1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 61 #include <trace/events/kvm.h> 62 63 #include <asm/debugreg.h> 64 #include <asm/msr.h> 65 #include <asm/desc.h> 66 #include <asm/mce.h> 67 #include <linux/kernel_stat.h> 68 #include <asm/fpu/internal.h> /* Ugh! */ 69 #include <asm/pvclock.h> 70 #include <asm/div64.h> 71 #include <asm/irq_remapping.h> 72 #include <asm/mshyperv.h> 73 #include <asm/hypervisor.h> 74 #include <asm/tlbflush.h> 75 #include <asm/intel_pt.h> 76 #include <asm/emulate_prefix.h> 77 #include <clocksource/hyperv_timer.h> 78 79 #define CREATE_TRACE_POINTS 80 #include "trace.h" 81 82 #define MAX_IO_MSRS 256 83 #define KVM_MAX_MCE_BANKS 32 84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 86 87 #define emul_to_vcpu(ctxt) \ 88 ((struct kvm_vcpu *)(ctxt)->vcpu) 89 90 /* EFER defaults: 91 * - enable syscall per default because its emulated by KVM 92 * - enable LME and LMA per default on 64 bit KVM 93 */ 94 #ifdef CONFIG_X86_64 95 static 96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 97 #else 98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 99 #endif 100 101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 /* 166 * Restoring the host value for MSRs that are only consumed when running in 167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 168 * returns to userspace, i.e. the kernel can run with the guest's value. 169 */ 170 #define KVM_MAX_NR_USER_RETURN_MSRS 16 171 172 struct kvm_user_return_msrs_global { 173 int nr; 174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 175 }; 176 177 struct kvm_user_return_msrs { 178 struct user_return_notifier urn; 179 bool registered; 180 struct kvm_user_return_msr_values { 181 u64 host; 182 u64 curr; 183 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 184 }; 185 186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 187 static struct kvm_user_return_msrs __percpu *user_return_msrs; 188 189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 192 | XFEATURE_MASK_PKRU) 193 194 u64 __read_mostly host_efer; 195 EXPORT_SYMBOL_GPL(host_efer); 196 197 bool __read_mostly allow_smaller_maxphyaddr = 0; 198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 199 200 static u64 __read_mostly host_xss; 201 u64 __read_mostly supported_xss; 202 EXPORT_SYMBOL_GPL(supported_xss); 203 204 struct kvm_stats_debugfs_item debugfs_entries[] = { 205 VCPU_STAT("pf_fixed", pf_fixed), 206 VCPU_STAT("pf_guest", pf_guest), 207 VCPU_STAT("tlb_flush", tlb_flush), 208 VCPU_STAT("invlpg", invlpg), 209 VCPU_STAT("exits", exits), 210 VCPU_STAT("io_exits", io_exits), 211 VCPU_STAT("mmio_exits", mmio_exits), 212 VCPU_STAT("signal_exits", signal_exits), 213 VCPU_STAT("irq_window", irq_window_exits), 214 VCPU_STAT("nmi_window", nmi_window_exits), 215 VCPU_STAT("halt_exits", halt_exits), 216 VCPU_STAT("halt_successful_poll", halt_successful_poll), 217 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 218 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 219 VCPU_STAT("halt_wakeup", halt_wakeup), 220 VCPU_STAT("hypercalls", hypercalls), 221 VCPU_STAT("request_irq", request_irq_exits), 222 VCPU_STAT("irq_exits", irq_exits), 223 VCPU_STAT("host_state_reload", host_state_reload), 224 VCPU_STAT("fpu_reload", fpu_reload), 225 VCPU_STAT("insn_emulation", insn_emulation), 226 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 227 VCPU_STAT("irq_injections", irq_injections), 228 VCPU_STAT("nmi_injections", nmi_injections), 229 VCPU_STAT("req_event", req_event), 230 VCPU_STAT("l1d_flush", l1d_flush), 231 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 232 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 233 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 234 VM_STAT("mmu_pte_write", mmu_pte_write), 235 VM_STAT("mmu_pte_updated", mmu_pte_updated), 236 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 237 VM_STAT("mmu_flooded", mmu_flooded), 238 VM_STAT("mmu_recycled", mmu_recycled), 239 VM_STAT("mmu_cache_miss", mmu_cache_miss), 240 VM_STAT("mmu_unsync", mmu_unsync), 241 VM_STAT("remote_tlb_flush", remote_tlb_flush), 242 VM_STAT("largepages", lpages, .mode = 0444), 243 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 244 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 245 { NULL } 246 }; 247 248 u64 __read_mostly host_xcr0; 249 u64 __read_mostly supported_xcr0; 250 EXPORT_SYMBOL_GPL(supported_xcr0); 251 252 static struct kmem_cache *x86_fpu_cache; 253 254 static struct kmem_cache *x86_emulator_cache; 255 256 /* 257 * When called, it means the previous get/set msr reached an invalid msr. 258 * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want 259 * to fail the caller. 260 */ 261 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 262 u64 data, bool write) 263 { 264 const char *op = write ? "wrmsr" : "rdmsr"; 265 266 if (ignore_msrs) { 267 if (report_ignored_msrs) 268 vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n", 269 op, msr, data); 270 /* Mask the error */ 271 return 0; 272 } else { 273 vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n", 274 op, msr, data); 275 return -ENOENT; 276 } 277 } 278 279 static struct kmem_cache *kvm_alloc_emulator_cache(void) 280 { 281 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 282 unsigned int size = sizeof(struct x86_emulate_ctxt); 283 284 return kmem_cache_create_usercopy("x86_emulator", size, 285 __alignof__(struct x86_emulate_ctxt), 286 SLAB_ACCOUNT, useroffset, 287 size - useroffset, NULL); 288 } 289 290 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 291 292 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 293 { 294 int i; 295 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 296 vcpu->arch.apf.gfns[i] = ~0; 297 } 298 299 static void kvm_on_user_return(struct user_return_notifier *urn) 300 { 301 unsigned slot; 302 struct kvm_user_return_msrs *msrs 303 = container_of(urn, struct kvm_user_return_msrs, urn); 304 struct kvm_user_return_msr_values *values; 305 unsigned long flags; 306 307 /* 308 * Disabling irqs at this point since the following code could be 309 * interrupted and executed through kvm_arch_hardware_disable() 310 */ 311 local_irq_save(flags); 312 if (msrs->registered) { 313 msrs->registered = false; 314 user_return_notifier_unregister(urn); 315 } 316 local_irq_restore(flags); 317 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 318 values = &msrs->values[slot]; 319 if (values->host != values->curr) { 320 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 321 values->curr = values->host; 322 } 323 } 324 } 325 326 void kvm_define_user_return_msr(unsigned slot, u32 msr) 327 { 328 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 329 user_return_msrs_global.msrs[slot] = msr; 330 if (slot >= user_return_msrs_global.nr) 331 user_return_msrs_global.nr = slot + 1; 332 } 333 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 334 335 static void kvm_user_return_msr_cpu_online(void) 336 { 337 unsigned int cpu = smp_processor_id(); 338 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 339 u64 value; 340 int i; 341 342 for (i = 0; i < user_return_msrs_global.nr; ++i) { 343 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 344 msrs->values[i].host = value; 345 msrs->values[i].curr = value; 346 } 347 } 348 349 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 350 { 351 unsigned int cpu = smp_processor_id(); 352 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 353 int err; 354 355 value = (value & mask) | (msrs->values[slot].host & ~mask); 356 if (value == msrs->values[slot].curr) 357 return 0; 358 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 359 if (err) 360 return 1; 361 362 msrs->values[slot].curr = value; 363 if (!msrs->registered) { 364 msrs->urn.on_user_return = kvm_on_user_return; 365 user_return_notifier_register(&msrs->urn); 366 msrs->registered = true; 367 } 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 371 372 static void drop_user_return_notifiers(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 376 377 if (msrs->registered) 378 kvm_on_user_return(&msrs->urn); 379 } 380 381 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 382 { 383 return vcpu->arch.apic_base; 384 } 385 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 386 387 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 388 { 389 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 390 } 391 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 392 393 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 394 { 395 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 396 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 397 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 398 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 399 400 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 401 return 1; 402 if (!msr_info->host_initiated) { 403 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 404 return 1; 405 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 406 return 1; 407 } 408 409 kvm_lapic_set_base(vcpu, msr_info->data); 410 kvm_recalculate_apic_map(vcpu->kvm); 411 return 0; 412 } 413 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 414 415 asmlinkage __visible noinstr void kvm_spurious_fault(void) 416 { 417 /* Fault while not rebooting. We want the trace. */ 418 BUG_ON(!kvm_rebooting); 419 } 420 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 421 422 #define EXCPT_BENIGN 0 423 #define EXCPT_CONTRIBUTORY 1 424 #define EXCPT_PF 2 425 426 static int exception_class(int vector) 427 { 428 switch (vector) { 429 case PF_VECTOR: 430 return EXCPT_PF; 431 case DE_VECTOR: 432 case TS_VECTOR: 433 case NP_VECTOR: 434 case SS_VECTOR: 435 case GP_VECTOR: 436 return EXCPT_CONTRIBUTORY; 437 default: 438 break; 439 } 440 return EXCPT_BENIGN; 441 } 442 443 #define EXCPT_FAULT 0 444 #define EXCPT_TRAP 1 445 #define EXCPT_ABORT 2 446 #define EXCPT_INTERRUPT 3 447 448 static int exception_type(int vector) 449 { 450 unsigned int mask; 451 452 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 453 return EXCPT_INTERRUPT; 454 455 mask = 1 << vector; 456 457 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 458 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 459 return EXCPT_TRAP; 460 461 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 462 return EXCPT_ABORT; 463 464 /* Reserved exceptions will result in fault */ 465 return EXCPT_FAULT; 466 } 467 468 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 469 { 470 unsigned nr = vcpu->arch.exception.nr; 471 bool has_payload = vcpu->arch.exception.has_payload; 472 unsigned long payload = vcpu->arch.exception.payload; 473 474 if (!has_payload) 475 return; 476 477 switch (nr) { 478 case DB_VECTOR: 479 /* 480 * "Certain debug exceptions may clear bit 0-3. The 481 * remaining contents of the DR6 register are never 482 * cleared by the processor". 483 */ 484 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 485 /* 486 * DR6.RTM is set by all #DB exceptions that don't clear it. 487 */ 488 vcpu->arch.dr6 |= DR6_RTM; 489 vcpu->arch.dr6 |= payload; 490 /* 491 * Bit 16 should be set in the payload whenever the #DB 492 * exception should clear DR6.RTM. This makes the payload 493 * compatible with the pending debug exceptions under VMX. 494 * Though not currently documented in the SDM, this also 495 * makes the payload compatible with the exit qualification 496 * for #DB exceptions under VMX. 497 */ 498 vcpu->arch.dr6 ^= payload & DR6_RTM; 499 500 /* 501 * The #DB payload is defined as compatible with the 'pending 502 * debug exceptions' field under VMX, not DR6. While bit 12 is 503 * defined in the 'pending debug exceptions' field (enabled 504 * breakpoint), it is reserved and must be zero in DR6. 505 */ 506 vcpu->arch.dr6 &= ~BIT(12); 507 break; 508 case PF_VECTOR: 509 vcpu->arch.cr2 = payload; 510 break; 511 } 512 513 vcpu->arch.exception.has_payload = false; 514 vcpu->arch.exception.payload = 0; 515 } 516 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 517 518 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 519 unsigned nr, bool has_error, u32 error_code, 520 bool has_payload, unsigned long payload, bool reinject) 521 { 522 u32 prev_nr; 523 int class1, class2; 524 525 kvm_make_request(KVM_REQ_EVENT, vcpu); 526 527 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 528 queue: 529 if (has_error && !is_protmode(vcpu)) 530 has_error = false; 531 if (reinject) { 532 /* 533 * On vmentry, vcpu->arch.exception.pending is only 534 * true if an event injection was blocked by 535 * nested_run_pending. In that case, however, 536 * vcpu_enter_guest requests an immediate exit, 537 * and the guest shouldn't proceed far enough to 538 * need reinjection. 539 */ 540 WARN_ON_ONCE(vcpu->arch.exception.pending); 541 vcpu->arch.exception.injected = true; 542 if (WARN_ON_ONCE(has_payload)) { 543 /* 544 * A reinjected event has already 545 * delivered its payload. 546 */ 547 has_payload = false; 548 payload = 0; 549 } 550 } else { 551 vcpu->arch.exception.pending = true; 552 vcpu->arch.exception.injected = false; 553 } 554 vcpu->arch.exception.has_error_code = has_error; 555 vcpu->arch.exception.nr = nr; 556 vcpu->arch.exception.error_code = error_code; 557 vcpu->arch.exception.has_payload = has_payload; 558 vcpu->arch.exception.payload = payload; 559 if (!is_guest_mode(vcpu)) 560 kvm_deliver_exception_payload(vcpu); 561 return; 562 } 563 564 /* to check exception */ 565 prev_nr = vcpu->arch.exception.nr; 566 if (prev_nr == DF_VECTOR) { 567 /* triple fault -> shutdown */ 568 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 569 return; 570 } 571 class1 = exception_class(prev_nr); 572 class2 = exception_class(nr); 573 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 574 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 575 /* 576 * Generate double fault per SDM Table 5-5. Set 577 * exception.pending = true so that the double fault 578 * can trigger a nested vmexit. 579 */ 580 vcpu->arch.exception.pending = true; 581 vcpu->arch.exception.injected = false; 582 vcpu->arch.exception.has_error_code = true; 583 vcpu->arch.exception.nr = DF_VECTOR; 584 vcpu->arch.exception.error_code = 0; 585 vcpu->arch.exception.has_payload = false; 586 vcpu->arch.exception.payload = 0; 587 } else 588 /* replace previous exception with a new one in a hope 589 that instruction re-execution will regenerate lost 590 exception */ 591 goto queue; 592 } 593 594 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 595 { 596 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 597 } 598 EXPORT_SYMBOL_GPL(kvm_queue_exception); 599 600 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 601 { 602 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 603 } 604 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 605 606 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 607 unsigned long payload) 608 { 609 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 610 } 611 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 612 613 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 614 u32 error_code, unsigned long payload) 615 { 616 kvm_multiple_exception(vcpu, nr, true, error_code, 617 true, payload, false); 618 } 619 620 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 621 { 622 if (err) 623 kvm_inject_gp(vcpu, 0); 624 else 625 return kvm_skip_emulated_instruction(vcpu); 626 627 return 1; 628 } 629 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 630 631 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 632 { 633 ++vcpu->stat.pf_guest; 634 vcpu->arch.exception.nested_apf = 635 is_guest_mode(vcpu) && fault->async_page_fault; 636 if (vcpu->arch.exception.nested_apf) { 637 vcpu->arch.apf.nested_apf_token = fault->address; 638 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 639 } else { 640 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 641 fault->address); 642 } 643 } 644 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 645 646 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 647 struct x86_exception *fault) 648 { 649 struct kvm_mmu *fault_mmu; 650 WARN_ON_ONCE(fault->vector != PF_VECTOR); 651 652 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 653 vcpu->arch.walk_mmu; 654 655 /* 656 * Invalidate the TLB entry for the faulting address, if it exists, 657 * else the access will fault indefinitely (and to emulate hardware). 658 */ 659 if ((fault->error_code & PFERR_PRESENT_MASK) && 660 !(fault->error_code & PFERR_RSVD_MASK)) 661 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 662 fault_mmu->root_hpa); 663 664 fault_mmu->inject_page_fault(vcpu, fault); 665 return fault->nested_page_fault; 666 } 667 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 668 669 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 670 { 671 atomic_inc(&vcpu->arch.nmi_queued); 672 kvm_make_request(KVM_REQ_NMI, vcpu); 673 } 674 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 675 676 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 677 { 678 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 679 } 680 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 681 682 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 683 { 684 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 685 } 686 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 687 688 /* 689 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 690 * a #GP and return false. 691 */ 692 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 693 { 694 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 695 return true; 696 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 697 return false; 698 } 699 EXPORT_SYMBOL_GPL(kvm_require_cpl); 700 701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 702 { 703 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 704 return true; 705 706 kvm_queue_exception(vcpu, UD_VECTOR); 707 return false; 708 } 709 EXPORT_SYMBOL_GPL(kvm_require_dr); 710 711 /* 712 * This function will be used to read from the physical memory of the currently 713 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 714 * can read from guest physical or from the guest's guest physical memory. 715 */ 716 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 717 gfn_t ngfn, void *data, int offset, int len, 718 u32 access) 719 { 720 struct x86_exception exception; 721 gfn_t real_gfn; 722 gpa_t ngpa; 723 724 ngpa = gfn_to_gpa(ngfn); 725 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 726 if (real_gfn == UNMAPPED_GVA) 727 return -EFAULT; 728 729 real_gfn = gpa_to_gfn(real_gfn); 730 731 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 732 } 733 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 734 735 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 736 void *data, int offset, int len, u32 access) 737 { 738 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 739 data, offset, len, access); 740 } 741 742 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 743 { 744 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 745 rsvd_bits(1, 2); 746 } 747 748 /* 749 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 750 */ 751 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 752 { 753 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 754 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 755 int i; 756 int ret; 757 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 758 759 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 760 offset * sizeof(u64), sizeof(pdpte), 761 PFERR_USER_MASK|PFERR_WRITE_MASK); 762 if (ret < 0) { 763 ret = 0; 764 goto out; 765 } 766 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 767 if ((pdpte[i] & PT_PRESENT_MASK) && 768 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 769 ret = 0; 770 goto out; 771 } 772 } 773 ret = 1; 774 775 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 776 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 777 778 out: 779 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(load_pdptrs); 783 784 bool pdptrs_changed(struct kvm_vcpu *vcpu) 785 { 786 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 787 int offset; 788 gfn_t gfn; 789 int r; 790 791 if (!is_pae_paging(vcpu)) 792 return false; 793 794 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 795 return true; 796 797 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 798 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 799 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 800 PFERR_USER_MASK | PFERR_WRITE_MASK); 801 if (r < 0) 802 return true; 803 804 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 805 } 806 EXPORT_SYMBOL_GPL(pdptrs_changed); 807 808 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 809 { 810 unsigned long old_cr0 = kvm_read_cr0(vcpu); 811 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 812 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 813 814 cr0 |= X86_CR0_ET; 815 816 #ifdef CONFIG_X86_64 817 if (cr0 & 0xffffffff00000000UL) 818 return 1; 819 #endif 820 821 cr0 &= ~CR0_RESERVED_BITS; 822 823 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 824 return 1; 825 826 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 827 return 1; 828 829 #ifdef CONFIG_X86_64 830 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 831 (cr0 & X86_CR0_PG)) { 832 int cs_db, cs_l; 833 834 if (!is_pae(vcpu)) 835 return 1; 836 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 837 if (cs_l) 838 return 1; 839 } 840 #endif 841 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 842 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 843 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 844 return 1; 845 846 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 847 return 1; 848 849 kvm_x86_ops.set_cr0(vcpu, cr0); 850 851 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 852 kvm_clear_async_pf_completion_queue(vcpu); 853 kvm_async_pf_hash_reset(vcpu); 854 } 855 856 if ((cr0 ^ old_cr0) & update_bits) 857 kvm_mmu_reset_context(vcpu); 858 859 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 860 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 861 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 862 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 863 864 return 0; 865 } 866 EXPORT_SYMBOL_GPL(kvm_set_cr0); 867 868 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 869 { 870 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 871 } 872 EXPORT_SYMBOL_GPL(kvm_lmsw); 873 874 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 875 { 876 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 877 878 if (vcpu->arch.xcr0 != host_xcr0) 879 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 880 881 if (vcpu->arch.xsaves_enabled && 882 vcpu->arch.ia32_xss != host_xss) 883 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 884 } 885 886 if (static_cpu_has(X86_FEATURE_PKU) && 887 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 888 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 889 vcpu->arch.pkru != vcpu->arch.host_pkru) 890 __write_pkru(vcpu->arch.pkru); 891 } 892 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 893 894 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 895 { 896 if (static_cpu_has(X86_FEATURE_PKU) && 897 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 898 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 899 vcpu->arch.pkru = rdpkru(); 900 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 901 __write_pkru(vcpu->arch.host_pkru); 902 } 903 904 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 905 906 if (vcpu->arch.xcr0 != host_xcr0) 907 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 908 909 if (vcpu->arch.xsaves_enabled && 910 vcpu->arch.ia32_xss != host_xss) 911 wrmsrl(MSR_IA32_XSS, host_xss); 912 } 913 914 } 915 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 916 917 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 918 { 919 u64 xcr0 = xcr; 920 u64 old_xcr0 = vcpu->arch.xcr0; 921 u64 valid_bits; 922 923 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 924 if (index != XCR_XFEATURE_ENABLED_MASK) 925 return 1; 926 if (!(xcr0 & XFEATURE_MASK_FP)) 927 return 1; 928 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 929 return 1; 930 931 /* 932 * Do not allow the guest to set bits that we do not support 933 * saving. However, xcr0 bit 0 is always set, even if the 934 * emulated CPU does not support XSAVE (see fx_init). 935 */ 936 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 937 if (xcr0 & ~valid_bits) 938 return 1; 939 940 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 941 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 942 return 1; 943 944 if (xcr0 & XFEATURE_MASK_AVX512) { 945 if (!(xcr0 & XFEATURE_MASK_YMM)) 946 return 1; 947 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 948 return 1; 949 } 950 vcpu->arch.xcr0 = xcr0; 951 952 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 953 kvm_update_cpuid_runtime(vcpu); 954 return 0; 955 } 956 957 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 958 { 959 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 960 __kvm_set_xcr(vcpu, index, xcr)) { 961 kvm_inject_gp(vcpu, 0); 962 return 1; 963 } 964 return 0; 965 } 966 EXPORT_SYMBOL_GPL(kvm_set_xcr); 967 968 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 969 { 970 if (cr4 & cr4_reserved_bits) 971 return -EINVAL; 972 973 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 974 return -EINVAL; 975 976 return 0; 977 } 978 EXPORT_SYMBOL_GPL(kvm_valid_cr4); 979 980 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 981 { 982 unsigned long old_cr4 = kvm_read_cr4(vcpu); 983 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 984 X86_CR4_SMEP; 985 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE; 986 987 if (kvm_valid_cr4(vcpu, cr4)) 988 return 1; 989 990 if (is_long_mode(vcpu)) { 991 if (!(cr4 & X86_CR4_PAE)) 992 return 1; 993 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 994 return 1; 995 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 996 && ((cr4 ^ old_cr4) & pdptr_bits) 997 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 998 kvm_read_cr3(vcpu))) 999 return 1; 1000 1001 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1002 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1003 return 1; 1004 1005 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1006 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1007 return 1; 1008 } 1009 1010 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 1011 return 1; 1012 1013 if (((cr4 ^ old_cr4) & mmu_role_bits) || 1014 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1015 kvm_mmu_reset_context(vcpu); 1016 1017 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1018 kvm_update_cpuid_runtime(vcpu); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1023 1024 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1025 { 1026 bool skip_tlb_flush = false; 1027 #ifdef CONFIG_X86_64 1028 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1029 1030 if (pcid_enabled) { 1031 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1032 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1033 } 1034 #endif 1035 1036 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1037 if (!skip_tlb_flush) { 1038 kvm_mmu_sync_roots(vcpu); 1039 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1040 } 1041 return 0; 1042 } 1043 1044 if (is_long_mode(vcpu) && 1045 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1046 return 1; 1047 else if (is_pae_paging(vcpu) && 1048 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1049 return 1; 1050 1051 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1052 vcpu->arch.cr3 = cr3; 1053 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1054 1055 return 0; 1056 } 1057 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1058 1059 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1060 { 1061 if (cr8 & CR8_RESERVED_BITS) 1062 return 1; 1063 if (lapic_in_kernel(vcpu)) 1064 kvm_lapic_set_tpr(vcpu, cr8); 1065 else 1066 vcpu->arch.cr8 = cr8; 1067 return 0; 1068 } 1069 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1070 1071 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1072 { 1073 if (lapic_in_kernel(vcpu)) 1074 return kvm_lapic_get_cr8(vcpu); 1075 else 1076 return vcpu->arch.cr8; 1077 } 1078 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1079 1080 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1081 { 1082 int i; 1083 1084 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1085 for (i = 0; i < KVM_NR_DB_REGS; i++) 1086 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1087 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1088 } 1089 } 1090 1091 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1092 { 1093 unsigned long dr7; 1094 1095 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1096 dr7 = vcpu->arch.guest_debug_dr7; 1097 else 1098 dr7 = vcpu->arch.dr7; 1099 kvm_x86_ops.set_dr7(vcpu, dr7); 1100 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1101 if (dr7 & DR7_BP_EN_MASK) 1102 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1105 1106 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1107 { 1108 u64 fixed = DR6_FIXED_1; 1109 1110 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1111 fixed |= DR6_RTM; 1112 return fixed; 1113 } 1114 1115 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1116 { 1117 size_t size = ARRAY_SIZE(vcpu->arch.db); 1118 1119 switch (dr) { 1120 case 0 ... 3: 1121 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1122 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1123 vcpu->arch.eff_db[dr] = val; 1124 break; 1125 case 4: 1126 case 6: 1127 if (!kvm_dr6_valid(val)) 1128 return -1; /* #GP */ 1129 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1130 break; 1131 case 5: 1132 default: /* 7 */ 1133 if (!kvm_dr7_valid(val)) 1134 return -1; /* #GP */ 1135 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1136 kvm_update_dr7(vcpu); 1137 break; 1138 } 1139 1140 return 0; 1141 } 1142 1143 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1144 { 1145 if (__kvm_set_dr(vcpu, dr, val)) { 1146 kvm_inject_gp(vcpu, 0); 1147 return 1; 1148 } 1149 return 0; 1150 } 1151 EXPORT_SYMBOL_GPL(kvm_set_dr); 1152 1153 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1154 { 1155 size_t size = ARRAY_SIZE(vcpu->arch.db); 1156 1157 switch (dr) { 1158 case 0 ... 3: 1159 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1160 break; 1161 case 4: 1162 case 6: 1163 *val = vcpu->arch.dr6; 1164 break; 1165 case 5: 1166 default: /* 7 */ 1167 *val = vcpu->arch.dr7; 1168 break; 1169 } 1170 return 0; 1171 } 1172 EXPORT_SYMBOL_GPL(kvm_get_dr); 1173 1174 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1175 { 1176 u32 ecx = kvm_rcx_read(vcpu); 1177 u64 data; 1178 int err; 1179 1180 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1181 if (err) 1182 return err; 1183 kvm_rax_write(vcpu, (u32)data); 1184 kvm_rdx_write(vcpu, data >> 32); 1185 return err; 1186 } 1187 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1188 1189 /* 1190 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1191 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1192 * 1193 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1194 * extract the supported MSRs from the related const lists. 1195 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1196 * capabilities of the host cpu. This capabilities test skips MSRs that are 1197 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1198 * may depend on host virtualization features rather than host cpu features. 1199 */ 1200 1201 static const u32 msrs_to_save_all[] = { 1202 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1203 MSR_STAR, 1204 #ifdef CONFIG_X86_64 1205 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1206 #endif 1207 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1208 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1209 MSR_IA32_SPEC_CTRL, 1210 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1211 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1212 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1213 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1214 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1215 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1216 MSR_IA32_UMWAIT_CONTROL, 1217 1218 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1219 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1220 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1221 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1222 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1223 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1224 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1225 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1226 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1227 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1228 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1229 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1230 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1231 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1232 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1233 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1234 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1235 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1236 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1237 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1238 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1239 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1240 }; 1241 1242 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1243 static unsigned num_msrs_to_save; 1244 1245 static const u32 emulated_msrs_all[] = { 1246 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1247 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1248 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1249 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1250 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1251 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1252 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1253 HV_X64_MSR_RESET, 1254 HV_X64_MSR_VP_INDEX, 1255 HV_X64_MSR_VP_RUNTIME, 1256 HV_X64_MSR_SCONTROL, 1257 HV_X64_MSR_STIMER0_CONFIG, 1258 HV_X64_MSR_VP_ASSIST_PAGE, 1259 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1260 HV_X64_MSR_TSC_EMULATION_STATUS, 1261 HV_X64_MSR_SYNDBG_OPTIONS, 1262 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1263 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1264 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1265 1266 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1267 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1268 1269 MSR_IA32_TSC_ADJUST, 1270 MSR_IA32_TSCDEADLINE, 1271 MSR_IA32_ARCH_CAPABILITIES, 1272 MSR_IA32_PERF_CAPABILITIES, 1273 MSR_IA32_MISC_ENABLE, 1274 MSR_IA32_MCG_STATUS, 1275 MSR_IA32_MCG_CTL, 1276 MSR_IA32_MCG_EXT_CTL, 1277 MSR_IA32_SMBASE, 1278 MSR_SMI_COUNT, 1279 MSR_PLATFORM_INFO, 1280 MSR_MISC_FEATURES_ENABLES, 1281 MSR_AMD64_VIRT_SPEC_CTRL, 1282 MSR_IA32_POWER_CTL, 1283 MSR_IA32_UCODE_REV, 1284 1285 /* 1286 * The following list leaves out MSRs whose values are determined 1287 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1288 * We always support the "true" VMX control MSRs, even if the host 1289 * processor does not, so I am putting these registers here rather 1290 * than in msrs_to_save_all. 1291 */ 1292 MSR_IA32_VMX_BASIC, 1293 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1294 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1295 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1296 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1297 MSR_IA32_VMX_MISC, 1298 MSR_IA32_VMX_CR0_FIXED0, 1299 MSR_IA32_VMX_CR4_FIXED0, 1300 MSR_IA32_VMX_VMCS_ENUM, 1301 MSR_IA32_VMX_PROCBASED_CTLS2, 1302 MSR_IA32_VMX_EPT_VPID_CAP, 1303 MSR_IA32_VMX_VMFUNC, 1304 1305 MSR_K7_HWCR, 1306 MSR_KVM_POLL_CONTROL, 1307 }; 1308 1309 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1310 static unsigned num_emulated_msrs; 1311 1312 /* 1313 * List of msr numbers which are used to expose MSR-based features that 1314 * can be used by a hypervisor to validate requested CPU features. 1315 */ 1316 static const u32 msr_based_features_all[] = { 1317 MSR_IA32_VMX_BASIC, 1318 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1319 MSR_IA32_VMX_PINBASED_CTLS, 1320 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1321 MSR_IA32_VMX_PROCBASED_CTLS, 1322 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1323 MSR_IA32_VMX_EXIT_CTLS, 1324 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1325 MSR_IA32_VMX_ENTRY_CTLS, 1326 MSR_IA32_VMX_MISC, 1327 MSR_IA32_VMX_CR0_FIXED0, 1328 MSR_IA32_VMX_CR0_FIXED1, 1329 MSR_IA32_VMX_CR4_FIXED0, 1330 MSR_IA32_VMX_CR4_FIXED1, 1331 MSR_IA32_VMX_VMCS_ENUM, 1332 MSR_IA32_VMX_PROCBASED_CTLS2, 1333 MSR_IA32_VMX_EPT_VPID_CAP, 1334 MSR_IA32_VMX_VMFUNC, 1335 1336 MSR_F10H_DECFG, 1337 MSR_IA32_UCODE_REV, 1338 MSR_IA32_ARCH_CAPABILITIES, 1339 MSR_IA32_PERF_CAPABILITIES, 1340 }; 1341 1342 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1343 static unsigned int num_msr_based_features; 1344 1345 static u64 kvm_get_arch_capabilities(void) 1346 { 1347 u64 data = 0; 1348 1349 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1350 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1351 1352 /* 1353 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1354 * the nested hypervisor runs with NX huge pages. If it is not, 1355 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1356 * L1 guests, so it need not worry about its own (L2) guests. 1357 */ 1358 data |= ARCH_CAP_PSCHANGE_MC_NO; 1359 1360 /* 1361 * If we're doing cache flushes (either "always" or "cond") 1362 * we will do one whenever the guest does a vmlaunch/vmresume. 1363 * If an outer hypervisor is doing the cache flush for us 1364 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1365 * capability to the guest too, and if EPT is disabled we're not 1366 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1367 * require a nested hypervisor to do a flush of its own. 1368 */ 1369 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1370 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1371 1372 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1373 data |= ARCH_CAP_RDCL_NO; 1374 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1375 data |= ARCH_CAP_SSB_NO; 1376 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1377 data |= ARCH_CAP_MDS_NO; 1378 1379 /* 1380 * On TAA affected systems: 1381 * - nothing to do if TSX is disabled on the host. 1382 * - we emulate TSX_CTRL if present on the host. 1383 * This lets the guest use VERW to clear CPU buffers. 1384 */ 1385 if (!boot_cpu_has(X86_FEATURE_RTM)) 1386 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1387 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1388 data |= ARCH_CAP_TAA_NO; 1389 1390 return data; 1391 } 1392 1393 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1394 { 1395 switch (msr->index) { 1396 case MSR_IA32_ARCH_CAPABILITIES: 1397 msr->data = kvm_get_arch_capabilities(); 1398 break; 1399 case MSR_IA32_UCODE_REV: 1400 rdmsrl_safe(msr->index, &msr->data); 1401 break; 1402 default: 1403 return kvm_x86_ops.get_msr_feature(msr); 1404 } 1405 return 0; 1406 } 1407 1408 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1409 { 1410 struct kvm_msr_entry msr; 1411 int r; 1412 1413 msr.index = index; 1414 r = kvm_get_msr_feature(&msr); 1415 1416 if (r == KVM_MSR_RET_INVALID) { 1417 /* Unconditionally clear the output for simplicity */ 1418 *data = 0; 1419 r = kvm_msr_ignored_check(vcpu, index, 0, false); 1420 } 1421 1422 if (r) 1423 return r; 1424 1425 *data = msr.data; 1426 1427 return 0; 1428 } 1429 1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1431 { 1432 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1433 return false; 1434 1435 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1436 return false; 1437 1438 if (efer & (EFER_LME | EFER_LMA) && 1439 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1440 return false; 1441 1442 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1443 return false; 1444 1445 return true; 1446 1447 } 1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1449 { 1450 if (efer & efer_reserved_bits) 1451 return false; 1452 1453 return __kvm_valid_efer(vcpu, efer); 1454 } 1455 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1456 1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1458 { 1459 u64 old_efer = vcpu->arch.efer; 1460 u64 efer = msr_info->data; 1461 int r; 1462 1463 if (efer & efer_reserved_bits) 1464 return 1; 1465 1466 if (!msr_info->host_initiated) { 1467 if (!