1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 60 #include <trace/events/kvm.h> 61 62 #include <asm/debugreg.h> 63 #include <asm/msr.h> 64 #include <asm/desc.h> 65 #include <asm/mce.h> 66 #include <linux/kernel_stat.h> 67 #include <asm/fpu/internal.h> /* Ugh! */ 68 #include <asm/pvclock.h> 69 #include <asm/div64.h> 70 #include <asm/irq_remapping.h> 71 #include <asm/mshyperv.h> 72 #include <asm/hypervisor.h> 73 #include <asm/intel_pt.h> 74 #include <asm/emulate_prefix.h> 75 #include <clocksource/hyperv_timer.h> 76 77 #define CREATE_TRACE_POINTS 78 #include "trace.h" 79 80 #define MAX_IO_MSRS 256 81 #define KVM_MAX_MCE_BANKS 32 82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 84 85 #define emul_to_vcpu(ctxt) \ 86 ((struct kvm_vcpu *)(ctxt)->vcpu) 87 88 /* EFER defaults: 89 * - enable syscall per default because its emulated by KVM 90 * - enable LME and LMA per default on 64 bit KVM 91 */ 92 #ifdef CONFIG_X86_64 93 static 94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 95 #else 96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 97 #endif 98 99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 100 101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 102 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 103 104 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 105 static void process_nmi(struct kvm_vcpu *vcpu); 106 static void enter_smm(struct kvm_vcpu *vcpu); 107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 108 static void store_regs(struct kvm_vcpu *vcpu); 109 static int sync_regs(struct kvm_vcpu *vcpu); 110 111 struct kvm_x86_ops kvm_x86_ops __read_mostly; 112 EXPORT_SYMBOL_GPL(kvm_x86_ops); 113 114 static bool __read_mostly ignore_msrs = 0; 115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 116 117 static bool __read_mostly report_ignored_msrs = true; 118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 119 120 unsigned int min_timer_period_us = 200; 121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 122 123 static bool __read_mostly kvmclock_periodic_sync = true; 124 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 125 126 bool __read_mostly kvm_has_tsc_control; 127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 128 u32 __read_mostly kvm_max_guest_tsc_khz; 129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 130 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 132 u64 __read_mostly kvm_max_tsc_scaling_ratio; 133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 134 u64 __read_mostly kvm_default_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 136 137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 138 static u32 __read_mostly tsc_tolerance_ppm = 250; 139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 140 141 /* 142 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 143 * adaptive tuning starting from default advancment of 1000ns. '0' disables 144 * advancement entirely. Any other value is used as-is and disables adaptive 145 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 146 */ 147 static int __read_mostly lapic_timer_advance_ns = -1; 148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 149 150 static bool __read_mostly vector_hashing = true; 151 module_param(vector_hashing, bool, S_IRUGO); 152 153 bool __read_mostly enable_vmware_backdoor = false; 154 module_param(enable_vmware_backdoor, bool, S_IRUGO); 155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 156 157 static bool __read_mostly force_emulation_prefix = false; 158 module_param(force_emulation_prefix, bool, S_IRUGO); 159 160 int __read_mostly pi_inject_timer = -1; 161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 162 163 #define KVM_NR_SHARED_MSRS 16 164 165 struct kvm_shared_msrs_global { 166 int nr; 167 u32 msrs[KVM_NR_SHARED_MSRS]; 168 }; 169 170 struct kvm_shared_msrs { 171 struct user_return_notifier urn; 172 bool registered; 173 struct kvm_shared_msr_values { 174 u64 host; 175 u64 curr; 176 } values[KVM_NR_SHARED_MSRS]; 177 }; 178 179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 180 static struct kvm_shared_msrs __percpu *shared_msrs; 181 182 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 183 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 184 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 185 | XFEATURE_MASK_PKRU) 186 187 u64 __read_mostly host_efer; 188 EXPORT_SYMBOL_GPL(host_efer); 189 190 static u64 __read_mostly host_xss; 191 u64 __read_mostly supported_xss; 192 EXPORT_SYMBOL_GPL(supported_xss); 193 194 struct kvm_stats_debugfs_item debugfs_entries[] = { 195 VCPU_STAT("pf_fixed", pf_fixed), 196 VCPU_STAT("pf_guest", pf_guest), 197 VCPU_STAT("tlb_flush", tlb_flush), 198 VCPU_STAT("invlpg", invlpg), 199 VCPU_STAT("exits", exits), 200 VCPU_STAT("io_exits", io_exits), 201 VCPU_STAT("mmio_exits", mmio_exits), 202 VCPU_STAT("signal_exits", signal_exits), 203 VCPU_STAT("irq_window", irq_window_exits), 204 VCPU_STAT("nmi_window", nmi_window_exits), 205 VCPU_STAT("halt_exits", halt_exits), 206 VCPU_STAT("halt_successful_poll", halt_successful_poll), 207 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 208 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 209 VCPU_STAT("halt_wakeup", halt_wakeup), 210 VCPU_STAT("hypercalls", hypercalls), 211 VCPU_STAT("request_irq", request_irq_exits), 212 VCPU_STAT("irq_exits", irq_exits), 213 VCPU_STAT("host_state_reload", host_state_reload), 214 VCPU_STAT("fpu_reload", fpu_reload), 215 VCPU_STAT("insn_emulation", insn_emulation), 216 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 217 VCPU_STAT("irq_injections", irq_injections), 218 VCPU_STAT("nmi_injections", nmi_injections), 219 VCPU_STAT("req_event", req_event), 220 VCPU_STAT("l1d_flush", l1d_flush), 221 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 222 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 223 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 224 VM_STAT("mmu_pte_write", mmu_pte_write), 225 VM_STAT("mmu_pte_updated", mmu_pte_updated), 226 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 227 VM_STAT("mmu_flooded", mmu_flooded), 228 VM_STAT("mmu_recycled", mmu_recycled), 229 VM_STAT("mmu_cache_miss", mmu_cache_miss), 230 VM_STAT("mmu_unsync", mmu_unsync), 231 VM_STAT("remote_tlb_flush", remote_tlb_flush), 232 VM_STAT("largepages", lpages, .mode = 0444), 233 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 234 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 235 { NULL } 236 }; 237 238 u64 __read_mostly host_xcr0; 239 u64 __read_mostly supported_xcr0; 240 EXPORT_SYMBOL_GPL(supported_xcr0); 241 242 static struct kmem_cache *x86_fpu_cache; 243 244 static struct kmem_cache *x86_emulator_cache; 245 246 static struct kmem_cache *kvm_alloc_emulator_cache(void) 247 { 248 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 249 unsigned int size = sizeof(struct x86_emulate_ctxt); 250 251 return kmem_cache_create_usercopy("x86_emulator", size, 252 __alignof__(struct x86_emulate_ctxt), 253 SLAB_ACCOUNT, useroffset, 254 size - useroffset, NULL); 255 } 256 257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 258 259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 260 { 261 int i; 262 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 263 vcpu->arch.apf.gfns[i] = ~0; 264 } 265 266 static void kvm_on_user_return(struct user_return_notifier *urn) 267 { 268 unsigned slot; 269 struct kvm_shared_msrs *locals 270 = container_of(urn, struct kvm_shared_msrs, urn); 271 struct kvm_shared_msr_values *values; 272 unsigned long flags; 273 274 /* 275 * Disabling irqs at this point since the following code could be 276 * interrupted and executed through kvm_arch_hardware_disable() 277 */ 278 local_irq_save(flags); 279 if (locals->registered) { 280 locals->registered = false; 281 user_return_notifier_unregister(urn); 282 } 283 local_irq_restore(flags); 284 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 285 values = &locals->values[slot]; 286 if (values->host != values->curr) { 287 wrmsrl(shared_msrs_global.msrs[slot], values->host); 288 values->curr = values->host; 289 } 290 } 291 } 292 293 void kvm_define_shared_msr(unsigned slot, u32 msr) 294 { 295 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 296 shared_msrs_global.msrs[slot] = msr; 297 if (slot >= shared_msrs_global.nr) 298 shared_msrs_global.nr = slot + 1; 299 } 300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 301 302 static void kvm_shared_msr_cpu_online(void) 303 { 304 unsigned int cpu = smp_processor_id(); 305 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 306 u64 value; 307 int i; 308 309 for (i = 0; i < shared_msrs_global.nr; ++i) { 310 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 311 smsr->values[i].host = value; 312 smsr->values[i].curr = value; 313 } 314 } 315 316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 317 { 318 unsigned int cpu = smp_processor_id(); 319 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 320 int err; 321 322 value = (value & mask) | (smsr->values[slot].host & ~mask); 323 if (value == smsr->values[slot].curr) 324 return 0; 325 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 326 if (err) 327 return 1; 328 329 smsr->values[slot].curr = value; 330 if (!smsr->registered) { 331 smsr->urn.on_user_return = kvm_on_user_return; 332 user_return_notifier_register(&smsr->urn); 333 smsr->registered = true; 334 } 335 return 0; 336 } 337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 338 339 static void drop_user_return_notifiers(void) 340 { 341 unsigned int cpu = smp_processor_id(); 342 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 343 344 if (smsr->registered) 345 kvm_on_user_return(&smsr->urn); 346 } 347 348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 349 { 350 return vcpu->arch.apic_base; 351 } 352 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 353 354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 355 { 356 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 357 } 358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 359 360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 361 { 362 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 363 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 364 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 365 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 366 367 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 368 return 1; 369 if (!msr_info->host_initiated) { 370 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 371 return 1; 372 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 373 return 1; 374 } 375 376 kvm_lapic_set_base(vcpu, msr_info->data); 377 kvm_recalculate_apic_map(vcpu->kvm); 378 return 0; 379 } 380 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 381 382 asmlinkage __visible void kvm_spurious_fault(void) 383 { 384 /* Fault while not rebooting. We want the trace. */ 385 BUG_ON(!kvm_rebooting); 386 } 387 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 388 389 #define EXCPT_BENIGN 0 390 #define EXCPT_CONTRIBUTORY 1 391 #define EXCPT_PF 2 392 393 static int exception_class(int vector) 394 { 395 switch (vector) { 396 case PF_VECTOR: 397 return EXCPT_PF; 398 case DE_VECTOR: 399 case TS_VECTOR: 400 case NP_VECTOR: 401 case SS_VECTOR: 402 case GP_VECTOR: 403 return EXCPT_CONTRIBUTORY; 404 default: 405 break; 406 } 407 return EXCPT_BENIGN; 408 } 409 410 #define EXCPT_FAULT 0 411 #define EXCPT_TRAP 1 412 #define EXCPT_ABORT 2 413 #define EXCPT_INTERRUPT 3 414 415 static int exception_type(int vector) 416 { 417 unsigned int mask; 418 419 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 420 return EXCPT_INTERRUPT; 421 422 mask = 1 << vector; 423 424 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 425 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 426 return EXCPT_TRAP; 427 428 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 429 return EXCPT_ABORT; 430 431 /* Reserved exceptions will result in fault */ 432 return EXCPT_FAULT; 433 } 434 435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 436 { 437 unsigned nr = vcpu->arch.exception.nr; 438 bool has_payload = vcpu->arch.exception.has_payload; 439 unsigned long payload = vcpu->arch.exception.payload; 440 441 if (!has_payload) 442 return; 443 444 switch (nr) { 445 case DB_VECTOR: 446 /* 447 * "Certain debug exceptions may clear bit 0-3. The 448 * remaining contents of the DR6 register are never 449 * cleared by the processor". 450 */ 451 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 452 /* 453 * DR6.RTM is set by all #DB exceptions that don't clear it. 454 */ 455 vcpu->arch.dr6 |= DR6_RTM; 456 vcpu->arch.dr6 |= payload; 457 /* 458 * Bit 16 should be set in the payload whenever the #DB 459 * exception should clear DR6.RTM. This makes the payload 460 * compatible with the pending debug exceptions under VMX. 461 * Though not currently documented in the SDM, this also 462 * makes the payload compatible with the exit qualification 463 * for #DB exceptions under VMX. 464 */ 465 vcpu->arch.dr6 ^= payload & DR6_RTM; 466 467 /* 468 * The #DB payload is defined as compatible with the 'pending 469 * debug exceptions' field under VMX, not DR6. While bit 12 is 470 * defined in the 'pending debug exceptions' field (enabled 471 * breakpoint), it is reserved and must be zero in DR6. 472 */ 473 vcpu->arch.dr6 &= ~BIT(12); 474 break; 475 case PF_VECTOR: 476 vcpu->arch.cr2 = payload; 477 break; 478 } 479 480 vcpu->arch.exception.has_payload = false; 481 vcpu->arch.exception.payload = 0; 482 } 483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 484 485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 486 unsigned nr, bool has_error, u32 error_code, 487 bool has_payload, unsigned long payload, bool reinject) 488 { 489 u32 prev_nr; 490 int class1, class2; 491 492 kvm_make_request(KVM_REQ_EVENT, vcpu); 493 494 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 495 queue: 496 if (has_error && !is_protmode(vcpu)) 497 has_error = false; 498 if (reinject) { 499 /* 500 * On vmentry, vcpu->arch.exception.pending is only 501 * true if an event injection was blocked by 502 * nested_run_pending. In that case, however, 503 * vcpu_enter_guest requests an immediate exit, 504 * and the guest shouldn't proceed far enough to 505 * need reinjection. 506 */ 507 WARN_ON_ONCE(vcpu->arch.exception.pending); 508 vcpu->arch.exception.injected = true; 509 if (WARN_ON_ONCE(has_payload)) { 510 /* 511 * A reinjected event has already 512 * delivered its payload. 513 */ 514 has_payload = false; 515 payload = 0; 516 } 517 } else { 518 vcpu->arch.exception.pending = true; 519 vcpu->arch.exception.injected = false; 520 } 521 vcpu->arch.exception.has_error_code = has_error; 522 vcpu->arch.exception.nr = nr; 523 vcpu->arch.exception.error_code = error_code; 524 vcpu->arch.exception.has_payload = has_payload; 525 vcpu->arch.exception.payload = payload; 526 if (!is_guest_mode(vcpu)) 527 kvm_deliver_exception_payload(vcpu); 528 return; 529 } 530 531 /* to check exception */ 532 prev_nr = vcpu->arch.exception.nr; 533 if (prev_nr == DF_VECTOR) { 534 /* triple fault -> shutdown */ 535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 536 return; 537 } 538 class1 = exception_class(prev_nr); 539 class2 = exception_class(nr); 540 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 541 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 542 /* 543 * Generate double fault per SDM Table 5-5. Set 544 * exception.pending = true so that the double fault 545 * can trigger a nested vmexit. 546 */ 547 vcpu->arch.exception.pending = true; 548 vcpu->arch.exception.injected = false; 549 vcpu->arch.exception.has_error_code = true; 550 vcpu->arch.exception.nr = DF_VECTOR; 551 vcpu->arch.exception.error_code = 0; 552 vcpu->arch.exception.has_payload = false; 553 vcpu->arch.exception.payload = 0; 554 } else 555 /* replace previous exception with a new one in a hope 556 that instruction re-execution will regenerate lost 557 exception */ 558 goto queue; 559 } 560 561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 562 { 563 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 564 } 565 EXPORT_SYMBOL_GPL(kvm_queue_exception); 566 567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 568 { 569 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 570 } 571 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 572 573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 574 unsigned long payload) 575 { 576 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 577 } 578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 579 580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 581 u32 error_code, unsigned long payload) 582 { 583 kvm_multiple_exception(vcpu, nr, true, error_code, 584 true, payload, false); 585 } 586 587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 588 { 589 if (err) 590 kvm_inject_gp(vcpu, 0); 591 else 592 return kvm_skip_emulated_instruction(vcpu); 593 594 return 1; 595 } 596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 597 598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 599 { 600 ++vcpu->stat.pf_guest; 601 vcpu->arch.exception.nested_apf = 602 is_guest_mode(vcpu) && fault->async_page_fault; 603 if (vcpu->arch.exception.nested_apf) { 604 vcpu->arch.apf.nested_apf_token = fault->address; 605 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 606 } else { 607 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 608 fault->address); 609 } 610 } 611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 612 613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 614 struct x86_exception *fault) 615 { 616 struct kvm_mmu *fault_mmu; 617 WARN_ON_ONCE(fault->vector != PF_VECTOR); 618 619 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 620 vcpu->arch.walk_mmu; 621 622 /* 623 * Invalidate the TLB entry for the faulting address, if it exists, 624 * else the access will fault indefinitely (and to emulate hardware). 625 */ 626 if ((fault->error_code & PFERR_PRESENT_MASK) && 627 !(fault->error_code & PFERR_RSVD_MASK)) 628 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 629 fault_mmu->root_hpa); 630 631 fault_mmu->inject_page_fault(vcpu, fault); 632 return fault->nested_page_fault; 633 } 634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 635 636 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 637 { 638 atomic_inc(&vcpu->arch.nmi_queued); 639 kvm_make_request(KVM_REQ_NMI, vcpu); 640 } 641 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 642 643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 644 { 645 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 646 } 647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 648 649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 650 { 651 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 652 } 653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 654 655 /* 656 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 657 * a #GP and return false. 658 */ 659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 660 { 661 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 662 return true; 663 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 664 return false; 665 } 666 EXPORT_SYMBOL_GPL(kvm_require_cpl); 667 668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 669 { 670 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 671 return true; 672 673 kvm_queue_exception(vcpu, UD_VECTOR); 674 return false; 675 } 676 EXPORT_SYMBOL_GPL(kvm_require_dr); 677 678 /* 679 * This function will be used to read from the physical memory of the currently 680 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 681 * can read from guest physical or from the guest's guest physical memory. 682 */ 683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 684 gfn_t ngfn, void *data, int offset, int len, 685 u32 access) 686 { 687 struct x86_exception exception; 688 gfn_t real_gfn; 689 gpa_t ngpa; 690 691 ngpa = gfn_to_gpa(ngfn); 692 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 693 if (real_gfn == UNMAPPED_GVA) 694 return -EFAULT; 695 696 real_gfn = gpa_to_gfn(real_gfn); 697 698 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 699 } 700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 701 702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 703 void *data, int offset, int len, u32 access) 704 { 705 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 706 data, offset, len, access); 707 } 708 709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 710 { 711 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 712 rsvd_bits(1, 2); 713 } 714 715 /* 716 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 717 */ 718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 719 { 720 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 721 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 722 int i; 723 int ret; 724 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 725 726 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 727 offset * sizeof(u64), sizeof(pdpte), 728 PFERR_USER_MASK|PFERR_WRITE_MASK); 729 if (ret < 0) { 730 ret = 0; 731 goto out; 732 } 733 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 734 if ((pdpte[i] & PT_PRESENT_MASK) && 735 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 736 ret = 0; 737 goto out; 738 } 739 } 740 ret = 1; 741 742 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 743 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 744 745 out: 746 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(load_pdptrs); 750 751 bool pdptrs_changed(struct kvm_vcpu *vcpu) 752 { 753 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 754 int offset; 755 gfn_t gfn; 756 int r; 757 758 if (!is_pae_paging(vcpu)) 759 return false; 760 761 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 762 return true; 763 764 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 765 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 766 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 767 PFERR_USER_MASK | PFERR_WRITE_MASK); 768 if (r < 0) 769 return true; 770 771 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 772 } 773 EXPORT_SYMBOL_GPL(pdptrs_changed); 774 775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 776 { 777 unsigned long old_cr0 = kvm_read_cr0(vcpu); 778 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 779 780 cr0 |= X86_CR0_ET; 781 782 #ifdef CONFIG_X86_64 783 if (cr0 & 0xffffffff00000000UL) 784 return 1; 785 #endif 786 787 cr0 &= ~CR0_RESERVED_BITS; 788 789 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 790 return 1; 791 792 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 793 return 1; 794 795 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 796 #ifdef CONFIG_X86_64 797 if ((vcpu->arch.efer & EFER_LME)) { 798 int cs_db, cs_l; 799 800 if (!is_pae(vcpu)) 801 return 1; 802 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 803 if (cs_l) 804 return 1; 805 } else 806 #endif 807 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 808 kvm_read_cr3(vcpu))) 809 return 1; 810 } 811 812 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 813 return 1; 814 815 kvm_x86_ops.set_cr0(vcpu, cr0); 816 817 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 818 kvm_clear_async_pf_completion_queue(vcpu); 819 kvm_async_pf_hash_reset(vcpu); 820 } 821 822 if ((cr0 ^ old_cr0) & update_bits) 823 kvm_mmu_reset_context(vcpu); 824 825 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 826 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 827 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 828 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(kvm_set_cr0); 833 834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 835 { 836 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 837 } 838 EXPORT_SYMBOL_GPL(kvm_lmsw); 839 840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 841 { 842 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 843 844 if (vcpu->arch.xcr0 != host_xcr0) 845 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 846 847 if (vcpu->arch.xsaves_enabled && 848 vcpu->arch.ia32_xss != host_xss) 849 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 850 } 851 852 if (static_cpu_has(X86_FEATURE_PKU) && 853 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 854 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 855 vcpu->arch.pkru != vcpu->arch.host_pkru) 856 __write_pkru(vcpu->arch.pkru); 857 } 858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 859 860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 861 { 862 if (static_cpu_has(X86_FEATURE_PKU) && 863 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 864 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 865 vcpu->arch.pkru = rdpkru(); 866 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 867 __write_pkru(vcpu->arch.host_pkru); 868 } 869 870 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 871 872 if (vcpu->arch.xcr0 != host_xcr0) 873 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 874 875 if (vcpu->arch.xsaves_enabled && 876 vcpu->arch.ia32_xss != host_xss) 877 wrmsrl(MSR_IA32_XSS, host_xss); 878 } 879 880 } 881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 882 883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 884 { 885 u64 xcr0 = xcr; 886 u64 old_xcr0 = vcpu->arch.xcr0; 887 u64 valid_bits; 888 889 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 890 if (index != XCR_XFEATURE_ENABLED_MASK) 891 return 1; 892 if (!(xcr0 & XFEATURE_MASK_FP)) 893 return 1; 894 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 895 return 1; 896 897 /* 898 * Do not allow the guest to set bits that we do not support 899 * saving. However, xcr0 bit 0 is always set, even if the 900 * emulated CPU does not support XSAVE (see fx_init). 901 */ 902 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 903 if (xcr0 & ~valid_bits) 904 return 1; 905 906 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 907 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 908 return 1; 909 910 if (xcr0 & XFEATURE_MASK_AVX512) { 911 if (!(xcr0 & XFEATURE_MASK_YMM)) 912 return 1; 913 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 914 return 1; 915 } 916 vcpu->arch.xcr0 = xcr0; 917 918 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 919 kvm_update_cpuid(vcpu); 920 return 0; 921 } 922 923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 924 { 925 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 926 __kvm_set_xcr(vcpu, index, xcr)) { 927 kvm_inject_gp(vcpu, 0); 928 return 1; 929 } 930 return 0; 931 } 932 EXPORT_SYMBOL_GPL(kvm_set_xcr); 933 934 #define __cr4_reserved_bits(__cpu_has, __c) \ 935 ({ \ 936 u64 __reserved_bits = CR4_RESERVED_BITS; \ 937 \ 938 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 939 __reserved_bits |= X86_CR4_OSXSAVE; \ 940 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 941 __reserved_bits |= X86_CR4_SMEP; \ 942 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 943 __reserved_bits |= X86_CR4_SMAP; \ 944 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 945 __reserved_bits |= X86_CR4_FSGSBASE; \ 946 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 947 __reserved_bits |= X86_CR4_PKE; \ 948 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 949 __reserved_bits |= X86_CR4_LA57; \ 950 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 951 __reserved_bits |= X86_CR4_UMIP; \ 952 __reserved_bits; \ 953 }) 954 955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 956 { 957 if (cr4 & cr4_reserved_bits) 958 return -EINVAL; 959 960 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 961 return -EINVAL; 962 963 return 0; 964 } 965 966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 967 { 968 unsigned long old_cr4 = kvm_read_cr4(vcpu); 969 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 970 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 971 972 if (kvm_valid_cr4(vcpu, cr4)) 973 return 1; 974 975 if (is_long_mode(vcpu)) { 976 if (!(cr4 & X86_CR4_PAE)) 977 return 1; 978 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 979 return 1; 980 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 981 && ((cr4 ^ old_cr4) & pdptr_bits) 982 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 983 kvm_read_cr3(vcpu))) 984 return 1; 985 986 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 987 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 988 return 1; 989 990 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 991 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 992 return 1; 993 } 994 995 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 996 return 1; 997 998 if (((cr4 ^ old_cr4) & pdptr_bits) || 999 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1000 kvm_mmu_reset_context(vcpu); 1001 1002 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1003 kvm_update_cpuid(vcpu); 1004 1005 return 0; 1006 } 1007 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1008 1009 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1010 { 1011 bool skip_tlb_flush = false; 1012 #ifdef CONFIG_X86_64 1013 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1014 1015 if (pcid_enabled) { 1016 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1017 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1018 } 1019 #endif 1020 1021 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1022 if (!skip_tlb_flush) { 1023 kvm_mmu_sync_roots(vcpu); 1024 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1025 } 1026 return 0; 1027 } 1028 1029 if (is_long_mode(vcpu) && 1030 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1031 return 1; 1032 else if (is_pae_paging(vcpu) && 1033 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1034 return 1; 1035 1036 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1037 vcpu->arch.cr3 = cr3; 1038 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1039 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1043 1044 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1045 { 1046 if (cr8 & CR8_RESERVED_BITS) 1047 return 1; 1048 if (lapic_in_kernel(vcpu)) 1049 kvm_lapic_set_tpr(vcpu, cr8); 1050 else 1051 vcpu->arch.cr8 = cr8; 1052 return 0; 1053 } 1054 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1055 1056 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1057 { 1058 if (lapic_in_kernel(vcpu)) 1059 return kvm_lapic_get_cr8(vcpu); 1060 else 1061 return vcpu->arch.cr8; 1062 } 1063 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1064 1065 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1066 { 1067 int i; 1068 1069 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1070 for (i = 0; i < KVM_NR_DB_REGS; i++) 1071 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1072 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1073 } 1074 } 1075 1076 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1077 { 1078 unsigned long dr7; 1079 1080 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1081 dr7 = vcpu->arch.guest_debug_dr7; 1082 else 1083 dr7 = vcpu->arch.dr7; 1084 kvm_x86_ops.set_dr7(vcpu, dr7); 1085 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1086 if (dr7 & DR7_BP_EN_MASK) 1087 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1088 } 1089 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1090 1091 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1092 { 1093 u64 fixed = DR6_FIXED_1; 1094 1095 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1096 fixed |= DR6_RTM; 1097 return fixed; 1098 } 1099 1100 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1101 { 1102 size_t size = ARRAY_SIZE(vcpu->arch.db); 1103 1104 switch (dr) { 1105 case 0 ... 