1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "mmu.h" 22 #include "i8254.h" 23 #include "tss.h" 24 #include "kvm_cache_regs.h" 25 #include "x86.h" 26 #include "cpuid.h" 27 #include "pmu.h" 28 #include "hyperv.h" 29 #include "lapic.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/export.h> 37 #include <linux/moduleparam.h> 38 #include <linux/mman.h> 39 #include <linux/highmem.h> 40 #include <linux/iommu.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/cpufreq.h> 43 #include <linux/user-return-notifier.h> 44 #include <linux/srcu.h> 45 #include <linux/slab.h> 46 #include <linux/perf_event.h> 47 #include <linux/uaccess.h> 48 #include <linux/hash.h> 49 #include <linux/pci.h> 50 #include <linux/timekeeper_internal.h> 51 #include <linux/pvclock_gtod.h> 52 #include <linux/kvm_irqfd.h> 53 #include <linux/irqbypass.h> 54 #include <linux/sched/stat.h> 55 #include <linux/sched/isolation.h> 56 #include <linux/mem_encrypt.h> 57 58 #include <trace/events/kvm.h> 59 60 #include <asm/debugreg.h> 61 #include <asm/msr.h> 62 #include <asm/desc.h> 63 #include <asm/mce.h> 64 #include <linux/kernel_stat.h> 65 #include <asm/fpu/internal.h> /* Ugh! */ 66 #include <asm/pvclock.h> 67 #include <asm/div64.h> 68 #include <asm/irq_remapping.h> 69 #include <asm/mshyperv.h> 70 #include <asm/hypervisor.h> 71 #include <asm/intel_pt.h> 72 #include <asm/emulate_prefix.h> 73 #include <clocksource/hyperv_timer.h> 74 75 #define CREATE_TRACE_POINTS 76 #include "trace.h" 77 78 #define MAX_IO_MSRS 256 79 #define KVM_MAX_MCE_BANKS 32 80 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 81 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 82 83 #define emul_to_vcpu(ctxt) \ 84 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 85 86 /* EFER defaults: 87 * - enable syscall per default because its emulated by KVM 88 * - enable LME and LMA per default on 64 bit KVM 89 */ 90 #ifdef CONFIG_X86_64 91 static 92 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 93 #else 94 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 95 #endif 96 97 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 98 99 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ 100 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ 101 102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 103 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 104 105 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 106 static void process_nmi(struct kvm_vcpu *vcpu); 107 static void enter_smm(struct kvm_vcpu *vcpu); 108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 109 static void store_regs(struct kvm_vcpu *vcpu); 110 static int sync_regs(struct kvm_vcpu *vcpu); 111 112 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 113 EXPORT_SYMBOL_GPL(kvm_x86_ops); 114 115 static bool __read_mostly ignore_msrs = 0; 116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 117 118 static bool __read_mostly report_ignored_msrs = true; 119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 120 121 unsigned int min_timer_period_us = 200; 122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 123 124 static bool __read_mostly kvmclock_periodic_sync = true; 125 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 126 127 bool __read_mostly kvm_has_tsc_control; 128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 129 u32 __read_mostly kvm_max_guest_tsc_khz; 130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 131 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 133 u64 __read_mostly kvm_max_tsc_scaling_ratio; 134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 135 u64 __read_mostly kvm_default_tsc_scaling_ratio; 136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 137 138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 139 static u32 __read_mostly tsc_tolerance_ppm = 250; 140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 141 142 /* 143 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 144 * adaptive tuning starting from default advancment of 1000ns. '0' disables 145 * advancement entirely. Any other value is used as-is and disables adaptive 146 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 147 */ 148 static int __read_mostly lapic_timer_advance_ns = -1; 149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly vector_hashing = true; 152 module_param(vector_hashing, bool, S_IRUGO); 153 154 bool __read_mostly enable_vmware_backdoor = false; 155 module_param(enable_vmware_backdoor, bool, S_IRUGO); 156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 157 158 static bool __read_mostly force_emulation_prefix = false; 159 module_param(force_emulation_prefix, bool, S_IRUGO); 160 161 int __read_mostly pi_inject_timer = -1; 162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 163 164 #define KVM_NR_SHARED_MSRS 16 165 166 struct kvm_shared_msrs_global { 167 int nr; 168 u32 msrs[KVM_NR_SHARED_MSRS]; 169 }; 170 171 struct kvm_shared_msrs { 172 struct user_return_notifier urn; 173 bool registered; 174 struct kvm_shared_msr_values { 175 u64 host; 176 u64 curr; 177 } values[KVM_NR_SHARED_MSRS]; 178 }; 179 180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 181 static struct kvm_shared_msrs __percpu *shared_msrs; 182 183 static u64 __read_mostly host_xss; 184 185 struct kvm_stats_debugfs_item debugfs_entries[] = { 186 { "pf_fixed", VCPU_STAT(pf_fixed) }, 187 { "pf_guest", VCPU_STAT(pf_guest) }, 188 { "tlb_flush", VCPU_STAT(tlb_flush) }, 189 { "invlpg", VCPU_STAT(invlpg) }, 190 { "exits", VCPU_STAT(exits) }, 191 { "io_exits", VCPU_STAT(io_exits) }, 192 { "mmio_exits", VCPU_STAT(mmio_exits) }, 193 { "signal_exits", VCPU_STAT(signal_exits) }, 194 { "irq_window", VCPU_STAT(irq_window_exits) }, 195 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 196 { "halt_exits", VCPU_STAT(halt_exits) }, 197 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 198 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 199 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 200 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 201 { "hypercalls", VCPU_STAT(hypercalls) }, 202 { "request_irq", VCPU_STAT(request_irq_exits) }, 203 { "irq_exits", VCPU_STAT(irq_exits) }, 204 { "host_state_reload", VCPU_STAT(host_state_reload) }, 205 { "fpu_reload", VCPU_STAT(fpu_reload) }, 206 { "insn_emulation", VCPU_STAT(insn_emulation) }, 207 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 208 { "irq_injections", VCPU_STAT(irq_injections) }, 209 { "nmi_injections", VCPU_STAT(nmi_injections) }, 210 { "req_event", VCPU_STAT(req_event) }, 211 { "l1d_flush", VCPU_STAT(l1d_flush) }, 212 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 213 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 214 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 215 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 216 { "mmu_flooded", VM_STAT(mmu_flooded) }, 217 { "mmu_recycled", VM_STAT(mmu_recycled) }, 218 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 219 { "mmu_unsync", VM_STAT(mmu_unsync) }, 220 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 221 { "largepages", VM_STAT(lpages, .mode = 0444) }, 222 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) }, 223 { "max_mmu_page_hash_collisions", 224 VM_STAT(max_mmu_page_hash_collisions) }, 225 { NULL } 226 }; 227 228 u64 __read_mostly host_xcr0; 229 230 struct kmem_cache *x86_fpu_cache; 231 EXPORT_SYMBOL_GPL(x86_fpu_cache); 232 233 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 234 235 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 236 { 237 int i; 238 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 239 vcpu->arch.apf.gfns[i] = ~0; 240 } 241 242 static void kvm_on_user_return(struct user_return_notifier *urn) 243 { 244 unsigned slot; 245 struct kvm_shared_msrs *locals 246 = container_of(urn, struct kvm_shared_msrs, urn); 247 struct kvm_shared_msr_values *values; 248 unsigned long flags; 249 250 /* 251 * Disabling irqs at this point since the following code could be 252 * interrupted and executed through kvm_arch_hardware_disable() 253 */ 254 local_irq_save(flags); 255 if (locals->registered) { 256 locals->registered = false; 257 user_return_notifier_unregister(urn); 258 } 259 local_irq_restore(flags); 260 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 261 values = &locals->values[slot]; 262 if (values->host != values->curr) { 263 wrmsrl(shared_msrs_global.msrs[slot], values->host); 264 values->curr = values->host; 265 } 266 } 267 } 268 269 void kvm_define_shared_msr(unsigned slot, u32 msr) 270 { 271 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 272 shared_msrs_global.msrs[slot] = msr; 273 if (slot >= shared_msrs_global.nr) 274 shared_msrs_global.nr = slot + 1; 275 } 276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 277 278 static void kvm_shared_msr_cpu_online(void) 279 { 280 unsigned int cpu = smp_processor_id(); 281 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 282 u64 value; 283 int i; 284 285 for (i = 0; i < shared_msrs_global.nr; ++i) { 286 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 287 smsr->values[i].host = value; 288 smsr->values[i].curr = value; 289 } 290 } 291 292 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 293 { 294 unsigned int cpu = smp_processor_id(); 295 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 296 int err; 297 298 value = (value & mask) | (smsr->values[slot].host & ~mask); 299 if (value == smsr->values[slot].curr) 300 return 0; 301 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 302 if (err) 303 return 1; 304 305 smsr->values[slot].curr = value; 306 if (!smsr->registered) { 307 smsr->urn.on_user_return = kvm_on_user_return; 308 user_return_notifier_register(&smsr->urn); 309 smsr->registered = true; 310 } 311 return 0; 312 } 313 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 314 315 static void drop_user_return_notifiers(void) 316 { 317 unsigned int cpu = smp_processor_id(); 318 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 319 320 if (smsr->registered) 321 kvm_on_user_return(&smsr->urn); 322 } 323 324 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 325 { 326 return vcpu->arch.apic_base; 327 } 328 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 329 330 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 331 { 332 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 333 } 334 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 335 336 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 337 { 338 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 339 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 340 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 341 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 342 343 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 344 return 1; 345 if (!msr_info->host_initiated) { 346 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 347 return 1; 348 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 349 return 1; 350 } 351 352 kvm_lapic_set_base(vcpu, msr_info->data); 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 356 357 asmlinkage __visible void kvm_spurious_fault(void) 358 { 359 /* Fault while not rebooting. We want the trace. */ 360 BUG_ON(!kvm_rebooting); 361 } 362 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 363 364 #define EXCPT_BENIGN 0 365 #define EXCPT_CONTRIBUTORY 1 366 #define EXCPT_PF 2 367 368 static int exception_class(int vector) 369 { 370 switch (vector) { 371 case PF_VECTOR: 372 return EXCPT_PF; 373 case DE_VECTOR: 374 case TS_VECTOR: 375 case NP_VECTOR: 376 case SS_VECTOR: 377 case GP_VECTOR: 378 return EXCPT_CONTRIBUTORY; 379 default: 380 break; 381 } 382 return EXCPT_BENIGN; 383 } 384 385 #define EXCPT_FAULT 0 386 #define EXCPT_TRAP 1 387 #define EXCPT_ABORT 2 388 #define EXCPT_INTERRUPT 3 389 390 static int exception_type(int vector) 391 { 392 unsigned int mask; 393 394 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 395 return EXCPT_INTERRUPT; 396 397 mask = 1 << vector; 398 399 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 400 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 401 return EXCPT_TRAP; 402 403 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 404 return EXCPT_ABORT; 405 406 /* Reserved exceptions will result in fault */ 407 return EXCPT_FAULT; 408 } 409 410 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 411 { 412 unsigned nr = vcpu->arch.exception.nr; 413 bool has_payload = vcpu->arch.exception.has_payload; 414 unsigned long payload = vcpu->arch.exception.payload; 415 416 if (!has_payload) 417 return; 418 419 switch (nr) { 420 case DB_VECTOR: 421 /* 422 * "Certain debug exceptions may clear bit 0-3. The 423 * remaining contents of the DR6 register are never 424 * cleared by the processor". 425 */ 426 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 427 /* 428 * DR6.RTM is set by all #DB exceptions that don't clear it. 429 */ 430 vcpu->arch.dr6 |= DR6_RTM; 431 vcpu->arch.dr6 |= payload; 432 /* 433 * Bit 16 should be set in the payload whenever the #DB 434 * exception should clear DR6.RTM. This makes the payload 435 * compatible with the pending debug exceptions under VMX. 436 * Though not currently documented in the SDM, this also 437 * makes the payload compatible with the exit qualification 438 * for #DB exceptions under VMX. 439 */ 440 vcpu->arch.dr6 ^= payload & DR6_RTM; 441 442 /* 443 * The #DB payload is defined as compatible with the 'pending 444 * debug exceptions' field under VMX, not DR6. While bit 12 is 445 * defined in the 'pending debug exceptions' field (enabled 446 * breakpoint), it is reserved and must be zero in DR6. 447 */ 448 vcpu->arch.dr6 &= ~BIT(12); 449 break; 450 case PF_VECTOR: 451 vcpu->arch.cr2 = payload; 452 break; 453 } 454 455 vcpu->arch.exception.has_payload = false; 456 vcpu->arch.exception.payload = 0; 457 } 458 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 459 460 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 461 unsigned nr, bool has_error, u32 error_code, 462 bool has_payload, unsigned long payload, bool reinject) 463 { 464 u32 prev_nr; 465 int class1, class2; 466 467 kvm_make_request(KVM_REQ_EVENT, vcpu); 468 469 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 470 queue: 471 if (has_error && !is_protmode(vcpu)) 472 has_error = false; 473 if (reinject) { 474 /* 475 * On vmentry, vcpu->arch.exception.pending is only 476 * true if an event injection was blocked by 477 * nested_run_pending. In that case, however, 478 * vcpu_enter_guest requests an immediate exit, 479 * and the guest shouldn't proceed far enough to 480 * need reinjection. 481 */ 482 WARN_ON_ONCE(vcpu->arch.exception.pending); 483 vcpu->arch.exception.injected = true; 484 if (WARN_ON_ONCE(has_payload)) { 485 /* 486 * A reinjected event has already 487 * delivered its payload. 488 */ 489 has_payload = false; 490 payload = 0; 491 } 492 } else { 493 vcpu->arch.exception.pending = true; 494 vcpu->arch.exception.injected = false; 495 } 496 vcpu->arch.exception.has_error_code = has_error; 497 vcpu->arch.exception.nr = nr; 498 vcpu->arch.exception.error_code = error_code; 499 vcpu->arch.exception.has_payload = has_payload; 500 vcpu->arch.exception.payload = payload; 501 if (!is_guest_mode(vcpu)) 502 kvm_deliver_exception_payload(vcpu); 503 return; 504 } 505 506 /* to check exception */ 507 prev_nr = vcpu->arch.exception.nr; 508 if (prev_nr == DF_VECTOR) { 509 /* triple fault -> shutdown */ 510 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 511 return; 512 } 513 class1 = exception_class(prev_nr); 514 class2 = exception_class(nr); 515 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 516 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 517 /* 518 * Generate double fault per SDM Table 5-5. Set 519 * exception.pending = true so that the double fault 520 * can trigger a nested vmexit. 521 */ 522 vcpu->arch.exception.pending = true; 523 vcpu->arch.exception.injected = false; 524 vcpu->arch.exception.has_error_code = true; 525 vcpu->arch.exception.nr = DF_VECTOR; 526 vcpu->arch.exception.error_code = 0; 527 vcpu->arch.exception.has_payload = false; 528 vcpu->arch.exception.payload = 0; 529 } else 530 /* replace previous exception with a new one in a hope 531 that instruction re-execution will regenerate lost 532 exception */ 533 goto queue; 534 } 535 536 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 537 { 538 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 539 } 540 EXPORT_SYMBOL_GPL(kvm_queue_exception); 541 542 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 543 { 544 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 545 } 546 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 547 548 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 549 unsigned long payload) 550 { 551 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 552 } 553 554 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 555 u32 error_code, unsigned long payload) 556 { 557 kvm_multiple_exception(vcpu, nr, true, error_code, 558 true, payload, false); 559 } 560 561 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 562 { 563 if (err) 564 kvm_inject_gp(vcpu, 0); 565 else 566 return kvm_skip_emulated_instruction(vcpu); 567 568 return 1; 569 } 570 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 571 572 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 573 { 574 ++vcpu->stat.pf_guest; 575 vcpu->arch.exception.nested_apf = 576 is_guest_mode(vcpu) && fault->async_page_fault; 577 if (vcpu->arch.exception.nested_apf) { 578 vcpu->arch.apf.nested_apf_token = fault->address; 579 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 580 } else { 581 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 582 fault->address); 583 } 584 } 585 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 586 587 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 588 { 589 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 590 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 591 else 592 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 593 594 return fault->nested_page_fault; 595 } 596 597 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 598 { 599 atomic_inc(&vcpu->arch.nmi_queued); 600 kvm_make_request(KVM_REQ_NMI, vcpu); 601 } 602 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 603 604 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 605 { 606 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 607 } 608 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 609 610 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 611 { 612 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 613 } 614 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 615 616 /* 617 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 618 * a #GP and return false. 619 */ 620 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 621 { 622 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 623 return true; 624 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 625 return false; 626 } 627 EXPORT_SYMBOL_GPL(kvm_require_cpl); 628 629 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 630 { 631 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 632 return true; 633 634 kvm_queue_exception(vcpu, UD_VECTOR); 635 return false; 636 } 637 EXPORT_SYMBOL_GPL(kvm_require_dr); 638 639 /* 640 * This function will be used to read from the physical memory of the currently 641 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 642 * can read from guest physical or from the guest's guest physical memory. 643 */ 644 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 645 gfn_t ngfn, void *data, int offset, int len, 646 u32 access) 647 { 648 struct x86_exception exception; 649 gfn_t real_gfn; 650 gpa_t ngpa; 651 652 ngpa = gfn_to_gpa(ngfn); 653 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 654 if (real_gfn == UNMAPPED_GVA) 655 return -EFAULT; 656 657 real_gfn = gpa_to_gfn(real_gfn); 658 659 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 660 } 661 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 662 663 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 664 void *data, int offset, int len, u32 access) 665 { 666 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 667 data, offset, len, access); 668 } 669 670 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 671 { 672 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 673 rsvd_bits(1, 2); 674 } 675 676 /* 677 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 678 */ 679 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 680 { 681 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 682 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 683 int i; 684 int ret; 685 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 686 687 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 688 offset * sizeof(u64), sizeof(pdpte), 689 PFERR_USER_MASK|PFERR_WRITE_MASK); 690 if (ret < 0) { 691 ret = 0; 692 goto out; 693 } 694 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 695 if ((pdpte[i] & PT_PRESENT_MASK) && 696 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 697 ret = 0; 698 goto out; 699 } 700 } 701 ret = 1; 702 703 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 704 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 705 706 out: 707 708 return ret; 709 } 710 EXPORT_SYMBOL_GPL(load_pdptrs); 711 712 bool pdptrs_changed(struct kvm_vcpu *vcpu) 713 { 714 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 715 int offset; 716 gfn_t gfn; 717 int r; 718 719 if (!is_pae_paging(vcpu)) 720 return false; 721 722 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 723 return true; 724 725 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 726 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 727 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 728 PFERR_USER_MASK | PFERR_WRITE_MASK); 729 if (r < 0) 730 return true; 731 732 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 733 } 734 EXPORT_SYMBOL_GPL(pdptrs_changed); 735 736 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 737 { 738 unsigned long old_cr0 = kvm_read_cr0(vcpu); 739 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 740 741 cr0 |= X86_CR0_ET; 742 743 #ifdef CONFIG_X86_64 744 if (cr0 & 0xffffffff00000000UL) 745 return 1; 746 #endif 747 748 cr0 &= ~CR0_RESERVED_BITS; 749 750 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 751 return 1; 752 753 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 754 return 1; 755 756 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 757 #ifdef CONFIG_X86_64 758 if ((vcpu->arch.efer & EFER_LME)) { 759 int cs_db, cs_l; 760 761 if (!is_pae(vcpu)) 762 return 1; 763 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 764 if (cs_l) 765 return 1; 766 } else 767 #endif 768 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 769 kvm_read_cr3(vcpu))) 770 return 1; 771 } 772 773 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 774 return 1; 775 776 kvm_x86_ops->set_cr0(vcpu, cr0); 777 778 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 779 kvm_clear_async_pf_completion_queue(vcpu); 780 kvm_async_pf_hash_reset(vcpu); 781 } 782 783 if ((cr0 ^ old_cr0) & update_bits) 784 kvm_mmu_reset_context(vcpu); 785 786 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 787 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 788 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 789 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 790 791 return 0; 792 } 793 EXPORT_SYMBOL_GPL(kvm_set_cr0); 794 795 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 796 { 797 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 798 } 799 EXPORT_SYMBOL_GPL(kvm_lmsw); 800 801 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 802 { 803 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 804 805 if (vcpu->arch.xcr0 != host_xcr0) 806 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 807 808 if (vcpu->arch.xsaves_enabled && 809 vcpu->arch.ia32_xss != host_xss) 810 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 811 } 812 } 813 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 814 815 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 816 { 817 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 818 819 if (vcpu->arch.xcr0 != host_xcr0) 820 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 821 822 if (vcpu->arch.xsaves_enabled && 823 vcpu->arch.ia32_xss != host_xss) 824 wrmsrl(MSR_IA32_XSS, host_xss); 825 } 826 827 } 828 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 829 830 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 831 { 832 u64 xcr0 = xcr; 833 u64 old_xcr0 = vcpu->arch.xcr0; 834 u64 valid_bits; 835 836 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 837 if (index != XCR_XFEATURE_ENABLED_MASK) 838 return 1; 839 if (!(xcr0 & XFEATURE_MASK_FP)) 840 return 1; 841 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 842 return 1; 843 844 /* 845 * Do not allow the guest to set bits that we do not support 846 * saving. However, xcr0 bit 0 is always set, even if the 847 * emulated CPU does not support XSAVE (see fx_init). 848 */ 849 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 850 if (xcr0 & ~valid_bits) 851 return 1; 852 853 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 854 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 855 return 1; 856 857 if (xcr0 & XFEATURE_MASK_AVX512) { 858 if (!(xcr0 & XFEATURE_MASK_YMM)) 859 return 1; 860 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 861 return 1; 862 } 863 vcpu->arch.xcr0 = xcr0; 864 865 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 866 kvm_update_cpuid(vcpu); 867 return 0; 868 } 869 870 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 871 { 872 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 873 __kvm_set_xcr(vcpu, index, xcr)) { 874 kvm_inject_gp(vcpu, 0); 875 return 1; 876 } 877 return 0; 878 } 879 EXPORT_SYMBOL_GPL(kvm_set_xcr); 880 881 #define __cr4_reserved_bits(__cpu_has, __c) \ 882 ({ \ 883 u64 __reserved_bits = CR4_RESERVED_BITS; \ 884 \ 885 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 886 __reserved_bits |= X86_CR4_OSXSAVE; \ 887 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 888 __reserved_bits |= X86_CR4_SMEP; \ 889 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 890 __reserved_bits |= X86_CR4_SMAP; \ 891 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 892 __reserved_bits |= X86_CR4_FSGSBASE; \ 893 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 894 __reserved_bits |= X86_CR4_PKE; \ 895 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 896 __reserved_bits |= X86_CR4_LA57; \ 897 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 898 __reserved_bits |= X86_CR4_UMIP; \ 899 __reserved_bits; \ 900 }) 901 902 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c) 903 { 904 u64 reserved_bits = __cr4_reserved_bits(cpu_has, c); 905 906 if (cpuid_ecx(0x7) & feature_bit(LA57)) 907 reserved_bits &= ~X86_CR4_LA57; 908 909 if (kvm_x86_ops->umip_emulated()) 910 reserved_bits &= ~X86_CR4_UMIP; 911 912 return reserved_bits; 913 } 914 915 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 916 { 917 if (cr4 & cr4_reserved_bits) 918 return -EINVAL; 919 920 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 921 return -EINVAL; 922 923 return 0; 924 } 925 926 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 927 { 928 unsigned long old_cr4 = kvm_read_cr4(vcpu); 929 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 930 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 931 932 if (kvm_valid_cr4(vcpu, cr4)) 933 return 1; 934 935 if (is_long_mode(vcpu)) { 936 if (!(cr4 & X86_CR4_PAE)) 937 return 1; 938 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 939 && ((cr4 ^ old_cr4) & pdptr_bits) 940 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 941 kvm_read_cr3(vcpu))) 942 return 1; 943 944 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 945 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 946 return 1; 947 948 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 949 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 950 return 1; 951 } 952 953 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 954 return 1; 955 956 if (((cr4 ^ old_cr4) & pdptr_bits) || 957 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 958 kvm_mmu_reset_context(vcpu); 959 960 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 961 kvm_update_cpuid(vcpu); 962 963 return 0; 964 } 965 EXPORT_SYMBOL_GPL(kvm_set_cr4); 966 967 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 968 { 969 bool skip_tlb_flush = false; 970 #ifdef CONFIG_X86_64 971 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 972 973 if (pcid_enabled) { 974 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 975 cr3 &= ~X86_CR3_PCID_NOFLUSH; 976 } 977 #endif 978 979 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 980 if (!skip_tlb_flush) { 981 kvm_mmu_sync_roots(vcpu); 982 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 983 } 984 return 0; 985 } 986 987 if (is_long_mode(vcpu) && 988 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 989 return 1; 990 else if (is_pae_paging(vcpu) && 991 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 992 return 1; 993 994 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 995 vcpu->arch.cr3 = cr3; 996 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 997 998 return 0; 999 } 1000 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1001 1002 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1003 { 1004 if (cr8 & CR8_RESERVED_BITS) 1005 return 1; 1006 if (lapic_in_kernel(vcpu)) 1007 kvm_lapic_set_tpr(vcpu, cr8); 1008 else 1009 vcpu->arch.cr8 = cr8; 1010 return 0; 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1013 1014 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1015 { 1016 if (lapic_in_kernel(vcpu)) 1017 return kvm_lapic_get_cr8(vcpu); 1018 else 1019 return vcpu->arch.cr8; 1020 } 1021 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1022 1023 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1024 { 1025 int i; 1026 1027 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1028 for (i = 0; i < KVM_NR_DB_REGS; i++) 1029 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1030 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1031 } 1032 } 1033 1034 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1035 { 1036 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1037 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 1038 } 1039 1040 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1041 { 1042 unsigned long dr7; 1043 1044 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1045 dr7 = vcpu->arch.guest_debug_dr7; 1046 else 1047 dr7 = vcpu->arch.dr7; 1048 kvm_x86_ops->set_dr7(vcpu, dr7); 1049 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1050 if (dr7 & DR7_BP_EN_MASK) 1051 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1052 } 1053 1054 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1055 { 1056 u64 fixed = DR6_FIXED_1; 1057 1058 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1059 fixed |= DR6_RTM; 1060 return fixed; 1061 } 1062 1063 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1064 { 1065 size_t size = ARRAY_SIZE(vcpu->arch.db); 1066 1067 switch (dr) { 1068 case 0 ... 3: 1069 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1070 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1071 vcpu->arch.eff_db[dr] = val; 1072 break; 1073 case 4: 1074 /* fall through */ 1075 case 6: 1076 if (val & 0xffffffff00000000ULL) 1077 return -1; /* #GP */ 1078 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1079 kvm_update_dr6(vcpu); 1080 break; 1081 case 5: 1082 /* fall through */ 1083 default: /* 7 */ 1084 if (!kvm_dr7_valid(val)) 1085 return -1; /* #GP */ 1086 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1087 kvm_update_dr7(vcpu); 1088 break; 1089 } 1090 1091 return 0; 1092 } 1093 1094 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1095 { 1096 if (__kvm_set_dr(vcpu, dr, val)) { 1097 kvm_inject_gp(vcpu, 0); 1098 return 1; 1099 } 1100 return 0; 1101 } 1102 EXPORT_SYMBOL_GPL(kvm_set_dr); 1103 1104 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1105 { 1106 size_t size = ARRAY_SIZE(vcpu->arch.db); 1107 1108 switch (dr) { 1109 case 0 ... 3: 1110 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1111 break; 1112 case 4: 1113 /* fall through */ 1114 case 6: 1115 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1116 *val = vcpu->arch.dr6; 1117 else 1118 *val = kvm_x86_ops->get_dr6(vcpu); 1119 break; 1120 case 5: 1121 /* fall through */ 1122 default: /* 7 */ 1123 *val = vcpu->arch.dr7; 1124 break; 1125 } 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(kvm_get_dr); 1129 1130 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1131 { 1132 u32 ecx = kvm_rcx_read(vcpu); 1133 u64 data; 1134 int err; 1135 1136 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1137 if (err) 1138 return err; 1139 kvm_rax_write(vcpu, (u32)data); 1140 kvm_rdx_write(vcpu, data >> 32); 1141 return err; 1142 } 1143 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1144 1145 /* 1146 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1147 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1148 * 1149 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1150 * extract the supported MSRs from the related const lists. 1151 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1152 * capabilities of the host cpu. This capabilities test skips MSRs that are 1153 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1154 * may depend on host virtualization features rather than host cpu features. 1155 */ 1156 1157 static const u32 msrs_to_save_all[] = { 1158 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1159 MSR_STAR, 1160 #ifdef CONFIG_X86_64 1161 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1162 #endif 1163 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1164 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1165 MSR_IA32_SPEC_CTRL, 1166 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1167 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1168 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1169 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1170 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1171 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1172 MSR_IA32_UMWAIT_CONTROL, 1173 1174 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1175 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1176 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1177 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1178 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1179 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1180 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1181 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1182 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1183 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1184 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1185 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1186 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1187 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1188 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1189 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1190 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1191 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1192 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1193 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1194 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1195 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1196 }; 1197 1198 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1199 static unsigned num_msrs_to_save; 1200 1201 static const u32 emulated_msrs_all[] = { 1202 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1203 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1204 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1205 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1206 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1207 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1208 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1209 HV_X64_MSR_RESET, 1210 HV_X64_MSR_VP_INDEX, 1211 HV_X64_MSR_VP_RUNTIME, 1212 HV_X64_MSR_SCONTROL, 1213 HV_X64_MSR_STIMER0_CONFIG, 1214 HV_X64_MSR_VP_ASSIST_PAGE, 1215 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1216 HV_X64_MSR_TSC_EMULATION_STATUS, 1217 1218 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1219 MSR_KVM_PV_EOI_EN, 1220 1221 MSR_IA32_TSC_ADJUST, 1222 MSR_IA32_TSCDEADLINE, 1223 MSR_IA32_ARCH_CAPABILITIES, 1224 MSR_IA32_MISC_ENABLE, 1225 MSR_IA32_MCG_STATUS, 1226 MSR_IA32_MCG_CTL, 1227 MSR_IA32_MCG_EXT_CTL, 1228 MSR_IA32_SMBASE, 1229 MSR_SMI_COUNT, 1230 MSR_PLATFORM_INFO, 1231 MSR_MISC_FEATURES_ENABLES, 1232 MSR_AMD64_VIRT_SPEC_CTRL, 1233 MSR_IA32_POWER_CTL, 1234 MSR_IA32_UCODE_REV, 1235 1236 /* 1237 * The following list leaves out MSRs whose values are determined 1238 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1239 * We always support the "true" VMX control MSRs, even if the host 1240 * processor does not, so I am putting these registers here rather 1241 * than in msrs_to_save_all. 1242 */ 1243 MSR_IA32_VMX_BASIC, 1244 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1245 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1246 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1247 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1248 MSR_IA32_VMX_MISC, 1249 MSR_IA32_VMX_CR0_FIXED0, 1250 MSR_IA32_VMX_CR4_FIXED0, 1251 MSR_IA32_VMX_VMCS_ENUM, 1252 MSR_IA32_VMX_PROCBASED_CTLS2, 1253 MSR_IA32_VMX_EPT_VPID_CAP, 1254 MSR_IA32_VMX_VMFUNC, 1255 1256 MSR_K7_HWCR, 1257 MSR_KVM_POLL_CONTROL, 1258 }; 1259 1260 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1261 static unsigned num_emulated_msrs; 1262 1263 /* 1264 * List of msr numbers which are used to expose MSR-based features that 1265 * can be used by a hypervisor to validate requested CPU features. 