__kvm_valid_efer(vcpu, efer)) 1468 return 1; 1469 1470 if (is_paging(vcpu) && 1471 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1472 return 1; 1473 } 1474 1475 efer &= ~EFER_LMA; 1476 efer |= vcpu->arch.efer & EFER_LMA; 1477 1478 r = kvm_x86_ops.set_efer(vcpu, efer); 1479 if (r) { 1480 WARN_ON(r > 0); 1481 return r; 1482 } 1483 1484 /* Update reserved bits */ 1485 if ((efer ^ old_efer) & EFER_NX) 1486 kvm_mmu_reset_context(vcpu); 1487 1488 return 0; 1489 } 1490 1491 void kvm_enable_efer_bits(u64 mask) 1492 { 1493 efer_reserved_bits &= ~mask; 1494 } 1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1496 1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1498 { 1499 struct kvm *kvm = vcpu->kvm; 1500 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 1501 u32 count = kvm->arch.msr_filter.count; 1502 u32 i; 1503 bool r = kvm->arch.msr_filter.default_allow; 1504 int idx; 1505 1506 /* MSR filtering not set up or x2APIC enabled, allow everything */ 1507 if (!count || (index >= 0x800 && index <= 0x8ff)) 1508 return true; 1509 1510 /* Prevent collision with set_msr_filter */ 1511 idx = srcu_read_lock(&kvm->srcu); 1512 1513 for (i = 0; i < count; i++) { 1514 u32 start = ranges[i].base; 1515 u32 end = start + ranges[i].nmsrs; 1516 u32 flags = ranges[i].flags; 1517 unsigned long *bitmap = ranges[i].bitmap; 1518 1519 if ((index >= start) && (index < end) && (flags & type)) { 1520 r = !!test_bit(index - start, bitmap); 1521 break; 1522 } 1523 } 1524 1525 srcu_read_unlock(&kvm->srcu, idx); 1526 1527 return r; 1528 } 1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1530 1531 /* 1532 * Write @data into the MSR specified by @index. Select MSR specific fault 1533 * checks are bypassed if @host_initiated is %true. 1534 * Returns 0 on success, non-0 otherwise. 1535 * Assumes vcpu_load() was already called. 1536 */ 1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1538 bool host_initiated) 1539 { 1540 struct msr_data msr; 1541 1542 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1543 return -EPERM; 1544 1545 switch (index) { 1546 case MSR_FS_BASE: 1547 case MSR_GS_BASE: 1548 case MSR_KERNEL_GS_BASE: 1549 case MSR_CSTAR: 1550 case MSR_LSTAR: 1551 if (is_noncanonical_address(data, vcpu)) 1552 return 1; 1553 break; 1554 case MSR_IA32_SYSENTER_EIP: 1555 case MSR_IA32_SYSENTER_ESP: 1556 /* 1557 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1558 * non-canonical address is written on Intel but not on 1559 * AMD (which ignores the top 32-bits, because it does 1560 * not implement 64-bit SYSENTER). 1561 * 1562 * 64-bit code should hence be able to write a non-canonical 1563 * value on AMD. Making the address canonical ensures that 1564 * vmentry does not fail on Intel after writing a non-canonical 1565 * value, and that something deterministic happens if the guest 1566 * invokes 64-bit SYSENTER. 1567 */ 1568 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1569 } 1570 1571 msr.data = data; 1572 msr.index = index; 1573 msr.host_initiated = host_initiated; 1574 1575 return kvm_x86_ops.set_msr(vcpu, &msr); 1576 } 1577 1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1579 u32 index, u64 data, bool host_initiated) 1580 { 1581 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1582 1583 if (ret == KVM_MSR_RET_INVALID) 1584 ret = kvm_msr_ignored_check(vcpu, index, data, true); 1585 1586 return ret; 1587 } 1588 1589 /* 1590 * Read the MSR specified by @index into @data. Select MSR specific fault 1591 * checks are bypassed if @host_initiated is %true. 1592 * Returns 0 on success, non-0 otherwise. 1593 * Assumes vcpu_load() was already called. 1594 */ 1595 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1596 bool host_initiated) 1597 { 1598 struct msr_data msr; 1599 int ret; 1600 1601 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1602 return -EPERM; 1603 1604 msr.index = index; 1605 msr.host_initiated = host_initiated; 1606 1607 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1608 if (!ret) 1609 *data = msr.data; 1610 return ret; 1611 } 1612 1613 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1614 u32 index, u64 *data, bool host_initiated) 1615 { 1616 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1617 1618 if (ret == KVM_MSR_RET_INVALID) { 1619 /* Unconditionally clear *data for simplicity */ 1620 *data = 0; 1621 ret = kvm_msr_ignored_check(vcpu, index, 0, false); 1622 } 1623 1624 return ret; 1625 } 1626 1627 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1628 { 1629 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1630 } 1631 EXPORT_SYMBOL_GPL(kvm_get_msr); 1632 1633 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1634 { 1635 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1636 } 1637 EXPORT_SYMBOL_GPL(kvm_set_msr); 1638 1639 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read) 1640 { 1641 if (vcpu->run->msr.error) { 1642 kvm_inject_gp(vcpu, 0); 1643 return 1; 1644 } else if (is_read) { 1645 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1646 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1647 } 1648 1649 return kvm_skip_emulated_instruction(vcpu); 1650 } 1651 1652 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1653 { 1654 return complete_emulated_msr(vcpu, true); 1655 } 1656 1657 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1658 { 1659 return complete_emulated_msr(vcpu, false); 1660 } 1661 1662 static u64 kvm_msr_reason(int r) 1663 { 1664 switch (r) { 1665 case -ENOENT: 1666 return KVM_MSR_EXIT_REASON_UNKNOWN; 1667 case -EPERM: 1668 return KVM_MSR_EXIT_REASON_FILTER; 1669 default: 1670 return KVM_MSR_EXIT_REASON_INVAL; 1671 } 1672 } 1673 1674 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1675 u32 exit_reason, u64 data, 1676 int (*completion)(struct kvm_vcpu *vcpu), 1677 int r) 1678 { 1679 u64 msr_reason = kvm_msr_reason(r); 1680 1681 /* Check if the user wanted to know about this MSR fault */ 1682 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1683 return 0; 1684 1685 vcpu->run->exit_reason = exit_reason; 1686 vcpu->run->msr.error = 0; 1687 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1688 vcpu->run->msr.reason = msr_reason; 1689 vcpu->run->msr.index = index; 1690 vcpu->run->msr.data = data; 1691 vcpu->arch.complete_userspace_io = completion; 1692 1693 return 1; 1694 } 1695 1696 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1697 { 1698 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1699 complete_emulated_rdmsr, r); 1700 } 1701 1702 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1703 { 1704 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1705 complete_emulated_wrmsr, r); 1706 } 1707 1708 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1709 { 1710 u32 ecx = kvm_rcx_read(vcpu); 1711 u64 data; 1712 int r; 1713 1714 r = kvm_get_msr(vcpu, ecx, &data); 1715 1716 /* MSR read failed? See if we should ask user space */ 1717 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1718 /* Bounce to user space */ 1719 return 0; 1720 } 1721 1722 /* MSR read failed? Inject a #GP */ 1723 if (r) { 1724 trace_kvm_msr_read_ex(ecx); 1725 kvm_inject_gp(vcpu, 0); 1726 return 1; 1727 } 1728 1729 trace_kvm_msr_read(ecx, data); 1730 1731 kvm_rax_write(vcpu, data & -1u); 1732 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1733 return kvm_skip_emulated_instruction(vcpu); 1734 } 1735 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1736 1737 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1738 { 1739 u32 ecx = kvm_rcx_read(vcpu); 1740 u64 data = kvm_read_edx_eax(vcpu); 1741 int r; 1742 1743 r = kvm_set_msr(vcpu, ecx, data); 1744 1745 /* MSR write failed? See if we should ask user space */ 1746 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1747 /* Bounce to user space */ 1748 return 0; 1749 1750 /* Signal all other negative errors to userspace */ 1751 if (r < 0) 1752 return r; 1753 1754 /* MSR write failed? Inject a #GP */ 1755 if (r > 0) { 1756 trace_kvm_msr_write_ex(ecx, data); 1757 kvm_inject_gp(vcpu, 0); 1758 return 1; 1759 } 1760 1761 trace_kvm_msr_write(ecx, data); 1762 return kvm_skip_emulated_instruction(vcpu); 1763 } 1764 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1765 1766 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1767 { 1768 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1769 xfer_to_guest_mode_work_pending(); 1770 } 1771 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1772 1773 /* 1774 * The fast path for frequent and performance sensitive wrmsr emulation, 1775 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1776 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1777 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1778 * other cases which must be called after interrupts are enabled on the host. 1779 */ 1780 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1781 { 1782 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1783 return 1; 1784 1785 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1786 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1787 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1788 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1789 1790 data &= ~(1 << 12); 1791 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1792 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1793 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1794 trace_kvm_apic_write(APIC_ICR, (u32)data); 1795 return 0; 1796 } 1797 1798 return 1; 1799 } 1800 1801 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1802 { 1803 if (!kvm_can_use_hv_timer(vcpu)) 1804 return 1; 1805 1806 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1807 return 0; 1808 } 1809 1810 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1811 { 1812 u32 msr = kvm_rcx_read(vcpu); 1813 u64 data; 1814 fastpath_t ret = EXIT_FASTPATH_NONE; 1815 1816 switch (msr) { 1817 case APIC_BASE_MSR + (APIC_ICR >> 4): 1818 data = kvm_read_edx_eax(vcpu); 1819 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1820 kvm_skip_emulated_instruction(vcpu); 1821 ret = EXIT_FASTPATH_EXIT_HANDLED; 1822 } 1823 break; 1824 case MSR_IA32_TSCDEADLINE: 1825 data = kvm_read_edx_eax(vcpu); 1826 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1827 kvm_skip_emulated_instruction(vcpu); 1828 ret = EXIT_FASTPATH_REENTER_GUEST; 1829 } 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 if (ret != EXIT_FASTPATH_NONE) 1836 trace_kvm_msr_write(msr, data); 1837 1838 return ret; 1839 } 1840 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1841 1842 /* 1843 * Adapt set_msr() to msr_io()'s calling convention 1844 */ 1845 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1846 { 1847 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1848 } 1849 1850 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1851 { 1852 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1853 } 1854 1855 #ifdef CONFIG_X86_64 1856 struct pvclock_clock { 1857 int vclock_mode; 1858 u64 cycle_last; 1859 u64 mask; 1860 u32 mult; 1861 u32 shift; 1862 u64 base_cycles; 1863 u64 offset; 1864 }; 1865 1866 struct pvclock_gtod_data { 1867 seqcount_t seq; 1868 1869 struct pvclock_clock clock; /* extract of a clocksource struct */ 1870 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1871 1872 ktime_t offs_boot; 1873 u64 wall_time_sec; 1874 }; 1875 1876 static struct pvclock_gtod_data pvclock_gtod_data; 1877 1878 static void update_pvclock_gtod(struct timekeeper *tk) 1879 { 1880 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1881 1882 write_seqcount_begin(&vdata->seq); 1883 1884 /* copy pvclock gtod data */ 1885 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1886 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1887 vdata->clock.mask = tk->tkr_mono.mask; 1888 vdata->clock.mult = tk->tkr_mono.mult; 1889 vdata->clock.shift = tk->tkr_mono.shift; 1890 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1891 vdata->clock.offset = tk->tkr_mono.base; 1892 1893 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1894 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1895 vdata->raw_clock.mask = tk->tkr_raw.mask; 1896 vdata->raw_clock.mult = tk->tkr_raw.mult; 1897 vdata->raw_clock.shift = tk->tkr_raw.shift; 1898 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1899 vdata->raw_clock.offset = tk->tkr_raw.base; 1900 1901 vdata->wall_time_sec = tk->xtime_sec; 1902 1903 vdata->offs_boot = tk->offs_boot; 1904 1905 write_seqcount_end(&vdata->seq); 1906 } 1907 1908 static s64 get_kvmclock_base_ns(void) 1909 { 1910 /* Count up from boot time, but with the frequency of the raw clock. */ 1911 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1912 } 1913 #else 1914 static s64 get_kvmclock_base_ns(void) 1915 { 1916 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1917 return ktime_get_boottime_ns(); 1918 } 1919 #endif 1920 1921 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1922 { 1923 int version; 1924 int r; 1925 struct pvclock_wall_clock wc; 1926 u64 wall_nsec; 1927 1928 kvm->arch.wall_clock = wall_clock; 1929 1930 if (!wall_clock) 1931 return; 1932 1933 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1934 if (r) 1935 return; 1936 1937 if (version & 1) 1938 ++version; /* first time write, random junk */ 1939 1940 ++version; 1941 1942 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1943 return; 1944 1945 /* 1946 * The guest calculates current wall clock time by adding 1947 * system time (updated by kvm_guest_time_update below) to the 1948 * wall clock specified here. We do the reverse here. 1949 */ 1950 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1951 1952 wc.nsec = do_div(wall_nsec, 1000000000); 1953 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1954 wc.version = version; 1955 1956 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1957 1958 version++; 1959 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1960 } 1961 1962 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 1963 bool old_msr, bool host_initiated) 1964 { 1965 struct kvm_arch *ka = &vcpu->kvm->arch; 1966 1967 if (vcpu->vcpu_id == 0 && !host_initiated) { 1968 if (ka->boot_vcpu_runs_old_kvmclock && old_msr) 1969 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1970 1971 ka->boot_vcpu_runs_old_kvmclock = old_msr; 1972 } 1973 1974 vcpu->arch.time = system_time; 1975 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 1976 1977 /* we verify if the enable bit is set... */ 1978 vcpu->arch.pv_time_enabled = false; 1979 if (!(system_time & 1)) 1980 return; 1981 1982 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 1983 &vcpu->arch.pv_time, system_time & ~1ULL, 1984 sizeof(struct pvclock_vcpu_time_info))) 1985 vcpu->arch.pv_time_enabled = true; 1986 1987 return; 1988 } 1989 1990 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1991 { 1992 do_shl32_div32(dividend, divisor); 1993 return dividend; 1994 } 1995 1996 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1997 s8 *pshift, u32 *pmultiplier) 1998 { 1999 uint64_t scaled64; 2000 int32_t shift = 0; 2001 uint64_t tps64; 2002 uint32_t tps32; 2003 2004 tps64 = base_hz; 2005 scaled64 = scaled_hz; 2006 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2007 tps64 >>= 1; 2008 shift--; 2009 } 2010 2011 tps32 = (uint32_t)tps64; 2012 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2013 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2014 scaled64 >>= 1; 2015 else 2016 tps32 <<= 1; 2017 shift++; 2018 } 2019 2020 *pshift = shift; 2021 *pmultiplier = div_frac(scaled64, tps32); 2022 } 2023 2024 #ifdef CONFIG_X86_64 2025 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2026 #endif 2027 2028 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2029 static unsigned long max_tsc_khz; 2030 2031 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2032 { 2033 u64 v = (u64)khz * (1000000 + ppm); 2034 do_div(v, 1000000); 2035 return v; 2036 } 2037 2038 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2039 { 2040 u64 ratio; 2041 2042 /* Guest TSC same frequency as host TSC? */ 2043 if (!scale) { 2044 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2045 return 0; 2046 } 2047 2048 /* TSC scaling supported? */ 2049 if (!kvm_has_tsc_control) { 2050 if (user_tsc_khz > tsc_khz) { 2051 vcpu->arch.tsc_catchup = 1; 2052 vcpu->arch.tsc_always_catchup = 1; 2053 return 0; 2054 } else { 2055 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2056 return -1; 2057 } 2058 } 2059 2060 /* TSC scaling required - calculate ratio */ 2061 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2062 user_tsc_khz, tsc_khz); 2063 2064 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2065 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2066 user_tsc_khz); 2067 return -1; 2068 } 2069 2070 vcpu->arch.tsc_scaling_ratio = ratio; 2071 return 0; 2072 } 2073 2074 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2075 { 2076 u32 thresh_lo, thresh_hi; 2077 int use_scaling = 0; 2078 2079 /* tsc_khz can be zero if TSC calibration fails */ 2080 if (user_tsc_khz == 0) { 2081 /* set tsc_scaling_ratio to a safe value */ 2082 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2083 return -1; 2084 } 2085 2086 /* Compute a scale to convert nanoseconds in TSC cycles */ 2087 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2088 &vcpu->arch.virtual_tsc_shift, 2089 &vcpu->arch.virtual_tsc_mult); 2090 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2091 2092 /* 2093 * Compute the variation in TSC rate which is acceptable 2094 * within the range of tolerance and decide if the 2095 * rate being applied is within that bounds of the hardware 2096 * rate. If so, no scaling or compensation need be done. 2097 */ 2098 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2099 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2100 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2101 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2102 use_scaling = 1; 2103 } 2104 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2105 } 2106 2107 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2108 { 2109 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2110 vcpu->arch.virtual_tsc_mult, 2111 vcpu->arch.virtual_tsc_shift); 2112 tsc += vcpu->arch.this_tsc_write; 2113 return tsc; 2114 } 2115 2116 static inline int gtod_is_based_on_tsc(int mode) 2117 { 2118 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2119 } 2120 2121 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2122 { 2123 #ifdef CONFIG_X86_64 2124 bool vcpus_matched; 2125 struct kvm_arch *ka = &vcpu->kvm->arch; 2126 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2127 2128 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2129 atomic_read(&vcpu->kvm->online_vcpus)); 2130 2131 /* 2132 * Once the masterclock is enabled, always perform request in 2133 * order to update it. 2134 * 2135 * In order to enable masterclock, the host clocksource must be TSC 2136 * and the vcpus need to have matched TSCs. When that happens, 2137 * perform request to enable masterclock. 2138 */ 2139 if (ka->use_master_clock || 2140 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2141 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2142 2143 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2144 atomic_read(&vcpu->kvm->online_vcpus), 2145 ka->use_master_clock, gtod->clock.vclock_mode); 2146 #endif 2147 } 2148 2149 /* 2150 * Multiply tsc by a fixed point number represented by ratio. 2151 * 2152 * The most significant 64-N bits (mult) of ratio represent the 2153 * integral part of the fixed point number; the remaining N bits 2154 * (frac) represent the fractional part, ie. ratio represents a fixed 2155 * point number (mult + frac * 2^(-N)). 2156 * 2157 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2158 */ 2159 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2160 { 2161 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2162 } 2163 2164 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2165 { 2166 u64 _tsc = tsc; 2167 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2168 2169 if (ratio != kvm_default_tsc_scaling_ratio) 2170 _tsc = __scale_tsc(ratio, tsc); 2171 2172 return _tsc; 2173 } 2174 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2175 2176 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2177 { 2178 u64 tsc; 2179 2180 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2181 2182 return target_tsc - tsc; 2183 } 2184 2185 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2186 { 2187 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2188 } 2189 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2190 2191 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2192 { 2193 vcpu->arch.l1_tsc_offset = offset; 2194 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2195 } 2196 2197 static inline bool kvm_check_tsc_unstable(void) 2198 { 2199 #ifdef CONFIG_X86_64 2200 /* 2201 * TSC is marked unstable when we're running on Hyper-V, 2202 * 'TSC page' clocksource is good. 2203 */ 2204 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2205 return false; 2206 #endif 2207 return check_tsc_unstable(); 2208 } 2209 2210 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2211 { 2212 struct kvm *kvm = vcpu->kvm; 2213 u64 offset, ns, elapsed; 2214 unsigned long flags; 2215 bool matched; 2216 bool already_matched; 2217 bool synchronizing = false; 2218 2219 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2220 offset = kvm_compute_tsc_offset(vcpu, data); 2221 ns = get_kvmclock_base_ns(); 2222 elapsed = ns - kvm->arch.last_tsc_nsec; 2223 2224 if (vcpu->arch.virtual_tsc_khz) { 2225 if (data == 0) { 2226 /* 2227 * detection of vcpu initialization -- need to sync 2228 * with other vCPUs. This particularly helps to keep 2229 * kvm_clock stable after CPU hotplug 2230 */ 2231 synchronizing = true; 2232 } else { 2233 u64 tsc_exp = kvm->arch.last_tsc_write + 2234 nsec_to_cycles(vcpu, elapsed); 2235 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2236 /* 2237 * Special case: TSC write with a small delta (1 second) 2238 * of virtual cycle time against real time is 2239 * interpreted as an attempt to synchronize the CPU. 2240 */ 2241 synchronizing = data < tsc_exp + tsc_hz && 2242 data + tsc_hz > tsc_exp; 2243 } 2244 } 2245 2246 /* 2247 * For a reliable TSC, we can match TSC offsets, and for an unstable 2248 * TSC, we add elapsed time in this computation. We could let the 2249 * compensation code attempt to catch up if we fall behind, but 2250 * it's better to try to match offsets from the beginning. 2251 */ 2252 if (synchronizing && 2253 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2254 if (!kvm_check_tsc_unstable()) { 2255 offset = kvm->arch.cur_tsc_offset; 2256 } else { 2257 u64 delta = nsec_to_cycles(vcpu, elapsed); 2258 data += delta; 2259 offset = kvm_compute_tsc_offset(vcpu, data); 2260 } 2261 matched = true; 2262 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2263 } else { 2264 /* 2265 * We split periods of matched TSC writes into generations. 2266 * For each generation, we track the original measured 2267 * nanosecond time, offset, and write, so if TSCs are in 2268 * sync, we can match exact offset, and if not, we can match 2269 * exact software computation in compute_guest_tsc() 2270 * 2271 * These values are tracked in kvm->arch.cur_xxx variables. 2272 */ 2273 kvm->arch.cur_tsc_generation++; 2274 kvm->arch.cur_tsc_nsec = ns; 2275 kvm->arch.cur_tsc_write = data; 2276 kvm->arch.cur_tsc_offset = offset; 2277 matched = false; 2278 } 2279 2280 /* 2281 * We also track th most recent recorded KHZ, write and time to 2282 * allow the matching interval to be extended at each write. 2283 */ 2284 kvm->arch.last_tsc_nsec = ns; 2285 kvm->arch.last_tsc_write = data; 2286 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2287 2288 vcpu->arch.last_guest_tsc = data; 2289 2290 /* Keep track of which generation this VCPU has synchronized to */ 2291 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2292 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2293 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2294 2295 kvm_vcpu_write_tsc_offset(vcpu, offset); 2296 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2297 2298 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2299 if (!matched) { 2300 kvm->arch.nr_vcpus_matched_tsc = 0; 2301 } else if (!already_matched) { 2302 kvm->arch.nr_vcpus_matched_tsc++; 2303 } 2304 2305 kvm_track_tsc_matching(vcpu); 2306 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2307 } 2308 2309 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2310 s64 adjustment) 2311 { 2312 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2313 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2314 } 2315 2316 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2317 { 2318 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2319 WARN_ON(adjustment < 0); 2320 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2321 adjust_tsc_offset_guest(vcpu, adjustment); 2322 } 2323 2324 #ifdef CONFIG_X86_64 2325 2326 static u64 read_tsc(void) 2327 { 2328 u64 ret = (u64)rdtsc_ordered(); 2329 u64 last = pvclock_gtod_data.clock.cycle_last; 2330 2331 if (likely(ret >= last)) 2332 return ret; 2333 2334 /* 2335 * GCC likes to generate cmov here, but this branch is extremely 2336 * predictable (it's just a function of time and the likely is 2337 * very likely) and there's a data dependence, so force GCC 2338 * to generate a branch instead. I don't barrier() because 2339 * we don't actually need a barrier, and if this function 2340 * ever gets inlined it will generate worse code. 2341 */ 2342 asm volatile (""); 2343 return last; 2344 } 2345 2346 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2347 int *mode) 2348 { 2349 long v; 2350 u64 tsc_pg_val; 2351 2352 switch (clock->vclock_mode) { 2353 case VDSO_CLOCKMODE_HVCLOCK: 2354 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2355 tsc_timestamp); 2356 if (tsc_pg_val != U64_MAX) { 2357 /* TSC page valid */ 2358 *mode = VDSO_CLOCKMODE_HVCLOCK; 2359 v = (tsc_pg_val - clock->cycle_last) & 2360 clock->mask; 2361 } else { 2362 /* TSC page invalid */ 2363 *mode = VDSO_CLOCKMODE_NONE; 2364 } 2365 break; 2366 case VDSO_CLOCKMODE_TSC: 2367 *mode = VDSO_CLOCKMODE_TSC; 2368 *tsc_timestamp = read_tsc(); 2369 v = (*tsc_timestamp - clock->cycle_last) & 2370 clock->mask; 2371 break; 2372 default: 2373 *mode = VDSO_CLOCKMODE_NONE; 2374 } 2375 2376 if (*mode == VDSO_CLOCKMODE_NONE) 2377 *tsc_timestamp = v = 0; 2378 2379 return v * clock->mult; 2380 } 2381 2382 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2383 { 2384 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2385 unsigned long seq; 2386 int mode; 2387 u64 ns; 2388 2389 do { 2390 seq = read_seqcount_begin(>od->seq); 2391 ns = gtod->raw_clock.base_cycles; 2392 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2393 ns >>= gtod->raw_clock.shift; 2394 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2395 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2396 *t = ns; 2397 2398 return mode; 2399 } 2400 2401 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2402 { 2403 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2404 unsigned long seq; 2405 int mode; 2406 u64 ns; 2407 2408 do { 2409 seq = read_seqcount_begin(>od->seq); 2410 ts->tv_sec = gtod->wall_time_sec; 2411 ns = gtod->clock.base_cycles; 2412 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2413 ns >>= gtod->clock.shift; 2414 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2415 2416 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2417 ts->tv_nsec = ns; 2418 2419 return mode; 2420 } 2421 2422 /* returns true if host is using TSC based clocksource */ 2423 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2424 { 2425 /* checked again under seqlock below */ 2426 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2427 return false; 2428 2429 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2430 tsc_timestamp)); 2431 } 2432 2433 /* returns true if host is using TSC based clocksource */ 2434 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2435 u64 *tsc_timestamp) 2436 { 2437 /* checked again under seqlock below */ 2438 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2439 return false; 2440 2441 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2442 } 2443 #endif 2444 2445 /* 2446 * 2447 * Assuming a stable TSC across physical CPUS, and a stable TSC 2448 * across virtual CPUs, the following condition is possible. 2449 * Each numbered line represents an event visible to both 2450 * CPUs at the next numbered event. 2451 * 2452 * "timespecX" represents host monotonic time. "tscX" represents 2453 * RDTSC value. 2454 * 2455 * VCPU0 on CPU0 | VCPU1 on CPU1 2456 * 2457 * 1. read timespec0,tsc0 2458 * 2. | timespec1 = timespec0 + N 2459 * | tsc1 = tsc0 + M 2460 * 3. transition to guest | transition to guest 2461 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2462 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2463 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2464 * 2465 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2466 * 2467 * - ret0 < ret1 2468 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2469 * ... 2470 * - 0 < N - M => M < N 2471 * 2472 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2473 * always the case (the difference between two distinct xtime instances 2474 * might be smaller then the difference between corresponding TSC reads, 2475 * when updating guest vcpus pvclock areas). 2476 * 2477 * To avoid that problem, do not allow visibility of distinct 2478 * system_timestamp/tsc_timestamp values simultaneously: use a master 2479 * copy of host monotonic time values. Update that master copy 2480 * in lockstep. 2481 * 2482 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2483 * 2484 */ 2485 2486 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2487 { 2488 #ifdef CONFIG_X86_64 2489 struct kvm_arch *ka = &kvm->arch; 2490 int vclock_mode; 2491 bool host_tsc_clocksource, vcpus_matched; 2492 2493 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2494 atomic_read(&kvm->online_vcpus)); 2495 2496 /* 2497 * If the host uses TSC clock, then passthrough TSC as stable 2498 * to the guest. 2499 */ 2500 host_tsc_clocksource = kvm_get_time_and_clockread( 2501 &ka->master_kernel_ns, 2502 &ka->master_cycle_now); 2503 2504 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2505 && !ka->backwards_tsc_observed 2506 && !ka->boot_vcpu_runs_old_kvmclock; 2507 2508 if (ka->use_master_clock) 2509 atomic_set(&kvm_guest_has_master_clock, 1); 2510 2511 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2512 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2513 vcpus_matched); 2514 #endif 2515 } 2516 2517 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2518 { 2519 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2520 } 2521 2522 static void kvm_gen_update_masterclock(struct kvm *kvm) 2523 { 2524 #ifdef CONFIG_X86_64 2525 int i; 2526 struct kvm_vcpu *vcpu; 2527 struct kvm_arch *ka = &kvm->arch; 2528 2529 spin_lock(&ka->pvclock_gtod_sync_lock); 2530 kvm_make_mclock_inprogress_request(kvm); 2531 /* no guest entries from this point */ 2532 pvclock_update_vm_gtod_copy(kvm); 2533 2534 kvm_for_each_vcpu(i, vcpu, kvm) 2535 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2536 2537 /* guest entries allowed */ 2538 kvm_for_each_vcpu(i, vcpu, kvm) 2539 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2540 2541 spin_unlock(&ka->pvclock_gtod_sync_lock); 2542 #endif 2543 } 2544 2545 u64 get_kvmclock_ns(struct kvm *kvm) 2546 { 2547 struct kvm_arch *ka = &kvm->arch; 2548 struct pvclock_vcpu_time_info hv_clock; 2549 u64 ret; 2550 2551 spin_lock(&ka->pvclock_gtod_sync_lock); 2552 if (!ka->use_master_clock) { 2553 spin_unlock(&ka->pvclock_gtod_sync_lock); 2554 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2555 } 2556 2557 hv_clock.tsc_timestamp = ka->master_cycle_now; 2558 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2559 spin_unlock(&ka->pvclock_gtod_sync_lock); 2560 2561 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2562 get_cpu(); 2563 2564 if (__this_cpu_read(cpu_tsc_khz)) { 2565 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2566 &hv_clock.tsc_shift, 2567 &hv_clock.tsc_to_system_mul); 2568 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2569 } else 2570 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2571 2572 put_cpu(); 2573 2574 return ret; 2575 } 2576 2577 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2578 { 2579 struct kvm_vcpu_arch *vcpu = &v->arch; 2580 struct pvclock_vcpu_time_info guest_hv_clock; 2581 2582 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2583 &guest_hv_clock, sizeof(guest_hv_clock)))) 2584 return; 2585 2586 /* This VCPU is paused, but it's legal for a guest to read another 2587 * VCPU's kvmclock, so we really have to follow the specification where 2588 * it says that version is odd if data is being modified, and even after 2589 * it is consistent. 2590 * 2591 * Version field updates must be kept separate. This is because 2592 * kvm_write_guest_cached might use a "rep movs" instruction, and 2593 * writes within a string instruction are weakly ordered. So there 2594 * are three writes overall. 2595 * 2596 * As a small optimization, only write the version field in the first 2597 * and third write. The vcpu->pv_time cache is still valid, because the 2598 * version field is the first in the struct. 2599 */ 2600 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2601 2602 if (guest_hv_clock.version & 1) 2603 ++guest_hv_clock.version; /* first time write, random junk */ 2604 2605 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2606 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2607 &vcpu->hv_clock, 2608 sizeof(vcpu->hv_clock.version)); 2609 2610 smp_wmb(); 2611 2612 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2613 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2614 2615 if (vcpu->pvclock_set_guest_stopped_request) { 2616 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2617 vcpu->pvclock_set_guest_stopped_request = false; 2618 } 2619 2620 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2621 2622 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2623 &vcpu->hv_clock, 2624 sizeof(vcpu->hv_clock)); 2625 2626 smp_wmb(); 2627 2628 vcpu->hv_clock.version++; 2629 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2630 &vcpu->hv_clock, 2631 sizeof(vcpu->hv_clock.version)); 2632 } 2633 2634 static int kvm_guest_time_update(struct kvm_vcpu *v) 2635 { 2636 unsigned long flags, tgt_tsc_khz; 2637 struct kvm_vcpu_arch *vcpu = &v->arch; 2638 struct kvm_arch *ka = &v->kvm->arch; 2639 s64 kernel_ns; 2640 u64 tsc_timestamp, host_tsc; 2641 u8 pvclock_flags; 2642 bool use_master_clock; 2643 2644 kernel_ns = 0; 2645 host_tsc = 0; 2646 2647 /* 2648 * If the host uses TSC clock, then passthrough TSC as stable 2649 * to the guest. 2650 */ 2651 spin_lock(&ka->pvclock_gtod_sync_lock); 2652 use_master_clock = ka->use_master_clock; 2653 if (use_master_clock) { 2654 host_tsc = ka->master_cycle_now; 2655 kernel_ns = ka->master_kernel_ns; 2656 } 2657 spin_unlock(&ka->pvclock_gtod_sync_lock); 2658 2659 /* Keep irq disabled to prevent changes to the clock */ 2660 local_irq_save(flags); 2661 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2662 if (unlikely(tgt_tsc_khz == 0)) { 2663 local_irq_restore(flags); 2664 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2665 return 1; 2666 } 2667 if (!use_master_clock) { 2668 host_tsc = rdtsc(); 2669 kernel_ns = get_kvmclock_base_ns(); 2670 } 2671 2672 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2673 2674 /* 2675 * We may have to catch up the TSC to match elapsed wall clock 2676 * time for two reasons, even if kvmclock is used. 2677 * 1) CPU could have been running below the maximum TSC rate 2678 * 2) Broken TSC compensation resets the base at each VCPU 2679 * entry to avoid unknown leaps of TSC even when running 2680 * again on the same CPU. This may cause apparent elapsed 2681 * time to disappear, and the guest to stand still or run 2682 * very slowly. 2683 */ 2684 if (vcpu->tsc_catchup) { 2685 u64 tsc = compute_guest_tsc(v, kernel_ns); 2686 if (tsc > tsc_timestamp) { 2687 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2688 tsc_timestamp = tsc; 2689 } 2690 } 2691 2692 local_irq_restore(flags); 2693 2694 /* With all the info we got, fill in the values */ 2695 2696 if (kvm_has_tsc_control) 2697 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2698 2699 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2700 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2701 &vcpu->hv_clock.tsc_shift, 2702 &vcpu->hv_clock.tsc_to_system_mul); 2703 vcpu->hw_tsc_khz = tgt_tsc_khz; 2704 } 2705 2706 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2707 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2708 vcpu->last_guest_tsc = tsc_timestamp; 2709 2710 /* If the host uses TSC clocksource, then it is stable */ 2711 pvclock_flags = 0; 2712 if (use_master_clock) 2713 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2714 2715 vcpu->hv_clock.flags = pvclock_flags; 2716 2717 if (vcpu->pv_time_enabled) 2718 kvm_setup_pvclock_page(v); 2719 if (v == kvm_get_vcpu(v->kvm, 0)) 2720 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2721 return 0; 2722 } 2723 2724 /* 2725 * kvmclock updates which are isolated to a given vcpu, such as 2726 * vcpu->cpu migration, should not allow system_timestamp from 2727 * the rest of the vcpus to remain static. Otherwise ntp frequency 2728 * correction applies to one vcpu's system_timestamp but not 2729 * the others. 2730 * 2731 * So in those cases, request a kvmclock update for all vcpus. 2732 * We need to rate-limit these requests though, as they can 2733 * considerably slow guests that have a large number of vcpus. 2734 * The time for a remote vcpu to update its kvmclock is bound 2735 * by the delay we use to rate-limit the updates. 2736 */ 2737 2738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2739 2740 static void kvmclock_update_fn(struct work_struct *work) 2741 { 2742 int i; 2743 struct delayed_work *dwork = to_delayed_work(work); 2744 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2745 kvmclock_update_work); 2746 struct kvm *kvm = container_of(ka, struct kvm, arch); 2747 struct kvm_vcpu *vcpu; 2748 2749 kvm_for_each_vcpu(i, vcpu, kvm) { 2750 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2751 kvm_vcpu_kick(vcpu); 2752 } 2753 } 2754 2755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2756 { 2757 struct kvm *kvm = v->kvm; 2758 2759 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2760 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2761 KVMCLOCK_UPDATE_DELAY); 2762 } 2763 2764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2765 2766 static void kvmclock_sync_fn(struct work_struct *work) 2767 { 2768 struct delayed_work *dwork = to_delayed_work(work); 2769 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2770 kvmclock_sync_work); 2771 struct kvm *kvm = container_of(ka, struct kvm, arch); 2772 2773 if (!kvmclock_periodic_sync) 2774 return; 2775 2776 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2777 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2778 KVMCLOCK_SYNC_PERIOD); 2779 } 2780 2781 /* 2782 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2783 */ 2784 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2785 { 2786 /* McStatusWrEn enabled? */ 2787 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2788 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2789 2790 return false; 2791 } 2792 2793 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2794 { 2795 u64 mcg_cap = vcpu->arch.mcg_cap; 2796 unsigned bank_num = mcg_cap & 0xff; 2797 u32 msr = msr_info->index; 2798 u64 data = msr_info->data; 2799 2800 switch (msr) { 2801 case MSR_IA32_MCG_STATUS: 2802 vcpu->arch.mcg_status = data; 2803 break; 2804 case MSR_IA32_MCG_CTL: 2805 if (!(mcg_cap & MCG_CTL_P) && 2806 (data || !msr_info->host_initiated)) 2807 return 1; 2808 if (data != 0 && data != ~(u64)0) 2809 return 1; 2810 vcpu->arch.mcg_ctl = data; 2811 break; 2812 default: 2813 if (msr >= MSR_IA32_MC0_CTL && 2814 msr < MSR_IA32_MCx_CTL(bank_num)) { 2815 u32 offset = array_index_nospec( 2816 msr - MSR_IA32_MC0_CTL, 2817 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2818 2819 /* only 0 or all 1s can be written to IA32_MCi_CTL 2820 * some Linux kernels though clear bit 10 in bank 4 to 2821 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2822 * this to avoid an uncatched #GP in the guest 2823 */ 2824 if ((offset & 0x3) == 0 && 2825 data != 0 && (data | (1 << 10)) != ~(u64)0) 2826 return -1; 2827 2828 /* MCi_STATUS */ 2829 if (!msr_info->host_initiated && 2830 (offset & 0x3) == 1 && data != 0) { 2831 if (!can_set_mci_status(vcpu)) 2832 return -1; 2833 } 2834 2835 vcpu->arch.mce_banks[offset] = data; 2836 break; 2837 } 2838 return 1; 2839 } 2840 return 0; 2841 } 2842 2843 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2844 { 2845 struct kvm *kvm = vcpu->kvm; 2846 int lm = is_long_mode(vcpu); 2847 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2848 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2849 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2850 : kvm->arch.xen_hvm_config.blob_size_32; 2851 u32 page_num = data & ~PAGE_MASK; 2852 u64 page_addr = data & PAGE_MASK; 2853 u8 *page; 2854 2855 if (page_num >= blob_size) 2856 return 1; 2857 2858 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2859 if (IS_ERR(page)) 2860 return PTR_ERR(page); 2861 2862 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 2863 kfree(page); 2864 return 1; 2865 } 2866 return 0; 2867 } 2868 2869 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2870 { 2871 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2872 2873 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2874 } 2875 2876 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2877 { 2878 gpa_t gpa = data & ~0x3f; 2879 2880 /* Bits 4:5 are reserved, Should be zero */ 2881 if (data & 0x30) 2882 return 1; 2883 2884 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2885 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2886 return 1; 2887 2888 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2889 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2890 return 1; 2891 2892 if (!lapic_in_kernel(vcpu)) 2893 return data ? 