MASK;
2457 	u8 *page;
2458 	int r;
2459 
2460 	r = -E2BIG;
2461 	if (page_num >= blob_size)
2462 		goto out;
2463 	r = -ENOMEM;
2464 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2465 	if (IS_ERR(page)) {
2466 		r = PTR_ERR(page);
2467 		goto out;
2468 	}
2469 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2470 		goto out_free;
2471 	r = 0;
2472 out_free:
2473 	kfree(page);
2474 out:
2475 	return r;
2476 }
2477 
2478 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2479 {
2480 	gpa_t gpa = data & ~0x3f;
2481 
2482 	/* Bits 3:5 are reserved, Should be zero */
2483 	if (data & 0x38)
2484 		return 1;
2485 
2486 	vcpu->arch.apf.msr_val = data;
2487 
2488 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2489 		kvm_clear_async_pf_completion_queue(vcpu);
2490 		kvm_async_pf_hash_reset(vcpu);
2491 		return 0;
2492 	}
2493 
2494 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2495 					sizeof(u32)))
2496 		return 1;
2497 
2498 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2499 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2500 	kvm_async_pf_wakeup_all(vcpu);
2501 	return 0;
2502 }
2503 
2504 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2505 {
2506 	vcpu->arch.pv_time_enabled = false;
2507 }
2508 
2509 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2510 {
2511 	++vcpu->stat.tlb_flush;
2512 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2513 }
2514 
2515 static void record_steal_time(struct kvm_vcpu *vcpu)
2516 {
2517 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2518 		return;
2519 
2520 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2521 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2522 		return;
2523 
2524 	/*
2525 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2526 	 * expensive IPIs.
2527 	 */
2528 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2529 		vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2530 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2531 		kvm_vcpu_flush_tlb(vcpu, false);
2532 
2533 	if (vcpu->arch.st.steal.version & 1)
2534 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2535 
2536 	vcpu->arch.st.steal.version += 1;
2537 
2538 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2539 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2540 
2541 	smp_wmb();
2542 
2543 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2544 		vcpu->arch.st.last_steal;
2545 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2546 
2547 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2548 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2549 
2550 	smp_wmb();
2551 
2552 	vcpu->arch.st.steal.version += 1;
2553 
2554 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2555 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2556 }
2557 
2558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2559 {
2560 	bool pr = false;
2561 	u32 msr = msr_info->index;
2562 	u64 data = msr_info->data;
2563 
2564 	switch (msr) {
2565 	case MSR_AMD64_NB_CFG:
2566 	case MSR_IA32_UCODE_WRITE:
2567 	case MSR_VM_HSAVE_PA:
2568 	case MSR_AMD64_PATCH_LOADER:
2569 	case MSR_AMD64_BU_CFG2:
2570 	case MSR_AMD64_DC_CFG:
2571 	case MSR_F15H_EX_CFG:
2572 		break;
2573 
2574 	case MSR_IA32_UCODE_REV:
2575 		if (msr_info->host_initiated)
2576 			vcpu->arch.microcode_version = data;
2577 		break;
2578 	case MSR_IA32_ARCH_CAPABILITIES:
2579 		if (!msr_info->host_initiated)
2580 			return 1;
2581 		vcpu->arch.arch_capabilities = data;
2582 		break;
2583 	case MSR_EFER:
2584 		return set_efer(vcpu, msr_info);
2585 	case MSR_K7_HWCR:
2586 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2587 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2588 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2589 
2590 		/* Handle McStatusWrEn */
2591 		if (data == BIT_ULL(18)) {
2592 			vcpu->arch.msr_hwcr = data;
2593 		} else if (data != 0) {
2594 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2595 				    data);
2596 			return 1;
2597 		}
2598 		break;
2599 	case MSR_FAM10H_MMIO_CONF_BASE:
2600 		if (data != 0) {
2601 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2602 				    "0x%llx\n", data);
2603 			return 1;
2604 		}
2605 		break;
2606 	case MSR_IA32_DEBUGCTLMSR:
2607 		if (!data) {
2608 			/* We support the non-activated case already */
2609 			break;
2610 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2611 			/* Values other than LBR and BTF are vendor-specific,
2612 			   thus reserved and should throw a #GP */
2613 			return 1;
2614 		}
2615 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2616 			    __func__, data);
2617 		break;
2618 	case 0x200 ... 0x2ff:
2619 		return kvm_mtrr_set_msr(vcpu, msr, data);
2620 	case MSR_IA32_APICBASE:
2621 		return kvm_set_apic_base(vcpu, msr_info);
2622 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2623 		return kvm_x2apic_msr_write(vcpu, msr, data);
2624 	case MSR_IA32_TSCDEADLINE:
2625 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2626 		break;
2627 	case MSR_IA32_TSC_ADJUST:
2628 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2629 			if (!msr_info->host_initiated) {
2630 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2631 				adjust_tsc_offset_guest(vcpu, adj);
2632 			}
2633 			vcpu->arch.ia32_tsc_adjust_msr = data;
2634 		}
2635 		break;
2636 	case MSR_IA32_MISC_ENABLE:
2637 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2638 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2639 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2640 				return 1;
2641 			vcpu->arch.ia32_misc_enable_msr = data;
2642 			kvm_update_cpuid(vcpu);
2643 		} else {
2644 			vcpu->arch.ia32_misc_enable_msr = data;
2645 		}
2646 		break;
2647 	case MSR_IA32_SMBASE:
2648 		if (!msr_info->host_initiated)
2649 			return 1;
2650 		vcpu->arch.smbase = data;
2651 		break;
2652 	case MSR_IA32_POWER_CTL:
2653 		vcpu->arch.msr_ia32_power_ctl = data;
2654 		break;
2655 	case MSR_IA32_TSC:
2656 		kvm_write_tsc(vcpu, msr_info);
2657 		break;
2658 	case MSR_SMI_COUNT:
2659 		if (!msr_info->host_initiated)
2660 			return 1;
2661 		vcpu->arch.smi_count = data;
2662 		break;
2663 	case MSR_KVM_WALL_CLOCK_NEW:
2664 	case MSR_KVM_WALL_CLOCK:
2665 		vcpu->kvm->arch.wall_clock = data;
2666 		kvm_write_wall_clock(vcpu->kvm, data);
2667 		break;
2668 	case MSR_KVM_SYSTEM_TIME_NEW:
2669 	case MSR_KVM_SYSTEM_TIME: {
2670 		struct kvm_arch *ka = &vcpu->kvm->arch;
2671 
2672 		kvmclock_reset(vcpu);
2673 
2674 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2675 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2676 
2677 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2678 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2679 
2680 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2681 		}
2682 
2683 		vcpu->arch.time = data;
2684 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2685 
2686 		/* we verify if the enable bit is set... */
2687 		if (!(data & 1))
2688 			break;
2689 
2690 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2691 		     &vcpu->arch.pv_time, data & ~1ULL,
2692 		     sizeof(struct pvclock_vcpu_time_info)))
2693 			vcpu->arch.pv_time_enabled = false;
2694 		else
2695 			vcpu->arch.pv_time_enabled = true;
2696 
2697 		break;
2698 	}
2699 	case MSR_KVM_ASYNC_PF_EN:
2700 		if (kvm_pv_enable_async_pf(vcpu, data))
2701 			return 1;
2702 		break;
2703 	case MSR_KVM_STEAL_TIME:
2704 
2705 		if (unlikely(!sched_info_on()))
2706 			return 1;
2707 
2708 		if (data & KVM_STEAL_RESERVED_MASK)
2709 			return 1;
2710 
2711 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2712 						data & KVM_STEAL_VALID_BITS,
2713 						sizeof(struct kvm_steal_time)))
2714 			return 1;
2715 
2716 		vcpu->arch.st.msr_val = data;
2717 
2718 		if (!(data & KVM_MSR_ENABLED))
2719 			break;
2720 
2721 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2722 
2723 		break;
2724 	case MSR_KVM_PV_EOI_EN:
2725 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2726 			return 1;
2727 		break;
2728 
2729 	case MSR_KVM_POLL_CONTROL:
2730 		/* only enable bit supported */
2731 		if (data & (-1ULL << 1))
2732 			return 1;
2733 
2734 		vcpu->arch.msr_kvm_poll_control = data;
2735 		break;
2736 
2737 	case MSR_IA32_MCG_CTL:
2738 	case MSR_IA32_MCG_STATUS:
2739 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2740 		return set_msr_mce(vcpu, msr_info);
2741 
2742 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2743 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2744 		pr = true; /* fall through */
2745 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2746 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2747 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2748 			return kvm_pmu_set_msr(vcpu, msr_info);
2749 
2750 		if (pr || data != 0)
2751 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2752 				    "0x%x data 0x%llx\n", msr, data);
2753 		break;
2754 	case MSR_K7_CLK_CTL:
2755 		/*
2756 		 * Ignore all writes to this no longer documented MSR.
2757 		 * Writes are only relevant for old K7 processors,
2758 		 * all pre-dating SVM, but a recommended workaround from
2759 		 * AMD for these chips. It is possible to specify the
2760 		 * affected processor models on the command line, hence
2761 		 * the need to ignore the workaround.
2762 		 */
2763 		break;
2764 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2765 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2766 	case HV_X64_MSR_CRASH_CTL:
2767 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2768 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2769 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2770 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2771 		return kvm_hv_set_msr_common(vcpu, msr, data,
2772 					     msr_info->host_initiated);
2773 	case MSR_IA32_BBL_CR_CTL3:
2774 		/* Drop writes to this legacy MSR -- see rdmsr
2775 		 * counterpart for further detail.
2776 		 */
2777 		if (report_ignored_msrs)
2778 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2779 				msr, data);
2780 		break;
2781 	case MSR_AMD64_OSVW_ID_LENGTH:
2782 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2783 			return 1;
2784 		vcpu->arch.osvw.length = data;
2785 		break;
2786 	case MSR_AMD64_OSVW_STATUS:
2787 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2788 			return 1;
2789 		vcpu->arch.osvw.status = data;
2790 		break;
2791 	case MSR_PLATFORM_INFO:
2792 		if (!msr_info->host_initiated ||
2793 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2794 		     cpuid_fault_enabled(vcpu)))
2795 			return 1;
2796 		vcpu->arch.msr_platform_info = data;
2797 		break;
2798 	case MSR_MISC_FEATURES_ENABLES:
2799 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2800 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2801 		     !supports_cpuid_fault(vcpu)))
2802 			return 1;
2803 		vcpu->arch.msr_misc_features_enables = data;
2804 		break;
2805 	default:
2806 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2807 			return xen_hvm_config(vcpu, data);
2808 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2809 			return kvm_pmu_set_msr(vcpu, msr_info);
2810 		if (!ignore_msrs) {
2811 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2812 				    msr, data);
2813 			return 1;
2814 		} else {
2815 			if (report_ignored_msrs)
2816 				vcpu_unimpl(vcpu,
2817 					"ignored wrmsr: 0x%x data 0x%llx\n",
2818 					msr, data);
2819 			break;
2820 		}
2821 	}
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2825 
2826 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2827 {
2828 	u64 data;
2829 	u64 mcg_cap = vcpu->arch.mcg_cap;
2830 	unsigned bank_num = mcg_cap & 0xff;
2831 
2832 	switch (msr) {
2833 	case MSR_IA32_P5_MC_ADDR:
2834 	case MSR_IA32_P5_MC_TYPE:
2835 		data = 0;
2836 		break;
2837 	case MSR_IA32_MCG_CAP:
2838 		data = vcpu->arch.mcg_cap;
2839 		break;
2840 	case MSR_IA32_MCG_CTL:
2841 		if (!(mcg_cap & MCG_CTL_P) && !host)
2842 			return 1;
2843 		data = vcpu->arch.mcg_ctl;
2844 		break;
2845 	case MSR_IA32_MCG_STATUS:
2846 		data = vcpu->arch.mcg_status;
2847 		break;
2848 	default:
2849 		if (msr >= MSR_IA32_MC0_CTL &&
2850 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2851 			u32 offset = msr - MSR_IA32_MC0_CTL;
2852 			data = vcpu->arch.mce_banks[offset];
2853 			break;
2854 		}
2855 		return 1;
2856 	}
2857 	*pdata = data;
2858 	return 0;
2859 }
2860 
2861 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2862 {
2863 	switch (msr_info->index) {
2864 	case MSR_IA32_PLATFORM_ID:
2865 	case MSR_IA32_EBL_CR_POWERON:
2866 	case MSR_IA32_DEBUGCTLMSR:
2867 	case MSR_IA32_LASTBRANCHFROMIP:
2868 	case MSR_IA32_LASTBRANCHTOIP:
2869 	case MSR_IA32_LASTINTFROMIP:
2870 	case MSR_IA32_LASTINTTOIP:
2871 	case MSR_K8_SYSCFG:
2872 	case MSR_K8_TSEG_ADDR:
2873 	case MSR_K8_TSEG_MASK:
2874 	case MSR_VM_HSAVE_PA:
2875 	case MSR_K8_INT_PENDING_MSG:
2876 	case MSR_AMD64_NB_CFG:
2877 	case MSR_FAM10H_MMIO_CONF_BASE:
2878 	case MSR_AMD64_BU_CFG2:
2879 	case MSR_IA32_PERF_CTL:
2880 	case MSR_AMD64_DC_CFG:
2881 	case MSR_F15H_EX_CFG:
2882 		msr_info->data = 0;
2883 		break;
2884 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2885 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2886 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2887 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2888 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2889 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2890 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2891 		msr_info->data = 0;
2892 		break;
2893 	case MSR_IA32_UCODE_REV:
2894 		msr_info->data = vcpu->arch.microcode_version;
2895 		break;
2896 	case MSR_IA32_ARCH_CAPABILITIES:
2897 		if (!msr_info->host_initiated &&
2898 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2899 			return 1;
2900 		msr_info->data = vcpu->arch.arch_capabilities;
2901 		break;
2902 	case MSR_IA32_POWER_CTL:
2903 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2904 		break;
2905 	case MSR_IA32_TSC:
2906 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2907 		break;
2908 	case MSR_MTRRcap:
2909 	case 0x200 ... 0x2ff:
2910 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2911 	case 0xcd: /* fsb frequency */
2912 		msr_info->data = 3;
2913 		break;
2914 		/*
2915 		 * MSR_EBC_FREQUENCY_ID
2916 		 * Conservative value valid for even the basic CPU models.
2917 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2918 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2919 		 * and 266MHz for model 3, or 4. Set Core Clock
2920 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2921 		 * 31:24) even though these are only valid for CPU
2922 		 * models > 2, however guests may end up dividing or
2923 		 * multiplying by zero otherwise.
2924 		 */
2925 	case MSR_EBC_FREQUENCY_ID:
2926 		msr_info->data = 1 << 24;
2927 		break;
2928 	case MSR_IA32_APICBASE:
2929 		msr_info->data = kvm_get_apic_base(vcpu);
2930 		break;
2931 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2932 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2933 		break;
2934 	case MSR_IA32_TSCDEADLINE:
2935 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2936 		break;
2937 	case MSR_IA32_TSC_ADJUST:
2938 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2939 		break;
2940 	case MSR_IA32_MISC_ENABLE:
2941 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2942 		break;
2943 	case MSR_IA32_SMBASE:
2944 		if (!msr_info->host_initiated)
2945 			return 1;
2946 		msr_info->data = vcpu->arch.smbase;
2947 		break;
2948 	case MSR_SMI_COUNT:
2949 		msr_info->data = vcpu->arch.smi_count;
2950 		break;
2951 	case MSR_IA32_PERF_STATUS:
2952 		/* TSC increment by tick */
2953 		msr_info->data = 1000ULL;
2954 		/* CPU multiplier */
2955 		msr_info->data |= (((uint64_t)4ULL) << 40);
2956 		break;
2957 	case MSR_EFER:
2958 		msr_info->data = vcpu->arch.efer;
2959 		break;
2960 	case MSR_KVM_WALL_CLOCK:
2961 	case MSR_KVM_WALL_CLOCK_NEW:
2962 		msr_info->data = vcpu->kvm->arch.wall_clock;
2963 		break;
2964 	case MSR_KVM_SYSTEM_TIME:
2965 	case MSR_KVM_SYSTEM_TIME_NEW:
2966 		msr_info->data = vcpu->arch.time;
2967 		break;
2968 	case MSR_KVM_ASYNC_PF_EN:
2969 		msr_info->data = vcpu->arch.apf.msr_val;
2970 		break;
2971 	case MSR_KVM_STEAL_TIME:
2972 		msr_info->data = vcpu->arch.st.msr_val;
2973 		break;
2974 	case MSR_KVM_PV_EOI_EN:
2975 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2976 		break;
2977 	case MSR_KVM_POLL_CONTROL:
2978 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
2979 		break;
2980 	case MSR_IA32_P5_MC_ADDR:
2981 	case MSR_IA32_P5_MC_TYPE:
2982 	case MSR_IA32_MCG_CAP:
2983 	case MSR_IA32_MCG_CTL:
2984 	case MSR_IA32_MCG_STATUS:
2985 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2986 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2987 				   msr_info->host_initiated);
2988 	case MSR_K7_CLK_CTL:
2989 		/*
2990 		 * Provide expected ramp-up count for K7. All other
2991 		 * are set to zero, indicating minimum divisors for
2992 		 * every field.
2993 		 *
2994 		 * This prevents guest kernels on AMD host with CPU
2995 		 * type 6, model 8 and higher from exploding due to
2996 		 * the rdmsr failing.
2997 		 */
2998 		msr_info->data = 0x20000000;
2999 		break;
3000 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3001 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3002 	case HV_X64_MSR_CRASH_CTL:
3003 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3004 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3005 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3006 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3007 		return kvm_hv_get_msr_common(vcpu,
3008 					     msr_info->index, &msr_info->data,
3009 					     msr_info->host_initiated);
3010 		break;
3011 	case MSR_IA32_BBL_CR_CTL3:
3012 		/* This legacy MSR exists but isn't fully documented in current
3013 		 * silicon.  It is however accessed by winxp in very narrow
3014 		 * scenarios where it sets bit #19, itself documented as
3015 		 * a "reserved" bit.  Best effort attempt to source coherent
3016 		 * read data here should the balance of the register be
3017 		 * interpreted by the guest:
3018 		 *
3019 		 * L2 cache control register 3: 64GB range, 256KB size,
3020 		 * enabled, latency 0x1, configured
3021 		 */
3022 		msr_info->data = 0xbe702111;
3023 		break;
3024 	case MSR_AMD64_OSVW_ID_LENGTH:
3025 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3026 			return 1;
3027 		msr_info->data = vcpu->arch.osvw.length;
3028 		break;
3029 	case MSR_AMD64_OSVW_STATUS:
3030 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3031 			return 1;
3032 		msr_info->data = vcpu->arch.osvw.status;
3033 		break;
3034 	case MSR_PLATFORM_INFO:
3035 		if (!msr_info->host_initiated &&
3036 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3037 			return 1;
3038 		msr_info->data = vcpu->arch.msr_platform_info;
3039 		break;
3040 	case MSR_MISC_FEATURES_ENABLES:
3041 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3042 		break;
3043 	case MSR_K7_HWCR:
3044 		msr_info->data = vcpu->arch.msr_hwcr;
3045 		break;
3046 	default:
3047 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3048 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3049 		if (!ignore_msrs) {
3050 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3051 					       msr_info->index);
3052 			return 1;
3053 		} else {
3054 			if (report_ignored_msrs)
3055 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3056 					msr_info->index);
3057 			msr_info->data = 0;
3058 		}
3059 		break;
3060 	}
3061 	return 0;
3062 }
3063 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3064 
3065 /*
3066  * Read or write a bunch of msrs. All parameters are kernel addresses.
3067  *
3068  * @return number of msrs set successfully.
3069  */
3070 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3071 		    struct kvm_msr_entry *entries,
3072 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3073 				  unsigned index, u64 *data))
3074 {
3075 	int i;
3076 
3077 	for (i = 0; i < msrs->nmsrs; ++i)
3078 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3079 			break;
3080 
3081 	return i;
3082 }
3083 
3084 /*
3085  * Read or write a bunch of msrs. Parameters are user addresses.
3086  *
3087  * @return number of msrs set successfully.
3088  */
3089 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3090 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3091 				unsigned index, u64 *data),
3092 		  int writeback)
3093 {
3094 	struct kvm_msrs msrs;
3095 	struct kvm_msr_entry *entries;
3096 	int r, n;
3097 	unsigned size;
3098 
3099 	r = -EFAULT;
3100 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3101 		goto out;
3102 
3103 	r = -E2BIG;
3104 	if (msrs.nmsrs >= MAX_IO_MSRS)
3105 		goto out;
3106 
3107 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3108 	entries = memdup_user(user_msrs->entries, size);
3109 	if (IS_ERR(entries)) {
3110 		r = PTR_ERR(entries);
3111 		goto out;
3112 	}
3113 
3114 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3115 	if (r < 0)
3116 		goto out_free;
3117 
3118 	r = -EFAULT;
3119 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3120 		goto out_free;
3121 
3122 	r = n;
3123 
3124 out_free:
3125 	kfree(entries);
3126 out:
3127 	return r;
3128 }
3129 
3130 static inline bool kvm_can_mwait_in_guest(void)
3131 {
3132 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3133 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3134 		boot_cpu_has(X86_FEATURE_ARAT);
3135 }
3136 
3137 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3138 {
3139 	int r = 0;
3140 
3141 	switch (ext) {
3142 	case KVM_CAP_IRQCHIP:
3143 	case KVM_CAP_HLT:
3144 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3145 	case KVM_CAP_SET_TSS_ADDR:
3146 	case KVM_CAP_EXT_CPUID:
3147 	case KVM_CAP_EXT_EMUL_CPUID:
3148 	case KVM_CAP_CLOCKSOURCE:
3149 	case KVM_CAP_PIT:
3150 	case KVM_CAP_NOP_IO_DELAY:
3151 	case KVM_CAP_MP_STATE:
3152 	case KVM_CAP_SYNC_MMU:
3153 	case KVM_CAP_USER_NMI:
3154 	case KVM_CAP_REINJECT_CONTROL:
3155 	case KVM_CAP_IRQ_INJECT_STATUS:
3156 	case KVM_CAP_IOEVENTFD:
3157 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3158 	case KVM_CAP_PIT2:
3159 	case KVM_CAP_PIT_STATE2:
3160 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3161 	case KVM_CAP_XEN_HVM:
3162 	case KVM_CAP_VCPU_EVENTS:
3163 	case KVM_CAP_HYPERV:
3164 	case KVM_CAP_HYPERV_VAPIC:
3165 	case KVM_CAP_HYPERV_SPIN:
3166 	case KVM_CAP_HYPERV_SYNIC:
3167 	case KVM_CAP_HYPERV_SYNIC2:
3168 	case KVM_CAP_HYPERV_VP_INDEX:
3169 	case KVM_CAP_HYPERV_EVENTFD:
3170 	case KVM_CAP_HYPERV_TLBFLUSH:
3171 	case KVM_CAP_HYPERV_SEND_IPI:
3172 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3173 	case KVM_CAP_HYPERV_CPUID:
3174 	case KVM_CAP_PCI_SEGMENT:
3175 	case KVM_CAP_DEBUGREGS:
3176 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3177 	case KVM_CAP_XSAVE:
3178 	case KVM_CAP_ASYNC_PF:
3179 	case KVM_CAP_GET_TSC_KHZ:
3180 	case KVM_CAP_KVMCLOCK_CTRL:
3181 	case KVM_CAP_READONLY_MEM:
3182 	case KVM_CAP_HYPERV_TIME:
3183 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3184 	case KVM_CAP_TSC_DEADLINE_TIMER:
3185 	case KVM_CAP_DISABLE_QUIRKS:
3186 	case KVM_CAP_SET_BOOT_CPU_ID:
3187  	case KVM_CAP_SPLIT_IRQCHIP:
3188 	case KVM_CAP_IMMEDIATE_EXIT:
3189 	case KVM_CAP_PMU_EVENT_FILTER:
3190 	case KVM_CAP_GET_MSR_FEATURES:
3191 	case KVM_CAP_MSR_PLATFORM_INFO:
3192 	case KVM_CAP_EXCEPTION_PAYLOAD:
3193 		r = 1;
3194 		break;
3195 	case KVM_CAP_SYNC_REGS:
3196 		r = KVM_SYNC_X86_VALID_FIELDS;
3197 		break;
3198 	case KVM_CAP_ADJUST_CLOCK:
3199 		r = KVM_CLOCK_TSC_STABLE;
3200 		break;
3201 	case KVM_CAP_X86_DISABLE_EXITS:
3202 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3203 		      KVM_X86_DISABLE_EXITS_CSTATE;
3204 		if(kvm_can_mwait_in_guest())
3205 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3206 		break;
3207 	case KVM_CAP_X86_SMM:
3208 		/* SMBASE is usually relocated above 1M on modern chipsets,
3209 		 * and SMM handlers might indeed rely on 4G segment limits,
3210 		 * so do not report SMM to be available if real mode is
3211 		 * emulated via vm86 mode.  Still, do not go to great lengths
3212 		 * to avoid userspace's usage of the feature, because it is a
3213 		 * fringe case that is not enabled except via specific settings
3214 		 * of the module parameters.
3215 		 */
3216 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3217 		break;
3218 	case KVM_CAP_VAPIC:
3219 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3220 		break;
3221 	case KVM_CAP_NR_VCPUS:
3222 		r = KVM_SOFT_MAX_VCPUS;
3223 		break;
3224 	case KVM_CAP_MAX_VCPUS:
3225 		r = KVM_MAX_VCPUS;
3226 		break;
3227 	case KVM_CAP_MAX_VCPU_ID:
3228 		r = KVM_MAX_VCPU_ID;
3229 		break;
3230 	case KVM_CAP_PV_MMU:	/* obsolete */
3231 		r = 0;
3232 		break;
3233 	case KVM_CAP_MCE:
3234 		r = KVM_MAX_MCE_BANKS;
3235 		break;
3236 	case KVM_CAP_XCRS:
3237 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3238 		break;
3239 	case KVM_CAP_TSC_CONTROL:
3240 		r = kvm_has_tsc_control;
3241 		break;
3242 	case KVM_CAP_X2APIC_API:
3243 		r = KVM_X2APIC_API_VALID_FLAGS;
3244 		break;
3245 	case KVM_CAP_NESTED_STATE:
3246 		r = kvm_x86_ops->get_nested_state ?