1266 */ 1267 static const u32 msr_based_features_all[] = { 1268 MSR_IA32_VMX_BASIC, 1269 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1270 MSR_IA32_VMX_PINBASED_CTLS, 1271 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1272 MSR_IA32_VMX_PROCBASED_CTLS, 1273 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1274 MSR_IA32_VMX_EXIT_CTLS, 1275 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1276 MSR_IA32_VMX_ENTRY_CTLS, 1277 MSR_IA32_VMX_MISC, 1278 MSR_IA32_VMX_CR0_FIXED0, 1279 MSR_IA32_VMX_CR0_FIXED1, 1280 MSR_IA32_VMX_CR4_FIXED0, 1281 MSR_IA32_VMX_CR4_FIXED1, 1282 MSR_IA32_VMX_VMCS_ENUM, 1283 MSR_IA32_VMX_PROCBASED_CTLS2, 1284 MSR_IA32_VMX_EPT_VPID_CAP, 1285 MSR_IA32_VMX_VMFUNC, 1286 1287 MSR_F10H_DECFG, 1288 MSR_IA32_UCODE_REV, 1289 MSR_IA32_ARCH_CAPABILITIES, 1290 }; 1291 1292 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1293 static unsigned int num_msr_based_features; 1294 1295 static u64 kvm_get_arch_capabilities(void) 1296 { 1297 u64 data = 0; 1298 1299 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1300 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1301 1302 /* 1303 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1304 * the nested hypervisor runs with NX huge pages. If it is not, 1305 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1306 * L1 guests, so it need not worry about its own (L2) guests. 1307 */ 1308 data |= ARCH_CAP_PSCHANGE_MC_NO; 1309 1310 /* 1311 * If we're doing cache flushes (either "always" or "cond") 1312 * we will do one whenever the guest does a vmlaunch/vmresume. 1313 * If an outer hypervisor is doing the cache flush for us 1314 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1315 * capability to the guest too, and if EPT is disabled we're not 1316 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1317 * require a nested hypervisor to do a flush of its own. 1318 */ 1319 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1320 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1321 1322 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1323 data |= ARCH_CAP_RDCL_NO; 1324 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1325 data |= ARCH_CAP_SSB_NO; 1326 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1327 data |= ARCH_CAP_MDS_NO; 1328 1329 /* 1330 * On TAA affected systems: 1331 * - nothing to do if TSX is disabled on the host. 1332 * - we emulate TSX_CTRL if present on the host. 1333 * This lets the guest use VERW to clear CPU buffers. 1334 */ 1335 if (!boot_cpu_has(X86_FEATURE_RTM)) 1336 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1337 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1338 data |= ARCH_CAP_TAA_NO; 1339 1340 return data; 1341 } 1342 1343 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1344 { 1345 switch (msr->index) { 1346 case MSR_IA32_ARCH_CAPABILITIES: 1347 msr->data = kvm_get_arch_capabilities(); 1348 break; 1349 case MSR_IA32_UCODE_REV: 1350 rdmsrl_safe(msr->index, &msr->data); 1351 break; 1352 default: 1353 if (kvm_x86_ops->get_msr_feature(msr)) 1354 return 1; 1355 } 1356 return 0; 1357 } 1358 1359 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1360 { 1361 struct kvm_msr_entry msr; 1362 int r; 1363 1364 msr.index = index; 1365 r = kvm_get_msr_feature(&msr); 1366 if (r) 1367 return r; 1368 1369 *data = msr.data; 1370 1371 return 0; 1372 } 1373 1374 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1375 { 1376 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1377 return false; 1378 1379 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1380 return false; 1381 1382 if (efer & (EFER_LME | EFER_LMA) && 1383 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1384 return false; 1385 1386 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1387 return false; 1388 1389 return true; 1390 1391 } 1392 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1393 { 1394 if (efer & efer_reserved_bits) 1395 return false; 1396 1397 return __kvm_valid_efer(vcpu, efer); 1398 } 1399 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1400 1401 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1402 { 1403 u64 old_efer = vcpu->arch.efer; 1404 u64 efer = msr_info->data; 1405 1406 if (efer & efer_reserved_bits) 1407 return 1; 1408 1409 if (!msr_info->host_initiated) { 1410 if (!__kvm_valid_efer(vcpu, efer)) 1411 return 1; 1412 1413 if (is_paging(vcpu) && 1414 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1415 return 1; 1416 } 1417 1418 efer &= ~EFER_LMA; 1419 efer |= vcpu->arch.efer & EFER_LMA; 1420 1421 kvm_x86_ops->set_efer(vcpu, efer); 1422 1423 /* Update reserved bits */ 1424 if ((efer ^ old_efer) & EFER_NX) 1425 kvm_mmu_reset_context(vcpu); 1426 1427 return 0; 1428 } 1429 1430 void kvm_enable_efer_bits(u64 mask) 1431 { 1432 efer_reserved_bits &= ~mask; 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1435 1436 /* 1437 * Write @data into the MSR specified by @index. Select MSR specific fault 1438 * checks are bypassed if @host_initiated is %true. 1439 * Returns 0 on success, non-0 otherwise. 1440 * Assumes vcpu_load() was already called. 1441 */ 1442 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1443 bool host_initiated) 1444 { 1445 struct msr_data msr; 1446 1447 switch (index) { 1448 case MSR_FS_BASE: 1449 case MSR_GS_BASE: 1450 case MSR_KERNEL_GS_BASE: 1451 case MSR_CSTAR: 1452 case MSR_LSTAR: 1453 if (is_noncanonical_address(data, vcpu)) 1454 return 1; 1455 break; 1456 case MSR_IA32_SYSENTER_EIP: 1457 case MSR_IA32_SYSENTER_ESP: 1458 /* 1459 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1460 * non-canonical address is written on Intel but not on 1461 * AMD (which ignores the top 32-bits, because it does 1462 * not implement 64-bit SYSENTER). 1463 * 1464 * 64-bit code should hence be able to write a non-canonical 1465 * value on AMD. Making the address canonical ensures that 1466 * vmentry does not fail on Intel after writing a non-canonical 1467 * value, and that something deterministic happens if the guest 1468 * invokes 64-bit SYSENTER. 1469 */ 1470 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1471 } 1472 1473 msr.data = data; 1474 msr.index = index; 1475 msr.host_initiated = host_initiated; 1476 1477 return kvm_x86_ops->set_msr(vcpu, &msr); 1478 } 1479 1480 /* 1481 * Read the MSR specified by @index into @data. Select MSR specific fault 1482 * checks are bypassed if @host_initiated is %true. 1483 * Returns 0 on success, non-0 otherwise. 1484 * Assumes vcpu_load() was already called. 1485 */ 1486 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1487 bool host_initiated) 1488 { 1489 struct msr_data msr; 1490 int ret; 1491 1492 msr.index = index; 1493 msr.host_initiated = host_initiated; 1494 1495 ret = kvm_x86_ops->get_msr(vcpu, &msr); 1496 if (!ret) 1497 *data = msr.data; 1498 return ret; 1499 } 1500 1501 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1502 { 1503 return __kvm_get_msr(vcpu, index, data, false); 1504 } 1505 EXPORT_SYMBOL_GPL(kvm_get_msr); 1506 1507 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1508 { 1509 return __kvm_set_msr(vcpu, index, data, false); 1510 } 1511 EXPORT_SYMBOL_GPL(kvm_set_msr); 1512 1513 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1514 { 1515 u32 ecx = kvm_rcx_read(vcpu); 1516 u64 data; 1517 1518 if (kvm_get_msr(vcpu, ecx, &data)) { 1519 trace_kvm_msr_read_ex(ecx); 1520 kvm_inject_gp(vcpu, 0); 1521 return 1; 1522 } 1523 1524 trace_kvm_msr_read(ecx, data); 1525 1526 kvm_rax_write(vcpu, data & -1u); 1527 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1528 return kvm_skip_emulated_instruction(vcpu); 1529 } 1530 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1531 1532 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1533 { 1534 u32 ecx = kvm_rcx_read(vcpu); 1535 u64 data = kvm_read_edx_eax(vcpu); 1536 1537 if (kvm_set_msr(vcpu, ecx, data)) { 1538 trace_kvm_msr_write_ex(ecx, data); 1539 kvm_inject_gp(vcpu, 0); 1540 return 1; 1541 } 1542 1543 trace_kvm_msr_write(ecx, data); 1544 return kvm_skip_emulated_instruction(vcpu); 1545 } 1546 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1547 1548 /* 1549 * The fast path for frequent and performance sensitive wrmsr emulation, 1550 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1551 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1552 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1553 * other cases which must be called after interrupts are enabled on the host. 1554 */ 1555 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1556 { 1557 if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) && 1558 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1559 ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) { 1560 1561 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1562 return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data); 1563 } 1564 1565 return 1; 1566 } 1567 1568 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1569 { 1570 u32 msr = kvm_rcx_read(vcpu); 1571 u64 data = kvm_read_edx_eax(vcpu); 1572 int ret = 0; 1573 1574 switch (msr) { 1575 case APIC_BASE_MSR + (APIC_ICR >> 4): 1576 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 1577 break; 1578 default: 1579 return EXIT_FASTPATH_NONE; 1580 } 1581 1582 if (!ret) { 1583 trace_kvm_msr_write(msr, data); 1584 return EXIT_FASTPATH_SKIP_EMUL_INS; 1585 } 1586 1587 return EXIT_FASTPATH_NONE; 1588 } 1589 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1590 1591 /* 1592 * Adapt set_msr() to msr_io()'s calling convention 1593 */ 1594 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1595 { 1596 return __kvm_get_msr(vcpu, index, data, true); 1597 } 1598 1599 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1600 { 1601 return __kvm_set_msr(vcpu, index, *data, true); 1602 } 1603 1604 #ifdef CONFIG_X86_64 1605 struct pvclock_clock { 1606 int vclock_mode; 1607 u64 cycle_last; 1608 u64 mask; 1609 u32 mult; 1610 u32 shift; 1611 u64 base_cycles; 1612 u64 offset; 1613 }; 1614 1615 struct pvclock_gtod_data { 1616 seqcount_t seq; 1617 1618 struct pvclock_clock clock; /* extract of a clocksource struct */ 1619 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1620 1621 ktime_t offs_boot; 1622 u64 wall_time_sec; 1623 }; 1624 1625 static struct pvclock_gtod_data pvclock_gtod_data; 1626 1627 static void update_pvclock_gtod(struct timekeeper *tk) 1628 { 1629 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1630 1631 write_seqcount_begin(&vdata->seq); 1632 1633 /* copy pvclock gtod data */ 1634 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1635 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1636 vdata->clock.mask = tk->tkr_mono.mask; 1637 vdata->clock.mult = tk->tkr_mono.mult; 1638 vdata->clock.shift = tk->tkr_mono.shift; 1639 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1640 vdata->clock.offset = tk->tkr_mono.base; 1641 1642 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1643 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1644 vdata->raw_clock.mask = tk->tkr_raw.mask; 1645 vdata->raw_clock.mult = tk->tkr_raw.mult; 1646 vdata->raw_clock.shift = tk->tkr_raw.shift; 1647 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1648 vdata->raw_clock.offset = tk->tkr_raw.base; 1649 1650 vdata->wall_time_sec = tk->xtime_sec; 1651 1652 vdata->offs_boot = tk->offs_boot; 1653 1654 write_seqcount_end(&vdata->seq); 1655 } 1656 1657 static s64 get_kvmclock_base_ns(void) 1658 { 1659 /* Count up from boot time, but with the frequency of the raw clock. */ 1660 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1661 } 1662 #else 1663 static s64 get_kvmclock_base_ns(void) 1664 { 1665 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1666 return ktime_get_boottime_ns(); 1667 } 1668 #endif 1669 1670 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1671 { 1672 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1673 kvm_vcpu_kick(vcpu); 1674 } 1675 1676 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1677 { 1678 int version; 1679 int r; 1680 struct pvclock_wall_clock wc; 1681 u64 wall_nsec; 1682 1683 if (!wall_clock) 1684 return; 1685 1686 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1687 if (r) 1688 return; 1689 1690 if (version & 1) 1691 ++version; /* first time write, random junk */ 1692 1693 ++version; 1694 1695 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1696 return; 1697 1698 /* 1699 * The guest calculates current wall clock time by adding 1700 * system time (updated by kvm_guest_time_update below) to the 1701 * wall clock specified here. We do the reverse here. 1702 */ 1703 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1704 1705 wc.nsec = do_div(wall_nsec, 1000000000); 1706 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1707 wc.version = version; 1708 1709 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1710 1711 version++; 1712 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1713 } 1714 1715 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1716 { 1717 do_shl32_div32(dividend, divisor); 1718 return dividend; 1719 } 1720 1721 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1722 s8 *pshift, u32 *pmultiplier) 1723 { 1724 uint64_t scaled64; 1725 int32_t shift = 0; 1726 uint64_t tps64; 1727 uint32_t tps32; 1728 1729 tps64 = base_hz; 1730 scaled64 = scaled_hz; 1731 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1732 tps64 >>= 1; 1733 shift--; 1734 } 1735 1736 tps32 = (uint32_t)tps64; 1737 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1738 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1739 scaled64 >>= 1; 1740 else 1741 tps32 <<= 1; 1742 shift++; 1743 } 1744 1745 *pshift = shift; 1746 *pmultiplier = div_frac(scaled64, tps32); 1747 } 1748 1749 #ifdef CONFIG_X86_64 1750 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1751 #endif 1752 1753 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1754 static unsigned long max_tsc_khz; 1755 1756 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1757 { 1758 u64 v = (u64)khz * (1000000 + ppm); 1759 do_div(v, 1000000); 1760 return v; 1761 } 1762 1763 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1764 { 1765 u64 ratio; 1766 1767 /* Guest TSC same frequency as host TSC? */ 1768 if (!scale) { 1769 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1770 return 0; 1771 } 1772 1773 /* TSC scaling supported? */ 1774 if (!kvm_has_tsc_control) { 1775 if (user_tsc_khz > tsc_khz) { 1776 vcpu->arch.tsc_catchup = 1; 1777 vcpu->arch.tsc_always_catchup = 1; 1778 return 0; 1779 } else { 1780 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1781 return -1; 1782 } 1783 } 1784 1785 /* TSC scaling required - calculate ratio */ 1786 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1787 user_tsc_khz, tsc_khz); 1788 1789 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1790 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1791 user_tsc_khz); 1792 return -1; 1793 } 1794 1795 vcpu->arch.tsc_scaling_ratio = ratio; 1796 return 0; 1797 } 1798 1799 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1800 { 1801 u32 thresh_lo, thresh_hi; 1802 int use_scaling = 0; 1803 1804 /* tsc_khz can be zero if TSC calibration fails */ 1805 if (user_tsc_khz == 0) { 1806 /* set tsc_scaling_ratio to a safe value */ 1807 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1808 return -1; 1809 } 1810 1811 /* Compute a scale to convert nanoseconds in TSC cycles */ 1812 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1813 &vcpu->arch.virtual_tsc_shift, 1814 &vcpu->arch.virtual_tsc_mult); 1815 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1816 1817 /* 1818 * Compute the variation in TSC rate which is acceptable 1819 * within the range of tolerance and decide if the 1820 * rate being applied is within that bounds of the hardware 1821 * rate. If so, no scaling or compensation need be done. 1822 */ 1823 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1824 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1825 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1826 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1827 use_scaling = 1; 1828 } 1829 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1830 } 1831 1832 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1833 { 1834 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1835 vcpu->arch.virtual_tsc_mult, 1836 vcpu->arch.virtual_tsc_shift); 1837 tsc += vcpu->arch.this_tsc_write; 1838 return tsc; 1839 } 1840 1841 static inline int gtod_is_based_on_tsc(int mode) 1842 { 1843 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1844 } 1845 1846 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1847 { 1848 #ifdef CONFIG_X86_64 1849 bool vcpus_matched; 1850 struct kvm_arch *ka = &vcpu->kvm->arch; 1851 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1852 1853 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1854 atomic_read(&vcpu->kvm->online_vcpus)); 1855 1856 /* 1857 * Once the masterclock is enabled, always perform request in 1858 * order to update it. 1859 * 1860 * In order to enable masterclock, the host clocksource must be TSC 1861 * and the vcpus need to have matched TSCs. When that happens, 1862 * perform request to enable masterclock. 1863 */ 1864 if (ka->use_master_clock || 1865 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1866 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1867 1868 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1869 atomic_read(&vcpu->kvm->online_vcpus), 1870 ka->use_master_clock, gtod->clock.vclock_mode); 1871 #endif 1872 } 1873 1874 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1875 { 1876 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1877 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1878 } 1879 1880 /* 1881 * Multiply tsc by a fixed point number represented by ratio. 1882 * 1883 * The most significant 64-N bits (mult) of ratio represent the 1884 * integral part of the fixed point number; the remaining N bits 1885 * (frac) represent the fractional part, ie. ratio represents a fixed 1886 * point number (mult + frac * 2^(-N)). 1887 * 1888 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1889 */ 1890 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1891 { 1892 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1893 } 1894 1895 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1896 { 1897 u64 _tsc = tsc; 1898 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1899 1900 if (ratio != kvm_default_tsc_scaling_ratio) 1901 _tsc = __scale_tsc(ratio, tsc); 1902 1903 return _tsc; 1904 } 1905 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1906 1907 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1908 { 1909 u64 tsc; 1910 1911 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1912 1913 return target_tsc - tsc; 1914 } 1915 1916 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1917 { 1918 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1919 1920 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1921 } 1922 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1923 1924 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1925 { 1926 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); 1927 } 1928 1929 static inline bool kvm_check_tsc_unstable(void) 1930 { 1931 #ifdef CONFIG_X86_64 1932 /* 1933 * TSC is marked unstable when we're running on Hyper-V, 1934 * 'TSC page' clocksource is good. 1935 */ 1936 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 1937 return false; 1938 #endif 1939 return check_tsc_unstable(); 1940 } 1941 1942 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1943 { 1944 struct kvm *kvm = vcpu->kvm; 1945 u64 offset, ns, elapsed; 1946 unsigned long flags; 1947 bool matched; 1948 bool already_matched; 1949 u64 data = msr->data; 1950 bool synchronizing = false; 1951 1952 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1953 offset = kvm_compute_tsc_offset(vcpu, data); 1954 ns = get_kvmclock_base_ns(); 1955 elapsed = ns - kvm->arch.last_tsc_nsec; 1956 1957 if (vcpu->arch.virtual_tsc_khz) { 1958 if (data == 0 && msr->host_initiated) { 1959 /* 1960 * detection of vcpu initialization -- need to sync 1961 * with other vCPUs. This particularly helps to keep 1962 * kvm_clock stable after CPU hotplug 1963 */ 1964 synchronizing = true; 1965 } else { 1966 u64 tsc_exp = kvm->arch.last_tsc_write + 1967 nsec_to_cycles(vcpu, elapsed); 1968 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1969 /* 1970 * Special case: TSC write with a small delta (1 second) 1971 * of virtual cycle time against real time is 1972 * interpreted as an attempt to synchronize the CPU. 1973 */ 1974 synchronizing = data < tsc_exp + tsc_hz && 1975 data + tsc_hz > tsc_exp; 1976 } 1977 } 1978 1979 /* 1980 * For a reliable TSC, we can match TSC offsets, and for an unstable 1981 * TSC, we add elapsed time in this computation. We could let the 1982 * compensation code attempt to catch up if we fall behind, but 1983 * it's better to try to match offsets from the beginning. 1984 */ 1985 if (synchronizing && 1986 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1987 if (!kvm_check_tsc_unstable()) { 1988 offset = kvm->arch.cur_tsc_offset; 1989 } else { 1990 u64 delta = nsec_to_cycles(vcpu, elapsed); 1991 data += delta; 1992 offset = kvm_compute_tsc_offset(vcpu, data); 1993 } 1994 matched = true; 1995 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1996 } else { 1997 /* 1998 * We split periods of matched TSC writes into generations. 1999 * For each generation, we track the original measured 2000 * nanosecond time, offset, and write, so if TSCs are in 2001 * sync, we can match exact offset, and if not, we can match 2002 * exact software computation in compute_guest_tsc() 2003 * 2004 * These values are tracked in kvm->arch.cur_xxx variables. 2005 */ 2006 kvm->arch.cur_tsc_generation++; 2007 kvm->arch.cur_tsc_nsec = ns; 2008 kvm->arch.cur_tsc_write = data; 2009 kvm->arch.cur_tsc_offset = offset; 2010 matched = false; 2011 } 2012 2013 /* 2014 * We also track th most recent recorded KHZ, write and time to 2015 * allow the matching interval to be extended at each write. 2016 */ 2017 kvm->arch.last_tsc_nsec = ns; 2018 kvm->arch.last_tsc_write = data; 2019 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2020 2021 vcpu->arch.last_guest_tsc = data; 2022 2023 /* Keep track of which generation this VCPU has synchronized to */ 2024 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2025 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2026 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2027 2028 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2029 update_ia32_tsc_adjust_msr(vcpu, offset); 2030 2031 kvm_vcpu_write_tsc_offset(vcpu, offset); 2032 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2033 2034 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2035 if (!matched) { 2036 kvm->arch.nr_vcpus_matched_tsc = 0; 2037 } else if (!already_matched) { 2038 kvm->arch.nr_vcpus_matched_tsc++; 2039 } 2040 2041 kvm_track_tsc_matching(vcpu); 2042 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2043 } 2044 2045 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2046 2047 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2048 s64 adjustment) 2049 { 2050 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 2051 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2052 } 2053 2054 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2055 { 2056 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2057 WARN_ON(adjustment < 0); 2058 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2059 adjust_tsc_offset_guest(vcpu, adjustment); 2060 } 2061 2062 #ifdef CONFIG_X86_64 2063 2064 static u64 read_tsc(void) 2065 { 2066 u64 ret = (u64)rdtsc_ordered(); 2067 u64 last = pvclock_gtod_data.clock.cycle_last; 2068 2069 if (likely(ret >= last)) 2070 return ret; 2071 2072 /* 2073 * GCC likes to generate cmov here, but this branch is extremely 2074 * predictable (it's just a function of time and the likely is 2075 * very likely) and there's a data dependence, so force GCC 2076 * to generate a branch instead. I don't barrier() because 2077 * we don't actually need a barrier, and if this function 2078 * ever gets inlined it will generate worse code. 2079 */ 2080 asm volatile (""); 2081 return last; 2082 } 2083 2084 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2085 int *mode) 2086 { 2087 long v; 2088 u64 tsc_pg_val; 2089 2090 switch (clock->vclock_mode) { 2091 case VDSO_CLOCKMODE_HVCLOCK: 2092 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2093 tsc_timestamp); 2094 if (tsc_pg_val != U64_MAX) { 2095 /* TSC page valid */ 2096 *mode = VDSO_CLOCKMODE_HVCLOCK; 2097 v = (tsc_pg_val - clock->cycle_last) & 2098 clock->mask; 2099 } else { 2100 /* TSC page invalid */ 2101 *mode = VDSO_CLOCKMODE_NONE; 2102 } 2103 break; 2104 case VDSO_CLOCKMODE_TSC: 2105 *mode = VDSO_CLOCKMODE_TSC; 2106 *tsc_timestamp = read_tsc(); 2107 v = (*tsc_timestamp - clock->cycle_last) & 2108 clock->mask; 2109 break; 2110 default: 2111 *mode = VDSO_CLOCKMODE_NONE; 2112 } 2113 2114 if (*mode == VDSO_CLOCKMODE_NONE) 2115 *tsc_timestamp = v = 0; 2116 2117 return v * clock->mult; 2118 } 2119 2120 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2121 { 2122 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2123 unsigned long seq; 2124 int mode; 2125 u64 ns; 2126 2127 do { 2128 seq = read_seqcount_begin(>od->seq); 2129 ns = gtod->raw_clock.base_cycles; 2130 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2131 ns >>= gtod->raw_clock.shift; 2132 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2133 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2134 *t = ns; 2135 2136 return mode; 2137 } 2138 2139 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2140 { 2141 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2142 unsigned long seq; 2143 int mode; 2144 u64 ns; 2145 2146 do { 2147 seq = read_seqcount_begin(>od->seq); 2148 ts->tv_sec = gtod->wall_time_sec; 2149 ns = gtod->clock.base_cycles; 2150 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2151 ns >>= gtod->clock.shift; 2152 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2153 2154 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2155 ts->tv_nsec = ns; 2156 2157 return mode; 2158 } 2159 2160 /* returns true if host is using TSC based clocksource */ 2161 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2162 { 2163 /* checked again under seqlock below */ 2164 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2165 return false; 2166 2167 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2168 tsc_timestamp)); 2169 } 2170 2171 /* returns true if host is using TSC based clocksource */ 2172 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2173 u64 *tsc_timestamp) 2174 { 2175 /* checked again under seqlock below */ 2176 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2177 return false; 2178 2179 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2180 } 2181 #endif 2182 2183 /* 2184 * 2185 * Assuming a stable TSC across physical CPUS, and a stable TSC 2186 * across virtual CPUs, the following condition is possible. 2187 * Each numbered line represents an event visible to both 2188 * CPUs at the next numbered event. 2189 * 2190 * "timespecX" represents host monotonic time. "tscX" represents 2191 * RDTSC value. 2192 * 2193 * VCPU0 on CPU0 | VCPU1 on CPU1 2194 * 2195 * 1. read timespec0,tsc0 2196 * 2. | timespec1 = timespec0 + N 2197 * | tsc1 = tsc0 + M 2198 * 3. transition to guest | transition to guest 2199 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2200 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2201 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2202 * 2203 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2204 * 2205 * - ret0 < ret1 2206 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2207 * ... 2208 * - 0 < N - M => M < N 2209 * 2210 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2211 * always the case (the difference between two distinct xtime instances 2212 * might be smaller then the difference between corresponding TSC reads, 2213 * when updating guest vcpus pvclock areas). 2214 * 2215 * To avoid that problem, do not allow visibility of distinct 2216 * system_timestamp/tsc_timestamp values simultaneously: use a master 2217 * copy of host monotonic time values. Update that master copy 2218 * in lockstep. 2219 * 2220 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2221 * 2222 */ 2223 2224 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2225 { 2226 #ifdef CONFIG_X86_64 2227 struct kvm_arch *ka = &kvm->arch; 2228 int vclock_mode; 2229 bool host_tsc_clocksource, vcpus_matched; 2230 2231 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2232 atomic_read(&kvm->online_vcpus)); 2233 2234 /* 2235 * If the host uses TSC clock, then passthrough TSC as stable 2236 * to the guest. 2237 */ 2238 host_tsc_clocksource = kvm_get_time_and_clockread( 2239 &ka->master_kernel_ns, 2240 &ka->master_cycle_now); 2241 2242 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2243 && !ka->backwards_tsc_observed 2244 && !ka->boot_vcpu_runs_old_kvmclock; 2245 2246 if (ka->use_master_clock) 2247 atomic_set(&kvm_guest_has_master_clock, 1); 2248 2249 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2250 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2251 vcpus_matched); 2252 #endif 2253 } 2254 2255 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2256 { 2257 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2258 } 2259 2260 static void kvm_gen_update_masterclock(struct kvm *kvm) 2261 { 2262 #ifdef CONFIG_X86_64 2263 int i; 2264 struct kvm_vcpu *vcpu; 2265 struct kvm_arch *ka = &kvm->arch; 2266 2267 spin_lock(&ka->pvclock_gtod_sync_lock); 2268 kvm_make_mclock_inprogress_request(kvm); 2269 /* no guest entries from this point */ 2270 pvclock_update_vm_gtod_copy(kvm); 2271 2272 kvm_for_each_vcpu(i, vcpu, kvm) 2273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2274 2275 /* guest entries allowed */ 2276 kvm_for_each_vcpu(i, vcpu, kvm) 2277 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2278 2279 spin_unlock(&ka->pvclock_gtod_sync_lock); 2280 #endif 2281 } 2282 2283 u64 get_kvmclock_ns(struct kvm *kvm) 2284 { 2285 struct kvm_arch *ka = &kvm->arch; 2286 struct pvclock_vcpu_time_info hv_clock; 2287 u64 ret; 2288 2289 spin_lock(&ka->pvclock_gtod_sync_lock); 2290 if (!ka->use_master_clock) { 2291 spin_unlock(&ka->pvclock_gtod_sync_lock); 2292 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2293 } 2294 2295 hv_clock.tsc_timestamp = ka->master_cycle_now; 2296 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2297 spin_unlock(&ka->pvclock_gtod_sync_lock); 2298 2299 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2300 get_cpu(); 2301 2302 if (__this_cpu_read(cpu_tsc_khz)) { 2303 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2304 &hv_clock.tsc_shift, 2305 &hv_clock.tsc_to_system_mul); 2306 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2307 } else 2308 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2309 2310 put_cpu(); 2311 2312 return ret; 2313 } 2314 2315 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2316 { 2317 struct kvm_vcpu_arch *vcpu = &v->arch; 2318 struct pvclock_vcpu_time_info guest_hv_clock; 2319 2320 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2321 &guest_hv_clock, sizeof(guest_hv_clock)))) 2322 return; 2323 2324 /* This VCPU is paused, but it's legal for a guest to read another 2325 * VCPU's kvmclock, so we really have to follow the specification where 2326 * it says that version is odd if data is being modified, and even after 2327 * it is consistent. 2328 * 2329 * Version field updates must be kept separate. This is because 2330 * kvm_write_guest_cached might use a "rep movs" instruction, and 2331 * writes within a string instruction are weakly ordered. So there 2332 * are three writes overall. 2333 * 2334 * As a small optimization, only write the version field in the first 2335 * and third write. The vcpu->pv_time cache is still valid, because the 2336 * version field is the first in the struct. 2337 */ 2338 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2339 2340 if (guest_hv_clock.version & 1) 2341 ++guest_hv_clock.version; /* first time write, random junk */ 2342 2343 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2344 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2345 &vcpu->hv_clock, 2346 sizeof(vcpu->hv_clock.version)); 2347 2348 smp_wmb(); 2349 2350 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2351 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2352 2353 if (vcpu->pvclock_set_guest_stopped_request) { 2354 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2355 vcpu->pvclock_set_guest_stopped_request = false; 2356 } 2357 2358 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2359 2360 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2361 &vcpu->hv_clock, 2362 sizeof(vcpu->hv_clock)); 2363 2364 smp_wmb(); 2365 2366 vcpu->hv_clock.version++; 2367 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2368 &vcpu->hv_clock, 2369 sizeof(vcpu->hv_clock.version)); 2370 } 2371 2372 static int kvm_guest_time_update(struct kvm_vcpu *v) 2373 { 2374 unsigned long flags, tgt_tsc_khz; 2375 struct kvm_vcpu_arch *vcpu = &v->arch; 2376 struct kvm_arch *ka = &v->kvm->arch; 2377 s64 kernel_ns; 2378 u64 tsc_timestamp, host_tsc; 2379 u8 pvclock_flags; 2380 bool use_master_clock; 2381 2382 kernel_ns = 0; 2383 host_tsc = 0; 2384 2385 /* 2386 * If the host uses TSC clock, then passthrough TSC as stable 2387 * to the guest. 2388 */ 2389 spin_lock(&ka->pvclock_gtod_sync_lock); 2390 use_master_clock = ka->use_master_clock; 2391 if (use_master_clock) { 2392 host_tsc = ka->master_cycle_now; 2393 kernel_ns = ka->master_kernel_ns; 2394 } 2395 spin_unlock(&ka->pvclock_gtod_sync_lock); 2396 2397 /* Keep irq disabled to prevent changes to the clock */ 2398 local_irq_save(flags); 2399 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2400 if (unlikely(tgt_tsc_khz == 0)) { 2401 local_irq_restore(flags); 2402 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2403 return 1; 2404 } 2405 if (!use_master_clock) { 2406 host_tsc = rdtsc(); 2407 kernel_ns = get_kvmclock_base_ns(); 2408 } 2409 2410 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2411 2412 /* 2413 * We may have to catch up the TSC to match elapsed wall clock 2414 * time for two reasons, even if kvmclock is used. 2415 * 1) CPU could have been running below the maximum TSC rate 2416 * 2) Broken TSC compensation resets the base at each VCPU 2417 * entry to avoid unknown leaps of TSC even when running 2418 * again on the same CPU. This may cause apparent elapsed 2419 * time to disappear, and the guest to stand still or run 2420 * very slowly. 2421 */ 2422 if (vcpu->tsc_catchup) { 2423 u64 tsc = compute_guest_tsc(v, kernel_ns); 2424 if (tsc > tsc_timestamp) { 2425 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2426 tsc_timestamp = tsc; 2427 } 2428 } 2429 2430 local_irq_restore(flags); 2431 2432 /* With all the info we got, fill in the values */ 2433 2434 if (kvm_has_tsc_control) 2435 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2436 2437 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2438 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2439 &vcpu->hv_clock.tsc_shift, 2440 &vcpu->hv_clock.tsc_to_system_mul); 2441 vcpu->hw_tsc_khz = tgt_tsc_khz; 2442 } 2443 2444 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2445 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2446 vcpu->last_guest_tsc = tsc_timestamp; 2447 WARN_ON((s64)vcpu->hv_clock.system_time < 0); 2448 2449 /* If the host uses TSC clocksource, then it is stable */ 2450 pvclock_flags = 0; 2451 if (use_master_clock) 2452 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2453 2454 vcpu->hv_clock.flags = pvclock_flags; 2455 2456 if (vcpu->pv_time_enabled) 2457 kvm_setup_pvclock_page(v); 2458 if (v == kvm_get_vcpu(v->kvm, 0)) 2459 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2460 return 0; 2461 } 2462 2463 /* 2464 * kvmclock updates which are isolated to a given vcpu, such as 2465 * vcpu->cpu migration, should not allow system_timestamp from 2466 * the rest of the vcpus to remain static. Otherwise ntp frequency 2467 * correction applies to one vcpu's system_timestamp but not 2468 * the others. 2469 * 2470 * So in those cases, request a kvmclock update for all vcpus. 2471 * We need to rate-limit these requests though, as they can 2472 * considerably slow guests that have a large number of vcpus. 2473 * The time for a remote vcpu to update its kvmclock is bound 2474 * by the delay we use to rate-limit the updates. 2475 */ 2476 2477 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2478 2479 static void kvmclock_update_fn(struct work_struct *work) 2480 { 2481 int i; 2482 struct delayed_work *dwork = to_delayed_work(work); 2483 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2484 kvmclock_update_work); 2485 struct kvm *kvm = container_of(ka, struct kvm, arch); 2486 struct kvm_vcpu *vcpu; 2487 2488 kvm_for_each_vcpu(i, vcpu, kvm) { 2489 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2490 kvm_vcpu_kick(vcpu); 2491 } 2492 } 2493 2494 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2495 { 2496 struct kvm *kvm = v->kvm; 2497 2498 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2499 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2500 KVMCLOCK_UPDATE_DELAY); 2501 } 2502 2503 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2504 2505 static void kvmclock_sync_fn(struct work_struct *work) 2506 { 2507 struct delayed_work *dwork = to_delayed_work(work); 2508 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2509 kvmclock_sync_work); 2510 struct kvm *kvm = container_of(ka, struct kvm, arch); 2511 2512 if (!kvmclock_periodic_sync) 2513 return; 2514 2515 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2516 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2517 KVMCLOCK_SYNC_PERIOD); 2518 } 2519 2520 /* 2521 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2522 */ 2523 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2524 { 2525 /* McStatusWrEn enabled? */ 2526 if (guest_cpuid_is_amd(vcpu)) 2527 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2528 2529 return false; 2530 } 2531 2532 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2533 { 2534 u64 mcg_cap = vcpu->arch.mcg_cap; 2535 unsigned bank_num = mcg_cap & 0xff; 2536 u32 msr = msr_info->index; 2537 u64 data = msr_info->data; 2538 2539 switch (msr) { 2540 case MSR_IA32_MCG_STATUS: 2541 vcpu->arch.mcg_status = data; 2542 break; 2543 case MSR_IA32_MCG_CTL: 2544 if (!