1 : 0; 2894 2895 vcpu->arch.apf.msr_en_val = data; 2896 2897 if (!kvm_pv_async_pf_enabled(vcpu)) { 2898 kvm_clear_async_pf_completion_queue(vcpu); 2899 kvm_async_pf_hash_reset(vcpu); 2900 return 0; 2901 } 2902 2903 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2904 sizeof(u64))) 2905 return 1; 2906 2907 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2908 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2909 2910 kvm_async_pf_wakeup_all(vcpu); 2911 2912 return 0; 2913 } 2914 2915 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2916 { 2917 /* Bits 8-63 are reserved */ 2918 if (data >> 8) 2919 return 1; 2920 2921 if (!lapic_in_kernel(vcpu)) 2922 return 1; 2923 2924 vcpu->arch.apf.msr_int_val = data; 2925 2926 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2927 2928 return 0; 2929 } 2930 2931 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2932 { 2933 vcpu->arch.pv_time_enabled = false; 2934 vcpu->arch.time = 0; 2935 } 2936 2937 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2938 { 2939 ++vcpu->stat.tlb_flush; 2940 kvm_x86_ops.tlb_flush_all(vcpu); 2941 } 2942 2943 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2944 { 2945 ++vcpu->stat.tlb_flush; 2946 kvm_x86_ops.tlb_flush_guest(vcpu); 2947 } 2948 2949 static void record_steal_time(struct kvm_vcpu *vcpu) 2950 { 2951 struct kvm_host_map map; 2952 struct kvm_steal_time *st; 2953 2954 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2955 return; 2956 2957 /* -EAGAIN is returned in atomic context so we can just return. */ 2958 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2959 &map, &vcpu->arch.st.cache, false)) 2960 return; 2961 2962 st = map.hva + 2963 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2964 2965 /* 2966 * Doing a TLB flush here, on the guest's behalf, can avoid 2967 * expensive IPIs. 2968 */ 2969 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 2970 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2971 st->preempted & KVM_VCPU_FLUSH_TLB); 2972 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2973 kvm_vcpu_flush_tlb_guest(vcpu); 2974 } 2975 2976 vcpu->arch.st.preempted = 0; 2977 2978 if (st->version & 1) 2979 st->version += 1; /* first time write, random junk */ 2980 2981 st->version += 1; 2982 2983 smp_wmb(); 2984 2985 st->steal += current->sched_info.run_delay - 2986 vcpu->arch.st.last_steal; 2987 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2988 2989 smp_wmb(); 2990 2991 st->version += 1; 2992 2993 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2994 } 2995 2996 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2997 { 2998 bool pr = false; 2999 u32 msr = msr_info->index; 3000 u64 data = msr_info->data; 3001 3002 switch (msr) { 3003 case MSR_AMD64_NB_CFG: 3004 case MSR_IA32_UCODE_WRITE: 3005 case MSR_VM_HSAVE_PA: 3006 case MSR_AMD64_PATCH_LOADER: 3007 case MSR_AMD64_BU_CFG2: 3008 case MSR_AMD64_DC_CFG: 3009 case MSR_F15H_EX_CFG: 3010 break; 3011 3012 case MSR_IA32_UCODE_REV: 3013 if (msr_info->host_initiated) 3014 vcpu->arch.microcode_version = data; 3015 break; 3016 case MSR_IA32_ARCH_CAPABILITIES: 3017 if (!msr_info->host_initiated) 3018 return 1; 3019 vcpu->arch.arch_capabilities = data; 3020 break; 3021 case MSR_IA32_PERF_CAPABILITIES: { 3022 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3023 3024 if (!msr_info->host_initiated) 3025 return 1; 3026 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3027 return 1; 3028 if (data & ~msr_ent.data) 3029 return 1; 3030 3031 vcpu->arch.perf_capabilities = data; 3032 3033 return 0; 3034 } 3035 case MSR_EFER: 3036 return set_efer(vcpu, msr_info); 3037 case MSR_K7_HWCR: 3038 data &= ~(u64)0x40; /* ignore flush filter disable */ 3039 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3040 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3041 3042 /* Handle McStatusWrEn */ 3043 if (data == BIT_ULL(18)) { 3044 vcpu->arch.msr_hwcr = data; 3045 } else if (data != 0) { 3046 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3047 data); 3048 return 1; 3049 } 3050 break; 3051 case MSR_FAM10H_MMIO_CONF_BASE: 3052 if (data != 0) { 3053 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3054 "0x%llx\n", data); 3055 return 1; 3056 } 3057 break; 3058 case MSR_IA32_DEBUGCTLMSR: 3059 if (!data) { 3060 /* We support the non-activated case already */ 3061 break; 3062 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 3063 /* Values other than LBR and BTF are vendor-specific, 3064 thus reserved and should throw a #GP */ 3065 return 1; 3066 } 3067 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 3068 __func__, data); 3069 break; 3070 case 0x200 ... 0x2ff: 3071 return kvm_mtrr_set_msr(vcpu, msr, data); 3072 case MSR_IA32_APICBASE: 3073 return kvm_set_apic_base(vcpu, msr_info); 3074 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3075 return kvm_x2apic_msr_write(vcpu, msr, data); 3076 case MSR_IA32_TSCDEADLINE: 3077 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3078 break; 3079 case MSR_IA32_TSC_ADJUST: 3080 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3081 if (!msr_info->host_initiated) { 3082 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3083 adjust_tsc_offset_guest(vcpu, adj); 3084 } 3085 vcpu->arch.ia32_tsc_adjust_msr = data; 3086 } 3087 break; 3088 case MSR_IA32_MISC_ENABLE: 3089 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3090 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3091 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3092 return 1; 3093 vcpu->arch.ia32_misc_enable_msr = data; 3094 kvm_update_cpuid_runtime(vcpu); 3095 } else { 3096 vcpu->arch.ia32_misc_enable_msr = data; 3097 } 3098 break; 3099 case MSR_IA32_SMBASE: 3100 if (!msr_info->host_initiated) 3101 return 1; 3102 vcpu->arch.smbase = data; 3103 break; 3104 case MSR_IA32_POWER_CTL: 3105 vcpu->arch.msr_ia32_power_ctl = data; 3106 break; 3107 case MSR_IA32_TSC: 3108 if (msr_info->host_initiated) { 3109 kvm_synchronize_tsc(vcpu, data); 3110 } else { 3111 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3112 adjust_tsc_offset_guest(vcpu, adj); 3113 vcpu->arch.ia32_tsc_adjust_msr += adj; 3114 } 3115 break; 3116 case MSR_IA32_XSS: 3117 if (!msr_info->host_initiated && 3118 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3119 return 1; 3120 /* 3121 * KVM supports exposing PT to the guest, but does not support 3122 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3123 * XSAVES/XRSTORS to save/restore PT MSRs. 3124 */ 3125 if (data & ~supported_xss) 3126 return 1; 3127 vcpu->arch.ia32_xss = data; 3128 break; 3129 case MSR_SMI_COUNT: 3130 if (!msr_info->host_initiated) 3131 return 1; 3132 vcpu->arch.smi_count = data; 3133 break; 3134 case MSR_KVM_WALL_CLOCK_NEW: 3135 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3136 return 1; 3137 3138 kvm_write_wall_clock(vcpu->kvm, data); 3139 break; 3140 case MSR_KVM_WALL_CLOCK: 3141 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3142 return 1; 3143 3144 kvm_write_wall_clock(vcpu->kvm, data); 3145 break; 3146 case MSR_KVM_SYSTEM_TIME_NEW: 3147 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3148 return 1; 3149 3150 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3151 break; 3152 case MSR_KVM_SYSTEM_TIME: 3153 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3154 return 1; 3155 3156 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3157 break; 3158 case MSR_KVM_ASYNC_PF_EN: 3159 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3160 return 1; 3161 3162 if (kvm_pv_enable_async_pf(vcpu, data)) 3163 return 1; 3164 break; 3165 case MSR_KVM_ASYNC_PF_INT: 3166 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3167 return 1; 3168 3169 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3170 return 1; 3171 break; 3172 case MSR_KVM_ASYNC_PF_ACK: 3173 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3174 return 1; 3175 if (data & 0x1) { 3176 vcpu->arch.apf.pageready_pending = false; 3177 kvm_check_async_pf_completion(vcpu); 3178 } 3179 break; 3180 case MSR_KVM_STEAL_TIME: 3181 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3182 return 1; 3183 3184 if (unlikely(!sched_info_on())) 3185 return 1; 3186 3187 if (data & KVM_STEAL_RESERVED_MASK) 3188 return 1; 3189 3190 vcpu->arch.st.msr_val = data; 3191 3192 if (!(data & KVM_MSR_ENABLED)) 3193 break; 3194 3195 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3196 3197 break; 3198 case MSR_KVM_PV_EOI_EN: 3199 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3200 return 1; 3201 3202 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3203 return 1; 3204 break; 3205 3206 case MSR_KVM_POLL_CONTROL: 3207 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3208 return 1; 3209 3210 /* only enable bit supported */ 3211 if (data & (-1ULL << 1)) 3212 return 1; 3213 3214 vcpu->arch.msr_kvm_poll_control = data; 3215 break; 3216 3217 case MSR_IA32_MCG_CTL: 3218 case MSR_IA32_MCG_STATUS: 3219 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3220 return set_msr_mce(vcpu, msr_info); 3221 3222 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3223 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3224 pr = true; 3225 fallthrough; 3226 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3227 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3228 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3229 return kvm_pmu_set_msr(vcpu, msr_info); 3230 3231 if (pr || data != 0) 3232 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3233 "0x%x data 0x%llx\n", msr, data); 3234 break; 3235 case MSR_K7_CLK_CTL: 3236 /* 3237 * Ignore all writes to this no longer documented MSR. 3238 * Writes are only relevant for old K7 processors, 3239 * all pre-dating SVM, but a recommended workaround from 3240 * AMD for these chips. It is possible to specify the 3241 * affected processor models on the command line, hence 3242 * the need to ignore the workaround. 3243 */ 3244 break; 3245 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3246 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3247 case HV_X64_MSR_SYNDBG_OPTIONS: 3248 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3249 case HV_X64_MSR_CRASH_CTL: 3250 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3251 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3252 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3253 case HV_X64_MSR_TSC_EMULATION_STATUS: 3254 return kvm_hv_set_msr_common(vcpu, msr, data, 3255 msr_info->host_initiated); 3256 case MSR_IA32_BBL_CR_CTL3: 3257 /* Drop writes to this legacy MSR -- see rdmsr 3258 * counterpart for further detail. 3259 */ 3260 if (report_ignored_msrs) 3261 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3262 msr, data); 3263 break; 3264 case MSR_AMD64_OSVW_ID_LENGTH: 3265 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3266 return 1; 3267 vcpu->arch.osvw.length = data; 3268 break; 3269 case MSR_AMD64_OSVW_STATUS: 3270 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3271 return 1; 3272 vcpu->arch.osvw.status = data; 3273 break; 3274 case MSR_PLATFORM_INFO: 3275 if (!msr_info->host_initiated || 3276 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3277 cpuid_fault_enabled(vcpu))) 3278 return 1; 3279 vcpu->arch.msr_platform_info = data; 3280 break; 3281 case MSR_MISC_FEATURES_ENABLES: 3282 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3283 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3284 !supports_cpuid_fault(vcpu))) 3285 return 1; 3286 vcpu->arch.msr_misc_features_enables = data; 3287 break; 3288 default: 3289 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3290 return xen_hvm_config(vcpu, data); 3291 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3292 return kvm_pmu_set_msr(vcpu, msr_info); 3293 return KVM_MSR_RET_INVALID; 3294 } 3295 return 0; 3296 } 3297 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3298 3299 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3300 { 3301 u64 data; 3302 u64 mcg_cap = vcpu->arch.mcg_cap; 3303 unsigned bank_num = mcg_cap & 0xff; 3304 3305 switch (msr) { 3306 case MSR_IA32_P5_MC_ADDR: 3307 case MSR_IA32_P5_MC_TYPE: 3308 data = 0; 3309 break; 3310 case MSR_IA32_MCG_CAP: 3311 data = vcpu->arch.mcg_cap; 3312 break; 3313 case MSR_IA32_MCG_CTL: 3314 if (!(mcg_cap & MCG_CTL_P) && !host) 3315 return 1; 3316 data = vcpu->arch.mcg_ctl; 3317 break; 3318 case MSR_IA32_MCG_STATUS: 3319 data = vcpu->arch.mcg_status; 3320 break; 3321 default: 3322 if (msr >= MSR_IA32_MC0_CTL && 3323 msr < MSR_IA32_MCx_CTL(bank_num)) { 3324 u32 offset = array_index_nospec( 3325 msr - MSR_IA32_MC0_CTL, 3326 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3327 3328 data = vcpu->arch.mce_banks[offset]; 3329 break; 3330 } 3331 return 1; 3332 } 3333 *pdata = data; 3334 return 0; 3335 } 3336 3337 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3338 { 3339 switch (msr_info->index) { 3340 case MSR_IA32_PLATFORM_ID: 3341 case MSR_IA32_EBL_CR_POWERON: 3342 case MSR_IA32_DEBUGCTLMSR: 3343 case MSR_IA32_LASTBRANCHFROMIP: 3344 case MSR_IA32_LASTBRANCHTOIP: 3345 case MSR_IA32_LASTINTFROMIP: 3346 case MSR_IA32_LASTINTTOIP: 3347 case MSR_K8_SYSCFG: 3348 case MSR_K8_TSEG_ADDR: 3349 case MSR_K8_TSEG_MASK: 3350 case MSR_VM_HSAVE_PA: 3351 case MSR_K8_INT_PENDING_MSG: 3352 case MSR_AMD64_NB_CFG: 3353 case MSR_FAM10H_MMIO_CONF_BASE: 3354 case MSR_AMD64_BU_CFG2: 3355 case MSR_IA32_PERF_CTL: 3356 case MSR_AMD64_DC_CFG: 3357 case MSR_F15H_EX_CFG: 3358 /* 3359 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3360 * limit) MSRs. Just return 0, as we do not want to expose the host 3361 * data here. Do not conditionalize this on CPUID, as KVM does not do 3362 * so for existing CPU-specific MSRs. 3363 */ 3364 case MSR_RAPL_POWER_UNIT: 3365 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3366 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3367 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3368 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3369 msr_info->data = 0; 3370 break; 3371 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3372 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3373 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3374 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3375 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3376 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3377 return kvm_pmu_get_msr(vcpu, msr_info); 3378 msr_info->data = 0; 3379 break; 3380 case MSR_IA32_UCODE_REV: 3381 msr_info->data = vcpu->arch.microcode_version; 3382 break; 3383 case MSR_IA32_ARCH_CAPABILITIES: 3384 if (!msr_info->host_initiated && 3385 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3386 return 1; 3387 msr_info->data = vcpu->arch.arch_capabilities; 3388 break; 3389 case MSR_IA32_PERF_CAPABILITIES: 3390 if (!msr_info->host_initiated && 3391 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3392 return 1; 3393 msr_info->data = vcpu->arch.perf_capabilities; 3394 break; 3395 case MSR_IA32_POWER_CTL: 3396 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3397 break; 3398 case MSR_IA32_TSC: { 3399 /* 3400 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3401 * even when not intercepted. AMD manual doesn't explicitly 3402 * state this but appears to behave the same. 3403 * 3404 * On userspace reads and writes, however, we unconditionally 3405 * return L1's TSC value to ensure backwards-compatible 3406 * behavior for migration. 3407 */ 3408 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3409 vcpu->arch.tsc_offset; 3410 3411 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3412 break; 3413 } 3414 case MSR_MTRRcap: 3415 case 0x200 ... 0x2ff: 3416 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3417 case 0xcd: /* fsb frequency */ 3418 msr_info->data = 3; 3419 break; 3420 /* 3421 * MSR_EBC_FREQUENCY_ID 3422 * Conservative value valid for even the basic CPU models. 3423 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3424 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3425 * and 266MHz for model 3, or 4. Set Core Clock 3426 * Frequency to System Bus Frequency Ratio to 1 (bits 3427 * 31:24) even though these are only valid for CPU 3428 * models > 2, however guests may end up dividing or 3429 * multiplying by zero otherwise. 3430 */ 3431 case MSR_EBC_FREQUENCY_ID: 3432 msr_info->data = 1 << 24; 3433 break; 3434 case MSR_IA32_APICBASE: 3435 msr_info->data = kvm_get_apic_base(vcpu); 3436 break; 3437 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3438 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3439 case MSR_IA32_TSCDEADLINE: 3440 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3441 break; 3442 case MSR_IA32_TSC_ADJUST: 3443 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3444 break; 3445 case MSR_IA32_MISC_ENABLE: 3446 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3447 break; 3448 case MSR_IA32_SMBASE: 3449 if (!msr_info->host_initiated) 3450 return 1; 3451 msr_info->data = vcpu->arch.smbase; 3452 break; 3453 case MSR_SMI_COUNT: 3454 msr_info->data = vcpu->arch.smi_count; 3455 break; 3456 case MSR_IA32_PERF_STATUS: 3457 /* TSC increment by tick */ 3458 msr_info->data = 1000ULL; 3459 /* CPU multiplier */ 3460 msr_info->data |= (((uint64_t)4ULL) << 40); 3461 break; 3462 case MSR_EFER: 3463 msr_info->data = vcpu->arch.efer; 3464 break; 3465 case MSR_KVM_WALL_CLOCK: 3466 case MSR_KVM_WALL_CLOCK_NEW: 3467 msr_info->data = vcpu->kvm->arch.wall_clock; 3468 break; 3469 case MSR_KVM_SYSTEM_TIME: 3470 case MSR_KVM_SYSTEM_TIME_NEW: 3471 msr_info->data = vcpu->arch.time; 3472 break; 3473 case MSR_KVM_ASYNC_PF_EN: 3474 msr_info->data = vcpu->arch.apf.msr_en_val; 3475 break; 3476 case MSR_KVM_ASYNC_PF_INT: 3477 msr_info->data = vcpu->arch.apf.msr_int_val; 3478 break; 3479 case MSR_KVM_ASYNC_PF_ACK: 3480 msr_info->data = 0; 3481 break; 3482 case MSR_KVM_STEAL_TIME: 3483 msr_info->data = vcpu->arch.st.msr_val; 3484 break; 3485 case MSR_KVM_PV_EOI_EN: 3486 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3487 break; 3488 case MSR_KVM_POLL_CONTROL: 3489 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3490 break; 3491 case MSR_IA32_P5_MC_ADDR: 3492 case MSR_IA32_P5_MC_TYPE: 3493 case MSR_IA32_MCG_CAP: 3494 case MSR_IA32_MCG_CTL: 3495 case MSR_IA32_MCG_STATUS: 3496 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3497 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3498 msr_info->host_initiated); 3499 case MSR_IA32_XSS: 3500 if (!msr_info->host_initiated && 3501 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3502 return 1; 3503 msr_info->data = vcpu->arch.ia32_xss; 3504 break; 3505 case MSR_K7_CLK_CTL: 3506 /* 3507 * Provide expected ramp-up count for K7. All other 3508 * are set to zero, indicating minimum divisors for 3509 * every field. 3510 * 3511 * This prevents guest kernels on AMD host with CPU 3512 * type 6, model 8 and higher from exploding due to 3513 * the rdmsr failing. 3514 */ 3515 msr_info->data = 0x20000000; 3516 break; 3517 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3518 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3519 case HV_X64_MSR_SYNDBG_OPTIONS: 3520 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3521 case HV_X64_MSR_CRASH_CTL: 3522 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3523 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3524 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3525 case HV_X64_MSR_TSC_EMULATION_STATUS: 3526 return kvm_hv_get_msr_common(vcpu, 3527 msr_info->index, &msr_info->data, 3528 msr_info->host_initiated); 3529 case MSR_IA32_BBL_CR_CTL3: 3530 /* This legacy MSR exists but isn't fully documented in current 3531 * silicon. It is however accessed by winxp in very narrow 3532 * scenarios where it sets bit #19, itself documented as 3533 * a "reserved" bit. Best effort attempt to source coherent 3534 * read data here should the balance of the register be 3535 * interpreted by the guest: 3536 * 3537 * L2 cache control register 3: 64GB range, 256KB size, 3538 * enabled, latency 0x1, configured 3539 */ 3540 msr_info->data = 0xbe702111; 3541 break; 3542 case MSR_AMD64_OSVW_ID_LENGTH: 3543 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3544 return 1; 3545 msr_info->data = vcpu->arch.osvw.length; 3546 break; 3547 case MSR_AMD64_OSVW_STATUS: 3548 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3549 return 1; 3550 msr_info->data = vcpu->arch.osvw.status; 3551 break; 3552 case MSR_PLATFORM_INFO: 3553 if (!msr_info->host_initiated && 3554 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3555 return 1; 3556 msr_info->data = vcpu->arch.msr_platform_info; 3557 break; 3558 case MSR_MISC_FEATURES_ENABLES: 3559 msr_info->data = vcpu->arch.msr_misc_features_enables; 3560 break; 3561 case MSR_K7_HWCR: 3562 msr_info->data = vcpu->arch.msr_hwcr; 3563 break; 3564 default: 3565 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3566 return kvm_pmu_get_msr(vcpu, msr_info); 3567 return KVM_MSR_RET_INVALID; 3568 } 3569 return 0; 3570 } 3571 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3572 3573 /* 3574 * Read or write a bunch of msrs. All parameters are kernel addresses. 3575 * 3576 * @return number of msrs set successfully. 3577 */ 3578 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3579 struct kvm_msr_entry *entries, 3580 int (*do_msr)(struct kvm_vcpu *vcpu, 3581 unsigned index, u64 *data)) 3582 { 3583 int i; 3584 3585 for (i = 0; i < msrs->nmsrs; ++i) 3586 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3587 break; 3588 3589 return i; 3590 } 3591 3592 /* 3593 * Read or write a bunch of msrs. Parameters are user addresses. 3594 * 3595 * @return number of msrs set successfully. 3596 */ 3597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3598 int (*do_msr)(struct kvm_vcpu *vcpu, 3599 unsigned index, u64 *data), 3600 int writeback) 3601 { 3602 struct kvm_msrs msrs; 3603 struct kvm_msr_entry *entries; 3604 int r, n; 3605 unsigned size; 3606 3607 r = -EFAULT; 3608 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3609 goto out; 3610 3611 r = -E2BIG; 3612 if (msrs.nmsrs >= MAX_IO_MSRS) 3613 goto out; 3614 3615 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3616 entries = memdup_user(user_msrs->entries, size); 3617 if (IS_ERR(entries)) { 3618 r = PTR_ERR(entries); 3619 goto out; 3620 } 3621 3622 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3623 if (r < 0) 3624 goto out_free; 3625 3626 r = -EFAULT; 3627 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3628 goto out_free; 3629 3630 r = n; 3631 3632 out_free: 3633 kfree(entries); 3634 out: 3635 return r; 3636 } 3637 3638 static inline bool kvm_can_mwait_in_guest(void) 3639 { 3640 return boot_cpu_has(X86_FEATURE_MWAIT) && 3641 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3642 boot_cpu_has(X86_FEATURE_ARAT); 3643 } 3644 3645 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3646 { 3647 int r = 0; 3648 3649 switch (ext) { 3650 case KVM_CAP_IRQCHIP: 3651 case KVM_CAP_HLT: 3652 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3653 case KVM_CAP_SET_TSS_ADDR: 3654 case KVM_CAP_EXT_CPUID: 3655 case KVM_CAP_EXT_EMUL_CPUID: 3656 case KVM_CAP_CLOCKSOURCE: 3657 case KVM_CAP_PIT: 3658 case KVM_CAP_NOP_IO_DELAY: 3659 case KVM_CAP_MP_STATE: 3660 case KVM_CAP_SYNC_MMU: 3661 case KVM_CAP_USER_NMI: 3662 case KVM_CAP_REINJECT_CONTROL: 3663 case KVM_CAP_IRQ_INJECT_STATUS: 3664 case KVM_CAP_IOEVENTFD: 3665 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3666 case KVM_CAP_PIT2: 3667 case KVM_CAP_PIT_STATE2: 3668 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3669 case KVM_CAP_XEN_HVM: 3670 case KVM_CAP_VCPU_EVENTS: 3671 case KVM_CAP_HYPERV: 3672 case KVM_CAP_HYPERV_VAPIC: 3673 case KVM_CAP_HYPERV_SPIN: 3674 case KVM_CAP_HYPERV_SYNIC: 3675 case KVM_CAP_HYPERV_SYNIC2: 3676 case KVM_CAP_HYPERV_VP_INDEX: 3677 case KVM_CAP_HYPERV_EVENTFD: 3678 case KVM_CAP_HYPERV_TLBFLUSH: 3679 case KVM_CAP_HYPERV_SEND_IPI: 3680 case KVM_CAP_HYPERV_CPUID: 3681 case KVM_CAP_PCI_SEGMENT: 3682 case KVM_CAP_DEBUGREGS: 3683 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3684 case KVM_CAP_XSAVE: 3685 case KVM_CAP_ASYNC_PF: 3686 case KVM_CAP_ASYNC_PF_INT: 3687 case KVM_CAP_GET_TSC_KHZ: 3688 case KVM_CAP_KVMCLOCK_CTRL: 3689 case KVM_CAP_READONLY_MEM: 3690 case KVM_CAP_HYPERV_TIME: 3691 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3692 case KVM_CAP_TSC_DEADLINE_TIMER: 3693 case KVM_CAP_DISABLE_QUIRKS: 3694 case KVM_CAP_SET_BOOT_CPU_ID: 3695 case KVM_CAP_SPLIT_IRQCHIP: 3696 case KVM_CAP_IMMEDIATE_EXIT: 3697 case KVM_CAP_PMU_EVENT_FILTER: 3698 case KVM_CAP_GET_MSR_FEATURES: 3699 case KVM_CAP_MSR_PLATFORM_INFO: 3700 case KVM_CAP_EXCEPTION_PAYLOAD: 3701 case KVM_CAP_SET_GUEST_DEBUG: 3702 case KVM_CAP_LAST_CPU: 3703 case KVM_CAP_X86_USER_SPACE_MSR: 3704 case KVM_CAP_X86_MSR_FILTER: 3705 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3706 r = 1; 3707 break; 3708 case KVM_CAP_SYNC_REGS: 3709 r = KVM_SYNC_X86_VALID_FIELDS; 3710 break; 3711 case KVM_CAP_ADJUST_CLOCK: 3712 r = KVM_CLOCK_TSC_STABLE; 3713 break; 3714 case KVM_CAP_X86_DISABLE_EXITS: 3715 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3716 KVM_X86_DISABLE_EXITS_CSTATE; 3717 if(kvm_can_mwait_in_guest()) 3718 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3719 break; 3720 case KVM_CAP_X86_SMM: 3721 /* SMBASE is usually relocated above 1M on modern chipsets, 3722 * and SMM handlers might indeed rely on 4G segment limits, 3723 * so do not report SMM to be available if real mode is 3724 * emulated via vm86 mode. Still, do not go to great lengths 3725 * to avoid userspace's usage of the feature, because it is a 3726 * fringe case that is not enabled except via specific settings 3727 * of the module parameters. 3728 */ 3729 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3730 break; 3731 case KVM_CAP_VAPIC: 3732 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3733 break; 3734 case KVM_CAP_NR_VCPUS: 3735 r = KVM_SOFT_MAX_VCPUS; 3736 break; 3737 case KVM_CAP_MAX_VCPUS: 3738 r = KVM_MAX_VCPUS; 3739 break; 3740 case KVM_CAP_MAX_VCPU_ID: 3741 r = KVM_MAX_VCPU_ID; 3742 break; 3743 case KVM_CAP_PV_MMU: /* obsolete */ 3744 r = 0; 3745 break; 3746 case KVM_CAP_MCE: 3747 r = KVM_MAX_MCE_BANKS; 3748 break; 3749 case KVM_CAP_XCRS: 3750 r = boot_cpu_has(X86_FEATURE_XSAVE); 3751 break; 3752 case KVM_CAP_TSC_CONTROL: 3753 r = kvm_has_tsc_control; 3754 break; 3755 case KVM_CAP_X2APIC_API: 3756 r = KVM_X2APIC_API_VALID_FLAGS; 3757 break; 3758 case KVM_CAP_NESTED_STATE: 3759 r = kvm_x86_ops.nested_ops->get_state ? 3760 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3761 break; 3762 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3763 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3764 break; 3765 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3766 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3767 break; 3768 case KVM_CAP_SMALLER_MAXPHYADDR: 3769 r = (int) allow_smaller_maxphyaddr; 3770 break; 3771 case KVM_CAP_STEAL_TIME: 3772 r = sched_info_on(); 3773 break; 3774 default: 3775 break; 3776 } 3777 return r; 3778 3779 } 3780 3781 long kvm_arch_dev_ioctl(struct file *filp, 3782 unsigned int ioctl, unsigned long arg) 3783 { 3784 void __user *argp = (void __user *)arg; 3785 long r; 3786 3787 switch (ioctl) { 3788 case KVM_GET_MSR_INDEX_LIST: { 3789 struct kvm_msr_list __user *user_msr_list = argp; 3790 struct kvm_msr_list msr_list; 3791 unsigned n; 3792 3793 r = -EFAULT; 3794 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3795 goto out; 3796 n = msr_list.nmsrs; 3797 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3798 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3799 goto out; 3800 r = -E2BIG; 3801 if (n < msr_list.nmsrs) 3802 goto out; 3803 r = -EFAULT; 3804 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3805 num_msrs_to_save * sizeof(u32))) 3806 goto out; 3807 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3808 &emulated_msrs, 3809 num_emulated_msrs * sizeof(u32))) 3810 goto out; 3811 r = 0; 3812 break; 3813 } 3814 case KVM_GET_SUPPORTED_CPUID: 3815 case KVM_GET_EMULATED_CPUID: { 3816 struct kvm_cpuid2 __user *cpuid_arg = argp; 3817 struct kvm_cpuid2 cpuid; 3818 3819 r = -EFAULT; 3820 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3821 goto out; 3822 3823 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3824 ioctl); 3825 if (r) 3826 goto out; 3827 3828 r = -EFAULT; 3829 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3830 goto out; 3831 r = 0; 3832 break; 3833 } 3834 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3835 r = -EFAULT; 3836 if (copy_to_user(argp, &kvm_mce_cap_supported, 3837 sizeof(kvm_mce_cap_supported))) 3838 goto out; 3839 r = 0; 3840 break; 3841 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3842 struct kvm_msr_list __user *user_msr_list = argp; 3843 struct kvm_msr_list msr_list; 3844 unsigned int n; 3845 3846 r = -EFAULT; 3847 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3848 goto out; 3849 n = msr_list.nmsrs; 3850 msr_list.nmsrs = num_msr_based_features; 3851 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3852 goto out; 3853 r = -E2BIG; 3854 if (n < msr_list.nmsrs) 3855 goto out; 3856 r = -EFAULT; 3857 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3858 num_msr_based_features * sizeof(u32))) 3859 goto out; 3860 r = 0; 3861 break; 3862 } 3863 case KVM_GET_MSRS: 3864 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3865 break; 3866 default: 3867 r = -EINVAL; 3868 break; 3869 } 3870 out: 3871 return r; 3872 } 3873 3874 static void wbinvd_ipi(void *garbage) 3875 { 3876 wbinvd(); 3877 } 3878 3879 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3880 { 3881 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3882 } 3883 3884 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3885 { 3886 /* Address WBINVD may be executed by guest */ 3887 if (need_emulate_wbinvd(vcpu)) { 3888 if (kvm_x86_ops.has_wbinvd_exit()) 3889 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3890 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3891 smp_call_function_single(vcpu->cpu, 3892 wbinvd_ipi, NULL, 1); 3893 } 3894 3895 kvm_x86_ops.vcpu_load(vcpu, cpu); 3896 3897 /* Save host pkru register if supported */ 3898 vcpu->arch.host_pkru = read_pkru(); 3899 3900 /* Apply any externally detected TSC adjustments (due to suspend) */ 3901 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3902 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3903 vcpu->arch.tsc_offset_adjustment = 0; 3904 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3905 } 3906 3907 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3908 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3909 rdtsc() - vcpu->arch.last_host_tsc; 3910 if (tsc_delta < 0) 3911 mark_tsc_unstable("KVM discovered backwards TSC"); 3912 3913 if (kvm_check_tsc_unstable()) { 3914 u64 offset = kvm_compute_tsc_offset(vcpu, 3915 vcpu->arch.last_guest_tsc); 3916 kvm_vcpu_write_tsc_offset(vcpu, offset); 3917 vcpu->arch.tsc_catchup = 1; 3918 } 3919 3920 if (kvm_lapic_hv_timer_in_use(vcpu)) 3921 kvm_lapic_restart_hv_timer(vcpu); 3922 3923 /* 3924 * On a host with synchronized TSC, there is no need to update 3925 * kvmclock on vcpu->cpu migration 3926 */ 3927 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3928 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3929 if (vcpu->cpu != cpu) 3930 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3931 vcpu->cpu = cpu; 3932 } 3933 3934 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3935 } 3936 3937 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3938 { 3939 struct kvm_host_map map; 3940 struct kvm_steal_time *st; 3941 3942 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3943 return; 3944 3945 if (vcpu->arch.st.preempted) 3946 return; 3947 3948 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3949 &vcpu->arch.st.cache, true)) 3950 return; 3951 3952 st = map.hva + 3953 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3954 3955 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3956 3957 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3958 } 3959 3960 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3961 { 3962 int idx; 3963 3964 if (vcpu->preempted) 3965 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3966 3967 /* 3968 * Disable page faults because we're in atomic context here. 3969 * kvm_write_guest_offset_cached() would call might_fault() 3970 * that relies on pagefault_disable() to tell if there's a 3971 * bug. NOTE: the write to guest memory may not go through if 3972 * during postcopy live migration or if there's heavy guest 3973 * paging. 3974 */ 3975 pagefault_disable(); 3976 /* 3977 * kvm_memslots() will be called by 3978 * kvm_write_guest_offset_cached() so take the srcu lock. 3979 */ 3980 idx = srcu_read_lock(&vcpu->kvm->srcu); 3981 kvm_steal_time_set_preempted(vcpu); 3982 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3983 pagefault_enable(); 3984 kvm_x86_ops.vcpu_put(vcpu); 3985 vcpu->arch.last_host_tsc = rdtsc(); 3986 /* 3987 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3988 * on every vmexit, but if not, we might have a stale dr6 from the 3989 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3990 */ 3991 set_debugreg(0, 6); 3992 } 3993 3994 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3995 struct kvm_lapic_state *s) 3996 { 3997 if (vcpu->arch.apicv_active) 3998 kvm_x86_ops.sync_pir_to_irr(vcpu); 3999 4000 return kvm_apic_get_state(vcpu, s); 4001 } 4002 4003 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4004 struct kvm_lapic_state *s) 4005 { 4006 int r; 4007 4008 r = kvm_apic_set_state(vcpu, s); 4009 if (r) 4010 return r; 4011 update_cr8_intercept(vcpu); 4012 4013 return 0; 4014 } 4015 4016 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4017 { 4018 return (!lapic_in_kernel(vcpu) || 4019 kvm_apic_accept_pic_intr(vcpu)); 4020 } 4021 4022 /* 4023 * if userspace requested an interrupt window, check that the 4024 * interrupt window is open. 4025 * 4026 * No need to exit to userspace if we already have an interrupt queued. 4027 */ 4028 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4029 { 4030 return kvm_arch_interrupt_allowed(vcpu) && 4031 !kvm_cpu_has_interrupt(vcpu) && 4032 !kvm_event_needs_reinjection(vcpu) && 4033 kvm_cpu_accept_dm_intr(vcpu); 4034 } 4035 4036 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4037 struct kvm_interrupt *irq) 4038 { 4039 if (irq->irq >= KVM_NR_INTERRUPTS) 4040 return -EINVAL; 4041 4042 if (!irqchip_in_kernel(vcpu->kvm)) { 4043 kvm_queue_interrupt(vcpu, irq->irq, false); 4044 kvm_make_request(KVM_REQ_EVENT, vcpu); 4045 return 0; 4046 } 4047 4048 /* 4049 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4050 * fail for in-kernel 8259. 4051 */ 4052 if (pic_in_kernel(vcpu->kvm)) 4053 return -ENXIO; 4054 4055 if (vcpu->arch.pending_external_vector != -1) 4056 return -EEXIST; 4057 4058 vcpu->arch.pending_external_vector = irq->irq; 4059 kvm_make_request(KVM_REQ_EVENT, vcpu); 4060 return 0; 4061 } 4062 4063 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4064 { 4065 kvm_inject_nmi(vcpu); 4066 4067 return 0; 4068 } 4069 4070 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4071 { 4072 kvm_make_request(KVM_REQ_SMI, vcpu); 4073 4074 return 0; 4075 } 4076 4077 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4078 struct kvm_tpr_access_ctl *tac) 4079 { 4080 if (tac->flags) 4081 return -EINVAL; 4082 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4083 return 0; 4084 } 4085 4086 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4087 u64 mcg_cap) 4088 { 4089 int r; 4090 unsigned bank_num = mcg_cap & 0xff, bank; 4091 4092 r = -EINVAL; 4093 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4094 goto out; 4095 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4096 goto out; 4097 r = 0; 4098 vcpu->arch.mcg_cap = mcg_cap; 4099 /* Init IA32_MCG_CTL to all 1s */ 4100 if (mcg_cap & MCG_CTL_P) 4101 vcpu->arch.mcg_ctl = ~(u64)0; 4102 /* Init IA32_MCi_CTL to all 1s */ 4103 for (bank = 0; bank < bank_num; bank++) 4104 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4105 4106 kvm_x86_ops.setup_mce(vcpu); 4107 out: 4108 return r; 4109 } 4110 4111 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4112 struct kvm_x86_mce *mce) 4113 { 4114 u64 mcg_cap = vcpu->arch.mcg_cap; 4115 unsigned bank_num = mcg_cap & 0xff; 4116 u64 *banks = vcpu->arch.mce_banks; 4117 4118 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4119 return -EINVAL; 4120 /* 4121 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4122 * reporting is disabled 4123 */ 4124 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4125 vcpu->arch.mcg_ctl != ~(u64)0) 4126 return 0; 4127 banks += 4 * mce->bank; 4128 /* 4129 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4130 * reporting is disabled for the bank 4131 */ 4132 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4133 return 0; 4134 if (mce->status & MCI_STATUS_UC) { 4135 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4136 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4137 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4138 return 0; 4139 } 4140 if (banks[1] & MCI_STATUS_VAL) 4141 mce->status |= MCI_STATUS_OVER; 4142 banks[2] = mce->addr; 4143 banks[3] = mce->misc; 4144 vcpu->arch.mcg_status = mce->mcg_status; 4145 banks[1] = mce->status; 4146 kvm_queue_exception(vcpu, MC_VECTOR); 4147 } else if (!(banks[1] & MCI_STATUS_VAL) 4148 || !(banks[1] & MCI_STATUS_UC)) { 4149 if (banks[1] & MCI_STATUS_VAL) 4150 mce->status |= MCI_STATUS_OVER; 4151 banks[2] = mce->addr; 4152 banks[3] = mce->misc; 4153 banks[1] = mce->status; 4154 } else 4155 banks[1] |= MCI_STATUS_OVER; 4156 return 0; 4157 } 4158 4159 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4160 struct kvm_vcpu_events *events) 4161 { 4162 process_nmi(vcpu); 4163 4164 /* 4165 * In guest mode, payload delivery should be deferred, 4166 * so that the L1 hypervisor can intercept #PF before 4167 * CR2 is modified (or intercept #DB before DR6 is 4168 * modified under nVMX). Unless the per-VM capability, 4169 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4170 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4171 * opportunistically defer the exception payload, deliver it if the 4172 * capability hasn't been requested before processing a 4173 * KVM_GET_VCPU_EVENTS. 4174 */ 4175 if (!vcpu->kvm->arch.exception_payload_enabled && 4176 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4177 kvm_deliver_exception_payload(vcpu); 4178 4179 /* 4180 * The API doesn't provide the instruction length for software 4181 * exceptions, so don't report them. As long as the guest RIP 4182 * isn't advanced, we should expect to encounter the exception 4183 * again. 