3: 1106 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1107 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1108 vcpu->arch.eff_db[dr] = val; 1109 break; 1110 case 4: 1111 /* fall through */ 1112 case 6: 1113 if (val & 0xffffffff00000000ULL) 1114 return -1; /* #GP */ 1115 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1116 break; 1117 case 5: 1118 /* fall through */ 1119 default: /* 7 */ 1120 if (!kvm_dr7_valid(val)) 1121 return -1; /* #GP */ 1122 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1123 kvm_update_dr7(vcpu); 1124 break; 1125 } 1126 1127 return 0; 1128 } 1129 1130 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1131 { 1132 if (__kvm_set_dr(vcpu, dr, val)) { 1133 kvm_inject_gp(vcpu, 0); 1134 return 1; 1135 } 1136 return 0; 1137 } 1138 EXPORT_SYMBOL_GPL(kvm_set_dr); 1139 1140 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1141 { 1142 size_t size = ARRAY_SIZE(vcpu->arch.db); 1143 1144 switch (dr) { 1145 case 0 ... 3: 1146 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1147 break; 1148 case 4: 1149 /* fall through */ 1150 case 6: 1151 *val = vcpu->arch.dr6; 1152 break; 1153 case 5: 1154 /* fall through */ 1155 default: /* 7 */ 1156 *val = vcpu->arch.dr7; 1157 break; 1158 } 1159 return 0; 1160 } 1161 EXPORT_SYMBOL_GPL(kvm_get_dr); 1162 1163 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1164 { 1165 u32 ecx = kvm_rcx_read(vcpu); 1166 u64 data; 1167 int err; 1168 1169 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1170 if (err) 1171 return err; 1172 kvm_rax_write(vcpu, (u32)data); 1173 kvm_rdx_write(vcpu, data >> 32); 1174 return err; 1175 } 1176 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1177 1178 /* 1179 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1180 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1181 * 1182 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1183 * extract the supported MSRs from the related const lists. 1184 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1185 * capabilities of the host cpu. This capabilities test skips MSRs that are 1186 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1187 * may depend on host virtualization features rather than host cpu features. 1188 */ 1189 1190 static const u32 msrs_to_save_all[] = { 1191 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1192 MSR_STAR, 1193 #ifdef CONFIG_X86_64 1194 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1195 #endif 1196 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1197 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1198 MSR_IA32_SPEC_CTRL, 1199 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1200 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1201 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1202 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1203 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1204 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1205 MSR_IA32_UMWAIT_CONTROL, 1206 1207 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1208 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1209 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1210 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1211 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1212 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1213 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1214 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1215 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1216 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1217 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1218 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1219 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1220 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1221 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1222 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1223 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1224 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1225 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1226 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1227 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1228 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1229 }; 1230 1231 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1232 static unsigned num_msrs_to_save; 1233 1234 static const u32 emulated_msrs_all[] = { 1235 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1236 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1237 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1238 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1239 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1240 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1241 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1242 HV_X64_MSR_RESET, 1243 HV_X64_MSR_VP_INDEX, 1244 HV_X64_MSR_VP_RUNTIME, 1245 HV_X64_MSR_SCONTROL, 1246 HV_X64_MSR_STIMER0_CONFIG, 1247 HV_X64_MSR_VP_ASSIST_PAGE, 1248 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1249 HV_X64_MSR_TSC_EMULATION_STATUS, 1250 HV_X64_MSR_SYNDBG_OPTIONS, 1251 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1252 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1253 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1254 1255 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1256 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1257 1258 MSR_IA32_TSC_ADJUST, 1259 MSR_IA32_TSCDEADLINE, 1260 MSR_IA32_ARCH_CAPABILITIES, 1261 MSR_IA32_PERF_CAPABILITIES, 1262 MSR_IA32_MISC_ENABLE, 1263 MSR_IA32_MCG_STATUS, 1264 MSR_IA32_MCG_CTL, 1265 MSR_IA32_MCG_EXT_CTL, 1266 MSR_IA32_SMBASE, 1267 MSR_SMI_COUNT, 1268 MSR_PLATFORM_INFO, 1269 MSR_MISC_FEATURES_ENABLES, 1270 MSR_AMD64_VIRT_SPEC_CTRL, 1271 MSR_IA32_POWER_CTL, 1272 MSR_IA32_UCODE_REV, 1273 1274 /* 1275 * The following list leaves out MSRs whose values are determined 1276 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1277 * We always support the "true" VMX control MSRs, even if the host 1278 * processor does not, so I am putting these registers here rather 1279 * than in msrs_to_save_all. 1280 */ 1281 MSR_IA32_VMX_BASIC, 1282 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1283 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1284 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1285 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1286 MSR_IA32_VMX_MISC, 1287 MSR_IA32_VMX_CR0_FIXED0, 1288 MSR_IA32_VMX_CR4_FIXED0, 1289 MSR_IA32_VMX_VMCS_ENUM, 1290 MSR_IA32_VMX_PROCBASED_CTLS2, 1291 MSR_IA32_VMX_EPT_VPID_CAP, 1292 MSR_IA32_VMX_VMFUNC, 1293 1294 MSR_K7_HWCR, 1295 MSR_KVM_POLL_CONTROL, 1296 }; 1297 1298 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1299 static unsigned num_emulated_msrs; 1300 1301 /* 1302 * List of msr numbers which are used to expose MSR-based features that 1303 * can be used by a hypervisor to validate requested CPU features. 1304 */ 1305 static const u32 msr_based_features_all[] = { 1306 MSR_IA32_VMX_BASIC, 1307 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1308 MSR_IA32_VMX_PINBASED_CTLS, 1309 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1310 MSR_IA32_VMX_PROCBASED_CTLS, 1311 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1312 MSR_IA32_VMX_EXIT_CTLS, 1313 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1314 MSR_IA32_VMX_ENTRY_CTLS, 1315 MSR_IA32_VMX_MISC, 1316 MSR_IA32_VMX_CR0_FIXED0, 1317 MSR_IA32_VMX_CR0_FIXED1, 1318 MSR_IA32_VMX_CR4_FIXED0, 1319 MSR_IA32_VMX_CR4_FIXED1, 1320 MSR_IA32_VMX_VMCS_ENUM, 1321 MSR_IA32_VMX_PROCBASED_CTLS2, 1322 MSR_IA32_VMX_EPT_VPID_CAP, 1323 MSR_IA32_VMX_VMFUNC, 1324 1325 MSR_F10H_DECFG, 1326 MSR_IA32_UCODE_REV, 1327 MSR_IA32_ARCH_CAPABILITIES, 1328 MSR_IA32_PERF_CAPABILITIES, 1329 }; 1330 1331 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1332 static unsigned int num_msr_based_features; 1333 1334 static u64 kvm_get_arch_capabilities(void) 1335 { 1336 u64 data = 0; 1337 1338 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1339 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1340 1341 /* 1342 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1343 * the nested hypervisor runs with NX huge pages. If it is not, 1344 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1345 * L1 guests, so it need not worry about its own (L2) guests. 1346 */ 1347 data |= ARCH_CAP_PSCHANGE_MC_NO; 1348 1349 /* 1350 * If we're doing cache flushes (either "always" or "cond") 1351 * we will do one whenever the guest does a vmlaunch/vmresume. 1352 * If an outer hypervisor is doing the cache flush for us 1353 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1354 * capability to the guest too, and if EPT is disabled we're not 1355 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1356 * require a nested hypervisor to do a flush of its own. 1357 */ 1358 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1359 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1360 1361 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1362 data |= ARCH_CAP_RDCL_NO; 1363 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1364 data |= ARCH_CAP_SSB_NO; 1365 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1366 data |= ARCH_CAP_MDS_NO; 1367 1368 /* 1369 * On TAA affected systems: 1370 * - nothing to do if TSX is disabled on the host. 1371 * - we emulate TSX_CTRL if present on the host. 1372 * This lets the guest use VERW to clear CPU buffers. 1373 */ 1374 if (!boot_cpu_has(X86_FEATURE_RTM)) 1375 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1376 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1377 data |= ARCH_CAP_TAA_NO; 1378 1379 return data; 1380 } 1381 1382 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1383 { 1384 switch (msr->index) { 1385 case MSR_IA32_ARCH_CAPABILITIES: 1386 msr->data = kvm_get_arch_capabilities(); 1387 break; 1388 case MSR_IA32_UCODE_REV: 1389 rdmsrl_safe(msr->index, &msr->data); 1390 break; 1391 default: 1392 if (kvm_x86_ops.get_msr_feature(msr)) 1393 return 1; 1394 } 1395 return 0; 1396 } 1397 1398 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1399 { 1400 struct kvm_msr_entry msr; 1401 int r; 1402 1403 msr.index = index; 1404 r = kvm_get_msr_feature(&msr); 1405 if (r) 1406 return r; 1407 1408 *data = msr.data; 1409 1410 return 0; 1411 } 1412 1413 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1414 { 1415 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1416 return false; 1417 1418 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1419 return false; 1420 1421 if (efer & (EFER_LME | EFER_LMA) && 1422 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1423 return false; 1424 1425 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1426 return false; 1427 1428 return true; 1429 1430 } 1431 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1432 { 1433 if (efer & efer_reserved_bits) 1434 return false; 1435 1436 return __kvm_valid_efer(vcpu, efer); 1437 } 1438 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1439 1440 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1441 { 1442 u64 old_efer = vcpu->arch.efer; 1443 u64 efer = msr_info->data; 1444 1445 if (efer & efer_reserved_bits) 1446 return 1; 1447 1448 if (!msr_info->host_initiated) { 1449 if (!__kvm_valid_efer(vcpu, efer)) 1450 return 1; 1451 1452 if (is_paging(vcpu) && 1453 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1454 return 1; 1455 } 1456 1457 efer &= ~EFER_LMA; 1458 efer |= vcpu->arch.efer & EFER_LMA; 1459 1460 kvm_x86_ops.set_efer(vcpu, efer); 1461 1462 /* Update reserved bits */ 1463 if ((efer ^ old_efer) & EFER_NX) 1464 kvm_mmu_reset_context(vcpu); 1465 1466 return 0; 1467 } 1468 1469 void kvm_enable_efer_bits(u64 mask) 1470 { 1471 efer_reserved_bits &= ~mask; 1472 } 1473 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1474 1475 /* 1476 * Write @data into the MSR specified by @index. Select MSR specific fault 1477 * checks are bypassed if @host_initiated is %true. 1478 * Returns 0 on success, non-0 otherwise. 1479 * Assumes vcpu_load() was already called. 1480 */ 1481 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1482 bool host_initiated) 1483 { 1484 struct msr_data msr; 1485 1486 switch (index) { 1487 case MSR_FS_BASE: 1488 case MSR_GS_BASE: 1489 case MSR_KERNEL_GS_BASE: 1490 case MSR_CSTAR: 1491 case MSR_LSTAR: 1492 if (is_noncanonical_address(data, vcpu)) 1493 return 1; 1494 break; 1495 case MSR_IA32_SYSENTER_EIP: 1496 case MSR_IA32_SYSENTER_ESP: 1497 /* 1498 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1499 * non-canonical address is written on Intel but not on 1500 * AMD (which ignores the top 32-bits, because it does 1501 * not implement 64-bit SYSENTER). 1502 * 1503 * 64-bit code should hence be able to write a non-canonical 1504 * value on AMD. Making the address canonical ensures that 1505 * vmentry does not fail on Intel after writing a non-canonical 1506 * value, and that something deterministic happens if the guest 1507 * invokes 64-bit SYSENTER. 1508 */ 1509 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1510 } 1511 1512 msr.data = data; 1513 msr.index = index; 1514 msr.host_initiated = host_initiated; 1515 1516 return kvm_x86_ops.set_msr(vcpu, &msr); 1517 } 1518 1519 /* 1520 * Read the MSR specified by @index into @data. Select MSR specific fault 1521 * checks are bypassed if @host_initiated is %true. 1522 * Returns 0 on success, non-0 otherwise. 1523 * Assumes vcpu_load() was already called. 1524 */ 1525 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1526 bool host_initiated) 1527 { 1528 struct msr_data msr; 1529 int ret; 1530 1531 msr.index = index; 1532 msr.host_initiated = host_initiated; 1533 1534 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1535 if (!ret) 1536 *data = msr.data; 1537 return ret; 1538 } 1539 1540 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1541 { 1542 return __kvm_get_msr(vcpu, index, data, false); 1543 } 1544 EXPORT_SYMBOL_GPL(kvm_get_msr); 1545 1546 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1547 { 1548 return __kvm_set_msr(vcpu, index, data, false); 1549 } 1550 EXPORT_SYMBOL_GPL(kvm_set_msr); 1551 1552 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1553 { 1554 u32 ecx = kvm_rcx_read(vcpu); 1555 u64 data; 1556 1557 if (kvm_get_msr(vcpu, ecx, &data)) { 1558 trace_kvm_msr_read_ex(ecx); 1559 kvm_inject_gp(vcpu, 0); 1560 return 1; 1561 } 1562 1563 trace_kvm_msr_read(ecx, data); 1564 1565 kvm_rax_write(vcpu, data & -1u); 1566 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1567 return kvm_skip_emulated_instruction(vcpu); 1568 } 1569 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1570 1571 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1572 { 1573 u32 ecx = kvm_rcx_read(vcpu); 1574 u64 data = kvm_read_edx_eax(vcpu); 1575 1576 if (kvm_set_msr(vcpu, ecx, data)) { 1577 trace_kvm_msr_write_ex(ecx, data); 1578 kvm_inject_gp(vcpu, 0); 1579 return 1; 1580 } 1581 1582 trace_kvm_msr_write(ecx, data); 1583 return kvm_skip_emulated_instruction(vcpu); 1584 } 1585 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1586 1587 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1588 { 1589 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1590 need_resched() || signal_pending(current); 1591 } 1592 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1593 1594 /* 1595 * The fast path for frequent and performance sensitive wrmsr emulation, 1596 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1597 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1598 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1599 * other cases which must be called after interrupts are enabled on the host. 1600 */ 1601 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1602 { 1603 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1604 return 1; 1605 1606 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1607 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1608 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1609 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1610 1611 data &= ~(1 << 12); 1612 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1613 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1614 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1615 trace_kvm_apic_write(APIC_ICR, (u32)data); 1616 return 0; 1617 } 1618 1619 return 1; 1620 } 1621 1622 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1623 { 1624 if (!kvm_can_use_hv_timer(vcpu)) 1625 return 1; 1626 1627 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1628 return 0; 1629 } 1630 1631 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1632 { 1633 u32 msr = kvm_rcx_read(vcpu); 1634 u64 data; 1635 fastpath_t ret = EXIT_FASTPATH_NONE; 1636 1637 switch (msr) { 1638 case APIC_BASE_MSR + (APIC_ICR >> 4): 1639 data = kvm_read_edx_eax(vcpu); 1640 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1641 kvm_skip_emulated_instruction(vcpu); 1642 ret = EXIT_FASTPATH_EXIT_HANDLED; 1643 } 1644 break; 1645 case MSR_IA32_TSCDEADLINE: 1646 data = kvm_read_edx_eax(vcpu); 1647 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1648 kvm_skip_emulated_instruction(vcpu); 1649 ret = EXIT_FASTPATH_REENTER_GUEST; 1650 } 1651 break; 1652 default: 1653 break; 1654 } 1655 1656 if (ret != EXIT_FASTPATH_NONE) 1657 trace_kvm_msr_write(msr, data); 1658 1659 return ret; 1660 } 1661 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1662 1663 /* 1664 * Adapt set_msr() to msr_io()'s calling convention 1665 */ 1666 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1667 { 1668 return __kvm_get_msr(vcpu, index, data, true); 1669 } 1670 1671 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1672 { 1673 return __kvm_set_msr(vcpu, index, *data, true); 1674 } 1675 1676 #ifdef CONFIG_X86_64 1677 struct pvclock_clock { 1678 int vclock_mode; 1679 u64 cycle_last; 1680 u64 mask; 1681 u32 mult; 1682 u32 shift; 1683 u64 base_cycles; 1684 u64 offset; 1685 }; 1686 1687 struct pvclock_gtod_data { 1688 seqcount_t seq; 1689 1690 struct pvclock_clock clock; /* extract of a clocksource struct */ 1691 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1692 1693 ktime_t offs_boot; 1694 u64 wall_time_sec; 1695 }; 1696 1697 static struct pvclock_gtod_data pvclock_gtod_data; 1698 1699 static void update_pvclock_gtod(struct timekeeper *tk) 1700 { 1701 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1702 1703 write_seqcount_begin(&vdata->seq); 1704 1705 /* copy pvclock gtod data */ 1706 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1707 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1708 vdata->clock.mask = tk->tkr_mono.mask; 1709 vdata->clock.mult = tk->tkr_mono.mult; 1710 vdata->clock.shift = tk->tkr_mono.shift; 1711 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1712 vdata->clock.offset = tk->tkr_mono.base; 1713 1714 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1715 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1716 vdata->raw_clock.mask = tk->tkr_raw.mask; 1717 vdata->raw_clock.mult = tk->tkr_raw.mult; 1718 vdata->raw_clock.shift = tk->tkr_raw.shift; 1719 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1720 vdata->raw_clock.offset = tk->tkr_raw.base; 1721 1722 vdata->wall_time_sec = tk->xtime_sec; 1723 1724 vdata->offs_boot = tk->offs_boot; 1725 1726 write_seqcount_end(&vdata->seq); 1727 } 1728 1729 static s64 get_kvmclock_base_ns(void) 1730 { 1731 /* Count up from boot time, but with the frequency of the raw clock. */ 1732 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1733 } 1734 #else 1735 static s64 get_kvmclock_base_ns(void) 1736 { 1737 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1738 return ktime_get_boottime_ns(); 1739 } 1740 #endif 1741 1742 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1743 { 1744 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1745 kvm_vcpu_kick(vcpu); 1746 } 1747 1748 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1749 { 1750 int version; 1751 int r; 1752 struct pvclock_wall_clock wc; 1753 u64 wall_nsec; 1754 1755 if (!wall_clock) 1756 return; 1757 1758 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1759 if (r) 1760 return; 1761 1762 if (version & 1) 1763 ++version; /* first time write, random junk */ 1764 1765 ++version; 1766 1767 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1768 return; 1769 1770 /* 1771 * The guest calculates current wall clock time by adding 1772 * system time (updated by kvm_guest_time_update below) to the 1773 * wall clock specified here. We do the reverse here. 1774 */ 1775 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1776 1777 wc.nsec = do_div(wall_nsec, 1000000000); 1778 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1779 wc.version = version; 1780 1781 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1782 1783 version++; 1784 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1785 } 1786 1787 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1788 { 1789 do_shl32_div32(dividend, divisor); 1790 return dividend; 1791 } 1792 1793 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1794 s8 *pshift, u32 *pmultiplier) 1795 { 1796 uint64_t scaled64; 1797 int32_t shift = 0; 1798 uint64_t tps64; 1799 uint32_t tps32; 1800 1801 tps64 = base_hz; 1802 scaled64 = scaled_hz; 1803 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1804 tps64 >>= 1; 1805 shift--; 1806 } 1807 1808 tps32 = (uint32_t)tps64; 1809 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1810 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1811 scaled64 >>= 1; 1812 else 1813 tps32 <<= 1; 1814 shift++; 1815 } 1816 1817 *pshift = shift; 1818 *pmultiplier = div_frac(scaled64, tps32); 1819 } 1820 1821 #ifdef CONFIG_X86_64 1822 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1823 #endif 1824 1825 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1826 static unsigned long max_tsc_khz; 1827 1828 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1829 { 1830 u64 v = (u64)khz * (1000000 + ppm); 1831 do_div(v, 1000000); 1832 return v; 1833 } 1834 1835 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1836 { 1837 u64 ratio; 1838 1839 /* Guest TSC same frequency as host TSC? */ 1840 if (!scale) { 1841 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1842 return 0; 1843 } 1844 1845 /* TSC scaling supported? */ 1846 if (!kvm_has_tsc_control) { 1847 if (user_tsc_khz > tsc_khz) { 1848 vcpu->arch.tsc_catchup = 1; 1849 vcpu->arch.tsc_always_catchup = 1; 1850 return 0; 1851 } else { 1852 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1853 return -1; 1854 } 1855 } 1856 1857 /* TSC scaling required - calculate ratio */ 1858 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1859 user_tsc_khz, tsc_khz); 1860 1861 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1862 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1863 user_tsc_khz); 1864 return -1; 1865 } 1866 1867 vcpu->arch.tsc_scaling_ratio = ratio; 1868 return 0; 1869 } 1870 1871 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1872 { 1873 u32 thresh_lo, thresh_hi; 1874 int use_scaling = 0; 1875 1876 /* tsc_khz can be zero if TSC calibration fails */ 1877 if (user_tsc_khz == 0) { 1878 /* set tsc_scaling_ratio to a safe value */ 1879 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1880 return -1; 1881 } 1882 1883 /* Compute a scale to convert nanoseconds in TSC cycles */ 1884 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1885 &vcpu->arch.virtual_tsc_shift, 1886 &vcpu->arch.virtual_tsc_mult); 1887 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1888 1889 /* 1890 * Compute the variation in TSC rate which is acceptable 1891 * within the range of tolerance and decide if the 1892 * rate being applied is within that bounds of the hardware 1893 * rate. If so, no scaling or compensation need be done. 1894 */ 1895 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1896 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1897 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1898 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1899 use_scaling = 1; 1900 } 1901 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1902 } 1903 1904 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1905 { 1906 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1907 vcpu->arch.virtual_tsc_mult, 1908 vcpu->arch.virtual_tsc_shift); 1909 tsc += vcpu->arch.this_tsc_write; 1910 return tsc; 1911 } 1912 1913 static inline int gtod_is_based_on_tsc(int mode) 1914 { 1915 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1916 } 1917 1918 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1919 { 1920 #ifdef CONFIG_X86_64 1921 bool vcpus_matched; 1922 struct kvm_arch *ka = &vcpu->kvm->arch; 1923 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1924 1925 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1926 atomic_read(&vcpu->kvm->online_vcpus)); 1927 1928 /* 1929 * Once the masterclock is enabled, always perform request in 1930 * order to update it. 1931 * 1932 * In order to enable masterclock, the host clocksource must be TSC 1933 * and the vcpus need to have matched TSCs. When that happens, 1934 * perform request to enable masterclock. 1935 */ 1936 if (ka->use_master_clock || 1937 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1938 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1939 1940 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1941 atomic_read(&vcpu->kvm->online_vcpus), 1942 ka->use_master_clock, gtod->clock.vclock_mode); 1943 #endif 1944 } 1945 1946 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1947 { 1948 u64 curr_offset = vcpu->arch.l1_tsc_offset; 1949 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1950 } 1951 1952 /* 1953 * Multiply tsc by a fixed point number represented by ratio. 1954 * 1955 * The most significant 64-N bits (mult) of ratio represent the 1956 * integral part of the fixed point number; the remaining N bits 1957 * (frac) represent the fractional part, ie. ratio represents a fixed 1958 * point number (mult + frac * 2^(-N)). 1959 * 1960 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1961 */ 1962 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1963 { 1964 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1965 } 1966 1967 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1968 { 1969 u64 _tsc = tsc; 1970 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1971 1972 if (ratio != kvm_default_tsc_scaling_ratio) 1973 _tsc = __scale_tsc(ratio, tsc); 1974 1975 return _tsc; 1976 } 1977 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1978 1979 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1980 { 1981 u64 tsc; 1982 1983 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1984 1985 return target_tsc - tsc; 1986 } 1987 1988 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1989 { 1990 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1991 } 1992 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1993 1994 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1995 { 1996 vcpu->arch.l1_tsc_offset = offset; 1997 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 1998 } 1999 2000 static inline bool kvm_check_tsc_unstable(void) 2001 { 2002 #ifdef CONFIG_X86_64 2003 /* 2004 * TSC is marked unstable when we're running on Hyper-V, 2005 * 'TSC page' clocksource is good. 2006 */ 2007 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2008 return false; 2009 #endif 2010 return check_tsc_unstable(); 2011 } 2012 2013 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 2014 { 2015 struct kvm *kvm = vcpu->kvm; 2016 u64 offset, ns, elapsed; 2017 unsigned long flags; 2018 bool matched; 2019 bool already_matched; 2020 u64 data = msr->data; 2021 bool synchronizing = false; 2022 2023 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2024 offset = kvm_compute_tsc_offset(vcpu, data); 2025 ns = get_kvmclock_base_ns(); 2026 elapsed = ns - kvm->arch.last_tsc_nsec; 2027 2028 if (vcpu->arch.virtual_tsc_khz) { 2029 if (data == 0 && msr->host_initiated) { 2030 /* 2031 * detection of vcpu initialization -- need to sync 2032 * with other vCPUs. This particularly helps to keep 2033 * kvm_clock stable after CPU hotplug 2034 */ 2035 synchronizing = true; 2036 } else { 2037 u64 tsc_exp = kvm->arch.last_tsc_write + 2038 nsec_to_cycles(vcpu, elapsed); 2039 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2040 /* 2041 * Special case: TSC write with a small delta (1 second) 2042 * of virtual cycle time against real time is 2043 * interpreted as an attempt to synchronize the CPU. 2044 */ 2045 synchronizing = data < tsc_exp + tsc_hz && 2046 data + tsc_hz > tsc_exp; 2047 } 2048 } 2049 2050 /* 2051 * For a reliable TSC, we can match TSC offsets, and for an unstable 2052 * TSC, we add elapsed time in this computation. We could let the 2053 * compensation code attempt to catch up if we fall behind, but 2054 * it's better to try to match offsets from the beginning. 2055 */ 2056 if (synchronizing && 2057 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2058 if (!kvm_check_tsc_unstable()) { 2059 offset = kvm->arch.cur_tsc_offset; 2060 } else { 2061 u64 delta = nsec_to_cycles(vcpu, elapsed); 2062 data += delta; 2063 offset = kvm_compute_tsc_offset(vcpu, data); 2064 } 2065 matched = true; 2066 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2067 } else { 2068 /* 2069 * We split periods of matched TSC writes into generations. 2070 * For each generation, we track the original measured 2071 * nanosecond time, offset, and write, so if TSCs are in 2072 * sync, we can match exact offset, and if not, we can match 2073 * exact software computation in compute_guest_tsc() 2074 * 2075 * These values are tracked in kvm->arch.cur_xxx variables. 2076 */ 2077 kvm->arch.cur_tsc_generation++; 2078 kvm->arch.cur_tsc_nsec = ns; 2079 kvm->arch.cur_tsc_write = data; 2080 kvm->arch.cur_tsc_offset = offset; 2081 matched = false; 2082 } 2083 2084 /* 2085 * We also track th most recent recorded KHZ, write and time to 2086 * allow the matching interval to be extended at each write. 