3247 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3248 		break;
3249 	default:
3250 		break;
3251 	}
3252 	return r;
3253 
3254 }
3255 
3256 long kvm_arch_dev_ioctl(struct file *filp,
3257 			unsigned int ioctl, unsigned long arg)
3258 {
3259 	void __user *argp = (void __user *)arg;
3260 	long r;
3261 
3262 	switch (ioctl) {
3263 	case KVM_GET_MSR_INDEX_LIST: {
3264 		struct kvm_msr_list __user *user_msr_list = argp;
3265 		struct kvm_msr_list msr_list;
3266 		unsigned n;
3267 
3268 		r = -EFAULT;
3269 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3270 			goto out;
3271 		n = msr_list.nmsrs;
3272 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3273 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3274 			goto out;
3275 		r = -E2BIG;
3276 		if (n < msr_list.nmsrs)
3277 			goto out;
3278 		r = -EFAULT;
3279 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3280 				 num_msrs_to_save * sizeof(u32)))
3281 			goto out;
3282 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3283 				 &emulated_msrs,
3284 				 num_emulated_msrs * sizeof(u32)))
3285 			goto out;
3286 		r = 0;
3287 		break;
3288 	}
3289 	case KVM_GET_SUPPORTED_CPUID:
3290 	case KVM_GET_EMULATED_CPUID: {
3291 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3292 		struct kvm_cpuid2 cpuid;
3293 
3294 		r = -EFAULT;
3295 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3296 			goto out;
3297 
3298 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3299 					    ioctl);
3300 		if (r)
3301 			goto out;
3302 
3303 		r = -EFAULT;
3304 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3305 			goto out;
3306 		r = 0;
3307 		break;
3308 	}
3309 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3310 		r = -EFAULT;
3311 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3312 				 sizeof(kvm_mce_cap_supported)))
3313 			goto out;
3314 		r = 0;
3315 		break;
3316 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3317 		struct kvm_msr_list __user *user_msr_list = argp;
3318 		struct kvm_msr_list msr_list;
3319 		unsigned int n;
3320 
3321 		r = -EFAULT;
3322 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3323 			goto out;
3324 		n = msr_list.nmsrs;
3325 		msr_list.nmsrs = num_msr_based_features;
3326 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3327 			goto out;
3328 		r = -E2BIG;
3329 		if (n < msr_list.nmsrs)
3330 			goto out;
3331 		r = -EFAULT;
3332 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3333 				 num_msr_based_features * sizeof(u32)))
3334 			goto out;
3335 		r = 0;
3336 		break;
3337 	}
3338 	case KVM_GET_MSRS:
3339 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3340 		break;
3341 	}
3342 	default:
3343 		r = -EINVAL;
3344 	}
3345 out:
3346 	return r;
3347 }
3348 
3349 static void wbinvd_ipi(void *garbage)
3350 {
3351 	wbinvd();
3352 }
3353 
3354 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3355 {
3356 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3357 }
3358 
3359 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3360 {
3361 	/* Address WBINVD may be executed by guest */
3362 	if (need_emulate_wbinvd(vcpu)) {
3363 		if (kvm_x86_ops->has_wbinvd_exit())
3364 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3365 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3366 			smp_call_function_single(vcpu->cpu,
3367 					wbinvd_ipi, NULL, 1);
3368 	}
3369 
3370 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3371 
3372 	fpregs_assert_state_consistent();
3373 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
3374 		switch_fpu_return();
3375 
3376 	/* Apply any externally detected TSC adjustments (due to suspend) */
3377 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3378 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3379 		vcpu->arch.tsc_offset_adjustment = 0;
3380 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3381 	}
3382 
3383 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3384 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3385 				rdtsc() - vcpu->arch.last_host_tsc;
3386 		if (tsc_delta < 0)
3387 			mark_tsc_unstable("KVM discovered backwards TSC");
3388 
3389 		if (kvm_check_tsc_unstable()) {
3390 			u64 offset = kvm_compute_tsc_offset(vcpu,
3391 						vcpu->arch.last_guest_tsc);
3392 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3393 			vcpu->arch.tsc_catchup = 1;
3394 		}
3395 
3396 		if (kvm_lapic_hv_timer_in_use(vcpu))
3397 			kvm_lapic_restart_hv_timer(vcpu);
3398 
3399 		/*
3400 		 * On a host with synchronized TSC, there is no need to update
3401 		 * kvmclock on vcpu->cpu migration
3402 		 */
3403 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3404 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3405 		if (vcpu->cpu != cpu)
3406 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3407 		vcpu->cpu = cpu;
3408 	}
3409 
3410 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3411 }
3412 
3413 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3414 {
3415 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3416 		return;
3417 
3418 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3419 
3420 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3421 			&vcpu->arch.st.steal.preempted,
3422 			offsetof(struct kvm_steal_time, preempted),
3423 			sizeof(vcpu->arch.st.steal.preempted));
3424 }
3425 
3426 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3427 {
3428 	int idx;
3429 
3430 	if (vcpu->preempted)
3431 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3432 
3433 	/*
3434 	 * Disable page faults because we're in atomic context here.
3435 	 * kvm_write_guest_offset_cached() would call might_fault()
3436 	 * that relies on pagefault_disable() to tell if there's a
3437 	 * bug. NOTE: the write to guest memory may not go through if
3438 	 * during postcopy live migration or if there's heavy guest
3439 	 * paging.
3440 	 */
3441 	pagefault_disable();
3442 	/*
3443 	 * kvm_memslots() will be called by
3444 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3445 	 */
3446 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3447 	kvm_steal_time_set_preempted(vcpu);
3448 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3449 	pagefault_enable();
3450 	kvm_x86_ops->vcpu_put(vcpu);
3451 	vcpu->arch.last_host_tsc = rdtsc();
3452 	/*
3453 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3454 	 * on every vmexit, but if not, we might have a stale dr6 from the
3455 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3456 	 */
3457 	set_debugreg(0, 6);
3458 }
3459 
3460 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3461 				    struct kvm_lapic_state *s)
3462 {
3463 	if (vcpu->arch.apicv_active)
3464 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3465 
3466 	return kvm_apic_get_state(vcpu, s);
3467 }
3468 
3469 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3470 				    struct kvm_lapic_state *s)
3471 {
3472 	int r;
3473 
3474 	r = kvm_apic_set_state(vcpu, s);
3475 	if (r)
3476 		return r;
3477 	update_cr8_intercept(vcpu);
3478 
3479 	return 0;
3480 }
3481 
3482 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3483 {
3484 	return (!lapic_in_kernel(vcpu) ||
3485 		kvm_apic_accept_pic_intr(vcpu));
3486 }
3487 
3488 /*
3489  * if userspace requested an interrupt window, check that the
3490  * interrupt window is open.
3491  *
3492  * No need to exit to userspace if we already have an interrupt queued.
3493  */
3494 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3495 {
3496 	return kvm_arch_interrupt_allowed(vcpu) &&
3497 		!kvm_cpu_has_interrupt(vcpu) &&
3498 		!kvm_event_needs_reinjection(vcpu) &&
3499 		kvm_cpu_accept_dm_intr(vcpu);
3500 }
3501 
3502 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3503 				    struct kvm_interrupt *irq)
3504 {
3505 	if (irq->irq >= KVM_NR_INTERRUPTS)
3506 		return -EINVAL;
3507 
3508 	if (!irqchip_in_kernel(vcpu->kvm)) {
3509 		kvm_queue_interrupt(vcpu, irq->irq, false);
3510 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3511 		return 0;
3512 	}
3513 
3514 	/*
3515 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3516 	 * fail for in-kernel 8259.
3517 	 */
3518 	if (pic_in_kernel(vcpu->kvm))
3519 		return -ENXIO;
3520 
3521 	if (vcpu->arch.pending_external_vector != -1)
3522 		return -EEXIST;
3523 
3524 	vcpu->arch.pending_external_vector = irq->irq;
3525 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3526 	return 0;
3527 }
3528 
3529 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3530 {
3531 	kvm_inject_nmi(vcpu);
3532 
3533 	return 0;
3534 }
3535 
3536 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3537 {
3538 	kvm_make_request(KVM_REQ_SMI, vcpu);
3539 
3540 	return 0;
3541 }
3542 
3543 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3544 					   struct kvm_tpr_access_ctl *tac)
3545 {
3546 	if (tac->flags)
3547 		return -EINVAL;
3548 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3549 	return 0;
3550 }
3551 
3552 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3553 					u64 mcg_cap)
3554 {
3555 	int r;
3556 	unsigned bank_num = mcg_cap & 0xff, bank;
3557 
3558 	r = -EINVAL;
3559 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3560 		goto out;
3561 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3562 		goto out;
3563 	r = 0;
3564 	vcpu->arch.mcg_cap = mcg_cap;
3565 	/* Init IA32_MCG_CTL to all 1s */
3566 	if (mcg_cap & MCG_CTL_P)
3567 		vcpu->arch.mcg_ctl = ~(u64)0;
3568 	/* Init IA32_MCi_CTL to all 1s */
3569 	for (bank = 0; bank < bank_num; bank++)
3570 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3571 
3572 	kvm_x86_ops->setup_mce(vcpu);
3573 out:
3574 	return r;
3575 }
3576 
3577 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3578 				      struct kvm_x86_mce *mce)
3579 {
3580 	u64 mcg_cap = vcpu->arch.mcg_cap;
3581 	unsigned bank_num = mcg_cap & 0xff;
3582 	u64 *banks = vcpu->arch.mce_banks;
3583 
3584 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3585 		return -EINVAL;
3586 	/*
3587 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3588 	 * reporting is disabled
3589 	 */
3590 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3591 	    vcpu->arch.mcg_ctl != ~(u64)0)
3592 		return 0;
3593 	banks += 4 * mce->bank;
3594 	/*
3595 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3596 	 * reporting is disabled for the bank
3597 	 */
3598 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3599 		return 0;
3600 	if (mce->status & MCI_STATUS_UC) {
3601 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3602 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3603 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3604 			return 0;
3605 		}
3606 		if (banks[1] & MCI_STATUS_VAL)
3607 			mce->status |= MCI_STATUS_OVER;
3608 		banks[2] = mce->addr;
3609 		banks[3] = mce->misc;
3610 		vcpu->arch.mcg_status = mce->mcg_status;
3611 		banks[1] = mce->status;
3612 		kvm_queue_exception(vcpu, MC_VECTOR);
3613 	} else if (!(banks[1] & MCI_STATUS_VAL)
3614 		   || !(banks[1] & MCI_STATUS_UC)) {
3615 		if (banks[1] & MCI_STATUS_VAL)
3616 			mce->status |= MCI_STATUS_OVER;
3617 		banks[2] = mce->addr;
3618 		banks[3] = mce->misc;
3619 		banks[1] = mce->status;
3620 	} else
3621 		banks[1] |= MCI_STATUS_OVER;
3622 	return 0;
3623 }
3624 
3625 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3626 					       struct kvm_vcpu_events *events)
3627 {
3628 	process_nmi(vcpu);
3629 
3630 	/*
3631 	 * The API doesn't provide the instruction length for software
3632 	 * exceptions, so don't report them. As long as the guest RIP
3633 	 * isn't advanced, we should expect to encounter the exception
3634 	 * again.
3635 	 */
3636 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3637 		events->exception.injected = 0;
3638 		events->exception.pending = 0;
3639 	} else {
3640 		events->exception.injected = vcpu->arch.exception.injected;
3641 		events->exception.pending = vcpu->arch.exception.pending;
3642 		/*
3643 		 * For ABI compatibility, deliberately conflate
3644 		 * pending and injected exceptions when
3645 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3646 		 */
3647 		if (!vcpu->kvm->arch.exception_payload_enabled)
3648 			events->exception.injected |=
3649 				vcpu->arch.exception.pending;
3650 	}
3651 	events->exception.nr = vcpu->arch.exception.nr;
3652 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3653 	events->exception.error_code = vcpu->arch.exception.error_code;
3654 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3655 	events->exception_payload = vcpu->arch.exception.payload;
3656 
3657 	events->interrupt.injected =
3658 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3659 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3660 	events->interrupt.soft = 0;
3661 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3662 
3663 	events->nmi.injected = vcpu->arch.nmi_injected;
3664 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3665 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3666 	events->nmi.pad = 0;
3667 
3668 	events->sipi_vector = 0; /* never valid when reporting to user space */
3669 
3670 	events->smi.smm = is_smm(vcpu);
3671 	events->smi.pending = vcpu->arch.smi_pending;
3672 	events->smi.smm_inside_nmi =
3673 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3674 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3675 
3676 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3677 			 | KVM_VCPUEVENT_VALID_SHADOW
3678 			 | KVM_VCPUEVENT_VALID_SMM);
3679 	if (vcpu->kvm->arch.exception_payload_enabled)
3680 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3681 
3682 	memset(&events->reserved, 0, sizeof(events->reserved));
3683 }
3684 
3685 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3686 
3687 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3688 					      struct kvm_vcpu_events *events)
3689 {
3690 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3691 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3692 			      | KVM_VCPUEVENT_VALID_SHADOW
3693 			      | KVM_VCPUEVENT_VALID_SMM
3694 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3695 		return -EINVAL;
3696 
3697 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3698 		if (!vcpu->kvm->arch.exception_payload_enabled)
3699 			return -EINVAL;
3700 		if (events->exception.pending)
3701 			events->exception.injected = 0;
3702 		else
3703 			events->exception_has_payload = 0;
3704 	} else {
3705 		events->exception.pending = 0;
3706 		events->exception_has_payload = 0;
3707 	}
3708 
3709 	if ((events->exception.injected || events->exception.pending) &&
3710 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3711 		return -EINVAL;
3712 
3713 	/* INITs are latched while in SMM */
3714 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3715 	    (events->smi.smm || events->smi.pending) &&
3716 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3717 		return -EINVAL;
3718 
3719 	process_nmi(vcpu);
3720 	vcpu->arch.exception.injected = events->exception.injected;
3721 	vcpu->arch.exception.pending = events->exception.pending;
3722 	vcpu->arch.exception.nr = events->exception.nr;
3723 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3724 	vcpu->arch.exception.error_code = events->exception.error_code;
3725 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3726 	vcpu->arch.exception.payload = events->exception_payload;
3727 
3728 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3729 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3730 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3731 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3732 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3733 						  events->interrupt.shadow);
3734 
3735 	vcpu->arch.nmi_injected = events->nmi.injected;
3736 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3737 		vcpu->arch.nmi_pending = events->nmi.pending;
3738 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3739 
3740 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3741 	    lapic_in_kernel(vcpu))
3742 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3743 
3744 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3745 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3746 			if (events->smi.smm)
3747 				vcpu->arch.hflags |= HF_SMM_MASK;
3748 			else
3749 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3750 			kvm_smm_changed(vcpu);
3751 		}
3752 
3753 		vcpu->arch.smi_pending = events->smi.pending;
3754 
3755 		if (events->smi.smm) {
3756 			if (events->smi.smm_inside_nmi)
3757 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3758 			else
3759 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3760 			if (lapic_in_kernel(vcpu)) {
3761 				if (events->smi.latched_init)
3762 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3763 				else
3764 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3765 			}
3766 		}
3767 	}
3768 
3769 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3770 
3771 	return 0;
3772 }
3773 
3774 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3775 					     struct kvm_debugregs *dbgregs)
3776 {
3777 	unsigned long val;
3778 
3779 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3780 	kvm_get_dr(vcpu, 6, &val);
3781 	dbgregs->dr6 = val;
3782 	dbgregs->dr7 = vcpu->arch.dr7;
3783 	dbgregs->flags = 0;
3784 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3785 }
3786 
3787 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3788 					    struct kvm_debugregs *dbgregs)
3789 {
3790 	if (dbgregs->flags)
3791 		return -EINVAL;
3792 
3793 	if (dbgregs->dr6 & ~0xffffffffull)
3794 		return -EINVAL;
3795 	if (dbgregs->dr7 & ~0xffffffffull)
3796 		return -EINVAL;
3797 
3798 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3799 	kvm_update_dr0123(vcpu);
3800 	vcpu->arch.dr6 = dbgregs->dr6;
3801 	kvm_update_dr6(vcpu);
3802 	vcpu->arch.dr7 = dbgregs->dr7;
3803 	kvm_update_dr7(vcpu);
3804 
3805 	return 0;
3806 }
3807 
3808 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3809 
3810 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3811 {
3812 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3813 	u64 xstate_bv = xsave->header.xfeatures;
3814 	u64 valid;
3815 
3816 	/*
3817 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3818 	 * leaves 0 and 1 in the loop below.
3819 	 */
3820 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3821 
3822 	/* Set XSTATE_BV */
3823 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3824 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3825 
3826 	/*
3827 	 * Copy each region from the possibly compacted offset to the
3828 	 * non-compacted offset.
3829 	 */
3830 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3831 	while (valid) {
3832 		u64 xfeature_mask = valid & -valid;
3833 		int xfeature_nr = fls64(xfeature_mask) - 1;
3834 		void *src = get_xsave_addr(xsave, xfeature_nr);
3835 
3836 		if (src) {
3837 			u32 size, offset, ecx, edx;
3838 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3839 				    &size, &offset, &ecx, &edx);
3840 			if (xfeature_nr == XFEATURE_PKRU)
3841 				memcpy(dest + offset, &vcpu->arch.pkru,
3842 				       sizeof(vcpu->arch.pkru));
3843 			else
3844 				memcpy(dest + offset, src, size);
3845 
3846 		}
3847 
3848 		valid -= xfeature_mask;
3849 	}
3850 }
3851 
3852 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3853 {
3854 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3855 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3856 	u64 valid;
3857 
3858 	/*
3859 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3860 	 * leaves 0 and 1 in the loop below.
3861 	 */
3862 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3863 
3864 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3865 	xsave->header.xfeatures = xstate_bv;
3866 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3867 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3868 
3869 	/*
3870 	 * Copy each region from the non-compacted offset to the
3871 	 * possibly compacted offset.
3872 	 */
3873 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3874 	while (valid) {
3875 		u64 xfeature_mask = valid & -valid;
3876 		int xfeature_nr = fls64(xfeature_mask) - 1;
3877 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3878 
3879 		if (dest) {
3880 			u32 size, offset, ecx, edx;
3881 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3882 				    &size, &offset, &ecx, &edx);
3883 			if (xfeature_nr == XFEATURE_PKRU)
3884 				memcpy(&vcpu->arch.pkru, src + offset,
3885 				       sizeof(vcpu->arch.pkru));
3886 			else
3887 				memcpy(dest, src + offset, size);
3888 		}
3889 
3890 		valid -= xfeature_mask;
3891 	}
3892 }
3893 
3894 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3895 					 struct kvm_xsave *guest_xsave)
3896 {
3897 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3898 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3899 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3900 	} else {
3901 		memcpy(guest_xsave->region,
3902 			&vcpu->arch.guest_fpu->state.fxsave,
3903 			sizeof(struct fxregs_state));
3904 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3905 			XFEATURE_MASK_FPSSE;
3906 	}
3907 }
3908 
3909 #define XSAVE_MXCSR_OFFSET 24
3910 
3911 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3912 					struct kvm_xsave *guest_xsave)
3913 {
3914 	u64 xstate_bv =
3915 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3916 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3917 
3918 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3919 		/*
3920 		 * Here we allow setting states that are not present in
3921 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3922 		 * with old userspace.
3923 		 */
3924 		if (xstate_bv & ~kvm_supported_xcr0() ||
3925 			mxcsr & ~mxcsr_feature_mask)
3926 			return -EINVAL;
3927 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3928 	} else {
3929 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3930 			mxcsr & ~mxcsr_feature_mask)
3931 			return -EINVAL;
3932 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3933 			guest_xsave->region, sizeof(struct fxregs_state));
3934 	}
3935 	return 0;
3936 }
3937 
3938 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3939 					struct kvm_xcrs *guest_xcrs)
3940 {
3941 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3942 		guest_xcrs->nr_xcrs = 0;
3943 		return;
3944 	}
3945 
3946 	guest_xcrs->nr_xcrs = 1;
3947 	guest_xcrs->flags = 0;
3948 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3949 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3950 }
3951 
3952 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3953 				       struct kvm_xcrs *guest_xcrs)
3954 {
3955 	int i, r = 0;
3956 
3957 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3958 		return -EINVAL;
3959 
3960 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3961 		return -EINVAL;
3962 
3963 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3964 		/* Only support XCR0 currently */
3965 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3966 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3967 				guest_xcrs->xcrs[i].value);
3968 			break;
3969 		}
3970 	if (r)
3971 		r = -EINVAL;
3972 	return r;
3973 }
3974 
3975 /*
3976  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3977  * stopped by the hypervisor.  This function will be called from the host only.
3978  * EINVAL is returned when the host attempts to set the flag for a guest that
3979  * does not support pv clocks.
