1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 unsigned int min_timer_period_us = 500; 98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 99 100 bool kvm_has_tsc_control; 101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 102 u32 kvm_max_guest_tsc_khz; 103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 104 105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 106 static u32 tsc_tolerance_ppm = 250; 107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 108 109 #define KVM_NR_SHARED_MSRS 16 110 111 struct kvm_shared_msrs_global { 112 int nr; 113 u32 msrs[KVM_NR_SHARED_MSRS]; 114 }; 115 116 struct kvm_shared_msrs { 117 struct user_return_notifier urn; 118 bool registered; 119 struct kvm_shared_msr_values { 120 u64 host; 121 u64 curr; 122 } values[KVM_NR_SHARED_MSRS]; 123 }; 124 125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 126 static struct kvm_shared_msrs __percpu *shared_msrs; 127 128 struct kvm_stats_debugfs_item debugfs_entries[] = { 129 { "pf_fixed", VCPU_STAT(pf_fixed) }, 130 { "pf_guest", VCPU_STAT(pf_guest) }, 131 { "tlb_flush", VCPU_STAT(tlb_flush) }, 132 { "invlpg", VCPU_STAT(invlpg) }, 133 { "exits", VCPU_STAT(exits) }, 134 { "io_exits", VCPU_STAT(io_exits) }, 135 { "mmio_exits", VCPU_STAT(mmio_exits) }, 136 { "signal_exits", VCPU_STAT(signal_exits) }, 137 { "irq_window", VCPU_STAT(irq_window_exits) }, 138 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 139 { "halt_exits", VCPU_STAT(halt_exits) }, 140 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 141 { "hypercalls", VCPU_STAT(hypercalls) }, 142 { "request_irq", VCPU_STAT(request_irq_exits) }, 143 { "irq_exits", VCPU_STAT(irq_exits) }, 144 { "host_state_reload", VCPU_STAT(host_state_reload) }, 145 { "efer_reload", VCPU_STAT(efer_reload) }, 146 { "fpu_reload", VCPU_STAT(fpu_reload) }, 147 { "insn_emulation", VCPU_STAT(insn_emulation) }, 148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 149 { "irq_injections", VCPU_STAT(irq_injections) }, 150 { "nmi_injections", VCPU_STAT(nmi_injections) }, 151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 152 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 155 { "mmu_flooded", VM_STAT(mmu_flooded) }, 156 { "mmu_recycled", VM_STAT(mmu_recycled) }, 157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 158 { "mmu_unsync", VM_STAT(mmu_unsync) }, 159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 160 { "largepages", VM_STAT(lpages) }, 161 { NULL } 162 }; 163 164 u64 __read_mostly host_xcr0; 165 166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 167 168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 169 { 170 int i; 171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 172 vcpu->arch.apf.gfns[i] = ~0; 173 } 174 175 static void kvm_on_user_return(struct user_return_notifier *urn) 176 { 177 unsigned slot; 178 struct kvm_shared_msrs *locals 179 = container_of(urn, struct kvm_shared_msrs, urn); 180 struct kvm_shared_msr_values *values; 181 182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 183 values = &locals->values[slot]; 184 if (values->host != values->curr) { 185 wrmsrl(shared_msrs_global.msrs[slot], values->host); 186 values->curr = values->host; 187 } 188 } 189 locals->registered = false; 190 user_return_notifier_unregister(urn); 191 } 192 193 static void shared_msr_update(unsigned slot, u32 msr) 194 { 195 u64 value; 196 unsigned int cpu = smp_processor_id(); 197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 198 199 /* only read, and nobody should modify it at this time, 200 * so don't need lock */ 201 if (slot >= shared_msrs_global.nr) { 202 printk(KERN_ERR "kvm: invalid MSR slot!"); 203 return; 204 } 205 rdmsrl_safe(msr, &value); 206 smsr->values[slot].host = value; 207 smsr->values[slot].curr = value; 208 } 209 210 void kvm_define_shared_msr(unsigned slot, u32 msr) 211 { 212 if (slot >= shared_msrs_global.nr) 213 shared_msrs_global.nr = slot + 1; 214 shared_msrs_global.msrs[slot] = msr; 215 /* we need ensured the shared_msr_global have been updated */ 216 smp_wmb(); 217 } 218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 219 220 static void kvm_shared_msr_cpu_online(void) 221 { 222 unsigned i; 223 224 for (i = 0; i < shared_msrs_global.nr; ++i) 225 shared_msr_update(i, shared_msrs_global.msrs[i]); 226 } 227 228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 229 { 230 unsigned int cpu = smp_processor_id(); 231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 232 233 if (((value ^ smsr->values[slot].curr) & mask) == 0) 234 return; 235 smsr->values[slot].curr = value; 236 wrmsrl(shared_msrs_global.msrs[slot], value); 237 if (!smsr->registered) { 238 smsr->urn.on_user_return = kvm_on_user_return; 239 user_return_notifier_register(&smsr->urn); 240 smsr->registered = true; 241 } 242 } 243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 244 245 static void drop_user_return_notifiers(void *ignore) 246 { 247 unsigned int cpu = smp_processor_id(); 248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 249 250 if (smsr->registered) 251 kvm_on_user_return(&smsr->urn); 252 } 253 254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 255 { 256 return vcpu->arch.apic_base; 257 } 258 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 259 260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 261 { 262 u64 old_state = vcpu->arch.apic_base & 263 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 264 u64 new_state = msr_info->data & 265 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 266 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 267 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 268 269 if (!msr_info->host_initiated && 270 ((msr_info->data & reserved_bits) != 0 || 271 new_state == X2APIC_ENABLE || 272 (new_state == MSR_IA32_APICBASE_ENABLE && 273 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 274 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 275 old_state == 0))) 276 return 1; 277 278 kvm_lapic_set_base(vcpu, msr_info->data); 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 282 283 asmlinkage void kvm_spurious_fault(void) 284 { 285 /* Fault while not rebooting. We want the trace. */ 286 BUG(); 287 } 288 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 289 290 #define EXCPT_BENIGN 0 291 #define EXCPT_CONTRIBUTORY 1 292 #define EXCPT_PF 2 293 294 static int exception_class(int vector) 295 { 296 switch (vector) { 297 case PF_VECTOR: 298 return EXCPT_PF; 299 case DE_VECTOR: 300 case TS_VECTOR: 301 case NP_VECTOR: 302 case SS_VECTOR: 303 case GP_VECTOR: 304 return EXCPT_CONTRIBUTORY; 305 default: 306 break; 307 } 308 return EXCPT_BENIGN; 309 } 310 311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 312 unsigned nr, bool has_error, u32 error_code, 313 bool reinject) 314 { 315 u32 prev_nr; 316 int class1, class2; 317 318 kvm_make_request(KVM_REQ_EVENT, vcpu); 319 320 if (!vcpu->arch.exception.pending) { 321 queue: 322 vcpu->arch.exception.pending = true; 323 vcpu->arch.exception.has_error_code = has_error; 324 vcpu->arch.exception.nr = nr; 325 vcpu->arch.exception.error_code = error_code; 326 vcpu->arch.exception.reinject = reinject; 327 return; 328 } 329 330 /* to check exception */ 331 prev_nr = vcpu->arch.exception.nr; 332 if (prev_nr == DF_VECTOR) { 333 /* triple fault -> shutdown */ 334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 335 return; 336 } 337 class1 = exception_class(prev_nr); 338 class2 = exception_class(nr); 339 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 340 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 341 /* generate double fault per SDM Table 5-5 */ 342 vcpu->arch.exception.pending = true; 343 vcpu->arch.exception.has_error_code = true; 344 vcpu->arch.exception.nr = DF_VECTOR; 345 vcpu->arch.exception.error_code = 0; 346 } else 347 /* replace previous exception with a new one in a hope 348 that instruction re-execution will regenerate lost 349 exception */ 350 goto queue; 351 } 352 353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 354 { 355 kvm_multiple_exception(vcpu, nr, false, 0, false); 356 } 357 EXPORT_SYMBOL_GPL(kvm_queue_exception); 358 359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 360 { 361 kvm_multiple_exception(vcpu, nr, false, 0, true); 362 } 363 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 364 365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 366 { 367 if (err) 368 kvm_inject_gp(vcpu, 0); 369 else 370 kvm_x86_ops->skip_emulated_instruction(vcpu); 371 } 372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 373 374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 375 { 376 ++vcpu->stat.pf_guest; 377 vcpu->arch.cr2 = fault->address; 378 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 379 } 380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 381 382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 383 { 384 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 385 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 386 else 387 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 388 } 389 390 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 391 { 392 atomic_inc(&vcpu->arch.nmi_queued); 393 kvm_make_request(KVM_REQ_NMI, vcpu); 394 } 395 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 396 397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 398 { 399 kvm_multiple_exception(vcpu, nr, true, error_code, false); 400 } 401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 402 403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 404 { 405 kvm_multiple_exception(vcpu, nr, true, error_code, true); 406 } 407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 408 409 /* 410 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 411 * a #GP and return false. 412 */ 413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 414 { 415 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 416 return true; 417 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 418 return false; 419 } 420 EXPORT_SYMBOL_GPL(kvm_require_cpl); 421 422 /* 423 * This function will be used to read from the physical memory of the currently 424 * running guest. The difference to kvm_read_guest_page is that this function 425 * can read from guest physical or from the guest's guest physical memory. 426 */ 427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 428 gfn_t ngfn, void *data, int offset, int len, 429 u32 access) 430 { 431 gfn_t real_gfn; 432 gpa_t ngpa; 433 434 ngpa = gfn_to_gpa(ngfn); 435 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 436 if (real_gfn == UNMAPPED_GVA) 437 return -EFAULT; 438 439 real_gfn = gpa_to_gfn(real_gfn); 440 441 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 442 } 443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 444 445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 446 void *data, int offset, int len, u32 access) 447 { 448 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 449 data, offset, len, access); 450 } 451 452 /* 453 * Load the pae pdptrs. Return true is they are all valid. 454 */ 455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 456 { 457 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 458 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 459 int i; 460 int ret; 461 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 462 463 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 464 offset * sizeof(u64), sizeof(pdpte), 465 PFERR_USER_MASK|PFERR_WRITE_MASK); 466 if (ret < 0) { 467 ret = 0; 468 goto out; 469 } 470 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 471 if (is_present_gpte(pdpte[i]) && 472 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 473 ret = 0; 474 goto out; 475 } 476 } 477 ret = 1; 478 479 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 480 __set_bit(VCPU_EXREG_PDPTR, 481 (unsigned long *)&vcpu->arch.regs_avail); 482 __set_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_dirty); 484 out: 485 486 return ret; 487 } 488 EXPORT_SYMBOL_GPL(load_pdptrs); 489 490 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 491 { 492 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 493 bool changed = true; 494 int offset; 495 gfn_t gfn; 496 int r; 497 498 if (is_long_mode(vcpu) || !is_pae(vcpu)) 499 return false; 500 501 if (!test_bit(VCPU_EXREG_PDPTR, 502 (unsigned long *)&vcpu->arch.regs_avail)) 503 return true; 504 505 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 506 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 507 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 508 PFERR_USER_MASK | PFERR_WRITE_MASK); 509 if (r < 0) 510 goto out; 511 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 512 out: 513 514 return changed; 515 } 516 517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 518 { 519 unsigned long old_cr0 = kvm_read_cr0(vcpu); 520 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 521 X86_CR0_CD | X86_CR0_NW; 522 523 cr0 |= X86_CR0_ET; 524 525 #ifdef CONFIG_X86_64 526 if (cr0 & 0xffffffff00000000UL) 527 return 1; 528 #endif 529 530 cr0 &= ~CR0_RESERVED_BITS; 531 532 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 533 return 1; 534 535 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 536 return 1; 537 538 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 539 #ifdef CONFIG_X86_64 540 if ((vcpu->arch.efer & EFER_LME)) { 541 int cs_db, cs_l; 542 543 if (!is_pae(vcpu)) 544 return 1; 545 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 546 if (cs_l) 547 return 1; 548 } else 549 #endif 550 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 551 kvm_read_cr3(vcpu))) 552 return 1; 553 } 554 555 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 556 return 1; 557 558 kvm_x86_ops->set_cr0(vcpu, cr0); 559 560 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 561 kvm_clear_async_pf_completion_queue(vcpu); 562 kvm_async_pf_hash_reset(vcpu); 563 } 564 565 if ((cr0 ^ old_cr0) & update_bits) 566 kvm_mmu_reset_context(vcpu); 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(kvm_set_cr0); 570 571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 572 { 573 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 574 } 575 EXPORT_SYMBOL_GPL(kvm_lmsw); 576 577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 578 { 579 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 580 !vcpu->guest_xcr0_loaded) { 581 /* kvm_set_xcr() also depends on this */ 582 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 583 vcpu->guest_xcr0_loaded = 1; 584 } 585 } 586 587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 588 { 589 if (vcpu->guest_xcr0_loaded) { 590 if (vcpu->arch.xcr0 != host_xcr0) 591 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 592 vcpu->guest_xcr0_loaded = 0; 593 } 594 } 595 596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 597 { 598 u64 xcr0; 599 u64 valid_bits; 600 601 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 602 if (index != XCR_XFEATURE_ENABLED_MASK) 603 return 1; 604 xcr0 = xcr; 605 if (!(xcr0 & XSTATE_FP)) 606 return 1; 607 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 608 return 1; 609 610 /* 611 * Do not allow the guest to set bits that we do not support 612 * saving. However, xcr0 bit 0 is always set, even if the 613 * emulated CPU does not support XSAVE (see fx_init). 614 */ 615 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 616 if (xcr0 & ~valid_bits) 617 return 1; 618 619 kvm_put_guest_xcr0(vcpu); 620 vcpu->arch.xcr0 = xcr0; 621 return 0; 622 } 623 624 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 625 { 626 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 627 __kvm_set_xcr(vcpu, index, xcr)) { 628 kvm_inject_gp(vcpu, 0); 629 return 1; 630 } 631 return 0; 632 } 633 EXPORT_SYMBOL_GPL(kvm_set_xcr); 634 635 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 636 { 637 unsigned long old_cr4 = kvm_read_cr4(vcpu); 638 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 639 X86_CR4_PAE | X86_CR4_SMEP; 640 if (cr4 & CR4_RESERVED_BITS) 641 return 1; 642 643 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 644 return 1; 645 646 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 647 return 1; 648 649 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 650 return 1; 651 652 if (is_long_mode(vcpu)) { 653 if (!(cr4 & X86_CR4_PAE)) 654 return 1; 655 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 656 && ((cr4 ^ old_cr4) & pdptr_bits) 657 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 658 kvm_read_cr3(vcpu))) 659 return 1; 660 661 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 662 if (!guest_cpuid_has_pcid(vcpu)) 663 return 1; 664 665 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 666 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 667 return 1; 668 } 669 670 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 671 return 1; 672 673 if (((cr4 ^ old_cr4) & pdptr_bits) || 674 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 675 kvm_mmu_reset_context(vcpu); 676 677 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 678 kvm_update_cpuid(vcpu); 679 680 return 0; 681 } 682 EXPORT_SYMBOL_GPL(kvm_set_cr4); 683 684 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 685 { 686 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 687 kvm_mmu_sync_roots(vcpu); 688 kvm_mmu_flush_tlb(vcpu); 689 return 0; 690 } 691 692 if (is_long_mode(vcpu)) { 693 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 694 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 695 return 1; 696 } else 697 if (cr3 & CR3_L_MODE_RESERVED_BITS) 698 return 1; 699 } else { 700 if (is_pae(vcpu)) { 701 if (cr3 & CR3_PAE_RESERVED_BITS) 702 return 1; 703 if (is_paging(vcpu) && 704 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 705 return 1; 706 } 707 /* 708 * We don't check reserved bits in nonpae mode, because 709 * this isn't enforced, and VMware depends on this. 710 */ 711 } 712 713 vcpu->arch.cr3 = cr3; 714 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 715 kvm_mmu_new_cr3(vcpu); 716 return 0; 717 } 718 EXPORT_SYMBOL_GPL(kvm_set_cr3); 719 720 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 721 { 722 if (cr8 & CR8_RESERVED_BITS) 723 return 1; 724 if (irqchip_in_kernel(vcpu->kvm)) 725 kvm_lapic_set_tpr(vcpu, cr8); 726 else 727 vcpu->arch.cr8 = cr8; 728 return 0; 729 } 730 EXPORT_SYMBOL_GPL(kvm_set_cr8); 731 732 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 733 { 734 if (irqchip_in_kernel(vcpu->kvm)) 735 return kvm_lapic_get_cr8(vcpu); 736 else 737 return vcpu->arch.cr8; 738 } 739 EXPORT_SYMBOL_GPL(kvm_get_cr8); 740 741 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 742 { 743 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 744 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 745 } 746 747 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 748 { 749 unsigned long dr7; 750 751 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 752 dr7 = vcpu->arch.guest_debug_dr7; 753 else 754 dr7 = vcpu->arch.dr7; 755 kvm_x86_ops->set_dr7(vcpu, dr7); 756 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 757 } 758 759 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 760 { 761 switch (dr) { 762 case 0 ... 3: 763 vcpu->arch.db[dr] = val; 764 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 765 vcpu->arch.eff_db[dr] = val; 766 break; 767 case 4: 768 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 769 return 1; /* #UD */ 770 /* fall through */ 771 case 6: 772 if (val & 0xffffffff00000000ULL) 773 return -1; /* #GP */ 774 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 775 kvm_update_dr6(vcpu); 776 break; 777 case 5: 778 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 779 return 1; /* #UD */ 780 /* fall through */ 781 default: /* 7 */ 782 if (val & 0xffffffff00000000ULL) 783 return -1; /* #GP */ 784 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 785 kvm_update_dr7(vcpu); 786 break; 787 } 788 789 return 0; 790 } 791 792 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 793 { 794 int res; 795 796 res = __kvm_set_dr(vcpu, dr, val); 797 if (res > 0) 798 kvm_queue_exception(vcpu, UD_VECTOR); 799 else if (res < 0) 800 kvm_inject_gp(vcpu, 0); 801 802 return res; 803 } 804 EXPORT_SYMBOL_GPL(kvm_set_dr); 805 806 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 807 { 808 switch (dr) { 809 case 0 ... 3: 810 *val = vcpu->arch.db[dr]; 811 break; 812 case 4: 813 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 814 return 1; 815 /* fall through */ 816 case 6: 817 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 818 *val = vcpu->arch.dr6; 819 else 820 *val = kvm_x86_ops->get_dr6(vcpu); 821 break; 822 case 5: 823 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 824 return 1; 825 /* fall through */ 826 default: /* 7 */ 827 *val = vcpu->arch.dr7; 828 break; 829 } 830 831 return 0; 832 } 833 834 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 835 { 836 if (_kvm_get_dr(vcpu, dr, val)) { 837 kvm_queue_exception(vcpu, UD_VECTOR); 838 return 1; 839 } 840 return 0; 841 } 842 EXPORT_SYMBOL_GPL(kvm_get_dr); 843 844 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 845 { 846 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 847 u64 data; 848 int err; 849 850 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 851 if (err) 852 return err; 853 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 854 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 855 return err; 856 } 857 EXPORT_SYMBOL_GPL(kvm_rdpmc); 858 859 /* 860 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 861 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 862 * 863 * This list is modified at module load time to reflect the 864 * capabilities of the host cpu. This capabilities test skips MSRs that are 865 * kvm-specific. Those are put in the beginning of the list. 866 */ 867 868 #define KVM_SAVE_MSRS_BEGIN 12 869 static u32 msrs_to_save[] = { 870 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 871 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 872 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 873 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 874 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 875 MSR_KVM_PV_EOI_EN, 876 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 877 MSR_STAR, 878 #ifdef CONFIG_X86_64 879 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 880 #endif 881 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 882 MSR_IA32_FEATURE_CONTROL 883 }; 884 885 static unsigned num_msrs_to_save; 886 887 static const u32 emulated_msrs[] = { 888 MSR_IA32_TSC_ADJUST, 889 MSR_IA32_TSCDEADLINE, 890 MSR_IA32_MISC_ENABLE, 891 MSR_IA32_MCG_STATUS, 892 MSR_IA32_MCG_CTL, 893 }; 894 895 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 896 { 897 if (efer & efer_reserved_bits) 898 return false; 899 900 if (efer & EFER_FFXSR) { 901 struct kvm_cpuid_entry2 *feat; 902 903 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 904 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 905 return false; 906 } 907 908 if (efer & EFER_SVME) { 909 struct kvm_cpuid_entry2 *feat; 910 911 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 912 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 913 return false; 914 } 915 916 return true; 917 } 918 EXPORT_SYMBOL_GPL(kvm_valid_efer); 919 920 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 921 { 922 u64 old_efer = vcpu->arch.efer; 923 924 if (!kvm_valid_efer(vcpu, efer)) 925 return 1; 926 927 if (is_paging(vcpu) 928 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 929 return 1; 930 931 efer &= ~EFER_LMA; 932 efer |= vcpu->arch.efer & EFER_LMA; 933 934 kvm_x86_ops->set_efer(vcpu, efer); 935 936 /* Update reserved bits */ 937 if ((efer ^ old_efer) & EFER_NX) 938 kvm_mmu_reset_context(vcpu); 939 940 return 0; 941 } 942 943 void kvm_enable_efer_bits(u64 mask) 944 { 945 efer_reserved_bits &= ~mask; 946 } 947 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 948 949 950 /* 951 * Writes msr value into into the appropriate "register". 952 * Returns 0 on success, non-0 otherwise. 953 * Assumes vcpu_load() was already called. 