(mcg_cap & MCG_CTL_P) && 2545 (data || !msr_info->host_initiated)) 2546 return 1; 2547 if (data != 0 && data != ~(u64)0) 2548 return 1; 2549 vcpu->arch.mcg_ctl = data; 2550 break; 2551 default: 2552 if (msr >= MSR_IA32_MC0_CTL && 2553 msr < MSR_IA32_MCx_CTL(bank_num)) { 2554 u32 offset = array_index_nospec( 2555 msr - MSR_IA32_MC0_CTL, 2556 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2557 2558 /* only 0 or all 1s can be written to IA32_MCi_CTL 2559 * some Linux kernels though clear bit 10 in bank 4 to 2560 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2561 * this to avoid an uncatched #GP in the guest 2562 */ 2563 if ((offset & 0x3) == 0 && 2564 data != 0 && (data | (1 << 10)) != ~(u64)0) 2565 return -1; 2566 2567 /* MCi_STATUS */ 2568 if (!msr_info->host_initiated && 2569 (offset & 0x3) == 1 && data != 0) { 2570 if (!can_set_mci_status(vcpu)) 2571 return -1; 2572 } 2573 2574 vcpu->arch.mce_banks[offset] = data; 2575 break; 2576 } 2577 return 1; 2578 } 2579 return 0; 2580 } 2581 2582 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2583 { 2584 struct kvm *kvm = vcpu->kvm; 2585 int lm = is_long_mode(vcpu); 2586 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2587 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2588 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2589 : kvm->arch.xen_hvm_config.blob_size_32; 2590 u32 page_num = data & ~PAGE_MASK; 2591 u64 page_addr = data & PAGE_MASK; 2592 u8 *page; 2593 int r; 2594 2595 r = -E2BIG; 2596 if (page_num >= blob_size) 2597 goto out; 2598 r = -ENOMEM; 2599 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2600 if (IS_ERR(page)) { 2601 r = PTR_ERR(page); 2602 goto out; 2603 } 2604 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2605 goto out_free; 2606 r = 0; 2607 out_free: 2608 kfree(page); 2609 out: 2610 return r; 2611 } 2612 2613 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2614 { 2615 gpa_t gpa = data & ~0x3f; 2616 2617 /* Bits 3:5 are reserved, Should be zero */ 2618 if (data & 0x38) 2619 return 1; 2620 2621 vcpu->arch.apf.msr_val = data; 2622 2623 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2624 kvm_clear_async_pf_completion_queue(vcpu); 2625 kvm_async_pf_hash_reset(vcpu); 2626 return 0; 2627 } 2628 2629 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2630 sizeof(u32))) 2631 return 1; 2632 2633 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2634 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2635 kvm_async_pf_wakeup_all(vcpu); 2636 return 0; 2637 } 2638 2639 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2640 { 2641 vcpu->arch.pv_time_enabled = false; 2642 vcpu->arch.time = 0; 2643 } 2644 2645 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2646 { 2647 ++vcpu->stat.tlb_flush; 2648 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2649 } 2650 2651 static void record_steal_time(struct kvm_vcpu *vcpu) 2652 { 2653 struct kvm_host_map map; 2654 struct kvm_steal_time *st; 2655 2656 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2657 return; 2658 2659 /* -EAGAIN is returned in atomic context so we can just return. */ 2660 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2661 &map, &vcpu->arch.st.cache, false)) 2662 return; 2663 2664 st = map.hva + 2665 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2666 2667 /* 2668 * Doing a TLB flush here, on the guest's behalf, can avoid 2669 * expensive IPIs. 2670 */ 2671 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2672 st->preempted & KVM_VCPU_FLUSH_TLB); 2673 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2674 kvm_vcpu_flush_tlb(vcpu, false); 2675 2676 vcpu->arch.st.preempted = 0; 2677 2678 if (st->version & 1) 2679 st->version += 1; /* first time write, random junk */ 2680 2681 st->version += 1; 2682 2683 smp_wmb(); 2684 2685 st->steal += current->sched_info.run_delay - 2686 vcpu->arch.st.last_steal; 2687 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2688 2689 smp_wmb(); 2690 2691 st->version += 1; 2692 2693 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2694 } 2695 2696 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2697 { 2698 bool pr = false; 2699 u32 msr = msr_info->index; 2700 u64 data = msr_info->data; 2701 2702 switch (msr) { 2703 case MSR_AMD64_NB_CFG: 2704 case MSR_IA32_UCODE_WRITE: 2705 case MSR_VM_HSAVE_PA: 2706 case MSR_AMD64_PATCH_LOADER: 2707 case MSR_AMD64_BU_CFG2: 2708 case MSR_AMD64_DC_CFG: 2709 case MSR_F15H_EX_CFG: 2710 break; 2711 2712 case MSR_IA32_UCODE_REV: 2713 if (msr_info->host_initiated) 2714 vcpu->arch.microcode_version = data; 2715 break; 2716 case MSR_IA32_ARCH_CAPABILITIES: 2717 if (!msr_info->host_initiated) 2718 return 1; 2719 vcpu->arch.arch_capabilities = data; 2720 break; 2721 case MSR_EFER: 2722 return set_efer(vcpu, msr_info); 2723 case MSR_K7_HWCR: 2724 data &= ~(u64)0x40; /* ignore flush filter disable */ 2725 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2726 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2727 2728 /* Handle McStatusWrEn */ 2729 if (data == BIT_ULL(18)) { 2730 vcpu->arch.msr_hwcr = data; 2731 } else if (data != 0) { 2732 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2733 data); 2734 return 1; 2735 } 2736 break; 2737 case MSR_FAM10H_MMIO_CONF_BASE: 2738 if (data != 0) { 2739 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2740 "0x%llx\n", data); 2741 return 1; 2742 } 2743 break; 2744 case MSR_IA32_DEBUGCTLMSR: 2745 if (!data) { 2746 /* We support the non-activated case already */ 2747 break; 2748 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2749 /* Values other than LBR and BTF are vendor-specific, 2750 thus reserved and should throw a #GP */ 2751 return 1; 2752 } 2753 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2754 __func__, data); 2755 break; 2756 case 0x200 ... 0x2ff: 2757 return kvm_mtrr_set_msr(vcpu, msr, data); 2758 case MSR_IA32_APICBASE: 2759 return kvm_set_apic_base(vcpu, msr_info); 2760 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2761 return kvm_x2apic_msr_write(vcpu, msr, data); 2762 case MSR_IA32_TSCDEADLINE: 2763 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2764 break; 2765 case MSR_IA32_TSC_ADJUST: 2766 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2767 if (!msr_info->host_initiated) { 2768 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2769 adjust_tsc_offset_guest(vcpu, adj); 2770 } 2771 vcpu->arch.ia32_tsc_adjust_msr = data; 2772 } 2773 break; 2774 case MSR_IA32_MISC_ENABLE: 2775 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2776 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2777 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2778 return 1; 2779 vcpu->arch.ia32_misc_enable_msr = data; 2780 kvm_update_cpuid(vcpu); 2781 } else { 2782 vcpu->arch.ia32_misc_enable_msr = data; 2783 } 2784 break; 2785 case MSR_IA32_SMBASE: 2786 if (!msr_info->host_initiated) 2787 return 1; 2788 vcpu->arch.smbase = data; 2789 break; 2790 case MSR_IA32_POWER_CTL: 2791 vcpu->arch.msr_ia32_power_ctl = data; 2792 break; 2793 case MSR_IA32_TSC: 2794 kvm_write_tsc(vcpu, msr_info); 2795 break; 2796 case MSR_IA32_XSS: 2797 if (!msr_info->host_initiated && 2798 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2799 return 1; 2800 /* 2801 * We do support PT if kvm_x86_ops->pt_supported(), but we do 2802 * not support IA32_XSS[bit 8]. Guests will have to use 2803 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT 2804 * MSRs. 2805 */ 2806 if (data != 0) 2807 return 1; 2808 vcpu->arch.ia32_xss = data; 2809 break; 2810 case MSR_SMI_COUNT: 2811 if (!msr_info->host_initiated) 2812 return 1; 2813 vcpu->arch.smi_count = data; 2814 break; 2815 case MSR_KVM_WALL_CLOCK_NEW: 2816 case MSR_KVM_WALL_CLOCK: 2817 vcpu->kvm->arch.wall_clock = data; 2818 kvm_write_wall_clock(vcpu->kvm, data); 2819 break; 2820 case MSR_KVM_SYSTEM_TIME_NEW: 2821 case MSR_KVM_SYSTEM_TIME: { 2822 struct kvm_arch *ka = &vcpu->kvm->arch; 2823 2824 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2825 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2826 2827 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2828 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2829 2830 ka->boot_vcpu_runs_old_kvmclock = tmp; 2831 } 2832 2833 vcpu->arch.time = data; 2834 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2835 2836 /* we verify if the enable bit is set... */ 2837 vcpu->arch.pv_time_enabled = false; 2838 if (!(data & 1)) 2839 break; 2840 2841 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2842 &vcpu->arch.pv_time, data & ~1ULL, 2843 sizeof(struct pvclock_vcpu_time_info))) 2844 vcpu->arch.pv_time_enabled = true; 2845 2846 break; 2847 } 2848 case MSR_KVM_ASYNC_PF_EN: 2849 if (kvm_pv_enable_async_pf(vcpu, data)) 2850 return 1; 2851 break; 2852 case MSR_KVM_STEAL_TIME: 2853 2854 if (unlikely(!sched_info_on())) 2855 return 1; 2856 2857 if (data & KVM_STEAL_RESERVED_MASK) 2858 return 1; 2859 2860 vcpu->arch.st.msr_val = data; 2861 2862 if (!(data & KVM_MSR_ENABLED)) 2863 break; 2864 2865 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2866 2867 break; 2868 case MSR_KVM_PV_EOI_EN: 2869 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2870 return 1; 2871 break; 2872 2873 case MSR_KVM_POLL_CONTROL: 2874 /* only enable bit supported */ 2875 if (data & (-1ULL << 1)) 2876 return 1; 2877 2878 vcpu->arch.msr_kvm_poll_control = data; 2879 break; 2880 2881 case MSR_IA32_MCG_CTL: 2882 case MSR_IA32_MCG_STATUS: 2883 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2884 return set_msr_mce(vcpu, msr_info); 2885 2886 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2887 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2888 pr = true; /* fall through */ 2889 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2890 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2891 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2892 return kvm_pmu_set_msr(vcpu, msr_info); 2893 2894 if (pr || data != 0) 2895 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2896 "0x%x data 0x%llx\n", msr, data); 2897 break; 2898 case MSR_K7_CLK_CTL: 2899 /* 2900 * Ignore all writes to this no longer documented MSR. 2901 * Writes are only relevant for old K7 processors, 2902 * all pre-dating SVM, but a recommended workaround from 2903 * AMD for these chips. It is possible to specify the 2904 * affected processor models on the command line, hence 2905 * the need to ignore the workaround. 2906 */ 2907 break; 2908 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2909 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2910 case HV_X64_MSR_CRASH_CTL: 2911 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2912 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2913 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2914 case HV_X64_MSR_TSC_EMULATION_STATUS: 2915 return kvm_hv_set_msr_common(vcpu, msr, data, 2916 msr_info->host_initiated); 2917 case MSR_IA32_BBL_CR_CTL3: 2918 /* Drop writes to this legacy MSR -- see rdmsr 2919 * counterpart for further detail. 2920 */ 2921 if (report_ignored_msrs) 2922 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2923 msr, data); 2924 break; 2925 case MSR_AMD64_OSVW_ID_LENGTH: 2926 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2927 return 1; 2928 vcpu->arch.osvw.length = data; 2929 break; 2930 case MSR_AMD64_OSVW_STATUS: 2931 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2932 return 1; 2933 vcpu->arch.osvw.status = data; 2934 break; 2935 case MSR_PLATFORM_INFO: 2936 if (!msr_info->host_initiated || 2937 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2938 cpuid_fault_enabled(vcpu))) 2939 return 1; 2940 vcpu->arch.msr_platform_info = data; 2941 break; 2942 case MSR_MISC_FEATURES_ENABLES: 2943 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2944 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2945 !supports_cpuid_fault(vcpu))) 2946 return 1; 2947 vcpu->arch.msr_misc_features_enables = data; 2948 break; 2949 default: 2950 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2951 return xen_hvm_config(vcpu, data); 2952 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2953 return kvm_pmu_set_msr(vcpu, msr_info); 2954 if (!ignore_msrs) { 2955 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2956 msr, data); 2957 return 1; 2958 } else { 2959 if (report_ignored_msrs) 2960 vcpu_unimpl(vcpu, 2961 "ignored wrmsr: 0x%x data 0x%llx\n", 2962 msr, data); 2963 break; 2964 } 2965 } 2966 return 0; 2967 } 2968 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2969 2970 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 2971 { 2972 u64 data; 2973 u64 mcg_cap = vcpu->arch.mcg_cap; 2974 unsigned bank_num = mcg_cap & 0xff; 2975 2976 switch (msr) { 2977 case MSR_IA32_P5_MC_ADDR: 2978 case MSR_IA32_P5_MC_TYPE: 2979 data = 0; 2980 break; 2981 case MSR_IA32_MCG_CAP: 2982 data = vcpu->arch.mcg_cap; 2983 break; 2984 case MSR_IA32_MCG_CTL: 2985 if (!(mcg_cap & MCG_CTL_P) && !host) 2986 return 1; 2987 data = vcpu->arch.mcg_ctl; 2988 break; 2989 case MSR_IA32_MCG_STATUS: 2990 data = vcpu->arch.mcg_status; 2991 break; 2992 default: 2993 if (msr >= MSR_IA32_MC0_CTL && 2994 msr < MSR_IA32_MCx_CTL(bank_num)) { 2995 u32 offset = array_index_nospec( 2996 msr - MSR_IA32_MC0_CTL, 2997 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2998 2999 data = vcpu->arch.mce_banks[offset]; 3000 break; 3001 } 3002 return 1; 3003 } 3004 *pdata = data; 3005 return 0; 3006 } 3007 3008 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3009 { 3010 switch (msr_info->index) { 3011 case MSR_IA32_PLATFORM_ID: 3012 case MSR_IA32_EBL_CR_POWERON: 3013 case MSR_IA32_DEBUGCTLMSR: 3014 case MSR_IA32_LASTBRANCHFROMIP: 3015 case MSR_IA32_LASTBRANCHTOIP: 3016 case MSR_IA32_LASTINTFROMIP: 3017 case MSR_IA32_LASTINTTOIP: 3018 case MSR_K8_SYSCFG: 3019 case MSR_K8_TSEG_ADDR: 3020 case MSR_K8_TSEG_MASK: 3021 case MSR_VM_HSAVE_PA: 3022 case MSR_K8_INT_PENDING_MSG: 3023 case MSR_AMD64_NB_CFG: 3024 case MSR_FAM10H_MMIO_CONF_BASE: 3025 case MSR_AMD64_BU_CFG2: 3026 case MSR_IA32_PERF_CTL: 3027 case MSR_AMD64_DC_CFG: 3028 case MSR_F15H_EX_CFG: 3029 msr_info->data = 0; 3030 break; 3031 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3032 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3033 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3034 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3035 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3036 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3037 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3038 msr_info->data = 0; 3039 break; 3040 case MSR_IA32_UCODE_REV: 3041 msr_info->data = vcpu->arch.microcode_version; 3042 break; 3043 case MSR_IA32_ARCH_CAPABILITIES: 3044 if (!msr_info->host_initiated && 3045 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3046 return 1; 3047 msr_info->data = vcpu->arch.arch_capabilities; 3048 break; 3049 case MSR_IA32_POWER_CTL: 3050 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3051 break; 3052 case MSR_IA32_TSC: 3053 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3054 break; 3055 case MSR_MTRRcap: 3056 case 0x200 ... 0x2ff: 3057 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3058 case 0xcd: /* fsb frequency */ 3059 msr_info->data = 3; 3060 break; 3061 /* 3062 * MSR_EBC_FREQUENCY_ID 3063 * Conservative value valid for even the basic CPU models. 3064 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3065 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3066 * and 266MHz for model 3, or 4. Set Core Clock 3067 * Frequency to System Bus Frequency Ratio to 1 (bits 3068 * 31:24) even though these are only valid for CPU 3069 * models > 2, however guests may end up dividing or 3070 * multiplying by zero otherwise. 3071 */ 3072 case MSR_EBC_FREQUENCY_ID: 3073 msr_info->data = 1 << 24; 3074 break; 3075 case MSR_IA32_APICBASE: 3076 msr_info->data = kvm_get_apic_base(vcpu); 3077 break; 3078 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 3079 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3080 break; 3081 case MSR_IA32_TSCDEADLINE: 3082 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3083 break; 3084 case MSR_IA32_TSC_ADJUST: 3085 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3086 break; 3087 case MSR_IA32_MISC_ENABLE: 3088 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3089 break; 3090 case MSR_IA32_SMBASE: 3091 if (!msr_info->host_initiated) 3092 return 1; 3093 msr_info->data = vcpu->arch.smbase; 3094 break; 3095 case MSR_SMI_COUNT: 3096 msr_info->data = vcpu->arch.smi_count; 3097 break; 3098 case MSR_IA32_PERF_STATUS: 3099 /* TSC increment by tick */ 3100 msr_info->data = 1000ULL; 3101 /* CPU multiplier */ 3102 msr_info->data |= (((uint64_t)4ULL) << 40); 3103 break; 3104 case MSR_EFER: 3105 msr_info->data = vcpu->arch.efer; 3106 break; 3107 case MSR_KVM_WALL_CLOCK: 3108 case MSR_KVM_WALL_CLOCK_NEW: 3109 msr_info->data = vcpu->kvm->arch.wall_clock; 3110 break; 3111 case MSR_KVM_SYSTEM_TIME: 3112 case MSR_KVM_SYSTEM_TIME_NEW: 3113 msr_info->data = vcpu->arch.time; 3114 break; 3115 case MSR_KVM_ASYNC_PF_EN: 3116 msr_info->data = vcpu->arch.apf.msr_val; 3117 break; 3118 case MSR_KVM_STEAL_TIME: 3119 msr_info->data = vcpu->arch.st.msr_val; 3120 break; 3121 case MSR_KVM_PV_EOI_EN: 3122 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3123 break; 3124 case MSR_KVM_POLL_CONTROL: 3125 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3126 break; 3127 case MSR_IA32_P5_MC_ADDR: 3128 case MSR_IA32_P5_MC_TYPE: 3129 case MSR_IA32_MCG_CAP: 3130 case MSR_IA32_MCG_CTL: 3131 case MSR_IA32_MCG_STATUS: 3132 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3133 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3134 msr_info->host_initiated); 3135 case MSR_IA32_XSS: 3136 if (!msr_info->host_initiated && 3137 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3138 return 1; 3139 msr_info->data = vcpu->arch.ia32_xss; 3140 break; 3141 case MSR_K7_CLK_CTL: 3142 /* 3143 * Provide expected ramp-up count for K7. All other 3144 * are set to zero, indicating minimum divisors for 3145 * every field. 3146 * 3147 * This prevents guest kernels on AMD host with CPU 3148 * type 6, model 8 and higher from exploding due to 3149 * the rdmsr failing. 3150 */ 3151 msr_info->data = 0x20000000; 3152 break; 3153 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3154 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3155 case HV_X64_MSR_CRASH_CTL: 3156 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3157 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3158 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3159 case HV_X64_MSR_TSC_EMULATION_STATUS: 3160 return kvm_hv_get_msr_common(vcpu, 3161 msr_info->index, &msr_info->data, 3162 msr_info->host_initiated); 3163 break; 3164 case MSR_IA32_BBL_CR_CTL3: 3165 /* This legacy MSR exists but isn't fully documented in current 3166 * silicon. It is however accessed by winxp in very narrow 3167 * scenarios where it sets bit #19, itself documented as 3168 * a "reserved" bit. Best effort attempt to source coherent 3169 * read data here should the balance of the register be 3170 * interpreted by the guest: 3171 * 3172 * L2 cache control register 3: 64GB range, 256KB size, 3173 * enabled, latency 0x1, configured 3174 */ 3175 msr_info->data = 0xbe702111; 3176 break; 3177 case MSR_AMD64_OSVW_ID_LENGTH: 3178 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3179 return 1; 3180 msr_info->data = vcpu->arch.osvw.length; 3181 break; 3182 case MSR_AMD64_OSVW_STATUS: 3183 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3184 return 1; 3185 msr_info->data = vcpu->arch.osvw.status; 3186 break; 3187 case MSR_PLATFORM_INFO: 3188 if (!msr_info->host_initiated && 3189 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3190 return 1; 3191 msr_info->data = vcpu->arch.msr_platform_info; 3192 break; 3193 case MSR_MISC_FEATURES_ENABLES: 3194 msr_info->data = vcpu->arch.msr_misc_features_enables; 3195 break; 3196 case MSR_K7_HWCR: 3197 msr_info->data = vcpu->arch.msr_hwcr; 3198 break; 3199 default: 3200 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3201 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3202 if (!ignore_msrs) { 3203 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3204 msr_info->index); 3205 return 1; 3206 } else { 3207 if (report_ignored_msrs) 3208 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3209 msr_info->index); 3210 msr_info->data = 0; 3211 } 3212 break; 3213 } 3214 return 0; 3215 } 3216 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3217 3218 /* 3219 * Read or write a bunch of msrs. All parameters are kernel addresses. 3220 * 3221 * @return number of msrs set successfully. 3222 */ 3223 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3224 struct kvm_msr_entry *entries, 3225 int (*do_msr)(struct kvm_vcpu *vcpu, 3226 unsigned index, u64 *data)) 3227 { 3228 int i; 3229 3230 for (i = 0; i < msrs->nmsrs; ++i) 3231 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3232 break; 3233 3234 return i; 3235 } 3236 3237 /* 3238 * Read or write a bunch of msrs. Parameters are user addresses. 3239 * 3240 * @return number of msrs set successfully. 3241 */ 3242 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3243 int (*do_msr)(struct kvm_vcpu *vcpu, 3244 unsigned index, u64 *data), 3245 int writeback) 3246 { 3247 struct kvm_msrs msrs; 3248 struct kvm_msr_entry *entries; 3249 int r, n; 3250 unsigned size; 3251 3252 r = -EFAULT; 3253 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3254 goto out; 3255 3256 r = -E2BIG; 3257 if (msrs.nmsrs >= MAX_IO_MSRS) 3258 goto out; 3259 3260 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3261 entries = memdup_user(user_msrs->entries, size); 3262 if (IS_ERR(entries)) { 3263 r = PTR_ERR(entries); 3264 goto out; 3265 } 3266 3267 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3268 if (r < 0) 3269 goto out_free; 3270 3271 r = -EFAULT; 3272 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3273 goto out_free; 3274 3275 r = n; 3276 3277 out_free: 3278 kfree(entries); 3279 out: 3280 return r; 3281 } 3282 3283 static inline bool kvm_can_mwait_in_guest(void) 3284 { 3285 return boot_cpu_has(X86_FEATURE_MWAIT) && 3286 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3287 boot_cpu_has(X86_FEATURE_ARAT); 3288 } 3289 3290 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3291 { 3292 int r = 0; 3293 3294 switch (ext) { 3295 case KVM_CAP_IRQCHIP: 3296 case KVM_CAP_HLT: 3297 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3298 case KVM_CAP_SET_TSS_ADDR: 3299 case KVM_CAP_EXT_CPUID: 3300 case KVM_CAP_EXT_EMUL_CPUID: 3301 case KVM_CAP_CLOCKSOURCE: 3302 case KVM_CAP_PIT: 3303 case KVM_CAP_NOP_IO_DELAY: 3304 case KVM_CAP_MP_STATE: 3305 case KVM_CAP_SYNC_MMU: 3306 case KVM_CAP_USER_NMI: 3307 case KVM_CAP_REINJECT_CONTROL: 3308 case KVM_CAP_IRQ_INJECT_STATUS: 3309 case KVM_CAP_IOEVENTFD: 3310 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3311 case KVM_CAP_PIT2: 3312 case KVM_CAP_PIT_STATE2: 3313 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3314 case KVM_CAP_XEN_HVM: 3315 case KVM_CAP_VCPU_EVENTS: 3316 case KVM_CAP_HYPERV: 3317 case KVM_CAP_HYPERV_VAPIC: 3318 case KVM_CAP_HYPERV_SPIN: 3319 case KVM_CAP_HYPERV_SYNIC: 3320 case KVM_CAP_HYPERV_SYNIC2: 3321 case KVM_CAP_HYPERV_VP_INDEX: 3322 case KVM_CAP_HYPERV_EVENTFD: 3323 case KVM_CAP_HYPERV_TLBFLUSH: 3324 case KVM_CAP_HYPERV_SEND_IPI: 3325 case KVM_CAP_HYPERV_CPUID: 3326 case KVM_CAP_PCI_SEGMENT: 3327 case KVM_CAP_DEBUGREGS: 3328 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3329 case KVM_CAP_XSAVE: 3330 case KVM_CAP_ASYNC_PF: 3331 case KVM_CAP_GET_TSC_KHZ: 3332 case KVM_CAP_KVMCLOCK_CTRL: 3333 case KVM_CAP_READONLY_MEM: 3334 case KVM_CAP_HYPERV_TIME: 3335 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3336 case KVM_CAP_TSC_DEADLINE_TIMER: 3337 case KVM_CAP_DISABLE_QUIRKS: 3338 case KVM_CAP_SET_BOOT_CPU_ID: 3339 case KVM_CAP_SPLIT_IRQCHIP: 3340 case KVM_CAP_IMMEDIATE_EXIT: 3341 case KVM_CAP_PMU_EVENT_FILTER: 3342 case KVM_CAP_GET_MSR_FEATURES: 3343 case KVM_CAP_MSR_PLATFORM_INFO: 3344 case KVM_CAP_EXCEPTION_PAYLOAD: 3345 r = 1; 3346 break; 3347 case KVM_CAP_SYNC_REGS: 3348 r = KVM_SYNC_X86_VALID_FIELDS; 3349 break; 3350 case KVM_CAP_ADJUST_CLOCK: 3351 r = KVM_CLOCK_TSC_STABLE; 3352 break; 3353 case KVM_CAP_X86_DISABLE_EXITS: 3354 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3355 KVM_X86_DISABLE_EXITS_CSTATE; 3356 if(kvm_can_mwait_in_guest()) 3357 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3358 break; 3359 case KVM_CAP_X86_SMM: 3360 /* SMBASE is usually relocated above 1M on modern chipsets, 3361 * and SMM handlers might indeed rely on 4G segment limits, 3362 * so do not report SMM to be available if real mode is 3363 * emulated via vm86 mode. Still, do not go to great lengths 3364 * to avoid userspace's usage of the feature, because it is a 3365 * fringe case that is not enabled except via specific settings 3366 * of the module parameters. 3367 */ 3368 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); 3369 break; 3370 case KVM_CAP_VAPIC: 3371 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 3372 break; 3373 case KVM_CAP_NR_VCPUS: 3374 r = KVM_SOFT_MAX_VCPUS; 3375 break; 3376 case KVM_CAP_MAX_VCPUS: 3377 r = KVM_MAX_VCPUS; 3378 break; 3379 case KVM_CAP_MAX_VCPU_ID: 3380 r = KVM_MAX_VCPU_ID; 3381 break; 3382 case KVM_CAP_PV_MMU: /* obsolete */ 3383 r = 0; 3384 break; 3385 case KVM_CAP_MCE: 3386 r = KVM_MAX_MCE_BANKS; 3387 break; 3388 case KVM_CAP_XCRS: 3389 r = boot_cpu_has(X86_FEATURE_XSAVE); 3390 break; 3391 case KVM_CAP_TSC_CONTROL: 3392 r = kvm_has_tsc_control; 3393 break; 3394 case KVM_CAP_X2APIC_API: 3395 r = KVM_X2APIC_API_VALID_FLAGS; 3396 break; 3397 case KVM_CAP_NESTED_STATE: 3398 r = kvm_x86_ops->get_nested_state ? 3399 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0; 3400 break; 3401 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3402 r = kvm_x86_ops->enable_direct_tlbflush != NULL; 3403 break; 3404 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3405 r = kvm_x86_ops->nested_enable_evmcs != NULL; 3406 break; 3407 default: 3408 break; 3409 } 3410 return r; 3411 3412 } 3413 3414 long kvm_arch_dev_ioctl(struct file *filp, 3415 unsigned int ioctl, unsigned long arg) 3416 { 3417 void __user *argp = (void __user *)arg; 3418 long r; 3419 3420 switch (ioctl) { 3421 case KVM_GET_MSR_INDEX_LIST: { 3422 struct kvm_msr_list __user *user_msr_list = argp; 3423 struct kvm_msr_list msr_list; 3424 unsigned n; 3425 3426 r = -EFAULT; 3427 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3428 goto out; 3429 n = msr_list.nmsrs; 3430 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3431 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3432 goto out; 3433 r = -E2BIG; 3434 if (n < msr_list.nmsrs) 3435 goto out; 3436 r = -EFAULT; 3437 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3438 num_msrs_to_save * sizeof(u32))) 3439 goto out; 3440 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3441 &emulated_msrs, 3442 num_emulated_msrs * sizeof(u32))) 3443 goto out; 3444 r = 0; 3445 break; 3446 } 3447 case KVM_GET_SUPPORTED_CPUID: 3448 case KVM_GET_EMULATED_CPUID: { 3449 struct kvm_cpuid2 __user *cpuid_arg = argp; 3450 struct kvm_cpuid2 cpuid; 3451 3452 r = -EFAULT; 3453 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3454 goto out; 3455 3456 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3457 ioctl); 3458 if (r) 3459 goto out; 3460 3461 r = -EFAULT; 3462 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3463 goto out; 3464 r = 0; 3465 break; 3466 } 3467 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 3468 r = -EFAULT; 3469 if (copy_to_user(argp, &kvm_mce_cap_supported, 3470 sizeof(kvm_mce_cap_supported))) 3471 goto out; 3472 r = 0; 3473 break; 3474 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3475 struct kvm_msr_list __user *user_msr_list = argp; 3476 struct kvm_msr_list msr_list; 3477 unsigned int n; 3478 3479 r = -EFAULT; 3480 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3481 goto out; 3482 n = msr_list.nmsrs; 3483 msr_list.nmsrs = num_msr_based_features; 3484 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3485 goto out; 3486 r = -E2BIG; 3487 if (n < msr_list.nmsrs) 3488 goto out; 3489 r = -EFAULT; 3490 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3491 num_msr_based_features * sizeof(u32))) 3492 goto out; 3493 r = 0; 3494 break; 3495 } 3496 case KVM_GET_MSRS: 3497 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3498 break; 3499 } 3500 default: 3501 r = -EINVAL; 3502 } 3503 out: 3504 return r; 3505 } 3506 3507 static void wbinvd_ipi(void *garbage) 3508 { 3509 wbinvd(); 3510 } 3511 3512 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3513 { 3514 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3515 } 3516 3517 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3518 { 3519 /* Address WBINVD may be executed by guest */ 3520 if (need_emulate_wbinvd(vcpu)) { 3521 if (kvm_x86_ops->has_wbinvd_exit()) 3522 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3523 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3524 smp_call_function_single(vcpu->cpu, 3525 wbinvd_ipi, NULL, 1); 3526 } 3527 3528 kvm_x86_ops->vcpu_load(vcpu, cpu); 3529 3530 /* Apply any externally detected TSC adjustments (due to suspend) */ 3531 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3532 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3533 vcpu->arch.tsc_offset_adjustment = 0; 3534 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3535 } 3536 3537 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3538 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3539 rdtsc() - vcpu->arch.last_host_tsc; 3540 if (tsc_delta < 0) 3541 mark_tsc_unstable("KVM discovered backwards TSC"); 3542 3543 if (kvm_check_tsc_unstable()) { 3544 u64 offset = kvm_compute_tsc_offset(vcpu, 3545 vcpu->arch.last_guest_tsc); 3546 kvm_vcpu_write_tsc_offset(vcpu, offset); 3547 vcpu->arch.tsc_catchup = 1; 3548 } 3549 3550 if (kvm_lapic_hv_timer_in_use(vcpu)) 3551 kvm_lapic_restart_hv_timer(vcpu); 3552 3553 /* 3554 * On a host with synchronized TSC, there is no need to update 3555 * kvmclock on vcpu->cpu migration 3556 */ 3557 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3558 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3559 if (vcpu->cpu != cpu) 3560 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3561 vcpu->cpu = cpu; 3562 } 3563 3564 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3565 } 3566 3567 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3568 { 3569 struct kvm_host_map map; 3570 struct kvm_steal_time *st; 3571 3572 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3573 return; 3574 3575 if (vcpu->arch.st.preempted) 3576 return; 3577 3578 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3579 &vcpu->arch.st.cache, true)) 3580 return; 3581 3582 st = map.hva + 3583 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3584 3585 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3586 3587 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3588 } 3589 3590 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3591 { 3592 int idx; 3593 3594 if (vcpu->preempted) 3595 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3596 3597 /* 3598 * Disable page faults because we're in atomic context here. 3599 * kvm_write_guest_offset_cached() would call might_fault() 3600 * that relies on pagefault_disable() to tell if there's a 3601 * bug. NOTE: the write to guest memory may not go through if 3602 * during postcopy live migration or if there's heavy guest 3603 * paging. 3604 */ 3605 pagefault_disable(); 3606 /* 3607 * kvm_memslots() will be called by 3608 * kvm_write_guest_offset_cached() so take the srcu lock. 3609 */ 3610 idx = srcu_read_lock(&vcpu->kvm->srcu); 3611 kvm_steal_time_set_preempted(vcpu); 3612 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3613 pagefault_enable(); 3614 kvm_x86_ops->vcpu_put(vcpu); 3615 vcpu->arch.last_host_tsc = rdtsc(); 3616 /* 3617 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3618 * on every vmexit, but if not, we might have a stale dr6 from the 3619 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3620 */ 3621 set_debugreg(0, 6); 3622 } 3623 3624 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3625 struct kvm_lapic_state *s) 3626 { 3627 if (vcpu->arch.apicv_active) 3628 kvm_x86_ops->sync_pir_to_irr(vcpu); 3629 3630 return kvm_apic_get_state(vcpu, s); 3631 } 3632 3633 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3634 struct kvm_lapic_state *s) 3635 { 3636 int r; 3637 3638 r = kvm_apic_set_state(vcpu, s); 3639 if (r) 3640 return r; 3641 update_cr8_intercept(vcpu); 3642 3643 return 0; 3644 } 3645 3646 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3647 { 3648 return (!lapic_in_kernel(vcpu) || 3649 kvm_apic_accept_pic_intr(vcpu)); 3650 } 3651 3652 /* 3653 * if userspace requested an interrupt window, check that the 3654 * interrupt window is open. 3655 * 3656 * No need to exit to userspace if we already have an interrupt queued. 3657 */ 3658 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3659 { 3660 return kvm_arch_interrupt_allowed(vcpu) && 3661 !kvm_cpu_has_interrupt(vcpu) && 3662 !kvm_event_needs_reinjection(vcpu) && 3663 kvm_cpu_accept_dm_intr(vcpu); 3664 } 3665 3666 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3667 struct kvm_interrupt *irq) 3668 { 3669 if (irq->irq >= KVM_NR_INTERRUPTS) 3670 return -EINVAL; 3671 3672 if (!irqchip_in_kernel(vcpu->kvm)) { 3673 kvm_queue_interrupt(vcpu, irq->irq, false); 3674 kvm_make_request(KVM_REQ_EVENT, vcpu); 3675 return 0; 3676 } 3677 3678 /* 3679 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3680 * fail for in-kernel 8259. 3681 */ 3682 if (pic_in_kernel(vcpu->kvm)) 3683 return -ENXIO; 3684 3685 if (vcpu->arch.pending_external_vector != -1) 3686 return -EEXIST; 3687 3688 vcpu->arch.pending_external_vector = irq->irq; 3689 kvm_make_request(KVM_REQ_EVENT, vcpu); 3690 return 0; 3691 } 3692 3693 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3694 { 3695 kvm_inject_nmi(vcpu); 3696 3697 return 0; 3698 } 3699 3700 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3701 { 3702 kvm_make_request(KVM_REQ_SMI, vcpu); 3703 3704 return 0; 3705 } 3706 3707 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3708 struct kvm_tpr_access_ctl *tac) 3709 { 3710 if (tac->flags) 3711 return -EINVAL; 3712 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3713 return 0; 3714 } 3715 3716 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3717 u64 mcg_cap) 3718 { 3719 int r; 3720 unsigned bank_num = mcg_cap & 0xff, bank; 3721 3722 r = -EINVAL; 3723 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3724 goto out; 3725 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3726 goto out; 3727 r = 0; 3728 vcpu->arch.mcg_cap = mcg_cap; 3729 /* Init IA32_MCG_CTL to all 1s */ 3730 if (mcg_cap & MCG_CTL_P) 3731 vcpu->arch.mcg_ctl = ~(u64)0; 3732 /* Init IA32_MCi_CTL to all 1s */ 3733 for (bank = 0; bank < bank_num; bank++) 3734 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3735 3736 kvm_x86_ops->setup_mce(vcpu); 3737 out: 3738 return r; 3739 } 3740 3741 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3742 struct kvm_x86_mce *mce) 3743 { 3744 u64 mcg_cap = vcpu->arch.mcg_cap; 3745 unsigned bank_num = mcg_cap & 0xff; 3746 u64 *banks = vcpu->arch.mce_banks; 3747 3748 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3749 return -EINVAL; 3750 /* 3751 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3752 * reporting is disabled 3753 */ 3754 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3755 vcpu->arch.mcg_ctl != ~(u64)0) 3756 return 0; 3757 banks += 4 * mce->bank; 3758 /* 3759 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3760 * reporting is disabled for the bank 3761 */ 3762 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3763 return 0; 3764 if (mce->status & MCI_STATUS_UC) { 3765 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3766 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3767 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3768 return 0; 3769 } 3770 if (banks[1] & MCI_STATUS_VAL) 3771 mce->status |= MCI_STATUS_OVER; 3772 banks[2] = mce->addr; 3773 banks[3] = mce->misc; 3774 vcpu->arch.mcg_status = mce->mcg_status; 3775 banks[1] = mce->status; 3776 kvm_queue_exception(vcpu, MC_VECTOR); 3777 } else if (!(banks[1] & MCI_STATUS_VAL) 3778 || !(banks[1] & MCI_STATUS_UC)) { 3779 if (banks[1] & MCI_STATUS_VAL) 3780 mce->status |= MCI_STATUS_OVER; 3781 banks[2] = mce->addr; 3782 banks[3] = mce->misc; 3783 banks[1] = mce->status; 3784 } else 3785 banks[1] |= MCI_STATUS_OVER; 3786 return 0; 3787 } 3788 3789 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3790 struct kvm_vcpu_events *events) 3791 { 3792 process_nmi(vcpu); 3793 3794 /* 3795 * In guest mode, payload delivery should be deferred, 3796 * so that the L1 hypervisor can intercept #PF before 3797 * CR2 is modified (or intercept #DB before DR6 is 3798 * modified under nVMX). Unless the per-VM capability, 3799 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3800 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3801 * opportunistically defer the exception payload, deliver it if the 3802 * capability hasn't been requested before processing a 3803 * KVM_GET_VCPU_EVENTS. 3804 */ 3805 if (!vcpu->kvm->arch.exception_payload_enabled && 3806 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3807 kvm_deliver_exception_payload(vcpu); 3808 3809 /* 3810 * The API doesn't provide the instruction length for software 3811 * exceptions, so don't report them. As long as the guest RIP 3812 * isn't advanced, we should expect to encounter the exception 3813 * again. 