2087 */ 2088 kvm->arch.last_tsc_nsec = ns; 2089 kvm->arch.last_tsc_write = data; 2090 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2091 2092 vcpu->arch.last_guest_tsc = data; 2093 2094 /* Keep track of which generation this VCPU has synchronized to */ 2095 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2096 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2097 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2098 2099 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2100 update_ia32_tsc_adjust_msr(vcpu, offset); 2101 2102 kvm_vcpu_write_tsc_offset(vcpu, offset); 2103 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2104 2105 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2106 if (!matched) { 2107 kvm->arch.nr_vcpus_matched_tsc = 0; 2108 } else if (!already_matched) { 2109 kvm->arch.nr_vcpus_matched_tsc++; 2110 } 2111 2112 kvm_track_tsc_matching(vcpu); 2113 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2114 } 2115 2116 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2117 2118 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2119 s64 adjustment) 2120 { 2121 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2122 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2123 } 2124 2125 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2126 { 2127 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2128 WARN_ON(adjustment < 0); 2129 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2130 adjust_tsc_offset_guest(vcpu, adjustment); 2131 } 2132 2133 #ifdef CONFIG_X86_64 2134 2135 static u64 read_tsc(void) 2136 { 2137 u64 ret = (u64)rdtsc_ordered(); 2138 u64 last = pvclock_gtod_data.clock.cycle_last; 2139 2140 if (likely(ret >= last)) 2141 return ret; 2142 2143 /* 2144 * GCC likes to generate cmov here, but this branch is extremely 2145 * predictable (it's just a function of time and the likely is 2146 * very likely) and there's a data dependence, so force GCC 2147 * to generate a branch instead. I don't barrier() because 2148 * we don't actually need a barrier, and if this function 2149 * ever gets inlined it will generate worse code. 2150 */ 2151 asm volatile (""); 2152 return last; 2153 } 2154 2155 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2156 int *mode) 2157 { 2158 long v; 2159 u64 tsc_pg_val; 2160 2161 switch (clock->vclock_mode) { 2162 case VDSO_CLOCKMODE_HVCLOCK: 2163 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2164 tsc_timestamp); 2165 if (tsc_pg_val != U64_MAX) { 2166 /* TSC page valid */ 2167 *mode = VDSO_CLOCKMODE_HVCLOCK; 2168 v = (tsc_pg_val - clock->cycle_last) & 2169 clock->mask; 2170 } else { 2171 /* TSC page invalid */ 2172 *mode = VDSO_CLOCKMODE_NONE; 2173 } 2174 break; 2175 case VDSO_CLOCKMODE_TSC: 2176 *mode = VDSO_CLOCKMODE_TSC; 2177 *tsc_timestamp = read_tsc(); 2178 v = (*tsc_timestamp - clock->cycle_last) & 2179 clock->mask; 2180 break; 2181 default: 2182 *mode = VDSO_CLOCKMODE_NONE; 2183 } 2184 2185 if (*mode == VDSO_CLOCKMODE_NONE) 2186 *tsc_timestamp = v = 0; 2187 2188 return v * clock->mult; 2189 } 2190 2191 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2192 { 2193 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2194 unsigned long seq; 2195 int mode; 2196 u64 ns; 2197 2198 do { 2199 seq = read_seqcount_begin(>od->seq); 2200 ns = gtod->raw_clock.base_cycles; 2201 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2202 ns >>= gtod->raw_clock.shift; 2203 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2204 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2205 *t = ns; 2206 2207 return mode; 2208 } 2209 2210 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2211 { 2212 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2213 unsigned long seq; 2214 int mode; 2215 u64 ns; 2216 2217 do { 2218 seq = read_seqcount_begin(>od->seq); 2219 ts->tv_sec = gtod->wall_time_sec; 2220 ns = gtod->clock.base_cycles; 2221 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2222 ns >>= gtod->clock.shift; 2223 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2224 2225 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2226 ts->tv_nsec = ns; 2227 2228 return mode; 2229 } 2230 2231 /* returns true if host is using TSC based clocksource */ 2232 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2233 { 2234 /* checked again under seqlock below */ 2235 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2236 return false; 2237 2238 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2239 tsc_timestamp)); 2240 } 2241 2242 /* returns true if host is using TSC based clocksource */ 2243 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2244 u64 *tsc_timestamp) 2245 { 2246 /* checked again under seqlock below */ 2247 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2248 return false; 2249 2250 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2251 } 2252 #endif 2253 2254 /* 2255 * 2256 * Assuming a stable TSC across physical CPUS, and a stable TSC 2257 * across virtual CPUs, the following condition is possible. 2258 * Each numbered line represents an event visible to both 2259 * CPUs at the next numbered event. 2260 * 2261 * "timespecX" represents host monotonic time. "tscX" represents 2262 * RDTSC value. 2263 * 2264 * VCPU0 on CPU0 | VCPU1 on CPU1 2265 * 2266 * 1. read timespec0,tsc0 2267 * 2. | timespec1 = timespec0 + N 2268 * | tsc1 = tsc0 + M 2269 * 3. transition to guest | transition to guest 2270 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2271 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2272 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2273 * 2274 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2275 * 2276 * - ret0 < ret1 2277 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2278 * ... 2279 * - 0 < N - M => M < N 2280 * 2281 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2282 * always the case (the difference between two distinct xtime instances 2283 * might be smaller then the difference between corresponding TSC reads, 2284 * when updating guest vcpus pvclock areas). 2285 * 2286 * To avoid that problem, do not allow visibility of distinct 2287 * system_timestamp/tsc_timestamp values simultaneously: use a master 2288 * copy of host monotonic time values. Update that master copy 2289 * in lockstep. 2290 * 2291 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2292 * 2293 */ 2294 2295 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2296 { 2297 #ifdef CONFIG_X86_64 2298 struct kvm_arch *ka = &kvm->arch; 2299 int vclock_mode; 2300 bool host_tsc_clocksource, vcpus_matched; 2301 2302 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2303 atomic_read(&kvm->online_vcpus)); 2304 2305 /* 2306 * If the host uses TSC clock, then passthrough TSC as stable 2307 * to the guest. 2308 */ 2309 host_tsc_clocksource = kvm_get_time_and_clockread( 2310 &ka->master_kernel_ns, 2311 &ka->master_cycle_now); 2312 2313 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2314 && !ka->backwards_tsc_observed 2315 && !ka->boot_vcpu_runs_old_kvmclock; 2316 2317 if (ka->use_master_clock) 2318 atomic_set(&kvm_guest_has_master_clock, 1); 2319 2320 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2321 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2322 vcpus_matched); 2323 #endif 2324 } 2325 2326 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2327 { 2328 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2329 } 2330 2331 static void kvm_gen_update_masterclock(struct kvm *kvm) 2332 { 2333 #ifdef CONFIG_X86_64 2334 int i; 2335 struct kvm_vcpu *vcpu; 2336 struct kvm_arch *ka = &kvm->arch; 2337 2338 spin_lock(&ka->pvclock_gtod_sync_lock); 2339 kvm_make_mclock_inprogress_request(kvm); 2340 /* no guest entries from this point */ 2341 pvclock_update_vm_gtod_copy(kvm); 2342 2343 kvm_for_each_vcpu(i, vcpu, kvm) 2344 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2345 2346 /* guest entries allowed */ 2347 kvm_for_each_vcpu(i, vcpu, kvm) 2348 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2349 2350 spin_unlock(&ka->pvclock_gtod_sync_lock); 2351 #endif 2352 } 2353 2354 u64 get_kvmclock_ns(struct kvm *kvm) 2355 { 2356 struct kvm_arch *ka = &kvm->arch; 2357 struct pvclock_vcpu_time_info hv_clock; 2358 u64 ret; 2359 2360 spin_lock(&ka->pvclock_gtod_sync_lock); 2361 if (!ka->use_master_clock) { 2362 spin_unlock(&ka->pvclock_gtod_sync_lock); 2363 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2364 } 2365 2366 hv_clock.tsc_timestamp = ka->master_cycle_now; 2367 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2368 spin_unlock(&ka->pvclock_gtod_sync_lock); 2369 2370 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2371 get_cpu(); 2372 2373 if (__this_cpu_read(cpu_tsc_khz)) { 2374 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2375 &hv_clock.tsc_shift, 2376 &hv_clock.tsc_to_system_mul); 2377 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2378 } else 2379 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2380 2381 put_cpu(); 2382 2383 return ret; 2384 } 2385 2386 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2387 { 2388 struct kvm_vcpu_arch *vcpu = &v->arch; 2389 struct pvclock_vcpu_time_info guest_hv_clock; 2390 2391 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2392 &guest_hv_clock, sizeof(guest_hv_clock)))) 2393 return; 2394 2395 /* This VCPU is paused, but it's legal for a guest to read another 2396 * VCPU's kvmclock, so we really have to follow the specification where 2397 * it says that version is odd if data is being modified, and even after 2398 * it is consistent. 2399 * 2400 * Version field updates must be kept separate. This is because 2401 * kvm_write_guest_cached might use a "rep movs" instruction, and 2402 * writes within a string instruction are weakly ordered. So there 2403 * are three writes overall. 2404 * 2405 * As a small optimization, only write the version field in the first 2406 * and third write. The vcpu->pv_time cache is still valid, because the 2407 * version field is the first in the struct. 2408 */ 2409 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2410 2411 if (guest_hv_clock.version & 1) 2412 ++guest_hv_clock.version; /* first time write, random junk */ 2413 2414 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2415 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2416 &vcpu->hv_clock, 2417 sizeof(vcpu->hv_clock.version)); 2418 2419 smp_wmb(); 2420 2421 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2422 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2423 2424 if (vcpu->pvclock_set_guest_stopped_request) { 2425 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2426 vcpu->pvclock_set_guest_stopped_request = false; 2427 } 2428 2429 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2430 2431 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2432 &vcpu->hv_clock, 2433 sizeof(vcpu->hv_clock)); 2434 2435 smp_wmb(); 2436 2437 vcpu->hv_clock.version++; 2438 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2439 &vcpu->hv_clock, 2440 sizeof(vcpu->hv_clock.version)); 2441 } 2442 2443 static int kvm_guest_time_update(struct kvm_vcpu *v) 2444 { 2445 unsigned long flags, tgt_tsc_khz; 2446 struct kvm_vcpu_arch *vcpu = &v->arch; 2447 struct kvm_arch *ka = &v->kvm->arch; 2448 s64 kernel_ns; 2449 u64 tsc_timestamp, host_tsc; 2450 u8 pvclock_flags; 2451 bool use_master_clock; 2452 2453 kernel_ns = 0; 2454 host_tsc = 0; 2455 2456 /* 2457 * If the host uses TSC clock, then passthrough TSC as stable 2458 * to the guest. 2459 */ 2460 spin_lock(&ka->pvclock_gtod_sync_lock); 2461 use_master_clock = ka->use_master_clock; 2462 if (use_master_clock) { 2463 host_tsc = ka->master_cycle_now; 2464 kernel_ns = ka->master_kernel_ns; 2465 } 2466 spin_unlock(&ka->pvclock_gtod_sync_lock); 2467 2468 /* Keep irq disabled to prevent changes to the clock */ 2469 local_irq_save(flags); 2470 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2471 if (unlikely(tgt_tsc_khz == 0)) { 2472 local_irq_restore(flags); 2473 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2474 return 1; 2475 } 2476 if (!use_master_clock) { 2477 host_tsc = rdtsc(); 2478 kernel_ns = get_kvmclock_base_ns(); 2479 } 2480 2481 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2482 2483 /* 2484 * We may have to catch up the TSC to match elapsed wall clock 2485 * time for two reasons, even if kvmclock is used. 2486 * 1) CPU could have been running below the maximum TSC rate 2487 * 2) Broken TSC compensation resets the base at each VCPU 2488 * entry to avoid unknown leaps of TSC even when running 2489 * again on the same CPU. This may cause apparent elapsed 2490 * time to disappear, and the guest to stand still or run 2491 * very slowly. 2492 */ 2493 if (vcpu->tsc_catchup) { 2494 u64 tsc = compute_guest_tsc(v, kernel_ns); 2495 if (tsc > tsc_timestamp) { 2496 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2497 tsc_timestamp = tsc; 2498 } 2499 } 2500 2501 local_irq_restore(flags); 2502 2503 /* With all the info we got, fill in the values */ 2504 2505 if (kvm_has_tsc_control) 2506 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2507 2508 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2509 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2510 &vcpu->hv_clock.tsc_shift, 2511 &vcpu->hv_clock.tsc_to_system_mul); 2512 vcpu->hw_tsc_khz = tgt_tsc_khz; 2513 } 2514 2515 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2516 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2517 vcpu->last_guest_tsc = tsc_timestamp; 2518 2519 /* If the host uses TSC clocksource, then it is stable */ 2520 pvclock_flags = 0; 2521 if (use_master_clock) 2522 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2523 2524 vcpu->hv_clock.flags = pvclock_flags; 2525 2526 if (vcpu->pv_time_enabled) 2527 kvm_setup_pvclock_page(v); 2528 if (v == kvm_get_vcpu(v->kvm, 0)) 2529 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2530 return 0; 2531 } 2532 2533 /* 2534 * kvmclock updates which are isolated to a given vcpu, such as 2535 * vcpu->cpu migration, should not allow system_timestamp from 2536 * the rest of the vcpus to remain static. Otherwise ntp frequency 2537 * correction applies to one vcpu's system_timestamp but not 2538 * the others. 2539 * 2540 * So in those cases, request a kvmclock update for all vcpus. 2541 * We need to rate-limit these requests though, as they can 2542 * considerably slow guests that have a large number of vcpus. 2543 * The time for a remote vcpu to update its kvmclock is bound 2544 * by the delay we use to rate-limit the updates. 2545 */ 2546 2547 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2548 2549 static void kvmclock_update_fn(struct work_struct *work) 2550 { 2551 int i; 2552 struct delayed_work *dwork = to_delayed_work(work); 2553 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2554 kvmclock_update_work); 2555 struct kvm *kvm = container_of(ka, struct kvm, arch); 2556 struct kvm_vcpu *vcpu; 2557 2558 kvm_for_each_vcpu(i, vcpu, kvm) { 2559 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2560 kvm_vcpu_kick(vcpu); 2561 } 2562 } 2563 2564 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2565 { 2566 struct kvm *kvm = v->kvm; 2567 2568 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2569 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2570 KVMCLOCK_UPDATE_DELAY); 2571 } 2572 2573 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2574 2575 static void kvmclock_sync_fn(struct work_struct *work) 2576 { 2577 struct delayed_work *dwork = to_delayed_work(work); 2578 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2579 kvmclock_sync_work); 2580 struct kvm *kvm = container_of(ka, struct kvm, arch); 2581 2582 if (!kvmclock_periodic_sync) 2583 return; 2584 2585 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2586 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2587 KVMCLOCK_SYNC_PERIOD); 2588 } 2589 2590 /* 2591 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2592 */ 2593 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2594 { 2595 /* McStatusWrEn enabled? */ 2596 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2597 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2598 2599 return false; 2600 } 2601 2602 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2603 { 2604 u64 mcg_cap = vcpu->arch.mcg_cap; 2605 unsigned bank_num = mcg_cap & 0xff; 2606 u32 msr = msr_info->index; 2607 u64 data = msr_info->data; 2608 2609 switch (msr) { 2610 case MSR_IA32_MCG_STATUS: 2611 vcpu->arch.mcg_status = data; 2612 break; 2613 case MSR_IA32_MCG_CTL: 2614 if (!(mcg_cap & MCG_CTL_P) && 2615 (data || !msr_info->host_initiated)) 2616 return 1; 2617 if (data != 0 && data != ~(u64)0) 2618 return 1; 2619 vcpu->arch.mcg_ctl = data; 2620 break; 2621 default: 2622 if (msr >= MSR_IA32_MC0_CTL && 2623 msr < MSR_IA32_MCx_CTL(bank_num)) { 2624 u32 offset = array_index_nospec( 2625 msr - MSR_IA32_MC0_CTL, 2626 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2627 2628 /* only 0 or all 1s can be written to IA32_MCi_CTL 2629 * some Linux kernels though clear bit 10 in bank 4 to 2630 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2631 * this to avoid an uncatched #GP in the guest 2632 */ 2633 if ((offset & 0x3) == 0 && 2634 data != 0 && (data | (1 << 10)) != ~(u64)0) 2635 return -1; 2636 2637 /* MCi_STATUS */ 2638 if (!msr_info->host_initiated && 2639 (offset & 0x3) == 1 && data != 0) { 2640 if (!can_set_mci_status(vcpu)) 2641 return -1; 2642 } 2643 2644 vcpu->arch.mce_banks[offset] = data; 2645 break; 2646 } 2647 return 1; 2648 } 2649 return 0; 2650 } 2651 2652 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2653 { 2654 struct kvm *kvm = vcpu->kvm; 2655 int lm = is_long_mode(vcpu); 2656 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2657 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2658 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2659 : kvm->arch.xen_hvm_config.blob_size_32; 2660 u32 page_num = data & ~PAGE_MASK; 2661 u64 page_addr = data & PAGE_MASK; 2662 u8 *page; 2663 int r; 2664 2665 r = -E2BIG; 2666 if (page_num >= blob_size) 2667 goto out; 2668 r = -ENOMEM; 2669 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2670 if (IS_ERR(page)) { 2671 r = PTR_ERR(page); 2672 goto out; 2673 } 2674 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2675 goto out_free; 2676 r = 0; 2677 out_free: 2678 kfree(page); 2679 out: 2680 return r; 2681 } 2682 2683 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2684 { 2685 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2686 2687 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2688 } 2689 2690 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2691 { 2692 gpa_t gpa = data & ~0x3f; 2693 2694 /* Bits 4:5 are reserved, Should be zero */ 2695 if (data & 0x30) 2696 return 1; 2697 2698 if (!lapic_in_kernel(vcpu)) 2699 return 1; 2700 2701 vcpu->arch.apf.msr_en_val = data; 2702 2703 if (!kvm_pv_async_pf_enabled(vcpu)) { 2704 kvm_clear_async_pf_completion_queue(vcpu); 2705 kvm_async_pf_hash_reset(vcpu); 2706 return 0; 2707 } 2708 2709 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2710 sizeof(u64))) 2711 return 1; 2712 2713 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2714 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2715 2716 kvm_async_pf_wakeup_all(vcpu); 2717 2718 return 0; 2719 } 2720 2721 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2722 { 2723 /* Bits 8-63 are reserved */ 2724 if (data >> 8) 2725 return 1; 2726 2727 if (!lapic_in_kernel(vcpu)) 2728 return 1; 2729 2730 vcpu->arch.apf.msr_int_val = data; 2731 2732 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2733 2734 return 0; 2735 } 2736 2737 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2738 { 2739 vcpu->arch.pv_time_enabled = false; 2740 vcpu->arch.time = 0; 2741 } 2742 2743 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2744 { 2745 ++vcpu->stat.tlb_flush; 2746 kvm_x86_ops.tlb_flush_all(vcpu); 2747 } 2748 2749 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2750 { 2751 ++vcpu->stat.tlb_flush; 2752 kvm_x86_ops.tlb_flush_guest(vcpu); 2753 } 2754 2755 static void record_steal_time(struct kvm_vcpu *vcpu) 2756 { 2757 struct kvm_host_map map; 2758 struct kvm_steal_time *st; 2759 2760 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2761 return; 2762 2763 /* -EAGAIN is returned in atomic context so we can just return. */ 2764 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2765 &map, &vcpu->arch.st.cache, false)) 2766 return; 2767 2768 st = map.hva + 2769 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2770 2771 /* 2772 * Doing a TLB flush here, on the guest's behalf, can avoid 2773 * expensive IPIs. 2774 */ 2775 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2776 st->preempted & KVM_VCPU_FLUSH_TLB); 2777 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2778 kvm_vcpu_flush_tlb_guest(vcpu); 2779 2780 vcpu->arch.st.preempted = 0; 2781 2782 if (st->version & 1) 2783 st->version += 1; /* first time write, random junk */ 2784 2785 st->version += 1; 2786 2787 smp_wmb(); 2788 2789 st->steal += current->sched_info.run_delay - 2790 vcpu->arch.st.last_steal; 2791 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2792 2793 smp_wmb(); 2794 2795 st->version += 1; 2796 2797 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2798 } 2799 2800 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2801 { 2802 bool pr = false; 2803 u32 msr = msr_info->index; 2804 u64 data = msr_info->data; 2805 2806 switch (msr) { 2807 case MSR_AMD64_NB_CFG: 2808 case MSR_IA32_UCODE_WRITE: 2809 case MSR_VM_HSAVE_PA: 2810 case MSR_AMD64_PATCH_LOADER: 2811 case MSR_AMD64_BU_CFG2: 2812 case MSR_AMD64_DC_CFG: 2813 case MSR_F15H_EX_CFG: 2814 break; 2815 2816 case MSR_IA32_UCODE_REV: 2817 if (msr_info->host_initiated) 2818 vcpu->arch.microcode_version = data; 2819 break; 2820 case MSR_IA32_ARCH_CAPABILITIES: 2821 if (!msr_info->host_initiated) 2822 return 1; 2823 vcpu->arch.arch_capabilities = data; 2824 break; 2825 case MSR_EFER: 2826 return set_efer(vcpu, msr_info); 2827 case MSR_K7_HWCR: 2828 data &= ~(u64)0x40; /* ignore flush filter disable */ 2829 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2830 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2831 2832 /* Handle McStatusWrEn */ 2833 if (data == BIT_ULL(18)) { 2834 vcpu->arch.msr_hwcr = data; 2835 } else if (data != 0) { 2836 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2837 data); 2838 return 1; 2839 } 2840 break; 2841 case MSR_FAM10H_MMIO_CONF_BASE: 2842 if (data != 0) { 2843 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2844 "0x%llx\n", data); 2845 return 1; 2846 } 2847 break; 2848 case MSR_IA32_DEBUGCTLMSR: 2849 if (!data) { 2850 /* We support the non-activated case already */ 2851 break; 2852 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2853 /* Values other than LBR and BTF are vendor-specific, 2854 thus reserved and should throw a #GP */ 2855 return 1; 2856 } 2857 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2858 __func__, data); 2859 break; 2860 case 0x200 ... 0x2ff: 2861 return kvm_mtrr_set_msr(vcpu, msr, data); 2862 case MSR_IA32_APICBASE: 2863 return kvm_set_apic_base(vcpu, msr_info); 2864 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 2865 return kvm_x2apic_msr_write(vcpu, msr, data); 2866 case MSR_IA32_TSCDEADLINE: 2867 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2868 break; 2869 case MSR_IA32_TSC_ADJUST: 2870 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2871 if (!msr_info->host_initiated) { 2872 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2873 adjust_tsc_offset_guest(vcpu, adj); 2874 } 2875 vcpu->arch.ia32_tsc_adjust_msr = data; 2876 } 2877 break; 2878 case MSR_IA32_MISC_ENABLE: 2879 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2880 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2881 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2882 return 1; 2883 vcpu->arch.ia32_misc_enable_msr = data; 2884 kvm_update_cpuid(vcpu); 2885 } else { 2886 vcpu->arch.ia32_misc_enable_msr = data; 2887 } 2888 break; 2889 case MSR_IA32_SMBASE: 2890 if (!msr_info->host_initiated) 2891 return 1; 2892 vcpu->arch.smbase = data; 2893 break; 2894 case MSR_IA32_POWER_CTL: 2895 vcpu->arch.msr_ia32_power_ctl = data; 2896 break; 2897 case MSR_IA32_TSC: 2898 kvm_write_tsc(vcpu, msr_info); 2899 break; 2900 case MSR_IA32_XSS: 2901 if (!msr_info->host_initiated && 2902 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2903 return 1; 2904 /* 2905 * KVM supports exposing PT to the guest, but does not support 2906 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2907 * XSAVES/XRSTORS to save/restore PT MSRs. 2908 */ 2909 if (data & ~supported_xss) 2910 return 1; 2911 vcpu->arch.ia32_xss = data; 2912 break; 2913 case MSR_SMI_COUNT: 2914 if (!msr_info->host_initiated) 2915 return 1; 2916 vcpu->arch.smi_count = data; 2917 break; 2918 case MSR_KVM_WALL_CLOCK_NEW: 2919 case MSR_KVM_WALL_CLOCK: 2920 vcpu->kvm->arch.wall_clock = data; 2921 kvm_write_wall_clock(vcpu->kvm, data); 2922 break; 2923 case MSR_KVM_SYSTEM_TIME_NEW: 2924 case MSR_KVM_SYSTEM_TIME: { 2925 struct kvm_arch *ka = &vcpu->kvm->arch; 2926 2927 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2928 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2929 2930 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2931 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2932 2933 ka->boot_vcpu_runs_old_kvmclock = tmp; 2934 } 2935 2936 vcpu->arch.time = data; 2937 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2938 2939 /* we verify if the enable bit is set... */ 2940 vcpu->arch.pv_time_enabled = false; 2941 if (!(data & 1)) 2942 break; 2943 2944 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2945 &vcpu->arch.pv_time, data & ~1ULL, 2946 sizeof(struct pvclock_vcpu_time_info))) 2947 vcpu->arch.pv_time_enabled = true; 2948 2949 break; 2950 } 2951 case MSR_KVM_ASYNC_PF_EN: 2952 if (kvm_pv_enable_async_pf(vcpu, data)) 2953 return 1; 2954 break; 2955 case MSR_KVM_ASYNC_PF_INT: 2956 if (kvm_pv_enable_async_pf_int(vcpu, data)) 2957 return 1; 2958 break; 2959 case MSR_KVM_ASYNC_PF_ACK: 2960 if (data & 0x1) { 2961 vcpu->arch.apf.pageready_pending = false; 2962 kvm_check_async_pf_completion(vcpu); 2963 } 2964 break; 2965 case MSR_KVM_STEAL_TIME: 2966 2967 if (unlikely(!sched_info_on())) 2968 return 1; 2969 2970 if (data & KVM_STEAL_RESERVED_MASK) 2971 return 1; 2972 2973 vcpu->arch.st.msr_val = data; 2974 2975 if (!(data & KVM_MSR_ENABLED)) 2976 break; 2977 2978 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2979 2980 break; 2981 case MSR_KVM_PV_EOI_EN: 2982 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2983 return 1; 2984 break; 2985 2986 case MSR_KVM_POLL_CONTROL: 2987 /* only enable bit supported */ 2988 if (data & (-1ULL << 1)) 2989 return 1; 2990 2991 vcpu->arch.msr_kvm_poll_control = data; 2992 break; 2993 2994 case MSR_IA32_MCG_CTL: 2995 case MSR_IA32_MCG_STATUS: 2996 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2997 return set_msr_mce(vcpu, msr_info); 2998 2999 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3000 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3001 pr = true; /* fall through */ 3002 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3003 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3004 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3005 return kvm_pmu_set_msr(vcpu, msr_info); 3006 3007 if (pr || data != 0) 3008 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3009 "0x%x data 0x%llx\n", msr, data); 3010 break; 3011 case MSR_K7_CLK_CTL: 3012 /* 3013 * Ignore all writes to this no longer documented MSR. 3014 * Writes are only relevant for old K7 processors, 3015 * all pre-dating SVM, but a recommended workaround from 3016 * AMD for these chips. It is possible to specify the 3017 * affected processor models on the command line, hence 3018 * the need to ignore the workaround. 3019 */ 3020 break; 3021 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3022 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3023 case HV_X64_MSR_SYNDBG_OPTIONS: 3024 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3025 case HV_X64_MSR_CRASH_CTL: 3026 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3027 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3028 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3029 case HV_X64_MSR_TSC_EMULATION_STATUS: 3030 return kvm_hv_set_msr_common(vcpu, msr, data, 3031 msr_info->host_initiated); 3032 case MSR_IA32_BBL_CR_CTL3: 3033 /* Drop writes to this legacy MSR -- see rdmsr 3034 * counterpart for further detail. 3035 */ 3036 if (report_ignored_msrs) 3037 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3038 msr, data); 3039 break; 3040 case MSR_AMD64_OSVW_ID_LENGTH: 3041 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3042 return 1; 3043 vcpu->arch.osvw.length = data; 3044 break; 3045 case MSR_AMD64_OSVW_STATUS: 3046 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3047 return 1; 3048 vcpu->arch.osvw.status = data; 3049 break; 3050 case MSR_PLATFORM_INFO: 3051 if (!msr_info->host_initiated || 3052 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3053 cpuid_fault_enabled(vcpu))) 3054 return 1; 3055 vcpu->arch.msr_platform_info = data; 3056 break; 3057 case MSR_MISC_FEATURES_ENABLES: 3058 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3059 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3060 !supports_cpuid_fault(vcpu))) 3061 return 1; 3062 vcpu->arch.msr_misc_features_enables = data; 3063 break; 3064 default: 3065 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3066 return xen_hvm_config(vcpu, data); 3067 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3068 return kvm_pmu_set_msr(vcpu, msr_info); 3069 if (!ignore_msrs) { 3070 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 3071 msr, data); 3072 return 1; 3073 } else { 3074 if (report_ignored_msrs) 3075 vcpu_unimpl(vcpu, 3076 "ignored wrmsr: 0x%x data 0x%llx\n", 3077 msr, data); 3078 break; 3079 } 3080 } 3081 return 0; 3082 } 3083 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3084 3085 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3086 { 3087 u64 data; 3088 u64 mcg_cap = vcpu->arch.mcg_cap; 3089 unsigned bank_num = mcg_cap & 0xff; 3090 3091 switch (msr) { 3092 case MSR_IA32_P5_MC_ADDR: 3093 case MSR_IA32_P5_MC_TYPE: 3094 data = 0; 3095 break; 3096 case MSR_IA32_MCG_CAP: 3097 data = vcpu->arch.mcg_cap; 3098 break; 3099 case MSR_IA32_MCG_CTL: 3100 if (!(mcg_cap & MCG_CTL_P) && !host) 3101 return 1; 3102 data = vcpu->arch.mcg_ctl; 3103 break; 3104 case MSR_IA32_MCG_STATUS: 3105 data = vcpu->arch.mcg_status; 3106 break; 3107 default: 3108 if (msr >= MSR_IA32_MC0_CTL && 3109 msr < MSR_IA32_MCx_CTL(bank_num)) { 3110 u32 offset = array_index_nospec( 3111 msr - MSR_IA32_MC0_CTL, 3112 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3113 3114 data = vcpu->arch.mce_banks[offset]; 3115 break; 3116 } 3117 return 1; 3118 } 3119 *pdata = data; 3120 return 0; 3121 } 3122 3123 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3124 { 3125 switch (msr_info->index) { 3126 case MSR_IA32_PLATFORM_ID: 3127 case MSR_IA32_EBL_CR_POWERON: 3128 case MSR_IA32_DEBUGCTLMSR: 3129 case MSR_IA32_LASTBRANCHFROMIP: 3130 case MSR_IA32_LASTBRANCHTOIP: 3131 case MSR_IA32_LASTINTFROMIP: 3132 case MSR_IA32_LASTINTTOIP: 3133 case MSR_K8_SYSCFG: 3134 case MSR_K8_TSEG_ADDR: 3135 case MSR_K8_TSEG_MASK: 3136 case MSR_VM_HSAVE_PA: 3137 case MSR_K8_INT_PENDING_MSG: 3138 case MSR_AMD64_NB_CFG: 3139 case MSR_FAM10H_MMIO_CONF_BASE: 3140 case MSR_AMD64_BU_CFG2: 3141 case MSR_IA32_PERF_CTL: 3142 case MSR_AMD64_DC_CFG: 3143 case MSR_F15H_EX_CFG: 3144 /* 3145 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3146 * limit) MSRs. Just return 0, as we do not want to expose the host 3147 * data here. Do not conditionalize this on CPUID, as KVM does not do 3148 * so for existing CPU-specific MSRs. 3149 */ 3150 case MSR_RAPL_POWER_UNIT: 3151 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3152 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3153 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3154 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3155 msr_info->data = 0; 3156 break; 3157 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3158 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3159 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3160 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3161 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3162 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3163 return kvm_pmu_get_msr(vcpu, msr_info); 3164 msr_info->data = 0; 3165 break; 3166 case MSR_IA32_UCODE_REV: 3167 msr_info->data = vcpu->arch.microcode_version; 3168 break; 3169 case MSR_IA32_ARCH_CAPABILITIES: 3170 if (!msr_info->host_initiated && 3171 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3172 return 1; 3173 msr_info->data = vcpu->arch.arch_capabilities; 3174 break; 3175 case MSR_IA32_POWER_CTL: 3176 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3177 break; 3178 case MSR_IA32_TSC: 3179 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3180 break; 3181 case MSR_MTRRcap: 3182 case 0x200 ... 