xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 59b4412f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 
60 #include <trace/events/kvm.h>
61 
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 #include <asm/mshyperv.h>
72 #include <asm/hypervisor.h>
73 #include <asm/intel_pt.h>
74 #include <asm/emulate_prefix.h>
75 #include <clocksource/hyperv_timer.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include "trace.h"
79 
80 #define MAX_IO_MSRS 256
81 #define KVM_MAX_MCE_BANKS 32
82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
84 
85 #define emul_to_vcpu(ctxt) \
86 	((struct kvm_vcpu *)(ctxt)->vcpu)
87 
88 /* EFER defaults:
89  * - enable syscall per default because its emulated by KVM
90  * - enable LME and LMA per default on 64 bit KVM
91  */
92 #ifdef CONFIG_X86_64
93 static
94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
95 #else
96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
97 #endif
98 
99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
100 
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103 
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
110 
111 struct kvm_x86_ops kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
113 
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
122 
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
125 
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32  __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64  __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
136 
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140 
141 /*
142  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
143  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
144  * advancement entirely.  Any other value is used as-is and disables adaptive
145  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
146  */
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
149 
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
152 
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
156 
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
159 
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
162 
163 #define KVM_NR_SHARED_MSRS 16
164 
165 struct kvm_shared_msrs_global {
166 	int nr;
167 	u32 msrs[KVM_NR_SHARED_MSRS];
168 };
169 
170 struct kvm_shared_msrs {
171 	struct user_return_notifier urn;
172 	bool registered;
173 	struct kvm_shared_msr_values {
174 		u64 host;
175 		u64 curr;
176 	} values[KVM_NR_SHARED_MSRS];
177 };
178 
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
181 
182 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
183 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
184 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
185 				| XFEATURE_MASK_PKRU)
186 
187 u64 __read_mostly host_efer;
188 EXPORT_SYMBOL_GPL(host_efer);
189 
190 static u64 __read_mostly host_xss;
191 u64 __read_mostly supported_xss;
192 EXPORT_SYMBOL_GPL(supported_xss);
193 
194 struct kvm_stats_debugfs_item debugfs_entries[] = {
195 	VCPU_STAT("pf_fixed", pf_fixed),
196 	VCPU_STAT("pf_guest", pf_guest),
197 	VCPU_STAT("tlb_flush", tlb_flush),
198 	VCPU_STAT("invlpg", invlpg),
199 	VCPU_STAT("exits", exits),
200 	VCPU_STAT("io_exits", io_exits),
201 	VCPU_STAT("mmio_exits", mmio_exits),
202 	VCPU_STAT("signal_exits", signal_exits),
203 	VCPU_STAT("irq_window", irq_window_exits),
204 	VCPU_STAT("nmi_window", nmi_window_exits),
205 	VCPU_STAT("halt_exits", halt_exits),
206 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
207 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
208 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
209 	VCPU_STAT("halt_wakeup", halt_wakeup),
210 	VCPU_STAT("hypercalls", hypercalls),
211 	VCPU_STAT("request_irq", request_irq_exits),
212 	VCPU_STAT("irq_exits", irq_exits),
213 	VCPU_STAT("host_state_reload", host_state_reload),
214 	VCPU_STAT("fpu_reload", fpu_reload),
215 	VCPU_STAT("insn_emulation", insn_emulation),
216 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
217 	VCPU_STAT("irq_injections", irq_injections),
218 	VCPU_STAT("nmi_injections", nmi_injections),
219 	VCPU_STAT("req_event", req_event),
220 	VCPU_STAT("l1d_flush", l1d_flush),
221 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
222 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
223 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
224 	VM_STAT("mmu_pte_write", mmu_pte_write),
225 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
226 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
227 	VM_STAT("mmu_flooded", mmu_flooded),
228 	VM_STAT("mmu_recycled", mmu_recycled),
229 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
230 	VM_STAT("mmu_unsync", mmu_unsync),
231 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
232 	VM_STAT("largepages", lpages, .mode = 0444),
233 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
234 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
235 	{ NULL }
236 };
237 
238 u64 __read_mostly host_xcr0;
239 u64 __read_mostly supported_xcr0;
240 EXPORT_SYMBOL_GPL(supported_xcr0);
241 
242 static struct kmem_cache *x86_fpu_cache;
243 
244 static struct kmem_cache *x86_emulator_cache;
245 
246 static struct kmem_cache *kvm_alloc_emulator_cache(void)
247 {
248 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
249 	unsigned int size = sizeof(struct x86_emulate_ctxt);
250 
251 	return kmem_cache_create_usercopy("x86_emulator", size,
252 					  __alignof__(struct x86_emulate_ctxt),
253 					  SLAB_ACCOUNT, useroffset,
254 					  size - useroffset, NULL);
255 }
256 
257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
258 
259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
260 {
261 	int i;
262 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
263 		vcpu->arch.apf.gfns[i] = ~0;
264 }
265 
266 static void kvm_on_user_return(struct user_return_notifier *urn)
267 {
268 	unsigned slot;
269 	struct kvm_shared_msrs *locals
270 		= container_of(urn, struct kvm_shared_msrs, urn);
271 	struct kvm_shared_msr_values *values;
272 	unsigned long flags;
273 
274 	/*
275 	 * Disabling irqs at this point since the following code could be
276 	 * interrupted and executed through kvm_arch_hardware_disable()
277 	 */
278 	local_irq_save(flags);
279 	if (locals->registered) {
280 		locals->registered = false;
281 		user_return_notifier_unregister(urn);
282 	}
283 	local_irq_restore(flags);
284 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
285 		values = &locals->values[slot];
286 		if (values->host != values->curr) {
287 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
288 			values->curr = values->host;
289 		}
290 	}
291 }
292 
293 void kvm_define_shared_msr(unsigned slot, u32 msr)
294 {
295 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
296 	shared_msrs_global.msrs[slot] = msr;
297 	if (slot >= shared_msrs_global.nr)
298 		shared_msrs_global.nr = slot + 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
301 
302 static void kvm_shared_msr_cpu_online(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
306 	u64 value;
307 	int i;
308 
309 	for (i = 0; i < shared_msrs_global.nr; ++i) {
310 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
311 		smsr->values[i].host = value;
312 		smsr->values[i].curr = value;
313 	}
314 }
315 
316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
317 {
318 	unsigned int cpu = smp_processor_id();
319 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320 	int err;
321 
322 	value = (value & mask) | (smsr->values[slot].host & ~mask);
323 	if (value == smsr->values[slot].curr)
324 		return 0;
325 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
326 	if (err)
327 		return 1;
328 
329 	smsr->values[slot].curr = value;
330 	if (!smsr->registered) {
331 		smsr->urn.on_user_return = kvm_on_user_return;
332 		user_return_notifier_register(&smsr->urn);
333 		smsr->registered = true;
334 	}
335 	return 0;
336 }
337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
338 
339 static void drop_user_return_notifiers(void)
340 {
341 	unsigned int cpu = smp_processor_id();
342 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
343 
344 	if (smsr->registered)
345 		kvm_on_user_return(&smsr->urn);
346 }
347 
348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
349 {
350 	return vcpu->arch.apic_base;
351 }
352 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
353 
354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
355 {
356 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
357 }
358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
359 
360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
361 {
362 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
363 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
364 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
365 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
366 
367 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
368 		return 1;
369 	if (!msr_info->host_initiated) {
370 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
371 			return 1;
372 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
373 			return 1;
374 	}
375 
376 	kvm_lapic_set_base(vcpu, msr_info->data);
377 	kvm_recalculate_apic_map(vcpu->kvm);
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
381 
382 asmlinkage __visible void kvm_spurious_fault(void)
383 {
384 	/* Fault while not rebooting.  We want the trace. */
385 	BUG_ON(!kvm_rebooting);
386 }
387 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
388 
389 #define EXCPT_BENIGN		0
390 #define EXCPT_CONTRIBUTORY	1
391 #define EXCPT_PF		2
392 
393 static int exception_class(int vector)
394 {
395 	switch (vector) {
396 	case PF_VECTOR:
397 		return EXCPT_PF;
398 	case DE_VECTOR:
399 	case TS_VECTOR:
400 	case NP_VECTOR:
401 	case SS_VECTOR:
402 	case GP_VECTOR:
403 		return EXCPT_CONTRIBUTORY;
404 	default:
405 		break;
406 	}
407 	return EXCPT_BENIGN;
408 }
409 
410 #define EXCPT_FAULT		0
411 #define EXCPT_TRAP		1
412 #define EXCPT_ABORT		2
413 #define EXCPT_INTERRUPT		3
414 
415 static int exception_type(int vector)
416 {
417 	unsigned int mask;
418 
419 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
420 		return EXCPT_INTERRUPT;
421 
422 	mask = 1 << vector;
423 
424 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
425 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
426 		return EXCPT_TRAP;
427 
428 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
429 		return EXCPT_ABORT;
430 
431 	/* Reserved exceptions will result in fault */
432 	return EXCPT_FAULT;
433 }
434 
435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
436 {
437 	unsigned nr = vcpu->arch.exception.nr;
438 	bool has_payload = vcpu->arch.exception.has_payload;
439 	unsigned long payload = vcpu->arch.exception.payload;
440 
441 	if (!has_payload)
442 		return;
443 
444 	switch (nr) {
445 	case DB_VECTOR:
446 		/*
447 		 * "Certain debug exceptions may clear bit 0-3.  The
448 		 * remaining contents of the DR6 register are never
449 		 * cleared by the processor".
450 		 */
451 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
452 		/*
453 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
454 		 */
455 		vcpu->arch.dr6 |= DR6_RTM;
456 		vcpu->arch.dr6 |= payload;
457 		/*
458 		 * Bit 16 should be set in the payload whenever the #DB
459 		 * exception should clear DR6.RTM. This makes the payload
460 		 * compatible with the pending debug exceptions under VMX.
461 		 * Though not currently documented in the SDM, this also
462 		 * makes the payload compatible with the exit qualification
463 		 * for #DB exceptions under VMX.
464 		 */
465 		vcpu->arch.dr6 ^= payload & DR6_RTM;
466 
467 		/*
468 		 * The #DB payload is defined as compatible with the 'pending
469 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
470 		 * defined in the 'pending debug exceptions' field (enabled
471 		 * breakpoint), it is reserved and must be zero in DR6.
472 		 */
473 		vcpu->arch.dr6 &= ~BIT(12);
474 		break;
475 	case PF_VECTOR:
476 		vcpu->arch.cr2 = payload;
477 		break;
478 	}
479 
480 	vcpu->arch.exception.has_payload = false;
481 	vcpu->arch.exception.payload = 0;
482 }
483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
484 
485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
486 		unsigned nr, bool has_error, u32 error_code,
487 	        bool has_payload, unsigned long payload, bool reinject)
488 {
489 	u32 prev_nr;
490 	int class1, class2;
491 
492 	kvm_make_request(KVM_REQ_EVENT, vcpu);
493 
494 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
495 	queue:
496 		if (has_error && !is_protmode(vcpu))
497 			has_error = false;
498 		if (reinject) {
499 			/*
500 			 * On vmentry, vcpu->arch.exception.pending is only
501 			 * true if an event injection was blocked by
502 			 * nested_run_pending.  In that case, however,
503 			 * vcpu_enter_guest requests an immediate exit,
504 			 * and the guest shouldn't proceed far enough to
505 			 * need reinjection.
506 			 */
507 			WARN_ON_ONCE(vcpu->arch.exception.pending);
508 			vcpu->arch.exception.injected = true;
509 			if (WARN_ON_ONCE(has_payload)) {
510 				/*
511 				 * A reinjected event has already
512 				 * delivered its payload.
513 				 */
514 				has_payload = false;
515 				payload = 0;
516 			}
517 		} else {
518 			vcpu->arch.exception.pending = true;
519 			vcpu->arch.exception.injected = false;
520 		}
521 		vcpu->arch.exception.has_error_code = has_error;
522 		vcpu->arch.exception.nr = nr;
523 		vcpu->arch.exception.error_code = error_code;
524 		vcpu->arch.exception.has_payload = has_payload;
525 		vcpu->arch.exception.payload = payload;
526 		if (!is_guest_mode(vcpu))
527 			kvm_deliver_exception_payload(vcpu);
528 		return;
529 	}
530 
531 	/* to check exception */
532 	prev_nr = vcpu->arch.exception.nr;
533 	if (prev_nr == DF_VECTOR) {
534 		/* triple fault -> shutdown */
535 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
536 		return;
537 	}
538 	class1 = exception_class(prev_nr);
539 	class2 = exception_class(nr);
540 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
541 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
542 		/*
543 		 * Generate double fault per SDM Table 5-5.  Set
544 		 * exception.pending = true so that the double fault
545 		 * can trigger a nested vmexit.
546 		 */
547 		vcpu->arch.exception.pending = true;
548 		vcpu->arch.exception.injected = false;
549 		vcpu->arch.exception.has_error_code = true;
550 		vcpu->arch.exception.nr = DF_VECTOR;
551 		vcpu->arch.exception.error_code = 0;
552 		vcpu->arch.exception.has_payload = false;
553 		vcpu->arch.exception.payload = 0;
554 	} else
555 		/* replace previous exception with a new one in a hope
556 		   that instruction re-execution will regenerate lost
557 		   exception */
558 		goto queue;
559 }
560 
561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
562 {
563 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
564 }
565 EXPORT_SYMBOL_GPL(kvm_queue_exception);
566 
567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
568 {
569 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
570 }
571 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
572 
573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
574 			   unsigned long payload)
575 {
576 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
577 }
578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
579 
580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
581 				    u32 error_code, unsigned long payload)
582 {
583 	kvm_multiple_exception(vcpu, nr, true, error_code,
584 			       true, payload, false);
585 }
586 
587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
588 {
589 	if (err)
590 		kvm_inject_gp(vcpu, 0);
591 	else
592 		return kvm_skip_emulated_instruction(vcpu);
593 
594 	return 1;
595 }
596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
597 
598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
599 {
600 	++vcpu->stat.pf_guest;
601 	vcpu->arch.exception.nested_apf =
602 		is_guest_mode(vcpu) && fault->async_page_fault;
603 	if (vcpu->arch.exception.nested_apf) {
604 		vcpu->arch.apf.nested_apf_token = fault->address;
605 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
606 	} else {
607 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
608 					fault->address);
609 	}
610 }
611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
612 
613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
614 				    struct x86_exception *fault)
615 {
616 	struct kvm_mmu *fault_mmu;
617 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
618 
619 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
620 					       vcpu->arch.walk_mmu;
621 
622 	/*
623 	 * Invalidate the TLB entry for the faulting address, if it exists,
624 	 * else the access will fault indefinitely (and to emulate hardware).
625 	 */
626 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
627 	    !(fault->error_code & PFERR_RSVD_MASK))
628 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
629 				       fault_mmu->root_hpa);
630 
631 	fault_mmu->inject_page_fault(vcpu, fault);
632 	return fault->nested_page_fault;
633 }
634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
635 
636 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
637 {
638 	atomic_inc(&vcpu->arch.nmi_queued);
639 	kvm_make_request(KVM_REQ_NMI, vcpu);
640 }
641 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
642 
643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
644 {
645 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
646 }
647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
648 
649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
650 {
651 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
652 }
653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
654 
655 /*
656  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
657  * a #GP and return false.
658  */
659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
660 {
661 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
662 		return true;
663 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
664 	return false;
665 }
666 EXPORT_SYMBOL_GPL(kvm_require_cpl);
667 
668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
669 {
670 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
671 		return true;
672 
673 	kvm_queue_exception(vcpu, UD_VECTOR);
674 	return false;
675 }
676 EXPORT_SYMBOL_GPL(kvm_require_dr);
677 
678 /*
679  * This function will be used to read from the physical memory of the currently
680  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
681  * can read from guest physical or from the guest's guest physical memory.
682  */
683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
684 			    gfn_t ngfn, void *data, int offset, int len,
685 			    u32 access)
686 {
687 	struct x86_exception exception;
688 	gfn_t real_gfn;
689 	gpa_t ngpa;
690 
691 	ngpa     = gfn_to_gpa(ngfn);
692 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
693 	if (real_gfn == UNMAPPED_GVA)
694 		return -EFAULT;
695 
696 	real_gfn = gpa_to_gfn(real_gfn);
697 
698 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
699 }
700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
701 
702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
703 			       void *data, int offset, int len, u32 access)
704 {
705 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
706 				       data, offset, len, access);
707 }
708 
709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
710 {
711 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
712 	       rsvd_bits(1, 2);
713 }
714 
715 /*
716  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
717  */
718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
719 {
720 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
721 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
722 	int i;
723 	int ret;
724 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
725 
726 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
727 				      offset * sizeof(u64), sizeof(pdpte),
728 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
729 	if (ret < 0) {
730 		ret = 0;
731 		goto out;
732 	}
733 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
734 		if ((pdpte[i] & PT_PRESENT_MASK) &&
735 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
736 			ret = 0;
737 			goto out;
738 		}
739 	}
740 	ret = 1;
741 
742 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
743 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
744 
745 out:
746 
747 	return ret;
748 }
749 EXPORT_SYMBOL_GPL(load_pdptrs);
750 
751 bool pdptrs_changed(struct kvm_vcpu *vcpu)
752 {
753 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
754 	int offset;
755 	gfn_t gfn;
756 	int r;
757 
758 	if (!is_pae_paging(vcpu))
759 		return false;
760 
761 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
762 		return true;
763 
764 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
765 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
766 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
767 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
768 	if (r < 0)
769 		return true;
770 
771 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
772 }
773 EXPORT_SYMBOL_GPL(pdptrs_changed);
774 
775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
778 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
779 
780 	cr0 |= X86_CR0_ET;
781 
782 #ifdef CONFIG_X86_64
783 	if (cr0 & 0xffffffff00000000UL)
784 		return 1;
785 #endif
786 
787 	cr0 &= ~CR0_RESERVED_BITS;
788 
789 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
790 		return 1;
791 
792 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
793 		return 1;
794 
795 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
796 #ifdef CONFIG_X86_64
797 		if ((vcpu->arch.efer & EFER_LME)) {
798 			int cs_db, cs_l;
799 
800 			if (!is_pae(vcpu))
801 				return 1;
802 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
803 			if (cs_l)
804 				return 1;
805 		} else
806 #endif
807 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 						 kvm_read_cr3(vcpu)))
809 			return 1;
810 	}
811 
812 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
813 		return 1;
814 
815 	kvm_x86_ops.set_cr0(vcpu, cr0);
816 
817 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
818 		kvm_clear_async_pf_completion_queue(vcpu);
819 		kvm_async_pf_hash_reset(vcpu);
820 	}
821 
822 	if ((cr0 ^ old_cr0) & update_bits)
823 		kvm_mmu_reset_context(vcpu);
824 
825 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
826 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
827 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
828 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr0);
833 
834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
835 {
836 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
837 }
838 EXPORT_SYMBOL_GPL(kvm_lmsw);
839 
840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
841 {
842 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
843 
844 		if (vcpu->arch.xcr0 != host_xcr0)
845 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
846 
847 		if (vcpu->arch.xsaves_enabled &&
848 		    vcpu->arch.ia32_xss != host_xss)
849 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
850 	}
851 
852 	if (static_cpu_has(X86_FEATURE_PKU) &&
853 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
854 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
855 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
856 		__write_pkru(vcpu->arch.pkru);
857 }
858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
859 
860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
861 {
862 	if (static_cpu_has(X86_FEATURE_PKU) &&
863 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
864 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
865 		vcpu->arch.pkru = rdpkru();
866 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
867 			__write_pkru(vcpu->arch.host_pkru);
868 	}
869 
870 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871 
872 		if (vcpu->arch.xcr0 != host_xcr0)
873 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
874 
875 		if (vcpu->arch.xsaves_enabled &&
876 		    vcpu->arch.ia32_xss != host_xss)
877 			wrmsrl(MSR_IA32_XSS, host_xss);
878 	}
879 
880 }
881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
882 
883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
884 {
885 	u64 xcr0 = xcr;
886 	u64 old_xcr0 = vcpu->arch.xcr0;
887 	u64 valid_bits;
888 
889 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
890 	if (index != XCR_XFEATURE_ENABLED_MASK)
891 		return 1;
892 	if (!(xcr0 & XFEATURE_MASK_FP))
893 		return 1;
894 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
895 		return 1;
896 
897 	/*
898 	 * Do not allow the guest to set bits that we do not support
899 	 * saving.  However, xcr0 bit 0 is always set, even if the
900 	 * emulated CPU does not support XSAVE (see fx_init).
901 	 */
902 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
903 	if (xcr0 & ~valid_bits)
904 		return 1;
905 
906 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
907 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
908 		return 1;
909 
910 	if (xcr0 & XFEATURE_MASK_AVX512) {
911 		if (!(xcr0 & XFEATURE_MASK_YMM))
912 			return 1;
913 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
914 			return 1;
915 	}
916 	vcpu->arch.xcr0 = xcr0;
917 
918 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
919 		kvm_update_cpuid(vcpu);
920 	return 0;
921 }
922 
923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
924 {
925 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
926 	    __kvm_set_xcr(vcpu, index, xcr)) {
927 		kvm_inject_gp(vcpu, 0);
928 		return 1;
929 	}
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(kvm_set_xcr);
933 
934 #define __cr4_reserved_bits(__cpu_has, __c)		\
935 ({							\
936 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
937 							\
938 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
939 		__reserved_bits |= X86_CR4_OSXSAVE;	\
940 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
941 		__reserved_bits |= X86_CR4_SMEP;	\
942 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
943 		__reserved_bits |= X86_CR4_SMAP;	\
944 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
945 		__reserved_bits |= X86_CR4_FSGSBASE;	\
946 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
947 		__reserved_bits |= X86_CR4_PKE;		\
948 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
949 		__reserved_bits |= X86_CR4_LA57;	\
950 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
951 		__reserved_bits |= X86_CR4_UMIP;	\
952 	__reserved_bits;				\
953 })
954 
955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
956 {
957 	if (cr4 & cr4_reserved_bits)
958 		return -EINVAL;
959 
960 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
961 		return -EINVAL;
962 
963 	return 0;
964 }
965 
966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
967 {
968 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
969 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
970 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
971 
972 	if (kvm_valid_cr4(vcpu, cr4))
973 		return 1;
974 
975 	if (is_long_mode(vcpu)) {
976 		if (!(cr4 & X86_CR4_PAE))
977 			return 1;
978 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
979 			return 1;
980 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
981 		   && ((cr4 ^ old_cr4) & pdptr_bits)
982 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
983 				   kvm_read_cr3(vcpu)))
984 		return 1;
985 
986 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
987 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
988 			return 1;
989 
990 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
991 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
992 			return 1;
993 	}
994 
995 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
996 		return 1;
997 
998 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
999 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1000 		kvm_mmu_reset_context(vcpu);
1001 
1002 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1003 		kvm_update_cpuid(vcpu);
1004 
1005 	return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1008 
1009 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1010 {
1011 	bool skip_tlb_flush = false;
1012 #ifdef CONFIG_X86_64
1013 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1014 
1015 	if (pcid_enabled) {
1016 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1017 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1018 	}
1019 #endif
1020 
1021 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1022 		if (!skip_tlb_flush) {
1023 			kvm_mmu_sync_roots(vcpu);
1024 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1025 		}
1026 		return 0;
1027 	}
1028 
1029 	if (is_long_mode(vcpu) &&
1030 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1031 		return 1;
1032 	else if (is_pae_paging(vcpu) &&
1033 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1034 		return 1;
1035 
1036 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1037 	vcpu->arch.cr3 = cr3;
1038 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1039 
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1043 
1044 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1045 {
1046 	if (cr8 & CR8_RESERVED_BITS)
1047 		return 1;
1048 	if (lapic_in_kernel(vcpu))
1049 		kvm_lapic_set_tpr(vcpu, cr8);
1050 	else
1051 		vcpu->arch.cr8 = cr8;
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1055 
1056 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1057 {
1058 	if (lapic_in_kernel(vcpu))
1059 		return kvm_lapic_get_cr8(vcpu);
1060 	else
1061 		return vcpu->arch.cr8;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1064 
1065 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1066 {
1067 	int i;
1068 
1069 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1070 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1071 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1072 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1073 	}
1074 }
1075 
1076 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1077 {
1078 	unsigned long dr7;
1079 
1080 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1081 		dr7 = vcpu->arch.guest_debug_dr7;
1082 	else
1083 		dr7 = vcpu->arch.dr7;
1084 	kvm_x86_ops.set_dr7(vcpu, dr7);
1085 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1086 	if (dr7 & DR7_BP_EN_MASK)
1087 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1090 
1091 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1092 {
1093 	u64 fixed = DR6_FIXED_1;
1094 
1095 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1096 		fixed |= DR6_RTM;
1097 	return fixed;
1098 }
1099 
1100 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1101 {
1102 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1103 
1104 	switch (dr) {
1105 	case 0 ... 3:
1106 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1107 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1108 			vcpu->arch.eff_db[dr] = val;
1109 		break;
1110 	case 4:
1111 		/* fall through */
1112 	case 6:
1113 		if (val & 0xffffffff00000000ULL)
1114 			return -1; /* #GP */
1115 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1116 		break;
1117 	case 5:
1118 		/* fall through */
1119 	default: /* 7 */
1120 		if (!kvm_dr7_valid(val))
1121 			return -1; /* #GP */
1122 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1123 		kvm_update_dr7(vcpu);
1124 		break;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1131 {
1132 	if (__kvm_set_dr(vcpu, dr, val)) {
1133 		kvm_inject_gp(vcpu, 0);
1134 		return 1;
1135 	}
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_set_dr);
1139 
1140 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1141 {
1142 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1143 
1144 	switch (dr) {
1145 	case 0 ... 3:
1146 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1147 		break;
1148 	case 4:
1149 		/* fall through */
1150 	case 6:
1151 		*val = vcpu->arch.dr6;
1152 		break;
1153 	case 5:
1154 		/* fall through */
1155 	default: /* 7 */
1156 		*val = vcpu->arch.dr7;
1157 		break;
1158 	}
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_get_dr);
1162 
1163 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1164 {
1165 	u32 ecx = kvm_rcx_read(vcpu);
1166 	u64 data;
1167 	int err;
1168 
1169 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1170 	if (err)
1171 		return err;
1172 	kvm_rax_write(vcpu, (u32)data);
1173 	kvm_rdx_write(vcpu, data >> 32);
1174 	return err;
1175 }
1176 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1177 
1178 /*
1179  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1180  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1181  *
1182  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1183  * extract the supported MSRs from the related const lists.
1184  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1185  * capabilities of the host cpu. This capabilities test skips MSRs that are
1186  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1187  * may depend on host virtualization features rather than host cpu features.
1188  */
1189 
1190 static const u32 msrs_to_save_all[] = {
1191 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1192 	MSR_STAR,
1193 #ifdef CONFIG_X86_64
1194 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1195 #endif
1196 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1197 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1198 	MSR_IA32_SPEC_CTRL,
1199 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1200 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1201 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1202 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1203 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1204 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1205 	MSR_IA32_UMWAIT_CONTROL,
1206 
1207 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1208 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1209 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1210 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1211 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1212 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1213 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1214 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1215 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1216 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1217 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1218 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1219 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1220 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1221 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1222 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1223 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1224 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1225 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1226 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1227 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1228 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1229 };
1230 
1231 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1232 static unsigned num_msrs_to_save;
1233 
1234 static const u32 emulated_msrs_all[] = {
1235 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1236 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1237 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1238 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1239 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1240 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1241 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1242 	HV_X64_MSR_RESET,
1243 	HV_X64_MSR_VP_INDEX,
1244 	HV_X64_MSR_VP_RUNTIME,
1245 	HV_X64_MSR_SCONTROL,
1246 	HV_X64_MSR_STIMER0_CONFIG,
1247 	HV_X64_MSR_VP_ASSIST_PAGE,
1248 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1249 	HV_X64_MSR_TSC_EMULATION_STATUS,
1250 	HV_X64_MSR_SYNDBG_OPTIONS,
1251 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1252 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1253 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1254 
1255 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1256 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1257 
1258 	MSR_IA32_TSC_ADJUST,
1259 	MSR_IA32_TSCDEADLINE,
1260 	MSR_IA32_ARCH_CAPABILITIES,
1261 	MSR_IA32_PERF_CAPABILITIES,
1262 	MSR_IA32_MISC_ENABLE,
1263 	MSR_IA32_MCG_STATUS,
1264 	MSR_IA32_MCG_CTL,
1265 	MSR_IA32_MCG_EXT_CTL,
1266 	MSR_IA32_SMBASE,
1267 	MSR_SMI_COUNT,
1268 	MSR_PLATFORM_INFO,
1269 	MSR_MISC_FEATURES_ENABLES,
1270 	MSR_AMD64_VIRT_SPEC_CTRL,
1271 	MSR_IA32_POWER_CTL,
1272 	MSR_IA32_UCODE_REV,
1273 
1274 	/*
1275 	 * The following list leaves out MSRs whose values are determined
1276 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1277 	 * We always support the "true" VMX control MSRs, even if the host
1278 	 * processor does not, so I am putting these registers here rather
1279 	 * than in msrs_to_save_all.
1280 	 */
1281 	MSR_IA32_VMX_BASIC,
1282 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1283 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1284 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1285 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1286 	MSR_IA32_VMX_MISC,
1287 	MSR_IA32_VMX_CR0_FIXED0,
1288 	MSR_IA32_VMX_CR4_FIXED0,
1289 	MSR_IA32_VMX_VMCS_ENUM,
1290 	MSR_IA32_VMX_PROCBASED_CTLS2,
1291 	MSR_IA32_VMX_EPT_VPID_CAP,
1292 	MSR_IA32_VMX_VMFUNC,
1293 
1294 	MSR_K7_HWCR,
1295 	MSR_KVM_POLL_CONTROL,
1296 };
1297 
1298 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1299 static unsigned num_emulated_msrs;
1300 
1301 /*
1302  * List of msr numbers which are used to expose MSR-based features that
1303  * can be used by a hypervisor to validate requested CPU features.
1304  */
1305 static const u32 msr_based_features_all[] = {
1306 	MSR_IA32_VMX_BASIC,
1307 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1308 	MSR_IA32_VMX_PINBASED_CTLS,
1309 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1310 	MSR_IA32_VMX_PROCBASED_CTLS,
1311 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1312 	MSR_IA32_VMX_EXIT_CTLS,
1313 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1314 	MSR_IA32_VMX_ENTRY_CTLS,
1315 	MSR_IA32_VMX_MISC,
1316 	MSR_IA32_VMX_CR0_FIXED0,
1317 	MSR_IA32_VMX_CR0_FIXED1,
1318 	MSR_IA32_VMX_CR4_FIXED0,
1319 	MSR_IA32_VMX_CR4_FIXED1,
1320 	MSR_IA32_VMX_VMCS_ENUM,
1321 	MSR_IA32_VMX_PROCBASED_CTLS2,
1322 	MSR_IA32_VMX_EPT_VPID_CAP,
1323 	MSR_IA32_VMX_VMFUNC,
1324 
1325 	MSR_F10H_DECFG,
1326 	MSR_IA32_UCODE_REV,
1327 	MSR_IA32_ARCH_CAPABILITIES,
1328 	MSR_IA32_PERF_CAPABILITIES,
1329 };
1330 
1331 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1332 static unsigned int num_msr_based_features;
1333 
1334 static u64 kvm_get_arch_capabilities(void)
1335 {
1336 	u64 data = 0;
1337 
1338 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1339 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1340 
1341 	/*
1342 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1343 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1344 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1345 	 * L1 guests, so it need not worry about its own (L2) guests.
1346 	 */
1347 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1348 
1349 	/*
1350 	 * If we're doing cache flushes (either "always" or "cond")
1351 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1352 	 * If an outer hypervisor is doing the cache flush for us
1353 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1354 	 * capability to the guest too, and if EPT is disabled we're not
1355 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1356 	 * require a nested hypervisor to do a flush of its own.
1357 	 */
1358 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1359 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1360 
1361 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1362 		data |= ARCH_CAP_RDCL_NO;
1363 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1364 		data |= ARCH_CAP_SSB_NO;
1365 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1366 		data |= ARCH_CAP_MDS_NO;
1367 
1368 	/*
1369 	 * On TAA affected systems:
1370 	 *      - nothing to do if TSX is disabled on the host.
1371 	 *      - we emulate TSX_CTRL if present on the host.
1372 	 *	  This lets the guest use VERW to clear CPU buffers.
1373 	 */
1374 	if (!boot_cpu_has(X86_FEATURE_RTM))
1375 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1376 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1377 		data |= ARCH_CAP_TAA_NO;
1378 
1379 	return data;
1380 }
1381 
1382 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1383 {
1384 	switch (msr->index) {
1385 	case MSR_IA32_ARCH_CAPABILITIES:
1386 		msr->data = kvm_get_arch_capabilities();
1387 		break;
1388 	case MSR_IA32_UCODE_REV:
1389 		rdmsrl_safe(msr->index, &msr->data);
1390 		break;
1391 	default:
1392 		if (kvm_x86_ops.get_msr_feature(msr))
1393 			return 1;
1394 	}
1395 	return 0;
1396 }
1397 
1398 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1399 {
1400 	struct kvm_msr_entry msr;
1401 	int r;
1402 
1403 	msr.index = index;
1404 	r = kvm_get_msr_feature(&msr);
1405 	if (r)
1406 		return r;
1407 
1408 	*data = msr.data;
1409 
1410 	return 0;
1411 }
1412 
1413 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1414 {
1415 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1416 		return false;
1417 
1418 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1419 		return false;
1420 
1421 	if (efer & (EFER_LME | EFER_LMA) &&
1422 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1423 		return false;
1424 
1425 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1426 		return false;
1427 
1428 	return true;
1429 
1430 }
1431 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1432 {
1433 	if (efer & efer_reserved_bits)
1434 		return false;
1435 
1436 	return __kvm_valid_efer(vcpu, efer);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1439 
1440 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1441 {
1442 	u64 old_efer = vcpu->arch.efer;
1443 	u64 efer = msr_info->data;
1444 
1445 	if (efer & efer_reserved_bits)
1446 		return 1;
1447 
1448 	if (!msr_info->host_initiated) {
1449 		if (!__kvm_valid_efer(vcpu, efer))
1450 			return 1;
1451 
1452 		if (is_paging(vcpu) &&
1453 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1454 			return 1;
1455 	}
1456 
1457 	efer &= ~EFER_LMA;
1458 	efer |= vcpu->arch.efer & EFER_LMA;
1459 
1460 	kvm_x86_ops.set_efer(vcpu, efer);
1461 
1462 	/* Update reserved bits */
1463 	if ((efer ^ old_efer) & EFER_NX)
1464 		kvm_mmu_reset_context(vcpu);
1465 
1466 	return 0;
1467 }
1468 
1469 void kvm_enable_efer_bits(u64 mask)
1470 {
1471        efer_reserved_bits &= ~mask;
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1474 
1475 /*
1476  * Write @data into the MSR specified by @index.  Select MSR specific fault
1477  * checks are bypassed if @host_initiated is %true.
1478  * Returns 0 on success, non-0 otherwise.
1479  * Assumes vcpu_load() was already called.
1480  */
1481 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1482 			 bool host_initiated)
1483 {
1484 	struct msr_data msr;
1485 
1486 	switch (index) {
1487 	case MSR_FS_BASE:
1488 	case MSR_GS_BASE:
1489 	case MSR_KERNEL_GS_BASE:
1490 	case MSR_CSTAR:
1491 	case MSR_LSTAR:
1492 		if (is_noncanonical_address(data, vcpu))
1493 			return 1;
1494 		break;
1495 	case MSR_IA32_SYSENTER_EIP:
1496 	case MSR_IA32_SYSENTER_ESP:
1497 		/*
1498 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1499 		 * non-canonical address is written on Intel but not on
1500 		 * AMD (which ignores the top 32-bits, because it does
1501 		 * not implement 64-bit SYSENTER).
1502 		 *
1503 		 * 64-bit code should hence be able to write a non-canonical
1504 		 * value on AMD.  Making the address canonical ensures that
1505 		 * vmentry does not fail on Intel after writing a non-canonical
1506 		 * value, and that something deterministic happens if the guest
1507 		 * invokes 64-bit SYSENTER.
1508 		 */
1509 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1510 	}
1511 
1512 	msr.data = data;
1513 	msr.index = index;
1514 	msr.host_initiated = host_initiated;
1515 
1516 	return kvm_x86_ops.set_msr(vcpu, &msr);
1517 }
1518 
1519 /*
1520  * Read the MSR specified by @index into @data.  Select MSR specific fault
1521  * checks are bypassed if @host_initiated is %true.
1522  * Returns 0 on success, non-0 otherwise.
1523  * Assumes vcpu_load() was already called.