3814 */ 3815 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3816 events->exception.injected = 0; 3817 events->exception.pending = 0; 3818 } else { 3819 events->exception.injected = vcpu->arch.exception.injected; 3820 events->exception.pending = vcpu->arch.exception.pending; 3821 /* 3822 * For ABI compatibility, deliberately conflate 3823 * pending and injected exceptions when 3824 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3825 */ 3826 if (!vcpu->kvm->arch.exception_payload_enabled) 3827 events->exception.injected |= 3828 vcpu->arch.exception.pending; 3829 } 3830 events->exception.nr = vcpu->arch.exception.nr; 3831 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3832 events->exception.error_code = vcpu->arch.exception.error_code; 3833 events->exception_has_payload = vcpu->arch.exception.has_payload; 3834 events->exception_payload = vcpu->arch.exception.payload; 3835 3836 events->interrupt.injected = 3837 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3838 events->interrupt.nr = vcpu->arch.interrupt.nr; 3839 events->interrupt.soft = 0; 3840 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3841 3842 events->nmi.injected = vcpu->arch.nmi_injected; 3843 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3844 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3845 events->nmi.pad = 0; 3846 3847 events->sipi_vector = 0; /* never valid when reporting to user space */ 3848 3849 events->smi.smm = is_smm(vcpu); 3850 events->smi.pending = vcpu->arch.smi_pending; 3851 events->smi.smm_inside_nmi = 3852 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3853 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3854 3855 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3856 | KVM_VCPUEVENT_VALID_SHADOW 3857 | KVM_VCPUEVENT_VALID_SMM); 3858 if (vcpu->kvm->arch.exception_payload_enabled) 3859 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3860 3861 memset(&events->reserved, 0, sizeof(events->reserved)); 3862 } 3863 3864 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3865 3866 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3867 struct kvm_vcpu_events *events) 3868 { 3869 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3870 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3871 | KVM_VCPUEVENT_VALID_SHADOW 3872 | KVM_VCPUEVENT_VALID_SMM 3873 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3874 return -EINVAL; 3875 3876 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3877 if (!vcpu->kvm->arch.exception_payload_enabled) 3878 return -EINVAL; 3879 if (events->exception.pending) 3880 events->exception.injected = 0; 3881 else 3882 events->exception_has_payload = 0; 3883 } else { 3884 events->exception.pending = 0; 3885 events->exception_has_payload = 0; 3886 } 3887 3888 if ((events->exception.injected || events->exception.pending) && 3889 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3890 return -EINVAL; 3891 3892 /* INITs are latched while in SMM */ 3893 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3894 (events->smi.smm || events->smi.pending) && 3895 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3896 return -EINVAL; 3897 3898 process_nmi(vcpu); 3899 vcpu->arch.exception.injected = events->exception.injected; 3900 vcpu->arch.exception.pending = events->exception.pending; 3901 vcpu->arch.exception.nr = events->exception.nr; 3902 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3903 vcpu->arch.exception.error_code = events->exception.error_code; 3904 vcpu->arch.exception.has_payload = events->exception_has_payload; 3905 vcpu->arch.exception.payload = events->exception_payload; 3906 3907 vcpu->arch.interrupt.injected = events->interrupt.injected; 3908 vcpu->arch.interrupt.nr = events->interrupt.nr; 3909 vcpu->arch.interrupt.soft = events->interrupt.soft; 3910 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3911 kvm_x86_ops->set_interrupt_shadow(vcpu, 3912 events->interrupt.shadow); 3913 3914 vcpu->arch.nmi_injected = events->nmi.injected; 3915 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3916 vcpu->arch.nmi_pending = events->nmi.pending; 3917 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3918 3919 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3920 lapic_in_kernel(vcpu)) 3921 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3922 3923 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3924 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3925 if (events->smi.smm) 3926 vcpu->arch.hflags |= HF_SMM_MASK; 3927 else 3928 vcpu->arch.hflags &= ~HF_SMM_MASK; 3929 kvm_smm_changed(vcpu); 3930 } 3931 3932 vcpu->arch.smi_pending = events->smi.pending; 3933 3934 if (events->smi.smm) { 3935 if (events->smi.smm_inside_nmi) 3936 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3937 else 3938 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3939 } 3940 3941 if (lapic_in_kernel(vcpu)) { 3942 if (events->smi.latched_init) 3943 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3944 else 3945 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3946 } 3947 } 3948 3949 kvm_make_request(KVM_REQ_EVENT, vcpu); 3950 3951 return 0; 3952 } 3953 3954 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3955 struct kvm_debugregs *dbgregs) 3956 { 3957 unsigned long val; 3958 3959 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3960 kvm_get_dr(vcpu, 6, &val); 3961 dbgregs->dr6 = val; 3962 dbgregs->dr7 = vcpu->arch.dr7; 3963 dbgregs->flags = 0; 3964 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3965 } 3966 3967 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3968 struct kvm_debugregs *dbgregs) 3969 { 3970 if (dbgregs->flags) 3971 return -EINVAL; 3972 3973 if (dbgregs->dr6 & ~0xffffffffull) 3974 return -EINVAL; 3975 if (dbgregs->dr7 & ~0xffffffffull) 3976 return -EINVAL; 3977 3978 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3979 kvm_update_dr0123(vcpu); 3980 vcpu->arch.dr6 = dbgregs->dr6; 3981 kvm_update_dr6(vcpu); 3982 vcpu->arch.dr7 = dbgregs->dr7; 3983 kvm_update_dr7(vcpu); 3984 3985 return 0; 3986 } 3987 3988 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3989 3990 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3991 { 3992 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3993 u64 xstate_bv = xsave->header.xfeatures; 3994 u64 valid; 3995 3996 /* 3997 * Copy legacy XSAVE area, to avoid complications with CPUID 3998 * leaves 0 and 1 in the loop below. 3999 */ 4000 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4001 4002 /* Set XSTATE_BV */ 4003 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4004 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4005 4006 /* 4007 * Copy each region from the possibly compacted offset to the 4008 * non-compacted offset. 4009 */ 4010 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4011 while (valid) { 4012 u64 xfeature_mask = valid & -valid; 4013 int xfeature_nr = fls64(xfeature_mask) - 1; 4014 void *src = get_xsave_addr(xsave, xfeature_nr); 4015 4016 if (src) { 4017 u32 size, offset, ecx, edx; 4018 cpuid_count(XSTATE_CPUID, xfeature_nr, 4019 &size, &offset, &ecx, &edx); 4020 if (xfeature_nr == XFEATURE_PKRU) 4021 memcpy(dest + offset, &vcpu->arch.pkru, 4022 sizeof(vcpu->arch.pkru)); 4023 else 4024 memcpy(dest + offset, src, size); 4025 4026 } 4027 4028 valid -= xfeature_mask; 4029 } 4030 } 4031 4032 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4033 { 4034 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4035 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4036 u64 valid; 4037 4038 /* 4039 * Copy legacy XSAVE area, to avoid complications with CPUID 4040 * leaves 0 and 1 in the loop below. 4041 */ 4042 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4043 4044 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4045 xsave->header.xfeatures = xstate_bv; 4046 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4047 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4048 4049 /* 4050 * Copy each region from the non-compacted offset to the 4051 * possibly compacted offset. 4052 */ 4053 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4054 while (valid) { 4055 u64 xfeature_mask = valid & -valid; 4056 int xfeature_nr = fls64(xfeature_mask) - 1; 4057 void *dest = get_xsave_addr(xsave, xfeature_nr); 4058 4059 if (dest) { 4060 u32 size, offset, ecx, edx; 4061 cpuid_count(XSTATE_CPUID, xfeature_nr, 4062 &size, &offset, &ecx, &edx); 4063 if (xfeature_nr == XFEATURE_PKRU) 4064 memcpy(&vcpu->arch.pkru, src + offset, 4065 sizeof(vcpu->arch.pkru)); 4066 else 4067 memcpy(dest, src + offset, size); 4068 } 4069 4070 valid -= xfeature_mask; 4071 } 4072 } 4073 4074 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4075 struct kvm_xsave *guest_xsave) 4076 { 4077 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4078 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4079 fill_xsave((u8 *) guest_xsave->region, vcpu); 4080 } else { 4081 memcpy(guest_xsave->region, 4082 &vcpu->arch.guest_fpu->state.fxsave, 4083 sizeof(struct fxregs_state)); 4084 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4085 XFEATURE_MASK_FPSSE; 4086 } 4087 } 4088 4089 #define XSAVE_MXCSR_OFFSET 24 4090 4091 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4092 struct kvm_xsave *guest_xsave) 4093 { 4094 u64 xstate_bv = 4095 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4096 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4097 4098 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4099 /* 4100 * Here we allow setting states that are not present in 4101 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4102 * with old userspace. 4103 */ 4104 if (xstate_bv & ~kvm_supported_xcr0() || 4105 mxcsr & ~mxcsr_feature_mask) 4106 return -EINVAL; 4107 load_xsave(vcpu, (u8 *)guest_xsave->region); 4108 } else { 4109 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4110 mxcsr & ~mxcsr_feature_mask) 4111 return -EINVAL; 4112 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4113 guest_xsave->region, sizeof(struct fxregs_state)); 4114 } 4115 return 0; 4116 } 4117 4118 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4119 struct kvm_xcrs *guest_xcrs) 4120 { 4121 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4122 guest_xcrs->nr_xcrs = 0; 4123 return; 4124 } 4125 4126 guest_xcrs->nr_xcrs = 1; 4127 guest_xcrs->flags = 0; 4128 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4129 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4130 } 4131 4132 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4133 struct kvm_xcrs *guest_xcrs) 4134 { 4135 int i, r = 0; 4136 4137 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4138 return -EINVAL; 4139 4140 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4141 return -EINVAL; 4142 4143 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4144 /* Only support XCR0 currently */ 4145 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4146 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4147 guest_xcrs->xcrs[i].value); 4148 break; 4149 } 4150 if (r) 4151 r = -EINVAL; 4152 return r; 4153 } 4154 4155 /* 4156 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4157 * stopped by the hypervisor. This function will be called from the host only. 4158 * EINVAL is returned when the host attempts to set the flag for a guest that 4159 * does not support pv clocks. 4160 */ 4161 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4162 { 4163 if (!vcpu->arch.pv_time_enabled) 4164 return -EINVAL; 4165 vcpu->arch.pvclock_set_guest_stopped_request = true; 4166 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4167 return 0; 4168 } 4169 4170 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4171 struct kvm_enable_cap *cap) 4172 { 4173 int r; 4174 uint16_t vmcs_version; 4175 void __user *user_ptr; 4176 4177 if (cap->flags) 4178 return -EINVAL; 4179 4180 switch (cap->cap) { 4181 case KVM_CAP_HYPERV_SYNIC2: 4182 if (cap->args[0]) 4183 return -EINVAL; 4184 /* fall through */ 4185 4186 case KVM_CAP_HYPERV_SYNIC: 4187 if (!irqchip_in_kernel(vcpu->kvm)) 4188 return -EINVAL; 4189 return kvm_hv_activate_synic(vcpu, cap->cap == 4190 KVM_CAP_HYPERV_SYNIC2); 4191 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4192 if (!kvm_x86_ops->nested_enable_evmcs) 4193 return -ENOTTY; 4194 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); 4195 if (!r) { 4196 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4197 if (copy_to_user(user_ptr, &vmcs_version, 4198 sizeof(vmcs_version))) 4199 r = -EFAULT; 4200 } 4201 return r; 4202 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4203 if (!kvm_x86_ops->enable_direct_tlbflush) 4204 return -ENOTTY; 4205 4206 return kvm_x86_ops->enable_direct_tlbflush(vcpu); 4207 4208 default: 4209 return -EINVAL; 4210 } 4211 } 4212 4213 long kvm_arch_vcpu_ioctl(struct file *filp, 4214 unsigned int ioctl, unsigned long arg) 4215 { 4216 struct kvm_vcpu *vcpu = filp->private_data; 4217 void __user *argp = (void __user *)arg; 4218 int r; 4219 union { 4220 struct kvm_lapic_state *lapic; 4221 struct kvm_xsave *xsave; 4222 struct kvm_xcrs *xcrs; 4223 void *buffer; 4224 } u; 4225 4226 vcpu_load(vcpu); 4227 4228 u.buffer = NULL; 4229 switch (ioctl) { 4230 case KVM_GET_LAPIC: { 4231 r = -EINVAL; 4232 if (!lapic_in_kernel(vcpu)) 4233 goto out; 4234 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4235 GFP_KERNEL_ACCOUNT); 4236 4237 r = -ENOMEM; 4238 if (!u.lapic) 4239 goto out; 4240 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4241 if (r) 4242 goto out; 4243 r = -EFAULT; 4244 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4245 goto out; 4246 r = 0; 4247 break; 4248 } 4249 case KVM_SET_LAPIC: { 4250 r = -EINVAL; 4251 if (!lapic_in_kernel(vcpu)) 4252 goto out; 4253 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4254 if (IS_ERR(u.lapic)) { 4255 r = PTR_ERR(u.lapic); 4256 goto out_nofree; 4257 } 4258 4259 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4260 break; 4261 } 4262 case KVM_INTERRUPT: { 4263 struct kvm_interrupt irq; 4264 4265 r = -EFAULT; 4266 if (copy_from_user(&irq, argp, sizeof(irq))) 4267 goto out; 4268 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4269 break; 4270 } 4271 case KVM_NMI: { 4272 r = kvm_vcpu_ioctl_nmi(vcpu); 4273 break; 4274 } 4275 case KVM_SMI: { 4276 r = kvm_vcpu_ioctl_smi(vcpu); 4277 break; 4278 } 4279 case KVM_SET_CPUID: { 4280 struct kvm_cpuid __user *cpuid_arg = argp; 4281 struct kvm_cpuid cpuid; 4282 4283 r = -EFAULT; 4284 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4285 goto out; 4286 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4287 break; 4288 } 4289 case KVM_SET_CPUID2: { 4290 struct kvm_cpuid2 __user *cpuid_arg = argp; 4291 struct kvm_cpuid2 cpuid; 4292 4293 r = -EFAULT; 4294 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4295 goto out; 4296 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4297 cpuid_arg->entries); 4298 break; 4299 } 4300 case KVM_GET_CPUID2: { 4301 struct kvm_cpuid2 __user *cpuid_arg = argp; 4302 struct kvm_cpuid2 cpuid; 4303 4304 r = -EFAULT; 4305 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4306 goto out; 4307 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4308 cpuid_arg->entries); 4309 if (r) 4310 goto out; 4311 r = -EFAULT; 4312 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4313 goto out; 4314 r = 0; 4315 break; 4316 } 4317 case KVM_GET_MSRS: { 4318 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4319 r = msr_io(vcpu, argp, do_get_msr, 1); 4320 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4321 break; 4322 } 4323 case KVM_SET_MSRS: { 4324 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4325 r = msr_io(vcpu, argp, do_set_msr, 0); 4326 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4327 break; 4328 } 4329 case KVM_TPR_ACCESS_REPORTING: { 4330 struct kvm_tpr_access_ctl tac; 4331 4332 r = -EFAULT; 4333 if (copy_from_user(&tac, argp, sizeof(tac))) 4334 goto out; 4335 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4336 if (r) 4337 goto out; 4338 r = -EFAULT; 4339 if (copy_to_user(argp, &tac, sizeof(tac))) 4340 goto out; 4341 r = 0; 4342 break; 4343 }; 4344 case KVM_SET_VAPIC_ADDR: { 4345 struct kvm_vapic_addr va; 4346 int idx; 4347 4348 r = -EINVAL; 4349 if (!lapic_in_kernel(vcpu)) 4350 goto out; 4351 r = -EFAULT; 4352 if (copy_from_user(&va, argp, sizeof(va))) 4353 goto out; 4354 idx = srcu_read_lock(&vcpu->kvm->srcu); 4355 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4356 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4357 break; 4358 } 4359 case KVM_X86_SETUP_MCE: { 4360 u64 mcg_cap; 4361 4362 r = -EFAULT; 4363 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4364 goto out; 4365 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4366 break; 4367 } 4368 case KVM_X86_SET_MCE: { 4369 struct kvm_x86_mce mce; 4370 4371 r = -EFAULT; 4372 if (copy_from_user(&mce, argp, sizeof(mce))) 4373 goto out; 4374 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4375 break; 4376 } 4377 case KVM_GET_VCPU_EVENTS: { 4378 struct kvm_vcpu_events events; 4379 4380 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4381 4382 r = -EFAULT; 4383 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4384 break; 4385 r = 0; 4386 break; 4387 } 4388 case KVM_SET_VCPU_EVENTS: { 4389 struct kvm_vcpu_events events; 4390 4391 r = -EFAULT; 4392 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4393 break; 4394 4395 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4396 break; 4397 } 4398 case KVM_GET_DEBUGREGS: { 4399 struct kvm_debugregs dbgregs; 4400 4401 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4402 4403 r = -EFAULT; 4404 if (copy_to_user(argp, &dbgregs, 4405 sizeof(struct kvm_debugregs))) 4406 break; 4407 r = 0; 4408 break; 4409 } 4410 case KVM_SET_DEBUGREGS: { 4411 struct kvm_debugregs dbgregs; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&dbgregs, argp, 4415 sizeof(struct kvm_debugregs))) 4416 break; 4417 4418 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4419 break; 4420 } 4421 case KVM_GET_XSAVE: { 4422 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4423 r = -ENOMEM; 4424 if (!u.xsave) 4425 break; 4426 4427 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4428 4429 r = -EFAULT; 4430 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4431 break; 4432 r = 0; 4433 break; 4434 } 4435 case KVM_SET_XSAVE: { 4436 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4437 if (IS_ERR(u.xsave)) { 4438 r = PTR_ERR(u.xsave); 4439 goto out_nofree; 4440 } 4441 4442 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4443 break; 4444 } 4445 case KVM_GET_XCRS: { 4446 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4447 r = -ENOMEM; 4448 if (!u.xcrs) 4449 break; 4450 4451 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4452 4453 r = -EFAULT; 4454 if (copy_to_user(argp, u.xcrs, 4455 sizeof(struct kvm_xcrs))) 4456 break; 4457 r = 0; 4458 break; 4459 } 4460 case KVM_SET_XCRS: { 4461 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4462 if (IS_ERR(u.xcrs)) { 4463 r = PTR_ERR(u.xcrs); 4464 goto out_nofree; 4465 } 4466 4467 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4468 break; 4469 } 4470 case KVM_SET_TSC_KHZ: { 4471 u32 user_tsc_khz; 4472 4473 r = -EINVAL; 4474 user_tsc_khz = (u32)arg; 4475 4476 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4477 goto out; 4478 4479 if (user_tsc_khz == 0) 4480 user_tsc_khz = tsc_khz; 4481 4482 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4483 r = 0; 4484 4485 goto out; 4486 } 4487 case KVM_GET_TSC_KHZ: { 4488 r = vcpu->arch.virtual_tsc_khz; 4489 goto out; 4490 } 4491 case KVM_KVMCLOCK_CTRL: { 4492 r = kvm_set_guest_paused(vcpu); 4493 goto out; 4494 } 4495 case KVM_ENABLE_CAP: { 4496 struct kvm_enable_cap cap; 4497 4498 r = -EFAULT; 4499 if (copy_from_user(&cap, argp, sizeof(cap))) 4500 goto out; 4501 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4502 break; 4503 } 4504 case KVM_GET_NESTED_STATE: { 4505 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4506 u32 user_data_size; 4507 4508 r = -EINVAL; 4509 if (!kvm_x86_ops->get_nested_state) 4510 break; 4511 4512 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4513 r = -EFAULT; 4514 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4515 break; 4516 4517 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, 4518 user_data_size); 4519 if (r < 0) 4520 break; 4521 4522 if (r > user_data_size) { 4523 if (put_user(r, &user_kvm_nested_state->size)) 4524 r = -EFAULT; 4525 else 4526 r = -E2BIG; 4527 break; 4528 } 4529 4530 r = 0; 4531 break; 4532 } 4533 case KVM_SET_NESTED_STATE: { 4534 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4535 struct kvm_nested_state kvm_state; 4536 int idx; 4537 4538 r = -EINVAL; 4539 if (!kvm_x86_ops->set_nested_state) 4540 break; 4541 4542 r = -EFAULT; 4543 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4544 break; 4545 4546 r = -EINVAL; 4547 if (kvm_state.size < sizeof(kvm_state)) 4548 break; 4549 4550 if (kvm_state.flags & 4551 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4552 | KVM_STATE_NESTED_EVMCS)) 4553 break; 4554 4555 /* nested_run_pending implies guest_mode. */ 4556 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4557 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4558 break; 4559 4560 idx = srcu_read_lock(&vcpu->kvm->srcu); 4561 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4562 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4563 break; 4564 } 4565 case KVM_GET_SUPPORTED_HV_CPUID: { 4566 struct kvm_cpuid2 __user *cpuid_arg = argp; 4567 struct kvm_cpuid2 cpuid; 4568 4569 r = -EFAULT; 4570 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4571 goto out; 4572 4573 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4574 cpuid_arg->entries); 4575 if (r) 4576 goto out; 4577 4578 r = -EFAULT; 4579 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4580 goto out; 4581 r = 0; 4582 break; 4583 } 4584 default: 4585 r = -EINVAL; 4586 } 4587 out: 4588 kfree(u.buffer); 4589 out_nofree: 4590 vcpu_put(vcpu); 4591 return r; 4592 } 4593 4594 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4595 { 4596 return VM_FAULT_SIGBUS; 4597 } 4598 4599 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4600 { 4601 int ret; 4602 4603 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4604 return -EINVAL; 4605 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 4606 return ret; 4607 } 4608 4609 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4610 u64 ident_addr) 4611 { 4612 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); 4613 } 4614 4615 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4616 unsigned long kvm_nr_mmu_pages) 4617 { 4618 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4619 return -EINVAL; 4620 4621 mutex_lock(&kvm->slots_lock); 4622 4623 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4624 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4625 4626 mutex_unlock(&kvm->slots_lock); 4627 return 0; 4628 } 4629 4630 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4631 { 4632 return kvm->arch.n_max_mmu_pages; 4633 } 4634 4635 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4636 { 4637 struct kvm_pic *pic = kvm->arch.vpic; 4638 int r; 4639 4640 r = 0; 4641 switch (chip->chip_id) { 4642 case KVM_IRQCHIP_PIC_MASTER: 4643 memcpy(&chip->chip.pic, &pic->pics[0], 4644 sizeof(struct kvm_pic_state)); 4645 break; 4646 case KVM_IRQCHIP_PIC_SLAVE: 4647 memcpy(&chip->chip.pic, &pic->pics[1], 4648 sizeof(struct kvm_pic_state)); 4649 break; 4650 case KVM_IRQCHIP_IOAPIC: 4651 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4652 break; 4653 default: 4654 r = -EINVAL; 4655 break; 4656 } 4657 return r; 4658 } 4659 4660 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4661 { 4662 struct kvm_pic *pic = kvm->arch.vpic; 4663 int r; 4664 4665 r = 0; 4666 switch (chip->chip_id) { 4667 case KVM_IRQCHIP_PIC_MASTER: 4668 spin_lock(&pic->lock); 4669 memcpy(&pic->pics[0], &chip->chip.pic, 4670 sizeof(struct kvm_pic_state)); 4671 spin_unlock(&pic->lock); 4672 break; 4673 case KVM_IRQCHIP_PIC_SLAVE: 4674 spin_lock(&pic->lock); 4675 memcpy(&pic->pics[1], &chip->chip.pic, 4676 sizeof(struct kvm_pic_state)); 4677 spin_unlock(&pic->lock); 4678 break; 4679 case KVM_IRQCHIP_IOAPIC: 4680 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4681 break; 4682 default: 4683 r = -EINVAL; 4684 break; 4685 } 4686 kvm_pic_update_irq(pic); 4687 return r; 4688 } 4689 4690 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4691 { 4692 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4693 4694 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4695 4696 mutex_lock(&kps->lock); 4697 memcpy(ps, &kps->channels, sizeof(*ps)); 4698 mutex_unlock(&kps->lock); 4699 return 0; 4700 } 4701 4702 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4703 { 4704 int i; 4705 struct kvm_pit *pit = kvm->arch.vpit; 4706 4707 mutex_lock(&pit->pit_state.lock); 4708 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4709 for (i = 0; i < 3; i++) 4710 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4711 mutex_unlock(&pit->pit_state.lock); 4712 return 0; 4713 } 4714 4715 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4716 { 4717 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4718 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4719 sizeof(ps->channels)); 4720 ps->flags = kvm->arch.vpit->pit_state.flags; 4721 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4722 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4723 return 0; 4724 } 4725 4726 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4727 { 4728 int start = 0; 4729 int i; 4730 u32 prev_legacy, cur_legacy; 4731 struct kvm_pit *pit = kvm->arch.vpit; 4732 4733 mutex_lock(&pit->pit_state.lock); 4734 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4735 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4736 if (!prev_legacy && cur_legacy) 4737 start = 1; 4738 memcpy(&pit->pit_state.channels, &ps->channels, 4739 sizeof(pit->pit_state.channels)); 4740 pit->pit_state.flags = ps->flags; 4741 for (i = 0; i < 3; i++) 4742 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4743 start && i == 0); 4744 mutex_unlock(&pit->pit_state.lock); 4745 return 0; 4746 } 4747 4748 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4749 struct kvm_reinject_control *control) 4750 { 4751 struct kvm_pit *pit = kvm->arch.vpit; 4752 4753 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4754 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4755 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4756 */ 4757 mutex_lock(&pit->pit_state.lock); 4758 kvm_pit_set_reinject(pit, control->pit_reinject); 4759 mutex_unlock(&pit->pit_state.lock); 4760 4761 return 0; 4762 } 4763 4764 /** 4765 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4766 * @kvm: kvm instance 4767 * @log: slot id and address to which we copy the log 4768 * 4769 * Steps 1-4 below provide general overview of dirty page logging. See 4770 * kvm_get_dirty_log_protect() function description for additional details. 4771 * 4772 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4773 * always flush the TLB (step 4) even if previous step failed and the dirty 4774 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4775 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4776 * writes will be marked dirty for next log read. 4777 * 4778 * 1. Take a snapshot of the bit and clear it if needed. 4779 * 2. Write protect the corresponding page. 4780 * 3. Copy the snapshot to the userspace. 4781 * 4. Flush TLB's if needed. 4782 */ 4783 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4784 { 4785 bool flush = false; 4786 int r; 4787 4788 mutex_lock(&kvm->slots_lock); 4789 4790 /* 4791 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4792 */ 4793 if (kvm_x86_ops->flush_log_dirty) 4794 kvm_x86_ops->flush_log_dirty(kvm); 4795 4796 r = kvm_get_dirty_log_protect(kvm, log, &flush); 4797 4798 /* 4799 * All the TLBs can be flushed out of mmu lock, see the comments in 4800 * kvm_mmu_slot_remove_write_access(). 4801 */ 4802 lockdep_assert_held(&kvm->slots_lock); 4803 if (flush) 4804 kvm_flush_remote_tlbs(kvm); 4805 4806 mutex_unlock(&kvm->slots_lock); 4807 return r; 4808 } 4809 4810 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) 4811 { 4812 bool flush = false; 4813 int r; 4814 4815 mutex_lock(&kvm->slots_lock); 4816 4817 /* 4818 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4819 */ 4820 if (kvm_x86_ops->flush_log_dirty) 4821 kvm_x86_ops->flush_log_dirty(kvm); 4822 4823 r = kvm_clear_dirty_log_protect(kvm, log, &flush); 4824 4825 /* 4826 * All the TLBs can be flushed out of mmu lock, see the comments in 4827 * kvm_mmu_slot_remove_write_access(). 4828 */ 4829 lockdep_assert_held(&kvm->slots_lock); 4830 if (flush) 4831 kvm_flush_remote_tlbs(kvm); 4832 4833 mutex_unlock(&kvm->slots_lock); 4834 return r; 4835 } 4836 4837 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4838 bool line_status) 4839 { 4840 if (!irqchip_in_kernel(kvm)) 4841 return -ENXIO; 4842 4843 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4844 irq_event->irq, irq_event->level, 4845 line_status); 4846 return 0; 4847 } 4848 4849 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4850 struct kvm_enable_cap *cap) 4851 { 4852 int r; 4853 4854 if (cap->flags) 4855 return -EINVAL; 4856 4857 switch (cap->cap) { 4858 case KVM_CAP_DISABLE_QUIRKS: 4859 kvm->arch.disabled_quirks = cap->args[0]; 4860 r = 0; 4861 break; 4862 case KVM_CAP_SPLIT_IRQCHIP: { 4863 mutex_lock(&kvm->lock); 4864 r = -EINVAL; 4865 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4866 goto split_irqchip_unlock; 4867 r = -EEXIST; 4868 if (irqchip_in_kernel(kvm)) 4869 goto split_irqchip_unlock; 4870 if (kvm->created_vcpus) 4871 goto split_irqchip_unlock; 4872 r = kvm_setup_empty_irq_routing(kvm); 4873 if (r) 4874 goto split_irqchip_unlock; 4875 /* Pairs with irqchip_in_kernel. */ 4876 smp_wmb(); 4877 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4878 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4879 r = 0; 4880 split_irqchip_unlock: 4881 mutex_unlock(&kvm->lock); 4882 break; 4883 } 4884 case KVM_CAP_X2APIC_API: 4885 r = -EINVAL; 4886 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4887 break; 4888 4889 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4890 kvm->arch.x2apic_format = true; 4891 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4892 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4893 4894 r = 0; 4895 break; 4896 case KVM_CAP_X86_DISABLE_EXITS: 4897 r = -EINVAL; 4898 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4899 break; 4900 4901 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4902 kvm_can_mwait_in_guest()) 4903 kvm->arch.mwait_in_guest = true; 4904 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4905 kvm->arch.hlt_in_guest = true; 4906 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4907 kvm->arch.pause_in_guest = true; 4908 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4909 kvm->arch.cstate_in_guest = true; 4910 r = 0; 4911 break; 4912 case KVM_CAP_MSR_PLATFORM_INFO: 4913 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4914 r = 0; 4915 break; 4916 case KVM_CAP_EXCEPTION_PAYLOAD: 4917 kvm->arch.exception_payload_enabled = cap->args[0]; 4918 r = 0; 4919 break; 4920 default: 4921 r = -EINVAL; 4922 break; 4923 } 4924 return r; 4925 } 4926 4927 long kvm_arch_vm_ioctl(struct file *filp, 4928 unsigned int ioctl, unsigned long arg) 4929 { 4930 struct kvm *kvm = filp->private_data; 4931 void __user *argp = (void __user *)arg; 4932 int r = -ENOTTY; 4933 /* 4934 * This union makes it completely explicit to gcc-3.x 4935 * that these two variables' stack usage should be 4936 * combined, not added together. 4937 */ 4938 union { 4939 struct kvm_pit_state ps; 4940 struct kvm_pit_state2 ps2; 4941 struct kvm_pit_config pit_config; 4942 } u; 4943 4944 switch (ioctl) { 4945 case KVM_SET_TSS_ADDR: 4946 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4947 break; 4948 case KVM_SET_IDENTITY_MAP_ADDR: { 4949 u64 ident_addr; 4950 4951 mutex_lock(&kvm->lock); 4952 r = -EINVAL; 4953 if (kvm->created_vcpus) 4954 goto set_identity_unlock; 4955 r = -EFAULT; 4956 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4957 goto set_identity_unlock; 4958 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4959 set_identity_unlock: 4960 mutex_unlock(&kvm->lock); 4961 break; 4962 } 4963 case KVM_SET_NR_MMU_PAGES: 4964 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4965 break; 4966 case KVM_GET_NR_MMU_PAGES: 4967 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4968 break; 4969 case KVM_CREATE_IRQCHIP: { 4970 mutex_lock(&kvm->lock); 4971 4972 r = -EEXIST; 4973 if (irqchip_in_kernel(kvm)) 4974 goto create_irqchip_unlock; 4975 4976 r = -EINVAL; 4977 if (kvm->created_vcpus) 4978 goto create_irqchip_unlock; 4979 4980 r = kvm_pic_init(kvm); 4981 if (r) 4982 goto create_irqchip_unlock; 4983 4984 r = kvm_ioapic_init(kvm); 4985 if (r) { 4986 kvm_pic_destroy(kvm); 4987 goto create_irqchip_unlock; 4988 } 4989 4990 r = kvm_setup_default_irq_routing(kvm); 4991 if (r) { 4992 kvm_ioapic_destroy(kvm); 4993 kvm_pic_destroy(kvm); 4994 goto create_irqchip_unlock; 4995 } 4996 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4997 smp_wmb(); 4998 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4999 create_irqchip_unlock: 5000 mutex_unlock(&kvm->lock); 5001 break; 5002 } 5003 case KVM_CREATE_PIT: 5004 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5005 goto create_pit; 5006 case KVM_CREATE_PIT2: 5007 r = -EFAULT; 5008 if (copy_from_user(&u.pit_config, argp, 5009 sizeof(struct kvm_pit_config))) 5010 goto out; 5011 create_pit: 5012 mutex_lock(&kvm->lock); 5013 r = -EEXIST; 5014 if (kvm->arch.vpit) 5015 goto create_pit_unlock; 5016 r = -ENOMEM; 5017 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5018 if (kvm->arch.vpit) 5019 r = 0; 5020 create_pit_unlock: 5021 mutex_unlock(&kvm->lock); 5022 break; 5023 case KVM_GET_IRQCHIP: { 5024 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5025 struct kvm_irqchip *chip; 5026 5027 chip = memdup_user(argp, sizeof(*chip)); 5028 if (IS_ERR(chip)) { 5029 r = PTR_ERR(chip); 5030 goto out; 5031 } 5032 5033 r = -ENXIO; 5034 if (!irqchip_kernel(kvm)) 5035 goto get_irqchip_out; 5036 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5037 if (r) 5038 goto get_irqchip_out; 5039 r = -EFAULT; 5040 if (copy_to_user(argp, chip, sizeof(*chip))) 5041 goto get_irqchip_out; 5042 r = 0; 5043 get_irqchip_out: 5044 kfree(chip); 5045 break; 5046 } 5047 case KVM_SET_IRQCHIP: { 5048 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5049 struct kvm_irqchip *chip; 5050 5051 chip = memdup_user(argp, sizeof(*chip)); 5052 if (IS_ERR(chip)) { 5053 r = PTR_ERR(chip); 5054 goto out; 5055 } 5056 5057 r = -ENXIO; 5058 if (!irqchip_kernel(kvm)) 5059 goto set_irqchip_out; 5060 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5061 set_irqchip_out: 5062 kfree(chip); 5063 break; 5064 } 5065 case KVM_GET_PIT: { 5066 r = -EFAULT; 5067 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5068 goto out; 5069 r = -ENXIO; 5070 if (!kvm->arch.vpit) 5071 goto out; 5072 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5073 if (r) 5074 goto out; 5075 r = -EFAULT; 5076 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5077 goto out; 5078 r = 0; 5079 break; 5080 } 5081 case KVM_SET_PIT: { 5082 r = -EFAULT; 5083 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5084 goto out; 5085 r = -ENXIO; 5086 if (!kvm->arch.vpit) 5087 goto out; 5088 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5089 break; 5090 } 5091 case KVM_GET_PIT2: { 5092 r = -ENXIO; 5093 if (!kvm->arch.vpit) 5094 goto out; 5095 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5096 if (r) 5097 goto out; 5098 r = -EFAULT; 5099 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5100 goto out; 5101 r = 0; 5102 break; 5103 } 5104 case KVM_SET_PIT2: { 5105 r = -EFAULT; 5106 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5107 goto out; 5108 r = -ENXIO; 5109 if (!kvm->arch.vpit) 5110 goto out; 5111 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5112 break; 5113 } 5114 case KVM_REINJECT_CONTROL: { 5115 struct kvm_reinject_control control; 5116 r = -EFAULT; 5117 if (copy_from_user(&control, argp, sizeof(control))) 5118 goto out; 5119 r = -ENXIO; 5120 if (!kvm->arch.vpit) 5121 goto out; 5122 r = kvm_vm_ioctl_reinject(kvm, &control); 5123 break; 5124 } 5125 case KVM_SET_BOOT_CPU_ID: 5126 r = 0; 5127 mutex_lock(&kvm->lock); 5128 if (kvm->created_vcpus) 5129 r = -EBUSY; 5130 else 5131 kvm->arch.bsp_vcpu_id = arg; 5132 mutex_unlock(&kvm->lock); 5133 break; 5134 case KVM_XEN_HVM_CONFIG: { 5135 struct kvm_xen_hvm_config xhc; 5136 r = -EFAULT; 5137 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5138 goto out; 5139 r = -EINVAL; 5140 if (xhc.flags) 5141 goto out; 5142 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5143 r = 0; 5144 break; 5145 } 5146 case KVM_SET_CLOCK: { 5147 struct kvm_clock_data user_ns; 5148 u64 now_ns; 5149 5150 r = -EFAULT; 5151 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5152 goto out; 5153 5154 r = -EINVAL; 5155 if (user_ns.flags) 5156 goto out; 5157 5158 r = 0; 5159 /* 5160 * TODO: userspace has to take care of races with VCPU_RUN, so 5161 * kvm_gen_update_masterclock() can be cut down to locked 5162 * pvclock_update_vm_gtod_copy(). 5163 */ 5164 kvm_gen_update_masterclock(kvm); 5165 now_ns = get_kvmclock_ns(kvm); 5166 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5167 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5168 break; 5169 } 5170 case KVM_GET_CLOCK: { 5171 struct kvm_clock_data user_ns; 5172 u64 now_ns; 5173 5174 now_ns = get_kvmclock_ns(kvm); 5175 user_ns.clock = now_ns; 5176 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5177 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5178 5179 r = -EFAULT; 5180 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5181 goto out; 5182 r = 0; 5183 break; 5184 } 5185 case KVM_MEMORY_ENCRYPT_OP: { 5186 r = -ENOTTY; 5187 if (kvm_x86_ops->mem_enc_op) 5188 r = kvm_x86_ops->mem_enc_op(kvm, argp); 5189 break; 5190 } 5191 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5192 struct kvm_enc_region region; 5193 5194 r = -EFAULT; 5195 if (copy_from_user(®ion, argp, sizeof(region))) 5196 goto out; 5197 5198 r = -ENOTTY; 5199 if (kvm_x86_ops->mem_enc_reg_region) 5200 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 5201 break; 5202 } 5203 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5204 struct kvm_enc_region region; 5205 5206 r = -EFAULT; 5207 if (copy_from_user(®ion, argp, sizeof(region))) 5208 goto out; 5209 5210 r = -ENOTTY; 5211 if (kvm_x86_ops->mem_enc_unreg_region) 5212 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 5213 break; 5214 } 5215 case KVM_HYPERV_EVENTFD: { 5216 struct kvm_hyperv_eventfd hvevfd; 5217 5218 r = -EFAULT; 5219 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5220 goto out; 5221 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5222 break; 5223 } 5224 case KVM_SET_PMU_EVENT_FILTER: 5225 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5226 break; 5227 default: 5228 r = -ENOTTY; 5229 } 5230 out: 5231 return r; 5232 } 5233 5234 static void kvm_init_msr_list(void) 5235 { 5236 struct x86_pmu_capability x86_pmu; 5237 u32 dummy[2]; 5238 unsigned i; 5239 5240 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5241 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5242 5243 perf_get_x86_pmu_capability(&x86_pmu); 5244 5245 num_msrs_to_save = 0; 5246 num_emulated_msrs = 0; 5247 num_msr_based_features = 0; 5248 5249 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5250 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5251 continue; 5252 5253 /* 5254 * Even MSRs that are valid in the host may not be exposed 5255 * to the guests in some cases. 