3980  */
3981 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3982 {
3983 	if (!vcpu->arch.pv_time_enabled)
3984 		return -EINVAL;
3985 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3986 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3987 	return 0;
3988 }
3989 
3990 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3991 				     struct kvm_enable_cap *cap)
3992 {
3993 	int r;
3994 	uint16_t vmcs_version;
3995 	void __user *user_ptr;
3996 
3997 	if (cap->flags)
3998 		return -EINVAL;
3999 
4000 	switch (cap->cap) {
4001 	case KVM_CAP_HYPERV_SYNIC2:
4002 		if (cap->args[0])
4003 			return -EINVAL;
4004 		/* fall through */
4005 
4006 	case KVM_CAP_HYPERV_SYNIC:
4007 		if (!irqchip_in_kernel(vcpu->kvm))
4008 			return -EINVAL;
4009 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4010 					     KVM_CAP_HYPERV_SYNIC2);
4011 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4012 		if (!kvm_x86_ops->nested_enable_evmcs)
4013 			return -ENOTTY;
4014 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4015 		if (!r) {
4016 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4017 			if (copy_to_user(user_ptr, &vmcs_version,
4018 					 sizeof(vmcs_version)))
4019 				r = -EFAULT;
4020 		}
4021 		return r;
4022 
4023 	default:
4024 		return -EINVAL;
4025 	}
4026 }
4027 
4028 long kvm_arch_vcpu_ioctl(struct file *filp,
4029 			 unsigned int ioctl, unsigned long arg)
4030 {
4031 	struct kvm_vcpu *vcpu = filp->private_data;
4032 	void __user *argp = (void __user *)arg;
4033 	int r;
4034 	union {
4035 		struct kvm_lapic_state *lapic;
4036 		struct kvm_xsave *xsave;
4037 		struct kvm_xcrs *xcrs;
4038 		void *buffer;
4039 	} u;
4040 
4041 	vcpu_load(vcpu);
4042 
4043 	u.buffer = NULL;
4044 	switch (ioctl) {
4045 	case KVM_GET_LAPIC: {
4046 		r = -EINVAL;
4047 		if (!lapic_in_kernel(vcpu))
4048 			goto out;
4049 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4050 				GFP_KERNEL_ACCOUNT);
4051 
4052 		r = -ENOMEM;
4053 		if (!u.lapic)
4054 			goto out;
4055 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4056 		if (r)
4057 			goto out;
4058 		r = -EFAULT;
4059 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4060 			goto out;
4061 		r = 0;
4062 		break;
4063 	}
4064 	case KVM_SET_LAPIC: {
4065 		r = -EINVAL;
4066 		if (!lapic_in_kernel(vcpu))
4067 			goto out;
4068 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4069 		if (IS_ERR(u.lapic)) {
4070 			r = PTR_ERR(u.lapic);
4071 			goto out_nofree;
4072 		}
4073 
4074 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4075 		break;
4076 	}
4077 	case KVM_INTERRUPT: {
4078 		struct kvm_interrupt irq;
4079 
4080 		r = -EFAULT;
4081 		if (copy_from_user(&irq, argp, sizeof(irq)))
4082 			goto out;
4083 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4084 		break;
4085 	}
4086 	case KVM_NMI: {
4087 		r = kvm_vcpu_ioctl_nmi(vcpu);
4088 		break;
4089 	}
4090 	case KVM_SMI: {
4091 		r = kvm_vcpu_ioctl_smi(vcpu);
4092 		break;
4093 	}
4094 	case KVM_SET_CPUID: {
4095 		struct kvm_cpuid __user *cpuid_arg = argp;
4096 		struct kvm_cpuid cpuid;
4097 
4098 		r = -EFAULT;
4099 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4100 			goto out;
4101 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4102 		break;
4103 	}
4104 	case KVM_SET_CPUID2: {
4105 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4106 		struct kvm_cpuid2 cpuid;
4107 
4108 		r = -EFAULT;
4109 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4110 			goto out;
4111 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4112 					      cpuid_arg->entries);
4113 		break;
4114 	}
4115 	case KVM_GET_CPUID2: {
4116 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4117 		struct kvm_cpuid2 cpuid;
4118 
4119 		r = -EFAULT;
4120 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4121 			goto out;
4122 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4123 					      cpuid_arg->entries);
4124 		if (r)
4125 			goto out;
4126 		r = -EFAULT;
4127 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4128 			goto out;
4129 		r = 0;
4130 		break;
4131 	}
4132 	case KVM_GET_MSRS: {
4133 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4134 		r = msr_io(vcpu, argp, do_get_msr, 1);
4135 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4136 		break;
4137 	}
4138 	case KVM_SET_MSRS: {
4139 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4140 		r = msr_io(vcpu, argp, do_set_msr, 0);
4141 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4142 		break;
4143 	}
4144 	case KVM_TPR_ACCESS_REPORTING: {
4145 		struct kvm_tpr_access_ctl tac;
4146 
4147 		r = -EFAULT;
4148 		if (copy_from_user(&tac, argp, sizeof(tac)))
4149 			goto out;
4150 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4151 		if (r)
4152 			goto out;
4153 		r = -EFAULT;
4154 		if (copy_to_user(argp, &tac, sizeof(tac)))
4155 			goto out;
4156 		r = 0;
4157 		break;
4158 	};
4159 	case KVM_SET_VAPIC_ADDR: {
4160 		struct kvm_vapic_addr va;
4161 		int idx;
4162 
4163 		r = -EINVAL;
4164 		if (!lapic_in_kernel(vcpu))
4165 			goto out;
4166 		r = -EFAULT;
4167 		if (copy_from_user(&va, argp, sizeof(va)))
4168 			goto out;
4169 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4170 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4171 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4172 		break;
4173 	}
4174 	case KVM_X86_SETUP_MCE: {
4175 		u64 mcg_cap;
4176 
4177 		r = -EFAULT;
4178 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4179 			goto out;
4180 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4181 		break;
4182 	}
4183 	case KVM_X86_SET_MCE: {
4184 		struct kvm_x86_mce mce;
4185 
4186 		r = -EFAULT;
4187 		if (copy_from_user(&mce, argp, sizeof(mce)))
4188 			goto out;
4189 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4190 		break;
4191 	}
4192 	case KVM_GET_VCPU_EVENTS: {
4193 		struct kvm_vcpu_events events;
4194 
4195 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4196 
4197 		r = -EFAULT;
4198 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4199 			break;
4200 		r = 0;
4201 		break;
4202 	}
4203 	case KVM_SET_VCPU_EVENTS: {
4204 		struct kvm_vcpu_events events;
4205 
4206 		r = -EFAULT;
4207 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4208 			break;
4209 
4210 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4211 		break;
4212 	}
4213 	case KVM_GET_DEBUGREGS: {
4214 		struct kvm_debugregs dbgregs;
4215 
4216 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4217 
4218 		r = -EFAULT;
4219 		if (copy_to_user(argp, &dbgregs,
4220 				 sizeof(struct kvm_debugregs)))
4221 			break;
4222 		r = 0;
4223 		break;
4224 	}
4225 	case KVM_SET_DEBUGREGS: {
4226 		struct kvm_debugregs dbgregs;
4227 
4228 		r = -EFAULT;
4229 		if (copy_from_user(&dbgregs, argp,
4230 				   sizeof(struct kvm_debugregs)))
4231 			break;
4232 
4233 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4234 		break;
4235 	}
4236 	case KVM_GET_XSAVE: {
4237 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4238 		r = -ENOMEM;
4239 		if (!u.xsave)
4240 			break;
4241 
4242 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4243 
4244 		r = -EFAULT;
4245 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4246 			break;
4247 		r = 0;
4248 		break;
4249 	}
4250 	case KVM_SET_XSAVE: {
4251 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4252 		if (IS_ERR(u.xsave)) {
4253 			r = PTR_ERR(u.xsave);
4254 			goto out_nofree;
4255 		}
4256 
4257 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4258 		break;
4259 	}
4260 	case KVM_GET_XCRS: {
4261 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4262 		r = -ENOMEM;
4263 		if (!u.xcrs)
4264 			break;
4265 
4266 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4267 
4268 		r = -EFAULT;
4269 		if (copy_to_user(argp, u.xcrs,
4270 				 sizeof(struct kvm_xcrs)))
4271 			break;
4272 		r = 0;
4273 		break;
4274 	}
4275 	case KVM_SET_XCRS: {
4276 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4277 		if (IS_ERR(u.xcrs)) {
4278 			r = PTR_ERR(u.xcrs);
4279 			goto out_nofree;
4280 		}
4281 
4282 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4283 		break;
4284 	}
4285 	case KVM_SET_TSC_KHZ: {
4286 		u32 user_tsc_khz;
4287 
4288 		r = -EINVAL;
4289 		user_tsc_khz = (u32)arg;
4290 
4291 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4292 			goto out;
4293 
4294 		if (user_tsc_khz == 0)
4295 			user_tsc_khz = tsc_khz;
4296 
4297 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4298 			r = 0;
4299 
4300 		goto out;
4301 	}
4302 	case KVM_GET_TSC_KHZ: {
4303 		r = vcpu->arch.virtual_tsc_khz;
4304 		goto out;
4305 	}
4306 	case KVM_KVMCLOCK_CTRL: {
4307 		r = kvm_set_guest_paused(vcpu);
4308 		goto out;
4309 	}
4310 	case KVM_ENABLE_CAP: {
4311 		struct kvm_enable_cap cap;
4312 
4313 		r = -EFAULT;
4314 		if (copy_from_user(&cap, argp, sizeof(cap)))
4315 			goto out;
4316 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4317 		break;
4318 	}
4319 	case KVM_GET_NESTED_STATE: {
4320 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4321 		u32 user_data_size;
4322 
4323 		r = -EINVAL;
4324 		if (!kvm_x86_ops->get_nested_state)
4325 			break;
4326 
4327 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4328 		r = -EFAULT;
4329 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4330 			break;
4331 
4332 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4333 						  user_data_size);
4334 		if (r < 0)
4335 			break;
4336 
4337 		if (r > user_data_size) {
4338 			if (put_user(r, &user_kvm_nested_state->size))
4339 				r = -EFAULT;
4340 			else
4341 				r = -E2BIG;
4342 			break;
4343 		}
4344 
4345 		r = 0;
4346 		break;
4347 	}
4348 	case KVM_SET_NESTED_STATE: {
4349 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4350 		struct kvm_nested_state kvm_state;
4351 
4352 		r = -EINVAL;
4353 		if (!kvm_x86_ops->set_nested_state)
4354 			break;
4355 
4356 		r = -EFAULT;
4357 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4358 			break;
4359 
4360 		r = -EINVAL;
4361 		if (kvm_state.size < sizeof(kvm_state))
4362 			break;
4363 
4364 		if (kvm_state.flags &
4365 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4366 		      | KVM_STATE_NESTED_EVMCS))
4367 			break;
4368 
4369 		/* nested_run_pending implies guest_mode.  */
4370 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4371 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4372 			break;
4373 
4374 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4375 		break;
4376 	}
4377 	case KVM_GET_SUPPORTED_HV_CPUID: {
4378 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4379 		struct kvm_cpuid2 cpuid;
4380 
4381 		r = -EFAULT;
4382 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4383 			goto out;
4384 
4385 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4386 						cpuid_arg->entries);
4387 		if (r)
4388 			goto out;
4389 
4390 		r = -EFAULT;
4391 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4392 			goto out;
4393 		r = 0;
4394 		break;
4395 	}
4396 	default:
4397 		r = -EINVAL;
4398 	}
4399 out:
4400 	kfree(u.buffer);
4401 out_nofree:
4402 	vcpu_put(vcpu);
4403 	return r;
4404 }
4405 
4406 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4407 {
4408 	return VM_FAULT_SIGBUS;
4409 }
4410 
4411 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4412 {
4413 	int ret;
4414 
4415 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4416 		return -EINVAL;
4417 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4418 	return ret;
4419 }
4420 
4421 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4422 					      u64 ident_addr)
4423 {
4424 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4425 }
4426 
4427 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4428 					 unsigned long kvm_nr_mmu_pages)
4429 {
4430 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4431 		return -EINVAL;
4432 
4433 	mutex_lock(&kvm->slots_lock);
4434 
4435 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4436 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4437 
4438 	mutex_unlock(&kvm->slots_lock);
4439 	return 0;
4440 }
4441 
4442 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4443 {
4444 	return kvm->arch.n_max_mmu_pages;
4445 }
4446 
4447 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4448 {
4449 	struct kvm_pic *pic = kvm->arch.vpic;
4450 	int r;
4451 
4452 	r = 0;
4453 	switch (chip->chip_id) {
4454 	case KVM_IRQCHIP_PIC_MASTER:
4455 		memcpy(&chip->chip.pic, &pic->pics[0],
4456 			sizeof(struct kvm_pic_state));
4457 		break;
4458 	case KVM_IRQCHIP_PIC_SLAVE:
4459 		memcpy(&chip->chip.pic, &pic->pics[1],
4460 			sizeof(struct kvm_pic_state));
4461 		break;
4462 	case KVM_IRQCHIP_IOAPIC:
4463 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4464 		break;
4465 	default:
4466 		r = -EINVAL;
4467 		break;
4468 	}
4469 	return r;
4470 }
4471 
4472 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4473 {
4474 	struct kvm_pic *pic = kvm->arch.vpic;
4475 	int r;
4476 
4477 	r = 0;
4478 	switch (chip->chip_id) {
4479 	case KVM_IRQCHIP_PIC_MASTER:
4480 		spin_lock(&pic->lock);
4481 		memcpy(&pic->pics[0], &chip->chip.pic,
4482 			sizeof(struct kvm_pic_state));
4483 		spin_unlock(&pic->lock);
4484 		break;
4485 	case KVM_IRQCHIP_PIC_SLAVE:
4486 		spin_lock(&pic->lock);
4487 		memcpy(&pic->pics[1], &chip->chip.pic,
4488 			sizeof(struct kvm_pic_state));
4489 		spin_unlock(&pic->lock);
4490 		break;
4491 	case KVM_IRQCHIP_IOAPIC:
4492 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4493 		break;
4494 	default:
4495 		r = -EINVAL;
4496 		break;
4497 	}
4498 	kvm_pic_update_irq(pic);
4499 	return r;
4500 }
4501 
4502 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4503 {
4504 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4505 
4506 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4507 
4508 	mutex_lock(&kps->lock);
4509 	memcpy(ps, &kps->channels, sizeof(*ps));
4510 	mutex_unlock(&kps->lock);
4511 	return 0;
4512 }
4513 
4514 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4515 {
4516 	int i;
4517 	struct kvm_pit *pit = kvm->arch.vpit;
4518 
4519 	mutex_lock(&pit->pit_state.lock);
4520 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4521 	for (i = 0; i < 3; i++)
4522 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4523 	mutex_unlock(&pit->pit_state.lock);
4524 	return 0;
4525 }
4526 
4527 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4528 {
4529 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4530 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4531 		sizeof(ps->channels));
4532 	ps->flags = kvm->arch.vpit->pit_state.flags;
4533 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4534 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4535 	return 0;
4536 }
4537 
4538 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4539 {
4540 	int start = 0;
4541 	int i;
4542 	u32 prev_legacy, cur_legacy;
4543 	struct kvm_pit *pit = kvm->arch.vpit;
4544 
4545 	mutex_lock(&pit->pit_state.lock);
4546 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4547 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4548 	if (!prev_legacy && cur_legacy)
4549 		start = 1;
4550 	memcpy(&pit->pit_state.channels, &ps->channels,
4551 	       sizeof(pit->pit_state.channels));
4552 	pit->pit_state.flags = ps->flags;
4553 	for (i = 0; i < 3; i++)
4554 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4555 				   start && i == 0);
4556 	mutex_unlock(&pit->pit_state.lock);
4557 	return 0;
4558 }
4559 
4560 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4561 				 struct kvm_reinject_control *control)
4562 {
4563 	struct kvm_pit *pit = kvm->arch.vpit;
4564 
4565 	if (!pit)
4566 		return -ENXIO;
4567 
4568 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4569 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4570 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4571 	 */
4572 	mutex_lock(&pit->pit_state.lock);
4573 	kvm_pit_set_reinject(pit, control->pit_reinject);
4574 	mutex_unlock(&pit->pit_state.lock);
4575 
4576 	return 0;
4577 }
4578 
4579 /**
4580  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4581  * @kvm: kvm instance
4582  * @log: slot id and address to which we copy the log
4583  *
4584  * Steps 1-4 below provide general overview of dirty page logging. See
4585  * kvm_get_dirty_log_protect() function description for additional details.
4586  *
4587  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4588  * always flush the TLB (step 4) even if previous step failed  and the dirty
4589  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4590  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4591  * writes will be marked dirty for next log read.
4592  *
4593  *   1. Take a snapshot of the bit and clear it if needed.
4594  *   2. Write protect the corresponding page.
4595  *   3. Copy the snapshot to the userspace.
4596  *   4. Flush TLB's if needed.
4597  */
4598 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4599 {
4600 	bool flush = false;
4601 	int r;
4602 
4603 	mutex_lock(&kvm->slots_lock);
4604 
4605 	/*
4606 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4607 	 */
4608 	if (kvm_x86_ops->flush_log_dirty)
4609 		kvm_x86_ops->flush_log_dirty(kvm);
4610 
4611 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4612 
4613 	/*
4614 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4615 	 * kvm_mmu_slot_remove_write_access().
4616 	 */
4617 	lockdep_assert_held(&kvm->slots_lock);
4618 	if (flush)
4619 		kvm_flush_remote_tlbs(kvm);
4620 
4621 	mutex_unlock(&kvm->slots_lock);
4622 	return r;
4623 }
4624 
4625 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4626 {
4627 	bool flush = false;
4628 	int r;
4629 
4630 	mutex_lock(&kvm->slots_lock);
4631 
4632 	/*
4633 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4634 	 */
4635 	if (kvm_x86_ops->flush_log_dirty)
4636 		kvm_x86_ops->flush_log_dirty(kvm);
4637 
4638 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4639 
4640 	/*
4641 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4642 	 * kvm_mmu_slot_remove_write_access().
4643 	 */
4644 	lockdep_assert_held(&kvm->slots_lock);
4645 	if (flush)
4646 		kvm_flush_remote_tlbs(kvm);
4647 
4648 	mutex_unlock(&kvm->slots_lock);
4649 	return r;
4650 }
4651 
4652 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4653 			bool line_status)
4654 {
4655 	if (!irqchip_in_kernel(kvm))
4656 		return -ENXIO;
4657 
4658 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4659 					irq_event->irq, irq_event->level,
4660 					line_status);
4661 	return 0;
4662 }
4663 
4664 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4665 			    struct kvm_enable_cap *cap)
4666 {
4667 	int r;
4668 
4669 	if (cap->flags)
4670 		return -EINVAL;
4671 
4672 	switch (cap->cap) {
4673 	case KVM_CAP_DISABLE_QUIRKS:
4674 		kvm->arch.disabled_quirks = cap->args[0];
4675 		r = 0;
4676 		break;
4677 	case KVM_CAP_SPLIT_IRQCHIP: {
4678 		mutex_lock(&kvm->lock);
4679 		r = -EINVAL;
4680 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4681 			goto split_irqchip_unlock;
4682 		r = -EEXIST;
4683 		if (irqchip_in_kernel(kvm))
4684 			goto split_irqchip_unlock;
4685 		if (kvm->created_vcpus)
4686 			goto split_irqchip_unlock;
4687 		r = kvm_setup_empty_irq_routing(kvm);
4688 		if (r)
4689 			goto split_irqchip_unlock;
4690 		/* Pairs with irqchip_in_kernel. */
4691 		smp_wmb();
4692 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4693 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4694 		r = 0;
4695 split_irqchip_unlock:
4696 		mutex_unlock(&kvm->lock);
4697 		break;
4698 	}
4699 	case KVM_CAP_X2APIC_API:
4700 		r = -EINVAL;
4701 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4702 			break;
4703 
4704 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4705 			kvm->arch.x2apic_format = true;
4706 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4707 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4708 
4709 		r = 0;
4710 		break;
4711 	case KVM_CAP_X86_DISABLE_EXITS:
4712 		r = -EINVAL;
4713 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4714 			break;
4715 
4716 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4717 			kvm_can_mwait_in_guest())
4718 			kvm->arch.mwait_in_guest = true;
4719 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4720 			kvm->arch.hlt_in_guest = true;
4721 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4722 			kvm->arch.pause_in_guest = true;
4723 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4724 			kvm->arch.cstate_in_guest = true;
4725 		r = 0;
4726 		break;
4727 	case KVM_CAP_MSR_PLATFORM_INFO:
4728 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4729 		r = 0;
4730 		break;
4731 	case KVM_CAP_EXCEPTION_PAYLOAD:
4732 		kvm->arch.exception_payload_enabled = cap->args[0];
4733 		r = 0;
4734 		break;
4735 	default:
4736 		r = -EINVAL;
4737 		break;
4738 	}
4739 	return r;
4740 }
4741 
4742 long kvm_arch_vm_ioctl(struct file *filp,
4743 		       unsigned int ioctl, unsigned long arg)
4744 {
4745 	struct kvm *kvm = filp->private_data;
4746 	void __user *argp = (void __user *)arg;
4747 	int r = -ENOTTY;
4748 	/*
4749 	 * This union makes it completely explicit to gcc-3.x
4750 	 * that these two variables' stack usage should be
4751 	 * combined, not added together.
4752 	 */
4753 	union {
4754 		struct kvm_pit_state ps;
4755 		struct kvm_pit_state2 ps2;
4756 		struct kvm_pit_config pit_config;
4757 	} u;
4758 
4759 	switch (ioctl) {
4760 	case KVM_SET_TSS_ADDR:
4761 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4762 		break;
4763 	case KVM_SET_IDENTITY_MAP_ADDR: {
4764 		u64 ident_addr;
4765 
4766 		mutex_lock(&kvm->lock);
4767 		r = -EINVAL;
4768 		if (kvm->created_vcpus)
4769 			goto set_identity_unlock;
4770 		r = -EFAULT;
4771 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4772 			goto set_identity_unlock;
4773 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4774 set_identity_unlock:
4775 		mutex_unlock(&kvm->lock);
4776 		break;
4777 	}
4778 	case KVM_SET_NR_MMU_PAGES:
4779 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4780 		break;
4781 	case KVM_GET_NR_MMU_PAGES:
4782 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4783 		break;
4784 	case KVM_CREATE_IRQCHIP: {
4785 		mutex_lock(&kvm->lock);
4786 
4787 		r = -EEXIST;
4788 		if (irqchip_in_kernel(kvm))
4789 			goto create_irqchip_unlock;
4790 
4791 		r = -EINVAL;
4792 		if (kvm->created_vcpus)
4793 			goto create_irqchip_unlock;
4794 
4795 		r = kvm_pic_init(kvm);
4796 		if (r)
4797 			goto create_irqchip_unlock;
4798 
4799 		r = kvm_ioapic_init(kvm);
4800 		if (r) {
4801 			kvm_pic_destroy(kvm);
4802 			goto create_irqchip_unlock;
4803 		}
4804 
4805 		r = kvm_setup_default_irq_routing(kvm);
4806 		if (r) {
4807 			kvm_ioapic_destroy(kvm);
4808 			kvm_pic_destroy(kvm);
4809 			goto create_irqchip_unlock;
4810 		}
4811 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4812 		smp_wmb();
4813 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4814 	create_irqchip_unlock:
4815 		mutex_unlock(&kvm->lock);
4816 		break;
4817 	}
4818 	case KVM_CREATE_PIT:
4819 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4820 		goto create_pit;
4821 	case KVM_CREATE_PIT2:
4822 		r = -EFAULT;
4823 		if (copy_from_user(&u.pit_config, argp,
4824 				   sizeof(struct kvm_pit_config)))
4825 			goto out;
4826 	create_pit:
4827 		mutex_lock(&kvm->lock);
4828 		r = -EEXIST;
4829 		if (kvm->arch.vpit)
4830 			goto create_pit_unlock;
4831 		r = -ENOMEM;
4832 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4833 		if (kvm->arch.vpit)
4834 			r = 0;
4835 	create_pit_unlock:
4836 		mutex_unlock(&kvm->lock);
4837 		break;
4838 	case KVM_GET_IRQCHIP: {
4839 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4840 		struct kvm_irqchip *chip;
4841 
4842 		chip = memdup_user(argp, sizeof(*chip));
4843 		if (IS_ERR(chip)) {
4844 			r = PTR_ERR(chip);
4845 			goto out;
4846 		}
4847 
4848 		r = -ENXIO;
4849 		if (!irqchip_kernel(kvm))
4850 			goto get_irqchip_out;
4851 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4852 		if (r)
4853 			goto get_irqchip_out;
4854 		r = -EFAULT;
4855 		if (copy_to_user(argp, chip, sizeof(*chip)))
4856 			goto get_irqchip_out;
4857 		r = 0;
4858 	get_irqchip_out:
4859 		kfree(chip);
4860 		break;
4861 	}
4862 	case KVM_SET_IRQCHIP: {
4863 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4864 		struct kvm_irqchip *chip;
4865 
4866 		chip = memdup_user(argp, sizeof(*chip));
4867 		if (IS_ERR(chip)) {
4868 			r = PTR_ERR(chip);
4869 			goto out;
4870 		}
4871 
4872 		r = -ENXIO;
4873 		if (!irqchip_kernel(kvm))
4874 			goto set_irqchip_out;
4875 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4876 		if (r)
4877 			goto set_irqchip_out;
4878 		r = 0;
4879 	set_irqchip_out:
4880 		kfree(chip);
4881 		break;
4882 	}
4883 	case KVM_GET_PIT: {
4884 		r = -EFAULT;
4885 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4886 			goto out;
4887 		r = -ENXIO;
4888 		if (!kvm->arch.vpit)
4889 			goto out;
4890 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4891 		if (r)
4892 			goto out;
4893 		r = -EFAULT;
4894 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4895 			goto out;
4896 		r = 0;
4897 		break;
4898 	}
4899 	case KVM_SET_PIT: {
4900 		r = -EFAULT;
4901 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4902 			goto out;
4903 		r = -ENXIO;
4904 		if (!kvm->arch.vpit)
4905 			goto out;
4906 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4907 		break;
4908 	}
4909 	case KVM_GET_PIT2: {
4910 		r = -ENXIO;
4911 		if (!kvm->arch.vpit)
4912 			goto out;
4913 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4914 		if (r)
4915 			goto out;
4916 		r = -EFAULT;
4917 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4918 			goto out;
4919 		r = 0;
4920 		break;
4921 	}
4922 	case KVM_SET_PIT2: {
4923 		r = -EFAULT;
4924 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4925 			goto out;
4926 		r = -ENXIO;
4927 		if (!kvm->arch.vpit)
4928 			goto out;
4929 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4930 		break;
4931 	}
4932 	case KVM_REINJECT_CONTROL: {
4933 		struct kvm_reinject_control control;
4934 		r =  -EFAULT;
4935 		if (copy_from_user(&control, argp, sizeof(control)))
4936 			goto out;
4937 		r = kvm_vm_ioctl_reinject(kvm, &control);
4938 		break;
4939 	}
4940 	case KVM_SET_BOOT_CPU_ID:
4941 		r = 0;
4942 		mutex_lock(&kvm->lock);
4943 		if (kvm->created_vcpus)
4944 			r = -EBUSY;
4945 		else
4946 			kvm->arch.bsp_vcpu_id = arg;
4947 		mutex_unlock(&kvm->lock);
4948 		break;
4949 	case KVM_XEN_HVM_CONFIG: {
4950 		struct kvm_xen_hvm_config xhc;
4951 		r = -EFAULT;
4952 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4953 			goto out;
4954 		r = -EINVAL;
4955 		if (xhc.flags)
4956 			goto out;
4957 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4958 		r = 0;
4959 		break;
4960 	}
4961 	case KVM_SET_CLOCK: {
4962 		struct kvm_clock_data user_ns;
4963 		u64 now_ns;
4964 
4965 		r = -EFAULT;
4966 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4967 			goto out;
4968 
4969 		r = -EINVAL;
4970 		if (user_ns.flags)
4971 			goto out;
4972 
4973 		r = 0;
4974 		/*
4975 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4976 		 * kvm_gen_update_masterclock() can be cut down to locked
4977 		 * pvclock_update_vm_gtod_copy().
4978 		 */
4979 		kvm_gen_update_masterclock(kvm);
4980 		now_ns = get_kvmclock_ns(kvm);
4981 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4982 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4983 		break;
4984 	}
4985 	case KVM_GET_CLOCK: {
4986 		struct kvm_clock_data user_ns;
4987 		u64 now_ns;
4988 
4989 		now_ns = get_kvmclock_ns(kvm);
4990 		user_ns.clock = now_ns;
4991 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4992 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4993 
4994 		r = -EFAULT;
4995 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4996 			goto out;
4997 		r = 0;
4998 		break;
4999 	}
5000 	case KVM_MEMORY_ENCRYPT_OP: {
5001 		r = -ENOTTY;
5002 		if (kvm_x86_ops->mem_enc_op)
5003 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5004 		break;
5005 	}
5006 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5007 		struct kvm_enc_region region;
5008 
5009 		r = -EFAULT;
5010 		if (copy_from_user(&region, argp, sizeof(region)))
5011 			goto out;
5012 
5013 		r = -ENOTTY;
5014 		if (kvm_x86_ops->mem_enc_reg_region)
5015 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5016 		break;
5017 	}
5018 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5019 		struct kvm_enc_region region;
5020 
5021 		r = -EFAULT;
5022 		if (copy_from_user(&region, argp, sizeof(region)))
5023 			goto out;
5024 
5025 		r = -ENOTTY;
5026 		if (kvm_x86_ops->mem_enc_unreg_region)
5027 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5028 		break;
5029 	}
5030 	case KVM_HYPERV_EVENTFD: {
5031 		struct kvm_hyperv_eventfd hvevfd;
5032 
5033 		r = -EFAULT;
5034 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5035 			goto out;
5036 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5037 		break;
5038 	}
5039 	case KVM_SET_PMU_EVENT_FILTER:
5040 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5041 		break;
5042 	default:
5043 		r = -ENOTTY;
5044 	}
5045 out:
5046 	return r;
5047 }
5048 
5049 static void kvm_init_msr_list(void)
5050 {
5051 	u32 dummy[2];
5052 	unsigned i, j;
5053 
5054 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
5055 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
5056 			continue;
5057 
5058 		/*
5059 		 * Even MSRs that are valid in the host may not be exposed
5060 		 * to the guests in some cases.
5061 		 */
5062 		switch (msrs_to_save[i]) {
5063 		case MSR_IA32_BNDCFGS:
5064 			if (!kvm_mpx_supported())
5065 				continue;
5066 			break;
5067 		case MSR_TSC_AUX:
5068 			if (!kvm_x86_ops->rdtscp_supported())
5069 				continue;
5070 			break;
5071 		case MSR_IA32_RTIT_CTL:
5072 		case MSR_IA32_RTIT_STATUS:
5073 			if (!kvm_x86_ops->pt_supported())
5074 				continue;
5075 			break;
5076 		case MSR_IA32_RTIT_CR3_MATCH:
5077 			if (!kvm_x86_ops->pt_supported() ||
5078 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5079 				continue;
5080 			break;
5081 		case MSR_IA32_RTIT_OUTPUT_BASE:
5082 		case MSR_IA32_RTIT_OUTPUT_MASK:
5083 			if (!kvm_x86_ops->pt_supported() ||
5084 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5085 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5086 				continue;
5087 			break;
5088 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5089 			if (!kvm_x86_ops->pt_supported() ||
5090 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5091 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5092 				continue;
5093 			break;
5094 		}
5095 		default:
5096 			break;
5097 		}
5098 
5099 		if (j < i)
5100 			msrs_to_save[j] = msrs_to_save[i];
5101 		j++;
5102 	}
5103 	num_msrs_to_save = j;
5104 
5105 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5106 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5107 			continue;
5108 
5109 		if (j < i)
5110 			emulated_msrs[j] = emulated_msrs[i];
5111 		j++;
5112 	}
5113 	num_emulated_msrs = j;
5114 
5115 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5116 		struct kvm_msr_entry msr;
5117 
5118 		msr.index = msr_based_features[i];
5119 		if (kvm_get_msr_feature(&msr))
5120 			continue;
5121 
5122 		if (j < i)
5123 			msr_based_features[j] = msr_based_features[i];
5124 		j++;
5125 	}
5126 	num_msr_based_features = j;
5127 }
5128 
5129 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5130 			   const void *v)
5131 {
5132 	int handled = 0;
5133 	int n;
5134 
5135 	do {
5136 		n = min(len, 8);
5137 		if (!(lapic_in_kernel(vcpu) &&
5138 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5139 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5140 			break;
5141 		handled += n;
5142 		addr += n;
5143 		len -= n;
5144 		v += n;
5145 	} while (len);
5146 
5147 	return handled;
5148 }
5149 
5150 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5151 {
5152 	int handled = 0;
5153 	int n;
5154 
5155 	do {
5156 		n = min(len, 8);
5157 		if (!(lapic_in_kernel(vcpu) &&
5158 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5159 					 addr, n, v))
5160 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5161 			break;
5162 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5163 		handled += n;
5164 		addr += n;
5165 		len -= n;
5166 		v += n;
5167 	} while (len);
5168 
5169 	return handled;
5170 }
5171 
5172 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5173 			struct kvm_segment *var, int seg)
5174 {
5175 	kvm_x86_ops->set_segment(vcpu, var, seg);
5176 }
5177 
5178 void kvm_get_segment(struct kvm_vcpu *vcpu,
5179 		     struct kvm_segment *var, int seg)
5180 {
5181 	kvm_x86_ops->get_segment(vcpu, var, seg);
5182 }
5183 
5184 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5185 			   struct x86_exception *exception)
5186 {
5187 	gpa_t t_gpa;
5188 
5189 	BUG_ON(!mmu_is_nested(vcpu));
5190 
5191 	/* NPT walks are always user-walks */
5192 	access |= PFERR_USER_MASK;
5193 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5194 
5195 	return t_gpa;
5196 }
5197 
5198 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5199 			      struct x86_exception *exception)
5200 {
5201 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5202 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5203 }
5204 
5205  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5206 				struct x86_exception *exception)
5207 {
5208 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5209 	access |= PFERR_FETCH_MASK;
5210 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5211 }
5212 
5213 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5214 			       struct x86_exception *exception)
5215 {
5216 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5217 	access |= PFERR_WRITE_MASK;
5218 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5219 }
5220 
5221 /* uses this to access any guest's mapped memory without checking CPL */
5222 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5223 				struct x86_exception *exception)
5224 {
5225 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5226 }
5227 
5228 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5229 				      struct kvm_vcpu *vcpu, u32 access,
5230 				      struct x86_exception *exception)
5231 {
5232 	void *data = val;
5233 	int r = X86EMUL_CONTINUE;
5234 
5235 	while (bytes) {
5236 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5237 							    exception);
5238 		unsigned offset = addr & (PAGE_SIZE-1);
5239 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5240 		int ret;
5241 
5242 		if (gpa == UNMAPPED_GVA)
5243 			return X86EMUL_PROPAGATE_FAULT;
5244 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5245 					       offset, toread);
5246 		if (ret < 0) {
5247 			r = X86EMUL_IO_NEEDED;
5248 			goto out;
5249 		}
5250 
5251 		bytes -= toread;
5252 		data += toread;
5253 		addr += toread;
5254 	}
5255 out:
5256 	return r;
5257 }
5258 
5259 /* used for instruction fetching */
5260 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5261 				gva_t addr, void *val, unsigned int bytes,
5262 				struct x86_exception *exception)
5263 {
5264 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5265 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5266 	unsigned offset;
5267 	int ret;
5268 
5269 	/* Inline kvm_read_guest_virt_helper for speed.  */
5270 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5271 						    exception);
5272 	if (unlikely(gpa == UNMAPPED_GVA))
5273 		return X86EMUL_PROPAGATE_FAULT;
5274 
5275 	offset = addr & (PAGE_SIZE-1);
5276 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5277 		bytes = (unsigned)PAGE_SIZE - offset;
5278 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5279 				       offset, bytes);
5280 	if (unlikely(ret < 0))
5281 		return X86EMUL_IO_NEEDED;
5282 
5283 	return X86EMUL_CONTINUE;
5284 }
5285 
5286 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5287 			       gva_t addr, void *val, unsigned int bytes,
5288 			       struct x86_exception *exception)
5289 {
5290 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5291 
5292 	/*
5293 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5294 	 * is returned, but our callers are not ready for that and they blindly
5295 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5296 	 * uninitialized kernel stack memory into cr2 and error code.