954 */ 955 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 956 { 957 return kvm_x86_ops->set_msr(vcpu, msr); 958 } 959 960 /* 961 * Adapt set_msr() to msr_io()'s calling convention 962 */ 963 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 964 { 965 struct msr_data msr; 966 967 msr.data = *data; 968 msr.index = index; 969 msr.host_initiated = true; 970 return kvm_set_msr(vcpu, &msr); 971 } 972 973 #ifdef CONFIG_X86_64 974 struct pvclock_gtod_data { 975 seqcount_t seq; 976 977 struct { /* extract of a clocksource struct */ 978 int vclock_mode; 979 cycle_t cycle_last; 980 cycle_t mask; 981 u32 mult; 982 u32 shift; 983 } clock; 984 985 /* open coded 'struct timespec' */ 986 u64 monotonic_time_snsec; 987 time_t monotonic_time_sec; 988 }; 989 990 static struct pvclock_gtod_data pvclock_gtod_data; 991 992 static void update_pvclock_gtod(struct timekeeper *tk) 993 { 994 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 995 996 write_seqcount_begin(&vdata->seq); 997 998 /* copy pvclock gtod data */ 999 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 1000 vdata->clock.cycle_last = tk->clock->cycle_last; 1001 vdata->clock.mask = tk->clock->mask; 1002 vdata->clock.mult = tk->mult; 1003 vdata->clock.shift = tk->shift; 1004 1005 vdata->monotonic_time_sec = tk->xtime_sec 1006 + tk->wall_to_monotonic.tv_sec; 1007 vdata->monotonic_time_snsec = tk->xtime_nsec 1008 + (tk->wall_to_monotonic.tv_nsec 1009 << tk->shift); 1010 while (vdata->monotonic_time_snsec >= 1011 (((u64)NSEC_PER_SEC) << tk->shift)) { 1012 vdata->monotonic_time_snsec -= 1013 ((u64)NSEC_PER_SEC) << tk->shift; 1014 vdata->monotonic_time_sec++; 1015 } 1016 1017 write_seqcount_end(&vdata->seq); 1018 } 1019 #endif 1020 1021 1022 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1023 { 1024 int version; 1025 int r; 1026 struct pvclock_wall_clock wc; 1027 struct timespec boot; 1028 1029 if (!wall_clock) 1030 return; 1031 1032 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1033 if (r) 1034 return; 1035 1036 if (version & 1) 1037 ++version; /* first time write, random junk */ 1038 1039 ++version; 1040 1041 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1042 1043 /* 1044 * The guest calculates current wall clock time by adding 1045 * system time (updated by kvm_guest_time_update below) to the 1046 * wall clock specified here. guest system time equals host 1047 * system time for us, thus we must fill in host boot time here. 1048 */ 1049 getboottime(&boot); 1050 1051 if (kvm->arch.kvmclock_offset) { 1052 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1053 boot = timespec_sub(boot, ts); 1054 } 1055 wc.sec = boot.tv_sec; 1056 wc.nsec = boot.tv_nsec; 1057 wc.version = version; 1058 1059 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1060 1061 version++; 1062 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1063 } 1064 1065 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1066 { 1067 uint32_t quotient, remainder; 1068 1069 /* Don't try to replace with do_div(), this one calculates 1070 * "(dividend << 32) / divisor" */ 1071 __asm__ ( "divl %4" 1072 : "=a" (quotient), "=d" (remainder) 1073 : "0" (0), "1" (dividend), "r" (divisor) ); 1074 return quotient; 1075 } 1076 1077 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1078 s8 *pshift, u32 *pmultiplier) 1079 { 1080 uint64_t scaled64; 1081 int32_t shift = 0; 1082 uint64_t tps64; 1083 uint32_t tps32; 1084 1085 tps64 = base_khz * 1000LL; 1086 scaled64 = scaled_khz * 1000LL; 1087 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1088 tps64 >>= 1; 1089 shift--; 1090 } 1091 1092 tps32 = (uint32_t)tps64; 1093 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1094 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1095 scaled64 >>= 1; 1096 else 1097 tps32 <<= 1; 1098 shift++; 1099 } 1100 1101 *pshift = shift; 1102 *pmultiplier = div_frac(scaled64, tps32); 1103 1104 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1105 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1106 } 1107 1108 static inline u64 get_kernel_ns(void) 1109 { 1110 struct timespec ts; 1111 1112 WARN_ON(preemptible()); 1113 ktime_get_ts(&ts); 1114 monotonic_to_bootbased(&ts); 1115 return timespec_to_ns(&ts); 1116 } 1117 1118 #ifdef CONFIG_X86_64 1119 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1120 #endif 1121 1122 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1123 unsigned long max_tsc_khz; 1124 1125 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1126 { 1127 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1128 vcpu->arch.virtual_tsc_shift); 1129 } 1130 1131 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1132 { 1133 u64 v = (u64)khz * (1000000 + ppm); 1134 do_div(v, 1000000); 1135 return v; 1136 } 1137 1138 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1139 { 1140 u32 thresh_lo, thresh_hi; 1141 int use_scaling = 0; 1142 1143 /* tsc_khz can be zero if TSC calibration fails */ 1144 if (this_tsc_khz == 0) 1145 return; 1146 1147 /* Compute a scale to convert nanoseconds in TSC cycles */ 1148 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1149 &vcpu->arch.virtual_tsc_shift, 1150 &vcpu->arch.virtual_tsc_mult); 1151 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1152 1153 /* 1154 * Compute the variation in TSC rate which is acceptable 1155 * within the range of tolerance and decide if the 1156 * rate being applied is within that bounds of the hardware 1157 * rate. If so, no scaling or compensation need be done. 1158 */ 1159 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1160 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1161 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1162 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1163 use_scaling = 1; 1164 } 1165 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1166 } 1167 1168 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1169 { 1170 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1171 vcpu->arch.virtual_tsc_mult, 1172 vcpu->arch.virtual_tsc_shift); 1173 tsc += vcpu->arch.this_tsc_write; 1174 return tsc; 1175 } 1176 1177 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1178 { 1179 #ifdef CONFIG_X86_64 1180 bool vcpus_matched; 1181 bool do_request = false; 1182 struct kvm_arch *ka = &vcpu->kvm->arch; 1183 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1184 1185 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1186 atomic_read(&vcpu->kvm->online_vcpus)); 1187 1188 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1189 if (!ka->use_master_clock) 1190 do_request = 1; 1191 1192 if (!vcpus_matched && ka->use_master_clock) 1193 do_request = 1; 1194 1195 if (do_request) 1196 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1197 1198 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1199 atomic_read(&vcpu->kvm->online_vcpus), 1200 ka->use_master_clock, gtod->clock.vclock_mode); 1201 #endif 1202 } 1203 1204 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1205 { 1206 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1207 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1208 } 1209 1210 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1211 { 1212 struct kvm *kvm = vcpu->kvm; 1213 u64 offset, ns, elapsed; 1214 unsigned long flags; 1215 s64 usdiff; 1216 bool matched; 1217 u64 data = msr->data; 1218 1219 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1220 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1221 ns = get_kernel_ns(); 1222 elapsed = ns - kvm->arch.last_tsc_nsec; 1223 1224 if (vcpu->arch.virtual_tsc_khz) { 1225 int faulted = 0; 1226 1227 /* n.b - signed multiplication and division required */ 1228 usdiff = data - kvm->arch.last_tsc_write; 1229 #ifdef CONFIG_X86_64 1230 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1231 #else 1232 /* do_div() only does unsigned */ 1233 asm("1: idivl %[divisor]\n" 1234 "2: xor %%edx, %%edx\n" 1235 " movl $0, %[faulted]\n" 1236 "3:\n" 1237 ".section .fixup,\"ax\"\n" 1238 "4: movl $1, %[faulted]\n" 1239 " jmp 3b\n" 1240 ".previous\n" 1241 1242 _ASM_EXTABLE(1b, 4b) 1243 1244 : "=A"(usdiff), [faulted] "=r" (faulted) 1245 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1246 1247 #endif 1248 do_div(elapsed, 1000); 1249 usdiff -= elapsed; 1250 if (usdiff < 0) 1251 usdiff = -usdiff; 1252 1253 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1254 if (faulted) 1255 usdiff = USEC_PER_SEC; 1256 } else 1257 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1258 1259 /* 1260 * Special case: TSC write with a small delta (1 second) of virtual 1261 * cycle time against real time is interpreted as an attempt to 1262 * synchronize the CPU. 1263 * 1264 * For a reliable TSC, we can match TSC offsets, and for an unstable 1265 * TSC, we add elapsed time in this computation. We could let the 1266 * compensation code attempt to catch up if we fall behind, but 1267 * it's better to try to match offsets from the beginning. 1268 */ 1269 if (usdiff < USEC_PER_SEC && 1270 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1271 if (!check_tsc_unstable()) { 1272 offset = kvm->arch.cur_tsc_offset; 1273 pr_debug("kvm: matched tsc offset for %llu\n", data); 1274 } else { 1275 u64 delta = nsec_to_cycles(vcpu, elapsed); 1276 data += delta; 1277 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1278 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1279 } 1280 matched = true; 1281 } else { 1282 /* 1283 * We split periods of matched TSC writes into generations. 1284 * For each generation, we track the original measured 1285 * nanosecond time, offset, and write, so if TSCs are in 1286 * sync, we can match exact offset, and if not, we can match 1287 * exact software computation in compute_guest_tsc() 1288 * 1289 * These values are tracked in kvm->arch.cur_xxx variables. 1290 */ 1291 kvm->arch.cur_tsc_generation++; 1292 kvm->arch.cur_tsc_nsec = ns; 1293 kvm->arch.cur_tsc_write = data; 1294 kvm->arch.cur_tsc_offset = offset; 1295 matched = false; 1296 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1297 kvm->arch.cur_tsc_generation, data); 1298 } 1299 1300 /* 1301 * We also track th most recent recorded KHZ, write and time to 1302 * allow the matching interval to be extended at each write. 1303 */ 1304 kvm->arch.last_tsc_nsec = ns; 1305 kvm->arch.last_tsc_write = data; 1306 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1307 1308 vcpu->arch.last_guest_tsc = data; 1309 1310 /* Keep track of which generation this VCPU has synchronized to */ 1311 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1312 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1313 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1314 1315 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1316 update_ia32_tsc_adjust_msr(vcpu, offset); 1317 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1318 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1319 1320 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1321 if (matched) 1322 kvm->arch.nr_vcpus_matched_tsc++; 1323 else 1324 kvm->arch.nr_vcpus_matched_tsc = 0; 1325 1326 kvm_track_tsc_matching(vcpu); 1327 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1328 } 1329 1330 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1331 1332 #ifdef CONFIG_X86_64 1333 1334 static cycle_t read_tsc(void) 1335 { 1336 cycle_t ret; 1337 u64 last; 1338 1339 /* 1340 * Empirically, a fence (of type that depends on the CPU) 1341 * before rdtsc is enough to ensure that rdtsc is ordered 1342 * with respect to loads. The various CPU manuals are unclear 1343 * as to whether rdtsc can be reordered with later loads, 1344 * but no one has ever seen it happen. 1345 */ 1346 rdtsc_barrier(); 1347 ret = (cycle_t)vget_cycles(); 1348 1349 last = pvclock_gtod_data.clock.cycle_last; 1350 1351 if (likely(ret >= last)) 1352 return ret; 1353 1354 /* 1355 * GCC likes to generate cmov here, but this branch is extremely 1356 * predictable (it's just a funciton of time and the likely is 1357 * very likely) and there's a data dependence, so force GCC 1358 * to generate a branch instead. I don't barrier() because 1359 * we don't actually need a barrier, and if this function 1360 * ever gets inlined it will generate worse code. 1361 */ 1362 asm volatile (""); 1363 return last; 1364 } 1365 1366 static inline u64 vgettsc(cycle_t *cycle_now) 1367 { 1368 long v; 1369 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1370 1371 *cycle_now = read_tsc(); 1372 1373 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1374 return v * gtod->clock.mult; 1375 } 1376 1377 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1378 { 1379 unsigned long seq; 1380 u64 ns; 1381 int mode; 1382 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1383 1384 ts->tv_nsec = 0; 1385 do { 1386 seq = read_seqcount_begin(>od->seq); 1387 mode = gtod->clock.vclock_mode; 1388 ts->tv_sec = gtod->monotonic_time_sec; 1389 ns = gtod->monotonic_time_snsec; 1390 ns += vgettsc(cycle_now); 1391 ns >>= gtod->clock.shift; 1392 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1393 timespec_add_ns(ts, ns); 1394 1395 return mode; 1396 } 1397 1398 /* returns true if host is using tsc clocksource */ 1399 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1400 { 1401 struct timespec ts; 1402 1403 /* checked again under seqlock below */ 1404 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1405 return false; 1406 1407 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1408 return false; 1409 1410 monotonic_to_bootbased(&ts); 1411 *kernel_ns = timespec_to_ns(&ts); 1412 1413 return true; 1414 } 1415 #endif 1416 1417 /* 1418 * 1419 * Assuming a stable TSC across physical CPUS, and a stable TSC 1420 * across virtual CPUs, the following condition is possible. 1421 * Each numbered line represents an event visible to both 1422 * CPUs at the next numbered event. 1423 * 1424 * "timespecX" represents host monotonic time. "tscX" represents 1425 * RDTSC value. 1426 * 1427 * VCPU0 on CPU0 | VCPU1 on CPU1 1428 * 1429 * 1. read timespec0,tsc0 1430 * 2. | timespec1 = timespec0 + N 1431 * | tsc1 = tsc0 + M 1432 * 3. transition to guest | transition to guest 1433 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1434 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1435 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1436 * 1437 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1438 * 1439 * - ret0 < ret1 1440 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1441 * ... 1442 * - 0 < N - M => M < N 1443 * 1444 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1445 * always the case (the difference between two distinct xtime instances 1446 * might be smaller then the difference between corresponding TSC reads, 1447 * when updating guest vcpus pvclock areas). 1448 * 1449 * To avoid that problem, do not allow visibility of distinct 1450 * system_timestamp/tsc_timestamp values simultaneously: use a master 1451 * copy of host monotonic time values. Update that master copy 1452 * in lockstep. 1453 * 1454 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1455 * 1456 */ 1457 1458 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1459 { 1460 #ifdef CONFIG_X86_64 1461 struct kvm_arch *ka = &kvm->arch; 1462 int vclock_mode; 1463 bool host_tsc_clocksource, vcpus_matched; 1464 1465 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1466 atomic_read(&kvm->online_vcpus)); 1467 1468 /* 1469 * If the host uses TSC clock, then passthrough TSC as stable 1470 * to the guest. 1471 */ 1472 host_tsc_clocksource = kvm_get_time_and_clockread( 1473 &ka->master_kernel_ns, 1474 &ka->master_cycle_now); 1475 1476 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1477 1478 if (ka->use_master_clock) 1479 atomic_set(&kvm_guest_has_master_clock, 1); 1480 1481 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1482 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1483 vcpus_matched); 1484 #endif 1485 } 1486 1487 static void kvm_gen_update_masterclock(struct kvm *kvm) 1488 { 1489 #ifdef CONFIG_X86_64 1490 int i; 1491 struct kvm_vcpu *vcpu; 1492 struct kvm_arch *ka = &kvm->arch; 1493 1494 spin_lock(&ka->pvclock_gtod_sync_lock); 1495 kvm_make_mclock_inprogress_request(kvm); 1496 /* no guest entries from this point */ 1497 pvclock_update_vm_gtod_copy(kvm); 1498 1499 kvm_for_each_vcpu(i, vcpu, kvm) 1500 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1501 1502 /* guest entries allowed */ 1503 kvm_for_each_vcpu(i, vcpu, kvm) 1504 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1505 1506 spin_unlock(&ka->pvclock_gtod_sync_lock); 1507 #endif 1508 } 1509 1510 static int kvm_guest_time_update(struct kvm_vcpu *v) 1511 { 1512 unsigned long flags, this_tsc_khz; 1513 struct kvm_vcpu_arch *vcpu = &v->arch; 1514 struct kvm_arch *ka = &v->kvm->arch; 1515 s64 kernel_ns; 1516 u64 tsc_timestamp, host_tsc; 1517 struct pvclock_vcpu_time_info guest_hv_clock; 1518 u8 pvclock_flags; 1519 bool use_master_clock; 1520 1521 kernel_ns = 0; 1522 host_tsc = 0; 1523 1524 /* 1525 * If the host uses TSC clock, then passthrough TSC as stable 1526 * to the guest. 1527 */ 1528 spin_lock(&ka->pvclock_gtod_sync_lock); 1529 use_master_clock = ka->use_master_clock; 1530 if (use_master_clock) { 1531 host_tsc = ka->master_cycle_now; 1532 kernel_ns = ka->master_kernel_ns; 1533 } 1534 spin_unlock(&ka->pvclock_gtod_sync_lock); 1535 1536 /* Keep irq disabled to prevent changes to the clock */ 1537 local_irq_save(flags); 1538 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1539 if (unlikely(this_tsc_khz == 0)) { 1540 local_irq_restore(flags); 1541 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1542 return 1; 1543 } 1544 if (!use_master_clock) { 1545 host_tsc = native_read_tsc(); 1546 kernel_ns = get_kernel_ns(); 1547 } 1548 1549 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1550 1551 /* 1552 * We may have to catch up the TSC to match elapsed wall clock 1553 * time for two reasons, even if kvmclock is used. 1554 * 1) CPU could have been running below the maximum TSC rate 1555 * 2) Broken TSC compensation resets the base at each VCPU 1556 * entry to avoid unknown leaps of TSC even when running 1557 * again on the same CPU. This may cause apparent elapsed 1558 * time to disappear, and the guest to stand still or run 1559 * very slowly. 1560 */ 1561 if (vcpu->tsc_catchup) { 1562 u64 tsc = compute_guest_tsc(v, kernel_ns); 1563 if (tsc > tsc_timestamp) { 1564 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1565 tsc_timestamp = tsc; 1566 } 1567 } 1568 1569 local_irq_restore(flags); 1570 1571 if (!vcpu->pv_time_enabled) 1572 return 0; 1573 1574 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1575 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1576 &vcpu->hv_clock.tsc_shift, 1577 &vcpu->hv_clock.tsc_to_system_mul); 1578 vcpu->hw_tsc_khz = this_tsc_khz; 1579 } 1580 1581 /* With all the info we got, fill in the values */ 1582 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1583 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1584 vcpu->last_kernel_ns = kernel_ns; 1585 vcpu->last_guest_tsc = tsc_timestamp; 1586 1587 /* 1588 * The interface expects us to write an even number signaling that the 1589 * update is finished. Since the guest won't see the intermediate 1590 * state, we just increase by 2 at the end. 1591 */ 1592 vcpu->hv_clock.version += 2; 1593 1594 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1595 &guest_hv_clock, sizeof(guest_hv_clock)))) 1596 return 0; 1597 1598 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1599 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1600 1601 if (vcpu->pvclock_set_guest_stopped_request) { 1602 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1603 vcpu->pvclock_set_guest_stopped_request = false; 1604 } 1605 1606 /* If the host uses TSC clocksource, then it is stable */ 1607 if (use_master_clock) 1608 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1609 1610 vcpu->hv_clock.flags = pvclock_flags; 1611 1612 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1613 &vcpu->hv_clock, 1614 sizeof(vcpu->hv_clock)); 1615 return 0; 1616 } 1617 1618 /* 1619 * kvmclock updates which are isolated to a given vcpu, such as 1620 * vcpu->cpu migration, should not allow system_timestamp from 1621 * the rest of the vcpus to remain static. Otherwise ntp frequency 1622 * correction applies to one vcpu's system_timestamp but not 1623 * the others. 1624 * 1625 * So in those cases, request a kvmclock update for all vcpus. 1626 * The worst case for a remote vcpu to update its kvmclock 1627 * is then bounded by maximum nohz sleep latency. 1628 */ 1629 1630 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1631 { 1632 int i; 1633 struct kvm *kvm = v->kvm; 1634 struct kvm_vcpu *vcpu; 1635 1636 kvm_for_each_vcpu(i, vcpu, kvm) { 1637 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1638 kvm_vcpu_kick(vcpu); 1639 } 1640 } 1641 1642 static bool msr_mtrr_valid(unsigned msr) 1643 { 1644 switch (msr) { 1645 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1646 case MSR_MTRRfix64K_00000: 1647 case MSR_MTRRfix16K_80000: 1648 case MSR_MTRRfix16K_A0000: 1649 case MSR_MTRRfix4K_C0000: 1650 case MSR_MTRRfix4K_C8000: 1651 case MSR_MTRRfix4K_D0000: 1652 case MSR_MTRRfix4K_D8000: 1653 case MSR_MTRRfix4K_E0000: 1654 case MSR_MTRRfix4K_E8000: 1655 case MSR_MTRRfix4K_F0000: 1656 case MSR_MTRRfix4K_F8000: 1657 case MSR_MTRRdefType: 1658 case MSR_IA32_CR_PAT: 1659 return true; 1660 case 0x2f8: 1661 return true; 1662 } 1663 return false; 1664 } 1665 1666 static bool valid_pat_type(unsigned t) 1667 { 1668 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1669 } 1670 1671 static bool valid_mtrr_type(unsigned t) 1672 { 1673 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1674 } 1675 1676 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1677 { 1678 int i; 1679 1680 if (!msr_mtrr_valid(msr)) 1681 return false; 1682 1683 if (msr == MSR_IA32_CR_PAT) { 1684 for (i = 0; i < 8; i++) 1685 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1686 return false; 1687 return true; 1688 } else if (msr == MSR_MTRRdefType) { 1689 if (data & ~0xcff) 1690 return false; 1691 return valid_mtrr_type(data & 0xff); 1692 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1693 for (i = 0; i < 8 ; i++) 1694 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1695 return false; 1696 return true; 1697 } 1698 1699 /* variable MTRRs */ 1700 return valid_mtrr_type(data & 0xff); 1701 } 1702 1703 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1704 { 1705 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1706 1707 if (!mtrr_valid(vcpu, msr, data)) 1708 return 1; 1709 1710 if (msr == MSR_MTRRdefType) { 1711 vcpu->arch.mtrr_state.def_type = data; 1712 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1713 } else if (msr == MSR_MTRRfix64K_00000) 1714 p[0] = data; 1715 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1716 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1717 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1718 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1719 else if (msr == MSR_IA32_CR_PAT) 1720 vcpu->arch.pat = data; 1721 else { /* Variable MTRRs */ 1722 int idx, is_mtrr_mask; 1723 u64 *pt; 1724 1725 idx = (msr - 0x200) / 2; 1726 is_mtrr_mask = msr - 0x200 - 2 * idx; 1727 if (!is_mtrr_mask) 1728 pt = 1729 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1730 else 1731 pt = 1732 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1733 *pt = data; 1734 } 1735 1736 kvm_mmu_reset_context(vcpu); 1737 return 0; 1738 } 1739 1740 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1741 { 1742 u64 mcg_cap = vcpu->arch.mcg_cap; 1743 unsigned bank_num = mcg_cap & 0xff; 1744 1745 switch (msr) { 1746 case MSR_IA32_MCG_STATUS: 1747 vcpu->arch.mcg_status = data; 1748 break; 1749 case MSR_IA32_MCG_CTL: 1750 if (!(mcg_cap & MCG_CTL_P)) 1751 return 1; 1752 if (data != 0 && data != ~(u64)0) 1753 return -1; 1754 vcpu->arch.mcg_ctl = data; 1755 break; 1756 default: 1757 if (msr >= MSR_IA32_MC0_CTL && 1758 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1759 u32 offset = msr - MSR_IA32_MC0_CTL; 1760 /* only 0 or all 1s can be written to IA32_MCi_CTL 1761 * some Linux kernels though clear bit 10 in bank 4 to 1762 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1763 * this to avoid an uncatched #GP in the guest 1764 */ 1765 if ((offset & 0x3) == 0 && 1766 data != 0 && (data | (1 << 10)) != ~(u64)0) 1767 return -1; 1768 vcpu->arch.mce_banks[offset] = data; 1769 break; 1770 } 1771 return 1; 1772 } 1773 return 0; 1774 } 1775 1776 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1777 { 1778 struct kvm *kvm = vcpu->kvm; 1779 int lm = is_long_mode(vcpu); 1780 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1781 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1782 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1783 : kvm->arch.xen_hvm_config.blob_size_32; 1784 u32 page_num = data & ~PAGE_MASK; 1785 u64 page_addr = data & PAGE_MASK; 1786 u8 *page; 1787 int r; 1788 1789 r = -E2BIG; 1790 if (page_num >= blob_size) 1791 goto out; 1792 r = -ENOMEM; 1793 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1794 if (IS_ERR(page)) { 1795 r = PTR_ERR(page); 1796 goto out; 1797 } 1798 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1799 goto out_free; 1800 r = 0; 1801 out_free: 1802 kfree(page); 1803 out: 1804 return r; 1805 } 1806 1807 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1808 { 1809 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1810 } 1811 1812 static bool kvm_hv_msr_partition_wide(u32 msr) 1813 { 1814 bool r = false; 1815 switch (msr) { 1816 case HV_X64_MSR_GUEST_OS_ID: 1817 case HV_X64_MSR_HYPERCALL: 1818 case HV_X64_MSR_REFERENCE_TSC: 1819 case HV_X64_MSR_TIME_REF_COUNT: 1820 r = true; 1821 break; 1822 } 1823 1824 return r; 1825 } 1826 1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1828 { 1829 struct kvm *kvm = vcpu->kvm; 1830 1831 switch (msr) { 1832 case HV_X64_MSR_GUEST_OS_ID: 1833 kvm->arch.hv_guest_os_id = data; 1834 /* setting guest os id to zero disables hypercall page */ 1835 if (!kvm->arch.hv_guest_os_id) 1836 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1837 break; 1838 case HV_X64_MSR_HYPERCALL: { 1839 u64 gfn; 1840 unsigned long addr; 1841 u8 instructions[4]; 1842 1843 /* if guest os id is not set hypercall should remain disabled */ 1844 if (!kvm->arch.hv_guest_os_id) 1845 break; 1846 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1847 kvm->arch.hv_hypercall = data; 1848 break; 1849 } 1850 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1851 addr = gfn_to_hva(kvm, gfn); 1852 if (kvm_is_error_hva(addr)) 1853 return 1; 1854 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1855 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1856 if (__copy_to_user((void __user *)addr, instructions, 4)) 1857 return 1; 1858 kvm->arch.hv_hypercall = data; 1859 mark_page_dirty(kvm, gfn); 1860 break; 1861 } 1862 case HV_X64_MSR_REFERENCE_TSC: { 1863 u64 gfn; 1864 HV_REFERENCE_TSC_PAGE tsc_ref; 1865 memset(&tsc_ref, 0, sizeof(tsc_ref)); 1866 kvm->arch.hv_tsc_page = data; 1867 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1868 break; 1869 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1870 if (kvm_write_guest(kvm, data, 1871 &tsc_ref, sizeof(tsc_ref))) 1872 return 1; 1873 mark_page_dirty(kvm, gfn); 1874 break; 1875 } 1876 default: 1877 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1878 "data 0x%llx\n", msr, data); 1879 return 1; 1880 } 1881 return 0; 1882 } 1883 1884 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1885 { 1886 switch (msr) { 1887 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1888 u64 gfn; 1889 unsigned long addr; 1890 1891 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1892 vcpu->arch.hv_vapic = data; 1893 break; 1894 } 1895 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; 1896 addr = gfn_to_hva(vcpu->kvm, gfn); 1897 if (kvm_is_error_hva(addr)) 1898 return 1; 1899 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1900 return 1; 1901 vcpu->arch.hv_vapic = data; 1902 mark_page_dirty(vcpu->kvm, gfn); 1903 break; 1904 } 1905 case HV_X64_MSR_EOI: 1906 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1907 case HV_X64_MSR_ICR: 1908 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1909 case HV_X64_MSR_TPR: 1910 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1911 default: 1912 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1913 "data 0x%llx\n", msr, data); 1914 return 1; 1915 } 1916 1917 return 0; 1918 } 1919 1920 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1921 { 1922 gpa_t gpa = data & ~0x3f; 1923 1924 /* Bits 2:5 are reserved, Should be zero */ 1925 if (data & 0x3c) 1926 return 1; 1927 1928 vcpu->arch.apf.msr_val = data; 1929 1930 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1931 kvm_clear_async_pf_completion_queue(vcpu); 1932 kvm_async_pf_hash_reset(vcpu); 1933 return 0; 1934 } 1935 1936 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1937 sizeof(u32))) 1938 return 1; 1939 1940 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1941 kvm_async_pf_wakeup_all(vcpu); 1942 return 0; 1943 } 1944 1945 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1946 { 1947 vcpu->arch.pv_time_enabled = false; 1948 } 1949 1950 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1951 { 1952 u64 delta; 1953 1954 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1955 return; 1956 1957 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1958 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1959 vcpu->arch.st.accum_steal = delta; 1960 } 1961 1962 static void record_steal_time(struct kvm_vcpu *vcpu) 1963 { 1964 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1965 return; 1966 1967 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1968 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1969 return; 1970 1971 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1972 vcpu->arch.st.steal.version += 2; 1973 vcpu->arch.st.accum_steal = 0; 1974 1975 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1976 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1977 } 1978 1979 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1980 { 1981 bool pr = false; 1982 u32 msr = msr_info->index; 1983 u64 data = msr_info->data; 1984 1985 switch (msr) { 1986 case MSR_AMD64_NB_CFG: 1987 case MSR_IA32_UCODE_REV: 1988 case MSR_IA32_UCODE_WRITE: 1989 case MSR_VM_HSAVE_PA: 1990 case MSR_AMD64_PATCH_LOADER: 1991 case MSR_AMD64_BU_CFG2: 1992 break; 1993 1994 case MSR_EFER: 1995 return set_efer(vcpu, data); 1996 case MSR_K7_HWCR: 1997 data &= ~(u64)0x40; /* ignore flush filter disable */ 1998 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1999 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2000 if (data != 0) { 2001 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2002 data); 2003 return 1; 2004 } 2005 break; 2006 case MSR_FAM10H_MMIO_CONF_BASE: 2007 if (data != 0) { 2008 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2009 "0x%llx\n", data); 2010 return 1; 2011 } 2012 break; 2013 case MSR_IA32_DEBUGCTLMSR: 2014 if (!data) { 2015 /* We support the non-activated case already */ 2016 break; 2017 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2018 /* Values other than LBR and BTF are vendor-specific, 2019 thus reserved and should throw a #GP */ 2020 return 1; 2021 } 2022 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2023 __func__, data); 2024 break; 2025 case 0x200 ... 