5256 */ 5257 switch (msrs_to_save_all[i]) { 5258 case MSR_IA32_BNDCFGS: 5259 if (!kvm_mpx_supported()) 5260 continue; 5261 break; 5262 case MSR_TSC_AUX: 5263 if (!kvm_x86_ops->rdtscp_supported()) 5264 continue; 5265 break; 5266 case MSR_IA32_RTIT_CTL: 5267 case MSR_IA32_RTIT_STATUS: 5268 if (!kvm_x86_ops->pt_supported()) 5269 continue; 5270 break; 5271 case MSR_IA32_RTIT_CR3_MATCH: 5272 if (!kvm_x86_ops->pt_supported() || 5273 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5274 continue; 5275 break; 5276 case MSR_IA32_RTIT_OUTPUT_BASE: 5277 case MSR_IA32_RTIT_OUTPUT_MASK: 5278 if (!kvm_x86_ops->pt_supported() || 5279 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5280 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5281 continue; 5282 break; 5283 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 5284 if (!kvm_x86_ops->pt_supported() || 5285 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5286 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5287 continue; 5288 break; 5289 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5290 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5291 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5292 continue; 5293 break; 5294 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5295 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5296 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5297 continue; 5298 } 5299 default: 5300 break; 5301 } 5302 5303 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5304 } 5305 5306 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5307 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i])) 5308 continue; 5309 5310 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5311 } 5312 5313 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5314 struct kvm_msr_entry msr; 5315 5316 msr.index = msr_based_features_all[i]; 5317 if (kvm_get_msr_feature(&msr)) 5318 continue; 5319 5320 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5321 } 5322 } 5323 5324 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5325 const void *v) 5326 { 5327 int handled = 0; 5328 int n; 5329 5330 do { 5331 n = min(len, 8); 5332 if (!(lapic_in_kernel(vcpu) && 5333 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5334 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5335 break; 5336 handled += n; 5337 addr += n; 5338 len -= n; 5339 v += n; 5340 } while (len); 5341 5342 return handled; 5343 } 5344 5345 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5346 { 5347 int handled = 0; 5348 int n; 5349 5350 do { 5351 n = min(len, 8); 5352 if (!(lapic_in_kernel(vcpu) && 5353 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5354 addr, n, v)) 5355 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5356 break; 5357 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5358 handled += n; 5359 addr += n; 5360 len -= n; 5361 v += n; 5362 } while (len); 5363 5364 return handled; 5365 } 5366 5367 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5368 struct kvm_segment *var, int seg) 5369 { 5370 kvm_x86_ops->set_segment(vcpu, var, seg); 5371 } 5372 5373 void kvm_get_segment(struct kvm_vcpu *vcpu, 5374 struct kvm_segment *var, int seg) 5375 { 5376 kvm_x86_ops->get_segment(vcpu, var, seg); 5377 } 5378 5379 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5380 struct x86_exception *exception) 5381 { 5382 gpa_t t_gpa; 5383 5384 BUG_ON(!mmu_is_nested(vcpu)); 5385 5386 /* NPT walks are always user-walks */ 5387 access |= PFERR_USER_MASK; 5388 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5389 5390 return t_gpa; 5391 } 5392 5393 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5394 struct x86_exception *exception) 5395 { 5396 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5397 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5398 } 5399 5400 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5401 struct x86_exception *exception) 5402 { 5403 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5404 access |= PFERR_FETCH_MASK; 5405 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5406 } 5407 5408 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5409 struct x86_exception *exception) 5410 { 5411 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5412 access |= PFERR_WRITE_MASK; 5413 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5414 } 5415 5416 /* uses this to access any guest's mapped memory without checking CPL */ 5417 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5418 struct x86_exception *exception) 5419 { 5420 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5421 } 5422 5423 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5424 struct kvm_vcpu *vcpu, u32 access, 5425 struct x86_exception *exception) 5426 { 5427 void *data = val; 5428 int r = X86EMUL_CONTINUE; 5429 5430 while (bytes) { 5431 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5432 exception); 5433 unsigned offset = addr & (PAGE_SIZE-1); 5434 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5435 int ret; 5436 5437 if (gpa == UNMAPPED_GVA) 5438 return X86EMUL_PROPAGATE_FAULT; 5439 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5440 offset, toread); 5441 if (ret < 0) { 5442 r = X86EMUL_IO_NEEDED; 5443 goto out; 5444 } 5445 5446 bytes -= toread; 5447 data += toread; 5448 addr += toread; 5449 } 5450 out: 5451 return r; 5452 } 5453 5454 /* used for instruction fetching */ 5455 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5456 gva_t addr, void *val, unsigned int bytes, 5457 struct x86_exception *exception) 5458 { 5459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5460 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5461 unsigned offset; 5462 int ret; 5463 5464 /* Inline kvm_read_guest_virt_helper for speed. */ 5465 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5466 exception); 5467 if (unlikely(gpa == UNMAPPED_GVA)) 5468 return X86EMUL_PROPAGATE_FAULT; 5469 5470 offset = addr & (PAGE_SIZE-1); 5471 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5472 bytes = (unsigned)PAGE_SIZE - offset; 5473 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5474 offset, bytes); 5475 if (unlikely(ret < 0)) 5476 return X86EMUL_IO_NEEDED; 5477 5478 return X86EMUL_CONTINUE; 5479 } 5480 5481 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5482 gva_t addr, void *val, unsigned int bytes, 5483 struct x86_exception *exception) 5484 { 5485 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5486 5487 /* 5488 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5489 * is returned, but our callers are not ready for that and they blindly 5490 * call kvm_inject_page_fault. Ensure that they at least do not leak 5491 * uninitialized kernel stack memory into cr2 and error code. 5492 */ 5493 memset(exception, 0, sizeof(*exception)); 5494 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5495 exception); 5496 } 5497 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5498 5499 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5500 gva_t addr, void *val, unsigned int bytes, 5501 struct x86_exception *exception, bool system) 5502 { 5503 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5504 u32 access = 0; 5505 5506 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5507 access |= PFERR_USER_MASK; 5508 5509 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5510 } 5511 5512 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5513 unsigned long addr, void *val, unsigned int bytes) 5514 { 5515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5516 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5517 5518 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5519 } 5520 5521 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5522 struct kvm_vcpu *vcpu, u32 access, 5523 struct x86_exception *exception) 5524 { 5525 void *data = val; 5526 int r = X86EMUL_CONTINUE; 5527 5528 while (bytes) { 5529 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5530 access, 5531 exception); 5532 unsigned offset = addr & (PAGE_SIZE-1); 5533 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5534 int ret; 5535 5536 if (gpa == UNMAPPED_GVA) 5537 return X86EMUL_PROPAGATE_FAULT; 5538 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5539 if (ret < 0) { 5540 r = X86EMUL_IO_NEEDED; 5541 goto out; 5542 } 5543 5544 bytes -= towrite; 5545 data += towrite; 5546 addr += towrite; 5547 } 5548 out: 5549 return r; 5550 } 5551 5552 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5553 unsigned int bytes, struct x86_exception *exception, 5554 bool system) 5555 { 5556 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5557 u32 access = PFERR_WRITE_MASK; 5558 5559 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5560 access |= PFERR_USER_MASK; 5561 5562 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5563 access, exception); 5564 } 5565 5566 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5567 unsigned int bytes, struct x86_exception *exception) 5568 { 5569 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5570 vcpu->arch.l1tf_flush_l1d = true; 5571 5572 /* 5573 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5574 * is returned, but our callers are not ready for that and they blindly 5575 * call kvm_inject_page_fault. Ensure that they at least do not leak 5576 * uninitialized kernel stack memory into cr2 and error code. 5577 */ 5578 memset(exception, 0, sizeof(*exception)); 5579 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5580 PFERR_WRITE_MASK, exception); 5581 } 5582 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5583 5584 int handle_ud(struct kvm_vcpu *vcpu) 5585 { 5586 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5587 int emul_type = EMULTYPE_TRAP_UD; 5588 char sig[5]; /* ud2; .ascii "kvm" */ 5589 struct x86_exception e; 5590 5591 if (force_emulation_prefix && 5592 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5593 sig, sizeof(sig), &e) == 0 && 5594 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5595 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5596 emul_type = EMULTYPE_TRAP_UD_FORCED; 5597 } 5598 5599 return kvm_emulate_instruction(vcpu, emul_type); 5600 } 5601 EXPORT_SYMBOL_GPL(handle_ud); 5602 5603 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5604 gpa_t gpa, bool write) 5605 { 5606 /* For APIC access vmexit */ 5607 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5608 return 1; 5609 5610 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5611 trace_vcpu_match_mmio(gva, gpa, write, true); 5612 return 1; 5613 } 5614 5615 return 0; 5616 } 5617 5618 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5619 gpa_t *gpa, struct x86_exception *exception, 5620 bool write) 5621 { 5622 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5623 | (write ? PFERR_WRITE_MASK : 0); 5624 5625 /* 5626 * currently PKRU is only applied to ept enabled guest so 5627 * there is no pkey in EPT page table for L1 guest or EPT 5628 * shadow page table for L2 guest. 5629 */ 5630 if (vcpu_match_mmio_gva(vcpu, gva) 5631 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5632 vcpu->arch.mmio_access, 0, access)) { 5633 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5634 (gva & (PAGE_SIZE - 1)); 5635 trace_vcpu_match_mmio(gva, *gpa, write, false); 5636 return 1; 5637 } 5638 5639 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5640 5641 if (*gpa == UNMAPPED_GVA) 5642 return -1; 5643 5644 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5645 } 5646 5647 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5648 const void *val, int bytes) 5649 { 5650 int ret; 5651 5652 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5653 if (ret < 0) 5654 return 0; 5655 kvm_page_track_write(vcpu, gpa, val, bytes); 5656 return 1; 5657 } 5658 5659 struct read_write_emulator_ops { 5660 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5661 int bytes); 5662 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5663 void *val, int bytes); 5664 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5665 int bytes, void *val); 5666 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5667 void *val, int bytes); 5668 bool write; 5669 }; 5670 5671 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5672 { 5673 if (vcpu->mmio_read_completed) { 5674 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5675 vcpu->mmio_fragments[0].gpa, val); 5676 vcpu->mmio_read_completed = 0; 5677 return 1; 5678 } 5679 5680 return 0; 5681 } 5682 5683 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5684 void *val, int bytes) 5685 { 5686 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5687 } 5688 5689 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5690 void *val, int bytes) 5691 { 5692 return emulator_write_phys(vcpu, gpa, val, bytes); 5693 } 5694 5695 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5696 { 5697 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5698 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5699 } 5700 5701 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5702 void *val, int bytes) 5703 { 5704 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5705 return X86EMUL_IO_NEEDED; 5706 } 5707 5708 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5709 void *val, int bytes) 5710 { 5711 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5712 5713 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5714 return X86EMUL_CONTINUE; 5715 } 5716 5717 static const struct read_write_emulator_ops read_emultor = { 5718 .read_write_prepare = read_prepare, 5719 .read_write_emulate = read_emulate, 5720 .read_write_mmio = vcpu_mmio_read, 5721 .read_write_exit_mmio = read_exit_mmio, 5722 }; 5723 5724 static const struct read_write_emulator_ops write_emultor = { 5725 .read_write_emulate = write_emulate, 5726 .read_write_mmio = write_mmio, 5727 .read_write_exit_mmio = write_exit_mmio, 5728 .write = true, 5729 }; 5730 5731 static int emulator_read_write_onepage(unsigned long addr, void *val, 5732 unsigned int bytes, 5733 struct x86_exception *exception, 5734 struct kvm_vcpu *vcpu, 5735 const struct read_write_emulator_ops *ops) 5736 { 5737 gpa_t gpa; 5738 int handled, ret; 5739 bool write = ops->write; 5740 struct kvm_mmio_fragment *frag; 5741 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5742 5743 /* 5744 * If the exit was due to a NPF we may already have a GPA. 5745 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5746 * Note, this cannot be used on string operations since string 5747 * operation using rep will only have the initial GPA from the NPF 5748 * occurred. 5749 */ 5750 if (vcpu->arch.gpa_available && 5751 emulator_can_use_gpa(ctxt) && 5752 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 5753 gpa = vcpu->arch.gpa_val; 5754 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5755 } else { 5756 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5757 if (ret < 0) 5758 return X86EMUL_PROPAGATE_FAULT; 5759 } 5760 5761 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5762 return X86EMUL_CONTINUE; 5763 5764 /* 5765 * Is this MMIO handled locally? 5766 */ 5767 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5768 if (handled == bytes) 5769 return X86EMUL_CONTINUE; 5770 5771 gpa += handled; 5772 bytes -= handled; 5773 val += handled; 5774 5775 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5776 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5777 frag->gpa = gpa; 5778 frag->data = val; 5779 frag->len = bytes; 5780 return X86EMUL_CONTINUE; 5781 } 5782 5783 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5784 unsigned long addr, 5785 void *val, unsigned int bytes, 5786 struct x86_exception *exception, 5787 const struct read_write_emulator_ops *ops) 5788 { 5789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5790 gpa_t gpa; 5791 int rc; 5792 5793 if (ops->read_write_prepare && 5794 ops->read_write_prepare(vcpu, val, bytes)) 5795 return X86EMUL_CONTINUE; 5796 5797 vcpu->mmio_nr_fragments = 0; 5798 5799 /* Crossing a page boundary? */ 5800 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5801 int now; 5802 5803 now = -addr & ~PAGE_MASK; 5804 rc = emulator_read_write_onepage(addr, val, now, exception, 5805 vcpu, ops); 5806 5807 if (rc != X86EMUL_CONTINUE) 5808 return rc; 5809 addr += now; 5810 if (ctxt->mode != X86EMUL_MODE_PROT64) 5811 addr = (u32)addr; 5812 val += now; 5813 bytes -= now; 5814 } 5815 5816 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5817 vcpu, ops); 5818 if (rc != X86EMUL_CONTINUE) 5819 return rc; 5820 5821 if (!vcpu->mmio_nr_fragments) 5822 return rc; 5823 5824 gpa = vcpu->mmio_fragments[0].gpa; 5825 5826 vcpu->mmio_needed = 1; 5827 vcpu->mmio_cur_fragment = 0; 5828 5829 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5830 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5831 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5832 vcpu->run->mmio.phys_addr = gpa; 5833 5834 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5835 } 5836 5837 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5838 unsigned long addr, 5839 void *val, 5840 unsigned int bytes, 5841 struct x86_exception *exception) 5842 { 5843 return emulator_read_write(ctxt, addr, val, bytes, 5844 exception, &read_emultor); 5845 } 5846 5847 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5848 unsigned long addr, 5849 const void *val, 5850 unsigned int bytes, 5851 struct x86_exception *exception) 5852 { 5853 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5854 exception, &write_emultor); 5855 } 5856 5857 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5858 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5859 5860 #ifdef CONFIG_X86_64 5861 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5862 #else 5863 # define CMPXCHG64(ptr, old, new) \ 5864 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5865 #endif 5866 5867 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5868 unsigned long addr, 5869 const void *old, 5870 const void *new, 5871 unsigned int bytes, 5872 struct x86_exception *exception) 5873 { 5874 struct kvm_host_map map; 5875 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5876 gpa_t gpa; 5877 char *kaddr; 5878 bool exchanged; 5879 5880 /* guests cmpxchg8b have to be emulated atomically */ 5881 if (bytes > 8 || (bytes & (bytes - 1))) 5882 goto emul_write; 5883 5884 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5885 5886 if (gpa == UNMAPPED_GVA || 5887 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5888 goto emul_write; 5889 5890 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5891 goto emul_write; 5892 5893 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5894 goto emul_write; 5895 5896 kaddr = map.hva + offset_in_page(gpa); 5897 5898 switch (bytes) { 5899 case 1: 5900 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5901 break; 5902 case 2: 5903 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5904 break; 5905 case 4: 5906 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5907 break; 5908 case 8: 5909 exchanged = CMPXCHG64(kaddr, old, new); 5910 break; 5911 default: 5912 BUG(); 5913 } 5914 5915 kvm_vcpu_unmap(vcpu, &map, true); 5916 5917 if (!exchanged) 5918 return X86EMUL_CMPXCHG_FAILED; 5919 5920 kvm_page_track_write(vcpu, gpa, new, bytes); 5921 5922 return X86EMUL_CONTINUE; 5923 5924 emul_write: 5925 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5926 5927 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5928 } 5929 5930 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5931 { 5932 int r = 0, i; 5933 5934 for (i = 0; i < vcpu->arch.pio.count; i++) { 5935 if (vcpu->arch.pio.in) 5936 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5937 vcpu->arch.pio.size, pd); 5938 else 5939 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5940 vcpu->arch.pio.port, vcpu->arch.pio.size, 5941 pd); 5942 if (r) 5943 break; 5944 pd += vcpu->arch.pio.size; 5945 } 5946 return r; 5947 } 5948 5949 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5950 unsigned short port, void *val, 5951 unsigned int count, bool in) 5952 { 5953 vcpu->arch.pio.port = port; 5954 vcpu->arch.pio.in = in; 5955 vcpu->arch.pio.count = count; 5956 vcpu->arch.pio.size = size; 5957 5958 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5959 vcpu->arch.pio.count = 0; 5960 return 1; 5961 } 5962 5963 vcpu->run->exit_reason = KVM_EXIT_IO; 5964 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5965 vcpu->run->io.size = size; 5966 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5967 vcpu->run->io.count = count; 5968 vcpu->run->io.port = port; 5969 5970 return 0; 5971 } 5972 5973 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5974 int size, unsigned short port, void *val, 5975 unsigned int count) 5976 { 5977 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5978 int ret; 5979 5980 if (vcpu->arch.pio.count) 5981 goto data_avail; 5982 5983 memset(vcpu->arch.pio_data, 0, size * count); 5984 5985 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5986 if (ret) { 5987 data_avail: 5988 memcpy(val, vcpu->arch.pio_data, size * count); 5989 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5990 vcpu->arch.pio.count = 0; 5991 return 1; 5992 } 5993 5994 return 0; 5995 } 5996 5997 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5998 int size, unsigned short port, 5999 const void *val, unsigned int count) 6000 { 6001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6002 6003 memcpy(vcpu->arch.pio_data, val, size * count); 6004 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6005 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6006 } 6007 6008 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6009 { 6010 return kvm_x86_ops->get_segment_base(vcpu, seg); 6011 } 6012 6013 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6014 { 6015 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6016 } 6017 6018 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6019 { 6020 if (!need_emulate_wbinvd(vcpu)) 6021 return X86EMUL_CONTINUE; 6022 6023 if (kvm_x86_ops->has_wbinvd_exit()) { 6024 int cpu = get_cpu(); 6025 6026 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6027 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6028 wbinvd_ipi, NULL, 1); 6029 put_cpu(); 6030 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6031 } else 6032 wbinvd(); 6033 return X86EMUL_CONTINUE; 6034 } 6035 6036 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6037 { 6038 kvm_emulate_wbinvd_noskip(vcpu); 6039 return kvm_skip_emulated_instruction(vcpu); 6040 } 6041 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6042 6043 6044 6045 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6046 { 6047 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6048 } 6049 6050 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6051 unsigned long *dest) 6052 { 6053 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6054 } 6055 6056 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6057 unsigned long value) 6058 { 6059 6060 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6061 } 6062 6063 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6064 { 6065 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6066 } 6067 6068 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6069 { 6070 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6071 unsigned long value; 6072 6073 switch (cr) { 6074 case 0: 6075 value = kvm_read_cr0(vcpu); 6076 break; 6077 case 2: 6078 value = vcpu->arch.cr2; 6079 break; 6080 case 3: 6081 value = kvm_read_cr3(vcpu); 6082 break; 6083 case 4: 6084 value = kvm_read_cr4(vcpu); 6085 break; 6086 case 8: 6087 value = kvm_get_cr8(vcpu); 6088 break; 6089 default: 6090 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6091 return 0; 6092 } 6093 6094 return value; 6095 } 6096 6097 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6098 { 6099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6100 int res = 0; 6101 6102 switch (cr) { 6103 case 0: 6104 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6105 break; 6106 case 2: 6107 vcpu->arch.cr2 = val; 6108 break; 6109 case 3: 6110 res = kvm_set_cr3(vcpu, val); 6111 break; 6112 case 4: 6113 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6114 break; 6115 case 8: 6116 res = kvm_set_cr8(vcpu, val); 6117 break; 6118 default: 6119 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6120 res = -1; 6121 } 6122 6123 return res; 6124 } 6125 6126 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6127 { 6128 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 6129 } 6130 6131 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6132 { 6133 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 6134 } 6135 6136 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6137 { 6138 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 6139 } 6140 6141 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6142 { 6143 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 6144 } 6145 6146 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6147 { 6148 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 6149 } 6150 6151 static unsigned long emulator_get_cached_segment_base( 6152 struct x86_emulate_ctxt *ctxt, int seg) 6153 { 6154 return get_segment_base(emul_to_vcpu(ctxt), seg); 6155 } 6156 6157 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6158 struct desc_struct *desc, u32 *base3, 6159 int seg) 6160 { 6161 struct kvm_segment var; 6162 6163 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6164 *selector = var.selector; 6165 6166 if (var.unusable) { 6167 memset(desc, 0, sizeof(*desc)); 6168 if (base3) 6169 *base3 = 0; 6170 return false; 6171 } 6172 6173 if (var.g) 6174 var.limit >>= 12; 6175 set_desc_limit(desc, var.limit); 6176 set_desc_base(desc, (unsigned long)var.base); 6177 #ifdef CONFIG_X86_64 6178 if (base3) 6179 *base3 = var.base >> 32; 6180 #endif 6181 desc->type = var.type; 6182 desc->s = var.s; 6183 desc->dpl = var.dpl; 6184 desc->p = var.present; 6185 desc->avl = var.avl; 6186 desc->l = var.l; 6187 desc->d = var.db; 6188 desc->g = var.g; 6189 6190 return true; 6191 } 6192 6193 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6194 struct desc_struct *desc, u32 base3, 6195 int seg) 6196 { 6197 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6198 struct kvm_segment var; 6199 6200 var.selector = selector; 6201 var.base = get_desc_base(desc); 6202 #ifdef CONFIG_X86_64 6203 var.base |= ((u64)base3) << 32; 6204 #endif 6205 var.limit = get_desc_limit(desc); 6206 if (desc->g) 6207 var.limit = (var.limit << 12) | 0xfff; 6208 var.type = desc->type; 6209 var.dpl = desc->dpl; 6210 var.db = desc->d; 6211 var.s = desc->s; 6212 var.l = desc->l; 6213 var.g = desc->g; 6214 var.avl = desc->avl; 6215 var.present = desc->p; 6216 var.unusable = !var.present; 6217 var.padding = 0; 6218 6219 kvm_set_segment(vcpu, &var, seg); 6220 return; 6221 } 6222 6223 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6224 u32 msr_index, u64 *pdata) 6225 { 6226 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6227 } 6228 6229 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6230 u32 msr_index, u64 data) 6231 { 6232 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6233 } 6234 6235 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6236 { 6237 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6238 6239 return vcpu->arch.smbase; 6240 } 6241 6242 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6243 { 6244 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6245 6246 vcpu->arch.smbase = smbase; 6247 } 6248 6249 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6250 u32 pmc) 6251 { 6252 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6253 } 6254 6255 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6256 u32 pmc, u64 *pdata) 6257 { 6258 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6259 } 6260 6261 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6262 { 6263 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6264 } 6265 6266 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6267 struct x86_instruction_info *info, 6268 enum x86_intercept_stage stage) 6269 { 6270 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 6271 } 6272 6273 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6274 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 6275 { 6276 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 6277 } 6278 6279 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6280 { 6281 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6282 } 6283 6284 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6285 { 6286 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6287 } 6288 6289 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6290 { 6291 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6292 } 6293 6294 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6295 { 6296 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6297 } 6298 6299 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6300 { 6301 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6302 } 6303 6304 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6305 { 6306 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 6307 } 6308 6309 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6310 { 6311 return emul_to_vcpu(ctxt)->arch.hflags; 6312 } 6313 6314 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6315 { 6316 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6317 } 6318 6319 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6320 const char *smstate) 6321 { 6322 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6323 } 6324 6325 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6326 { 6327 kvm_smm_changed(emul_to_vcpu(ctxt)); 6328 } 6329 6330 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6331 { 6332 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6333 } 6334 6335 static const struct x86_emulate_ops emulate_ops = { 6336 .read_gpr = emulator_read_gpr, 6337 .write_gpr = emulator_write_gpr, 6338 .read_std = emulator_read_std, 6339 .write_std = emulator_write_std, 6340 .read_phys = kvm_read_guest_phys_system, 6341 .fetch = kvm_fetch_guest_virt, 6342 .read_emulated = emulator_read_emulated, 6343 .write_emulated = emulator_write_emulated, 6344 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6345 .invlpg = emulator_invlpg, 6346 .pio_in_emulated = emulator_pio_in_emulated, 6347 .pio_out_emulated = emulator_pio_out_emulated, 6348 .get_segment = emulator_get_segment, 6349 .set_segment = emulator_set_segment, 6350 .get_cached_segment_base = emulator_get_cached_segment_base, 6351 .get_gdt = emulator_get_gdt, 6352 .get_idt = emulator_get_idt, 6353 .set_gdt = emulator_set_gdt, 6354 .set_idt = emulator_set_idt, 6355 .get_cr = emulator_get_cr, 6356 .set_cr = emulator_set_cr, 6357 .cpl = emulator_get_cpl, 6358 .get_dr = emulator_get_dr, 6359 .set_dr = emulator_set_dr, 6360 .get_smbase = emulator_get_smbase, 6361 .set_smbase = emulator_set_smbase, 6362 .set_msr = emulator_set_msr, 6363 .get_msr = emulator_get_msr, 6364 .check_pmc = emulator_check_pmc, 6365 .read_pmc = emulator_read_pmc, 6366 .halt = emulator_halt, 6367 .wbinvd = emulator_wbinvd, 6368 .fix_hypercall = emulator_fix_hypercall, 6369 .intercept = emulator_intercept, 6370 .get_cpuid = emulator_get_cpuid, 6371 .guest_has_long_mode = emulator_guest_has_long_mode, 6372 .guest_has_movbe = emulator_guest_has_movbe, 6373 .guest_has_fxsr = emulator_guest_has_fxsr, 6374 .set_nmi_mask = emulator_set_nmi_mask, 6375 .get_hflags = emulator_get_hflags, 6376 .set_hflags = emulator_set_hflags, 6377 .pre_leave_smm = emulator_pre_leave_smm, 6378 .post_leave_smm = emulator_post_leave_smm, 6379 .set_xcr = emulator_set_xcr, 6380 }; 6381 6382 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6383 { 6384 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 6385 /* 6386 * an sti; sti; sequence only disable interrupts for the first 6387 * instruction. So, if the last instruction, be it emulated or 6388 * not, left the system with the INT_STI flag enabled, it 6389 * means that the last instruction is an sti. We should not 6390 * leave the flag on in this case. The same goes for mov ss 6391 */ 6392 if (int_shadow & mask) 6393 mask = 0; 6394 if (unlikely(int_shadow || mask)) { 6395 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 6396 if (!mask) 6397 kvm_make_request(KVM_REQ_EVENT, vcpu); 6398 } 6399 } 6400 6401 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6402 { 6403 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6404 if (ctxt->exception.vector == PF_VECTOR) 6405 return kvm_propagate_fault(vcpu, &ctxt->exception); 6406 6407 if (ctxt->exception.error_code_valid) 6408 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6409 ctxt->exception.error_code); 6410 else 6411 kvm_queue_exception(vcpu, ctxt->exception.vector); 6412 return false; 6413 } 6414 6415 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6416 { 6417 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6418 int cs_db, cs_l; 6419 6420 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6421 6422 ctxt->eflags = kvm_get_rflags(vcpu); 6423 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6424 6425 ctxt->eip = kvm_rip_read(vcpu); 6426 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6427 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6428 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6429 cs_db ? X86EMUL_MODE_PROT32 : 6430 X86EMUL_MODE_PROT16; 6431 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6432 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6433 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6434 6435 init_decode_cache(ctxt); 6436 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6437 } 6438 6439 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6440 { 6441 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6442 int ret; 6443 6444 init_emulate_ctxt(vcpu); 6445 6446 ctxt->op_bytes = 2; 6447 ctxt->ad_bytes = 2; 6448 ctxt->_eip = ctxt->eip + inc_eip; 6449 ret = emulate_int_real(ctxt, irq); 6450 6451 if (ret != X86EMUL_CONTINUE) { 6452 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6453 } else { 6454 ctxt->eip = ctxt->_eip; 6455 kvm_rip_write(vcpu, ctxt->eip); 6456 kvm_set_rflags(vcpu, ctxt->eflags); 6457 } 6458 } 6459 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6460 6461 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6462 { 6463 ++vcpu->stat.insn_emulation_fail; 6464 trace_kvm_emulate_insn_failed(vcpu); 6465 6466 if (emulation_type & EMULTYPE_VMWARE_GP) { 6467 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6468 return 1; 6469 } 6470 6471 if (emulation_type & EMULTYPE_SKIP) { 6472 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6473 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6474 vcpu->run->internal.ndata = 0; 6475 return 0; 6476 } 6477 6478 kvm_queue_exception(vcpu, UD_VECTOR); 6479 6480 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 6481 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6482 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6483 vcpu->run->internal.ndata = 0; 6484 return 0; 6485 } 6486 6487 return 1; 6488 } 6489 6490 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6491 bool write_fault_to_shadow_pgtable, 6492 int emulation_type) 6493 { 6494 gpa_t gpa = cr2_or_gpa; 6495 kvm_pfn_t pfn; 6496 6497 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6498 return false; 6499 6500 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6501 return false; 6502 6503 if (!vcpu->arch.mmu->direct_map) { 6504 /* 6505 * Write permission should be allowed since only 6506 * write access need to be emulated. 6507 */ 6508 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6509 6510 /* 6511 * If the mapping is invalid in guest, let cpu retry 6512 * it to generate fault. 6513 */ 6514 if (gpa == UNMAPPED_GVA) 6515 return true; 6516 } 6517 6518 /* 6519 * Do not retry the unhandleable instruction if it faults on the 6520 * readonly host memory, otherwise it will goto a infinite loop: 6521 * retry instruction -> write #PF -> emulation fail -> retry 6522 * instruction -> ... 6523 */ 6524 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6525 6526 /* 6527 * If the instruction failed on the error pfn, it can not be fixed, 6528 * report the error to userspace. 6529 */ 6530 if (is_error_noslot_pfn(pfn)) 6531 return false; 6532 6533 kvm_release_pfn_clean(pfn); 6534 6535 /* The instructions are well-emulated on direct mmu. */ 6536 if (vcpu->arch.mmu->direct_map) { 6537 unsigned int indirect_shadow_pages; 6538 6539 spin_lock(&vcpu->kvm->mmu_lock); 6540 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6541 spin_unlock(&vcpu->kvm->mmu_lock); 6542 6543 if (indirect_shadow_pages) 6544 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6545 6546 return true; 6547 } 6548 6549 /* 6550 * if emulation was due to access to shadowed page table 6551 * and it failed try to unshadow page and re-enter the 6552 * guest to let CPU execute the instruction. 6553 */ 6554 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6555 6556 /* 6557 * If the access faults on its page table, it can not 6558 * be fixed by unprotecting shadow page and it should 6559 * be reported to userspace. 6560 */ 6561 return !write_fault_to_shadow_pgtable; 6562 } 6563 6564 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6565 gpa_t cr2_or_gpa, int emulation_type) 6566 { 6567 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6568 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6569 6570 last_retry_eip = vcpu->arch.last_retry_eip; 6571 last_retry_addr = vcpu->arch.last_retry_addr; 6572 6573 /* 6574 * If the emulation is caused by #PF and it is non-page_table 6575 * writing instruction, it means the VM-EXIT is caused by shadow 6576 * page protected, we can zap the shadow page and retry this 6577 * instruction directly. 6578 * 6579 * Note: if the guest uses a non-page-table modifying instruction 6580 * on the PDE that points to the instruction, then we will unmap 6581 * the instruction and go to an infinite loop. So, we cache the 6582 * last retried eip and the last fault address, if we meet the eip 6583 * and the address again, we can break out of the potential infinite 6584 * loop. 6585 */ 6586 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6587 6588 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6589 return false; 6590 6591 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6592 return false; 6593 6594 if (x86_page_table_writing_insn(ctxt)) 6595 return false; 6596 6597 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6598 return false; 6599 6600 vcpu->arch.last_retry_eip = ctxt->eip; 6601 vcpu->arch.last_retry_addr = cr2_or_gpa; 6602 6603 if (!vcpu->arch.mmu->direct_map) 6604 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6605 6606 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6607 6608 return true; 6609 } 6610 6611 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6612 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6613 6614 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6615 { 6616 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6617 /* This is a good place to trace that we are exiting SMM. */ 6618 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6619 6620 /* Process a latched INIT or SMI, if any. */ 6621 kvm_make_request(KVM_REQ_EVENT, vcpu); 6622 } 6623 6624 kvm_mmu_reset_context(vcpu); 6625 } 6626 6627 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6628 unsigned long *db) 6629 { 6630 u32 dr6 = 0; 6631 int i; 6632 u32 enable, rwlen; 6633 6634 enable = dr7; 6635 rwlen = dr7 >> 16; 6636 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6637 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6638 dr6 |= (1 << i); 6639 return dr6; 6640 } 6641 6642 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6643 { 6644 struct kvm_run *kvm_run = vcpu->run; 6645 6646 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6647 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6648 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6649 kvm_run->debug.arch.exception = DB_VECTOR; 6650 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6651 return 0; 6652 } 6653 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6654 return 1; 6655 } 6656 6657 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6658 { 6659 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6660 int r; 6661 6662 r = kvm_x86_ops->skip_emulated_instruction(vcpu); 6663 if (unlikely(!r)) 6664 return 0; 6665 6666 /* 6667 * rflags is the old, "raw" value of the flags. The new value has 6668 * not been saved yet. 6669 * 6670 * This is correct even for TF set by the guest, because "the 6671 * processor will not generate this exception after the instruction 6672 * that sets the TF flag". 