4184 */ 4185 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4186 events->exception.injected = 0; 4187 events->exception.pending = 0; 4188 } else { 4189 events->exception.injected = vcpu->arch.exception.injected; 4190 events->exception.pending = vcpu->arch.exception.pending; 4191 /* 4192 * For ABI compatibility, deliberately conflate 4193 * pending and injected exceptions when 4194 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4195 */ 4196 if (!vcpu->kvm->arch.exception_payload_enabled) 4197 events->exception.injected |= 4198 vcpu->arch.exception.pending; 4199 } 4200 events->exception.nr = vcpu->arch.exception.nr; 4201 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4202 events->exception.error_code = vcpu->arch.exception.error_code; 4203 events->exception_has_payload = vcpu->arch.exception.has_payload; 4204 events->exception_payload = vcpu->arch.exception.payload; 4205 4206 events->interrupt.injected = 4207 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4208 events->interrupt.nr = vcpu->arch.interrupt.nr; 4209 events->interrupt.soft = 0; 4210 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4211 4212 events->nmi.injected = vcpu->arch.nmi_injected; 4213 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4214 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4215 events->nmi.pad = 0; 4216 4217 events->sipi_vector = 0; /* never valid when reporting to user space */ 4218 4219 events->smi.smm = is_smm(vcpu); 4220 events->smi.pending = vcpu->arch.smi_pending; 4221 events->smi.smm_inside_nmi = 4222 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4223 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4224 4225 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4226 | KVM_VCPUEVENT_VALID_SHADOW 4227 | KVM_VCPUEVENT_VALID_SMM); 4228 if (vcpu->kvm->arch.exception_payload_enabled) 4229 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4230 4231 memset(&events->reserved, 0, sizeof(events->reserved)); 4232 } 4233 4234 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4235 4236 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4237 struct kvm_vcpu_events *events) 4238 { 4239 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4240 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4241 | KVM_VCPUEVENT_VALID_SHADOW 4242 | KVM_VCPUEVENT_VALID_SMM 4243 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4244 return -EINVAL; 4245 4246 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4247 if (!vcpu->kvm->arch.exception_payload_enabled) 4248 return -EINVAL; 4249 if (events->exception.pending) 4250 events->exception.injected = 0; 4251 else 4252 events->exception_has_payload = 0; 4253 } else { 4254 events->exception.pending = 0; 4255 events->exception_has_payload = 0; 4256 } 4257 4258 if ((events->exception.injected || events->exception.pending) && 4259 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4260 return -EINVAL; 4261 4262 /* INITs are latched while in SMM */ 4263 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4264 (events->smi.smm || events->smi.pending) && 4265 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4266 return -EINVAL; 4267 4268 process_nmi(vcpu); 4269 vcpu->arch.exception.injected = events->exception.injected; 4270 vcpu->arch.exception.pending = events->exception.pending; 4271 vcpu->arch.exception.nr = events->exception.nr; 4272 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4273 vcpu->arch.exception.error_code = events->exception.error_code; 4274 vcpu->arch.exception.has_payload = events->exception_has_payload; 4275 vcpu->arch.exception.payload = events->exception_payload; 4276 4277 vcpu->arch.interrupt.injected = events->interrupt.injected; 4278 vcpu->arch.interrupt.nr = events->interrupt.nr; 4279 vcpu->arch.interrupt.soft = events->interrupt.soft; 4280 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4281 kvm_x86_ops.set_interrupt_shadow(vcpu, 4282 events->interrupt.shadow); 4283 4284 vcpu->arch.nmi_injected = events->nmi.injected; 4285 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4286 vcpu->arch.nmi_pending = events->nmi.pending; 4287 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4288 4289 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4290 lapic_in_kernel(vcpu)) 4291 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4292 4293 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4294 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4295 if (events->smi.smm) 4296 vcpu->arch.hflags |= HF_SMM_MASK; 4297 else 4298 vcpu->arch.hflags &= ~HF_SMM_MASK; 4299 kvm_smm_changed(vcpu); 4300 } 4301 4302 vcpu->arch.smi_pending = events->smi.pending; 4303 4304 if (events->smi.smm) { 4305 if (events->smi.smm_inside_nmi) 4306 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4307 else 4308 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4309 } 4310 4311 if (lapic_in_kernel(vcpu)) { 4312 if (events->smi.latched_init) 4313 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4314 else 4315 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4316 } 4317 } 4318 4319 kvm_make_request(KVM_REQ_EVENT, vcpu); 4320 4321 return 0; 4322 } 4323 4324 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4325 struct kvm_debugregs *dbgregs) 4326 { 4327 unsigned long val; 4328 4329 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4330 kvm_get_dr(vcpu, 6, &val); 4331 dbgregs->dr6 = val; 4332 dbgregs->dr7 = vcpu->arch.dr7; 4333 dbgregs->flags = 0; 4334 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4335 } 4336 4337 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4338 struct kvm_debugregs *dbgregs) 4339 { 4340 if (dbgregs->flags) 4341 return -EINVAL; 4342 4343 if (dbgregs->dr6 & ~0xffffffffull) 4344 return -EINVAL; 4345 if (dbgregs->dr7 & ~0xffffffffull) 4346 return -EINVAL; 4347 4348 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4349 kvm_update_dr0123(vcpu); 4350 vcpu->arch.dr6 = dbgregs->dr6; 4351 vcpu->arch.dr7 = dbgregs->dr7; 4352 kvm_update_dr7(vcpu); 4353 4354 return 0; 4355 } 4356 4357 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4358 4359 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4360 { 4361 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4362 u64 xstate_bv = xsave->header.xfeatures; 4363 u64 valid; 4364 4365 /* 4366 * Copy legacy XSAVE area, to avoid complications with CPUID 4367 * leaves 0 and 1 in the loop below. 4368 */ 4369 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4370 4371 /* Set XSTATE_BV */ 4372 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4373 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4374 4375 /* 4376 * Copy each region from the possibly compacted offset to the 4377 * non-compacted offset. 4378 */ 4379 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4380 while (valid) { 4381 u64 xfeature_mask = valid & -valid; 4382 int xfeature_nr = fls64(xfeature_mask) - 1; 4383 void *src = get_xsave_addr(xsave, xfeature_nr); 4384 4385 if (src) { 4386 u32 size, offset, ecx, edx; 4387 cpuid_count(XSTATE_CPUID, xfeature_nr, 4388 &size, &offset, &ecx, &edx); 4389 if (xfeature_nr == XFEATURE_PKRU) 4390 memcpy(dest + offset, &vcpu->arch.pkru, 4391 sizeof(vcpu->arch.pkru)); 4392 else 4393 memcpy(dest + offset, src, size); 4394 4395 } 4396 4397 valid -= xfeature_mask; 4398 } 4399 } 4400 4401 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4402 { 4403 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4404 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4405 u64 valid; 4406 4407 /* 4408 * Copy legacy XSAVE area, to avoid complications with CPUID 4409 * leaves 0 and 1 in the loop below. 4410 */ 4411 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4412 4413 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4414 xsave->header.xfeatures = xstate_bv; 4415 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4416 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4417 4418 /* 4419 * Copy each region from the non-compacted offset to the 4420 * possibly compacted offset. 4421 */ 4422 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4423 while (valid) { 4424 u64 xfeature_mask = valid & -valid; 4425 int xfeature_nr = fls64(xfeature_mask) - 1; 4426 void *dest = get_xsave_addr(xsave, xfeature_nr); 4427 4428 if (dest) { 4429 u32 size, offset, ecx, edx; 4430 cpuid_count(XSTATE_CPUID, xfeature_nr, 4431 &size, &offset, &ecx, &edx); 4432 if (xfeature_nr == XFEATURE_PKRU) 4433 memcpy(&vcpu->arch.pkru, src + offset, 4434 sizeof(vcpu->arch.pkru)); 4435 else 4436 memcpy(dest, src + offset, size); 4437 } 4438 4439 valid -= xfeature_mask; 4440 } 4441 } 4442 4443 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4444 struct kvm_xsave *guest_xsave) 4445 { 4446 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4447 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4448 fill_xsave((u8 *) guest_xsave->region, vcpu); 4449 } else { 4450 memcpy(guest_xsave->region, 4451 &vcpu->arch.guest_fpu->state.fxsave, 4452 sizeof(struct fxregs_state)); 4453 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4454 XFEATURE_MASK_FPSSE; 4455 } 4456 } 4457 4458 #define XSAVE_MXCSR_OFFSET 24 4459 4460 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4461 struct kvm_xsave *guest_xsave) 4462 { 4463 u64 xstate_bv = 4464 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4465 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4466 4467 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4468 /* 4469 * Here we allow setting states that are not present in 4470 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4471 * with old userspace. 4472 */ 4473 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4474 return -EINVAL; 4475 load_xsave(vcpu, (u8 *)guest_xsave->region); 4476 } else { 4477 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4478 mxcsr & ~mxcsr_feature_mask) 4479 return -EINVAL; 4480 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4481 guest_xsave->region, sizeof(struct fxregs_state)); 4482 } 4483 return 0; 4484 } 4485 4486 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4487 struct kvm_xcrs *guest_xcrs) 4488 { 4489 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4490 guest_xcrs->nr_xcrs = 0; 4491 return; 4492 } 4493 4494 guest_xcrs->nr_xcrs = 1; 4495 guest_xcrs->flags = 0; 4496 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4497 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4498 } 4499 4500 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4501 struct kvm_xcrs *guest_xcrs) 4502 { 4503 int i, r = 0; 4504 4505 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4506 return -EINVAL; 4507 4508 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4509 return -EINVAL; 4510 4511 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4512 /* Only support XCR0 currently */ 4513 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4514 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4515 guest_xcrs->xcrs[i].value); 4516 break; 4517 } 4518 if (r) 4519 r = -EINVAL; 4520 return r; 4521 } 4522 4523 /* 4524 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4525 * stopped by the hypervisor. This function will be called from the host only. 4526 * EINVAL is returned when the host attempts to set the flag for a guest that 4527 * does not support pv clocks. 4528 */ 4529 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4530 { 4531 if (!vcpu->arch.pv_time_enabled) 4532 return -EINVAL; 4533 vcpu->arch.pvclock_set_guest_stopped_request = true; 4534 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4535 return 0; 4536 } 4537 4538 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4539 struct kvm_enable_cap *cap) 4540 { 4541 int r; 4542 uint16_t vmcs_version; 4543 void __user *user_ptr; 4544 4545 if (cap->flags) 4546 return -EINVAL; 4547 4548 switch (cap->cap) { 4549 case KVM_CAP_HYPERV_SYNIC2: 4550 if (cap->args[0]) 4551 return -EINVAL; 4552 fallthrough; 4553 4554 case KVM_CAP_HYPERV_SYNIC: 4555 if (!irqchip_in_kernel(vcpu->kvm)) 4556 return -EINVAL; 4557 return kvm_hv_activate_synic(vcpu, cap->cap == 4558 KVM_CAP_HYPERV_SYNIC2); 4559 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4560 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4561 return -ENOTTY; 4562 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4563 if (!r) { 4564 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4565 if (copy_to_user(user_ptr, &vmcs_version, 4566 sizeof(vmcs_version))) 4567 r = -EFAULT; 4568 } 4569 return r; 4570 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4571 if (!kvm_x86_ops.enable_direct_tlbflush) 4572 return -ENOTTY; 4573 4574 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4575 4576 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4577 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4578 4579 return 0; 4580 4581 default: 4582 return -EINVAL; 4583 } 4584 } 4585 4586 long kvm_arch_vcpu_ioctl(struct file *filp, 4587 unsigned int ioctl, unsigned long arg) 4588 { 4589 struct kvm_vcpu *vcpu = filp->private_data; 4590 void __user *argp = (void __user *)arg; 4591 int r; 4592 union { 4593 struct kvm_lapic_state *lapic; 4594 struct kvm_xsave *xsave; 4595 struct kvm_xcrs *xcrs; 4596 void *buffer; 4597 } u; 4598 4599 vcpu_load(vcpu); 4600 4601 u.buffer = NULL; 4602 switch (ioctl) { 4603 case KVM_GET_LAPIC: { 4604 r = -EINVAL; 4605 if (!lapic_in_kernel(vcpu)) 4606 goto out; 4607 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4608 GFP_KERNEL_ACCOUNT); 4609 4610 r = -ENOMEM; 4611 if (!u.lapic) 4612 goto out; 4613 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4614 if (r) 4615 goto out; 4616 r = -EFAULT; 4617 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4618 goto out; 4619 r = 0; 4620 break; 4621 } 4622 case KVM_SET_LAPIC: { 4623 r = -EINVAL; 4624 if (!lapic_in_kernel(vcpu)) 4625 goto out; 4626 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4627 if (IS_ERR(u.lapic)) { 4628 r = PTR_ERR(u.lapic); 4629 goto out_nofree; 4630 } 4631 4632 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4633 break; 4634 } 4635 case KVM_INTERRUPT: { 4636 struct kvm_interrupt irq; 4637 4638 r = -EFAULT; 4639 if (copy_from_user(&irq, argp, sizeof(irq))) 4640 goto out; 4641 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4642 break; 4643 } 4644 case KVM_NMI: { 4645 r = kvm_vcpu_ioctl_nmi(vcpu); 4646 break; 4647 } 4648 case KVM_SMI: { 4649 r = kvm_vcpu_ioctl_smi(vcpu); 4650 break; 4651 } 4652 case KVM_SET_CPUID: { 4653 struct kvm_cpuid __user *cpuid_arg = argp; 4654 struct kvm_cpuid cpuid; 4655 4656 r = -EFAULT; 4657 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4658 goto out; 4659 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4660 break; 4661 } 4662 case KVM_SET_CPUID2: { 4663 struct kvm_cpuid2 __user *cpuid_arg = argp; 4664 struct kvm_cpuid2 cpuid; 4665 4666 r = -EFAULT; 4667 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4668 goto out; 4669 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4670 cpuid_arg->entries); 4671 break; 4672 } 4673 case KVM_GET_CPUID2: { 4674 struct kvm_cpuid2 __user *cpuid_arg = argp; 4675 struct kvm_cpuid2 cpuid; 4676 4677 r = -EFAULT; 4678 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4679 goto out; 4680 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4681 cpuid_arg->entries); 4682 if (r) 4683 goto out; 4684 r = -EFAULT; 4685 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4686 goto out; 4687 r = 0; 4688 break; 4689 } 4690 case KVM_GET_MSRS: { 4691 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4692 r = msr_io(vcpu, argp, do_get_msr, 1); 4693 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4694 break; 4695 } 4696 case KVM_SET_MSRS: { 4697 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4698 r = msr_io(vcpu, argp, do_set_msr, 0); 4699 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4700 break; 4701 } 4702 case KVM_TPR_ACCESS_REPORTING: { 4703 struct kvm_tpr_access_ctl tac; 4704 4705 r = -EFAULT; 4706 if (copy_from_user(&tac, argp, sizeof(tac))) 4707 goto out; 4708 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4709 if (r) 4710 goto out; 4711 r = -EFAULT; 4712 if (copy_to_user(argp, &tac, sizeof(tac))) 4713 goto out; 4714 r = 0; 4715 break; 4716 }; 4717 case KVM_SET_VAPIC_ADDR: { 4718 struct kvm_vapic_addr va; 4719 int idx; 4720 4721 r = -EINVAL; 4722 if (!lapic_in_kernel(vcpu)) 4723 goto out; 4724 r = -EFAULT; 4725 if (copy_from_user(&va, argp, sizeof(va))) 4726 goto out; 4727 idx = srcu_read_lock(&vcpu->kvm->srcu); 4728 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4729 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4730 break; 4731 } 4732 case KVM_X86_SETUP_MCE: { 4733 u64 mcg_cap; 4734 4735 r = -EFAULT; 4736 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4737 goto out; 4738 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4739 break; 4740 } 4741 case KVM_X86_SET_MCE: { 4742 struct kvm_x86_mce mce; 4743 4744 r = -EFAULT; 4745 if (copy_from_user(&mce, argp, sizeof(mce))) 4746 goto out; 4747 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4748 break; 4749 } 4750 case KVM_GET_VCPU_EVENTS: { 4751 struct kvm_vcpu_events events; 4752 4753 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4754 4755 r = -EFAULT; 4756 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4757 break; 4758 r = 0; 4759 break; 4760 } 4761 case KVM_SET_VCPU_EVENTS: { 4762 struct kvm_vcpu_events events; 4763 4764 r = -EFAULT; 4765 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4766 break; 4767 4768 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4769 break; 4770 } 4771 case KVM_GET_DEBUGREGS: { 4772 struct kvm_debugregs dbgregs; 4773 4774 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4775 4776 r = -EFAULT; 4777 if (copy_to_user(argp, &dbgregs, 4778 sizeof(struct kvm_debugregs))) 4779 break; 4780 r = 0; 4781 break; 4782 } 4783 case KVM_SET_DEBUGREGS: { 4784 struct kvm_debugregs dbgregs; 4785 4786 r = -EFAULT; 4787 if (copy_from_user(&dbgregs, argp, 4788 sizeof(struct kvm_debugregs))) 4789 break; 4790 4791 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4792 break; 4793 } 4794 case KVM_GET_XSAVE: { 4795 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4796 r = -ENOMEM; 4797 if (!u.xsave) 4798 break; 4799 4800 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4801 4802 r = -EFAULT; 4803 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4804 break; 4805 r = 0; 4806 break; 4807 } 4808 case KVM_SET_XSAVE: { 4809 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4810 if (IS_ERR(u.xsave)) { 4811 r = PTR_ERR(u.xsave); 4812 goto out_nofree; 4813 } 4814 4815 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4816 break; 4817 } 4818 case KVM_GET_XCRS: { 4819 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4820 r = -ENOMEM; 4821 if (!u.xcrs) 4822 break; 4823 4824 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4825 4826 r = -EFAULT; 4827 if (copy_to_user(argp, u.xcrs, 4828 sizeof(struct kvm_xcrs))) 4829 break; 4830 r = 0; 4831 break; 4832 } 4833 case KVM_SET_XCRS: { 4834 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4835 if (IS_ERR(u.xcrs)) { 4836 r = PTR_ERR(u.xcrs); 4837 goto out_nofree; 4838 } 4839 4840 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4841 break; 4842 } 4843 case KVM_SET_TSC_KHZ: { 4844 u32 user_tsc_khz; 4845 4846 r = -EINVAL; 4847 user_tsc_khz = (u32)arg; 4848 4849 if (kvm_has_tsc_control && 4850 user_tsc_khz >= kvm_max_guest_tsc_khz) 4851 goto out; 4852 4853 if (user_tsc_khz == 0) 4854 user_tsc_khz = tsc_khz; 4855 4856 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4857 r = 0; 4858 4859 goto out; 4860 } 4861 case KVM_GET_TSC_KHZ: { 4862 r = vcpu->arch.virtual_tsc_khz; 4863 goto out; 4864 } 4865 case KVM_KVMCLOCK_CTRL: { 4866 r = kvm_set_guest_paused(vcpu); 4867 goto out; 4868 } 4869 case KVM_ENABLE_CAP: { 4870 struct kvm_enable_cap cap; 4871 4872 r = -EFAULT; 4873 if (copy_from_user(&cap, argp, sizeof(cap))) 4874 goto out; 4875 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4876 break; 4877 } 4878 case KVM_GET_NESTED_STATE: { 4879 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4880 u32 user_data_size; 4881 4882 r = -EINVAL; 4883 if (!kvm_x86_ops.nested_ops->get_state) 4884 break; 4885 4886 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4887 r = -EFAULT; 4888 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4889 break; 4890 4891 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4892 user_data_size); 4893 if (r < 0) 4894 break; 4895 4896 if (r > user_data_size) { 4897 if (put_user(r, &user_kvm_nested_state->size)) 4898 r = -EFAULT; 4899 else 4900 r = -E2BIG; 4901 break; 4902 } 4903 4904 r = 0; 4905 break; 4906 } 4907 case KVM_SET_NESTED_STATE: { 4908 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4909 struct kvm_nested_state kvm_state; 4910 int idx; 4911 4912 r = -EINVAL; 4913 if (!kvm_x86_ops.nested_ops->set_state) 4914 break; 4915 4916 r = -EFAULT; 4917 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4918 break; 4919 4920 r = -EINVAL; 4921 if (kvm_state.size < sizeof(kvm_state)) 4922 break; 4923 4924 if (kvm_state.flags & 4925 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4926 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4927 | KVM_STATE_NESTED_GIF_SET)) 4928 break; 4929 4930 /* nested_run_pending implies guest_mode. */ 4931 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4932 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4933 break; 4934 4935 idx = srcu_read_lock(&vcpu->kvm->srcu); 4936 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4937 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4938 break; 4939 } 4940 case KVM_GET_SUPPORTED_HV_CPUID: { 4941 struct kvm_cpuid2 __user *cpuid_arg = argp; 4942 struct kvm_cpuid2 cpuid; 4943 4944 r = -EFAULT; 4945 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4946 goto out; 4947 4948 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4949 cpuid_arg->entries); 4950 if (r) 4951 goto out; 4952 4953 r = -EFAULT; 4954 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4955 goto out; 4956 r = 0; 4957 break; 4958 } 4959 default: 4960 r = -EINVAL; 4961 } 4962 out: 4963 kfree(u.buffer); 4964 out_nofree: 4965 vcpu_put(vcpu); 4966 return r; 4967 } 4968 4969 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4970 { 4971 return VM_FAULT_SIGBUS; 4972 } 4973 4974 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4975 { 4976 int ret; 4977 4978 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4979 return -EINVAL; 4980 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4981 return ret; 4982 } 4983 4984 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4985 u64 ident_addr) 4986 { 4987 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4988 } 4989 4990 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4991 unsigned long kvm_nr_mmu_pages) 4992 { 4993 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4994 return -EINVAL; 4995 4996 mutex_lock(&kvm->slots_lock); 4997 4998 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4999 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5000 5001 mutex_unlock(&kvm->slots_lock); 5002 return 0; 5003 } 5004 5005 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5006 { 5007 return kvm->arch.n_max_mmu_pages; 5008 } 5009 5010 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5011 { 5012 struct kvm_pic *pic = kvm->arch.vpic; 5013 int r; 5014 5015 r = 0; 5016 switch (chip->chip_id) { 5017 case KVM_IRQCHIP_PIC_MASTER: 5018 memcpy(&chip->chip.pic, &pic->pics[0], 5019 sizeof(struct kvm_pic_state)); 5020 break; 5021 case KVM_IRQCHIP_PIC_SLAVE: 5022 memcpy(&chip->chip.pic, &pic->pics[1], 5023 sizeof(struct kvm_pic_state)); 5024 break; 5025 case KVM_IRQCHIP_IOAPIC: 5026 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5027 break; 5028 default: 5029 r = -EINVAL; 5030 break; 5031 } 5032 return r; 5033 } 5034 5035 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5036 { 5037 struct kvm_pic *pic = kvm->arch.vpic; 5038 int r; 5039 5040 r = 0; 5041 switch (chip->chip_id) { 5042 case KVM_IRQCHIP_PIC_MASTER: 5043 spin_lock(&pic->lock); 5044 memcpy(&pic->pics[0], &chip->chip.pic, 5045 sizeof(struct kvm_pic_state)); 5046 spin_unlock(&pic->lock); 5047 break; 5048 case KVM_IRQCHIP_PIC_SLAVE: 5049 spin_lock(&pic->lock); 5050 memcpy(&pic->pics[1], &chip->chip.pic, 5051 sizeof(struct kvm_pic_state)); 5052 spin_unlock(&pic->lock); 5053 break; 5054 case KVM_IRQCHIP_IOAPIC: 5055 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5056 break; 5057 default: 5058 r = -EINVAL; 5059 break; 5060 } 5061 kvm_pic_update_irq(pic); 5062 return r; 5063 } 5064 5065 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5066 { 5067 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5068 5069 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5070 5071 mutex_lock(&kps->lock); 5072 memcpy(ps, &kps->channels, sizeof(*ps)); 5073 mutex_unlock(&kps->lock); 5074 return 0; 5075 } 5076 5077 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5078 { 5079 int i; 5080 struct kvm_pit *pit = kvm->arch.vpit; 5081 5082 mutex_lock(&pit->pit_state.lock); 5083 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5084 for (i = 0; i < 3; i++) 5085 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5086 mutex_unlock(&pit->pit_state.lock); 5087 return 0; 5088 } 5089 5090 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5091 { 5092 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5093 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5094 sizeof(ps->channels)); 5095 ps->flags = kvm->arch.vpit->pit_state.flags; 5096 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5097 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5098 return 0; 5099 } 5100 5101 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5102 { 5103 int start = 0; 5104 int i; 5105 u32 prev_legacy, cur_legacy; 5106 struct kvm_pit *pit = kvm->arch.vpit; 5107 5108 mutex_lock(&pit->pit_state.lock); 5109 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5110 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5111 if (!prev_legacy && cur_legacy) 5112 start = 1; 5113 memcpy(&pit->pit_state.channels, &ps->channels, 5114 sizeof(pit->pit_state.channels)); 5115 pit->pit_state.flags = ps->flags; 5116 for (i = 0; i < 3; i++) 5117 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5118 start && i == 0); 5119 mutex_unlock(&pit->pit_state.lock); 5120 return 0; 5121 } 5122 5123 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5124 struct kvm_reinject_control *control) 5125 { 5126 struct kvm_pit *pit = kvm->arch.vpit; 5127 5128 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5129 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5130 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5131 */ 5132 mutex_lock(&pit->pit_state.lock); 5133 kvm_pit_set_reinject(pit, control->pit_reinject); 5134 mutex_unlock(&pit->pit_state.lock); 5135 5136 return 0; 5137 } 5138 5139 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5140 { 5141 /* 5142 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 5143 */ 5144 if (kvm_x86_ops.flush_log_dirty) 5145 kvm_x86_ops.flush_log_dirty(kvm); 5146 } 5147 5148 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5149 bool line_status) 5150 { 5151 if (!irqchip_in_kernel(kvm)) 5152 return -ENXIO; 5153 5154 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5155 irq_event->irq, irq_event->level, 5156 line_status); 5157 return 0; 5158 } 5159 5160 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5161 struct kvm_enable_cap *cap) 5162 { 5163 int r; 5164 5165 if (cap->flags) 5166 return -EINVAL; 5167 5168 switch (cap->cap) { 5169 case KVM_CAP_DISABLE_QUIRKS: 5170 kvm->arch.disabled_quirks = cap->args[0]; 5171 r = 0; 5172 break; 5173 case KVM_CAP_SPLIT_IRQCHIP: { 5174 mutex_lock(&kvm->lock); 5175 r = -EINVAL; 5176 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5177 goto split_irqchip_unlock; 5178 r = -EEXIST; 5179 if (irqchip_in_kernel(kvm)) 5180 goto split_irqchip_unlock; 5181 if (kvm->created_vcpus) 5182 goto split_irqchip_unlock; 5183 r = kvm_setup_empty_irq_routing(kvm); 5184 if (r) 5185 goto split_irqchip_unlock; 5186 /* Pairs with irqchip_in_kernel. */ 5187 smp_wmb(); 5188 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5189 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5190 r = 0; 5191 split_irqchip_unlock: 5192 mutex_unlock(&kvm->lock); 5193 break; 5194 } 5195 case KVM_CAP_X2APIC_API: 5196 r = -EINVAL; 5197 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5198 break; 5199 5200 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5201 kvm->arch.x2apic_format = true; 5202 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5203 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5204 5205 r = 0; 5206 break; 5207 case KVM_CAP_X86_DISABLE_EXITS: 5208 r = -EINVAL; 5209 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5210 break; 5211 5212 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5213 kvm_can_mwait_in_guest()) 5214 kvm->arch.mwait_in_guest = true; 5215 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5216 kvm->arch.hlt_in_guest = true; 5217 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5218 kvm->arch.pause_in_guest = true; 5219 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5220 kvm->arch.cstate_in_guest = true; 5221 r = 0; 5222 break; 5223 case KVM_CAP_MSR_PLATFORM_INFO: 5224 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5225 r = 0; 5226 break; 5227 case KVM_CAP_EXCEPTION_PAYLOAD: 5228 kvm->arch.exception_payload_enabled = cap->args[0]; 5229 r = 0; 5230 break; 5231 case KVM_CAP_X86_USER_SPACE_MSR: 5232 kvm->arch.user_space_msr_mask = cap->args[0]; 5233 r = 0; 5234 break; 5235 default: 5236 r = -EINVAL; 5237 break; 5238 } 5239 return r; 5240 } 5241 5242 static void kvm_clear_msr_filter(struct kvm *kvm) 5243 { 5244 u32 i; 5245 u32 count = kvm->arch.msr_filter.count; 5246 struct msr_bitmap_range ranges[16]; 5247 5248 mutex_lock(&kvm->lock); 5249 kvm->arch.msr_filter.count = 0; 5250 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0])); 5251 mutex_unlock(&kvm->lock); 5252 synchronize_srcu(&kvm->srcu); 5253 5254 for (i = 0; i < count; i++) 5255 kfree(ranges[i].bitmap); 5256 } 5257 5258 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range) 5259 { 5260 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 5261 struct msr_bitmap_range range; 5262 unsigned long *bitmap = NULL; 5263 size_t bitmap_size; 5264 int r; 5265 5266 if (!user_range->nmsrs) 5267 return 0; 5268 5269 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5270 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5271 return -EINVAL; 5272 5273 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5274 if (IS_ERR(bitmap)) 5275 return PTR_ERR(bitmap); 5276 5277 range = (struct msr_bitmap_range) { 5278 .flags = user_range->flags, 5279 .base = user_range->base, 5280 .nmsrs = user_range->nmsrs, 5281 .bitmap = bitmap, 5282 }; 5283 5284 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5285 r = -EINVAL; 5286 goto err; 5287 } 5288 5289 if (!range.flags) { 5290 r = -EINVAL; 5291 goto err; 5292 } 5293 5294 /* Everything ok, add this range identifier to our global pool */ 5295 ranges[kvm->arch.msr_filter.count] = range; 5296 /* Make sure we filled the array before we tell anyone to walk it */ 5297 smp_wmb(); 5298 kvm->arch.msr_filter.count++; 5299 5300 return 0; 5301 err: 5302 kfree(bitmap); 5303 return r; 5304 } 5305 5306 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5307 { 5308 struct kvm_msr_filter __user *user_msr_filter = argp; 5309 struct kvm_msr_filter filter; 5310 bool default_allow; 5311 int r = 0; 5312 bool empty = true; 5313 u32 i; 5314 5315 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5316 return -EFAULT; 5317 5318 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5319 empty &= !filter.ranges[i].nmsrs; 5320 5321 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5322 if (empty && !default_allow) 5323 return -EINVAL; 5324 5325 kvm_clear_msr_filter(kvm); 5326 5327 kvm->arch.msr_filter.default_allow = default_allow; 5328 5329 /* 5330 * Protect from concurrent calls to this function that could trigger 5331 * a TOCTOU violation on kvm->arch.msr_filter.count. 5332 */ 5333 mutex_lock(&kvm->lock); 5334 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5335 r = kvm_add_msr_filter(kvm, &filter.ranges[i]); 5336 if (r) 5337 break; 5338 } 5339 5340 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5341 mutex_unlock(&kvm->lock); 5342 5343 return r; 5344 } 5345 5346 long kvm_arch_vm_ioctl(struct file *filp, 5347 unsigned int ioctl, unsigned long arg) 5348 { 5349 struct kvm *kvm = filp->private_data; 5350 void __user *argp = (void __user *)arg; 5351 int r = -ENOTTY; 5352 /* 5353 * This union makes it completely explicit to gcc-3.x 5354 * that these two variables' stack usage should be 5355 * combined, not added together. 5356 */ 5357 union { 5358 struct kvm_pit_state ps; 5359 struct kvm_pit_state2 ps2; 5360 struct kvm_pit_config pit_config; 5361 } u; 5362 5363 switch (ioctl) { 5364 case KVM_SET_TSS_ADDR: 5365 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5366 break; 5367 case KVM_SET_IDENTITY_MAP_ADDR: { 5368 u64 ident_addr; 5369 5370 mutex_lock(&kvm->lock); 5371 r = -EINVAL; 5372 if (kvm->created_vcpus) 5373 goto set_identity_unlock; 5374 r = -EFAULT; 5375 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5376 goto set_identity_unlock; 5377 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5378 set_identity_unlock: 5379 mutex_unlock(&kvm->lock); 5380 break; 5381 } 5382 case KVM_SET_NR_MMU_PAGES: 5383 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5384 break; 5385 case KVM_GET_NR_MMU_PAGES: 5386 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5387 break; 5388 case KVM_CREATE_IRQCHIP: { 5389 mutex_lock(&kvm->lock); 5390 5391 r = -EEXIST; 5392 if (irqchip_in_kernel(kvm)) 5393 goto create_irqchip_unlock; 5394 5395 r = -EINVAL; 5396 if (kvm->created_vcpus) 5397 goto create_irqchip_unlock; 5398 5399 r = kvm_pic_init(kvm); 5400 if (r) 5401 goto create_irqchip_unlock; 5402 5403 r = kvm_ioapic_init(kvm); 5404 if (r) { 5405 kvm_pic_destroy(kvm); 5406 goto create_irqchip_unlock; 5407 } 5408 5409 r = kvm_setup_default_irq_routing(kvm); 5410 if (r) { 5411 kvm_ioapic_destroy(kvm); 5412 kvm_pic_destroy(kvm); 5413 goto create_irqchip_unlock; 5414 } 5415 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5416 smp_wmb(); 5417 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5418 create_irqchip_unlock: 5419 mutex_unlock(&kvm->lock); 5420 break; 5421 } 5422 case KVM_CREATE_PIT: 5423 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5424 goto create_pit; 5425 case KVM_CREATE_PIT2: 5426 r = -EFAULT; 5427 if (copy_from_user(&u.pit_config, argp, 5428 sizeof(struct kvm_pit_config))) 5429 goto out; 5430 create_pit: 5431 mutex_lock(&kvm->lock); 5432 r = -EEXIST; 5433 if (kvm->arch.vpit) 5434 goto create_pit_unlock; 5435 r = -ENOMEM; 5436 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5437 if (kvm->arch.vpit) 5438 r = 0; 5439 create_pit_unlock: 5440 mutex_unlock(&kvm->lock); 5441 break; 5442 case KVM_GET_IRQCHIP: { 5443 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5444 struct kvm_irqchip *chip; 5445 5446 chip = memdup_user(argp, sizeof(*chip)); 5447 if (IS_ERR(chip)) { 5448 r = PTR_ERR(chip); 5449 goto out; 5450 } 5451 5452 r = -ENXIO; 5453 if (!irqchip_kernel(kvm)) 5454 goto get_irqchip_out; 5455 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5456 if (r) 5457 goto get_irqchip_out; 5458 r = -EFAULT; 5459 if (copy_to_user(argp, chip, sizeof(*chip))) 5460 goto get_irqchip_out; 5461 r = 0; 5462 get_irqchip_out: 5463 kfree(chip); 5464 break; 5465 } 5466 case KVM_SET_IRQCHIP: { 5467 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5468 struct kvm_irqchip *chip; 5469 5470 chip = memdup_user(argp, sizeof(*chip)); 5471 if (IS_ERR(chip)) { 5472 r = PTR_ERR(chip); 5473 goto out; 5474 } 5475 5476 r = -ENXIO; 5477 if (!irqchip_kernel(kvm)) 5478 goto set_irqchip_out; 5479 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5480 set_irqchip_out: 5481 kfree(chip); 5482 break; 5483 } 5484 case KVM_GET_PIT: { 5485 r = -EFAULT; 5486 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5487 goto out; 5488 r = -ENXIO; 5489 if (!kvm->arch.vpit) 5490 goto out; 5491 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5492 if (r) 5493 goto out; 5494 r = -EFAULT; 5495 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5496 goto out; 5497 r = 0; 5498 break; 5499 } 5500 case KVM_SET_PIT: { 5501 r = -EFAULT; 5502 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5503 goto out; 5504 mutex_lock(&kvm->lock); 5505 r = -ENXIO; 5506 if (!kvm->arch.vpit) 5507 goto set_pit_out; 5508 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5509 set_pit_out: 5510 mutex_unlock(&kvm->lock); 5511 break; 5512 } 5513 case KVM_GET_PIT2: { 5514 r = -ENXIO; 5515 if (!kvm->arch.vpit) 5516 goto out; 5517 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5518 if (r) 5519 goto out; 5520 r = -EFAULT; 5521 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5522 goto out; 5523 r = 0; 5524 break; 5525 } 5526 case KVM_SET_PIT2: { 5527 r = -EFAULT; 5528 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5529 goto out; 5530 mutex_lock(&kvm->lock); 5531 r = -ENXIO; 5532 if (!kvm->arch.vpit) 5533 goto set_pit2_out; 5534 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5535 set_pit2_out: 5536 mutex_unlock(&kvm->lock); 5537 break; 5538 } 5539 case KVM_REINJECT_CONTROL: { 5540 struct kvm_reinject_control control; 5541 r = -EFAULT; 5542 if (copy_from_user(&control, argp, sizeof(control))) 5543 goto out; 5544 r = -ENXIO; 5545 if (!kvm->arch.vpit) 5546 goto out; 5547 r = kvm_vm_ioctl_reinject(kvm, &control); 5548 break; 5549 } 5550 case KVM_SET_BOOT_CPU_ID: 5551 r = 0; 5552 mutex_lock(&kvm->lock); 5553 if (kvm->created_vcpus) 5554 r = -EBUSY; 5555 else 5556 kvm->arch.bsp_vcpu_id = arg; 5557 mutex_unlock(&kvm->lock); 5558 break; 5559 case KVM_XEN_HVM_CONFIG: { 5560 struct kvm_xen_hvm_config xhc; 5561 r = -EFAULT; 5562 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5563 goto out; 5564 r = -EINVAL; 5565 if (xhc.flags) 5566 goto out; 5567 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5568 r = 0; 5569 break; 5570 } 5571 case KVM_SET_CLOCK: { 5572 struct kvm_clock_data user_ns; 5573 u64 now_ns; 5574 5575 r = -EFAULT; 5576 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5577 goto out; 5578 5579 r = -EINVAL; 5580 if (user_ns.flags) 5581 goto out; 5582 5583 r = 0; 5584 /* 5585 * TODO: userspace has to take care of races with VCPU_RUN, so 5586 * kvm_gen_update_masterclock() can be cut down to locked 5587 * pvclock_update_vm_gtod_copy(). 5588 */ 5589 kvm_gen_update_masterclock(kvm); 5590 now_ns = get_kvmclock_ns(kvm); 5591 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5592 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5593 break; 5594 } 5595 case KVM_GET_CLOCK: { 5596 struct kvm_clock_data user_ns; 5597 u64 now_ns; 5598 5599 now_ns = get_kvmclock_ns(kvm); 5600 user_ns.clock = now_ns; 5601 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5602 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5603 5604 r = -EFAULT; 5605 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5606 goto out; 5607 r = 0; 5608 break; 5609 } 5610 case KVM_MEMORY_ENCRYPT_OP: { 5611 r = -ENOTTY; 5612 if (kvm_x86_ops.mem_enc_op) 5613 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5614 break; 5615 } 5616 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5617 struct kvm_enc_region region; 5618 5619 r = -EFAULT; 5620 if (copy_from_user(®ion, argp, sizeof(region))) 5621 goto out; 5622 5623 r = -ENOTTY; 5624 if (kvm_x86_ops.mem_enc_reg_region) 5625 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5626 break; 5627 } 5628 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5629 struct kvm_enc_region region; 5630 5631 r = -EFAULT; 5632 if (copy_from_user(®ion, argp, sizeof(region))) 5633 goto out; 5634 5635 r = -ENOTTY; 5636 if (kvm_x86_ops.mem_enc_unreg_region) 5637 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5638 break; 5639 } 5640 case KVM_HYPERV_EVENTFD: { 5641 struct kvm_hyperv_eventfd hvevfd; 5642 5643 r = -EFAULT; 5644 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5645 goto out; 5646 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5647 break; 5648 } 5649 case KVM_SET_PMU_EVENT_FILTER: 5650 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5651 break; 5652 case KVM_X86_SET_MSR_FILTER: 5653 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 5654 break; 5655 default: 5656 r = -ENOTTY; 5657 } 5658 out: 5659 return r; 5660 } 5661 5662 static void kvm_init_msr_list(void) 5663 { 5664 struct x86_pmu_capability x86_pmu; 5665 u32 dummy[2]; 5666 unsigned i; 5667 5668 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5669 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5670 5671 perf_get_x86_pmu_capability(&x86_pmu); 5672 5673 num_msrs_to_save = 0; 5674 num_emulated_msrs = 0; 5675 num_msr_based_features = 0; 5676 5677 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5678 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5679 continue; 5680 5681 /* 5682 * Even MSRs that are valid in the host may not be exposed 5683 * to the guests in some cases. 5684 */ 5685 switch (msrs_to_save_all[i]) { 5686 case MSR_IA32_BNDCFGS: 5687 if (!kvm_mpx_supported()) 5688 continue; 5689 break; 5690 case MSR_TSC_AUX: 5691 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5692 continue; 5693 break; 5694 case MSR_IA32_UMWAIT_CONTROL: 5695 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5696 continue; 5697 break; 5698 case MSR_IA32_RTIT_CTL: 5699 case MSR_IA32_RTIT_STATUS: 5700 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5701 continue; 5702 break; 5703 case MSR_IA32_RTIT_CR3_MATCH: 5704 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5705 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5706 continue; 5707 break; 5708 case MSR_IA32_RTIT_OUTPUT_BASE: 5709 case MSR_IA32_RTIT_OUTPUT_MASK: 5710 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5711 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5712 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5713 continue; 5714 break; 5715 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5716 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5717 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5718 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5719 continue; 5720 break; 5721 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5722 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5723 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5724 continue; 5725 break; 5726 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5727 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5728 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5729 continue; 5730 break; 5731 default: 5732 break; 5733 } 5734 5735 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5736 } 5737 5738 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5739 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5740 continue; 5741 5742 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5743 } 5744 5745 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5746 struct kvm_msr_entry msr; 5747 5748 msr.index = msr_based_features_all[i]; 5749 if (kvm_get_msr_feature(&msr)) 5750 continue; 5751 5752 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5753 } 5754 } 5755 5756 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5757 const void *v) 5758 { 5759 int handled = 0; 5760 int n; 5761 5762 do { 5763 n = min(len, 8); 5764 if (!