5297 	 */
5298 	memset(exception, 0, sizeof(*exception));
5299 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5300 					  exception);
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5303 
5304 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5305 			     gva_t addr, void *val, unsigned int bytes,
5306 			     struct x86_exception *exception, bool system)
5307 {
5308 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5309 	u32 access = 0;
5310 
5311 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5312 		access |= PFERR_USER_MASK;
5313 
5314 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5315 }
5316 
5317 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5318 		unsigned long addr, void *val, unsigned int bytes)
5319 {
5320 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5321 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5322 
5323 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5324 }
5325 
5326 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5327 				      struct kvm_vcpu *vcpu, u32 access,
5328 				      struct x86_exception *exception)
5329 {
5330 	void *data = val;
5331 	int r = X86EMUL_CONTINUE;
5332 
5333 	while (bytes) {
5334 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5335 							     access,
5336 							     exception);
5337 		unsigned offset = addr & (PAGE_SIZE-1);
5338 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5339 		int ret;
5340 
5341 		if (gpa == UNMAPPED_GVA)
5342 			return X86EMUL_PROPAGATE_FAULT;
5343 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5344 		if (ret < 0) {
5345 			r = X86EMUL_IO_NEEDED;
5346 			goto out;
5347 		}
5348 
5349 		bytes -= towrite;
5350 		data += towrite;
5351 		addr += towrite;
5352 	}
5353 out:
5354 	return r;
5355 }
5356 
5357 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5358 			      unsigned int bytes, struct x86_exception *exception,
5359 			      bool system)
5360 {
5361 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5362 	u32 access = PFERR_WRITE_MASK;
5363 
5364 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5365 		access |= PFERR_USER_MASK;
5366 
5367 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5368 					   access, exception);
5369 }
5370 
5371 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5372 				unsigned int bytes, struct x86_exception *exception)
5373 {
5374 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5375 	vcpu->arch.l1tf_flush_l1d = true;
5376 
5377 	/*
5378 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5379 	 * is returned, but our callers are not ready for that and they blindly
5380 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5381 	 * uninitialized kernel stack memory into cr2 and error code.
5382 	 */
5383 	memset(exception, 0, sizeof(*exception));
5384 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5385 					   PFERR_WRITE_MASK, exception);
5386 }
5387 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5388 
5389 int handle_ud(struct kvm_vcpu *vcpu)
5390 {
5391 	int emul_type = EMULTYPE_TRAP_UD;
5392 	enum emulation_result er;
5393 	char sig[5]; /* ud2; .ascii "kvm" */
5394 	struct x86_exception e;
5395 
5396 	if (force_emulation_prefix &&
5397 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5398 				sig, sizeof(sig), &e) == 0 &&
5399 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5400 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5401 		emul_type = 0;
5402 	}
5403 
5404 	er = kvm_emulate_instruction(vcpu, emul_type);
5405 	if (er == EMULATE_USER_EXIT)
5406 		return 0;
5407 	if (er != EMULATE_DONE)
5408 		kvm_queue_exception(vcpu, UD_VECTOR);
5409 	return 1;
5410 }
5411 EXPORT_SYMBOL_GPL(handle_ud);
5412 
5413 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5414 			    gpa_t gpa, bool write)
5415 {
5416 	/* For APIC access vmexit */
5417 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5418 		return 1;
5419 
5420 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5421 		trace_vcpu_match_mmio(gva, gpa, write, true);
5422 		return 1;
5423 	}
5424 
5425 	return 0;
5426 }
5427 
5428 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5429 				gpa_t *gpa, struct x86_exception *exception,
5430 				bool write)
5431 {
5432 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5433 		| (write ? PFERR_WRITE_MASK : 0);
5434 
5435 	/*
5436 	 * currently PKRU is only applied to ept enabled guest so
5437 	 * there is no pkey in EPT page table for L1 guest or EPT
5438 	 * shadow page table for L2 guest.
5439 	 */
5440 	if (vcpu_match_mmio_gva(vcpu, gva)
5441 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5442 				 vcpu->arch.mmio_access, 0, access)) {
5443 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5444 					(gva & (PAGE_SIZE - 1));
5445 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5446 		return 1;
5447 	}
5448 
5449 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5450 
5451 	if (*gpa == UNMAPPED_GVA)
5452 		return -1;
5453 
5454 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5455 }
5456 
5457 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5458 			const void *val, int bytes)
5459 {
5460 	int ret;
5461 
5462 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5463 	if (ret < 0)
5464 		return 0;
5465 	kvm_page_track_write(vcpu, gpa, val, bytes);
5466 	return 1;
5467 }
5468 
5469 struct read_write_emulator_ops {
5470 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5471 				  int bytes);
5472 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5473 				  void *val, int bytes);
5474 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5475 			       int bytes, void *val);
5476 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5477 				    void *val, int bytes);
5478 	bool write;
5479 };
5480 
5481 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5482 {
5483 	if (vcpu->mmio_read_completed) {
5484 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5485 			       vcpu->mmio_fragments[0].gpa, val);
5486 		vcpu->mmio_read_completed = 0;
5487 		return 1;
5488 	}
5489 
5490 	return 0;
5491 }
5492 
5493 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5494 			void *val, int bytes)
5495 {
5496 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5497 }
5498 
5499 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5500 			 void *val, int bytes)
5501 {
5502 	return emulator_write_phys(vcpu, gpa, val, bytes);
5503 }
5504 
5505 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5506 {
5507 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5508 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5509 }
5510 
5511 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5512 			  void *val, int bytes)
5513 {
5514 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5515 	return X86EMUL_IO_NEEDED;
5516 }
5517 
5518 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5519 			   void *val, int bytes)
5520 {
5521 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5522 
5523 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5524 	return X86EMUL_CONTINUE;
5525 }
5526 
5527 static const struct read_write_emulator_ops read_emultor = {
5528 	.read_write_prepare = read_prepare,
5529 	.read_write_emulate = read_emulate,
5530 	.read_write_mmio = vcpu_mmio_read,
5531 	.read_write_exit_mmio = read_exit_mmio,
5532 };
5533 
5534 static const struct read_write_emulator_ops write_emultor = {
5535 	.read_write_emulate = write_emulate,
5536 	.read_write_mmio = write_mmio,
5537 	.read_write_exit_mmio = write_exit_mmio,
5538 	.write = true,
5539 };
5540 
5541 static int emulator_read_write_onepage(unsigned long addr, void *val,
5542 				       unsigned int bytes,
5543 				       struct x86_exception *exception,
5544 				       struct kvm_vcpu *vcpu,
5545 				       const struct read_write_emulator_ops *ops)
5546 {
5547 	gpa_t gpa;
5548 	int handled, ret;
5549 	bool write = ops->write;
5550 	struct kvm_mmio_fragment *frag;
5551 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5552 
5553 	/*
5554 	 * If the exit was due to a NPF we may already have a GPA.
5555 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5556 	 * Note, this cannot be used on string operations since string
5557 	 * operation using rep will only have the initial GPA from the NPF
5558 	 * occurred.
5559 	 */
5560 	if (vcpu->arch.gpa_available &&
5561 	    emulator_can_use_gpa(ctxt) &&
5562 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5563 		gpa = vcpu->arch.gpa_val;
5564 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5565 	} else {
5566 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5567 		if (ret < 0)
5568 			return X86EMUL_PROPAGATE_FAULT;
5569 	}
5570 
5571 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5572 		return X86EMUL_CONTINUE;
5573 
5574 	/*
5575 	 * Is this MMIO handled locally?
5576 	 */
5577 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5578 	if (handled == bytes)
5579 		return X86EMUL_CONTINUE;
5580 
5581 	gpa += handled;
5582 	bytes -= handled;
5583 	val += handled;
5584 
5585 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5586 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5587 	frag->gpa = gpa;
5588 	frag->data = val;
5589 	frag->len = bytes;
5590 	return X86EMUL_CONTINUE;
5591 }
5592 
5593 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5594 			unsigned long addr,
5595 			void *val, unsigned int bytes,
5596 			struct x86_exception *exception,
5597 			const struct read_write_emulator_ops *ops)
5598 {
5599 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5600 	gpa_t gpa;
5601 	int rc;
5602 
5603 	if (ops->read_write_prepare &&
5604 		  ops->read_write_prepare(vcpu, val, bytes))
5605 		return X86EMUL_CONTINUE;
5606 
5607 	vcpu->mmio_nr_fragments = 0;
5608 
5609 	/* Crossing a page boundary? */
5610 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5611 		int now;
5612 
5613 		now = -addr & ~PAGE_MASK;
5614 		rc = emulator_read_write_onepage(addr, val, now, exception,
5615 						 vcpu, ops);
5616 
5617 		if (rc != X86EMUL_CONTINUE)
5618 			return rc;
5619 		addr += now;
5620 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5621 			addr = (u32)addr;
5622 		val += now;
5623 		bytes -= now;
5624 	}
5625 
5626 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5627 					 vcpu, ops);
5628 	if (rc != X86EMUL_CONTINUE)
5629 		return rc;
5630 
5631 	if (!vcpu->mmio_nr_fragments)
5632 		return rc;
5633 
5634 	gpa = vcpu->mmio_fragments[0].gpa;
5635 
5636 	vcpu->mmio_needed = 1;
5637 	vcpu->mmio_cur_fragment = 0;
5638 
5639 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5640 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5641 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5642 	vcpu->run->mmio.phys_addr = gpa;
5643 
5644 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5645 }
5646 
5647 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5648 				  unsigned long addr,
5649 				  void *val,
5650 				  unsigned int bytes,
5651 				  struct x86_exception *exception)
5652 {
5653 	return emulator_read_write(ctxt, addr, val, bytes,
5654 				   exception, &read_emultor);
5655 }
5656 
5657 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5658 			    unsigned long addr,
5659 			    const void *val,
5660 			    unsigned int bytes,
5661 			    struct x86_exception *exception)
5662 {
5663 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5664 				   exception, &write_emultor);
5665 }
5666 
5667 #define CMPXCHG_TYPE(t, ptr, old, new) \
5668 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5669 
5670 #ifdef CONFIG_X86_64
5671 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5672 #else
5673 #  define CMPXCHG64(ptr, old, new) \
5674 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5675 #endif
5676 
5677 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5678 				     unsigned long addr,
5679 				     const void *old,
5680 				     const void *new,
5681 				     unsigned int bytes,
5682 				     struct x86_exception *exception)
5683 {
5684 	struct kvm_host_map map;
5685 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5686 	gpa_t gpa;
5687 	char *kaddr;
5688 	bool exchanged;
5689 
5690 	/* guests cmpxchg8b have to be emulated atomically */
5691 	if (bytes > 8 || (bytes & (bytes - 1)))
5692 		goto emul_write;
5693 
5694 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5695 
5696 	if (gpa == UNMAPPED_GVA ||
5697 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5698 		goto emul_write;
5699 
5700 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5701 		goto emul_write;
5702 
5703 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5704 		goto emul_write;
5705 
5706 	kaddr = map.hva + offset_in_page(gpa);
5707 
5708 	switch (bytes) {
5709 	case 1:
5710 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5711 		break;
5712 	case 2:
5713 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5714 		break;
5715 	case 4:
5716 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5717 		break;
5718 	case 8:
5719 		exchanged = CMPXCHG64(kaddr, old, new);
5720 		break;
5721 	default:
5722 		BUG();
5723 	}
5724 
5725 	kvm_vcpu_unmap(vcpu, &map, true);
5726 
5727 	if (!exchanged)
5728 		return X86EMUL_CMPXCHG_FAILED;
5729 
5730 	kvm_page_track_write(vcpu, gpa, new, bytes);
5731 
5732 	return X86EMUL_CONTINUE;
5733 
5734 emul_write:
5735 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5736 
5737 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5738 }
5739 
5740 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5741 {
5742 	int r = 0, i;
5743 
5744 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5745 		if (vcpu->arch.pio.in)
5746 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5747 					    vcpu->arch.pio.size, pd);
5748 		else
5749 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5750 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5751 					     pd);
5752 		if (r)
5753 			break;
5754 		pd += vcpu->arch.pio.size;
5755 	}
5756 	return r;
5757 }
5758 
5759 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5760 			       unsigned short port, void *val,
5761 			       unsigned int count, bool in)
5762 {
5763 	vcpu->arch.pio.port = port;
5764 	vcpu->arch.pio.in = in;
5765 	vcpu->arch.pio.count  = count;
5766 	vcpu->arch.pio.size = size;
5767 
5768 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5769 		vcpu->arch.pio.count = 0;
5770 		return 1;
5771 	}
5772 
5773 	vcpu->run->exit_reason = KVM_EXIT_IO;
5774 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5775 	vcpu->run->io.size = size;
5776 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5777 	vcpu->run->io.count = count;
5778 	vcpu->run->io.port = port;
5779 
5780 	return 0;
5781 }
5782 
5783 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5784 				    int size, unsigned short port, void *val,
5785 				    unsigned int count)
5786 {
5787 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5788 	int ret;
5789 
5790 	if (vcpu->arch.pio.count)
5791 		goto data_avail;
5792 
5793 	memset(vcpu->arch.pio_data, 0, size * count);
5794 
5795 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5796 	if (ret) {
5797 data_avail:
5798 		memcpy(val, vcpu->arch.pio_data, size * count);
5799 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5800 		vcpu->arch.pio.count = 0;
5801 		return 1;
5802 	}
5803 
5804 	return 0;
5805 }
5806 
5807 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5808 				     int size, unsigned short port,
5809 				     const void *val, unsigned int count)
5810 {
5811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5812 
5813 	memcpy(vcpu->arch.pio_data, val, size * count);
5814 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5815 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5816 }
5817 
5818 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5819 {
5820 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5821 }
5822 
5823 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5824 {
5825 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5826 }
5827 
5828 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5829 {
5830 	if (!need_emulate_wbinvd(vcpu))
5831 		return X86EMUL_CONTINUE;
5832 
5833 	if (kvm_x86_ops->has_wbinvd_exit()) {
5834 		int cpu = get_cpu();
5835 
5836 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5837 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5838 				wbinvd_ipi, NULL, 1);
5839 		put_cpu();
5840 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5841 	} else
5842 		wbinvd();
5843 	return X86EMUL_CONTINUE;
5844 }
5845 
5846 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5847 {
5848 	kvm_emulate_wbinvd_noskip(vcpu);
5849 	return kvm_skip_emulated_instruction(vcpu);
5850 }
5851 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5852 
5853 
5854 
5855 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5856 {
5857 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5858 }
5859 
5860 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5861 			   unsigned long *dest)
5862 {
5863 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5864 }
5865 
5866 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5867 			   unsigned long value)
5868 {
5869 
5870 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5871 }
5872 
5873 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5874 {
5875 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5876 }
5877 
5878 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5879 {
5880 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5881 	unsigned long value;
5882 
5883 	switch (cr) {
5884 	case 0:
5885 		value = kvm_read_cr0(vcpu);
5886 		break;
5887 	case 2:
5888 		value = vcpu->arch.cr2;
5889 		break;
5890 	case 3:
5891 		value = kvm_read_cr3(vcpu);
5892 		break;
5893 	case 4:
5894 		value = kvm_read_cr4(vcpu);
5895 		break;
5896 	case 8:
5897 		value = kvm_get_cr8(vcpu);
5898 		break;
5899 	default:
5900 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5901 		return 0;
5902 	}
5903 
5904 	return value;
5905 }
5906 
5907 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5908 {
5909 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5910 	int res = 0;
5911 
5912 	switch (cr) {
5913 	case 0:
5914 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5915 		break;
5916 	case 2:
5917 		vcpu->arch.cr2 = val;
5918 		break;
5919 	case 3:
5920 		res = kvm_set_cr3(vcpu, val);
5921 		break;
5922 	case 4:
5923 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5924 		break;
5925 	case 8:
5926 		res = kvm_set_cr8(vcpu, val);
5927 		break;
5928 	default:
5929 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5930 		res = -1;
5931 	}
5932 
5933 	return res;
5934 }
5935 
5936 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5937 {
5938 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5939 }
5940 
5941 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5942 {
5943 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5944 }
5945 
5946 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5947 {
5948 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5949 }
5950 
5951 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5952 {
5953 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5954 }
5955 
5956 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5957 {
5958 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5959 }
5960 
5961 static unsigned long emulator_get_cached_segment_base(
5962 	struct x86_emulate_ctxt *ctxt, int seg)
5963 {
5964 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5965 }
5966 
5967 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5968 				 struct desc_struct *desc, u32 *base3,
5969 				 int seg)
5970 {
5971 	struct kvm_segment var;
5972 
5973 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5974 	*selector = var.selector;
5975 
5976 	if (var.unusable) {
5977 		memset(desc, 0, sizeof(*desc));
5978 		if (base3)
5979 			*base3 = 0;
5980 		return false;
5981 	}
5982 
5983 	if (var.g)
5984 		var.limit >>= 12;
5985 	set_desc_limit(desc, var.limit);
5986 	set_desc_base(desc, (unsigned long)var.base);
5987 #ifdef CONFIG_X86_64
5988 	if (base3)
5989 		*base3 = var.base >> 32;
5990 #endif
5991 	desc->type = var.type;
5992 	desc->s = var.s;
5993 	desc->dpl = var.dpl;
5994 	desc->p = var.present;
5995 	desc->avl = var.avl;
5996 	desc->l = var.l;
5997 	desc->d = var.db;
5998 	desc->g = var.g;
5999 
6000 	return true;
6001 }
6002 
6003 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6004 				 struct desc_struct *desc, u32 base3,
6005 				 int seg)
6006 {
6007 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008 	struct kvm_segment var;
6009 
6010 	var.selector = selector;
6011 	var.base = get_desc_base(desc);
6012 #ifdef CONFIG_X86_64
6013 	var.base |= ((u64)base3) << 32;
6014 #endif
6015 	var.limit = get_desc_limit(desc);
6016 	if (desc->g)
6017 		var.limit = (var.limit << 12) | 0xfff;
6018 	var.type = desc->type;
6019 	var.dpl = desc->dpl;
6020 	var.db = desc->d;
6021 	var.s = desc->s;
6022 	var.l = desc->l;
6023 	var.g = desc->g;
6024 	var.avl = desc->avl;
6025 	var.present = desc->p;
6026 	var.unusable = !var.present;
6027 	var.padding = 0;
6028 
6029 	kvm_set_segment(vcpu, &var, seg);
6030 	return;
6031 }
6032 
6033 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6034 			    u32 msr_index, u64 *pdata)
6035 {
6036 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6037 }
6038 
6039 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6040 			    u32 msr_index, u64 data)
6041 {
6042 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6043 }
6044 
6045 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6046 {
6047 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6048 
6049 	return vcpu->arch.smbase;
6050 }
6051 
6052 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6053 {
6054 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6055 
6056 	vcpu->arch.smbase = smbase;
6057 }
6058 
6059 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6060 			      u32 pmc)
6061 {
6062 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6063 }
6064 
6065 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6066 			     u32 pmc, u64 *pdata)
6067 {
6068 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6069 }
6070 
6071 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6072 {
6073 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6074 }
6075 
6076 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6077 			      struct x86_instruction_info *info,
6078 			      enum x86_intercept_stage stage)
6079 {
6080 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6081 }
6082 
6083 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6084 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6085 {
6086 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6087 }
6088 
6089 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6090 {
6091 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6092 }
6093 
6094 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6095 {
6096 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6097 }
6098 
6099 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6100 {
6101 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6102 }
6103 
6104 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6105 {
6106 	return emul_to_vcpu(ctxt)->arch.hflags;
6107 }
6108 
6109 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6110 {
6111 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6112 }
6113 
6114 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6115 				  const char *smstate)
6116 {
6117 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6118 }
6119 
6120 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6121 {
6122 	kvm_smm_changed(emul_to_vcpu(ctxt));
6123 }
6124 
6125 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6126 {
6127 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6128 }
6129 
6130 static const struct x86_emulate_ops emulate_ops = {
6131 	.read_gpr            = emulator_read_gpr,
6132 	.write_gpr           = emulator_write_gpr,
6133 	.read_std            = emulator_read_std,
6134 	.write_std           = emulator_write_std,
6135 	.read_phys           = kvm_read_guest_phys_system,
6136 	.fetch               = kvm_fetch_guest_virt,
6137 	.read_emulated       = emulator_read_emulated,
6138 	.write_emulated      = emulator_write_emulated,
6139 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6140 	.invlpg              = emulator_invlpg,
6141 	.pio_in_emulated     = emulator_pio_in_emulated,
6142 	.pio_out_emulated    = emulator_pio_out_emulated,
6143 	.get_segment         = emulator_get_segment,
6144 	.set_segment         = emulator_set_segment,
6145 	.get_cached_segment_base = emulator_get_cached_segment_base,
6146 	.get_gdt             = emulator_get_gdt,
6147 	.get_idt	     = emulator_get_idt,
6148 	.set_gdt             = emulator_set_gdt,
6149 	.set_idt	     = emulator_set_idt,
6150 	.get_cr              = emulator_get_cr,
6151 	.set_cr              = emulator_set_cr,
6152 	.cpl                 = emulator_get_cpl,
6153 	.get_dr              = emulator_get_dr,
6154 	.set_dr              = emulator_set_dr,
6155 	.get_smbase          = emulator_get_smbase,
6156 	.set_smbase          = emulator_set_smbase,
6157 	.set_msr             = emulator_set_msr,
6158 	.get_msr             = emulator_get_msr,
6159 	.check_pmc	     = emulator_check_pmc,
6160 	.read_pmc            = emulator_read_pmc,
6161 	.halt                = emulator_halt,
6162 	.wbinvd              = emulator_wbinvd,
6163 	.fix_hypercall       = emulator_fix_hypercall,
6164 	.intercept           = emulator_intercept,
6165 	.get_cpuid           = emulator_get_cpuid,
6166 	.set_nmi_mask        = emulator_set_nmi_mask,
6167 	.get_hflags          = emulator_get_hflags,
6168 	.set_hflags          = emulator_set_hflags,
6169 	.pre_leave_smm       = emulator_pre_leave_smm,
6170 	.post_leave_smm      = emulator_post_leave_smm,
6171 	.set_xcr             = emulator_set_xcr,
6172 };
6173 
6174 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6175 {
6176 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6177 	/*
6178 	 * an sti; sti; sequence only disable interrupts for the first
6179 	 * instruction. So, if the last instruction, be it emulated or
6180 	 * not, left the system with the INT_STI flag enabled, it
6181 	 * means that the last instruction is an sti. We should not
6182 	 * leave the flag on in this case. The same goes for mov ss
6183 	 */
6184 	if (int_shadow & mask)
6185 		mask = 0;
6186 	if (unlikely(int_shadow || mask)) {
6187 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6188 		if (!mask)
6189 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6190 	}
6191 }
6192 
6193 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6194 {
6195 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6196 	if (ctxt->exception.vector == PF_VECTOR)
6197 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6198 
6199 	if (ctxt->exception.error_code_valid)
6200 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6201 				      ctxt->exception.error_code);
6202 	else
6203 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6204 	return false;
6205 }
6206 
6207 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6208 {
6209 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6210 	int cs_db, cs_l;
6211 
6212 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6213 
6214 	ctxt->eflags = kvm_get_rflags(vcpu);
6215 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6216 
6217 	ctxt->eip = kvm_rip_read(vcpu);
6218 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6219 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6220 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6221 		     cs_db				? X86EMUL_MODE_PROT32 :
6222 							  X86EMUL_MODE_PROT16;
6223 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6224 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6225 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6226 
6227 	init_decode_cache(ctxt);
6228 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6229 }
6230 
6231 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6232 {
6233 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6234 	int ret;
6235 
6236 	init_emulate_ctxt(vcpu);
6237 
6238 	ctxt->op_bytes = 2;
6239 	ctxt->ad_bytes = 2;
6240 	ctxt->_eip = ctxt->eip + inc_eip;
6241 	ret = emulate_int_real(ctxt, irq);
6242 
6243 	if (ret != X86EMUL_CONTINUE)
6244 		return EMULATE_FAIL;
6245 
6246 	ctxt->eip = ctxt->_eip;
6247 	kvm_rip_write(vcpu, ctxt->eip);
6248 	kvm_set_rflags(vcpu, ctxt->eflags);
6249 
6250 	return EMULATE_DONE;
6251 }
6252 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6253 
6254 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6255 {
6256 	int r = EMULATE_DONE;
6257 
6258 	++vcpu->stat.insn_emulation_fail;
6259 	trace_kvm_emulate_insn_failed(vcpu);
6260 
6261 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6262 		return EMULATE_FAIL;
6263 
6264 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6265 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6266 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6267 		vcpu->run->internal.ndata = 0;
6268 		r = EMULATE_USER_EXIT;
6269 	}
6270 
6271 	kvm_queue_exception(vcpu, UD_VECTOR);
6272 
6273 	return r;
6274 }
6275 
6276 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6277 				  bool write_fault_to_shadow_pgtable,
6278 				  int emulation_type)
6279 {
6280 	gpa_t gpa = cr2;
6281 	kvm_pfn_t pfn;
6282 
6283 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6284 		return false;
6285 
6286 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6287 		return false;
6288 
6289 	if (!vcpu->arch.mmu->direct_map) {
6290 		/*
6291 		 * Write permission should be allowed since only
6292 		 * write access need to be emulated.
6293 		 */
6294 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6295 
6296 		/*
6297 		 * If the mapping is invalid in guest, let cpu retry
6298 		 * it to generate fault.
6299 		 */
6300 		if (gpa == UNMAPPED_GVA)
6301 			return true;
6302 	}
6303 
6304 	/*
6305 	 * Do not retry the unhandleable instruction if it faults on the
6306 	 * readonly host memory, otherwise it will goto a infinite loop:
6307 	 * retry instruction -> write #PF -> emulation fail -> retry
6308 	 * instruction -> ...