0x2ff: 3183 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3184 case 0xcd: /* fsb frequency */ 3185 msr_info->data = 3; 3186 break; 3187 /* 3188 * MSR_EBC_FREQUENCY_ID 3189 * Conservative value valid for even the basic CPU models. 3190 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3191 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3192 * and 266MHz for model 3, or 4. Set Core Clock 3193 * Frequency to System Bus Frequency Ratio to 1 (bits 3194 * 31:24) even though these are only valid for CPU 3195 * models > 2, however guests may end up dividing or 3196 * multiplying by zero otherwise. 3197 */ 3198 case MSR_EBC_FREQUENCY_ID: 3199 msr_info->data = 1 << 24; 3200 break; 3201 case MSR_IA32_APICBASE: 3202 msr_info->data = kvm_get_apic_base(vcpu); 3203 break; 3204 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3205 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3206 case MSR_IA32_TSCDEADLINE: 3207 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3208 break; 3209 case MSR_IA32_TSC_ADJUST: 3210 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3211 break; 3212 case MSR_IA32_MISC_ENABLE: 3213 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3214 break; 3215 case MSR_IA32_SMBASE: 3216 if (!msr_info->host_initiated) 3217 return 1; 3218 msr_info->data = vcpu->arch.smbase; 3219 break; 3220 case MSR_SMI_COUNT: 3221 msr_info->data = vcpu->arch.smi_count; 3222 break; 3223 case MSR_IA32_PERF_STATUS: 3224 /* TSC increment by tick */ 3225 msr_info->data = 1000ULL; 3226 /* CPU multiplier */ 3227 msr_info->data |= (((uint64_t)4ULL) << 40); 3228 break; 3229 case MSR_EFER: 3230 msr_info->data = vcpu->arch.efer; 3231 break; 3232 case MSR_KVM_WALL_CLOCK: 3233 case MSR_KVM_WALL_CLOCK_NEW: 3234 msr_info->data = vcpu->kvm->arch.wall_clock; 3235 break; 3236 case MSR_KVM_SYSTEM_TIME: 3237 case MSR_KVM_SYSTEM_TIME_NEW: 3238 msr_info->data = vcpu->arch.time; 3239 break; 3240 case MSR_KVM_ASYNC_PF_EN: 3241 msr_info->data = vcpu->arch.apf.msr_en_val; 3242 break; 3243 case MSR_KVM_ASYNC_PF_INT: 3244 msr_info->data = vcpu->arch.apf.msr_int_val; 3245 break; 3246 case MSR_KVM_ASYNC_PF_ACK: 3247 msr_info->data = 0; 3248 break; 3249 case MSR_KVM_STEAL_TIME: 3250 msr_info->data = vcpu->arch.st.msr_val; 3251 break; 3252 case MSR_KVM_PV_EOI_EN: 3253 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3254 break; 3255 case MSR_KVM_POLL_CONTROL: 3256 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3257 break; 3258 case MSR_IA32_P5_MC_ADDR: 3259 case MSR_IA32_P5_MC_TYPE: 3260 case MSR_IA32_MCG_CAP: 3261 case MSR_IA32_MCG_CTL: 3262 case MSR_IA32_MCG_STATUS: 3263 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3264 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3265 msr_info->host_initiated); 3266 case MSR_IA32_XSS: 3267 if (!msr_info->host_initiated && 3268 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3269 return 1; 3270 msr_info->data = vcpu->arch.ia32_xss; 3271 break; 3272 case MSR_K7_CLK_CTL: 3273 /* 3274 * Provide expected ramp-up count for K7. All other 3275 * are set to zero, indicating minimum divisors for 3276 * every field. 3277 * 3278 * This prevents guest kernels on AMD host with CPU 3279 * type 6, model 8 and higher from exploding due to 3280 * the rdmsr failing. 3281 */ 3282 msr_info->data = 0x20000000; 3283 break; 3284 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3285 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3286 case HV_X64_MSR_SYNDBG_OPTIONS: 3287 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3288 case HV_X64_MSR_CRASH_CTL: 3289 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3290 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3291 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3292 case HV_X64_MSR_TSC_EMULATION_STATUS: 3293 return kvm_hv_get_msr_common(vcpu, 3294 msr_info->index, &msr_info->data, 3295 msr_info->host_initiated); 3296 case MSR_IA32_BBL_CR_CTL3: 3297 /* This legacy MSR exists but isn't fully documented in current 3298 * silicon. It is however accessed by winxp in very narrow 3299 * scenarios where it sets bit #19, itself documented as 3300 * a "reserved" bit. Best effort attempt to source coherent 3301 * read data here should the balance of the register be 3302 * interpreted by the guest: 3303 * 3304 * L2 cache control register 3: 64GB range, 256KB size, 3305 * enabled, latency 0x1, configured 3306 */ 3307 msr_info->data = 0xbe702111; 3308 break; 3309 case MSR_AMD64_OSVW_ID_LENGTH: 3310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3311 return 1; 3312 msr_info->data = vcpu->arch.osvw.length; 3313 break; 3314 case MSR_AMD64_OSVW_STATUS: 3315 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3316 return 1; 3317 msr_info->data = vcpu->arch.osvw.status; 3318 break; 3319 case MSR_PLATFORM_INFO: 3320 if (!msr_info->host_initiated && 3321 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3322 return 1; 3323 msr_info->data = vcpu->arch.msr_platform_info; 3324 break; 3325 case MSR_MISC_FEATURES_ENABLES: 3326 msr_info->data = vcpu->arch.msr_misc_features_enables; 3327 break; 3328 case MSR_K7_HWCR: 3329 msr_info->data = vcpu->arch.msr_hwcr; 3330 break; 3331 default: 3332 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3333 return kvm_pmu_get_msr(vcpu, msr_info); 3334 if (!ignore_msrs) { 3335 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3336 msr_info->index); 3337 return 1; 3338 } else { 3339 if (report_ignored_msrs) 3340 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3341 msr_info->index); 3342 msr_info->data = 0; 3343 } 3344 break; 3345 } 3346 return 0; 3347 } 3348 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3349 3350 /* 3351 * Read or write a bunch of msrs. All parameters are kernel addresses. 3352 * 3353 * @return number of msrs set successfully. 3354 */ 3355 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3356 struct kvm_msr_entry *entries, 3357 int (*do_msr)(struct kvm_vcpu *vcpu, 3358 unsigned index, u64 *data)) 3359 { 3360 int i; 3361 3362 for (i = 0; i < msrs->nmsrs; ++i) 3363 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3364 break; 3365 3366 return i; 3367 } 3368 3369 /* 3370 * Read or write a bunch of msrs. Parameters are user addresses. 3371 * 3372 * @return number of msrs set successfully. 3373 */ 3374 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3375 int (*do_msr)(struct kvm_vcpu *vcpu, 3376 unsigned index, u64 *data), 3377 int writeback) 3378 { 3379 struct kvm_msrs msrs; 3380 struct kvm_msr_entry *entries; 3381 int r, n; 3382 unsigned size; 3383 3384 r = -EFAULT; 3385 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3386 goto out; 3387 3388 r = -E2BIG; 3389 if (msrs.nmsrs >= MAX_IO_MSRS) 3390 goto out; 3391 3392 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3393 entries = memdup_user(user_msrs->entries, size); 3394 if (IS_ERR(entries)) { 3395 r = PTR_ERR(entries); 3396 goto out; 3397 } 3398 3399 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3400 if (r < 0) 3401 goto out_free; 3402 3403 r = -EFAULT; 3404 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3405 goto out_free; 3406 3407 r = n; 3408 3409 out_free: 3410 kfree(entries); 3411 out: 3412 return r; 3413 } 3414 3415 static inline bool kvm_can_mwait_in_guest(void) 3416 { 3417 return boot_cpu_has(X86_FEATURE_MWAIT) && 3418 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3419 boot_cpu_has(X86_FEATURE_ARAT); 3420 } 3421 3422 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3423 { 3424 int r = 0; 3425 3426 switch (ext) { 3427 case KVM_CAP_IRQCHIP: 3428 case KVM_CAP_HLT: 3429 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3430 case KVM_CAP_SET_TSS_ADDR: 3431 case KVM_CAP_EXT_CPUID: 3432 case KVM_CAP_EXT_EMUL_CPUID: 3433 case KVM_CAP_CLOCKSOURCE: 3434 case KVM_CAP_PIT: 3435 case KVM_CAP_NOP_IO_DELAY: 3436 case KVM_CAP_MP_STATE: 3437 case KVM_CAP_SYNC_MMU: 3438 case KVM_CAP_USER_NMI: 3439 case KVM_CAP_REINJECT_CONTROL: 3440 case KVM_CAP_IRQ_INJECT_STATUS: 3441 case KVM_CAP_IOEVENTFD: 3442 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3443 case KVM_CAP_PIT2: 3444 case KVM_CAP_PIT_STATE2: 3445 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3446 case KVM_CAP_XEN_HVM: 3447 case KVM_CAP_VCPU_EVENTS: 3448 case KVM_CAP_HYPERV: 3449 case KVM_CAP_HYPERV_VAPIC: 3450 case KVM_CAP_HYPERV_SPIN: 3451 case KVM_CAP_HYPERV_SYNIC: 3452 case KVM_CAP_HYPERV_SYNIC2: 3453 case KVM_CAP_HYPERV_VP_INDEX: 3454 case KVM_CAP_HYPERV_EVENTFD: 3455 case KVM_CAP_HYPERV_TLBFLUSH: 3456 case KVM_CAP_HYPERV_SEND_IPI: 3457 case KVM_CAP_HYPERV_CPUID: 3458 case KVM_CAP_PCI_SEGMENT: 3459 case KVM_CAP_DEBUGREGS: 3460 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3461 case KVM_CAP_XSAVE: 3462 case KVM_CAP_ASYNC_PF: 3463 case KVM_CAP_ASYNC_PF_INT: 3464 case KVM_CAP_GET_TSC_KHZ: 3465 case KVM_CAP_KVMCLOCK_CTRL: 3466 case KVM_CAP_READONLY_MEM: 3467 case KVM_CAP_HYPERV_TIME: 3468 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3469 case KVM_CAP_TSC_DEADLINE_TIMER: 3470 case KVM_CAP_DISABLE_QUIRKS: 3471 case KVM_CAP_SET_BOOT_CPU_ID: 3472 case KVM_CAP_SPLIT_IRQCHIP: 3473 case KVM_CAP_IMMEDIATE_EXIT: 3474 case KVM_CAP_PMU_EVENT_FILTER: 3475 case KVM_CAP_GET_MSR_FEATURES: 3476 case KVM_CAP_MSR_PLATFORM_INFO: 3477 case KVM_CAP_EXCEPTION_PAYLOAD: 3478 case KVM_CAP_SET_GUEST_DEBUG: 3479 r = 1; 3480 break; 3481 case KVM_CAP_SYNC_REGS: 3482 r = KVM_SYNC_X86_VALID_FIELDS; 3483 break; 3484 case KVM_CAP_ADJUST_CLOCK: 3485 r = KVM_CLOCK_TSC_STABLE; 3486 break; 3487 case KVM_CAP_X86_DISABLE_EXITS: 3488 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3489 KVM_X86_DISABLE_EXITS_CSTATE; 3490 if(kvm_can_mwait_in_guest()) 3491 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3492 break; 3493 case KVM_CAP_X86_SMM: 3494 /* SMBASE is usually relocated above 1M on modern chipsets, 3495 * and SMM handlers might indeed rely on 4G segment limits, 3496 * so do not report SMM to be available if real mode is 3497 * emulated via vm86 mode. Still, do not go to great lengths 3498 * to avoid userspace's usage of the feature, because it is a 3499 * fringe case that is not enabled except via specific settings 3500 * of the module parameters. 3501 */ 3502 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3503 break; 3504 case KVM_CAP_VAPIC: 3505 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3506 break; 3507 case KVM_CAP_NR_VCPUS: 3508 r = KVM_SOFT_MAX_VCPUS; 3509 break; 3510 case KVM_CAP_MAX_VCPUS: 3511 r = KVM_MAX_VCPUS; 3512 break; 3513 case KVM_CAP_MAX_VCPU_ID: 3514 r = KVM_MAX_VCPU_ID; 3515 break; 3516 case KVM_CAP_PV_MMU: /* obsolete */ 3517 r = 0; 3518 break; 3519 case KVM_CAP_MCE: 3520 r = KVM_MAX_MCE_BANKS; 3521 break; 3522 case KVM_CAP_XCRS: 3523 r = boot_cpu_has(X86_FEATURE_XSAVE); 3524 break; 3525 case KVM_CAP_TSC_CONTROL: 3526 r = kvm_has_tsc_control; 3527 break; 3528 case KVM_CAP_X2APIC_API: 3529 r = KVM_X2APIC_API_VALID_FLAGS; 3530 break; 3531 case KVM_CAP_NESTED_STATE: 3532 r = kvm_x86_ops.nested_ops->get_state ? 3533 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3534 break; 3535 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3536 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3537 break; 3538 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3539 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3540 break; 3541 default: 3542 break; 3543 } 3544 return r; 3545 3546 } 3547 3548 long kvm_arch_dev_ioctl(struct file *filp, 3549 unsigned int ioctl, unsigned long arg) 3550 { 3551 void __user *argp = (void __user *)arg; 3552 long r; 3553 3554 switch (ioctl) { 3555 case KVM_GET_MSR_INDEX_LIST: { 3556 struct kvm_msr_list __user *user_msr_list = argp; 3557 struct kvm_msr_list msr_list; 3558 unsigned n; 3559 3560 r = -EFAULT; 3561 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3562 goto out; 3563 n = msr_list.nmsrs; 3564 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3565 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3566 goto out; 3567 r = -E2BIG; 3568 if (n < msr_list.nmsrs) 3569 goto out; 3570 r = -EFAULT; 3571 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3572 num_msrs_to_save * sizeof(u32))) 3573 goto out; 3574 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3575 &emulated_msrs, 3576 num_emulated_msrs * sizeof(u32))) 3577 goto out; 3578 r = 0; 3579 break; 3580 } 3581 case KVM_GET_SUPPORTED_CPUID: 3582 case KVM_GET_EMULATED_CPUID: { 3583 struct kvm_cpuid2 __user *cpuid_arg = argp; 3584 struct kvm_cpuid2 cpuid; 3585 3586 r = -EFAULT; 3587 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3588 goto out; 3589 3590 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3591 ioctl); 3592 if (r) 3593 goto out; 3594 3595 r = -EFAULT; 3596 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3597 goto out; 3598 r = 0; 3599 break; 3600 } 3601 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3602 r = -EFAULT; 3603 if (copy_to_user(argp, &kvm_mce_cap_supported, 3604 sizeof(kvm_mce_cap_supported))) 3605 goto out; 3606 r = 0; 3607 break; 3608 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3609 struct kvm_msr_list __user *user_msr_list = argp; 3610 struct kvm_msr_list msr_list; 3611 unsigned int n; 3612 3613 r = -EFAULT; 3614 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3615 goto out; 3616 n = msr_list.nmsrs; 3617 msr_list.nmsrs = num_msr_based_features; 3618 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3619 goto out; 3620 r = -E2BIG; 3621 if (n < msr_list.nmsrs) 3622 goto out; 3623 r = -EFAULT; 3624 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3625 num_msr_based_features * sizeof(u32))) 3626 goto out; 3627 r = 0; 3628 break; 3629 } 3630 case KVM_GET_MSRS: 3631 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3632 break; 3633 default: 3634 r = -EINVAL; 3635 break; 3636 } 3637 out: 3638 return r; 3639 } 3640 3641 static void wbinvd_ipi(void *garbage) 3642 { 3643 wbinvd(); 3644 } 3645 3646 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3647 { 3648 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3649 } 3650 3651 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3652 { 3653 /* Address WBINVD may be executed by guest */ 3654 if (need_emulate_wbinvd(vcpu)) { 3655 if (kvm_x86_ops.has_wbinvd_exit()) 3656 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3657 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3658 smp_call_function_single(vcpu->cpu, 3659 wbinvd_ipi, NULL, 1); 3660 } 3661 3662 kvm_x86_ops.vcpu_load(vcpu, cpu); 3663 3664 /* Save host pkru register if supported */ 3665 vcpu->arch.host_pkru = read_pkru(); 3666 3667 /* Apply any externally detected TSC adjustments (due to suspend) */ 3668 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3669 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3670 vcpu->arch.tsc_offset_adjustment = 0; 3671 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3672 } 3673 3674 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3675 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3676 rdtsc() - vcpu->arch.last_host_tsc; 3677 if (tsc_delta < 0) 3678 mark_tsc_unstable("KVM discovered backwards TSC"); 3679 3680 if (kvm_check_tsc_unstable()) { 3681 u64 offset = kvm_compute_tsc_offset(vcpu, 3682 vcpu->arch.last_guest_tsc); 3683 kvm_vcpu_write_tsc_offset(vcpu, offset); 3684 vcpu->arch.tsc_catchup = 1; 3685 } 3686 3687 if (kvm_lapic_hv_timer_in_use(vcpu)) 3688 kvm_lapic_restart_hv_timer(vcpu); 3689 3690 /* 3691 * On a host with synchronized TSC, there is no need to update 3692 * kvmclock on vcpu->cpu migration 3693 */ 3694 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3695 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3696 if (vcpu->cpu != cpu) 3697 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3698 vcpu->cpu = cpu; 3699 } 3700 3701 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3702 } 3703 3704 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3705 { 3706 struct kvm_host_map map; 3707 struct kvm_steal_time *st; 3708 3709 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3710 return; 3711 3712 if (vcpu->arch.st.preempted) 3713 return; 3714 3715 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3716 &vcpu->arch.st.cache, true)) 3717 return; 3718 3719 st = map.hva + 3720 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3721 3722 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3723 3724 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3725 } 3726 3727 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3728 { 3729 int idx; 3730 3731 if (vcpu->preempted) 3732 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3733 3734 /* 3735 * Disable page faults because we're in atomic context here. 3736 * kvm_write_guest_offset_cached() would call might_fault() 3737 * that relies on pagefault_disable() to tell if there's a 3738 * bug. NOTE: the write to guest memory may not go through if 3739 * during postcopy live migration or if there's heavy guest 3740 * paging. 3741 */ 3742 pagefault_disable(); 3743 /* 3744 * kvm_memslots() will be called by 3745 * kvm_write_guest_offset_cached() so take the srcu lock. 3746 */ 3747 idx = srcu_read_lock(&vcpu->kvm->srcu); 3748 kvm_steal_time_set_preempted(vcpu); 3749 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3750 pagefault_enable(); 3751 kvm_x86_ops.vcpu_put(vcpu); 3752 vcpu->arch.last_host_tsc = rdtsc(); 3753 /* 3754 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3755 * on every vmexit, but if not, we might have a stale dr6 from the 3756 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3757 */ 3758 set_debugreg(0, 6); 3759 } 3760 3761 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3762 struct kvm_lapic_state *s) 3763 { 3764 if (vcpu->arch.apicv_active) 3765 kvm_x86_ops.sync_pir_to_irr(vcpu); 3766 3767 return kvm_apic_get_state(vcpu, s); 3768 } 3769 3770 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3771 struct kvm_lapic_state *s) 3772 { 3773 int r; 3774 3775 r = kvm_apic_set_state(vcpu, s); 3776 if (r) 3777 return r; 3778 update_cr8_intercept(vcpu); 3779 3780 return 0; 3781 } 3782 3783 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3784 { 3785 return (!lapic_in_kernel(vcpu) || 3786 kvm_apic_accept_pic_intr(vcpu)); 3787 } 3788 3789 /* 3790 * if userspace requested an interrupt window, check that the 3791 * interrupt window is open. 3792 * 3793 * No need to exit to userspace if we already have an interrupt queued. 3794 */ 3795 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3796 { 3797 return kvm_arch_interrupt_allowed(vcpu) && 3798 !kvm_cpu_has_interrupt(vcpu) && 3799 !kvm_event_needs_reinjection(vcpu) && 3800 kvm_cpu_accept_dm_intr(vcpu); 3801 } 3802 3803 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3804 struct kvm_interrupt *irq) 3805 { 3806 if (irq->irq >= KVM_NR_INTERRUPTS) 3807 return -EINVAL; 3808 3809 if (!irqchip_in_kernel(vcpu->kvm)) { 3810 kvm_queue_interrupt(vcpu, irq->irq, false); 3811 kvm_make_request(KVM_REQ_EVENT, vcpu); 3812 return 0; 3813 } 3814 3815 /* 3816 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3817 * fail for in-kernel 8259. 3818 */ 3819 if (pic_in_kernel(vcpu->kvm)) 3820 return -ENXIO; 3821 3822 if (vcpu->arch.pending_external_vector != -1) 3823 return -EEXIST; 3824 3825 vcpu->arch.pending_external_vector = irq->irq; 3826 kvm_make_request(KVM_REQ_EVENT, vcpu); 3827 return 0; 3828 } 3829 3830 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3831 { 3832 kvm_inject_nmi(vcpu); 3833 3834 return 0; 3835 } 3836 3837 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3838 { 3839 kvm_make_request(KVM_REQ_SMI, vcpu); 3840 3841 return 0; 3842 } 3843 3844 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3845 struct kvm_tpr_access_ctl *tac) 3846 { 3847 if (tac->flags) 3848 return -EINVAL; 3849 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3850 return 0; 3851 } 3852 3853 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3854 u64 mcg_cap) 3855 { 3856 int r; 3857 unsigned bank_num = mcg_cap & 0xff, bank; 3858 3859 r = -EINVAL; 3860 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 3861 goto out; 3862 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3863 goto out; 3864 r = 0; 3865 vcpu->arch.mcg_cap = mcg_cap; 3866 /* Init IA32_MCG_CTL to all 1s */ 3867 if (mcg_cap & MCG_CTL_P) 3868 vcpu->arch.mcg_ctl = ~(u64)0; 3869 /* Init IA32_MCi_CTL to all 1s */ 3870 for (bank = 0; bank < bank_num; bank++) 3871 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3872 3873 kvm_x86_ops.setup_mce(vcpu); 3874 out: 3875 return r; 3876 } 3877 3878 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3879 struct kvm_x86_mce *mce) 3880 { 3881 u64 mcg_cap = vcpu->arch.mcg_cap; 3882 unsigned bank_num = mcg_cap & 0xff; 3883 u64 *banks = vcpu->arch.mce_banks; 3884 3885 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3886 return -EINVAL; 3887 /* 3888 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3889 * reporting is disabled 3890 */ 3891 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3892 vcpu->arch.mcg_ctl != ~(u64)0) 3893 return 0; 3894 banks += 4 * mce->bank; 3895 /* 3896 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3897 * reporting is disabled for the bank 3898 */ 3899 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3900 return 0; 3901 if (mce->status & MCI_STATUS_UC) { 3902 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3903 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3904 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3905 return 0; 3906 } 3907 if (banks[1] & MCI_STATUS_VAL) 3908 mce->status |= MCI_STATUS_OVER; 3909 banks[2] = mce->addr; 3910 banks[3] = mce->misc; 3911 vcpu->arch.mcg_status = mce->mcg_status; 3912 banks[1] = mce->status; 3913 kvm_queue_exception(vcpu, MC_VECTOR); 3914 } else if (!(banks[1] & MCI_STATUS_VAL) 3915 || !(banks[1] & MCI_STATUS_UC)) { 3916 if (banks[1] & MCI_STATUS_VAL) 3917 mce->status |= MCI_STATUS_OVER; 3918 banks[2] = mce->addr; 3919 banks[3] = mce->misc; 3920 banks[1] = mce->status; 3921 } else 3922 banks[1] |= MCI_STATUS_OVER; 3923 return 0; 3924 } 3925 3926 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3927 struct kvm_vcpu_events *events) 3928 { 3929 process_nmi(vcpu); 3930 3931 /* 3932 * In guest mode, payload delivery should be deferred, 3933 * so that the L1 hypervisor can intercept #PF before 3934 * CR2 is modified (or intercept #DB before DR6 is 3935 * modified under nVMX). Unless the per-VM capability, 3936 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3937 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3938 * opportunistically defer the exception payload, deliver it if the 3939 * capability hasn't been requested before processing a 3940 * KVM_GET_VCPU_EVENTS. 3941 */ 3942 if (!vcpu->kvm->arch.exception_payload_enabled && 3943 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3944 kvm_deliver_exception_payload(vcpu); 3945 3946 /* 3947 * The API doesn't provide the instruction length for software 3948 * exceptions, so don't report them. As long as the guest RIP 3949 * isn't advanced, we should expect to encounter the exception 3950 * again. 3951 */ 3952 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3953 events->exception.injected = 0; 3954 events->exception.pending = 0; 3955 } else { 3956 events->exception.injected = vcpu->arch.exception.injected; 3957 events->exception.pending = vcpu->arch.exception.pending; 3958 /* 3959 * For ABI compatibility, deliberately conflate 3960 * pending and injected exceptions when 3961 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3962 */ 3963 if (!vcpu->kvm->arch.exception_payload_enabled) 3964 events->exception.injected |= 3965 vcpu->arch.exception.pending; 3966 } 3967 events->exception.nr = vcpu->arch.exception.nr; 3968 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3969 events->exception.error_code = vcpu->arch.exception.error_code; 3970 events->exception_has_payload = vcpu->arch.exception.has_payload; 3971 events->exception_payload = vcpu->arch.exception.payload; 3972 3973 events->interrupt.injected = 3974 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3975 events->interrupt.nr = vcpu->arch.interrupt.nr; 3976 events->interrupt.soft = 0; 3977 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 3978 3979 events->nmi.injected = vcpu->arch.nmi_injected; 3980 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3981 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 3982 events->nmi.pad = 0; 3983 3984 events->sipi_vector = 0; /* never valid when reporting to user space */ 3985 3986 events->smi.smm = is_smm(vcpu); 3987 events->smi.pending = vcpu->arch.smi_pending; 3988 events->smi.smm_inside_nmi = 3989 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3990 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3991 3992 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3993 | KVM_VCPUEVENT_VALID_SHADOW 3994 | KVM_VCPUEVENT_VALID_SMM); 3995 if (vcpu->kvm->arch.exception_payload_enabled) 3996 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3997 3998 memset(&events->reserved, 0, sizeof(events->reserved)); 3999 } 4000 4001 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4002 4003 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4004 struct kvm_vcpu_events *events) 4005 { 4006 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4007 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4008 | KVM_VCPUEVENT_VALID_SHADOW 4009 | KVM_VCPUEVENT_VALID_SMM 4010 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4011 return -EINVAL; 4012 4013 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4014 if (!vcpu->kvm->arch.exception_payload_enabled) 4015 return -EINVAL; 4016 if (events->exception.pending) 4017 events->exception.injected = 0; 4018 else 4019 events->exception_has_payload = 0; 4020 } else { 4021 events->exception.pending = 0; 4022 events->exception_has_payload = 0; 4023 } 4024 4025 if ((events->exception.injected || events->exception.pending) && 4026 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4027 return -EINVAL; 4028 4029 /* INITs are latched while in SMM */ 4030 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4031 (events->smi.smm || events->smi.pending) && 4032 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4033 return -EINVAL; 4034 4035 process_nmi(vcpu); 4036 vcpu->arch.exception.injected = events->exception.injected; 4037 vcpu->arch.exception.pending = events->exception.pending; 4038 vcpu->arch.exception.nr = events->exception.nr; 4039 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4040 vcpu->arch.exception.error_code = events->exception.error_code; 4041 vcpu->arch.exception.has_payload = events->exception_has_payload; 4042 vcpu->arch.exception.payload = events->exception_payload; 4043 4044 vcpu->arch.interrupt.injected = events->interrupt.injected; 4045 vcpu->arch.interrupt.nr = events->interrupt.nr; 4046 vcpu->arch.interrupt.soft = events->interrupt.soft; 4047 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4048 kvm_x86_ops.set_interrupt_shadow(vcpu, 4049 events->interrupt.shadow); 4050 4051 vcpu->arch.nmi_injected = events->nmi.injected; 4052 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4053 vcpu->arch.nmi_pending = events->nmi.pending; 4054 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4055 4056 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4057 lapic_in_kernel(vcpu)) 4058 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4059 4060 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4061 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4062 if (events->smi.smm) 4063 vcpu->arch.hflags |= HF_SMM_MASK; 4064 else 4065 vcpu->arch.hflags &= ~HF_SMM_MASK; 4066 kvm_smm_changed(vcpu); 4067 } 4068 4069 vcpu->arch.smi_pending = events->smi.pending; 4070 4071 if (events->smi.smm) { 4072 if (events->smi.smm_inside_nmi) 4073 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4074 else 4075 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4076 } 4077 4078 if (lapic_in_kernel(vcpu)) { 4079 if (events->smi.latched_init) 4080 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4081 else 4082 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4083 } 4084 } 4085 4086 kvm_make_request(KVM_REQ_EVENT, vcpu); 4087 4088 return 0; 4089 } 4090 4091 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4092 struct kvm_debugregs *dbgregs) 4093 { 4094 unsigned long val; 4095 4096 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4097 kvm_get_dr(vcpu, 6, &val); 4098 dbgregs->dr6 = val; 4099 dbgregs->dr7 = vcpu->arch.dr7; 4100 dbgregs->flags = 0; 4101 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4102 } 4103 4104 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4105 struct kvm_debugregs *dbgregs) 4106 { 4107 if (dbgregs->flags) 4108 return -EINVAL; 4109 4110 if (dbgregs->dr6 & ~0xffffffffull) 4111 return -EINVAL; 4112 if (dbgregs->dr7 & ~0xffffffffull) 4113 return -EINVAL; 4114 4115 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4116 kvm_update_dr0123(vcpu); 4117 vcpu->arch.dr6 = dbgregs->dr6; 4118 vcpu->arch.dr7 = dbgregs->dr7; 4119 kvm_update_dr7(vcpu); 4120 4121 return 0; 4122 } 4123 4124 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4125 4126 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4127 { 4128 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4129 u64 xstate_bv = xsave->header.xfeatures; 4130 u64 valid; 4131 4132 /* 4133 * Copy legacy XSAVE area, to avoid complications with CPUID 4134 * leaves 0 and 1 in the loop below. 4135 */ 4136 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4137 4138 /* Set XSTATE_BV */ 4139 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4140 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4141 4142 /* 4143 * Copy each region from the possibly compacted offset to the 4144 * non-compacted offset. 4145 */ 4146 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4147 while (valid) { 4148 u64 xfeature_mask = valid & -valid; 4149 int xfeature_nr = fls64(xfeature_mask) - 1; 4150 void *src = get_xsave_addr(xsave, xfeature_nr); 4151 4152 if (src) { 4153 u32 size, offset, ecx, edx; 4154 cpuid_count(XSTATE_CPUID, xfeature_nr, 4155 &size, &offset, &ecx, &edx); 4156 if (xfeature_nr == XFEATURE_PKRU) 4157 memcpy(dest + offset, &vcpu->arch.pkru, 4158 sizeof(vcpu->arch.pkru)); 4159 else 4160 memcpy(dest + offset, src, size); 4161 4162 } 4163 4164 valid -= xfeature_mask; 4165 } 4166 } 4167 4168 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4169 { 4170 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4171 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4172 u64 valid; 4173 4174 /* 4175 * Copy legacy XSAVE area, to avoid complications with CPUID 4176 * leaves 0 and 1 in the loop below. 4177 */ 4178 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4179 4180 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4181 xsave->header.xfeatures = xstate_bv; 4182 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4183 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4184 4185 /* 4186 * Copy each region from the non-compacted offset to the 4187 * possibly compacted offset. 