1524  */
1525 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1526 		  bool host_initiated)
1527 {
1528 	struct msr_data msr;
1529 	int ret;
1530 
1531 	msr.index = index;
1532 	msr.host_initiated = host_initiated;
1533 
1534 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1535 	if (!ret)
1536 		*data = msr.data;
1537 	return ret;
1538 }
1539 
1540 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1541 {
1542 	return __kvm_get_msr(vcpu, index, data, false);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_get_msr);
1545 
1546 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1547 {
1548 	return __kvm_set_msr(vcpu, index, data, false);
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_set_msr);
1551 
1552 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1553 {
1554 	u32 ecx = kvm_rcx_read(vcpu);
1555 	u64 data;
1556 
1557 	if (kvm_get_msr(vcpu, ecx, &data)) {
1558 		trace_kvm_msr_read_ex(ecx);
1559 		kvm_inject_gp(vcpu, 0);
1560 		return 1;
1561 	}
1562 
1563 	trace_kvm_msr_read(ecx, data);
1564 
1565 	kvm_rax_write(vcpu, data & -1u);
1566 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1567 	return kvm_skip_emulated_instruction(vcpu);
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1570 
1571 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1572 {
1573 	u32 ecx = kvm_rcx_read(vcpu);
1574 	u64 data = kvm_read_edx_eax(vcpu);
1575 
1576 	if (kvm_set_msr(vcpu, ecx, data)) {
1577 		trace_kvm_msr_write_ex(ecx, data);
1578 		kvm_inject_gp(vcpu, 0);
1579 		return 1;
1580 	}
1581 
1582 	trace_kvm_msr_write(ecx, data);
1583 	return kvm_skip_emulated_instruction(vcpu);
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1586 
1587 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1588 {
1589 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1590 		need_resched() || signal_pending(current);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1593 
1594 /*
1595  * The fast path for frequent and performance sensitive wrmsr emulation,
1596  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1597  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1598  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1599  * other cases which must be called after interrupts are enabled on the host.
1600  */
1601 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1602 {
1603 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1604 		return 1;
1605 
1606 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1607 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1608 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1609 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1610 
1611 		data &= ~(1 << 12);
1612 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1613 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1614 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1615 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1616 		return 0;
1617 	}
1618 
1619 	return 1;
1620 }
1621 
1622 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1623 {
1624 	if (!kvm_can_use_hv_timer(vcpu))
1625 		return 1;
1626 
1627 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1628 	return 0;
1629 }
1630 
1631 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1632 {
1633 	u32 msr = kvm_rcx_read(vcpu);
1634 	u64 data;
1635 	fastpath_t ret = EXIT_FASTPATH_NONE;
1636 
1637 	switch (msr) {
1638 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1639 		data = kvm_read_edx_eax(vcpu);
1640 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1641 			kvm_skip_emulated_instruction(vcpu);
1642 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1643 		}
1644 		break;
1645 	case MSR_IA32_TSCDEADLINE:
1646 		data = kvm_read_edx_eax(vcpu);
1647 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1648 			kvm_skip_emulated_instruction(vcpu);
1649 			ret = EXIT_FASTPATH_REENTER_GUEST;
1650 		}
1651 		break;
1652 	default:
1653 		break;
1654 	}
1655 
1656 	if (ret != EXIT_FASTPATH_NONE)
1657 		trace_kvm_msr_write(msr, data);
1658 
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1662 
1663 /*
1664  * Adapt set_msr() to msr_io()'s calling convention
1665  */
1666 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1667 {
1668 	return __kvm_get_msr(vcpu, index, data, true);
1669 }
1670 
1671 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1672 {
1673 	return __kvm_set_msr(vcpu, index, *data, true);
1674 }
1675 
1676 #ifdef CONFIG_X86_64
1677 struct pvclock_clock {
1678 	int vclock_mode;
1679 	u64 cycle_last;
1680 	u64 mask;
1681 	u32 mult;
1682 	u32 shift;
1683 	u64 base_cycles;
1684 	u64 offset;
1685 };
1686 
1687 struct pvclock_gtod_data {
1688 	seqcount_t	seq;
1689 
1690 	struct pvclock_clock clock; /* extract of a clocksource struct */
1691 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1692 
1693 	ktime_t		offs_boot;
1694 	u64		wall_time_sec;
1695 };
1696 
1697 static struct pvclock_gtod_data pvclock_gtod_data;
1698 
1699 static void update_pvclock_gtod(struct timekeeper *tk)
1700 {
1701 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1702 
1703 	write_seqcount_begin(&vdata->seq);
1704 
1705 	/* copy pvclock gtod data */
1706 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1707 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1708 	vdata->clock.mask		= tk->tkr_mono.mask;
1709 	vdata->clock.mult		= tk->tkr_mono.mult;
1710 	vdata->clock.shift		= tk->tkr_mono.shift;
1711 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1712 	vdata->clock.offset		= tk->tkr_mono.base;
1713 
1714 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1715 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1716 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1717 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1718 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1719 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1720 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1721 
1722 	vdata->wall_time_sec            = tk->xtime_sec;
1723 
1724 	vdata->offs_boot		= tk->offs_boot;
1725 
1726 	write_seqcount_end(&vdata->seq);
1727 }
1728 
1729 static s64 get_kvmclock_base_ns(void)
1730 {
1731 	/* Count up from boot time, but with the frequency of the raw clock.  */
1732 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1733 }
1734 #else
1735 static s64 get_kvmclock_base_ns(void)
1736 {
1737 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1738 	return ktime_get_boottime_ns();
1739 }
1740 #endif
1741 
1742 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1743 {
1744 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1745 	kvm_vcpu_kick(vcpu);
1746 }
1747 
1748 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1749 {
1750 	int version;
1751 	int r;
1752 	struct pvclock_wall_clock wc;
1753 	u64 wall_nsec;
1754 
1755 	if (!wall_clock)
1756 		return;
1757 
1758 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1759 	if (r)
1760 		return;
1761 
1762 	if (version & 1)
1763 		++version;  /* first time write, random junk */
1764 
1765 	++version;
1766 
1767 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1768 		return;
1769 
1770 	/*
1771 	 * The guest calculates current wall clock time by adding
1772 	 * system time (updated by kvm_guest_time_update below) to the
1773 	 * wall clock specified here.  We do the reverse here.
1774 	 */
1775 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1776 
1777 	wc.nsec = do_div(wall_nsec, 1000000000);
1778 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1779 	wc.version = version;
1780 
1781 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1782 
1783 	version++;
1784 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1785 }
1786 
1787 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1788 {
1789 	do_shl32_div32(dividend, divisor);
1790 	return dividend;
1791 }
1792 
1793 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1794 			       s8 *pshift, u32 *pmultiplier)
1795 {
1796 	uint64_t scaled64;
1797 	int32_t  shift = 0;
1798 	uint64_t tps64;
1799 	uint32_t tps32;
1800 
1801 	tps64 = base_hz;
1802 	scaled64 = scaled_hz;
1803 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1804 		tps64 >>= 1;
1805 		shift--;
1806 	}
1807 
1808 	tps32 = (uint32_t)tps64;
1809 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1810 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1811 			scaled64 >>= 1;
1812 		else
1813 			tps32 <<= 1;
1814 		shift++;
1815 	}
1816 
1817 	*pshift = shift;
1818 	*pmultiplier = div_frac(scaled64, tps32);
1819 }
1820 
1821 #ifdef CONFIG_X86_64
1822 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1823 #endif
1824 
1825 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1826 static unsigned long max_tsc_khz;
1827 
1828 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1829 {
1830 	u64 v = (u64)khz * (1000000 + ppm);
1831 	do_div(v, 1000000);
1832 	return v;
1833 }
1834 
1835 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1836 {
1837 	u64 ratio;
1838 
1839 	/* Guest TSC same frequency as host TSC? */
1840 	if (!scale) {
1841 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1842 		return 0;
1843 	}
1844 
1845 	/* TSC scaling supported? */
1846 	if (!kvm_has_tsc_control) {
1847 		if (user_tsc_khz > tsc_khz) {
1848 			vcpu->arch.tsc_catchup = 1;
1849 			vcpu->arch.tsc_always_catchup = 1;
1850 			return 0;
1851 		} else {
1852 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1853 			return -1;
1854 		}
1855 	}
1856 
1857 	/* TSC scaling required  - calculate ratio */
1858 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1859 				user_tsc_khz, tsc_khz);
1860 
1861 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1862 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1863 			            user_tsc_khz);
1864 		return -1;
1865 	}
1866 
1867 	vcpu->arch.tsc_scaling_ratio = ratio;
1868 	return 0;
1869 }
1870 
1871 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1872 {
1873 	u32 thresh_lo, thresh_hi;
1874 	int use_scaling = 0;
1875 
1876 	/* tsc_khz can be zero if TSC calibration fails */
1877 	if (user_tsc_khz == 0) {
1878 		/* set tsc_scaling_ratio to a safe value */
1879 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1880 		return -1;
1881 	}
1882 
1883 	/* Compute a scale to convert nanoseconds in TSC cycles */
1884 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1885 			   &vcpu->arch.virtual_tsc_shift,
1886 			   &vcpu->arch.virtual_tsc_mult);
1887 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1888 
1889 	/*
1890 	 * Compute the variation in TSC rate which is acceptable
1891 	 * within the range of tolerance and decide if the
1892 	 * rate being applied is within that bounds of the hardware
1893 	 * rate.  If so, no scaling or compensation need be done.
1894 	 */
1895 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1896 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1897 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1898 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1899 		use_scaling = 1;
1900 	}
1901 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1902 }
1903 
1904 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1905 {
1906 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1907 				      vcpu->arch.virtual_tsc_mult,
1908 				      vcpu->arch.virtual_tsc_shift);
1909 	tsc += vcpu->arch.this_tsc_write;
1910 	return tsc;
1911 }
1912 
1913 static inline int gtod_is_based_on_tsc(int mode)
1914 {
1915 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1916 }
1917 
1918 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1919 {
1920 #ifdef CONFIG_X86_64
1921 	bool vcpus_matched;
1922 	struct kvm_arch *ka = &vcpu->kvm->arch;
1923 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1924 
1925 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1926 			 atomic_read(&vcpu->kvm->online_vcpus));
1927 
1928 	/*
1929 	 * Once the masterclock is enabled, always perform request in
1930 	 * order to update it.
1931 	 *
1932 	 * In order to enable masterclock, the host clocksource must be TSC
1933 	 * and the vcpus need to have matched TSCs.  When that happens,
1934 	 * perform request to enable masterclock.
1935 	 */
1936 	if (ka->use_master_clock ||
1937 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1938 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1939 
1940 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1941 			    atomic_read(&vcpu->kvm->online_vcpus),
1942 		            ka->use_master_clock, gtod->clock.vclock_mode);
1943 #endif
1944 }
1945 
1946 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1947 {
1948 	u64 curr_offset = vcpu->arch.l1_tsc_offset;
1949 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1950 }
1951 
1952 /*
1953  * Multiply tsc by a fixed point number represented by ratio.
1954  *
1955  * The most significant 64-N bits (mult) of ratio represent the
1956  * integral part of the fixed point number; the remaining N bits
1957  * (frac) represent the fractional part, ie. ratio represents a fixed
1958  * point number (mult + frac * 2^(-N)).
1959  *
1960  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1961  */
1962 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1963 {
1964 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1965 }
1966 
1967 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1968 {
1969 	u64 _tsc = tsc;
1970 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1971 
1972 	if (ratio != kvm_default_tsc_scaling_ratio)
1973 		_tsc = __scale_tsc(ratio, tsc);
1974 
1975 	return _tsc;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1978 
1979 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1980 {
1981 	u64 tsc;
1982 
1983 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1984 
1985 	return target_tsc - tsc;
1986 }
1987 
1988 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1989 {
1990 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1993 
1994 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1995 {
1996 	vcpu->arch.l1_tsc_offset = offset;
1997 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1998 }
1999 
2000 static inline bool kvm_check_tsc_unstable(void)
2001 {
2002 #ifdef CONFIG_X86_64
2003 	/*
2004 	 * TSC is marked unstable when we're running on Hyper-V,
2005 	 * 'TSC page' clocksource is good.
2006 	 */
2007 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2008 		return false;
2009 #endif
2010 	return check_tsc_unstable();
2011 }
2012 
2013 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2014 {
2015 	struct kvm *kvm = vcpu->kvm;
2016 	u64 offset, ns, elapsed;
2017 	unsigned long flags;
2018 	bool matched;
2019 	bool already_matched;
2020 	u64 data = msr->data;
2021 	bool synchronizing = false;
2022 
2023 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2024 	offset = kvm_compute_tsc_offset(vcpu, data);
2025 	ns = get_kvmclock_base_ns();
2026 	elapsed = ns - kvm->arch.last_tsc_nsec;
2027 
2028 	if (vcpu->arch.virtual_tsc_khz) {
2029 		if (data == 0 && msr->host_initiated) {
2030 			/*
2031 			 * detection of vcpu initialization -- need to sync
2032 			 * with other vCPUs. This particularly helps to keep
2033 			 * kvm_clock stable after CPU hotplug
2034 			 */
2035 			synchronizing = true;
2036 		} else {
2037 			u64 tsc_exp = kvm->arch.last_tsc_write +
2038 						nsec_to_cycles(vcpu, elapsed);
2039 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2040 			/*
2041 			 * Special case: TSC write with a small delta (1 second)
2042 			 * of virtual cycle time against real time is
2043 			 * interpreted as an attempt to synchronize the CPU.
2044 			 */
2045 			synchronizing = data < tsc_exp + tsc_hz &&
2046 					data + tsc_hz > tsc_exp;
2047 		}
2048 	}
2049 
2050 	/*
2051 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2052 	 * TSC, we add elapsed time in this computation.  We could let the
2053 	 * compensation code attempt to catch up if we fall behind, but
2054 	 * it's better to try to match offsets from the beginning.
2055          */
2056 	if (synchronizing &&
2057 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2058 		if (!kvm_check_tsc_unstable()) {
2059 			offset = kvm->arch.cur_tsc_offset;
2060 		} else {
2061 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2062 			data += delta;
2063 			offset = kvm_compute_tsc_offset(vcpu, data);
2064 		}
2065 		matched = true;
2066 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2067 	} else {
2068 		/*
2069 		 * We split periods of matched TSC writes into generations.
2070 		 * For each generation, we track the original measured
2071 		 * nanosecond time, offset, and write, so if TSCs are in
2072 		 * sync, we can match exact offset, and if not, we can match
2073 		 * exact software computation in compute_guest_tsc()
2074 		 *
2075 		 * These values are tracked in kvm->arch.cur_xxx variables.
2076 		 */
2077 		kvm->arch.cur_tsc_generation++;
2078 		kvm->arch.cur_tsc_nsec = ns;
2079 		kvm->arch.cur_tsc_write = data;
2080 		kvm->arch.cur_tsc_offset = offset;
2081 		matched = false;
2082 	}
2083 
2084 	/*
2085 	 * We also track th most recent recorded KHZ, write and time to
2086 	 * allow the matching interval to be extended at each write.
2087 	 */
2088 	kvm->arch.last_tsc_nsec = ns;
2089 	kvm->arch.last_tsc_write = data;
2090 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2091 
2092 	vcpu->arch.last_guest_tsc = data;
2093 
2094 	/* Keep track of which generation this VCPU has synchronized to */
2095 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2096 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2097 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2098 
2099 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2100 		update_ia32_tsc_adjust_msr(vcpu, offset);
2101 
2102 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2103 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2104 
2105 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2106 	if (!matched) {
2107 		kvm->arch.nr_vcpus_matched_tsc = 0;
2108 	} else if (!already_matched) {
2109 		kvm->arch.nr_vcpus_matched_tsc++;
2110 	}
2111 
2112 	kvm_track_tsc_matching(vcpu);
2113 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2114 }
2115 
2116 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2117 
2118 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2119 					   s64 adjustment)
2120 {
2121 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2122 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2123 }
2124 
2125 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2126 {
2127 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2128 		WARN_ON(adjustment < 0);
2129 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2130 	adjust_tsc_offset_guest(vcpu, adjustment);
2131 }
2132 
2133 #ifdef CONFIG_X86_64
2134 
2135 static u64 read_tsc(void)
2136 {
2137 	u64 ret = (u64)rdtsc_ordered();
2138 	u64 last = pvclock_gtod_data.clock.cycle_last;
2139 
2140 	if (likely(ret >= last))
2141 		return ret;
2142 
2143 	/*
2144 	 * GCC likes to generate cmov here, but this branch is extremely
2145 	 * predictable (it's just a function of time and the likely is
2146 	 * very likely) and there's a data dependence, so force GCC
2147 	 * to generate a branch instead.  I don't barrier() because
2148 	 * we don't actually need a barrier, and if this function
2149 	 * ever gets inlined it will generate worse code.
2150 	 */
2151 	asm volatile ("");
2152 	return last;
2153 }
2154 
2155 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2156 			  int *mode)
2157 {
2158 	long v;
2159 	u64 tsc_pg_val;
2160 
2161 	switch (clock->vclock_mode) {
2162 	case VDSO_CLOCKMODE_HVCLOCK:
2163 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2164 						  tsc_timestamp);
2165 		if (tsc_pg_val != U64_MAX) {
2166 			/* TSC page valid */
2167 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2168 			v = (tsc_pg_val - clock->cycle_last) &
2169 				clock->mask;
2170 		} else {
2171 			/* TSC page invalid */
2172 			*mode = VDSO_CLOCKMODE_NONE;
2173 		}
2174 		break;
2175 	case VDSO_CLOCKMODE_TSC:
2176 		*mode = VDSO_CLOCKMODE_TSC;
2177 		*tsc_timestamp = read_tsc();
2178 		v = (*tsc_timestamp - clock->cycle_last) &
2179 			clock->mask;
2180 		break;
2181 	default:
2182 		*mode = VDSO_CLOCKMODE_NONE;
2183 	}
2184 
2185 	if (*mode == VDSO_CLOCKMODE_NONE)
2186 		*tsc_timestamp = v = 0;
2187 
2188 	return v * clock->mult;
2189 }
2190 
2191 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2192 {
2193 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2194 	unsigned long seq;
2195 	int mode;
2196 	u64 ns;
2197 
2198 	do {
2199 		seq = read_seqcount_begin(&gtod->seq);
2200 		ns = gtod->raw_clock.base_cycles;
2201 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2202 		ns >>= gtod->raw_clock.shift;
2203 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2204 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2205 	*t = ns;
2206 
2207 	return mode;
2208 }
2209 
2210 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2211 {
2212 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2213 	unsigned long seq;
2214 	int mode;
2215 	u64 ns;
2216 
2217 	do {
2218 		seq = read_seqcount_begin(&gtod->seq);
2219 		ts->tv_sec = gtod->wall_time_sec;
2220 		ns = gtod->clock.base_cycles;
2221 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2222 		ns >>= gtod->clock.shift;
2223 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2224 
2225 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2226 	ts->tv_nsec = ns;
2227 
2228 	return mode;
2229 }
2230 
2231 /* returns true if host is using TSC based clocksource */
2232 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2233 {
2234 	/* checked again under seqlock below */
2235 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2236 		return false;
2237 
2238 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2239 						      tsc_timestamp));
2240 }
2241 
2242 /* returns true if host is using TSC based clocksource */
2243 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2244 					   u64 *tsc_timestamp)
2245 {
2246 	/* checked again under seqlock below */
2247 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2248 		return false;
2249 
2250 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2251 }
2252 #endif
2253 
2254 /*
2255  *
2256  * Assuming a stable TSC across physical CPUS, and a stable TSC
2257  * across virtual CPUs, the following condition is possible.
2258  * Each numbered line represents an event visible to both
2259  * CPUs at the next numbered event.
2260  *
2261  * "timespecX" represents host monotonic time. "tscX" represents
2262  * RDTSC value.
2263  *
2264  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2265  *
2266  * 1.  read timespec0,tsc0
2267  * 2.					| timespec1 = timespec0 + N
2268  * 					| tsc1 = tsc0 + M
2269  * 3. transition to guest		| transition to guest
2270  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2271  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2272  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2273  *
2274  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2275  *
2276  * 	- ret0 < ret1
2277  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2278  *		...
2279  *	- 0 < N - M => M < N
2280  *
2281  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2282  * always the case (the difference between two distinct xtime instances
2283  * might be smaller then the difference between corresponding TSC reads,
2284  * when updating guest vcpus pvclock areas).
2285  *
2286  * To avoid that problem, do not allow visibility of distinct
2287  * system_timestamp/tsc_timestamp values simultaneously: use a master
2288  * copy of host monotonic time values. Update that master copy
2289  * in lockstep.
2290  *
2291  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2292  *
2293  */
2294 
2295 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2296 {
2297 #ifdef CONFIG_X86_64
2298 	struct kvm_arch *ka = &kvm->arch;
2299 	int vclock_mode;
2300 	bool host_tsc_clocksource, vcpus_matched;
2301 
2302 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2303 			atomic_read(&kvm->online_vcpus));
2304 
2305 	/*
2306 	 * If the host uses TSC clock, then passthrough TSC as stable
2307 	 * to the guest.
2308 	 */
2309 	host_tsc_clocksource = kvm_get_time_and_clockread(
2310 					&ka->master_kernel_ns,
2311 					&ka->master_cycle_now);
2312 
2313 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2314 				&& !ka->backwards_tsc_observed
2315 				&& !ka->boot_vcpu_runs_old_kvmclock;
2316 
2317 	if (ka->use_master_clock)
2318 		atomic_set(&kvm_guest_has_master_clock, 1);
2319 
2320 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2321 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2322 					vcpus_matched);
2323 #endif
2324 }
2325 
2326 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2327 {
2328 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2329 }
2330 
2331 static void kvm_gen_update_masterclock(struct kvm *kvm)
2332 {
2333 #ifdef CONFIG_X86_64
2334 	int i;
2335 	struct kvm_vcpu *vcpu;
2336 	struct kvm_arch *ka = &kvm->arch;
2337 
2338 	spin_lock(&ka->pvclock_gtod_sync_lock);
2339 	kvm_make_mclock_inprogress_request(kvm);
2340 	/* no guest entries from this point */
2341 	pvclock_update_vm_gtod_copy(kvm);
2342 
2343 	kvm_for_each_vcpu(i, vcpu, kvm)
2344 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2345 
2346 	/* guest entries allowed */
2347 	kvm_for_each_vcpu(i, vcpu, kvm)
2348 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2349 
2350 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2351 #endif
2352 }
2353 
2354 u64 get_kvmclock_ns(struct kvm *kvm)
2355 {
2356 	struct kvm_arch *ka = &kvm->arch;
2357 	struct pvclock_vcpu_time_info hv_clock;
2358 	u64 ret;
2359 
2360 	spin_lock(&ka->pvclock_gtod_sync_lock);
2361 	if (!ka->use_master_clock) {
2362 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2363 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2364 	}
2365 
2366 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2367 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2368 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2369 
2370 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2371 	get_cpu();
2372 
2373 	if (__this_cpu_read(cpu_tsc_khz)) {
2374 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2375 				   &hv_clock.tsc_shift,
2376 				   &hv_clock.tsc_to_system_mul);
2377 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2378 	} else
2379 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2380 
2381 	put_cpu();
2382 
2383 	return ret;
2384 }
2385 
2386 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2387 {
2388 	struct kvm_vcpu_arch *vcpu = &v->arch;
2389 	struct pvclock_vcpu_time_info guest_hv_clock;
2390 
2391 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2392 		&guest_hv_clock, sizeof(guest_hv_clock))))
2393 		return;
2394 
2395 	/* This VCPU is paused, but it's legal for a guest to read another
2396 	 * VCPU's kvmclock, so we really have to follow the specification where
2397 	 * it says that version is odd if data is being modified, and even after
2398 	 * it is consistent.
2399 	 *
2400 	 * Version field updates must be kept separate.  This is because
2401 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2402 	 * writes within a string instruction are weakly ordered.  So there
2403 	 * are three writes overall.
2404 	 *
2405 	 * As a small optimization, only write the version field in the first
2406 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2407 	 * version field is the first in the struct.
2408 	 */
2409 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2410 
2411 	if (guest_hv_clock.version & 1)
2412 		++guest_hv_clock.version;  /* first time write, random junk */
2413 
2414 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2415 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2416 				&vcpu->hv_clock,
2417 				sizeof(vcpu->hv_clock.version));
2418 
2419 	smp_wmb();
2420 
2421 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2422 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2423 
2424 	if (vcpu->pvclock_set_guest_stopped_request) {
2425 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2426 		vcpu->pvclock_set_guest_stopped_request = false;
2427 	}
2428 
2429 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2430 
2431 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2432 				&vcpu->hv_clock,
2433 				sizeof(vcpu->hv_clock));
2434 
2435 	smp_wmb();
2436 
2437 	vcpu->hv_clock.version++;
2438 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2439 				&vcpu->hv_clock,
2440 				sizeof(vcpu->hv_clock.version));
2441 }
2442 
2443 static int kvm_guest_time_update(struct kvm_vcpu *v)
2444 {
2445 	unsigned long flags, tgt_tsc_khz;
2446 	struct kvm_vcpu_arch *vcpu = &v->arch;
2447 	struct kvm_arch *ka = &v->kvm->arch;
2448 	s64 kernel_ns;
2449 	u64 tsc_timestamp, host_tsc;
2450 	u8 pvclock_flags;
2451 	bool use_master_clock;
2452 
2453 	kernel_ns = 0;
2454 	host_tsc = 0;
2455 
2456 	/*
2457 	 * If the host uses TSC clock, then passthrough TSC as stable
2458 	 * to the guest.
2459 	 */
2460 	spin_lock(&ka->pvclock_gtod_sync_lock);
2461 	use_master_clock = ka->use_master_clock;
2462 	if (use_master_clock) {
2463 		host_tsc = ka->master_cycle_now;
2464 		kernel_ns = ka->master_kernel_ns;
2465 	}
2466 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2467 
2468 	/* Keep irq disabled to prevent changes to the clock */
2469 	local_irq_save(flags);
2470 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2471 	if (unlikely(tgt_tsc_khz == 0)) {
2472 		local_irq_restore(flags);
2473 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2474 		return 1;
2475 	}
2476 	if (!use_master_clock) {
2477 		host_tsc = rdtsc();
2478 		kernel_ns = get_kvmclock_base_ns();
2479 	}
2480 
2481 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2482 
2483 	/*
2484 	 * We may have to catch up the TSC to match elapsed wall clock
2485 	 * time for two reasons, even if kvmclock is used.
2486 	 *   1) CPU could have been running below the maximum TSC rate
2487 	 *   2) Broken TSC compensation resets the base at each VCPU
2488 	 *      entry to avoid unknown leaps of TSC even when running
2489 	 *      again on the same CPU.  This may cause apparent elapsed
2490 	 *      time to disappear, and the guest to stand still or run
2491 	 *	very slowly.
2492 	 */
2493 	if (vcpu->tsc_catchup) {
2494 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2495 		if (tsc > tsc_timestamp) {
2496 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2497 			tsc_timestamp = tsc;
2498 		}
2499 	}
2500 
2501 	local_irq_restore(flags);
2502 
2503 	/* With all the info we got, fill in the values */
2504 
2505 	if (kvm_has_tsc_control)
2506 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2507 
2508 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2509 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2510 				   &vcpu->hv_clock.tsc_shift,
2511 				   &vcpu->hv_clock.tsc_to_system_mul);
2512 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2513 	}
2514 
2515 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2516 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2517 	vcpu->last_guest_tsc = tsc_timestamp;
2518 
2519 	/* If the host uses TSC clocksource, then it is stable */
2520 	pvclock_flags = 0;
2521 	if (use_master_clock)
2522 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2523 
2524 	vcpu->hv_clock.flags = pvclock_flags;
2525 
2526 	if (vcpu->pv_time_enabled)
2527 		kvm_setup_pvclock_page(v);
2528 	if (v == kvm_get_vcpu(v->kvm, 0))
2529 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2530 	return 0;
2531 }
2532 
2533 /*
2534  * kvmclock updates which are isolated to a given vcpu, such as
2535  * vcpu->cpu migration, should not allow system_timestamp from
2536  * the rest of the vcpus to remain static. Otherwise ntp frequency
2537  * correction applies to one vcpu's system_timestamp but not
2538  * the others.
2539  *
2540  * So in those cases, request a kvmclock update for all vcpus.
2541  * We need to rate-limit these requests though, as they can
2542  * considerably slow guests that have a large number of vcpus.
2543  * The time for a remote vcpu to update its kvmclock is bound
2544  * by the delay we use to rate-limit the updates.
2545  */
2546 
2547 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2548 
2549 static void kvmclock_update_fn(struct work_struct *work)
2550 {
2551 	int i;
2552 	struct delayed_work *dwork = to_delayed_work(work);
2553 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2554 					   kvmclock_update_work);
2555 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2556 	struct kvm_vcpu *vcpu;
2557 
2558 	kvm_for_each_vcpu(i, vcpu, kvm) {
2559 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2560 		kvm_vcpu_kick(vcpu);
2561 	}
2562 }
2563 
2564 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2565 {
2566 	struct kvm *kvm = v->kvm;
2567 
2568 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2569 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2570 					KVMCLOCK_UPDATE_DELAY);
2571 }
2572 
2573 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2574 
2575 static void kvmclock_sync_fn(struct work_struct *work)
2576 {
2577 	struct delayed_work *dwork = to_delayed_work(work);
2578 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2579 					   kvmclock_sync_work);
2580 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2581 
2582 	if (!kvmclock_periodic_sync)
2583 		return;
2584 
2585 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2586 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2587 					KVMCLOCK_SYNC_PERIOD);
2588 }
2589 
2590 /*
2591  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2592  */
2593 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2594 {
2595 	/* McStatusWrEn enabled? */
2596 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2597 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2598 
2599 	return false;
2600 }
2601 
2602 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2603 {
2604 	u64 mcg_cap = vcpu->arch.mcg_cap;
2605 	unsigned bank_num = mcg_cap & 0xff;
2606 	u32 msr = msr_info->index;
2607 	u64 data = msr_info->data;
2608 
2609 	switch (msr) {
2610 	case MSR_IA32_MCG_STATUS:
2611 		vcpu->arch.mcg_status = data;
2612 		break;
2613 	case MSR_IA32_MCG_CTL:
2614 		if (!(mcg_cap & MCG_CTL_P) &&
2615 		    (data || !msr_info->host_initiated))
2616 			return 1;
2617 		if (data != 0 && data != ~(u64)0)
2618 			return 1;
2619 		vcpu->arch.mcg_ctl = data;
2620 		break;
2621 	default:
2622 		if (msr >= MSR_IA32_MC0_CTL &&
2623 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2624 			u32 offset = array_index_nospec(
2625 				msr - MSR_IA32_MC0_CTL,
2626 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2627 
2628 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2629 			 * some Linux kernels though clear bit 10 in bank 4 to
2630 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2631 			 * this to avoid an uncatched #GP in the guest
2632 			 */
2633 			if ((offset & 0x3) == 0 &&
2634 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2635 				return -1;
2636 
2637 			/* MCi_STATUS */
2638 			if (!msr_info->host_initiated &&
2639 			    (offset & 0x3) == 1 && data != 0) {
2640 				if (!can_set_mci_status(vcpu))
2641 					return -1;
2642 			}
2643 
2644 			vcpu->arch.mce_banks[offset] = data;
2645 			break;
2646 		}
2647 		return 1;
2648 	}
2649 	return 0;
2650 }
2651 
2652 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2653 {
2654 	struct kvm *kvm = vcpu->kvm;
2655 	int lm = is_long_mode(vcpu);
2656 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2657 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2658 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2659 		: kvm->arch.xen_hvm_config.blob_size_32;
2660 	u32 page_num = data & ~PAGE_MASK;
2661 	u64 page_addr = data & PAGE_MASK;
2662 	u8 *page;
2663 	int r;
2664 
2665 	r = -E2BIG;
2666 	if (page_num >= blob_size)
2667 		goto out;
2668 	r = -ENOMEM;
2669 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2670 	if (IS_ERR(page)) {
2671 		r = PTR_ERR(page);
2672 		goto out;
2673 	}
2674 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2675 		goto out_free;
2676 	r = 0;
2677 out_free:
2678 	kfree(page);
2679 out:
2680 	return r;
2681 }
2682 
2683 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2684 {
2685 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2686 
2687 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2688 }
2689 
2690 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2691 {
2692 	gpa_t gpa = data & ~0x3f;
2693 
2694 	/* Bits 4:5 are reserved, Should be zero */
2695 	if (data & 0x30)
2696 		return 1;
2697 
2698 	if (!lapic_in_kernel(vcpu))
2699 		return 1;
2700 
2701 	vcpu->arch.apf.msr_en_val = data;
2702 
2703 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2704 		kvm_clear_async_pf_completion_queue(vcpu);
2705 		kvm_async_pf_hash_reset(vcpu);
2706 		return 0;
2707 	}
2708 
2709 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2710 					sizeof(u64)))
2711 		return 1;
2712 
2713 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2714 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2715 
2716 	kvm_async_pf_wakeup_all(vcpu);
2717 
2718 	return 0;
2719 }
2720 
2721 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2722 {
2723 	/* Bits 8-63 are reserved */
2724 	if (data >> 8)
2725 		return 1;
2726 
2727 	if (!lapic_in_kernel(vcpu))
2728 		return 1;
2729 
2730 	vcpu->arch.apf.msr_int_val = data;
2731 
2732 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2733 
2734 	return 0;
2735 }
2736 
2737 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2738 {
2739 	vcpu->arch.pv_time_enabled = false;
2740 	vcpu->arch.time = 0;
2741 }
2742 
2743 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2744 {
2745 	++vcpu->stat.tlb_flush;
2746 	kvm_x86_ops.tlb_flush_all(vcpu);
2747 }
2748 
2749 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2750 {
2751 	++vcpu->stat.tlb_flush;
2752 	kvm_x86_ops.tlb_flush_guest(vcpu);
2753 }
2754 
2755 static void record_steal_time(struct kvm_vcpu *vcpu)
2756 {
2757 	struct kvm_host_map map;
2758 	struct kvm_steal_time *st;
2759 
2760 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2761 		return;
2762 
2763 	/* -EAGAIN is returned in atomic context so we can just return. */
2764 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2765 			&map, &vcpu->arch.st.cache, false))
2766 		return;
2767 
2768 	st = map.hva +
2769 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2770 
2771 	/*
2772 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2773 	 * expensive IPIs.