(lapic_in_kernel(vcpu) && 5765 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5766 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5767 break; 5768 handled += n; 5769 addr += n; 5770 len -= n; 5771 v += n; 5772 } while (len); 5773 5774 return handled; 5775 } 5776 5777 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5778 { 5779 int handled = 0; 5780 int n; 5781 5782 do { 5783 n = min(len, 8); 5784 if (!(lapic_in_kernel(vcpu) && 5785 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5786 addr, n, v)) 5787 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5788 break; 5789 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5790 handled += n; 5791 addr += n; 5792 len -= n; 5793 v += n; 5794 } while (len); 5795 5796 return handled; 5797 } 5798 5799 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5800 struct kvm_segment *var, int seg) 5801 { 5802 kvm_x86_ops.set_segment(vcpu, var, seg); 5803 } 5804 5805 void kvm_get_segment(struct kvm_vcpu *vcpu, 5806 struct kvm_segment *var, int seg) 5807 { 5808 kvm_x86_ops.get_segment(vcpu, var, seg); 5809 } 5810 5811 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5812 struct x86_exception *exception) 5813 { 5814 gpa_t t_gpa; 5815 5816 BUG_ON(!mmu_is_nested(vcpu)); 5817 5818 /* NPT walks are always user-walks */ 5819 access |= PFERR_USER_MASK; 5820 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5821 5822 return t_gpa; 5823 } 5824 5825 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5826 struct x86_exception *exception) 5827 { 5828 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5829 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5830 } 5831 5832 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5833 struct x86_exception *exception) 5834 { 5835 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5836 access |= PFERR_FETCH_MASK; 5837 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5838 } 5839 5840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5841 struct x86_exception *exception) 5842 { 5843 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5844 access |= PFERR_WRITE_MASK; 5845 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5846 } 5847 5848 /* uses this to access any guest's mapped memory without checking CPL */ 5849 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5850 struct x86_exception *exception) 5851 { 5852 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5853 } 5854 5855 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5856 struct kvm_vcpu *vcpu, u32 access, 5857 struct x86_exception *exception) 5858 { 5859 void *data = val; 5860 int r = X86EMUL_CONTINUE; 5861 5862 while (bytes) { 5863 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5864 exception); 5865 unsigned offset = addr & (PAGE_SIZE-1); 5866 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5867 int ret; 5868 5869 if (gpa == UNMAPPED_GVA) 5870 return X86EMUL_PROPAGATE_FAULT; 5871 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5872 offset, toread); 5873 if (ret < 0) { 5874 r = X86EMUL_IO_NEEDED; 5875 goto out; 5876 } 5877 5878 bytes -= toread; 5879 data += toread; 5880 addr += toread; 5881 } 5882 out: 5883 return r; 5884 } 5885 5886 /* used for instruction fetching */ 5887 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5888 gva_t addr, void *val, unsigned int bytes, 5889 struct x86_exception *exception) 5890 { 5891 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5892 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5893 unsigned offset; 5894 int ret; 5895 5896 /* Inline kvm_read_guest_virt_helper for speed. */ 5897 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5898 exception); 5899 if (unlikely(gpa == UNMAPPED_GVA)) 5900 return X86EMUL_PROPAGATE_FAULT; 5901 5902 offset = addr & (PAGE_SIZE-1); 5903 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5904 bytes = (unsigned)PAGE_SIZE - offset; 5905 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5906 offset, bytes); 5907 if (unlikely(ret < 0)) 5908 return X86EMUL_IO_NEEDED; 5909 5910 return X86EMUL_CONTINUE; 5911 } 5912 5913 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5914 gva_t addr, void *val, unsigned int bytes, 5915 struct x86_exception *exception) 5916 { 5917 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5918 5919 /* 5920 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5921 * is returned, but our callers are not ready for that and they blindly 5922 * call kvm_inject_page_fault. Ensure that they at least do not leak 5923 * uninitialized kernel stack memory into cr2 and error code. 5924 */ 5925 memset(exception, 0, sizeof(*exception)); 5926 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5927 exception); 5928 } 5929 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5930 5931 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5932 gva_t addr, void *val, unsigned int bytes, 5933 struct x86_exception *exception, bool system) 5934 { 5935 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5936 u32 access = 0; 5937 5938 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5939 access |= PFERR_USER_MASK; 5940 5941 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5942 } 5943 5944 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5945 unsigned long addr, void *val, unsigned int bytes) 5946 { 5947 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5948 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5949 5950 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5951 } 5952 5953 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5954 struct kvm_vcpu *vcpu, u32 access, 5955 struct x86_exception *exception) 5956 { 5957 void *data = val; 5958 int r = X86EMUL_CONTINUE; 5959 5960 while (bytes) { 5961 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5962 access, 5963 exception); 5964 unsigned offset = addr & (PAGE_SIZE-1); 5965 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5966 int ret; 5967 5968 if (gpa == UNMAPPED_GVA) 5969 return X86EMUL_PROPAGATE_FAULT; 5970 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5971 if (ret < 0) { 5972 r = X86EMUL_IO_NEEDED; 5973 goto out; 5974 } 5975 5976 bytes -= towrite; 5977 data += towrite; 5978 addr += towrite; 5979 } 5980 out: 5981 return r; 5982 } 5983 5984 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5985 unsigned int bytes, struct x86_exception *exception, 5986 bool system) 5987 { 5988 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5989 u32 access = PFERR_WRITE_MASK; 5990 5991 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5992 access |= PFERR_USER_MASK; 5993 5994 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5995 access, exception); 5996 } 5997 5998 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5999 unsigned int bytes, struct x86_exception *exception) 6000 { 6001 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6002 vcpu->arch.l1tf_flush_l1d = true; 6003 6004 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6005 PFERR_WRITE_MASK, exception); 6006 } 6007 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6008 6009 int handle_ud(struct kvm_vcpu *vcpu) 6010 { 6011 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6012 int emul_type = EMULTYPE_TRAP_UD; 6013 char sig[5]; /* ud2; .ascii "kvm" */ 6014 struct x86_exception e; 6015 6016 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0))) 6017 return 1; 6018 6019 if (force_emulation_prefix && 6020 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6021 sig, sizeof(sig), &e) == 0 && 6022 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6023 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6024 emul_type = EMULTYPE_TRAP_UD_FORCED; 6025 } 6026 6027 return kvm_emulate_instruction(vcpu, emul_type); 6028 } 6029 EXPORT_SYMBOL_GPL(handle_ud); 6030 6031 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6032 gpa_t gpa, bool write) 6033 { 6034 /* For APIC access vmexit */ 6035 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6036 return 1; 6037 6038 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6039 trace_vcpu_match_mmio(gva, gpa, write, true); 6040 return 1; 6041 } 6042 6043 return 0; 6044 } 6045 6046 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6047 gpa_t *gpa, struct x86_exception *exception, 6048 bool write) 6049 { 6050 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 6051 | (write ? PFERR_WRITE_MASK : 0); 6052 6053 /* 6054 * currently PKRU is only applied to ept enabled guest so 6055 * there is no pkey in EPT page table for L1 guest or EPT 6056 * shadow page table for L2 guest. 6057 */ 6058 if (vcpu_match_mmio_gva(vcpu, gva) 6059 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6060 vcpu->arch.mmio_access, 0, access)) { 6061 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6062 (gva & (PAGE_SIZE - 1)); 6063 trace_vcpu_match_mmio(gva, *gpa, write, false); 6064 return 1; 6065 } 6066 6067 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6068 6069 if (*gpa == UNMAPPED_GVA) 6070 return -1; 6071 6072 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6073 } 6074 6075 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6076 const void *val, int bytes) 6077 { 6078 int ret; 6079 6080 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6081 if (ret < 0) 6082 return 0; 6083 kvm_page_track_write(vcpu, gpa, val, bytes); 6084 return 1; 6085 } 6086 6087 struct read_write_emulator_ops { 6088 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6089 int bytes); 6090 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6091 void *val, int bytes); 6092 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6093 int bytes, void *val); 6094 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6095 void *val, int bytes); 6096 bool write; 6097 }; 6098 6099 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6100 { 6101 if (vcpu->mmio_read_completed) { 6102 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6103 vcpu->mmio_fragments[0].gpa, val); 6104 vcpu->mmio_read_completed = 0; 6105 return 1; 6106 } 6107 6108 return 0; 6109 } 6110 6111 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6112 void *val, int bytes) 6113 { 6114 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6115 } 6116 6117 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6118 void *val, int bytes) 6119 { 6120 return emulator_write_phys(vcpu, gpa, val, bytes); 6121 } 6122 6123 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6124 { 6125 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6126 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6127 } 6128 6129 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6130 void *val, int bytes) 6131 { 6132 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6133 return X86EMUL_IO_NEEDED; 6134 } 6135 6136 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6137 void *val, int bytes) 6138 { 6139 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6140 6141 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6142 return X86EMUL_CONTINUE; 6143 } 6144 6145 static const struct read_write_emulator_ops read_emultor = { 6146 .read_write_prepare = read_prepare, 6147 .read_write_emulate = read_emulate, 6148 .read_write_mmio = vcpu_mmio_read, 6149 .read_write_exit_mmio = read_exit_mmio, 6150 }; 6151 6152 static const struct read_write_emulator_ops write_emultor = { 6153 .read_write_emulate = write_emulate, 6154 .read_write_mmio = write_mmio, 6155 .read_write_exit_mmio = write_exit_mmio, 6156 .write = true, 6157 }; 6158 6159 static int emulator_read_write_onepage(unsigned long addr, void *val, 6160 unsigned int bytes, 6161 struct x86_exception *exception, 6162 struct kvm_vcpu *vcpu, 6163 const struct read_write_emulator_ops *ops) 6164 { 6165 gpa_t gpa; 6166 int handled, ret; 6167 bool write = ops->write; 6168 struct kvm_mmio_fragment *frag; 6169 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6170 6171 /* 6172 * If the exit was due to a NPF we may already have a GPA. 6173 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6174 * Note, this cannot be used on string operations since string 6175 * operation using rep will only have the initial GPA from the NPF 6176 * occurred. 6177 */ 6178 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6179 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6180 gpa = ctxt->gpa_val; 6181 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6182 } else { 6183 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6184 if (ret < 0) 6185 return X86EMUL_PROPAGATE_FAULT; 6186 } 6187 6188 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6189 return X86EMUL_CONTINUE; 6190 6191 /* 6192 * Is this MMIO handled locally? 6193 */ 6194 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6195 if (handled == bytes) 6196 return X86EMUL_CONTINUE; 6197 6198 gpa += handled; 6199 bytes -= handled; 6200 val += handled; 6201 6202 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6203 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6204 frag->gpa = gpa; 6205 frag->data = val; 6206 frag->len = bytes; 6207 return X86EMUL_CONTINUE; 6208 } 6209 6210 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6211 unsigned long addr, 6212 void *val, unsigned int bytes, 6213 struct x86_exception *exception, 6214 const struct read_write_emulator_ops *ops) 6215 { 6216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6217 gpa_t gpa; 6218 int rc; 6219 6220 if (ops->read_write_prepare && 6221 ops->read_write_prepare(vcpu, val, bytes)) 6222 return X86EMUL_CONTINUE; 6223 6224 vcpu->mmio_nr_fragments = 0; 6225 6226 /* Crossing a page boundary? */ 6227 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6228 int now; 6229 6230 now = -addr & ~PAGE_MASK; 6231 rc = emulator_read_write_onepage(addr, val, now, exception, 6232 vcpu, ops); 6233 6234 if (rc != X86EMUL_CONTINUE) 6235 return rc; 6236 addr += now; 6237 if (ctxt->mode != X86EMUL_MODE_PROT64) 6238 addr = (u32)addr; 6239 val += now; 6240 bytes -= now; 6241 } 6242 6243 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6244 vcpu, ops); 6245 if (rc != X86EMUL_CONTINUE) 6246 return rc; 6247 6248 if (!vcpu->mmio_nr_fragments) 6249 return rc; 6250 6251 gpa = vcpu->mmio_fragments[0].gpa; 6252 6253 vcpu->mmio_needed = 1; 6254 vcpu->mmio_cur_fragment = 0; 6255 6256 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6257 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6258 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6259 vcpu->run->mmio.phys_addr = gpa; 6260 6261 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6262 } 6263 6264 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6265 unsigned long addr, 6266 void *val, 6267 unsigned int bytes, 6268 struct x86_exception *exception) 6269 { 6270 return emulator_read_write(ctxt, addr, val, bytes, 6271 exception, &read_emultor); 6272 } 6273 6274 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6275 unsigned long addr, 6276 const void *val, 6277 unsigned int bytes, 6278 struct x86_exception *exception) 6279 { 6280 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6281 exception, &write_emultor); 6282 } 6283 6284 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6285 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6286 6287 #ifdef CONFIG_X86_64 6288 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6289 #else 6290 # define CMPXCHG64(ptr, old, new) \ 6291 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6292 #endif 6293 6294 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6295 unsigned long addr, 6296 const void *old, 6297 const void *new, 6298 unsigned int bytes, 6299 struct x86_exception *exception) 6300 { 6301 struct kvm_host_map map; 6302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6303 u64 page_line_mask; 6304 gpa_t gpa; 6305 char *kaddr; 6306 bool exchanged; 6307 6308 /* guests cmpxchg8b have to be emulated atomically */ 6309 if (bytes > 8 || (bytes & (bytes - 1))) 6310 goto emul_write; 6311 6312 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6313 6314 if (gpa == UNMAPPED_GVA || 6315 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6316 goto emul_write; 6317 6318 /* 6319 * Emulate the atomic as a straight write to avoid #AC if SLD is 6320 * enabled in the host and the access splits a cache line. 6321 */ 6322 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6323 page_line_mask = ~(cache_line_size() - 1); 6324 else 6325 page_line_mask = PAGE_MASK; 6326 6327 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6328 goto emul_write; 6329 6330 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6331 goto emul_write; 6332 6333 kaddr = map.hva + offset_in_page(gpa); 6334 6335 switch (bytes) { 6336 case 1: 6337 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6338 break; 6339 case 2: 6340 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6341 break; 6342 case 4: 6343 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6344 break; 6345 case 8: 6346 exchanged = CMPXCHG64(kaddr, old, new); 6347 break; 6348 default: 6349 BUG(); 6350 } 6351 6352 kvm_vcpu_unmap(vcpu, &map, true); 6353 6354 if (!exchanged) 6355 return X86EMUL_CMPXCHG_FAILED; 6356 6357 kvm_page_track_write(vcpu, gpa, new, bytes); 6358 6359 return X86EMUL_CONTINUE; 6360 6361 emul_write: 6362 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6363 6364 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6365 } 6366 6367 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6368 { 6369 int r = 0, i; 6370 6371 for (i = 0; i < vcpu->arch.pio.count; i++) { 6372 if (vcpu->arch.pio.in) 6373 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6374 vcpu->arch.pio.size, pd); 6375 else 6376 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6377 vcpu->arch.pio.port, vcpu->arch.pio.size, 6378 pd); 6379 if (r) 6380 break; 6381 pd += vcpu->arch.pio.size; 6382 } 6383 return r; 6384 } 6385 6386 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6387 unsigned short port, void *val, 6388 unsigned int count, bool in) 6389 { 6390 vcpu->arch.pio.port = port; 6391 vcpu->arch.pio.in = in; 6392 vcpu->arch.pio.count = count; 6393 vcpu->arch.pio.size = size; 6394 6395 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6396 vcpu->arch.pio.count = 0; 6397 return 1; 6398 } 6399 6400 vcpu->run->exit_reason = KVM_EXIT_IO; 6401 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6402 vcpu->run->io.size = size; 6403 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6404 vcpu->run->io.count = count; 6405 vcpu->run->io.port = port; 6406 6407 return 0; 6408 } 6409 6410 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6411 unsigned short port, void *val, unsigned int count) 6412 { 6413 int ret; 6414 6415 if (vcpu->arch.pio.count) 6416 goto data_avail; 6417 6418 memset(vcpu->arch.pio_data, 0, size * count); 6419 6420 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6421 if (ret) { 6422 data_avail: 6423 memcpy(val, vcpu->arch.pio_data, size * count); 6424 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6425 vcpu->arch.pio.count = 0; 6426 return 1; 6427 } 6428 6429 return 0; 6430 } 6431 6432 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6433 int size, unsigned short port, void *val, 6434 unsigned int count) 6435 { 6436 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6437 6438 } 6439 6440 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6441 unsigned short port, const void *val, 6442 unsigned int count) 6443 { 6444 memcpy(vcpu->arch.pio_data, val, size * count); 6445 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6446 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6447 } 6448 6449 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6450 int size, unsigned short port, 6451 const void *val, unsigned int count) 6452 { 6453 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6454 } 6455 6456 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6457 { 6458 return kvm_x86_ops.get_segment_base(vcpu, seg); 6459 } 6460 6461 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6462 { 6463 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6464 } 6465 6466 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6467 { 6468 if (!need_emulate_wbinvd(vcpu)) 6469 return X86EMUL_CONTINUE; 6470 6471 if (kvm_x86_ops.has_wbinvd_exit()) { 6472 int cpu = get_cpu(); 6473 6474 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6475 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6476 wbinvd_ipi, NULL, 1); 6477 put_cpu(); 6478 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6479 } else 6480 wbinvd(); 6481 return X86EMUL_CONTINUE; 6482 } 6483 6484 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6485 { 6486 kvm_emulate_wbinvd_noskip(vcpu); 6487 return kvm_skip_emulated_instruction(vcpu); 6488 } 6489 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6490 6491 6492 6493 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6494 { 6495 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6496 } 6497 6498 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6499 unsigned long *dest) 6500 { 6501 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6502 } 6503 6504 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6505 unsigned long value) 6506 { 6507 6508 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6509 } 6510 6511 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6512 { 6513 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6514 } 6515 6516 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6517 { 6518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6519 unsigned long value; 6520 6521 switch (cr) { 6522 case 0: 6523 value = kvm_read_cr0(vcpu); 6524 break; 6525 case 2: 6526 value = vcpu->arch.cr2; 6527 break; 6528 case 3: 6529 value = kvm_read_cr3(vcpu); 6530 break; 6531 case 4: 6532 value = kvm_read_cr4(vcpu); 6533 break; 6534 case 8: 6535 value = kvm_get_cr8(vcpu); 6536 break; 6537 default: 6538 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6539 return 0; 6540 } 6541 6542 return value; 6543 } 6544 6545 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6546 { 6547 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6548 int res = 0; 6549 6550 switch (cr) { 6551 case 0: 6552 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6553 break; 6554 case 2: 6555 vcpu->arch.cr2 = val; 6556 break; 6557 case 3: 6558 res = kvm_set_cr3(vcpu, val); 6559 break; 6560 case 4: 6561 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6562 break; 6563 case 8: 6564 res = kvm_set_cr8(vcpu, val); 6565 break; 6566 default: 6567 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6568 res = -1; 6569 } 6570 6571 return res; 6572 } 6573 6574 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6575 { 6576 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6577 } 6578 6579 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6580 { 6581 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6582 } 6583 6584 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6585 { 6586 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6587 } 6588 6589 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6590 { 6591 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6592 } 6593 6594 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6595 { 6596 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6597 } 6598 6599 static unsigned long emulator_get_cached_segment_base( 6600 struct x86_emulate_ctxt *ctxt, int seg) 6601 { 6602 return get_segment_base(emul_to_vcpu(ctxt), seg); 6603 } 6604 6605 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6606 struct desc_struct *desc, u32 *base3, 6607 int seg) 6608 { 6609 struct kvm_segment var; 6610 6611 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6612 *selector = var.selector; 6613 6614 if (var.unusable) { 6615 memset(desc, 0, sizeof(*desc)); 6616 if (base3) 6617 *base3 = 0; 6618 return false; 6619 } 6620 6621 if (var.g) 6622 var.limit >>= 12; 6623 set_desc_limit(desc, var.limit); 6624 set_desc_base(desc, (unsigned long)var.base); 6625 #ifdef CONFIG_X86_64 6626 if (base3) 6627 *base3 = var.base >> 32; 6628 #endif 6629 desc->type = var.type; 6630 desc->s = var.s; 6631 desc->dpl = var.dpl; 6632 desc->p = var.present; 6633 desc->avl = var.avl; 6634 desc->l = var.l; 6635 desc->d = var.db; 6636 desc->g = var.g; 6637 6638 return true; 6639 } 6640 6641 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6642 struct desc_struct *desc, u32 base3, 6643 int seg) 6644 { 6645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6646 struct kvm_segment var; 6647 6648 var.selector = selector; 6649 var.base = get_desc_base(desc); 6650 #ifdef CONFIG_X86_64 6651 var.base |= ((u64)base3) << 32; 6652 #endif 6653 var.limit = get_desc_limit(desc); 6654 if (desc->g) 6655 var.limit = (var.limit << 12) | 0xfff; 6656 var.type = desc->type; 6657 var.dpl = desc->dpl; 6658 var.db = desc->d; 6659 var.s = desc->s; 6660 var.l = desc->l; 6661 var.g = desc->g; 6662 var.avl = desc->avl; 6663 var.present = desc->p; 6664 var.unusable = !var.present; 6665 var.padding = 0; 6666 6667 kvm_set_segment(vcpu, &var, seg); 6668 return; 6669 } 6670 6671 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6672 u32 msr_index, u64 *pdata) 6673 { 6674 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6675 int r; 6676 6677 r = kvm_get_msr(vcpu, msr_index, pdata); 6678 6679 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6680 /* Bounce to user space */ 6681 return X86EMUL_IO_NEEDED; 6682 } 6683 6684 return r; 6685 } 6686 6687 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6688 u32 msr_index, u64 data) 6689 { 6690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6691 int r; 6692 6693 r = kvm_set_msr(vcpu, msr_index, data); 6694 6695 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6696 /* Bounce to user space */ 6697 return X86EMUL_IO_NEEDED; 6698 } 6699 6700 return r; 6701 } 6702 6703 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6704 { 6705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6706 6707 return vcpu->arch.smbase; 6708 } 6709 6710 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6711 { 6712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6713 6714 vcpu->arch.smbase = smbase; 6715 } 6716 6717 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6718 u32 pmc) 6719 { 6720 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6721 } 6722 6723 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6724 u32 pmc, u64 *pdata) 6725 { 6726 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6727 } 6728 6729 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6730 { 6731 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6732 } 6733 6734 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6735 struct x86_instruction_info *info, 6736 enum x86_intercept_stage stage) 6737 { 6738 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6739 &ctxt->exception); 6740 } 6741 6742 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6743 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6744 bool exact_only) 6745 { 6746 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6747 } 6748 6749 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6750 { 6751 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6752 } 6753 6754 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6755 { 6756 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6757 } 6758 6759 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6760 { 6761 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6762 } 6763 6764 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6765 { 6766 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6767 } 6768 6769 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6770 { 6771 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6772 } 6773 6774 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6775 { 6776 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6777 } 6778 6779 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6780 { 6781 return emul_to_vcpu(ctxt)->arch.hflags; 6782 } 6783 6784 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6785 { 6786 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6787 } 6788 6789 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6790 const char *smstate) 6791 { 6792 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6793 } 6794 6795 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6796 { 6797 kvm_smm_changed(emul_to_vcpu(ctxt)); 6798 } 6799 6800 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6801 { 6802 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6803 } 6804 6805 static const struct x86_emulate_ops emulate_ops = { 6806 .read_gpr = emulator_read_gpr, 6807 .write_gpr = emulator_write_gpr, 6808 .read_std = emulator_read_std, 6809 .write_std = emulator_write_std, 6810 .read_phys = kvm_read_guest_phys_system, 6811 .fetch = kvm_fetch_guest_virt, 6812 .read_emulated = emulator_read_emulated, 6813 .write_emulated = emulator_write_emulated, 6814 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6815 .invlpg = emulator_invlpg, 6816 .pio_in_emulated = emulator_pio_in_emulated, 6817 .pio_out_emulated = emulator_pio_out_emulated, 6818 .get_segment = emulator_get_segment, 6819 .set_segment = emulator_set_segment, 6820 .get_cached_segment_base = emulator_get_cached_segment_base, 6821 .get_gdt = emulator_get_gdt, 6822 .get_idt = emulator_get_idt, 6823 .set_gdt = emulator_set_gdt, 6824 .set_idt = emulator_set_idt, 6825 .get_cr = emulator_get_cr, 6826 .set_cr = emulator_set_cr, 6827 .cpl = emulator_get_cpl, 6828 .get_dr = emulator_get_dr, 6829 .set_dr = emulator_set_dr, 6830 .get_smbase = emulator_get_smbase, 6831 .set_smbase = emulator_set_smbase, 6832 .set_msr = emulator_set_msr, 6833 .get_msr = emulator_get_msr, 6834 .check_pmc = emulator_check_pmc, 6835 .read_pmc = emulator_read_pmc, 6836 .halt = emulator_halt, 6837 .wbinvd = emulator_wbinvd, 6838 .fix_hypercall = emulator_fix_hypercall, 6839 .intercept = emulator_intercept, 6840 .get_cpuid = emulator_get_cpuid, 6841 .guest_has_long_mode = emulator_guest_has_long_mode, 6842 .guest_has_movbe = emulator_guest_has_movbe, 6843 .guest_has_fxsr = emulator_guest_has_fxsr, 6844 .set_nmi_mask = emulator_set_nmi_mask, 6845 .get_hflags = emulator_get_hflags, 6846 .set_hflags = emulator_set_hflags, 6847 .pre_leave_smm = emulator_pre_leave_smm, 6848 .post_leave_smm = emulator_post_leave_smm, 6849 .set_xcr = emulator_set_xcr, 6850 }; 6851 6852 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6853 { 6854 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6855 /* 6856 * an sti; sti; sequence only disable interrupts for the first 6857 * instruction. So, if the last instruction, be it emulated or 6858 * not, left the system with the INT_STI flag enabled, it 6859 * means that the last instruction is an sti. We should not 6860 * leave the flag on in this case. The same goes for mov ss 6861 */ 6862 if (int_shadow & mask) 6863 mask = 0; 6864 if (unlikely(int_shadow || mask)) { 6865 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6866 if (!mask) 6867 kvm_make_request(KVM_REQ_EVENT, vcpu); 6868 } 6869 } 6870 6871 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6872 { 6873 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6874 if (ctxt->exception.vector == PF_VECTOR) 6875 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6876 6877 if (ctxt->exception.error_code_valid) 6878 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6879 ctxt->exception.error_code); 6880 else 6881 kvm_queue_exception(vcpu, ctxt->exception.vector); 6882 return false; 6883 } 6884 6885 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6886 { 6887 struct x86_emulate_ctxt *ctxt; 6888 6889 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6890 if (!ctxt) { 6891 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6892 return NULL; 6893 } 6894 6895 ctxt->vcpu = vcpu; 6896 ctxt->ops = &emulate_ops; 6897 vcpu->arch.emulate_ctxt = ctxt; 6898 6899 return ctxt; 6900 } 6901 6902 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6903 { 6904 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6905 int cs_db, cs_l; 6906 6907 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6908 6909 ctxt->gpa_available = false; 6910 ctxt->eflags = kvm_get_rflags(vcpu); 6911 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6912 6913 ctxt->eip = kvm_rip_read(vcpu); 6914 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6915 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6916 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6917 cs_db ? X86EMUL_MODE_PROT32 : 6918 X86EMUL_MODE_PROT16; 6919 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6920 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6921 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6922 6923 init_decode_cache(ctxt); 6924 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6925 } 6926 6927 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6928 { 6929 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6930 int ret; 6931 6932 init_emulate_ctxt(vcpu); 6933 6934 ctxt->op_bytes = 2; 6935 ctxt->ad_bytes = 2; 6936 ctxt->_eip = ctxt->eip + inc_eip; 6937 ret = emulate_int_real(ctxt, irq); 6938 6939 if (ret != X86EMUL_CONTINUE) { 6940 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6941 } else { 6942 ctxt->eip = ctxt->_eip; 6943 kvm_rip_write(vcpu, ctxt->eip); 6944 kvm_set_rflags(vcpu, ctxt->eflags); 6945 } 6946 } 6947 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6948 6949 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6950 { 6951 ++vcpu->stat.insn_emulation_fail; 6952 trace_kvm_emulate_insn_failed(vcpu); 6953 6954 if (emulation_type & EMULTYPE_VMWARE_GP) { 6955 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6956 return 1; 6957 } 6958 6959 if (emulation_type & EMULTYPE_SKIP) { 6960 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6961 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6962 vcpu->run->internal.ndata = 0; 6963 return 0; 6964 } 6965 6966 kvm_queue_exception(vcpu, UD_VECTOR); 6967 6968 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6969 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6970 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6971 vcpu->run->internal.ndata = 0; 6972 return 0; 6973 } 6974 6975 return 1; 6976 } 6977 6978 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6979 bool write_fault_to_shadow_pgtable, 6980 int emulation_type) 6981 { 6982 gpa_t gpa = cr2_or_gpa; 6983 kvm_pfn_t pfn; 6984 6985 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6986 return false; 6987 6988 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6989 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6990 return false; 6991 6992 if (!vcpu->arch.mmu->direct_map) { 6993 /* 6994 * Write permission should be allowed since only 6995 * write access need to be emulated. 6996 */ 6997 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6998 6999 /* 7000 * If the mapping is invalid in guest, let cpu retry 7001 * it to generate fault. 7002 */ 7003 if (gpa == UNMAPPED_GVA) 7004 return true; 7005 } 7006 7007 /* 7008 * Do not retry the unhandleable instruction if it faults on the 7009 * readonly host memory, otherwise it will goto a infinite loop: 7010 * retry instruction -> write #PF -> emulation fail -> retry 7011 * instruction -> ... 7012 */ 7013 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7014 7015 /* 7016 * If the instruction failed on the error pfn, it can not be fixed, 7017 * report the error to userspace. 7018 */ 7019 if (is_error_noslot_pfn(pfn)) 7020 return false; 7021 7022 kvm_release_pfn_clean(pfn); 7023 7024 /* The instructions are well-emulated on direct mmu. */ 7025 if (vcpu->arch.mmu->direct_map) { 7026 unsigned int indirect_shadow_pages; 7027 7028 spin_lock(&vcpu->kvm->mmu_lock); 7029 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7030 spin_unlock(&vcpu->kvm->mmu_lock); 7031 7032 if (indirect_shadow_pages) 7033 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7034 7035 return true; 7036 } 7037 7038 /* 7039 * if emulation was due to access to shadowed page table 7040 * and it failed try to unshadow page and re-enter the 7041 * guest to let CPU execute the instruction. 7042 */ 7043 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7044 7045 /* 7046 * If the access faults on its page table, it can not 7047 * be fixed by unprotecting shadow page and it should 7048 * be reported to userspace. 7049 */ 7050 return !write_fault_to_shadow_pgtable; 7051 } 7052 7053 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7054 gpa_t cr2_or_gpa, int emulation_type) 7055 { 7056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7057 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7058 7059 last_retry_eip = vcpu->arch.last_retry_eip; 7060 last_retry_addr = vcpu->arch.last_retry_addr; 7061 7062 /* 7063 * If the emulation is caused by #PF and it is non-page_table 7064 * writing instruction, it means the VM-EXIT is caused by shadow 7065 * page protected, we can zap the shadow page and retry this 7066 * instruction directly. 7067 * 7068 * Note: if the guest uses a non-page-table modifying instruction 7069 * on the PDE that points to the instruction, then we will unmap 7070 * the instruction and go to an infinite loop. So, we cache the 7071 * last retried eip and the last fault address, if we meet the eip 7072 * and the address again, we can break out of the potential infinite 7073 * loop. 7074 */ 7075 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7076 7077 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7078 return false; 7079 7080 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7081 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7082 return false; 7083 7084 if (x86_page_table_writing_insn(ctxt)) 7085 return false; 7086 7087 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7088 return false; 7089 7090 vcpu->arch.last_retry_eip = ctxt->eip; 7091 vcpu->arch.last_retry_addr = cr2_or_gpa; 7092 7093 if (!vcpu->arch.mmu->direct_map) 7094 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7095 7096 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7097 7098 return true; 7099 } 7100 7101 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7102 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7103 7104 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7105 { 7106 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7107 /* This is a good place to trace that we are exiting SMM. */ 7108 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7109 7110 /* Process a latched INIT or SMI, if any. */ 7111 kvm_make_request(KVM_REQ_EVENT, vcpu); 7112 } 7113 7114 kvm_mmu_reset_context(vcpu); 7115 } 7116 7117 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7118 unsigned long *db) 7119 { 7120 u32 dr6 = 0; 7121 int i; 7122 u32 enable, rwlen; 7123 7124 enable = dr7; 7125 rwlen = dr7 >> 16; 7126 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7127 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7128 dr6 |= (1 << i); 7129 return dr6; 7130 } 7131 7132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7133 { 7134 struct kvm_run *kvm_run = vcpu->run; 7135 7136 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7137 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 7138 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7139 kvm_run->debug.arch.exception = DB_VECTOR; 7140 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7141 return 0; 7142 } 7143 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7144 return 1; 7145 } 7146 7147 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7148 { 7149 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7150 int r; 7151 7152 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 7153 if (unlikely(!r)) 7154 return 0; 7155 7156 /* 7157 * rflags is the old, "raw" value of the flags. The new value has 7158 * not been saved yet. 7159 * 7160 * This is correct even for TF set by the guest, because "the 7161 * processor will not generate this exception after the instruction 7162 * that sets the TF flag". 