4188 */ 4189 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4190 while (valid) { 4191 u64 xfeature_mask = valid & -valid; 4192 int xfeature_nr = fls64(xfeature_mask) - 1; 4193 void *dest = get_xsave_addr(xsave, xfeature_nr); 4194 4195 if (dest) { 4196 u32 size, offset, ecx, edx; 4197 cpuid_count(XSTATE_CPUID, xfeature_nr, 4198 &size, &offset, &ecx, &edx); 4199 if (xfeature_nr == XFEATURE_PKRU) 4200 memcpy(&vcpu->arch.pkru, src + offset, 4201 sizeof(vcpu->arch.pkru)); 4202 else 4203 memcpy(dest, src + offset, size); 4204 } 4205 4206 valid -= xfeature_mask; 4207 } 4208 } 4209 4210 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4211 struct kvm_xsave *guest_xsave) 4212 { 4213 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4214 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4215 fill_xsave((u8 *) guest_xsave->region, vcpu); 4216 } else { 4217 memcpy(guest_xsave->region, 4218 &vcpu->arch.guest_fpu->state.fxsave, 4219 sizeof(struct fxregs_state)); 4220 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4221 XFEATURE_MASK_FPSSE; 4222 } 4223 } 4224 4225 #define XSAVE_MXCSR_OFFSET 24 4226 4227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4228 struct kvm_xsave *guest_xsave) 4229 { 4230 u64 xstate_bv = 4231 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4232 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4233 4234 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4235 /* 4236 * Here we allow setting states that are not present in 4237 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4238 * with old userspace. 4239 */ 4240 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4241 return -EINVAL; 4242 load_xsave(vcpu, (u8 *)guest_xsave->region); 4243 } else { 4244 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4245 mxcsr & ~mxcsr_feature_mask) 4246 return -EINVAL; 4247 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4248 guest_xsave->region, sizeof(struct fxregs_state)); 4249 } 4250 return 0; 4251 } 4252 4253 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4254 struct kvm_xcrs *guest_xcrs) 4255 { 4256 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4257 guest_xcrs->nr_xcrs = 0; 4258 return; 4259 } 4260 4261 guest_xcrs->nr_xcrs = 1; 4262 guest_xcrs->flags = 0; 4263 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4264 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4265 } 4266 4267 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4268 struct kvm_xcrs *guest_xcrs) 4269 { 4270 int i, r = 0; 4271 4272 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4273 return -EINVAL; 4274 4275 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4276 return -EINVAL; 4277 4278 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4279 /* Only support XCR0 currently */ 4280 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4281 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4282 guest_xcrs->xcrs[i].value); 4283 break; 4284 } 4285 if (r) 4286 r = -EINVAL; 4287 return r; 4288 } 4289 4290 /* 4291 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4292 * stopped by the hypervisor. This function will be called from the host only. 4293 * EINVAL is returned when the host attempts to set the flag for a guest that 4294 * does not support pv clocks. 4295 */ 4296 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4297 { 4298 if (!vcpu->arch.pv_time_enabled) 4299 return -EINVAL; 4300 vcpu->arch.pvclock_set_guest_stopped_request = true; 4301 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4302 return 0; 4303 } 4304 4305 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4306 struct kvm_enable_cap *cap) 4307 { 4308 int r; 4309 uint16_t vmcs_version; 4310 void __user *user_ptr; 4311 4312 if (cap->flags) 4313 return -EINVAL; 4314 4315 switch (cap->cap) { 4316 case KVM_CAP_HYPERV_SYNIC2: 4317 if (cap->args[0]) 4318 return -EINVAL; 4319 /* fall through */ 4320 4321 case KVM_CAP_HYPERV_SYNIC: 4322 if (!irqchip_in_kernel(vcpu->kvm)) 4323 return -EINVAL; 4324 return kvm_hv_activate_synic(vcpu, cap->cap == 4325 KVM_CAP_HYPERV_SYNIC2); 4326 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4327 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4328 return -ENOTTY; 4329 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4330 if (!r) { 4331 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4332 if (copy_to_user(user_ptr, &vmcs_version, 4333 sizeof(vmcs_version))) 4334 r = -EFAULT; 4335 } 4336 return r; 4337 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4338 if (!kvm_x86_ops.enable_direct_tlbflush) 4339 return -ENOTTY; 4340 4341 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4342 4343 default: 4344 return -EINVAL; 4345 } 4346 } 4347 4348 long kvm_arch_vcpu_ioctl(struct file *filp, 4349 unsigned int ioctl, unsigned long arg) 4350 { 4351 struct kvm_vcpu *vcpu = filp->private_data; 4352 void __user *argp = (void __user *)arg; 4353 int r; 4354 union { 4355 struct kvm_lapic_state *lapic; 4356 struct kvm_xsave *xsave; 4357 struct kvm_xcrs *xcrs; 4358 void *buffer; 4359 } u; 4360 4361 vcpu_load(vcpu); 4362 4363 u.buffer = NULL; 4364 switch (ioctl) { 4365 case KVM_GET_LAPIC: { 4366 r = -EINVAL; 4367 if (!lapic_in_kernel(vcpu)) 4368 goto out; 4369 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4370 GFP_KERNEL_ACCOUNT); 4371 4372 r = -ENOMEM; 4373 if (!u.lapic) 4374 goto out; 4375 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4376 if (r) 4377 goto out; 4378 r = -EFAULT; 4379 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4380 goto out; 4381 r = 0; 4382 break; 4383 } 4384 case KVM_SET_LAPIC: { 4385 r = -EINVAL; 4386 if (!lapic_in_kernel(vcpu)) 4387 goto out; 4388 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4389 if (IS_ERR(u.lapic)) { 4390 r = PTR_ERR(u.lapic); 4391 goto out_nofree; 4392 } 4393 4394 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4395 break; 4396 } 4397 case KVM_INTERRUPT: { 4398 struct kvm_interrupt irq; 4399 4400 r = -EFAULT; 4401 if (copy_from_user(&irq, argp, sizeof(irq))) 4402 goto out; 4403 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4404 break; 4405 } 4406 case KVM_NMI: { 4407 r = kvm_vcpu_ioctl_nmi(vcpu); 4408 break; 4409 } 4410 case KVM_SMI: { 4411 r = kvm_vcpu_ioctl_smi(vcpu); 4412 break; 4413 } 4414 case KVM_SET_CPUID: { 4415 struct kvm_cpuid __user *cpuid_arg = argp; 4416 struct kvm_cpuid cpuid; 4417 4418 r = -EFAULT; 4419 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4420 goto out; 4421 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4422 break; 4423 } 4424 case KVM_SET_CPUID2: { 4425 struct kvm_cpuid2 __user *cpuid_arg = argp; 4426 struct kvm_cpuid2 cpuid; 4427 4428 r = -EFAULT; 4429 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4430 goto out; 4431 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4432 cpuid_arg->entries); 4433 break; 4434 } 4435 case KVM_GET_CPUID2: { 4436 struct kvm_cpuid2 __user *cpuid_arg = argp; 4437 struct kvm_cpuid2 cpuid; 4438 4439 r = -EFAULT; 4440 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4441 goto out; 4442 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4443 cpuid_arg->entries); 4444 if (r) 4445 goto out; 4446 r = -EFAULT; 4447 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4448 goto out; 4449 r = 0; 4450 break; 4451 } 4452 case KVM_GET_MSRS: { 4453 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4454 r = msr_io(vcpu, argp, do_get_msr, 1); 4455 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4456 break; 4457 } 4458 case KVM_SET_MSRS: { 4459 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4460 r = msr_io(vcpu, argp, do_set_msr, 0); 4461 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4462 break; 4463 } 4464 case KVM_TPR_ACCESS_REPORTING: { 4465 struct kvm_tpr_access_ctl tac; 4466 4467 r = -EFAULT; 4468 if (copy_from_user(&tac, argp, sizeof(tac))) 4469 goto out; 4470 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4471 if (r) 4472 goto out; 4473 r = -EFAULT; 4474 if (copy_to_user(argp, &tac, sizeof(tac))) 4475 goto out; 4476 r = 0; 4477 break; 4478 }; 4479 case KVM_SET_VAPIC_ADDR: { 4480 struct kvm_vapic_addr va; 4481 int idx; 4482 4483 r = -EINVAL; 4484 if (!lapic_in_kernel(vcpu)) 4485 goto out; 4486 r = -EFAULT; 4487 if (copy_from_user(&va, argp, sizeof(va))) 4488 goto out; 4489 idx = srcu_read_lock(&vcpu->kvm->srcu); 4490 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4491 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4492 break; 4493 } 4494 case KVM_X86_SETUP_MCE: { 4495 u64 mcg_cap; 4496 4497 r = -EFAULT; 4498 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4499 goto out; 4500 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4501 break; 4502 } 4503 case KVM_X86_SET_MCE: { 4504 struct kvm_x86_mce mce; 4505 4506 r = -EFAULT; 4507 if (copy_from_user(&mce, argp, sizeof(mce))) 4508 goto out; 4509 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4510 break; 4511 } 4512 case KVM_GET_VCPU_EVENTS: { 4513 struct kvm_vcpu_events events; 4514 4515 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4516 4517 r = -EFAULT; 4518 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4519 break; 4520 r = 0; 4521 break; 4522 } 4523 case KVM_SET_VCPU_EVENTS: { 4524 struct kvm_vcpu_events events; 4525 4526 r = -EFAULT; 4527 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4528 break; 4529 4530 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4531 break; 4532 } 4533 case KVM_GET_DEBUGREGS: { 4534 struct kvm_debugregs dbgregs; 4535 4536 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4537 4538 r = -EFAULT; 4539 if (copy_to_user(argp, &dbgregs, 4540 sizeof(struct kvm_debugregs))) 4541 break; 4542 r = 0; 4543 break; 4544 } 4545 case KVM_SET_DEBUGREGS: { 4546 struct kvm_debugregs dbgregs; 4547 4548 r = -EFAULT; 4549 if (copy_from_user(&dbgregs, argp, 4550 sizeof(struct kvm_debugregs))) 4551 break; 4552 4553 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4554 break; 4555 } 4556 case KVM_GET_XSAVE: { 4557 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4558 r = -ENOMEM; 4559 if (!u.xsave) 4560 break; 4561 4562 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4563 4564 r = -EFAULT; 4565 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4566 break; 4567 r = 0; 4568 break; 4569 } 4570 case KVM_SET_XSAVE: { 4571 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4572 if (IS_ERR(u.xsave)) { 4573 r = PTR_ERR(u.xsave); 4574 goto out_nofree; 4575 } 4576 4577 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4578 break; 4579 } 4580 case KVM_GET_XCRS: { 4581 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4582 r = -ENOMEM; 4583 if (!u.xcrs) 4584 break; 4585 4586 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4587 4588 r = -EFAULT; 4589 if (copy_to_user(argp, u.xcrs, 4590 sizeof(struct kvm_xcrs))) 4591 break; 4592 r = 0; 4593 break; 4594 } 4595 case KVM_SET_XCRS: { 4596 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4597 if (IS_ERR(u.xcrs)) { 4598 r = PTR_ERR(u.xcrs); 4599 goto out_nofree; 4600 } 4601 4602 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4603 break; 4604 } 4605 case KVM_SET_TSC_KHZ: { 4606 u32 user_tsc_khz; 4607 4608 r = -EINVAL; 4609 user_tsc_khz = (u32)arg; 4610 4611 if (kvm_has_tsc_control && 4612 user_tsc_khz >= kvm_max_guest_tsc_khz) 4613 goto out; 4614 4615 if (user_tsc_khz == 0) 4616 user_tsc_khz = tsc_khz; 4617 4618 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4619 r = 0; 4620 4621 goto out; 4622 } 4623 case KVM_GET_TSC_KHZ: { 4624 r = vcpu->arch.virtual_tsc_khz; 4625 goto out; 4626 } 4627 case KVM_KVMCLOCK_CTRL: { 4628 r = kvm_set_guest_paused(vcpu); 4629 goto out; 4630 } 4631 case KVM_ENABLE_CAP: { 4632 struct kvm_enable_cap cap; 4633 4634 r = -EFAULT; 4635 if (copy_from_user(&cap, argp, sizeof(cap))) 4636 goto out; 4637 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4638 break; 4639 } 4640 case KVM_GET_NESTED_STATE: { 4641 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4642 u32 user_data_size; 4643 4644 r = -EINVAL; 4645 if (!kvm_x86_ops.nested_ops->get_state) 4646 break; 4647 4648 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4649 r = -EFAULT; 4650 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4651 break; 4652 4653 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4654 user_data_size); 4655 if (r < 0) 4656 break; 4657 4658 if (r > user_data_size) { 4659 if (put_user(r, &user_kvm_nested_state->size)) 4660 r = -EFAULT; 4661 else 4662 r = -E2BIG; 4663 break; 4664 } 4665 4666 r = 0; 4667 break; 4668 } 4669 case KVM_SET_NESTED_STATE: { 4670 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4671 struct kvm_nested_state kvm_state; 4672 int idx; 4673 4674 r = -EINVAL; 4675 if (!kvm_x86_ops.nested_ops->set_state) 4676 break; 4677 4678 r = -EFAULT; 4679 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4680 break; 4681 4682 r = -EINVAL; 4683 if (kvm_state.size < sizeof(kvm_state)) 4684 break; 4685 4686 if (kvm_state.flags & 4687 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4688 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4689 | KVM_STATE_NESTED_GIF_SET)) 4690 break; 4691 4692 /* nested_run_pending implies guest_mode. */ 4693 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4694 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4695 break; 4696 4697 idx = srcu_read_lock(&vcpu->kvm->srcu); 4698 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4699 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4700 break; 4701 } 4702 case KVM_GET_SUPPORTED_HV_CPUID: { 4703 struct kvm_cpuid2 __user *cpuid_arg = argp; 4704 struct kvm_cpuid2 cpuid; 4705 4706 r = -EFAULT; 4707 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4708 goto out; 4709 4710 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4711 cpuid_arg->entries); 4712 if (r) 4713 goto out; 4714 4715 r = -EFAULT; 4716 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4717 goto out; 4718 r = 0; 4719 break; 4720 } 4721 default: 4722 r = -EINVAL; 4723 } 4724 out: 4725 kfree(u.buffer); 4726 out_nofree: 4727 vcpu_put(vcpu); 4728 return r; 4729 } 4730 4731 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4732 { 4733 return VM_FAULT_SIGBUS; 4734 } 4735 4736 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4737 { 4738 int ret; 4739 4740 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4741 return -EINVAL; 4742 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4743 return ret; 4744 } 4745 4746 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4747 u64 ident_addr) 4748 { 4749 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4750 } 4751 4752 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4753 unsigned long kvm_nr_mmu_pages) 4754 { 4755 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4756 return -EINVAL; 4757 4758 mutex_lock(&kvm->slots_lock); 4759 4760 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4761 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4762 4763 mutex_unlock(&kvm->slots_lock); 4764 return 0; 4765 } 4766 4767 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4768 { 4769 return kvm->arch.n_max_mmu_pages; 4770 } 4771 4772 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4773 { 4774 struct kvm_pic *pic = kvm->arch.vpic; 4775 int r; 4776 4777 r = 0; 4778 switch (chip->chip_id) { 4779 case KVM_IRQCHIP_PIC_MASTER: 4780 memcpy(&chip->chip.pic, &pic->pics[0], 4781 sizeof(struct kvm_pic_state)); 4782 break; 4783 case KVM_IRQCHIP_PIC_SLAVE: 4784 memcpy(&chip->chip.pic, &pic->pics[1], 4785 sizeof(struct kvm_pic_state)); 4786 break; 4787 case KVM_IRQCHIP_IOAPIC: 4788 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4789 break; 4790 default: 4791 r = -EINVAL; 4792 break; 4793 } 4794 return r; 4795 } 4796 4797 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4798 { 4799 struct kvm_pic *pic = kvm->arch.vpic; 4800 int r; 4801 4802 r = 0; 4803 switch (chip->chip_id) { 4804 case KVM_IRQCHIP_PIC_MASTER: 4805 spin_lock(&pic->lock); 4806 memcpy(&pic->pics[0], &chip->chip.pic, 4807 sizeof(struct kvm_pic_state)); 4808 spin_unlock(&pic->lock); 4809 break; 4810 case KVM_IRQCHIP_PIC_SLAVE: 4811 spin_lock(&pic->lock); 4812 memcpy(&pic->pics[1], &chip->chip.pic, 4813 sizeof(struct kvm_pic_state)); 4814 spin_unlock(&pic->lock); 4815 break; 4816 case KVM_IRQCHIP_IOAPIC: 4817 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4818 break; 4819 default: 4820 r = -EINVAL; 4821 break; 4822 } 4823 kvm_pic_update_irq(pic); 4824 return r; 4825 } 4826 4827 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4828 { 4829 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4830 4831 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4832 4833 mutex_lock(&kps->lock); 4834 memcpy(ps, &kps->channels, sizeof(*ps)); 4835 mutex_unlock(&kps->lock); 4836 return 0; 4837 } 4838 4839 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4840 { 4841 int i; 4842 struct kvm_pit *pit = kvm->arch.vpit; 4843 4844 mutex_lock(&pit->pit_state.lock); 4845 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4846 for (i = 0; i < 3; i++) 4847 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4848 mutex_unlock(&pit->pit_state.lock); 4849 return 0; 4850 } 4851 4852 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4853 { 4854 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4855 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4856 sizeof(ps->channels)); 4857 ps->flags = kvm->arch.vpit->pit_state.flags; 4858 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4859 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4860 return 0; 4861 } 4862 4863 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4864 { 4865 int start = 0; 4866 int i; 4867 u32 prev_legacy, cur_legacy; 4868 struct kvm_pit *pit = kvm->arch.vpit; 4869 4870 mutex_lock(&pit->pit_state.lock); 4871 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4872 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4873 if (!prev_legacy && cur_legacy) 4874 start = 1; 4875 memcpy(&pit->pit_state.channels, &ps->channels, 4876 sizeof(pit->pit_state.channels)); 4877 pit->pit_state.flags = ps->flags; 4878 for (i = 0; i < 3; i++) 4879 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4880 start && i == 0); 4881 mutex_unlock(&pit->pit_state.lock); 4882 return 0; 4883 } 4884 4885 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4886 struct kvm_reinject_control *control) 4887 { 4888 struct kvm_pit *pit = kvm->arch.vpit; 4889 4890 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4891 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4892 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4893 */ 4894 mutex_lock(&pit->pit_state.lock); 4895 kvm_pit_set_reinject(pit, control->pit_reinject); 4896 mutex_unlock(&pit->pit_state.lock); 4897 4898 return 0; 4899 } 4900 4901 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4902 { 4903 /* 4904 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4905 */ 4906 if (kvm_x86_ops.flush_log_dirty) 4907 kvm_x86_ops.flush_log_dirty(kvm); 4908 } 4909 4910 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4911 bool line_status) 4912 { 4913 if (!irqchip_in_kernel(kvm)) 4914 return -ENXIO; 4915 4916 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4917 irq_event->irq, irq_event->level, 4918 line_status); 4919 return 0; 4920 } 4921 4922 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4923 struct kvm_enable_cap *cap) 4924 { 4925 int r; 4926 4927 if (cap->flags) 4928 return -EINVAL; 4929 4930 switch (cap->cap) { 4931 case KVM_CAP_DISABLE_QUIRKS: 4932 kvm->arch.disabled_quirks = cap->args[0]; 4933 r = 0; 4934 break; 4935 case KVM_CAP_SPLIT_IRQCHIP: { 4936 mutex_lock(&kvm->lock); 4937 r = -EINVAL; 4938 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4939 goto split_irqchip_unlock; 4940 r = -EEXIST; 4941 if (irqchip_in_kernel(kvm)) 4942 goto split_irqchip_unlock; 4943 if (kvm->created_vcpus) 4944 goto split_irqchip_unlock; 4945 r = kvm_setup_empty_irq_routing(kvm); 4946 if (r) 4947 goto split_irqchip_unlock; 4948 /* Pairs with irqchip_in_kernel. */ 4949 smp_wmb(); 4950 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4951 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4952 r = 0; 4953 split_irqchip_unlock: 4954 mutex_unlock(&kvm->lock); 4955 break; 4956 } 4957 case KVM_CAP_X2APIC_API: 4958 r = -EINVAL; 4959 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4960 break; 4961 4962 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4963 kvm->arch.x2apic_format = true; 4964 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4965 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4966 4967 r = 0; 4968 break; 4969 case KVM_CAP_X86_DISABLE_EXITS: 4970 r = -EINVAL; 4971 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4972 break; 4973 4974 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4975 kvm_can_mwait_in_guest()) 4976 kvm->arch.mwait_in_guest = true; 4977 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4978 kvm->arch.hlt_in_guest = true; 4979 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4980 kvm->arch.pause_in_guest = true; 4981 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4982 kvm->arch.cstate_in_guest = true; 4983 r = 0; 4984 break; 4985 case KVM_CAP_MSR_PLATFORM_INFO: 4986 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4987 r = 0; 4988 break; 4989 case KVM_CAP_EXCEPTION_PAYLOAD: 4990 kvm->arch.exception_payload_enabled = cap->args[0]; 4991 r = 0; 4992 break; 4993 default: 4994 r = -EINVAL; 4995 break; 4996 } 4997 return r; 4998 } 4999 5000 long kvm_arch_vm_ioctl(struct file *filp, 5001 unsigned int ioctl, unsigned long arg) 5002 { 5003 struct kvm *kvm = filp->private_data; 5004 void __user *argp = (void __user *)arg; 5005 int r = -ENOTTY; 5006 /* 5007 * This union makes it completely explicit to gcc-3.x 5008 * that these two variables' stack usage should be 5009 * combined, not added together. 5010 */ 5011 union { 5012 struct kvm_pit_state ps; 5013 struct kvm_pit_state2 ps2; 5014 struct kvm_pit_config pit_config; 5015 } u; 5016 5017 switch (ioctl) { 5018 case KVM_SET_TSS_ADDR: 5019 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5020 break; 5021 case KVM_SET_IDENTITY_MAP_ADDR: { 5022 u64 ident_addr; 5023 5024 mutex_lock(&kvm->lock); 5025 r = -EINVAL; 5026 if (kvm->created_vcpus) 5027 goto set_identity_unlock; 5028 r = -EFAULT; 5029 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5030 goto set_identity_unlock; 5031 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5032 set_identity_unlock: 5033 mutex_unlock(&kvm->lock); 5034 break; 5035 } 5036 case KVM_SET_NR_MMU_PAGES: 5037 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5038 break; 5039 case KVM_GET_NR_MMU_PAGES: 5040 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5041 break; 5042 case KVM_CREATE_IRQCHIP: { 5043 mutex_lock(&kvm->lock); 5044 5045 r = -EEXIST; 5046 if (irqchip_in_kernel(kvm)) 5047 goto create_irqchip_unlock; 5048 5049 r = -EINVAL; 5050 if (kvm->created_vcpus) 5051 goto create_irqchip_unlock; 5052 5053 r = kvm_pic_init(kvm); 5054 if (r) 5055 goto create_irqchip_unlock; 5056 5057 r = kvm_ioapic_init(kvm); 5058 if (r) { 5059 kvm_pic_destroy(kvm); 5060 goto create_irqchip_unlock; 5061 } 5062 5063 r = kvm_setup_default_irq_routing(kvm); 5064 if (r) { 5065 kvm_ioapic_destroy(kvm); 5066 kvm_pic_destroy(kvm); 5067 goto create_irqchip_unlock; 5068 } 5069 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5070 smp_wmb(); 5071 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5072 create_irqchip_unlock: 5073 mutex_unlock(&kvm->lock); 5074 break; 5075 } 5076 case KVM_CREATE_PIT: 5077 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5078 goto create_pit; 5079 case KVM_CREATE_PIT2: 5080 r = -EFAULT; 5081 if (copy_from_user(&u.pit_config, argp, 5082 sizeof(struct kvm_pit_config))) 5083 goto out; 5084 create_pit: 5085 mutex_lock(&kvm->lock); 5086 r = -EEXIST; 5087 if (kvm->arch.vpit) 5088 goto create_pit_unlock; 5089 r = -ENOMEM; 5090 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5091 if (kvm->arch.vpit) 5092 r = 0; 5093 create_pit_unlock: 5094 mutex_unlock(&kvm->lock); 5095 break; 5096 case KVM_GET_IRQCHIP: { 5097 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5098 struct kvm_irqchip *chip; 5099 5100 chip = memdup_user(argp, sizeof(*chip)); 5101 if (IS_ERR(chip)) { 5102 r = PTR_ERR(chip); 5103 goto out; 5104 } 5105 5106 r = -ENXIO; 5107 if (!irqchip_kernel(kvm)) 5108 goto get_irqchip_out; 5109 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5110 if (r) 5111 goto get_irqchip_out; 5112 r = -EFAULT; 5113 if (copy_to_user(argp, chip, sizeof(*chip))) 5114 goto get_irqchip_out; 5115 r = 0; 5116 get_irqchip_out: 5117 kfree(chip); 5118 break; 5119 } 5120 case KVM_SET_IRQCHIP: { 5121 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5122 struct kvm_irqchip *chip; 5123 5124 chip = memdup_user(argp, sizeof(*chip)); 5125 if (IS_ERR(chip)) { 5126 r = PTR_ERR(chip); 5127 goto out; 5128 } 5129 5130 r = -ENXIO; 5131 if (!irqchip_kernel(kvm)) 5132 goto set_irqchip_out; 5133 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5134 set_irqchip_out: 5135 kfree(chip); 5136 break; 5137 } 5138 case KVM_GET_PIT: { 5139 r = -EFAULT; 5140 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5141 goto out; 5142 r = -ENXIO; 5143 if (!kvm->arch.vpit) 5144 goto out; 5145 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5146 if (r) 5147 goto out; 5148 r = -EFAULT; 5149 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5150 goto out; 5151 r = 0; 5152 break; 5153 } 5154 case KVM_SET_PIT: { 5155 r = -EFAULT; 5156 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5157 goto out; 5158 mutex_lock(&kvm->lock); 5159 r = -ENXIO; 5160 if (!kvm->arch.vpit) 5161 goto set_pit_out; 5162 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5163 set_pit_out: 5164 mutex_unlock(&kvm->lock); 5165 break; 5166 } 5167 case KVM_GET_PIT2: { 5168 r = -ENXIO; 5169 if (!kvm->arch.vpit) 5170 goto out; 5171 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5172 if (r) 5173 goto out; 5174 r = -EFAULT; 5175 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5176 goto out; 5177 r = 0; 5178 break; 5179 } 5180 case KVM_SET_PIT2: { 5181 r = -EFAULT; 5182 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5183 goto out; 5184 mutex_lock(&kvm->lock); 5185 r = -ENXIO; 5186 if (!kvm->arch.vpit) 5187 goto set_pit2_out; 5188 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5189 set_pit2_out: 5190 mutex_unlock(&kvm->lock); 5191 break; 5192 } 5193 case KVM_REINJECT_CONTROL: { 5194 struct kvm_reinject_control control; 5195 r = -EFAULT; 5196 if (copy_from_user(&control, argp, sizeof(control))) 5197 goto out; 5198 r = -ENXIO; 5199 if (!kvm->arch.vpit) 5200 goto out; 5201 r = kvm_vm_ioctl_reinject(kvm, &control); 5202 break; 5203 } 5204 case KVM_SET_BOOT_CPU_ID: 5205 r = 0; 5206 mutex_lock(&kvm->lock); 5207 if (kvm->created_vcpus) 5208 r = -EBUSY; 5209 else 5210 kvm->arch.bsp_vcpu_id = arg; 5211 mutex_unlock(&kvm->lock); 5212 break; 5213 case KVM_XEN_HVM_CONFIG: { 5214 struct kvm_xen_hvm_config xhc; 5215 r = -EFAULT; 5216 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5217 goto out; 5218 r = -EINVAL; 5219 if (xhc.flags) 5220 goto out; 5221 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5222 r = 0; 5223 break; 5224 } 5225 case KVM_SET_CLOCK: { 5226 struct kvm_clock_data user_ns; 5227 u64 now_ns; 5228 5229 r = -EFAULT; 5230 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5231 goto out; 5232 5233 r = -EINVAL; 5234 if (user_ns.flags) 5235 goto out; 5236 5237 r = 0; 5238 /* 5239 * TODO: userspace has to take care of races with VCPU_RUN, so 5240 * kvm_gen_update_masterclock() can be cut down to locked 5241 * pvclock_update_vm_gtod_copy(). 5242 */ 5243 kvm_gen_update_masterclock(kvm); 5244 now_ns = get_kvmclock_ns(kvm); 5245 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5246 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5247 break; 5248 } 5249 case KVM_GET_CLOCK: { 5250 struct kvm_clock_data user_ns; 5251 u64 now_ns; 5252 5253 now_ns = get_kvmclock_ns(kvm); 5254 user_ns.clock = now_ns; 5255 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5256 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5257 5258 r = -EFAULT; 5259 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5260 goto out; 5261 r = 0; 5262 break; 5263 } 5264 case KVM_MEMORY_ENCRYPT_OP: { 5265 r = -ENOTTY; 5266 if (kvm_x86_ops.mem_enc_op) 5267 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5268 break; 5269 } 5270 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5271 struct kvm_enc_region region; 5272 5273 r = -EFAULT; 5274 if (copy_from_user(®ion, argp, sizeof(region))) 5275 goto out; 5276 5277 r = -ENOTTY; 5278 if (kvm_x86_ops.mem_enc_reg_region) 5279 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5280 break; 5281 } 5282 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5283 struct kvm_enc_region region; 5284 5285 r = -EFAULT; 5286 if (copy_from_user(®ion, argp, sizeof(region))) 5287 goto out; 5288 5289 r = -ENOTTY; 5290 if (kvm_x86_ops.mem_enc_unreg_region) 5291 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5292 break; 5293 } 5294 case KVM_HYPERV_EVENTFD: { 5295 struct kvm_hyperv_eventfd hvevfd; 5296 5297 r = -EFAULT; 5298 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5299 goto out; 5300 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5301 break; 5302 } 5303 case KVM_SET_PMU_EVENT_FILTER: 5304 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5305 break; 5306 default: 5307 r = -ENOTTY; 5308 } 5309 out: 5310 return r; 5311 } 5312 5313 static void kvm_init_msr_list(void) 5314 { 5315 struct x86_pmu_capability x86_pmu; 5316 u32 dummy[2]; 5317 unsigned i; 5318 5319 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5320 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5321 5322 perf_get_x86_pmu_capability(&x86_pmu); 5323 5324 num_msrs_to_save = 0; 5325 num_emulated_msrs = 0; 5326 num_msr_based_features = 0; 5327 5328 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5329 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5330 continue; 5331 5332 /* 5333 * Even MSRs that are valid in the host may not be exposed 5334 * to the guests in some cases. 