0x2ff: 2026 return set_msr_mtrr(vcpu, msr, data); 2027 case MSR_IA32_APICBASE: 2028 return kvm_set_apic_base(vcpu, msr_info); 2029 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2030 return kvm_x2apic_msr_write(vcpu, msr, data); 2031 case MSR_IA32_TSCDEADLINE: 2032 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2033 break; 2034 case MSR_IA32_TSC_ADJUST: 2035 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2036 if (!msr_info->host_initiated) { 2037 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2038 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2039 } 2040 vcpu->arch.ia32_tsc_adjust_msr = data; 2041 } 2042 break; 2043 case MSR_IA32_MISC_ENABLE: 2044 vcpu->arch.ia32_misc_enable_msr = data; 2045 break; 2046 case MSR_KVM_WALL_CLOCK_NEW: 2047 case MSR_KVM_WALL_CLOCK: 2048 vcpu->kvm->arch.wall_clock = data; 2049 kvm_write_wall_clock(vcpu->kvm, data); 2050 break; 2051 case MSR_KVM_SYSTEM_TIME_NEW: 2052 case MSR_KVM_SYSTEM_TIME: { 2053 u64 gpa_offset; 2054 kvmclock_reset(vcpu); 2055 2056 vcpu->arch.time = data; 2057 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2058 2059 /* we verify if the enable bit is set... */ 2060 if (!(data & 1)) 2061 break; 2062 2063 gpa_offset = data & ~(PAGE_MASK | 1); 2064 2065 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2066 &vcpu->arch.pv_time, data & ~1ULL, 2067 sizeof(struct pvclock_vcpu_time_info))) 2068 vcpu->arch.pv_time_enabled = false; 2069 else 2070 vcpu->arch.pv_time_enabled = true; 2071 2072 break; 2073 } 2074 case MSR_KVM_ASYNC_PF_EN: 2075 if (kvm_pv_enable_async_pf(vcpu, data)) 2076 return 1; 2077 break; 2078 case MSR_KVM_STEAL_TIME: 2079 2080 if (unlikely(!sched_info_on())) 2081 return 1; 2082 2083 if (data & KVM_STEAL_RESERVED_MASK) 2084 return 1; 2085 2086 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2087 data & KVM_STEAL_VALID_BITS, 2088 sizeof(struct kvm_steal_time))) 2089 return 1; 2090 2091 vcpu->arch.st.msr_val = data; 2092 2093 if (!(data & KVM_MSR_ENABLED)) 2094 break; 2095 2096 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2097 2098 preempt_disable(); 2099 accumulate_steal_time(vcpu); 2100 preempt_enable(); 2101 2102 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2103 2104 break; 2105 case MSR_KVM_PV_EOI_EN: 2106 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2107 return 1; 2108 break; 2109 2110 case MSR_IA32_MCG_CTL: 2111 case MSR_IA32_MCG_STATUS: 2112 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2113 return set_msr_mce(vcpu, msr, data); 2114 2115 /* Performance counters are not protected by a CPUID bit, 2116 * so we should check all of them in the generic path for the sake of 2117 * cross vendor migration. 2118 * Writing a zero into the event select MSRs disables them, 2119 * which we perfectly emulate ;-). Any other value should be at least 2120 * reported, some guests depend on them. 2121 */ 2122 case MSR_K7_EVNTSEL0: 2123 case MSR_K7_EVNTSEL1: 2124 case MSR_K7_EVNTSEL2: 2125 case MSR_K7_EVNTSEL3: 2126 if (data != 0) 2127 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2128 "0x%x data 0x%llx\n", msr, data); 2129 break; 2130 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2131 * so we ignore writes to make it happy. 2132 */ 2133 case MSR_K7_PERFCTR0: 2134 case MSR_K7_PERFCTR1: 2135 case MSR_K7_PERFCTR2: 2136 case MSR_K7_PERFCTR3: 2137 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2138 "0x%x data 0x%llx\n", msr, data); 2139 break; 2140 case MSR_P6_PERFCTR0: 2141 case MSR_P6_PERFCTR1: 2142 pr = true; 2143 case MSR_P6_EVNTSEL0: 2144 case MSR_P6_EVNTSEL1: 2145 if (kvm_pmu_msr(vcpu, msr)) 2146 return kvm_pmu_set_msr(vcpu, msr_info); 2147 2148 if (pr || data != 0) 2149 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2150 "0x%x data 0x%llx\n", msr, data); 2151 break; 2152 case MSR_K7_CLK_CTL: 2153 /* 2154 * Ignore all writes to this no longer documented MSR. 2155 * Writes are only relevant for old K7 processors, 2156 * all pre-dating SVM, but a recommended workaround from 2157 * AMD for these chips. It is possible to specify the 2158 * affected processor models on the command line, hence 2159 * the need to ignore the workaround. 2160 */ 2161 break; 2162 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2163 if (kvm_hv_msr_partition_wide(msr)) { 2164 int r; 2165 mutex_lock(&vcpu->kvm->lock); 2166 r = set_msr_hyperv_pw(vcpu, msr, data); 2167 mutex_unlock(&vcpu->kvm->lock); 2168 return r; 2169 } else 2170 return set_msr_hyperv(vcpu, msr, data); 2171 break; 2172 case MSR_IA32_BBL_CR_CTL3: 2173 /* Drop writes to this legacy MSR -- see rdmsr 2174 * counterpart for further detail. 2175 */ 2176 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2177 break; 2178 case MSR_AMD64_OSVW_ID_LENGTH: 2179 if (!guest_cpuid_has_osvw(vcpu)) 2180 return 1; 2181 vcpu->arch.osvw.length = data; 2182 break; 2183 case MSR_AMD64_OSVW_STATUS: 2184 if (!guest_cpuid_has_osvw(vcpu)) 2185 return 1; 2186 vcpu->arch.osvw.status = data; 2187 break; 2188 default: 2189 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2190 return xen_hvm_config(vcpu, data); 2191 if (kvm_pmu_msr(vcpu, msr)) 2192 return kvm_pmu_set_msr(vcpu, msr_info); 2193 if (!ignore_msrs) { 2194 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2195 msr, data); 2196 return 1; 2197 } else { 2198 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2199 msr, data); 2200 break; 2201 } 2202 } 2203 return 0; 2204 } 2205 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2206 2207 2208 /* 2209 * Reads an msr value (of 'msr_index') into 'pdata'. 2210 * Returns 0 on success, non-0 otherwise. 2211 * Assumes vcpu_load() was already called. 2212 */ 2213 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2214 { 2215 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2216 } 2217 2218 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2219 { 2220 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2221 2222 if (!msr_mtrr_valid(msr)) 2223 return 1; 2224 2225 if (msr == MSR_MTRRdefType) 2226 *pdata = vcpu->arch.mtrr_state.def_type + 2227 (vcpu->arch.mtrr_state.enabled << 10); 2228 else if (msr == MSR_MTRRfix64K_00000) 2229 *pdata = p[0]; 2230 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2231 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2232 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2233 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2234 else if (msr == MSR_IA32_CR_PAT) 2235 *pdata = vcpu->arch.pat; 2236 else { /* Variable MTRRs */ 2237 int idx, is_mtrr_mask; 2238 u64 *pt; 2239 2240 idx = (msr - 0x200) / 2; 2241 is_mtrr_mask = msr - 0x200 - 2 * idx; 2242 if (!is_mtrr_mask) 2243 pt = 2244 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2245 else 2246 pt = 2247 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2248 *pdata = *pt; 2249 } 2250 2251 return 0; 2252 } 2253 2254 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2255 { 2256 u64 data; 2257 u64 mcg_cap = vcpu->arch.mcg_cap; 2258 unsigned bank_num = mcg_cap & 0xff; 2259 2260 switch (msr) { 2261 case MSR_IA32_P5_MC_ADDR: 2262 case MSR_IA32_P5_MC_TYPE: 2263 data = 0; 2264 break; 2265 case MSR_IA32_MCG_CAP: 2266 data = vcpu->arch.mcg_cap; 2267 break; 2268 case MSR_IA32_MCG_CTL: 2269 if (!(mcg_cap & MCG_CTL_P)) 2270 return 1; 2271 data = vcpu->arch.mcg_ctl; 2272 break; 2273 case MSR_IA32_MCG_STATUS: 2274 data = vcpu->arch.mcg_status; 2275 break; 2276 default: 2277 if (msr >= MSR_IA32_MC0_CTL && 2278 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2279 u32 offset = msr - MSR_IA32_MC0_CTL; 2280 data = vcpu->arch.mce_banks[offset]; 2281 break; 2282 } 2283 return 1; 2284 } 2285 *pdata = data; 2286 return 0; 2287 } 2288 2289 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2290 { 2291 u64 data = 0; 2292 struct kvm *kvm = vcpu->kvm; 2293 2294 switch (msr) { 2295 case HV_X64_MSR_GUEST_OS_ID: 2296 data = kvm->arch.hv_guest_os_id; 2297 break; 2298 case HV_X64_MSR_HYPERCALL: 2299 data = kvm->arch.hv_hypercall; 2300 break; 2301 case HV_X64_MSR_TIME_REF_COUNT: { 2302 data = 2303 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); 2304 break; 2305 } 2306 case HV_X64_MSR_REFERENCE_TSC: 2307 data = kvm->arch.hv_tsc_page; 2308 break; 2309 default: 2310 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2311 return 1; 2312 } 2313 2314 *pdata = data; 2315 return 0; 2316 } 2317 2318 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2319 { 2320 u64 data = 0; 2321 2322 switch (msr) { 2323 case HV_X64_MSR_VP_INDEX: { 2324 int r; 2325 struct kvm_vcpu *v; 2326 kvm_for_each_vcpu(r, v, vcpu->kvm) 2327 if (v == vcpu) 2328 data = r; 2329 break; 2330 } 2331 case HV_X64_MSR_EOI: 2332 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2333 case HV_X64_MSR_ICR: 2334 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2335 case HV_X64_MSR_TPR: 2336 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2337 case HV_X64_MSR_APIC_ASSIST_PAGE: 2338 data = vcpu->arch.hv_vapic; 2339 break; 2340 default: 2341 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2342 return 1; 2343 } 2344 *pdata = data; 2345 return 0; 2346 } 2347 2348 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2349 { 2350 u64 data; 2351 2352 switch (msr) { 2353 case MSR_IA32_PLATFORM_ID: 2354 case MSR_IA32_EBL_CR_POWERON: 2355 case MSR_IA32_DEBUGCTLMSR: 2356 case MSR_IA32_LASTBRANCHFROMIP: 2357 case MSR_IA32_LASTBRANCHTOIP: 2358 case MSR_IA32_LASTINTFROMIP: 2359 case MSR_IA32_LASTINTTOIP: 2360 case MSR_K8_SYSCFG: 2361 case MSR_K7_HWCR: 2362 case MSR_VM_HSAVE_PA: 2363 case MSR_K7_EVNTSEL0: 2364 case MSR_K7_PERFCTR0: 2365 case MSR_K8_INT_PENDING_MSG: 2366 case MSR_AMD64_NB_CFG: 2367 case MSR_FAM10H_MMIO_CONF_BASE: 2368 case MSR_AMD64_BU_CFG2: 2369 data = 0; 2370 break; 2371 case MSR_P6_PERFCTR0: 2372 case MSR_P6_PERFCTR1: 2373 case MSR_P6_EVNTSEL0: 2374 case MSR_P6_EVNTSEL1: 2375 if (kvm_pmu_msr(vcpu, msr)) 2376 return kvm_pmu_get_msr(vcpu, msr, pdata); 2377 data = 0; 2378 break; 2379 case MSR_IA32_UCODE_REV: 2380 data = 0x100000000ULL; 2381 break; 2382 case MSR_MTRRcap: 2383 data = 0x500 | KVM_NR_VAR_MTRR; 2384 break; 2385 case 0x200 ... 0x2ff: 2386 return get_msr_mtrr(vcpu, msr, pdata); 2387 case 0xcd: /* fsb frequency */ 2388 data = 3; 2389 break; 2390 /* 2391 * MSR_EBC_FREQUENCY_ID 2392 * Conservative value valid for even the basic CPU models. 2393 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2394 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2395 * and 266MHz for model 3, or 4. Set Core Clock 2396 * Frequency to System Bus Frequency Ratio to 1 (bits 2397 * 31:24) even though these are only valid for CPU 2398 * models > 2, however guests may end up dividing or 2399 * multiplying by zero otherwise. 2400 */ 2401 case MSR_EBC_FREQUENCY_ID: 2402 data = 1 << 24; 2403 break; 2404 case MSR_IA32_APICBASE: 2405 data = kvm_get_apic_base(vcpu); 2406 break; 2407 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2408 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2409 break; 2410 case MSR_IA32_TSCDEADLINE: 2411 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2412 break; 2413 case MSR_IA32_TSC_ADJUST: 2414 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2415 break; 2416 case MSR_IA32_MISC_ENABLE: 2417 data = vcpu->arch.ia32_misc_enable_msr; 2418 break; 2419 case MSR_IA32_PERF_STATUS: 2420 /* TSC increment by tick */ 2421 data = 1000ULL; 2422 /* CPU multiplier */ 2423 data |= (((uint64_t)4ULL) << 40); 2424 break; 2425 case MSR_EFER: 2426 data = vcpu->arch.efer; 2427 break; 2428 case MSR_KVM_WALL_CLOCK: 2429 case MSR_KVM_WALL_CLOCK_NEW: 2430 data = vcpu->kvm->arch.wall_clock; 2431 break; 2432 case MSR_KVM_SYSTEM_TIME: 2433 case MSR_KVM_SYSTEM_TIME_NEW: 2434 data = vcpu->arch.time; 2435 break; 2436 case MSR_KVM_ASYNC_PF_EN: 2437 data = vcpu->arch.apf.msr_val; 2438 break; 2439 case MSR_KVM_STEAL_TIME: 2440 data = vcpu->arch.st.msr_val; 2441 break; 2442 case MSR_KVM_PV_EOI_EN: 2443 data = vcpu->arch.pv_eoi.msr_val; 2444 break; 2445 case MSR_IA32_P5_MC_ADDR: 2446 case MSR_IA32_P5_MC_TYPE: 2447 case MSR_IA32_MCG_CAP: 2448 case MSR_IA32_MCG_CTL: 2449 case MSR_IA32_MCG_STATUS: 2450 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2451 return get_msr_mce(vcpu, msr, pdata); 2452 case MSR_K7_CLK_CTL: 2453 /* 2454 * Provide expected ramp-up count for K7. All other 2455 * are set to zero, indicating minimum divisors for 2456 * every field. 2457 * 2458 * This prevents guest kernels on AMD host with CPU 2459 * type 6, model 8 and higher from exploding due to 2460 * the rdmsr failing. 2461 */ 2462 data = 0x20000000; 2463 break; 2464 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2465 if (kvm_hv_msr_partition_wide(msr)) { 2466 int r; 2467 mutex_lock(&vcpu->kvm->lock); 2468 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2469 mutex_unlock(&vcpu->kvm->lock); 2470 return r; 2471 } else 2472 return get_msr_hyperv(vcpu, msr, pdata); 2473 break; 2474 case MSR_IA32_BBL_CR_CTL3: 2475 /* This legacy MSR exists but isn't fully documented in current 2476 * silicon. It is however accessed by winxp in very narrow 2477 * scenarios where it sets bit #19, itself documented as 2478 * a "reserved" bit. Best effort attempt to source coherent 2479 * read data here should the balance of the register be 2480 * interpreted by the guest: 2481 * 2482 * L2 cache control register 3: 64GB range, 256KB size, 2483 * enabled, latency 0x1, configured 2484 */ 2485 data = 0xbe702111; 2486 break; 2487 case MSR_AMD64_OSVW_ID_LENGTH: 2488 if (!guest_cpuid_has_osvw(vcpu)) 2489 return 1; 2490 data = vcpu->arch.osvw.length; 2491 break; 2492 case MSR_AMD64_OSVW_STATUS: 2493 if (!guest_cpuid_has_osvw(vcpu)) 2494 return 1; 2495 data = vcpu->arch.osvw.status; 2496 break; 2497 default: 2498 if (kvm_pmu_msr(vcpu, msr)) 2499 return kvm_pmu_get_msr(vcpu, msr, pdata); 2500 if (!ignore_msrs) { 2501 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2502 return 1; 2503 } else { 2504 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2505 data = 0; 2506 } 2507 break; 2508 } 2509 *pdata = data; 2510 return 0; 2511 } 2512 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2513 2514 /* 2515 * Read or write a bunch of msrs. All parameters are kernel addresses. 2516 * 2517 * @return number of msrs set successfully. 2518 */ 2519 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2520 struct kvm_msr_entry *entries, 2521 int (*do_msr)(struct kvm_vcpu *vcpu, 2522 unsigned index, u64 *data)) 2523 { 2524 int i, idx; 2525 2526 idx = srcu_read_lock(&vcpu->kvm->srcu); 2527 for (i = 0; i < msrs->nmsrs; ++i) 2528 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2529 break; 2530 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2531 2532 return i; 2533 } 2534 2535 /* 2536 * Read or write a bunch of msrs. Parameters are user addresses. 2537 * 2538 * @return number of msrs set successfully. 2539 */ 2540 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2541 int (*do_msr)(struct kvm_vcpu *vcpu, 2542 unsigned index, u64 *data), 2543 int writeback) 2544 { 2545 struct kvm_msrs msrs; 2546 struct kvm_msr_entry *entries; 2547 int r, n; 2548 unsigned size; 2549 2550 r = -EFAULT; 2551 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2552 goto out; 2553 2554 r = -E2BIG; 2555 if (msrs.nmsrs >= MAX_IO_MSRS) 2556 goto out; 2557 2558 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2559 entries = memdup_user(user_msrs->entries, size); 2560 if (IS_ERR(entries)) { 2561 r = PTR_ERR(entries); 2562 goto out; 2563 } 2564 2565 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2566 if (r < 0) 2567 goto out_free; 2568 2569 r = -EFAULT; 2570 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2571 goto out_free; 2572 2573 r = n; 2574 2575 out_free: 2576 kfree(entries); 2577 out: 2578 return r; 2579 } 2580 2581 int kvm_dev_ioctl_check_extension(long ext) 2582 { 2583 int r; 2584 2585 switch (ext) { 2586 case KVM_CAP_IRQCHIP: 2587 case KVM_CAP_HLT: 2588 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2589 case KVM_CAP_SET_TSS_ADDR: 2590 case KVM_CAP_EXT_CPUID: 2591 case KVM_CAP_EXT_EMUL_CPUID: 2592 case KVM_CAP_CLOCKSOURCE: 2593 case KVM_CAP_PIT: 2594 case KVM_CAP_NOP_IO_DELAY: 2595 case KVM_CAP_MP_STATE: 2596 case KVM_CAP_SYNC_MMU: 2597 case KVM_CAP_USER_NMI: 2598 case KVM_CAP_REINJECT_CONTROL: 2599 case KVM_CAP_IRQ_INJECT_STATUS: 2600 case KVM_CAP_IRQFD: 2601 case KVM_CAP_IOEVENTFD: 2602 case KVM_CAP_PIT2: 2603 case KVM_CAP_PIT_STATE2: 2604 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2605 case KVM_CAP_XEN_HVM: 2606 case KVM_CAP_ADJUST_CLOCK: 2607 case KVM_CAP_VCPU_EVENTS: 2608 case KVM_CAP_HYPERV: 2609 case KVM_CAP_HYPERV_VAPIC: 2610 case KVM_CAP_HYPERV_SPIN: 2611 case KVM_CAP_PCI_SEGMENT: 2612 case KVM_CAP_DEBUGREGS: 2613 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2614 case KVM_CAP_XSAVE: 2615 case KVM_CAP_ASYNC_PF: 2616 case KVM_CAP_GET_TSC_KHZ: 2617 case KVM_CAP_KVMCLOCK_CTRL: 2618 case KVM_CAP_READONLY_MEM: 2619 case KVM_CAP_HYPERV_TIME: 2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2621 case KVM_CAP_ASSIGN_DEV_IRQ: 2622 case KVM_CAP_PCI_2_3: 2623 #endif 2624 r = 1; 2625 break; 2626 case KVM_CAP_COALESCED_MMIO: 2627 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2628 break; 2629 case KVM_CAP_VAPIC: 2630 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2631 break; 2632 case KVM_CAP_NR_VCPUS: 2633 r = KVM_SOFT_MAX_VCPUS; 2634 break; 2635 case KVM_CAP_MAX_VCPUS: 2636 r = KVM_MAX_VCPUS; 2637 break; 2638 case KVM_CAP_NR_MEMSLOTS: 2639 r = KVM_USER_MEM_SLOTS; 2640 break; 2641 case KVM_CAP_PV_MMU: /* obsolete */ 2642 r = 0; 2643 break; 2644 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2645 case KVM_CAP_IOMMU: 2646 r = iommu_present(&pci_bus_type); 2647 break; 2648 #endif 2649 case KVM_CAP_MCE: 2650 r = KVM_MAX_MCE_BANKS; 2651 break; 2652 case KVM_CAP_XCRS: 2653 r = cpu_has_xsave; 2654 break; 2655 case KVM_CAP_TSC_CONTROL: 2656 r = kvm_has_tsc_control; 2657 break; 2658 case KVM_CAP_TSC_DEADLINE_TIMER: 2659 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2660 break; 2661 default: 2662 r = 0; 2663 break; 2664 } 2665 return r; 2666 2667 } 2668 2669 long kvm_arch_dev_ioctl(struct file *filp, 2670 unsigned int ioctl, unsigned long arg) 2671 { 2672 void __user *argp = (void __user *)arg; 2673 long r; 2674 2675 switch (ioctl) { 2676 case KVM_GET_MSR_INDEX_LIST: { 2677 struct kvm_msr_list __user *user_msr_list = argp; 2678 struct kvm_msr_list msr_list; 2679 unsigned n; 2680 2681 r = -EFAULT; 2682 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2683 goto out; 2684 n = msr_list.nmsrs; 2685 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2686 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2687 goto out; 2688 r = -E2BIG; 2689 if (n < msr_list.nmsrs) 2690 goto out; 2691 r = -EFAULT; 2692 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2693 num_msrs_to_save * sizeof(u32))) 2694 goto out; 2695 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2696 &emulated_msrs, 2697 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2698 goto out; 2699 r = 0; 2700 break; 2701 } 2702 case KVM_GET_SUPPORTED_CPUID: 2703 case KVM_GET_EMULATED_CPUID: { 2704 struct kvm_cpuid2 __user *cpuid_arg = argp; 2705 struct kvm_cpuid2 cpuid; 2706 2707 r = -EFAULT; 2708 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2709 goto out; 2710 2711 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2712 ioctl); 2713 if (r) 2714 goto out; 2715 2716 r = -EFAULT; 2717 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2718 goto out; 2719 r = 0; 2720 break; 2721 } 2722 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2723 u64 mce_cap; 2724 2725 mce_cap = KVM_MCE_CAP_SUPPORTED; 2726 r = -EFAULT; 2727 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2728 goto out; 2729 r = 0; 2730 break; 2731 } 2732 default: 2733 r = -EINVAL; 2734 } 2735 out: 2736 return r; 2737 } 2738 2739 static void wbinvd_ipi(void *garbage) 2740 { 2741 wbinvd(); 2742 } 2743 2744 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2745 { 2746 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2747 } 2748 2749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2750 { 2751 /* Address WBINVD may be executed by guest */ 2752 if (need_emulate_wbinvd(vcpu)) { 2753 if (kvm_x86_ops->has_wbinvd_exit()) 2754 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2755 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2756 smp_call_function_single(vcpu->cpu, 2757 wbinvd_ipi, NULL, 1); 2758 } 2759 2760 kvm_x86_ops->vcpu_load(vcpu, cpu); 2761 2762 /* Apply any externally detected TSC adjustments (due to suspend) */ 2763 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2764 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2765 vcpu->arch.tsc_offset_adjustment = 0; 2766 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2767 } 2768 2769 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2770 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2771 native_read_tsc() - vcpu->arch.last_host_tsc; 2772 if (tsc_delta < 0) 2773 mark_tsc_unstable("KVM discovered backwards TSC"); 2774 if (check_tsc_unstable()) { 2775 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2776 vcpu->arch.last_guest_tsc); 2777 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2778 vcpu->arch.tsc_catchup = 1; 2779 } 2780 /* 2781 * On a host with synchronized TSC, there is no need to update 2782 * kvmclock on vcpu->cpu migration 2783 */ 2784 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2785 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2786 if (vcpu->cpu != cpu) 2787 kvm_migrate_timers(vcpu); 2788 vcpu->cpu = cpu; 2789 } 2790 2791 accumulate_steal_time(vcpu); 2792 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2793 } 2794 2795 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2796 { 2797 kvm_x86_ops->vcpu_put(vcpu); 2798 kvm_put_guest_fpu(vcpu); 2799 vcpu->arch.last_host_tsc = native_read_tsc(); 2800 } 2801 2802 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2803 struct kvm_lapic_state *s) 2804 { 2805 kvm_x86_ops->sync_pir_to_irr(vcpu); 2806 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2807 2808 return 0; 2809 } 2810 2811 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2812 struct kvm_lapic_state *s) 2813 { 2814 kvm_apic_post_state_restore(vcpu, s); 2815 update_cr8_intercept(vcpu); 2816 2817 return 0; 2818 } 2819 2820 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2821 struct kvm_interrupt *irq) 2822 { 2823 if (irq->irq >= KVM_NR_INTERRUPTS) 2824 return -EINVAL; 2825 if (irqchip_in_kernel(vcpu->kvm)) 2826 return -ENXIO; 2827 2828 kvm_queue_interrupt(vcpu, irq->irq, false); 2829 kvm_make_request(KVM_REQ_EVENT, vcpu); 2830 2831 return 0; 2832 } 2833 2834 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2835 { 2836 kvm_inject_nmi(vcpu); 2837 2838 return 0; 2839 } 2840 2841 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2842 struct kvm_tpr_access_ctl *tac) 2843 { 2844 if (tac->flags) 2845 return -EINVAL; 2846 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2847 return 0; 2848 } 2849 2850 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2851 u64 mcg_cap) 2852 { 2853 int r; 2854 unsigned bank_num = mcg_cap & 0xff, bank; 2855 2856 r = -EINVAL; 2857 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2858 goto out; 2859 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2860 goto out; 2861 r = 0; 2862 vcpu->arch.mcg_cap = mcg_cap; 2863 /* Init IA32_MCG_CTL to all 1s */ 2864 if (mcg_cap & MCG_CTL_P) 2865 vcpu->arch.mcg_ctl = ~(u64)0; 2866 /* Init IA32_MCi_CTL to all 1s */ 2867 for (bank = 0; bank < bank_num; bank++) 2868 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2869 out: 2870 return r; 2871 } 2872 2873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2874 struct kvm_x86_mce *mce) 2875 { 2876 u64 mcg_cap = vcpu->arch.mcg_cap; 2877 unsigned bank_num = mcg_cap & 0xff; 2878 u64 *banks = vcpu->arch.mce_banks; 2879 2880 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2881 return -EINVAL; 2882 /* 2883 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2884 * reporting is disabled 2885 */ 2886 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2887 vcpu->arch.mcg_ctl != ~(u64)0) 2888 return 0; 2889 banks += 4 * mce->bank; 2890 /* 2891 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2892 * reporting is disabled for the bank 2893 */ 2894 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2895 return 0; 2896 if (mce->status & MCI_STATUS_UC) { 2897 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2898 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2899 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2900 return 0; 2901 } 2902 if (banks[1] & MCI_STATUS_VAL) 2903 mce->status |= MCI_STATUS_OVER; 2904 banks[2] = mce->addr; 2905 banks[3] = mce->misc; 2906 vcpu->arch.mcg_status = mce->mcg_status; 2907 banks[1] = mce->status; 2908 kvm_queue_exception(vcpu, MC_VECTOR); 2909 } else if (!