6673 */ 6674 if (unlikely(rflags & X86_EFLAGS_TF)) 6675 r = kvm_vcpu_do_singlestep(vcpu); 6676 return r; 6677 } 6678 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6679 6680 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6681 { 6682 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6683 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6684 struct kvm_run *kvm_run = vcpu->run; 6685 unsigned long eip = kvm_get_linear_rip(vcpu); 6686 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6687 vcpu->arch.guest_debug_dr7, 6688 vcpu->arch.eff_db); 6689 6690 if (dr6 != 0) { 6691 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6692 kvm_run->debug.arch.pc = eip; 6693 kvm_run->debug.arch.exception = DB_VECTOR; 6694 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6695 *r = 0; 6696 return true; 6697 } 6698 } 6699 6700 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6701 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6702 unsigned long eip = kvm_get_linear_rip(vcpu); 6703 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6704 vcpu->arch.dr7, 6705 vcpu->arch.db); 6706 6707 if (dr6 != 0) { 6708 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 6709 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6710 kvm_queue_exception(vcpu, DB_VECTOR); 6711 *r = 1; 6712 return true; 6713 } 6714 } 6715 6716 return false; 6717 } 6718 6719 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6720 { 6721 switch (ctxt->opcode_len) { 6722 case 1: 6723 switch (ctxt->b) { 6724 case 0xe4: /* IN */ 6725 case 0xe5: 6726 case 0xec: 6727 case 0xed: 6728 case 0xe6: /* OUT */ 6729 case 0xe7: 6730 case 0xee: 6731 case 0xef: 6732 case 0x6c: /* INS */ 6733 case 0x6d: 6734 case 0x6e: /* OUTS */ 6735 case 0x6f: 6736 return true; 6737 } 6738 break; 6739 case 2: 6740 switch (ctxt->b) { 6741 case 0x33: /* RDPMC */ 6742 return true; 6743 } 6744 break; 6745 } 6746 6747 return false; 6748 } 6749 6750 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6751 int emulation_type, void *insn, int insn_len) 6752 { 6753 int r; 6754 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6755 bool writeback = true; 6756 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6757 6758 vcpu->arch.l1tf_flush_l1d = true; 6759 6760 /* 6761 * Clear write_fault_to_shadow_pgtable here to ensure it is 6762 * never reused. 6763 */ 6764 vcpu->arch.write_fault_to_shadow_pgtable = false; 6765 kvm_clear_exception_queue(vcpu); 6766 6767 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6768 init_emulate_ctxt(vcpu); 6769 6770 /* 6771 * We will reenter on the same instruction since 6772 * we do not set complete_userspace_io. This does not 6773 * handle watchpoints yet, those would be handled in 6774 * the emulate_ops. 6775 */ 6776 if (!(emulation_type & EMULTYPE_SKIP) && 6777 kvm_vcpu_check_breakpoint(vcpu, &r)) 6778 return r; 6779 6780 ctxt->interruptibility = 0; 6781 ctxt->have_exception = false; 6782 ctxt->exception.vector = -1; 6783 ctxt->perm_ok = false; 6784 6785 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6786 6787 r = x86_decode_insn(ctxt, insn, insn_len); 6788 6789 trace_kvm_emulate_insn_start(vcpu); 6790 ++vcpu->stat.insn_emulation; 6791 if (r != EMULATION_OK) { 6792 if ((emulation_type & EMULTYPE_TRAP_UD) || 6793 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6794 kvm_queue_exception(vcpu, UD_VECTOR); 6795 return 1; 6796 } 6797 if (reexecute_instruction(vcpu, cr2_or_gpa, 6798 write_fault_to_spt, 6799 emulation_type)) 6800 return 1; 6801 if (ctxt->have_exception) { 6802 /* 6803 * #UD should result in just EMULATION_FAILED, and trap-like 6804 * exception should not be encountered during decode. 6805 */ 6806 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6807 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6808 inject_emulated_exception(vcpu); 6809 return 1; 6810 } 6811 return handle_emulation_failure(vcpu, emulation_type); 6812 } 6813 } 6814 6815 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6816 !is_vmware_backdoor_opcode(ctxt)) { 6817 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6818 return 1; 6819 } 6820 6821 /* 6822 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6823 * for kvm_skip_emulated_instruction(). The caller is responsible for 6824 * updating interruptibility state and injecting single-step #DBs. 6825 */ 6826 if (emulation_type & EMULTYPE_SKIP) { 6827 kvm_rip_write(vcpu, ctxt->_eip); 6828 if (ctxt->eflags & X86_EFLAGS_RF) 6829 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6830 return 1; 6831 } 6832 6833 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6834 return 1; 6835 6836 /* this is needed for vmware backdoor interface to work since it 6837 changes registers values during IO operation */ 6838 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6839 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6840 emulator_invalidate_register_cache(ctxt); 6841 } 6842 6843 restart: 6844 /* Save the faulting GPA (cr2) in the address field */ 6845 ctxt->exception.address = cr2_or_gpa; 6846 6847 r = x86_emulate_insn(ctxt); 6848 6849 if (r == EMULATION_INTERCEPTED) 6850 return 1; 6851 6852 if (r == EMULATION_FAILED) { 6853 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6854 emulation_type)) 6855 return 1; 6856 6857 return handle_emulation_failure(vcpu, emulation_type); 6858 } 6859 6860 if (ctxt->have_exception) { 6861 r = 1; 6862 if (inject_emulated_exception(vcpu)) 6863 return r; 6864 } else if (vcpu->arch.pio.count) { 6865 if (!vcpu->arch.pio.in) { 6866 /* FIXME: return into emulator if single-stepping. */ 6867 vcpu->arch.pio.count = 0; 6868 } else { 6869 writeback = false; 6870 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6871 } 6872 r = 0; 6873 } else if (vcpu->mmio_needed) { 6874 ++vcpu->stat.mmio_exits; 6875 6876 if (!vcpu->mmio_is_write) 6877 writeback = false; 6878 r = 0; 6879 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6880 } else if (r == EMULATION_RESTART) 6881 goto restart; 6882 else 6883 r = 1; 6884 6885 if (writeback) { 6886 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6887 toggle_interruptibility(vcpu, ctxt->interruptibility); 6888 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6889 if (!ctxt->have_exception || 6890 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 6891 kvm_rip_write(vcpu, ctxt->eip); 6892 if (r && ctxt->tf) 6893 r = kvm_vcpu_do_singlestep(vcpu); 6894 __kvm_set_rflags(vcpu, ctxt->eflags); 6895 } 6896 6897 /* 6898 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6899 * do nothing, and it will be requested again as soon as 6900 * the shadow expires. But we still need to check here, 6901 * because POPF has no interrupt shadow. 6902 */ 6903 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6904 kvm_make_request(KVM_REQ_EVENT, vcpu); 6905 } else 6906 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6907 6908 return r; 6909 } 6910 6911 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6912 { 6913 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6914 } 6915 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6916 6917 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6918 void *insn, int insn_len) 6919 { 6920 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6921 } 6922 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6923 6924 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6925 { 6926 vcpu->arch.pio.count = 0; 6927 return 1; 6928 } 6929 6930 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6931 { 6932 vcpu->arch.pio.count = 0; 6933 6934 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6935 return 1; 6936 6937 return kvm_skip_emulated_instruction(vcpu); 6938 } 6939 6940 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6941 unsigned short port) 6942 { 6943 unsigned long val = kvm_rax_read(vcpu); 6944 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6945 size, port, &val, 1); 6946 if (ret) 6947 return ret; 6948 6949 /* 6950 * Workaround userspace that relies on old KVM behavior of %rip being 6951 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6952 */ 6953 if (port == 0x7e && 6954 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6955 vcpu->arch.complete_userspace_io = 6956 complete_fast_pio_out_port_0x7e; 6957 kvm_skip_emulated_instruction(vcpu); 6958 } else { 6959 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6960 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 6961 } 6962 return 0; 6963 } 6964 6965 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6966 { 6967 unsigned long val; 6968 6969 /* We should only ever be called with arch.pio.count equal to 1 */ 6970 BUG_ON(vcpu->arch.pio.count != 1); 6971 6972 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 6973 vcpu->arch.pio.count = 0; 6974 return 1; 6975 } 6976 6977 /* For size less than 4 we merge, else we zero extend */ 6978 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 6979 6980 /* 6981 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6982 * the copy and tracing 6983 */ 6984 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6985 vcpu->arch.pio.port, &val, 1); 6986 kvm_rax_write(vcpu, val); 6987 6988 return kvm_skip_emulated_instruction(vcpu); 6989 } 6990 6991 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 6992 unsigned short port) 6993 { 6994 unsigned long val; 6995 int ret; 6996 6997 /* For size less than 4 we merge, else we zero extend */ 6998 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 6999 7000 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 7001 &val, 1); 7002 if (ret) { 7003 kvm_rax_write(vcpu, val); 7004 return ret; 7005 } 7006 7007 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7008 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7009 7010 return 0; 7011 } 7012 7013 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7014 { 7015 int ret; 7016 7017 if (in) 7018 ret = kvm_fast_pio_in(vcpu, size, port); 7019 else 7020 ret = kvm_fast_pio_out(vcpu, size, port); 7021 return ret && kvm_skip_emulated_instruction(vcpu); 7022 } 7023 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7024 7025 static int kvmclock_cpu_down_prep(unsigned int cpu) 7026 { 7027 __this_cpu_write(cpu_tsc_khz, 0); 7028 return 0; 7029 } 7030 7031 static void tsc_khz_changed(void *data) 7032 { 7033 struct cpufreq_freqs *freq = data; 7034 unsigned long khz = 0; 7035 7036 if (data) 7037 khz = freq->new; 7038 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7039 khz = cpufreq_quick_get(raw_smp_processor_id()); 7040 if (!khz) 7041 khz = tsc_khz; 7042 __this_cpu_write(cpu_tsc_khz, khz); 7043 } 7044 7045 #ifdef CONFIG_X86_64 7046 static void kvm_hyperv_tsc_notifier(void) 7047 { 7048 struct kvm *kvm; 7049 struct kvm_vcpu *vcpu; 7050 int cpu; 7051 7052 mutex_lock(&kvm_lock); 7053 list_for_each_entry(kvm, &vm_list, vm_list) 7054 kvm_make_mclock_inprogress_request(kvm); 7055 7056 hyperv_stop_tsc_emulation(); 7057 7058 /* TSC frequency always matches when on Hyper-V */ 7059 for_each_present_cpu(cpu) 7060 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7061 kvm_max_guest_tsc_khz = tsc_khz; 7062 7063 list_for_each_entry(kvm, &vm_list, vm_list) { 7064 struct kvm_arch *ka = &kvm->arch; 7065 7066 spin_lock(&ka->pvclock_gtod_sync_lock); 7067 7068 pvclock_update_vm_gtod_copy(kvm); 7069 7070 kvm_for_each_vcpu(cpu, vcpu, kvm) 7071 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7072 7073 kvm_for_each_vcpu(cpu, vcpu, kvm) 7074 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7075 7076 spin_unlock(&ka->pvclock_gtod_sync_lock); 7077 } 7078 mutex_unlock(&kvm_lock); 7079 } 7080 #endif 7081 7082 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7083 { 7084 struct kvm *kvm; 7085 struct kvm_vcpu *vcpu; 7086 int i, send_ipi = 0; 7087 7088 /* 7089 * We allow guests to temporarily run on slowing clocks, 7090 * provided we notify them after, or to run on accelerating 7091 * clocks, provided we notify them before. Thus time never 7092 * goes backwards. 7093 * 7094 * However, we have a problem. We can't atomically update 7095 * the frequency of a given CPU from this function; it is 7096 * merely a notifier, which can be called from any CPU. 7097 * Changing the TSC frequency at arbitrary points in time 7098 * requires a recomputation of local variables related to 7099 * the TSC for each VCPU. We must flag these local variables 7100 * to be updated and be sure the update takes place with the 7101 * new frequency before any guests proceed. 7102 * 7103 * Unfortunately, the combination of hotplug CPU and frequency 7104 * change creates an intractable locking scenario; the order 7105 * of when these callouts happen is undefined with respect to 7106 * CPU hotplug, and they can race with each other. As such, 7107 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7108 * undefined; you can actually have a CPU frequency change take 7109 * place in between the computation of X and the setting of the 7110 * variable. To protect against this problem, all updates of 7111 * the per_cpu tsc_khz variable are done in an interrupt 7112 * protected IPI, and all callers wishing to update the value 7113 * must wait for a synchronous IPI to complete (which is trivial 7114 * if the caller is on the CPU already). This establishes the 7115 * necessary total order on variable updates. 7116 * 7117 * Note that because a guest time update may take place 7118 * anytime after the setting of the VCPU's request bit, the 7119 * correct TSC value must be set before the request. However, 7120 * to ensure the update actually makes it to any guest which 7121 * starts running in hardware virtualization between the set 7122 * and the acquisition of the spinlock, we must also ping the 7123 * CPU after setting the request bit. 7124 * 7125 */ 7126 7127 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7128 7129 mutex_lock(&kvm_lock); 7130 list_for_each_entry(kvm, &vm_list, vm_list) { 7131 kvm_for_each_vcpu(i, vcpu, kvm) { 7132 if (vcpu->cpu != cpu) 7133 continue; 7134 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7135 if (vcpu->cpu != raw_smp_processor_id()) 7136 send_ipi = 1; 7137 } 7138 } 7139 mutex_unlock(&kvm_lock); 7140 7141 if (freq->old < freq->new && send_ipi) { 7142 /* 7143 * We upscale the frequency. Must make the guest 7144 * doesn't see old kvmclock values while running with 7145 * the new frequency, otherwise we risk the guest sees 7146 * time go backwards. 7147 * 7148 * In case we update the frequency for another cpu 7149 * (which might be in guest context) send an interrupt 7150 * to kick the cpu out of guest context. Next time 7151 * guest context is entered kvmclock will be updated, 7152 * so the guest will not see stale values. 7153 */ 7154 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7155 } 7156 } 7157 7158 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7159 void *data) 7160 { 7161 struct cpufreq_freqs *freq = data; 7162 int cpu; 7163 7164 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7165 return 0; 7166 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7167 return 0; 7168 7169 for_each_cpu(cpu, freq->policy->cpus) 7170 __kvmclock_cpufreq_notifier(freq, cpu); 7171 7172 return 0; 7173 } 7174 7175 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7176 .notifier_call = kvmclock_cpufreq_notifier 7177 }; 7178 7179 static int kvmclock_cpu_online(unsigned int cpu) 7180 { 7181 tsc_khz_changed(NULL); 7182 return 0; 7183 } 7184 7185 static void kvm_timer_init(void) 7186 { 7187 max_tsc_khz = tsc_khz; 7188 7189 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7190 #ifdef CONFIG_CPU_FREQ 7191 struct cpufreq_policy policy; 7192 int cpu; 7193 7194 memset(&policy, 0, sizeof(policy)); 7195 cpu = get_cpu(); 7196 cpufreq_get_policy(&policy, cpu); 7197 if (policy.cpuinfo.max_freq) 7198 max_tsc_khz = policy.cpuinfo.max_freq; 7199 put_cpu(); 7200 #endif 7201 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7202 CPUFREQ_TRANSITION_NOTIFIER); 7203 } 7204 7205 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7206 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7207 } 7208 7209 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7210 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7211 7212 int kvm_is_in_guest(void) 7213 { 7214 return __this_cpu_read(current_vcpu) != NULL; 7215 } 7216 7217 static int kvm_is_user_mode(void) 7218 { 7219 int user_mode = 3; 7220 7221 if (__this_cpu_read(current_vcpu)) 7222 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 7223 7224 return user_mode != 0; 7225 } 7226 7227 static unsigned long kvm_get_guest_ip(void) 7228 { 7229 unsigned long ip = 0; 7230 7231 if (__this_cpu_read(current_vcpu)) 7232 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7233 7234 return ip; 7235 } 7236 7237 static void kvm_handle_intel_pt_intr(void) 7238 { 7239 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7240 7241 kvm_make_request(KVM_REQ_PMI, vcpu); 7242 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7243 (unsigned long *)&vcpu->arch.pmu.global_status); 7244 } 7245 7246 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7247 .is_in_guest = kvm_is_in_guest, 7248 .is_user_mode = kvm_is_user_mode, 7249 .get_guest_ip = kvm_get_guest_ip, 7250 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7251 }; 7252 7253 #ifdef CONFIG_X86_64 7254 static void pvclock_gtod_update_fn(struct work_struct *work) 7255 { 7256 struct kvm *kvm; 7257 7258 struct kvm_vcpu *vcpu; 7259 int i; 7260 7261 mutex_lock(&kvm_lock); 7262 list_for_each_entry(kvm, &vm_list, vm_list) 7263 kvm_for_each_vcpu(i, vcpu, kvm) 7264 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7265 atomic_set(&kvm_guest_has_master_clock, 0); 7266 mutex_unlock(&kvm_lock); 7267 } 7268 7269 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7270 7271 /* 7272 * Notification about pvclock gtod data update. 7273 */ 7274 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7275 void *priv) 7276 { 7277 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7278 struct timekeeper *tk = priv; 7279 7280 update_pvclock_gtod(tk); 7281 7282 /* disable master clock if host does not trust, or does not 7283 * use, TSC based clocksource. 7284 */ 7285 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7286 atomic_read(&kvm_guest_has_master_clock) != 0) 7287 queue_work(system_long_wq, &pvclock_gtod_work); 7288 7289 return 0; 7290 } 7291 7292 static struct notifier_block pvclock_gtod_notifier = { 7293 .notifier_call = pvclock_gtod_notify, 7294 }; 7295 #endif 7296 7297 int kvm_arch_init(void *opaque) 7298 { 7299 int r; 7300 struct kvm_x86_ops *ops = opaque; 7301 7302 if (kvm_x86_ops) { 7303 printk(KERN_ERR "kvm: already loaded the other module\n"); 7304 r = -EEXIST; 7305 goto out; 7306 } 7307 7308 if (!ops->cpu_has_kvm_support()) { 7309 printk(KERN_ERR "kvm: no hardware support\n"); 7310 r = -EOPNOTSUPP; 7311 goto out; 7312 } 7313 if (ops->disabled_by_bios()) { 7314 printk(KERN_ERR "kvm: disabled by bios\n"); 7315 r = -EOPNOTSUPP; 7316 goto out; 7317 } 7318 7319 /* 7320 * KVM explicitly assumes that the guest has an FPU and 7321 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7322 * vCPU's FPU state as a fxregs_state struct. 7323 */ 7324 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7325 printk(KERN_ERR "kvm: inadequate fpu\n"); 7326 r = -EOPNOTSUPP; 7327 goto out; 7328 } 7329 7330 r = -ENOMEM; 7331 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7332 __alignof__(struct fpu), SLAB_ACCOUNT, 7333 NULL); 7334 if (!x86_fpu_cache) { 7335 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7336 goto out; 7337 } 7338 7339 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7340 if (!shared_msrs) { 7341 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7342 goto out_free_x86_fpu_cache; 7343 } 7344 7345 r = kvm_mmu_module_init(); 7346 if (r) 7347 goto out_free_percpu; 7348 7349 kvm_x86_ops = ops; 7350 7351 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7352 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7353 PT_PRESENT_MASK, 0, sme_me_mask); 7354 kvm_timer_init(); 7355 7356 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7357 7358 if (boot_cpu_has(X86_FEATURE_XSAVE)) 7359 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7360 7361 kvm_lapic_init(); 7362 if (pi_inject_timer == -1) 7363 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7364 #ifdef CONFIG_X86_64 7365 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7366 7367 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7368 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7369 #endif 7370 7371 return 0; 7372 7373 out_free_percpu: 7374 free_percpu(shared_msrs); 7375 out_free_x86_fpu_cache: 7376 kmem_cache_destroy(x86_fpu_cache); 7377 out: 7378 return r; 7379 } 7380 7381 void kvm_arch_exit(void) 7382 { 7383 #ifdef CONFIG_X86_64 7384 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7385 clear_hv_tscchange_cb(); 7386 #endif 7387 kvm_lapic_exit(); 7388 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7389 7390 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7391 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7392 CPUFREQ_TRANSITION_NOTIFIER); 7393 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7394 #ifdef CONFIG_X86_64 7395 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7396 #endif 7397 kvm_x86_ops = NULL; 7398 kvm_mmu_module_exit(); 7399 free_percpu(shared_msrs); 7400 kmem_cache_destroy(x86_fpu_cache); 7401 } 7402 7403 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7404 { 7405 ++vcpu->stat.halt_exits; 7406 if (lapic_in_kernel(vcpu)) { 7407 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7408 return 1; 7409 } else { 7410 vcpu->run->exit_reason = KVM_EXIT_HLT; 7411 return 0; 7412 } 7413 } 7414 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7415 7416 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7417 { 7418 int ret = kvm_skip_emulated_instruction(vcpu); 7419 /* 7420 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7421 * KVM_EXIT_DEBUG here. 7422 */ 7423 return kvm_vcpu_halt(vcpu) && ret; 7424 } 7425 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7426 7427 #ifdef CONFIG_X86_64 7428 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7429 unsigned long clock_type) 7430 { 7431 struct kvm_clock_pairing clock_pairing; 7432 struct timespec64 ts; 7433 u64 cycle; 7434 int ret; 7435 7436 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7437 return -KVM_EOPNOTSUPP; 7438 7439 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7440 return -KVM_EOPNOTSUPP; 7441 7442 clock_pairing.sec = ts.tv_sec; 7443 clock_pairing.nsec = ts.tv_nsec; 7444 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7445 clock_pairing.flags = 0; 7446 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7447 7448 ret = 0; 7449 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7450 sizeof(struct kvm_clock_pairing))) 7451 ret = -KVM_EFAULT; 7452 7453 return ret; 7454 } 7455 #endif 7456 7457 /* 7458 * kvm_pv_kick_cpu_op: Kick a vcpu. 7459 * 7460 * @apicid - apicid of vcpu to be kicked. 7461 */ 7462 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7463 { 7464 struct kvm_lapic_irq lapic_irq; 7465 7466 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7467 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7468 lapic_irq.level = 0; 7469 lapic_irq.dest_id = apicid; 7470 lapic_irq.msi_redir_hint = false; 7471 7472 lapic_irq.delivery_mode = APIC_DM_REMRD; 7473 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7474 } 7475 7476 bool kvm_apicv_activated(struct kvm *kvm) 7477 { 7478 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7479 } 7480 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7481 7482 void kvm_apicv_init(struct kvm *kvm, bool enable) 7483 { 7484 if (enable) 7485 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7486 &kvm->arch.apicv_inhibit_reasons); 7487 else 7488 set_bit(APICV_INHIBIT_REASON_DISABLE, 7489 &kvm->arch.apicv_inhibit_reasons); 7490 } 7491 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7492 7493 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7494 { 7495 struct kvm_vcpu *target = NULL; 7496 struct kvm_apic_map *map; 7497 7498 rcu_read_lock(); 7499 map = rcu_dereference(kvm->arch.apic_map); 7500 7501 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7502 target = map->phys_map[dest_id]->vcpu; 7503 7504 rcu_read_unlock(); 7505 7506 if (target && READ_ONCE(target->ready)) 7507 kvm_vcpu_yield_to(target); 7508 } 7509 7510 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7511 { 7512 unsigned long nr, a0, a1, a2, a3, ret; 7513 int op_64_bit; 7514 7515 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7516 return kvm_hv_hypercall(vcpu); 7517 7518 nr = kvm_rax_read(vcpu); 7519 a0 = kvm_rbx_read(vcpu); 7520 a1 = kvm_rcx_read(vcpu); 7521 a2 = kvm_rdx_read(vcpu); 7522 a3 = kvm_rsi_read(vcpu); 7523 7524 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7525 7526 op_64_bit = is_64_bit_mode(vcpu); 7527 if (!op_64_bit) { 7528 nr &= 0xFFFFFFFF; 7529 a0 &= 0xFFFFFFFF; 7530 a1 &= 0xFFFFFFFF; 7531 a2 &= 0xFFFFFFFF; 7532 a3 &= 0xFFFFFFFF; 7533 } 7534 7535 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 7536 ret = -KVM_EPERM; 7537 goto out; 7538 } 7539 7540 switch (nr) { 7541 case KVM_HC_VAPIC_POLL_IRQ: 7542 ret = 0; 7543 break; 7544 case KVM_HC_KICK_CPU: 7545 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7546 kvm_sched_yield(vcpu->kvm, a1); 7547 ret = 0; 7548 break; 7549 #ifdef CONFIG_X86_64 7550 case KVM_HC_CLOCK_PAIRING: 7551 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7552 break; 7553 #endif 7554 case KVM_HC_SEND_IPI: 7555 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7556 break; 7557 case KVM_HC_SCHED_YIELD: 7558 kvm_sched_yield(vcpu->kvm, a0); 7559 ret = 0; 7560 break; 7561 default: 7562 ret = -KVM_ENOSYS; 7563 break; 7564 } 7565 out: 7566 if (!op_64_bit) 7567 ret = (u32)ret; 7568 kvm_rax_write(vcpu, ret); 7569 7570 ++vcpu->stat.hypercalls; 7571 return kvm_skip_emulated_instruction(vcpu); 7572 } 7573 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7574 7575 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7576 { 7577 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7578 char instruction[3]; 7579 unsigned long rip = kvm_rip_read(vcpu); 7580 7581 kvm_x86_ops->patch_hypercall(vcpu, instruction); 7582 7583 return emulator_write_emulated(ctxt, rip, instruction, 3, 7584 &ctxt->exception); 7585 } 7586 7587 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7588 { 7589 return vcpu->run->request_interrupt_window && 7590 likely(!pic_in_kernel(vcpu->kvm)); 7591 } 7592 7593 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7594 { 7595 struct kvm_run *kvm_run = vcpu->run; 7596 7597 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7598 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7599 kvm_run->cr8 = kvm_get_cr8(vcpu); 7600 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7601 kvm_run->ready_for_interrupt_injection = 7602 pic_in_kernel(vcpu->kvm) || 7603 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7604 } 7605 7606 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7607 { 7608 int max_irr, tpr; 7609 7610 if (!kvm_x86_ops->update_cr8_intercept) 7611 return; 7612 7613 if (!lapic_in_kernel(vcpu)) 7614 return; 7615 7616 if (vcpu->arch.apicv_active) 7617 return; 7618 7619 if (!vcpu->arch.apic->vapic_addr) 7620 max_irr = kvm_lapic_find_highest_irr(vcpu); 7621 else 7622 max_irr = -1; 7623 7624 if (max_irr != -1) 7625 max_irr >>= 4; 7626 7627 tpr = kvm_lapic_get_cr8(vcpu); 7628 7629 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 7630 } 7631 7632 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 7633 { 7634 int r; 7635 7636 /* try to reinject previous events if any */ 7637 7638 if (vcpu->arch.exception.injected) 7639 kvm_x86_ops->queue_exception(vcpu); 7640 /* 7641 * Do not inject an NMI or interrupt if there is a pending 7642 * exception. Exceptions and interrupts are recognized at 7643 * instruction boundaries, i.e. the start of an instruction. 7644 * Trap-like exceptions, e.g. #DB, have higher priority than 7645 * NMIs and interrupts, i.e. traps are recognized before an 7646 * NMI/interrupt that's pending on the same instruction. 7647 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7648 * priority, but are only generated (pended) during instruction 7649 * execution, i.e. a pending fault-like exception means the 7650 * fault occurred on the *previous* instruction and must be 7651 * serviced prior to recognizing any new events in order to 7652 * fully complete the previous instruction. 7653 */ 7654 else if (!vcpu->arch.exception.pending) { 7655 if (vcpu->arch.nmi_injected) 7656 kvm_x86_ops->set_nmi(vcpu); 7657 else if (vcpu->arch.interrupt.injected) 7658 kvm_x86_ops->set_irq(vcpu); 7659 } 7660 7661 /* 7662 * Call check_nested_events() even if we reinjected a previous event 7663 * in order for caller to determine if it should require immediate-exit 7664 * from L2 to L1 due to pending L1 events which require exit 7665 * from L2 to L1. 7666 */ 7667 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7668 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7669 if (r != 0) 7670 return r; 7671 } 7672 7673 /* try to inject new event if pending */ 7674 if (vcpu->arch.exception.pending) { 7675 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7676 vcpu->arch.exception.has_error_code, 7677 vcpu->arch.exception.error_code); 7678 7679 WARN_ON_ONCE(vcpu->arch.exception.injected); 7680 vcpu->arch.exception.pending = false; 7681 vcpu->arch.exception.injected = true; 7682 7683 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7684 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7685 X86_EFLAGS_RF); 7686 7687 if (vcpu->arch.exception.nr == DB_VECTOR) { 7688 /* 7689 * This code assumes that nSVM doesn't use 7690 * check_nested_events(). If it does, the 7691 * DR6/DR7 changes should happen before L1 7692 * gets a #VMEXIT for an intercepted #DB in 7693 * L2. (Under VMX, on the other hand, the 7694 * DR6/DR7 changes should not happen in the 7695 * event of a VM-exit to L1 for an intercepted 7696 * #DB in L2.) 7697 */ 7698 kvm_deliver_exception_payload(vcpu); 7699 if (vcpu->arch.dr7 & DR7_GD) { 7700 vcpu->arch.dr7 &= ~DR7_GD; 7701 kvm_update_dr7(vcpu); 7702 } 7703 } 7704 7705 kvm_x86_ops->queue_exception(vcpu); 7706 } 7707 7708 /* Don't consider new event if we re-injected an event */ 7709 if (kvm_event_needs_reinjection(vcpu)) 7710 return 0; 7711 7712 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7713 kvm_x86_ops->smi_allowed(vcpu)) { 7714 vcpu->arch.smi_pending = false; 7715 ++vcpu->arch.smi_count; 7716 enter_smm(vcpu); 7717 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 7718 --vcpu->arch.nmi_pending; 7719 vcpu->arch.nmi_injected = true; 7720 kvm_x86_ops->set_nmi(vcpu); 7721 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7722 /* 7723 * Because interrupts can be injected asynchronously, we are 7724 * calling check_nested_events again here to avoid a race condition. 7725 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7726 * proposal and current concerns. Perhaps we should be setting 7727 * KVM_REQ_EVENT only on certain events and not unconditionally? 7728 */ 7729 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7730 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7731 if (r != 0) 7732 return r; 7733 } 7734 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 7735 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7736 false); 7737 kvm_x86_ops->set_irq(vcpu); 7738 } 7739 } 7740 7741 return 0; 7742 } 7743 7744 static void process_nmi(struct kvm_vcpu *vcpu) 7745 { 7746 unsigned limit = 2; 7747 7748 /* 7749 * x86 is limited to one NMI running, and one NMI pending after it. 7750 * If an NMI is already in progress, limit further NMIs to just one. 7751 * Otherwise, allow two (and we'll inject the first one immediately). 7752 */ 7753 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7754 limit = 1; 7755 7756 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7757 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7758 kvm_make_request(KVM_REQ_EVENT, vcpu); 7759 } 7760 7761 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7762 { 7763 u32 flags = 0; 7764 flags |= seg->g << 23; 7765 flags |= seg->db << 22; 7766 flags |= seg->l << 21; 7767 flags |= seg->avl << 20; 7768 flags |= seg->present << 15; 7769 flags |= seg->dpl << 13; 7770 flags |= seg->s << 12; 7771 flags |= seg->type << 8; 7772 return flags; 7773 } 7774 7775 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7776 { 7777 struct kvm_segment seg; 7778 int offset; 7779 7780 kvm_get_segment(vcpu, &seg, n); 7781 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7782 7783 if (n < 3) 7784 offset = 0x7f84 + n * 12; 7785 else 7786 offset = 0x7f2c + (n - 3) * 12; 7787 7788 put_smstate(u32, buf, offset + 8, seg.base); 7789 put_smstate(u32, buf, offset + 4, seg.limit); 7790 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7791 } 7792 7793 #ifdef CONFIG_X86_64 7794 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7795 { 7796 struct kvm_segment seg; 7797 int offset; 7798 u16 flags; 7799 7800 kvm_get_segment(vcpu, &seg, n); 7801 offset = 0x7e00 + n * 16; 7802 7803 flags = enter_smm_get_segment_flags(&seg) >> 8; 7804 put_smstate(u16, buf, offset, seg.selector); 7805 put_smstate(u16, buf, offset + 2, flags); 7806 put_smstate(u32, buf, offset + 4, seg.limit); 7807 put_smstate(u64, buf, offset + 8, seg.base); 7808 } 7809 #endif 7810 7811 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7812 { 7813 struct desc_ptr dt; 7814 struct kvm_segment seg; 7815 unsigned long val; 7816 int i; 7817 7818 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7819 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7820 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7821 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7822 7823 for (i = 0; i < 8; i++) 7824 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7825 7826 kvm_get_dr(vcpu, 6, &val); 7827 put_smstate(u32, buf, 0x7fcc, (u32)val); 7828 kvm_get_dr(vcpu, 7, &val); 7829 put_smstate(u32, buf, 0x7fc8, (u32)val); 7830 7831 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7832 put_smstate(u32, buf, 0x7fc4, seg.selector); 7833 put_smstate(u32, buf, 0x7f64, seg.base); 7834 put_smstate(u32, buf, 0x7f60, seg.limit); 7835 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7836 7837 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7838 put_smstate(u32, buf, 0x7fc0, seg.selector); 7839 put_smstate(u32, buf, 0x7f80, seg.base); 7840 put_smstate(u32, buf, 0x7f7c, seg.limit); 7841 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7842 7843 kvm_x86_ops->get_gdt(vcpu, &dt); 7844 put_smstate(u32, buf, 0x7f74, dt.address); 7845 put_smstate(u32, buf, 0x7f70, dt.size); 7846 7847 kvm_x86_ops->get_idt(vcpu, &dt); 7848 put_smstate(u32, buf, 0x7f58, dt.address); 7849 put_smstate(u32, buf, 0x7f54, dt.size); 7850 7851 for (i = 0; i < 6; i++) 7852 enter_smm_save_seg_32(vcpu, buf, i); 7853 7854 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7855 7856 /* revision id */ 7857 put_smstate(u32, buf, 0x7efc, 0x00020000); 7858 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7859 } 7860 7861 #ifdef CONFIG_X86_64 7862 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7863 { 7864 struct desc_ptr dt; 7865 struct kvm_segment seg; 7866 unsigned long val; 7867 int i; 7868 7869 for (i = 0; i < 16; i++) 7870 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7871 7872 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7873 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7874 7875 kvm_get_dr(vcpu, 6, &val); 7876 put_smstate(u64, buf, 0x7f68, val); 7877 kvm_get_dr(vcpu, 7, &val); 7878 put_smstate(u64, buf, 0x7f60, val); 7879 7880 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7881 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7882 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7883 7884 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7885 7886 /* revision id */ 7887 put_smstate(u32, buf, 0x7efc, 0x00020064); 7888 7889 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7890 7891 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7892 put_smstate(u16, buf, 0x7e90, seg.selector); 7893 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7894 put_smstate(u32, buf, 0x7e94, seg.limit); 7895 put_smstate(u64, buf, 0x7e98, seg.base); 7896 7897 kvm_x86_ops->get_idt(vcpu, &dt); 7898 put_smstate(u32, buf, 0x7e84, dt.size); 7899 put_smstate(u64, buf, 0x7e88, dt.address); 7900 7901 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7902 put_smstate(u16, buf, 0x7e70, seg.selector); 7903 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7904 put_smstate(u32, buf, 0x7e74, seg.limit); 7905 put_smstate(u64, buf, 0x7e78, seg.base); 7906 7907 kvm_x86_ops->get_gdt(vcpu, &dt); 7908 put_smstate(u32, buf, 0x7e64, dt.size); 7909 put_smstate(u64, buf, 0x7e68, dt.address); 7910 7911 for (i = 0; i < 6; i++) 7912 enter_smm_save_seg_64(vcpu, buf, i); 7913 } 7914 #endif 7915 7916 static void enter_smm(struct kvm_vcpu *vcpu) 7917 { 7918 struct kvm_segment cs, ds; 7919 struct desc_ptr dt; 7920 char buf[512]; 7921 u32 cr0; 7922 7923 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7924 memset(buf, 0, 512); 7925 #ifdef CONFIG_X86_64 7926 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7927 enter_smm_save_state_64(vcpu, buf); 7928 else 7929 #endif 7930 enter_smm_save_state_32(vcpu, buf); 7931 7932 /* 7933 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7934 * vCPU state (e.g. leave guest mode) after we've saved the state into 7935 * the SMM state-save area. 7936 */ 7937 kvm_x86_ops->pre_enter_smm(vcpu, buf); 7938 7939 vcpu->arch.hflags |= HF_SMM_MASK; 7940 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7941 7942 if (kvm_x86_ops->get_nmi_mask(vcpu)) 7943 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7944 else 7945 kvm_x86_ops->set_nmi_mask(vcpu, true); 7946 7947 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7948 kvm_rip_write(vcpu, 0x8000); 7949 7950 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7951 kvm_x86_ops->set_cr0(vcpu, cr0); 7952 vcpu->arch.cr0 = cr0; 7953 7954 kvm_x86_ops->set_cr4(vcpu, 0); 7955 7956 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7957 dt.address = dt.size = 0; 7958 kvm_x86_ops->set_idt(vcpu, &dt); 7959 7960 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7961 7962 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7963 cs.base = vcpu->arch.smbase; 7964 7965 ds.selector = 0; 7966 ds.base = 0; 7967 7968 cs.limit = ds.limit = 0xffffffff; 7969 cs.type = ds.type = 0x3; 7970 cs.dpl = ds.dpl = 0; 7971 cs.db = ds.db = 0; 7972 cs.s = ds.s = 1; 7973 cs.l = ds.l = 0; 7974 cs.g = ds.g = 1; 7975 cs.avl = ds.avl = 0; 7976 cs.present = ds.present = 1; 7977 cs.unusable = ds.unusable = 0; 7978 cs.padding = ds.padding = 0; 7979 7980 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7981 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 7982 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 7983 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 7984 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 7985 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 7986 7987 #ifdef CONFIG_X86_64 7988 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7989 kvm_x86_ops->set_efer(vcpu, 0); 7990 #endif 7991 7992 kvm_update_cpuid(vcpu); 7993 kvm_mmu_reset_context(vcpu); 7994 } 7995 7996 static void process_smi(struct kvm_vcpu *vcpu) 7997 { 7998 vcpu->arch.smi_pending = true; 7999 kvm_make_request(KVM_REQ_EVENT, vcpu); 8000 } 8001 8002 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8003 unsigned long *vcpu_bitmap) 8004 { 8005 cpumask_var_t cpus; 8006 8007 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8008 8009 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8010 vcpu_bitmap, cpus); 8011 8012 free_cpumask_var(cpus); 8013 } 8014 8015 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8016 { 8017 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8018 } 8019 8020 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8021 { 8022 if (!lapic_in_kernel(vcpu)) 8023 return; 8024 8025 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8026 kvm_apic_update_apicv(vcpu); 8027 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 8028 } 8029 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8030 8031 /* 8032 * NOTE: Do not hold any lock prior to calling this. 8033 * 8034 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8035 * locked, because it calls __x86_set_memory_region() which does 8036 * synchronize_srcu(&kvm->srcu). 