6309 	 */
6310 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6311 
6312 	/*
6313 	 * If the instruction failed on the error pfn, it can not be fixed,
6314 	 * report the error to userspace.
6315 	 */
6316 	if (is_error_noslot_pfn(pfn))
6317 		return false;
6318 
6319 	kvm_release_pfn_clean(pfn);
6320 
6321 	/* The instructions are well-emulated on direct mmu. */
6322 	if (vcpu->arch.mmu->direct_map) {
6323 		unsigned int indirect_shadow_pages;
6324 
6325 		spin_lock(&vcpu->kvm->mmu_lock);
6326 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6327 		spin_unlock(&vcpu->kvm->mmu_lock);
6328 
6329 		if (indirect_shadow_pages)
6330 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6331 
6332 		return true;
6333 	}
6334 
6335 	/*
6336 	 * if emulation was due to access to shadowed page table
6337 	 * and it failed try to unshadow page and re-enter the
6338 	 * guest to let CPU execute the instruction.
6339 	 */
6340 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6341 
6342 	/*
6343 	 * If the access faults on its page table, it can not
6344 	 * be fixed by unprotecting shadow page and it should
6345 	 * be reported to userspace.
6346 	 */
6347 	return !write_fault_to_shadow_pgtable;
6348 }
6349 
6350 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6351 			      unsigned long cr2,  int emulation_type)
6352 {
6353 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6354 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6355 
6356 	last_retry_eip = vcpu->arch.last_retry_eip;
6357 	last_retry_addr = vcpu->arch.last_retry_addr;
6358 
6359 	/*
6360 	 * If the emulation is caused by #PF and it is non-page_table
6361 	 * writing instruction, it means the VM-EXIT is caused by shadow
6362 	 * page protected, we can zap the shadow page and retry this
6363 	 * instruction directly.
6364 	 *
6365 	 * Note: if the guest uses a non-page-table modifying instruction
6366 	 * on the PDE that points to the instruction, then we will unmap
6367 	 * the instruction and go to an infinite loop. So, we cache the
6368 	 * last retried eip and the last fault address, if we meet the eip
6369 	 * and the address again, we can break out of the potential infinite
6370 	 * loop.
6371 	 */
6372 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6373 
6374 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6375 		return false;
6376 
6377 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6378 		return false;
6379 
6380 	if (x86_page_table_writing_insn(ctxt))
6381 		return false;
6382 
6383 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6384 		return false;
6385 
6386 	vcpu->arch.last_retry_eip = ctxt->eip;
6387 	vcpu->arch.last_retry_addr = cr2;
6388 
6389 	if (!vcpu->arch.mmu->direct_map)
6390 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6391 
6392 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6393 
6394 	return true;
6395 }
6396 
6397 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6398 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6399 
6400 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6401 {
6402 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6403 		/* This is a good place to trace that we are exiting SMM.  */
6404 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6405 
6406 		/* Process a latched INIT or SMI, if any.  */
6407 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6408 	}
6409 
6410 	kvm_mmu_reset_context(vcpu);
6411 }
6412 
6413 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6414 				unsigned long *db)
6415 {
6416 	u32 dr6 = 0;
6417 	int i;
6418 	u32 enable, rwlen;
6419 
6420 	enable = dr7;
6421 	rwlen = dr7 >> 16;
6422 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6423 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6424 			dr6 |= (1 << i);
6425 	return dr6;
6426 }
6427 
6428 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6429 {
6430 	struct kvm_run *kvm_run = vcpu->run;
6431 
6432 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6433 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6434 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6435 		kvm_run->debug.arch.exception = DB_VECTOR;
6436 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6437 		*r = EMULATE_USER_EXIT;
6438 	} else {
6439 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6440 	}
6441 }
6442 
6443 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6444 {
6445 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6446 	int r;
6447 
6448 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6449 	if (unlikely(r != EMULATE_DONE))
6450 		return 0;
6451 
6452 	/*
6453 	 * rflags is the old, "raw" value of the flags.  The new value has
6454 	 * not been saved yet.
6455 	 *
6456 	 * This is correct even for TF set by the guest, because "the
6457 	 * processor will not generate this exception after the instruction
6458 	 * that sets the TF flag".
6459 	 */
6460 	if (unlikely(rflags & X86_EFLAGS_TF))
6461 		kvm_vcpu_do_singlestep(vcpu, &r);
6462 	return r == EMULATE_DONE;
6463 }
6464 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6465 
6466 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6467 {
6468 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6469 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6470 		struct kvm_run *kvm_run = vcpu->run;
6471 		unsigned long eip = kvm_get_linear_rip(vcpu);
6472 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6473 					   vcpu->arch.guest_debug_dr7,
6474 					   vcpu->arch.eff_db);
6475 
6476 		if (dr6 != 0) {
6477 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6478 			kvm_run->debug.arch.pc = eip;
6479 			kvm_run->debug.arch.exception = DB_VECTOR;
6480 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6481 			*r = EMULATE_USER_EXIT;
6482 			return true;
6483 		}
6484 	}
6485 
6486 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6487 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6488 		unsigned long eip = kvm_get_linear_rip(vcpu);
6489 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6490 					   vcpu->arch.dr7,
6491 					   vcpu->arch.db);
6492 
6493 		if (dr6 != 0) {
6494 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6495 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6496 			kvm_queue_exception(vcpu, DB_VECTOR);
6497 			*r = EMULATE_DONE;
6498 			return true;
6499 		}
6500 	}
6501 
6502 	return false;
6503 }
6504 
6505 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6506 {
6507 	switch (ctxt->opcode_len) {
6508 	case 1:
6509 		switch (ctxt->b) {
6510 		case 0xe4:	/* IN */
6511 		case 0xe5:
6512 		case 0xec:
6513 		case 0xed:
6514 		case 0xe6:	/* OUT */
6515 		case 0xe7:
6516 		case 0xee:
6517 		case 0xef:
6518 		case 0x6c:	/* INS */
6519 		case 0x6d:
6520 		case 0x6e:	/* OUTS */
6521 		case 0x6f:
6522 			return true;
6523 		}
6524 		break;
6525 	case 2:
6526 		switch (ctxt->b) {
6527 		case 0x33:	/* RDPMC */
6528 			return true;
6529 		}
6530 		break;
6531 	}
6532 
6533 	return false;
6534 }
6535 
6536 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6537 			    unsigned long cr2,
6538 			    int emulation_type,
6539 			    void *insn,
6540 			    int insn_len)
6541 {
6542 	int r;
6543 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6544 	bool writeback = true;
6545 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6546 
6547 	vcpu->arch.l1tf_flush_l1d = true;
6548 
6549 	/*
6550 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6551 	 * never reused.
6552 	 */
6553 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6554 	kvm_clear_exception_queue(vcpu);
6555 
6556 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6557 		init_emulate_ctxt(vcpu);
6558 
6559 		/*
6560 		 * We will reenter on the same instruction since
6561 		 * we do not set complete_userspace_io.  This does not
6562 		 * handle watchpoints yet, those would be handled in
6563 		 * the emulate_ops.
6564 		 */
6565 		if (!(emulation_type & EMULTYPE_SKIP) &&
6566 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6567 			return r;
6568 
6569 		ctxt->interruptibility = 0;
6570 		ctxt->have_exception = false;
6571 		ctxt->exception.vector = -1;
6572 		ctxt->perm_ok = false;
6573 
6574 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6575 
6576 		r = x86_decode_insn(ctxt, insn, insn_len);
6577 
6578 		trace_kvm_emulate_insn_start(vcpu);
6579 		++vcpu->stat.insn_emulation;
6580 		if (r != EMULATION_OK)  {
6581 			if (emulation_type & EMULTYPE_TRAP_UD)
6582 				return EMULATE_FAIL;
6583 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6584 						emulation_type))
6585 				return EMULATE_DONE;
6586 			if (ctxt->have_exception) {
6587 				/*
6588 				 * #UD should result in just EMULATION_FAILED, and trap-like
6589 				 * exception should not be encountered during decode.
6590 				 */
6591 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6592 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6593 				inject_emulated_exception(vcpu);
6594 				return EMULATE_DONE;
6595 			}
6596 			if (emulation_type & EMULTYPE_SKIP)
6597 				return EMULATE_FAIL;
6598 			return handle_emulation_failure(vcpu, emulation_type);
6599 		}
6600 	}
6601 
6602 	if ((emulation_type & EMULTYPE_VMWARE) &&
6603 	    !is_vmware_backdoor_opcode(ctxt))
6604 		return EMULATE_FAIL;
6605 
6606 	if (emulation_type & EMULTYPE_SKIP) {
6607 		kvm_rip_write(vcpu, ctxt->_eip);
6608 		if (ctxt->eflags & X86_EFLAGS_RF)
6609 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6610 		kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
6611 		return EMULATE_DONE;
6612 	}
6613 
6614 	if (retry_instruction(ctxt, cr2, emulation_type))
6615 		return EMULATE_DONE;
6616 
6617 	/* this is needed for vmware backdoor interface to work since it
6618 	   changes registers values  during IO operation */
6619 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6620 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6621 		emulator_invalidate_register_cache(ctxt);
6622 	}
6623 
6624 restart:
6625 	/* Save the faulting GPA (cr2) in the address field */
6626 	ctxt->exception.address = cr2;
6627 
6628 	r = x86_emulate_insn(ctxt);
6629 
6630 	if (r == EMULATION_INTERCEPTED)
6631 		return EMULATE_DONE;
6632 
6633 	if (r == EMULATION_FAILED) {
6634 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6635 					emulation_type))
6636 			return EMULATE_DONE;
6637 
6638 		return handle_emulation_failure(vcpu, emulation_type);
6639 	}
6640 
6641 	if (ctxt->have_exception) {
6642 		r = EMULATE_DONE;
6643 		if (inject_emulated_exception(vcpu))
6644 			return r;
6645 	} else if (vcpu->arch.pio.count) {
6646 		if (!vcpu->arch.pio.in) {
6647 			/* FIXME: return into emulator if single-stepping.  */
6648 			vcpu->arch.pio.count = 0;
6649 		} else {
6650 			writeback = false;
6651 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6652 		}
6653 		r = EMULATE_USER_EXIT;
6654 	} else if (vcpu->mmio_needed) {
6655 		if (!vcpu->mmio_is_write)
6656 			writeback = false;
6657 		r = EMULATE_USER_EXIT;
6658 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6659 	} else if (r == EMULATION_RESTART)
6660 		goto restart;
6661 	else
6662 		r = EMULATE_DONE;
6663 
6664 	if (writeback) {
6665 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6666 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6667 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6668 		if (!ctxt->have_exception ||
6669 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6670 			kvm_rip_write(vcpu, ctxt->eip);
6671 			if (r == EMULATE_DONE && ctxt->tf)
6672 				kvm_vcpu_do_singlestep(vcpu, &r);
6673 			__kvm_set_rflags(vcpu, ctxt->eflags);
6674 		}
6675 
6676 		/*
6677 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6678 		 * do nothing, and it will be requested again as soon as
6679 		 * the shadow expires.  But we still need to check here,
6680 		 * because POPF has no interrupt shadow.
6681 		 */
6682 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6683 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6684 	} else
6685 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6686 
6687 	return r;
6688 }
6689 
6690 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6691 {
6692 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6693 }
6694 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6695 
6696 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6697 					void *insn, int insn_len)
6698 {
6699 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6700 }
6701 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6702 
6703 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6704 {
6705 	vcpu->arch.pio.count = 0;
6706 	return 1;
6707 }
6708 
6709 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6710 {
6711 	vcpu->arch.pio.count = 0;
6712 
6713 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6714 		return 1;
6715 
6716 	return kvm_skip_emulated_instruction(vcpu);
6717 }
6718 
6719 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6720 			    unsigned short port)
6721 {
6722 	unsigned long val = kvm_rax_read(vcpu);
6723 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6724 					    size, port, &val, 1);
6725 	if (ret)
6726 		return ret;
6727 
6728 	/*
6729 	 * Workaround userspace that relies on old KVM behavior of %rip being
6730 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6731 	 */
6732 	if (port == 0x7e &&
6733 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6734 		vcpu->arch.complete_userspace_io =
6735 			complete_fast_pio_out_port_0x7e;
6736 		kvm_skip_emulated_instruction(vcpu);
6737 	} else {
6738 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6739 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6740 	}
6741 	return 0;
6742 }
6743 
6744 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6745 {
6746 	unsigned long val;
6747 
6748 	/* We should only ever be called with arch.pio.count equal to 1 */
6749 	BUG_ON(vcpu->arch.pio.count != 1);
6750 
6751 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6752 		vcpu->arch.pio.count = 0;
6753 		return 1;
6754 	}
6755 
6756 	/* For size less than 4 we merge, else we zero extend */
6757 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6758 
6759 	/*
6760 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6761 	 * the copy and tracing
6762 	 */
6763 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6764 				 vcpu->arch.pio.port, &val, 1);
6765 	kvm_rax_write(vcpu, val);
6766 
6767 	return kvm_skip_emulated_instruction(vcpu);
6768 }
6769 
6770 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6771 			   unsigned short port)
6772 {
6773 	unsigned long val;
6774 	int ret;
6775 
6776 	/* For size less than 4 we merge, else we zero extend */
6777 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6778 
6779 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6780 				       &val, 1);
6781 	if (ret) {
6782 		kvm_rax_write(vcpu, val);
6783 		return ret;
6784 	}
6785 
6786 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6787 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6788 
6789 	return 0;
6790 }
6791 
6792 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6793 {
6794 	int ret;
6795 
6796 	if (in)
6797 		ret = kvm_fast_pio_in(vcpu, size, port);
6798 	else
6799 		ret = kvm_fast_pio_out(vcpu, size, port);
6800 	return ret && kvm_skip_emulated_instruction(vcpu);
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6803 
6804 static int kvmclock_cpu_down_prep(unsigned int cpu)
6805 {
6806 	__this_cpu_write(cpu_tsc_khz, 0);
6807 	return 0;
6808 }
6809 
6810 static void tsc_khz_changed(void *data)
6811 {
6812 	struct cpufreq_freqs *freq = data;
6813 	unsigned long khz = 0;
6814 
6815 	if (data)
6816 		khz = freq->new;
6817 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6818 		khz = cpufreq_quick_get(raw_smp_processor_id());
6819 	if (!khz)
6820 		khz = tsc_khz;
6821 	__this_cpu_write(cpu_tsc_khz, khz);
6822 }
6823 
6824 #ifdef CONFIG_X86_64
6825 static void kvm_hyperv_tsc_notifier(void)
6826 {
6827 	struct kvm *kvm;
6828 	struct kvm_vcpu *vcpu;
6829 	int cpu;
6830 
6831 	mutex_lock(&kvm_lock);
6832 	list_for_each_entry(kvm, &vm_list, vm_list)
6833 		kvm_make_mclock_inprogress_request(kvm);
6834 
6835 	hyperv_stop_tsc_emulation();
6836 
6837 	/* TSC frequency always matches when on Hyper-V */
6838 	for_each_present_cpu(cpu)
6839 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6840 	kvm_max_guest_tsc_khz = tsc_khz;
6841 
6842 	list_for_each_entry(kvm, &vm_list, vm_list) {
6843 		struct kvm_arch *ka = &kvm->arch;
6844 
6845 		spin_lock(&ka->pvclock_gtod_sync_lock);
6846 
6847 		pvclock_update_vm_gtod_copy(kvm);
6848 
6849 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6850 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6851 
6852 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6853 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6854 
6855 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6856 	}
6857 	mutex_unlock(&kvm_lock);
6858 }
6859 #endif
6860 
6861 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6862 {
6863 	struct kvm *kvm;
6864 	struct kvm_vcpu *vcpu;
6865 	int i, send_ipi = 0;
6866 
6867 	/*
6868 	 * We allow guests to temporarily run on slowing clocks,
6869 	 * provided we notify them after, or to run on accelerating
6870 	 * clocks, provided we notify them before.  Thus time never
6871 	 * goes backwards.
6872 	 *
6873 	 * However, we have a problem.  We can't atomically update
6874 	 * the frequency of a given CPU from this function; it is
6875 	 * merely a notifier, which can be called from any CPU.
6876 	 * Changing the TSC frequency at arbitrary points in time
6877 	 * requires a recomputation of local variables related to
6878 	 * the TSC for each VCPU.  We must flag these local variables
6879 	 * to be updated and be sure the update takes place with the
6880 	 * new frequency before any guests proceed.
6881 	 *
6882 	 * Unfortunately, the combination of hotplug CPU and frequency
6883 	 * change creates an intractable locking scenario; the order
6884 	 * of when these callouts happen is undefined with respect to
6885 	 * CPU hotplug, and they can race with each other.  As such,
6886 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6887 	 * undefined; you can actually have a CPU frequency change take
6888 	 * place in between the computation of X and the setting of the
6889 	 * variable.  To protect against this problem, all updates of
6890 	 * the per_cpu tsc_khz variable are done in an interrupt
6891 	 * protected IPI, and all callers wishing to update the value
6892 	 * must wait for a synchronous IPI to complete (which is trivial
6893 	 * if the caller is on the CPU already).  This establishes the
6894 	 * necessary total order on variable updates.
6895 	 *
6896 	 * Note that because a guest time update may take place
6897 	 * anytime after the setting of the VCPU's request bit, the
6898 	 * correct TSC value must be set before the request.  However,
6899 	 * to ensure the update actually makes it to any guest which
6900 	 * starts running in hardware virtualization between the set
6901 	 * and the acquisition of the spinlock, we must also ping the
6902 	 * CPU after setting the request bit.
6903 	 *
6904 	 */
6905 
6906 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6907 
6908 	mutex_lock(&kvm_lock);
6909 	list_for_each_entry(kvm, &vm_list, vm_list) {
6910 		kvm_for_each_vcpu(i, vcpu, kvm) {
6911 			if (vcpu->cpu != cpu)
6912 				continue;
6913 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6914 			if (vcpu->cpu != raw_smp_processor_id())
6915 				send_ipi = 1;
6916 		}
6917 	}
6918 	mutex_unlock(&kvm_lock);
6919 
6920 	if (freq->old < freq->new && send_ipi) {
6921 		/*
6922 		 * We upscale the frequency.  Must make the guest
6923 		 * doesn't see old kvmclock values while running with
6924 		 * the new frequency, otherwise we risk the guest sees
6925 		 * time go backwards.
6926 		 *
6927 		 * In case we update the frequency for another cpu
6928 		 * (which might be in guest context) send an interrupt
6929 		 * to kick the cpu out of guest context.  Next time
6930 		 * guest context is entered kvmclock will be updated,
6931 		 * so the guest will not see stale values.
6932 		 */
6933 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6934 	}
6935 }
6936 
6937 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6938 				     void *data)
6939 {
6940 	struct cpufreq_freqs *freq = data;
6941 	int cpu;
6942 
6943 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6944 		return 0;
6945 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6946 		return 0;
6947 
6948 	for_each_cpu(cpu, freq->policy->cpus)
6949 		__kvmclock_cpufreq_notifier(freq, cpu);
6950 
6951 	return 0;
6952 }
6953 
6954 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6955 	.notifier_call  = kvmclock_cpufreq_notifier
6956 };
6957 
6958 static int kvmclock_cpu_online(unsigned int cpu)
6959 {
6960 	tsc_khz_changed(NULL);
6961 	return 0;
6962 }
6963 
6964 static void kvm_timer_init(void)
6965 {
6966 	max_tsc_khz = tsc_khz;
6967 
6968 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6969 #ifdef CONFIG_CPU_FREQ
6970 		struct cpufreq_policy policy;
6971 		int cpu;
6972 
6973 		memset(&policy, 0, sizeof(policy));
6974 		cpu = get_cpu();
6975 		cpufreq_get_policy(&policy, cpu);
6976 		if (policy.cpuinfo.max_freq)
6977 			max_tsc_khz = policy.cpuinfo.max_freq;
6978 		put_cpu();
6979 #endif
6980 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6981 					  CPUFREQ_TRANSITION_NOTIFIER);
6982 	}
6983 
6984 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6985 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6986 }
6987 
6988 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6989 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6990 
6991 int kvm_is_in_guest(void)
6992 {
6993 	return __this_cpu_read(current_vcpu) != NULL;
6994 }
6995 
6996 static int kvm_is_user_mode(void)
6997 {
6998 	int user_mode = 3;
6999 
7000 	if (__this_cpu_read(current_vcpu))
7001 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7002 
7003 	return user_mode != 0;
7004 }
7005 
7006 static unsigned long kvm_get_guest_ip(void)
7007 {
7008 	unsigned long ip = 0;
7009 
7010 	if (__this_cpu_read(current_vcpu))
7011 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7012 
7013 	return ip;
7014 }
7015 
7016 static void kvm_handle_intel_pt_intr(void)
7017 {
7018 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7019 
7020 	kvm_make_request(KVM_REQ_PMI, vcpu);
7021 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7022 			(unsigned long *)&vcpu->arch.pmu.global_status);
7023 }
7024 
7025 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7026 	.is_in_guest		= kvm_is_in_guest,
7027 	.is_user_mode		= kvm_is_user_mode,
7028 	.get_guest_ip		= kvm_get_guest_ip,
7029 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7030 };
7031 
7032 #ifdef CONFIG_X86_64
7033 static void pvclock_gtod_update_fn(struct work_struct *work)
7034 {
7035 	struct kvm *kvm;
7036 
7037 	struct kvm_vcpu *vcpu;
7038 	int i;
7039 
7040 	mutex_lock(&kvm_lock);
7041 	list_for_each_entry(kvm, &vm_list, vm_list)
7042 		kvm_for_each_vcpu(i, vcpu, kvm)
7043 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7044 	atomic_set(&kvm_guest_has_master_clock, 0);
7045 	mutex_unlock(&kvm_lock);
7046 }
7047 
7048 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7049 
7050 /*
7051  * Notification about pvclock gtod data update.
7052  */
7053 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7054 			       void *priv)
7055 {
7056 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7057 	struct timekeeper *tk = priv;
7058 
7059 	update_pvclock_gtod(tk);
7060 
7061 	/* disable master clock if host does not trust, or does not
7062 	 * use, TSC based clocksource.
7063 	 */
7064 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7065 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7066 		queue_work(system_long_wq, &pvclock_gtod_work);
7067 
7068 	return 0;
7069 }
7070 
7071 static struct notifier_block pvclock_gtod_notifier = {
7072 	.notifier_call = pvclock_gtod_notify,
7073 };
7074 #endif
7075 
7076 int kvm_arch_init(void *opaque)
7077 {
7078 	int r;
7079 	struct kvm_x86_ops *ops = opaque;
7080 
7081 	if (kvm_x86_ops) {
7082 		printk(KERN_ERR "kvm: already loaded the other module\n");
7083 		r = -EEXIST;
7084 		goto out;
7085 	}
7086 
7087 	if (!ops->cpu_has_kvm_support()) {
7088 		printk(KERN_ERR "kvm: no hardware support\n");
7089 		r = -EOPNOTSUPP;
7090 		goto out;
7091 	}
7092 	if (ops->disabled_by_bios()) {
7093 		printk(KERN_ERR "kvm: disabled by bios\n");
7094 		r = -EOPNOTSUPP;
7095 		goto out;
7096 	}
7097 
7098 	/*
7099 	 * KVM explicitly assumes that the guest has an FPU and
7100 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7101 	 * vCPU's FPU state as a fxregs_state struct.
7102 	 */
7103 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7104 		printk(KERN_ERR "kvm: inadequate fpu\n");
7105 		r = -EOPNOTSUPP;
7106 		goto out;
7107 	}
7108 
7109 	r = -ENOMEM;
7110 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7111 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7112 					  NULL);
7113 	if (!x86_fpu_cache) {
7114 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7115 		goto out;
7116 	}
7117 
7118 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7119 	if (!shared_msrs) {
7120 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7121 		goto out_free_x86_fpu_cache;
7122 	}
7123 
7124 	r = kvm_mmu_module_init();
7125 	if (r)
7126 		goto out_free_percpu;
7127 
7128 	kvm_x86_ops = ops;
7129 
7130 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7131 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7132 			PT_PRESENT_MASK, 0, sme_me_mask);
7133 	kvm_timer_init();
7134 
7135 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7136 
7137 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7138 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7139 
7140 	kvm_lapic_init();
7141 	if (pi_inject_timer == -1)
7142 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7143 #ifdef CONFIG_X86_64
7144 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7145 
7146 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7147 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7148 #endif
7149 
7150 	return 0;
7151 
7152 out_free_percpu:
7153 	free_percpu(shared_msrs);
7154 out_free_x86_fpu_cache:
7155 	kmem_cache_destroy(x86_fpu_cache);
7156 out:
7157 	return r;
7158 }
7159 
7160 void kvm_arch_exit(void)
7161 {
7162 #ifdef CONFIG_X86_64
7163 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7164 		clear_hv_tscchange_cb();
7165 #endif
7166 	kvm_lapic_exit();
7167 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7168 
7169 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7170 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7171 					    CPUFREQ_TRANSITION_NOTIFIER);
7172 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7173 #ifdef CONFIG_X86_64
7174 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7175 #endif
7176 	kvm_x86_ops = NULL;
7177 	kvm_mmu_module_exit();
7178 	free_percpu(shared_msrs);
7179 	kmem_cache_destroy(x86_fpu_cache);
7180 }
7181 
7182 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7183 {
7184 	++vcpu->stat.halt_exits;
7185 	if (lapic_in_kernel(vcpu)) {
7186 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7187 		return 1;
7188 	} else {
7189 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7190 		return 0;
7191 	}
7192 }
7193 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7194 
7195 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7196 {
7197 	int ret = kvm_skip_emulated_instruction(vcpu);
7198 	/*
7199 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7200 	 * KVM_EXIT_DEBUG here.
7201 	 */
7202 	return kvm_vcpu_halt(vcpu) && ret;
7203 }
7204 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7205 
7206 #ifdef CONFIG_X86_64
7207 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7208 			        unsigned long clock_type)
7209 {
7210 	struct kvm_clock_pairing clock_pairing;
7211 	struct timespec64 ts;
7212 	u64 cycle;
7213 	int ret;
7214 
7215 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7216 		return -KVM_EOPNOTSUPP;
7217 
7218 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7219 		return -KVM_EOPNOTSUPP;
7220 
7221 	clock_pairing.sec = ts.tv_sec;
7222 	clock_pairing.nsec = ts.tv_nsec;
7223 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7224 	clock_pairing.flags = 0;
7225 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7226 
7227 	ret = 0;
7228 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7229 			    sizeof(struct kvm_clock_pairing)))
7230 		ret = -KVM_EFAULT;
7231 
7232 	return ret;
7233 }
7234 #endif
7235 
7236 /*
7237  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7238  *
7239  * @apicid - apicid of vcpu to be kicked.