5335 */ 5336 switch (msrs_to_save_all[i]) { 5337 case MSR_IA32_BNDCFGS: 5338 if (!kvm_mpx_supported()) 5339 continue; 5340 break; 5341 case MSR_TSC_AUX: 5342 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5343 continue; 5344 break; 5345 case MSR_IA32_UMWAIT_CONTROL: 5346 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5347 continue; 5348 break; 5349 case MSR_IA32_RTIT_CTL: 5350 case MSR_IA32_RTIT_STATUS: 5351 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5352 continue; 5353 break; 5354 case MSR_IA32_RTIT_CR3_MATCH: 5355 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5356 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5357 continue; 5358 break; 5359 case MSR_IA32_RTIT_OUTPUT_BASE: 5360 case MSR_IA32_RTIT_OUTPUT_MASK: 5361 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5362 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5363 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5364 continue; 5365 break; 5366 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5367 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5368 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5369 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5370 continue; 5371 break; 5372 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5373 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5374 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5375 continue; 5376 break; 5377 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5378 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5379 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5380 continue; 5381 break; 5382 default: 5383 break; 5384 } 5385 5386 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5387 } 5388 5389 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5390 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5391 continue; 5392 5393 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5394 } 5395 5396 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5397 struct kvm_msr_entry msr; 5398 5399 msr.index = msr_based_features_all[i]; 5400 if (kvm_get_msr_feature(&msr)) 5401 continue; 5402 5403 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5404 } 5405 } 5406 5407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5408 const void *v) 5409 { 5410 int handled = 0; 5411 int n; 5412 5413 do { 5414 n = min(len, 8); 5415 if (!(lapic_in_kernel(vcpu) && 5416 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5417 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5418 break; 5419 handled += n; 5420 addr += n; 5421 len -= n; 5422 v += n; 5423 } while (len); 5424 5425 return handled; 5426 } 5427 5428 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5429 { 5430 int handled = 0; 5431 int n; 5432 5433 do { 5434 n = min(len, 8); 5435 if (!(lapic_in_kernel(vcpu) && 5436 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5437 addr, n, v)) 5438 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5439 break; 5440 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5441 handled += n; 5442 addr += n; 5443 len -= n; 5444 v += n; 5445 } while (len); 5446 5447 return handled; 5448 } 5449 5450 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5451 struct kvm_segment *var, int seg) 5452 { 5453 kvm_x86_ops.set_segment(vcpu, var, seg); 5454 } 5455 5456 void kvm_get_segment(struct kvm_vcpu *vcpu, 5457 struct kvm_segment *var, int seg) 5458 { 5459 kvm_x86_ops.get_segment(vcpu, var, seg); 5460 } 5461 5462 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5463 struct x86_exception *exception) 5464 { 5465 gpa_t t_gpa; 5466 5467 BUG_ON(!mmu_is_nested(vcpu)); 5468 5469 /* NPT walks are always user-walks */ 5470 access |= PFERR_USER_MASK; 5471 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5472 5473 return t_gpa; 5474 } 5475 5476 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5477 struct x86_exception *exception) 5478 { 5479 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5480 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5481 } 5482 5483 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5484 struct x86_exception *exception) 5485 { 5486 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5487 access |= PFERR_FETCH_MASK; 5488 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5489 } 5490 5491 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5492 struct x86_exception *exception) 5493 { 5494 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5495 access |= PFERR_WRITE_MASK; 5496 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5497 } 5498 5499 /* uses this to access any guest's mapped memory without checking CPL */ 5500 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5501 struct x86_exception *exception) 5502 { 5503 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5504 } 5505 5506 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5507 struct kvm_vcpu *vcpu, u32 access, 5508 struct x86_exception *exception) 5509 { 5510 void *data = val; 5511 int r = X86EMUL_CONTINUE; 5512 5513 while (bytes) { 5514 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5515 exception); 5516 unsigned offset = addr & (PAGE_SIZE-1); 5517 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5518 int ret; 5519 5520 if (gpa == UNMAPPED_GVA) 5521 return X86EMUL_PROPAGATE_FAULT; 5522 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5523 offset, toread); 5524 if (ret < 0) { 5525 r = X86EMUL_IO_NEEDED; 5526 goto out; 5527 } 5528 5529 bytes -= toread; 5530 data += toread; 5531 addr += toread; 5532 } 5533 out: 5534 return r; 5535 } 5536 5537 /* used for instruction fetching */ 5538 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5539 gva_t addr, void *val, unsigned int bytes, 5540 struct x86_exception *exception) 5541 { 5542 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5543 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5544 unsigned offset; 5545 int ret; 5546 5547 /* Inline kvm_read_guest_virt_helper for speed. */ 5548 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5549 exception); 5550 if (unlikely(gpa == UNMAPPED_GVA)) 5551 return X86EMUL_PROPAGATE_FAULT; 5552 5553 offset = addr & (PAGE_SIZE-1); 5554 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5555 bytes = (unsigned)PAGE_SIZE - offset; 5556 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5557 offset, bytes); 5558 if (unlikely(ret < 0)) 5559 return X86EMUL_IO_NEEDED; 5560 5561 return X86EMUL_CONTINUE; 5562 } 5563 5564 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5565 gva_t addr, void *val, unsigned int bytes, 5566 struct x86_exception *exception) 5567 { 5568 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5569 5570 /* 5571 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5572 * is returned, but our callers are not ready for that and they blindly 5573 * call kvm_inject_page_fault. Ensure that they at least do not leak 5574 * uninitialized kernel stack memory into cr2 and error code. 5575 */ 5576 memset(exception, 0, sizeof(*exception)); 5577 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5578 exception); 5579 } 5580 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5581 5582 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5583 gva_t addr, void *val, unsigned int bytes, 5584 struct x86_exception *exception, bool system) 5585 { 5586 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5587 u32 access = 0; 5588 5589 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5590 access |= PFERR_USER_MASK; 5591 5592 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5593 } 5594 5595 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5596 unsigned long addr, void *val, unsigned int bytes) 5597 { 5598 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5599 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5600 5601 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5602 } 5603 5604 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5605 struct kvm_vcpu *vcpu, u32 access, 5606 struct x86_exception *exception) 5607 { 5608 void *data = val; 5609 int r = X86EMUL_CONTINUE; 5610 5611 while (bytes) { 5612 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5613 access, 5614 exception); 5615 unsigned offset = addr & (PAGE_SIZE-1); 5616 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5617 int ret; 5618 5619 if (gpa == UNMAPPED_GVA) 5620 return X86EMUL_PROPAGATE_FAULT; 5621 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5622 if (ret < 0) { 5623 r = X86EMUL_IO_NEEDED; 5624 goto out; 5625 } 5626 5627 bytes -= towrite; 5628 data += towrite; 5629 addr += towrite; 5630 } 5631 out: 5632 return r; 5633 } 5634 5635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5636 unsigned int bytes, struct x86_exception *exception, 5637 bool system) 5638 { 5639 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5640 u32 access = PFERR_WRITE_MASK; 5641 5642 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5643 access |= PFERR_USER_MASK; 5644 5645 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5646 access, exception); 5647 } 5648 5649 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5650 unsigned int bytes, struct x86_exception *exception) 5651 { 5652 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5653 vcpu->arch.l1tf_flush_l1d = true; 5654 5655 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5656 PFERR_WRITE_MASK, exception); 5657 } 5658 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5659 5660 int handle_ud(struct kvm_vcpu *vcpu) 5661 { 5662 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5663 int emul_type = EMULTYPE_TRAP_UD; 5664 char sig[5]; /* ud2; .ascii "kvm" */ 5665 struct x86_exception e; 5666 5667 if (force_emulation_prefix && 5668 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5669 sig, sizeof(sig), &e) == 0 && 5670 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5671 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5672 emul_type = EMULTYPE_TRAP_UD_FORCED; 5673 } 5674 5675 return kvm_emulate_instruction(vcpu, emul_type); 5676 } 5677 EXPORT_SYMBOL_GPL(handle_ud); 5678 5679 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5680 gpa_t gpa, bool write) 5681 { 5682 /* For APIC access vmexit */ 5683 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5684 return 1; 5685 5686 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5687 trace_vcpu_match_mmio(gva, gpa, write, true); 5688 return 1; 5689 } 5690 5691 return 0; 5692 } 5693 5694 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5695 gpa_t *gpa, struct x86_exception *exception, 5696 bool write) 5697 { 5698 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5699 | (write ? PFERR_WRITE_MASK : 0); 5700 5701 /* 5702 * currently PKRU is only applied to ept enabled guest so 5703 * there is no pkey in EPT page table for L1 guest or EPT 5704 * shadow page table for L2 guest. 5705 */ 5706 if (vcpu_match_mmio_gva(vcpu, gva) 5707 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5708 vcpu->arch.mmio_access, 0, access)) { 5709 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5710 (gva & (PAGE_SIZE - 1)); 5711 trace_vcpu_match_mmio(gva, *gpa, write, false); 5712 return 1; 5713 } 5714 5715 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5716 5717 if (*gpa == UNMAPPED_GVA) 5718 return -1; 5719 5720 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5721 } 5722 5723 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5724 const void *val, int bytes) 5725 { 5726 int ret; 5727 5728 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5729 if (ret < 0) 5730 return 0; 5731 kvm_page_track_write(vcpu, gpa, val, bytes); 5732 return 1; 5733 } 5734 5735 struct read_write_emulator_ops { 5736 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5737 int bytes); 5738 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5739 void *val, int bytes); 5740 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5741 int bytes, void *val); 5742 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5743 void *val, int bytes); 5744 bool write; 5745 }; 5746 5747 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5748 { 5749 if (vcpu->mmio_read_completed) { 5750 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5751 vcpu->mmio_fragments[0].gpa, val); 5752 vcpu->mmio_read_completed = 0; 5753 return 1; 5754 } 5755 5756 return 0; 5757 } 5758 5759 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5760 void *val, int bytes) 5761 { 5762 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5763 } 5764 5765 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5766 void *val, int bytes) 5767 { 5768 return emulator_write_phys(vcpu, gpa, val, bytes); 5769 } 5770 5771 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5772 { 5773 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5774 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5775 } 5776 5777 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5778 void *val, int bytes) 5779 { 5780 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5781 return X86EMUL_IO_NEEDED; 5782 } 5783 5784 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5785 void *val, int bytes) 5786 { 5787 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5788 5789 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5790 return X86EMUL_CONTINUE; 5791 } 5792 5793 static const struct read_write_emulator_ops read_emultor = { 5794 .read_write_prepare = read_prepare, 5795 .read_write_emulate = read_emulate, 5796 .read_write_mmio = vcpu_mmio_read, 5797 .read_write_exit_mmio = read_exit_mmio, 5798 }; 5799 5800 static const struct read_write_emulator_ops write_emultor = { 5801 .read_write_emulate = write_emulate, 5802 .read_write_mmio = write_mmio, 5803 .read_write_exit_mmio = write_exit_mmio, 5804 .write = true, 5805 }; 5806 5807 static int emulator_read_write_onepage(unsigned long addr, void *val, 5808 unsigned int bytes, 5809 struct x86_exception *exception, 5810 struct kvm_vcpu *vcpu, 5811 const struct read_write_emulator_ops *ops) 5812 { 5813 gpa_t gpa; 5814 int handled, ret; 5815 bool write = ops->write; 5816 struct kvm_mmio_fragment *frag; 5817 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5818 5819 /* 5820 * If the exit was due to a NPF we may already have a GPA. 5821 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5822 * Note, this cannot be used on string operations since string 5823 * operation using rep will only have the initial GPA from the NPF 5824 * occurred. 5825 */ 5826 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5827 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5828 gpa = ctxt->gpa_val; 5829 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5830 } else { 5831 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5832 if (ret < 0) 5833 return X86EMUL_PROPAGATE_FAULT; 5834 } 5835 5836 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5837 return X86EMUL_CONTINUE; 5838 5839 /* 5840 * Is this MMIO handled locally? 5841 */ 5842 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5843 if (handled == bytes) 5844 return X86EMUL_CONTINUE; 5845 5846 gpa += handled; 5847 bytes -= handled; 5848 val += handled; 5849 5850 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5851 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5852 frag->gpa = gpa; 5853 frag->data = val; 5854 frag->len = bytes; 5855 return X86EMUL_CONTINUE; 5856 } 5857 5858 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5859 unsigned long addr, 5860 void *val, unsigned int bytes, 5861 struct x86_exception *exception, 5862 const struct read_write_emulator_ops *ops) 5863 { 5864 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5865 gpa_t gpa; 5866 int rc; 5867 5868 if (ops->read_write_prepare && 5869 ops->read_write_prepare(vcpu, val, bytes)) 5870 return X86EMUL_CONTINUE; 5871 5872 vcpu->mmio_nr_fragments = 0; 5873 5874 /* Crossing a page boundary? */ 5875 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5876 int now; 5877 5878 now = -addr & ~PAGE_MASK; 5879 rc = emulator_read_write_onepage(addr, val, now, exception, 5880 vcpu, ops); 5881 5882 if (rc != X86EMUL_CONTINUE) 5883 return rc; 5884 addr += now; 5885 if (ctxt->mode != X86EMUL_MODE_PROT64) 5886 addr = (u32)addr; 5887 val += now; 5888 bytes -= now; 5889 } 5890 5891 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5892 vcpu, ops); 5893 if (rc != X86EMUL_CONTINUE) 5894 return rc; 5895 5896 if (!vcpu->mmio_nr_fragments) 5897 return rc; 5898 5899 gpa = vcpu->mmio_fragments[0].gpa; 5900 5901 vcpu->mmio_needed = 1; 5902 vcpu->mmio_cur_fragment = 0; 5903 5904 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5905 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5906 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5907 vcpu->run->mmio.phys_addr = gpa; 5908 5909 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5910 } 5911 5912 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5913 unsigned long addr, 5914 void *val, 5915 unsigned int bytes, 5916 struct x86_exception *exception) 5917 { 5918 return emulator_read_write(ctxt, addr, val, bytes, 5919 exception, &read_emultor); 5920 } 5921 5922 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5923 unsigned long addr, 5924 const void *val, 5925 unsigned int bytes, 5926 struct x86_exception *exception) 5927 { 5928 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5929 exception, &write_emultor); 5930 } 5931 5932 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5933 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5934 5935 #ifdef CONFIG_X86_64 5936 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5937 #else 5938 # define CMPXCHG64(ptr, old, new) \ 5939 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5940 #endif 5941 5942 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5943 unsigned long addr, 5944 const void *old, 5945 const void *new, 5946 unsigned int bytes, 5947 struct x86_exception *exception) 5948 { 5949 struct kvm_host_map map; 5950 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5951 u64 page_line_mask; 5952 gpa_t gpa; 5953 char *kaddr; 5954 bool exchanged; 5955 5956 /* guests cmpxchg8b have to be emulated atomically */ 5957 if (bytes > 8 || (bytes & (bytes - 1))) 5958 goto emul_write; 5959 5960 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5961 5962 if (gpa == UNMAPPED_GVA || 5963 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5964 goto emul_write; 5965 5966 /* 5967 * Emulate the atomic as a straight write to avoid #AC if SLD is 5968 * enabled in the host and the access splits a cache line. 5969 */ 5970 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5971 page_line_mask = ~(cache_line_size() - 1); 5972 else 5973 page_line_mask = PAGE_MASK; 5974 5975 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 5976 goto emul_write; 5977 5978 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5979 goto emul_write; 5980 5981 kaddr = map.hva + offset_in_page(gpa); 5982 5983 switch (bytes) { 5984 case 1: 5985 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5986 break; 5987 case 2: 5988 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5989 break; 5990 case 4: 5991 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5992 break; 5993 case 8: 5994 exchanged = CMPXCHG64(kaddr, old, new); 5995 break; 5996 default: 5997 BUG(); 5998 } 5999 6000 kvm_vcpu_unmap(vcpu, &map, true); 6001 6002 if (!exchanged) 6003 return X86EMUL_CMPXCHG_FAILED; 6004 6005 kvm_page_track_write(vcpu, gpa, new, bytes); 6006 6007 return X86EMUL_CONTINUE; 6008 6009 emul_write: 6010 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6011 6012 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6013 } 6014 6015 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6016 { 6017 int r = 0, i; 6018 6019 for (i = 0; i < vcpu->arch.pio.count; i++) { 6020 if (vcpu->arch.pio.in) 6021 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6022 vcpu->arch.pio.size, pd); 6023 else 6024 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6025 vcpu->arch.pio.port, vcpu->arch.pio.size, 6026 pd); 6027 if (r) 6028 break; 6029 pd += vcpu->arch.pio.size; 6030 } 6031 return r; 6032 } 6033 6034 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6035 unsigned short port, void *val, 6036 unsigned int count, bool in) 6037 { 6038 vcpu->arch.pio.port = port; 6039 vcpu->arch.pio.in = in; 6040 vcpu->arch.pio.count = count; 6041 vcpu->arch.pio.size = size; 6042 6043 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6044 vcpu->arch.pio.count = 0; 6045 return 1; 6046 } 6047 6048 vcpu->run->exit_reason = KVM_EXIT_IO; 6049 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6050 vcpu->run->io.size = size; 6051 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6052 vcpu->run->io.count = count; 6053 vcpu->run->io.port = port; 6054 6055 return 0; 6056 } 6057 6058 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6059 unsigned short port, void *val, unsigned int count) 6060 { 6061 int ret; 6062 6063 if (vcpu->arch.pio.count) 6064 goto data_avail; 6065 6066 memset(vcpu->arch.pio_data, 0, size * count); 6067 6068 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6069 if (ret) { 6070 data_avail: 6071 memcpy(val, vcpu->arch.pio_data, size * count); 6072 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6073 vcpu->arch.pio.count = 0; 6074 return 1; 6075 } 6076 6077 return 0; 6078 } 6079 6080 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6081 int size, unsigned short port, void *val, 6082 unsigned int count) 6083 { 6084 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6085 6086 } 6087 6088 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6089 unsigned short port, const void *val, 6090 unsigned int count) 6091 { 6092 memcpy(vcpu->arch.pio_data, val, size * count); 6093 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6094 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6095 } 6096 6097 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6098 int size, unsigned short port, 6099 const void *val, unsigned int count) 6100 { 6101 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6102 } 6103 6104 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6105 { 6106 return kvm_x86_ops.get_segment_base(vcpu, seg); 6107 } 6108 6109 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6110 { 6111 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6112 } 6113 6114 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6115 { 6116 if (!need_emulate_wbinvd(vcpu)) 6117 return X86EMUL_CONTINUE; 6118 6119 if (kvm_x86_ops.has_wbinvd_exit()) { 6120 int cpu = get_cpu(); 6121 6122 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6123 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6124 wbinvd_ipi, NULL, 1); 6125 put_cpu(); 6126 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6127 } else 6128 wbinvd(); 6129 return X86EMUL_CONTINUE; 6130 } 6131 6132 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6133 { 6134 kvm_emulate_wbinvd_noskip(vcpu); 6135 return kvm_skip_emulated_instruction(vcpu); 6136 } 6137 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6138 6139 6140 6141 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6142 { 6143 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6144 } 6145 6146 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6147 unsigned long *dest) 6148 { 6149 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6150 } 6151 6152 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6153 unsigned long value) 6154 { 6155 6156 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6157 } 6158 6159 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6160 { 6161 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6162 } 6163 6164 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6165 { 6166 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6167 unsigned long value; 6168 6169 switch (cr) { 6170 case 0: 6171 value = kvm_read_cr0(vcpu); 6172 break; 6173 case 2: 6174 value = vcpu->arch.cr2; 6175 break; 6176 case 3: 6177 value = kvm_read_cr3(vcpu); 6178 break; 6179 case 4: 6180 value = kvm_read_cr4(vcpu); 6181 break; 6182 case 8: 6183 value = kvm_get_cr8(vcpu); 6184 break; 6185 default: 6186 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6187 return 0; 6188 } 6189 6190 return value; 6191 } 6192 6193 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6194 { 6195 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6196 int res = 0; 6197 6198 switch (cr) { 6199 case 0: 6200 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6201 break; 6202 case 2: 6203 vcpu->arch.cr2 = val; 6204 break; 6205 case 3: 6206 res = kvm_set_cr3(vcpu, val); 6207 break; 6208 case 4: 6209 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6210 break; 6211 case 8: 6212 res = kvm_set_cr8(vcpu, val); 6213 break; 6214 default: 6215 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6216 res = -1; 6217 } 6218 6219 return res; 6220 } 6221 6222 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6223 { 6224 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6225 } 6226 6227 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6228 { 6229 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6230 } 6231 6232 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6233 { 6234 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6235 } 6236 6237 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6238 { 6239 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6240 } 6241 6242 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6243 { 6244 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6245 } 6246 6247 static unsigned long emulator_get_cached_segment_base( 6248 struct x86_emulate_ctxt *ctxt, int seg) 6249 { 6250 return get_segment_base(emul_to_vcpu(ctxt), seg); 6251 } 6252 6253 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6254 struct desc_struct *desc, u32 *base3, 6255 int seg) 6256 { 6257 struct kvm_segment var; 6258 6259 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6260 *selector = var.selector; 6261 6262 if (var.unusable) { 6263 memset(desc, 0, sizeof(*desc)); 6264 if (base3) 6265 *base3 = 0; 6266 return false; 6267 } 6268 6269 if (var.g) 6270 var.limit >>= 12; 6271 set_desc_limit(desc, var.limit); 6272 set_desc_base(desc, (unsigned long)var.base); 6273 #ifdef CONFIG_X86_64 6274 if (base3) 6275 *base3 = var.base >> 32; 6276 #endif 6277 desc->type = var.type; 6278 desc->s = var.s; 6279 desc->dpl = var.dpl; 6280 desc->p = var.present; 6281 desc->avl = var.avl; 6282 desc->l = var.l; 6283 desc->d = var.db; 6284 desc->g = var.g; 6285 6286 return true; 6287 } 6288 6289 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6290 struct desc_struct *desc, u32 base3, 6291 int seg) 6292 { 6293 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6294 struct kvm_segment var; 6295 6296 var.selector = selector; 6297 var.base = get_desc_base(desc); 6298 #ifdef CONFIG_X86_64 6299 var.base |= ((u64)base3) << 32; 6300 #endif 6301 var.limit = get_desc_limit(desc); 6302 if (desc->g) 6303 var.limit = (var.limit << 12) | 0xfff; 6304 var.type = desc->type; 6305 var.dpl = desc->dpl; 6306 var.db = desc->d; 6307 var.s = desc->s; 6308 var.l = desc->l; 6309 var.g = desc->g; 6310 var.avl = desc->avl; 6311 var.present = desc->p; 6312 var.unusable = !var.present; 6313 var.padding = 0; 6314 6315 kvm_set_segment(vcpu, &var, seg); 6316 return; 6317 } 6318 6319 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6320 u32 msr_index, u64 *pdata) 6321 { 6322 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6323 } 6324 6325 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6326 u32 msr_index, u64 data) 6327 { 6328 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6329 } 6330 6331 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6332 { 6333 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6334 6335 return vcpu->arch.smbase; 6336 } 6337 6338 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6339 { 6340 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6341 6342 vcpu->arch.smbase = smbase; 6343 } 6344 6345 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6346 u32 pmc) 6347 { 6348 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6349 } 6350 6351 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6352 u32 pmc, u64 *pdata) 6353 { 6354 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6355 } 6356 6357 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6358 { 6359 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6360 } 6361 6362 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6363 struct x86_instruction_info *info, 6364 enum x86_intercept_stage stage) 6365 { 6366 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6367 &ctxt->exception); 6368 } 6369 6370 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6371 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6372 bool exact_only) 6373 { 6374 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6375 } 6376 6377 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6378 { 6379 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6380 } 6381 6382 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6383 { 6384 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6385 } 6386 6387 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6388 { 6389 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6390 } 6391 6392 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6393 { 6394 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6395 } 6396 6397 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6398 { 6399 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6400 } 6401 6402 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6403 { 6404 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6405 } 6406 6407 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6408 { 6409 return emul_to_vcpu(ctxt)->arch.hflags; 6410 } 6411 6412 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6413 { 6414 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6415 } 6416 6417 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6418 const char *smstate) 6419 { 6420 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6421 } 6422 6423 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6424 { 6425 kvm_smm_changed(emul_to_vcpu(ctxt)); 6426 } 6427 6428 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6429 { 6430 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6431 } 6432 6433 static const struct x86_emulate_ops emulate_ops = { 6434 .read_gpr = emulator_read_gpr, 6435 .write_gpr = emulator_write_gpr, 6436 .read_std = emulator_read_std, 6437 .write_std = emulator_write_std, 6438 .read_phys = kvm_read_guest_phys_system, 6439 .fetch = kvm_fetch_guest_virt, 6440 .read_emulated = emulator_read_emulated, 6441 .write_emulated = emulator_write_emulated, 6442 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6443 .invlpg = emulator_invlpg, 6444 .pio_in_emulated = emulator_pio_in_emulated, 6445 .pio_out_emulated = emulator_pio_out_emulated, 6446 .get_segment = emulator_get_segment, 6447 .set_segment = emulator_set_segment, 6448 .get_cached_segment_base = emulator_get_cached_segment_base, 6449 .get_gdt = emulator_get_gdt, 6450 .get_idt = emulator_get_idt, 6451 .set_gdt = emulator_set_gdt, 6452 .set_idt = emulator_set_idt, 6453 .get_cr = emulator_get_cr, 6454 .set_cr = emulator_set_cr, 6455 .cpl = emulator_get_cpl, 6456 .get_dr = emulator_get_dr, 6457 .set_dr = emulator_set_dr, 6458 .get_smbase = emulator_get_smbase, 6459 .set_smbase = emulator_set_smbase, 6460 .set_msr = emulator_set_msr, 6461 .get_msr = emulator_get_msr, 6462 .check_pmc = emulator_check_pmc, 6463 .read_pmc = emulator_read_pmc, 6464 .halt = emulator_halt, 6465 .wbinvd = emulator_wbinvd, 6466 .fix_hypercall = emulator_fix_hypercall, 6467 .intercept = emulator_intercept, 6468 .get_cpuid = emulator_get_cpuid, 6469 .guest_has_long_mode = emulator_guest_has_long_mode, 6470 .guest_has_movbe = emulator_guest_has_movbe, 6471 .guest_has_fxsr = emulator_guest_has_fxsr, 6472 .set_nmi_mask = emulator_set_nmi_mask, 6473 .get_hflags = emulator_get_hflags, 6474 .set_hflags = emulator_set_hflags, 6475 .pre_leave_smm = emulator_pre_leave_smm, 6476 .post_leave_smm = emulator_post_leave_smm, 6477 .set_xcr = emulator_set_xcr, 6478 }; 6479 6480 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6481 { 6482 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6483 /* 6484 * an sti; sti; sequence only disable interrupts for the first 6485 * instruction. So, if the last instruction, be it emulated or 6486 * not, left the system with the INT_STI flag enabled, it 6487 * means that the last instruction is an sti. We should not 6488 * leave the flag on in this case. The same goes for mov ss 6489 */ 6490 if (int_shadow & mask) 6491 mask = 0; 6492 if (unlikely(int_shadow || mask)) { 6493 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6494 if (!mask) 6495 kvm_make_request(KVM_REQ_EVENT, vcpu); 6496 } 6497 } 6498 6499 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6500 { 6501 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6502 if (ctxt->exception.vector == PF_VECTOR) 6503 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6504 6505 if (ctxt->exception.error_code_valid) 6506 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6507 ctxt->exception.error_code); 6508 else 6509 kvm_queue_exception(vcpu, ctxt->exception.vector); 6510 return false; 6511 } 6512 6513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6514 { 6515 struct x86_emulate_ctxt *ctxt; 6516 6517 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6518 if (!ctxt) { 6519 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6520 return NULL; 6521 } 6522 6523 ctxt->vcpu = vcpu; 6524 ctxt->ops = &emulate_ops; 6525 vcpu->arch.emulate_ctxt = ctxt; 6526 6527 return ctxt; 6528 } 6529 6530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6531 { 6532 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6533 int cs_db, cs_l; 6534 6535 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6536 6537 ctxt->gpa_available = false; 6538 ctxt->eflags = kvm_get_rflags(vcpu); 6539 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6540 6541 ctxt->eip = kvm_rip_read(vcpu); 6542 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6543 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6544 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6545 cs_db ? X86EMUL_MODE_PROT32 : 6546 X86EMUL_MODE_PROT16; 6547 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6548 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6549 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6550 6551 init_decode_cache(ctxt); 6552 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6553 } 6554 6555 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6556 { 6557 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6558 int ret; 6559 6560 init_emulate_ctxt(vcpu); 6561 6562 ctxt->op_bytes = 2; 6563 ctxt->ad_bytes = 2; 6564 ctxt->_eip = ctxt->eip + inc_eip; 6565 ret = emulate_int_real(ctxt, irq); 6566 6567 if (ret != X86EMUL_CONTINUE) { 6568 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6569 } else { 6570 ctxt->eip = ctxt->_eip; 6571 kvm_rip_write(vcpu, ctxt->eip); 6572 kvm_set_rflags(vcpu, ctxt->eflags); 6573 } 6574 } 6575 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6576 6577 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6578 { 6579 ++vcpu->stat.insn_emulation_fail; 6580 trace_kvm_emulate_insn_failed(vcpu); 6581 6582 if (emulation_type & EMULTYPE_VMWARE_GP) { 6583 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6584 return 1; 6585 } 6586 6587 if (emulation_type & EMULTYPE_SKIP) { 6588 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6589 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6590 vcpu->run->internal.ndata = 0; 6591 return 0; 6592 } 6593 6594 kvm_queue_exception(vcpu, UD_VECTOR); 6595 6596 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6597 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6598 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6599 vcpu->run->internal.ndata = 0; 6600 return 0; 6601 } 6602 6603 return 1; 6604 } 6605 6606 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6607 bool write_fault_to_shadow_pgtable, 6608 int emulation_type) 6609 { 6610 gpa_t gpa = cr2_or_gpa; 6611 kvm_pfn_t pfn; 6612 6613 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6614 return false; 6615 6616 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6617 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6618 return false; 6619 6620 if (!vcpu->arch.mmu->direct_map) { 6621 /* 6622 * Write permission should be allowed since only 6623 * write access need to be emulated. 