(banks[1] & MCI_STATUS_VAL) 2910 || !(banks[1] & MCI_STATUS_UC)) { 2911 if (banks[1] & MCI_STATUS_VAL) 2912 mce->status |= MCI_STATUS_OVER; 2913 banks[2] = mce->addr; 2914 banks[3] = mce->misc; 2915 banks[1] = mce->status; 2916 } else 2917 banks[1] |= MCI_STATUS_OVER; 2918 return 0; 2919 } 2920 2921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2922 struct kvm_vcpu_events *events) 2923 { 2924 process_nmi(vcpu); 2925 events->exception.injected = 2926 vcpu->arch.exception.pending && 2927 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2928 events->exception.nr = vcpu->arch.exception.nr; 2929 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2930 events->exception.pad = 0; 2931 events->exception.error_code = vcpu->arch.exception.error_code; 2932 2933 events->interrupt.injected = 2934 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2935 events->interrupt.nr = vcpu->arch.interrupt.nr; 2936 events->interrupt.soft = 0; 2937 events->interrupt.shadow = 2938 kvm_x86_ops->get_interrupt_shadow(vcpu, 2939 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2940 2941 events->nmi.injected = vcpu->arch.nmi_injected; 2942 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2943 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2944 events->nmi.pad = 0; 2945 2946 events->sipi_vector = 0; /* never valid when reporting to user space */ 2947 2948 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2949 | KVM_VCPUEVENT_VALID_SHADOW); 2950 memset(&events->reserved, 0, sizeof(events->reserved)); 2951 } 2952 2953 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2954 struct kvm_vcpu_events *events) 2955 { 2956 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2957 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2958 | KVM_VCPUEVENT_VALID_SHADOW)) 2959 return -EINVAL; 2960 2961 process_nmi(vcpu); 2962 vcpu->arch.exception.pending = events->exception.injected; 2963 vcpu->arch.exception.nr = events->exception.nr; 2964 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2965 vcpu->arch.exception.error_code = events->exception.error_code; 2966 2967 vcpu->arch.interrupt.pending = events->interrupt.injected; 2968 vcpu->arch.interrupt.nr = events->interrupt.nr; 2969 vcpu->arch.interrupt.soft = events->interrupt.soft; 2970 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2971 kvm_x86_ops->set_interrupt_shadow(vcpu, 2972 events->interrupt.shadow); 2973 2974 vcpu->arch.nmi_injected = events->nmi.injected; 2975 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2976 vcpu->arch.nmi_pending = events->nmi.pending; 2977 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2978 2979 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 2980 kvm_vcpu_has_lapic(vcpu)) 2981 vcpu->arch.apic->sipi_vector = events->sipi_vector; 2982 2983 kvm_make_request(KVM_REQ_EVENT, vcpu); 2984 2985 return 0; 2986 } 2987 2988 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2989 struct kvm_debugregs *dbgregs) 2990 { 2991 unsigned long val; 2992 2993 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2994 _kvm_get_dr(vcpu, 6, &val); 2995 dbgregs->dr6 = val; 2996 dbgregs->dr7 = vcpu->arch.dr7; 2997 dbgregs->flags = 0; 2998 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2999 } 3000 3001 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3002 struct kvm_debugregs *dbgregs) 3003 { 3004 if (dbgregs->flags) 3005 return -EINVAL; 3006 3007 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3008 vcpu->arch.dr6 = dbgregs->dr6; 3009 kvm_update_dr6(vcpu); 3010 vcpu->arch.dr7 = dbgregs->dr7; 3011 kvm_update_dr7(vcpu); 3012 3013 return 0; 3014 } 3015 3016 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3017 struct kvm_xsave *guest_xsave) 3018 { 3019 if (cpu_has_xsave) { 3020 memcpy(guest_xsave->region, 3021 &vcpu->arch.guest_fpu.state->xsave, 3022 vcpu->arch.guest_xstate_size); 3023 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3024 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3025 } else { 3026 memcpy(guest_xsave->region, 3027 &vcpu->arch.guest_fpu.state->fxsave, 3028 sizeof(struct i387_fxsave_struct)); 3029 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3030 XSTATE_FPSSE; 3031 } 3032 } 3033 3034 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3035 struct kvm_xsave *guest_xsave) 3036 { 3037 u64 xstate_bv = 3038 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3039 3040 if (cpu_has_xsave) { 3041 /* 3042 * Here we allow setting states that are not present in 3043 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3044 * with old userspace. 3045 */ 3046 if (xstate_bv & ~KVM_SUPPORTED_XCR0) 3047 return -EINVAL; 3048 if (xstate_bv & ~host_xcr0) 3049 return -EINVAL; 3050 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3051 guest_xsave->region, vcpu->arch.guest_xstate_size); 3052 } else { 3053 if (xstate_bv & ~XSTATE_FPSSE) 3054 return -EINVAL; 3055 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3056 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3057 } 3058 return 0; 3059 } 3060 3061 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3062 struct kvm_xcrs *guest_xcrs) 3063 { 3064 if (!cpu_has_xsave) { 3065 guest_xcrs->nr_xcrs = 0; 3066 return; 3067 } 3068 3069 guest_xcrs->nr_xcrs = 1; 3070 guest_xcrs->flags = 0; 3071 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3072 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3073 } 3074 3075 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3076 struct kvm_xcrs *guest_xcrs) 3077 { 3078 int i, r = 0; 3079 3080 if (!cpu_has_xsave) 3081 return -EINVAL; 3082 3083 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3084 return -EINVAL; 3085 3086 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3087 /* Only support XCR0 currently */ 3088 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3089 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3090 guest_xcrs->xcrs[i].value); 3091 break; 3092 } 3093 if (r) 3094 r = -EINVAL; 3095 return r; 3096 } 3097 3098 /* 3099 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3100 * stopped by the hypervisor. This function will be called from the host only. 3101 * EINVAL is returned when the host attempts to set the flag for a guest that 3102 * does not support pv clocks. 3103 */ 3104 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3105 { 3106 if (!vcpu->arch.pv_time_enabled) 3107 return -EINVAL; 3108 vcpu->arch.pvclock_set_guest_stopped_request = true; 3109 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3110 return 0; 3111 } 3112 3113 long kvm_arch_vcpu_ioctl(struct file *filp, 3114 unsigned int ioctl, unsigned long arg) 3115 { 3116 struct kvm_vcpu *vcpu = filp->private_data; 3117 void __user *argp = (void __user *)arg; 3118 int r; 3119 union { 3120 struct kvm_lapic_state *lapic; 3121 struct kvm_xsave *xsave; 3122 struct kvm_xcrs *xcrs; 3123 void *buffer; 3124 } u; 3125 3126 u.buffer = NULL; 3127 switch (ioctl) { 3128 case KVM_GET_LAPIC: { 3129 r = -EINVAL; 3130 if (!vcpu->arch.apic) 3131 goto out; 3132 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3133 3134 r = -ENOMEM; 3135 if (!u.lapic) 3136 goto out; 3137 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3138 if (r) 3139 goto out; 3140 r = -EFAULT; 3141 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3142 goto out; 3143 r = 0; 3144 break; 3145 } 3146 case KVM_SET_LAPIC: { 3147 r = -EINVAL; 3148 if (!vcpu->arch.apic) 3149 goto out; 3150 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3151 if (IS_ERR(u.lapic)) 3152 return PTR_ERR(u.lapic); 3153 3154 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3155 break; 3156 } 3157 case KVM_INTERRUPT: { 3158 struct kvm_interrupt irq; 3159 3160 r = -EFAULT; 3161 if (copy_from_user(&irq, argp, sizeof irq)) 3162 goto out; 3163 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3164 break; 3165 } 3166 case KVM_NMI: { 3167 r = kvm_vcpu_ioctl_nmi(vcpu); 3168 break; 3169 } 3170 case KVM_SET_CPUID: { 3171 struct kvm_cpuid __user *cpuid_arg = argp; 3172 struct kvm_cpuid cpuid; 3173 3174 r = -EFAULT; 3175 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3176 goto out; 3177 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3178 break; 3179 } 3180 case KVM_SET_CPUID2: { 3181 struct kvm_cpuid2 __user *cpuid_arg = argp; 3182 struct kvm_cpuid2 cpuid; 3183 3184 r = -EFAULT; 3185 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3186 goto out; 3187 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3188 cpuid_arg->entries); 3189 break; 3190 } 3191 case KVM_GET_CPUID2: { 3192 struct kvm_cpuid2 __user *cpuid_arg = argp; 3193 struct kvm_cpuid2 cpuid; 3194 3195 r = -EFAULT; 3196 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3197 goto out; 3198 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3199 cpuid_arg->entries); 3200 if (r) 3201 goto out; 3202 r = -EFAULT; 3203 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3204 goto out; 3205 r = 0; 3206 break; 3207 } 3208 case KVM_GET_MSRS: 3209 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3210 break; 3211 case KVM_SET_MSRS: 3212 r = msr_io(vcpu, argp, do_set_msr, 0); 3213 break; 3214 case KVM_TPR_ACCESS_REPORTING: { 3215 struct kvm_tpr_access_ctl tac; 3216 3217 r = -EFAULT; 3218 if (copy_from_user(&tac, argp, sizeof tac)) 3219 goto out; 3220 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3221 if (r) 3222 goto out; 3223 r = -EFAULT; 3224 if (copy_to_user(argp, &tac, sizeof tac)) 3225 goto out; 3226 r = 0; 3227 break; 3228 }; 3229 case KVM_SET_VAPIC_ADDR: { 3230 struct kvm_vapic_addr va; 3231 3232 r = -EINVAL; 3233 if (!irqchip_in_kernel(vcpu->kvm)) 3234 goto out; 3235 r = -EFAULT; 3236 if (copy_from_user(&va, argp, sizeof va)) 3237 goto out; 3238 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3239 break; 3240 } 3241 case KVM_X86_SETUP_MCE: { 3242 u64 mcg_cap; 3243 3244 r = -EFAULT; 3245 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3246 goto out; 3247 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3248 break; 3249 } 3250 case KVM_X86_SET_MCE: { 3251 struct kvm_x86_mce mce; 3252 3253 r = -EFAULT; 3254 if (copy_from_user(&mce, argp, sizeof mce)) 3255 goto out; 3256 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3257 break; 3258 } 3259 case KVM_GET_VCPU_EVENTS: { 3260 struct kvm_vcpu_events events; 3261 3262 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3263 3264 r = -EFAULT; 3265 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3266 break; 3267 r = 0; 3268 break; 3269 } 3270 case KVM_SET_VCPU_EVENTS: { 3271 struct kvm_vcpu_events events; 3272 3273 r = -EFAULT; 3274 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3275 break; 3276 3277 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3278 break; 3279 } 3280 case KVM_GET_DEBUGREGS: { 3281 struct kvm_debugregs dbgregs; 3282 3283 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3284 3285 r = -EFAULT; 3286 if (copy_to_user(argp, &dbgregs, 3287 sizeof(struct kvm_debugregs))) 3288 break; 3289 r = 0; 3290 break; 3291 } 3292 case KVM_SET_DEBUGREGS: { 3293 struct kvm_debugregs dbgregs; 3294 3295 r = -EFAULT; 3296 if (copy_from_user(&dbgregs, argp, 3297 sizeof(struct kvm_debugregs))) 3298 break; 3299 3300 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3301 break; 3302 } 3303 case KVM_GET_XSAVE: { 3304 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3305 r = -ENOMEM; 3306 if (!u.xsave) 3307 break; 3308 3309 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3310 3311 r = -EFAULT; 3312 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3313 break; 3314 r = 0; 3315 break; 3316 } 3317 case KVM_SET_XSAVE: { 3318 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3319 if (IS_ERR(u.xsave)) 3320 return PTR_ERR(u.xsave); 3321 3322 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3323 break; 3324 } 3325 case KVM_GET_XCRS: { 3326 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3327 r = -ENOMEM; 3328 if (!u.xcrs) 3329 break; 3330 3331 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3332 3333 r = -EFAULT; 3334 if (copy_to_user(argp, u.xcrs, 3335 sizeof(struct kvm_xcrs))) 3336 break; 3337 r = 0; 3338 break; 3339 } 3340 case KVM_SET_XCRS: { 3341 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3342 if (IS_ERR(u.xcrs)) 3343 return PTR_ERR(u.xcrs); 3344 3345 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3346 break; 3347 } 3348 case KVM_SET_TSC_KHZ: { 3349 u32 user_tsc_khz; 3350 3351 r = -EINVAL; 3352 user_tsc_khz = (u32)arg; 3353 3354 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3355 goto out; 3356 3357 if (user_tsc_khz == 0) 3358 user_tsc_khz = tsc_khz; 3359 3360 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3361 3362 r = 0; 3363 goto out; 3364 } 3365 case KVM_GET_TSC_KHZ: { 3366 r = vcpu->arch.virtual_tsc_khz; 3367 goto out; 3368 } 3369 case KVM_KVMCLOCK_CTRL: { 3370 r = kvm_set_guest_paused(vcpu); 3371 goto out; 3372 } 3373 default: 3374 r = -EINVAL; 3375 } 3376 out: 3377 kfree(u.buffer); 3378 return r; 3379 } 3380 3381 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3382 { 3383 return VM_FAULT_SIGBUS; 3384 } 3385 3386 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3387 { 3388 int ret; 3389 3390 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3391 return -EINVAL; 3392 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3393 return ret; 3394 } 3395 3396 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3397 u64 ident_addr) 3398 { 3399 kvm->arch.ept_identity_map_addr = ident_addr; 3400 return 0; 3401 } 3402 3403 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3404 u32 kvm_nr_mmu_pages) 3405 { 3406 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3407 return -EINVAL; 3408 3409 mutex_lock(&kvm->slots_lock); 3410 3411 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3412 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3413 3414 mutex_unlock(&kvm->slots_lock); 3415 return 0; 3416 } 3417 3418 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3419 { 3420 return kvm->arch.n_max_mmu_pages; 3421 } 3422 3423 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3424 { 3425 int r; 3426 3427 r = 0; 3428 switch (chip->chip_id) { 3429 case KVM_IRQCHIP_PIC_MASTER: 3430 memcpy(&chip->chip.pic, 3431 &pic_irqchip(kvm)->pics[0], 3432 sizeof(struct kvm_pic_state)); 3433 break; 3434 case KVM_IRQCHIP_PIC_SLAVE: 3435 memcpy(&chip->chip.pic, 3436 &pic_irqchip(kvm)->pics[1], 3437 sizeof(struct kvm_pic_state)); 3438 break; 3439 case KVM_IRQCHIP_IOAPIC: 3440 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3441 break; 3442 default: 3443 r = -EINVAL; 3444 break; 3445 } 3446 return r; 3447 } 3448 3449 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3450 { 3451 int r; 3452 3453 r = 0; 3454 switch (chip->chip_id) { 3455 case KVM_IRQCHIP_PIC_MASTER: 3456 spin_lock(&pic_irqchip(kvm)->lock); 3457 memcpy(&pic_irqchip(kvm)->pics[0], 3458 &chip->chip.pic, 3459 sizeof(struct kvm_pic_state)); 3460 spin_unlock(&pic_irqchip(kvm)->lock); 3461 break; 3462 case KVM_IRQCHIP_PIC_SLAVE: 3463 spin_lock(&pic_irqchip(kvm)->lock); 3464 memcpy(&pic_irqchip(kvm)->pics[1], 3465 &chip->chip.pic, 3466 sizeof(struct kvm_pic_state)); 3467 spin_unlock(&pic_irqchip(kvm)->lock); 3468 break; 3469 case KVM_IRQCHIP_IOAPIC: 3470 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3471 break; 3472 default: 3473 r = -EINVAL; 3474 break; 3475 } 3476 kvm_pic_update_irq(pic_irqchip(kvm)); 3477 return r; 3478 } 3479 3480 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3481 { 3482 int r = 0; 3483 3484 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3485 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3486 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3487 return r; 3488 } 3489 3490 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3491 { 3492 int r = 0; 3493 3494 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3495 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3496 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3497 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3498 return r; 3499 } 3500 3501 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3502 { 3503 int r = 0; 3504 3505 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3506 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3507 sizeof(ps->channels)); 3508 ps->flags = kvm->arch.vpit->pit_state.flags; 3509 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3510 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3511 return r; 3512 } 3513 3514 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3515 { 3516 int r = 0, start = 0; 3517 u32 prev_legacy, cur_legacy; 3518 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3519 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3520 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3521 if (!prev_legacy && cur_legacy) 3522 start = 1; 3523 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3524 sizeof(kvm->arch.vpit->pit_state.channels)); 3525 kvm->arch.vpit->pit_state.flags = ps->flags; 3526 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3527 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3528 return r; 3529 } 3530 3531 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3532 struct kvm_reinject_control *control) 3533 { 3534 if (!kvm->arch.vpit) 3535 return -ENXIO; 3536 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3537 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3538 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3539 return 0; 3540 } 3541 3542 /** 3543 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3544 * @kvm: kvm instance 3545 * @log: slot id and address to which we copy the log 3546 * 3547 * We need to keep it in mind that VCPU threads can write to the bitmap 3548 * concurrently. So, to avoid losing data, we keep the following order for 3549 * each bit: 3550 * 3551 * 1. Take a snapshot of the bit and clear it if needed. 3552 * 2. Write protect the corresponding page. 3553 * 3. Flush TLB's if needed. 3554 * 4. Copy the snapshot to the userspace. 3555 * 3556 * Between 2 and 3, the guest may write to the page using the remaining TLB 3557 * entry. This is not a problem because the page will be reported dirty at 3558 * step 4 using the snapshot taken before and step 3 ensures that successive 3559 * writes will be logged for the next call. 3560 */ 3561 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3562 { 3563 int r; 3564 struct kvm_memory_slot *memslot; 3565 unsigned long n, i; 3566 unsigned long *dirty_bitmap; 3567 unsigned long *dirty_bitmap_buffer; 3568 bool is_dirty = false; 3569 3570 mutex_lock(&kvm->slots_lock); 3571 3572 r = -EINVAL; 3573 if (log->slot >= KVM_USER_MEM_SLOTS) 3574 goto out; 3575 3576 memslot = id_to_memslot(kvm->memslots, log->slot); 3577 3578 dirty_bitmap = memslot->dirty_bitmap; 3579 r = -ENOENT; 3580 if (!dirty_bitmap) 3581 goto out; 3582 3583 n = kvm_dirty_bitmap_bytes(memslot); 3584 3585 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3586 memset(dirty_bitmap_buffer, 0, n); 3587 3588 spin_lock(&kvm->mmu_lock); 3589 3590 for (i = 0; i < n / sizeof(long); i++) { 3591 unsigned long mask; 3592 gfn_t offset; 3593 3594 if (!dirty_bitmap[i]) 3595 continue; 3596 3597 is_dirty = true; 3598 3599 mask = xchg(&dirty_bitmap[i], 0); 3600 dirty_bitmap_buffer[i] = mask; 3601 3602 offset = i * BITS_PER_LONG; 3603 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3604 } 3605 if (is_dirty) 3606 kvm_flush_remote_tlbs(kvm); 3607 3608 spin_unlock(&kvm->mmu_lock); 3609 3610 r = -EFAULT; 3611 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3612 goto out; 3613 3614 r = 0; 3615 out: 3616 mutex_unlock(&kvm->slots_lock); 3617 return r; 3618 } 3619 3620 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3621 bool line_status) 3622 { 3623 if (!irqchip_in_kernel(kvm)) 3624 return -ENXIO; 3625 3626 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3627 irq_event->irq, irq_event->level, 3628 line_status); 3629 return 0; 3630 } 3631 3632 long kvm_arch_vm_ioctl(struct file *filp, 3633 unsigned int ioctl, unsigned long arg) 3634 { 3635 struct kvm *kvm = filp->private_data; 3636 void __user *argp = (void __user *)arg; 3637 int r = -ENOTTY; 3638 /* 3639 * This union makes it completely explicit to gcc-3.x 3640 * that these two variables' stack usage should be 3641 * combined, not added together. 3642 */ 3643 union { 3644 struct kvm_pit_state ps; 3645 struct kvm_pit_state2 ps2; 3646 struct kvm_pit_config pit_config; 3647 } u; 3648 3649 switch (ioctl) { 3650 case KVM_SET_TSS_ADDR: 3651 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3652 break; 3653 case KVM_SET_IDENTITY_MAP_ADDR: { 3654 u64 ident_addr; 3655 3656 r = -EFAULT; 3657 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3658 goto out; 3659 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3660 break; 3661 } 3662 case KVM_SET_NR_MMU_PAGES: 3663 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3664 break; 3665 case KVM_GET_NR_MMU_PAGES: 3666 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3667 break; 3668 case KVM_CREATE_IRQCHIP: { 3669 struct kvm_pic *vpic; 3670 3671 mutex_lock(&kvm->lock); 3672 r = -EEXIST; 3673 if (kvm->arch.vpic) 3674 goto create_irqchip_unlock; 3675 r = -EINVAL; 3676 if (atomic_read(&kvm->online_vcpus)) 3677 goto create_irqchip_unlock; 3678 r = -ENOMEM; 3679 vpic = kvm_create_pic(kvm); 3680 if (vpic) { 3681 r = kvm_ioapic_init(kvm); 3682 if (r) { 3683 mutex_lock(&kvm->slots_lock); 3684 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3685 &vpic->dev_master); 3686 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3687 &vpic->dev_slave); 3688 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3689 &vpic->dev_eclr); 3690 mutex_unlock(&kvm->slots_lock); 3691 kfree(vpic); 3692 goto create_irqchip_unlock; 3693 } 3694 } else 3695 goto create_irqchip_unlock; 3696 smp_wmb(); 3697 kvm->arch.vpic = vpic; 3698 smp_wmb(); 3699 r = kvm_setup_default_irq_routing(kvm); 3700 if (r) { 3701 mutex_lock(&kvm->slots_lock); 3702 mutex_lock(&kvm->irq_lock); 3703 kvm_ioapic_destroy(kvm); 3704 kvm_destroy_pic(kvm); 3705 mutex_unlock(&kvm->irq_lock); 3706 mutex_unlock(&kvm->slots_lock); 3707 } 3708 create_irqchip_unlock: 3709 mutex_unlock(&kvm->lock); 3710 break; 3711 } 3712 case KVM_CREATE_PIT: 3713 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3714 goto create_pit; 3715 case KVM_CREATE_PIT2: 3716 r = -EFAULT; 3717 if (copy_from_user(&u.pit_config, argp, 3718 sizeof(struct kvm_pit_config))) 3719 goto out; 3720 create_pit: 3721 mutex_lock(&kvm->slots_lock); 3722 r = -EEXIST; 3723 if (kvm->arch.vpit) 3724 goto create_pit_unlock; 3725 r = -ENOMEM; 3726 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3727 if (kvm->arch.vpit) 3728 r = 0; 3729 create_pit_unlock: 3730 mutex_unlock(&kvm->slots_lock); 3731 break; 3732 case KVM_GET_IRQCHIP: { 3733 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3734 struct kvm_irqchip *chip; 3735 3736 chip = memdup_user(argp, sizeof(*chip)); 3737 if (IS_ERR(chip)) { 3738 r = PTR_ERR(chip); 3739 goto out; 3740 } 3741 3742 r = -ENXIO; 3743 if (!irqchip_in_kernel(kvm)) 3744 goto get_irqchip_out; 3745 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3746 if (r) 3747 goto get_irqchip_out; 3748 r = -EFAULT; 3749 if (copy_to_user(argp, chip, sizeof *chip)) 3750 goto get_irqchip_out; 3751 r = 0; 3752 get_irqchip_out: 3753 kfree(chip); 3754 break; 3755 } 3756 case KVM_SET_IRQCHIP: { 3757 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3758 struct kvm_irqchip *chip; 3759 3760 chip = memdup_user(argp, sizeof(*chip)); 3761 if (IS_ERR(chip)) { 3762 r = PTR_ERR(chip); 3763 goto out; 3764 } 3765 3766 r = -ENXIO; 3767 if (!irqchip_in_kernel(kvm)) 3768 goto set_irqchip_out; 3769 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3770 if (r) 3771 goto set_irqchip_out; 3772 r = 0; 3773 set_irqchip_out: 3774 kfree(chip); 3775 break; 3776 } 3777 case KVM_GET_PIT: { 3778 r = -EFAULT; 3779 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3780 goto out; 3781 r = -ENXIO; 3782 if (!kvm->arch.vpit) 3783 goto out; 3784 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3785 if (r) 3786 goto out; 3787 r = -EFAULT; 3788 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3789 goto out; 3790 r = 0; 3791 break; 3792 } 3793 case KVM_SET_PIT: { 3794 r = -EFAULT; 3795 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3796 goto out; 3797 r = -ENXIO; 3798 if (!kvm->arch.vpit) 3799 goto out; 3800 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3801 break; 3802 } 3803 case KVM_GET_PIT2: { 3804 r = -ENXIO; 3805 if (!kvm->arch.vpit) 3806 goto out; 3807 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3808 if (r) 3809 goto out; 3810 r = -EFAULT; 3811 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3812 goto out; 3813 r = 0; 3814 break; 3815 } 3816 case KVM_SET_PIT2: { 3817 r = -EFAULT; 3818 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3819 goto out; 3820 r = -ENXIO; 3821 if (!kvm->arch.vpit) 3822 goto out; 3823 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3824 break; 3825 } 3826 case KVM_REINJECT_CONTROL: { 3827 struct kvm_reinject_control control; 3828 r = -EFAULT; 3829 if (copy_from_user(&control, argp, sizeof(control))) 3830 goto out; 3831 r = kvm_vm_ioctl_reinject(kvm, &control); 3832 break; 3833 } 3834 case KVM_XEN_HVM_CONFIG: { 3835 r = -EFAULT; 3836 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3837 sizeof(struct kvm_xen_hvm_config))) 3838 goto out; 3839 r = -EINVAL; 3840 if (kvm->arch.xen_hvm_config.flags) 3841 goto out; 3842 r = 0; 3843 break; 3844 } 3845 case KVM_SET_CLOCK: { 3846 struct kvm_clock_data user_ns; 3847 u64 now_ns; 3848 s64 delta; 3849 3850 r = -EFAULT; 3851 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3852 goto out; 3853 3854 r = -EINVAL; 3855 if (user_ns.flags) 3856 goto out; 3857 3858 r = 0; 3859 local_irq_disable(); 3860 now_ns = get_kernel_ns(); 3861 delta = user_ns.clock - now_ns; 3862 local_irq_enable(); 3863 kvm->arch.kvmclock_offset = delta; 3864 kvm_gen_update_masterclock(kvm); 3865 break; 3866 } 3867 case KVM_GET_CLOCK: { 3868 struct kvm_clock_data user_ns; 3869 u64 now_ns; 3870 3871 local_irq_disable(); 3872 now_ns = get_kernel_ns(); 3873 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3874 local_irq_enable(); 3875 user_ns.flags = 0; 3876 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3877 3878 r = -EFAULT; 3879 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3880 goto out; 3881 r = 0; 3882 break; 3883 } 3884 3885 default: 3886 ; 3887 } 3888 out: 3889 return r; 3890 } 3891 3892 static void kvm_init_msr_list(void) 3893 { 3894 u32 dummy[2]; 3895 unsigned i, j; 3896 3897 /* skip the first msrs in the list. KVM-specific */ 3898 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3899 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3900 continue; 3901 if (j < i) 3902 msrs_to_save[j] = msrs_to_save[i]; 3903 j++; 3904 } 3905 num_msrs_to_save = j; 3906 } 3907 3908 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3909 const void *v) 3910 { 3911 int handled = 0; 3912 int n; 3913 3914 do { 3915 n = min(len, 8); 3916 if (!