7240  */
7241 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7242 {
7243 	struct kvm_lapic_irq lapic_irq;
7244 
7245 	lapic_irq.shorthand = 0;
7246 	lapic_irq.dest_mode = 0;
7247 	lapic_irq.level = 0;
7248 	lapic_irq.dest_id = apicid;
7249 	lapic_irq.msi_redir_hint = false;
7250 
7251 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7252 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7253 }
7254 
7255 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7256 {
7257 	if (!lapic_in_kernel(vcpu)) {
7258 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7259 		return;
7260 	}
7261 	if (!vcpu->arch.apicv_active)
7262 		return;
7263 
7264 	vcpu->arch.apicv_active = false;
7265 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7266 }
7267 
7268 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7269 {
7270 	struct kvm_vcpu *target = NULL;
7271 	struct kvm_apic_map *map;
7272 
7273 	rcu_read_lock();
7274 	map = rcu_dereference(kvm->arch.apic_map);
7275 
7276 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7277 		target = map->phys_map[dest_id]->vcpu;
7278 
7279 	rcu_read_unlock();
7280 
7281 	if (target && READ_ONCE(target->ready))
7282 		kvm_vcpu_yield_to(target);
7283 }
7284 
7285 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7286 {
7287 	unsigned long nr, a0, a1, a2, a3, ret;
7288 	int op_64_bit;
7289 
7290 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7291 		return kvm_hv_hypercall(vcpu);
7292 
7293 	nr = kvm_rax_read(vcpu);
7294 	a0 = kvm_rbx_read(vcpu);
7295 	a1 = kvm_rcx_read(vcpu);
7296 	a2 = kvm_rdx_read(vcpu);
7297 	a3 = kvm_rsi_read(vcpu);
7298 
7299 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7300 
7301 	op_64_bit = is_64_bit_mode(vcpu);
7302 	if (!op_64_bit) {
7303 		nr &= 0xFFFFFFFF;
7304 		a0 &= 0xFFFFFFFF;
7305 		a1 &= 0xFFFFFFFF;
7306 		a2 &= 0xFFFFFFFF;
7307 		a3 &= 0xFFFFFFFF;
7308 	}
7309 
7310 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7311 		ret = -KVM_EPERM;
7312 		goto out;
7313 	}
7314 
7315 	switch (nr) {
7316 	case KVM_HC_VAPIC_POLL_IRQ:
7317 		ret = 0;
7318 		break;
7319 	case KVM_HC_KICK_CPU:
7320 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7321 		kvm_sched_yield(vcpu->kvm, a1);
7322 		ret = 0;
7323 		break;
7324 #ifdef CONFIG_X86_64
7325 	case KVM_HC_CLOCK_PAIRING:
7326 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7327 		break;
7328 #endif
7329 	case KVM_HC_SEND_IPI:
7330 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7331 		break;
7332 	case KVM_HC_SCHED_YIELD:
7333 		kvm_sched_yield(vcpu->kvm, a0);
7334 		ret = 0;
7335 		break;
7336 	default:
7337 		ret = -KVM_ENOSYS;
7338 		break;
7339 	}
7340 out:
7341 	if (!op_64_bit)
7342 		ret = (u32)ret;
7343 	kvm_rax_write(vcpu, ret);
7344 
7345 	++vcpu->stat.hypercalls;
7346 	return kvm_skip_emulated_instruction(vcpu);
7347 }
7348 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7349 
7350 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7351 {
7352 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7353 	char instruction[3];
7354 	unsigned long rip = kvm_rip_read(vcpu);
7355 
7356 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7357 
7358 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7359 		&ctxt->exception);
7360 }
7361 
7362 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7363 {
7364 	return vcpu->run->request_interrupt_window &&
7365 		likely(!pic_in_kernel(vcpu->kvm));
7366 }
7367 
7368 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7369 {
7370 	struct kvm_run *kvm_run = vcpu->run;
7371 
7372 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7373 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7374 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7375 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7376 	kvm_run->ready_for_interrupt_injection =
7377 		pic_in_kernel(vcpu->kvm) ||
7378 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7379 }
7380 
7381 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7382 {
7383 	int max_irr, tpr;
7384 
7385 	if (!kvm_x86_ops->update_cr8_intercept)
7386 		return;
7387 
7388 	if (!lapic_in_kernel(vcpu))
7389 		return;
7390 
7391 	if (vcpu->arch.apicv_active)
7392 		return;
7393 
7394 	if (!vcpu->arch.apic->vapic_addr)
7395 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7396 	else
7397 		max_irr = -1;
7398 
7399 	if (max_irr != -1)
7400 		max_irr >>= 4;
7401 
7402 	tpr = kvm_lapic_get_cr8(vcpu);
7403 
7404 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7405 }
7406 
7407 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7408 {
7409 	int r;
7410 
7411 	/* try to reinject previous events if any */
7412 
7413 	if (vcpu->arch.exception.injected)
7414 		kvm_x86_ops->queue_exception(vcpu);
7415 	/*
7416 	 * Do not inject an NMI or interrupt if there is a pending
7417 	 * exception.  Exceptions and interrupts are recognized at
7418 	 * instruction boundaries, i.e. the start of an instruction.
7419 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7420 	 * NMIs and interrupts, i.e. traps are recognized before an
7421 	 * NMI/interrupt that's pending on the same instruction.
7422 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7423 	 * priority, but are only generated (pended) during instruction
7424 	 * execution, i.e. a pending fault-like exception means the
7425 	 * fault occurred on the *previous* instruction and must be
7426 	 * serviced prior to recognizing any new events in order to
7427 	 * fully complete the previous instruction.
7428 	 */
7429 	else if (!vcpu->arch.exception.pending) {
7430 		if (vcpu->arch.nmi_injected)
7431 			kvm_x86_ops->set_nmi(vcpu);
7432 		else if (vcpu->arch.interrupt.injected)
7433 			kvm_x86_ops->set_irq(vcpu);
7434 	}
7435 
7436 	/*
7437 	 * Call check_nested_events() even if we reinjected a previous event
7438 	 * in order for caller to determine if it should require immediate-exit
7439 	 * from L2 to L1 due to pending L1 events which require exit
7440 	 * from L2 to L1.
7441 	 */
7442 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7443 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7444 		if (r != 0)
7445 			return r;
7446 	}
7447 
7448 	/* try to inject new event if pending */
7449 	if (vcpu->arch.exception.pending) {
7450 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7451 					vcpu->arch.exception.has_error_code,
7452 					vcpu->arch.exception.error_code);
7453 
7454 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7455 		vcpu->arch.exception.pending = false;
7456 		vcpu->arch.exception.injected = true;
7457 
7458 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7459 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7460 					     X86_EFLAGS_RF);
7461 
7462 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7463 			/*
7464 			 * This code assumes that nSVM doesn't use
7465 			 * check_nested_events(). If it does, the
7466 			 * DR6/DR7 changes should happen before L1
7467 			 * gets a #VMEXIT for an intercepted #DB in
7468 			 * L2.  (Under VMX, on the other hand, the
7469 			 * DR6/DR7 changes should not happen in the
7470 			 * event of a VM-exit to L1 for an intercepted
7471 			 * #DB in L2.)
7472 			 */
7473 			kvm_deliver_exception_payload(vcpu);
7474 			if (vcpu->arch.dr7 & DR7_GD) {
7475 				vcpu->arch.dr7 &= ~DR7_GD;
7476 				kvm_update_dr7(vcpu);
7477 			}
7478 		}
7479 
7480 		kvm_x86_ops->queue_exception(vcpu);
7481 	}
7482 
7483 	/* Don't consider new event if we re-injected an event */
7484 	if (kvm_event_needs_reinjection(vcpu))
7485 		return 0;
7486 
7487 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7488 	    kvm_x86_ops->smi_allowed(vcpu)) {
7489 		vcpu->arch.smi_pending = false;
7490 		++vcpu->arch.smi_count;
7491 		enter_smm(vcpu);
7492 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7493 		--vcpu->arch.nmi_pending;
7494 		vcpu->arch.nmi_injected = true;
7495 		kvm_x86_ops->set_nmi(vcpu);
7496 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7497 		/*
7498 		 * Because interrupts can be injected asynchronously, we are
7499 		 * calling check_nested_events again here to avoid a race condition.
7500 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7501 		 * proposal and current concerns.  Perhaps we should be setting
7502 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7503 		 */
7504 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7505 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7506 			if (r != 0)
7507 				return r;
7508 		}
7509 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7510 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7511 					    false);
7512 			kvm_x86_ops->set_irq(vcpu);
7513 		}
7514 	}
7515 
7516 	return 0;
7517 }
7518 
7519 static void process_nmi(struct kvm_vcpu *vcpu)
7520 {
7521 	unsigned limit = 2;
7522 
7523 	/*
7524 	 * x86 is limited to one NMI running, and one NMI pending after it.
7525 	 * If an NMI is already in progress, limit further NMIs to just one.
7526 	 * Otherwise, allow two (and we'll inject the first one immediately).
7527 	 */
7528 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7529 		limit = 1;
7530 
7531 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7532 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7533 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7534 }
7535 
7536 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7537 {
7538 	u32 flags = 0;
7539 	flags |= seg->g       << 23;
7540 	flags |= seg->db      << 22;
7541 	flags |= seg->l       << 21;
7542 	flags |= seg->avl     << 20;
7543 	flags |= seg->present << 15;
7544 	flags |= seg->dpl     << 13;
7545 	flags |= seg->s       << 12;
7546 	flags |= seg->type    << 8;
7547 	return flags;
7548 }
7549 
7550 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7551 {
7552 	struct kvm_segment seg;
7553 	int offset;
7554 
7555 	kvm_get_segment(vcpu, &seg, n);
7556 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7557 
7558 	if (n < 3)
7559 		offset = 0x7f84 + n * 12;
7560 	else
7561 		offset = 0x7f2c + (n - 3) * 12;
7562 
7563 	put_smstate(u32, buf, offset + 8, seg.base);
7564 	put_smstate(u32, buf, offset + 4, seg.limit);
7565 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7566 }
7567 
7568 #ifdef CONFIG_X86_64
7569 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7570 {
7571 	struct kvm_segment seg;
7572 	int offset;
7573 	u16 flags;
7574 
7575 	kvm_get_segment(vcpu, &seg, n);
7576 	offset = 0x7e00 + n * 16;
7577 
7578 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7579 	put_smstate(u16, buf, offset, seg.selector);
7580 	put_smstate(u16, buf, offset + 2, flags);
7581 	put_smstate(u32, buf, offset + 4, seg.limit);
7582 	put_smstate(u64, buf, offset + 8, seg.base);
7583 }
7584 #endif
7585 
7586 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7587 {
7588 	struct desc_ptr dt;
7589 	struct kvm_segment seg;
7590 	unsigned long val;
7591 	int i;
7592 
7593 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7594 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7595 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7596 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7597 
7598 	for (i = 0; i < 8; i++)
7599 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7600 
7601 	kvm_get_dr(vcpu, 6, &val);
7602 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7603 	kvm_get_dr(vcpu, 7, &val);
7604 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7605 
7606 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7607 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7608 	put_smstate(u32, buf, 0x7f64, seg.base);
7609 	put_smstate(u32, buf, 0x7f60, seg.limit);
7610 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7611 
7612 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7613 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7614 	put_smstate(u32, buf, 0x7f80, seg.base);
7615 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7616 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7617 
7618 	kvm_x86_ops->get_gdt(vcpu, &dt);
7619 	put_smstate(u32, buf, 0x7f74, dt.address);
7620 	put_smstate(u32, buf, 0x7f70, dt.size);
7621 
7622 	kvm_x86_ops->get_idt(vcpu, &dt);
7623 	put_smstate(u32, buf, 0x7f58, dt.address);
7624 	put_smstate(u32, buf, 0x7f54, dt.size);
7625 
7626 	for (i = 0; i < 6; i++)
7627 		enter_smm_save_seg_32(vcpu, buf, i);
7628 
7629 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7630 
7631 	/* revision id */
7632 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7633 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7634 }
7635 
7636 #ifdef CONFIG_X86_64
7637 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7638 {
7639 	struct desc_ptr dt;
7640 	struct kvm_segment seg;
7641 	unsigned long val;
7642 	int i;
7643 
7644 	for (i = 0; i < 16; i++)
7645 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7646 
7647 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7648 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7649 
7650 	kvm_get_dr(vcpu, 6, &val);
7651 	put_smstate(u64, buf, 0x7f68, val);
7652 	kvm_get_dr(vcpu, 7, &val);
7653 	put_smstate(u64, buf, 0x7f60, val);
7654 
7655 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7656 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7657 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7658 
7659 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7660 
7661 	/* revision id */
7662 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7663 
7664 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7665 
7666 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7667 	put_smstate(u16, buf, 0x7e90, seg.selector);
7668 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7669 	put_smstate(u32, buf, 0x7e94, seg.limit);
7670 	put_smstate(u64, buf, 0x7e98, seg.base);
7671 
7672 	kvm_x86_ops->get_idt(vcpu, &dt);
7673 	put_smstate(u32, buf, 0x7e84, dt.size);
7674 	put_smstate(u64, buf, 0x7e88, dt.address);
7675 
7676 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7677 	put_smstate(u16, buf, 0x7e70, seg.selector);
7678 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7679 	put_smstate(u32, buf, 0x7e74, seg.limit);
7680 	put_smstate(u64, buf, 0x7e78, seg.base);
7681 
7682 	kvm_x86_ops->get_gdt(vcpu, &dt);
7683 	put_smstate(u32, buf, 0x7e64, dt.size);
7684 	put_smstate(u64, buf, 0x7e68, dt.address);
7685 
7686 	for (i = 0; i < 6; i++)
7687 		enter_smm_save_seg_64(vcpu, buf, i);
7688 }
7689 #endif
7690 
7691 static void enter_smm(struct kvm_vcpu *vcpu)
7692 {
7693 	struct kvm_segment cs, ds;
7694 	struct desc_ptr dt;
7695 	char buf[512];
7696 	u32 cr0;
7697 
7698 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7699 	memset(buf, 0, 512);
7700 #ifdef CONFIG_X86_64
7701 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7702 		enter_smm_save_state_64(vcpu, buf);
7703 	else
7704 #endif
7705 		enter_smm_save_state_32(vcpu, buf);
7706 
7707 	/*
7708 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7709 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7710 	 * the SMM state-save area.
7711 	 */
7712 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7713 
7714 	vcpu->arch.hflags |= HF_SMM_MASK;
7715 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7716 
7717 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7718 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7719 	else
7720 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7721 
7722 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7723 	kvm_rip_write(vcpu, 0x8000);
7724 
7725 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7726 	kvm_x86_ops->set_cr0(vcpu, cr0);
7727 	vcpu->arch.cr0 = cr0;
7728 
7729 	kvm_x86_ops->set_cr4(vcpu, 0);
7730 
7731 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7732 	dt.address = dt.size = 0;
7733 	kvm_x86_ops->set_idt(vcpu, &dt);
7734 
7735 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7736 
7737 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7738 	cs.base = vcpu->arch.smbase;
7739 
7740 	ds.selector = 0;
7741 	ds.base = 0;
7742 
7743 	cs.limit    = ds.limit = 0xffffffff;
7744 	cs.type     = ds.type = 0x3;
7745 	cs.dpl      = ds.dpl = 0;
7746 	cs.db       = ds.db = 0;
7747 	cs.s        = ds.s = 1;
7748 	cs.l        = ds.l = 0;
7749 	cs.g        = ds.g = 1;
7750 	cs.avl      = ds.avl = 0;
7751 	cs.present  = ds.present = 1;
7752 	cs.unusable = ds.unusable = 0;
7753 	cs.padding  = ds.padding = 0;
7754 
7755 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7756 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7757 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7758 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7759 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7760 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7761 
7762 #ifdef CONFIG_X86_64
7763 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7764 		kvm_x86_ops->set_efer(vcpu, 0);
7765 #endif
7766 
7767 	kvm_update_cpuid(vcpu);
7768 	kvm_mmu_reset_context(vcpu);
7769 }
7770 
7771 static void process_smi(struct kvm_vcpu *vcpu)
7772 {
7773 	vcpu->arch.smi_pending = true;
7774 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7775 }
7776 
7777 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7778 {
7779 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7780 }
7781 
7782 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7783 {
7784 	if (!kvm_apic_present(vcpu))
7785 		return;
7786 
7787 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7788 
7789 	if (irqchip_split(vcpu->kvm))
7790 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7791 	else {
7792 		if (vcpu->arch.apicv_active)
7793 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7794 		if (ioapic_in_kernel(vcpu->kvm))
7795 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7796 	}
7797 
7798 	if (is_guest_mode(vcpu))
7799 		vcpu->arch.load_eoi_exitmap_pending = true;
7800 	else
7801 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7802 }
7803 
7804 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7805 {
7806 	u64 eoi_exit_bitmap[4];
7807 
7808 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7809 		return;
7810 
7811 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7812 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7813 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7814 }
7815 
7816 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7817 		unsigned long start, unsigned long end,
7818 		bool blockable)
7819 {
7820 	unsigned long apic_address;
7821 
7822 	/*
7823 	 * The physical address of apic access page is stored in the VMCS.
7824 	 * Update it when it becomes invalid.
7825 	 */
7826 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7827 	if (start <= apic_address && apic_address < end)
7828 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7829 
7830 	return 0;
7831 }
7832 
7833 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7834 {
7835 	struct page *page = NULL;
7836 
7837 	if (!lapic_in_kernel(vcpu))
7838 		return;
7839 
7840 	if (!kvm_x86_ops->set_apic_access_page_addr)
7841 		return;
7842 
7843 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7844 	if (is_error_page(page))
7845 		return;
7846 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7847 
7848 	/*
7849 	 * Do not pin apic access page in memory, the MMU notifier
7850 	 * will call us again if it is migrated or swapped out.
7851 	 */
7852 	put_page(page);
7853 }
7854 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7855 
7856 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7857 {
7858 	smp_send_reschedule(vcpu->cpu);
7859 }
7860 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7861 
7862 /*
7863  * Returns 1 to let vcpu_run() continue the guest execution loop without
7864  * exiting to the userspace.  Otherwise, the value will be returned to the
7865  * userspace.
7866  */
7867 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7868 {
7869 	int r;
7870 	bool req_int_win =
7871 		dm_request_for_irq_injection(vcpu) &&
7872 		kvm_cpu_accept_dm_intr(vcpu);
7873 
7874 	bool req_immediate_exit = false;
7875 
7876 	if (kvm_request_pending(vcpu)) {
7877 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7878 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7879 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7880 			kvm_mmu_unload(vcpu);
7881 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7882 			__kvm_migrate_timers(vcpu);
7883 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7884 			kvm_gen_update_masterclock(vcpu->kvm);
7885 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7886 			kvm_gen_kvmclock_update(vcpu);
7887 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7888 			r = kvm_guest_time_update(vcpu);
7889 			if (unlikely(r))
7890 				goto out;
7891 		}
7892 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7893 			kvm_mmu_sync_roots(vcpu);
7894 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7895 			kvm_mmu_load_cr3(vcpu);
7896 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7897 			kvm_vcpu_flush_tlb(vcpu, true);
7898 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7899 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7900 			r = 0;
7901 			goto out;
7902 		}
7903 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7904 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7905 			vcpu->mmio_needed = 0;
7906 			r = 0;
7907 			goto out;
7908 		}
7909 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7910 			/* Page is swapped out. Do synthetic halt */
7911 			vcpu->arch.apf.halted = true;
7912 			r = 1;
7913 			goto out;
7914 		}
7915 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7916 			record_steal_time(vcpu);
7917 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7918 			process_smi(vcpu);
7919 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7920 			process_nmi(vcpu);
7921 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7922 			kvm_pmu_handle_event(vcpu);
7923 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7924 			kvm_pmu_deliver_pmi(vcpu);
7925 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7926 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7927 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7928 				     vcpu->arch.ioapic_handled_vectors)) {
7929 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7930 				vcpu->run->eoi.vector =
7931 						vcpu->arch.pending_ioapic_eoi;
7932 				r = 0;
7933 				goto out;
7934 			}
7935 		}
7936 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7937 			vcpu_scan_ioapic(vcpu);
7938 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7939 			vcpu_load_eoi_exitmap(vcpu);
7940 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7941 			kvm_vcpu_reload_apic_access_page(vcpu);
7942 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7943 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7944 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7945 			r = 0;
7946 			goto out;
7947 		}
7948 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7949 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7950 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7951 			r = 0;
7952 			goto out;
7953 		}
7954 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7955 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7956 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7957 			r = 0;
7958 			goto out;
7959 		}
7960 
7961 		/*
7962 		 * KVM_REQ_HV_STIMER has to be processed after
7963 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7964 		 * depend on the guest clock being up-to-date
7965 		 */
7966 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7967 			kvm_hv_process_stimers(vcpu);
7968 	}
7969 
7970 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7971 		++vcpu->stat.req_event;
7972 		kvm_apic_accept_events(vcpu);
7973 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7974 			r = 1;
7975 			goto out;
7976 		}
7977 
7978 		if (inject_pending_event(vcpu, req_int_win) != 0)
7979 			req_immediate_exit = true;
7980 		else {
7981 			/* Enable SMI/NMI/IRQ window open exits if needed.
7982 			 *
7983 			 * SMIs have three cases:
7984 			 * 1) They can be nested, and then there is nothing to
7985 			 *    do here because RSM will cause a vmexit anyway.
7986 			 * 2) There is an ISA-specific reason why SMI cannot be
7987 			 *    injected, and the moment when this changes can be
7988 			 *    intercepted.
7989 			 * 3) Or the SMI can be pending because
7990 			 *    inject_pending_event has completed the injection
7991 			 *    of an IRQ or NMI from the previous vmexit, and
7992 			 *    then we request an immediate exit to inject the
7993 			 *    SMI.
7994 			 */
7995 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7996 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7997 					req_immediate_exit = true;
7998 			if (vcpu->arch.nmi_pending)
7999 				kvm_x86_ops->enable_nmi_window(vcpu);
8000 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8001 				kvm_x86_ops->enable_irq_window(vcpu);
8002 			WARN_ON(vcpu->arch.exception.pending);
8003 		}
8004 
8005 		if (kvm_lapic_enabled(vcpu)) {
8006 			update_cr8_intercept(vcpu);
8007 			kvm_lapic_sync_to_vapic(vcpu);
8008 		}
8009 	}
8010 
8011 	r = kvm_mmu_reload(vcpu);
8012 	if (unlikely(r)) {
8013 		goto cancel_injection;
8014 	}
8015 
8016 	preempt_disable();
8017 
8018 	kvm_x86_ops->prepare_guest_switch(vcpu);
8019 
8020 	/*
8021 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8022 	 * IPI are then delayed after guest entry, which ensures that they
8023 	 * result in virtual interrupt delivery.
8024 	 */
8025 	local_irq_disable();
8026 	vcpu->mode = IN_GUEST_MODE;
8027 
8028 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8029 
8030 	/*
8031 	 * 1) We should set ->mode before checking ->requests.  Please see
8032 	 * the comment in kvm_vcpu_exiting_guest_mode().
8033 	 *
8034 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8035 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8036 	 * (see vmx_deliver_posted_interrupt).
8037 	 *
8038 	 * 3) This also orders the write to mode from any reads to the page
8039 	 * tables done while the VCPU is running.  Please see the comment
8040 	 * in kvm_flush_remote_tlbs.
8041 	 */
8042 	smp_mb__after_srcu_read_unlock();
8043 
8044 	/*
8045 	 * This handles the case where a posted interrupt was
8046 	 * notified with kvm_vcpu_kick.
8047 	 */
8048 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8049 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8050 
8051 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8052 	    || need_resched() || signal_pending(current)) {
8053 		vcpu->mode = OUTSIDE_GUEST_MODE;
8054 		smp_wmb();
8055 		local_irq_enable();
8056 		preempt_enable();
8057 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8058 		r = 1;
8059 		goto cancel_injection;
8060 	}
8061 
8062 	if (req_immediate_exit) {
8063 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8064 		kvm_x86_ops->request_immediate_exit(vcpu);
8065 	}
8066 
8067 	trace_kvm_entry(vcpu->vcpu_id);
8068 	guest_enter_irqoff();
8069 
8070 	/* The preempt notifier should have taken care of the FPU already.  */
8071 	WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8072 
8073 	if (unlikely(vcpu->arch.switch_db_regs)) {
8074 		set_debugreg(0, 7);
8075 		set_debugreg(vcpu->arch.eff_db[0], 0);
8076 		set_debugreg(vcpu->arch.eff_db[1], 1);
8077 		set_debugreg(vcpu->arch.eff_db[2], 2);
8078 		set_debugreg(vcpu->arch.eff_db[3], 3);
8079 		set_debugreg(vcpu->arch.dr6, 6);
8080 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8081 	}
8082 
8083 	kvm_x86_ops->run(vcpu);
8084 
8085 	/*
8086 	 * Do this here before restoring debug registers on the host.  And
8087 	 * since we do this before handling the vmexit, a DR access vmexit
8088 	 * can (a) read the correct value of the debug registers, (b) set
8089 	 * KVM_DEBUGREG_WONT_EXIT again.
8090 	 */
8091 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8092 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8093 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8094 		kvm_update_dr0123(vcpu);
8095 		kvm_update_dr6(vcpu);
8096 		kvm_update_dr7(vcpu);
8097 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8098 	}
8099 
8100 	/*
8101 	 * If the guest has used debug registers, at least dr7
8102 	 * will be disabled while returning to the host.
8103 	 * If we don't have active breakpoints in the host, we don't
8104 	 * care about the messed up debug address registers. But if
8105 	 * we have some of them active, restore the old state.
8106 	 */
8107 	if (hw_breakpoint_active())
8108 		hw_breakpoint_restore();
8109 
8110 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8111 
8112 	vcpu->mode = OUTSIDE_GUEST_MODE;
8113 	smp_wmb();
8114 
8115 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8116 
8117 	/*
8118 	 * Consume any pending interrupts, including the possible source of
8119 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8120 	 * An instruction is required after local_irq_enable() to fully unblock
8121 	 * interrupts on processors that implement an interrupt shadow, the
8122 	 * stat.exits increment will do nicely.