2774 	 */
2775 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2776 		st->preempted & KVM_VCPU_FLUSH_TLB);
2777 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2778 		kvm_vcpu_flush_tlb_guest(vcpu);
2779 
2780 	vcpu->arch.st.preempted = 0;
2781 
2782 	if (st->version & 1)
2783 		st->version += 1;  /* first time write, random junk */
2784 
2785 	st->version += 1;
2786 
2787 	smp_wmb();
2788 
2789 	st->steal += current->sched_info.run_delay -
2790 		vcpu->arch.st.last_steal;
2791 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2792 
2793 	smp_wmb();
2794 
2795 	st->version += 1;
2796 
2797 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2798 }
2799 
2800 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2801 {
2802 	bool pr = false;
2803 	u32 msr = msr_info->index;
2804 	u64 data = msr_info->data;
2805 
2806 	switch (msr) {
2807 	case MSR_AMD64_NB_CFG:
2808 	case MSR_IA32_UCODE_WRITE:
2809 	case MSR_VM_HSAVE_PA:
2810 	case MSR_AMD64_PATCH_LOADER:
2811 	case MSR_AMD64_BU_CFG2:
2812 	case MSR_AMD64_DC_CFG:
2813 	case MSR_F15H_EX_CFG:
2814 		break;
2815 
2816 	case MSR_IA32_UCODE_REV:
2817 		if (msr_info->host_initiated)
2818 			vcpu->arch.microcode_version = data;
2819 		break;
2820 	case MSR_IA32_ARCH_CAPABILITIES:
2821 		if (!msr_info->host_initiated)
2822 			return 1;
2823 		vcpu->arch.arch_capabilities = data;
2824 		break;
2825 	case MSR_EFER:
2826 		return set_efer(vcpu, msr_info);
2827 	case MSR_K7_HWCR:
2828 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2829 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2830 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2831 
2832 		/* Handle McStatusWrEn */
2833 		if (data == BIT_ULL(18)) {
2834 			vcpu->arch.msr_hwcr = data;
2835 		} else if (data != 0) {
2836 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2837 				    data);
2838 			return 1;
2839 		}
2840 		break;
2841 	case MSR_FAM10H_MMIO_CONF_BASE:
2842 		if (data != 0) {
2843 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2844 				    "0x%llx\n", data);
2845 			return 1;
2846 		}
2847 		break;
2848 	case MSR_IA32_DEBUGCTLMSR:
2849 		if (!data) {
2850 			/* We support the non-activated case already */
2851 			break;
2852 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2853 			/* Values other than LBR and BTF are vendor-specific,
2854 			   thus reserved and should throw a #GP */
2855 			return 1;
2856 		}
2857 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2858 			    __func__, data);
2859 		break;
2860 	case 0x200 ... 0x2ff:
2861 		return kvm_mtrr_set_msr(vcpu, msr, data);
2862 	case MSR_IA32_APICBASE:
2863 		return kvm_set_apic_base(vcpu, msr_info);
2864 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2865 		return kvm_x2apic_msr_write(vcpu, msr, data);
2866 	case MSR_IA32_TSCDEADLINE:
2867 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2868 		break;
2869 	case MSR_IA32_TSC_ADJUST:
2870 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2871 			if (!msr_info->host_initiated) {
2872 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2873 				adjust_tsc_offset_guest(vcpu, adj);
2874 			}
2875 			vcpu->arch.ia32_tsc_adjust_msr = data;
2876 		}
2877 		break;
2878 	case MSR_IA32_MISC_ENABLE:
2879 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2880 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2881 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2882 				return 1;
2883 			vcpu->arch.ia32_misc_enable_msr = data;
2884 			kvm_update_cpuid(vcpu);
2885 		} else {
2886 			vcpu->arch.ia32_misc_enable_msr = data;
2887 		}
2888 		break;
2889 	case MSR_IA32_SMBASE:
2890 		if (!msr_info->host_initiated)
2891 			return 1;
2892 		vcpu->arch.smbase = data;
2893 		break;
2894 	case MSR_IA32_POWER_CTL:
2895 		vcpu->arch.msr_ia32_power_ctl = data;
2896 		break;
2897 	case MSR_IA32_TSC:
2898 		kvm_write_tsc(vcpu, msr_info);
2899 		break;
2900 	case MSR_IA32_XSS:
2901 		if (!msr_info->host_initiated &&
2902 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2903 			return 1;
2904 		/*
2905 		 * KVM supports exposing PT to the guest, but does not support
2906 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2907 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2908 		 */
2909 		if (data & ~supported_xss)
2910 			return 1;
2911 		vcpu->arch.ia32_xss = data;
2912 		break;
2913 	case MSR_SMI_COUNT:
2914 		if (!msr_info->host_initiated)
2915 			return 1;
2916 		vcpu->arch.smi_count = data;
2917 		break;
2918 	case MSR_KVM_WALL_CLOCK_NEW:
2919 	case MSR_KVM_WALL_CLOCK:
2920 		vcpu->kvm->arch.wall_clock = data;
2921 		kvm_write_wall_clock(vcpu->kvm, data);
2922 		break;
2923 	case MSR_KVM_SYSTEM_TIME_NEW:
2924 	case MSR_KVM_SYSTEM_TIME: {
2925 		struct kvm_arch *ka = &vcpu->kvm->arch;
2926 
2927 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2928 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2929 
2930 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2931 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2932 
2933 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2934 		}
2935 
2936 		vcpu->arch.time = data;
2937 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2938 
2939 		/* we verify if the enable bit is set... */
2940 		vcpu->arch.pv_time_enabled = false;
2941 		if (!(data & 1))
2942 			break;
2943 
2944 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2945 		     &vcpu->arch.pv_time, data & ~1ULL,
2946 		     sizeof(struct pvclock_vcpu_time_info)))
2947 			vcpu->arch.pv_time_enabled = true;
2948 
2949 		break;
2950 	}
2951 	case MSR_KVM_ASYNC_PF_EN:
2952 		if (kvm_pv_enable_async_pf(vcpu, data))
2953 			return 1;
2954 		break;
2955 	case MSR_KVM_ASYNC_PF_INT:
2956 		if (kvm_pv_enable_async_pf_int(vcpu, data))
2957 			return 1;
2958 		break;
2959 	case MSR_KVM_ASYNC_PF_ACK:
2960 		if (data & 0x1) {
2961 			vcpu->arch.apf.pageready_pending = false;
2962 			kvm_check_async_pf_completion(vcpu);
2963 		}
2964 		break;
2965 	case MSR_KVM_STEAL_TIME:
2966 
2967 		if (unlikely(!sched_info_on()))
2968 			return 1;
2969 
2970 		if (data & KVM_STEAL_RESERVED_MASK)
2971 			return 1;
2972 
2973 		vcpu->arch.st.msr_val = data;
2974 
2975 		if (!(data & KVM_MSR_ENABLED))
2976 			break;
2977 
2978 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2979 
2980 		break;
2981 	case MSR_KVM_PV_EOI_EN:
2982 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2983 			return 1;
2984 		break;
2985 
2986 	case MSR_KVM_POLL_CONTROL:
2987 		/* only enable bit supported */
2988 		if (data & (-1ULL << 1))
2989 			return 1;
2990 
2991 		vcpu->arch.msr_kvm_poll_control = data;
2992 		break;
2993 
2994 	case MSR_IA32_MCG_CTL:
2995 	case MSR_IA32_MCG_STATUS:
2996 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2997 		return set_msr_mce(vcpu, msr_info);
2998 
2999 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3000 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3001 		pr = true; /* fall through */
3002 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3003 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3004 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3005 			return kvm_pmu_set_msr(vcpu, msr_info);
3006 
3007 		if (pr || data != 0)
3008 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3009 				    "0x%x data 0x%llx\n", msr, data);
3010 		break;
3011 	case MSR_K7_CLK_CTL:
3012 		/*
3013 		 * Ignore all writes to this no longer documented MSR.
3014 		 * Writes are only relevant for old K7 processors,
3015 		 * all pre-dating SVM, but a recommended workaround from
3016 		 * AMD for these chips. It is possible to specify the
3017 		 * affected processor models on the command line, hence
3018 		 * the need to ignore the workaround.
3019 		 */
3020 		break;
3021 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3022 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3023 	case HV_X64_MSR_SYNDBG_OPTIONS:
3024 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3025 	case HV_X64_MSR_CRASH_CTL:
3026 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3027 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3028 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3029 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3030 		return kvm_hv_set_msr_common(vcpu, msr, data,
3031 					     msr_info->host_initiated);
3032 	case MSR_IA32_BBL_CR_CTL3:
3033 		/* Drop writes to this legacy MSR -- see rdmsr
3034 		 * counterpart for further detail.
3035 		 */
3036 		if (report_ignored_msrs)
3037 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3038 				msr, data);
3039 		break;
3040 	case MSR_AMD64_OSVW_ID_LENGTH:
3041 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3042 			return 1;
3043 		vcpu->arch.osvw.length = data;
3044 		break;
3045 	case MSR_AMD64_OSVW_STATUS:
3046 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3047 			return 1;
3048 		vcpu->arch.osvw.status = data;
3049 		break;
3050 	case MSR_PLATFORM_INFO:
3051 		if (!msr_info->host_initiated ||
3052 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3053 		     cpuid_fault_enabled(vcpu)))
3054 			return 1;
3055 		vcpu->arch.msr_platform_info = data;
3056 		break;
3057 	case MSR_MISC_FEATURES_ENABLES:
3058 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3059 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3060 		     !supports_cpuid_fault(vcpu)))
3061 			return 1;
3062 		vcpu->arch.msr_misc_features_enables = data;
3063 		break;
3064 	default:
3065 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3066 			return xen_hvm_config(vcpu, data);
3067 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3068 			return kvm_pmu_set_msr(vcpu, msr_info);
3069 		if (!ignore_msrs) {
3070 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
3071 				    msr, data);
3072 			return 1;
3073 		} else {
3074 			if (report_ignored_msrs)
3075 				vcpu_unimpl(vcpu,
3076 					"ignored wrmsr: 0x%x data 0x%llx\n",
3077 					msr, data);
3078 			break;
3079 		}
3080 	}
3081 	return 0;
3082 }
3083 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3084 
3085 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3086 {
3087 	u64 data;
3088 	u64 mcg_cap = vcpu->arch.mcg_cap;
3089 	unsigned bank_num = mcg_cap & 0xff;
3090 
3091 	switch (msr) {
3092 	case MSR_IA32_P5_MC_ADDR:
3093 	case MSR_IA32_P5_MC_TYPE:
3094 		data = 0;
3095 		break;
3096 	case MSR_IA32_MCG_CAP:
3097 		data = vcpu->arch.mcg_cap;
3098 		break;
3099 	case MSR_IA32_MCG_CTL:
3100 		if (!(mcg_cap & MCG_CTL_P) && !host)
3101 			return 1;
3102 		data = vcpu->arch.mcg_ctl;
3103 		break;
3104 	case MSR_IA32_MCG_STATUS:
3105 		data = vcpu->arch.mcg_status;
3106 		break;
3107 	default:
3108 		if (msr >= MSR_IA32_MC0_CTL &&
3109 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3110 			u32 offset = array_index_nospec(
3111 				msr - MSR_IA32_MC0_CTL,
3112 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3113 
3114 			data = vcpu->arch.mce_banks[offset];
3115 			break;
3116 		}
3117 		return 1;
3118 	}
3119 	*pdata = data;
3120 	return 0;
3121 }
3122 
3123 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3124 {
3125 	switch (msr_info->index) {
3126 	case MSR_IA32_PLATFORM_ID:
3127 	case MSR_IA32_EBL_CR_POWERON:
3128 	case MSR_IA32_DEBUGCTLMSR:
3129 	case MSR_IA32_LASTBRANCHFROMIP:
3130 	case MSR_IA32_LASTBRANCHTOIP:
3131 	case MSR_IA32_LASTINTFROMIP:
3132 	case MSR_IA32_LASTINTTOIP:
3133 	case MSR_K8_SYSCFG:
3134 	case MSR_K8_TSEG_ADDR:
3135 	case MSR_K8_TSEG_MASK:
3136 	case MSR_VM_HSAVE_PA:
3137 	case MSR_K8_INT_PENDING_MSG:
3138 	case MSR_AMD64_NB_CFG:
3139 	case MSR_FAM10H_MMIO_CONF_BASE:
3140 	case MSR_AMD64_BU_CFG2:
3141 	case MSR_IA32_PERF_CTL:
3142 	case MSR_AMD64_DC_CFG:
3143 	case MSR_F15H_EX_CFG:
3144 	/*
3145 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3146 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3147 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3148 	 * so for existing CPU-specific MSRs.
3149 	 */
3150 	case MSR_RAPL_POWER_UNIT:
3151 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3152 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3153 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3154 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3155 		msr_info->data = 0;
3156 		break;
3157 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3158 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3159 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3160 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3161 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3162 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3163 			return kvm_pmu_get_msr(vcpu, msr_info);
3164 		msr_info->data = 0;
3165 		break;
3166 	case MSR_IA32_UCODE_REV:
3167 		msr_info->data = vcpu->arch.microcode_version;
3168 		break;
3169 	case MSR_IA32_ARCH_CAPABILITIES:
3170 		if (!msr_info->host_initiated &&
3171 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3172 			return 1;
3173 		msr_info->data = vcpu->arch.arch_capabilities;
3174 		break;
3175 	case MSR_IA32_POWER_CTL:
3176 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3177 		break;
3178 	case MSR_IA32_TSC:
3179 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3180 		break;
3181 	case MSR_MTRRcap:
3182 	case 0x200 ... 0x2ff:
3183 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3184 	case 0xcd: /* fsb frequency */
3185 		msr_info->data = 3;
3186 		break;
3187 		/*
3188 		 * MSR_EBC_FREQUENCY_ID
3189 		 * Conservative value valid for even the basic CPU models.
3190 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3191 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3192 		 * and 266MHz for model 3, or 4. Set Core Clock
3193 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3194 		 * 31:24) even though these are only valid for CPU
3195 		 * models > 2, however guests may end up dividing or
3196 		 * multiplying by zero otherwise.
3197 		 */
3198 	case MSR_EBC_FREQUENCY_ID:
3199 		msr_info->data = 1 << 24;
3200 		break;
3201 	case MSR_IA32_APICBASE:
3202 		msr_info->data = kvm_get_apic_base(vcpu);
3203 		break;
3204 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3205 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3206 	case MSR_IA32_TSCDEADLINE:
3207 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3208 		break;
3209 	case MSR_IA32_TSC_ADJUST:
3210 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3211 		break;
3212 	case MSR_IA32_MISC_ENABLE:
3213 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3214 		break;
3215 	case MSR_IA32_SMBASE:
3216 		if (!msr_info->host_initiated)
3217 			return 1;
3218 		msr_info->data = vcpu->arch.smbase;
3219 		break;
3220 	case MSR_SMI_COUNT:
3221 		msr_info->data = vcpu->arch.smi_count;
3222 		break;
3223 	case MSR_IA32_PERF_STATUS:
3224 		/* TSC increment by tick */
3225 		msr_info->data = 1000ULL;
3226 		/* CPU multiplier */
3227 		msr_info->data |= (((uint64_t)4ULL) << 40);
3228 		break;
3229 	case MSR_EFER:
3230 		msr_info->data = vcpu->arch.efer;
3231 		break;
3232 	case MSR_KVM_WALL_CLOCK:
3233 	case MSR_KVM_WALL_CLOCK_NEW:
3234 		msr_info->data = vcpu->kvm->arch.wall_clock;
3235 		break;
3236 	case MSR_KVM_SYSTEM_TIME:
3237 	case MSR_KVM_SYSTEM_TIME_NEW:
3238 		msr_info->data = vcpu->arch.time;
3239 		break;
3240 	case MSR_KVM_ASYNC_PF_EN:
3241 		msr_info->data = vcpu->arch.apf.msr_en_val;
3242 		break;
3243 	case MSR_KVM_ASYNC_PF_INT:
3244 		msr_info->data = vcpu->arch.apf.msr_int_val;
3245 		break;
3246 	case MSR_KVM_ASYNC_PF_ACK:
3247 		msr_info->data = 0;
3248 		break;
3249 	case MSR_KVM_STEAL_TIME:
3250 		msr_info->data = vcpu->arch.st.msr_val;
3251 		break;
3252 	case MSR_KVM_PV_EOI_EN:
3253 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3254 		break;
3255 	case MSR_KVM_POLL_CONTROL:
3256 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3257 		break;
3258 	case MSR_IA32_P5_MC_ADDR:
3259 	case MSR_IA32_P5_MC_TYPE:
3260 	case MSR_IA32_MCG_CAP:
3261 	case MSR_IA32_MCG_CTL:
3262 	case MSR_IA32_MCG_STATUS:
3263 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3264 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3265 				   msr_info->host_initiated);
3266 	case MSR_IA32_XSS:
3267 		if (!msr_info->host_initiated &&
3268 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3269 			return 1;
3270 		msr_info->data = vcpu->arch.ia32_xss;
3271 		break;
3272 	case MSR_K7_CLK_CTL:
3273 		/*
3274 		 * Provide expected ramp-up count for K7. All other
3275 		 * are set to zero, indicating minimum divisors for
3276 		 * every field.
3277 		 *
3278 		 * This prevents guest kernels on AMD host with CPU
3279 		 * type 6, model 8 and higher from exploding due to
3280 		 * the rdmsr failing.
3281 		 */
3282 		msr_info->data = 0x20000000;
3283 		break;
3284 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3285 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3286 	case HV_X64_MSR_SYNDBG_OPTIONS:
3287 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3288 	case HV_X64_MSR_CRASH_CTL:
3289 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3290 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3291 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3292 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3293 		return kvm_hv_get_msr_common(vcpu,
3294 					     msr_info->index, &msr_info->data,
3295 					     msr_info->host_initiated);
3296 	case MSR_IA32_BBL_CR_CTL3:
3297 		/* This legacy MSR exists but isn't fully documented in current
3298 		 * silicon.  It is however accessed by winxp in very narrow
3299 		 * scenarios where it sets bit #19, itself documented as
3300 		 * a "reserved" bit.  Best effort attempt to source coherent
3301 		 * read data here should the balance of the register be
3302 		 * interpreted by the guest:
3303 		 *
3304 		 * L2 cache control register 3: 64GB range, 256KB size,
3305 		 * enabled, latency 0x1, configured
3306 		 */
3307 		msr_info->data = 0xbe702111;
3308 		break;
3309 	case MSR_AMD64_OSVW_ID_LENGTH:
3310 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3311 			return 1;
3312 		msr_info->data = vcpu->arch.osvw.length;
3313 		break;
3314 	case MSR_AMD64_OSVW_STATUS:
3315 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3316 			return 1;
3317 		msr_info->data = vcpu->arch.osvw.status;
3318 		break;
3319 	case MSR_PLATFORM_INFO:
3320 		if (!msr_info->host_initiated &&
3321 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3322 			return 1;
3323 		msr_info->data = vcpu->arch.msr_platform_info;
3324 		break;
3325 	case MSR_MISC_FEATURES_ENABLES:
3326 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3327 		break;
3328 	case MSR_K7_HWCR:
3329 		msr_info->data = vcpu->arch.msr_hwcr;
3330 		break;
3331 	default:
3332 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3333 			return kvm_pmu_get_msr(vcpu, msr_info);
3334 		if (!ignore_msrs) {
3335 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3336 					       msr_info->index);
3337 			return 1;
3338 		} else {
3339 			if (report_ignored_msrs)
3340 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3341 					msr_info->index);
3342 			msr_info->data = 0;
3343 		}
3344 		break;
3345 	}
3346 	return 0;
3347 }
3348 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3349 
3350 /*
3351  * Read or write a bunch of msrs. All parameters are kernel addresses.
3352  *
3353  * @return number of msrs set successfully.
3354  */
3355 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3356 		    struct kvm_msr_entry *entries,
3357 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3358 				  unsigned index, u64 *data))
3359 {
3360 	int i;
3361 
3362 	for (i = 0; i < msrs->nmsrs; ++i)
3363 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3364 			break;
3365 
3366 	return i;
3367 }
3368 
3369 /*
3370  * Read or write a bunch of msrs. Parameters are user addresses.
3371  *
3372  * @return number of msrs set successfully.
3373  */
3374 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3375 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3376 				unsigned index, u64 *data),
3377 		  int writeback)
3378 {
3379 	struct kvm_msrs msrs;
3380 	struct kvm_msr_entry *entries;
3381 	int r, n;
3382 	unsigned size;
3383 
3384 	r = -EFAULT;
3385 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3386 		goto out;
3387 
3388 	r = -E2BIG;
3389 	if (msrs.nmsrs >= MAX_IO_MSRS)
3390 		goto out;
3391 
3392 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3393 	entries = memdup_user(user_msrs->entries, size);
3394 	if (IS_ERR(entries)) {
3395 		r = PTR_ERR(entries);
3396 		goto out;
3397 	}
3398 
3399 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3400 	if (r < 0)
3401 		goto out_free;
3402 
3403 	r = -EFAULT;
3404 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3405 		goto out_free;
3406 
3407 	r = n;
3408 
3409 out_free:
3410 	kfree(entries);
3411 out:
3412 	return r;
3413 }
3414 
3415 static inline bool kvm_can_mwait_in_guest(void)
3416 {
3417 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3418 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3419 		boot_cpu_has(X86_FEATURE_ARAT);
3420 }
3421 
3422 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3423 {
3424 	int r = 0;
3425 
3426 	switch (ext) {
3427 	case KVM_CAP_IRQCHIP:
3428 	case KVM_CAP_HLT:
3429 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3430 	case KVM_CAP_SET_TSS_ADDR:
3431 	case KVM_CAP_EXT_CPUID:
3432 	case KVM_CAP_EXT_EMUL_CPUID:
3433 	case KVM_CAP_CLOCKSOURCE:
3434 	case KVM_CAP_PIT:
3435 	case KVM_CAP_NOP_IO_DELAY:
3436 	case KVM_CAP_MP_STATE:
3437 	case KVM_CAP_SYNC_MMU:
3438 	case KVM_CAP_USER_NMI:
3439 	case KVM_CAP_REINJECT_CONTROL:
3440 	case KVM_CAP_IRQ_INJECT_STATUS:
3441 	case KVM_CAP_IOEVENTFD:
3442 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3443 	case KVM_CAP_PIT2:
3444 	case KVM_CAP_PIT_STATE2:
3445 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3446 	case KVM_CAP_XEN_HVM:
3447 	case KVM_CAP_VCPU_EVENTS:
3448 	case KVM_CAP_HYPERV:
3449 	case KVM_CAP_HYPERV_VAPIC:
3450 	case KVM_CAP_HYPERV_SPIN:
3451 	case KVM_CAP_HYPERV_SYNIC:
3452 	case KVM_CAP_HYPERV_SYNIC2:
3453 	case KVM_CAP_HYPERV_VP_INDEX:
3454 	case KVM_CAP_HYPERV_EVENTFD:
3455 	case KVM_CAP_HYPERV_TLBFLUSH:
3456 	case KVM_CAP_HYPERV_SEND_IPI:
3457 	case KVM_CAP_HYPERV_CPUID:
3458 	case KVM_CAP_PCI_SEGMENT:
3459 	case KVM_CAP_DEBUGREGS:
3460 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3461 	case KVM_CAP_XSAVE:
3462 	case KVM_CAP_ASYNC_PF:
3463 	case KVM_CAP_ASYNC_PF_INT:
3464 	case KVM_CAP_GET_TSC_KHZ:
3465 	case KVM_CAP_KVMCLOCK_CTRL:
3466 	case KVM_CAP_READONLY_MEM:
3467 	case KVM_CAP_HYPERV_TIME:
3468 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3469 	case KVM_CAP_TSC_DEADLINE_TIMER:
3470 	case KVM_CAP_DISABLE_QUIRKS:
3471 	case KVM_CAP_SET_BOOT_CPU_ID:
3472  	case KVM_CAP_SPLIT_IRQCHIP:
3473 	case KVM_CAP_IMMEDIATE_EXIT:
3474 	case KVM_CAP_PMU_EVENT_FILTER:
3475 	case KVM_CAP_GET_MSR_FEATURES:
3476 	case KVM_CAP_MSR_PLATFORM_INFO:
3477 	case KVM_CAP_EXCEPTION_PAYLOAD:
3478 	case KVM_CAP_SET_GUEST_DEBUG:
3479 		r = 1;
3480 		break;
3481 	case KVM_CAP_SYNC_REGS:
3482 		r = KVM_SYNC_X86_VALID_FIELDS;
3483 		break;
3484 	case KVM_CAP_ADJUST_CLOCK:
3485 		r = KVM_CLOCK_TSC_STABLE;
3486 		break;
3487 	case KVM_CAP_X86_DISABLE_EXITS:
3488 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3489 		      KVM_X86_DISABLE_EXITS_CSTATE;
3490 		if(kvm_can_mwait_in_guest())
3491 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3492 		break;
3493 	case KVM_CAP_X86_SMM:
3494 		/* SMBASE is usually relocated above 1M on modern chipsets,
3495 		 * and SMM handlers might indeed rely on 4G segment limits,
3496 		 * so do not report SMM to be available if real mode is
3497 		 * emulated via vm86 mode.  Still, do not go to great lengths
3498 		 * to avoid userspace's usage of the feature, because it is a
3499 		 * fringe case that is not enabled except via specific settings
3500 		 * of the module parameters.
3501 		 */
3502 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3503 		break;
3504 	case KVM_CAP_VAPIC:
3505 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3506 		break;
3507 	case KVM_CAP_NR_VCPUS:
3508 		r = KVM_SOFT_MAX_VCPUS;
3509 		break;
3510 	case KVM_CAP_MAX_VCPUS:
3511 		r = KVM_MAX_VCPUS;
3512 		break;
3513 	case KVM_CAP_MAX_VCPU_ID:
3514 		r = KVM_MAX_VCPU_ID;
3515 		break;
3516 	case KVM_CAP_PV_MMU:	/* obsolete */
3517 		r = 0;
3518 		break;
3519 	case KVM_CAP_MCE:
3520 		r = KVM_MAX_MCE_BANKS;
3521 		break;
3522 	case KVM_CAP_XCRS:
3523 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3524 		break;
3525 	case KVM_CAP_TSC_CONTROL:
3526 		r = kvm_has_tsc_control;
3527 		break;
3528 	case KVM_CAP_X2APIC_API:
3529 		r = KVM_X2APIC_API_VALID_FLAGS;
3530 		break;
3531 	case KVM_CAP_NESTED_STATE:
3532 		r = kvm_x86_ops.nested_ops->get_state ?
3533 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3534 		break;
3535 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3536 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3537 		break;
3538 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3539 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3540 		break;
3541 	default:
3542 		break;
3543 	}
3544 	return r;
3545 
3546 }
3547 
3548 long kvm_arch_dev_ioctl(struct file *filp,
3549 			unsigned int ioctl, unsigned long arg)
3550 {
3551 	void __user *argp = (void __user *)arg;
3552 	long r;
3553 
3554 	switch (ioctl) {
3555 	case KVM_GET_MSR_INDEX_LIST: {
3556 		struct kvm_msr_list __user *user_msr_list = argp;
3557 		struct kvm_msr_list msr_list;
3558 		unsigned n;
3559 
3560 		r = -EFAULT;
3561 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3562 			goto out;
3563 		n = msr_list.nmsrs;
3564 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3565 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3566 			goto out;
3567 		r = -E2BIG;
3568 		if (n < msr_list.nmsrs)
3569 			goto out;
3570 		r = -EFAULT;
3571 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3572 				 num_msrs_to_save * sizeof(u32)))
3573 			goto out;
3574 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3575 				 &emulated_msrs,
3576 				 num_emulated_msrs * sizeof(u32)))
3577 			goto out;
3578 		r = 0;
3579 		break;
3580 	}
3581 	case KVM_GET_SUPPORTED_CPUID:
3582 	case KVM_GET_EMULATED_CPUID: {
3583 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3584 		struct kvm_cpuid2 cpuid;
3585 
3586 		r = -EFAULT;
3587 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3588 			goto out;
3589 
3590 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3591 					    ioctl);
3592 		if (r)
3593 			goto out;
3594 
3595 		r = -EFAULT;
3596 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3597 			goto out;
3598 		r = 0;
3599 		break;
3600 	}
3601 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3602 		r = -EFAULT;
3603 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3604 				 sizeof(kvm_mce_cap_supported)))
3605 			goto out;
3606 		r = 0;
3607 		break;
3608 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3609 		struct kvm_msr_list __user *user_msr_list = argp;
3610 		struct kvm_msr_list msr_list;
3611 		unsigned int n;
3612 
3613 		r = -EFAULT;
3614 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3615 			goto out;
3616 		n = msr_list.nmsrs;
3617 		msr_list.nmsrs = num_msr_based_features;
3618 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3619 			goto out;
3620 		r = -E2BIG;
3621 		if (n < msr_list.nmsrs)
3622 			goto out;
3623 		r = -EFAULT;
3624 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3625 				 num_msr_based_features * sizeof(u32)))
3626 			goto out;
3627 		r = 0;
3628 		break;
3629 	}
3630 	case KVM_GET_MSRS:
3631 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3632 		break;
3633 	default:
3634 		r = -EINVAL;
3635 		break;
3636 	}
3637 out:
3638 	return r;
3639 }
3640 
3641 static void wbinvd_ipi(void *garbage)
3642 {
3643 	wbinvd();
3644 }
3645 
3646 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3647 {
3648 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3649 }
3650 
3651 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3652 {
3653 	/* Address WBINVD may be executed by guest */
3654 	if (need_emulate_wbinvd(vcpu)) {
3655 		if (kvm_x86_ops.has_wbinvd_exit())
3656 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3657 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3658 			smp_call_function_single(vcpu->cpu,
3659 					wbinvd_ipi, NULL, 1);
3660 	}
3661 
3662 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3663 
3664 	/* Save host pkru register if supported */
3665 	vcpu->arch.host_pkru = read_pkru();
3666 
3667 	/* Apply any externally detected TSC adjustments (due to suspend) */
3668 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3669 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3670 		vcpu->arch.tsc_offset_adjustment = 0;
3671 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3672 	}
3673 
3674 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3675 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3676 				rdtsc() - vcpu->arch.last_host_tsc;
3677 		if (tsc_delta < 0)
3678 			mark_tsc_unstable("KVM discovered backwards TSC");
3679 
3680 		if (kvm_check_tsc_unstable()) {
3681 			u64 offset = kvm_compute_tsc_offset(vcpu,
3682 						vcpu->arch.last_guest_tsc);
3683 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3684 			vcpu->arch.tsc_catchup = 1;
3685 		}
3686 
3687 		if (kvm_lapic_hv_timer_in_use(vcpu))
3688 			kvm_lapic_restart_hv_timer(vcpu);
3689 
3690 		/*
3691 		 * On a host with synchronized TSC, there is no need to update
3692 		 * kvmclock on vcpu->cpu migration
3693 		 */
3694 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3695 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3696 		if (vcpu->cpu != cpu)
3697 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3698 		vcpu->cpu = cpu;
3699 	}
3700 
3701 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3702 }
3703 
3704 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3705 {
3706 	struct kvm_host_map map;
3707 	struct kvm_steal_time *st;
3708 
3709 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3710 		return;
3711 
3712 	if (vcpu->arch.st.preempted)
3713 		return;
3714 
3715 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3716 			&vcpu->arch.st.cache, true))
3717 		return;
3718 
3719 	st = map.hva +
3720 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3721 
3722 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3723 
3724 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3725 }
3726 
3727 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3728 {
3729 	int idx;
3730 
3731 	if (vcpu->preempted)
3732 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3733 
3734 	/*
3735 	 * Disable page faults because we're in atomic context here.
3736 	 * kvm_write_guest_offset_cached() would call might_fault()
3737 	 * that relies on pagefault_disable() to tell if there's a
3738 	 * bug. NOTE: the write to guest memory may not go through if
3739 	 * during postcopy live migration or if there's heavy guest
3740 	 * paging.
3741 	 */
3742 	pagefault_disable();
3743 	/*
3744 	 * kvm_memslots() will be called by
3745 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3746 	 */
3747 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3748 	kvm_steal_time_set_preempted(vcpu);
3749 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3750 	pagefault_enable();
3751 	kvm_x86_ops.vcpu_put(vcpu);
3752 	vcpu->arch.last_host_tsc = rdtsc();
3753 	/*
3754 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3755 	 * on every vmexit, but if not, we might have a stale dr6 from the
3756 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3757 	 */
3758 	set_debugreg(0, 6);
3759 }
3760 
3761 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3762 				    struct kvm_lapic_state *s)
3763 {
3764 	if (vcpu->arch.apicv_active)
3765 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3766 
3767 	return kvm_apic_get_state(vcpu, s);
3768 }
3769 
3770 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3771 				    struct kvm_lapic_state *s)
3772 {
3773 	int r;
3774 
3775 	r = kvm_apic_set_state(vcpu, s);
3776 	if (r)
3777 		return r;
3778 	update_cr8_intercept(vcpu);
3779 
3780 	return 0;
3781 }
3782 
3783 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3784 {
3785 	return (!lapic_in_kernel(vcpu) ||
3786 		kvm_apic_accept_pic_intr(vcpu));
3787 }
3788 
3789 /*
3790  * if userspace requested an interrupt window, check that the
3791  * interrupt window is open.
3792  *
3793  * No need to exit to userspace if we already have an interrupt queued.
3794  */
3795 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3796 {
3797 	return kvm_arch_interrupt_allowed(vcpu) &&
3798 		!kvm_cpu_has_interrupt(vcpu) &&
3799 		!kvm_event_needs_reinjection(vcpu) &&
3800 		kvm_cpu_accept_dm_intr(vcpu);
3801 }
3802 
3803 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3804 				    struct kvm_interrupt *irq)
3805 {
3806 	if (irq->irq >= KVM_NR_INTERRUPTS)
3807 		return -EINVAL;
3808 
3809 	if (!irqchip_in_kernel(vcpu->kvm)) {
3810 		kvm_queue_interrupt(vcpu, irq->irq, false);
3811 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3812 		return 0;
3813 	}
3814 
3815 	/*
3816 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3817 	 * fail for in-kernel 8259.
3818 	 */
3819 	if (pic_in_kernel(vcpu->kvm))
3820 		return -ENXIO;
3821 
3822 	if (vcpu->arch.pending_external_vector != -1)
3823 		return -EEXIST;
3824 
3825 	vcpu->arch.pending_external_vector = irq->irq;
3826 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3827 	return 0;
3828 }
3829 
3830 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3831 {
3832 	kvm_inject_nmi(vcpu);
3833 
3834 	return 0;
3835 }
3836 
3837 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3838 {
3839 	kvm_make_request(KVM_REQ_SMI, vcpu);
3840 
3841 	return 0;
3842 }
3843 
3844 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3845 					   struct kvm_tpr_access_ctl *tac)
3846 {
3847 	if (tac->flags)
3848 		return -EINVAL;
3849 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3850 	return 0;
3851 }
3852 
3853 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3854 					u64 mcg_cap)
3855 {
3856 	int r;
3857 	unsigned bank_num = mcg_cap & 0xff, bank;
3858 
3859 	r = -EINVAL;
3860 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3861 		goto out;
3862 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3863 		goto out;
3864 	r = 0;
3865 	vcpu->arch.mcg_cap = mcg_cap;
3866 	/* Init IA32_MCG_CTL to all 1s */
3867 	if (mcg_cap & MCG_CTL_P)
3868 		vcpu->arch.mcg_ctl = ~(u64)0;
3869 	/* Init IA32_MCi_CTL to all 1s */
3870 	for (bank = 0; bank < bank_num; bank++)
3871 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3872 
3873 	kvm_x86_ops.setup_mce(vcpu);
3874 out:
3875 	return r;
3876 }
3877 
3878 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3879 				      struct kvm_x86_mce *mce)
3880 {
3881 	u64 mcg_cap = vcpu->arch.mcg_cap;
3882 	unsigned bank_num = mcg_cap & 0xff;
3883 	u64 *banks = vcpu->arch.mce_banks;
3884 
3885 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3886 		return -EINVAL;
3887 	/*
3888 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3889 	 * reporting is disabled
3890 	 */
3891 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3892 	    vcpu->arch.mcg_ctl != ~(u64)0)
3893 		return 0;
3894 	banks += 4 * mce->bank;
3895 	/*
3896 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3897 	 * reporting is disabled for the bank
3898 	 */
3899 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3900 		return 0;
3901 	if (mce->status & MCI_STATUS_UC) {
3902 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3903 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3904 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3905 			return 0;
3906 		}
3907 		if (banks[1] & MCI_STATUS_VAL)
3908 			mce->status |= MCI_STATUS_OVER;
3909 		banks[2] = mce->addr;
3910 		banks[3] = mce->misc;
3911 		vcpu->arch.mcg_status = mce->mcg_status;
3912 		banks[1] = mce->status;
3913 		kvm_queue_exception(vcpu, MC_VECTOR);
3914 	} else if (!(banks[1] & MCI_STATUS_VAL)
3915 		   || !(banks[1] & MCI_STATUS_UC)) {
3916 		if (banks[1] & MCI_STATUS_VAL)
3917 			mce->status |= MCI_STATUS_OVER;
3918 		banks[2] = mce->addr;
3919 		banks[3] = mce->misc;
3920 		banks[1] = mce->status;
3921 	} else
3922 		banks[1] |= MCI_STATUS_OVER;
3923 	return 0;
3924 }
3925 
3926 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3927 					       struct kvm_vcpu_events *events)
3928 {
3929 	process_nmi(vcpu);
3930 
3931 	/*
3932 	 * In guest mode, payload delivery should be deferred,
3933 	 * so that the L1 hypervisor can intercept #PF before
3934 	 * CR2 is modified (or intercept #DB before DR6 is
3935 	 * modified under nVMX). Unless the per-VM capability,
3936 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3937 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3938 	 * opportunistically defer the exception payload, deliver it if the
3939 	 * capability hasn't been requested before processing a
3940 	 * KVM_GET_VCPU_EVENTS.
3941 	 */
3942 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3943 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3944 		kvm_deliver_exception_payload(vcpu);
3945 
3946 	/*
3947 	 * The API doesn't provide the instruction length for software
3948 	 * exceptions, so don't report them. As long as the guest RIP
3949 	 * isn't advanced, we should expect to encounter the exception
3950 	 * again.