6624 */ 6625 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6626 6627 /* 6628 * If the mapping is invalid in guest, let cpu retry 6629 * it to generate fault. 6630 */ 6631 if (gpa == UNMAPPED_GVA) 6632 return true; 6633 } 6634 6635 /* 6636 * Do not retry the unhandleable instruction if it faults on the 6637 * readonly host memory, otherwise it will goto a infinite loop: 6638 * retry instruction -> write #PF -> emulation fail -> retry 6639 * instruction -> ... 6640 */ 6641 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6642 6643 /* 6644 * If the instruction failed on the error pfn, it can not be fixed, 6645 * report the error to userspace. 6646 */ 6647 if (is_error_noslot_pfn(pfn)) 6648 return false; 6649 6650 kvm_release_pfn_clean(pfn); 6651 6652 /* The instructions are well-emulated on direct mmu. */ 6653 if (vcpu->arch.mmu->direct_map) { 6654 unsigned int indirect_shadow_pages; 6655 6656 spin_lock(&vcpu->kvm->mmu_lock); 6657 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6658 spin_unlock(&vcpu->kvm->mmu_lock); 6659 6660 if (indirect_shadow_pages) 6661 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6662 6663 return true; 6664 } 6665 6666 /* 6667 * if emulation was due to access to shadowed page table 6668 * and it failed try to unshadow page and re-enter the 6669 * guest to let CPU execute the instruction. 6670 */ 6671 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6672 6673 /* 6674 * If the access faults on its page table, it can not 6675 * be fixed by unprotecting shadow page and it should 6676 * be reported to userspace. 6677 */ 6678 return !write_fault_to_shadow_pgtable; 6679 } 6680 6681 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6682 gpa_t cr2_or_gpa, int emulation_type) 6683 { 6684 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6685 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6686 6687 last_retry_eip = vcpu->arch.last_retry_eip; 6688 last_retry_addr = vcpu->arch.last_retry_addr; 6689 6690 /* 6691 * If the emulation is caused by #PF and it is non-page_table 6692 * writing instruction, it means the VM-EXIT is caused by shadow 6693 * page protected, we can zap the shadow page and retry this 6694 * instruction directly. 6695 * 6696 * Note: if the guest uses a non-page-table modifying instruction 6697 * on the PDE that points to the instruction, then we will unmap 6698 * the instruction and go to an infinite loop. So, we cache the 6699 * last retried eip and the last fault address, if we meet the eip 6700 * and the address again, we can break out of the potential infinite 6701 * loop. 6702 */ 6703 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6704 6705 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6706 return false; 6707 6708 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6709 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6710 return false; 6711 6712 if (x86_page_table_writing_insn(ctxt)) 6713 return false; 6714 6715 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6716 return false; 6717 6718 vcpu->arch.last_retry_eip = ctxt->eip; 6719 vcpu->arch.last_retry_addr = cr2_or_gpa; 6720 6721 if (!vcpu->arch.mmu->direct_map) 6722 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6723 6724 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6725 6726 return true; 6727 } 6728 6729 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6730 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6731 6732 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6733 { 6734 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6735 /* This is a good place to trace that we are exiting SMM. */ 6736 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6737 6738 /* Process a latched INIT or SMI, if any. */ 6739 kvm_make_request(KVM_REQ_EVENT, vcpu); 6740 } 6741 6742 kvm_mmu_reset_context(vcpu); 6743 } 6744 6745 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6746 unsigned long *db) 6747 { 6748 u32 dr6 = 0; 6749 int i; 6750 u32 enable, rwlen; 6751 6752 enable = dr7; 6753 rwlen = dr7 >> 16; 6754 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6755 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6756 dr6 |= (1 << i); 6757 return dr6; 6758 } 6759 6760 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6761 { 6762 struct kvm_run *kvm_run = vcpu->run; 6763 6764 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6765 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6766 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 6767 kvm_run->debug.arch.exception = DB_VECTOR; 6768 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6769 return 0; 6770 } 6771 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6772 return 1; 6773 } 6774 6775 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6776 { 6777 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6778 int r; 6779 6780 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6781 if (unlikely(!r)) 6782 return 0; 6783 6784 /* 6785 * rflags is the old, "raw" value of the flags. The new value has 6786 * not been saved yet. 6787 * 6788 * This is correct even for TF set by the guest, because "the 6789 * processor will not generate this exception after the instruction 6790 * that sets the TF flag". 6791 */ 6792 if (unlikely(rflags & X86_EFLAGS_TF)) 6793 r = kvm_vcpu_do_singlestep(vcpu); 6794 return r; 6795 } 6796 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6797 6798 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6799 { 6800 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6801 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6802 struct kvm_run *kvm_run = vcpu->run; 6803 unsigned long eip = kvm_get_linear_rip(vcpu); 6804 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6805 vcpu->arch.guest_debug_dr7, 6806 vcpu->arch.eff_db); 6807 6808 if (dr6 != 0) { 6809 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6810 kvm_run->debug.arch.pc = eip; 6811 kvm_run->debug.arch.exception = DB_VECTOR; 6812 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6813 *r = 0; 6814 return true; 6815 } 6816 } 6817 6818 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6819 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6820 unsigned long eip = kvm_get_linear_rip(vcpu); 6821 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6822 vcpu->arch.dr7, 6823 vcpu->arch.db); 6824 6825 if (dr6 != 0) { 6826 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 6827 *r = 1; 6828 return true; 6829 } 6830 } 6831 6832 return false; 6833 } 6834 6835 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6836 { 6837 switch (ctxt->opcode_len) { 6838 case 1: 6839 switch (ctxt->b) { 6840 case 0xe4: /* IN */ 6841 case 0xe5: 6842 case 0xec: 6843 case 0xed: 6844 case 0xe6: /* OUT */ 6845 case 0xe7: 6846 case 0xee: 6847 case 0xef: 6848 case 0x6c: /* INS */ 6849 case 0x6d: 6850 case 0x6e: /* OUTS */ 6851 case 0x6f: 6852 return true; 6853 } 6854 break; 6855 case 2: 6856 switch (ctxt->b) { 6857 case 0x33: /* RDPMC */ 6858 return true; 6859 } 6860 break; 6861 } 6862 6863 return false; 6864 } 6865 6866 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6867 int emulation_type, void *insn, int insn_len) 6868 { 6869 int r; 6870 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6871 bool writeback = true; 6872 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6873 6874 vcpu->arch.l1tf_flush_l1d = true; 6875 6876 /* 6877 * Clear write_fault_to_shadow_pgtable here to ensure it is 6878 * never reused. 6879 */ 6880 vcpu->arch.write_fault_to_shadow_pgtable = false; 6881 kvm_clear_exception_queue(vcpu); 6882 6883 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6884 init_emulate_ctxt(vcpu); 6885 6886 /* 6887 * We will reenter on the same instruction since 6888 * we do not set complete_userspace_io. This does not 6889 * handle watchpoints yet, those would be handled in 6890 * the emulate_ops. 6891 */ 6892 if (!(emulation_type & EMULTYPE_SKIP) && 6893 kvm_vcpu_check_breakpoint(vcpu, &r)) 6894 return r; 6895 6896 ctxt->interruptibility = 0; 6897 ctxt->have_exception = false; 6898 ctxt->exception.vector = -1; 6899 ctxt->perm_ok = false; 6900 6901 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6902 6903 r = x86_decode_insn(ctxt, insn, insn_len); 6904 6905 trace_kvm_emulate_insn_start(vcpu); 6906 ++vcpu->stat.insn_emulation; 6907 if (r != EMULATION_OK) { 6908 if ((emulation_type & EMULTYPE_TRAP_UD) || 6909 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6910 kvm_queue_exception(vcpu, UD_VECTOR); 6911 return 1; 6912 } 6913 if (reexecute_instruction(vcpu, cr2_or_gpa, 6914 write_fault_to_spt, 6915 emulation_type)) 6916 return 1; 6917 if (ctxt->have_exception) { 6918 /* 6919 * #UD should result in just EMULATION_FAILED, and trap-like 6920 * exception should not be encountered during decode. 6921 */ 6922 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6923 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6924 inject_emulated_exception(vcpu); 6925 return 1; 6926 } 6927 return handle_emulation_failure(vcpu, emulation_type); 6928 } 6929 } 6930 6931 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6932 !is_vmware_backdoor_opcode(ctxt)) { 6933 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6934 return 1; 6935 } 6936 6937 /* 6938 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6939 * for kvm_skip_emulated_instruction(). The caller is responsible for 6940 * updating interruptibility state and injecting single-step #DBs. 6941 */ 6942 if (emulation_type & EMULTYPE_SKIP) { 6943 kvm_rip_write(vcpu, ctxt->_eip); 6944 if (ctxt->eflags & X86_EFLAGS_RF) 6945 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6946 return 1; 6947 } 6948 6949 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6950 return 1; 6951 6952 /* this is needed for vmware backdoor interface to work since it 6953 changes registers values during IO operation */ 6954 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6955 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6956 emulator_invalidate_register_cache(ctxt); 6957 } 6958 6959 restart: 6960 if (emulation_type & EMULTYPE_PF) { 6961 /* Save the faulting GPA (cr2) in the address field */ 6962 ctxt->exception.address = cr2_or_gpa; 6963 6964 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 6965 if (vcpu->arch.mmu->direct_map) { 6966 ctxt->gpa_available = true; 6967 ctxt->gpa_val = cr2_or_gpa; 6968 } 6969 } else { 6970 /* Sanitize the address out of an abundance of paranoia. */ 6971 ctxt->exception.address = 0; 6972 } 6973 6974 r = x86_emulate_insn(ctxt); 6975 6976 if (r == EMULATION_INTERCEPTED) 6977 return 1; 6978 6979 if (r == EMULATION_FAILED) { 6980 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6981 emulation_type)) 6982 return 1; 6983 6984 return handle_emulation_failure(vcpu, emulation_type); 6985 } 6986 6987 if (ctxt->have_exception) { 6988 r = 1; 6989 if (inject_emulated_exception(vcpu)) 6990 return r; 6991 } else if (vcpu->arch.pio.count) { 6992 if (!vcpu->arch.pio.in) { 6993 /* FIXME: return into emulator if single-stepping. */ 6994 vcpu->arch.pio.count = 0; 6995 } else { 6996 writeback = false; 6997 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6998 } 6999 r = 0; 7000 } else if (vcpu->mmio_needed) { 7001 ++vcpu->stat.mmio_exits; 7002 7003 if (!vcpu->mmio_is_write) 7004 writeback = false; 7005 r = 0; 7006 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7007 } else if (r == EMULATION_RESTART) 7008 goto restart; 7009 else 7010 r = 1; 7011 7012 if (writeback) { 7013 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7014 toggle_interruptibility(vcpu, ctxt->interruptibility); 7015 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7016 if (!ctxt->have_exception || 7017 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7018 kvm_rip_write(vcpu, ctxt->eip); 7019 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7020 r = kvm_vcpu_do_singlestep(vcpu); 7021 if (kvm_x86_ops.update_emulated_instruction) 7022 kvm_x86_ops.update_emulated_instruction(vcpu); 7023 __kvm_set_rflags(vcpu, ctxt->eflags); 7024 } 7025 7026 /* 7027 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7028 * do nothing, and it will be requested again as soon as 7029 * the shadow expires. But we still need to check here, 7030 * because POPF has no interrupt shadow. 7031 */ 7032 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7033 kvm_make_request(KVM_REQ_EVENT, vcpu); 7034 } else 7035 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7036 7037 return r; 7038 } 7039 7040 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7041 { 7042 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7043 } 7044 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7045 7046 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7047 void *insn, int insn_len) 7048 { 7049 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7050 } 7051 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7052 7053 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7054 { 7055 vcpu->arch.pio.count = 0; 7056 return 1; 7057 } 7058 7059 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7060 { 7061 vcpu->arch.pio.count = 0; 7062 7063 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7064 return 1; 7065 7066 return kvm_skip_emulated_instruction(vcpu); 7067 } 7068 7069 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7070 unsigned short port) 7071 { 7072 unsigned long val = kvm_rax_read(vcpu); 7073 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7074 7075 if (ret) 7076 return ret; 7077 7078 /* 7079 * Workaround userspace that relies on old KVM behavior of %rip being 7080 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7081 */ 7082 if (port == 0x7e && 7083 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7084 vcpu->arch.complete_userspace_io = 7085 complete_fast_pio_out_port_0x7e; 7086 kvm_skip_emulated_instruction(vcpu); 7087 } else { 7088 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7089 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7090 } 7091 return 0; 7092 } 7093 7094 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7095 { 7096 unsigned long val; 7097 7098 /* We should only ever be called with arch.pio.count equal to 1 */ 7099 BUG_ON(vcpu->arch.pio.count != 1); 7100 7101 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7102 vcpu->arch.pio.count = 0; 7103 return 1; 7104 } 7105 7106 /* For size less than 4 we merge, else we zero extend */ 7107 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7108 7109 /* 7110 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7111 * the copy and tracing 7112 */ 7113 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7114 kvm_rax_write(vcpu, val); 7115 7116 return kvm_skip_emulated_instruction(vcpu); 7117 } 7118 7119 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7120 unsigned short port) 7121 { 7122 unsigned long val; 7123 int ret; 7124 7125 /* For size less than 4 we merge, else we zero extend */ 7126 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7127 7128 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7129 if (ret) { 7130 kvm_rax_write(vcpu, val); 7131 return ret; 7132 } 7133 7134 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7135 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7136 7137 return 0; 7138 } 7139 7140 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7141 { 7142 int ret; 7143 7144 if (in) 7145 ret = kvm_fast_pio_in(vcpu, size, port); 7146 else 7147 ret = kvm_fast_pio_out(vcpu, size, port); 7148 return ret && kvm_skip_emulated_instruction(vcpu); 7149 } 7150 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7151 7152 static int kvmclock_cpu_down_prep(unsigned int cpu) 7153 { 7154 __this_cpu_write(cpu_tsc_khz, 0); 7155 return 0; 7156 } 7157 7158 static void tsc_khz_changed(void *data) 7159 { 7160 struct cpufreq_freqs *freq = data; 7161 unsigned long khz = 0; 7162 7163 if (data) 7164 khz = freq->new; 7165 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7166 khz = cpufreq_quick_get(raw_smp_processor_id()); 7167 if (!khz) 7168 khz = tsc_khz; 7169 __this_cpu_write(cpu_tsc_khz, khz); 7170 } 7171 7172 #ifdef CONFIG_X86_64 7173 static void kvm_hyperv_tsc_notifier(void) 7174 { 7175 struct kvm *kvm; 7176 struct kvm_vcpu *vcpu; 7177 int cpu; 7178 7179 mutex_lock(&kvm_lock); 7180 list_for_each_entry(kvm, &vm_list, vm_list) 7181 kvm_make_mclock_inprogress_request(kvm); 7182 7183 hyperv_stop_tsc_emulation(); 7184 7185 /* TSC frequency always matches when on Hyper-V */ 7186 for_each_present_cpu(cpu) 7187 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7188 kvm_max_guest_tsc_khz = tsc_khz; 7189 7190 list_for_each_entry(kvm, &vm_list, vm_list) { 7191 struct kvm_arch *ka = &kvm->arch; 7192 7193 spin_lock(&ka->pvclock_gtod_sync_lock); 7194 7195 pvclock_update_vm_gtod_copy(kvm); 7196 7197 kvm_for_each_vcpu(cpu, vcpu, kvm) 7198 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7199 7200 kvm_for_each_vcpu(cpu, vcpu, kvm) 7201 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7202 7203 spin_unlock(&ka->pvclock_gtod_sync_lock); 7204 } 7205 mutex_unlock(&kvm_lock); 7206 } 7207 #endif 7208 7209 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7210 { 7211 struct kvm *kvm; 7212 struct kvm_vcpu *vcpu; 7213 int i, send_ipi = 0; 7214 7215 /* 7216 * We allow guests to temporarily run on slowing clocks, 7217 * provided we notify them after, or to run on accelerating 7218 * clocks, provided we notify them before. Thus time never 7219 * goes backwards. 7220 * 7221 * However, we have a problem. We can't atomically update 7222 * the frequency of a given CPU from this function; it is 7223 * merely a notifier, which can be called from any CPU. 7224 * Changing the TSC frequency at arbitrary points in time 7225 * requires a recomputation of local variables related to 7226 * the TSC for each VCPU. We must flag these local variables 7227 * to be updated and be sure the update takes place with the 7228 * new frequency before any guests proceed. 7229 * 7230 * Unfortunately, the combination of hotplug CPU and frequency 7231 * change creates an intractable locking scenario; the order 7232 * of when these callouts happen is undefined with respect to 7233 * CPU hotplug, and they can race with each other. As such, 7234 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7235 * undefined; you can actually have a CPU frequency change take 7236 * place in between the computation of X and the setting of the 7237 * variable. To protect against this problem, all updates of 7238 * the per_cpu tsc_khz variable are done in an interrupt 7239 * protected IPI, and all callers wishing to update the value 7240 * must wait for a synchronous IPI to complete (which is trivial 7241 * if the caller is on the CPU already). This establishes the 7242 * necessary total order on variable updates. 7243 * 7244 * Note that because a guest time update may take place 7245 * anytime after the setting of the VCPU's request bit, the 7246 * correct TSC value must be set before the request. However, 7247 * to ensure the update actually makes it to any guest which 7248 * starts running in hardware virtualization between the set 7249 * and the acquisition of the spinlock, we must also ping the 7250 * CPU after setting the request bit. 7251 * 7252 */ 7253 7254 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7255 7256 mutex_lock(&kvm_lock); 7257 list_for_each_entry(kvm, &vm_list, vm_list) { 7258 kvm_for_each_vcpu(i, vcpu, kvm) { 7259 if (vcpu->cpu != cpu) 7260 continue; 7261 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7262 if (vcpu->cpu != raw_smp_processor_id()) 7263 send_ipi = 1; 7264 } 7265 } 7266 mutex_unlock(&kvm_lock); 7267 7268 if (freq->old < freq->new && send_ipi) { 7269 /* 7270 * We upscale the frequency. Must make the guest 7271 * doesn't see old kvmclock values while running with 7272 * the new frequency, otherwise we risk the guest sees 7273 * time go backwards. 7274 * 7275 * In case we update the frequency for another cpu 7276 * (which might be in guest context) send an interrupt 7277 * to kick the cpu out of guest context. Next time 7278 * guest context is entered kvmclock will be updated, 7279 * so the guest will not see stale values. 7280 */ 7281 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7282 } 7283 } 7284 7285 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7286 void *data) 7287 { 7288 struct cpufreq_freqs *freq = data; 7289 int cpu; 7290 7291 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7292 return 0; 7293 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7294 return 0; 7295 7296 for_each_cpu(cpu, freq->policy->cpus) 7297 __kvmclock_cpufreq_notifier(freq, cpu); 7298 7299 return 0; 7300 } 7301 7302 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7303 .notifier_call = kvmclock_cpufreq_notifier 7304 }; 7305 7306 static int kvmclock_cpu_online(unsigned int cpu) 7307 { 7308 tsc_khz_changed(NULL); 7309 return 0; 7310 } 7311 7312 static void kvm_timer_init(void) 7313 { 7314 max_tsc_khz = tsc_khz; 7315 7316 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7317 #ifdef CONFIG_CPU_FREQ 7318 struct cpufreq_policy *policy; 7319 int cpu; 7320 7321 cpu = get_cpu(); 7322 policy = cpufreq_cpu_get(cpu); 7323 if (policy) { 7324 if (policy->cpuinfo.max_freq) 7325 max_tsc_khz = policy->cpuinfo.max_freq; 7326 cpufreq_cpu_put(policy); 7327 } 7328 put_cpu(); 7329 #endif 7330 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7331 CPUFREQ_TRANSITION_NOTIFIER); 7332 } 7333 7334 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7335 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7336 } 7337 7338 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7339 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7340 7341 int kvm_is_in_guest(void) 7342 { 7343 return __this_cpu_read(current_vcpu) != NULL; 7344 } 7345 7346 static int kvm_is_user_mode(void) 7347 { 7348 int user_mode = 3; 7349 7350 if (__this_cpu_read(current_vcpu)) 7351 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7352 7353 return user_mode != 0; 7354 } 7355 7356 static unsigned long kvm_get_guest_ip(void) 7357 { 7358 unsigned long ip = 0; 7359 7360 if (__this_cpu_read(current_vcpu)) 7361 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7362 7363 return ip; 7364 } 7365 7366 static void kvm_handle_intel_pt_intr(void) 7367 { 7368 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7369 7370 kvm_make_request(KVM_REQ_PMI, vcpu); 7371 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7372 (unsigned long *)&vcpu->arch.pmu.global_status); 7373 } 7374 7375 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7376 .is_in_guest = kvm_is_in_guest, 7377 .is_user_mode = kvm_is_user_mode, 7378 .get_guest_ip = kvm_get_guest_ip, 7379 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7380 }; 7381 7382 #ifdef CONFIG_X86_64 7383 static void pvclock_gtod_update_fn(struct work_struct *work) 7384 { 7385 struct kvm *kvm; 7386 7387 struct kvm_vcpu *vcpu; 7388 int i; 7389 7390 mutex_lock(&kvm_lock); 7391 list_for_each_entry(kvm, &vm_list, vm_list) 7392 kvm_for_each_vcpu(i, vcpu, kvm) 7393 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7394 atomic_set(&kvm_guest_has_master_clock, 0); 7395 mutex_unlock(&kvm_lock); 7396 } 7397 7398 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7399 7400 /* 7401 * Notification about pvclock gtod data update. 7402 */ 7403 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7404 void *priv) 7405 { 7406 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7407 struct timekeeper *tk = priv; 7408 7409 update_pvclock_gtod(tk); 7410 7411 /* disable master clock if host does not trust, or does not 7412 * use, TSC based clocksource. 7413 */ 7414 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7415 atomic_read(&kvm_guest_has_master_clock) != 0) 7416 queue_work(system_long_wq, &pvclock_gtod_work); 7417 7418 return 0; 7419 } 7420 7421 static struct notifier_block pvclock_gtod_notifier = { 7422 .notifier_call = pvclock_gtod_notify, 7423 }; 7424 #endif 7425 7426 int kvm_arch_init(void *opaque) 7427 { 7428 struct kvm_x86_init_ops *ops = opaque; 7429 int r; 7430 7431 if (kvm_x86_ops.hardware_enable) { 7432 printk(KERN_ERR "kvm: already loaded the other module\n"); 7433 r = -EEXIST; 7434 goto out; 7435 } 7436 7437 if (!ops->cpu_has_kvm_support()) { 7438 pr_err_ratelimited("kvm: no hardware support\n"); 7439 r = -EOPNOTSUPP; 7440 goto out; 7441 } 7442 if (ops->disabled_by_bios()) { 7443 pr_err_ratelimited("kvm: disabled by bios\n"); 7444 r = -EOPNOTSUPP; 7445 goto out; 7446 } 7447 7448 /* 7449 * KVM explicitly assumes that the guest has an FPU and 7450 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7451 * vCPU's FPU state as a fxregs_state struct. 7452 */ 7453 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7454 printk(KERN_ERR "kvm: inadequate fpu\n"); 7455 r = -EOPNOTSUPP; 7456 goto out; 7457 } 7458 7459 r = -ENOMEM; 7460 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7461 __alignof__(struct fpu), SLAB_ACCOUNT, 7462 NULL); 7463 if (!x86_fpu_cache) { 7464 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7465 goto out; 7466 } 7467 7468 x86_emulator_cache = kvm_alloc_emulator_cache(); 7469 if (!x86_emulator_cache) { 7470 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7471 goto out_free_x86_fpu_cache; 7472 } 7473 7474 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7475 if (!shared_msrs) { 7476 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7477 goto out_free_x86_emulator_cache; 7478 } 7479 7480 r = kvm_mmu_module_init(); 7481 if (r) 7482 goto out_free_percpu; 7483 7484 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7485 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7486 PT_PRESENT_MASK, 0, sme_me_mask); 7487 kvm_timer_init(); 7488 7489 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7490 7491 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7492 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7493 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7494 } 7495 7496 kvm_lapic_init(); 7497 if (pi_inject_timer == -1) 7498 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7499 #ifdef CONFIG_X86_64 7500 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7501 7502 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7503 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7504 #endif 7505 7506 return 0; 7507 7508 out_free_percpu: 7509 free_percpu(shared_msrs); 7510 out_free_x86_emulator_cache: 7511 kmem_cache_destroy(x86_emulator_cache); 7512 out_free_x86_fpu_cache: 7513 kmem_cache_destroy(x86_fpu_cache); 7514 out: 7515 return r; 7516 } 7517 7518 void kvm_arch_exit(void) 7519 { 7520 #ifdef CONFIG_X86_64 7521 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7522 clear_hv_tscchange_cb(); 7523 #endif 7524 kvm_lapic_exit(); 7525 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7526 7527 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7528 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7529 CPUFREQ_TRANSITION_NOTIFIER); 7530 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7531 #ifdef CONFIG_X86_64 7532 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7533 #endif 7534 kvm_x86_ops.hardware_enable = NULL; 7535 kvm_mmu_module_exit(); 7536 free_percpu(shared_msrs); 7537 kmem_cache_destroy(x86_fpu_cache); 7538 } 7539 7540 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7541 { 7542 ++vcpu->stat.halt_exits; 7543 if (lapic_in_kernel(vcpu)) { 7544 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7545 return 1; 7546 } else { 7547 vcpu->run->exit_reason = KVM_EXIT_HLT; 7548 return 0; 7549 } 7550 } 7551 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7552 7553 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7554 { 7555 int ret = kvm_skip_emulated_instruction(vcpu); 7556 /* 7557 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7558 * KVM_EXIT_DEBUG here. 7559 */ 7560 return kvm_vcpu_halt(vcpu) && ret; 7561 } 7562 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7563 7564 #ifdef CONFIG_X86_64 7565 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7566 unsigned long clock_type) 7567 { 7568 struct kvm_clock_pairing clock_pairing; 7569 struct timespec64 ts; 7570 u64 cycle; 7571 int ret; 7572 7573 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7574 return -KVM_EOPNOTSUPP; 7575 7576 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7577 return -KVM_EOPNOTSUPP; 7578 7579 clock_pairing.sec = ts.tv_sec; 7580 clock_pairing.nsec = ts.tv_nsec; 7581 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7582 clock_pairing.flags = 0; 7583 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7584 7585 ret = 0; 7586 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7587 sizeof(struct kvm_clock_pairing))) 7588 ret = -KVM_EFAULT; 7589 7590 return ret; 7591 } 7592 #endif 7593 7594 /* 7595 * kvm_pv_kick_cpu_op: Kick a vcpu. 7596 * 7597 * @apicid - apicid of vcpu to be kicked. 