7163 */ 7164 if (unlikely(rflags & X86_EFLAGS_TF)) 7165 r = kvm_vcpu_do_singlestep(vcpu); 7166 return r; 7167 } 7168 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7169 7170 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7171 { 7172 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7173 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7174 struct kvm_run *kvm_run = vcpu->run; 7175 unsigned long eip = kvm_get_linear_rip(vcpu); 7176 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7177 vcpu->arch.guest_debug_dr7, 7178 vcpu->arch.eff_db); 7179 7180 if (dr6 != 0) { 7181 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 7182 kvm_run->debug.arch.pc = eip; 7183 kvm_run->debug.arch.exception = DB_VECTOR; 7184 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7185 *r = 0; 7186 return true; 7187 } 7188 } 7189 7190 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7191 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7192 unsigned long eip = kvm_get_linear_rip(vcpu); 7193 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7194 vcpu->arch.dr7, 7195 vcpu->arch.db); 7196 7197 if (dr6 != 0) { 7198 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7199 *r = 1; 7200 return true; 7201 } 7202 } 7203 7204 return false; 7205 } 7206 7207 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7208 { 7209 switch (ctxt->opcode_len) { 7210 case 1: 7211 switch (ctxt->b) { 7212 case 0xe4: /* IN */ 7213 case 0xe5: 7214 case 0xec: 7215 case 0xed: 7216 case 0xe6: /* OUT */ 7217 case 0xe7: 7218 case 0xee: 7219 case 0xef: 7220 case 0x6c: /* INS */ 7221 case 0x6d: 7222 case 0x6e: /* OUTS */ 7223 case 0x6f: 7224 return true; 7225 } 7226 break; 7227 case 2: 7228 switch (ctxt->b) { 7229 case 0x33: /* RDPMC */ 7230 return true; 7231 } 7232 break; 7233 } 7234 7235 return false; 7236 } 7237 7238 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7239 int emulation_type, void *insn, int insn_len) 7240 { 7241 int r; 7242 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7243 bool writeback = true; 7244 bool write_fault_to_spt; 7245 7246 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len))) 7247 return 1; 7248 7249 vcpu->arch.l1tf_flush_l1d = true; 7250 7251 /* 7252 * Clear write_fault_to_shadow_pgtable here to ensure it is 7253 * never reused. 7254 */ 7255 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7256 vcpu->arch.write_fault_to_shadow_pgtable = false; 7257 kvm_clear_exception_queue(vcpu); 7258 7259 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7260 init_emulate_ctxt(vcpu); 7261 7262 /* 7263 * We will reenter on the same instruction since 7264 * we do not set complete_userspace_io. This does not 7265 * handle watchpoints yet, those would be handled in 7266 * the emulate_ops. 7267 */ 7268 if (!(emulation_type & EMULTYPE_SKIP) && 7269 kvm_vcpu_check_breakpoint(vcpu, &r)) 7270 return r; 7271 7272 ctxt->interruptibility = 0; 7273 ctxt->have_exception = false; 7274 ctxt->exception.vector = -1; 7275 ctxt->perm_ok = false; 7276 7277 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7278 7279 r = x86_decode_insn(ctxt, insn, insn_len); 7280 7281 trace_kvm_emulate_insn_start(vcpu); 7282 ++vcpu->stat.insn_emulation; 7283 if (r != EMULATION_OK) { 7284 if ((emulation_type & EMULTYPE_TRAP_UD) || 7285 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7286 kvm_queue_exception(vcpu, UD_VECTOR); 7287 return 1; 7288 } 7289 if (reexecute_instruction(vcpu, cr2_or_gpa, 7290 write_fault_to_spt, 7291 emulation_type)) 7292 return 1; 7293 if (ctxt->have_exception) { 7294 /* 7295 * #UD should result in just EMULATION_FAILED, and trap-like 7296 * exception should not be encountered during decode. 7297 */ 7298 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7299 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7300 inject_emulated_exception(vcpu); 7301 return 1; 7302 } 7303 return handle_emulation_failure(vcpu, emulation_type); 7304 } 7305 } 7306 7307 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7308 !is_vmware_backdoor_opcode(ctxt)) { 7309 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7310 return 1; 7311 } 7312 7313 /* 7314 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7315 * for kvm_skip_emulated_instruction(). The caller is responsible for 7316 * updating interruptibility state and injecting single-step #DBs. 7317 */ 7318 if (emulation_type & EMULTYPE_SKIP) { 7319 kvm_rip_write(vcpu, ctxt->_eip); 7320 if (ctxt->eflags & X86_EFLAGS_RF) 7321 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7322 return 1; 7323 } 7324 7325 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7326 return 1; 7327 7328 /* this is needed for vmware backdoor interface to work since it 7329 changes registers values during IO operation */ 7330 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7331 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7332 emulator_invalidate_register_cache(ctxt); 7333 } 7334 7335 restart: 7336 if (emulation_type & EMULTYPE_PF) { 7337 /* Save the faulting GPA (cr2) in the address field */ 7338 ctxt->exception.address = cr2_or_gpa; 7339 7340 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7341 if (vcpu->arch.mmu->direct_map) { 7342 ctxt->gpa_available = true; 7343 ctxt->gpa_val = cr2_or_gpa; 7344 } 7345 } else { 7346 /* Sanitize the address out of an abundance of paranoia. */ 7347 ctxt->exception.address = 0; 7348 } 7349 7350 r = x86_emulate_insn(ctxt); 7351 7352 if (r == EMULATION_INTERCEPTED) 7353 return 1; 7354 7355 if (r == EMULATION_FAILED) { 7356 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7357 emulation_type)) 7358 return 1; 7359 7360 return handle_emulation_failure(vcpu, emulation_type); 7361 } 7362 7363 if (ctxt->have_exception) { 7364 r = 1; 7365 if (inject_emulated_exception(vcpu)) 7366 return r; 7367 } else if (vcpu->arch.pio.count) { 7368 if (!vcpu->arch.pio.in) { 7369 /* FIXME: return into emulator if single-stepping. */ 7370 vcpu->arch.pio.count = 0; 7371 } else { 7372 writeback = false; 7373 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7374 } 7375 r = 0; 7376 } else if (vcpu->mmio_needed) { 7377 ++vcpu->stat.mmio_exits; 7378 7379 if (!vcpu->mmio_is_write) 7380 writeback = false; 7381 r = 0; 7382 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7383 } else if (r == EMULATION_RESTART) 7384 goto restart; 7385 else 7386 r = 1; 7387 7388 if (writeback) { 7389 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7390 toggle_interruptibility(vcpu, ctxt->interruptibility); 7391 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7392 if (!ctxt->have_exception || 7393 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7394 kvm_rip_write(vcpu, ctxt->eip); 7395 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7396 r = kvm_vcpu_do_singlestep(vcpu); 7397 if (kvm_x86_ops.update_emulated_instruction) 7398 kvm_x86_ops.update_emulated_instruction(vcpu); 7399 __kvm_set_rflags(vcpu, ctxt->eflags); 7400 } 7401 7402 /* 7403 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7404 * do nothing, and it will be requested again as soon as 7405 * the shadow expires. But we still need to check here, 7406 * because POPF has no interrupt shadow. 7407 */ 7408 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7409 kvm_make_request(KVM_REQ_EVENT, vcpu); 7410 } else 7411 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7412 7413 return r; 7414 } 7415 7416 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7417 { 7418 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7419 } 7420 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7421 7422 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7423 void *insn, int insn_len) 7424 { 7425 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7426 } 7427 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7428 7429 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7430 { 7431 vcpu->arch.pio.count = 0; 7432 return 1; 7433 } 7434 7435 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7436 { 7437 vcpu->arch.pio.count = 0; 7438 7439 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7440 return 1; 7441 7442 return kvm_skip_emulated_instruction(vcpu); 7443 } 7444 7445 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7446 unsigned short port) 7447 { 7448 unsigned long val = kvm_rax_read(vcpu); 7449 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7450 7451 if (ret) 7452 return ret; 7453 7454 /* 7455 * Workaround userspace that relies on old KVM behavior of %rip being 7456 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7457 */ 7458 if (port == 0x7e && 7459 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7460 vcpu->arch.complete_userspace_io = 7461 complete_fast_pio_out_port_0x7e; 7462 kvm_skip_emulated_instruction(vcpu); 7463 } else { 7464 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7465 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7466 } 7467 return 0; 7468 } 7469 7470 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7471 { 7472 unsigned long val; 7473 7474 /* We should only ever be called with arch.pio.count equal to 1 */ 7475 BUG_ON(vcpu->arch.pio.count != 1); 7476 7477 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7478 vcpu->arch.pio.count = 0; 7479 return 1; 7480 } 7481 7482 /* For size less than 4 we merge, else we zero extend */ 7483 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7484 7485 /* 7486 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7487 * the copy and tracing 7488 */ 7489 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7490 kvm_rax_write(vcpu, val); 7491 7492 return kvm_skip_emulated_instruction(vcpu); 7493 } 7494 7495 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7496 unsigned short port) 7497 { 7498 unsigned long val; 7499 int ret; 7500 7501 /* For size less than 4 we merge, else we zero extend */ 7502 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7503 7504 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7505 if (ret) { 7506 kvm_rax_write(vcpu, val); 7507 return ret; 7508 } 7509 7510 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7511 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7512 7513 return 0; 7514 } 7515 7516 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7517 { 7518 int ret; 7519 7520 if (in) 7521 ret = kvm_fast_pio_in(vcpu, size, port); 7522 else 7523 ret = kvm_fast_pio_out(vcpu, size, port); 7524 return ret && kvm_skip_emulated_instruction(vcpu); 7525 } 7526 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7527 7528 static int kvmclock_cpu_down_prep(unsigned int cpu) 7529 { 7530 __this_cpu_write(cpu_tsc_khz, 0); 7531 return 0; 7532 } 7533 7534 static void tsc_khz_changed(void *data) 7535 { 7536 struct cpufreq_freqs *freq = data; 7537 unsigned long khz = 0; 7538 7539 if (data) 7540 khz = freq->new; 7541 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7542 khz = cpufreq_quick_get(raw_smp_processor_id()); 7543 if (!khz) 7544 khz = tsc_khz; 7545 __this_cpu_write(cpu_tsc_khz, khz); 7546 } 7547 7548 #ifdef CONFIG_X86_64 7549 static void kvm_hyperv_tsc_notifier(void) 7550 { 7551 struct kvm *kvm; 7552 struct kvm_vcpu *vcpu; 7553 int cpu; 7554 7555 mutex_lock(&kvm_lock); 7556 list_for_each_entry(kvm, &vm_list, vm_list) 7557 kvm_make_mclock_inprogress_request(kvm); 7558 7559 hyperv_stop_tsc_emulation(); 7560 7561 /* TSC frequency always matches when on Hyper-V */ 7562 for_each_present_cpu(cpu) 7563 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7564 kvm_max_guest_tsc_khz = tsc_khz; 7565 7566 list_for_each_entry(kvm, &vm_list, vm_list) { 7567 struct kvm_arch *ka = &kvm->arch; 7568 7569 spin_lock(&ka->pvclock_gtod_sync_lock); 7570 7571 pvclock_update_vm_gtod_copy(kvm); 7572 7573 kvm_for_each_vcpu(cpu, vcpu, kvm) 7574 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7575 7576 kvm_for_each_vcpu(cpu, vcpu, kvm) 7577 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7578 7579 spin_unlock(&ka->pvclock_gtod_sync_lock); 7580 } 7581 mutex_unlock(&kvm_lock); 7582 } 7583 #endif 7584 7585 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7586 { 7587 struct kvm *kvm; 7588 struct kvm_vcpu *vcpu; 7589 int i, send_ipi = 0; 7590 7591 /* 7592 * We allow guests to temporarily run on slowing clocks, 7593 * provided we notify them after, or to run on accelerating 7594 * clocks, provided we notify them before. Thus time never 7595 * goes backwards. 7596 * 7597 * However, we have a problem. We can't atomically update 7598 * the frequency of a given CPU from this function; it is 7599 * merely a notifier, which can be called from any CPU. 7600 * Changing the TSC frequency at arbitrary points in time 7601 * requires a recomputation of local variables related to 7602 * the TSC for each VCPU. We must flag these local variables 7603 * to be updated and be sure the update takes place with the 7604 * new frequency before any guests proceed. 7605 * 7606 * Unfortunately, the combination of hotplug CPU and frequency 7607 * change creates an intractable locking scenario; the order 7608 * of when these callouts happen is undefined with respect to 7609 * CPU hotplug, and they can race with each other. As such, 7610 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7611 * undefined; you can actually have a CPU frequency change take 7612 * place in between the computation of X and the setting of the 7613 * variable. To protect against this problem, all updates of 7614 * the per_cpu tsc_khz variable are done in an interrupt 7615 * protected IPI, and all callers wishing to update the value 7616 * must wait for a synchronous IPI to complete (which is trivial 7617 * if the caller is on the CPU already). This establishes the 7618 * necessary total order on variable updates. 7619 * 7620 * Note that because a guest time update may take place 7621 * anytime after the setting of the VCPU's request bit, the 7622 * correct TSC value must be set before the request. However, 7623 * to ensure the update actually makes it to any guest which 7624 * starts running in hardware virtualization between the set 7625 * and the acquisition of the spinlock, we must also ping the 7626 * CPU after setting the request bit. 7627 * 7628 */ 7629 7630 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7631 7632 mutex_lock(&kvm_lock); 7633 list_for_each_entry(kvm, &vm_list, vm_list) { 7634 kvm_for_each_vcpu(i, vcpu, kvm) { 7635 if (vcpu->cpu != cpu) 7636 continue; 7637 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7638 if (vcpu->cpu != raw_smp_processor_id()) 7639 send_ipi = 1; 7640 } 7641 } 7642 mutex_unlock(&kvm_lock); 7643 7644 if (freq->old < freq->new && send_ipi) { 7645 /* 7646 * We upscale the frequency. Must make the guest 7647 * doesn't see old kvmclock values while running with 7648 * the new frequency, otherwise we risk the guest sees 7649 * time go backwards. 7650 * 7651 * In case we update the frequency for another cpu 7652 * (which might be in guest context) send an interrupt 7653 * to kick the cpu out of guest context. Next time 7654 * guest context is entered kvmclock will be updated, 7655 * so the guest will not see stale values. 7656 */ 7657 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7658 } 7659 } 7660 7661 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7662 void *data) 7663 { 7664 struct cpufreq_freqs *freq = data; 7665 int cpu; 7666 7667 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7668 return 0; 7669 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7670 return 0; 7671 7672 for_each_cpu(cpu, freq->policy->cpus) 7673 __kvmclock_cpufreq_notifier(freq, cpu); 7674 7675 return 0; 7676 } 7677 7678 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7679 .notifier_call = kvmclock_cpufreq_notifier 7680 }; 7681 7682 static int kvmclock_cpu_online(unsigned int cpu) 7683 { 7684 tsc_khz_changed(NULL); 7685 return 0; 7686 } 7687 7688 static void kvm_timer_init(void) 7689 { 7690 max_tsc_khz = tsc_khz; 7691 7692 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7693 #ifdef CONFIG_CPU_FREQ 7694 struct cpufreq_policy *policy; 7695 int cpu; 7696 7697 cpu = get_cpu(); 7698 policy = cpufreq_cpu_get(cpu); 7699 if (policy) { 7700 if (policy->cpuinfo.max_freq) 7701 max_tsc_khz = policy->cpuinfo.max_freq; 7702 cpufreq_cpu_put(policy); 7703 } 7704 put_cpu(); 7705 #endif 7706 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7707 CPUFREQ_TRANSITION_NOTIFIER); 7708 } 7709 7710 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7711 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7712 } 7713 7714 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7715 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7716 7717 int kvm_is_in_guest(void) 7718 { 7719 return __this_cpu_read(current_vcpu) != NULL; 7720 } 7721 7722 static int kvm_is_user_mode(void) 7723 { 7724 int user_mode = 3; 7725 7726 if (__this_cpu_read(current_vcpu)) 7727 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7728 7729 return user_mode != 0; 7730 } 7731 7732 static unsigned long kvm_get_guest_ip(void) 7733 { 7734 unsigned long ip = 0; 7735 7736 if (__this_cpu_read(current_vcpu)) 7737 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7738 7739 return ip; 7740 } 7741 7742 static void kvm_handle_intel_pt_intr(void) 7743 { 7744 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7745 7746 kvm_make_request(KVM_REQ_PMI, vcpu); 7747 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7748 (unsigned long *)&vcpu->arch.pmu.global_status); 7749 } 7750 7751 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7752 .is_in_guest = kvm_is_in_guest, 7753 .is_user_mode = kvm_is_user_mode, 7754 .get_guest_ip = kvm_get_guest_ip, 7755 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7756 }; 7757 7758 #ifdef CONFIG_X86_64 7759 static void pvclock_gtod_update_fn(struct work_struct *work) 7760 { 7761 struct kvm *kvm; 7762 7763 struct kvm_vcpu *vcpu; 7764 int i; 7765 7766 mutex_lock(&kvm_lock); 7767 list_for_each_entry(kvm, &vm_list, vm_list) 7768 kvm_for_each_vcpu(i, vcpu, kvm) 7769 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7770 atomic_set(&kvm_guest_has_master_clock, 0); 7771 mutex_unlock(&kvm_lock); 7772 } 7773 7774 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7775 7776 /* 7777 * Notification about pvclock gtod data update. 7778 */ 7779 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7780 void *priv) 7781 { 7782 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7783 struct timekeeper *tk = priv; 7784 7785 update_pvclock_gtod(tk); 7786 7787 /* disable master clock if host does not trust, or does not 7788 * use, TSC based clocksource. 7789 */ 7790 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7791 atomic_read(&kvm_guest_has_master_clock) != 0) 7792 queue_work(system_long_wq, &pvclock_gtod_work); 7793 7794 return 0; 7795 } 7796 7797 static struct notifier_block pvclock_gtod_notifier = { 7798 .notifier_call = pvclock_gtod_notify, 7799 }; 7800 #endif 7801 7802 int kvm_arch_init(void *opaque) 7803 { 7804 struct kvm_x86_init_ops *ops = opaque; 7805 int r; 7806 7807 if (kvm_x86_ops.hardware_enable) { 7808 printk(KERN_ERR "kvm: already loaded the other module\n"); 7809 r = -EEXIST; 7810 goto out; 7811 } 7812 7813 if (!ops->cpu_has_kvm_support()) { 7814 pr_err_ratelimited("kvm: no hardware support\n"); 7815 r = -EOPNOTSUPP; 7816 goto out; 7817 } 7818 if (ops->disabled_by_bios()) { 7819 pr_err_ratelimited("kvm: disabled by bios\n"); 7820 r = -EOPNOTSUPP; 7821 goto out; 7822 } 7823 7824 /* 7825 * KVM explicitly assumes that the guest has an FPU and 7826 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7827 * vCPU's FPU state as a fxregs_state struct. 7828 */ 7829 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7830 printk(KERN_ERR "kvm: inadequate fpu\n"); 7831 r = -EOPNOTSUPP; 7832 goto out; 7833 } 7834 7835 r = -ENOMEM; 7836 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7837 __alignof__(struct fpu), SLAB_ACCOUNT, 7838 NULL); 7839 if (!x86_fpu_cache) { 7840 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7841 goto out; 7842 } 7843 7844 x86_emulator_cache = kvm_alloc_emulator_cache(); 7845 if (!x86_emulator_cache) { 7846 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7847 goto out_free_x86_fpu_cache; 7848 } 7849 7850 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 7851 if (!user_return_msrs) { 7852 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 7853 goto out_free_x86_emulator_cache; 7854 } 7855 7856 r = kvm_mmu_module_init(); 7857 if (r) 7858 goto out_free_percpu; 7859 7860 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7861 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7862 PT_PRESENT_MASK, 0, sme_me_mask); 7863 kvm_timer_init(); 7864 7865 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7866 7867 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7868 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7869 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7870 } 7871 7872 kvm_lapic_init(); 7873 if (pi_inject_timer == -1) 7874 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7875 #ifdef CONFIG_X86_64 7876 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7877 7878 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7879 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7880 #endif 7881 7882 return 0; 7883 7884 out_free_percpu: 7885 free_percpu(user_return_msrs); 7886 out_free_x86_emulator_cache: 7887 kmem_cache_destroy(x86_emulator_cache); 7888 out_free_x86_fpu_cache: 7889 kmem_cache_destroy(x86_fpu_cache); 7890 out: 7891 return r; 7892 } 7893 7894 void kvm_arch_exit(void) 7895 { 7896 #ifdef CONFIG_X86_64 7897 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7898 clear_hv_tscchange_cb(); 7899 #endif 7900 kvm_lapic_exit(); 7901 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7902 7903 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7904 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7905 CPUFREQ_TRANSITION_NOTIFIER); 7906 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7907 #ifdef CONFIG_X86_64 7908 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7909 #endif 7910 kvm_x86_ops.hardware_enable = NULL; 7911 kvm_mmu_module_exit(); 7912 free_percpu(user_return_msrs); 7913 kmem_cache_destroy(x86_fpu_cache); 7914 } 7915 7916 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7917 { 7918 ++vcpu->stat.halt_exits; 7919 if (lapic_in_kernel(vcpu)) { 7920 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7921 return 1; 7922 } else { 7923 vcpu->run->exit_reason = KVM_EXIT_HLT; 7924 return 0; 7925 } 7926 } 7927 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7928 7929 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7930 { 7931 int ret = kvm_skip_emulated_instruction(vcpu); 7932 /* 7933 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7934 * KVM_EXIT_DEBUG here. 7935 */ 7936 return kvm_vcpu_halt(vcpu) && ret; 7937 } 7938 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7939 7940 #ifdef CONFIG_X86_64 7941 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7942 unsigned long clock_type) 7943 { 7944 struct kvm_clock_pairing clock_pairing; 7945 struct timespec64 ts; 7946 u64 cycle; 7947 int ret; 7948 7949 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7950 return -KVM_EOPNOTSUPP; 7951 7952 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7953 return -KVM_EOPNOTSUPP; 7954 7955 clock_pairing.sec = ts.tv_sec; 7956 clock_pairing.nsec = ts.tv_nsec; 7957 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7958 clock_pairing.flags = 0; 7959 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7960 7961 ret = 0; 7962 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7963 sizeof(struct kvm_clock_pairing))) 7964 ret = -KVM_EFAULT; 7965 7966 return ret; 7967 } 7968 #endif 7969 7970 /* 7971 * kvm_pv_kick_cpu_op: Kick a vcpu. 7972 * 7973 * @apicid - apicid of vcpu to be kicked. 7974 */ 7975 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7976 { 7977 struct kvm_lapic_irq lapic_irq; 7978 7979 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7980 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7981 lapic_irq.level = 0; 7982 lapic_irq.dest_id = apicid; 7983 lapic_irq.msi_redir_hint = false; 7984 7985 lapic_irq.delivery_mode = APIC_DM_REMRD; 7986 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7987 } 7988 7989 bool kvm_apicv_activated(struct kvm *kvm) 7990 { 7991 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7992 } 7993 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7994 7995 void kvm_apicv_init(struct kvm *kvm, bool enable) 7996 { 7997 if (enable) 7998 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7999 &kvm->arch.apicv_inhibit_reasons); 8000 else 8001 set_bit(APICV_INHIBIT_REASON_DISABLE, 8002 &kvm->arch.apicv_inhibit_reasons); 8003 } 8004 EXPORT_SYMBOL_GPL(kvm_apicv_init); 8005 8006 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8007 { 8008 struct kvm_vcpu *target = NULL; 8009 struct kvm_apic_map *map; 8010 8011 rcu_read_lock(); 8012 map = rcu_dereference(kvm->arch.apic_map); 8013 8014 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8015 target = map->phys_map[dest_id]->vcpu; 8016 8017 rcu_read_unlock(); 8018 8019 if (target && READ_ONCE(target->ready)) 8020 kvm_vcpu_yield_to(target); 8021 } 8022 8023 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8024 { 8025 unsigned long nr, a0, a1, a2, a3, ret; 8026 int op_64_bit; 8027 8028 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 8029 return kvm_hv_hypercall(vcpu); 8030 8031 nr = kvm_rax_read(vcpu); 8032 a0 = kvm_rbx_read(vcpu); 8033 a1 = kvm_rcx_read(vcpu); 8034 a2 = kvm_rdx_read(vcpu); 8035 a3 = kvm_rsi_read(vcpu); 8036 8037 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8038 8039 op_64_bit = is_64_bit_mode(vcpu); 8040 if (!op_64_bit) { 8041 nr &= 0xFFFFFFFF; 8042 a0 &= 0xFFFFFFFF; 8043 a1 &= 0xFFFFFFFF; 8044 a2 &= 0xFFFFFFFF; 8045 a3 &= 0xFFFFFFFF; 8046 } 8047 8048 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 8049 ret = -KVM_EPERM; 8050 goto out; 8051 } 8052 8053 ret = -KVM_ENOSYS; 8054 8055 switch (nr) { 8056 case KVM_HC_VAPIC_POLL_IRQ: 8057 ret = 0; 8058 break; 8059 case KVM_HC_KICK_CPU: 8060 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8061 break; 8062 8063 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8064 kvm_sched_yield(vcpu->kvm, a1); 8065 ret = 0; 8066 break; 8067 #ifdef CONFIG_X86_64 8068 case KVM_HC_CLOCK_PAIRING: 8069 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8070 break; 8071 #endif 8072 case KVM_HC_SEND_IPI: 8073 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8074 break; 8075 8076 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8077 break; 8078 case KVM_HC_SCHED_YIELD: 8079 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8080 break; 8081 8082 kvm_sched_yield(vcpu->kvm, a0); 8083 ret = 0; 8084 break; 8085 default: 8086 ret = -KVM_ENOSYS; 8087 break; 8088 } 8089 out: 8090 if (!op_64_bit) 8091 ret = (u32)ret; 8092 kvm_rax_write(vcpu, ret); 8093 8094 ++vcpu->stat.hypercalls; 8095 return kvm_skip_emulated_instruction(vcpu); 8096 } 8097 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8098 8099 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8100 { 8101 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8102 char instruction[3]; 8103 unsigned long rip = kvm_rip_read(vcpu); 8104 8105 kvm_x86_ops.patch_hypercall(vcpu, instruction); 8106 8107 return emulator_write_emulated(ctxt, rip, instruction, 3, 8108 &ctxt->exception); 8109 } 8110 8111 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8112 { 8113 return vcpu->run->request_interrupt_window && 8114 likely(!pic_in_kernel(vcpu->kvm)); 8115 } 8116 8117 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8118 { 8119 struct kvm_run *kvm_run = vcpu->run; 8120 8121 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8122 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 8123 kvm_run->cr8 = kvm_get_cr8(vcpu); 8124 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8125 kvm_run->ready_for_interrupt_injection = 8126 pic_in_kernel(vcpu->kvm) || 8127 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8128 } 8129 8130 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8131 { 8132 int max_irr, tpr; 8133 8134 if (!kvm_x86_ops.update_cr8_intercept) 8135 return; 8136 8137 if (!lapic_in_kernel(vcpu)) 8138 return; 8139 8140 if (vcpu->arch.apicv_active) 8141 return; 8142 8143 if (!vcpu->arch.apic->vapic_addr) 8144 max_irr = kvm_lapic_find_highest_irr(vcpu); 8145 else 8146 max_irr = -1; 8147 8148 if (max_irr != -1) 8149 max_irr >>= 4; 8150 8151 tpr = kvm_lapic_get_cr8(vcpu); 8152 8153 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 8154 } 8155 8156 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8157 { 8158 int r; 8159 bool can_inject = true; 8160 8161 /* try to reinject previous events if any */ 8162 8163 if (vcpu->arch.exception.injected) { 8164 kvm_x86_ops.queue_exception(vcpu); 8165 can_inject = false; 8166 } 8167 /* 8168 * Do not inject an NMI or interrupt if there is a pending 8169 * exception. Exceptions and interrupts are recognized at 8170 * instruction boundaries, i.e. the start of an instruction. 8171 * Trap-like exceptions, e.g. #DB, have higher priority than 8172 * NMIs and interrupts, i.e. traps are recognized before an 8173 * NMI/interrupt that's pending on the same instruction. 8174 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8175 * priority, but are only generated (pended) during instruction 8176 * execution, i.e. a pending fault-like exception means the 8177 * fault occurred on the *previous* instruction and must be 8178 * serviced prior to recognizing any new events in order to 8179 * fully complete the previous instruction. 8180 */ 8181 else if (!vcpu->arch.exception.pending) { 8182 if (vcpu->arch.nmi_injected) { 8183 kvm_x86_ops.set_nmi(vcpu); 8184 can_inject = false; 8185 } else if (vcpu->arch.interrupt.injected) { 8186 kvm_x86_ops.set_irq(vcpu); 8187 can_inject = false; 8188 } 8189 } 8190 8191 WARN_ON_ONCE(vcpu->arch.exception.injected && 8192 vcpu->arch.exception.pending); 8193 8194 /* 8195 * Call check_nested_events() even if we reinjected a previous event 8196 * in order for caller to determine if it should require immediate-exit 8197 * from L2 to L1 due to pending L1 events which require exit 8198 * from L2 to L1. 8199 */ 8200 if (is_guest_mode(vcpu)) { 8201 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8202 if (r < 0) 8203 goto busy; 8204 } 8205 8206 /* try to inject new event if pending */ 8207 if (vcpu->arch.exception.pending) { 8208 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8209 vcpu->arch.exception.has_error_code, 8210 vcpu->arch.exception.error_code); 8211 8212 vcpu->arch.exception.pending = false; 8213 vcpu->arch.exception.injected = true; 8214 8215 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8216 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8217 X86_EFLAGS_RF); 8218 8219 if (vcpu->arch.exception.nr == DB_VECTOR) { 8220 kvm_deliver_exception_payload(vcpu); 8221 if (vcpu->arch.dr7 & DR7_GD) { 8222 vcpu->arch.dr7 &= ~DR7_GD; 8223 kvm_update_dr7(vcpu); 8224 } 8225 } 8226 8227 kvm_x86_ops.queue_exception(vcpu); 8228 can_inject = false; 8229 } 8230 8231 /* 8232 * Finally, inject interrupt events. If an event cannot be injected 8233 * due to architectural conditions (e.g. IF=0) a window-open exit 8234 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8235 * and can architecturally be injected, but we cannot do it right now: 8236 * an interrupt could have arrived just now and we have to inject it 8237 * as a vmexit, or there could already an event in the queue, which is 8238 * indicated by can_inject. In that case we request an immediate exit 8239 * in order to make progress and get back here for another iteration. 8240 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8241 */ 8242 if (vcpu->arch.smi_pending) { 8243 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 8244 if (r < 0) 8245 goto busy; 8246 if (r) { 8247 vcpu->arch.smi_pending = false; 8248 ++vcpu->arch.smi_count; 8249 enter_smm(vcpu); 8250 can_inject = false; 8251 } else 8252 kvm_x86_ops.enable_smi_window(vcpu); 8253 } 8254 8255 if (vcpu->arch.nmi_pending) { 8256 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 8257 if (r < 0) 8258 goto busy; 8259 if (r) { 8260 --vcpu->arch.nmi_pending; 8261 vcpu->arch.nmi_injected = true; 8262 kvm_x86_ops.set_nmi(vcpu); 8263 can_inject = false; 8264 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 8265 } 8266 if (vcpu->arch.nmi_pending) 8267 kvm_x86_ops.enable_nmi_window(vcpu); 8268 } 8269 8270 if (kvm_cpu_has_injectable_intr(vcpu)) { 8271 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 8272 if (r < 0) 8273 goto busy; 8274 if (r) { 8275 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8276 kvm_x86_ops.set_irq(vcpu); 8277 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 8278 } 8279 if (kvm_cpu_has_injectable_intr(vcpu)) 8280 kvm_x86_ops.enable_irq_window(vcpu); 8281 } 8282 8283 if (is_guest_mode(vcpu) && 8284 kvm_x86_ops.nested_ops->hv_timer_pending && 8285 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8286 *req_immediate_exit = true; 8287 8288 WARN_ON(vcpu->arch.exception.pending); 8289 return; 8290 8291 busy: 8292 *req_immediate_exit = true; 8293 return; 8294 } 8295 8296 static void process_nmi(struct kvm_vcpu *vcpu) 8297 { 8298 unsigned limit = 2; 8299 8300 /* 8301 * x86 is limited to one NMI running, and one NMI pending after it. 8302 * If an NMI is already in progress, limit further NMIs to just one. 8303 * Otherwise, allow two (and we'll inject the first one immediately). 8304 */ 8305 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 8306 limit = 1; 8307 8308 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8309 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8310 kvm_make_request(KVM_REQ_EVENT, vcpu); 8311 } 8312 8313 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8314 { 8315 u32 flags = 0; 8316 flags |= seg->g << 23; 8317 flags |= seg->db << 22; 8318 flags |= seg->l << 21; 8319 flags |= seg->avl << 20; 8320 flags |= seg->present << 15; 8321 flags |= seg->dpl << 13; 8322 flags |= seg->s << 12; 8323 flags |= seg->type << 8; 8324 return flags; 8325 } 8326 8327 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8328 { 8329 struct kvm_segment seg; 8330 int offset; 8331 8332 kvm_get_segment(vcpu, &seg, n); 8333 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8334 8335 if (n < 3) 8336 offset = 0x7f84 + n * 12; 8337 else 8338 offset = 0x7f2c + (n - 3) * 12; 8339 8340 put_smstate(u32, buf, offset + 8, seg.base); 8341 put_smstate(u32, buf, offset + 4, seg.limit); 8342 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8343 } 8344 8345 #ifdef CONFIG_X86_64 8346 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8347 { 8348 struct kvm_segment seg; 8349 int offset; 8350 u16 flags; 8351 8352 kvm_get_segment(vcpu, &seg, n); 8353 offset = 0x7e00 + n * 16; 8354 8355 flags = enter_smm_get_segment_flags(&seg) >> 8; 8356 put_smstate(u16, buf, offset, seg.selector); 8357 put_smstate(u16, buf, offset + 2, flags); 8358 put_smstate(u32, buf, offset + 4, seg.limit); 8359 put_smstate(u64, buf, offset + 8, seg.base); 8360 } 8361 #endif 8362 8363 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8364 { 8365 struct desc_ptr dt; 8366 struct kvm_segment seg; 8367 unsigned long val; 8368 int i; 8369 8370 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8371 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8372 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8373 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8374 8375 for (i = 0; i < 8; i++) 8376 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8377 8378 kvm_get_dr(vcpu, 6, &val); 8379 put_smstate(u32, buf, 0x7fcc, (u32)val); 8380 kvm_get_dr(vcpu, 7, &val); 8381 put_smstate(u32, buf, 0x7fc8, (u32)val); 8382 8383 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8384 put_smstate(u32, buf, 0x7fc4, seg.selector); 8385 put_smstate(u32, buf, 0x7f64, seg.base); 8386 put_smstate(u32, buf, 0x7f60, seg.limit); 8387 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8388 8389 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8390 put_smstate(u32, buf, 0x7fc0, seg.selector); 8391 put_smstate(u32, buf, 0x7f80, seg.base); 8392 put_smstate(u32, buf, 0x7f7c, seg.limit); 8393 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8394 8395 kvm_x86_ops.get_gdt(vcpu, &dt); 8396 put_smstate(u32, buf, 0x7f74, dt.address); 8397 put_smstate(u32, buf, 0x7f70, dt.size); 8398 8399 kvm_x86_ops.get_idt(vcpu, &dt); 8400 put_smstate(u32, buf, 0x7f58, dt.address); 8401 put_smstate(u32, buf, 0x7f54, dt.size); 8402 8403 for (i = 0; i < 6; i++) 8404 enter_smm_save_seg_32(vcpu, buf, i); 8405 8406 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8407 8408 /* revision id */ 8409 put_smstate(u32, buf, 0x7efc, 0x00020000); 8410 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8411 } 8412 8413 #ifdef CONFIG_X86_64 8414 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8415 { 8416 struct desc_ptr dt; 8417 struct kvm_segment seg; 8418 unsigned long val; 8419 int i; 8420 8421 for (i = 0; i < 16; i++) 8422 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8423 8424 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8425 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8426 8427 kvm_get_dr(vcpu, 6, &val); 8428 put_smstate(u64, buf, 0x7f68, val); 8429 kvm_get_dr(vcpu, 7, &val); 8430 put_smstate(u64, buf, 0x7f60, val); 8431 8432 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8433 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8434 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8435 8436 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8437 8438 /* revision id */ 8439 put_smstate(u32, buf, 0x7efc, 0x00020064); 8440 8441 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8442 8443 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8444 put_smstate(u16, buf, 0x7e90, seg.selector); 8445 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8446 put_smstate(u32, buf, 0x7e94, seg.limit); 8447 put_smstate(u64, buf, 0x7e98, seg.base); 8448 8449 kvm_x86_ops.get_idt(vcpu, &dt); 8450 put_smstate(u32, buf, 0x7e84, dt.size); 8451 put_smstate(u64, buf, 0x7e88, dt.address); 8452 8453 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8454 put_smstate(u16, buf, 0x7e70, seg.selector); 8455 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8456 put_smstate(u32, buf, 0x7e74, seg.limit); 8457 put_smstate(u64, buf, 0x7e78, seg.base); 8458 8459 kvm_x86_ops.get_gdt(vcpu, &dt); 8460 put_smstate(u32, buf, 0x7e64, dt.size); 8461 put_smstate(u64, buf, 0x7e68, dt.address); 8462 8463 for (i = 0; i < 6; i++) 8464 enter_smm_save_seg_64(vcpu, buf, i); 8465 } 8466 #endif 8467 8468 static void enter_smm(struct kvm_vcpu *vcpu) 8469 { 8470 struct kvm_segment cs, ds; 8471 struct desc_ptr dt; 8472 char buf[512]; 8473 u32 cr0; 8474 8475 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8476 memset(buf, 0, 512); 8477 #ifdef CONFIG_X86_64 8478 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8479 enter_smm_save_state_64(vcpu, buf); 8480 else 8481 #endif 8482 enter_smm_save_state_32(vcpu, buf); 8483 8484 /* 8485 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8486 * vCPU state (e.g. leave guest mode) after we've saved the state into 8487 * the SMM state-save area. 8488 */ 8489 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8490 8491 vcpu->arch.hflags |= HF_SMM_MASK; 8492 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8493 8494 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8495 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8496 else 8497 kvm_x86_ops.set_nmi_mask(vcpu, true); 8498 8499 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8500 kvm_rip_write(vcpu, 0x8000); 8501 8502 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8503 kvm_x86_ops.set_cr0(vcpu, cr0); 8504 vcpu->arch.cr0 = cr0; 8505 8506 kvm_x86_ops.set_cr4(vcpu, 0); 8507 8508 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8509 dt.address = dt.size = 0; 8510 kvm_x86_ops.set_idt(vcpu, &dt); 8511 8512 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8513 8514 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8515 cs.base = vcpu->arch.smbase; 8516 8517 ds.selector = 0; 8518 ds.base = 0; 8519 8520 cs.limit = ds.limit = 0xffffffff; 8521 cs.type = ds.type = 0x3; 8522 cs.dpl = ds.dpl = 0; 8523 cs.db = ds.db = 0; 8524 cs.s = ds.s = 1; 8525 cs.l = ds.l = 0; 8526 cs.g = ds.g = 1; 8527 cs.avl = ds.avl = 0; 8528 cs.present = ds.present = 1; 8529 cs.unusable = ds.unusable = 0; 8530 cs.padding = ds.padding = 0; 8531 8532 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8533 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8534 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8535 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8536 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8537 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8538 8539 #ifdef CONFIG_X86_64 8540 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8541 kvm_x86_ops.set_efer(vcpu, 0); 8542 #endif 8543 8544 kvm_update_cpuid_runtime(vcpu); 8545 kvm_mmu_reset_context(vcpu); 8546 } 8547 8548 static void process_smi(struct kvm_vcpu *vcpu) 8549 { 8550 vcpu->arch.smi_pending = true; 8551 kvm_make_request(KVM_REQ_EVENT, vcpu); 8552 } 8553 8554 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8555 unsigned long *vcpu_bitmap) 8556 { 8557 cpumask_var_t cpus; 8558 8559 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8560 8561 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8562 NULL, vcpu_bitmap, cpus); 8563 8564 free_cpumask_var(cpus); 8565 } 8566 8567 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8568 { 8569 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8570 } 8571 8572 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8573 { 8574 if (!lapic_in_kernel(vcpu)) 8575 return; 8576 8577 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8578 kvm_apic_update_apicv(vcpu); 8579 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8580 } 8581 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8582 8583 /* 8584 * NOTE: Do not hold any lock prior to calling this. 8585 * 8586 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8587 * locked, because it calls __x86_set_memory_region() which does 8588 * synchronize_srcu(&kvm->srcu). 