3951 	 */
3952 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3953 		events->exception.injected = 0;
3954 		events->exception.pending = 0;
3955 	} else {
3956 		events->exception.injected = vcpu->arch.exception.injected;
3957 		events->exception.pending = vcpu->arch.exception.pending;
3958 		/*
3959 		 * For ABI compatibility, deliberately conflate
3960 		 * pending and injected exceptions when
3961 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3962 		 */
3963 		if (!vcpu->kvm->arch.exception_payload_enabled)
3964 			events->exception.injected |=
3965 				vcpu->arch.exception.pending;
3966 	}
3967 	events->exception.nr = vcpu->arch.exception.nr;
3968 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3969 	events->exception.error_code = vcpu->arch.exception.error_code;
3970 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3971 	events->exception_payload = vcpu->arch.exception.payload;
3972 
3973 	events->interrupt.injected =
3974 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3975 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3976 	events->interrupt.soft = 0;
3977 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3978 
3979 	events->nmi.injected = vcpu->arch.nmi_injected;
3980 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3981 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3982 	events->nmi.pad = 0;
3983 
3984 	events->sipi_vector = 0; /* never valid when reporting to user space */
3985 
3986 	events->smi.smm = is_smm(vcpu);
3987 	events->smi.pending = vcpu->arch.smi_pending;
3988 	events->smi.smm_inside_nmi =
3989 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3990 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3991 
3992 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3993 			 | KVM_VCPUEVENT_VALID_SHADOW
3994 			 | KVM_VCPUEVENT_VALID_SMM);
3995 	if (vcpu->kvm->arch.exception_payload_enabled)
3996 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3997 
3998 	memset(&events->reserved, 0, sizeof(events->reserved));
3999 }
4000 
4001 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4002 
4003 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4004 					      struct kvm_vcpu_events *events)
4005 {
4006 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4007 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4008 			      | KVM_VCPUEVENT_VALID_SHADOW
4009 			      | KVM_VCPUEVENT_VALID_SMM
4010 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4011 		return -EINVAL;
4012 
4013 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4014 		if (!vcpu->kvm->arch.exception_payload_enabled)
4015 			return -EINVAL;
4016 		if (events->exception.pending)
4017 			events->exception.injected = 0;
4018 		else
4019 			events->exception_has_payload = 0;
4020 	} else {
4021 		events->exception.pending = 0;
4022 		events->exception_has_payload = 0;
4023 	}
4024 
4025 	if ((events->exception.injected || events->exception.pending) &&
4026 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4027 		return -EINVAL;
4028 
4029 	/* INITs are latched while in SMM */
4030 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4031 	    (events->smi.smm || events->smi.pending) &&
4032 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4033 		return -EINVAL;
4034 
4035 	process_nmi(vcpu);
4036 	vcpu->arch.exception.injected = events->exception.injected;
4037 	vcpu->arch.exception.pending = events->exception.pending;
4038 	vcpu->arch.exception.nr = events->exception.nr;
4039 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4040 	vcpu->arch.exception.error_code = events->exception.error_code;
4041 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4042 	vcpu->arch.exception.payload = events->exception_payload;
4043 
4044 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4045 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4046 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4047 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4048 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4049 						  events->interrupt.shadow);
4050 
4051 	vcpu->arch.nmi_injected = events->nmi.injected;
4052 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4053 		vcpu->arch.nmi_pending = events->nmi.pending;
4054 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4055 
4056 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4057 	    lapic_in_kernel(vcpu))
4058 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4059 
4060 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4061 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4062 			if (events->smi.smm)
4063 				vcpu->arch.hflags |= HF_SMM_MASK;
4064 			else
4065 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4066 			kvm_smm_changed(vcpu);
4067 		}
4068 
4069 		vcpu->arch.smi_pending = events->smi.pending;
4070 
4071 		if (events->smi.smm) {
4072 			if (events->smi.smm_inside_nmi)
4073 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4074 			else
4075 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4076 		}
4077 
4078 		if (lapic_in_kernel(vcpu)) {
4079 			if (events->smi.latched_init)
4080 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4081 			else
4082 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4083 		}
4084 	}
4085 
4086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4087 
4088 	return 0;
4089 }
4090 
4091 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4092 					     struct kvm_debugregs *dbgregs)
4093 {
4094 	unsigned long val;
4095 
4096 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4097 	kvm_get_dr(vcpu, 6, &val);
4098 	dbgregs->dr6 = val;
4099 	dbgregs->dr7 = vcpu->arch.dr7;
4100 	dbgregs->flags = 0;
4101 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4102 }
4103 
4104 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4105 					    struct kvm_debugregs *dbgregs)
4106 {
4107 	if (dbgregs->flags)
4108 		return -EINVAL;
4109 
4110 	if (dbgregs->dr6 & ~0xffffffffull)
4111 		return -EINVAL;
4112 	if (dbgregs->dr7 & ~0xffffffffull)
4113 		return -EINVAL;
4114 
4115 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4116 	kvm_update_dr0123(vcpu);
4117 	vcpu->arch.dr6 = dbgregs->dr6;
4118 	vcpu->arch.dr7 = dbgregs->dr7;
4119 	kvm_update_dr7(vcpu);
4120 
4121 	return 0;
4122 }
4123 
4124 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4125 
4126 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4127 {
4128 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4129 	u64 xstate_bv = xsave->header.xfeatures;
4130 	u64 valid;
4131 
4132 	/*
4133 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4134 	 * leaves 0 and 1 in the loop below.
4135 	 */
4136 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4137 
4138 	/* Set XSTATE_BV */
4139 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4140 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4141 
4142 	/*
4143 	 * Copy each region from the possibly compacted offset to the
4144 	 * non-compacted offset.
4145 	 */
4146 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4147 	while (valid) {
4148 		u64 xfeature_mask = valid & -valid;
4149 		int xfeature_nr = fls64(xfeature_mask) - 1;
4150 		void *src = get_xsave_addr(xsave, xfeature_nr);
4151 
4152 		if (src) {
4153 			u32 size, offset, ecx, edx;
4154 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4155 				    &size, &offset, &ecx, &edx);
4156 			if (xfeature_nr == XFEATURE_PKRU)
4157 				memcpy(dest + offset, &vcpu->arch.pkru,
4158 				       sizeof(vcpu->arch.pkru));
4159 			else
4160 				memcpy(dest + offset, src, size);
4161 
4162 		}
4163 
4164 		valid -= xfeature_mask;
4165 	}
4166 }
4167 
4168 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4169 {
4170 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4171 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4172 	u64 valid;
4173 
4174 	/*
4175 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4176 	 * leaves 0 and 1 in the loop below.
4177 	 */
4178 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4179 
4180 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4181 	xsave->header.xfeatures = xstate_bv;
4182 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4183 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4184 
4185 	/*
4186 	 * Copy each region from the non-compacted offset to the
4187 	 * possibly compacted offset.
4188 	 */
4189 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4190 	while (valid) {
4191 		u64 xfeature_mask = valid & -valid;
4192 		int xfeature_nr = fls64(xfeature_mask) - 1;
4193 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4194 
4195 		if (dest) {
4196 			u32 size, offset, ecx, edx;
4197 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4198 				    &size, &offset, &ecx, &edx);
4199 			if (xfeature_nr == XFEATURE_PKRU)
4200 				memcpy(&vcpu->arch.pkru, src + offset,
4201 				       sizeof(vcpu->arch.pkru));
4202 			else
4203 				memcpy(dest, src + offset, size);
4204 		}
4205 
4206 		valid -= xfeature_mask;
4207 	}
4208 }
4209 
4210 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4211 					 struct kvm_xsave *guest_xsave)
4212 {
4213 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4214 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4215 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4216 	} else {
4217 		memcpy(guest_xsave->region,
4218 			&vcpu->arch.guest_fpu->state.fxsave,
4219 			sizeof(struct fxregs_state));
4220 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4221 			XFEATURE_MASK_FPSSE;
4222 	}
4223 }
4224 
4225 #define XSAVE_MXCSR_OFFSET 24
4226 
4227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4228 					struct kvm_xsave *guest_xsave)
4229 {
4230 	u64 xstate_bv =
4231 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4232 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4233 
4234 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4235 		/*
4236 		 * Here we allow setting states that are not present in
4237 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4238 		 * with old userspace.
4239 		 */
4240 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4241 			return -EINVAL;
4242 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4243 	} else {
4244 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4245 			mxcsr & ~mxcsr_feature_mask)
4246 			return -EINVAL;
4247 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4248 			guest_xsave->region, sizeof(struct fxregs_state));
4249 	}
4250 	return 0;
4251 }
4252 
4253 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4254 					struct kvm_xcrs *guest_xcrs)
4255 {
4256 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4257 		guest_xcrs->nr_xcrs = 0;
4258 		return;
4259 	}
4260 
4261 	guest_xcrs->nr_xcrs = 1;
4262 	guest_xcrs->flags = 0;
4263 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4264 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4265 }
4266 
4267 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4268 				       struct kvm_xcrs *guest_xcrs)
4269 {
4270 	int i, r = 0;
4271 
4272 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4273 		return -EINVAL;
4274 
4275 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4276 		return -EINVAL;
4277 
4278 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4279 		/* Only support XCR0 currently */
4280 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4281 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4282 				guest_xcrs->xcrs[i].value);
4283 			break;
4284 		}
4285 	if (r)
4286 		r = -EINVAL;
4287 	return r;
4288 }
4289 
4290 /*
4291  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4292  * stopped by the hypervisor.  This function will be called from the host only.
4293  * EINVAL is returned when the host attempts to set the flag for a guest that
4294  * does not support pv clocks.
4295  */
4296 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4297 {
4298 	if (!vcpu->arch.pv_time_enabled)
4299 		return -EINVAL;
4300 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4301 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4302 	return 0;
4303 }
4304 
4305 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4306 				     struct kvm_enable_cap *cap)
4307 {
4308 	int r;
4309 	uint16_t vmcs_version;
4310 	void __user *user_ptr;
4311 
4312 	if (cap->flags)
4313 		return -EINVAL;
4314 
4315 	switch (cap->cap) {
4316 	case KVM_CAP_HYPERV_SYNIC2:
4317 		if (cap->args[0])
4318 			return -EINVAL;
4319 		/* fall through */
4320 
4321 	case KVM_CAP_HYPERV_SYNIC:
4322 		if (!irqchip_in_kernel(vcpu->kvm))
4323 			return -EINVAL;
4324 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4325 					     KVM_CAP_HYPERV_SYNIC2);
4326 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4327 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4328 			return -ENOTTY;
4329 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4330 		if (!r) {
4331 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4332 			if (copy_to_user(user_ptr, &vmcs_version,
4333 					 sizeof(vmcs_version)))
4334 				r = -EFAULT;
4335 		}
4336 		return r;
4337 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4338 		if (!kvm_x86_ops.enable_direct_tlbflush)
4339 			return -ENOTTY;
4340 
4341 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4342 
4343 	default:
4344 		return -EINVAL;
4345 	}
4346 }
4347 
4348 long kvm_arch_vcpu_ioctl(struct file *filp,
4349 			 unsigned int ioctl, unsigned long arg)
4350 {
4351 	struct kvm_vcpu *vcpu = filp->private_data;
4352 	void __user *argp = (void __user *)arg;
4353 	int r;
4354 	union {
4355 		struct kvm_lapic_state *lapic;
4356 		struct kvm_xsave *xsave;
4357 		struct kvm_xcrs *xcrs;
4358 		void *buffer;
4359 	} u;
4360 
4361 	vcpu_load(vcpu);
4362 
4363 	u.buffer = NULL;
4364 	switch (ioctl) {
4365 	case KVM_GET_LAPIC: {
4366 		r = -EINVAL;
4367 		if (!lapic_in_kernel(vcpu))
4368 			goto out;
4369 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4370 				GFP_KERNEL_ACCOUNT);
4371 
4372 		r = -ENOMEM;
4373 		if (!u.lapic)
4374 			goto out;
4375 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4376 		if (r)
4377 			goto out;
4378 		r = -EFAULT;
4379 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4380 			goto out;
4381 		r = 0;
4382 		break;
4383 	}
4384 	case KVM_SET_LAPIC: {
4385 		r = -EINVAL;
4386 		if (!lapic_in_kernel(vcpu))
4387 			goto out;
4388 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4389 		if (IS_ERR(u.lapic)) {
4390 			r = PTR_ERR(u.lapic);
4391 			goto out_nofree;
4392 		}
4393 
4394 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4395 		break;
4396 	}
4397 	case KVM_INTERRUPT: {
4398 		struct kvm_interrupt irq;
4399 
4400 		r = -EFAULT;
4401 		if (copy_from_user(&irq, argp, sizeof(irq)))
4402 			goto out;
4403 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4404 		break;
4405 	}
4406 	case KVM_NMI: {
4407 		r = kvm_vcpu_ioctl_nmi(vcpu);
4408 		break;
4409 	}
4410 	case KVM_SMI: {
4411 		r = kvm_vcpu_ioctl_smi(vcpu);
4412 		break;
4413 	}
4414 	case KVM_SET_CPUID: {
4415 		struct kvm_cpuid __user *cpuid_arg = argp;
4416 		struct kvm_cpuid cpuid;
4417 
4418 		r = -EFAULT;
4419 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4420 			goto out;
4421 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4422 		break;
4423 	}
4424 	case KVM_SET_CPUID2: {
4425 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4426 		struct kvm_cpuid2 cpuid;
4427 
4428 		r = -EFAULT;
4429 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4430 			goto out;
4431 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4432 					      cpuid_arg->entries);
4433 		break;
4434 	}
4435 	case KVM_GET_CPUID2: {
4436 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4437 		struct kvm_cpuid2 cpuid;
4438 
4439 		r = -EFAULT;
4440 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4441 			goto out;
4442 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4443 					      cpuid_arg->entries);
4444 		if (r)
4445 			goto out;
4446 		r = -EFAULT;
4447 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4448 			goto out;
4449 		r = 0;
4450 		break;
4451 	}
4452 	case KVM_GET_MSRS: {
4453 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4454 		r = msr_io(vcpu, argp, do_get_msr, 1);
4455 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4456 		break;
4457 	}
4458 	case KVM_SET_MSRS: {
4459 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4460 		r = msr_io(vcpu, argp, do_set_msr, 0);
4461 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4462 		break;
4463 	}
4464 	case KVM_TPR_ACCESS_REPORTING: {
4465 		struct kvm_tpr_access_ctl tac;
4466 
4467 		r = -EFAULT;
4468 		if (copy_from_user(&tac, argp, sizeof(tac)))
4469 			goto out;
4470 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4471 		if (r)
4472 			goto out;
4473 		r = -EFAULT;
4474 		if (copy_to_user(argp, &tac, sizeof(tac)))
4475 			goto out;
4476 		r = 0;
4477 		break;
4478 	};
4479 	case KVM_SET_VAPIC_ADDR: {
4480 		struct kvm_vapic_addr va;
4481 		int idx;
4482 
4483 		r = -EINVAL;
4484 		if (!lapic_in_kernel(vcpu))
4485 			goto out;
4486 		r = -EFAULT;
4487 		if (copy_from_user(&va, argp, sizeof(va)))
4488 			goto out;
4489 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4490 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4491 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4492 		break;
4493 	}
4494 	case KVM_X86_SETUP_MCE: {
4495 		u64 mcg_cap;
4496 
4497 		r = -EFAULT;
4498 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4499 			goto out;
4500 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4501 		break;
4502 	}
4503 	case KVM_X86_SET_MCE: {
4504 		struct kvm_x86_mce mce;
4505 
4506 		r = -EFAULT;
4507 		if (copy_from_user(&mce, argp, sizeof(mce)))
4508 			goto out;
4509 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4510 		break;
4511 	}
4512 	case KVM_GET_VCPU_EVENTS: {
4513 		struct kvm_vcpu_events events;
4514 
4515 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4516 
4517 		r = -EFAULT;
4518 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4519 			break;
4520 		r = 0;
4521 		break;
4522 	}
4523 	case KVM_SET_VCPU_EVENTS: {
4524 		struct kvm_vcpu_events events;
4525 
4526 		r = -EFAULT;
4527 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4528 			break;
4529 
4530 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4531 		break;
4532 	}
4533 	case KVM_GET_DEBUGREGS: {
4534 		struct kvm_debugregs dbgregs;
4535 
4536 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4537 
4538 		r = -EFAULT;
4539 		if (copy_to_user(argp, &dbgregs,
4540 				 sizeof(struct kvm_debugregs)))
4541 			break;
4542 		r = 0;
4543 		break;
4544 	}
4545 	case KVM_SET_DEBUGREGS: {
4546 		struct kvm_debugregs dbgregs;
4547 
4548 		r = -EFAULT;
4549 		if (copy_from_user(&dbgregs, argp,
4550 				   sizeof(struct kvm_debugregs)))
4551 			break;
4552 
4553 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4554 		break;
4555 	}
4556 	case KVM_GET_XSAVE: {
4557 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4558 		r = -ENOMEM;
4559 		if (!u.xsave)
4560 			break;
4561 
4562 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4563 
4564 		r = -EFAULT;
4565 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4566 			break;
4567 		r = 0;
4568 		break;
4569 	}
4570 	case KVM_SET_XSAVE: {
4571 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4572 		if (IS_ERR(u.xsave)) {
4573 			r = PTR_ERR(u.xsave);
4574 			goto out_nofree;
4575 		}
4576 
4577 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4578 		break;
4579 	}
4580 	case KVM_GET_XCRS: {
4581 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4582 		r = -ENOMEM;
4583 		if (!u.xcrs)
4584 			break;
4585 
4586 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4587 
4588 		r = -EFAULT;
4589 		if (copy_to_user(argp, u.xcrs,
4590 				 sizeof(struct kvm_xcrs)))
4591 			break;
4592 		r = 0;
4593 		break;
4594 	}
4595 	case KVM_SET_XCRS: {
4596 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4597 		if (IS_ERR(u.xcrs)) {
4598 			r = PTR_ERR(u.xcrs);
4599 			goto out_nofree;
4600 		}
4601 
4602 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4603 		break;
4604 	}
4605 	case KVM_SET_TSC_KHZ: {
4606 		u32 user_tsc_khz;
4607 
4608 		r = -EINVAL;
4609 		user_tsc_khz = (u32)arg;
4610 
4611 		if (kvm_has_tsc_control &&
4612 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4613 			goto out;
4614 
4615 		if (user_tsc_khz == 0)
4616 			user_tsc_khz = tsc_khz;
4617 
4618 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4619 			r = 0;
4620 
4621 		goto out;
4622 	}
4623 	case KVM_GET_TSC_KHZ: {
4624 		r = vcpu->arch.virtual_tsc_khz;
4625 		goto out;
4626 	}
4627 	case KVM_KVMCLOCK_CTRL: {
4628 		r = kvm_set_guest_paused(vcpu);
4629 		goto out;
4630 	}
4631 	case KVM_ENABLE_CAP: {
4632 		struct kvm_enable_cap cap;
4633 
4634 		r = -EFAULT;
4635 		if (copy_from_user(&cap, argp, sizeof(cap)))
4636 			goto out;
4637 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4638 		break;
4639 	}
4640 	case KVM_GET_NESTED_STATE: {
4641 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4642 		u32 user_data_size;
4643 
4644 		r = -EINVAL;
4645 		if (!kvm_x86_ops.nested_ops->get_state)
4646 			break;
4647 
4648 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4649 		r = -EFAULT;
4650 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4651 			break;
4652 
4653 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4654 						     user_data_size);
4655 		if (r < 0)
4656 			break;
4657 
4658 		if (r > user_data_size) {
4659 			if (put_user(r, &user_kvm_nested_state->size))
4660 				r = -EFAULT;
4661 			else
4662 				r = -E2BIG;
4663 			break;
4664 		}
4665 
4666 		r = 0;
4667 		break;
4668 	}
4669 	case KVM_SET_NESTED_STATE: {
4670 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4671 		struct kvm_nested_state kvm_state;
4672 		int idx;
4673 
4674 		r = -EINVAL;
4675 		if (!kvm_x86_ops.nested_ops->set_state)
4676 			break;
4677 
4678 		r = -EFAULT;
4679 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4680 			break;
4681 
4682 		r = -EINVAL;
4683 		if (kvm_state.size < sizeof(kvm_state))
4684 			break;
4685 
4686 		if (kvm_state.flags &
4687 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4688 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4689 		      | KVM_STATE_NESTED_GIF_SET))
4690 			break;
4691 
4692 		/* nested_run_pending implies guest_mode.  */
4693 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4694 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4695 			break;
4696 
4697 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4698 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4699 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4700 		break;
4701 	}
4702 	case KVM_GET_SUPPORTED_HV_CPUID: {
4703 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4704 		struct kvm_cpuid2 cpuid;
4705 
4706 		r = -EFAULT;
4707 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4708 			goto out;
4709 
4710 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4711 						cpuid_arg->entries);
4712 		if (r)
4713 			goto out;
4714 
4715 		r = -EFAULT;
4716 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4717 			goto out;
4718 		r = 0;
4719 		break;
4720 	}
4721 	default:
4722 		r = -EINVAL;
4723 	}
4724 out:
4725 	kfree(u.buffer);
4726 out_nofree:
4727 	vcpu_put(vcpu);
4728 	return r;
4729 }
4730 
4731 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4732 {
4733 	return VM_FAULT_SIGBUS;
4734 }
4735 
4736 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4737 {
4738 	int ret;
4739 
4740 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4741 		return -EINVAL;
4742 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4743 	return ret;
4744 }
4745 
4746 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4747 					      u64 ident_addr)
4748 {
4749 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4750 }
4751 
4752 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4753 					 unsigned long kvm_nr_mmu_pages)
4754 {
4755 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4756 		return -EINVAL;
4757 
4758 	mutex_lock(&kvm->slots_lock);
4759 
4760 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4761 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4762 
4763 	mutex_unlock(&kvm->slots_lock);
4764 	return 0;
4765 }
4766 
4767 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4768 {
4769 	return kvm->arch.n_max_mmu_pages;
4770 }
4771 
4772 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4773 {
4774 	struct kvm_pic *pic = kvm->arch.vpic;
4775 	int r;
4776 
4777 	r = 0;
4778 	switch (chip->chip_id) {
4779 	case KVM_IRQCHIP_PIC_MASTER:
4780 		memcpy(&chip->chip.pic, &pic->pics[0],
4781 			sizeof(struct kvm_pic_state));
4782 		break;
4783 	case KVM_IRQCHIP_PIC_SLAVE:
4784 		memcpy(&chip->chip.pic, &pic->pics[1],
4785 			sizeof(struct kvm_pic_state));
4786 		break;
4787 	case KVM_IRQCHIP_IOAPIC:
4788 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4789 		break;
4790 	default:
4791 		r = -EINVAL;
4792 		break;
4793 	}
4794 	return r;
4795 }
4796 
4797 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4798 {
4799 	struct kvm_pic *pic = kvm->arch.vpic;
4800 	int r;
4801 
4802 	r = 0;
4803 	switch (chip->chip_id) {
4804 	case KVM_IRQCHIP_PIC_MASTER:
4805 		spin_lock(&pic->lock);
4806 		memcpy(&pic->pics[0], &chip->chip.pic,
4807 			sizeof(struct kvm_pic_state));
4808 		spin_unlock(&pic->lock);
4809 		break;
4810 	case KVM_IRQCHIP_PIC_SLAVE:
4811 		spin_lock(&pic->lock);
4812 		memcpy(&pic->pics[1], &chip->chip.pic,
4813 			sizeof(struct kvm_pic_state));
4814 		spin_unlock(&pic->lock);
4815 		break;
4816 	case KVM_IRQCHIP_IOAPIC:
4817 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4818 		break;
4819 	default:
4820 		r = -EINVAL;
4821 		break;
4822 	}
4823 	kvm_pic_update_irq(pic);
4824 	return r;
4825 }
4826 
4827 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4828 {
4829 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4830 
4831 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4832 
4833 	mutex_lock(&kps->lock);
4834 	memcpy(ps, &kps->channels, sizeof(*ps));
4835 	mutex_unlock(&kps->lock);
4836 	return 0;
4837 }
4838 
4839 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4840 {
4841 	int i;
4842 	struct kvm_pit *pit = kvm->arch.vpit;
4843 
4844 	mutex_lock(&pit->pit_state.lock);
4845 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4846 	for (i = 0; i < 3; i++)
4847 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4848 	mutex_unlock(&pit->pit_state.lock);
4849 	return 0;
4850 }
4851 
4852 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4853 {
4854 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4855 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4856 		sizeof(ps->channels));
4857 	ps->flags = kvm->arch.vpit->pit_state.flags;
4858 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4859 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4860 	return 0;
4861 }
4862 
4863 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4864 {
4865 	int start = 0;
4866 	int i;
4867 	u32 prev_legacy, cur_legacy;
4868 	struct kvm_pit *pit = kvm->arch.vpit;
4869 
4870 	mutex_lock(&pit->pit_state.lock);
4871 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4872 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4873 	if (!prev_legacy && cur_legacy)
4874 		start = 1;
4875 	memcpy(&pit->pit_state.channels, &ps->channels,
4876 	       sizeof(pit->pit_state.channels));
4877 	pit->pit_state.flags = ps->flags;
4878 	for (i = 0; i < 3; i++)
4879 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4880 				   start && i == 0);
4881 	mutex_unlock(&pit->pit_state.lock);
4882 	return 0;
4883 }
4884 
4885 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4886 				 struct kvm_reinject_control *control)
4887 {
4888 	struct kvm_pit *pit = kvm->arch.vpit;
4889 
4890 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4891 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4892 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4893 	 */
4894 	mutex_lock(&pit->pit_state.lock);
4895 	kvm_pit_set_reinject(pit, control->pit_reinject);
4896 	mutex_unlock(&pit->pit_state.lock);
4897 
4898 	return 0;
4899 }
4900 
4901 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4902 {
4903 	/*
4904 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4905 	 */
4906 	if (kvm_x86_ops.flush_log_dirty)
4907 		kvm_x86_ops.flush_log_dirty(kvm);
4908 }
4909 
4910 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4911 			bool line_status)
4912 {
4913 	if (!irqchip_in_kernel(kvm))
4914 		return -ENXIO;
4915 
4916 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4917 					irq_event->irq, irq_event->level,
4918 					line_status);
4919 	return 0;
4920 }
4921 
4922 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4923 			    struct kvm_enable_cap *cap)
4924 {
4925 	int r;
4926 
4927 	if (cap->flags)
4928 		return -EINVAL;
4929 
4930 	switch (cap->cap) {
4931 	case KVM_CAP_DISABLE_QUIRKS:
4932 		kvm->arch.disabled_quirks = cap->args[0];
4933 		r = 0;
4934 		break;
4935 	case KVM_CAP_SPLIT_IRQCHIP: {
4936 		mutex_lock(&kvm->lock);
4937 		r = -EINVAL;
4938 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4939 			goto split_irqchip_unlock;
4940 		r = -EEXIST;
4941 		if (irqchip_in_kernel(kvm))
4942 			goto split_irqchip_unlock;
4943 		if (kvm->created_vcpus)
4944 			goto split_irqchip_unlock;
4945 		r = kvm_setup_empty_irq_routing(kvm);
4946 		if (r)
4947 			goto split_irqchip_unlock;
4948 		/* Pairs with irqchip_in_kernel. */
4949 		smp_wmb();
4950 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4951 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4952 		r = 0;
4953 split_irqchip_unlock:
4954 		mutex_unlock(&kvm->lock);
4955 		break;
4956 	}
4957 	case KVM_CAP_X2APIC_API:
4958 		r = -EINVAL;
4959 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4960 			break;
4961 
4962 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4963 			kvm->arch.x2apic_format = true;
4964 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4965 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4966 
4967 		r = 0;
4968 		break;
4969 	case KVM_CAP_X86_DISABLE_EXITS:
4970 		r = -EINVAL;
4971 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4972 			break;
4973 
4974 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4975 			kvm_can_mwait_in_guest())
4976 			kvm->arch.mwait_in_guest = true;
4977 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4978 			kvm->arch.hlt_in_guest = true;
4979 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4980 			kvm->arch.pause_in_guest = true;
4981 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4982 			kvm->arch.cstate_in_guest = true;
4983 		r = 0;
4984 		break;
4985 	case KVM_CAP_MSR_PLATFORM_INFO:
4986 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4987 		r = 0;
4988 		break;
4989 	case KVM_CAP_EXCEPTION_PAYLOAD:
4990 		kvm->arch.exception_payload_enabled = cap->args[0];
4991 		r = 0;
4992 		break;
4993 	default:
4994 		r = -EINVAL;
4995 		break;
4996 	}
4997 	return r;
4998 }
4999 
5000 long kvm_arch_vm_ioctl(struct file *filp,
5001 		       unsigned int ioctl, unsigned long arg)
5002 {
5003 	struct kvm *kvm = filp->private_data;
5004 	void __user *argp = (void __user *)arg;
5005 	int r = -ENOTTY;
5006 	/*
5007 	 * This union makes it completely explicit to gcc-3.x
5008 	 * that these two variables' stack usage should be
5009 	 * combined, not added together.
5010 	 */
5011 	union {
5012 		struct kvm_pit_state ps;
5013 		struct kvm_pit_state2 ps2;
5014 		struct kvm_pit_config pit_config;
5015 	} u;
5016 
5017 	switch (ioctl) {
5018 	case KVM_SET_TSS_ADDR:
5019 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5020 		break;
5021 	case KVM_SET_IDENTITY_MAP_ADDR: {
5022 		u64 ident_addr;
5023 
5024 		mutex_lock(&kvm->lock);
5025 		r = -EINVAL;
5026 		if (kvm->created_vcpus)
5027 			goto set_identity_unlock;
5028 		r = -EFAULT;
5029 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5030 			goto set_identity_unlock;
5031 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5032 set_identity_unlock:
5033 		mutex_unlock(&kvm->lock);
5034 		break;
5035 	}
5036 	case KVM_SET_NR_MMU_PAGES:
5037 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5038 		break;
5039 	case KVM_GET_NR_MMU_PAGES:
5040 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5041 		break;
5042 	case KVM_CREATE_IRQCHIP: {
5043 		mutex_lock(&kvm->lock);
5044 
5045 		r = -EEXIST;
5046 		if (irqchip_in_kernel(kvm))
5047 			goto create_irqchip_unlock;
5048 
5049 		r = -EINVAL;
5050 		if (kvm->created_vcpus)
5051 			goto create_irqchip_unlock;
5052 
5053 		r = kvm_pic_init(kvm);
5054 		if (r)
5055 			goto create_irqchip_unlock;
5056 
5057 		r = kvm_ioapic_init(kvm);
5058 		if (r) {
5059 			kvm_pic_destroy(kvm);
5060 			goto create_irqchip_unlock;
5061 		}
5062 
5063 		r = kvm_setup_default_irq_routing(kvm);
5064 		if (r) {
5065 			kvm_ioapic_destroy(kvm);
5066 			kvm_pic_destroy(kvm);
5067 			goto create_irqchip_unlock;
5068 		}
5069 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5070 		smp_wmb();
5071 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5072 	create_irqchip_unlock:
5073 		mutex_unlock(&kvm->lock);
5074 		break;
5075 	}
5076 	case KVM_CREATE_PIT:
5077 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5078 		goto create_pit;
5079 	case KVM_CREATE_PIT2:
5080 		r = -EFAULT;
5081 		if (copy_from_user(&u.pit_config, argp,
5082 				   sizeof(struct kvm_pit_config)))
5083 			goto out;
5084 	create_pit:
5085 		mutex_lock(&kvm->lock);
5086 		r = -EEXIST;
5087 		if (kvm->arch.vpit)
5088 			goto create_pit_unlock;
5089 		r = -ENOMEM;
5090 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5091 		if (kvm->arch.vpit)
5092 			r = 0;
5093 	create_pit_unlock:
5094 		mutex_unlock(&kvm->lock);
5095 		break;
5096 	case KVM_GET_IRQCHIP: {
5097 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5098 		struct kvm_irqchip *chip;
5099 
5100 		chip = memdup_user(argp, sizeof(*chip));
5101 		if (IS_ERR(chip)) {
5102 			r = PTR_ERR(chip);
5103 			goto out;
5104 		}
5105 
5106 		r = -ENXIO;
5107 		if (!irqchip_kernel(kvm))
5108 			goto get_irqchip_out;
5109 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5110 		if (r)
5111 			goto get_irqchip_out;
5112 		r = -EFAULT;
5113 		if (copy_to_user(argp, chip, sizeof(*chip)))
5114 			goto get_irqchip_out;
5115 		r = 0;
5116 	get_irqchip_out:
5117 		kfree(chip);
5118 		break;
5119 	}
5120 	case KVM_SET_IRQCHIP: {
5121 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5122 		struct kvm_irqchip *chip;
5123 
5124 		chip = memdup_user(argp, sizeof(*chip));
5125 		if (IS_ERR(chip)) {
5126 			r = PTR_ERR(chip);
5127 			goto out;
5128 		}
5129 
5130 		r = -ENXIO;
5131 		if (!irqchip_kernel(kvm))
5132 			goto set_irqchip_out;
5133 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5134 	set_irqchip_out:
5135 		kfree(chip);
5136 		break;
5137 	}
5138 	case KVM_GET_PIT: {
5139 		r = -EFAULT;
5140 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5141 			goto out;
5142 		r = -ENXIO;
5143 		if (!kvm->arch.vpit)
5144 			goto out;
5145 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5146 		if (r)
5147 			goto out;
5148 		r = -EFAULT;
5149 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5150 			goto out;
5151 		r = 0;
5152 		break;
5153 	}
5154 	case KVM_SET_PIT: {
5155 		r = -EFAULT;
5156 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5157 			goto out;
5158 		mutex_lock(&kvm->lock);
5159 		r = -ENXIO;
5160 		if (!kvm->arch.vpit)
5161 			goto set_pit_out;
5162 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5163 set_pit_out:
5164 		mutex_unlock(&kvm->lock);
5165 		break;
5166 	}
5167 	case KVM_GET_PIT2: {
5168 		r = -ENXIO;
5169 		if (!kvm->arch.vpit)
5170 			goto out;
5171 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5172 		if (r)
5173 			goto out;
5174 		r = -EFAULT;
5175 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5176 			goto out;
5177 		r = 0;
5178 		break;
5179 	}
5180 	case KVM_SET_PIT2: {
5181 		r = -EFAULT;
5182 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5183 			goto out;
5184 		mutex_lock(&kvm->lock);
5185 		r = -ENXIO;
5186 		if (!kvm->arch.vpit)
5187 			goto set_pit2_out;
5188 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5189 set_pit2_out:
5190 		mutex_unlock(&kvm->lock);
5191 		break;
5192 	}
5193 	case KVM_REINJECT_CONTROL: {
5194 		struct kvm_reinject_control control;
5195 		r =  -EFAULT;
5196 		if (copy_from_user(&control, argp, sizeof(control)))
5197 			goto out;
5198 		r = -ENXIO;
5199 		if (!kvm->arch.vpit)
5200 			goto out;
5201 		r = kvm_vm_ioctl_reinject(kvm, &control);
5202 		break;
5203 	}
5204 	case KVM_SET_BOOT_CPU_ID:
5205 		r = 0;
5206 		mutex_lock(&kvm->lock);
5207 		if (kvm->created_vcpus)
5208 			r = -EBUSY;
5209 		else
5210 			kvm->arch.bsp_vcpu_id = arg;
5211 		mutex_unlock(&kvm->lock);
5212 		break;
5213 	case KVM_XEN_HVM_CONFIG: {
5214 		struct kvm_xen_hvm_config xhc;
5215 		r = -EFAULT;
5216 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5217 			goto out;
5218 		r = -EINVAL;
5219 		if (xhc.flags)
5220 			goto out;
5221 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5222 		r = 0;
5223 		break;
5224 	}
5225 	case KVM_SET_CLOCK: {
5226 		struct kvm_clock_data user_ns;
5227 		u64 now_ns;
5228 
5229 		r = -EFAULT;
5230 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5231 			goto out;
5232 
5233 		r = -EINVAL;
5234 		if (user_ns.flags)
5235 			goto out;
5236 
5237 		r = 0;
5238 		/*
5239 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5240 		 * kvm_gen_update_masterclock() can be cut down to locked
5241 		 * pvclock_update_vm_gtod_copy().
5242 		 */
5243 		kvm_gen_update_masterclock(kvm);
5244 		now_ns = get_kvmclock_ns(kvm);
5245 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5246 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5247 		break;
5248 	}
5249 	case KVM_GET_CLOCK: {
5250 		struct kvm_clock_data user_ns;
5251 		u64 now_ns;
5252 
5253 		now_ns = get_kvmclock_ns(kvm);
5254 		user_ns.clock = now_ns;
5255 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5256 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5257 
5258 		r = -EFAULT;
5259 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5260 			goto out;
5261 		r = 0;
5262 		break;
5263 	}
5264 	case KVM_MEMORY_ENCRYPT_OP: {
5265 		r = -ENOTTY;
5266 		if (kvm_x86_ops.mem_enc_op)
5267 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5268 		break;
5269 	}
5270 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5271 		struct kvm_enc_region region;
5272 
5273 		r = -EFAULT;
5274 		if (copy_from_user(&region, argp, sizeof(region)))
5275 			goto out;
5276 
5277 		r = -ENOTTY;
5278 		if (kvm_x86_ops.mem_enc_reg_region)
5279 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5280 		break;
5281 	}
5282 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5283 		struct kvm_enc_region region;
5284 
5285 		r = -EFAULT;
5286 		if (copy_from_user(&region, argp, sizeof(region)))
5287 			goto out;
5288 
5289 		r = -ENOTTY;
5290 		if (kvm_x86_ops.mem_enc_unreg_region)
5291 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5292 		break;
5293 	}
5294 	case KVM_HYPERV_EVENTFD: {
5295 		struct kvm_hyperv_eventfd hvevfd;
5296 
5297 		r = -EFAULT;
5298 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5299 			goto out;
5300 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5301 		break;
5302 	}
5303 	case KVM_SET_PMU_EVENT_FILTER:
5304 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5305 		break;
5306 	default:
5307 		r = -ENOTTY;
5308 	}
5309 out:
5310 	return r;
5311 }
5312 
5313 static void kvm_init_msr_list(void)
5314 {
5315 	struct x86_pmu_capability x86_pmu;
5316 	u32 dummy[2];
5317 	unsigned i;
5318 
5319 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5320 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5321 
5322 	perf_get_x86_pmu_capability(&x86_pmu);
5323 
5324 	num_msrs_to_save = 0;
5325 	num_emulated_msrs = 0;
5326 	num_msr_based_features = 0;
5327 
5328 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5329 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5330 			continue;
5331 
5332 		/*
5333 		 * Even MSRs that are valid in the host may not be exposed
5334 		 * to the guests in some cases.