(vcpu->arch.apic && 3917 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3918 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3919 break; 3920 handled += n; 3921 addr += n; 3922 len -= n; 3923 v += n; 3924 } while (len); 3925 3926 return handled; 3927 } 3928 3929 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3930 { 3931 int handled = 0; 3932 int n; 3933 3934 do { 3935 n = min(len, 8); 3936 if (!(vcpu->arch.apic && 3937 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3938 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3939 break; 3940 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3941 handled += n; 3942 addr += n; 3943 len -= n; 3944 v += n; 3945 } while (len); 3946 3947 return handled; 3948 } 3949 3950 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3951 struct kvm_segment *var, int seg) 3952 { 3953 kvm_x86_ops->set_segment(vcpu, var, seg); 3954 } 3955 3956 void kvm_get_segment(struct kvm_vcpu *vcpu, 3957 struct kvm_segment *var, int seg) 3958 { 3959 kvm_x86_ops->get_segment(vcpu, var, seg); 3960 } 3961 3962 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3963 { 3964 gpa_t t_gpa; 3965 struct x86_exception exception; 3966 3967 BUG_ON(!mmu_is_nested(vcpu)); 3968 3969 /* NPT walks are always user-walks */ 3970 access |= PFERR_USER_MASK; 3971 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3972 3973 return t_gpa; 3974 } 3975 3976 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3977 struct x86_exception *exception) 3978 { 3979 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3980 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3981 } 3982 3983 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3984 struct x86_exception *exception) 3985 { 3986 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3987 access |= PFERR_FETCH_MASK; 3988 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3989 } 3990 3991 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3992 struct x86_exception *exception) 3993 { 3994 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3995 access |= PFERR_WRITE_MASK; 3996 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3997 } 3998 3999 /* uses this to access any guest's mapped memory without checking CPL */ 4000 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4001 struct x86_exception *exception) 4002 { 4003 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4004 } 4005 4006 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4007 struct kvm_vcpu *vcpu, u32 access, 4008 struct x86_exception *exception) 4009 { 4010 void *data = val; 4011 int r = X86EMUL_CONTINUE; 4012 4013 while (bytes) { 4014 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4015 exception); 4016 unsigned offset = addr & (PAGE_SIZE-1); 4017 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4018 int ret; 4019 4020 if (gpa == UNMAPPED_GVA) 4021 return X86EMUL_PROPAGATE_FAULT; 4022 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 4023 if (ret < 0) { 4024 r = X86EMUL_IO_NEEDED; 4025 goto out; 4026 } 4027 4028 bytes -= toread; 4029 data += toread; 4030 addr += toread; 4031 } 4032 out: 4033 return r; 4034 } 4035 4036 /* used for instruction fetching */ 4037 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4038 gva_t addr, void *val, unsigned int bytes, 4039 struct x86_exception *exception) 4040 { 4041 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4042 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4043 4044 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4045 access | PFERR_FETCH_MASK, 4046 exception); 4047 } 4048 4049 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4050 gva_t addr, void *val, unsigned int bytes, 4051 struct x86_exception *exception) 4052 { 4053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4054 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4055 4056 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4057 exception); 4058 } 4059 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4060 4061 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4062 gva_t addr, void *val, unsigned int bytes, 4063 struct x86_exception *exception) 4064 { 4065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4066 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4067 } 4068 4069 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4070 gva_t addr, void *val, 4071 unsigned int bytes, 4072 struct x86_exception *exception) 4073 { 4074 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4075 void *data = val; 4076 int r = X86EMUL_CONTINUE; 4077 4078 while (bytes) { 4079 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4080 PFERR_WRITE_MASK, 4081 exception); 4082 unsigned offset = addr & (PAGE_SIZE-1); 4083 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4084 int ret; 4085 4086 if (gpa == UNMAPPED_GVA) 4087 return X86EMUL_PROPAGATE_FAULT; 4088 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4089 if (ret < 0) { 4090 r = X86EMUL_IO_NEEDED; 4091 goto out; 4092 } 4093 4094 bytes -= towrite; 4095 data += towrite; 4096 addr += towrite; 4097 } 4098 out: 4099 return r; 4100 } 4101 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4102 4103 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4104 gpa_t *gpa, struct x86_exception *exception, 4105 bool write) 4106 { 4107 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4108 | (write ? PFERR_WRITE_MASK : 0); 4109 4110 if (vcpu_match_mmio_gva(vcpu, gva) 4111 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 4112 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4113 (gva & (PAGE_SIZE - 1)); 4114 trace_vcpu_match_mmio(gva, *gpa, write, false); 4115 return 1; 4116 } 4117 4118 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4119 4120 if (*gpa == UNMAPPED_GVA) 4121 return -1; 4122 4123 /* For APIC access vmexit */ 4124 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4125 return 1; 4126 4127 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4128 trace_vcpu_match_mmio(gva, *gpa, write, true); 4129 return 1; 4130 } 4131 4132 return 0; 4133 } 4134 4135 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4136 const void *val, int bytes) 4137 { 4138 int ret; 4139 4140 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4141 if (ret < 0) 4142 return 0; 4143 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4144 return 1; 4145 } 4146 4147 struct read_write_emulator_ops { 4148 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4149 int bytes); 4150 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4151 void *val, int bytes); 4152 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4153 int bytes, void *val); 4154 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4155 void *val, int bytes); 4156 bool write; 4157 }; 4158 4159 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4160 { 4161 if (vcpu->mmio_read_completed) { 4162 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4163 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4164 vcpu->mmio_read_completed = 0; 4165 return 1; 4166 } 4167 4168 return 0; 4169 } 4170 4171 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4172 void *val, int bytes) 4173 { 4174 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4175 } 4176 4177 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4178 void *val, int bytes) 4179 { 4180 return emulator_write_phys(vcpu, gpa, val, bytes); 4181 } 4182 4183 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4184 { 4185 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4186 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4187 } 4188 4189 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4190 void *val, int bytes) 4191 { 4192 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4193 return X86EMUL_IO_NEEDED; 4194 } 4195 4196 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4197 void *val, int bytes) 4198 { 4199 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4200 4201 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4202 return X86EMUL_CONTINUE; 4203 } 4204 4205 static const struct read_write_emulator_ops read_emultor = { 4206 .read_write_prepare = read_prepare, 4207 .read_write_emulate = read_emulate, 4208 .read_write_mmio = vcpu_mmio_read, 4209 .read_write_exit_mmio = read_exit_mmio, 4210 }; 4211 4212 static const struct read_write_emulator_ops write_emultor = { 4213 .read_write_emulate = write_emulate, 4214 .read_write_mmio = write_mmio, 4215 .read_write_exit_mmio = write_exit_mmio, 4216 .write = true, 4217 }; 4218 4219 static int emulator_read_write_onepage(unsigned long addr, void *val, 4220 unsigned int bytes, 4221 struct x86_exception *exception, 4222 struct kvm_vcpu *vcpu, 4223 const struct read_write_emulator_ops *ops) 4224 { 4225 gpa_t gpa; 4226 int handled, ret; 4227 bool write = ops->write; 4228 struct kvm_mmio_fragment *frag; 4229 4230 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4231 4232 if (ret < 0) 4233 return X86EMUL_PROPAGATE_FAULT; 4234 4235 /* For APIC access vmexit */ 4236 if (ret) 4237 goto mmio; 4238 4239 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4240 return X86EMUL_CONTINUE; 4241 4242 mmio: 4243 /* 4244 * Is this MMIO handled locally? 4245 */ 4246 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4247 if (handled == bytes) 4248 return X86EMUL_CONTINUE; 4249 4250 gpa += handled; 4251 bytes -= handled; 4252 val += handled; 4253 4254 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4255 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4256 frag->gpa = gpa; 4257 frag->data = val; 4258 frag->len = bytes; 4259 return X86EMUL_CONTINUE; 4260 } 4261 4262 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4263 void *val, unsigned int bytes, 4264 struct x86_exception *exception, 4265 const struct read_write_emulator_ops *ops) 4266 { 4267 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4268 gpa_t gpa; 4269 int rc; 4270 4271 if (ops->read_write_prepare && 4272 ops->read_write_prepare(vcpu, val, bytes)) 4273 return X86EMUL_CONTINUE; 4274 4275 vcpu->mmio_nr_fragments = 0; 4276 4277 /* Crossing a page boundary? */ 4278 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4279 int now; 4280 4281 now = -addr & ~PAGE_MASK; 4282 rc = emulator_read_write_onepage(addr, val, now, exception, 4283 vcpu, ops); 4284 4285 if (rc != X86EMUL_CONTINUE) 4286 return rc; 4287 addr += now; 4288 val += now; 4289 bytes -= now; 4290 } 4291 4292 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4293 vcpu, ops); 4294 if (rc != X86EMUL_CONTINUE) 4295 return rc; 4296 4297 if (!vcpu->mmio_nr_fragments) 4298 return rc; 4299 4300 gpa = vcpu->mmio_fragments[0].gpa; 4301 4302 vcpu->mmio_needed = 1; 4303 vcpu->mmio_cur_fragment = 0; 4304 4305 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4306 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4307 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4308 vcpu->run->mmio.phys_addr = gpa; 4309 4310 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4311 } 4312 4313 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4314 unsigned long addr, 4315 void *val, 4316 unsigned int bytes, 4317 struct x86_exception *exception) 4318 { 4319 return emulator_read_write(ctxt, addr, val, bytes, 4320 exception, &read_emultor); 4321 } 4322 4323 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4324 unsigned long addr, 4325 const void *val, 4326 unsigned int bytes, 4327 struct x86_exception *exception) 4328 { 4329 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4330 exception, &write_emultor); 4331 } 4332 4333 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4334 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4335 4336 #ifdef CONFIG_X86_64 4337 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4338 #else 4339 # define CMPXCHG64(ptr, old, new) \ 4340 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4341 #endif 4342 4343 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4344 unsigned long addr, 4345 const void *old, 4346 const void *new, 4347 unsigned int bytes, 4348 struct x86_exception *exception) 4349 { 4350 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4351 gpa_t gpa; 4352 struct page *page; 4353 char *kaddr; 4354 bool exchanged; 4355 4356 /* guests cmpxchg8b have to be emulated atomically */ 4357 if (bytes > 8 || (bytes & (bytes - 1))) 4358 goto emul_write; 4359 4360 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4361 4362 if (gpa == UNMAPPED_GVA || 4363 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4364 goto emul_write; 4365 4366 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4367 goto emul_write; 4368 4369 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4370 if (is_error_page(page)) 4371 goto emul_write; 4372 4373 kaddr = kmap_atomic(page); 4374 kaddr += offset_in_page(gpa); 4375 switch (bytes) { 4376 case 1: 4377 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4378 break; 4379 case 2: 4380 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4381 break; 4382 case 4: 4383 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4384 break; 4385 case 8: 4386 exchanged = CMPXCHG64(kaddr, old, new); 4387 break; 4388 default: 4389 BUG(); 4390 } 4391 kunmap_atomic(kaddr); 4392 kvm_release_page_dirty(page); 4393 4394 if (!exchanged) 4395 return X86EMUL_CMPXCHG_FAILED; 4396 4397 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4398 4399 return X86EMUL_CONTINUE; 4400 4401 emul_write: 4402 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4403 4404 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4405 } 4406 4407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4408 { 4409 /* TODO: String I/O for in kernel device */ 4410 int r; 4411 4412 if (vcpu->arch.pio.in) 4413 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4414 vcpu->arch.pio.size, pd); 4415 else 4416 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4417 vcpu->arch.pio.port, vcpu->arch.pio.size, 4418 pd); 4419 return r; 4420 } 4421 4422 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4423 unsigned short port, void *val, 4424 unsigned int count, bool in) 4425 { 4426 trace_kvm_pio(!in, port, size, count); 4427 4428 vcpu->arch.pio.port = port; 4429 vcpu->arch.pio.in = in; 4430 vcpu->arch.pio.count = count; 4431 vcpu->arch.pio.size = size; 4432 4433 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4434 vcpu->arch.pio.count = 0; 4435 return 1; 4436 } 4437 4438 vcpu->run->exit_reason = KVM_EXIT_IO; 4439 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4440 vcpu->run->io.size = size; 4441 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4442 vcpu->run->io.count = count; 4443 vcpu->run->io.port = port; 4444 4445 return 0; 4446 } 4447 4448 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4449 int size, unsigned short port, void *val, 4450 unsigned int count) 4451 { 4452 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4453 int ret; 4454 4455 if (vcpu->arch.pio.count) 4456 goto data_avail; 4457 4458 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4459 if (ret) { 4460 data_avail: 4461 memcpy(val, vcpu->arch.pio_data, size * count); 4462 vcpu->arch.pio.count = 0; 4463 return 1; 4464 } 4465 4466 return 0; 4467 } 4468 4469 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4470 int size, unsigned short port, 4471 const void *val, unsigned int count) 4472 { 4473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4474 4475 memcpy(vcpu->arch.pio_data, val, size * count); 4476 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4477 } 4478 4479 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4480 { 4481 return kvm_x86_ops->get_segment_base(vcpu, seg); 4482 } 4483 4484 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4485 { 4486 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4487 } 4488 4489 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4490 { 4491 if (!need_emulate_wbinvd(vcpu)) 4492 return X86EMUL_CONTINUE; 4493 4494 if (kvm_x86_ops->has_wbinvd_exit()) { 4495 int cpu = get_cpu(); 4496 4497 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4498 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4499 wbinvd_ipi, NULL, 1); 4500 put_cpu(); 4501 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4502 } else 4503 wbinvd(); 4504 return X86EMUL_CONTINUE; 4505 } 4506 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4507 4508 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4509 { 4510 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4511 } 4512 4513 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4514 { 4515 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4516 } 4517 4518 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4519 { 4520 4521 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4522 } 4523 4524 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4525 { 4526 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4527 } 4528 4529 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4530 { 4531 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4532 unsigned long value; 4533 4534 switch (cr) { 4535 case 0: 4536 value = kvm_read_cr0(vcpu); 4537 break; 4538 case 2: 4539 value = vcpu->arch.cr2; 4540 break; 4541 case 3: 4542 value = kvm_read_cr3(vcpu); 4543 break; 4544 case 4: 4545 value = kvm_read_cr4(vcpu); 4546 break; 4547 case 8: 4548 value = kvm_get_cr8(vcpu); 4549 break; 4550 default: 4551 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4552 return 0; 4553 } 4554 4555 return value; 4556 } 4557 4558 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4559 { 4560 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4561 int res = 0; 4562 4563 switch (cr) { 4564 case 0: 4565 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4566 break; 4567 case 2: 4568 vcpu->arch.cr2 = val; 4569 break; 4570 case 3: 4571 res = kvm_set_cr3(vcpu, val); 4572 break; 4573 case 4: 4574 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4575 break; 4576 case 8: 4577 res = kvm_set_cr8(vcpu, val); 4578 break; 4579 default: 4580 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4581 res = -1; 4582 } 4583 4584 return res; 4585 } 4586 4587 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4588 { 4589 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4590 } 4591 4592 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4593 { 4594 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4595 } 4596 4597 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4598 { 4599 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4600 } 4601 4602 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4603 { 4604 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4605 } 4606 4607 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4608 { 4609 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4610 } 4611 4612 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4613 { 4614 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4615 } 4616 4617 static unsigned long emulator_get_cached_segment_base( 4618 struct x86_emulate_ctxt *ctxt, int seg) 4619 { 4620 return get_segment_base(emul_to_vcpu(ctxt), seg); 4621 } 4622 4623 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4624 struct desc_struct *desc, u32 *base3, 4625 int seg) 4626 { 4627 struct kvm_segment var; 4628 4629 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4630 *selector = var.selector; 4631 4632 if (var.unusable) { 4633 memset(desc, 0, sizeof(*desc)); 4634 return false; 4635 } 4636 4637 if (var.g) 4638 var.limit >>= 12; 4639 set_desc_limit(desc, var.limit); 4640 set_desc_base(desc, (unsigned long)var.base); 4641 #ifdef CONFIG_X86_64 4642 if (base3) 4643 *base3 = var.base >> 32; 4644 #endif 4645 desc->type = var.type; 4646 desc->s = var.s; 4647 desc->dpl = var.dpl; 4648 desc->p = var.present; 4649 desc->avl = var.avl; 4650 desc->l = var.l; 4651 desc->d = var.db; 4652 desc->g = var.g; 4653 4654 return true; 4655 } 4656 4657 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4658 struct desc_struct *desc, u32 base3, 4659 int seg) 4660 { 4661 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4662 struct kvm_segment var; 4663 4664 var.selector = selector; 4665 var.base = get_desc_base(desc); 4666 #ifdef CONFIG_X86_64 4667 var.base |= ((u64)base3) << 32; 4668 #endif 4669 var.limit = get_desc_limit(desc); 4670 if (desc->g) 4671 var.limit = (var.limit << 12) | 0xfff; 4672 var.type = desc->type; 4673 var.present = desc->p; 4674 var.dpl = desc->dpl; 4675 var.db = desc->d; 4676 var.s = desc->s; 4677 var.l = desc->l; 4678 var.g = desc->g; 4679 var.avl = desc->avl; 4680 var.present = desc->p; 4681 var.unusable = !var.present; 4682 var.padding = 0; 4683 4684 kvm_set_segment(vcpu, &var, seg); 4685 return; 4686 } 4687 4688 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4689 u32 msr_index, u64 *pdata) 4690 { 4691 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4692 } 4693 4694 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4695 u32 msr_index, u64 data) 4696 { 4697 struct msr_data msr; 4698 4699 msr.data = data; 4700 msr.index = msr_index; 4701 msr.host_initiated = false; 4702 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4703 } 4704 4705 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4706 u32 pmc, u64 *pdata) 4707 { 4708 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4709 } 4710 4711 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4712 { 4713 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4714 } 4715 4716 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4717 { 4718 preempt_disable(); 4719 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4720 /* 4721 * CR0.TS may reference the host fpu state, not the guest fpu state, 4722 * so it may be clear at this point. 4723 */ 4724 clts(); 4725 } 4726 4727 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4728 { 4729 preempt_enable(); 4730 } 4731 4732 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4733 struct x86_instruction_info *info, 4734 enum x86_intercept_stage stage) 4735 { 4736 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4737 } 4738 4739 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4740 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4741 { 4742 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4743 } 4744 4745 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4746 { 4747 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4748 } 4749 4750 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4751 { 4752 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4753 } 4754 4755 static const struct x86_emulate_ops emulate_ops = { 4756 .read_gpr = emulator_read_gpr, 4757 .write_gpr = emulator_write_gpr, 4758 .read_std = kvm_read_guest_virt_system, 4759 .write_std = kvm_write_guest_virt_system, 4760 .fetch = kvm_fetch_guest_virt, 4761 .read_emulated = emulator_read_emulated, 4762 .write_emulated = emulator_write_emulated, 4763 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4764 .invlpg = emulator_invlpg, 4765 .pio_in_emulated = emulator_pio_in_emulated, 4766 .pio_out_emulated = emulator_pio_out_emulated, 4767 .get_segment = emulator_get_segment, 4768 .set_segment = emulator_set_segment, 4769 .get_cached_segment_base = emulator_get_cached_segment_base, 4770 .get_gdt = emulator_get_gdt, 4771 .get_idt = emulator_get_idt, 4772 .set_gdt = emulator_set_gdt, 4773 .set_idt = emulator_set_idt, 4774 .get_cr = emulator_get_cr, 4775 .set_cr = emulator_set_cr, 4776 .set_rflags = emulator_set_rflags, 4777 .cpl = emulator_get_cpl, 4778 .get_dr = emulator_get_dr, 4779 .set_dr = emulator_set_dr, 4780 .set_msr = emulator_set_msr, 4781 .get_msr = emulator_get_msr, 4782 .read_pmc = emulator_read_pmc, 4783 .halt = emulator_halt, 4784 .wbinvd = emulator_wbinvd, 4785 .fix_hypercall = emulator_fix_hypercall, 4786 .get_fpu = emulator_get_fpu, 4787 .put_fpu = emulator_put_fpu, 4788 .intercept = emulator_intercept, 4789 .get_cpuid = emulator_get_cpuid, 4790 }; 4791 4792 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4793 { 4794 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4795 /* 4796 * an sti; sti; sequence only disable interrupts for the first 4797 * instruction. So, if the last instruction, be it emulated or 4798 * not, left the system with the INT_STI flag enabled, it 4799 * means that the last instruction is an sti. We should not 4800 * leave the flag on in this case. The same goes for mov ss 4801 */ 4802 if (!