8123 	 */
8124 	kvm_before_interrupt(vcpu);
8125 	local_irq_enable();
8126 	++vcpu->stat.exits;
8127 	local_irq_disable();
8128 	kvm_after_interrupt(vcpu);
8129 
8130 	guest_exit_irqoff();
8131 	if (lapic_in_kernel(vcpu)) {
8132 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8133 		if (delta != S64_MIN) {
8134 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8135 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8136 		}
8137 	}
8138 
8139 	local_irq_enable();
8140 	preempt_enable();
8141 
8142 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8143 
8144 	/*
8145 	 * Profile KVM exit RIPs:
8146 	 */
8147 	if (unlikely(prof_on == KVM_PROFILING)) {
8148 		unsigned long rip = kvm_rip_read(vcpu);
8149 		profile_hit(KVM_PROFILING, (void *)rip);
8150 	}
8151 
8152 	if (unlikely(vcpu->arch.tsc_always_catchup))
8153 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8154 
8155 	if (vcpu->arch.apic_attention)
8156 		kvm_lapic_sync_from_vapic(vcpu);
8157 
8158 	vcpu->arch.gpa_available = false;
8159 	r = kvm_x86_ops->handle_exit(vcpu);
8160 	return r;
8161 
8162 cancel_injection:
8163 	kvm_x86_ops->cancel_injection(vcpu);
8164 	if (unlikely(vcpu->arch.apic_attention))
8165 		kvm_lapic_sync_from_vapic(vcpu);
8166 out:
8167 	return r;
8168 }
8169 
8170 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8171 {
8172 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8173 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8174 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8175 		kvm_vcpu_block(vcpu);
8176 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8177 
8178 		if (kvm_x86_ops->post_block)
8179 			kvm_x86_ops->post_block(vcpu);
8180 
8181 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8182 			return 1;
8183 	}
8184 
8185 	kvm_apic_accept_events(vcpu);
8186 	switch(vcpu->arch.mp_state) {
8187 	case KVM_MP_STATE_HALTED:
8188 		vcpu->arch.pv.pv_unhalted = false;
8189 		vcpu->arch.mp_state =
8190 			KVM_MP_STATE_RUNNABLE;
8191 		/* fall through */
8192 	case KVM_MP_STATE_RUNNABLE:
8193 		vcpu->arch.apf.halted = false;
8194 		break;
8195 	case KVM_MP_STATE_INIT_RECEIVED:
8196 		break;
8197 	default:
8198 		return -EINTR;
8199 		break;
8200 	}
8201 	return 1;
8202 }
8203 
8204 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8205 {
8206 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8207 		kvm_x86_ops->check_nested_events(vcpu, false);
8208 
8209 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8210 		!vcpu->arch.apf.halted);
8211 }
8212 
8213 static int vcpu_run(struct kvm_vcpu *vcpu)
8214 {
8215 	int r;
8216 	struct kvm *kvm = vcpu->kvm;
8217 
8218 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8219 	vcpu->arch.l1tf_flush_l1d = true;
8220 
8221 	for (;;) {
8222 		if (kvm_vcpu_running(vcpu)) {
8223 			r = vcpu_enter_guest(vcpu);
8224 		} else {
8225 			r = vcpu_block(kvm, vcpu);
8226 		}
8227 
8228 		if (r <= 0)
8229 			break;
8230 
8231 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8232 		if (kvm_cpu_has_pending_timer(vcpu))
8233 			kvm_inject_pending_timer_irqs(vcpu);
8234 
8235 		if (dm_request_for_irq_injection(vcpu) &&
8236 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8237 			r = 0;
8238 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8239 			++vcpu->stat.request_irq_exits;
8240 			break;
8241 		}
8242 
8243 		kvm_check_async_pf_completion(vcpu);
8244 
8245 		if (signal_pending(current)) {
8246 			r = -EINTR;
8247 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8248 			++vcpu->stat.signal_exits;
8249 			break;
8250 		}
8251 		if (need_resched()) {
8252 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8253 			cond_resched();
8254 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8255 		}
8256 	}
8257 
8258 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8259 
8260 	return r;
8261 }
8262 
8263 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8264 {
8265 	int r;
8266 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8267 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8268 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8269 	if (r != EMULATE_DONE)
8270 		return 0;
8271 	return 1;
8272 }
8273 
8274 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8275 {
8276 	BUG_ON(!vcpu->arch.pio.count);
8277 
8278 	return complete_emulated_io(vcpu);
8279 }
8280 
8281 /*
8282  * Implements the following, as a state machine:
8283  *
8284  * read:
8285  *   for each fragment
8286  *     for each mmio piece in the fragment
8287  *       write gpa, len
8288  *       exit
8289  *       copy data
8290  *   execute insn
8291  *
8292  * write:
8293  *   for each fragment
8294  *     for each mmio piece in the fragment
8295  *       write gpa, len
8296  *       copy data
8297  *       exit
8298  */
8299 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8300 {
8301 	struct kvm_run *run = vcpu->run;
8302 	struct kvm_mmio_fragment *frag;
8303 	unsigned len;
8304 
8305 	BUG_ON(!vcpu->mmio_needed);
8306 
8307 	/* Complete previous fragment */
8308 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8309 	len = min(8u, frag->len);
8310 	if (!vcpu->mmio_is_write)
8311 		memcpy(frag->data, run->mmio.data, len);
8312 
8313 	if (frag->len <= 8) {
8314 		/* Switch to the next fragment. */
8315 		frag++;
8316 		vcpu->mmio_cur_fragment++;
8317 	} else {
8318 		/* Go forward to the next mmio piece. */
8319 		frag->data += len;
8320 		frag->gpa += len;
8321 		frag->len -= len;
8322 	}
8323 
8324 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8325 		vcpu->mmio_needed = 0;
8326 
8327 		/* FIXME: return into emulator if single-stepping.  */
8328 		if (vcpu->mmio_is_write)
8329 			return 1;
8330 		vcpu->mmio_read_completed = 1;
8331 		return complete_emulated_io(vcpu);
8332 	}
8333 
8334 	run->exit_reason = KVM_EXIT_MMIO;
8335 	run->mmio.phys_addr = frag->gpa;
8336 	if (vcpu->mmio_is_write)
8337 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8338 	run->mmio.len = min(8u, frag->len);
8339 	run->mmio.is_write = vcpu->mmio_is_write;
8340 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8341 	return 0;
8342 }
8343 
8344 /* Swap (qemu) user FPU context for the guest FPU context. */
8345 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8346 {
8347 	fpregs_lock();
8348 
8349 	copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8350 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8351 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8352 				~XFEATURE_MASK_PKRU);
8353 
8354 	fpregs_mark_activate();
8355 	fpregs_unlock();
8356 
8357 	trace_kvm_fpu(1);
8358 }
8359 
8360 /* When vcpu_run ends, restore user space FPU context. */
8361 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8362 {
8363 	fpregs_lock();
8364 
8365 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8366 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8367 
8368 	fpregs_mark_activate();
8369 	fpregs_unlock();
8370 
8371 	++vcpu->stat.fpu_reload;
8372 	trace_kvm_fpu(0);
8373 }
8374 
8375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8376 {
8377 	int r;
8378 
8379 	vcpu_load(vcpu);
8380 	kvm_sigset_activate(vcpu);
8381 	kvm_load_guest_fpu(vcpu);
8382 
8383 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8384 		if (kvm_run->immediate_exit) {
8385 			r = -EINTR;
8386 			goto out;
8387 		}
8388 		kvm_vcpu_block(vcpu);
8389 		kvm_apic_accept_events(vcpu);
8390 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8391 		r = -EAGAIN;
8392 		if (signal_pending(current)) {
8393 			r = -EINTR;
8394 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8395 			++vcpu->stat.signal_exits;
8396 		}
8397 		goto out;
8398 	}
8399 
8400 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8401 		r = -EINVAL;
8402 		goto out;
8403 	}
8404 
8405 	if (vcpu->run->kvm_dirty_regs) {
8406 		r = sync_regs(vcpu);
8407 		if (r != 0)
8408 			goto out;
8409 	}
8410 
8411 	/* re-sync apic's tpr */
8412 	if (!lapic_in_kernel(vcpu)) {
8413 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8414 			r = -EINVAL;
8415 			goto out;
8416 		}
8417 	}
8418 
8419 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8420 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8421 		vcpu->arch.complete_userspace_io = NULL;
8422 		r = cui(vcpu);
8423 		if (r <= 0)
8424 			goto out;
8425 	} else
8426 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8427 
8428 	if (kvm_run->immediate_exit)
8429 		r = -EINTR;
8430 	else
8431 		r = vcpu_run(vcpu);
8432 
8433 out:
8434 	kvm_put_guest_fpu(vcpu);
8435 	if (vcpu->run->kvm_valid_regs)
8436 		store_regs(vcpu);
8437 	post_kvm_run_save(vcpu);
8438 	kvm_sigset_deactivate(vcpu);
8439 
8440 	vcpu_put(vcpu);
8441 	return r;
8442 }
8443 
8444 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8445 {
8446 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8447 		/*
8448 		 * We are here if userspace calls get_regs() in the middle of
8449 		 * instruction emulation. Registers state needs to be copied
8450 		 * back from emulation context to vcpu. Userspace shouldn't do
8451 		 * that usually, but some bad designed PV devices (vmware
8452 		 * backdoor interface) need this to work
8453 		 */
8454 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8455 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8456 	}
8457 	regs->rax = kvm_rax_read(vcpu);
8458 	regs->rbx = kvm_rbx_read(vcpu);
8459 	regs->rcx = kvm_rcx_read(vcpu);
8460 	regs->rdx = kvm_rdx_read(vcpu);
8461 	regs->rsi = kvm_rsi_read(vcpu);
8462 	regs->rdi = kvm_rdi_read(vcpu);
8463 	regs->rsp = kvm_rsp_read(vcpu);
8464 	regs->rbp = kvm_rbp_read(vcpu);
8465 #ifdef CONFIG_X86_64
8466 	regs->r8 = kvm_r8_read(vcpu);
8467 	regs->r9 = kvm_r9_read(vcpu);
8468 	regs->r10 = kvm_r10_read(vcpu);
8469 	regs->r11 = kvm_r11_read(vcpu);
8470 	regs->r12 = kvm_r12_read(vcpu);
8471 	regs->r13 = kvm_r13_read(vcpu);
8472 	regs->r14 = kvm_r14_read(vcpu);
8473 	regs->r15 = kvm_r15_read(vcpu);
8474 #endif
8475 
8476 	regs->rip = kvm_rip_read(vcpu);
8477 	regs->rflags = kvm_get_rflags(vcpu);
8478 }
8479 
8480 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8481 {
8482 	vcpu_load(vcpu);
8483 	__get_regs(vcpu, regs);
8484 	vcpu_put(vcpu);
8485 	return 0;
8486 }
8487 
8488 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8489 {
8490 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8491 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8492 
8493 	kvm_rax_write(vcpu, regs->rax);
8494 	kvm_rbx_write(vcpu, regs->rbx);
8495 	kvm_rcx_write(vcpu, regs->rcx);
8496 	kvm_rdx_write(vcpu, regs->rdx);
8497 	kvm_rsi_write(vcpu, regs->rsi);
8498 	kvm_rdi_write(vcpu, regs->rdi);
8499 	kvm_rsp_write(vcpu, regs->rsp);
8500 	kvm_rbp_write(vcpu, regs->rbp);
8501 #ifdef CONFIG_X86_64
8502 	kvm_r8_write(vcpu, regs->r8);
8503 	kvm_r9_write(vcpu, regs->r9);
8504 	kvm_r10_write(vcpu, regs->r10);
8505 	kvm_r11_write(vcpu, regs->r11);
8506 	kvm_r12_write(vcpu, regs->r12);
8507 	kvm_r13_write(vcpu, regs->r13);
8508 	kvm_r14_write(vcpu, regs->r14);
8509 	kvm_r15_write(vcpu, regs->r15);
8510 #endif
8511 
8512 	kvm_rip_write(vcpu, regs->rip);
8513 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8514 
8515 	vcpu->arch.exception.pending = false;
8516 
8517 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8518 }
8519 
8520 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8521 {
8522 	vcpu_load(vcpu);
8523 	__set_regs(vcpu, regs);
8524 	vcpu_put(vcpu);
8525 	return 0;
8526 }
8527 
8528 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8529 {
8530 	struct kvm_segment cs;
8531 
8532 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8533 	*db = cs.db;
8534 	*l = cs.l;
8535 }
8536 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8537 
8538 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8539 {
8540 	struct desc_ptr dt;
8541 
8542 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8543 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8544 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8545 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8546 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8547 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8548 
8549 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8550 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8551 
8552 	kvm_x86_ops->get_idt(vcpu, &dt);
8553 	sregs->idt.limit = dt.size;
8554 	sregs->idt.base = dt.address;
8555 	kvm_x86_ops->get_gdt(vcpu, &dt);
8556 	sregs->gdt.limit = dt.size;
8557 	sregs->gdt.base = dt.address;
8558 
8559 	sregs->cr0 = kvm_read_cr0(vcpu);
8560 	sregs->cr2 = vcpu->arch.cr2;
8561 	sregs->cr3 = kvm_read_cr3(vcpu);
8562 	sregs->cr4 = kvm_read_cr4(vcpu);
8563 	sregs->cr8 = kvm_get_cr8(vcpu);
8564 	sregs->efer = vcpu->arch.efer;
8565 	sregs->apic_base = kvm_get_apic_base(vcpu);
8566 
8567 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8568 
8569 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8570 		set_bit(vcpu->arch.interrupt.nr,
8571 			(unsigned long *)sregs->interrupt_bitmap);
8572 }
8573 
8574 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8575 				  struct kvm_sregs *sregs)
8576 {
8577 	vcpu_load(vcpu);
8578 	__get_sregs(vcpu, sregs);
8579 	vcpu_put(vcpu);
8580 	return 0;
8581 }
8582 
8583 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8584 				    struct kvm_mp_state *mp_state)
8585 {
8586 	vcpu_load(vcpu);
8587 
8588 	kvm_apic_accept_events(vcpu);
8589 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8590 					vcpu->arch.pv.pv_unhalted)
8591 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8592 	else
8593 		mp_state->mp_state = vcpu->arch.mp_state;
8594 
8595 	vcpu_put(vcpu);
8596 	return 0;
8597 }
8598 
8599 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8600 				    struct kvm_mp_state *mp_state)
8601 {
8602 	int ret = -EINVAL;
8603 
8604 	vcpu_load(vcpu);
8605 
8606 	if (!lapic_in_kernel(vcpu) &&
8607 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8608 		goto out;
8609 
8610 	/* INITs are latched while in SMM */
8611 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8612 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8613 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8614 		goto out;
8615 
8616 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8617 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8618 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8619 	} else
8620 		vcpu->arch.mp_state = mp_state->mp_state;
8621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8622 
8623 	ret = 0;
8624 out:
8625 	vcpu_put(vcpu);
8626 	return ret;
8627 }
8628 
8629 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8630 		    int reason, bool has_error_code, u32 error_code)
8631 {
8632 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8633 	int ret;
8634 
8635 	init_emulate_ctxt(vcpu);
8636 
8637 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8638 				   has_error_code, error_code);
8639 
8640 	if (ret)
8641 		return EMULATE_FAIL;
8642 
8643 	kvm_rip_write(vcpu, ctxt->eip);
8644 	kvm_set_rflags(vcpu, ctxt->eflags);
8645 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8646 	return EMULATE_DONE;
8647 }
8648 EXPORT_SYMBOL_GPL(kvm_task_switch);
8649 
8650 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8651 {
8652 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8653 			(sregs->cr4 & X86_CR4_OSXSAVE))
8654 		return  -EINVAL;
8655 
8656 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8657 		/*
8658 		 * When EFER.LME and CR0.PG are set, the processor is in
8659 		 * 64-bit mode (though maybe in a 32-bit code segment).
8660 		 * CR4.PAE and EFER.LMA must be set.
8661 		 */
8662 		if (!(sregs->cr4 & X86_CR4_PAE)
8663 		    || !(sregs->efer & EFER_LMA))
8664 			return -EINVAL;
8665 	} else {
8666 		/*
8667 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8668 		 * segment cannot be 64-bit.
8669 		 */
8670 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8671 			return -EINVAL;
8672 	}
8673 
8674 	return 0;
8675 }
8676 
8677 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8678 {
8679 	struct msr_data apic_base_msr;
8680 	int mmu_reset_needed = 0;
8681 	int cpuid_update_needed = 0;
8682 	int pending_vec, max_bits, idx;
8683 	struct desc_ptr dt;
8684 	int ret = -EINVAL;
8685 
8686 	if (kvm_valid_sregs(vcpu, sregs))
8687 		goto out;
8688 
8689 	apic_base_msr.data = sregs->apic_base;
8690 	apic_base_msr.host_initiated = true;
8691 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8692 		goto out;
8693 
8694 	dt.size = sregs->idt.limit;
8695 	dt.address = sregs->idt.base;
8696 	kvm_x86_ops->set_idt(vcpu, &dt);
8697 	dt.size = sregs->gdt.limit;
8698 	dt.address = sregs->gdt.base;
8699 	kvm_x86_ops->set_gdt(vcpu, &dt);
8700 
8701 	vcpu->arch.cr2 = sregs->cr2;
8702 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8703 	vcpu->arch.cr3 = sregs->cr3;
8704 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8705 
8706 	kvm_set_cr8(vcpu, sregs->cr8);
8707 
8708 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8709 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8710 
8711 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8712 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8713 	vcpu->arch.cr0 = sregs->cr0;
8714 
8715 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8716 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8717 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8718 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8719 	if (cpuid_update_needed)
8720 		kvm_update_cpuid(vcpu);
8721 
8722 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8723 	if (is_pae_paging(vcpu)) {
8724 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8725 		mmu_reset_needed = 1;
8726 	}
8727 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8728 
8729 	if (mmu_reset_needed)
8730 		kvm_mmu_reset_context(vcpu);
8731 
8732 	max_bits = KVM_NR_INTERRUPTS;
8733 	pending_vec = find_first_bit(
8734 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8735 	if (pending_vec < max_bits) {
8736 		kvm_queue_interrupt(vcpu, pending_vec, false);
8737 		pr_debug("Set back pending irq %d\n", pending_vec);
8738 	}
8739 
8740 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8741 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8742 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8743 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8744 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8745 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8746 
8747 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8748 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8749 
8750 	update_cr8_intercept(vcpu);
8751 
8752 	/* Older userspace won't unhalt the vcpu on reset. */
8753 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8754 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8755 	    !is_protmode(vcpu))
8756 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8757 
8758 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8759 
8760 	ret = 0;
8761 out:
8762 	return ret;
8763 }
8764 
8765 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8766 				  struct kvm_sregs *sregs)
8767 {
8768 	int ret;
8769 
8770 	vcpu_load(vcpu);
8771 	ret = __set_sregs(vcpu, sregs);
8772 	vcpu_put(vcpu);
8773 	return ret;
8774 }
8775 
8776 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8777 					struct kvm_guest_debug *dbg)
8778 {
8779 	unsigned long rflags;
8780 	int i, r;
8781 
8782 	vcpu_load(vcpu);
8783 
8784 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8785 		r = -EBUSY;
8786 		if (vcpu->arch.exception.pending)
8787 			goto out;
8788 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8789 			kvm_queue_exception(vcpu, DB_VECTOR);
8790 		else
8791 			kvm_queue_exception(vcpu, BP_VECTOR);
8792 	}
8793 
8794 	/*
8795 	 * Read rflags as long as potentially injected trace flags are still
8796 	 * filtered out.
8797 	 */
8798 	rflags = kvm_get_rflags(vcpu);
8799 
8800 	vcpu->guest_debug = dbg->control;
8801 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8802 		vcpu->guest_debug = 0;
8803 
8804 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8805 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8806 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8807 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8808 	} else {
8809 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8810 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8811 	}
8812 	kvm_update_dr7(vcpu);
8813 
8814 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8815 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8816 			get_segment_base(vcpu, VCPU_SREG_CS);
8817 
8818 	/*
8819 	 * Trigger an rflags update that will inject or remove the trace
8820 	 * flags.
8821 	 */
8822 	kvm_set_rflags(vcpu, rflags);
8823 
8824 	kvm_x86_ops->update_bp_intercept(vcpu);
8825 
8826 	r = 0;
8827 
8828 out:
8829 	vcpu_put(vcpu);
8830 	return r;
8831 }
8832 
8833 /*
8834  * Translate a guest virtual address to a guest physical address.
8835  */
8836 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8837 				    struct kvm_translation *tr)
8838 {
8839 	unsigned long vaddr = tr->linear_address;
8840 	gpa_t gpa;
8841 	int idx;
8842 
8843 	vcpu_load(vcpu);
8844 
8845 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8846 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8847 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8848 	tr->physical_address = gpa;
8849 	tr->valid = gpa != UNMAPPED_GVA;
8850 	tr->writeable = 1;
8851 	tr->usermode = 0;
8852 
8853 	vcpu_put(vcpu);
8854 	return 0;
8855 }
8856 
8857 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8858 {
8859 	struct fxregs_state *fxsave;
8860 
8861 	vcpu_load(vcpu);
8862 
8863 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8864 	memcpy(fpu->fpr, fxsave->st_space, 128);
8865 	fpu->fcw = fxsave->cwd;
8866 	fpu->fsw = fxsave->swd;
8867 	fpu->ftwx = fxsave->twd;
8868 	fpu->last_opcode = fxsave->fop;
8869 	fpu->last_ip = fxsave->rip;
8870 	fpu->last_dp = fxsave->rdp;
8871 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8872 
8873 	vcpu_put(vcpu);
8874 	return 0;
8875 }
8876 
8877 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8878 {
8879 	struct fxregs_state *fxsave;
8880 
8881 	vcpu_load(vcpu);
8882 
8883 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8884 
8885 	memcpy(fxsave->st_space, fpu->fpr, 128);
8886 	fxsave->cwd = fpu->fcw;
8887 	fxsave->swd = fpu->fsw;
8888 	fxsave->twd = fpu->ftwx;
8889 	fxsave->fop = fpu->last_opcode;
8890 	fxsave->rip = fpu->last_ip;
8891 	fxsave->rdp = fpu->last_dp;
8892 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8893 
8894 	vcpu_put(vcpu);
8895 	return 0;
8896 }
8897 
8898 static void store_regs(struct kvm_vcpu *vcpu)
8899 {
8900 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8901 
8902 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8903 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8904 
8905 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8906 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8907 
8908 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8909 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8910 				vcpu, &vcpu->run->s.regs.events);
8911 }
8912 
8913 static int sync_regs(struct kvm_vcpu *vcpu)
8914 {
8915 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8916 		return -EINVAL;
8917 
8918 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8919 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8920 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8921 	}
8922 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8923 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8924 			return -EINVAL;
8925 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8926 	}
8927 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8928 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8929 				vcpu, &vcpu->run->s.regs.events))
8930 			return -EINVAL;
8931 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8932 	}
8933 
8934 	return 0;
8935 }
8936 
8937 static void fx_init(struct kvm_vcpu *vcpu)
8938 {
8939 	fpstate_init(&vcpu->arch.guest_fpu->state);
8940 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8941 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8942 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8943 
8944 	/*
8945 	 * Ensure guest xcr0 is valid for loading
8946 	 */
8947 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8948 
8949 	vcpu->arch.cr0 |= X86_CR0_ET;
8950 }
8951 
8952 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8953 {
8954 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8955 
8956 	kvmclock_reset(vcpu);
8957 
8958 	kvm_x86_ops->vcpu_free(vcpu);
8959 	free_cpumask_var(wbinvd_dirty_mask);
8960 }
8961 
8962 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8963 						unsigned int id)
8964 {
8965 	struct kvm_vcpu *vcpu;
8966 
8967 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8968 		printk_once(KERN_WARNING
8969 		"kvm: SMP vm created on host with unstable TSC; "
8970 		"guest TSC will not be reliable\n");
8971 
8972 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8973 
8974 	return vcpu;
8975 }
8976 
8977 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8978 {
8979 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8980 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8981 	kvm_vcpu_mtrr_init(vcpu);
8982 	vcpu_load(vcpu);
8983 	kvm_vcpu_reset(vcpu, false);
8984 	kvm_init_mmu(vcpu, false);
8985 	vcpu_put(vcpu);
8986 	return 0;
8987 }
8988 
8989 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8990 {
8991 	struct msr_data msr;
8992 	struct kvm *kvm = vcpu->kvm;
8993 
8994 	kvm_hv_vcpu_postcreate(vcpu);
8995 
8996 	if (mutex_lock_killable(&vcpu->mutex))
8997 		return;
8998 	vcpu_load(vcpu);
8999 	msr.data = 0x0;
9000 	msr.index = MSR_IA32_TSC;
9001 	msr.host_initiated = true;
9002 	kvm_write_tsc(vcpu, &msr);
9003 	vcpu_put(vcpu);
9004 
9005 	/* poll control enabled by default */
9006 	vcpu->arch.msr_kvm_poll_control = 1;
9007 
9008 	mutex_unlock(&vcpu->mutex);
9009 
9010 	if (!kvmclock_periodic_sync)
9011 		return;
9012 
9013 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9014 					KVMCLOCK_SYNC_PERIOD);
9015 }
9016 
9017 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9018 {
9019 	vcpu->arch.apf.msr_val = 0;
9020 
9021 	vcpu_load(vcpu);
9022 	kvm_mmu_unload(vcpu);
9023 	vcpu_put(vcpu);
9024 
9025 	kvm_x86_ops->vcpu_free(vcpu);
9026 }
9027 
9028 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9029 {
9030 	kvm_lapic_reset(vcpu, init_event);
9031 
9032 	vcpu->arch.hflags = 0;
9033 
9034 	vcpu->arch.smi_pending = 0;
9035 	vcpu->arch.smi_count = 0;
9036 	atomic_set(&vcpu->arch.nmi_queued, 0);
9037 	vcpu->arch.nmi_pending = 0;
9038 	vcpu->arch.nmi_injected = false;
9039 	kvm_clear_interrupt_queue(vcpu);
9040 	kvm_clear_exception_queue(vcpu);
9041 	vcpu->arch.exception.pending = false;
9042 
9043 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9044 	kvm_update_dr0123(vcpu);
9045 	vcpu->arch.dr6 = DR6_INIT;
9046 	kvm_update_dr6(vcpu);
9047 	vcpu->arch.dr7 = DR7_FIXED_1;
9048 	kvm_update_dr7(vcpu);
9049 
9050 	vcpu->arch.cr2 = 0;
9051 
9052 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9053 	vcpu->arch.apf.msr_val = 0;
9054 	vcpu->arch.st.msr_val = 0;
9055 
9056 	kvmclock_reset(vcpu);
9057 
9058 	kvm_clear_async_pf_completion_queue(vcpu);
9059 	kvm_async_pf_hash_reset(vcpu);
9060 	vcpu->arch.apf.halted = false;
9061 
9062 	if (kvm_mpx_supported()) {
9063 		void *mpx_state_buffer;
9064 
9065 		/*
9066 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9067 		 * called with loaded FPU and does not let userspace fix the state.
9068 		 */
9069 		if (init_event)
9070 			kvm_put_guest_fpu(vcpu);
9071 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9072 					XFEATURE_BNDREGS);
9073 		if (mpx_state_buffer)
9074 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9075 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9076 					XFEATURE_BNDCSR);
9077 		if (mpx_state_buffer)
9078 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9079 		if (init_event)
9080 			kvm_load_guest_fpu(vcpu);
9081 	}
9082 
9083 	if (!init_event) {
9084 		kvm_pmu_reset(vcpu);
9085 		vcpu->arch.smbase = 0x30000;
9086 
9087 		vcpu->arch.msr_misc_features_enables = 0;
9088 
9089 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9090 	}
9091 
9092 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9093 	vcpu->arch.regs_avail = ~0;
9094 	vcpu->arch.regs_dirty = ~0;
9095 
9096 	vcpu->arch.ia32_xss = 0;
9097 
9098 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9099 }
9100 
9101 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9102 {
9103 	struct kvm_segment cs;
9104 
9105 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9106 	cs.selector = vector << 8;
9107 	cs.base = vector << 12;
9108 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9109 	kvm_rip_write(vcpu, 0);
9110 }
9111 
9112 int kvm_arch_hardware_enable(void)
9113 {
9114 	struct kvm *kvm;
9115 	struct kvm_vcpu *vcpu;
9116 	int i;
9117 	int ret;
9118 	u64 local_tsc;
9119 	u64 max_tsc = 0;
9120 	bool stable, backwards_tsc = false;
9121 
9122 	kvm_shared_msr_cpu_online();
9123 	ret = kvm_x86_ops->hardware_enable();
9124 	if (ret != 0)
9125 		return ret;
9126 
9127 	local_tsc = rdtsc();
9128 	stable = !kvm_check_tsc_unstable();
9129 	list_for_each_entry(kvm, &vm_list, vm_list) {
9130 		kvm_for_each_vcpu(i, vcpu, kvm) {
9131 			if (!stable && vcpu->cpu == smp_processor_id())
9132 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9133 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9134 				backwards_tsc = true;
9135 				if (vcpu->arch.last_host_tsc > max_tsc)
9136 					max_tsc = vcpu->arch.last_host_tsc;
9137 			}
9138 		}
9139 	}
9140 
9141 	/*
9142 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9143 	 * platforms that reset TSC during suspend or hibernate actions, but
9144 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9145 	 * detect that condition here, which happens early in CPU bringup,
9146 	 * before any KVM threads can be running.  Unfortunately, we can't
9147 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9148 	 * enough into CPU bringup that we know how much real time has actually
9149 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9150 	 * variables that haven't been updated yet.