5335 		 */
5336 		switch (msrs_to_save_all[i]) {
5337 		case MSR_IA32_BNDCFGS:
5338 			if (!kvm_mpx_supported())
5339 				continue;
5340 			break;
5341 		case MSR_TSC_AUX:
5342 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5343 				continue;
5344 			break;
5345 		case MSR_IA32_UMWAIT_CONTROL:
5346 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5347 				continue;
5348 			break;
5349 		case MSR_IA32_RTIT_CTL:
5350 		case MSR_IA32_RTIT_STATUS:
5351 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5352 				continue;
5353 			break;
5354 		case MSR_IA32_RTIT_CR3_MATCH:
5355 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5356 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5357 				continue;
5358 			break;
5359 		case MSR_IA32_RTIT_OUTPUT_BASE:
5360 		case MSR_IA32_RTIT_OUTPUT_MASK:
5361 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5362 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5363 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5364 				continue;
5365 			break;
5366 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5367 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5368 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5369 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5370 				continue;
5371 			break;
5372 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5373 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5374 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5375 				continue;
5376 			break;
5377 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5378 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5379 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5380 				continue;
5381 			break;
5382 		default:
5383 			break;
5384 		}
5385 
5386 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5387 	}
5388 
5389 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5390 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5391 			continue;
5392 
5393 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5394 	}
5395 
5396 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5397 		struct kvm_msr_entry msr;
5398 
5399 		msr.index = msr_based_features_all[i];
5400 		if (kvm_get_msr_feature(&msr))
5401 			continue;
5402 
5403 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5404 	}
5405 }
5406 
5407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5408 			   const void *v)
5409 {
5410 	int handled = 0;
5411 	int n;
5412 
5413 	do {
5414 		n = min(len, 8);
5415 		if (!(lapic_in_kernel(vcpu) &&
5416 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5417 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5418 			break;
5419 		handled += n;
5420 		addr += n;
5421 		len -= n;
5422 		v += n;
5423 	} while (len);
5424 
5425 	return handled;
5426 }
5427 
5428 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5429 {
5430 	int handled = 0;
5431 	int n;
5432 
5433 	do {
5434 		n = min(len, 8);
5435 		if (!(lapic_in_kernel(vcpu) &&
5436 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5437 					 addr, n, v))
5438 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5439 			break;
5440 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5441 		handled += n;
5442 		addr += n;
5443 		len -= n;
5444 		v += n;
5445 	} while (len);
5446 
5447 	return handled;
5448 }
5449 
5450 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5451 			struct kvm_segment *var, int seg)
5452 {
5453 	kvm_x86_ops.set_segment(vcpu, var, seg);
5454 }
5455 
5456 void kvm_get_segment(struct kvm_vcpu *vcpu,
5457 		     struct kvm_segment *var, int seg)
5458 {
5459 	kvm_x86_ops.get_segment(vcpu, var, seg);
5460 }
5461 
5462 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5463 			   struct x86_exception *exception)
5464 {
5465 	gpa_t t_gpa;
5466 
5467 	BUG_ON(!mmu_is_nested(vcpu));
5468 
5469 	/* NPT walks are always user-walks */
5470 	access |= PFERR_USER_MASK;
5471 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5472 
5473 	return t_gpa;
5474 }
5475 
5476 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5477 			      struct x86_exception *exception)
5478 {
5479 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5480 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5481 }
5482 
5483  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5484 				struct x86_exception *exception)
5485 {
5486 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5487 	access |= PFERR_FETCH_MASK;
5488 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5489 }
5490 
5491 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5492 			       struct x86_exception *exception)
5493 {
5494 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5495 	access |= PFERR_WRITE_MASK;
5496 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5497 }
5498 
5499 /* uses this to access any guest's mapped memory without checking CPL */
5500 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5501 				struct x86_exception *exception)
5502 {
5503 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5504 }
5505 
5506 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5507 				      struct kvm_vcpu *vcpu, u32 access,
5508 				      struct x86_exception *exception)
5509 {
5510 	void *data = val;
5511 	int r = X86EMUL_CONTINUE;
5512 
5513 	while (bytes) {
5514 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5515 							    exception);
5516 		unsigned offset = addr & (PAGE_SIZE-1);
5517 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5518 		int ret;
5519 
5520 		if (gpa == UNMAPPED_GVA)
5521 			return X86EMUL_PROPAGATE_FAULT;
5522 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5523 					       offset, toread);
5524 		if (ret < 0) {
5525 			r = X86EMUL_IO_NEEDED;
5526 			goto out;
5527 		}
5528 
5529 		bytes -= toread;
5530 		data += toread;
5531 		addr += toread;
5532 	}
5533 out:
5534 	return r;
5535 }
5536 
5537 /* used for instruction fetching */
5538 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5539 				gva_t addr, void *val, unsigned int bytes,
5540 				struct x86_exception *exception)
5541 {
5542 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5543 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5544 	unsigned offset;
5545 	int ret;
5546 
5547 	/* Inline kvm_read_guest_virt_helper for speed.  */
5548 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5549 						    exception);
5550 	if (unlikely(gpa == UNMAPPED_GVA))
5551 		return X86EMUL_PROPAGATE_FAULT;
5552 
5553 	offset = addr & (PAGE_SIZE-1);
5554 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5555 		bytes = (unsigned)PAGE_SIZE - offset;
5556 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5557 				       offset, bytes);
5558 	if (unlikely(ret < 0))
5559 		return X86EMUL_IO_NEEDED;
5560 
5561 	return X86EMUL_CONTINUE;
5562 }
5563 
5564 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5565 			       gva_t addr, void *val, unsigned int bytes,
5566 			       struct x86_exception *exception)
5567 {
5568 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5569 
5570 	/*
5571 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5572 	 * is returned, but our callers are not ready for that and they blindly
5573 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5574 	 * uninitialized kernel stack memory into cr2 and error code.
5575 	 */
5576 	memset(exception, 0, sizeof(*exception));
5577 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5578 					  exception);
5579 }
5580 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5581 
5582 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5583 			     gva_t addr, void *val, unsigned int bytes,
5584 			     struct x86_exception *exception, bool system)
5585 {
5586 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5587 	u32 access = 0;
5588 
5589 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5590 		access |= PFERR_USER_MASK;
5591 
5592 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5593 }
5594 
5595 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5596 		unsigned long addr, void *val, unsigned int bytes)
5597 {
5598 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5599 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5600 
5601 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5602 }
5603 
5604 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5605 				      struct kvm_vcpu *vcpu, u32 access,
5606 				      struct x86_exception *exception)
5607 {
5608 	void *data = val;
5609 	int r = X86EMUL_CONTINUE;
5610 
5611 	while (bytes) {
5612 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5613 							     access,
5614 							     exception);
5615 		unsigned offset = addr & (PAGE_SIZE-1);
5616 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5617 		int ret;
5618 
5619 		if (gpa == UNMAPPED_GVA)
5620 			return X86EMUL_PROPAGATE_FAULT;
5621 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5622 		if (ret < 0) {
5623 			r = X86EMUL_IO_NEEDED;
5624 			goto out;
5625 		}
5626 
5627 		bytes -= towrite;
5628 		data += towrite;
5629 		addr += towrite;
5630 	}
5631 out:
5632 	return r;
5633 }
5634 
5635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5636 			      unsigned int bytes, struct x86_exception *exception,
5637 			      bool system)
5638 {
5639 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5640 	u32 access = PFERR_WRITE_MASK;
5641 
5642 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5643 		access |= PFERR_USER_MASK;
5644 
5645 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5646 					   access, exception);
5647 }
5648 
5649 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5650 				unsigned int bytes, struct x86_exception *exception)
5651 {
5652 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5653 	vcpu->arch.l1tf_flush_l1d = true;
5654 
5655 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5656 					   PFERR_WRITE_MASK, exception);
5657 }
5658 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5659 
5660 int handle_ud(struct kvm_vcpu *vcpu)
5661 {
5662 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5663 	int emul_type = EMULTYPE_TRAP_UD;
5664 	char sig[5]; /* ud2; .ascii "kvm" */
5665 	struct x86_exception e;
5666 
5667 	if (force_emulation_prefix &&
5668 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5669 				sig, sizeof(sig), &e) == 0 &&
5670 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5671 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5672 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5673 	}
5674 
5675 	return kvm_emulate_instruction(vcpu, emul_type);
5676 }
5677 EXPORT_SYMBOL_GPL(handle_ud);
5678 
5679 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5680 			    gpa_t gpa, bool write)
5681 {
5682 	/* For APIC access vmexit */
5683 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5684 		return 1;
5685 
5686 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5687 		trace_vcpu_match_mmio(gva, gpa, write, true);
5688 		return 1;
5689 	}
5690 
5691 	return 0;
5692 }
5693 
5694 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5695 				gpa_t *gpa, struct x86_exception *exception,
5696 				bool write)
5697 {
5698 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5699 		| (write ? PFERR_WRITE_MASK : 0);
5700 
5701 	/*
5702 	 * currently PKRU is only applied to ept enabled guest so
5703 	 * there is no pkey in EPT page table for L1 guest or EPT
5704 	 * shadow page table for L2 guest.
5705 	 */
5706 	if (vcpu_match_mmio_gva(vcpu, gva)
5707 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5708 				 vcpu->arch.mmio_access, 0, access)) {
5709 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5710 					(gva & (PAGE_SIZE - 1));
5711 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5712 		return 1;
5713 	}
5714 
5715 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5716 
5717 	if (*gpa == UNMAPPED_GVA)
5718 		return -1;
5719 
5720 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5721 }
5722 
5723 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5724 			const void *val, int bytes)
5725 {
5726 	int ret;
5727 
5728 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5729 	if (ret < 0)
5730 		return 0;
5731 	kvm_page_track_write(vcpu, gpa, val, bytes);
5732 	return 1;
5733 }
5734 
5735 struct read_write_emulator_ops {
5736 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5737 				  int bytes);
5738 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5739 				  void *val, int bytes);
5740 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5741 			       int bytes, void *val);
5742 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5743 				    void *val, int bytes);
5744 	bool write;
5745 };
5746 
5747 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5748 {
5749 	if (vcpu->mmio_read_completed) {
5750 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5751 			       vcpu->mmio_fragments[0].gpa, val);
5752 		vcpu->mmio_read_completed = 0;
5753 		return 1;
5754 	}
5755 
5756 	return 0;
5757 }
5758 
5759 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5760 			void *val, int bytes)
5761 {
5762 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5763 }
5764 
5765 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5766 			 void *val, int bytes)
5767 {
5768 	return emulator_write_phys(vcpu, gpa, val, bytes);
5769 }
5770 
5771 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5772 {
5773 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5774 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5775 }
5776 
5777 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5778 			  void *val, int bytes)
5779 {
5780 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5781 	return X86EMUL_IO_NEEDED;
5782 }
5783 
5784 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5785 			   void *val, int bytes)
5786 {
5787 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5788 
5789 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5790 	return X86EMUL_CONTINUE;
5791 }
5792 
5793 static const struct read_write_emulator_ops read_emultor = {
5794 	.read_write_prepare = read_prepare,
5795 	.read_write_emulate = read_emulate,
5796 	.read_write_mmio = vcpu_mmio_read,
5797 	.read_write_exit_mmio = read_exit_mmio,
5798 };
5799 
5800 static const struct read_write_emulator_ops write_emultor = {
5801 	.read_write_emulate = write_emulate,
5802 	.read_write_mmio = write_mmio,
5803 	.read_write_exit_mmio = write_exit_mmio,
5804 	.write = true,
5805 };
5806 
5807 static int emulator_read_write_onepage(unsigned long addr, void *val,
5808 				       unsigned int bytes,
5809 				       struct x86_exception *exception,
5810 				       struct kvm_vcpu *vcpu,
5811 				       const struct read_write_emulator_ops *ops)
5812 {
5813 	gpa_t gpa;
5814 	int handled, ret;
5815 	bool write = ops->write;
5816 	struct kvm_mmio_fragment *frag;
5817 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5818 
5819 	/*
5820 	 * If the exit was due to a NPF we may already have a GPA.
5821 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5822 	 * Note, this cannot be used on string operations since string
5823 	 * operation using rep will only have the initial GPA from the NPF
5824 	 * occurred.
5825 	 */
5826 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5827 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5828 		gpa = ctxt->gpa_val;
5829 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5830 	} else {
5831 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5832 		if (ret < 0)
5833 			return X86EMUL_PROPAGATE_FAULT;
5834 	}
5835 
5836 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5837 		return X86EMUL_CONTINUE;
5838 
5839 	/*
5840 	 * Is this MMIO handled locally?
5841 	 */
5842 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5843 	if (handled == bytes)
5844 		return X86EMUL_CONTINUE;
5845 
5846 	gpa += handled;
5847 	bytes -= handled;
5848 	val += handled;
5849 
5850 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5851 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5852 	frag->gpa = gpa;
5853 	frag->data = val;
5854 	frag->len = bytes;
5855 	return X86EMUL_CONTINUE;
5856 }
5857 
5858 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5859 			unsigned long addr,
5860 			void *val, unsigned int bytes,
5861 			struct x86_exception *exception,
5862 			const struct read_write_emulator_ops *ops)
5863 {
5864 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5865 	gpa_t gpa;
5866 	int rc;
5867 
5868 	if (ops->read_write_prepare &&
5869 		  ops->read_write_prepare(vcpu, val, bytes))
5870 		return X86EMUL_CONTINUE;
5871 
5872 	vcpu->mmio_nr_fragments = 0;
5873 
5874 	/* Crossing a page boundary? */
5875 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5876 		int now;
5877 
5878 		now = -addr & ~PAGE_MASK;
5879 		rc = emulator_read_write_onepage(addr, val, now, exception,
5880 						 vcpu, ops);
5881 
5882 		if (rc != X86EMUL_CONTINUE)
5883 			return rc;
5884 		addr += now;
5885 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5886 			addr = (u32)addr;
5887 		val += now;
5888 		bytes -= now;
5889 	}
5890 
5891 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5892 					 vcpu, ops);
5893 	if (rc != X86EMUL_CONTINUE)
5894 		return rc;
5895 
5896 	if (!vcpu->mmio_nr_fragments)
5897 		return rc;
5898 
5899 	gpa = vcpu->mmio_fragments[0].gpa;
5900 
5901 	vcpu->mmio_needed = 1;
5902 	vcpu->mmio_cur_fragment = 0;
5903 
5904 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5905 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5906 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5907 	vcpu->run->mmio.phys_addr = gpa;
5908 
5909 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5910 }
5911 
5912 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5913 				  unsigned long addr,
5914 				  void *val,
5915 				  unsigned int bytes,
5916 				  struct x86_exception *exception)
5917 {
5918 	return emulator_read_write(ctxt, addr, val, bytes,
5919 				   exception, &read_emultor);
5920 }
5921 
5922 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5923 			    unsigned long addr,
5924 			    const void *val,
5925 			    unsigned int bytes,
5926 			    struct x86_exception *exception)
5927 {
5928 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5929 				   exception, &write_emultor);
5930 }
5931 
5932 #define CMPXCHG_TYPE(t, ptr, old, new) \
5933 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5934 
5935 #ifdef CONFIG_X86_64
5936 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5937 #else
5938 #  define CMPXCHG64(ptr, old, new) \
5939 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5940 #endif
5941 
5942 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5943 				     unsigned long addr,
5944 				     const void *old,
5945 				     const void *new,
5946 				     unsigned int bytes,
5947 				     struct x86_exception *exception)
5948 {
5949 	struct kvm_host_map map;
5950 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5951 	u64 page_line_mask;
5952 	gpa_t gpa;
5953 	char *kaddr;
5954 	bool exchanged;
5955 
5956 	/* guests cmpxchg8b have to be emulated atomically */
5957 	if (bytes > 8 || (bytes & (bytes - 1)))
5958 		goto emul_write;
5959 
5960 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5961 
5962 	if (gpa == UNMAPPED_GVA ||
5963 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5964 		goto emul_write;
5965 
5966 	/*
5967 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
5968 	 * enabled in the host and the access splits a cache line.
5969 	 */
5970 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5971 		page_line_mask = ~(cache_line_size() - 1);
5972 	else
5973 		page_line_mask = PAGE_MASK;
5974 
5975 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5976 		goto emul_write;
5977 
5978 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5979 		goto emul_write;
5980 
5981 	kaddr = map.hva + offset_in_page(gpa);
5982 
5983 	switch (bytes) {
5984 	case 1:
5985 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5986 		break;
5987 	case 2:
5988 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5989 		break;
5990 	case 4:
5991 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5992 		break;
5993 	case 8:
5994 		exchanged = CMPXCHG64(kaddr, old, new);
5995 		break;
5996 	default:
5997 		BUG();
5998 	}
5999 
6000 	kvm_vcpu_unmap(vcpu, &map, true);
6001 
6002 	if (!exchanged)
6003 		return X86EMUL_CMPXCHG_FAILED;
6004 
6005 	kvm_page_track_write(vcpu, gpa, new, bytes);
6006 
6007 	return X86EMUL_CONTINUE;
6008 
6009 emul_write:
6010 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6011 
6012 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6013 }
6014 
6015 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6016 {
6017 	int r = 0, i;
6018 
6019 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6020 		if (vcpu->arch.pio.in)
6021 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6022 					    vcpu->arch.pio.size, pd);
6023 		else
6024 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6025 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6026 					     pd);
6027 		if (r)
6028 			break;
6029 		pd += vcpu->arch.pio.size;
6030 	}
6031 	return r;
6032 }
6033 
6034 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6035 			       unsigned short port, void *val,
6036 			       unsigned int count, bool in)
6037 {
6038 	vcpu->arch.pio.port = port;
6039 	vcpu->arch.pio.in = in;
6040 	vcpu->arch.pio.count  = count;
6041 	vcpu->arch.pio.size = size;
6042 
6043 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6044 		vcpu->arch.pio.count = 0;
6045 		return 1;
6046 	}
6047 
6048 	vcpu->run->exit_reason = KVM_EXIT_IO;
6049 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6050 	vcpu->run->io.size = size;
6051 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6052 	vcpu->run->io.count = count;
6053 	vcpu->run->io.port = port;
6054 
6055 	return 0;
6056 }
6057 
6058 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6059 			   unsigned short port, void *val, unsigned int count)
6060 {
6061 	int ret;
6062 
6063 	if (vcpu->arch.pio.count)
6064 		goto data_avail;
6065 
6066 	memset(vcpu->arch.pio_data, 0, size * count);
6067 
6068 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6069 	if (ret) {
6070 data_avail:
6071 		memcpy(val, vcpu->arch.pio_data, size * count);
6072 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6073 		vcpu->arch.pio.count = 0;
6074 		return 1;
6075 	}
6076 
6077 	return 0;
6078 }
6079 
6080 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6081 				    int size, unsigned short port, void *val,
6082 				    unsigned int count)
6083 {
6084 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6085 
6086 }
6087 
6088 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6089 			    unsigned short port, const void *val,
6090 			    unsigned int count)
6091 {
6092 	memcpy(vcpu->arch.pio_data, val, size * count);
6093 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6094 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6095 }
6096 
6097 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6098 				     int size, unsigned short port,
6099 				     const void *val, unsigned int count)
6100 {
6101 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6102 }
6103 
6104 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6105 {
6106 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6107 }
6108 
6109 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6110 {
6111 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6112 }
6113 
6114 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6115 {
6116 	if (!need_emulate_wbinvd(vcpu))
6117 		return X86EMUL_CONTINUE;
6118 
6119 	if (kvm_x86_ops.has_wbinvd_exit()) {
6120 		int cpu = get_cpu();
6121 
6122 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6123 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6124 				wbinvd_ipi, NULL, 1);
6125 		put_cpu();
6126 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6127 	} else
6128 		wbinvd();
6129 	return X86EMUL_CONTINUE;
6130 }
6131 
6132 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6133 {
6134 	kvm_emulate_wbinvd_noskip(vcpu);
6135 	return kvm_skip_emulated_instruction(vcpu);
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6138 
6139 
6140 
6141 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6142 {
6143 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6144 }
6145 
6146 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6147 			   unsigned long *dest)
6148 {
6149 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6150 }
6151 
6152 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6153 			   unsigned long value)
6154 {
6155 
6156 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6157 }
6158 
6159 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6160 {
6161 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6162 }
6163 
6164 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6165 {
6166 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6167 	unsigned long value;
6168 
6169 	switch (cr) {
6170 	case 0:
6171 		value = kvm_read_cr0(vcpu);
6172 		break;
6173 	case 2:
6174 		value = vcpu->arch.cr2;
6175 		break;
6176 	case 3:
6177 		value = kvm_read_cr3(vcpu);
6178 		break;
6179 	case 4:
6180 		value = kvm_read_cr4(vcpu);
6181 		break;
6182 	case 8:
6183 		value = kvm_get_cr8(vcpu);
6184 		break;
6185 	default:
6186 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6187 		return 0;
6188 	}
6189 
6190 	return value;
6191 }
6192 
6193 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6194 {
6195 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6196 	int res = 0;
6197 
6198 	switch (cr) {
6199 	case 0:
6200 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6201 		break;
6202 	case 2:
6203 		vcpu->arch.cr2 = val;
6204 		break;
6205 	case 3:
6206 		res = kvm_set_cr3(vcpu, val);
6207 		break;
6208 	case 4:
6209 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6210 		break;
6211 	case 8:
6212 		res = kvm_set_cr8(vcpu, val);
6213 		break;
6214 	default:
6215 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6216 		res = -1;
6217 	}
6218 
6219 	return res;
6220 }
6221 
6222 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6223 {
6224 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6225 }
6226 
6227 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6228 {
6229 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6230 }
6231 
6232 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6233 {
6234 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6235 }
6236 
6237 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6238 {
6239 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6240 }
6241 
6242 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6243 {
6244 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6245 }
6246 
6247 static unsigned long emulator_get_cached_segment_base(
6248 	struct x86_emulate_ctxt *ctxt, int seg)
6249 {
6250 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6251 }
6252 
6253 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6254 				 struct desc_struct *desc, u32 *base3,
6255 				 int seg)
6256 {
6257 	struct kvm_segment var;
6258 
6259 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6260 	*selector = var.selector;
6261 
6262 	if (var.unusable) {
6263 		memset(desc, 0, sizeof(*desc));
6264 		if (base3)
6265 			*base3 = 0;
6266 		return false;
6267 	}
6268 
6269 	if (var.g)
6270 		var.limit >>= 12;
6271 	set_desc_limit(desc, var.limit);
6272 	set_desc_base(desc, (unsigned long)var.base);
6273 #ifdef CONFIG_X86_64
6274 	if (base3)
6275 		*base3 = var.base >> 32;
6276 #endif
6277 	desc->type = var.type;
6278 	desc->s = var.s;
6279 	desc->dpl = var.dpl;
6280 	desc->p = var.present;
6281 	desc->avl = var.avl;
6282 	desc->l = var.l;
6283 	desc->d = var.db;
6284 	desc->g = var.g;
6285 
6286 	return true;
6287 }
6288 
6289 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6290 				 struct desc_struct *desc, u32 base3,
6291 				 int seg)
6292 {
6293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6294 	struct kvm_segment var;
6295 
6296 	var.selector = selector;
6297 	var.base = get_desc_base(desc);
6298 #ifdef CONFIG_X86_64
6299 	var.base |= ((u64)base3) << 32;
6300 #endif
6301 	var.limit = get_desc_limit(desc);
6302 	if (desc->g)
6303 		var.limit = (var.limit << 12) | 0xfff;
6304 	var.type = desc->type;
6305 	var.dpl = desc->dpl;
6306 	var.db = desc->d;
6307 	var.s = desc->s;
6308 	var.l = desc->l;
6309 	var.g = desc->g;
6310 	var.avl = desc->avl;
6311 	var.present = desc->p;
6312 	var.unusable = !var.present;
6313 	var.padding = 0;
6314 
6315 	kvm_set_segment(vcpu, &var, seg);
6316 	return;
6317 }
6318 
6319 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6320 			    u32 msr_index, u64 *pdata)
6321 {
6322 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6323 }
6324 
6325 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6326 			    u32 msr_index, u64 data)
6327 {
6328 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6329 }
6330 
6331 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6332 {
6333 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6334 
6335 	return vcpu->arch.smbase;
6336 }
6337 
6338 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6339 {
6340 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6341 
6342 	vcpu->arch.smbase = smbase;
6343 }
6344 
6345 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6346 			      u32 pmc)
6347 {
6348 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6349 }
6350 
6351 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6352 			     u32 pmc, u64 *pdata)
6353 {
6354 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6355 }
6356 
6357 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6358 {
6359 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6360 }
6361 
6362 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6363 			      struct x86_instruction_info *info,
6364 			      enum x86_intercept_stage stage)
6365 {
6366 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6367 					    &ctxt->exception);
6368 }
6369 
6370 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6371 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6372 			      bool exact_only)
6373 {
6374 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6375 }
6376 
6377 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6378 {
6379 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6380 }
6381 
6382 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6383 {
6384 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6385 }
6386 
6387 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6388 {
6389 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6390 }
6391 
6392 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6393 {
6394 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6395 }
6396 
6397 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6398 {
6399 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6400 }
6401 
6402 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6403 {
6404 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6405 }
6406 
6407 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6408 {
6409 	return emul_to_vcpu(ctxt)->arch.hflags;
6410 }
6411 
6412 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6413 {
6414 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6415 }
6416 
6417 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6418 				  const char *smstate)
6419 {
6420 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6421 }
6422 
6423 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6424 {
6425 	kvm_smm_changed(emul_to_vcpu(ctxt));
6426 }
6427 
6428 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6429 {
6430 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6431 }
6432 
6433 static const struct x86_emulate_ops emulate_ops = {
6434 	.read_gpr            = emulator_read_gpr,
6435 	.write_gpr           = emulator_write_gpr,
6436 	.read_std            = emulator_read_std,
6437 	.write_std           = emulator_write_std,
6438 	.read_phys           = kvm_read_guest_phys_system,
6439 	.fetch               = kvm_fetch_guest_virt,
6440 	.read_emulated       = emulator_read_emulated,
6441 	.write_emulated      = emulator_write_emulated,
6442 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6443 	.invlpg              = emulator_invlpg,
6444 	.pio_in_emulated     = emulator_pio_in_emulated,
6445 	.pio_out_emulated    = emulator_pio_out_emulated,
6446 	.get_segment         = emulator_get_segment,
6447 	.set_segment         = emulator_set_segment,
6448 	.get_cached_segment_base = emulator_get_cached_segment_base,
6449 	.get_gdt             = emulator_get_gdt,
6450 	.get_idt	     = emulator_get_idt,
6451 	.set_gdt             = emulator_set_gdt,
6452 	.set_idt	     = emulator_set_idt,
6453 	.get_cr              = emulator_get_cr,
6454 	.set_cr              = emulator_set_cr,
6455 	.cpl                 = emulator_get_cpl,
6456 	.get_dr              = emulator_get_dr,
6457 	.set_dr              = emulator_set_dr,
6458 	.get_smbase          = emulator_get_smbase,
6459 	.set_smbase          = emulator_set_smbase,
6460 	.set_msr             = emulator_set_msr,
6461 	.get_msr             = emulator_get_msr,
6462 	.check_pmc	     = emulator_check_pmc,
6463 	.read_pmc            = emulator_read_pmc,
6464 	.halt                = emulator_halt,
6465 	.wbinvd              = emulator_wbinvd,
6466 	.fix_hypercall       = emulator_fix_hypercall,
6467 	.intercept           = emulator_intercept,
6468 	.get_cpuid           = emulator_get_cpuid,
6469 	.guest_has_long_mode = emulator_guest_has_long_mode,
6470 	.guest_has_movbe     = emulator_guest_has_movbe,
6471 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6472 	.set_nmi_mask        = emulator_set_nmi_mask,
6473 	.get_hflags          = emulator_get_hflags,
6474 	.set_hflags          = emulator_set_hflags,
6475 	.pre_leave_smm       = emulator_pre_leave_smm,
6476 	.post_leave_smm      = emulator_post_leave_smm,
6477 	.set_xcr             = emulator_set_xcr,
6478 };
6479 
6480 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6481 {
6482 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6483 	/*
6484 	 * an sti; sti; sequence only disable interrupts for the first
6485 	 * instruction. So, if the last instruction, be it emulated or
6486 	 * not, left the system with the INT_STI flag enabled, it
6487 	 * means that the last instruction is an sti. We should not
6488 	 * leave the flag on in this case. The same goes for mov ss
6489 	 */
6490 	if (int_shadow & mask)
6491 		mask = 0;
6492 	if (unlikely(int_shadow || mask)) {
6493 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6494 		if (!mask)
6495 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6496 	}
6497 }
6498 
6499 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6500 {
6501 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6502 	if (ctxt->exception.vector == PF_VECTOR)
6503 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6504 
6505 	if (ctxt->exception.error_code_valid)
6506 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6507 				      ctxt->exception.error_code);
6508 	else
6509 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6510 	return false;
6511 }
6512 
6513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6514 {
6515 	struct x86_emulate_ctxt *ctxt;
6516 
6517 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6518 	if (!ctxt) {
6519 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6520 		return NULL;
6521 	}
6522 
6523 	ctxt->vcpu = vcpu;
6524 	ctxt->ops = &emulate_ops;
6525 	vcpu->arch.emulate_ctxt = ctxt;
6526 
6527 	return ctxt;
6528 }
6529 
6530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6531 {
6532 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6533 	int cs_db, cs_l;
6534 
6535 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6536 
6537 	ctxt->gpa_available = false;
6538 	ctxt->eflags = kvm_get_rflags(vcpu);
6539 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6540 
6541 	ctxt->eip = kvm_rip_read(vcpu);
6542 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6543 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6544 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6545 		     cs_db				? X86EMUL_MODE_PROT32 :
6546 							  X86EMUL_MODE_PROT16;
6547 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6548 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6549 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6550 
6551 	init_decode_cache(ctxt);
6552 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6553 }
6554 
6555 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6556 {
6557 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6558 	int ret;
6559 
6560 	init_emulate_ctxt(vcpu);
6561 
6562 	ctxt->op_bytes = 2;
6563 	ctxt->ad_bytes = 2;
6564 	ctxt->_eip = ctxt->eip + inc_eip;
6565 	ret = emulate_int_real(ctxt, irq);
6566 
6567 	if (ret != X86EMUL_CONTINUE) {
6568 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6569 	} else {
6570 		ctxt->eip = ctxt->_eip;
6571 		kvm_rip_write(vcpu, ctxt->eip);
6572 		kvm_set_rflags(vcpu, ctxt->eflags);
6573 	}
6574 }
6575 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6576 
6577 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6578 {
6579 	++vcpu->stat.insn_emulation_fail;
6580 	trace_kvm_emulate_insn_failed(vcpu);
6581 
6582 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6583 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6584 		return 1;
6585 	}
6586 
6587 	if (emulation_type & EMULTYPE_SKIP) {
6588 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6589 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6590 		vcpu->run->internal.ndata = 0;
6591 		return 0;
6592 	}
6593 
6594 	kvm_queue_exception(vcpu, UD_VECTOR);
6595 
6596 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6597 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6598 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6599 		vcpu->run->internal.ndata = 0;
6600 		return 0;
6601 	}
6602 
6603 	return 1;
6604 }
6605 
6606 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6607 				  bool write_fault_to_shadow_pgtable,
6608 				  int emulation_type)
6609 {
6610 	gpa_t gpa = cr2_or_gpa;
6611 	kvm_pfn_t pfn;
6612 
6613 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6614 		return false;
6615 
6616 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6617 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6618 		return false;
6619 
6620 	if (!vcpu->arch.mmu->direct_map) {
6621 		/*
6622 		 * Write permission should be allowed since only
6623 		 * write access need to be emulated.
6624 		 */
6625 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6626 
6627 		/*
6628 		 * If the mapping is invalid in guest, let cpu retry
6629 		 * it to generate fault.
6630 		 */
6631 		if (gpa == UNMAPPED_GVA)
6632 			return true;
6633 	}
6634 
6635 	/*
6636 	 * Do not retry the unhandleable instruction if it faults on the
6637 	 * readonly host memory, otherwise it will goto a infinite loop:
6638 	 * retry instruction -> write #PF -> emulation fail -> retry
6639 	 * instruction -> ...
6640 	 */
6641 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6642 
6643 	/*
6644 	 * If the instruction failed on the error pfn, it can not be fixed,
6645 	 * report the error to userspace.
6646 	 */
6647 	if (is_error_noslot_pfn(pfn))
6648 		return false;
6649 
6650 	kvm_release_pfn_clean(pfn);
6651 
6652 	/* The instructions are well-emulated on direct mmu. */
6653 	if (vcpu->arch.mmu->direct_map) {
6654 		unsigned int indirect_shadow_pages;
6655 
6656 		spin_lock(&vcpu->kvm->mmu_lock);
6657 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6658 		spin_unlock(&vcpu->kvm->mmu_lock);
6659 
6660 		if (indirect_shadow_pages)
6661 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6662 
6663 		return true;
6664 	}
6665 
6666 	/*
6667 	 * if emulation was due to access to shadowed page table
6668 	 * and it failed try to unshadow page and re-enter the
6669 	 * guest to let CPU execute the instruction.
6670 	 */
6671 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6672 
6673 	/*
6674 	 * If the access faults on its page table, it can not
6675 	 * be fixed by unprotecting shadow page and it should
6676 	 * be reported to userspace.
6677 	 */
6678 	return !write_fault_to_shadow_pgtable;
6679 }
6680 
6681 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6682 			      gpa_t cr2_or_gpa,  int emulation_type)
6683 {
6684 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6685 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6686 
6687 	last_retry_eip = vcpu->arch.last_retry_eip;
6688 	last_retry_addr = vcpu->arch.last_retry_addr;
6689 
6690 	/*
6691 	 * If the emulation is caused by #PF and it is non-page_table
6692 	 * writing instruction, it means the VM-EXIT is caused by shadow
6693 	 * page protected, we can zap the shadow page and retry this
6694 	 * instruction directly.
6695 	 *
6696 	 * Note: if the guest uses a non-page-table modifying instruction
6697 	 * on the PDE that points to the instruction, then we will unmap
6698 	 * the instruction and go to an infinite loop. So, we cache the
6699 	 * last retried eip and the last fault address, if we meet the eip
6700 	 * and the address again, we can break out of the potential infinite
6701 	 * loop.
6702 	 */
6703 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6704 
6705 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6706 		return false;
6707 
6708 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6709 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6710 		return false;
6711 
6712 	if (x86_page_table_writing_insn(ctxt))
6713 		return false;
6714 
6715 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6716 		return false;
6717 
6718 	vcpu->arch.last_retry_eip = ctxt->eip;
6719 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6720 
6721 	if (!vcpu->arch.mmu->direct_map)
6722 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6723 
6724 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6725 
6726 	return true;
6727 }
6728 
6729 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6730 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6731 
6732 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6733 {
6734 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6735 		/* This is a good place to trace that we are exiting SMM.  */
6736 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6737 
6738 		/* Process a latched INIT or SMI, if any.  */
6739 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6740 	}
6741 
6742 	kvm_mmu_reset_context(vcpu);
6743 }
6744 
6745 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6746 				unsigned long *db)
6747 {
6748 	u32 dr6 = 0;
6749 	int i;
6750 	u32 enable, rwlen;
6751 
6752 	enable = dr7;
6753 	rwlen = dr7 >> 16;
6754 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6755 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6756 			dr6 |= (1 << i);
6757 	return dr6;
6758 }
6759 
6760 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6761 {
6762 	struct kvm_run *kvm_run = vcpu->run;
6763 
6764 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6765 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6766 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6767 		kvm_run->debug.arch.exception = DB_VECTOR;
6768 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6769 		return 0;
6770 	}
6771 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6772 	return 1;
6773 }
6774 
6775 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6776 {
6777 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6778 	int r;
6779 
6780 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6781 	if (unlikely(!r))
6782 		return 0;
6783 
6784 	/*
6785 	 * rflags is the old, "raw" value of the flags.  The new value has
6786 	 * not been saved yet.
6787 	 *
6788 	 * This is correct even for TF set by the guest, because "the
6789 	 * processor will not generate this exception after the instruction
6790 	 * that sets the TF flag".