8037 */ 8038 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8039 { 8040 if (!kvm_x86_ops->check_apicv_inhibit_reasons || 8041 !kvm_x86_ops->check_apicv_inhibit_reasons(bit)) 8042 return; 8043 8044 if (activate) { 8045 if (!test_and_clear_bit(bit, &kvm->arch.apicv_inhibit_reasons) || 8046 !kvm_apicv_activated(kvm)) 8047 return; 8048 } else { 8049 if (test_and_set_bit(bit, &kvm->arch.apicv_inhibit_reasons) || 8050 kvm_apicv_activated(kvm)) 8051 return; 8052 } 8053 8054 trace_kvm_apicv_update_request(activate, bit); 8055 if (kvm_x86_ops->pre_update_apicv_exec_ctrl) 8056 kvm_x86_ops->pre_update_apicv_exec_ctrl(kvm, activate); 8057 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 8058 } 8059 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8060 8061 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8062 { 8063 if (!kvm_apic_present(vcpu)) 8064 return; 8065 8066 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8067 8068 if (irqchip_split(vcpu->kvm)) 8069 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8070 else { 8071 if (vcpu->arch.apicv_active) 8072 kvm_x86_ops->sync_pir_to_irr(vcpu); 8073 if (ioapic_in_kernel(vcpu->kvm)) 8074 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8075 } 8076 8077 if (is_guest_mode(vcpu)) 8078 vcpu->arch.load_eoi_exitmap_pending = true; 8079 else 8080 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8081 } 8082 8083 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8084 { 8085 u64 eoi_exit_bitmap[4]; 8086 8087 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8088 return; 8089 8090 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8091 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8092 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8093 } 8094 8095 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8096 unsigned long start, unsigned long end, 8097 bool blockable) 8098 { 8099 unsigned long apic_address; 8100 8101 /* 8102 * The physical address of apic access page is stored in the VMCS. 8103 * Update it when it becomes invalid. 8104 */ 8105 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8106 if (start <= apic_address && apic_address < end) 8107 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8108 8109 return 0; 8110 } 8111 8112 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8113 { 8114 struct page *page = NULL; 8115 8116 if (!lapic_in_kernel(vcpu)) 8117 return; 8118 8119 if (!kvm_x86_ops->set_apic_access_page_addr) 8120 return; 8121 8122 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8123 if (is_error_page(page)) 8124 return; 8125 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 8126 8127 /* 8128 * Do not pin apic access page in memory, the MMU notifier 8129 * will call us again if it is migrated or swapped out. 8130 */ 8131 put_page(page); 8132 } 8133 8134 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8135 { 8136 smp_send_reschedule(vcpu->cpu); 8137 } 8138 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8139 8140 /* 8141 * Returns 1 to let vcpu_run() continue the guest execution loop without 8142 * exiting to the userspace. Otherwise, the value will be returned to the 8143 * userspace. 8144 */ 8145 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8146 { 8147 int r; 8148 bool req_int_win = 8149 dm_request_for_irq_injection(vcpu) && 8150 kvm_cpu_accept_dm_intr(vcpu); 8151 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE; 8152 8153 bool req_immediate_exit = false; 8154 8155 if (kvm_request_pending(vcpu)) { 8156 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8157 if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) { 8158 r = 0; 8159 goto out; 8160 } 8161 } 8162 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8163 kvm_mmu_unload(vcpu); 8164 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8165 __kvm_migrate_timers(vcpu); 8166 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8167 kvm_gen_update_masterclock(vcpu->kvm); 8168 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8169 kvm_gen_kvmclock_update(vcpu); 8170 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8171 r = kvm_guest_time_update(vcpu); 8172 if (unlikely(r)) 8173 goto out; 8174 } 8175 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8176 kvm_mmu_sync_roots(vcpu); 8177 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) 8178 kvm_mmu_load_cr3(vcpu); 8179 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 8180 kvm_vcpu_flush_tlb(vcpu, true); 8181 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8182 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8183 r = 0; 8184 goto out; 8185 } 8186 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8187 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8188 vcpu->mmio_needed = 0; 8189 r = 0; 8190 goto out; 8191 } 8192 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8193 /* Page is swapped out. Do synthetic halt */ 8194 vcpu->arch.apf.halted = true; 8195 r = 1; 8196 goto out; 8197 } 8198 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8199 record_steal_time(vcpu); 8200 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8201 process_smi(vcpu); 8202 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8203 process_nmi(vcpu); 8204 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8205 kvm_pmu_handle_event(vcpu); 8206 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8207 kvm_pmu_deliver_pmi(vcpu); 8208 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8209 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8210 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8211 vcpu->arch.ioapic_handled_vectors)) { 8212 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8213 vcpu->run->eoi.vector = 8214 vcpu->arch.pending_ioapic_eoi; 8215 r = 0; 8216 goto out; 8217 } 8218 } 8219 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8220 vcpu_scan_ioapic(vcpu); 8221 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8222 vcpu_load_eoi_exitmap(vcpu); 8223 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8224 kvm_vcpu_reload_apic_access_page(vcpu); 8225 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8226 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8227 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8228 r = 0; 8229 goto out; 8230 } 8231 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8232 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8233 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8234 r = 0; 8235 goto out; 8236 } 8237 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8238 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8239 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8240 r = 0; 8241 goto out; 8242 } 8243 8244 /* 8245 * KVM_REQ_HV_STIMER has to be processed after 8246 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8247 * depend on the guest clock being up-to-date 8248 */ 8249 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8250 kvm_hv_process_stimers(vcpu); 8251 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8252 kvm_vcpu_update_apicv(vcpu); 8253 } 8254 8255 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8256 ++vcpu->stat.req_event; 8257 kvm_apic_accept_events(vcpu); 8258 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8259 r = 1; 8260 goto out; 8261 } 8262 8263 if (inject_pending_event(vcpu, req_int_win) != 0) 8264 req_immediate_exit = true; 8265 else { 8266 /* Enable SMI/NMI/IRQ window open exits if needed. 8267 * 8268 * SMIs have three cases: 8269 * 1) They can be nested, and then there is nothing to 8270 * do here because RSM will cause a vmexit anyway. 8271 * 2) There is an ISA-specific reason why SMI cannot be 8272 * injected, and the moment when this changes can be 8273 * intercepted. 8274 * 3) Or the SMI can be pending because 8275 * inject_pending_event has completed the injection 8276 * of an IRQ or NMI from the previous vmexit, and 8277 * then we request an immediate exit to inject the 8278 * SMI. 8279 */ 8280 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 8281 if (!kvm_x86_ops->enable_smi_window(vcpu)) 8282 req_immediate_exit = true; 8283 if (vcpu->arch.nmi_pending) 8284 kvm_x86_ops->enable_nmi_window(vcpu); 8285 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 8286 kvm_x86_ops->enable_irq_window(vcpu); 8287 WARN_ON(vcpu->arch.exception.pending); 8288 } 8289 8290 if (kvm_lapic_enabled(vcpu)) { 8291 update_cr8_intercept(vcpu); 8292 kvm_lapic_sync_to_vapic(vcpu); 8293 } 8294 } 8295 8296 r = kvm_mmu_reload(vcpu); 8297 if (unlikely(r)) { 8298 goto cancel_injection; 8299 } 8300 8301 preempt_disable(); 8302 8303 kvm_x86_ops->prepare_guest_switch(vcpu); 8304 8305 /* 8306 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8307 * IPI are then delayed after guest entry, which ensures that they 8308 * result in virtual interrupt delivery. 8309 */ 8310 local_irq_disable(); 8311 vcpu->mode = IN_GUEST_MODE; 8312 8313 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8314 8315 /* 8316 * 1) We should set ->mode before checking ->requests. Please see 8317 * the comment in kvm_vcpu_exiting_guest_mode(). 8318 * 8319 * 2) For APICv, we should set ->mode before checking PID.ON. This 8320 * pairs with the memory barrier implicit in pi_test_and_set_on 8321 * (see vmx_deliver_posted_interrupt). 8322 * 8323 * 3) This also orders the write to mode from any reads to the page 8324 * tables done while the VCPU is running. Please see the comment 8325 * in kvm_flush_remote_tlbs. 8326 */ 8327 smp_mb__after_srcu_read_unlock(); 8328 8329 /* 8330 * This handles the case where a posted interrupt was 8331 * notified with kvm_vcpu_kick. 8332 */ 8333 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8334 kvm_x86_ops->sync_pir_to_irr(vcpu); 8335 8336 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 8337 || need_resched() || signal_pending(current)) { 8338 vcpu->mode = OUTSIDE_GUEST_MODE; 8339 smp_wmb(); 8340 local_irq_enable(); 8341 preempt_enable(); 8342 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8343 r = 1; 8344 goto cancel_injection; 8345 } 8346 8347 if (req_immediate_exit) { 8348 kvm_make_request(KVM_REQ_EVENT, vcpu); 8349 kvm_x86_ops->request_immediate_exit(vcpu); 8350 } 8351 8352 trace_kvm_entry(vcpu->vcpu_id); 8353 guest_enter_irqoff(); 8354 8355 fpregs_assert_state_consistent(); 8356 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8357 switch_fpu_return(); 8358 8359 if (unlikely(vcpu->arch.switch_db_regs)) { 8360 set_debugreg(0, 7); 8361 set_debugreg(vcpu->arch.eff_db[0], 0); 8362 set_debugreg(vcpu->arch.eff_db[1], 1); 8363 set_debugreg(vcpu->arch.eff_db[2], 2); 8364 set_debugreg(vcpu->arch.eff_db[3], 3); 8365 set_debugreg(vcpu->arch.dr6, 6); 8366 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8367 } 8368 8369 kvm_x86_ops->run(vcpu); 8370 8371 /* 8372 * Do this here before restoring debug registers on the host. And 8373 * since we do this before handling the vmexit, a DR access vmexit 8374 * can (a) read the correct value of the debug registers, (b) set 8375 * KVM_DEBUGREG_WONT_EXIT again. 8376 */ 8377 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8378 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8379 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 8380 kvm_update_dr0123(vcpu); 8381 kvm_update_dr6(vcpu); 8382 kvm_update_dr7(vcpu); 8383 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8384 } 8385 8386 /* 8387 * If the guest has used debug registers, at least dr7 8388 * will be disabled while returning to the host. 8389 * If we don't have active breakpoints in the host, we don't 8390 * care about the messed up debug address registers. But if 8391 * we have some of them active, restore the old state. 8392 */ 8393 if (hw_breakpoint_active()) 8394 hw_breakpoint_restore(); 8395 8396 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8397 8398 vcpu->mode = OUTSIDE_GUEST_MODE; 8399 smp_wmb(); 8400 8401 kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath); 8402 8403 /* 8404 * Consume any pending interrupts, including the possible source of 8405 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8406 * An instruction is required after local_irq_enable() to fully unblock 8407 * interrupts on processors that implement an interrupt shadow, the 8408 * stat.exits increment will do nicely. 8409 */ 8410 kvm_before_interrupt(vcpu); 8411 local_irq_enable(); 8412 ++vcpu->stat.exits; 8413 local_irq_disable(); 8414 kvm_after_interrupt(vcpu); 8415 8416 guest_exit_irqoff(); 8417 if (lapic_in_kernel(vcpu)) { 8418 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8419 if (delta != S64_MIN) { 8420 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8421 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8422 } 8423 } 8424 8425 local_irq_enable(); 8426 preempt_enable(); 8427 8428 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8429 8430 /* 8431 * Profile KVM exit RIPs: 8432 */ 8433 if (unlikely(prof_on == KVM_PROFILING)) { 8434 unsigned long rip = kvm_rip_read(vcpu); 8435 profile_hit(KVM_PROFILING, (void *)rip); 8436 } 8437 8438 if (unlikely(vcpu->arch.tsc_always_catchup)) 8439 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8440 8441 if (vcpu->arch.apic_attention) 8442 kvm_lapic_sync_from_vapic(vcpu); 8443 8444 vcpu->arch.gpa_available = false; 8445 r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath); 8446 return r; 8447 8448 cancel_injection: 8449 kvm_x86_ops->cancel_injection(vcpu); 8450 if (unlikely(vcpu->arch.apic_attention)) 8451 kvm_lapic_sync_from_vapic(vcpu); 8452 out: 8453 return r; 8454 } 8455 8456 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8457 { 8458 if (!kvm_arch_vcpu_runnable(vcpu) && 8459 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 8460 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8461 kvm_vcpu_block(vcpu); 8462 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8463 8464 if (kvm_x86_ops->post_block) 8465 kvm_x86_ops->post_block(vcpu); 8466 8467 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8468 return 1; 8469 } 8470 8471 kvm_apic_accept_events(vcpu); 8472 switch(vcpu->arch.mp_state) { 8473 case KVM_MP_STATE_HALTED: 8474 vcpu->arch.pv.pv_unhalted = false; 8475 vcpu->arch.mp_state = 8476 KVM_MP_STATE_RUNNABLE; 8477 /* fall through */ 8478 case KVM_MP_STATE_RUNNABLE: 8479 vcpu->arch.apf.halted = false; 8480 break; 8481 case KVM_MP_STATE_INIT_RECEIVED: 8482 break; 8483 default: 8484 return -EINTR; 8485 break; 8486 } 8487 return 1; 8488 } 8489 8490 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8491 { 8492 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8493 kvm_x86_ops->check_nested_events(vcpu, false); 8494 8495 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8496 !vcpu->arch.apf.halted); 8497 } 8498 8499 static int vcpu_run(struct kvm_vcpu *vcpu) 8500 { 8501 int r; 8502 struct kvm *kvm = vcpu->kvm; 8503 8504 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8505 vcpu->arch.l1tf_flush_l1d = true; 8506 8507 for (;;) { 8508 if (kvm_vcpu_running(vcpu)) { 8509 r = vcpu_enter_guest(vcpu); 8510 } else { 8511 r = vcpu_block(kvm, vcpu); 8512 } 8513 8514 if (r <= 0) 8515 break; 8516 8517 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8518 if (kvm_cpu_has_pending_timer(vcpu)) 8519 kvm_inject_pending_timer_irqs(vcpu); 8520 8521 if (dm_request_for_irq_injection(vcpu) && 8522 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8523 r = 0; 8524 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8525 ++vcpu->stat.request_irq_exits; 8526 break; 8527 } 8528 8529 kvm_check_async_pf_completion(vcpu); 8530 8531 if (signal_pending(current)) { 8532 r = -EINTR; 8533 vcpu->run->exit_reason = KVM_EXIT_INTR; 8534 ++vcpu->stat.signal_exits; 8535 break; 8536 } 8537 if (need_resched()) { 8538 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8539 cond_resched(); 8540 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8541 } 8542 } 8543 8544 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8545 8546 return r; 8547 } 8548 8549 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8550 { 8551 int r; 8552 8553 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8554 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8555 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8556 return r; 8557 } 8558 8559 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8560 { 8561 BUG_ON(!vcpu->arch.pio.count); 8562 8563 return complete_emulated_io(vcpu); 8564 } 8565 8566 /* 8567 * Implements the following, as a state machine: 8568 * 8569 * read: 8570 * for each fragment 8571 * for each mmio piece in the fragment 8572 * write gpa, len 8573 * exit 8574 * copy data 8575 * execute insn 8576 * 8577 * write: 8578 * for each fragment 8579 * for each mmio piece in the fragment 8580 * write gpa, len 8581 * copy data 8582 * exit 8583 */ 8584 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8585 { 8586 struct kvm_run *run = vcpu->run; 8587 struct kvm_mmio_fragment *frag; 8588 unsigned len; 8589 8590 BUG_ON(!vcpu->mmio_needed); 8591 8592 /* Complete previous fragment */ 8593 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8594 len = min(8u, frag->len); 8595 if (!vcpu->mmio_is_write) 8596 memcpy(frag->data, run->mmio.data, len); 8597 8598 if (frag->len <= 8) { 8599 /* Switch to the next fragment. */ 8600 frag++; 8601 vcpu->mmio_cur_fragment++; 8602 } else { 8603 /* Go forward to the next mmio piece. */ 8604 frag->data += len; 8605 frag->gpa += len; 8606 frag->len -= len; 8607 } 8608 8609 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8610 vcpu->mmio_needed = 0; 8611 8612 /* FIXME: return into emulator if single-stepping. */ 8613 if (vcpu->mmio_is_write) 8614 return 1; 8615 vcpu->mmio_read_completed = 1; 8616 return complete_emulated_io(vcpu); 8617 } 8618 8619 run->exit_reason = KVM_EXIT_MMIO; 8620 run->mmio.phys_addr = frag->gpa; 8621 if (vcpu->mmio_is_write) 8622 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8623 run->mmio.len = min(8u, frag->len); 8624 run->mmio.is_write = vcpu->mmio_is_write; 8625 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8626 return 0; 8627 } 8628 8629 static void kvm_save_current_fpu(struct fpu *fpu) 8630 { 8631 /* 8632 * If the target FPU state is not resident in the CPU registers, just 8633 * memcpy() from current, else save CPU state directly to the target. 8634 */ 8635 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8636 memcpy(&fpu->state, ¤t->thread.fpu.state, 8637 fpu_kernel_xstate_size); 8638 else 8639 copy_fpregs_to_fpstate(fpu); 8640 } 8641 8642 /* Swap (qemu) user FPU context for the guest FPU context. */ 8643 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8644 { 8645 fpregs_lock(); 8646 8647 kvm_save_current_fpu(vcpu->arch.user_fpu); 8648 8649 /* PKRU is separately restored in kvm_x86_ops->run. */ 8650 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8651 ~XFEATURE_MASK_PKRU); 8652 8653 fpregs_mark_activate(); 8654 fpregs_unlock(); 8655 8656 trace_kvm_fpu(1); 8657 } 8658 8659 /* When vcpu_run ends, restore user space FPU context. */ 8660 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8661 { 8662 fpregs_lock(); 8663 8664 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8665 8666 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8667 8668 fpregs_mark_activate(); 8669 fpregs_unlock(); 8670 8671 ++vcpu->stat.fpu_reload; 8672 trace_kvm_fpu(0); 8673 } 8674 8675 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8676 { 8677 int r; 8678 8679 vcpu_load(vcpu); 8680 kvm_sigset_activate(vcpu); 8681 kvm_load_guest_fpu(vcpu); 8682 8683 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8684 if (kvm_run->immediate_exit) { 8685 r = -EINTR; 8686 goto out; 8687 } 8688 kvm_vcpu_block(vcpu); 8689 kvm_apic_accept_events(vcpu); 8690 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8691 r = -EAGAIN; 8692 if (signal_pending(current)) { 8693 r = -EINTR; 8694 vcpu->run->exit_reason = KVM_EXIT_INTR; 8695 ++vcpu->stat.signal_exits; 8696 } 8697 goto out; 8698 } 8699 8700 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8701 r = -EINVAL; 8702 goto out; 8703 } 8704 8705 if (vcpu->run->kvm_dirty_regs) { 8706 r = sync_regs(vcpu); 8707 if (r != 0) 8708 goto out; 8709 } 8710 8711 /* re-sync apic's tpr */ 8712 if (!lapic_in_kernel(vcpu)) { 8713 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8714 r = -EINVAL; 8715 goto out; 8716 } 8717 } 8718 8719 if (unlikely(vcpu->arch.complete_userspace_io)) { 8720 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8721 vcpu->arch.complete_userspace_io = NULL; 8722 r = cui(vcpu); 8723 if (r <= 0) 8724 goto out; 8725 } else 8726 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8727 8728 if (kvm_run->immediate_exit) 8729 r = -EINTR; 8730 else 8731 r = vcpu_run(vcpu); 8732 8733 out: 8734 kvm_put_guest_fpu(vcpu); 8735 if (vcpu->run->kvm_valid_regs) 8736 store_regs(vcpu); 8737 post_kvm_run_save(vcpu); 8738 kvm_sigset_deactivate(vcpu); 8739 8740 vcpu_put(vcpu); 8741 return r; 8742 } 8743 8744 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8745 { 8746 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8747 /* 8748 * We are here if userspace calls get_regs() in the middle of 8749 * instruction emulation. Registers state needs to be copied 8750 * back from emulation context to vcpu. Userspace shouldn't do 8751 * that usually, but some bad designed PV devices (vmware 8752 * backdoor interface) need this to work 8753 */ 8754 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 8755 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8756 } 8757 regs->rax = kvm_rax_read(vcpu); 8758 regs->rbx = kvm_rbx_read(vcpu); 8759 regs->rcx = kvm_rcx_read(vcpu); 8760 regs->rdx = kvm_rdx_read(vcpu); 8761 regs->rsi = kvm_rsi_read(vcpu); 8762 regs->rdi = kvm_rdi_read(vcpu); 8763 regs->rsp = kvm_rsp_read(vcpu); 8764 regs->rbp = kvm_rbp_read(vcpu); 8765 #ifdef CONFIG_X86_64 8766 regs->r8 = kvm_r8_read(vcpu); 8767 regs->r9 = kvm_r9_read(vcpu); 8768 regs->r10 = kvm_r10_read(vcpu); 8769 regs->r11 = kvm_r11_read(vcpu); 8770 regs->r12 = kvm_r12_read(vcpu); 8771 regs->r13 = kvm_r13_read(vcpu); 8772 regs->r14 = kvm_r14_read(vcpu); 8773 regs->r15 = kvm_r15_read(vcpu); 8774 #endif 8775 8776 regs->rip = kvm_rip_read(vcpu); 8777 regs->rflags = kvm_get_rflags(vcpu); 8778 } 8779 8780 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8781 { 8782 vcpu_load(vcpu); 8783 __get_regs(vcpu, regs); 8784 vcpu_put(vcpu); 8785 return 0; 8786 } 8787 8788 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8789 { 8790 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8791 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8792 8793 kvm_rax_write(vcpu, regs->rax); 8794 kvm_rbx_write(vcpu, regs->rbx); 8795 kvm_rcx_write(vcpu, regs->rcx); 8796 kvm_rdx_write(vcpu, regs->rdx); 8797 kvm_rsi_write(vcpu, regs->rsi); 8798 kvm_rdi_write(vcpu, regs->rdi); 8799 kvm_rsp_write(vcpu, regs->rsp); 8800 kvm_rbp_write(vcpu, regs->rbp); 8801 #ifdef CONFIG_X86_64 8802 kvm_r8_write(vcpu, regs->r8); 8803 kvm_r9_write(vcpu, regs->r9); 8804 kvm_r10_write(vcpu, regs->r10); 8805 kvm_r11_write(vcpu, regs->r11); 8806 kvm_r12_write(vcpu, regs->r12); 8807 kvm_r13_write(vcpu, regs->r13); 8808 kvm_r14_write(vcpu, regs->r14); 8809 kvm_r15_write(vcpu, regs->r15); 8810 #endif 8811 8812 kvm_rip_write(vcpu, regs->rip); 8813 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8814 8815 vcpu->arch.exception.pending = false; 8816 8817 kvm_make_request(KVM_REQ_EVENT, vcpu); 8818 } 8819 8820 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8821 { 8822 vcpu_load(vcpu); 8823 __set_regs(vcpu, regs); 8824 vcpu_put(vcpu); 8825 return 0; 8826 } 8827 8828 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8829 { 8830 struct kvm_segment cs; 8831 8832 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8833 *db = cs.db; 8834 *l = cs.l; 8835 } 8836 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8837 8838 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8839 { 8840 struct desc_ptr dt; 8841 8842 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8843 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8844 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8845 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8846 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8847 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8848 8849 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8850 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8851 8852 kvm_x86_ops->get_idt(vcpu, &dt); 8853 sregs->idt.limit = dt.size; 8854 sregs->idt.base = dt.address; 8855 kvm_x86_ops->get_gdt(vcpu, &dt); 8856 sregs->gdt.limit = dt.size; 8857 sregs->gdt.base = dt.address; 8858 8859 sregs->cr0 = kvm_read_cr0(vcpu); 8860 sregs->cr2 = vcpu->arch.cr2; 8861 sregs->cr3 = kvm_read_cr3(vcpu); 8862 sregs->cr4 = kvm_read_cr4(vcpu); 8863 sregs->cr8 = kvm_get_cr8(vcpu); 8864 sregs->efer = vcpu->arch.efer; 8865 sregs->apic_base = kvm_get_apic_base(vcpu); 8866 8867 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8868 8869 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8870 set_bit(vcpu->arch.interrupt.nr, 8871 (unsigned long *)sregs->interrupt_bitmap); 8872 } 8873 8874 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8875 struct kvm_sregs *sregs) 8876 { 8877 vcpu_load(vcpu); 8878 __get_sregs(vcpu, sregs); 8879 vcpu_put(vcpu); 8880 return 0; 8881 } 8882 8883 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8884 struct kvm_mp_state *mp_state) 8885 { 8886 vcpu_load(vcpu); 8887 if (kvm_mpx_supported()) 8888 kvm_load_guest_fpu(vcpu); 8889 8890 kvm_apic_accept_events(vcpu); 8891 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8892 vcpu->arch.pv.pv_unhalted) 8893 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8894 else 8895 mp_state->mp_state = vcpu->arch.mp_state; 8896 8897 if (kvm_mpx_supported()) 8898 kvm_put_guest_fpu(vcpu); 8899 vcpu_put(vcpu); 8900 return 0; 8901 } 8902 8903 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8904 struct kvm_mp_state *mp_state) 8905 { 8906 int ret = -EINVAL; 8907 8908 vcpu_load(vcpu); 8909 8910 if (!lapic_in_kernel(vcpu) && 8911 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8912 goto out; 8913 8914 /* 8915 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 8916 * INIT state; latched init should be reported using 8917 * KVM_SET_VCPU_EVENTS, so reject it here. 8918 */ 8919 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 8920 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8921 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8922 goto out; 8923 8924 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8925 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8926 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8927 } else 8928 vcpu->arch.mp_state = mp_state->mp_state; 8929 kvm_make_request(KVM_REQ_EVENT, vcpu); 8930 8931 ret = 0; 8932 out: 8933 vcpu_put(vcpu); 8934 return ret; 8935 } 8936 8937 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8938 int reason, bool has_error_code, u32 error_code) 8939 { 8940 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 8941 int ret; 8942 8943 init_emulate_ctxt(vcpu); 8944 8945 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8946 has_error_code, error_code); 8947 if (ret) { 8948 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8949 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 8950 vcpu->run->internal.ndata = 0; 8951 return 0; 8952 } 8953 8954 kvm_rip_write(vcpu, ctxt->eip); 8955 kvm_set_rflags(vcpu, ctxt->eflags); 8956 return 1; 8957 } 8958 EXPORT_SYMBOL_GPL(kvm_task_switch); 8959 8960 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8961 { 8962 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8963 /* 8964 * When EFER.LME and CR0.PG are set, the processor is in 8965 * 64-bit mode (though maybe in a 32-bit code segment). 8966 * CR4.PAE and EFER.LMA must be set. 8967 */ 8968 if (!(sregs->cr4 & X86_CR4_PAE) 8969 || !(sregs->efer & EFER_LMA)) 8970 return -EINVAL; 8971 } else { 8972 /* 8973 * Not in 64-bit mode: EFER.LMA is clear and the code 8974 * segment cannot be 64-bit. 8975 */ 8976 if (sregs->efer & EFER_LMA || sregs->cs.l) 8977 return -EINVAL; 8978 } 8979 8980 return kvm_valid_cr4(vcpu, sregs->cr4); 8981 } 8982 8983 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8984 { 8985 struct msr_data apic_base_msr; 8986 int mmu_reset_needed = 0; 8987 int cpuid_update_needed = 0; 8988 int pending_vec, max_bits, idx; 8989 struct desc_ptr dt; 8990 int ret = -EINVAL; 8991 8992 if (kvm_valid_sregs(vcpu, sregs)) 8993 goto out; 8994 8995 apic_base_msr.data = sregs->apic_base; 8996 apic_base_msr.host_initiated = true; 8997 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 8998 goto out; 8999 9000 dt.size = sregs->idt.limit; 9001 dt.address = sregs->idt.base; 9002 kvm_x86_ops->set_idt(vcpu, &dt); 9003 dt.size = sregs->gdt.limit; 9004 dt.address = sregs->gdt.base; 9005 kvm_x86_ops->set_gdt(vcpu, &dt); 9006 9007 vcpu->arch.cr2 = sregs->cr2; 9008 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9009 vcpu->arch.cr3 = sregs->cr3; 9010 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9011 9012 kvm_set_cr8(vcpu, sregs->cr8); 9013 9014 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9015 kvm_x86_ops->set_efer(vcpu, sregs->efer); 9016 9017 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9018 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 9019 vcpu->arch.cr0 = sregs->cr0; 9020 9021 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9022 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9023 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9024 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 9025 if (cpuid_update_needed) 9026 kvm_update_cpuid(vcpu); 9027 9028 idx = srcu_read_lock(&vcpu->kvm->srcu); 9029 if (is_pae_paging(vcpu)) { 9030 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9031 mmu_reset_needed = 1; 9032 } 9033 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9034 9035 if (mmu_reset_needed) 9036 kvm_mmu_reset_context(vcpu); 9037 9038 max_bits = KVM_NR_INTERRUPTS; 9039 pending_vec = find_first_bit( 9040 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9041 if (pending_vec < max_bits) { 9042 kvm_queue_interrupt(vcpu, pending_vec, false); 9043 pr_debug("Set back pending irq %d\n", pending_vec); 9044 } 9045 9046 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9047 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9048 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9049 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9050 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9051 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9052 9053 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9054 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9055 9056 update_cr8_intercept(vcpu); 9057 9058 /* Older userspace won't unhalt the vcpu on reset. */ 9059 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9060 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9061 !is_protmode(vcpu)) 9062 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9063 9064 kvm_make_request(KVM_REQ_EVENT, vcpu); 9065 9066 ret = 0; 9067 out: 9068 return ret; 9069 } 9070 9071 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9072 struct kvm_sregs *sregs) 9073 { 9074 int ret; 9075 9076 vcpu_load(vcpu); 9077 ret = __set_sregs(vcpu, sregs); 9078 vcpu_put(vcpu); 9079 return ret; 9080 } 9081 9082 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9083 struct kvm_guest_debug *dbg) 9084 { 9085 unsigned long rflags; 9086 int i, r; 9087 9088 vcpu_load(vcpu); 9089 9090 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9091 r = -EBUSY; 9092 if (vcpu->arch.exception.pending) 9093 goto out; 9094 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9095 kvm_queue_exception(vcpu, DB_VECTOR); 9096 else 9097 kvm_queue_exception(vcpu, BP_VECTOR); 9098 } 9099 9100 /* 9101 * Read rflags as long as potentially injected trace flags are still 9102 * filtered out. 9103 */ 9104 rflags = kvm_get_rflags(vcpu); 9105 9106 vcpu->guest_debug = dbg->control; 9107 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9108 vcpu->guest_debug = 0; 9109 9110 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9111 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9112 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9113 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9114 } else { 9115 for (i = 0; i < KVM_NR_DB_REGS; i++) 9116 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9117 } 9118 kvm_update_dr7(vcpu); 9119 9120 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9121 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9122 get_segment_base(vcpu, VCPU_SREG_CS); 9123 9124 /* 9125 * Trigger an rflags update that will inject or remove the trace 9126 * flags. 9127 */ 9128 kvm_set_rflags(vcpu, rflags); 9129 9130 kvm_x86_ops->update_bp_intercept(vcpu); 9131 9132 r = 0; 9133 9134 out: 9135 vcpu_put(vcpu); 9136 return r; 9137 } 9138 9139 /* 9140 * Translate a guest virtual address to a guest physical address. 