8589 */ 8590 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8591 { 8592 struct kvm_vcpu *except; 8593 unsigned long old, new, expected; 8594 8595 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8596 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8597 return; 8598 8599 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8600 do { 8601 expected = new = old; 8602 if (activate) 8603 __clear_bit(bit, &new); 8604 else 8605 __set_bit(bit, &new); 8606 if (new == old) 8607 break; 8608 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8609 } while (old != expected); 8610 8611 if (!!old == !!new) 8612 return; 8613 8614 trace_kvm_apicv_update_request(activate, bit); 8615 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8616 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8617 8618 /* 8619 * Sending request to update APICV for all other vcpus, 8620 * while update the calling vcpu immediately instead of 8621 * waiting for another #VMEXIT to handle the request. 8622 */ 8623 except = kvm_get_running_vcpu(); 8624 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8625 except); 8626 if (except) 8627 kvm_vcpu_update_apicv(except); 8628 } 8629 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8630 8631 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8632 { 8633 if (!kvm_apic_present(vcpu)) 8634 return; 8635 8636 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8637 8638 if (irqchip_split(vcpu->kvm)) 8639 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8640 else { 8641 if (vcpu->arch.apicv_active) 8642 kvm_x86_ops.sync_pir_to_irr(vcpu); 8643 if (ioapic_in_kernel(vcpu->kvm)) 8644 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8645 } 8646 8647 if (is_guest_mode(vcpu)) 8648 vcpu->arch.load_eoi_exitmap_pending = true; 8649 else 8650 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8651 } 8652 8653 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8654 { 8655 u64 eoi_exit_bitmap[4]; 8656 8657 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8658 return; 8659 8660 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8661 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8662 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8663 } 8664 8665 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8666 unsigned long start, unsigned long end) 8667 { 8668 unsigned long apic_address; 8669 8670 /* 8671 * The physical address of apic access page is stored in the VMCS. 8672 * Update it when it becomes invalid. 8673 */ 8674 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8675 if (start <= apic_address && apic_address < end) 8676 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8677 } 8678 8679 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8680 { 8681 if (!lapic_in_kernel(vcpu)) 8682 return; 8683 8684 if (!kvm_x86_ops.set_apic_access_page_addr) 8685 return; 8686 8687 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8688 } 8689 8690 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8691 { 8692 smp_send_reschedule(vcpu->cpu); 8693 } 8694 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8695 8696 /* 8697 * Returns 1 to let vcpu_run() continue the guest execution loop without 8698 * exiting to the userspace. Otherwise, the value will be returned to the 8699 * userspace. 8700 */ 8701 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8702 { 8703 int r; 8704 bool req_int_win = 8705 dm_request_for_irq_injection(vcpu) && 8706 kvm_cpu_accept_dm_intr(vcpu); 8707 fastpath_t exit_fastpath; 8708 8709 bool req_immediate_exit = false; 8710 8711 if (kvm_request_pending(vcpu)) { 8712 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 8713 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 8714 r = 0; 8715 goto out; 8716 } 8717 } 8718 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8719 kvm_mmu_unload(vcpu); 8720 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8721 __kvm_migrate_timers(vcpu); 8722 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8723 kvm_gen_update_masterclock(vcpu->kvm); 8724 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8725 kvm_gen_kvmclock_update(vcpu); 8726 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8727 r = kvm_guest_time_update(vcpu); 8728 if (unlikely(r)) 8729 goto out; 8730 } 8731 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8732 kvm_mmu_sync_roots(vcpu); 8733 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8734 kvm_mmu_load_pgd(vcpu); 8735 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8736 kvm_vcpu_flush_tlb_all(vcpu); 8737 8738 /* Flushing all ASIDs flushes the current ASID... */ 8739 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8740 } 8741 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8742 kvm_vcpu_flush_tlb_current(vcpu); 8743 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8744 kvm_vcpu_flush_tlb_guest(vcpu); 8745 8746 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8747 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8748 r = 0; 8749 goto out; 8750 } 8751 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8752 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8753 vcpu->mmio_needed = 0; 8754 r = 0; 8755 goto out; 8756 } 8757 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8758 /* Page is swapped out. Do synthetic halt */ 8759 vcpu->arch.apf.halted = true; 8760 r = 1; 8761 goto out; 8762 } 8763 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8764 record_steal_time(vcpu); 8765 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8766 process_smi(vcpu); 8767 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8768 process_nmi(vcpu); 8769 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8770 kvm_pmu_handle_event(vcpu); 8771 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8772 kvm_pmu_deliver_pmi(vcpu); 8773 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8774 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8775 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8776 vcpu->arch.ioapic_handled_vectors)) { 8777 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8778 vcpu->run->eoi.vector = 8779 vcpu->arch.pending_ioapic_eoi; 8780 r = 0; 8781 goto out; 8782 } 8783 } 8784 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8785 vcpu_scan_ioapic(vcpu); 8786 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8787 vcpu_load_eoi_exitmap(vcpu); 8788 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8789 kvm_vcpu_reload_apic_access_page(vcpu); 8790 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8791 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8792 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8793 r = 0; 8794 goto out; 8795 } 8796 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8797 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8798 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8799 r = 0; 8800 goto out; 8801 } 8802 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8803 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8804 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8805 r = 0; 8806 goto out; 8807 } 8808 8809 /* 8810 * KVM_REQ_HV_STIMER has to be processed after 8811 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8812 * depend on the guest clock being up-to-date 8813 */ 8814 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8815 kvm_hv_process_stimers(vcpu); 8816 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8817 kvm_vcpu_update_apicv(vcpu); 8818 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8819 kvm_check_async_pf_completion(vcpu); 8820 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 8821 kvm_x86_ops.msr_filter_changed(vcpu); 8822 } 8823 8824 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8825 ++vcpu->stat.req_event; 8826 kvm_apic_accept_events(vcpu); 8827 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8828 r = 1; 8829 goto out; 8830 } 8831 8832 inject_pending_event(vcpu, &req_immediate_exit); 8833 if (req_int_win) 8834 kvm_x86_ops.enable_irq_window(vcpu); 8835 8836 if (kvm_lapic_enabled(vcpu)) { 8837 update_cr8_intercept(vcpu); 8838 kvm_lapic_sync_to_vapic(vcpu); 8839 } 8840 } 8841 8842 r = kvm_mmu_reload(vcpu); 8843 if (unlikely(r)) { 8844 goto cancel_injection; 8845 } 8846 8847 preempt_disable(); 8848 8849 kvm_x86_ops.prepare_guest_switch(vcpu); 8850 8851 /* 8852 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8853 * IPI are then delayed after guest entry, which ensures that they 8854 * result in virtual interrupt delivery. 8855 */ 8856 local_irq_disable(); 8857 vcpu->mode = IN_GUEST_MODE; 8858 8859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8860 8861 /* 8862 * 1) We should set ->mode before checking ->requests. Please see 8863 * the comment in kvm_vcpu_exiting_guest_mode(). 8864 * 8865 * 2) For APICv, we should set ->mode before checking PID.ON. This 8866 * pairs with the memory barrier implicit in pi_test_and_set_on 8867 * (see vmx_deliver_posted_interrupt). 8868 * 8869 * 3) This also orders the write to mode from any reads to the page 8870 * tables done while the VCPU is running. Please see the comment 8871 * in kvm_flush_remote_tlbs. 8872 */ 8873 smp_mb__after_srcu_read_unlock(); 8874 8875 /* 8876 * This handles the case where a posted interrupt was 8877 * notified with kvm_vcpu_kick. 8878 */ 8879 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8880 kvm_x86_ops.sync_pir_to_irr(vcpu); 8881 8882 if (kvm_vcpu_exit_request(vcpu)) { 8883 vcpu->mode = OUTSIDE_GUEST_MODE; 8884 smp_wmb(); 8885 local_irq_enable(); 8886 preempt_enable(); 8887 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8888 r = 1; 8889 goto cancel_injection; 8890 } 8891 8892 if (req_immediate_exit) { 8893 kvm_make_request(KVM_REQ_EVENT, vcpu); 8894 kvm_x86_ops.request_immediate_exit(vcpu); 8895 } 8896 8897 trace_kvm_entry(vcpu); 8898 8899 fpregs_assert_state_consistent(); 8900 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8901 switch_fpu_return(); 8902 8903 if (unlikely(vcpu->arch.switch_db_regs)) { 8904 set_debugreg(0, 7); 8905 set_debugreg(vcpu->arch.eff_db[0], 0); 8906 set_debugreg(vcpu->arch.eff_db[1], 1); 8907 set_debugreg(vcpu->arch.eff_db[2], 2); 8908 set_debugreg(vcpu->arch.eff_db[3], 3); 8909 set_debugreg(vcpu->arch.dr6, 6); 8910 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8911 } 8912 8913 exit_fastpath = kvm_x86_ops.run(vcpu); 8914 8915 /* 8916 * Do this here before restoring debug registers on the host. And 8917 * since we do this before handling the vmexit, a DR access vmexit 8918 * can (a) read the correct value of the debug registers, (b) set 8919 * KVM_DEBUGREG_WONT_EXIT again. 8920 */ 8921 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8922 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8923 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8924 kvm_update_dr0123(vcpu); 8925 kvm_update_dr7(vcpu); 8926 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8927 } 8928 8929 /* 8930 * If the guest has used debug registers, at least dr7 8931 * will be disabled while returning to the host. 8932 * If we don't have active breakpoints in the host, we don't 8933 * care about the messed up debug address registers. But if 8934 * we have some of them active, restore the old state. 8935 */ 8936 if (hw_breakpoint_active()) 8937 hw_breakpoint_restore(); 8938 8939 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 8940 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8941 8942 vcpu->mode = OUTSIDE_GUEST_MODE; 8943 smp_wmb(); 8944 8945 kvm_x86_ops.handle_exit_irqoff(vcpu); 8946 8947 /* 8948 * Consume any pending interrupts, including the possible source of 8949 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8950 * An instruction is required after local_irq_enable() to fully unblock 8951 * interrupts on processors that implement an interrupt shadow, the 8952 * stat.exits increment will do nicely. 8953 */ 8954 kvm_before_interrupt(vcpu); 8955 local_irq_enable(); 8956 ++vcpu->stat.exits; 8957 local_irq_disable(); 8958 kvm_after_interrupt(vcpu); 8959 8960 if (lapic_in_kernel(vcpu)) { 8961 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8962 if (delta != S64_MIN) { 8963 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8964 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8965 } 8966 } 8967 8968 local_irq_enable(); 8969 preempt_enable(); 8970 8971 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8972 8973 /* 8974 * Profile KVM exit RIPs: 8975 */ 8976 if (unlikely(prof_on == KVM_PROFILING)) { 8977 unsigned long rip = kvm_rip_read(vcpu); 8978 profile_hit(KVM_PROFILING, (void *)rip); 8979 } 8980 8981 if (unlikely(vcpu->arch.tsc_always_catchup)) 8982 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8983 8984 if (vcpu->arch.apic_attention) 8985 kvm_lapic_sync_from_vapic(vcpu); 8986 8987 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8988 return r; 8989 8990 cancel_injection: 8991 if (req_immediate_exit) 8992 kvm_make_request(KVM_REQ_EVENT, vcpu); 8993 kvm_x86_ops.cancel_injection(vcpu); 8994 if (unlikely(vcpu->arch.apic_attention)) 8995 kvm_lapic_sync_from_vapic(vcpu); 8996 out: 8997 return r; 8998 } 8999 9000 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9001 { 9002 if (!kvm_arch_vcpu_runnable(vcpu) && 9003 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 9004 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9005 kvm_vcpu_block(vcpu); 9006 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9007 9008 if (kvm_x86_ops.post_block) 9009 kvm_x86_ops.post_block(vcpu); 9010 9011 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9012 return 1; 9013 } 9014 9015 kvm_apic_accept_events(vcpu); 9016 switch(vcpu->arch.mp_state) { 9017 case KVM_MP_STATE_HALTED: 9018 vcpu->arch.pv.pv_unhalted = false; 9019 vcpu->arch.mp_state = 9020 KVM_MP_STATE_RUNNABLE; 9021 fallthrough; 9022 case KVM_MP_STATE_RUNNABLE: 9023 vcpu->arch.apf.halted = false; 9024 break; 9025 case KVM_MP_STATE_INIT_RECEIVED: 9026 break; 9027 default: 9028 return -EINTR; 9029 } 9030 return 1; 9031 } 9032 9033 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9034 { 9035 if (is_guest_mode(vcpu)) 9036 kvm_x86_ops.nested_ops->check_events(vcpu); 9037 9038 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9039 !vcpu->arch.apf.halted); 9040 } 9041 9042 static int vcpu_run(struct kvm_vcpu *vcpu) 9043 { 9044 int r; 9045 struct kvm *kvm = vcpu->kvm; 9046 9047 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9048 vcpu->arch.l1tf_flush_l1d = true; 9049 9050 for (;;) { 9051 if (kvm_vcpu_running(vcpu)) { 9052 r = vcpu_enter_guest(vcpu); 9053 } else { 9054 r = vcpu_block(kvm, vcpu); 9055 } 9056 9057 if (r <= 0) 9058 break; 9059 9060 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9061 if (kvm_cpu_has_pending_timer(vcpu)) 9062 kvm_inject_pending_timer_irqs(vcpu); 9063 9064 if (dm_request_for_irq_injection(vcpu) && 9065 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9066 r = 0; 9067 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9068 ++vcpu->stat.request_irq_exits; 9069 break; 9070 } 9071 9072 if (__xfer_to_guest_mode_work_pending()) { 9073 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9074 r = xfer_to_guest_mode_handle_work(vcpu); 9075 if (r) 9076 return r; 9077 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9078 } 9079 } 9080 9081 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9082 9083 return r; 9084 } 9085 9086 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9087 { 9088 int r; 9089 9090 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9091 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9092 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9093 return r; 9094 } 9095 9096 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9097 { 9098 BUG_ON(!vcpu->arch.pio.count); 9099 9100 return complete_emulated_io(vcpu); 9101 } 9102 9103 /* 9104 * Implements the following, as a state machine: 9105 * 9106 * read: 9107 * for each fragment 9108 * for each mmio piece in the fragment 9109 * write gpa, len 9110 * exit 9111 * copy data 9112 * execute insn 9113 * 9114 * write: 9115 * for each fragment 9116 * for each mmio piece in the fragment 9117 * write gpa, len 9118 * copy data 9119 * exit 9120 */ 9121 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9122 { 9123 struct kvm_run *run = vcpu->run; 9124 struct kvm_mmio_fragment *frag; 9125 unsigned len; 9126 9127 BUG_ON(!vcpu->mmio_needed); 9128 9129 /* Complete previous fragment */ 9130 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9131 len = min(8u, frag->len); 9132 if (!vcpu->mmio_is_write) 9133 memcpy(frag->data, run->mmio.data, len); 9134 9135 if (frag->len <= 8) { 9136 /* Switch to the next fragment. */ 9137 frag++; 9138 vcpu->mmio_cur_fragment++; 9139 } else { 9140 /* Go forward to the next mmio piece. */ 9141 frag->data += len; 9142 frag->gpa += len; 9143 frag->len -= len; 9144 } 9145 9146 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9147 vcpu->mmio_needed = 0; 9148 9149 /* FIXME: return into emulator if single-stepping. */ 9150 if (vcpu->mmio_is_write) 9151 return 1; 9152 vcpu->mmio_read_completed = 1; 9153 return complete_emulated_io(vcpu); 9154 } 9155 9156 run->exit_reason = KVM_EXIT_MMIO; 9157 run->mmio.phys_addr = frag->gpa; 9158 if (vcpu->mmio_is_write) 9159 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9160 run->mmio.len = min(8u, frag->len); 9161 run->mmio.is_write = vcpu->mmio_is_write; 9162 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9163 return 0; 9164 } 9165 9166 static void kvm_save_current_fpu(struct fpu *fpu) 9167 { 9168 /* 9169 * If the target FPU state is not resident in the CPU registers, just 9170 * memcpy() from current, else save CPU state directly to the target. 9171 */ 9172 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9173 memcpy(&fpu->state, ¤t->thread.fpu.state, 9174 fpu_kernel_xstate_size); 9175 else 9176 copy_fpregs_to_fpstate(fpu); 9177 } 9178 9179 /* Swap (qemu) user FPU context for the guest FPU context. */ 9180 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9181 { 9182 fpregs_lock(); 9183 9184 kvm_save_current_fpu(vcpu->arch.user_fpu); 9185 9186 /* PKRU is separately restored in kvm_x86_ops.run. */ 9187 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9188 ~XFEATURE_MASK_PKRU); 9189 9190 fpregs_mark_activate(); 9191 fpregs_unlock(); 9192 9193 trace_kvm_fpu(1); 9194 } 9195 9196 /* When vcpu_run ends, restore user space FPU context. */ 9197 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9198 { 9199 fpregs_lock(); 9200 9201 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9202 9203 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9204 9205 fpregs_mark_activate(); 9206 fpregs_unlock(); 9207 9208 ++vcpu->stat.fpu_reload; 9209 trace_kvm_fpu(0); 9210 } 9211 9212 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9213 { 9214 struct kvm_run *kvm_run = vcpu->run; 9215 int r; 9216 9217 vcpu_load(vcpu); 9218 kvm_sigset_activate(vcpu); 9219 kvm_load_guest_fpu(vcpu); 9220 9221 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9222 if (kvm_run->immediate_exit) { 9223 r = -EINTR; 9224 goto out; 9225 } 9226 kvm_vcpu_block(vcpu); 9227 kvm_apic_accept_events(vcpu); 9228 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9229 r = -EAGAIN; 9230 if (signal_pending(current)) { 9231 r = -EINTR; 9232 kvm_run->exit_reason = KVM_EXIT_INTR; 9233 ++vcpu->stat.signal_exits; 9234 } 9235 goto out; 9236 } 9237 9238 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9239 r = -EINVAL; 9240 goto out; 9241 } 9242 9243 if (kvm_run->kvm_dirty_regs) { 9244 r = sync_regs(vcpu); 9245 if (r != 0) 9246 goto out; 9247 } 9248 9249 /* re-sync apic's tpr */ 9250 if (!lapic_in_kernel(vcpu)) { 9251 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9252 r = -EINVAL; 9253 goto out; 9254 } 9255 } 9256 9257 if (unlikely(vcpu->arch.complete_userspace_io)) { 9258 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9259 vcpu->arch.complete_userspace_io = NULL; 9260 r = cui(vcpu); 9261 if (r <= 0) 9262 goto out; 9263 } else 9264 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9265 9266 if (kvm_run->immediate_exit) 9267 r = -EINTR; 9268 else 9269 r = vcpu_run(vcpu); 9270 9271 out: 9272 kvm_put_guest_fpu(vcpu); 9273 if (kvm_run->kvm_valid_regs) 9274 store_regs(vcpu); 9275 post_kvm_run_save(vcpu); 9276 kvm_sigset_deactivate(vcpu); 9277 9278 vcpu_put(vcpu); 9279 return r; 9280 } 9281 9282 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9283 { 9284 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9285 /* 9286 * We are here if userspace calls get_regs() in the middle of 9287 * instruction emulation. Registers state needs to be copied 9288 * back from emulation context to vcpu. Userspace shouldn't do 9289 * that usually, but some bad designed PV devices (vmware 9290 * backdoor interface) need this to work 9291 */ 9292 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9293 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9294 } 9295 regs->rax = kvm_rax_read(vcpu); 9296 regs->rbx = kvm_rbx_read(vcpu); 9297 regs->rcx = kvm_rcx_read(vcpu); 9298 regs->rdx = kvm_rdx_read(vcpu); 9299 regs->rsi = kvm_rsi_read(vcpu); 9300 regs->rdi = kvm_rdi_read(vcpu); 9301 regs->rsp = kvm_rsp_read(vcpu); 9302 regs->rbp = kvm_rbp_read(vcpu); 9303 #ifdef CONFIG_X86_64 9304 regs->r8 = kvm_r8_read(vcpu); 9305 regs->r9 = kvm_r9_read(vcpu); 9306 regs->r10 = kvm_r10_read(vcpu); 9307 regs->r11 = kvm_r11_read(vcpu); 9308 regs->r12 = kvm_r12_read(vcpu); 9309 regs->r13 = kvm_r13_read(vcpu); 9310 regs->r14 = kvm_r14_read(vcpu); 9311 regs->r15 = kvm_r15_read(vcpu); 9312 #endif 9313 9314 regs->rip = kvm_rip_read(vcpu); 9315 regs->rflags = kvm_get_rflags(vcpu); 9316 } 9317 9318 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9319 { 9320 vcpu_load(vcpu); 9321 __get_regs(vcpu, regs); 9322 vcpu_put(vcpu); 9323 return 0; 9324 } 9325 9326 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9327 { 9328 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9329 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9330 9331 kvm_rax_write(vcpu, regs->rax); 9332 kvm_rbx_write(vcpu, regs->rbx); 9333 kvm_rcx_write(vcpu, regs->rcx); 9334 kvm_rdx_write(vcpu, regs->rdx); 9335 kvm_rsi_write(vcpu, regs->rsi); 9336 kvm_rdi_write(vcpu, regs->rdi); 9337 kvm_rsp_write(vcpu, regs->rsp); 9338 kvm_rbp_write(vcpu, regs->rbp); 9339 #ifdef CONFIG_X86_64 9340 kvm_r8_write(vcpu, regs->r8); 9341 kvm_r9_write(vcpu, regs->r9); 9342 kvm_r10_write(vcpu, regs->r10); 9343 kvm_r11_write(vcpu, regs->r11); 9344 kvm_r12_write(vcpu, regs->r12); 9345 kvm_r13_write(vcpu, regs->r13); 9346 kvm_r14_write(vcpu, regs->r14); 9347 kvm_r15_write(vcpu, regs->r15); 9348 #endif 9349 9350 kvm_rip_write(vcpu, regs->rip); 9351 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9352 9353 vcpu->arch.exception.pending = false; 9354 9355 kvm_make_request(KVM_REQ_EVENT, vcpu); 9356 } 9357 9358 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9359 { 9360 vcpu_load(vcpu); 9361 __set_regs(vcpu, regs); 9362 vcpu_put(vcpu); 9363 return 0; 9364 } 9365 9366 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9367 { 9368 struct kvm_segment cs; 9369 9370 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9371 *db = cs.db; 9372 *l = cs.l; 9373 } 9374 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9375 9376 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9377 { 9378 struct desc_ptr dt; 9379 9380 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9381 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9382 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9383 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9384 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9385 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9386 9387 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9388 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9389 9390 kvm_x86_ops.get_idt(vcpu, &dt); 9391 sregs->idt.limit = dt.size; 9392 sregs->idt.base = dt.address; 9393 kvm_x86_ops.get_gdt(vcpu, &dt); 9394 sregs->gdt.limit = dt.size; 9395 sregs->gdt.base = dt.address; 9396 9397 sregs->cr0 = kvm_read_cr0(vcpu); 9398 sregs->cr2 = vcpu->arch.cr2; 9399 sregs->cr3 = kvm_read_cr3(vcpu); 9400 sregs->cr4 = kvm_read_cr4(vcpu); 9401 sregs->cr8 = kvm_get_cr8(vcpu); 9402 sregs->efer = vcpu->arch.efer; 9403 sregs->apic_base = kvm_get_apic_base(vcpu); 9404 9405 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9406 9407 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9408 set_bit(vcpu->arch.interrupt.nr, 9409 (unsigned long *)sregs->interrupt_bitmap); 9410 } 9411 9412 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9413 struct kvm_sregs *sregs) 9414 { 9415 vcpu_load(vcpu); 9416 __get_sregs(vcpu, sregs); 9417 vcpu_put(vcpu); 9418 return 0; 9419 } 9420 9421 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9422 struct kvm_mp_state *mp_state) 9423 { 9424 vcpu_load(vcpu); 9425 if (kvm_mpx_supported()) 9426 kvm_load_guest_fpu(vcpu); 9427 9428 kvm_apic_accept_events(vcpu); 9429 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9430 vcpu->arch.pv.pv_unhalted) 9431 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9432 else 9433 mp_state->mp_state = vcpu->arch.mp_state; 9434 9435 if (kvm_mpx_supported()) 9436 kvm_put_guest_fpu(vcpu); 9437 vcpu_put(vcpu); 9438 return 0; 9439 } 9440 9441 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9442 struct kvm_mp_state *mp_state) 9443 { 9444 int ret = -EINVAL; 9445 9446 vcpu_load(vcpu); 9447 9448 if (!lapic_in_kernel(vcpu) && 9449 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9450 goto out; 9451 9452 /* 9453 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9454 * INIT state; latched init should be reported using 9455 * KVM_SET_VCPU_EVENTS, so reject it here. 9456 */ 9457 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9458 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9459 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9460 goto out; 9461 9462 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9463 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9464 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9465 } else 9466 vcpu->arch.mp_state = mp_state->mp_state; 9467 kvm_make_request(KVM_REQ_EVENT, vcpu); 9468 9469 ret = 0; 9470 out: 9471 vcpu_put(vcpu); 9472 return ret; 9473 } 9474 9475 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9476 int reason, bool has_error_code, u32 error_code) 9477 { 9478 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9479 int ret; 9480 9481 init_emulate_ctxt(vcpu); 9482 9483 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9484 has_error_code, error_code); 9485 if (ret) { 9486 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9487 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9488 vcpu->run->internal.ndata = 0; 9489 return 0; 9490 } 9491 9492 kvm_rip_write(vcpu, ctxt->eip); 9493 kvm_set_rflags(vcpu, ctxt->eflags); 9494 return 1; 9495 } 9496 EXPORT_SYMBOL_GPL(kvm_task_switch); 9497 9498 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9499 { 9500 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9501 /* 9502 * When EFER.LME and CR0.PG are set, the processor is in 9503 * 64-bit mode (though maybe in a 32-bit code segment). 9504 * CR4.PAE and EFER.LMA must be set. 9505 */ 9506 if (!(sregs->cr4 & X86_CR4_PAE) 9507 || !(sregs->efer & EFER_LMA)) 9508 return -EINVAL; 9509 } else { 9510 /* 9511 * Not in 64-bit mode: EFER.LMA is clear and the code 9512 * segment cannot be 64-bit. 9513 */ 9514 if (sregs->efer & EFER_LMA || sregs->cs.l) 9515 return -EINVAL; 9516 } 9517 9518 return kvm_valid_cr4(vcpu, sregs->cr4); 9519 } 9520 9521 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9522 { 9523 struct msr_data apic_base_msr; 9524 int mmu_reset_needed = 0; 9525 int cpuid_update_needed = 0; 9526 int pending_vec, max_bits, idx; 9527 struct desc_ptr dt; 9528 int ret = -EINVAL; 9529 9530 if (kvm_valid_sregs(vcpu, sregs)) 9531 goto out; 9532 9533 apic_base_msr.data = sregs->apic_base; 9534 apic_base_msr.host_initiated = true; 9535 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9536 goto out; 9537 9538 dt.size = sregs->idt.limit; 9539 dt.address = sregs->idt.base; 9540 kvm_x86_ops.set_idt(vcpu, &dt); 9541 dt.size = sregs->gdt.limit; 9542 dt.address = sregs->gdt.base; 9543 kvm_x86_ops.set_gdt(vcpu, &dt); 9544 9545 vcpu->arch.cr2 = sregs->cr2; 9546 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9547 vcpu->arch.cr3 = sregs->cr3; 9548 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9549 9550 kvm_set_cr8(vcpu, sregs->cr8); 9551 9552 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9553 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9554 9555 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9556 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9557 vcpu->arch.cr0 = sregs->cr0; 9558 9559 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9560 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9561 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9562 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9563 if (cpuid_update_needed) 9564 kvm_update_cpuid_runtime(vcpu); 9565 9566 idx = srcu_read_lock(&vcpu->kvm->srcu); 9567 if (is_pae_paging(vcpu)) { 9568 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9569 mmu_reset_needed = 1; 9570 } 9571 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9572 9573 if (mmu_reset_needed) 9574 kvm_mmu_reset_context(vcpu); 9575 9576 max_bits = KVM_NR_INTERRUPTS; 9577 pending_vec = find_first_bit( 9578 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9579 if (pending_vec < max_bits) { 9580 kvm_queue_interrupt(vcpu, pending_vec, false); 9581 pr_debug("Set back pending irq %d\n", pending_vec); 9582 } 9583 9584 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9585 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9586 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9587 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9588 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9589 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9590 9591 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9592 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9593 9594 update_cr8_intercept(vcpu); 9595 9596 /* Older userspace won't unhalt the vcpu on reset. */ 9597 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9598 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9599 !is_protmode(vcpu)) 9600 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9601 9602 kvm_make_request(KVM_REQ_EVENT, vcpu); 9603 9604 ret = 0; 9605 out: 9606 return ret; 9607 } 9608 9609 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9610 struct kvm_sregs *sregs) 9611 { 9612 int ret; 9613 9614 vcpu_load(vcpu); 9615 ret = __set_sregs(vcpu, sregs); 9616 vcpu_put(vcpu); 9617 return ret; 9618 } 9619 9620 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9621 struct kvm_guest_debug *dbg) 9622 { 9623 unsigned long rflags; 9624 int i, r; 9625 9626 vcpu_load(vcpu); 9627 9628 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9629 r = -EBUSY; 9630 if (vcpu->arch.exception.pending) 9631 goto out; 9632 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9633 kvm_queue_exception(vcpu, DB_VECTOR); 9634 else 9635 kvm_queue_exception(vcpu, BP_VECTOR); 9636 } 9637 9638 /* 9639 * Read rflags as long as potentially injected trace flags are still 9640 * filtered out. 9641 */ 9642 rflags = kvm_get_rflags(vcpu); 9643 9644 vcpu->guest_debug = dbg->control; 9645 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9646 vcpu->guest_debug = 0; 9647 9648 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9649 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9650 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9651 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9652 } else { 9653 for (i = 0; i < KVM_NR_DB_REGS; i++) 9654 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9655 } 9656 kvm_update_dr7(vcpu); 9657 9658 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9659 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9660 get_segment_base(vcpu, VCPU_SREG_CS); 9661 9662 /* 9663 * Trigger an rflags update that will inject or remove the trace 9664 * flags. 9665 */ 9666 kvm_set_rflags(vcpu, rflags); 9667 9668 kvm_x86_ops.update_exception_bitmap(vcpu); 9669 9670 r = 0; 9671 9672 out: 9673 vcpu_put(vcpu); 9674 return r; 9675 } 9676 9677 /* 9678 * Translate a guest virtual address to a guest physical address. 9679 */ 9680 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9681 struct kvm_translation *tr) 9682 { 9683 unsigned long vaddr = tr->linear_address; 9684 gpa_t gpa; 9685 int idx; 9686 9687 vcpu_load(vcpu); 9688 9689 idx = srcu_read_lock(&vcpu->kvm->srcu); 9690 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9691 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9692 tr->physical_address = gpa; 9693 tr->valid = gpa != UNMAPPED_GVA; 9694 tr->writeable = 1; 9695 tr->usermode = 0; 9696 9697 vcpu_put(vcpu); 9698 return 0; 9699 } 9700 9701 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9702 { 9703 struct fxregs_state *fxsave; 9704 9705 vcpu_load(vcpu); 9706 9707 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9708 memcpy(fpu->fpr, fxsave->st_space, 128); 9709 fpu->fcw = fxsave->cwd; 9710 fpu->fsw = fxsave->swd; 9711 fpu->ftwx = fxsave->twd; 9712 fpu->last_opcode = fxsave->fop; 9713 fpu->last_ip = fxsave->rip; 9714 fpu->last_dp = fxsave->rdp; 9715 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9716 9717 vcpu_put(vcpu); 9718 return 0; 9719 } 9720 9721 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9722 { 9723 struct fxregs_state *fxsave; 9724 9725 vcpu_load(vcpu); 9726 9727 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9728 9729 memcpy(fxsave->st_space, fpu->fpr, 128); 9730 fxsave->cwd = fpu->fcw; 9731 fxsave->swd = fpu->fsw; 9732 fxsave->twd = fpu->ftwx; 9733 fxsave->fop = fpu->last_opcode; 9734 fxsave->rip = fpu->last_ip; 9735 fxsave->rdp = fpu->last_dp; 9736 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9737 9738 vcpu_put(vcpu); 9739 return 0; 9740 } 9741 9742 static void store_regs(struct kvm_vcpu *vcpu) 9743 { 9744 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9745 9746 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9747 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9748 9749 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9750 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9751 9752 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9753 kvm_vcpu_ioctl_x86_get_vcpu_events( 9754 vcpu, &vcpu->run->s.regs.events); 9755 } 9756 9757 static int sync_regs(struct kvm_vcpu *vcpu) 9758 { 9759 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9760 return -EINVAL; 9761 9762 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9763 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9764 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9765 } 9766 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9767 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9768 return -EINVAL; 9769 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9770 } 9771 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9772 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9773 vcpu, &vcpu->run->s.regs.events)) 9774 return -EINVAL; 9775 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9776 } 9777 9778 return 0; 9779 } 9780 9781 static void fx_init(struct kvm_vcpu *vcpu) 9782 { 9783 fpstate_init(&vcpu->arch.guest_fpu->state); 9784 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9785 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9786 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9787 9788 /* 9789 * Ensure guest xcr0 is valid for loading 9790 */ 9791 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9792 9793 vcpu->arch.cr0 |= X86_CR0_ET; 9794 } 9795 9796 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9797 { 9798 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9799 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9800 "guest TSC will not be reliable\n"); 9801 9802 return 0; 9803 } 9804 9805 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9806 { 9807 struct page *page; 9808 int r; 9809 9810 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9811 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9812 else 9813 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9814 9815 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9816 9817 r = kvm_mmu_create(vcpu); 9818 if (r < 0) 9819 return r; 9820 9821 if (irqchip_in_kernel(vcpu->kvm)) { 9822 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9823 if (r < 0) 9824 goto fail_mmu_destroy; 9825 if (kvm_apicv_activated(vcpu->kvm)) 9826 vcpu->arch.apicv_active = true; 9827 } else 9828 static_key_slow_inc(&kvm_no_apic_vcpu); 9829 9830 r = -ENOMEM; 9831 9832 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9833 if (!page) 9834 goto fail_free_lapic; 9835 vcpu->arch.pio_data = page_address(page); 9836 9837 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9838 GFP_KERNEL_ACCOUNT); 9839 if (!vcpu->arch.mce_banks) 9840 goto fail_free_pio_data; 9841 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9842 9843 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9844 GFP_KERNEL_ACCOUNT)) 9845 goto fail_free_mce_banks; 9846 9847 if (!alloc_emulate_ctxt(vcpu)) 9848 goto free_wbinvd_dirty_mask; 9849 9850 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9851 GFP_KERNEL_ACCOUNT); 9852 if (!vcpu->arch.user_fpu) { 9853 pr_err("kvm: failed to allocate userspace's fpu\n"); 9854 goto free_emulate_ctxt; 9855 } 9856 9857 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9858 GFP_KERNEL_ACCOUNT); 9859 if (!vcpu->arch.guest_fpu) { 9860 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9861 goto free_user_fpu; 9862 } 9863 fx_init(vcpu); 9864 9865 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9866 9867 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9868 9869 kvm_async_pf_hash_reset(vcpu); 9870 kvm_pmu_init(vcpu); 9871 9872 vcpu->arch.pending_external_vector = -1; 9873 vcpu->arch.preempted_in_kernel = false; 9874 9875 kvm_hv_vcpu_init(vcpu); 9876 9877 r = kvm_x86_ops.vcpu_create(vcpu); 9878 if (r) 9879 goto free_guest_fpu; 9880 9881 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9882 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9883 kvm_vcpu_mtrr_init(vcpu); 9884 vcpu_load(vcpu); 9885 kvm_vcpu_reset(vcpu, false); 9886 kvm_init_mmu(vcpu, false); 9887 vcpu_put(vcpu); 9888 return 0; 9889 9890 free_guest_fpu: 9891 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9892 free_user_fpu: 9893 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9894 free_emulate_ctxt: 9895 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9896 free_wbinvd_dirty_mask: 9897 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9898 fail_free_mce_banks: 9899 kfree(vcpu->arch.mce_banks); 9900 fail_free_pio_data: 9901 free_page((unsigned long)vcpu->arch.pio_data); 9902 fail_free_lapic: 9903 kvm_free_lapic(vcpu); 9904 fail_mmu_destroy: 9905 kvm_mmu_destroy(vcpu); 9906 return r; 9907 } 9908 9909 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9910 { 9911 struct kvm *kvm = vcpu->kvm; 9912 9913 kvm_hv_vcpu_postcreate(vcpu); 9914 9915 if (mutex_lock_killable(&vcpu->mutex)) 9916 return; 9917 vcpu_load(vcpu); 9918 kvm_synchronize_tsc(vcpu, 0); 9919 vcpu_put(vcpu); 9920 9921 /* poll control enabled by default */ 9922 vcpu->arch.msr_kvm_poll_control = 1; 9923 9924 mutex_unlock(&vcpu->mutex); 9925 9926 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9927 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9928 KVMCLOCK_SYNC_PERIOD); 9929 } 9930 9931 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9932 { 9933 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9934 int idx; 9935 9936 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9937 9938 kvmclock_reset(vcpu); 9939 9940 kvm_x86_ops.vcpu_free(vcpu); 9941 9942 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9943 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9944 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9945 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9946 9947 kvm_hv_vcpu_uninit(vcpu); 9948 kvm_pmu_destroy(vcpu); 9949 kfree(vcpu->arch.mce_banks); 9950 kvm_free_lapic(vcpu); 9951 idx = srcu_read_lock(&vcpu->kvm->srcu); 9952 kvm_mmu_destroy(vcpu); 9953 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9954 free_page((unsigned long)vcpu->arch.pio_data); 9955 kvfree(vcpu->arch.cpuid_entries); 9956 if (!lapic_in_kernel(vcpu)) 9957 static_key_slow_dec(&kvm_no_apic_vcpu); 9958 } 9959 9960 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9961 { 9962 kvm_lapic_reset(vcpu, init_event); 9963 9964 vcpu->arch.hflags = 0; 9965 9966 vcpu->arch.smi_pending = 0; 9967 vcpu->arch.smi_count = 0; 9968 atomic_set(&vcpu->arch.nmi_queued, 0); 9969 vcpu->arch.nmi_pending = 0; 9970 vcpu->arch.nmi_injected = false; 9971 kvm_clear_interrupt_queue(vcpu); 9972 kvm_clear_exception_queue(vcpu); 9973 9974 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9975 kvm_update_dr0123(vcpu); 9976 vcpu->arch.dr6 = DR6_INIT; 9977 vcpu->arch.dr7 = DR7_FIXED_1; 9978 kvm_update_dr7(vcpu); 9979 9980 vcpu->arch.cr2 = 0; 9981 9982 kvm_make_request(KVM_REQ_EVENT, vcpu); 9983 vcpu->arch.apf.msr_en_val = 0; 9984 vcpu->arch.apf.msr_int_val = 0; 9985 vcpu->arch.st.msr_val = 0; 9986 9987 kvmclock_reset(vcpu); 9988 9989 kvm_clear_async_pf_completion_queue(vcpu); 9990 kvm_async_pf_hash_reset(vcpu); 9991 vcpu->arch.apf.halted = false; 9992 9993 if (kvm_mpx_supported()) { 9994 void *mpx_state_buffer; 9995 9996 /* 9997 * To avoid have the INIT path from kvm_apic_has_events() that be 9998 * called with loaded FPU and does not let userspace fix the state. 