6791 	 */
6792 	if (unlikely(rflags & X86_EFLAGS_TF))
6793 		r = kvm_vcpu_do_singlestep(vcpu);
6794 	return r;
6795 }
6796 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6797 
6798 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6799 {
6800 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6801 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6802 		struct kvm_run *kvm_run = vcpu->run;
6803 		unsigned long eip = kvm_get_linear_rip(vcpu);
6804 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6805 					   vcpu->arch.guest_debug_dr7,
6806 					   vcpu->arch.eff_db);
6807 
6808 		if (dr6 != 0) {
6809 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6810 			kvm_run->debug.arch.pc = eip;
6811 			kvm_run->debug.arch.exception = DB_VECTOR;
6812 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6813 			*r = 0;
6814 			return true;
6815 		}
6816 	}
6817 
6818 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6819 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6820 		unsigned long eip = kvm_get_linear_rip(vcpu);
6821 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6822 					   vcpu->arch.dr7,
6823 					   vcpu->arch.db);
6824 
6825 		if (dr6 != 0) {
6826 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6827 			*r = 1;
6828 			return true;
6829 		}
6830 	}
6831 
6832 	return false;
6833 }
6834 
6835 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6836 {
6837 	switch (ctxt->opcode_len) {
6838 	case 1:
6839 		switch (ctxt->b) {
6840 		case 0xe4:	/* IN */
6841 		case 0xe5:
6842 		case 0xec:
6843 		case 0xed:
6844 		case 0xe6:	/* OUT */
6845 		case 0xe7:
6846 		case 0xee:
6847 		case 0xef:
6848 		case 0x6c:	/* INS */
6849 		case 0x6d:
6850 		case 0x6e:	/* OUTS */
6851 		case 0x6f:
6852 			return true;
6853 		}
6854 		break;
6855 	case 2:
6856 		switch (ctxt->b) {
6857 		case 0x33:	/* RDPMC */
6858 			return true;
6859 		}
6860 		break;
6861 	}
6862 
6863 	return false;
6864 }
6865 
6866 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6867 			    int emulation_type, void *insn, int insn_len)
6868 {
6869 	int r;
6870 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6871 	bool writeback = true;
6872 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6873 
6874 	vcpu->arch.l1tf_flush_l1d = true;
6875 
6876 	/*
6877 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6878 	 * never reused.
6879 	 */
6880 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6881 	kvm_clear_exception_queue(vcpu);
6882 
6883 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6884 		init_emulate_ctxt(vcpu);
6885 
6886 		/*
6887 		 * We will reenter on the same instruction since
6888 		 * we do not set complete_userspace_io.  This does not
6889 		 * handle watchpoints yet, those would be handled in
6890 		 * the emulate_ops.
6891 		 */
6892 		if (!(emulation_type & EMULTYPE_SKIP) &&
6893 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6894 			return r;
6895 
6896 		ctxt->interruptibility = 0;
6897 		ctxt->have_exception = false;
6898 		ctxt->exception.vector = -1;
6899 		ctxt->perm_ok = false;
6900 
6901 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6902 
6903 		r = x86_decode_insn(ctxt, insn, insn_len);
6904 
6905 		trace_kvm_emulate_insn_start(vcpu);
6906 		++vcpu->stat.insn_emulation;
6907 		if (r != EMULATION_OK)  {
6908 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6909 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6910 				kvm_queue_exception(vcpu, UD_VECTOR);
6911 				return 1;
6912 			}
6913 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6914 						  write_fault_to_spt,
6915 						  emulation_type))
6916 				return 1;
6917 			if (ctxt->have_exception) {
6918 				/*
6919 				 * #UD should result in just EMULATION_FAILED, and trap-like
6920 				 * exception should not be encountered during decode.
6921 				 */
6922 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6923 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6924 				inject_emulated_exception(vcpu);
6925 				return 1;
6926 			}
6927 			return handle_emulation_failure(vcpu, emulation_type);
6928 		}
6929 	}
6930 
6931 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6932 	    !is_vmware_backdoor_opcode(ctxt)) {
6933 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6934 		return 1;
6935 	}
6936 
6937 	/*
6938 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6939 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6940 	 * updating interruptibility state and injecting single-step #DBs.
6941 	 */
6942 	if (emulation_type & EMULTYPE_SKIP) {
6943 		kvm_rip_write(vcpu, ctxt->_eip);
6944 		if (ctxt->eflags & X86_EFLAGS_RF)
6945 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6946 		return 1;
6947 	}
6948 
6949 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6950 		return 1;
6951 
6952 	/* this is needed for vmware backdoor interface to work since it
6953 	   changes registers values  during IO operation */
6954 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6955 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6956 		emulator_invalidate_register_cache(ctxt);
6957 	}
6958 
6959 restart:
6960 	if (emulation_type & EMULTYPE_PF) {
6961 		/* Save the faulting GPA (cr2) in the address field */
6962 		ctxt->exception.address = cr2_or_gpa;
6963 
6964 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6965 		if (vcpu->arch.mmu->direct_map) {
6966 			ctxt->gpa_available = true;
6967 			ctxt->gpa_val = cr2_or_gpa;
6968 		}
6969 	} else {
6970 		/* Sanitize the address out of an abundance of paranoia. */
6971 		ctxt->exception.address = 0;
6972 	}
6973 
6974 	r = x86_emulate_insn(ctxt);
6975 
6976 	if (r == EMULATION_INTERCEPTED)
6977 		return 1;
6978 
6979 	if (r == EMULATION_FAILED) {
6980 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6981 					emulation_type))
6982 			return 1;
6983 
6984 		return handle_emulation_failure(vcpu, emulation_type);
6985 	}
6986 
6987 	if (ctxt->have_exception) {
6988 		r = 1;
6989 		if (inject_emulated_exception(vcpu))
6990 			return r;
6991 	} else if (vcpu->arch.pio.count) {
6992 		if (!vcpu->arch.pio.in) {
6993 			/* FIXME: return into emulator if single-stepping.  */
6994 			vcpu->arch.pio.count = 0;
6995 		} else {
6996 			writeback = false;
6997 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6998 		}
6999 		r = 0;
7000 	} else if (vcpu->mmio_needed) {
7001 		++vcpu->stat.mmio_exits;
7002 
7003 		if (!vcpu->mmio_is_write)
7004 			writeback = false;
7005 		r = 0;
7006 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7007 	} else if (r == EMULATION_RESTART)
7008 		goto restart;
7009 	else
7010 		r = 1;
7011 
7012 	if (writeback) {
7013 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7014 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7015 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7016 		if (!ctxt->have_exception ||
7017 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7018 			kvm_rip_write(vcpu, ctxt->eip);
7019 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7020 				r = kvm_vcpu_do_singlestep(vcpu);
7021 			if (kvm_x86_ops.update_emulated_instruction)
7022 				kvm_x86_ops.update_emulated_instruction(vcpu);
7023 			__kvm_set_rflags(vcpu, ctxt->eflags);
7024 		}
7025 
7026 		/*
7027 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7028 		 * do nothing, and it will be requested again as soon as
7029 		 * the shadow expires.  But we still need to check here,
7030 		 * because POPF has no interrupt shadow.
7031 		 */
7032 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7033 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7034 	} else
7035 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7036 
7037 	return r;
7038 }
7039 
7040 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7041 {
7042 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7043 }
7044 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7045 
7046 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7047 					void *insn, int insn_len)
7048 {
7049 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7050 }
7051 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7052 
7053 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7054 {
7055 	vcpu->arch.pio.count = 0;
7056 	return 1;
7057 }
7058 
7059 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7060 {
7061 	vcpu->arch.pio.count = 0;
7062 
7063 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7064 		return 1;
7065 
7066 	return kvm_skip_emulated_instruction(vcpu);
7067 }
7068 
7069 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7070 			    unsigned short port)
7071 {
7072 	unsigned long val = kvm_rax_read(vcpu);
7073 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7074 
7075 	if (ret)
7076 		return ret;
7077 
7078 	/*
7079 	 * Workaround userspace that relies on old KVM behavior of %rip being
7080 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7081 	 */
7082 	if (port == 0x7e &&
7083 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7084 		vcpu->arch.complete_userspace_io =
7085 			complete_fast_pio_out_port_0x7e;
7086 		kvm_skip_emulated_instruction(vcpu);
7087 	} else {
7088 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7089 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7090 	}
7091 	return 0;
7092 }
7093 
7094 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7095 {
7096 	unsigned long val;
7097 
7098 	/* We should only ever be called with arch.pio.count equal to 1 */
7099 	BUG_ON(vcpu->arch.pio.count != 1);
7100 
7101 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7102 		vcpu->arch.pio.count = 0;
7103 		return 1;
7104 	}
7105 
7106 	/* For size less than 4 we merge, else we zero extend */
7107 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7108 
7109 	/*
7110 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7111 	 * the copy and tracing
7112 	 */
7113 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7114 	kvm_rax_write(vcpu, val);
7115 
7116 	return kvm_skip_emulated_instruction(vcpu);
7117 }
7118 
7119 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7120 			   unsigned short port)
7121 {
7122 	unsigned long val;
7123 	int ret;
7124 
7125 	/* For size less than 4 we merge, else we zero extend */
7126 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7127 
7128 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7129 	if (ret) {
7130 		kvm_rax_write(vcpu, val);
7131 		return ret;
7132 	}
7133 
7134 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7135 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7136 
7137 	return 0;
7138 }
7139 
7140 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7141 {
7142 	int ret;
7143 
7144 	if (in)
7145 		ret = kvm_fast_pio_in(vcpu, size, port);
7146 	else
7147 		ret = kvm_fast_pio_out(vcpu, size, port);
7148 	return ret && kvm_skip_emulated_instruction(vcpu);
7149 }
7150 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7151 
7152 static int kvmclock_cpu_down_prep(unsigned int cpu)
7153 {
7154 	__this_cpu_write(cpu_tsc_khz, 0);
7155 	return 0;
7156 }
7157 
7158 static void tsc_khz_changed(void *data)
7159 {
7160 	struct cpufreq_freqs *freq = data;
7161 	unsigned long khz = 0;
7162 
7163 	if (data)
7164 		khz = freq->new;
7165 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7166 		khz = cpufreq_quick_get(raw_smp_processor_id());
7167 	if (!khz)
7168 		khz = tsc_khz;
7169 	__this_cpu_write(cpu_tsc_khz, khz);
7170 }
7171 
7172 #ifdef CONFIG_X86_64
7173 static void kvm_hyperv_tsc_notifier(void)
7174 {
7175 	struct kvm *kvm;
7176 	struct kvm_vcpu *vcpu;
7177 	int cpu;
7178 
7179 	mutex_lock(&kvm_lock);
7180 	list_for_each_entry(kvm, &vm_list, vm_list)
7181 		kvm_make_mclock_inprogress_request(kvm);
7182 
7183 	hyperv_stop_tsc_emulation();
7184 
7185 	/* TSC frequency always matches when on Hyper-V */
7186 	for_each_present_cpu(cpu)
7187 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7188 	kvm_max_guest_tsc_khz = tsc_khz;
7189 
7190 	list_for_each_entry(kvm, &vm_list, vm_list) {
7191 		struct kvm_arch *ka = &kvm->arch;
7192 
7193 		spin_lock(&ka->pvclock_gtod_sync_lock);
7194 
7195 		pvclock_update_vm_gtod_copy(kvm);
7196 
7197 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7198 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7199 
7200 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7201 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7202 
7203 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7204 	}
7205 	mutex_unlock(&kvm_lock);
7206 }
7207 #endif
7208 
7209 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7210 {
7211 	struct kvm *kvm;
7212 	struct kvm_vcpu *vcpu;
7213 	int i, send_ipi = 0;
7214 
7215 	/*
7216 	 * We allow guests to temporarily run on slowing clocks,
7217 	 * provided we notify them after, or to run on accelerating
7218 	 * clocks, provided we notify them before.  Thus time never
7219 	 * goes backwards.
7220 	 *
7221 	 * However, we have a problem.  We can't atomically update
7222 	 * the frequency of a given CPU from this function; it is
7223 	 * merely a notifier, which can be called from any CPU.
7224 	 * Changing the TSC frequency at arbitrary points in time
7225 	 * requires a recomputation of local variables related to
7226 	 * the TSC for each VCPU.  We must flag these local variables
7227 	 * to be updated and be sure the update takes place with the
7228 	 * new frequency before any guests proceed.
7229 	 *
7230 	 * Unfortunately, the combination of hotplug CPU and frequency
7231 	 * change creates an intractable locking scenario; the order
7232 	 * of when these callouts happen is undefined with respect to
7233 	 * CPU hotplug, and they can race with each other.  As such,
7234 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7235 	 * undefined; you can actually have a CPU frequency change take
7236 	 * place in between the computation of X and the setting of the
7237 	 * variable.  To protect against this problem, all updates of
7238 	 * the per_cpu tsc_khz variable are done in an interrupt
7239 	 * protected IPI, and all callers wishing to update the value
7240 	 * must wait for a synchronous IPI to complete (which is trivial
7241 	 * if the caller is on the CPU already).  This establishes the
7242 	 * necessary total order on variable updates.
7243 	 *
7244 	 * Note that because a guest time update may take place
7245 	 * anytime after the setting of the VCPU's request bit, the
7246 	 * correct TSC value must be set before the request.  However,
7247 	 * to ensure the update actually makes it to any guest which
7248 	 * starts running in hardware virtualization between the set
7249 	 * and the acquisition of the spinlock, we must also ping the
7250 	 * CPU after setting the request bit.
7251 	 *
7252 	 */
7253 
7254 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7255 
7256 	mutex_lock(&kvm_lock);
7257 	list_for_each_entry(kvm, &vm_list, vm_list) {
7258 		kvm_for_each_vcpu(i, vcpu, kvm) {
7259 			if (vcpu->cpu != cpu)
7260 				continue;
7261 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7262 			if (vcpu->cpu != raw_smp_processor_id())
7263 				send_ipi = 1;
7264 		}
7265 	}
7266 	mutex_unlock(&kvm_lock);
7267 
7268 	if (freq->old < freq->new && send_ipi) {
7269 		/*
7270 		 * We upscale the frequency.  Must make the guest
7271 		 * doesn't see old kvmclock values while running with
7272 		 * the new frequency, otherwise we risk the guest sees
7273 		 * time go backwards.
7274 		 *
7275 		 * In case we update the frequency for another cpu
7276 		 * (which might be in guest context) send an interrupt
7277 		 * to kick the cpu out of guest context.  Next time
7278 		 * guest context is entered kvmclock will be updated,
7279 		 * so the guest will not see stale values.
7280 		 */
7281 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7282 	}
7283 }
7284 
7285 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7286 				     void *data)
7287 {
7288 	struct cpufreq_freqs *freq = data;
7289 	int cpu;
7290 
7291 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7292 		return 0;
7293 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7294 		return 0;
7295 
7296 	for_each_cpu(cpu, freq->policy->cpus)
7297 		__kvmclock_cpufreq_notifier(freq, cpu);
7298 
7299 	return 0;
7300 }
7301 
7302 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7303 	.notifier_call  = kvmclock_cpufreq_notifier
7304 };
7305 
7306 static int kvmclock_cpu_online(unsigned int cpu)
7307 {
7308 	tsc_khz_changed(NULL);
7309 	return 0;
7310 }
7311 
7312 static void kvm_timer_init(void)
7313 {
7314 	max_tsc_khz = tsc_khz;
7315 
7316 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7317 #ifdef CONFIG_CPU_FREQ
7318 		struct cpufreq_policy *policy;
7319 		int cpu;
7320 
7321 		cpu = get_cpu();
7322 		policy = cpufreq_cpu_get(cpu);
7323 		if (policy) {
7324 			if (policy->cpuinfo.max_freq)
7325 				max_tsc_khz = policy->cpuinfo.max_freq;
7326 			cpufreq_cpu_put(policy);
7327 		}
7328 		put_cpu();
7329 #endif
7330 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7331 					  CPUFREQ_TRANSITION_NOTIFIER);
7332 	}
7333 
7334 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7335 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7336 }
7337 
7338 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7339 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7340 
7341 int kvm_is_in_guest(void)
7342 {
7343 	return __this_cpu_read(current_vcpu) != NULL;
7344 }
7345 
7346 static int kvm_is_user_mode(void)
7347 {
7348 	int user_mode = 3;
7349 
7350 	if (__this_cpu_read(current_vcpu))
7351 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7352 
7353 	return user_mode != 0;
7354 }
7355 
7356 static unsigned long kvm_get_guest_ip(void)
7357 {
7358 	unsigned long ip = 0;
7359 
7360 	if (__this_cpu_read(current_vcpu))
7361 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7362 
7363 	return ip;
7364 }
7365 
7366 static void kvm_handle_intel_pt_intr(void)
7367 {
7368 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7369 
7370 	kvm_make_request(KVM_REQ_PMI, vcpu);
7371 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7372 			(unsigned long *)&vcpu->arch.pmu.global_status);
7373 }
7374 
7375 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7376 	.is_in_guest		= kvm_is_in_guest,
7377 	.is_user_mode		= kvm_is_user_mode,
7378 	.get_guest_ip		= kvm_get_guest_ip,
7379 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7380 };
7381 
7382 #ifdef CONFIG_X86_64
7383 static void pvclock_gtod_update_fn(struct work_struct *work)
7384 {
7385 	struct kvm *kvm;
7386 
7387 	struct kvm_vcpu *vcpu;
7388 	int i;
7389 
7390 	mutex_lock(&kvm_lock);
7391 	list_for_each_entry(kvm, &vm_list, vm_list)
7392 		kvm_for_each_vcpu(i, vcpu, kvm)
7393 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7394 	atomic_set(&kvm_guest_has_master_clock, 0);
7395 	mutex_unlock(&kvm_lock);
7396 }
7397 
7398 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7399 
7400 /*
7401  * Notification about pvclock gtod data update.
7402  */
7403 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7404 			       void *priv)
7405 {
7406 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7407 	struct timekeeper *tk = priv;
7408 
7409 	update_pvclock_gtod(tk);
7410 
7411 	/* disable master clock if host does not trust, or does not
7412 	 * use, TSC based clocksource.
7413 	 */
7414 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7415 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7416 		queue_work(system_long_wq, &pvclock_gtod_work);
7417 
7418 	return 0;
7419 }
7420 
7421 static struct notifier_block pvclock_gtod_notifier = {
7422 	.notifier_call = pvclock_gtod_notify,
7423 };
7424 #endif
7425 
7426 int kvm_arch_init(void *opaque)
7427 {
7428 	struct kvm_x86_init_ops *ops = opaque;
7429 	int r;
7430 
7431 	if (kvm_x86_ops.hardware_enable) {
7432 		printk(KERN_ERR "kvm: already loaded the other module\n");
7433 		r = -EEXIST;
7434 		goto out;
7435 	}
7436 
7437 	if (!ops->cpu_has_kvm_support()) {
7438 		pr_err_ratelimited("kvm: no hardware support\n");
7439 		r = -EOPNOTSUPP;
7440 		goto out;
7441 	}
7442 	if (ops->disabled_by_bios()) {
7443 		pr_err_ratelimited("kvm: disabled by bios\n");
7444 		r = -EOPNOTSUPP;
7445 		goto out;
7446 	}
7447 
7448 	/*
7449 	 * KVM explicitly assumes that the guest has an FPU and
7450 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7451 	 * vCPU's FPU state as a fxregs_state struct.
7452 	 */
7453 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7454 		printk(KERN_ERR "kvm: inadequate fpu\n");
7455 		r = -EOPNOTSUPP;
7456 		goto out;
7457 	}
7458 
7459 	r = -ENOMEM;
7460 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7461 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7462 					  NULL);
7463 	if (!x86_fpu_cache) {
7464 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7465 		goto out;
7466 	}
7467 
7468 	x86_emulator_cache = kvm_alloc_emulator_cache();
7469 	if (!x86_emulator_cache) {
7470 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7471 		goto out_free_x86_fpu_cache;
7472 	}
7473 
7474 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7475 	if (!shared_msrs) {
7476 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7477 		goto out_free_x86_emulator_cache;
7478 	}
7479 
7480 	r = kvm_mmu_module_init();
7481 	if (r)
7482 		goto out_free_percpu;
7483 
7484 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7485 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7486 			PT_PRESENT_MASK, 0, sme_me_mask);
7487 	kvm_timer_init();
7488 
7489 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7490 
7491 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7492 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7493 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7494 	}
7495 
7496 	kvm_lapic_init();
7497 	if (pi_inject_timer == -1)
7498 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7499 #ifdef CONFIG_X86_64
7500 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7501 
7502 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7503 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7504 #endif
7505 
7506 	return 0;
7507 
7508 out_free_percpu:
7509 	free_percpu(shared_msrs);
7510 out_free_x86_emulator_cache:
7511 	kmem_cache_destroy(x86_emulator_cache);
7512 out_free_x86_fpu_cache:
7513 	kmem_cache_destroy(x86_fpu_cache);
7514 out:
7515 	return r;
7516 }
7517 
7518 void kvm_arch_exit(void)
7519 {
7520 #ifdef CONFIG_X86_64
7521 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7522 		clear_hv_tscchange_cb();
7523 #endif
7524 	kvm_lapic_exit();
7525 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7526 
7527 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7528 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7529 					    CPUFREQ_TRANSITION_NOTIFIER);
7530 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7531 #ifdef CONFIG_X86_64
7532 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7533 #endif
7534 	kvm_x86_ops.hardware_enable = NULL;
7535 	kvm_mmu_module_exit();
7536 	free_percpu(shared_msrs);
7537 	kmem_cache_destroy(x86_fpu_cache);
7538 }
7539 
7540 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7541 {
7542 	++vcpu->stat.halt_exits;
7543 	if (lapic_in_kernel(vcpu)) {
7544 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7545 		return 1;
7546 	} else {
7547 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7548 		return 0;
7549 	}
7550 }
7551 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7552 
7553 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7554 {
7555 	int ret = kvm_skip_emulated_instruction(vcpu);
7556 	/*
7557 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7558 	 * KVM_EXIT_DEBUG here.
7559 	 */
7560 	return kvm_vcpu_halt(vcpu) && ret;
7561 }
7562 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7563 
7564 #ifdef CONFIG_X86_64
7565 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7566 			        unsigned long clock_type)
7567 {
7568 	struct kvm_clock_pairing clock_pairing;
7569 	struct timespec64 ts;
7570 	u64 cycle;
7571 	int ret;
7572 
7573 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7574 		return -KVM_EOPNOTSUPP;
7575 
7576 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7577 		return -KVM_EOPNOTSUPP;
7578 
7579 	clock_pairing.sec = ts.tv_sec;
7580 	clock_pairing.nsec = ts.tv_nsec;
7581 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7582 	clock_pairing.flags = 0;
7583 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7584 
7585 	ret = 0;
7586 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7587 			    sizeof(struct kvm_clock_pairing)))
7588 		ret = -KVM_EFAULT;
7589 
7590 	return ret;
7591 }
7592 #endif
7593 
7594 /*
7595  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7596  *
7597  * @apicid - apicid of vcpu to be kicked.
7598  */
7599 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7600 {
7601 	struct kvm_lapic_irq lapic_irq;
7602 
7603 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7604 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7605 	lapic_irq.level = 0;
7606 	lapic_irq.dest_id = apicid;
7607 	lapic_irq.msi_redir_hint = false;
7608 
7609 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7610 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7611 }
7612 
7613 bool kvm_apicv_activated(struct kvm *kvm)
7614 {
7615 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7616 }
7617 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7618 
7619 void kvm_apicv_init(struct kvm *kvm, bool enable)
7620 {
7621 	if (enable)
7622 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7623 			  &kvm->arch.apicv_inhibit_reasons);
7624 	else
7625 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7626 			&kvm->arch.apicv_inhibit_reasons);
7627 }
7628 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7629 
7630 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7631 {
7632 	struct kvm_vcpu *target = NULL;
7633 	struct kvm_apic_map *map;
7634 
7635 	rcu_read_lock();
7636 	map = rcu_dereference(kvm->arch.apic_map);
7637 
7638 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7639 		target = map->phys_map[dest_id]->vcpu;
7640 
7641 	rcu_read_unlock();
7642 
7643 	if (target && READ_ONCE(target->ready))
7644 		kvm_vcpu_yield_to(target);
7645 }
7646 
7647 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7648 {
7649 	unsigned long nr, a0, a1, a2, a3, ret;
7650 	int op_64_bit;
7651 
7652 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7653 		return kvm_hv_hypercall(vcpu);
7654 
7655 	nr = kvm_rax_read(vcpu);
7656 	a0 = kvm_rbx_read(vcpu);
7657 	a1 = kvm_rcx_read(vcpu);
7658 	a2 = kvm_rdx_read(vcpu);
7659 	a3 = kvm_rsi_read(vcpu);
7660 
7661 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7662 
7663 	op_64_bit = is_64_bit_mode(vcpu);
7664 	if (!op_64_bit) {
7665 		nr &= 0xFFFFFFFF;
7666 		a0 &= 0xFFFFFFFF;
7667 		a1 &= 0xFFFFFFFF;
7668 		a2 &= 0xFFFFFFFF;
7669 		a3 &= 0xFFFFFFFF;
7670 	}
7671 
7672 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7673 		ret = -KVM_EPERM;
7674 		goto out;
7675 	}
7676 
7677 	switch (nr) {
7678 	case KVM_HC_VAPIC_POLL_IRQ:
7679 		ret = 0;
7680 		break;
7681 	case KVM_HC_KICK_CPU:
7682 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7683 		kvm_sched_yield(vcpu->kvm, a1);
7684 		ret = 0;
7685 		break;
7686 #ifdef CONFIG_X86_64
7687 	case KVM_HC_CLOCK_PAIRING:
7688 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7689 		break;
7690 #endif
7691 	case KVM_HC_SEND_IPI:
7692 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7693 		break;
7694 	case KVM_HC_SCHED_YIELD:
7695 		kvm_sched_yield(vcpu->kvm, a0);
7696 		ret = 0;
7697 		break;
7698 	default:
7699 		ret = -KVM_ENOSYS;
7700 		break;
7701 	}
7702 out:
7703 	if (!op_64_bit)
7704 		ret = (u32)ret;
7705 	kvm_rax_write(vcpu, ret);
7706 
7707 	++vcpu->stat.hypercalls;
7708 	return kvm_skip_emulated_instruction(vcpu);
7709 }
7710 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7711 
7712 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7713 {
7714 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7715 	char instruction[3];
7716 	unsigned long rip = kvm_rip_read(vcpu);
7717 
7718 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7719 
7720 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7721 		&ctxt->exception);
7722 }
7723 
7724 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7725 {
7726 	return vcpu->run->request_interrupt_window &&
7727 		likely(!pic_in_kernel(vcpu->kvm));
7728 }
7729 
7730 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7731 {
7732 	struct kvm_run *kvm_run = vcpu->run;
7733 
7734 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7735 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7736 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7737 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7738 	kvm_run->ready_for_interrupt_injection =
7739 		pic_in_kernel(vcpu->kvm) ||
7740 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7741 }
7742 
7743 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7744 {
7745 	int max_irr, tpr;
7746 
7747 	if (!kvm_x86_ops.update_cr8_intercept)
7748 		return;
7749 
7750 	if (!lapic_in_kernel(vcpu))
7751 		return;
7752 
7753 	if (vcpu->arch.apicv_active)
7754 		return;
7755 
7756 	if (!vcpu->arch.apic->vapic_addr)
7757 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7758 	else
7759 		max_irr = -1;
7760 
7761 	if (max_irr != -1)
7762 		max_irr >>= 4;
7763 
7764 	tpr = kvm_lapic_get_cr8(vcpu);
7765 
7766 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7767 }
7768 
7769 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7770 {
7771 	int r;
7772 	bool can_inject = true;
7773 
7774 	/* try to reinject previous events if any */
7775 
7776 	if (vcpu->arch.exception.injected) {
7777 		kvm_x86_ops.queue_exception(vcpu);
7778 		can_inject = false;
7779 	}
7780 	/*
7781 	 * Do not inject an NMI or interrupt if there is a pending
7782 	 * exception.  Exceptions and interrupts are recognized at
7783 	 * instruction boundaries, i.e. the start of an instruction.
7784 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7785 	 * NMIs and interrupts, i.e. traps are recognized before an
7786 	 * NMI/interrupt that's pending on the same instruction.
7787 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7788 	 * priority, but are only generated (pended) during instruction
7789 	 * execution, i.e. a pending fault-like exception means the
7790 	 * fault occurred on the *previous* instruction and must be
7791 	 * serviced prior to recognizing any new events in order to
7792 	 * fully complete the previous instruction.
7793 	 */
7794 	else if (!vcpu->arch.exception.pending) {
7795 		if (vcpu->arch.nmi_injected) {
7796 			kvm_x86_ops.set_nmi(vcpu);
7797 			can_inject = false;
7798 		} else if (vcpu->arch.interrupt.injected) {
7799 			kvm_x86_ops.set_irq(vcpu);
7800 			can_inject = false;
7801 		}
7802 	}
7803 
7804 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
7805 		     vcpu->arch.exception.pending);
7806 
7807 	/*
7808 	 * Call check_nested_events() even if we reinjected a previous event
7809 	 * in order for caller to determine if it should require immediate-exit
7810 	 * from L2 to L1 due to pending L1 events which require exit
7811 	 * from L2 to L1.
7812 	 */
7813 	if (is_guest_mode(vcpu)) {
7814 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
7815 		if (r < 0)
7816 			goto busy;
7817 	}
7818 
7819 	/* try to inject new event if pending */
7820 	if (vcpu->arch.exception.pending) {
7821 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7822 					vcpu->arch.exception.has_error_code,
7823 					vcpu->arch.exception.error_code);
7824 
7825 		vcpu->arch.exception.pending = false;
7826 		vcpu->arch.exception.injected = true;
7827 
7828 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7829 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7830 					     X86_EFLAGS_RF);
7831 
7832 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7833 			kvm_deliver_exception_payload(vcpu);
7834 			if (vcpu->arch.dr7 & DR7_GD) {
7835 				vcpu->arch.dr7 &= ~DR7_GD;
7836 				kvm_update_dr7(vcpu);
7837 			}
7838 		}
7839 
7840 		kvm_x86_ops.queue_exception(vcpu);
7841 		can_inject = false;
7842 	}
7843 
7844 	/*
7845 	 * Finally, inject interrupt events.  If an event cannot be injected
7846 	 * due to architectural conditions (e.g. IF=0) a window-open exit
7847 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7848 	 * and can architecturally be injected, but we cannot do it right now:
7849 	 * an interrupt could have arrived just now and we have to inject it
7850 	 * as a vmexit, or there could already an event in the queue, which is
7851 	 * indicated by can_inject.  In that case we request an immediate exit
7852 	 * in order to make progress and get back here for another iteration.
7853 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7854 	 */
7855 	if (vcpu->arch.smi_pending) {
7856 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7857 		if (r < 0)
7858 			goto busy;
7859 		if (r) {
7860 			vcpu->arch.smi_pending = false;
7861 			++vcpu->arch.smi_count;
7862 			enter_smm(vcpu);
7863 			can_inject = false;
7864 		} else
7865 			kvm_x86_ops.enable_smi_window(vcpu);
7866 	}
7867 
7868 	if (vcpu->arch.nmi_pending) {
7869 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7870 		if (r < 0)
7871 			goto busy;
7872 		if (r) {
7873 			--vcpu->arch.nmi_pending;
7874 			vcpu->arch.nmi_injected = true;
7875 			kvm_x86_ops.set_nmi(vcpu);
7876 			can_inject = false;
7877 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7878 		}
7879 		if (vcpu->arch.nmi_pending)
7880 			kvm_x86_ops.enable_nmi_window(vcpu);
7881 	}
7882 
7883 	if (kvm_cpu_has_injectable_intr(vcpu)) {
7884 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7885 		if (r < 0)
7886 			goto busy;
7887 		if (r) {
7888 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7889 			kvm_x86_ops.set_irq(vcpu);
7890 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7891 		}
7892 		if (kvm_cpu_has_injectable_intr(vcpu))
7893 			kvm_x86_ops.enable_irq_window(vcpu);
7894 	}
7895 
7896 	if (is_guest_mode(vcpu) &&
7897 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
7898 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7899 		*req_immediate_exit = true;
7900 
7901 	WARN_ON(vcpu->arch.exception.pending);
7902 	return;
7903 
7904 busy:
7905 	*req_immediate_exit = true;
7906 	return;
7907 }
7908 
7909 static void process_nmi(struct kvm_vcpu *vcpu)
7910 {
7911 	unsigned limit = 2;
7912 
7913 	/*
7914 	 * x86 is limited to one NMI running, and one NMI pending after it.
7915 	 * If an NMI is already in progress, limit further NMIs to just one.
7916 	 * Otherwise, allow two (and we'll inject the first one immediately).
7917 	 */
7918 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7919 		limit = 1;
7920 
7921 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7922 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7923 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7924 }
7925 
7926 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7927 {
7928 	u32 flags = 0;
7929 	flags |= seg->g       << 23;
7930 	flags |= seg->db      << 22;
7931 	flags |= seg->l       << 21;
7932 	flags |= seg->avl     << 20;
7933 	flags |= seg->present << 15;
7934 	flags |= seg->dpl     << 13;
7935 	flags |= seg->s       << 12;
7936 	flags |= seg->type    << 8;
7937 	return flags;
7938 }
7939 
7940 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7941 {
7942 	struct kvm_segment seg;
7943 	int offset;
7944 
7945 	kvm_get_segment(vcpu, &seg, n);
7946 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7947 
7948 	if (n < 3)
7949 		offset = 0x7f84 + n * 12;
7950 	else
7951 		offset = 0x7f2c + (n - 3) * 12;
7952 
7953 	put_smstate(u32, buf, offset + 8, seg.base);
7954 	put_smstate(u32, buf, offset + 4, seg.limit);
7955 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7956 }
7957 
7958 #ifdef CONFIG_X86_64
7959 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7960 {
7961 	struct kvm_segment seg;
7962 	int offset;
7963 	u16 flags;
7964 
7965 	kvm_get_segment(vcpu, &seg, n);
7966 	offset = 0x7e00 + n * 16;
7967 
7968 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7969 	put_smstate(u16, buf, offset, seg.selector);
7970 	put_smstate(u16, buf, offset + 2, flags);
7971 	put_smstate(u32, buf, offset + 4, seg.limit);
7972 	put_smstate(u64, buf, offset + 8, seg.base);
7973 }
7974 #endif
7975 
7976 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7977 {
7978 	struct desc_ptr dt;
7979 	struct kvm_segment seg;
7980 	unsigned long val;
7981 	int i;
7982 
7983 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7984 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7985 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7986 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7987 
7988 	for (i = 0; i < 8; i++)
7989 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7990 
7991 	kvm_get_dr(vcpu, 6, &val);
7992 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7993 	kvm_get_dr(vcpu, 7, &val);
7994 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7995 
7996 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7997 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7998 	put_smstate(u32, buf, 0x7f64, seg.base);
7999 	put_smstate(u32, buf, 0x7f60, seg.limit);
8000 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8001 
8002 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8003 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8004 	put_smstate(u32, buf, 0x7f80, seg.base);
8005 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8006 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8007 
8008 	kvm_x86_ops.get_gdt(vcpu, &dt);
8009 	put_smstate(u32, buf, 0x7f74, dt.address);
8010 	put_smstate(u32, buf, 0x7f70, dt.size);
8011 
8012 	kvm_x86_ops.get_idt(vcpu, &dt);
8013 	put_smstate(u32, buf, 0x7f58, dt.address);
8014 	put_smstate(u32, buf, 0x7f54, dt.size);
8015 
8016 	for (i = 0; i < 6; i++)
8017 		enter_smm_save_seg_32(vcpu, buf, i);
8018 
8019 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8020 
8021 	/* revision id */
8022 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8023 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8024 }
8025 
8026 #ifdef CONFIG_X86_64
8027 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8028 {
8029 	struct desc_ptr dt;
8030 	struct kvm_segment seg;
8031 	unsigned long val;
8032 	int i;
8033 
8034 	for (i = 0; i < 16; i++)
8035 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8036 
8037 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8038 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8039 
8040 	kvm_get_dr(vcpu, 6, &val);
8041 	put_smstate(u64, buf, 0x7f68, val);
8042 	kvm_get_dr(vcpu, 7, &val);
8043 	put_smstate(u64, buf, 0x7f60, val);
8044 
8045 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8046 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8047 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8048 
8049 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8050 
8051 	/* revision id */
8052 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8053 
8054 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8055 
8056 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8057 	put_smstate(u16, buf, 0x7e90, seg.selector);
8058 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8059 	put_smstate(u32, buf, 0x7e94, seg.limit);
8060 	put_smstate(u64, buf, 0x7e98, seg.base);
8061 
8062 	kvm_x86_ops.get_idt(vcpu, &dt);
8063 	put_smstate(u32, buf, 0x7e84, dt.size);
8064 	put_smstate(u64, buf, 0x7e88, dt.address);
8065 
8066 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8067 	put_smstate(u16, buf, 0x7e70, seg.selector);
8068 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8069 	put_smstate(u32, buf, 0x7e74, seg.limit);
8070 	put_smstate(u64, buf, 0x7e78, seg.base);
8071 
8072 	kvm_x86_ops.get_gdt(vcpu, &dt);
8073 	put_smstate(u32, buf, 0x7e64, dt.size);
8074 	put_smstate(u64, buf, 0x7e68, dt.address);
8075 
8076 	for (i = 0; i < 6; i++)
8077 		enter_smm_save_seg_64(vcpu, buf, i);
8078 }
8079 #endif
8080 
8081 static void enter_smm(struct kvm_vcpu *vcpu)
8082 {
8083 	struct kvm_segment cs, ds;
8084 	struct desc_ptr dt;
8085 	char buf[512];
8086 	u32 cr0;
8087 
8088 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8089 	memset(buf, 0, 512);
8090 #ifdef CONFIG_X86_64
8091 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8092 		enter_smm_save_state_64(vcpu, buf);
8093 	else
8094 #endif
8095 		enter_smm_save_state_32(vcpu, buf);
8096 
8097 	/*
8098 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8099 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8100 	 * the SMM state-save area.