9141 */ 9142 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9143 struct kvm_translation *tr) 9144 { 9145 unsigned long vaddr = tr->linear_address; 9146 gpa_t gpa; 9147 int idx; 9148 9149 vcpu_load(vcpu); 9150 9151 idx = srcu_read_lock(&vcpu->kvm->srcu); 9152 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9153 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9154 tr->physical_address = gpa; 9155 tr->valid = gpa != UNMAPPED_GVA; 9156 tr->writeable = 1; 9157 tr->usermode = 0; 9158 9159 vcpu_put(vcpu); 9160 return 0; 9161 } 9162 9163 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9164 { 9165 struct fxregs_state *fxsave; 9166 9167 vcpu_load(vcpu); 9168 9169 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9170 memcpy(fpu->fpr, fxsave->st_space, 128); 9171 fpu->fcw = fxsave->cwd; 9172 fpu->fsw = fxsave->swd; 9173 fpu->ftwx = fxsave->twd; 9174 fpu->last_opcode = fxsave->fop; 9175 fpu->last_ip = fxsave->rip; 9176 fpu->last_dp = fxsave->rdp; 9177 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9178 9179 vcpu_put(vcpu); 9180 return 0; 9181 } 9182 9183 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9184 { 9185 struct fxregs_state *fxsave; 9186 9187 vcpu_load(vcpu); 9188 9189 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9190 9191 memcpy(fxsave->st_space, fpu->fpr, 128); 9192 fxsave->cwd = fpu->fcw; 9193 fxsave->swd = fpu->fsw; 9194 fxsave->twd = fpu->ftwx; 9195 fxsave->fop = fpu->last_opcode; 9196 fxsave->rip = fpu->last_ip; 9197 fxsave->rdp = fpu->last_dp; 9198 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9199 9200 vcpu_put(vcpu); 9201 return 0; 9202 } 9203 9204 static void store_regs(struct kvm_vcpu *vcpu) 9205 { 9206 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9207 9208 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9209 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9210 9211 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9212 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9213 9214 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9215 kvm_vcpu_ioctl_x86_get_vcpu_events( 9216 vcpu, &vcpu->run->s.regs.events); 9217 } 9218 9219 static int sync_regs(struct kvm_vcpu *vcpu) 9220 { 9221 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9222 return -EINVAL; 9223 9224 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9225 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9226 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9227 } 9228 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9229 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9230 return -EINVAL; 9231 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9232 } 9233 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9234 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9235 vcpu, &vcpu->run->s.regs.events)) 9236 return -EINVAL; 9237 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9238 } 9239 9240 return 0; 9241 } 9242 9243 static void fx_init(struct kvm_vcpu *vcpu) 9244 { 9245 fpstate_init(&vcpu->arch.guest_fpu->state); 9246 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9247 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9248 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9249 9250 /* 9251 * Ensure guest xcr0 is valid for loading 9252 */ 9253 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9254 9255 vcpu->arch.cr0 |= X86_CR0_ET; 9256 } 9257 9258 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9259 { 9260 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9261 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9262 "guest TSC will not be reliable\n"); 9263 9264 return 0; 9265 } 9266 9267 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9268 { 9269 struct page *page; 9270 int r; 9271 9272 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 9273 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9274 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9275 else 9276 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9277 9278 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9279 9280 r = kvm_mmu_create(vcpu); 9281 if (r < 0) 9282 return r; 9283 9284 if (irqchip_in_kernel(vcpu->kvm)) { 9285 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9286 if (r < 0) 9287 goto fail_mmu_destroy; 9288 if (kvm_apicv_activated(vcpu->kvm)) 9289 vcpu->arch.apicv_active = true; 9290 } else 9291 static_key_slow_inc(&kvm_no_apic_vcpu); 9292 9293 r = -ENOMEM; 9294 9295 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9296 if (!page) 9297 goto fail_free_lapic; 9298 vcpu->arch.pio_data = page_address(page); 9299 9300 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9301 GFP_KERNEL_ACCOUNT); 9302 if (!vcpu->arch.mce_banks) 9303 goto fail_free_pio_data; 9304 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9305 9306 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9307 GFP_KERNEL_ACCOUNT)) 9308 goto fail_free_mce_banks; 9309 9310 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9311 GFP_KERNEL_ACCOUNT); 9312 if (!vcpu->arch.user_fpu) { 9313 pr_err("kvm: failed to allocate userspace's fpu\n"); 9314 goto free_wbinvd_dirty_mask; 9315 } 9316 9317 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9318 GFP_KERNEL_ACCOUNT); 9319 if (!vcpu->arch.guest_fpu) { 9320 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9321 goto free_user_fpu; 9322 } 9323 fx_init(vcpu); 9324 9325 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9326 9327 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9328 9329 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9330 9331 kvm_async_pf_hash_reset(vcpu); 9332 kvm_pmu_init(vcpu); 9333 9334 vcpu->arch.pending_external_vector = -1; 9335 vcpu->arch.preempted_in_kernel = false; 9336 9337 kvm_hv_vcpu_init(vcpu); 9338 9339 r = kvm_x86_ops->vcpu_create(vcpu); 9340 if (r) 9341 goto free_guest_fpu; 9342 9343 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9344 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9345 kvm_vcpu_mtrr_init(vcpu); 9346 vcpu_load(vcpu); 9347 kvm_vcpu_reset(vcpu, false); 9348 kvm_init_mmu(vcpu, false); 9349 vcpu_put(vcpu); 9350 return 0; 9351 9352 free_guest_fpu: 9353 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9354 free_user_fpu: 9355 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9356 free_wbinvd_dirty_mask: 9357 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9358 fail_free_mce_banks: 9359 kfree(vcpu->arch.mce_banks); 9360 fail_free_pio_data: 9361 free_page((unsigned long)vcpu->arch.pio_data); 9362 fail_free_lapic: 9363 kvm_free_lapic(vcpu); 9364 fail_mmu_destroy: 9365 kvm_mmu_destroy(vcpu); 9366 return r; 9367 } 9368 9369 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9370 { 9371 struct msr_data msr; 9372 struct kvm *kvm = vcpu->kvm; 9373 9374 kvm_hv_vcpu_postcreate(vcpu); 9375 9376 if (mutex_lock_killable(&vcpu->mutex)) 9377 return; 9378 vcpu_load(vcpu); 9379 msr.data = 0x0; 9380 msr.index = MSR_IA32_TSC; 9381 msr.host_initiated = true; 9382 kvm_write_tsc(vcpu, &msr); 9383 vcpu_put(vcpu); 9384 9385 /* poll control enabled by default */ 9386 vcpu->arch.msr_kvm_poll_control = 1; 9387 9388 mutex_unlock(&vcpu->mutex); 9389 9390 if (!kvmclock_periodic_sync) 9391 return; 9392 9393 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9394 KVMCLOCK_SYNC_PERIOD); 9395 } 9396 9397 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9398 { 9399 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9400 int idx; 9401 9402 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9403 9404 kvmclock_reset(vcpu); 9405 9406 kvm_x86_ops->vcpu_free(vcpu); 9407 9408 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9409 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9410 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9411 9412 kvm_hv_vcpu_uninit(vcpu); 9413 kvm_pmu_destroy(vcpu); 9414 kfree(vcpu->arch.mce_banks); 9415 kvm_free_lapic(vcpu); 9416 idx = srcu_read_lock(&vcpu->kvm->srcu); 9417 kvm_mmu_destroy(vcpu); 9418 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9419 free_page((unsigned long)vcpu->arch.pio_data); 9420 if (!lapic_in_kernel(vcpu)) 9421 static_key_slow_dec(&kvm_no_apic_vcpu); 9422 } 9423 9424 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9425 { 9426 kvm_lapic_reset(vcpu, init_event); 9427 9428 vcpu->arch.hflags = 0; 9429 9430 vcpu->arch.smi_pending = 0; 9431 vcpu->arch.smi_count = 0; 9432 atomic_set(&vcpu->arch.nmi_queued, 0); 9433 vcpu->arch.nmi_pending = 0; 9434 vcpu->arch.nmi_injected = false; 9435 kvm_clear_interrupt_queue(vcpu); 9436 kvm_clear_exception_queue(vcpu); 9437 9438 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9439 kvm_update_dr0123(vcpu); 9440 vcpu->arch.dr6 = DR6_INIT; 9441 kvm_update_dr6(vcpu); 9442 vcpu->arch.dr7 = DR7_FIXED_1; 9443 kvm_update_dr7(vcpu); 9444 9445 vcpu->arch.cr2 = 0; 9446 9447 kvm_make_request(KVM_REQ_EVENT, vcpu); 9448 vcpu->arch.apf.msr_val = 0; 9449 vcpu->arch.st.msr_val = 0; 9450 9451 kvmclock_reset(vcpu); 9452 9453 kvm_clear_async_pf_completion_queue(vcpu); 9454 kvm_async_pf_hash_reset(vcpu); 9455 vcpu->arch.apf.halted = false; 9456 9457 if (kvm_mpx_supported()) { 9458 void *mpx_state_buffer; 9459 9460 /* 9461 * To avoid have the INIT path from kvm_apic_has_events() that be 9462 * called with loaded FPU and does not let userspace fix the state. 9463 */ 9464 if (init_event) 9465 kvm_put_guest_fpu(vcpu); 9466 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9467 XFEATURE_BNDREGS); 9468 if (mpx_state_buffer) 9469 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9470 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9471 XFEATURE_BNDCSR); 9472 if (mpx_state_buffer) 9473 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9474 if (init_event) 9475 kvm_load_guest_fpu(vcpu); 9476 } 9477 9478 if (!init_event) { 9479 kvm_pmu_reset(vcpu); 9480 vcpu->arch.smbase = 0x30000; 9481 9482 vcpu->arch.msr_misc_features_enables = 0; 9483 9484 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9485 } 9486 9487 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9488 vcpu->arch.regs_avail = ~0; 9489 vcpu->arch.regs_dirty = ~0; 9490 9491 vcpu->arch.ia32_xss = 0; 9492 9493 kvm_x86_ops->vcpu_reset(vcpu, init_event); 9494 } 9495 9496 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9497 { 9498 struct kvm_segment cs; 9499 9500 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9501 cs.selector = vector << 8; 9502 cs.base = vector << 12; 9503 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9504 kvm_rip_write(vcpu, 0); 9505 } 9506 9507 int kvm_arch_hardware_enable(void) 9508 { 9509 struct kvm *kvm; 9510 struct kvm_vcpu *vcpu; 9511 int i; 9512 int ret; 9513 u64 local_tsc; 9514 u64 max_tsc = 0; 9515 bool stable, backwards_tsc = false; 9516 9517 kvm_shared_msr_cpu_online(); 9518 ret = kvm_x86_ops->hardware_enable(); 9519 if (ret != 0) 9520 return ret; 9521 9522 local_tsc = rdtsc(); 9523 stable = !kvm_check_tsc_unstable(); 9524 list_for_each_entry(kvm, &vm_list, vm_list) { 9525 kvm_for_each_vcpu(i, vcpu, kvm) { 9526 if (!stable && vcpu->cpu == smp_processor_id()) 9527 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9528 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9529 backwards_tsc = true; 9530 if (vcpu->arch.last_host_tsc > max_tsc) 9531 max_tsc = vcpu->arch.last_host_tsc; 9532 } 9533 } 9534 } 9535 9536 /* 9537 * Sometimes, even reliable TSCs go backwards. This happens on 9538 * platforms that reset TSC during suspend or hibernate actions, but 9539 * maintain synchronization. We must compensate. Fortunately, we can 9540 * detect that condition here, which happens early in CPU bringup, 9541 * before any KVM threads can be running. Unfortunately, we can't 9542 * bring the TSCs fully up to date with real time, as we aren't yet far 9543 * enough into CPU bringup that we know how much real time has actually 9544 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9545 * variables that haven't been updated yet. 9546 * 9547 * So we simply find the maximum observed TSC above, then record the 9548 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9549 * the adjustment will be applied. Note that we accumulate 9550 * adjustments, in case multiple suspend cycles happen before some VCPU 9551 * gets a chance to run again. In the event that no KVM threads get a 9552 * chance to run, we will miss the entire elapsed period, as we'll have 9553 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9554 * loose cycle time. This isn't too big a deal, since the loss will be 9555 * uniform across all VCPUs (not to mention the scenario is extremely 9556 * unlikely). It is possible that a second hibernate recovery happens 9557 * much faster than a first, causing the observed TSC here to be 9558 * smaller; this would require additional padding adjustment, which is 9559 * why we set last_host_tsc to the local tsc observed here. 9560 * 9561 * N.B. - this code below runs only on platforms with reliable TSC, 9562 * as that is the only way backwards_tsc is set above. Also note 9563 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9564 * have the same delta_cyc adjustment applied if backwards_tsc 9565 * is detected. Note further, this adjustment is only done once, 9566 * as we reset last_host_tsc on all VCPUs to stop this from being 9567 * called multiple times (one for each physical CPU bringup). 9568 * 9569 * Platforms with unreliable TSCs don't have to deal with this, they 9570 * will be compensated by the logic in vcpu_load, which sets the TSC to 9571 * catchup mode. This will catchup all VCPUs to real time, but cannot 9572 * guarantee that they stay in perfect synchronization. 9573 */ 9574 if (backwards_tsc) { 9575 u64 delta_cyc = max_tsc - local_tsc; 9576 list_for_each_entry(kvm, &vm_list, vm_list) { 9577 kvm->arch.backwards_tsc_observed = true; 9578 kvm_for_each_vcpu(i, vcpu, kvm) { 9579 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9580 vcpu->arch.last_host_tsc = local_tsc; 9581 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9582 } 9583 9584 /* 9585 * We have to disable TSC offset matching.. if you were 9586 * booting a VM while issuing an S4 host suspend.... 9587 * you may have some problem. Solving this issue is 9588 * left as an exercise to the reader. 9589 */ 9590 kvm->arch.last_tsc_nsec = 0; 9591 kvm->arch.last_tsc_write = 0; 9592 } 9593 9594 } 9595 return 0; 9596 } 9597 9598 void kvm_arch_hardware_disable(void) 9599 { 9600 kvm_x86_ops->hardware_disable(); 9601 drop_user_return_notifiers(); 9602 } 9603 9604 int kvm_arch_hardware_setup(void) 9605 { 9606 int r; 9607 9608 r = kvm_x86_ops->hardware_setup(); 9609 if (r != 0) 9610 return r; 9611 9612 cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data); 9613 9614 if (kvm_has_tsc_control) { 9615 /* 9616 * Make sure the user can only configure tsc_khz values that 9617 * fit into a signed integer. 9618 * A min value is not calculated because it will always 9619 * be 1 on all machines. 9620 */ 9621 u64 max = min(0x7fffffffULL, 9622 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9623 kvm_max_guest_tsc_khz = max; 9624 9625 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9626 } 9627 9628 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9629 rdmsrl(MSR_IA32_XSS, host_xss); 9630 9631 kvm_init_msr_list(); 9632 return 0; 9633 } 9634 9635 void kvm_arch_hardware_unsetup(void) 9636 { 9637 kvm_x86_ops->hardware_unsetup(); 9638 } 9639 9640 int kvm_arch_check_processor_compat(void) 9641 { 9642 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9643 9644 WARN_ON(!irqs_disabled()); 9645 9646 if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits) 9647 return -EIO; 9648 9649 return kvm_x86_ops->check_processor_compatibility(); 9650 } 9651 9652 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9653 { 9654 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9655 } 9656 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9657 9658 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9659 { 9660 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9661 } 9662 9663 struct static_key kvm_no_apic_vcpu __read_mostly; 9664 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9665 9666 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9667 { 9668 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9669 9670 vcpu->arch.l1tf_flush_l1d = true; 9671 if (pmu->version && unlikely(pmu->event_count)) { 9672 pmu->need_cleanup = true; 9673 kvm_make_request(KVM_REQ_PMU, vcpu); 9674 } 9675 kvm_x86_ops->sched_in(vcpu, cpu); 9676 } 9677 9678 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9679 { 9680 if (type) 9681 return -EINVAL; 9682 9683 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9684 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9685 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9686 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9687 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9688 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9689 9690 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9691 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9692 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9693 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9694 &kvm->arch.irq_sources_bitmap); 9695 9696 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9697 mutex_init(&kvm->arch.apic_map_lock); 9698 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9699 9700 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9701 pvclock_update_vm_gtod_copy(kvm); 9702 9703 kvm->arch.guest_can_read_msr_platform_info = true; 9704 9705 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9706 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9707 9708 kvm_hv_init_vm(kvm); 9709 kvm_page_track_init(kvm); 9710 kvm_mmu_init_vm(kvm); 9711 9712 return kvm_x86_ops->vm_init(kvm); 9713 } 9714 9715 int kvm_arch_post_init_vm(struct kvm *kvm) 9716 { 9717 return kvm_mmu_post_init_vm(kvm); 9718 } 9719 9720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9721 { 9722 vcpu_load(vcpu); 9723 kvm_mmu_unload(vcpu); 9724 vcpu_put(vcpu); 9725 } 9726 9727 static void kvm_free_vcpus(struct kvm *kvm) 9728 { 9729 unsigned int i; 9730 struct kvm_vcpu *vcpu; 9731 9732 /* 9733 * Unpin any mmu pages first. 9734 */ 9735 kvm_for_each_vcpu(i, vcpu, kvm) { 9736 kvm_clear_async_pf_completion_queue(vcpu); 9737 kvm_unload_vcpu_mmu(vcpu); 9738 } 9739 kvm_for_each_vcpu(i, vcpu, kvm) 9740 kvm_vcpu_destroy(vcpu); 9741 9742 mutex_lock(&kvm->lock); 9743 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9744 kvm->vcpus[i] = NULL; 9745 9746 atomic_set(&kvm->online_vcpus, 0); 9747 mutex_unlock(&kvm->lock); 9748 } 9749 9750 void kvm_arch_sync_events(struct kvm *kvm) 9751 { 9752 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9753 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9754 kvm_free_pit(kvm); 9755 } 9756 9757 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9758 { 9759 int i, r; 9760 unsigned long hva; 9761 struct kvm_memslots *slots = kvm_memslots(kvm); 9762 struct kvm_memory_slot *slot, old; 9763 9764 /* Called with kvm->slots_lock held. */ 9765 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9766 return -EINVAL; 9767 9768 slot = id_to_memslot(slots, id); 9769 if (size) { 9770 if (slot->npages) 9771 return -EEXIST; 9772 9773 /* 9774 * MAP_SHARED to prevent internal slot pages from being moved 9775 * by fork()/COW. 9776 */ 9777 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9778 MAP_SHARED | MAP_ANONYMOUS, 0); 9779 if (IS_ERR((void *)hva)) 9780 return PTR_ERR((void *)hva); 9781 } else { 9782 if (!slot->npages) 9783 return 0; 9784 9785 hva = 0; 9786 } 9787 9788 old = *slot; 9789 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9790 struct kvm_userspace_memory_region m; 9791 9792 m.slot = id | (i << 16); 9793 m.flags = 0; 9794 m.guest_phys_addr = gpa; 9795 m.userspace_addr = hva; 9796 m.memory_size = size; 9797 r = __kvm_set_memory_region(kvm, &m); 9798 if (r < 0) 9799 return r; 9800 } 9801 9802 if (!size) 9803 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 9804 9805 return 0; 9806 } 9807 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9808 9809 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9810 { 9811 kvm_mmu_pre_destroy_vm(kvm); 9812 } 9813 9814 void kvm_arch_destroy_vm(struct kvm *kvm) 9815 { 9816 if (current->mm == kvm->mm) { 9817 /* 9818 * Free memory regions allocated on behalf of userspace, 9819 * unless the the memory map has changed due to process exit 9820 * or fd copying. 9821 */ 9822 mutex_lock(&kvm->slots_lock); 9823 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9824 0, 0); 9825 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 9826 0, 0); 9827 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9828 mutex_unlock(&kvm->slots_lock); 9829 } 9830 if (kvm_x86_ops->vm_destroy) 9831 kvm_x86_ops->vm_destroy(kvm); 9832 kvm_pic_destroy(kvm); 9833 kvm_ioapic_destroy(kvm); 9834 kvm_free_vcpus(kvm); 9835 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9836 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 9837 kvm_mmu_uninit_vm(kvm); 9838 kvm_page_track_cleanup(kvm); 9839 kvm_hv_destroy_vm(kvm); 9840 } 9841 9842 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 9843 struct kvm_memory_slot *dont) 9844 { 9845 int i; 9846 9847 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9848 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 9849 kvfree(free->arch.rmap[i]); 9850 free->arch.rmap[i] = NULL; 9851 } 9852 if (i == 0) 9853 continue; 9854 9855 if (!dont || free->arch.lpage_info[i - 1] != 9856 dont->arch.lpage_info[i - 1]) { 9857 kvfree(free->arch.lpage_info[i - 1]); 9858 free->arch.lpage_info[i - 1] = NULL; 9859 } 9860 } 9861 9862 kvm_page_track_free_memslot(free, dont); 9863 } 9864 9865 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 9866 unsigned long npages) 9867 { 9868 int i; 9869 9870 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9871 struct kvm_lpage_info *linfo; 9872 unsigned long ugfn; 9873 int lpages; 9874 int level = i + 1; 9875 9876 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9877 slot->base_gfn, level) + 1; 9878 9879 slot->arch.rmap[i] = 9880 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9881 GFP_KERNEL_ACCOUNT); 9882 if (!slot->arch.rmap[i]) 9883 goto out_free; 9884 if (i == 0) 9885 continue; 9886 9887 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9888 if (!linfo) 9889 goto out_free; 9890 9891 slot->arch.lpage_info[i - 1] = linfo; 9892 9893 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9894 linfo[0].disallow_lpage = 1; 9895 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9896 linfo[lpages - 1].disallow_lpage = 1; 9897 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9898 /* 9899 * If the gfn and userspace address are not aligned wrt each 9900 * other, or if explicitly asked to, disable large page 9901 * support for this slot 9902 */ 9903 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 9904 !kvm_largepages_enabled()) { 9905 unsigned long j; 9906 9907 for (j = 0; j < lpages; ++j) 9908 linfo[j].disallow_lpage = 1; 9909 } 9910 } 9911 9912 if (kvm_page_track_create_memslot(slot, npages)) 9913 goto out_free; 9914 9915 return 0; 9916 9917 out_free: 9918 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9919 kvfree(slot->arch.rmap[i]); 9920 slot->arch.rmap[i] = NULL; 9921 if (i == 0) 9922 continue; 9923 9924 kvfree(slot->arch.lpage_info[i - 1]); 9925 slot->arch.lpage_info[i - 1] = NULL; 9926 } 9927 return -ENOMEM; 9928 } 9929 9930 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 9931 { 9932 struct kvm_vcpu *vcpu; 9933 int i; 9934 9935 /* 9936 * memslots->generation has been incremented. 9937 * mmio generation may have reached its maximum value. 9938 */ 9939 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 9940 9941 /* Force re-initialization of steal_time cache */ 9942 kvm_for_each_vcpu(i, vcpu, kvm) 9943 kvm_vcpu_kick(vcpu); 9944 } 9945 9946 int kvm_arch_prepare_memory_region(struct kvm *kvm, 9947 struct kvm_memory_slot *memslot, 9948 const struct kvm_userspace_memory_region *mem, 9949 enum kvm_mr_change change) 9950 { 9951 return 0; 9952 } 9953 9954 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 9955 struct kvm_memory_slot *new) 9956 { 9957 /* Still write protect RO slot */ 9958 if (new->flags & KVM_MEM_READONLY) { 9959 kvm_mmu_slot_remove_write_access(kvm, new); 9960 return; 9961 } 9962 9963 /* 9964 * Call kvm_x86_ops dirty logging hooks when they are valid. 9965 * 9966 * kvm_x86_ops->slot_disable_log_dirty is called when: 9967 * 9968 * - KVM_MR_CREATE with dirty logging is disabled 9969 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 9970 * 9971 * The reason is, in case of PML, we need to set D-bit for any slots 9972 * with dirty logging disabled in order to eliminate unnecessary GPA 9973 * logging in PML buffer (and potential PML buffer full VMEXIT). This 9974 * guarantees leaving PML enabled during guest's lifetime won't have 9975 * any additional overhead from PML when guest is running with dirty 9976 * logging disabled for memory slots. 9977 * 9978 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 9979 * to dirty logging mode. 9980 * 9981 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 9982 * 9983 * In case of write protect: 9984 * 9985 * Write protect all pages for dirty logging. 9986 * 9987 * All the sptes including the large sptes which point to this 9988 * slot are set to readonly. We can not create any new large 9989 * spte on this slot until the end of the logging. 9990 * 9991 * See the comments in fast_page_fault(). 9992 */ 9993 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 9994 if (kvm_x86_ops->slot_enable_log_dirty) 9995 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 9996 else 9997 kvm_mmu_slot_remove_write_access(kvm, new); 9998 } else { 9999 if (kvm_x86_ops->slot_disable_log_dirty) 10000 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 10001 } 10002 } 10003 10004 void kvm_arch_commit_memory_region(struct kvm *kvm, 10005 const struct kvm_userspace_memory_region *mem, 10006 const struct kvm_memory_slot *old, 10007 const struct kvm_memory_slot *new, 10008 enum kvm_mr_change change) 10009 { 10010 if (!kvm->arch.n_requested_mmu_pages) 10011 kvm_mmu_change_mmu_pages(kvm, 10012 kvm_mmu_calculate_default_mmu_pages(kvm)); 10013 10014 /* 10015 * Dirty logging tracks sptes in 4k granularity, meaning that large 10016 * sptes have to be split. If live migration is successful, the guest 10017 * in the source machine will be destroyed and large sptes will be 10018 * created in the destination. However, if the guest continues to run 10019 * in the source machine (for example if live migration fails), small 10020 * sptes will remain around and cause bad performance. 10021 * 10022 * Scan sptes if dirty logging has been stopped, dropping those 10023 * which can be collapsed into a single large-page spte. Later 10024 * page faults will create the large-page sptes. 10025 * 10026 * There is no need to do this in any of the following cases: 10027 * CREATE: No dirty mappings will already exist. 10028 * MOVE/DELETE: The old mappings will already have been cleaned up by 10029 * kvm_arch_flush_shadow_memslot() 10030 */ 10031 if (change == KVM_MR_FLAGS_ONLY && 10032 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10033 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10034 kvm_mmu_zap_collapsible_sptes(kvm, new); 10035 10036 /* 10037 * Set up write protection and/or dirty logging for the new slot. 10038 * 10039 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 10040 * been zapped so no dirty logging staff is needed for old slot. For 10041 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 10042 * new and it's also covered when dealing with the new slot. 10043 * 10044 * FIXME: const-ify all uses of struct kvm_memory_slot. 10045 */ 10046 if (change != KVM_MR_DELETE) 10047 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 10048 } 10049 10050 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10051 { 10052 kvm_mmu_zap_all(kvm); 10053 } 10054 10055 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10056 struct kvm_memory_slot *slot) 10057 { 10058 kvm_page_track_flush_slot(kvm, slot); 10059 } 10060 10061 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10062 { 10063 return (is_guest_mode(vcpu) && 10064 kvm_x86_ops->guest_apic_has_interrupt && 10065 kvm_x86_ops->guest_apic_has_interrupt(vcpu)); 10066 } 10067 10068 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10069 { 10070 if (!list_empty_careful(&vcpu->async_pf.done)) 10071 return true; 10072 10073 if (kvm_apic_has_events(vcpu)) 10074 return true; 10075 10076 if (vcpu->arch.pv.pv_unhalted) 10077 return true; 10078 10079 if (vcpu->arch.exception.pending) 10080 return true; 10081 10082 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10083 (vcpu->arch.nmi_pending && 10084 kvm_x86_ops->nmi_allowed(vcpu))) 10085 return true; 10086 10087 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10088 (vcpu->arch.smi_pending && !is_smm(vcpu))) 10089 return true; 10090 10091 if (kvm_arch_interrupt_allowed(vcpu) && 10092 (kvm_cpu_has_interrupt(vcpu) || 10093 kvm_guest_apic_has_interrupt(vcpu))) 10094 return true; 10095 10096 if (kvm_hv_has_stimer_pending(vcpu)) 10097 return true; 10098 10099 return false; 10100 } 10101 10102 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10103 { 10104 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10105 } 10106 10107 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10108 { 10109 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10110 return true; 10111 10112 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10113 kvm_test_request(KVM_REQ_SMI, vcpu) || 10114 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10115 return true; 10116 10117 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu)) 10118 return true; 10119 10120 return false; 10121 } 10122 10123 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10124 { 10125 return vcpu->arch.preempted_in_kernel; 10126 } 10127 10128 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10129 { 10130 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10131 } 10132 10133 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10134 { 10135 return kvm_x86_ops->interrupt_allowed(vcpu); 10136 } 10137 10138 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10139 { 10140 if (is_64_bit_mode(vcpu)) 10141 return kvm_rip_read(vcpu); 10142 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10143 kvm_rip_read(vcpu)); 10144 } 10145 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10146 10147 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10148 { 10149 return kvm_get_linear_rip(vcpu) == linear_rip; 10150 } 10151 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10152 10153 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10154 { 10155 unsigned long rflags; 10156 10157 rflags = kvm_x86_ops->get_rflags(vcpu); 10158 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10159 rflags &= ~X86_EFLAGS_TF; 10160 return rflags; 10161 } 10162 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10163 10164 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10165 { 10166 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10167 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10168 rflags |= X86_EFLAGS_TF; 10169 kvm_x86_ops->set_rflags(vcpu, rflags); 10170 } 10171 10172 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10173 { 10174 __kvm_set_rflags(vcpu, rflags); 10175 kvm_make_request(KVM_REQ_EVENT, vcpu); 10176 } 10177 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10178 10179 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10180 { 10181 int r; 10182 10183 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10184 work->wakeup_all) 10185 return; 10186 10187 r = kvm_mmu_reload(vcpu); 10188 if (unlikely(r)) 10189 return; 10190 10191 if (!vcpu->arch.mmu->direct_map && 10192 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu)) 10193 return; 10194 10195 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10196 } 10197 10198 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10199 { 10200 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10201 } 10202 10203 static inline u32 kvm_async_pf_next_probe(u32 key) 10204 { 10205 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 10206 } 10207 10208 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10209 { 10210 u32 key = kvm_async_pf_hash_fn(gfn); 10211 10212 while (vcpu->arch.apf.gfns[key] != ~0) 10213 key = kvm_async_pf_next_probe(key); 10214 10215 vcpu->arch.apf.gfns[key] = gfn; 10216 } 10217 10218 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10219 { 10220 int i; 10221 u32 key = kvm_async_pf_hash_fn(gfn); 10222 10223 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 10224 (vcpu->arch.apf.gfns[key] != gfn && 10225 vcpu->arch.apf.gfns[key] != ~0); i++) 10226 key = kvm_async_pf_next_probe(key); 10227 10228 return key; 10229 } 10230 10231 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10232 { 10233 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10234 } 10235 10236 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10237 { 10238 u32 i, j, k; 10239 10240 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10241 while (true) { 10242 vcpu->arch.apf.gfns[i] = ~0; 10243 do { 10244 j = kvm_async_pf_next_probe(j); 10245 if (vcpu->arch.apf.gfns[j] == ~0) 10246 return; 10247 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10248 /* 10249 * k lies cyclically in ]i,j] 10250 * | i.k.j | 10251 * |....j i.k.| or |.k..j i...| 10252 */ 10253 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10254 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10255 i = j; 10256 } 10257 } 10258 10259 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 10260 { 10261 10262 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 10263 sizeof(val)); 10264 } 10265 10266 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 10267 { 10268 10269 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 10270 sizeof(u32)); 10271 } 10272 10273 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10274 { 10275 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10276 return false; 10277 10278 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 10279 (vcpu->arch.apf.send_user_only && 10280 kvm_x86_ops->get_cpl(vcpu) == 0)) 10281 return false; 10282 10283 return true; 10284 } 10285 10286 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10287 { 10288 if (unlikely(!lapic_in_kernel(vcpu) || 10289 kvm_event_needs_reinjection(vcpu) || 10290 vcpu->arch.exception.pending)) 10291 return false; 10292 10293 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10294 return false; 10295 10296 /* 10297 * If interrupts are off we cannot even use an artificial 10298 * halt state. 10299 */ 10300 return kvm_x86_ops->interrupt_allowed(vcpu); 10301 } 10302 10303 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10304 struct kvm_async_pf *work) 10305 { 10306 struct x86_exception fault; 10307 10308 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10309 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10310 10311 if (kvm_can_deliver_async_pf(vcpu) && 10312 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 10313 fault.vector = PF_VECTOR; 10314 fault.error_code_valid = true; 10315 fault.error_code = 0; 10316 fault.nested_page_fault = false; 10317 fault.address = work->arch.token; 10318 fault.async_page_fault = true; 10319 kvm_inject_page_fault(vcpu, &fault); 10320 } else { 10321 /* 10322 * It is not possible to deliver a paravirtualized asynchronous 10323 * page fault, but putting the guest in an artificial halt state 10324 * can be beneficial nevertheless: if an interrupt arrives, we 10325 * can deliver it timely and perhaps the guest will schedule 10326 * another process. When the instruction that triggered a page 10327 * fault is retried, hopefully the page will be ready in the host. 10328 */ 10329 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10330 } 10331 } 10332 10333 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10334 struct kvm_async_pf *work) 10335 { 10336 struct x86_exception fault; 10337 u32 val; 10338 10339 if (work->wakeup_all) 10340 work->arch.token = ~0; /* broadcast wakeup */ 10341 else 10342 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10343 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10344 10345 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 10346 !apf_get_user(vcpu, &val)) { 10347 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 10348 vcpu->arch.exception.pending && 10349 vcpu->arch.exception.nr == PF_VECTOR && 10350 !apf_put_user(vcpu, 0)) { 10351 vcpu->arch.exception.injected = false; 10352 vcpu->arch.exception.pending = false; 10353 vcpu->arch.exception.nr = 0; 10354 vcpu->arch.exception.has_error_code = false; 10355 vcpu->arch.exception.error_code = 0; 10356 vcpu->arch.exception.has_payload = false; 10357 vcpu->arch.exception.payload = 0; 10358 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 10359 fault.vector = PF_VECTOR; 10360 fault.error_code_valid = true; 10361 fault.error_code = 0; 10362 fault.nested_page_fault = false; 10363 fault.address = work->arch.token; 10364 fault.async_page_fault = true; 10365 kvm_inject_page_fault(vcpu, &fault); 10366 } 10367 } 10368 vcpu->arch.apf.halted = false; 10369 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10370 } 10371 10372 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 10373 { 10374 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 10375 return true; 10376 else 10377 return kvm_can_do_async_pf(vcpu); 10378 } 10379 10380 void kvm_arch_start_assignment(struct kvm *kvm) 10381 { 10382 atomic_inc(&kvm->arch.assigned_device_count); 10383 } 10384 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10385 10386 void kvm_arch_end_assignment(struct kvm *kvm) 10387 { 10388 atomic_dec(&kvm->arch.assigned_device_count); 10389 } 10390 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10391 10392 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10393 { 10394 return atomic_read(&kvm->arch.assigned_device_count); 10395 } 10396 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10397 10398 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10399 { 10400 atomic_inc(&kvm->arch.noncoherent_dma_count); 10401 } 10402 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10403 10404 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10405 { 10406 atomic_dec(&kvm->arch.noncoherent_dma_count); 10407 } 10408 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10409 10410 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10411 { 10412 return atomic_read(&kvm->arch.noncoherent_dma_count); 10413 } 10414 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10415 10416 bool kvm_arch_has_irq_bypass(void) 10417 { 10418 return true; 10419 } 10420 10421 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10422 struct irq_bypass_producer *prod) 10423 { 10424 struct kvm_kernel_irqfd *irqfd = 10425 container_of(cons, struct kvm_kernel_irqfd, consumer); 10426 10427 irqfd->producer = prod; 10428 10429 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 10430 prod->irq, irqfd->gsi, 1); 10431 } 10432 10433 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10434 struct irq_bypass_producer *prod) 10435 { 10436 int ret; 10437 struct kvm_kernel_irqfd *irqfd = 10438 container_of(cons, struct kvm_kernel_irqfd, consumer); 10439 10440 WARN_ON(irqfd->producer != prod); 10441 irqfd->producer = NULL; 10442 10443 /* 10444 * When producer of consumer is unregistered, we change back to 10445 * remapped mode, so we can re-use the current implementation 10446 * when the irq is masked/disabled or the consumer side (KVM 10447 * int this case doesn't want to receive the interrupts. 10448 */ 10449 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10450 if (ret) 10451 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10452 " fails: %d\n", irqfd->consumer.token, ret); 10453 } 10454 10455 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10456 uint32_t guest_irq, bool set) 10457 { 10458 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 10459 } 10460 10461 bool kvm_vector_hashing_enabled(void) 10462 { 10463 return vector_hashing; 10464 } 10465 10466 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10467 { 10468 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10469 } 10470 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10471 10472 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10473 { 10474 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10475 10476 /* The STIBP bit doesn't fault even if it's not advertised */ 10477 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10478 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10479 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10480 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10481 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10482 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10483 10484 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10485 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10486 bits &= ~SPEC_CTRL_SSBD; 10487 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10488 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10489 bits &= ~SPEC_CTRL_SSBD; 10490 10491 return bits; 10492 } 10493 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10494 10495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10516