(int_shadow & mask)) 4803 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4804 } 4805 4806 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4807 { 4808 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4809 if (ctxt->exception.vector == PF_VECTOR) 4810 kvm_propagate_fault(vcpu, &ctxt->exception); 4811 else if (ctxt->exception.error_code_valid) 4812 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4813 ctxt->exception.error_code); 4814 else 4815 kvm_queue_exception(vcpu, ctxt->exception.vector); 4816 } 4817 4818 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4819 { 4820 memset(&ctxt->opcode_len, 0, 4821 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); 4822 4823 ctxt->fetch.start = 0; 4824 ctxt->fetch.end = 0; 4825 ctxt->io_read.pos = 0; 4826 ctxt->io_read.end = 0; 4827 ctxt->mem_read.pos = 0; 4828 ctxt->mem_read.end = 0; 4829 } 4830 4831 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4832 { 4833 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4834 int cs_db, cs_l; 4835 4836 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4837 4838 ctxt->eflags = kvm_get_rflags(vcpu); 4839 ctxt->eip = kvm_rip_read(vcpu); 4840 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4841 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4842 cs_l ? X86EMUL_MODE_PROT64 : 4843 cs_db ? X86EMUL_MODE_PROT32 : 4844 X86EMUL_MODE_PROT16; 4845 ctxt->guest_mode = is_guest_mode(vcpu); 4846 4847 init_decode_cache(ctxt); 4848 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4849 } 4850 4851 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4852 { 4853 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4854 int ret; 4855 4856 init_emulate_ctxt(vcpu); 4857 4858 ctxt->op_bytes = 2; 4859 ctxt->ad_bytes = 2; 4860 ctxt->_eip = ctxt->eip + inc_eip; 4861 ret = emulate_int_real(ctxt, irq); 4862 4863 if (ret != X86EMUL_CONTINUE) 4864 return EMULATE_FAIL; 4865 4866 ctxt->eip = ctxt->_eip; 4867 kvm_rip_write(vcpu, ctxt->eip); 4868 kvm_set_rflags(vcpu, ctxt->eflags); 4869 4870 if (irq == NMI_VECTOR) 4871 vcpu->arch.nmi_pending = 0; 4872 else 4873 vcpu->arch.interrupt.pending = false; 4874 4875 return EMULATE_DONE; 4876 } 4877 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4878 4879 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4880 { 4881 int r = EMULATE_DONE; 4882 4883 ++vcpu->stat.insn_emulation_fail; 4884 trace_kvm_emulate_insn_failed(vcpu); 4885 if (!is_guest_mode(vcpu)) { 4886 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4887 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4888 vcpu->run->internal.ndata = 0; 4889 r = EMULATE_FAIL; 4890 } 4891 kvm_queue_exception(vcpu, UD_VECTOR); 4892 4893 return r; 4894 } 4895 4896 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4897 bool write_fault_to_shadow_pgtable, 4898 int emulation_type) 4899 { 4900 gpa_t gpa = cr2; 4901 pfn_t pfn; 4902 4903 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4904 return false; 4905 4906 if (!vcpu->arch.mmu.direct_map) { 4907 /* 4908 * Write permission should be allowed since only 4909 * write access need to be emulated. 4910 */ 4911 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4912 4913 /* 4914 * If the mapping is invalid in guest, let cpu retry 4915 * it to generate fault. 4916 */ 4917 if (gpa == UNMAPPED_GVA) 4918 return true; 4919 } 4920 4921 /* 4922 * Do not retry the unhandleable instruction if it faults on the 4923 * readonly host memory, otherwise it will goto a infinite loop: 4924 * retry instruction -> write #PF -> emulation fail -> retry 4925 * instruction -> ... 4926 */ 4927 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4928 4929 /* 4930 * If the instruction failed on the error pfn, it can not be fixed, 4931 * report the error to userspace. 4932 */ 4933 if (is_error_noslot_pfn(pfn)) 4934 return false; 4935 4936 kvm_release_pfn_clean(pfn); 4937 4938 /* The instructions are well-emulated on direct mmu. */ 4939 if (vcpu->arch.mmu.direct_map) { 4940 unsigned int indirect_shadow_pages; 4941 4942 spin_lock(&vcpu->kvm->mmu_lock); 4943 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 4944 spin_unlock(&vcpu->kvm->mmu_lock); 4945 4946 if (indirect_shadow_pages) 4947 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4948 4949 return true; 4950 } 4951 4952 /* 4953 * if emulation was due to access to shadowed page table 4954 * and it failed try to unshadow page and re-enter the 4955 * guest to let CPU execute the instruction. 4956 */ 4957 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4958 4959 /* 4960 * If the access faults on its page table, it can not 4961 * be fixed by unprotecting shadow page and it should 4962 * be reported to userspace. 4963 */ 4964 return !write_fault_to_shadow_pgtable; 4965 } 4966 4967 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4968 unsigned long cr2, int emulation_type) 4969 { 4970 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4971 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4972 4973 last_retry_eip = vcpu->arch.last_retry_eip; 4974 last_retry_addr = vcpu->arch.last_retry_addr; 4975 4976 /* 4977 * If the emulation is caused by #PF and it is non-page_table 4978 * writing instruction, it means the VM-EXIT is caused by shadow 4979 * page protected, we can zap the shadow page and retry this 4980 * instruction directly. 4981 * 4982 * Note: if the guest uses a non-page-table modifying instruction 4983 * on the PDE that points to the instruction, then we will unmap 4984 * the instruction and go to an infinite loop. So, we cache the 4985 * last retried eip and the last fault address, if we meet the eip 4986 * and the address again, we can break out of the potential infinite 4987 * loop. 4988 */ 4989 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4990 4991 if (!(emulation_type & EMULTYPE_RETRY)) 4992 return false; 4993 4994 if (x86_page_table_writing_insn(ctxt)) 4995 return false; 4996 4997 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4998 return false; 4999 5000 vcpu->arch.last_retry_eip = ctxt->eip; 5001 vcpu->arch.last_retry_addr = cr2; 5002 5003 if (!vcpu->arch.mmu.direct_map) 5004 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5005 5006 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5007 5008 return true; 5009 } 5010 5011 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5012 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5013 5014 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5015 unsigned long *db) 5016 { 5017 u32 dr6 = 0; 5018 int i; 5019 u32 enable, rwlen; 5020 5021 enable = dr7; 5022 rwlen = dr7 >> 16; 5023 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5024 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5025 dr6 |= (1 << i); 5026 return dr6; 5027 } 5028 5029 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 5030 { 5031 struct kvm_run *kvm_run = vcpu->run; 5032 5033 /* 5034 * Use the "raw" value to see if TF was passed to the processor. 5035 * Note that the new value of the flags has not been saved yet. 5036 * 5037 * This is correct even for TF set by the guest, because "the 5038 * processor will not generate this exception after the instruction 5039 * that sets the TF flag". 5040 */ 5041 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5042 5043 if (unlikely(rflags & X86_EFLAGS_TF)) { 5044 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5045 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5046 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5047 kvm_run->debug.arch.exception = DB_VECTOR; 5048 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5049 *r = EMULATE_USER_EXIT; 5050 } else { 5051 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5052 /* 5053 * "Certain debug exceptions may clear bit 0-3. The 5054 * remaining contents of the DR6 register are never 5055 * cleared by the processor". 5056 */ 5057 vcpu->arch.dr6 &= ~15; 5058 vcpu->arch.dr6 |= DR6_BS; 5059 kvm_queue_exception(vcpu, DB_VECTOR); 5060 } 5061 } 5062 } 5063 5064 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5065 { 5066 struct kvm_run *kvm_run = vcpu->run; 5067 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5068 u32 dr6 = 0; 5069 5070 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5071 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5072 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5073 vcpu->arch.guest_debug_dr7, 5074 vcpu->arch.eff_db); 5075 5076 if (dr6 != 0) { 5077 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5078 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5079 get_segment_base(vcpu, VCPU_SREG_CS); 5080 5081 kvm_run->debug.arch.exception = DB_VECTOR; 5082 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5083 *r = EMULATE_USER_EXIT; 5084 return true; 5085 } 5086 } 5087 5088 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5089 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5090 vcpu->arch.dr7, 5091 vcpu->arch.db); 5092 5093 if (dr6 != 0) { 5094 vcpu->arch.dr6 &= ~15; 5095 vcpu->arch.dr6 |= dr6; 5096 kvm_queue_exception(vcpu, DB_VECTOR); 5097 *r = EMULATE_DONE; 5098 return true; 5099 } 5100 } 5101 5102 return false; 5103 } 5104 5105 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5106 unsigned long cr2, 5107 int emulation_type, 5108 void *insn, 5109 int insn_len) 5110 { 5111 int r; 5112 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5113 bool writeback = true; 5114 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5115 5116 /* 5117 * Clear write_fault_to_shadow_pgtable here to ensure it is 5118 * never reused. 5119 */ 5120 vcpu->arch.write_fault_to_shadow_pgtable = false; 5121 kvm_clear_exception_queue(vcpu); 5122 5123 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5124 init_emulate_ctxt(vcpu); 5125 5126 /* 5127 * We will reenter on the same instruction since 5128 * we do not set complete_userspace_io. This does not 5129 * handle watchpoints yet, those would be handled in 5130 * the emulate_ops. 5131 */ 5132 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5133 return r; 5134 5135 ctxt->interruptibility = 0; 5136 ctxt->have_exception = false; 5137 ctxt->perm_ok = false; 5138 5139 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5140 5141 r = x86_decode_insn(ctxt, insn, insn_len); 5142 5143 trace_kvm_emulate_insn_start(vcpu); 5144 ++vcpu->stat.insn_emulation; 5145 if (r != EMULATION_OK) { 5146 if (emulation_type & EMULTYPE_TRAP_UD) 5147 return EMULATE_FAIL; 5148 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5149 emulation_type)) 5150 return EMULATE_DONE; 5151 if (emulation_type & EMULTYPE_SKIP) 5152 return EMULATE_FAIL; 5153 return handle_emulation_failure(vcpu); 5154 } 5155 } 5156 5157 if (emulation_type & EMULTYPE_SKIP) { 5158 kvm_rip_write(vcpu, ctxt->_eip); 5159 return EMULATE_DONE; 5160 } 5161 5162 if (retry_instruction(ctxt, cr2, emulation_type)) 5163 return EMULATE_DONE; 5164 5165 /* this is needed for vmware backdoor interface to work since it 5166 changes registers values during IO operation */ 5167 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5168 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5169 emulator_invalidate_register_cache(ctxt); 5170 } 5171 5172 restart: 5173 r = x86_emulate_insn(ctxt); 5174 5175 if (r == EMULATION_INTERCEPTED) 5176 return EMULATE_DONE; 5177 5178 if (r == EMULATION_FAILED) { 5179 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5180 emulation_type)) 5181 return EMULATE_DONE; 5182 5183 return handle_emulation_failure(vcpu); 5184 } 5185 5186 if (ctxt->have_exception) { 5187 inject_emulated_exception(vcpu); 5188 r = EMULATE_DONE; 5189 } else if (vcpu->arch.pio.count) { 5190 if (!vcpu->arch.pio.in) { 5191 /* FIXME: return into emulator if single-stepping. */ 5192 vcpu->arch.pio.count = 0; 5193 } else { 5194 writeback = false; 5195 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5196 } 5197 r = EMULATE_USER_EXIT; 5198 } else if (vcpu->mmio_needed) { 5199 if (!vcpu->mmio_is_write) 5200 writeback = false; 5201 r = EMULATE_USER_EXIT; 5202 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5203 } else if (r == EMULATION_RESTART) 5204 goto restart; 5205 else 5206 r = EMULATE_DONE; 5207 5208 if (writeback) { 5209 toggle_interruptibility(vcpu, ctxt->interruptibility); 5210 kvm_make_request(KVM_REQ_EVENT, vcpu); 5211 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5212 kvm_rip_write(vcpu, ctxt->eip); 5213 if (r == EMULATE_DONE) 5214 kvm_vcpu_check_singlestep(vcpu, &r); 5215 kvm_set_rflags(vcpu, ctxt->eflags); 5216 } else 5217 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5218 5219 return r; 5220 } 5221 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5222 5223 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5224 { 5225 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5226 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5227 size, port, &val, 1); 5228 /* do not return to emulator after return from userspace */ 5229 vcpu->arch.pio.count = 0; 5230 return ret; 5231 } 5232 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5233 5234 static void tsc_bad(void *info) 5235 { 5236 __this_cpu_write(cpu_tsc_khz, 0); 5237 } 5238 5239 static void tsc_khz_changed(void *data) 5240 { 5241 struct cpufreq_freqs *freq = data; 5242 unsigned long khz = 0; 5243 5244 if (data) 5245 khz = freq->new; 5246 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5247 khz = cpufreq_quick_get(raw_smp_processor_id()); 5248 if (!khz) 5249 khz = tsc_khz; 5250 __this_cpu_write(cpu_tsc_khz, khz); 5251 } 5252 5253 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5254 void *data) 5255 { 5256 struct cpufreq_freqs *freq = data; 5257 struct kvm *kvm; 5258 struct kvm_vcpu *vcpu; 5259 int i, send_ipi = 0; 5260 5261 /* 5262 * We allow guests to temporarily run on slowing clocks, 5263 * provided we notify them after, or to run on accelerating 5264 * clocks, provided we notify them before. Thus time never 5265 * goes backwards. 5266 * 5267 * However, we have a problem. We can't atomically update 5268 * the frequency of a given CPU from this function; it is 5269 * merely a notifier, which can be called from any CPU. 5270 * Changing the TSC frequency at arbitrary points in time 5271 * requires a recomputation of local variables related to 5272 * the TSC for each VCPU. We must flag these local variables 5273 * to be updated and be sure the update takes place with the 5274 * new frequency before any guests proceed. 5275 * 5276 * Unfortunately, the combination of hotplug CPU and frequency 5277 * change creates an intractable locking scenario; the order 5278 * of when these callouts happen is undefined with respect to 5279 * CPU hotplug, and they can race with each other. As such, 5280 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5281 * undefined; you can actually have a CPU frequency change take 5282 * place in between the computation of X and the setting of the 5283 * variable. To protect against this problem, all updates of 5284 * the per_cpu tsc_khz variable are done in an interrupt 5285 * protected IPI, and all callers wishing to update the value 5286 * must wait for a synchronous IPI to complete (which is trivial 5287 * if the caller is on the CPU already). This establishes the 5288 * necessary total order on variable updates. 5289 * 5290 * Note that because a guest time update may take place 5291 * anytime after the setting of the VCPU's request bit, the 5292 * correct TSC value must be set before the request. However, 5293 * to ensure the update actually makes it to any guest which 5294 * starts running in hardware virtualization between the set 5295 * and the acquisition of the spinlock, we must also ping the 5296 * CPU after setting the request bit. 5297 * 5298 */ 5299 5300 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5301 return 0; 5302 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5303 return 0; 5304 5305 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5306 5307 spin_lock(&kvm_lock); 5308 list_for_each_entry(kvm, &vm_list, vm_list) { 5309 kvm_for_each_vcpu(i, vcpu, kvm) { 5310 if (vcpu->cpu != freq->cpu) 5311 continue; 5312 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5313 if (vcpu->cpu != smp_processor_id()) 5314 send_ipi = 1; 5315 } 5316 } 5317 spin_unlock(&kvm_lock); 5318 5319 if (freq->old < freq->new && send_ipi) { 5320 /* 5321 * We upscale the frequency. Must make the guest 5322 * doesn't see old kvmclock values while running with 5323 * the new frequency, otherwise we risk the guest sees 5324 * time go backwards. 5325 * 5326 * In case we update the frequency for another cpu 5327 * (which might be in guest context) send an interrupt 5328 * to kick the cpu out of guest context. Next time 5329 * guest context is entered kvmclock will be updated, 5330 * so the guest will not see stale values. 5331 */ 5332 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5333 } 5334 return 0; 5335 } 5336 5337 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5338 .notifier_call = kvmclock_cpufreq_notifier 5339 }; 5340 5341 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5342 unsigned long action, void *hcpu) 5343 { 5344 unsigned int cpu = (unsigned long)hcpu; 5345 5346 switch (action) { 5347 case CPU_ONLINE: 5348 case CPU_DOWN_FAILED: 5349 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5350 break; 5351 case CPU_DOWN_PREPARE: 5352 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5353 break; 5354 } 5355 return NOTIFY_OK; 5356 } 5357 5358 static struct notifier_block kvmclock_cpu_notifier_block = { 5359 .notifier_call = kvmclock_cpu_notifier, 5360 .priority = -INT_MAX 5361 }; 5362 5363 static void kvm_timer_init(void) 5364 { 5365 int cpu; 5366 5367 max_tsc_khz = tsc_khz; 5368 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5369 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5370 #ifdef CONFIG_CPU_FREQ 5371 struct cpufreq_policy policy; 5372 memset(&policy, 0, sizeof(policy)); 5373 cpu = get_cpu(); 5374 cpufreq_get_policy(&policy, cpu); 5375 if (policy.cpuinfo.max_freq) 5376 max_tsc_khz = policy.cpuinfo.max_freq; 5377 put_cpu(); 5378 #endif 5379 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5380 CPUFREQ_TRANSITION_NOTIFIER); 5381 } 5382 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5383 for_each_online_cpu(cpu) 5384 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5385 } 5386 5387 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5388 5389 int kvm_is_in_guest(void) 5390 { 5391 return __this_cpu_read(current_vcpu) != NULL; 5392 } 5393 5394 static int kvm_is_user_mode(void) 5395 { 5396 int user_mode = 3; 5397 5398 if (__this_cpu_read(current_vcpu)) 5399 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5400 5401 return user_mode != 0; 5402 } 5403 5404 static unsigned long kvm_get_guest_ip(void) 5405 { 5406 unsigned long ip = 0; 5407 5408 if (__this_cpu_read(current_vcpu)) 5409 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5410 5411 return ip; 5412 } 5413 5414 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5415 .is_in_guest = kvm_is_in_guest, 5416 .is_user_mode = kvm_is_user_mode, 5417 .get_guest_ip = kvm_get_guest_ip, 5418 }; 5419 5420 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5421 { 5422 __this_cpu_write(current_vcpu, vcpu); 5423 } 5424 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5425 5426 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5427 { 5428 __this_cpu_write(current_vcpu, NULL); 5429 } 5430 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5431 5432 static void kvm_set_mmio_spte_mask(void) 5433 { 5434 u64 mask; 5435 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5436 5437 /* 5438 * Set the reserved bits and the present bit of an paging-structure 5439 * entry to generate page fault with PFER.RSV = 1. 5440 */ 5441 /* Mask the reserved physical address bits. */ 5442 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5443 5444 /* Bit 62 is always reserved for 32bit host. */ 5445 mask |= 0x3ull << 62; 5446 5447 /* Set the present bit. */ 5448 mask |= 1ull; 5449 5450 #ifdef CONFIG_X86_64 5451 /* 5452 * If reserved bit is not supported, clear the present bit to disable 5453 * mmio page fault. 5454 */ 5455 if (maxphyaddr == 52) 5456 mask &= ~1ull; 5457 #endif 5458 5459 kvm_mmu_set_mmio_spte_mask(mask); 5460 } 5461 5462 #ifdef CONFIG_X86_64 5463 static void pvclock_gtod_update_fn(struct work_struct *work) 5464 { 5465 struct kvm *kvm; 5466 5467 struct kvm_vcpu *vcpu; 5468 int i; 5469 5470 spin_lock(&kvm_lock); 5471 list_for_each_entry(kvm, &vm_list, vm_list) 5472 kvm_for_each_vcpu(i, vcpu, kvm) 5473 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5474 atomic_set(&kvm_guest_has_master_clock, 0); 5475 spin_unlock(&kvm_lock); 5476 } 5477 5478 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5479 5480 /* 5481 * Notification about pvclock gtod data update. 5482 */ 5483 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5484 void *priv) 5485 { 5486 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5487 struct timekeeper *tk = priv; 5488 5489 update_pvclock_gtod(tk); 5490 5491 /* disable master clock if host does not trust, or does not 5492 * use, TSC clocksource 5493 */ 5494 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5495 atomic_read(&kvm_guest_has_master_clock) != 0) 5496 queue_work(system_long_wq, &pvclock_gtod_work); 5497 5498 return 0; 5499 } 5500 5501 static struct notifier_block pvclock_gtod_notifier = { 5502 .notifier_call = pvclock_gtod_notify, 5503 }; 5504 #endif 5505 5506 int kvm_arch_init(void *opaque) 5507 { 5508 int r; 5509 struct kvm_x86_ops *ops = opaque; 5510 5511 if (kvm_x86_ops) { 5512 printk(KERN_ERR "kvm: already loaded the other module\n"); 5513 r = -EEXIST; 5514 goto out; 5515 } 5516 5517 if (!ops->cpu_has_kvm_support()) { 5518 printk(KERN_ERR "kvm: no hardware support\n"); 5519 r = -EOPNOTSUPP; 5520 goto out; 5521 } 5522 if (ops->disabled_by_bios()) { 5523 printk(KERN_ERR "kvm: disabled by bios\n"); 5524 r = -EOPNOTSUPP; 5525 goto out; 5526 } 5527 5528 r = -ENOMEM; 5529 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5530 if (!shared_msrs) { 5531 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5532 goto out; 5533 } 5534 5535 r = kvm_mmu_module_init(); 5536 if (r) 5537 goto out_free_percpu; 5538 5539 kvm_set_mmio_spte_mask(); 5540 kvm_init_msr_list(); 5541 5542 kvm_x86_ops = ops; 5543 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5544 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5545 5546 kvm_timer_init(); 5547 5548 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5549 5550 if (cpu_has_xsave) 5551 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5552 5553 kvm_lapic_init(); 5554 #ifdef CONFIG_X86_64 5555 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5556 #endif 5557 5558 return 0; 5559 5560 out_free_percpu: 5561 free_percpu(shared_msrs); 5562 out: 5563 return r; 5564 } 5565 5566 void kvm_arch_exit(void) 5567 { 5568 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5569 5570 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5571 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5572 CPUFREQ_TRANSITION_NOTIFIER); 5573 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5574 #ifdef CONFIG_X86_64 5575 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5576 #endif 5577 kvm_x86_ops = NULL; 5578 kvm_mmu_module_exit(); 5579 free_percpu(shared_msrs); 5580 } 5581 5582 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5583 { 5584 ++vcpu->stat.halt_exits; 5585 if (irqchip_in_kernel(vcpu->kvm)) { 5586 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5587 return 1; 5588 } else { 5589 vcpu->run->exit_reason = KVM_EXIT_HLT; 5590 return 0; 5591 } 5592 } 5593 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5594 5595 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5596 { 5597 u64 param, ingpa, outgpa, ret; 5598 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5599 bool fast, longmode; 5600 int cs_db, cs_l; 5601 5602 /* 5603 * hypercall generates UD from non zero cpl and real mode 5604 * per HYPER-V spec 5605 */ 5606 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5607 kvm_queue_exception(vcpu, UD_VECTOR); 5608 return 0; 5609 } 5610 5611 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5612 longmode = is_long_mode(vcpu) && cs_l == 1; 5613 5614 if (!longmode) { 5615 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5616 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5617 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5618 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5619 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5620 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5621 } 5622 #ifdef CONFIG_X86_64 5623 else { 5624 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5625 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5626 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5627 } 5628 #endif 5629 5630 code = param & 0xffff; 5631 fast = (param >> 16) & 0x1; 5632 rep_cnt = (param >> 32) & 0xfff; 5633 rep_idx = (param >> 48) & 0xfff; 5634 5635 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5636 5637 switch (code) { 5638 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5639 kvm_vcpu_on_spin(vcpu); 5640 break; 5641 default: 5642 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5643 break; 5644 } 5645 5646 ret = res | (((u64)rep_done & 0xfff) << 32); 5647 if (longmode) { 5648 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5649 } else { 5650 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5651 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5652 } 5653 5654 return 1; 5655 } 5656 5657 /* 5658 * kvm_pv_kick_cpu_op: Kick a vcpu. 5659 * 5660 * @apicid - apicid of vcpu to be kicked. 