8101 	 */
8102 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8103 
8104 	vcpu->arch.hflags |= HF_SMM_MASK;
8105 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8106 
8107 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8108 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8109 	else
8110 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8111 
8112 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8113 	kvm_rip_write(vcpu, 0x8000);
8114 
8115 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8116 	kvm_x86_ops.set_cr0(vcpu, cr0);
8117 	vcpu->arch.cr0 = cr0;
8118 
8119 	kvm_x86_ops.set_cr4(vcpu, 0);
8120 
8121 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8122 	dt.address = dt.size = 0;
8123 	kvm_x86_ops.set_idt(vcpu, &dt);
8124 
8125 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8126 
8127 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8128 	cs.base = vcpu->arch.smbase;
8129 
8130 	ds.selector = 0;
8131 	ds.base = 0;
8132 
8133 	cs.limit    = ds.limit = 0xffffffff;
8134 	cs.type     = ds.type = 0x3;
8135 	cs.dpl      = ds.dpl = 0;
8136 	cs.db       = ds.db = 0;
8137 	cs.s        = ds.s = 1;
8138 	cs.l        = ds.l = 0;
8139 	cs.g        = ds.g = 1;
8140 	cs.avl      = ds.avl = 0;
8141 	cs.present  = ds.present = 1;
8142 	cs.unusable = ds.unusable = 0;
8143 	cs.padding  = ds.padding = 0;
8144 
8145 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8146 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8147 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8148 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8149 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8150 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8151 
8152 #ifdef CONFIG_X86_64
8153 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8154 		kvm_x86_ops.set_efer(vcpu, 0);
8155 #endif
8156 
8157 	kvm_update_cpuid(vcpu);
8158 	kvm_mmu_reset_context(vcpu);
8159 }
8160 
8161 static void process_smi(struct kvm_vcpu *vcpu)
8162 {
8163 	vcpu->arch.smi_pending = true;
8164 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8165 }
8166 
8167 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8168 				       unsigned long *vcpu_bitmap)
8169 {
8170 	cpumask_var_t cpus;
8171 
8172 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8173 
8174 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8175 				    NULL, vcpu_bitmap, cpus);
8176 
8177 	free_cpumask_var(cpus);
8178 }
8179 
8180 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8181 {
8182 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8183 }
8184 
8185 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8186 {
8187 	if (!lapic_in_kernel(vcpu))
8188 		return;
8189 
8190 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8191 	kvm_apic_update_apicv(vcpu);
8192 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8193 }
8194 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8195 
8196 /*
8197  * NOTE: Do not hold any lock prior to calling this.
8198  *
8199  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8200  * locked, because it calls __x86_set_memory_region() which does
8201  * synchronize_srcu(&kvm->srcu).
8202  */
8203 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8204 {
8205 	struct kvm_vcpu *except;
8206 	unsigned long old, new, expected;
8207 
8208 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8209 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8210 		return;
8211 
8212 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8213 	do {
8214 		expected = new = old;
8215 		if (activate)
8216 			__clear_bit(bit, &new);
8217 		else
8218 			__set_bit(bit, &new);
8219 		if (new == old)
8220 			break;
8221 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8222 	} while (old != expected);
8223 
8224 	if (!!old == !!new)
8225 		return;
8226 
8227 	trace_kvm_apicv_update_request(activate, bit);
8228 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8229 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8230 
8231 	/*
8232 	 * Sending request to update APICV for all other vcpus,
8233 	 * while update the calling vcpu immediately instead of
8234 	 * waiting for another #VMEXIT to handle the request.
8235 	 */
8236 	except = kvm_get_running_vcpu();
8237 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8238 					 except);
8239 	if (except)
8240 		kvm_vcpu_update_apicv(except);
8241 }
8242 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8243 
8244 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8245 {
8246 	if (!kvm_apic_present(vcpu))
8247 		return;
8248 
8249 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8250 
8251 	if (irqchip_split(vcpu->kvm))
8252 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8253 	else {
8254 		if (vcpu->arch.apicv_active)
8255 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8256 		if (ioapic_in_kernel(vcpu->kvm))
8257 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8258 	}
8259 
8260 	if (is_guest_mode(vcpu))
8261 		vcpu->arch.load_eoi_exitmap_pending = true;
8262 	else
8263 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8264 }
8265 
8266 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8267 {
8268 	u64 eoi_exit_bitmap[4];
8269 
8270 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8271 		return;
8272 
8273 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8274 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8275 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8276 }
8277 
8278 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8279 					    unsigned long start, unsigned long end)
8280 {
8281 	unsigned long apic_address;
8282 
8283 	/*
8284 	 * The physical address of apic access page is stored in the VMCS.
8285 	 * Update it when it becomes invalid.
8286 	 */
8287 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8288 	if (start <= apic_address && apic_address < end)
8289 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8290 }
8291 
8292 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8293 {
8294 	if (!lapic_in_kernel(vcpu))
8295 		return;
8296 
8297 	if (!kvm_x86_ops.set_apic_access_page_addr)
8298 		return;
8299 
8300 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8301 }
8302 
8303 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8304 {
8305 	smp_send_reschedule(vcpu->cpu);
8306 }
8307 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8308 
8309 /*
8310  * Returns 1 to let vcpu_run() continue the guest execution loop without
8311  * exiting to the userspace.  Otherwise, the value will be returned to the
8312  * userspace.
8313  */
8314 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8315 {
8316 	int r;
8317 	bool req_int_win =
8318 		dm_request_for_irq_injection(vcpu) &&
8319 		kvm_cpu_accept_dm_intr(vcpu);
8320 	fastpath_t exit_fastpath;
8321 
8322 	bool req_immediate_exit = false;
8323 
8324 	if (kvm_request_pending(vcpu)) {
8325 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8326 			if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8327 				r = 0;
8328 				goto out;
8329 			}
8330 		}
8331 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8332 			kvm_mmu_unload(vcpu);
8333 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8334 			__kvm_migrate_timers(vcpu);
8335 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8336 			kvm_gen_update_masterclock(vcpu->kvm);
8337 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8338 			kvm_gen_kvmclock_update(vcpu);
8339 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8340 			r = kvm_guest_time_update(vcpu);
8341 			if (unlikely(r))
8342 				goto out;
8343 		}
8344 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8345 			kvm_mmu_sync_roots(vcpu);
8346 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8347 			kvm_mmu_load_pgd(vcpu);
8348 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8349 			kvm_vcpu_flush_tlb_all(vcpu);
8350 
8351 			/* Flushing all ASIDs flushes the current ASID... */
8352 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8353 		}
8354 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8355 			kvm_vcpu_flush_tlb_current(vcpu);
8356 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8357 			kvm_vcpu_flush_tlb_guest(vcpu);
8358 
8359 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8360 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8361 			r = 0;
8362 			goto out;
8363 		}
8364 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8365 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8366 			vcpu->mmio_needed = 0;
8367 			r = 0;
8368 			goto out;
8369 		}
8370 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8371 			/* Page is swapped out. Do synthetic halt */
8372 			vcpu->arch.apf.halted = true;
8373 			r = 1;
8374 			goto out;
8375 		}
8376 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8377 			record_steal_time(vcpu);
8378 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8379 			process_smi(vcpu);
8380 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8381 			process_nmi(vcpu);
8382 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8383 			kvm_pmu_handle_event(vcpu);
8384 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8385 			kvm_pmu_deliver_pmi(vcpu);
8386 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8387 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8388 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8389 				     vcpu->arch.ioapic_handled_vectors)) {
8390 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8391 				vcpu->run->eoi.vector =
8392 						vcpu->arch.pending_ioapic_eoi;
8393 				r = 0;
8394 				goto out;
8395 			}
8396 		}
8397 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8398 			vcpu_scan_ioapic(vcpu);
8399 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8400 			vcpu_load_eoi_exitmap(vcpu);
8401 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8402 			kvm_vcpu_reload_apic_access_page(vcpu);
8403 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8404 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8405 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8406 			r = 0;
8407 			goto out;
8408 		}
8409 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8410 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8411 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8412 			r = 0;
8413 			goto out;
8414 		}
8415 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8416 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8417 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8418 			r = 0;
8419 			goto out;
8420 		}
8421 
8422 		/*
8423 		 * KVM_REQ_HV_STIMER has to be processed after
8424 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8425 		 * depend on the guest clock being up-to-date
8426 		 */
8427 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8428 			kvm_hv_process_stimers(vcpu);
8429 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8430 			kvm_vcpu_update_apicv(vcpu);
8431 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8432 			kvm_check_async_pf_completion(vcpu);
8433 	}
8434 
8435 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8436 		++vcpu->stat.req_event;
8437 		kvm_apic_accept_events(vcpu);
8438 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8439 			r = 1;
8440 			goto out;
8441 		}
8442 
8443 		inject_pending_event(vcpu, &req_immediate_exit);
8444 		if (req_int_win)
8445 			kvm_x86_ops.enable_irq_window(vcpu);
8446 
8447 		if (kvm_lapic_enabled(vcpu)) {
8448 			update_cr8_intercept(vcpu);
8449 			kvm_lapic_sync_to_vapic(vcpu);
8450 		}
8451 	}
8452 
8453 	r = kvm_mmu_reload(vcpu);
8454 	if (unlikely(r)) {
8455 		goto cancel_injection;
8456 	}
8457 
8458 	preempt_disable();
8459 
8460 	kvm_x86_ops.prepare_guest_switch(vcpu);
8461 
8462 	/*
8463 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8464 	 * IPI are then delayed after guest entry, which ensures that they
8465 	 * result in virtual interrupt delivery.
8466 	 */
8467 	local_irq_disable();
8468 	vcpu->mode = IN_GUEST_MODE;
8469 
8470 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8471 
8472 	/*
8473 	 * 1) We should set ->mode before checking ->requests.  Please see
8474 	 * the comment in kvm_vcpu_exiting_guest_mode().
8475 	 *
8476 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8477 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8478 	 * (see vmx_deliver_posted_interrupt).
8479 	 *
8480 	 * 3) This also orders the write to mode from any reads to the page
8481 	 * tables done while the VCPU is running.  Please see the comment
8482 	 * in kvm_flush_remote_tlbs.
8483 	 */
8484 	smp_mb__after_srcu_read_unlock();
8485 
8486 	/*
8487 	 * This handles the case where a posted interrupt was
8488 	 * notified with kvm_vcpu_kick.
8489 	 */
8490 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8491 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8492 
8493 	if (kvm_vcpu_exit_request(vcpu)) {
8494 		vcpu->mode = OUTSIDE_GUEST_MODE;
8495 		smp_wmb();
8496 		local_irq_enable();
8497 		preempt_enable();
8498 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8499 		r = 1;
8500 		goto cancel_injection;
8501 	}
8502 
8503 	if (req_immediate_exit) {
8504 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8505 		kvm_x86_ops.request_immediate_exit(vcpu);
8506 	}
8507 
8508 	trace_kvm_entry(vcpu->vcpu_id);
8509 	guest_enter_irqoff();
8510 
8511 	fpregs_assert_state_consistent();
8512 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8513 		switch_fpu_return();
8514 
8515 	if (unlikely(vcpu->arch.switch_db_regs)) {
8516 		set_debugreg(0, 7);
8517 		set_debugreg(vcpu->arch.eff_db[0], 0);
8518 		set_debugreg(vcpu->arch.eff_db[1], 1);
8519 		set_debugreg(vcpu->arch.eff_db[2], 2);
8520 		set_debugreg(vcpu->arch.eff_db[3], 3);
8521 		set_debugreg(vcpu->arch.dr6, 6);
8522 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8523 	}
8524 
8525 	exit_fastpath = kvm_x86_ops.run(vcpu);
8526 
8527 	/*
8528 	 * Do this here before restoring debug registers on the host.  And
8529 	 * since we do this before handling the vmexit, a DR access vmexit
8530 	 * can (a) read the correct value of the debug registers, (b) set
8531 	 * KVM_DEBUGREG_WONT_EXIT again.
8532 	 */
8533 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8534 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8535 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8536 		kvm_update_dr0123(vcpu);
8537 		kvm_update_dr7(vcpu);
8538 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8539 	}
8540 
8541 	/*
8542 	 * If the guest has used debug registers, at least dr7
8543 	 * will be disabled while returning to the host.
8544 	 * If we don't have active breakpoints in the host, we don't
8545 	 * care about the messed up debug address registers. But if
8546 	 * we have some of them active, restore the old state.
8547 	 */
8548 	if (hw_breakpoint_active())
8549 		hw_breakpoint_restore();
8550 
8551 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8552 
8553 	vcpu->mode = OUTSIDE_GUEST_MODE;
8554 	smp_wmb();
8555 
8556 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8557 
8558 	/*
8559 	 * Consume any pending interrupts, including the possible source of
8560 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8561 	 * An instruction is required after local_irq_enable() to fully unblock
8562 	 * interrupts on processors that implement an interrupt shadow, the
8563 	 * stat.exits increment will do nicely.
8564 	 */
8565 	kvm_before_interrupt(vcpu);
8566 	local_irq_enable();
8567 	++vcpu->stat.exits;
8568 	local_irq_disable();
8569 	kvm_after_interrupt(vcpu);
8570 
8571 	guest_exit_irqoff();
8572 	if (lapic_in_kernel(vcpu)) {
8573 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8574 		if (delta != S64_MIN) {
8575 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8576 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8577 		}
8578 	}
8579 
8580 	local_irq_enable();
8581 	preempt_enable();
8582 
8583 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8584 
8585 	/*
8586 	 * Profile KVM exit RIPs:
8587 	 */
8588 	if (unlikely(prof_on == KVM_PROFILING)) {
8589 		unsigned long rip = kvm_rip_read(vcpu);
8590 		profile_hit(KVM_PROFILING, (void *)rip);
8591 	}
8592 
8593 	if (unlikely(vcpu->arch.tsc_always_catchup))
8594 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8595 
8596 	if (vcpu->arch.apic_attention)
8597 		kvm_lapic_sync_from_vapic(vcpu);
8598 
8599 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8600 	return r;
8601 
8602 cancel_injection:
8603 	if (req_immediate_exit)
8604 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8605 	kvm_x86_ops.cancel_injection(vcpu);
8606 	if (unlikely(vcpu->arch.apic_attention))
8607 		kvm_lapic_sync_from_vapic(vcpu);
8608 out:
8609 	return r;
8610 }
8611 
8612 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8613 {
8614 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8615 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8616 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8617 		kvm_vcpu_block(vcpu);
8618 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8619 
8620 		if (kvm_x86_ops.post_block)
8621 			kvm_x86_ops.post_block(vcpu);
8622 
8623 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8624 			return 1;
8625 	}
8626 
8627 	kvm_apic_accept_events(vcpu);
8628 	switch(vcpu->arch.mp_state) {
8629 	case KVM_MP_STATE_HALTED:
8630 		vcpu->arch.pv.pv_unhalted = false;
8631 		vcpu->arch.mp_state =
8632 			KVM_MP_STATE_RUNNABLE;
8633 		/* fall through */
8634 	case KVM_MP_STATE_RUNNABLE:
8635 		vcpu->arch.apf.halted = false;
8636 		break;
8637 	case KVM_MP_STATE_INIT_RECEIVED:
8638 		break;
8639 	default:
8640 		return -EINTR;
8641 	}
8642 	return 1;
8643 }
8644 
8645 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8646 {
8647 	if (is_guest_mode(vcpu))
8648 		kvm_x86_ops.nested_ops->check_events(vcpu);
8649 
8650 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8651 		!vcpu->arch.apf.halted);
8652 }
8653 
8654 static int vcpu_run(struct kvm_vcpu *vcpu)
8655 {
8656 	int r;
8657 	struct kvm *kvm = vcpu->kvm;
8658 
8659 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8660 	vcpu->arch.l1tf_flush_l1d = true;
8661 
8662 	for (;;) {
8663 		if (kvm_vcpu_running(vcpu)) {
8664 			r = vcpu_enter_guest(vcpu);
8665 		} else {
8666 			r = vcpu_block(kvm, vcpu);
8667 		}
8668 
8669 		if (r <= 0)
8670 			break;
8671 
8672 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8673 		if (kvm_cpu_has_pending_timer(vcpu))
8674 			kvm_inject_pending_timer_irqs(vcpu);
8675 
8676 		if (dm_request_for_irq_injection(vcpu) &&
8677 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8678 			r = 0;
8679 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8680 			++vcpu->stat.request_irq_exits;
8681 			break;
8682 		}
8683 
8684 		if (signal_pending(current)) {
8685 			r = -EINTR;
8686 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8687 			++vcpu->stat.signal_exits;
8688 			break;
8689 		}
8690 		if (need_resched()) {
8691 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8692 			cond_resched();
8693 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8694 		}
8695 	}
8696 
8697 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8698 
8699 	return r;
8700 }
8701 
8702 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8703 {
8704 	int r;
8705 
8706 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8707 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8708 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8709 	return r;
8710 }
8711 
8712 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8713 {
8714 	BUG_ON(!vcpu->arch.pio.count);
8715 
8716 	return complete_emulated_io(vcpu);
8717 }
8718 
8719 /*
8720  * Implements the following, as a state machine:
8721  *
8722  * read:
8723  *   for each fragment
8724  *     for each mmio piece in the fragment
8725  *       write gpa, len
8726  *       exit
8727  *       copy data
8728  *   execute insn
8729  *
8730  * write:
8731  *   for each fragment
8732  *     for each mmio piece in the fragment
8733  *       write gpa, len
8734  *       copy data
8735  *       exit
8736  */
8737 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8738 {
8739 	struct kvm_run *run = vcpu->run;
8740 	struct kvm_mmio_fragment *frag;
8741 	unsigned len;
8742 
8743 	BUG_ON(!vcpu->mmio_needed);
8744 
8745 	/* Complete previous fragment */
8746 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8747 	len = min(8u, frag->len);
8748 	if (!vcpu->mmio_is_write)
8749 		memcpy(frag->data, run->mmio.data, len);
8750 
8751 	if (frag->len <= 8) {
8752 		/* Switch to the next fragment. */
8753 		frag++;
8754 		vcpu->mmio_cur_fragment++;
8755 	} else {
8756 		/* Go forward to the next mmio piece. */
8757 		frag->data += len;
8758 		frag->gpa += len;
8759 		frag->len -= len;
8760 	}
8761 
8762 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8763 		vcpu->mmio_needed = 0;
8764 
8765 		/* FIXME: return into emulator if single-stepping.  */
8766 		if (vcpu->mmio_is_write)
8767 			return 1;
8768 		vcpu->mmio_read_completed = 1;
8769 		return complete_emulated_io(vcpu);
8770 	}
8771 
8772 	run->exit_reason = KVM_EXIT_MMIO;
8773 	run->mmio.phys_addr = frag->gpa;
8774 	if (vcpu->mmio_is_write)
8775 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8776 	run->mmio.len = min(8u, frag->len);
8777 	run->mmio.is_write = vcpu->mmio_is_write;
8778 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8779 	return 0;
8780 }
8781 
8782 static void kvm_save_current_fpu(struct fpu *fpu)
8783 {
8784 	/*
8785 	 * If the target FPU state is not resident in the CPU registers, just
8786 	 * memcpy() from current, else save CPU state directly to the target.
8787 	 */
8788 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8789 		memcpy(&fpu->state, &current->thread.fpu.state,
8790 		       fpu_kernel_xstate_size);
8791 	else
8792 		copy_fpregs_to_fpstate(fpu);
8793 }
8794 
8795 /* Swap (qemu) user FPU context for the guest FPU context. */
8796 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8797 {
8798 	fpregs_lock();
8799 
8800 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8801 
8802 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8803 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8804 				~XFEATURE_MASK_PKRU);
8805 
8806 	fpregs_mark_activate();
8807 	fpregs_unlock();
8808 
8809 	trace_kvm_fpu(1);
8810 }
8811 
8812 /* When vcpu_run ends, restore user space FPU context. */
8813 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8814 {
8815 	fpregs_lock();
8816 
8817 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8818 
8819 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8820 
8821 	fpregs_mark_activate();
8822 	fpregs_unlock();
8823 
8824 	++vcpu->stat.fpu_reload;
8825 	trace_kvm_fpu(0);
8826 }
8827 
8828 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8829 {
8830 	struct kvm_run *kvm_run = vcpu->run;
8831 	int r;
8832 
8833 	vcpu_load(vcpu);
8834 	kvm_sigset_activate(vcpu);
8835 	kvm_load_guest_fpu(vcpu);
8836 
8837 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8838 		if (kvm_run->immediate_exit) {
8839 			r = -EINTR;
8840 			goto out;
8841 		}
8842 		kvm_vcpu_block(vcpu);
8843 		kvm_apic_accept_events(vcpu);
8844 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8845 		r = -EAGAIN;
8846 		if (signal_pending(current)) {
8847 			r = -EINTR;
8848 			kvm_run->exit_reason = KVM_EXIT_INTR;
8849 			++vcpu->stat.signal_exits;
8850 		}
8851 		goto out;
8852 	}
8853 
8854 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8855 		r = -EINVAL;
8856 		goto out;
8857 	}
8858 
8859 	if (kvm_run->kvm_dirty_regs) {
8860 		r = sync_regs(vcpu);
8861 		if (r != 0)
8862 			goto out;
8863 	}
8864 
8865 	/* re-sync apic's tpr */
8866 	if (!lapic_in_kernel(vcpu)) {
8867 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8868 			r = -EINVAL;
8869 			goto out;
8870 		}
8871 	}
8872 
8873 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8874 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8875 		vcpu->arch.complete_userspace_io = NULL;
8876 		r = cui(vcpu);
8877 		if (r <= 0)
8878 			goto out;
8879 	} else
8880 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8881 
8882 	if (kvm_run->immediate_exit)
8883 		r = -EINTR;
8884 	else
8885 		r = vcpu_run(vcpu);
8886 
8887 out:
8888 	kvm_put_guest_fpu(vcpu);
8889 	if (kvm_run->kvm_valid_regs)
8890 		store_regs(vcpu);
8891 	post_kvm_run_save(vcpu);
8892 	kvm_sigset_deactivate(vcpu);
8893 
8894 	vcpu_put(vcpu);
8895 	return r;
8896 }
8897 
8898 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8899 {
8900 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8901 		/*
8902 		 * We are here if userspace calls get_regs() in the middle of
8903 		 * instruction emulation. Registers state needs to be copied
8904 		 * back from emulation context to vcpu. Userspace shouldn't do
8905 		 * that usually, but some bad designed PV devices (vmware
8906 		 * backdoor interface) need this to work
8907 		 */
8908 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8909 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8910 	}
8911 	regs->rax = kvm_rax_read(vcpu);
8912 	regs->rbx = kvm_rbx_read(vcpu);
8913 	regs->rcx = kvm_rcx_read(vcpu);
8914 	regs->rdx = kvm_rdx_read(vcpu);
8915 	regs->rsi = kvm_rsi_read(vcpu);
8916 	regs->rdi = kvm_rdi_read(vcpu);
8917 	regs->rsp = kvm_rsp_read(vcpu);
8918 	regs->rbp = kvm_rbp_read(vcpu);
8919 #ifdef CONFIG_X86_64
8920 	regs->r8 = kvm_r8_read(vcpu);
8921 	regs->r9 = kvm_r9_read(vcpu);
8922 	regs->r10 = kvm_r10_read(vcpu);
8923 	regs->r11 = kvm_r11_read(vcpu);
8924 	regs->r12 = kvm_r12_read(vcpu);
8925 	regs->r13 = kvm_r13_read(vcpu);
8926 	regs->r14 = kvm_r14_read(vcpu);
8927 	regs->r15 = kvm_r15_read(vcpu);
8928 #endif
8929 
8930 	regs->rip = kvm_rip_read(vcpu);
8931 	regs->rflags = kvm_get_rflags(vcpu);
8932 }
8933 
8934 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8935 {
8936 	vcpu_load(vcpu);
8937 	__get_regs(vcpu, regs);
8938 	vcpu_put(vcpu);
8939 	return 0;
8940 }
8941 
8942 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8943 {
8944 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8945 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8946 
8947 	kvm_rax_write(vcpu, regs->rax);
8948 	kvm_rbx_write(vcpu, regs->rbx);
8949 	kvm_rcx_write(vcpu, regs->rcx);
8950 	kvm_rdx_write(vcpu, regs->rdx);
8951 	kvm_rsi_write(vcpu, regs->rsi);
8952 	kvm_rdi_write(vcpu, regs->rdi);
8953 	kvm_rsp_write(vcpu, regs->rsp);
8954 	kvm_rbp_write(vcpu, regs->rbp);
8955 #ifdef CONFIG_X86_64
8956 	kvm_r8_write(vcpu, regs->r8);
8957 	kvm_r9_write(vcpu, regs->r9);
8958 	kvm_r10_write(vcpu, regs->r10);
8959 	kvm_r11_write(vcpu, regs->r11);
8960 	kvm_r12_write(vcpu, regs->r12);
8961 	kvm_r13_write(vcpu, regs->r13);
8962 	kvm_r14_write(vcpu, regs->r14);
8963 	kvm_r15_write(vcpu, regs->r15);
8964 #endif
8965 
8966 	kvm_rip_write(vcpu, regs->rip);
8967 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8968 
8969 	vcpu->arch.exception.pending = false;
8970 
8971 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8972 }
8973 
8974 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8975 {
8976 	vcpu_load(vcpu);
8977 	__set_regs(vcpu, regs);
8978 	vcpu_put(vcpu);
8979 	return 0;
8980 }
8981 
8982 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8983 {
8984 	struct kvm_segment cs;
8985 
8986 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8987 	*db = cs.db;
8988 	*l = cs.l;
8989 }
8990 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8991 
8992 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8993 {
8994 	struct desc_ptr dt;
8995 
8996 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8997 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8998 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8999 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9000 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9001 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9002 
9003 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9004 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9005 
9006 	kvm_x86_ops.get_idt(vcpu, &dt);
9007 	sregs->idt.limit = dt.size;
9008 	sregs->idt.base = dt.address;
9009 	kvm_x86_ops.get_gdt(vcpu, &dt);
9010 	sregs->gdt.limit = dt.size;
9011 	sregs->gdt.base = dt.address;
9012 
9013 	sregs->cr0 = kvm_read_cr0(vcpu);
9014 	sregs->cr2 = vcpu->arch.cr2;
9015 	sregs->cr3 = kvm_read_cr3(vcpu);
9016 	sregs->cr4 = kvm_read_cr4(vcpu);
9017 	sregs->cr8 = kvm_get_cr8(vcpu);
9018 	sregs->efer = vcpu->arch.efer;
9019 	sregs->apic_base = kvm_get_apic_base(vcpu);
9020 
9021 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9022 
9023 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9024 		set_bit(vcpu->arch.interrupt.nr,
9025 			(unsigned long *)sregs->interrupt_bitmap);
9026 }
9027 
9028 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9029 				  struct kvm_sregs *sregs)
9030 {
9031 	vcpu_load(vcpu);
9032 	__get_sregs(vcpu, sregs);
9033 	vcpu_put(vcpu);
9034 	return 0;
9035 }
9036 
9037 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9038 				    struct kvm_mp_state *mp_state)
9039 {
9040 	vcpu_load(vcpu);
9041 	if (kvm_mpx_supported())
9042 		kvm_load_guest_fpu(vcpu);
9043 
9044 	kvm_apic_accept_events(vcpu);
9045 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9046 					vcpu->arch.pv.pv_unhalted)
9047 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9048 	else
9049 		mp_state->mp_state = vcpu->arch.mp_state;
9050 
9051 	if (kvm_mpx_supported())
9052 		kvm_put_guest_fpu(vcpu);
9053 	vcpu_put(vcpu);
9054 	return 0;
9055 }
9056 
9057 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9058 				    struct kvm_mp_state *mp_state)
9059 {
9060 	int ret = -EINVAL;
9061 
9062 	vcpu_load(vcpu);
9063 
9064 	if (!lapic_in_kernel(vcpu) &&
9065 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9066 		goto out;
9067 
9068 	/*
9069 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9070 	 * INIT state; latched init should be reported using
9071 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9072 	 */
9073 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9074 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9075 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9076 		goto out;
9077 
9078 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9079 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9080 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9081 	} else
9082 		vcpu->arch.mp_state = mp_state->mp_state;
9083 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9084 
9085 	ret = 0;
9086 out:
9087 	vcpu_put(vcpu);
9088 	return ret;
9089 }
9090 
9091 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9092 		    int reason, bool has_error_code, u32 error_code)
9093 {
9094 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9095 	int ret;
9096 
9097 	init_emulate_ctxt(vcpu);
9098 
9099 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9100 				   has_error_code, error_code);
9101 	if (ret) {
9102 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9103 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9104 		vcpu->run->internal.ndata = 0;
9105 		return 0;
9106 	}
9107 
9108 	kvm_rip_write(vcpu, ctxt->eip);
9109 	kvm_set_rflags(vcpu, ctxt->eflags);
9110 	return 1;
9111 }
9112 EXPORT_SYMBOL_GPL(kvm_task_switch);
9113 
9114 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9115 {
9116 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9117 		/*
9118 		 * When EFER.LME and CR0.PG are set, the processor is in
9119 		 * 64-bit mode (though maybe in a 32-bit code segment).
9120 		 * CR4.PAE and EFER.LMA must be set.
9121 		 */
9122 		if (!(sregs->cr4 & X86_CR4_PAE)
9123 		    || !(sregs->efer & EFER_LMA))
9124 			return -EINVAL;
9125 	} else {
9126 		/*
9127 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9128 		 * segment cannot be 64-bit.
9129 		 */
9130 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9131 			return -EINVAL;
9132 	}
9133 
9134 	return kvm_valid_cr4(vcpu, sregs->cr4);
9135 }
9136 
9137 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9138 {
9139 	struct msr_data apic_base_msr;
9140 	int mmu_reset_needed = 0;
9141 	int cpuid_update_needed = 0;
9142 	int pending_vec, max_bits, idx;
9143 	struct desc_ptr dt;
9144 	int ret = -EINVAL;
9145 
9146 	if (kvm_valid_sregs(vcpu, sregs))
9147 		goto out;
9148 
9149 	apic_base_msr.data = sregs->apic_base;
9150 	apic_base_msr.host_initiated = true;
9151 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9152 		goto out;
9153 
9154 	dt.size = sregs->idt.limit;
9155 	dt.address = sregs->idt.base;
9156 	kvm_x86_ops.set_idt(vcpu, &dt);
9157 	dt.size = sregs->gdt.limit;
9158 	dt.address = sregs->gdt.base;
9159 	kvm_x86_ops.set_gdt(vcpu, &dt);
9160 
9161 	vcpu->arch.cr2 = sregs->cr2;
9162 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9163 	vcpu->arch.cr3 = sregs->cr3;
9164 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9165 
9166 	kvm_set_cr8(vcpu, sregs->cr8);
9167 
9168 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9169 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9170 
9171 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9172 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9173 	vcpu->arch.cr0 = sregs->cr0;
9174 
9175 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9176 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9177 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9178 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9179 	if (cpuid_update_needed)
9180 		kvm_update_cpuid(vcpu);
9181 
9182 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9183 	if (is_pae_paging(vcpu)) {
9184 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9185 		mmu_reset_needed = 1;
9186 	}
9187 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9188 
9189 	if (mmu_reset_needed)
9190 		kvm_mmu_reset_context(vcpu);
9191 
9192 	max_bits = KVM_NR_INTERRUPTS;
9193 	pending_vec = find_first_bit(
9194 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9195 	if (pending_vec < max_bits) {
9196 		kvm_queue_interrupt(vcpu, pending_vec, false);
9197 		pr_debug("Set back pending irq %d\n", pending_vec);
9198 	}
9199 
9200 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9201 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9202 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9203 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9204 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9205 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9206 
9207 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9208 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9209 
9210 	update_cr8_intercept(vcpu);
9211 
9212 	/* Older userspace won't unhalt the vcpu on reset. */
9213 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9214 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9215 	    !is_protmode(vcpu))
9216 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9217 
9218 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9219 
9220 	ret = 0;
9221 out:
9222 	return ret;
9223 }
9224 
9225 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9226 				  struct kvm_sregs *sregs)
9227 {
9228 	int ret;
9229 
9230 	vcpu_load(vcpu);
9231 	ret = __set_sregs(vcpu, sregs);
9232 	vcpu_put(vcpu);
9233 	return ret;
9234 }
9235 
9236 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9237 					struct kvm_guest_debug *dbg)
9238 {
9239 	unsigned long rflags;
9240 	int i, r;
9241 
9242 	vcpu_load(vcpu);
9243 
9244 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9245 		r = -EBUSY;
9246 		if (vcpu->arch.exception.pending)
9247 			goto out;
9248 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9249 			kvm_queue_exception(vcpu, DB_VECTOR);
9250 		else
9251 			kvm_queue_exception(vcpu, BP_VECTOR);
9252 	}
9253 
9254 	/*
9255 	 * Read rflags as long as potentially injected trace flags are still
9256 	 * filtered out.
9257 	 */
9258 	rflags = kvm_get_rflags(vcpu);
9259 
9260 	vcpu->guest_debug = dbg->control;
9261 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9262 		vcpu->guest_debug = 0;
9263 
9264 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9265 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9266 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9267 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9268 	} else {
9269 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9270 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9271 	}
9272 	kvm_update_dr7(vcpu);
9273 
9274 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9275 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9276 			get_segment_base(vcpu, VCPU_SREG_CS);
9277 
9278 	/*
9279 	 * Trigger an rflags update that will inject or remove the trace
9280 	 * flags.
9281 	 */
9282 	kvm_set_rflags(vcpu, rflags);
9283 
9284 	kvm_x86_ops.update_bp_intercept(vcpu);
9285 
9286 	r = 0;
9287 
9288 out:
9289 	vcpu_put(vcpu);
9290 	return r;
9291 }
9292 
9293 /*
9294  * Translate a guest virtual address to a guest physical address.