9151 	 *
9152 	 * So we simply find the maximum observed TSC above, then record the
9153 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9154 	 * the adjustment will be applied.  Note that we accumulate
9155 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9156 	 * gets a chance to run again.  In the event that no KVM threads get a
9157 	 * chance to run, we will miss the entire elapsed period, as we'll have
9158 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9159 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9160 	 * uniform across all VCPUs (not to mention the scenario is extremely
9161 	 * unlikely). It is possible that a second hibernate recovery happens
9162 	 * much faster than a first, causing the observed TSC here to be
9163 	 * smaller; this would require additional padding adjustment, which is
9164 	 * why we set last_host_tsc to the local tsc observed here.
9165 	 *
9166 	 * N.B. - this code below runs only on platforms with reliable TSC,
9167 	 * as that is the only way backwards_tsc is set above.  Also note
9168 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9169 	 * have the same delta_cyc adjustment applied if backwards_tsc
9170 	 * is detected.  Note further, this adjustment is only done once,
9171 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9172 	 * called multiple times (one for each physical CPU bringup).
9173 	 *
9174 	 * Platforms with unreliable TSCs don't have to deal with this, they
9175 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9176 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9177 	 * guarantee that they stay in perfect synchronization.
9178 	 */
9179 	if (backwards_tsc) {
9180 		u64 delta_cyc = max_tsc - local_tsc;
9181 		list_for_each_entry(kvm, &vm_list, vm_list) {
9182 			kvm->arch.backwards_tsc_observed = true;
9183 			kvm_for_each_vcpu(i, vcpu, kvm) {
9184 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9185 				vcpu->arch.last_host_tsc = local_tsc;
9186 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9187 			}
9188 
9189 			/*
9190 			 * We have to disable TSC offset matching.. if you were
9191 			 * booting a VM while issuing an S4 host suspend....
9192 			 * you may have some problem.  Solving this issue is
9193 			 * left as an exercise to the reader.
9194 			 */
9195 			kvm->arch.last_tsc_nsec = 0;
9196 			kvm->arch.last_tsc_write = 0;
9197 		}
9198 
9199 	}
9200 	return 0;
9201 }
9202 
9203 void kvm_arch_hardware_disable(void)
9204 {
9205 	kvm_x86_ops->hardware_disable();
9206 	drop_user_return_notifiers();
9207 }
9208 
9209 int kvm_arch_hardware_setup(void)
9210 {
9211 	int r;
9212 
9213 	r = kvm_x86_ops->hardware_setup();
9214 	if (r != 0)
9215 		return r;
9216 
9217 	if (kvm_has_tsc_control) {
9218 		/*
9219 		 * Make sure the user can only configure tsc_khz values that
9220 		 * fit into a signed integer.
9221 		 * A min value is not calculated because it will always
9222 		 * be 1 on all machines.
9223 		 */
9224 		u64 max = min(0x7fffffffULL,
9225 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9226 		kvm_max_guest_tsc_khz = max;
9227 
9228 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9229 	}
9230 
9231 	kvm_init_msr_list();
9232 	return 0;
9233 }
9234 
9235 void kvm_arch_hardware_unsetup(void)
9236 {
9237 	kvm_x86_ops->hardware_unsetup();
9238 }
9239 
9240 int kvm_arch_check_processor_compat(void)
9241 {
9242 	return kvm_x86_ops->check_processor_compatibility();
9243 }
9244 
9245 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9246 {
9247 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9248 }
9249 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9250 
9251 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9252 {
9253 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9254 }
9255 
9256 struct static_key kvm_no_apic_vcpu __read_mostly;
9257 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9258 
9259 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9260 {
9261 	struct page *page;
9262 	int r;
9263 
9264 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9265 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9266 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9267 	else
9268 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9269 
9270 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9271 	if (!page) {
9272 		r = -ENOMEM;
9273 		goto fail;
9274 	}
9275 	vcpu->arch.pio_data = page_address(page);
9276 
9277 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9278 
9279 	r = kvm_mmu_create(vcpu);
9280 	if (r < 0)
9281 		goto fail_free_pio_data;
9282 
9283 	if (irqchip_in_kernel(vcpu->kvm)) {
9284 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9285 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9286 		if (r < 0)
9287 			goto fail_mmu_destroy;
9288 	} else
9289 		static_key_slow_inc(&kvm_no_apic_vcpu);
9290 
9291 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9292 				       GFP_KERNEL_ACCOUNT);
9293 	if (!vcpu->arch.mce_banks) {
9294 		r = -ENOMEM;
9295 		goto fail_free_lapic;
9296 	}
9297 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9298 
9299 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9300 				GFP_KERNEL_ACCOUNT)) {
9301 		r = -ENOMEM;
9302 		goto fail_free_mce_banks;
9303 	}
9304 
9305 	fx_init(vcpu);
9306 
9307 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9308 
9309 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9310 
9311 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9312 
9313 	kvm_async_pf_hash_reset(vcpu);
9314 	kvm_pmu_init(vcpu);
9315 
9316 	vcpu->arch.pending_external_vector = -1;
9317 	vcpu->arch.preempted_in_kernel = false;
9318 
9319 	kvm_hv_vcpu_init(vcpu);
9320 
9321 	return 0;
9322 
9323 fail_free_mce_banks:
9324 	kfree(vcpu->arch.mce_banks);
9325 fail_free_lapic:
9326 	kvm_free_lapic(vcpu);
9327 fail_mmu_destroy:
9328 	kvm_mmu_destroy(vcpu);
9329 fail_free_pio_data:
9330 	free_page((unsigned long)vcpu->arch.pio_data);
9331 fail:
9332 	return r;
9333 }
9334 
9335 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9336 {
9337 	int idx;
9338 
9339 	kvm_hv_vcpu_uninit(vcpu);
9340 	kvm_pmu_destroy(vcpu);
9341 	kfree(vcpu->arch.mce_banks);
9342 	kvm_free_lapic(vcpu);
9343 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9344 	kvm_mmu_destroy(vcpu);
9345 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9346 	free_page((unsigned long)vcpu->arch.pio_data);
9347 	if (!lapic_in_kernel(vcpu))
9348 		static_key_slow_dec(&kvm_no_apic_vcpu);
9349 }
9350 
9351 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9352 {
9353 	vcpu->arch.l1tf_flush_l1d = true;
9354 	kvm_x86_ops->sched_in(vcpu, cpu);
9355 }
9356 
9357 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9358 {
9359 	if (type)
9360 		return -EINVAL;
9361 
9362 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9363 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9364 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9365 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9366 
9367 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9368 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9369 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9370 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9371 		&kvm->arch.irq_sources_bitmap);
9372 
9373 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9374 	mutex_init(&kvm->arch.apic_map_lock);
9375 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9376 
9377 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9378 	pvclock_update_vm_gtod_copy(kvm);
9379 
9380 	kvm->arch.guest_can_read_msr_platform_info = true;
9381 
9382 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9383 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9384 
9385 	kvm_hv_init_vm(kvm);
9386 	kvm_page_track_init(kvm);
9387 	kvm_mmu_init_vm(kvm);
9388 
9389 	return kvm_x86_ops->vm_init(kvm);
9390 }
9391 
9392 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9393 {
9394 	vcpu_load(vcpu);
9395 	kvm_mmu_unload(vcpu);
9396 	vcpu_put(vcpu);
9397 }
9398 
9399 static void kvm_free_vcpus(struct kvm *kvm)
9400 {
9401 	unsigned int i;
9402 	struct kvm_vcpu *vcpu;
9403 
9404 	/*
9405 	 * Unpin any mmu pages first.
9406 	 */
9407 	kvm_for_each_vcpu(i, vcpu, kvm) {
9408 		kvm_clear_async_pf_completion_queue(vcpu);
9409 		kvm_unload_vcpu_mmu(vcpu);
9410 	}
9411 	kvm_for_each_vcpu(i, vcpu, kvm)
9412 		kvm_arch_vcpu_free(vcpu);
9413 
9414 	mutex_lock(&kvm->lock);
9415 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9416 		kvm->vcpus[i] = NULL;
9417 
9418 	atomic_set(&kvm->online_vcpus, 0);
9419 	mutex_unlock(&kvm->lock);
9420 }
9421 
9422 void kvm_arch_sync_events(struct kvm *kvm)
9423 {
9424 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9425 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9426 	kvm_free_pit(kvm);
9427 }
9428 
9429 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9430 {
9431 	int i, r;
9432 	unsigned long hva;
9433 	struct kvm_memslots *slots = kvm_memslots(kvm);
9434 	struct kvm_memory_slot *slot, old;
9435 
9436 	/* Called with kvm->slots_lock held.  */
9437 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9438 		return -EINVAL;
9439 
9440 	slot = id_to_memslot(slots, id);
9441 	if (size) {
9442 		if (slot->npages)
9443 			return -EEXIST;
9444 
9445 		/*
9446 		 * MAP_SHARED to prevent internal slot pages from being moved
9447 		 * by fork()/COW.
9448 		 */
9449 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9450 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9451 		if (IS_ERR((void *)hva))
9452 			return PTR_ERR((void *)hva);
9453 	} else {
9454 		if (!slot->npages)
9455 			return 0;
9456 
9457 		hva = 0;
9458 	}
9459 
9460 	old = *slot;
9461 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9462 		struct kvm_userspace_memory_region m;
9463 
9464 		m.slot = id | (i << 16);
9465 		m.flags = 0;
9466 		m.guest_phys_addr = gpa;
9467 		m.userspace_addr = hva;
9468 		m.memory_size = size;
9469 		r = __kvm_set_memory_region(kvm, &m);
9470 		if (r < 0)
9471 			return r;
9472 	}
9473 
9474 	if (!size)
9475 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9476 
9477 	return 0;
9478 }
9479 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9480 
9481 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9482 {
9483 	int r;
9484 
9485 	mutex_lock(&kvm->slots_lock);
9486 	r = __x86_set_memory_region(kvm, id, gpa, size);
9487 	mutex_unlock(&kvm->slots_lock);
9488 
9489 	return r;
9490 }
9491 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9492 
9493 void kvm_arch_destroy_vm(struct kvm *kvm)
9494 {
9495 	if (current->mm == kvm->mm) {
9496 		/*
9497 		 * Free memory regions allocated on behalf of userspace,
9498 		 * unless the the memory map has changed due to process exit
9499 		 * or fd copying.
9500 		 */
9501 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9502 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9503 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9504 	}
9505 	if (kvm_x86_ops->vm_destroy)
9506 		kvm_x86_ops->vm_destroy(kvm);
9507 	kvm_pic_destroy(kvm);
9508 	kvm_ioapic_destroy(kvm);
9509 	kvm_free_vcpus(kvm);
9510 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9511 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9512 	kvm_mmu_uninit_vm(kvm);
9513 	kvm_page_track_cleanup(kvm);
9514 	kvm_hv_destroy_vm(kvm);
9515 }
9516 
9517 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9518 			   struct kvm_memory_slot *dont)
9519 {
9520 	int i;
9521 
9522 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9523 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9524 			kvfree(free->arch.rmap[i]);
9525 			free->arch.rmap[i] = NULL;
9526 		}
9527 		if (i == 0)
9528 			continue;
9529 
9530 		if (!dont || free->arch.lpage_info[i - 1] !=
9531 			     dont->arch.lpage_info[i - 1]) {
9532 			kvfree(free->arch.lpage_info[i - 1]);
9533 			free->arch.lpage_info[i - 1] = NULL;
9534 		}
9535 	}
9536 
9537 	kvm_page_track_free_memslot(free, dont);
9538 }
9539 
9540 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9541 			    unsigned long npages)
9542 {
9543 	int i;
9544 
9545 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9546 		struct kvm_lpage_info *linfo;
9547 		unsigned long ugfn;
9548 		int lpages;
9549 		int level = i + 1;
9550 
9551 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9552 				      slot->base_gfn, level) + 1;
9553 
9554 		slot->arch.rmap[i] =
9555 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9556 				 GFP_KERNEL_ACCOUNT);
9557 		if (!slot->arch.rmap[i])
9558 			goto out_free;
9559 		if (i == 0)
9560 			continue;
9561 
9562 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9563 		if (!linfo)
9564 			goto out_free;
9565 
9566 		slot->arch.lpage_info[i - 1] = linfo;
9567 
9568 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9569 			linfo[0].disallow_lpage = 1;
9570 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9571 			linfo[lpages - 1].disallow_lpage = 1;
9572 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9573 		/*
9574 		 * If the gfn and userspace address are not aligned wrt each
9575 		 * other, or if explicitly asked to, disable large page
9576 		 * support for this slot
9577 		 */
9578 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9579 		    !kvm_largepages_enabled()) {
9580 			unsigned long j;
9581 
9582 			for (j = 0; j < lpages; ++j)
9583 				linfo[j].disallow_lpage = 1;
9584 		}
9585 	}
9586 
9587 	if (kvm_page_track_create_memslot(slot, npages))
9588 		goto out_free;
9589 
9590 	return 0;
9591 
9592 out_free:
9593 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9594 		kvfree(slot->arch.rmap[i]);
9595 		slot->arch.rmap[i] = NULL;
9596 		if (i == 0)
9597 			continue;
9598 
9599 		kvfree(slot->arch.lpage_info[i - 1]);
9600 		slot->arch.lpage_info[i - 1] = NULL;
9601 	}
9602 	return -ENOMEM;
9603 }
9604 
9605 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9606 {
9607 	/*
9608 	 * memslots->generation has been incremented.
9609 	 * mmio generation may have reached its maximum value.
9610 	 */
9611 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9612 }
9613 
9614 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9615 				struct kvm_memory_slot *memslot,
9616 				const struct kvm_userspace_memory_region *mem,
9617 				enum kvm_mr_change change)
9618 {
9619 	return 0;
9620 }
9621 
9622 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9623 				     struct kvm_memory_slot *new)
9624 {
9625 	/* Still write protect RO slot */
9626 	if (new->flags & KVM_MEM_READONLY) {
9627 		kvm_mmu_slot_remove_write_access(kvm, new);
9628 		return;
9629 	}
9630 
9631 	/*
9632 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9633 	 *
9634 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9635 	 *
9636 	 *  - KVM_MR_CREATE with dirty logging is disabled
9637 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9638 	 *
9639 	 * The reason is, in case of PML, we need to set D-bit for any slots
9640 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9641 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9642 	 * guarantees leaving PML enabled during guest's lifetime won't have
9643 	 * any additional overhead from PML when guest is running with dirty
9644 	 * logging disabled for memory slots.
9645 	 *
9646 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9647 	 * to dirty logging mode.
9648 	 *
9649 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9650 	 *
9651 	 * In case of write protect:
9652 	 *
9653 	 * Write protect all pages for dirty logging.
9654 	 *
9655 	 * All the sptes including the large sptes which point to this
9656 	 * slot are set to readonly. We can not create any new large
9657 	 * spte on this slot until the end of the logging.
9658 	 *
9659 	 * See the comments in fast_page_fault().
9660 	 */
9661 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9662 		if (kvm_x86_ops->slot_enable_log_dirty)
9663 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9664 		else
9665 			kvm_mmu_slot_remove_write_access(kvm, new);
9666 	} else {
9667 		if (kvm_x86_ops->slot_disable_log_dirty)
9668 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9669 	}
9670 }
9671 
9672 void kvm_arch_commit_memory_region(struct kvm *kvm,
9673 				const struct kvm_userspace_memory_region *mem,
9674 				const struct kvm_memory_slot *old,
9675 				const struct kvm_memory_slot *new,
9676 				enum kvm_mr_change change)
9677 {
9678 	if (!kvm->arch.n_requested_mmu_pages)
9679 		kvm_mmu_change_mmu_pages(kvm,
9680 				kvm_mmu_calculate_default_mmu_pages(kvm));
9681 
9682 	/*
9683 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9684 	 * sptes have to be split.  If live migration is successful, the guest
9685 	 * in the source machine will be destroyed and large sptes will be
9686 	 * created in the destination. However, if the guest continues to run
9687 	 * in the source machine (for example if live migration fails), small
9688 	 * sptes will remain around and cause bad performance.
9689 	 *
9690 	 * Scan sptes if dirty logging has been stopped, dropping those
9691 	 * which can be collapsed into a single large-page spte.  Later
9692 	 * page faults will create the large-page sptes.
9693 	 */
9694 	if ((change != KVM_MR_DELETE) &&
9695 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9696 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9697 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9698 
9699 	/*
9700 	 * Set up write protection and/or dirty logging for the new slot.
9701 	 *
9702 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9703 	 * been zapped so no dirty logging staff is needed for old slot. For
9704 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9705 	 * new and it's also covered when dealing with the new slot.
9706 	 *
9707 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9708 	 */
9709 	if (change != KVM_MR_DELETE)
9710 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9711 }
9712 
9713 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9714 {
9715 	kvm_mmu_zap_all(kvm);
9716 }
9717 
9718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9719 				   struct kvm_memory_slot *slot)
9720 {
9721 	kvm_page_track_flush_slot(kvm, slot);
9722 }
9723 
9724 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9725 {
9726 	return (is_guest_mode(vcpu) &&
9727 			kvm_x86_ops->guest_apic_has_interrupt &&
9728 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9729 }
9730 
9731 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9732 {
9733 	if (!list_empty_careful(&vcpu->async_pf.done))
9734 		return true;
9735 
9736 	if (kvm_apic_has_events(vcpu))
9737 		return true;
9738 
9739 	if (vcpu->arch.pv.pv_unhalted)
9740 		return true;
9741 
9742 	if (vcpu->arch.exception.pending)
9743 		return true;
9744 
9745 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9746 	    (vcpu->arch.nmi_pending &&
9747 	     kvm_x86_ops->nmi_allowed(vcpu)))
9748 		return true;
9749 
9750 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9751 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9752 		return true;
9753 
9754 	if (kvm_arch_interrupt_allowed(vcpu) &&
9755 	    (kvm_cpu_has_interrupt(vcpu) ||
9756 	    kvm_guest_apic_has_interrupt(vcpu)))
9757 		return true;
9758 
9759 	if (kvm_hv_has_stimer_pending(vcpu))
9760 		return true;
9761 
9762 	return false;
9763 }
9764 
9765 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9766 {
9767 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9768 }
9769 
9770 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9771 {
9772 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9773 		return true;
9774 
9775 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9776 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9777 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9778 		return true;
9779 
9780 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9781 		return true;
9782 
9783 	return false;
9784 }
9785 
9786 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9787 {
9788 	return vcpu->arch.preempted_in_kernel;
9789 }
9790 
9791 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9792 {
9793 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9794 }
9795 
9796 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9797 {
9798 	return kvm_x86_ops->interrupt_allowed(vcpu);
9799 }
9800 
9801 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9802 {
9803 	if (is_64_bit_mode(vcpu))
9804 		return kvm_rip_read(vcpu);
9805 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9806 		     kvm_rip_read(vcpu));
9807 }
9808 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9809 
9810 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9811 {
9812 	return kvm_get_linear_rip(vcpu) == linear_rip;
9813 }
9814 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9815 
9816 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9817 {
9818 	unsigned long rflags;
9819 
9820 	rflags = kvm_x86_ops->get_rflags(vcpu);
9821 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9822 		rflags &= ~X86_EFLAGS_TF;
9823 	return rflags;
9824 }
9825 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9826 
9827 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9828 {
9829 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9830 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9831 		rflags |= X86_EFLAGS_TF;
9832 	kvm_x86_ops->set_rflags(vcpu, rflags);
9833 }
9834 
9835 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9836 {
9837 	__kvm_set_rflags(vcpu, rflags);
9838 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9839 }
9840 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9841 
9842 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9843 {
9844 	int r;
9845 
9846 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9847 	      work->wakeup_all)
9848 		return;
9849 
9850 	r = kvm_mmu_reload(vcpu);
9851 	if (unlikely(r))
9852 		return;
9853 
9854 	if (!vcpu->arch.mmu->direct_map &&
9855 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9856 		return;
9857 
9858 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9859 }
9860 
9861 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9862 {
9863 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9864 }
9865 
9866 static inline u32 kvm_async_pf_next_probe(u32 key)
9867 {
9868 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9869 }
9870 
9871 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9872 {
9873 	u32 key = kvm_async_pf_hash_fn(gfn);
9874 
9875 	while (vcpu->arch.apf.gfns[key] != ~0)
9876 		key = kvm_async_pf_next_probe(key);
9877 
9878 	vcpu->arch.apf.gfns[key] = gfn;
9879 }
9880 
9881 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9882 {
9883 	int i;
9884 	u32 key = kvm_async_pf_hash_fn(gfn);
9885 
9886 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9887 		     (vcpu->arch.apf.gfns[key] != gfn &&
9888 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9889 		key = kvm_async_pf_next_probe(key);
9890 
9891 	return key;
9892 }
9893 
9894 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9895 {
9896 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9897 }
9898 
9899 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9900 {
9901 	u32 i, j, k;
9902 
9903 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9904 	while (true) {
9905 		vcpu->arch.apf.gfns[i] = ~0;
9906 		do {
9907 			j = kvm_async_pf_next_probe(j);
9908 			if (vcpu->arch.apf.gfns[j] == ~0)
9909 				return;
9910 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9911 			/*
9912 			 * k lies cyclically in ]i,j]
9913 			 * |    i.k.j |
9914 			 * |....j i.k.| or  |.k..j i...|
9915 			 */
9916 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9917 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9918 		i = j;
9919 	}
9920 }
9921 
9922 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9923 {
9924 
9925 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9926 				      sizeof(val));
9927 }
9928 
9929 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9930 {
9931 
9932 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9933 				      sizeof(u32));
9934 }
9935 
9936 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9937 {
9938 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9939 		return false;
9940 
9941 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9942 	    (vcpu->arch.apf.send_user_only &&
9943 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9944 		return false;
9945 
9946 	return true;
9947 }
9948 
9949 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9950 {
9951 	if (unlikely(!lapic_in_kernel(vcpu) ||
9952 		     kvm_event_needs_reinjection(vcpu) ||
9953 		     vcpu->arch.exception.pending))
9954 		return false;
9955 
9956 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9957 		return false;
9958 
9959 	/*
9960 	 * If interrupts are off we cannot even use an artificial
9961 	 * halt state.
9962 	 */
9963 	return kvm_x86_ops->interrupt_allowed(vcpu);
9964 }
9965 
9966 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9967 				     struct kvm_async_pf *work)
9968 {
9969 	struct x86_exception fault;
9970 
9971 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9972 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9973 
9974 	if (kvm_can_deliver_async_pf(vcpu) &&
9975 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9976 		fault.vector = PF_VECTOR;
9977 		fault.error_code_valid = true;
9978 		fault.error_code = 0;
9979 		fault.nested_page_fault = false;
9980 		fault.address = work->arch.token;
9981 		fault.async_page_fault = true;
9982 		kvm_inject_page_fault(vcpu, &fault);
9983 	} else {
9984 		/*
9985 		 * It is not possible to deliver a paravirtualized asynchronous
9986 		 * page fault, but putting the guest in an artificial halt state
9987 		 * can be beneficial nevertheless: if an interrupt arrives, we
9988 		 * can deliver it timely and perhaps the guest will schedule
9989 		 * another process.  When the instruction that triggered a page
9990 		 * fault is retried, hopefully the page will be ready in the host.
9991 		 */
9992 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9993 	}
9994 }
9995 
9996 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9997 				 struct kvm_async_pf *work)
9998 {
9999 	struct x86_exception fault;
10000 	u32 val;
10001 
10002 	if (work->wakeup_all)
10003 		work->arch.token = ~0; /* broadcast wakeup */
10004 	else
10005 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10006 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
10007 
10008 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10009 	    !apf_get_user(vcpu, &val)) {
10010 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10011 		    vcpu->arch.exception.pending &&
10012 		    vcpu->arch.exception.nr == PF_VECTOR &&
10013 		    !apf_put_user(vcpu, 0)) {
10014 			vcpu->arch.exception.injected = false;
10015 			vcpu->arch.exception.pending = false;
10016 			vcpu->arch.exception.nr = 0;
10017 			vcpu->arch.exception.has_error_code = false;
10018 			vcpu->arch.exception.error_code = 0;
10019 			vcpu->arch.exception.has_payload = false;
10020 			vcpu->arch.exception.payload = 0;
10021 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10022 			fault.vector = PF_VECTOR;
10023 			fault.error_code_valid = true;
10024 			fault.error_code = 0;
10025 			fault.nested_page_fault = false;
10026 			fault.address = work->arch.token;
10027 			fault.async_page_fault = true;
10028 			kvm_inject_page_fault(vcpu, &fault);
10029 		}
10030 	}
10031 	vcpu->arch.apf.halted = false;
10032 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10033 }
10034 
10035 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10036 {
10037 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10038 		return true;
10039 	else
10040 		return kvm_can_do_async_pf(vcpu);
10041 }
10042 
10043 void kvm_arch_start_assignment(struct kvm *kvm)
10044 {
10045 	atomic_inc(&kvm->arch.assigned_device_count);
10046 }
10047 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10048 
10049 void kvm_arch_end_assignment(struct kvm *kvm)
10050 {
10051 	atomic_dec(&kvm->arch.assigned_device_count);
10052 }
10053 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10054 
10055 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10056 {
10057 	return atomic_read(&kvm->arch.assigned_device_count);
10058 }
10059 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10060 
10061 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10062 {
10063 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10064 }
10065 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10066 
10067 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10068 {
10069 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10070 }
10071 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10072 
10073 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10074 {
10075 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10076 }
10077 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10078 
10079 bool kvm_arch_has_irq_bypass(void)
10080 {
10081 	return true;
10082 }
10083 
10084 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10085 				      struct irq_bypass_producer *prod)
10086 {
10087 	struct kvm_kernel_irqfd *irqfd =
10088 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10089 
10090 	irqfd->producer = prod;
10091 
10092 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10093 					   prod->irq, irqfd->gsi, 1);
10094 }
10095 
10096 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10097 				      struct irq_bypass_producer *prod)
10098 {
10099 	int ret;
10100 	struct kvm_kernel_irqfd *irqfd =
10101 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10102 
10103 	WARN_ON(irqfd->producer != prod);
10104 	irqfd->producer = NULL;
10105 
10106 	/*
10107 	 * When producer of consumer is unregistered, we change back to
10108 	 * remapped mode, so we can re-use the current implementation
10109 	 * when the irq is masked/disabled or the consumer side (KVM
10110 	 * int this case doesn't want to receive the interrupts.
10111 	*/
10112 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10113 	if (ret)
10114 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10115 		       " fails: %d\n", irqfd->consumer.token, ret);
10116 }
10117 
10118 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10119 				   uint32_t guest_irq, bool set)
10120 {
10121 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10122 }
10123 
10124 bool kvm_vector_hashing_enabled(void)
10125 {
10126 	return vector_hashing;
10127 }
10128 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10129 
10130 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10131 {
10132 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10133 }
10134 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10135 
10136 
10137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10157