5661 */ 5662 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5663 { 5664 struct kvm_lapic_irq lapic_irq; 5665 5666 lapic_irq.shorthand = 0; 5667 lapic_irq.dest_mode = 0; 5668 lapic_irq.dest_id = apicid; 5669 5670 lapic_irq.delivery_mode = APIC_DM_REMRD; 5671 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5672 } 5673 5674 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5675 { 5676 unsigned long nr, a0, a1, a2, a3, ret; 5677 int r = 1; 5678 5679 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5680 return kvm_hv_hypercall(vcpu); 5681 5682 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5683 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5684 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5685 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5686 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5687 5688 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5689 5690 if (!is_long_mode(vcpu)) { 5691 nr &= 0xFFFFFFFF; 5692 a0 &= 0xFFFFFFFF; 5693 a1 &= 0xFFFFFFFF; 5694 a2 &= 0xFFFFFFFF; 5695 a3 &= 0xFFFFFFFF; 5696 } 5697 5698 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5699 ret = -KVM_EPERM; 5700 goto out; 5701 } 5702 5703 switch (nr) { 5704 case KVM_HC_VAPIC_POLL_IRQ: 5705 ret = 0; 5706 break; 5707 case KVM_HC_KICK_CPU: 5708 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5709 ret = 0; 5710 break; 5711 default: 5712 ret = -KVM_ENOSYS; 5713 break; 5714 } 5715 out: 5716 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5717 ++vcpu->stat.hypercalls; 5718 return r; 5719 } 5720 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5721 5722 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5723 { 5724 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5725 char instruction[3]; 5726 unsigned long rip = kvm_rip_read(vcpu); 5727 5728 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5729 5730 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5731 } 5732 5733 /* 5734 * Check if userspace requested an interrupt window, and that the 5735 * interrupt window is open. 5736 * 5737 * No need to exit to userspace if we already have an interrupt queued. 5738 */ 5739 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5740 { 5741 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5742 vcpu->run->request_interrupt_window && 5743 kvm_arch_interrupt_allowed(vcpu)); 5744 } 5745 5746 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5747 { 5748 struct kvm_run *kvm_run = vcpu->run; 5749 5750 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5751 kvm_run->cr8 = kvm_get_cr8(vcpu); 5752 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5753 if (irqchip_in_kernel(vcpu->kvm)) 5754 kvm_run->ready_for_interrupt_injection = 1; 5755 else 5756 kvm_run->ready_for_interrupt_injection = 5757 kvm_arch_interrupt_allowed(vcpu) && 5758 !kvm_cpu_has_interrupt(vcpu) && 5759 !kvm_event_needs_reinjection(vcpu); 5760 } 5761 5762 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5763 { 5764 int max_irr, tpr; 5765 5766 if (!kvm_x86_ops->update_cr8_intercept) 5767 return; 5768 5769 if (!vcpu->arch.apic) 5770 return; 5771 5772 if (!vcpu->arch.apic->vapic_addr) 5773 max_irr = kvm_lapic_find_highest_irr(vcpu); 5774 else 5775 max_irr = -1; 5776 5777 if (max_irr != -1) 5778 max_irr >>= 4; 5779 5780 tpr = kvm_lapic_get_cr8(vcpu); 5781 5782 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5783 } 5784 5785 static void inject_pending_event(struct kvm_vcpu *vcpu) 5786 { 5787 /* try to reinject previous events if any */ 5788 if (vcpu->arch.exception.pending) { 5789 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5790 vcpu->arch.exception.has_error_code, 5791 vcpu->arch.exception.error_code); 5792 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5793 vcpu->arch.exception.has_error_code, 5794 vcpu->arch.exception.error_code, 5795 vcpu->arch.exception.reinject); 5796 return; 5797 } 5798 5799 if (vcpu->arch.nmi_injected) { 5800 kvm_x86_ops->set_nmi(vcpu); 5801 return; 5802 } 5803 5804 if (vcpu->arch.interrupt.pending) { 5805 kvm_x86_ops->set_irq(vcpu); 5806 return; 5807 } 5808 5809 /* try to inject new event if pending */ 5810 if (vcpu->arch.nmi_pending) { 5811 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5812 --vcpu->arch.nmi_pending; 5813 vcpu->arch.nmi_injected = true; 5814 kvm_x86_ops->set_nmi(vcpu); 5815 } 5816 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5817 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5818 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5819 false); 5820 kvm_x86_ops->set_irq(vcpu); 5821 } 5822 } 5823 } 5824 5825 static void process_nmi(struct kvm_vcpu *vcpu) 5826 { 5827 unsigned limit = 2; 5828 5829 /* 5830 * x86 is limited to one NMI running, and one NMI pending after it. 5831 * If an NMI is already in progress, limit further NMIs to just one. 5832 * Otherwise, allow two (and we'll inject the first one immediately). 5833 */ 5834 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5835 limit = 1; 5836 5837 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5838 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5839 kvm_make_request(KVM_REQ_EVENT, vcpu); 5840 } 5841 5842 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5843 { 5844 u64 eoi_exit_bitmap[4]; 5845 u32 tmr[8]; 5846 5847 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5848 return; 5849 5850 memset(eoi_exit_bitmap, 0, 32); 5851 memset(tmr, 0, 32); 5852 5853 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5854 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5855 kvm_apic_update_tmr(vcpu, tmr); 5856 } 5857 5858 /* 5859 * Returns 1 to let __vcpu_run() continue the guest execution loop without 5860 * exiting to the userspace. Otherwise, the value will be returned to the 5861 * userspace. 5862 */ 5863 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5864 { 5865 int r; 5866 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5867 vcpu->run->request_interrupt_window; 5868 bool req_immediate_exit = false; 5869 5870 if (vcpu->requests) { 5871 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5872 kvm_mmu_unload(vcpu); 5873 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5874 __kvm_migrate_timers(vcpu); 5875 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5876 kvm_gen_update_masterclock(vcpu->kvm); 5877 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5878 kvm_gen_kvmclock_update(vcpu); 5879 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5880 r = kvm_guest_time_update(vcpu); 5881 if (unlikely(r)) 5882 goto out; 5883 } 5884 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5885 kvm_mmu_sync_roots(vcpu); 5886 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5887 kvm_x86_ops->tlb_flush(vcpu); 5888 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5889 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5890 r = 0; 5891 goto out; 5892 } 5893 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5894 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5895 r = 0; 5896 goto out; 5897 } 5898 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5899 vcpu->fpu_active = 0; 5900 kvm_x86_ops->fpu_deactivate(vcpu); 5901 } 5902 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5903 /* Page is swapped out. Do synthetic halt */ 5904 vcpu->arch.apf.halted = true; 5905 r = 1; 5906 goto out; 5907 } 5908 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5909 record_steal_time(vcpu); 5910 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5911 process_nmi(vcpu); 5912 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5913 kvm_handle_pmu_event(vcpu); 5914 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5915 kvm_deliver_pmi(vcpu); 5916 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5917 vcpu_scan_ioapic(vcpu); 5918 } 5919 5920 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5921 kvm_apic_accept_events(vcpu); 5922 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5923 r = 1; 5924 goto out; 5925 } 5926 5927 inject_pending_event(vcpu); 5928 5929 /* enable NMI/IRQ window open exits if needed */ 5930 if (vcpu->arch.nmi_pending) 5931 req_immediate_exit = 5932 kvm_x86_ops->enable_nmi_window(vcpu) != 0; 5933 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 5934 req_immediate_exit = 5935 kvm_x86_ops->enable_irq_window(vcpu) != 0; 5936 5937 if (kvm_lapic_enabled(vcpu)) { 5938 /* 5939 * Update architecture specific hints for APIC 5940 * virtual interrupt delivery. 5941 */ 5942 if (kvm_x86_ops->hwapic_irr_update) 5943 kvm_x86_ops->hwapic_irr_update(vcpu, 5944 kvm_lapic_find_highest_irr(vcpu)); 5945 update_cr8_intercept(vcpu); 5946 kvm_lapic_sync_to_vapic(vcpu); 5947 } 5948 } 5949 5950 r = kvm_mmu_reload(vcpu); 5951 if (unlikely(r)) { 5952 goto cancel_injection; 5953 } 5954 5955 preempt_disable(); 5956 5957 kvm_x86_ops->prepare_guest_switch(vcpu); 5958 if (vcpu->fpu_active) 5959 kvm_load_guest_fpu(vcpu); 5960 kvm_load_guest_xcr0(vcpu); 5961 5962 vcpu->mode = IN_GUEST_MODE; 5963 5964 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5965 5966 /* We should set ->mode before check ->requests, 5967 * see the comment in make_all_cpus_request. 5968 */ 5969 smp_mb__after_srcu_read_unlock(); 5970 5971 local_irq_disable(); 5972 5973 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5974 || need_resched() || signal_pending(current)) { 5975 vcpu->mode = OUTSIDE_GUEST_MODE; 5976 smp_wmb(); 5977 local_irq_enable(); 5978 preempt_enable(); 5979 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5980 r = 1; 5981 goto cancel_injection; 5982 } 5983 5984 if (req_immediate_exit) 5985 smp_send_reschedule(vcpu->cpu); 5986 5987 kvm_guest_enter(); 5988 5989 if (unlikely(vcpu->arch.switch_db_regs)) { 5990 set_debugreg(0, 7); 5991 set_debugreg(vcpu->arch.eff_db[0], 0); 5992 set_debugreg(vcpu->arch.eff_db[1], 1); 5993 set_debugreg(vcpu->arch.eff_db[2], 2); 5994 set_debugreg(vcpu->arch.eff_db[3], 3); 5995 } 5996 5997 trace_kvm_entry(vcpu->vcpu_id); 5998 kvm_x86_ops->run(vcpu); 5999 6000 /* 6001 * If the guest has used debug registers, at least dr7 6002 * will be disabled while returning to the host. 6003 * If we don't have active breakpoints in the host, we don't 6004 * care about the messed up debug address registers. But if 6005 * we have some of them active, restore the old state. 6006 */ 6007 if (hw_breakpoint_active()) 6008 hw_breakpoint_restore(); 6009 6010 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6011 native_read_tsc()); 6012 6013 vcpu->mode = OUTSIDE_GUEST_MODE; 6014 smp_wmb(); 6015 6016 /* Interrupt is enabled by handle_external_intr() */ 6017 kvm_x86_ops->handle_external_intr(vcpu); 6018 6019 ++vcpu->stat.exits; 6020 6021 /* 6022 * We must have an instruction between local_irq_enable() and 6023 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6024 * the interrupt shadow. The stat.exits increment will do nicely. 6025 * But we need to prevent reordering, hence this barrier(): 6026 */ 6027 barrier(); 6028 6029 kvm_guest_exit(); 6030 6031 preempt_enable(); 6032 6033 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6034 6035 /* 6036 * Profile KVM exit RIPs: 6037 */ 6038 if (unlikely(prof_on == KVM_PROFILING)) { 6039 unsigned long rip = kvm_rip_read(vcpu); 6040 profile_hit(KVM_PROFILING, (void *)rip); 6041 } 6042 6043 if (unlikely(vcpu->arch.tsc_always_catchup)) 6044 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6045 6046 if (vcpu->arch.apic_attention) 6047 kvm_lapic_sync_from_vapic(vcpu); 6048 6049 r = kvm_x86_ops->handle_exit(vcpu); 6050 return r; 6051 6052 cancel_injection: 6053 kvm_x86_ops->cancel_injection(vcpu); 6054 if (unlikely(vcpu->arch.apic_attention)) 6055 kvm_lapic_sync_from_vapic(vcpu); 6056 out: 6057 return r; 6058 } 6059 6060 6061 static int __vcpu_run(struct kvm_vcpu *vcpu) 6062 { 6063 int r; 6064 struct kvm *kvm = vcpu->kvm; 6065 6066 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6067 6068 r = 1; 6069 while (r > 0) { 6070 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6071 !vcpu->arch.apf.halted) 6072 r = vcpu_enter_guest(vcpu); 6073 else { 6074 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6075 kvm_vcpu_block(vcpu); 6076 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6077 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6078 kvm_apic_accept_events(vcpu); 6079 switch(vcpu->arch.mp_state) { 6080 case KVM_MP_STATE_HALTED: 6081 vcpu->arch.pv.pv_unhalted = false; 6082 vcpu->arch.mp_state = 6083 KVM_MP_STATE_RUNNABLE; 6084 case KVM_MP_STATE_RUNNABLE: 6085 vcpu->arch.apf.halted = false; 6086 break; 6087 case KVM_MP_STATE_INIT_RECEIVED: 6088 break; 6089 default: 6090 r = -EINTR; 6091 break; 6092 } 6093 } 6094 } 6095 6096 if (r <= 0) 6097 break; 6098 6099 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6100 if (kvm_cpu_has_pending_timer(vcpu)) 6101 kvm_inject_pending_timer_irqs(vcpu); 6102 6103 if (dm_request_for_irq_injection(vcpu)) { 6104 r = -EINTR; 6105 vcpu->run->exit_reason = KVM_EXIT_INTR; 6106 ++vcpu->stat.request_irq_exits; 6107 } 6108 6109 kvm_check_async_pf_completion(vcpu); 6110 6111 if (signal_pending(current)) { 6112 r = -EINTR; 6113 vcpu->run->exit_reason = KVM_EXIT_INTR; 6114 ++vcpu->stat.signal_exits; 6115 } 6116 if (need_resched()) { 6117 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6118 cond_resched(); 6119 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6120 } 6121 } 6122 6123 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6124 6125 return r; 6126 } 6127 6128 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6129 { 6130 int r; 6131 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6132 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6133 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6134 if (r != EMULATE_DONE) 6135 return 0; 6136 return 1; 6137 } 6138 6139 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6140 { 6141 BUG_ON(!vcpu->arch.pio.count); 6142 6143 return complete_emulated_io(vcpu); 6144 } 6145 6146 /* 6147 * Implements the following, as a state machine: 6148 * 6149 * read: 6150 * for each fragment 6151 * for each mmio piece in the fragment 6152 * write gpa, len 6153 * exit 6154 * copy data 6155 * execute insn 6156 * 6157 * write: 6158 * for each fragment 6159 * for each mmio piece in the fragment 6160 * write gpa, len 6161 * copy data 6162 * exit 6163 */ 6164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6165 { 6166 struct kvm_run *run = vcpu->run; 6167 struct kvm_mmio_fragment *frag; 6168 unsigned len; 6169 6170 BUG_ON(!vcpu->mmio_needed); 6171 6172 /* Complete previous fragment */ 6173 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6174 len = min(8u, frag->len); 6175 if (!vcpu->mmio_is_write) 6176 memcpy(frag->data, run->mmio.data, len); 6177 6178 if (frag->len <= 8) { 6179 /* Switch to the next fragment. */ 6180 frag++; 6181 vcpu->mmio_cur_fragment++; 6182 } else { 6183 /* Go forward to the next mmio piece. */ 6184 frag->data += len; 6185 frag->gpa += len; 6186 frag->len -= len; 6187 } 6188 6189 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 6190 vcpu->mmio_needed = 0; 6191 6192 /* FIXME: return into emulator if single-stepping. */ 6193 if (vcpu->mmio_is_write) 6194 return 1; 6195 vcpu->mmio_read_completed = 1; 6196 return complete_emulated_io(vcpu); 6197 } 6198 6199 run->exit_reason = KVM_EXIT_MMIO; 6200 run->mmio.phys_addr = frag->gpa; 6201 if (vcpu->mmio_is_write) 6202 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6203 run->mmio.len = min(8u, frag->len); 6204 run->mmio.is_write = vcpu->mmio_is_write; 6205 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6206 return 0; 6207 } 6208 6209 6210 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6211 { 6212 int r; 6213 sigset_t sigsaved; 6214 6215 if (!tsk_used_math(current) && init_fpu(current)) 6216 return -ENOMEM; 6217 6218 if (vcpu->sigset_active) 6219 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6220 6221 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6222 kvm_vcpu_block(vcpu); 6223 kvm_apic_accept_events(vcpu); 6224 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6225 r = -EAGAIN; 6226 goto out; 6227 } 6228 6229 /* re-sync apic's tpr */ 6230 if (!irqchip_in_kernel(vcpu->kvm)) { 6231 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6232 r = -EINVAL; 6233 goto out; 6234 } 6235 } 6236 6237 if (unlikely(vcpu->arch.complete_userspace_io)) { 6238 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6239 vcpu->arch.complete_userspace_io = NULL; 6240 r = cui(vcpu); 6241 if (r <= 0) 6242 goto out; 6243 } else 6244 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6245 6246 r = __vcpu_run(vcpu); 6247 6248 out: 6249 post_kvm_run_save(vcpu); 6250 if (vcpu->sigset_active) 6251 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6252 6253 return r; 6254 } 6255 6256 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6257 { 6258 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6259 /* 6260 * We are here if userspace calls get_regs() in the middle of 6261 * instruction emulation. Registers state needs to be copied 6262 * back from emulation context to vcpu. Userspace shouldn't do 6263 * that usually, but some bad designed PV devices (vmware 6264 * backdoor interface) need this to work 6265 */ 6266 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6267 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6268 } 6269 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6270 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6271 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6272 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6273 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6274 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6275 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6276 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6277 #ifdef CONFIG_X86_64 6278 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6279 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6280 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6281 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6282 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6283 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6284 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6285 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6286 #endif 6287 6288 regs->rip = kvm_rip_read(vcpu); 6289 regs->rflags = kvm_get_rflags(vcpu); 6290 6291 return 0; 6292 } 6293 6294 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6295 { 6296 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6297 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6298 6299 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6300 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6301 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6302 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6303 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6304 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6305 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6306 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6307 #ifdef CONFIG_X86_64 6308 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6309 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6310 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6311 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6312 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6313 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6314 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6315 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6316 #endif 6317 6318 kvm_rip_write(vcpu, regs->rip); 6319 kvm_set_rflags(vcpu, regs->rflags); 6320 6321 vcpu->arch.exception.pending = false; 6322 6323 kvm_make_request(KVM_REQ_EVENT, vcpu); 6324 6325 return 0; 6326 } 6327 6328 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6329 { 6330 struct kvm_segment cs; 6331 6332 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6333 *db = cs.db; 6334 *l = cs.l; 6335 } 6336 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6337 6338 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6339 struct kvm_sregs *sregs) 6340 { 6341 struct desc_ptr dt; 6342 6343 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6344 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6345 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6346 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6347 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6348 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6349 6350 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6351 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6352 6353 kvm_x86_ops->get_idt(vcpu, &dt); 6354 sregs->idt.limit = dt.size; 6355 sregs->idt.base = dt.address; 6356 kvm_x86_ops->get_gdt(vcpu, &dt); 6357 sregs->gdt.limit = dt.size; 6358 sregs->gdt.base = dt.address; 6359 6360 sregs->cr0 = kvm_read_cr0(vcpu); 6361 sregs->cr2 = vcpu->arch.cr2; 6362 sregs->cr3 = kvm_read_cr3(vcpu); 6363 sregs->cr4 = kvm_read_cr4(vcpu); 6364 sregs->cr8 = kvm_get_cr8(vcpu); 6365 sregs->efer = vcpu->arch.efer; 6366 sregs->apic_base = kvm_get_apic_base(vcpu); 6367 6368 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6369 6370 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6371 set_bit(vcpu->arch.interrupt.nr, 6372 (unsigned long *)sregs->interrupt_bitmap); 6373 6374 return 0; 6375 } 6376 6377 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6378 struct kvm_mp_state *mp_state) 6379 { 6380 kvm_apic_accept_events(vcpu); 6381 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6382 vcpu->arch.pv.pv_unhalted) 6383 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6384 else 6385 mp_state->mp_state = vcpu->arch.mp_state; 6386 6387 return 0; 6388 } 6389 6390 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6391 struct kvm_mp_state *mp_state) 6392 { 6393 if (!kvm_vcpu_has_lapic(vcpu) && 6394 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6395 return -EINVAL; 6396 6397 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6398 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6399 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6400 } else 6401 vcpu->arch.mp_state = mp_state->mp_state; 6402 kvm_make_request(KVM_REQ_EVENT, vcpu); 6403 return 0; 6404 } 6405 6406 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6407 int reason, bool has_error_code, u32 error_code) 6408 { 6409 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6410 int ret; 6411 6412 init_emulate_ctxt(vcpu); 6413 6414 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6415 has_error_code, error_code); 6416 6417 if (ret) 6418 return EMULATE_FAIL; 6419 6420 kvm_rip_write(vcpu, ctxt->eip); 6421 kvm_set_rflags(vcpu, ctxt->eflags); 6422 kvm_make_request(KVM_REQ_EVENT, vcpu); 6423 return EMULATE_DONE; 6424 } 6425 EXPORT_SYMBOL_GPL(kvm_task_switch); 6426 6427 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6428 struct kvm_sregs *sregs) 6429 { 6430 struct msr_data apic_base_msr; 6431 int mmu_reset_needed = 0; 6432 int pending_vec, max_bits, idx; 6433 struct desc_ptr dt; 6434 6435 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6436 return -EINVAL; 6437 6438 dt.size = sregs->idt.limit; 6439 dt.address = sregs->idt.base; 6440 kvm_x86_ops->set_idt(vcpu, &dt); 6441 dt.size = sregs->gdt.limit; 6442 dt.address = sregs->gdt.base; 6443 kvm_x86_ops->set_gdt(vcpu, &dt); 6444 6445 vcpu->arch.cr2 = sregs->cr2; 6446 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6447 vcpu->arch.cr3 = sregs->cr3; 6448 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6449 6450 kvm_set_cr8(vcpu, sregs->cr8); 6451 6452 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6453 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6454 apic_base_msr.data = sregs->apic_base; 6455 apic_base_msr.host_initiated = true; 6456 kvm_set_apic_base(vcpu, &apic_base_msr); 6457 6458 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6459 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6460 vcpu->arch.cr0 = sregs->cr0; 6461 6462 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6463 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6464 if (sregs->cr4 & X86_CR4_OSXSAVE) 6465 kvm_update_cpuid(vcpu); 6466 6467 idx = srcu_read_lock(&vcpu->kvm->srcu); 6468 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6469 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6470 mmu_reset_needed = 1; 6471 } 6472 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6473 6474 if (mmu_reset_needed) 6475 kvm_mmu_reset_context(vcpu); 6476 6477 max_bits = KVM_NR_INTERRUPTS; 6478 pending_vec = find_first_bit( 6479 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6480 if (pending_vec < max_bits) { 6481 kvm_queue_interrupt(vcpu, pending_vec, false); 6482 pr_debug("Set back pending irq %d\n", pending_vec); 6483 } 6484 6485 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6486 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6487 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6488 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6489 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6490 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6491 6492 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6493 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6494 6495 update_cr8_intercept(vcpu); 6496 6497 /* Older userspace won't unhalt the vcpu on reset. */ 6498 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6499 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6500 !is_protmode(vcpu)) 6501 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6502 6503 kvm_make_request(KVM_REQ_EVENT, vcpu); 6504 6505 return 0; 6506 } 6507 6508 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6509 struct kvm_guest_debug *dbg) 6510 { 6511 unsigned long rflags; 6512 int i, r; 6513 6514 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6515 r = -EBUSY; 6516 if (vcpu->arch.exception.pending) 6517 goto out; 6518 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6519 kvm_queue_exception(vcpu, DB_VECTOR); 6520 else 6521 kvm_queue_exception(vcpu, BP_VECTOR); 6522 } 6523 6524 /* 6525 * Read rflags as long as potentially injected trace flags are still 6526 * filtered out. 6527 */ 6528 rflags = kvm_get_rflags(vcpu); 6529 6530 vcpu->guest_debug = dbg->control; 6531 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6532 vcpu->guest_debug = 0; 6533 6534 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6535 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6536 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6537 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6538 } else { 6539 for (i = 0; i < KVM_NR_DB_REGS; i++) 6540 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6541 } 6542 kvm_update_dr7(vcpu); 6543 6544 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6545 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6546 get_segment_base(vcpu, VCPU_SREG_CS); 6547 6548 /* 6549 * Trigger an rflags update that will inject or remove the trace 6550 * flags. 