9295  */
9296 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9297 				    struct kvm_translation *tr)
9298 {
9299 	unsigned long vaddr = tr->linear_address;
9300 	gpa_t gpa;
9301 	int idx;
9302 
9303 	vcpu_load(vcpu);
9304 
9305 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9306 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9307 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9308 	tr->physical_address = gpa;
9309 	tr->valid = gpa != UNMAPPED_GVA;
9310 	tr->writeable = 1;
9311 	tr->usermode = 0;
9312 
9313 	vcpu_put(vcpu);
9314 	return 0;
9315 }
9316 
9317 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9318 {
9319 	struct fxregs_state *fxsave;
9320 
9321 	vcpu_load(vcpu);
9322 
9323 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9324 	memcpy(fpu->fpr, fxsave->st_space, 128);
9325 	fpu->fcw = fxsave->cwd;
9326 	fpu->fsw = fxsave->swd;
9327 	fpu->ftwx = fxsave->twd;
9328 	fpu->last_opcode = fxsave->fop;
9329 	fpu->last_ip = fxsave->rip;
9330 	fpu->last_dp = fxsave->rdp;
9331 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9332 
9333 	vcpu_put(vcpu);
9334 	return 0;
9335 }
9336 
9337 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9338 {
9339 	struct fxregs_state *fxsave;
9340 
9341 	vcpu_load(vcpu);
9342 
9343 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9344 
9345 	memcpy(fxsave->st_space, fpu->fpr, 128);
9346 	fxsave->cwd = fpu->fcw;
9347 	fxsave->swd = fpu->fsw;
9348 	fxsave->twd = fpu->ftwx;
9349 	fxsave->fop = fpu->last_opcode;
9350 	fxsave->rip = fpu->last_ip;
9351 	fxsave->rdp = fpu->last_dp;
9352 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9353 
9354 	vcpu_put(vcpu);
9355 	return 0;
9356 }
9357 
9358 static void store_regs(struct kvm_vcpu *vcpu)
9359 {
9360 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9361 
9362 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9363 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9364 
9365 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9366 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9367 
9368 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9369 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9370 				vcpu, &vcpu->run->s.regs.events);
9371 }
9372 
9373 static int sync_regs(struct kvm_vcpu *vcpu)
9374 {
9375 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9376 		return -EINVAL;
9377 
9378 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9379 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9380 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9381 	}
9382 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9383 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9384 			return -EINVAL;
9385 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9386 	}
9387 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9388 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9389 				vcpu, &vcpu->run->s.regs.events))
9390 			return -EINVAL;
9391 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9392 	}
9393 
9394 	return 0;
9395 }
9396 
9397 static void fx_init(struct kvm_vcpu *vcpu)
9398 {
9399 	fpstate_init(&vcpu->arch.guest_fpu->state);
9400 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9401 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9402 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9403 
9404 	/*
9405 	 * Ensure guest xcr0 is valid for loading
9406 	 */
9407 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9408 
9409 	vcpu->arch.cr0 |= X86_CR0_ET;
9410 }
9411 
9412 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9413 {
9414 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9415 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9416 			     "guest TSC will not be reliable\n");
9417 
9418 	return 0;
9419 }
9420 
9421 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9422 {
9423 	struct page *page;
9424 	int r;
9425 
9426 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9427 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9428 	else
9429 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9430 
9431 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9432 
9433 	r = kvm_mmu_create(vcpu);
9434 	if (r < 0)
9435 		return r;
9436 
9437 	if (irqchip_in_kernel(vcpu->kvm)) {
9438 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9439 		if (r < 0)
9440 			goto fail_mmu_destroy;
9441 		if (kvm_apicv_activated(vcpu->kvm))
9442 			vcpu->arch.apicv_active = true;
9443 	} else
9444 		static_key_slow_inc(&kvm_no_apic_vcpu);
9445 
9446 	r = -ENOMEM;
9447 
9448 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9449 	if (!page)
9450 		goto fail_free_lapic;
9451 	vcpu->arch.pio_data = page_address(page);
9452 
9453 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9454 				       GFP_KERNEL_ACCOUNT);
9455 	if (!vcpu->arch.mce_banks)
9456 		goto fail_free_pio_data;
9457 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9458 
9459 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9460 				GFP_KERNEL_ACCOUNT))
9461 		goto fail_free_mce_banks;
9462 
9463 	if (!alloc_emulate_ctxt(vcpu))
9464 		goto free_wbinvd_dirty_mask;
9465 
9466 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9467 						GFP_KERNEL_ACCOUNT);
9468 	if (!vcpu->arch.user_fpu) {
9469 		pr_err("kvm: failed to allocate userspace's fpu\n");
9470 		goto free_emulate_ctxt;
9471 	}
9472 
9473 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9474 						 GFP_KERNEL_ACCOUNT);
9475 	if (!vcpu->arch.guest_fpu) {
9476 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9477 		goto free_user_fpu;
9478 	}
9479 	fx_init(vcpu);
9480 
9481 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9482 	vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
9483 
9484 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9485 
9486 	kvm_async_pf_hash_reset(vcpu);
9487 	kvm_pmu_init(vcpu);
9488 
9489 	vcpu->arch.pending_external_vector = -1;
9490 	vcpu->arch.preempted_in_kernel = false;
9491 
9492 	kvm_hv_vcpu_init(vcpu);
9493 
9494 	r = kvm_x86_ops.vcpu_create(vcpu);
9495 	if (r)
9496 		goto free_guest_fpu;
9497 
9498 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9499 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9500 	kvm_vcpu_mtrr_init(vcpu);
9501 	vcpu_load(vcpu);
9502 	kvm_vcpu_reset(vcpu, false);
9503 	kvm_init_mmu(vcpu, false);
9504 	vcpu_put(vcpu);
9505 	return 0;
9506 
9507 free_guest_fpu:
9508 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9509 free_user_fpu:
9510 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9511 free_emulate_ctxt:
9512 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9513 free_wbinvd_dirty_mask:
9514 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9515 fail_free_mce_banks:
9516 	kfree(vcpu->arch.mce_banks);
9517 fail_free_pio_data:
9518 	free_page((unsigned long)vcpu->arch.pio_data);
9519 fail_free_lapic:
9520 	kvm_free_lapic(vcpu);
9521 fail_mmu_destroy:
9522 	kvm_mmu_destroy(vcpu);
9523 	return r;
9524 }
9525 
9526 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9527 {
9528 	struct msr_data msr;
9529 	struct kvm *kvm = vcpu->kvm;
9530 
9531 	kvm_hv_vcpu_postcreate(vcpu);
9532 
9533 	if (mutex_lock_killable(&vcpu->mutex))
9534 		return;
9535 	vcpu_load(vcpu);
9536 	msr.data = 0x0;
9537 	msr.index = MSR_IA32_TSC;
9538 	msr.host_initiated = true;
9539 	kvm_write_tsc(vcpu, &msr);
9540 	vcpu_put(vcpu);
9541 
9542 	/* poll control enabled by default */
9543 	vcpu->arch.msr_kvm_poll_control = 1;
9544 
9545 	mutex_unlock(&vcpu->mutex);
9546 
9547 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9548 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9549 						KVMCLOCK_SYNC_PERIOD);
9550 }
9551 
9552 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9553 {
9554 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9555 	int idx;
9556 
9557 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9558 
9559 	kvmclock_reset(vcpu);
9560 
9561 	kvm_x86_ops.vcpu_free(vcpu);
9562 
9563 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9564 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9565 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9566 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9567 
9568 	kvm_hv_vcpu_uninit(vcpu);
9569 	kvm_pmu_destroy(vcpu);
9570 	kfree(vcpu->arch.mce_banks);
9571 	kvm_free_lapic(vcpu);
9572 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9573 	kvm_mmu_destroy(vcpu);
9574 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9575 	free_page((unsigned long)vcpu->arch.pio_data);
9576 	if (!lapic_in_kernel(vcpu))
9577 		static_key_slow_dec(&kvm_no_apic_vcpu);
9578 }
9579 
9580 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9581 {
9582 	kvm_lapic_reset(vcpu, init_event);
9583 
9584 	vcpu->arch.hflags = 0;
9585 
9586 	vcpu->arch.smi_pending = 0;
9587 	vcpu->arch.smi_count = 0;
9588 	atomic_set(&vcpu->arch.nmi_queued, 0);
9589 	vcpu->arch.nmi_pending = 0;
9590 	vcpu->arch.nmi_injected = false;
9591 	kvm_clear_interrupt_queue(vcpu);
9592 	kvm_clear_exception_queue(vcpu);
9593 
9594 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9595 	kvm_update_dr0123(vcpu);
9596 	vcpu->arch.dr6 = DR6_INIT;
9597 	vcpu->arch.dr7 = DR7_FIXED_1;
9598 	kvm_update_dr7(vcpu);
9599 
9600 	vcpu->arch.cr2 = 0;
9601 
9602 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9603 	vcpu->arch.apf.msr_en_val = 0;
9604 	vcpu->arch.apf.msr_int_val = 0;
9605 	vcpu->arch.st.msr_val = 0;
9606 
9607 	kvmclock_reset(vcpu);
9608 
9609 	kvm_clear_async_pf_completion_queue(vcpu);
9610 	kvm_async_pf_hash_reset(vcpu);
9611 	vcpu->arch.apf.halted = false;
9612 
9613 	if (kvm_mpx_supported()) {
9614 		void *mpx_state_buffer;
9615 
9616 		/*
9617 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9618 		 * called with loaded FPU and does not let userspace fix the state.
9619 		 */
9620 		if (init_event)
9621 			kvm_put_guest_fpu(vcpu);
9622 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9623 					XFEATURE_BNDREGS);
9624 		if (mpx_state_buffer)
9625 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9626 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9627 					XFEATURE_BNDCSR);
9628 		if (mpx_state_buffer)
9629 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9630 		if (init_event)
9631 			kvm_load_guest_fpu(vcpu);
9632 	}
9633 
9634 	if (!init_event) {
9635 		kvm_pmu_reset(vcpu);
9636 		vcpu->arch.smbase = 0x30000;
9637 
9638 		vcpu->arch.msr_misc_features_enables = 0;
9639 
9640 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9641 	}
9642 
9643 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9644 	vcpu->arch.regs_avail = ~0;
9645 	vcpu->arch.regs_dirty = ~0;
9646 
9647 	vcpu->arch.ia32_xss = 0;
9648 
9649 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9650 }
9651 
9652 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9653 {
9654 	struct kvm_segment cs;
9655 
9656 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9657 	cs.selector = vector << 8;
9658 	cs.base = vector << 12;
9659 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9660 	kvm_rip_write(vcpu, 0);
9661 }
9662 
9663 int kvm_arch_hardware_enable(void)
9664 {
9665 	struct kvm *kvm;
9666 	struct kvm_vcpu *vcpu;
9667 	int i;
9668 	int ret;
9669 	u64 local_tsc;
9670 	u64 max_tsc = 0;
9671 	bool stable, backwards_tsc = false;
9672 
9673 	kvm_shared_msr_cpu_online();
9674 	ret = kvm_x86_ops.hardware_enable();
9675 	if (ret != 0)
9676 		return ret;
9677 
9678 	local_tsc = rdtsc();
9679 	stable = !kvm_check_tsc_unstable();
9680 	list_for_each_entry(kvm, &vm_list, vm_list) {
9681 		kvm_for_each_vcpu(i, vcpu, kvm) {
9682 			if (!stable && vcpu->cpu == smp_processor_id())
9683 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9684 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9685 				backwards_tsc = true;
9686 				if (vcpu->arch.last_host_tsc > max_tsc)
9687 					max_tsc = vcpu->arch.last_host_tsc;
9688 			}
9689 		}
9690 	}
9691 
9692 	/*
9693 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9694 	 * platforms that reset TSC during suspend or hibernate actions, but
9695 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9696 	 * detect that condition here, which happens early in CPU bringup,
9697 	 * before any KVM threads can be running.  Unfortunately, we can't
9698 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9699 	 * enough into CPU bringup that we know how much real time has actually
9700 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9701 	 * variables that haven't been updated yet.
9702 	 *
9703 	 * So we simply find the maximum observed TSC above, then record the
9704 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9705 	 * the adjustment will be applied.  Note that we accumulate
9706 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9707 	 * gets a chance to run again.  In the event that no KVM threads get a
9708 	 * chance to run, we will miss the entire elapsed period, as we'll have
9709 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9710 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9711 	 * uniform across all VCPUs (not to mention the scenario is extremely
9712 	 * unlikely). It is possible that a second hibernate recovery happens
9713 	 * much faster than a first, causing the observed TSC here to be
9714 	 * smaller; this would require additional padding adjustment, which is
9715 	 * why we set last_host_tsc to the local tsc observed here.
9716 	 *
9717 	 * N.B. - this code below runs only on platforms with reliable TSC,
9718 	 * as that is the only way backwards_tsc is set above.  Also note
9719 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9720 	 * have the same delta_cyc adjustment applied if backwards_tsc
9721 	 * is detected.  Note further, this adjustment is only done once,
9722 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9723 	 * called multiple times (one for each physical CPU bringup).
9724 	 *
9725 	 * Platforms with unreliable TSCs don't have to deal with this, they
9726 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9727 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9728 	 * guarantee that they stay in perfect synchronization.
9729 	 */
9730 	if (backwards_tsc) {
9731 		u64 delta_cyc = max_tsc - local_tsc;
9732 		list_for_each_entry(kvm, &vm_list, vm_list) {
9733 			kvm->arch.backwards_tsc_observed = true;
9734 			kvm_for_each_vcpu(i, vcpu, kvm) {
9735 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9736 				vcpu->arch.last_host_tsc = local_tsc;
9737 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9738 			}
9739 
9740 			/*
9741 			 * We have to disable TSC offset matching.. if you were
9742 			 * booting a VM while issuing an S4 host suspend....
9743 			 * you may have some problem.  Solving this issue is
9744 			 * left as an exercise to the reader.
9745 			 */
9746 			kvm->arch.last_tsc_nsec = 0;
9747 			kvm->arch.last_tsc_write = 0;
9748 		}
9749 
9750 	}
9751 	return 0;
9752 }
9753 
9754 void kvm_arch_hardware_disable(void)
9755 {
9756 	kvm_x86_ops.hardware_disable();
9757 	drop_user_return_notifiers();
9758 }
9759 
9760 int kvm_arch_hardware_setup(void *opaque)
9761 {
9762 	struct kvm_x86_init_ops *ops = opaque;
9763 	int r;
9764 
9765 	rdmsrl_safe(MSR_EFER, &host_efer);
9766 
9767 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9768 		rdmsrl(MSR_IA32_XSS, host_xss);
9769 
9770 	r = ops->hardware_setup();
9771 	if (r != 0)
9772 		return r;
9773 
9774 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9775 
9776 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9777 		supported_xss = 0;
9778 
9779 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9780 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9781 #undef __kvm_cpu_cap_has
9782 
9783 	if (kvm_has_tsc_control) {
9784 		/*
9785 		 * Make sure the user can only configure tsc_khz values that
9786 		 * fit into a signed integer.
9787 		 * A min value is not calculated because it will always
9788 		 * be 1 on all machines.
9789 		 */
9790 		u64 max = min(0x7fffffffULL,
9791 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9792 		kvm_max_guest_tsc_khz = max;
9793 
9794 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9795 	}
9796 
9797 	kvm_init_msr_list();
9798 	return 0;
9799 }
9800 
9801 void kvm_arch_hardware_unsetup(void)
9802 {
9803 	kvm_x86_ops.hardware_unsetup();
9804 }
9805 
9806 int kvm_arch_check_processor_compat(void *opaque)
9807 {
9808 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9809 	struct kvm_x86_init_ops *ops = opaque;
9810 
9811 	WARN_ON(!irqs_disabled());
9812 
9813 	if (__cr4_reserved_bits(cpu_has, c) !=
9814 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9815 		return -EIO;
9816 
9817 	return ops->check_processor_compatibility();
9818 }
9819 
9820 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9821 {
9822 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9823 }
9824 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9825 
9826 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9827 {
9828 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9829 }
9830 
9831 struct static_key kvm_no_apic_vcpu __read_mostly;
9832 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9833 
9834 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9835 {
9836 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9837 
9838 	vcpu->arch.l1tf_flush_l1d = true;
9839 	if (pmu->version && unlikely(pmu->event_count)) {
9840 		pmu->need_cleanup = true;
9841 		kvm_make_request(KVM_REQ_PMU, vcpu);
9842 	}
9843 	kvm_x86_ops.sched_in(vcpu, cpu);
9844 }
9845 
9846 void kvm_arch_free_vm(struct kvm *kvm)
9847 {
9848 	kfree(kvm->arch.hyperv.hv_pa_pg);
9849 	vfree(kvm);
9850 }
9851 
9852 
9853 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9854 {
9855 	if (type)
9856 		return -EINVAL;
9857 
9858 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9859 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9860 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9861 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9862 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9863 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9864 
9865 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9866 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9867 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9868 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9869 		&kvm->arch.irq_sources_bitmap);
9870 
9871 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9872 	mutex_init(&kvm->arch.apic_map_lock);
9873 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9874 
9875 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9876 	pvclock_update_vm_gtod_copy(kvm);
9877 
9878 	kvm->arch.guest_can_read_msr_platform_info = true;
9879 
9880 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9881 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9882 
9883 	kvm_hv_init_vm(kvm);
9884 	kvm_page_track_init(kvm);
9885 	kvm_mmu_init_vm(kvm);
9886 
9887 	return kvm_x86_ops.vm_init(kvm);
9888 }
9889 
9890 int kvm_arch_post_init_vm(struct kvm *kvm)
9891 {
9892 	return kvm_mmu_post_init_vm(kvm);
9893 }
9894 
9895 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9896 {
9897 	vcpu_load(vcpu);
9898 	kvm_mmu_unload(vcpu);
9899 	vcpu_put(vcpu);
9900 }
9901 
9902 static void kvm_free_vcpus(struct kvm *kvm)
9903 {
9904 	unsigned int i;
9905 	struct kvm_vcpu *vcpu;
9906 
9907 	/*
9908 	 * Unpin any mmu pages first.
9909 	 */
9910 	kvm_for_each_vcpu(i, vcpu, kvm) {
9911 		kvm_clear_async_pf_completion_queue(vcpu);
9912 		kvm_unload_vcpu_mmu(vcpu);
9913 	}
9914 	kvm_for_each_vcpu(i, vcpu, kvm)
9915 		kvm_vcpu_destroy(vcpu);
9916 
9917 	mutex_lock(&kvm->lock);
9918 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9919 		kvm->vcpus[i] = NULL;
9920 
9921 	atomic_set(&kvm->online_vcpus, 0);
9922 	mutex_unlock(&kvm->lock);
9923 }
9924 
9925 void kvm_arch_sync_events(struct kvm *kvm)
9926 {
9927 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9928 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9929 	kvm_free_pit(kvm);
9930 }
9931 
9932 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9933 {
9934 	int i, r;
9935 	unsigned long hva, uninitialized_var(old_npages);
9936 	struct kvm_memslots *slots = kvm_memslots(kvm);
9937 	struct kvm_memory_slot *slot;
9938 
9939 	/* Called with kvm->slots_lock held.  */
9940 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9941 		return -EINVAL;
9942 
9943 	slot = id_to_memslot(slots, id);
9944 	if (size) {
9945 		if (slot && slot->npages)
9946 			return -EEXIST;
9947 
9948 		/*
9949 		 * MAP_SHARED to prevent internal slot pages from being moved
9950 		 * by fork()/COW.
9951 		 */
9952 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9953 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9954 		if (IS_ERR((void *)hva))
9955 			return PTR_ERR((void *)hva);
9956 	} else {
9957 		if (!slot || !slot->npages)
9958 			return 0;
9959 
9960 		old_npages = slot->npages;
9961 		hva = 0;
9962 	}
9963 
9964 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9965 		struct kvm_userspace_memory_region m;
9966 
9967 		m.slot = id | (i << 16);
9968 		m.flags = 0;
9969 		m.guest_phys_addr = gpa;
9970 		m.userspace_addr = hva;
9971 		m.memory_size = size;
9972 		r = __kvm_set_memory_region(kvm, &m);
9973 		if (r < 0)
9974 			return r;
9975 	}
9976 
9977 	if (!size)
9978 		vm_munmap(hva, old_npages * PAGE_SIZE);
9979 
9980 	return 0;
9981 }
9982 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9983 
9984 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9985 {
9986 	kvm_mmu_pre_destroy_vm(kvm);
9987 }
9988 
9989 void kvm_arch_destroy_vm(struct kvm *kvm)
9990 {
9991 	if (current->mm == kvm->mm) {
9992 		/*
9993 		 * Free memory regions allocated on behalf of userspace,
9994 		 * unless the the memory map has changed due to process exit
9995 		 * or fd copying.
9996 		 */
9997 		mutex_lock(&kvm->slots_lock);
9998 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9999 					0, 0);
10000 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10001 					0, 0);
10002 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10003 		mutex_unlock(&kvm->slots_lock);
10004 	}
10005 	if (kvm_x86_ops.vm_destroy)
10006 		kvm_x86_ops.vm_destroy(kvm);
10007 	kvm_pic_destroy(kvm);
10008 	kvm_ioapic_destroy(kvm);
10009 	kvm_free_vcpus(kvm);
10010 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10011 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10012 	kvm_mmu_uninit_vm(kvm);
10013 	kvm_page_track_cleanup(kvm);
10014 	kvm_hv_destroy_vm(kvm);
10015 }
10016 
10017 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10018 {
10019 	int i;
10020 
10021 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10022 		kvfree(slot->arch.rmap[i]);
10023 		slot->arch.rmap[i] = NULL;
10024 
10025 		if (i == 0)
10026 			continue;
10027 
10028 		kvfree(slot->arch.lpage_info[i - 1]);
10029 		slot->arch.lpage_info[i - 1] = NULL;
10030 	}
10031 
10032 	kvm_page_track_free_memslot(slot);
10033 }
10034 
10035 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10036 				      unsigned long npages)
10037 {
10038 	int i;
10039 
10040 	/*
10041 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10042 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10043 	 * the new memslot is successful.
10044 	 */
10045 	memset(&slot->arch, 0, sizeof(slot->arch));
10046 
10047 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10048 		struct kvm_lpage_info *linfo;
10049 		unsigned long ugfn;
10050 		int lpages;
10051 		int level = i + 1;
10052 
10053 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10054 				      slot->base_gfn, level) + 1;
10055 
10056 		slot->arch.rmap[i] =
10057 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10058 				 GFP_KERNEL_ACCOUNT);
10059 		if (!slot->arch.rmap[i])
10060 			goto out_free;
10061 		if (i == 0)
10062 			continue;
10063 
10064 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10065 		if (!linfo)
10066 			goto out_free;
10067 
10068 		slot->arch.lpage_info[i - 1] = linfo;
10069 
10070 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10071 			linfo[0].disallow_lpage = 1;
10072 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10073 			linfo[lpages - 1].disallow_lpage = 1;
10074 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10075 		/*
10076 		 * If the gfn and userspace address are not aligned wrt each
10077 		 * other, disable large page support for this slot.
10078 		 */
10079 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10080 			unsigned long j;
10081 
10082 			for (j = 0; j < lpages; ++j)
10083 				linfo[j].disallow_lpage = 1;
10084 		}
10085 	}
10086 
10087 	if (kvm_page_track_create_memslot(slot, npages))
10088 		goto out_free;
10089 
10090 	return 0;
10091 
10092 out_free:
10093 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10094 		kvfree(slot->arch.rmap[i]);
10095 		slot->arch.rmap[i] = NULL;
10096 		if (i == 0)
10097 			continue;
10098 
10099 		kvfree(slot->arch.lpage_info[i - 1]);
10100 		slot->arch.lpage_info[i - 1] = NULL;
10101 	}
10102 	return -ENOMEM;
10103 }
10104 
10105 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10106 {
10107 	struct kvm_vcpu *vcpu;
10108 	int i;
10109 
10110 	/*
10111 	 * memslots->generation has been incremented.
10112 	 * mmio generation may have reached its maximum value.
10113 	 */
10114 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10115 
10116 	/* Force re-initialization of steal_time cache */
10117 	kvm_for_each_vcpu(i, vcpu, kvm)
10118 		kvm_vcpu_kick(vcpu);
10119 }
10120 
10121 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10122 				struct kvm_memory_slot *memslot,
10123 				const struct kvm_userspace_memory_region *mem,
10124 				enum kvm_mr_change change)
10125 {
10126 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10127 		return kvm_alloc_memslot_metadata(memslot,
10128 						  mem->memory_size >> PAGE_SHIFT);
10129 	return 0;
10130 }
10131 
10132 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10133 				     struct kvm_memory_slot *old,
10134 				     struct kvm_memory_slot *new,
10135 				     enum kvm_mr_change change)
10136 {
10137 	/*
10138 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10139 	 * See comments below.
10140 	 */
10141 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10142 		return;
10143 
10144 	/*
10145 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10146 	 * sptes have to be split.  If live migration is successful, the guest
10147 	 * in the source machine will be destroyed and large sptes will be
10148 	 * created in the destination. However, if the guest continues to run
10149 	 * in the source machine (for example if live migration fails), small
10150 	 * sptes will remain around and cause bad performance.
10151 	 *
10152 	 * Scan sptes if dirty logging has been stopped, dropping those
10153 	 * which can be collapsed into a single large-page spte.  Later
10154 	 * page faults will create the large-page sptes.
10155 	 *
10156 	 * There is no need to do this in any of the following cases:
10157 	 * CREATE:      No dirty mappings will already exist.
10158 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10159 	 *		kvm_arch_flush_shadow_memslot()
10160 	 */
10161 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10162 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10163 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10164 
10165 	/*
10166 	 * Enable or disable dirty logging for the slot.
10167 	 *
10168 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10169 	 * slot have been zapped so no dirty logging updates are needed for
10170 	 * the old slot.
10171 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10172 	 * any mappings that might be created in it will consume the
10173 	 * properties of the new slot and do not need to be updated here.
10174 	 *
10175 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10176 	 * called to enable/disable dirty logging.
10177 	 *
10178 	 * When disabling dirty logging with PML enabled, the D-bit is set
10179 	 * for sptes in the slot in order to prevent unnecessary GPA
10180 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10181 	 * This guarantees leaving PML enabled for the guest's lifetime
10182 	 * won't have any additional overhead from PML when the guest is
10183 	 * running with dirty logging disabled.
10184 	 *
10185 	 * When enabling dirty logging, large sptes are write-protected
10186 	 * so they can be split on first write.  New large sptes cannot
10187 	 * be created for this slot until the end of the logging.
10188 	 * See the comments in fast_page_fault().
10189 	 * For small sptes, nothing is done if the dirty log is in the
10190 	 * initial-all-set state.  Otherwise, depending on whether pml
10191 	 * is enabled the D-bit or the W-bit will be cleared.
10192 	 */
10193 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10194 		if (kvm_x86_ops.slot_enable_log_dirty) {
10195 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10196 		} else {
10197 			int level =
10198 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10199 				PG_LEVEL_2M : PG_LEVEL_4K;
10200 
10201 			/*
10202 			 * If we're with initial-all-set, we don't need
10203 			 * to write protect any small page because
10204 			 * they're reported as dirty already.  However
10205 			 * we still need to write-protect huge pages
10206 			 * so that the page split can happen lazily on
10207 			 * the first write to the huge page.
10208 			 */
10209 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10210 		}
10211 	} else {
10212 		if (kvm_x86_ops.slot_disable_log_dirty)
10213 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10214 	}
10215 }
10216 
10217 void kvm_arch_commit_memory_region(struct kvm *kvm,
10218 				const struct kvm_userspace_memory_region *mem,
10219 				struct kvm_memory_slot *old,
10220 				const struct kvm_memory_slot *new,
10221 				enum kvm_mr_change change)
10222 {
10223 	if (!kvm->arch.n_requested_mmu_pages)
10224 		kvm_mmu_change_mmu_pages(kvm,
10225 				kvm_mmu_calculate_default_mmu_pages(kvm));
10226 
10227 	/*
10228 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10229 	 */
10230 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10231 
10232 	/* Free the arrays associated with the old memslot. */
10233 	if (change == KVM_MR_MOVE)
10234 		kvm_arch_free_memslot(kvm, old);
10235 }
10236 
10237 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10238 {
10239 	kvm_mmu_zap_all(kvm);
10240 }
10241 
10242 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10243 				   struct kvm_memory_slot *slot)
10244 {
10245 	kvm_page_track_flush_slot(kvm, slot);
10246 }
10247 
10248 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10249 {
10250 	return (is_guest_mode(vcpu) &&
10251 			kvm_x86_ops.guest_apic_has_interrupt &&
10252 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10253 }
10254 
10255 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10256 {
10257 	if (!list_empty_careful(&vcpu->async_pf.done))
10258 		return true;
10259 
10260 	if (kvm_apic_has_events(vcpu))
10261 		return true;
10262 
10263 	if (vcpu->arch.pv.pv_unhalted)
10264 		return true;
10265 
10266 	if (vcpu->arch.exception.pending)
10267 		return true;
10268 
10269 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10270 	    (vcpu->arch.nmi_pending &&
10271 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10272 		return true;
10273 
10274 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10275 	    (vcpu->arch.smi_pending &&
10276 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10277 		return true;
10278 
10279 	if (kvm_arch_interrupt_allowed(vcpu) &&
10280 	    (kvm_cpu_has_interrupt(vcpu) ||
10281 	    kvm_guest_apic_has_interrupt(vcpu)))
10282 		return true;
10283 
10284 	if (kvm_hv_has_stimer_pending(vcpu))
10285 		return true;
10286 
10287 	if (is_guest_mode(vcpu) &&
10288 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10289 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10290 		return true;
10291 
10292 	return false;
10293 }
10294 
10295 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10296 {
10297 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10298 }
10299 
10300 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10301 {
10302 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10303 		return true;
10304 
10305 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10306 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10307 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10308 		return true;
10309 
10310 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10311 		return true;
10312 
10313 	return false;
10314 }
10315 
10316 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10317 {
10318 	return vcpu->arch.preempted_in_kernel;
10319 }
10320 
10321 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10322 {
10323 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10324 }
10325 
10326 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10327 {
10328 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10329 }
10330 
10331 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10332 {
10333 	if (is_64_bit_mode(vcpu))
10334 		return kvm_rip_read(vcpu);
10335 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10336 		     kvm_rip_read(vcpu));
10337 }
10338 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10339 
10340 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10341 {
10342 	return kvm_get_linear_rip(vcpu) == linear_rip;
10343 }
10344 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10345 
10346 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10347 {
10348 	unsigned long rflags;
10349 
10350 	rflags = kvm_x86_ops.get_rflags(vcpu);
10351 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10352 		rflags &= ~X86_EFLAGS_TF;
10353 	return rflags;
10354 }
10355 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10356 
10357 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10358 {
10359 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10360 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10361 		rflags |= X86_EFLAGS_TF;
10362 	kvm_x86_ops.set_rflags(vcpu, rflags);
10363 }
10364 
10365 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10366 {
10367 	__kvm_set_rflags(vcpu, rflags);
10368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10369 }
10370 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10371 
10372 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10373 {
10374 	int r;
10375 
10376 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10377 	      work->wakeup_all)
10378 		return;
10379 
10380 	r = kvm_mmu_reload(vcpu);
10381 	if (unlikely(r))
10382 		return;
10383 
10384 	if (!vcpu->arch.mmu->direct_map &&
10385 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10386 		return;
10387 
10388 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10389 }
10390 
10391 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10392 {
10393 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10394 
10395 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10396 }
10397 
10398 static inline u32 kvm_async_pf_next_probe(u32 key)
10399 {
10400 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10401 }
10402 
10403 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10404 {
10405 	u32 key = kvm_async_pf_hash_fn(gfn);
10406 
10407 	while (vcpu->arch.apf.gfns[key] != ~0)
10408 		key = kvm_async_pf_next_probe(key);
10409 
10410 	vcpu->arch.apf.gfns[key] = gfn;
10411 }
10412 
10413 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10414 {
10415 	int i;
10416 	u32 key = kvm_async_pf_hash_fn(gfn);
10417 
10418 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10419 		     (vcpu->arch.apf.gfns[key] != gfn &&
10420 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10421 		key = kvm_async_pf_next_probe(key);
10422 
10423 	return key;
10424 }
10425 
10426 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10427 {
10428 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10429 }
10430 
10431 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10432 {
10433 	u32 i, j, k;
10434 
10435 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10436 
10437 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10438 		return;
10439 
10440 	while (true) {
10441 		vcpu->arch.apf.gfns[i] = ~0;
10442 		do {
10443 			j = kvm_async_pf_next_probe(j);
10444 			if (vcpu->arch.apf.gfns[j] == ~0)
10445 				return;
10446 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10447 			/*
10448 			 * k lies cyclically in ]i,j]
10449 			 * |    i.k.j |
10450 			 * |....j i.k.| or  |.k..j i...|
10451 			 */
10452 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10453 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10454 		i = j;
10455 	}
10456 }
10457 
10458 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10459 {
10460 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10461 
10462 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10463 				      sizeof(reason));
10464 }
10465 
10466 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10467 {
10468 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10469 
10470 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10471 					     &token, offset, sizeof(token));
10472 }
10473 
10474 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10475 {
10476 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10477 	u32 val;
10478 
10479 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10480 					 &val, offset, sizeof(val)))
10481 		return false;
10482 
10483 	return !val;
10484 }
10485 
10486 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10487 {
10488 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10489 		return false;
10490 
10491 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10492 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10493 		return false;
10494 
10495 	return true;
10496 }
10497 
10498 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10499 {
10500 	if (unlikely(!lapic_in_kernel(vcpu) ||
10501 		     kvm_event_needs_reinjection(vcpu) ||
10502 		     vcpu->arch.exception.pending))
10503 		return false;
10504 
10505 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10506 		return false;
10507 
10508 	/*
10509 	 * If interrupts are off we cannot even use an artificial
10510 	 * halt state.
10511 	 */
10512 	return kvm_arch_interrupt_allowed(vcpu);
10513 }
10514 
10515 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10516 				     struct kvm_async_pf *work)
10517 {
10518 	struct x86_exception fault;
10519 
10520 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10521 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10522 
10523 	if (kvm_can_deliver_async_pf(vcpu) &&
10524 	    !apf_put_user_notpresent(vcpu)) {
10525 		fault.vector = PF_VECTOR;
10526 		fault.error_code_valid = true;
10527 		fault.error_code = 0;
10528 		fault.nested_page_fault = false;
10529 		fault.address = work->arch.token;
10530 		fault.async_page_fault = true;
10531 		kvm_inject_page_fault(vcpu, &fault);
10532 		return true;
10533 	} else {
10534 		/*
10535 		 * It is not possible to deliver a paravirtualized asynchronous
10536 		 * page fault, but putting the guest in an artificial halt state
10537 		 * can be beneficial nevertheless: if an interrupt arrives, we
10538 		 * can deliver it timely and perhaps the guest will schedule
10539 		 * another process.  When the instruction that triggered a page
10540 		 * fault is retried, hopefully the page will be ready in the host.
10541 		 */
10542 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10543 		return false;
10544 	}
10545 }
10546 
10547 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10548 				 struct kvm_async_pf *work)
10549 {
10550 	struct kvm_lapic_irq irq = {
10551 		.delivery_mode = APIC_DM_FIXED,
10552 		.vector = vcpu->arch.apf.vec
10553 	};
10554 
10555 	if (work->wakeup_all)
10556 		work->arch.token = ~0; /* broadcast wakeup */
10557 	else
10558 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10559 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10560 
10561 	if ((work->wakeup_all || work->notpresent_injected) &&
10562 	    kvm_pv_async_pf_enabled(vcpu) &&
10563 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10564 		vcpu->arch.apf.pageready_pending = true;
10565 		kvm_apic_set_irq(vcpu, &irq, NULL);
10566 	}
10567 
10568 	vcpu->arch.apf.halted = false;
10569 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10570 }
10571 
10572 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10573 {
10574 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10575 	if (!vcpu->arch.apf.pageready_pending)
10576 		kvm_vcpu_kick(vcpu);
10577 }
10578 
10579 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10580 {
10581 	if (!kvm_pv_async_pf_enabled(vcpu))
10582 		return true;
10583 	else
10584 		return apf_pageready_slot_free(vcpu);
10585 }
10586 
10587 void kvm_arch_start_assignment(struct kvm *kvm)
10588 {
10589 	atomic_inc(&kvm->arch.assigned_device_count);
10590 }
10591 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10592 
10593 void kvm_arch_end_assignment(struct kvm *kvm)
10594 {
10595 	atomic_dec(&kvm->arch.assigned_device_count);
10596 }
10597 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10598 
10599 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10600 {
10601 	return atomic_read(&kvm->arch.assigned_device_count);
10602 }
10603 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10604 
10605 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10606 {
10607 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10608 }
10609 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10610 
10611 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10612 {
10613 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10614 }
10615 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10616 
10617 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10618 {
10619 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10620 }
10621 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10622 
10623 bool kvm_arch_has_irq_bypass(void)
10624 {
10625 	return true;
10626 }
10627 
10628 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10629 				      struct irq_bypass_producer *prod)
10630 {
10631 	struct kvm_kernel_irqfd *irqfd =
10632 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10633 
10634 	irqfd->producer = prod;
10635 
10636 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10637 					   prod->irq, irqfd->gsi, 1);
10638 }
10639 
10640 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10641 				      struct irq_bypass_producer *prod)
10642 {
10643 	int ret;
10644 	struct kvm_kernel_irqfd *irqfd =
10645 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10646 
10647 	WARN_ON(irqfd->producer != prod);
10648 	irqfd->producer = NULL;
10649 
10650 	/*
10651 	 * When producer of consumer is unregistered, we change back to
10652 	 * remapped mode, so we can re-use the current implementation
10653 	 * when the irq is masked/disabled or the consumer side (KVM
10654 	 * int this case doesn't want to receive the interrupts.
10655 	*/
10656 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10657 	if (ret)
10658 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10659 		       " fails: %d\n", irqfd->consumer.token, ret);
10660 }
10661 
10662 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10663 				   uint32_t guest_irq, bool set)
10664 {
10665 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10666 }
10667 
10668 bool kvm_vector_hashing_enabled(void)
10669 {
10670 	return vector_hashing;
10671 }
10672 
10673 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10674 {
10675 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10676 }
10677 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10678 
10679 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10680 {
10681 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10682 
10683 	/* The STIBP bit doesn't fault even if it's not advertised */
10684 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10685 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10686 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10687 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10688 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10689 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10690 
10691 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10692 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10693 		bits &= ~SPEC_CTRL_SSBD;
10694 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10695 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10696 		bits &= ~SPEC_CTRL_SSBD;
10697 
10698 	return bits;
10699 }
10700 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10701 
10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10724