9999 */ 10000 if (init_event) 10001 kvm_put_guest_fpu(vcpu); 10002 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10003 XFEATURE_BNDREGS); 10004 if (mpx_state_buffer) 10005 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10006 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10007 XFEATURE_BNDCSR); 10008 if (mpx_state_buffer) 10009 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10010 if (init_event) 10011 kvm_load_guest_fpu(vcpu); 10012 } 10013 10014 if (!init_event) { 10015 kvm_pmu_reset(vcpu); 10016 vcpu->arch.smbase = 0x30000; 10017 10018 vcpu->arch.msr_misc_features_enables = 0; 10019 10020 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10021 } 10022 10023 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10024 vcpu->arch.regs_avail = ~0; 10025 vcpu->arch.regs_dirty = ~0; 10026 10027 vcpu->arch.ia32_xss = 0; 10028 10029 kvm_x86_ops.vcpu_reset(vcpu, init_event); 10030 } 10031 10032 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10033 { 10034 struct kvm_segment cs; 10035 10036 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10037 cs.selector = vector << 8; 10038 cs.base = vector << 12; 10039 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10040 kvm_rip_write(vcpu, 0); 10041 } 10042 10043 int kvm_arch_hardware_enable(void) 10044 { 10045 struct kvm *kvm; 10046 struct kvm_vcpu *vcpu; 10047 int i; 10048 int ret; 10049 u64 local_tsc; 10050 u64 max_tsc = 0; 10051 bool stable, backwards_tsc = false; 10052 10053 kvm_user_return_msr_cpu_online(); 10054 ret = kvm_x86_ops.hardware_enable(); 10055 if (ret != 0) 10056 return ret; 10057 10058 local_tsc = rdtsc(); 10059 stable = !kvm_check_tsc_unstable(); 10060 list_for_each_entry(kvm, &vm_list, vm_list) { 10061 kvm_for_each_vcpu(i, vcpu, kvm) { 10062 if (!stable && vcpu->cpu == smp_processor_id()) 10063 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10064 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10065 backwards_tsc = true; 10066 if (vcpu->arch.last_host_tsc > max_tsc) 10067 max_tsc = vcpu->arch.last_host_tsc; 10068 } 10069 } 10070 } 10071 10072 /* 10073 * Sometimes, even reliable TSCs go backwards. This happens on 10074 * platforms that reset TSC during suspend or hibernate actions, but 10075 * maintain synchronization. We must compensate. Fortunately, we can 10076 * detect that condition here, which happens early in CPU bringup, 10077 * before any KVM threads can be running. Unfortunately, we can't 10078 * bring the TSCs fully up to date with real time, as we aren't yet far 10079 * enough into CPU bringup that we know how much real time has actually 10080 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10081 * variables that haven't been updated yet. 10082 * 10083 * So we simply find the maximum observed TSC above, then record the 10084 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10085 * the adjustment will be applied. Note that we accumulate 10086 * adjustments, in case multiple suspend cycles happen before some VCPU 10087 * gets a chance to run again. In the event that no KVM threads get a 10088 * chance to run, we will miss the entire elapsed period, as we'll have 10089 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10090 * loose cycle time. This isn't too big a deal, since the loss will be 10091 * uniform across all VCPUs (not to mention the scenario is extremely 10092 * unlikely). It is possible that a second hibernate recovery happens 10093 * much faster than a first, causing the observed TSC here to be 10094 * smaller; this would require additional padding adjustment, which is 10095 * why we set last_host_tsc to the local tsc observed here. 10096 * 10097 * N.B. - this code below runs only on platforms with reliable TSC, 10098 * as that is the only way backwards_tsc is set above. Also note 10099 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10100 * have the same delta_cyc adjustment applied if backwards_tsc 10101 * is detected. Note further, this adjustment is only done once, 10102 * as we reset last_host_tsc on all VCPUs to stop this from being 10103 * called multiple times (one for each physical CPU bringup). 10104 * 10105 * Platforms with unreliable TSCs don't have to deal with this, they 10106 * will be compensated by the logic in vcpu_load, which sets the TSC to 10107 * catchup mode. This will catchup all VCPUs to real time, but cannot 10108 * guarantee that they stay in perfect synchronization. 10109 */ 10110 if (backwards_tsc) { 10111 u64 delta_cyc = max_tsc - local_tsc; 10112 list_for_each_entry(kvm, &vm_list, vm_list) { 10113 kvm->arch.backwards_tsc_observed = true; 10114 kvm_for_each_vcpu(i, vcpu, kvm) { 10115 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10116 vcpu->arch.last_host_tsc = local_tsc; 10117 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10118 } 10119 10120 /* 10121 * We have to disable TSC offset matching.. if you were 10122 * booting a VM while issuing an S4 host suspend.... 10123 * you may have some problem. Solving this issue is 10124 * left as an exercise to the reader. 10125 */ 10126 kvm->arch.last_tsc_nsec = 0; 10127 kvm->arch.last_tsc_write = 0; 10128 } 10129 10130 } 10131 return 0; 10132 } 10133 10134 void kvm_arch_hardware_disable(void) 10135 { 10136 kvm_x86_ops.hardware_disable(); 10137 drop_user_return_notifiers(); 10138 } 10139 10140 int kvm_arch_hardware_setup(void *opaque) 10141 { 10142 struct kvm_x86_init_ops *ops = opaque; 10143 int r; 10144 10145 rdmsrl_safe(MSR_EFER, &host_efer); 10146 10147 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10148 rdmsrl(MSR_IA32_XSS, host_xss); 10149 10150 r = ops->hardware_setup(); 10151 if (r != 0) 10152 return r; 10153 10154 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10155 10156 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10157 supported_xss = 0; 10158 10159 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10160 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10161 #undef __kvm_cpu_cap_has 10162 10163 if (kvm_has_tsc_control) { 10164 /* 10165 * Make sure the user can only configure tsc_khz values that 10166 * fit into a signed integer. 10167 * A min value is not calculated because it will always 10168 * be 1 on all machines. 10169 */ 10170 u64 max = min(0x7fffffffULL, 10171 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10172 kvm_max_guest_tsc_khz = max; 10173 10174 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10175 } 10176 10177 kvm_init_msr_list(); 10178 return 0; 10179 } 10180 10181 void kvm_arch_hardware_unsetup(void) 10182 { 10183 kvm_x86_ops.hardware_unsetup(); 10184 } 10185 10186 int kvm_arch_check_processor_compat(void *opaque) 10187 { 10188 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10189 struct kvm_x86_init_ops *ops = opaque; 10190 10191 WARN_ON(!irqs_disabled()); 10192 10193 if (__cr4_reserved_bits(cpu_has, c) != 10194 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10195 return -EIO; 10196 10197 return ops->check_processor_compatibility(); 10198 } 10199 10200 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10201 { 10202 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10203 } 10204 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10205 10206 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10207 { 10208 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10209 } 10210 10211 struct static_key kvm_no_apic_vcpu __read_mostly; 10212 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 10213 10214 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10215 { 10216 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10217 10218 vcpu->arch.l1tf_flush_l1d = true; 10219 if (pmu->version && unlikely(pmu->event_count)) { 10220 pmu->need_cleanup = true; 10221 kvm_make_request(KVM_REQ_PMU, vcpu); 10222 } 10223 kvm_x86_ops.sched_in(vcpu, cpu); 10224 } 10225 10226 void kvm_arch_free_vm(struct kvm *kvm) 10227 { 10228 kfree(kvm->arch.hyperv.hv_pa_pg); 10229 vfree(kvm); 10230 } 10231 10232 10233 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10234 { 10235 if (type) 10236 return -EINVAL; 10237 10238 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10239 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10240 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10241 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10242 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10243 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10244 10245 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10246 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10247 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10248 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10249 &kvm->arch.irq_sources_bitmap); 10250 10251 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10252 mutex_init(&kvm->arch.apic_map_lock); 10253 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10254 10255 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10256 pvclock_update_vm_gtod_copy(kvm); 10257 10258 kvm->arch.guest_can_read_msr_platform_info = true; 10259 10260 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10261 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10262 10263 kvm_hv_init_vm(kvm); 10264 kvm_page_track_init(kvm); 10265 kvm_mmu_init_vm(kvm); 10266 10267 return kvm_x86_ops.vm_init(kvm); 10268 } 10269 10270 int kvm_arch_post_init_vm(struct kvm *kvm) 10271 { 10272 return kvm_mmu_post_init_vm(kvm); 10273 } 10274 10275 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10276 { 10277 vcpu_load(vcpu); 10278 kvm_mmu_unload(vcpu); 10279 vcpu_put(vcpu); 10280 } 10281 10282 static void kvm_free_vcpus(struct kvm *kvm) 10283 { 10284 unsigned int i; 10285 struct kvm_vcpu *vcpu; 10286 10287 /* 10288 * Unpin any mmu pages first. 10289 */ 10290 kvm_for_each_vcpu(i, vcpu, kvm) { 10291 kvm_clear_async_pf_completion_queue(vcpu); 10292 kvm_unload_vcpu_mmu(vcpu); 10293 } 10294 kvm_for_each_vcpu(i, vcpu, kvm) 10295 kvm_vcpu_destroy(vcpu); 10296 10297 mutex_lock(&kvm->lock); 10298 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10299 kvm->vcpus[i] = NULL; 10300 10301 atomic_set(&kvm->online_vcpus, 0); 10302 mutex_unlock(&kvm->lock); 10303 } 10304 10305 void kvm_arch_sync_events(struct kvm *kvm) 10306 { 10307 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10308 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10309 kvm_free_pit(kvm); 10310 } 10311 10312 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 10313 { 10314 int i, r; 10315 unsigned long hva, old_npages; 10316 struct kvm_memslots *slots = kvm_memslots(kvm); 10317 struct kvm_memory_slot *slot; 10318 10319 /* Called with kvm->slots_lock held. */ 10320 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10321 return -EINVAL; 10322 10323 slot = id_to_memslot(slots, id); 10324 if (size) { 10325 if (slot && slot->npages) 10326 return -EEXIST; 10327 10328 /* 10329 * MAP_SHARED to prevent internal slot pages from being moved 10330 * by fork()/COW. 10331 */ 10332 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10333 MAP_SHARED | MAP_ANONYMOUS, 0); 10334 if (IS_ERR((void *)hva)) 10335 return PTR_ERR((void *)hva); 10336 } else { 10337 if (!slot || !slot->npages) 10338 return 0; 10339 10340 old_npages = slot->npages; 10341 hva = 0; 10342 } 10343 10344 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10345 struct kvm_userspace_memory_region m; 10346 10347 m.slot = id | (i << 16); 10348 m.flags = 0; 10349 m.guest_phys_addr = gpa; 10350 m.userspace_addr = hva; 10351 m.memory_size = size; 10352 r = __kvm_set_memory_region(kvm, &m); 10353 if (r < 0) 10354 return r; 10355 } 10356 10357 if (!size) 10358 vm_munmap(hva, old_npages * PAGE_SIZE); 10359 10360 return 0; 10361 } 10362 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10363 10364 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10365 { 10366 kvm_mmu_pre_destroy_vm(kvm); 10367 } 10368 10369 void kvm_arch_destroy_vm(struct kvm *kvm) 10370 { 10371 u32 i; 10372 10373 if (current->mm == kvm->mm) { 10374 /* 10375 * Free memory regions allocated on behalf of userspace, 10376 * unless the the memory map has changed due to process exit 10377 * or fd copying. 10378 */ 10379 mutex_lock(&kvm->slots_lock); 10380 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10381 0, 0); 10382 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10383 0, 0); 10384 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10385 mutex_unlock(&kvm->slots_lock); 10386 } 10387 if (kvm_x86_ops.vm_destroy) 10388 kvm_x86_ops.vm_destroy(kvm); 10389 for (i = 0; i < kvm->arch.msr_filter.count; i++) 10390 kfree(kvm->arch.msr_filter.ranges[i].bitmap); 10391 kvm_pic_destroy(kvm); 10392 kvm_ioapic_destroy(kvm); 10393 kvm_free_vcpus(kvm); 10394 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10395 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10396 kvm_mmu_uninit_vm(kvm); 10397 kvm_page_track_cleanup(kvm); 10398 kvm_hv_destroy_vm(kvm); 10399 } 10400 10401 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10402 { 10403 int i; 10404 10405 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10406 kvfree(slot->arch.rmap[i]); 10407 slot->arch.rmap[i] = NULL; 10408 10409 if (i == 0) 10410 continue; 10411 10412 kvfree(slot->arch.lpage_info[i - 1]); 10413 slot->arch.lpage_info[i - 1] = NULL; 10414 } 10415 10416 kvm_page_track_free_memslot(slot); 10417 } 10418 10419 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10420 unsigned long npages) 10421 { 10422 int i; 10423 10424 /* 10425 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10426 * old arrays will be freed by __kvm_set_memory_region() if installing 10427 * the new memslot is successful. 10428 */ 10429 memset(&slot->arch, 0, sizeof(slot->arch)); 10430 10431 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10432 struct kvm_lpage_info *linfo; 10433 unsigned long ugfn; 10434 int lpages; 10435 int level = i + 1; 10436 10437 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10438 slot->base_gfn, level) + 1; 10439 10440 slot->arch.rmap[i] = 10441 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10442 GFP_KERNEL_ACCOUNT); 10443 if (!slot->arch.rmap[i]) 10444 goto out_free; 10445 if (i == 0) 10446 continue; 10447 10448 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10449 if (!linfo) 10450 goto out_free; 10451 10452 slot->arch.lpage_info[i - 1] = linfo; 10453 10454 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10455 linfo[0].disallow_lpage = 1; 10456 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10457 linfo[lpages - 1].disallow_lpage = 1; 10458 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10459 /* 10460 * If the gfn and userspace address are not aligned wrt each 10461 * other, disable large page support for this slot. 10462 */ 10463 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10464 unsigned long j; 10465 10466 for (j = 0; j < lpages; ++j) 10467 linfo[j].disallow_lpage = 1; 10468 } 10469 } 10470 10471 if (kvm_page_track_create_memslot(slot, npages)) 10472 goto out_free; 10473 10474 return 0; 10475 10476 out_free: 10477 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10478 kvfree(slot->arch.rmap[i]); 10479 slot->arch.rmap[i] = NULL; 10480 if (i == 0) 10481 continue; 10482 10483 kvfree(slot->arch.lpage_info[i - 1]); 10484 slot->arch.lpage_info[i - 1] = NULL; 10485 } 10486 return -ENOMEM; 10487 } 10488 10489 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10490 { 10491 struct kvm_vcpu *vcpu; 10492 int i; 10493 10494 /* 10495 * memslots->generation has been incremented. 10496 * mmio generation may have reached its maximum value. 10497 */ 10498 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10499 10500 /* Force re-initialization of steal_time cache */ 10501 kvm_for_each_vcpu(i, vcpu, kvm) 10502 kvm_vcpu_kick(vcpu); 10503 } 10504 10505 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10506 struct kvm_memory_slot *memslot, 10507 const struct kvm_userspace_memory_region *mem, 10508 enum kvm_mr_change change) 10509 { 10510 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10511 return kvm_alloc_memslot_metadata(memslot, 10512 mem->memory_size >> PAGE_SHIFT); 10513 return 0; 10514 } 10515 10516 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10517 struct kvm_memory_slot *old, 10518 struct kvm_memory_slot *new, 10519 enum kvm_mr_change change) 10520 { 10521 /* 10522 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10523 * See comments below. 10524 */ 10525 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10526 return; 10527 10528 /* 10529 * Dirty logging tracks sptes in 4k granularity, meaning that large 10530 * sptes have to be split. If live migration is successful, the guest 10531 * in the source machine will be destroyed and large sptes will be 10532 * created in the destination. However, if the guest continues to run 10533 * in the source machine (for example if live migration fails), small 10534 * sptes will remain around and cause bad performance. 10535 * 10536 * Scan sptes if dirty logging has been stopped, dropping those 10537 * which can be collapsed into a single large-page spte. Later 10538 * page faults will create the large-page sptes. 10539 * 10540 * There is no need to do this in any of the following cases: 10541 * CREATE: No dirty mappings will already exist. 10542 * MOVE/DELETE: The old mappings will already have been cleaned up by 10543 * kvm_arch_flush_shadow_memslot() 10544 */ 10545 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10546 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10547 kvm_mmu_zap_collapsible_sptes(kvm, new); 10548 10549 /* 10550 * Enable or disable dirty logging for the slot. 10551 * 10552 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10553 * slot have been zapped so no dirty logging updates are needed for 10554 * the old slot. 10555 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10556 * any mappings that might be created in it will consume the 10557 * properties of the new slot and do not need to be updated here. 10558 * 10559 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10560 * called to enable/disable dirty logging. 10561 * 10562 * When disabling dirty logging with PML enabled, the D-bit is set 10563 * for sptes in the slot in order to prevent unnecessary GPA 10564 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10565 * This guarantees leaving PML enabled for the guest's lifetime 10566 * won't have any additional overhead from PML when the guest is 10567 * running with dirty logging disabled. 10568 * 10569 * When enabling dirty logging, large sptes are write-protected 10570 * so they can be split on first write. New large sptes cannot 10571 * be created for this slot until the end of the logging. 10572 * See the comments in fast_page_fault(). 10573 * For small sptes, nothing is done if the dirty log is in the 10574 * initial-all-set state. Otherwise, depending on whether pml 10575 * is enabled the D-bit or the W-bit will be cleared. 10576 */ 10577 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10578 if (kvm_x86_ops.slot_enable_log_dirty) { 10579 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10580 } else { 10581 int level = 10582 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10583 PG_LEVEL_2M : PG_LEVEL_4K; 10584 10585 /* 10586 * If we're with initial-all-set, we don't need 10587 * to write protect any small page because 10588 * they're reported as dirty already. However 10589 * we still need to write-protect huge pages 10590 * so that the page split can happen lazily on 10591 * the first write to the huge page. 10592 */ 10593 kvm_mmu_slot_remove_write_access(kvm, new, level); 10594 } 10595 } else { 10596 if (kvm_x86_ops.slot_disable_log_dirty) 10597 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10598 } 10599 } 10600 10601 void kvm_arch_commit_memory_region(struct kvm *kvm, 10602 const struct kvm_userspace_memory_region *mem, 10603 struct kvm_memory_slot *old, 10604 const struct kvm_memory_slot *new, 10605 enum kvm_mr_change change) 10606 { 10607 if (!kvm->arch.n_requested_mmu_pages) 10608 kvm_mmu_change_mmu_pages(kvm, 10609 kvm_mmu_calculate_default_mmu_pages(kvm)); 10610 10611 /* 10612 * FIXME: const-ify all uses of struct kvm_memory_slot. 10613 */ 10614 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10615 10616 /* Free the arrays associated with the old memslot. */ 10617 if (change == KVM_MR_MOVE) 10618 kvm_arch_free_memslot(kvm, old); 10619 } 10620 10621 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10622 { 10623 kvm_mmu_zap_all(kvm); 10624 } 10625 10626 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10627 struct kvm_memory_slot *slot) 10628 { 10629 kvm_page_track_flush_slot(kvm, slot); 10630 } 10631 10632 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10633 { 10634 return (is_guest_mode(vcpu) && 10635 kvm_x86_ops.guest_apic_has_interrupt && 10636 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10637 } 10638 10639 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10640 { 10641 if (!list_empty_careful(&vcpu->async_pf.done)) 10642 return true; 10643 10644 if (kvm_apic_has_events(vcpu)) 10645 return true; 10646 10647 if (vcpu->arch.pv.pv_unhalted) 10648 return true; 10649 10650 if (vcpu->arch.exception.pending) 10651 return true; 10652 10653 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10654 (vcpu->arch.nmi_pending && 10655 kvm_x86_ops.nmi_allowed(vcpu, false))) 10656 return true; 10657 10658 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10659 (vcpu->arch.smi_pending && 10660 kvm_x86_ops.smi_allowed(vcpu, false))) 10661 return true; 10662 10663 if (kvm_arch_interrupt_allowed(vcpu) && 10664 (kvm_cpu_has_interrupt(vcpu) || 10665 kvm_guest_apic_has_interrupt(vcpu))) 10666 return true; 10667 10668 if (kvm_hv_has_stimer_pending(vcpu)) 10669 return true; 10670 10671 if (is_guest_mode(vcpu) && 10672 kvm_x86_ops.nested_ops->hv_timer_pending && 10673 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10674 return true; 10675 10676 return false; 10677 } 10678 10679 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10680 { 10681 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10682 } 10683 10684 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10685 { 10686 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10687 return true; 10688 10689 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10690 kvm_test_request(KVM_REQ_SMI, vcpu) || 10691 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10692 return true; 10693 10694 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10695 return true; 10696 10697 return false; 10698 } 10699 10700 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10701 { 10702 return vcpu->arch.preempted_in_kernel; 10703 } 10704 10705 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10706 { 10707 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10708 } 10709 10710 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10711 { 10712 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10713 } 10714 10715 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10716 { 10717 if (is_64_bit_mode(vcpu)) 10718 return kvm_rip_read(vcpu); 10719 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10720 kvm_rip_read(vcpu)); 10721 } 10722 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10723 10724 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10725 { 10726 return kvm_get_linear_rip(vcpu) == linear_rip; 10727 } 10728 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10729 10730 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10731 { 10732 unsigned long rflags; 10733 10734 rflags = kvm_x86_ops.get_rflags(vcpu); 10735 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10736 rflags &= ~X86_EFLAGS_TF; 10737 return rflags; 10738 } 10739 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10740 10741 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10742 { 10743 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10744 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10745 rflags |= X86_EFLAGS_TF; 10746 kvm_x86_ops.set_rflags(vcpu, rflags); 10747 } 10748 10749 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10750 { 10751 __kvm_set_rflags(vcpu, rflags); 10752 kvm_make_request(KVM_REQ_EVENT, vcpu); 10753 } 10754 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10755 10756 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10757 { 10758 int r; 10759 10760 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10761 work->wakeup_all) 10762 return; 10763 10764 r = kvm_mmu_reload(vcpu); 10765 if (unlikely(r)) 10766 return; 10767 10768 if (!vcpu->arch.mmu->direct_map && 10769 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10770 return; 10771 10772 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10773 } 10774 10775 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10776 { 10777 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10778 10779 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10780 } 10781 10782 static inline u32 kvm_async_pf_next_probe(u32 key) 10783 { 10784 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10785 } 10786 10787 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10788 { 10789 u32 key = kvm_async_pf_hash_fn(gfn); 10790 10791 while (vcpu->arch.apf.gfns[key] != ~0) 10792 key = kvm_async_pf_next_probe(key); 10793 10794 vcpu->arch.apf.gfns[key] = gfn; 10795 } 10796 10797 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10798 { 10799 int i; 10800 u32 key = kvm_async_pf_hash_fn(gfn); 10801 10802 for (i = 0; i < ASYNC_PF_PER_VCPU && 10803 (vcpu->arch.apf.gfns[key] != gfn && 10804 vcpu->arch.apf.gfns[key] != ~0); i++) 10805 key = kvm_async_pf_next_probe(key); 10806 10807 return key; 10808 } 10809 10810 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10811 { 10812 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10813 } 10814 10815 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10816 { 10817 u32 i, j, k; 10818 10819 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10820 10821 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10822 return; 10823 10824 while (true) { 10825 vcpu->arch.apf.gfns[i] = ~0; 10826 do { 10827 j = kvm_async_pf_next_probe(j); 10828 if (vcpu->arch.apf.gfns[j] == ~0) 10829 return; 10830 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10831 /* 10832 * k lies cyclically in ]i,j] 10833 * | i.k.j | 10834 * |....j i.k.| or |.k..j i...| 10835 */ 10836 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10837 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10838 i = j; 10839 } 10840 } 10841 10842 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10843 { 10844 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10845 10846 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10847 sizeof(reason)); 10848 } 10849 10850 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10851 { 10852 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10853 10854 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10855 &token, offset, sizeof(token)); 10856 } 10857 10858 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10859 { 10860 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10861 u32 val; 10862 10863 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10864 &val, offset, sizeof(val))) 10865 return false; 10866 10867 return !val; 10868 } 10869 10870 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10871 { 10872 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10873 return false; 10874 10875 if (!kvm_pv_async_pf_enabled(vcpu) || 10876 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10877 return false; 10878 10879 return true; 10880 } 10881 10882 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10883 { 10884 if (unlikely(!lapic_in_kernel(vcpu) || 10885 kvm_event_needs_reinjection(vcpu) || 10886 vcpu->arch.exception.pending)) 10887 return false; 10888 10889 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10890 return false; 10891 10892 /* 10893 * If interrupts are off we cannot even use an artificial 10894 * halt state. 10895 */ 10896 return kvm_arch_interrupt_allowed(vcpu); 10897 } 10898 10899 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10900 struct kvm_async_pf *work) 10901 { 10902 struct x86_exception fault; 10903 10904 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10905 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10906 10907 if (kvm_can_deliver_async_pf(vcpu) && 10908 !apf_put_user_notpresent(vcpu)) { 10909 fault.vector = PF_VECTOR; 10910 fault.error_code_valid = true; 10911 fault.error_code = 0; 10912 fault.nested_page_fault = false; 10913 fault.address = work->arch.token; 10914 fault.async_page_fault = true; 10915 kvm_inject_page_fault(vcpu, &fault); 10916 return true; 10917 } else { 10918 /* 10919 * It is not possible to deliver a paravirtualized asynchronous 10920 * page fault, but putting the guest in an artificial halt state 10921 * can be beneficial nevertheless: if an interrupt arrives, we 10922 * can deliver it timely and perhaps the guest will schedule 10923 * another process. When the instruction that triggered a page 10924 * fault is retried, hopefully the page will be ready in the host. 10925 */ 10926 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10927 return false; 10928 } 10929 } 10930 10931 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10932 struct kvm_async_pf *work) 10933 { 10934 struct kvm_lapic_irq irq = { 10935 .delivery_mode = APIC_DM_FIXED, 10936 .vector = vcpu->arch.apf.vec 10937 }; 10938 10939 if (work->wakeup_all) 10940 work->arch.token = ~0; /* broadcast wakeup */ 10941 else 10942 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10943 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10944 10945 if ((work->wakeup_all || work->notpresent_injected) && 10946 kvm_pv_async_pf_enabled(vcpu) && 10947 !apf_put_user_ready(vcpu, work->arch.token)) { 10948 vcpu->arch.apf.pageready_pending = true; 10949 kvm_apic_set_irq(vcpu, &irq, NULL); 10950 } 10951 10952 vcpu->arch.apf.halted = false; 10953 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10954 } 10955 10956 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10957 { 10958 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10959 if (!vcpu->arch.apf.pageready_pending) 10960 kvm_vcpu_kick(vcpu); 10961 } 10962 10963 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 10964 { 10965 if (!kvm_pv_async_pf_enabled(vcpu)) 10966 return true; 10967 else 10968 return apf_pageready_slot_free(vcpu); 10969 } 10970 10971 void kvm_arch_start_assignment(struct kvm *kvm) 10972 { 10973 atomic_inc(&kvm->arch.assigned_device_count); 10974 } 10975 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10976 10977 void kvm_arch_end_assignment(struct kvm *kvm) 10978 { 10979 atomic_dec(&kvm->arch.assigned_device_count); 10980 } 10981 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10982 10983 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10984 { 10985 return atomic_read(&kvm->arch.assigned_device_count); 10986 } 10987 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10988 10989 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10990 { 10991 atomic_inc(&kvm->arch.noncoherent_dma_count); 10992 } 10993 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10994 10995 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10996 { 10997 atomic_dec(&kvm->arch.noncoherent_dma_count); 10998 } 10999 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11000 11001 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11002 { 11003 return atomic_read(&kvm->arch.noncoherent_dma_count); 11004 } 11005 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11006 11007 bool kvm_arch_has_irq_bypass(void) 11008 { 11009 return true; 11010 } 11011 11012 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11013 struct irq_bypass_producer *prod) 11014 { 11015 struct kvm_kernel_irqfd *irqfd = 11016 container_of(cons, struct kvm_kernel_irqfd, consumer); 11017 int ret; 11018 11019 irqfd->producer = prod; 11020 kvm_arch_start_assignment(irqfd->kvm); 11021 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 11022 prod->irq, irqfd->gsi, 1); 11023 11024 if (ret) 11025 kvm_arch_end_assignment(irqfd->kvm); 11026 11027 return ret; 11028 } 11029 11030 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11031 struct irq_bypass_producer *prod) 11032 { 11033 int ret; 11034 struct kvm_kernel_irqfd *irqfd = 11035 container_of(cons, struct kvm_kernel_irqfd, consumer); 11036 11037 WARN_ON(irqfd->producer != prod); 11038 irqfd->producer = NULL; 11039 11040 /* 11041 * When producer of consumer is unregistered, we change back to 11042 * remapped mode, so we can re-use the current implementation 11043 * when the irq is masked/disabled or the consumer side (KVM 11044 * int this case doesn't want to receive the interrupts. 11045 */ 11046 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11047 if (ret) 11048 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11049 " fails: %d\n", irqfd->consumer.token, ret); 11050 11051 kvm_arch_end_assignment(irqfd->kvm); 11052 } 11053 11054 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11055 uint32_t guest_irq, bool set) 11056 { 11057 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 11058 } 11059 11060 bool kvm_vector_hashing_enabled(void) 11061 { 11062 return vector_hashing; 11063 } 11064 11065 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11066 { 11067 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11068 } 11069 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11070 11071 11072 int kvm_spec_ctrl_test_value(u64 value) 11073 { 11074 /* 11075 * test that setting IA32_SPEC_CTRL to given value 11076 * is allowed by the host processor 11077 */ 11078 11079 u64 saved_value; 11080 unsigned long flags; 11081 int ret = 0; 11082 11083 local_irq_save(flags); 11084 11085 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11086 ret = 1; 11087 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11088 ret = 1; 11089 else 11090 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11091 11092 local_irq_restore(flags); 11093 11094 return ret; 11095 } 11096 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11097 11098 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11099 { 11100 struct x86_exception fault; 11101 u32 access = error_code & 11102 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11103 11104 if (!(error_code & PFERR_PRESENT_MASK) || 11105 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11106 /* 11107 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11108 * tables probably do not match the TLB. Just proceed 11109 * with the error code that the processor gave. 11110 */ 11111 fault.vector = PF_VECTOR; 11112 fault.error_code_valid = true; 11113 fault.error_code = error_code; 11114 fault.nested_page_fault = false; 11115 fault.address = gva; 11116 } 11117 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11118 } 11119 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11120 11121 /* 11122 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11123 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11124 * indicates whether exit to userspace is needed. 11125 */ 11126 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11127 struct x86_exception *e) 11128 { 11129 if (r == X86EMUL_PROPAGATE_FAULT) { 11130 kvm_inject_emulated_page_fault(vcpu, e); 11131 return 1; 11132 } 11133 11134 /* 11135 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11136 * while handling a VMX instruction KVM could've handled the request 11137 * correctly by exiting to userspace and performing I/O but there 11138 * doesn't seem to be a real use-case behind such requests, just return 11139 * KVM_EXIT_INTERNAL_ERROR for now. 11140 */ 11141 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11142 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11143 vcpu->run->internal.ndata = 0; 11144 11145 return 0; 11146 } 11147 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11148 11149 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11150 { 11151 bool pcid_enabled; 11152 struct x86_exception e; 11153 unsigned i; 11154 unsigned long roots_to_free = 0; 11155 struct { 11156 u64 pcid; 11157 u64 gla; 11158 } operand; 11159 int r; 11160 11161 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11162 if (r != X86EMUL_CONTINUE) 11163 return kvm_handle_memory_failure(vcpu, r, &e); 11164 11165 if (operand.pcid >> 12 != 0) { 11166 kvm_inject_gp(vcpu, 0); 11167 return 1; 11168 } 11169 11170 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11171 11172 switch (type) { 11173 case INVPCID_TYPE_INDIV_ADDR: 11174 if ((!pcid_enabled && (operand.pcid != 0)) || 11175 is_noncanonical_address(operand.gla, vcpu)) { 11176 kvm_inject_gp(vcpu, 0); 11177 return 1; 11178 } 11179 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11180 return kvm_skip_emulated_instruction(vcpu); 11181 11182 case INVPCID_TYPE_SINGLE_CTXT: 11183 if (!pcid_enabled && (operand.pcid != 0)) { 11184 kvm_inject_gp(vcpu, 0); 11185 return 1; 11186 } 11187 11188 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11189 kvm_mmu_sync_roots(vcpu); 11190 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11191 } 11192 11193 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11194 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11195 == operand.pcid) 11196 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11197 11198 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11199 /* 11200 * If neither the current cr3 nor any of the prev_roots use the 11201 * given PCID, then nothing needs to be done here because a 11202 * resync will happen anyway before switching to any other CR3. 11203 */ 11204 11205 return kvm_skip_emulated_instruction(vcpu); 11206 11207 case INVPCID_TYPE_ALL_NON_GLOBAL: 11208 /* 11209 * Currently, KVM doesn't mark global entries in the shadow 11210 * page tables, so a non-global flush just degenerates to a 11211 * global flush. If needed, we could optimize this later by 11212 * keeping track of global entries in shadow page tables. 11213 */ 11214 11215 fallthrough; 11216 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11217 kvm_mmu_unload(vcpu); 11218 return kvm_skip_emulated_instruction(vcpu); 11219 11220 default: 11221 BUG(); /* We have already checked above that type <= 3 */ 11222 } 11223 } 11224 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11225 11226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11228 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11229 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11230 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11231 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11232 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11233 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11234 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11235 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11236 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11237 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11238 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11248