6551 */ 6552 kvm_set_rflags(vcpu, rflags); 6553 6554 kvm_x86_ops->update_db_bp_intercept(vcpu); 6555 6556 r = 0; 6557 6558 out: 6559 6560 return r; 6561 } 6562 6563 /* 6564 * Translate a guest virtual address to a guest physical address. 6565 */ 6566 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6567 struct kvm_translation *tr) 6568 { 6569 unsigned long vaddr = tr->linear_address; 6570 gpa_t gpa; 6571 int idx; 6572 6573 idx = srcu_read_lock(&vcpu->kvm->srcu); 6574 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6575 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6576 tr->physical_address = gpa; 6577 tr->valid = gpa != UNMAPPED_GVA; 6578 tr->writeable = 1; 6579 tr->usermode = 0; 6580 6581 return 0; 6582 } 6583 6584 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6585 { 6586 struct i387_fxsave_struct *fxsave = 6587 &vcpu->arch.guest_fpu.state->fxsave; 6588 6589 memcpy(fpu->fpr, fxsave->st_space, 128); 6590 fpu->fcw = fxsave->cwd; 6591 fpu->fsw = fxsave->swd; 6592 fpu->ftwx = fxsave->twd; 6593 fpu->last_opcode = fxsave->fop; 6594 fpu->last_ip = fxsave->rip; 6595 fpu->last_dp = fxsave->rdp; 6596 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6597 6598 return 0; 6599 } 6600 6601 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6602 { 6603 struct i387_fxsave_struct *fxsave = 6604 &vcpu->arch.guest_fpu.state->fxsave; 6605 6606 memcpy(fxsave->st_space, fpu->fpr, 128); 6607 fxsave->cwd = fpu->fcw; 6608 fxsave->swd = fpu->fsw; 6609 fxsave->twd = fpu->ftwx; 6610 fxsave->fop = fpu->last_opcode; 6611 fxsave->rip = fpu->last_ip; 6612 fxsave->rdp = fpu->last_dp; 6613 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6614 6615 return 0; 6616 } 6617 6618 int fx_init(struct kvm_vcpu *vcpu) 6619 { 6620 int err; 6621 6622 err = fpu_alloc(&vcpu->arch.guest_fpu); 6623 if (err) 6624 return err; 6625 6626 fpu_finit(&vcpu->arch.guest_fpu); 6627 6628 /* 6629 * Ensure guest xcr0 is valid for loading 6630 */ 6631 vcpu->arch.xcr0 = XSTATE_FP; 6632 6633 vcpu->arch.cr0 |= X86_CR0_ET; 6634 6635 return 0; 6636 } 6637 EXPORT_SYMBOL_GPL(fx_init); 6638 6639 static void fx_free(struct kvm_vcpu *vcpu) 6640 { 6641 fpu_free(&vcpu->arch.guest_fpu); 6642 } 6643 6644 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6645 { 6646 if (vcpu->guest_fpu_loaded) 6647 return; 6648 6649 /* 6650 * Restore all possible states in the guest, 6651 * and assume host would use all available bits. 6652 * Guest xcr0 would be loaded later. 6653 */ 6654 kvm_put_guest_xcr0(vcpu); 6655 vcpu->guest_fpu_loaded = 1; 6656 __kernel_fpu_begin(); 6657 fpu_restore_checking(&vcpu->arch.guest_fpu); 6658 trace_kvm_fpu(1); 6659 } 6660 6661 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6662 { 6663 kvm_put_guest_xcr0(vcpu); 6664 6665 if (!vcpu->guest_fpu_loaded) 6666 return; 6667 6668 vcpu->guest_fpu_loaded = 0; 6669 fpu_save_init(&vcpu->arch.guest_fpu); 6670 __kernel_fpu_end(); 6671 ++vcpu->stat.fpu_reload; 6672 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6673 trace_kvm_fpu(0); 6674 } 6675 6676 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6677 { 6678 kvmclock_reset(vcpu); 6679 6680 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6681 fx_free(vcpu); 6682 kvm_x86_ops->vcpu_free(vcpu); 6683 } 6684 6685 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6686 unsigned int id) 6687 { 6688 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6689 printk_once(KERN_WARNING 6690 "kvm: SMP vm created on host with unstable TSC; " 6691 "guest TSC will not be reliable\n"); 6692 return kvm_x86_ops->vcpu_create(kvm, id); 6693 } 6694 6695 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6696 { 6697 int r; 6698 6699 vcpu->arch.mtrr_state.have_fixed = 1; 6700 r = vcpu_load(vcpu); 6701 if (r) 6702 return r; 6703 kvm_vcpu_reset(vcpu); 6704 kvm_mmu_setup(vcpu); 6705 vcpu_put(vcpu); 6706 6707 return r; 6708 } 6709 6710 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6711 { 6712 int r; 6713 struct msr_data msr; 6714 6715 r = vcpu_load(vcpu); 6716 if (r) 6717 return r; 6718 msr.data = 0x0; 6719 msr.index = MSR_IA32_TSC; 6720 msr.host_initiated = true; 6721 kvm_write_tsc(vcpu, &msr); 6722 vcpu_put(vcpu); 6723 6724 return r; 6725 } 6726 6727 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6728 { 6729 int r; 6730 vcpu->arch.apf.msr_val = 0; 6731 6732 r = vcpu_load(vcpu); 6733 BUG_ON(r); 6734 kvm_mmu_unload(vcpu); 6735 vcpu_put(vcpu); 6736 6737 fx_free(vcpu); 6738 kvm_x86_ops->vcpu_free(vcpu); 6739 } 6740 6741 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6742 { 6743 atomic_set(&vcpu->arch.nmi_queued, 0); 6744 vcpu->arch.nmi_pending = 0; 6745 vcpu->arch.nmi_injected = false; 6746 6747 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6748 vcpu->arch.dr6 = DR6_FIXED_1; 6749 kvm_update_dr6(vcpu); 6750 vcpu->arch.dr7 = DR7_FIXED_1; 6751 kvm_update_dr7(vcpu); 6752 6753 kvm_make_request(KVM_REQ_EVENT, vcpu); 6754 vcpu->arch.apf.msr_val = 0; 6755 vcpu->arch.st.msr_val = 0; 6756 6757 kvmclock_reset(vcpu); 6758 6759 kvm_clear_async_pf_completion_queue(vcpu); 6760 kvm_async_pf_hash_reset(vcpu); 6761 vcpu->arch.apf.halted = false; 6762 6763 kvm_pmu_reset(vcpu); 6764 6765 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6766 vcpu->arch.regs_avail = ~0; 6767 vcpu->arch.regs_dirty = ~0; 6768 6769 kvm_x86_ops->vcpu_reset(vcpu); 6770 } 6771 6772 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6773 { 6774 struct kvm_segment cs; 6775 6776 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6777 cs.selector = vector << 8; 6778 cs.base = vector << 12; 6779 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6780 kvm_rip_write(vcpu, 0); 6781 } 6782 6783 int kvm_arch_hardware_enable(void *garbage) 6784 { 6785 struct kvm *kvm; 6786 struct kvm_vcpu *vcpu; 6787 int i; 6788 int ret; 6789 u64 local_tsc; 6790 u64 max_tsc = 0; 6791 bool stable, backwards_tsc = false; 6792 6793 kvm_shared_msr_cpu_online(); 6794 ret = kvm_x86_ops->hardware_enable(garbage); 6795 if (ret != 0) 6796 return ret; 6797 6798 local_tsc = native_read_tsc(); 6799 stable = !check_tsc_unstable(); 6800 list_for_each_entry(kvm, &vm_list, vm_list) { 6801 kvm_for_each_vcpu(i, vcpu, kvm) { 6802 if (!stable && vcpu->cpu == smp_processor_id()) 6803 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6804 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6805 backwards_tsc = true; 6806 if (vcpu->arch.last_host_tsc > max_tsc) 6807 max_tsc = vcpu->arch.last_host_tsc; 6808 } 6809 } 6810 } 6811 6812 /* 6813 * Sometimes, even reliable TSCs go backwards. This happens on 6814 * platforms that reset TSC during suspend or hibernate actions, but 6815 * maintain synchronization. We must compensate. Fortunately, we can 6816 * detect that condition here, which happens early in CPU bringup, 6817 * before any KVM threads can be running. Unfortunately, we can't 6818 * bring the TSCs fully up to date with real time, as we aren't yet far 6819 * enough into CPU bringup that we know how much real time has actually 6820 * elapsed; our helper function, get_kernel_ns() will be using boot 6821 * variables that haven't been updated yet. 6822 * 6823 * So we simply find the maximum observed TSC above, then record the 6824 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6825 * the adjustment will be applied. Note that we accumulate 6826 * adjustments, in case multiple suspend cycles happen before some VCPU 6827 * gets a chance to run again. In the event that no KVM threads get a 6828 * chance to run, we will miss the entire elapsed period, as we'll have 6829 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6830 * loose cycle time. This isn't too big a deal, since the loss will be 6831 * uniform across all VCPUs (not to mention the scenario is extremely 6832 * unlikely). It is possible that a second hibernate recovery happens 6833 * much faster than a first, causing the observed TSC here to be 6834 * smaller; this would require additional padding adjustment, which is 6835 * why we set last_host_tsc to the local tsc observed here. 6836 * 6837 * N.B. - this code below runs only on platforms with reliable TSC, 6838 * as that is the only way backwards_tsc is set above. Also note 6839 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6840 * have the same delta_cyc adjustment applied if backwards_tsc 6841 * is detected. Note further, this adjustment is only done once, 6842 * as we reset last_host_tsc on all VCPUs to stop this from being 6843 * called multiple times (one for each physical CPU bringup). 6844 * 6845 * Platforms with unreliable TSCs don't have to deal with this, they 6846 * will be compensated by the logic in vcpu_load, which sets the TSC to 6847 * catchup mode. This will catchup all VCPUs to real time, but cannot 6848 * guarantee that they stay in perfect synchronization. 6849 */ 6850 if (backwards_tsc) { 6851 u64 delta_cyc = max_tsc - local_tsc; 6852 list_for_each_entry(kvm, &vm_list, vm_list) { 6853 kvm_for_each_vcpu(i, vcpu, kvm) { 6854 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6855 vcpu->arch.last_host_tsc = local_tsc; 6856 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6857 &vcpu->requests); 6858 } 6859 6860 /* 6861 * We have to disable TSC offset matching.. if you were 6862 * booting a VM while issuing an S4 host suspend.... 6863 * you may have some problem. Solving this issue is 6864 * left as an exercise to the reader. 6865 */ 6866 kvm->arch.last_tsc_nsec = 0; 6867 kvm->arch.last_tsc_write = 0; 6868 } 6869 6870 } 6871 return 0; 6872 } 6873 6874 void kvm_arch_hardware_disable(void *garbage) 6875 { 6876 kvm_x86_ops->hardware_disable(garbage); 6877 drop_user_return_notifiers(garbage); 6878 } 6879 6880 int kvm_arch_hardware_setup(void) 6881 { 6882 return kvm_x86_ops->hardware_setup(); 6883 } 6884 6885 void kvm_arch_hardware_unsetup(void) 6886 { 6887 kvm_x86_ops->hardware_unsetup(); 6888 } 6889 6890 void kvm_arch_check_processor_compat(void *rtn) 6891 { 6892 kvm_x86_ops->check_processor_compatibility(rtn); 6893 } 6894 6895 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6896 { 6897 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6898 } 6899 6900 struct static_key kvm_no_apic_vcpu __read_mostly; 6901 6902 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6903 { 6904 struct page *page; 6905 struct kvm *kvm; 6906 int r; 6907 6908 BUG_ON(vcpu->kvm == NULL); 6909 kvm = vcpu->kvm; 6910 6911 vcpu->arch.pv.pv_unhalted = false; 6912 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6913 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6914 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6915 else 6916 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6917 6918 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6919 if (!page) { 6920 r = -ENOMEM; 6921 goto fail; 6922 } 6923 vcpu->arch.pio_data = page_address(page); 6924 6925 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6926 6927 r = kvm_mmu_create(vcpu); 6928 if (r < 0) 6929 goto fail_free_pio_data; 6930 6931 if (irqchip_in_kernel(kvm)) { 6932 r = kvm_create_lapic(vcpu); 6933 if (r < 0) 6934 goto fail_mmu_destroy; 6935 } else 6936 static_key_slow_inc(&kvm_no_apic_vcpu); 6937 6938 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6939 GFP_KERNEL); 6940 if (!vcpu->arch.mce_banks) { 6941 r = -ENOMEM; 6942 goto fail_free_lapic; 6943 } 6944 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6945 6946 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 6947 r = -ENOMEM; 6948 goto fail_free_mce_banks; 6949 } 6950 6951 r = fx_init(vcpu); 6952 if (r) 6953 goto fail_free_wbinvd_dirty_mask; 6954 6955 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6956 vcpu->arch.pv_time_enabled = false; 6957 6958 vcpu->arch.guest_supported_xcr0 = 0; 6959 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 6960 6961 kvm_async_pf_hash_reset(vcpu); 6962 kvm_pmu_init(vcpu); 6963 6964 return 0; 6965 fail_free_wbinvd_dirty_mask: 6966 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6967 fail_free_mce_banks: 6968 kfree(vcpu->arch.mce_banks); 6969 fail_free_lapic: 6970 kvm_free_lapic(vcpu); 6971 fail_mmu_destroy: 6972 kvm_mmu_destroy(vcpu); 6973 fail_free_pio_data: 6974 free_page((unsigned long)vcpu->arch.pio_data); 6975 fail: 6976 return r; 6977 } 6978 6979 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6980 { 6981 int idx; 6982 6983 kvm_pmu_destroy(vcpu); 6984 kfree(vcpu->arch.mce_banks); 6985 kvm_free_lapic(vcpu); 6986 idx = srcu_read_lock(&vcpu->kvm->srcu); 6987 kvm_mmu_destroy(vcpu); 6988 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6989 free_page((unsigned long)vcpu->arch.pio_data); 6990 if (!irqchip_in_kernel(vcpu->kvm)) 6991 static_key_slow_dec(&kvm_no_apic_vcpu); 6992 } 6993 6994 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6995 { 6996 if (type) 6997 return -EINVAL; 6998 6999 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7000 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7001 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7002 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7003 7004 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7005 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7006 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7007 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7008 &kvm->arch.irq_sources_bitmap); 7009 7010 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7011 mutex_init(&kvm->arch.apic_map_lock); 7012 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7013 7014 pvclock_update_vm_gtod_copy(kvm); 7015 7016 return 0; 7017 } 7018 7019 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7020 { 7021 int r; 7022 r = vcpu_load(vcpu); 7023 BUG_ON(r); 7024 kvm_mmu_unload(vcpu); 7025 vcpu_put(vcpu); 7026 } 7027 7028 static void kvm_free_vcpus(struct kvm *kvm) 7029 { 7030 unsigned int i; 7031 struct kvm_vcpu *vcpu; 7032 7033 /* 7034 * Unpin any mmu pages first. 7035 */ 7036 kvm_for_each_vcpu(i, vcpu, kvm) { 7037 kvm_clear_async_pf_completion_queue(vcpu); 7038 kvm_unload_vcpu_mmu(vcpu); 7039 } 7040 kvm_for_each_vcpu(i, vcpu, kvm) 7041 kvm_arch_vcpu_free(vcpu); 7042 7043 mutex_lock(&kvm->lock); 7044 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7045 kvm->vcpus[i] = NULL; 7046 7047 atomic_set(&kvm->online_vcpus, 0); 7048 mutex_unlock(&kvm->lock); 7049 } 7050 7051 void kvm_arch_sync_events(struct kvm *kvm) 7052 { 7053 kvm_free_all_assigned_devices(kvm); 7054 kvm_free_pit(kvm); 7055 } 7056 7057 void kvm_arch_destroy_vm(struct kvm *kvm) 7058 { 7059 if (current->mm == kvm->mm) { 7060 /* 7061 * Free memory regions allocated on behalf of userspace, 7062 * unless the the memory map has changed due to process exit 7063 * or fd copying. 7064 */ 7065 struct kvm_userspace_memory_region mem; 7066 memset(&mem, 0, sizeof(mem)); 7067 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7068 kvm_set_memory_region(kvm, &mem); 7069 7070 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7071 kvm_set_memory_region(kvm, &mem); 7072 7073 mem.slot = TSS_PRIVATE_MEMSLOT; 7074 kvm_set_memory_region(kvm, &mem); 7075 } 7076 kvm_iommu_unmap_guest(kvm); 7077 kfree(kvm->arch.vpic); 7078 kfree(kvm->arch.vioapic); 7079 kvm_free_vcpus(kvm); 7080 if (kvm->arch.apic_access_page) 7081 put_page(kvm->arch.apic_access_page); 7082 if (kvm->arch.ept_identity_pagetable) 7083 put_page(kvm->arch.ept_identity_pagetable); 7084 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7085 } 7086 7087 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7088 struct kvm_memory_slot *dont) 7089 { 7090 int i; 7091 7092 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7093 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7094 kvm_kvfree(free->arch.rmap[i]); 7095 free->arch.rmap[i] = NULL; 7096 } 7097 if (i == 0) 7098 continue; 7099 7100 if (!dont || free->arch.lpage_info[i - 1] != 7101 dont->arch.lpage_info[i - 1]) { 7102 kvm_kvfree(free->arch.lpage_info[i - 1]); 7103 free->arch.lpage_info[i - 1] = NULL; 7104 } 7105 } 7106 } 7107 7108 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7109 unsigned long npages) 7110 { 7111 int i; 7112 7113 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7114 unsigned long ugfn; 7115 int lpages; 7116 int level = i + 1; 7117 7118 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7119 slot->base_gfn, level) + 1; 7120 7121 slot->arch.rmap[i] = 7122 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7123 if (!slot->arch.rmap[i]) 7124 goto out_free; 7125 if (i == 0) 7126 continue; 7127 7128 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7129 sizeof(*slot->arch.lpage_info[i - 1])); 7130 if (!slot->arch.lpage_info[i - 1]) 7131 goto out_free; 7132 7133 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7134 slot->arch.lpage_info[i - 1][0].write_count = 1; 7135 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7136 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7137 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7138 /* 7139 * If the gfn and userspace address are not aligned wrt each 7140 * other, or if explicitly asked to, disable large page 7141 * support for this slot 7142 */ 7143 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7144 !kvm_largepages_enabled()) { 7145 unsigned long j; 7146 7147 for (j = 0; j < lpages; ++j) 7148 slot->arch.lpage_info[i - 1][j].write_count = 1; 7149 } 7150 } 7151 7152 return 0; 7153 7154 out_free: 7155 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7156 kvm_kvfree(slot->arch.rmap[i]); 7157 slot->arch.rmap[i] = NULL; 7158 if (i == 0) 7159 continue; 7160 7161 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7162 slot->arch.lpage_info[i - 1] = NULL; 7163 } 7164 return -ENOMEM; 7165 } 7166 7167 void kvm_arch_memslots_updated(struct kvm *kvm) 7168 { 7169 /* 7170 * memslots->generation has been incremented. 7171 * mmio generation may have reached its maximum value. 7172 */ 7173 kvm_mmu_invalidate_mmio_sptes(kvm); 7174 } 7175 7176 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7177 struct kvm_memory_slot *memslot, 7178 struct kvm_userspace_memory_region *mem, 7179 enum kvm_mr_change change) 7180 { 7181 /* 7182 * Only private memory slots need to be mapped here since 7183 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7184 */ 7185 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7186 unsigned long userspace_addr; 7187 7188 /* 7189 * MAP_SHARED to prevent internal slot pages from being moved 7190 * by fork()/COW. 7191 */ 7192 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7193 PROT_READ | PROT_WRITE, 7194 MAP_SHARED | MAP_ANONYMOUS, 0); 7195 7196 if (IS_ERR((void *)userspace_addr)) 7197 return PTR_ERR((void *)userspace_addr); 7198 7199 memslot->userspace_addr = userspace_addr; 7200 } 7201 7202 return 0; 7203 } 7204 7205 void kvm_arch_commit_memory_region(struct kvm *kvm, 7206 struct kvm_userspace_memory_region *mem, 7207 const struct kvm_memory_slot *old, 7208 enum kvm_mr_change change) 7209 { 7210 7211 int nr_mmu_pages = 0; 7212 7213 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7214 int ret; 7215 7216 ret = vm_munmap(old->userspace_addr, 7217 old->npages * PAGE_SIZE); 7218 if (ret < 0) 7219 printk(KERN_WARNING 7220 "kvm_vm_ioctl_set_memory_region: " 7221 "failed to munmap memory\n"); 7222 } 7223 7224 if (!kvm->arch.n_requested_mmu_pages) 7225 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7226 7227 if (nr_mmu_pages) 7228 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7229 /* 7230 * Write protect all pages for dirty logging. 7231 * Existing largepage mappings are destroyed here and new ones will 7232 * not be created until the end of the logging. 7233 */ 7234 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7235 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7236 } 7237 7238 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7239 { 7240 kvm_mmu_invalidate_zap_all_pages(kvm); 7241 } 7242 7243 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7244 struct kvm_memory_slot *slot) 7245 { 7246 kvm_mmu_invalidate_zap_all_pages(kvm); 7247 } 7248 7249 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7250 { 7251 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7252 !vcpu->arch.apf.halted) 7253 || !list_empty_careful(&vcpu->async_pf.done) 7254 || kvm_apic_has_events(vcpu) 7255 || vcpu->arch.pv.pv_unhalted 7256 || atomic_read(&vcpu->arch.nmi_queued) || 7257 (kvm_arch_interrupt_allowed(vcpu) && 7258 kvm_cpu_has_interrupt(vcpu)); 7259 } 7260 7261 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7262 { 7263 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7264 } 7265 7266 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7267 { 7268 return kvm_x86_ops->interrupt_allowed(vcpu); 7269 } 7270 7271 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7272 { 7273 unsigned long current_rip = kvm_rip_read(vcpu) + 7274 get_segment_base(vcpu, VCPU_SREG_CS); 7275 7276 return current_rip == linear_rip; 7277 } 7278 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7279 7280 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7281 { 7282 unsigned long rflags; 7283 7284 rflags = kvm_x86_ops->get_rflags(vcpu); 7285 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7286 rflags &= ~X86_EFLAGS_TF; 7287 return rflags; 7288 } 7289 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7290 7291 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7292 { 7293 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7294 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7295 rflags |= X86_EFLAGS_TF; 7296 kvm_x86_ops->set_rflags(vcpu, rflags); 7297 kvm_make_request(KVM_REQ_EVENT, vcpu); 7298 } 7299 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7300 7301 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7302 { 7303 int r; 7304 7305 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7306 work->wakeup_all) 7307 return; 7308 7309 r = kvm_mmu_reload(vcpu); 7310 if (unlikely(r)) 7311 return; 7312 7313 if (!vcpu->arch.mmu.direct_map && 7314 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7315 return; 7316 7317 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7318 } 7319 7320 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7321 { 7322 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7323 } 7324 7325 static inline u32 kvm_async_pf_next_probe(u32 key) 7326 { 7327 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7328 } 7329 7330 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7331 { 7332 u32 key = kvm_async_pf_hash_fn(gfn); 7333 7334 while (vcpu->arch.apf.gfns[key] != ~0) 7335 key = kvm_async_pf_next_probe(key); 7336 7337 vcpu->arch.apf.gfns[key] = gfn; 7338 } 7339 7340 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7341 { 7342 int i; 7343 u32 key = kvm_async_pf_hash_fn(gfn); 7344 7345 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7346 (vcpu->arch.apf.gfns[key] != gfn && 7347 vcpu->arch.apf.gfns[key] != ~0); i++) 7348 key = kvm_async_pf_next_probe(key); 7349 7350 return key; 7351 } 7352 7353 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7354 { 7355 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7356 } 7357 7358 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7359 { 7360 u32 i, j, k; 7361 7362 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7363 while (true) { 7364 vcpu->arch.apf.gfns[i] = ~0; 7365 do { 7366 j = kvm_async_pf_next_probe(j); 7367 if (vcpu->arch.apf.gfns[j] == ~0) 7368 return; 7369 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7370 /* 7371 * k lies cyclically in ]i,j] 7372 * | i.k.j | 7373 * |....j i.k.| or |.k..j i...| 7374 */ 7375 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7376 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7377 i = j; 7378 } 7379 } 7380 7381 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7382 { 7383 7384 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7385 sizeof(val)); 7386 } 7387 7388 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7389 struct kvm_async_pf *work) 7390 { 7391 struct x86_exception fault; 7392 7393 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7394 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7395 7396 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7397 (vcpu->arch.apf.send_user_only && 7398 kvm_x86_ops->get_cpl(vcpu) == 0)) 7399 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7400 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7401 fault.vector = PF_VECTOR; 7402 fault.error_code_valid = true; 7403 fault.error_code = 0; 7404 fault.nested_page_fault = false; 7405 fault.address = work->arch.token; 7406 kvm_inject_page_fault(vcpu, &fault); 7407 } 7408 } 7409 7410 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7411 struct kvm_async_pf *work) 7412 { 7413 struct x86_exception fault; 7414 7415 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7416 if (work->wakeup_all) 7417 work->arch.token = ~0; /* broadcast wakeup */ 7418 else 7419 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7420 7421 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7422 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7423 fault.vector = PF_VECTOR; 7424 fault.error_code_valid = true; 7425 fault.error_code = 0; 7426 fault.nested_page_fault = false; 7427 fault.address = work->arch.token; 7428 kvm_inject_page_fault(vcpu, &fault); 7429 } 7430 vcpu->arch.apf.halted = false; 7431 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7432 } 7433 7434 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7435 { 7436 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7437 return true; 7438 else 7439 return !kvm_event_needs_reinjection(vcpu) && 7440 kvm_x86_ops->interrupt_allowed(vcpu); 7441 } 7442 7443 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7444 { 7445 atomic_inc(&kvm->arch.noncoherent_dma_count); 7446 } 7447 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7448 7449 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7450 { 7451 atomic_dec(&kvm->arch.noncoherent_dma_count); 7452 } 7453 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7454 7455 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7456 { 7457 return atomic_read(&kvm->arch.noncoherent_dma_count); 7458 } 7459 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7460 7461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7474