7598 */ 7599 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7600 { 7601 struct kvm_lapic_irq lapic_irq; 7602 7603 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7604 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7605 lapic_irq.level = 0; 7606 lapic_irq.dest_id = apicid; 7607 lapic_irq.msi_redir_hint = false; 7608 7609 lapic_irq.delivery_mode = APIC_DM_REMRD; 7610 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7611 } 7612 7613 bool kvm_apicv_activated(struct kvm *kvm) 7614 { 7615 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7616 } 7617 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7618 7619 void kvm_apicv_init(struct kvm *kvm, bool enable) 7620 { 7621 if (enable) 7622 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7623 &kvm->arch.apicv_inhibit_reasons); 7624 else 7625 set_bit(APICV_INHIBIT_REASON_DISABLE, 7626 &kvm->arch.apicv_inhibit_reasons); 7627 } 7628 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7629 7630 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7631 { 7632 struct kvm_vcpu *target = NULL; 7633 struct kvm_apic_map *map; 7634 7635 rcu_read_lock(); 7636 map = rcu_dereference(kvm->arch.apic_map); 7637 7638 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7639 target = map->phys_map[dest_id]->vcpu; 7640 7641 rcu_read_unlock(); 7642 7643 if (target && READ_ONCE(target->ready)) 7644 kvm_vcpu_yield_to(target); 7645 } 7646 7647 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7648 { 7649 unsigned long nr, a0, a1, a2, a3, ret; 7650 int op_64_bit; 7651 7652 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7653 return kvm_hv_hypercall(vcpu); 7654 7655 nr = kvm_rax_read(vcpu); 7656 a0 = kvm_rbx_read(vcpu); 7657 a1 = kvm_rcx_read(vcpu); 7658 a2 = kvm_rdx_read(vcpu); 7659 a3 = kvm_rsi_read(vcpu); 7660 7661 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7662 7663 op_64_bit = is_64_bit_mode(vcpu); 7664 if (!op_64_bit) { 7665 nr &= 0xFFFFFFFF; 7666 a0 &= 0xFFFFFFFF; 7667 a1 &= 0xFFFFFFFF; 7668 a2 &= 0xFFFFFFFF; 7669 a3 &= 0xFFFFFFFF; 7670 } 7671 7672 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7673 ret = -KVM_EPERM; 7674 goto out; 7675 } 7676 7677 switch (nr) { 7678 case KVM_HC_VAPIC_POLL_IRQ: 7679 ret = 0; 7680 break; 7681 case KVM_HC_KICK_CPU: 7682 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7683 kvm_sched_yield(vcpu->kvm, a1); 7684 ret = 0; 7685 break; 7686 #ifdef CONFIG_X86_64 7687 case KVM_HC_CLOCK_PAIRING: 7688 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7689 break; 7690 #endif 7691 case KVM_HC_SEND_IPI: 7692 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7693 break; 7694 case KVM_HC_SCHED_YIELD: 7695 kvm_sched_yield(vcpu->kvm, a0); 7696 ret = 0; 7697 break; 7698 default: 7699 ret = -KVM_ENOSYS; 7700 break; 7701 } 7702 out: 7703 if (!op_64_bit) 7704 ret = (u32)ret; 7705 kvm_rax_write(vcpu, ret); 7706 7707 ++vcpu->stat.hypercalls; 7708 return kvm_skip_emulated_instruction(vcpu); 7709 } 7710 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7711 7712 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7713 { 7714 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7715 char instruction[3]; 7716 unsigned long rip = kvm_rip_read(vcpu); 7717 7718 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7719 7720 return emulator_write_emulated(ctxt, rip, instruction, 3, 7721 &ctxt->exception); 7722 } 7723 7724 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7725 { 7726 return vcpu->run->request_interrupt_window && 7727 likely(!pic_in_kernel(vcpu->kvm)); 7728 } 7729 7730 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7731 { 7732 struct kvm_run *kvm_run = vcpu->run; 7733 7734 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7735 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7736 kvm_run->cr8 = kvm_get_cr8(vcpu); 7737 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7738 kvm_run->ready_for_interrupt_injection = 7739 pic_in_kernel(vcpu->kvm) || 7740 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7741 } 7742 7743 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7744 { 7745 int max_irr, tpr; 7746 7747 if (!kvm_x86_ops.update_cr8_intercept) 7748 return; 7749 7750 if (!lapic_in_kernel(vcpu)) 7751 return; 7752 7753 if (vcpu->arch.apicv_active) 7754 return; 7755 7756 if (!vcpu->arch.apic->vapic_addr) 7757 max_irr = kvm_lapic_find_highest_irr(vcpu); 7758 else 7759 max_irr = -1; 7760 7761 if (max_irr != -1) 7762 max_irr >>= 4; 7763 7764 tpr = kvm_lapic_get_cr8(vcpu); 7765 7766 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7767 } 7768 7769 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 7770 { 7771 int r; 7772 bool can_inject = true; 7773 7774 /* try to reinject previous events if any */ 7775 7776 if (vcpu->arch.exception.injected) { 7777 kvm_x86_ops.queue_exception(vcpu); 7778 can_inject = false; 7779 } 7780 /* 7781 * Do not inject an NMI or interrupt if there is a pending 7782 * exception. Exceptions and interrupts are recognized at 7783 * instruction boundaries, i.e. the start of an instruction. 7784 * Trap-like exceptions, e.g. #DB, have higher priority than 7785 * NMIs and interrupts, i.e. traps are recognized before an 7786 * NMI/interrupt that's pending on the same instruction. 7787 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7788 * priority, but are only generated (pended) during instruction 7789 * execution, i.e. a pending fault-like exception means the 7790 * fault occurred on the *previous* instruction and must be 7791 * serviced prior to recognizing any new events in order to 7792 * fully complete the previous instruction. 7793 */ 7794 else if (!vcpu->arch.exception.pending) { 7795 if (vcpu->arch.nmi_injected) { 7796 kvm_x86_ops.set_nmi(vcpu); 7797 can_inject = false; 7798 } else if (vcpu->arch.interrupt.injected) { 7799 kvm_x86_ops.set_irq(vcpu); 7800 can_inject = false; 7801 } 7802 } 7803 7804 WARN_ON_ONCE(vcpu->arch.exception.injected && 7805 vcpu->arch.exception.pending); 7806 7807 /* 7808 * Call check_nested_events() even if we reinjected a previous event 7809 * in order for caller to determine if it should require immediate-exit 7810 * from L2 to L1 due to pending L1 events which require exit 7811 * from L2 to L1. 7812 */ 7813 if (is_guest_mode(vcpu)) { 7814 r = kvm_x86_ops.nested_ops->check_events(vcpu); 7815 if (r < 0) 7816 goto busy; 7817 } 7818 7819 /* try to inject new event if pending */ 7820 if (vcpu->arch.exception.pending) { 7821 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7822 vcpu->arch.exception.has_error_code, 7823 vcpu->arch.exception.error_code); 7824 7825 vcpu->arch.exception.pending = false; 7826 vcpu->arch.exception.injected = true; 7827 7828 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7829 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7830 X86_EFLAGS_RF); 7831 7832 if (vcpu->arch.exception.nr == DB_VECTOR) { 7833 kvm_deliver_exception_payload(vcpu); 7834 if (vcpu->arch.dr7 & DR7_GD) { 7835 vcpu->arch.dr7 &= ~DR7_GD; 7836 kvm_update_dr7(vcpu); 7837 } 7838 } 7839 7840 kvm_x86_ops.queue_exception(vcpu); 7841 can_inject = false; 7842 } 7843 7844 /* 7845 * Finally, inject interrupt events. If an event cannot be injected 7846 * due to architectural conditions (e.g. IF=0) a window-open exit 7847 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 7848 * and can architecturally be injected, but we cannot do it right now: 7849 * an interrupt could have arrived just now and we have to inject it 7850 * as a vmexit, or there could already an event in the queue, which is 7851 * indicated by can_inject. In that case we request an immediate exit 7852 * in order to make progress and get back here for another iteration. 7853 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 7854 */ 7855 if (vcpu->arch.smi_pending) { 7856 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 7857 if (r < 0) 7858 goto busy; 7859 if (r) { 7860 vcpu->arch.smi_pending = false; 7861 ++vcpu->arch.smi_count; 7862 enter_smm(vcpu); 7863 can_inject = false; 7864 } else 7865 kvm_x86_ops.enable_smi_window(vcpu); 7866 } 7867 7868 if (vcpu->arch.nmi_pending) { 7869 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 7870 if (r < 0) 7871 goto busy; 7872 if (r) { 7873 --vcpu->arch.nmi_pending; 7874 vcpu->arch.nmi_injected = true; 7875 kvm_x86_ops.set_nmi(vcpu); 7876 can_inject = false; 7877 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 7878 } 7879 if (vcpu->arch.nmi_pending) 7880 kvm_x86_ops.enable_nmi_window(vcpu); 7881 } 7882 7883 if (kvm_cpu_has_injectable_intr(vcpu)) { 7884 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 7885 if (r < 0) 7886 goto busy; 7887 if (r) { 7888 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 7889 kvm_x86_ops.set_irq(vcpu); 7890 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 7891 } 7892 if (kvm_cpu_has_injectable_intr(vcpu)) 7893 kvm_x86_ops.enable_irq_window(vcpu); 7894 } 7895 7896 if (is_guest_mode(vcpu) && 7897 kvm_x86_ops.nested_ops->hv_timer_pending && 7898 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 7899 *req_immediate_exit = true; 7900 7901 WARN_ON(vcpu->arch.exception.pending); 7902 return; 7903 7904 busy: 7905 *req_immediate_exit = true; 7906 return; 7907 } 7908 7909 static void process_nmi(struct kvm_vcpu *vcpu) 7910 { 7911 unsigned limit = 2; 7912 7913 /* 7914 * x86 is limited to one NMI running, and one NMI pending after it. 7915 * If an NMI is already in progress, limit further NMIs to just one. 7916 * Otherwise, allow two (and we'll inject the first one immediately). 7917 */ 7918 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7919 limit = 1; 7920 7921 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7922 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7923 kvm_make_request(KVM_REQ_EVENT, vcpu); 7924 } 7925 7926 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7927 { 7928 u32 flags = 0; 7929 flags |= seg->g << 23; 7930 flags |= seg->db << 22; 7931 flags |= seg->l << 21; 7932 flags |= seg->avl << 20; 7933 flags |= seg->present << 15; 7934 flags |= seg->dpl << 13; 7935 flags |= seg->s << 12; 7936 flags |= seg->type << 8; 7937 return flags; 7938 } 7939 7940 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7941 { 7942 struct kvm_segment seg; 7943 int offset; 7944 7945 kvm_get_segment(vcpu, &seg, n); 7946 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7947 7948 if (n < 3) 7949 offset = 0x7f84 + n * 12; 7950 else 7951 offset = 0x7f2c + (n - 3) * 12; 7952 7953 put_smstate(u32, buf, offset + 8, seg.base); 7954 put_smstate(u32, buf, offset + 4, seg.limit); 7955 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7956 } 7957 7958 #ifdef CONFIG_X86_64 7959 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7960 { 7961 struct kvm_segment seg; 7962 int offset; 7963 u16 flags; 7964 7965 kvm_get_segment(vcpu, &seg, n); 7966 offset = 0x7e00 + n * 16; 7967 7968 flags = enter_smm_get_segment_flags(&seg) >> 8; 7969 put_smstate(u16, buf, offset, seg.selector); 7970 put_smstate(u16, buf, offset + 2, flags); 7971 put_smstate(u32, buf, offset + 4, seg.limit); 7972 put_smstate(u64, buf, offset + 8, seg.base); 7973 } 7974 #endif 7975 7976 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7977 { 7978 struct desc_ptr dt; 7979 struct kvm_segment seg; 7980 unsigned long val; 7981 int i; 7982 7983 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7984 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7985 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7986 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7987 7988 for (i = 0; i < 8; i++) 7989 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7990 7991 kvm_get_dr(vcpu, 6, &val); 7992 put_smstate(u32, buf, 0x7fcc, (u32)val); 7993 kvm_get_dr(vcpu, 7, &val); 7994 put_smstate(u32, buf, 0x7fc8, (u32)val); 7995 7996 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7997 put_smstate(u32, buf, 0x7fc4, seg.selector); 7998 put_smstate(u32, buf, 0x7f64, seg.base); 7999 put_smstate(u32, buf, 0x7f60, seg.limit); 8000 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8001 8002 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8003 put_smstate(u32, buf, 0x7fc0, seg.selector); 8004 put_smstate(u32, buf, 0x7f80, seg.base); 8005 put_smstate(u32, buf, 0x7f7c, seg.limit); 8006 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8007 8008 kvm_x86_ops.get_gdt(vcpu, &dt); 8009 put_smstate(u32, buf, 0x7f74, dt.address); 8010 put_smstate(u32, buf, 0x7f70, dt.size); 8011 8012 kvm_x86_ops.get_idt(vcpu, &dt); 8013 put_smstate(u32, buf, 0x7f58, dt.address); 8014 put_smstate(u32, buf, 0x7f54, dt.size); 8015 8016 for (i = 0; i < 6; i++) 8017 enter_smm_save_seg_32(vcpu, buf, i); 8018 8019 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8020 8021 /* revision id */ 8022 put_smstate(u32, buf, 0x7efc, 0x00020000); 8023 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8024 } 8025 8026 #ifdef CONFIG_X86_64 8027 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8028 { 8029 struct desc_ptr dt; 8030 struct kvm_segment seg; 8031 unsigned long val; 8032 int i; 8033 8034 for (i = 0; i < 16; i++) 8035 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8036 8037 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8038 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8039 8040 kvm_get_dr(vcpu, 6, &val); 8041 put_smstate(u64, buf, 0x7f68, val); 8042 kvm_get_dr(vcpu, 7, &val); 8043 put_smstate(u64, buf, 0x7f60, val); 8044 8045 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8046 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8047 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8048 8049 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8050 8051 /* revision id */ 8052 put_smstate(u32, buf, 0x7efc, 0x00020064); 8053 8054 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8055 8056 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8057 put_smstate(u16, buf, 0x7e90, seg.selector); 8058 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8059 put_smstate(u32, buf, 0x7e94, seg.limit); 8060 put_smstate(u64, buf, 0x7e98, seg.base); 8061 8062 kvm_x86_ops.get_idt(vcpu, &dt); 8063 put_smstate(u32, buf, 0x7e84, dt.size); 8064 put_smstate(u64, buf, 0x7e88, dt.address); 8065 8066 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8067 put_smstate(u16, buf, 0x7e70, seg.selector); 8068 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8069 put_smstate(u32, buf, 0x7e74, seg.limit); 8070 put_smstate(u64, buf, 0x7e78, seg.base); 8071 8072 kvm_x86_ops.get_gdt(vcpu, &dt); 8073 put_smstate(u32, buf, 0x7e64, dt.size); 8074 put_smstate(u64, buf, 0x7e68, dt.address); 8075 8076 for (i = 0; i < 6; i++) 8077 enter_smm_save_seg_64(vcpu, buf, i); 8078 } 8079 #endif 8080 8081 static void enter_smm(struct kvm_vcpu *vcpu) 8082 { 8083 struct kvm_segment cs, ds; 8084 struct desc_ptr dt; 8085 char buf[512]; 8086 u32 cr0; 8087 8088 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8089 memset(buf, 0, 512); 8090 #ifdef CONFIG_X86_64 8091 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8092 enter_smm_save_state_64(vcpu, buf); 8093 else 8094 #endif 8095 enter_smm_save_state_32(vcpu, buf); 8096 8097 /* 8098 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8099 * vCPU state (e.g. leave guest mode) after we've saved the state into 8100 * the SMM state-save area. 8101 */ 8102 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8103 8104 vcpu->arch.hflags |= HF_SMM_MASK; 8105 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8106 8107 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8108 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8109 else 8110 kvm_x86_ops.set_nmi_mask(vcpu, true); 8111 8112 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8113 kvm_rip_write(vcpu, 0x8000); 8114 8115 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8116 kvm_x86_ops.set_cr0(vcpu, cr0); 8117 vcpu->arch.cr0 = cr0; 8118 8119 kvm_x86_ops.set_cr4(vcpu, 0); 8120 8121 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8122 dt.address = dt.size = 0; 8123 kvm_x86_ops.set_idt(vcpu, &dt); 8124 8125 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8126 8127 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8128 cs.base = vcpu->arch.smbase; 8129 8130 ds.selector = 0; 8131 ds.base = 0; 8132 8133 cs.limit = ds.limit = 0xffffffff; 8134 cs.type = ds.type = 0x3; 8135 cs.dpl = ds.dpl = 0; 8136 cs.db = ds.db = 0; 8137 cs.s = ds.s = 1; 8138 cs.l = ds.l = 0; 8139 cs.g = ds.g = 1; 8140 cs.avl = ds.avl = 0; 8141 cs.present = ds.present = 1; 8142 cs.unusable = ds.unusable = 0; 8143 cs.padding = ds.padding = 0; 8144 8145 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8146 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8147 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8148 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8149 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8150 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8151 8152 #ifdef CONFIG_X86_64 8153 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8154 kvm_x86_ops.set_efer(vcpu, 0); 8155 #endif 8156 8157 kvm_update_cpuid(vcpu); 8158 kvm_mmu_reset_context(vcpu); 8159 } 8160 8161 static void process_smi(struct kvm_vcpu *vcpu) 8162 { 8163 vcpu->arch.smi_pending = true; 8164 kvm_make_request(KVM_REQ_EVENT, vcpu); 8165 } 8166 8167 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8168 unsigned long *vcpu_bitmap) 8169 { 8170 cpumask_var_t cpus; 8171 8172 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8173 8174 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8175 NULL, vcpu_bitmap, cpus); 8176 8177 free_cpumask_var(cpus); 8178 } 8179 8180 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8181 { 8182 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8183 } 8184 8185 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8186 { 8187 if (!lapic_in_kernel(vcpu)) 8188 return; 8189 8190 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8191 kvm_apic_update_apicv(vcpu); 8192 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8193 } 8194 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8195 8196 /* 8197 * NOTE: Do not hold any lock prior to calling this. 8198 * 8199 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8200 * locked, because it calls __x86_set_memory_region() which does 8201 * synchronize_srcu(&kvm->srcu). 8202 */ 8203 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8204 { 8205 struct kvm_vcpu *except; 8206 unsigned long old, new, expected; 8207 8208 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8209 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8210 return; 8211 8212 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8213 do { 8214 expected = new = old; 8215 if (activate) 8216 __clear_bit(bit, &new); 8217 else 8218 __set_bit(bit, &new); 8219 if (new == old) 8220 break; 8221 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8222 } while (old != expected); 8223 8224 if (!!old == !!new) 8225 return; 8226 8227 trace_kvm_apicv_update_request(activate, bit); 8228 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8229 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8230 8231 /* 8232 * Sending request to update APICV for all other vcpus, 8233 * while update the calling vcpu immediately instead of 8234 * waiting for another #VMEXIT to handle the request. 8235 */ 8236 except = kvm_get_running_vcpu(); 8237 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8238 except); 8239 if (except) 8240 kvm_vcpu_update_apicv(except); 8241 } 8242 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8243 8244 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8245 { 8246 if (!kvm_apic_present(vcpu)) 8247 return; 8248 8249 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8250 8251 if (irqchip_split(vcpu->kvm)) 8252 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8253 else { 8254 if (vcpu->arch.apicv_active) 8255 kvm_x86_ops.sync_pir_to_irr(vcpu); 8256 if (ioapic_in_kernel(vcpu->kvm)) 8257 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8258 } 8259 8260 if (is_guest_mode(vcpu)) 8261 vcpu->arch.load_eoi_exitmap_pending = true; 8262 else 8263 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8264 } 8265 8266 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8267 { 8268 u64 eoi_exit_bitmap[4]; 8269 8270 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8271 return; 8272 8273 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8274 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8275 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8276 } 8277 8278 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8279 unsigned long start, unsigned long end) 8280 { 8281 unsigned long apic_address; 8282 8283 /* 8284 * The physical address of apic access page is stored in the VMCS. 8285 * Update it when it becomes invalid. 8286 */ 8287 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8288 if (start <= apic_address && apic_address < end) 8289 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8290 } 8291 8292 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8293 { 8294 if (!lapic_in_kernel(vcpu)) 8295 return; 8296 8297 if (!kvm_x86_ops.set_apic_access_page_addr) 8298 return; 8299 8300 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8301 } 8302 8303 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8304 { 8305 smp_send_reschedule(vcpu->cpu); 8306 } 8307 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8308 8309 /* 8310 * Returns 1 to let vcpu_run() continue the guest execution loop without 8311 * exiting to the userspace. Otherwise, the value will be returned to the 8312 * userspace. 8313 */ 8314 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8315 { 8316 int r; 8317 bool req_int_win = 8318 dm_request_for_irq_injection(vcpu) && 8319 kvm_cpu_accept_dm_intr(vcpu); 8320 fastpath_t exit_fastpath; 8321 8322 bool req_immediate_exit = false; 8323 8324 if (kvm_request_pending(vcpu)) { 8325 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8326 if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) { 8327 r = 0; 8328 goto out; 8329 } 8330 } 8331 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8332 kvm_mmu_unload(vcpu); 8333 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8334 __kvm_migrate_timers(vcpu); 8335 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8336 kvm_gen_update_masterclock(vcpu->kvm); 8337 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8338 kvm_gen_kvmclock_update(vcpu); 8339 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8340 r = kvm_guest_time_update(vcpu); 8341 if (unlikely(r)) 8342 goto out; 8343 } 8344 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8345 kvm_mmu_sync_roots(vcpu); 8346 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8347 kvm_mmu_load_pgd(vcpu); 8348 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8349 kvm_vcpu_flush_tlb_all(vcpu); 8350 8351 /* Flushing all ASIDs flushes the current ASID... */ 8352 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8353 } 8354 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8355 kvm_vcpu_flush_tlb_current(vcpu); 8356 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8357 kvm_vcpu_flush_tlb_guest(vcpu); 8358 8359 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8360 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8361 r = 0; 8362 goto out; 8363 } 8364 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8365 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8366 vcpu->mmio_needed = 0; 8367 r = 0; 8368 goto out; 8369 } 8370 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8371 /* Page is swapped out. Do synthetic halt */ 8372 vcpu->arch.apf.halted = true; 8373 r = 1; 8374 goto out; 8375 } 8376 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8377 record_steal_time(vcpu); 8378 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8379 process_smi(vcpu); 8380 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8381 process_nmi(vcpu); 8382 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8383 kvm_pmu_handle_event(vcpu); 8384 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8385 kvm_pmu_deliver_pmi(vcpu); 8386 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8387 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8388 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8389 vcpu->arch.ioapic_handled_vectors)) { 8390 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8391 vcpu->run->eoi.vector = 8392 vcpu->arch.pending_ioapic_eoi; 8393 r = 0; 8394 goto out; 8395 } 8396 } 8397 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8398 vcpu_scan_ioapic(vcpu); 8399 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8400 vcpu_load_eoi_exitmap(vcpu); 8401 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8402 kvm_vcpu_reload_apic_access_page(vcpu); 8403 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8404 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8405 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8406 r = 0; 8407 goto out; 8408 } 8409 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8410 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8411 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8412 r = 0; 8413 goto out; 8414 } 8415 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8416 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8417 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8418 r = 0; 8419 goto out; 8420 } 8421 8422 /* 8423 * KVM_REQ_HV_STIMER has to be processed after 8424 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8425 * depend on the guest clock being up-to-date 8426 */ 8427 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8428 kvm_hv_process_stimers(vcpu); 8429 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8430 kvm_vcpu_update_apicv(vcpu); 8431 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8432 kvm_check_async_pf_completion(vcpu); 8433 } 8434 8435 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8436 ++vcpu->stat.req_event; 8437 kvm_apic_accept_events(vcpu); 8438 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8439 r = 1; 8440 goto out; 8441 } 8442 8443 inject_pending_event(vcpu, &req_immediate_exit); 8444 if (req_int_win) 8445 kvm_x86_ops.enable_irq_window(vcpu); 8446 8447 if (kvm_lapic_enabled(vcpu)) { 8448 update_cr8_intercept(vcpu); 8449 kvm_lapic_sync_to_vapic(vcpu); 8450 } 8451 } 8452 8453 r = kvm_mmu_reload(vcpu); 8454 if (unlikely(r)) { 8455 goto cancel_injection; 8456 } 8457 8458 preempt_disable(); 8459 8460 kvm_x86_ops.prepare_guest_switch(vcpu); 8461 8462 /* 8463 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8464 * IPI are then delayed after guest entry, which ensures that they 8465 * result in virtual interrupt delivery. 8466 */ 8467 local_irq_disable(); 8468 vcpu->mode = IN_GUEST_MODE; 8469 8470 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8471 8472 /* 8473 * 1) We should set ->mode before checking ->requests. Please see 8474 * the comment in kvm_vcpu_exiting_guest_mode(). 8475 * 8476 * 2) For APICv, we should set ->mode before checking PID.ON. This 8477 * pairs with the memory barrier implicit in pi_test_and_set_on 8478 * (see vmx_deliver_posted_interrupt). 8479 * 8480 * 3) This also orders the write to mode from any reads to the page 8481 * tables done while the VCPU is running. Please see the comment 8482 * in kvm_flush_remote_tlbs. 8483 */ 8484 smp_mb__after_srcu_read_unlock(); 8485 8486 /* 8487 * This handles the case where a posted interrupt was 8488 * notified with kvm_vcpu_kick. 8489 */ 8490 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8491 kvm_x86_ops.sync_pir_to_irr(vcpu); 8492 8493 if (kvm_vcpu_exit_request(vcpu)) { 8494 vcpu->mode = OUTSIDE_GUEST_MODE; 8495 smp_wmb(); 8496 local_irq_enable(); 8497 preempt_enable(); 8498 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8499 r = 1; 8500 goto cancel_injection; 8501 } 8502 8503 if (req_immediate_exit) { 8504 kvm_make_request(KVM_REQ_EVENT, vcpu); 8505 kvm_x86_ops.request_immediate_exit(vcpu); 8506 } 8507 8508 trace_kvm_entry(vcpu->vcpu_id); 8509 guest_enter_irqoff(); 8510 8511 fpregs_assert_state_consistent(); 8512 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8513 switch_fpu_return(); 8514 8515 if (unlikely(vcpu->arch.switch_db_regs)) { 8516 set_debugreg(0, 7); 8517 set_debugreg(vcpu->arch.eff_db[0], 0); 8518 set_debugreg(vcpu->arch.eff_db[1], 1); 8519 set_debugreg(vcpu->arch.eff_db[2], 2); 8520 set_debugreg(vcpu->arch.eff_db[3], 3); 8521 set_debugreg(vcpu->arch.dr6, 6); 8522 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8523 } 8524 8525 exit_fastpath = kvm_x86_ops.run(vcpu); 8526 8527 /* 8528 * Do this here before restoring debug registers on the host. And 8529 * since we do this before handling the vmexit, a DR access vmexit 8530 * can (a) read the correct value of the debug registers, (b) set 8531 * KVM_DEBUGREG_WONT_EXIT again. 8532 */ 8533 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8534 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8535 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8536 kvm_update_dr0123(vcpu); 8537 kvm_update_dr7(vcpu); 8538 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8539 } 8540 8541 /* 8542 * If the guest has used debug registers, at least dr7 8543 * will be disabled while returning to the host. 8544 * If we don't have active breakpoints in the host, we don't 8545 * care about the messed up debug address registers. But if 8546 * we have some of them active, restore the old state. 8547 */ 8548 if (hw_breakpoint_active()) 8549 hw_breakpoint_restore(); 8550 8551 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8552 8553 vcpu->mode = OUTSIDE_GUEST_MODE; 8554 smp_wmb(); 8555 8556 kvm_x86_ops.handle_exit_irqoff(vcpu); 8557 8558 /* 8559 * Consume any pending interrupts, including the possible source of 8560 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8561 * An instruction is required after local_irq_enable() to fully unblock 8562 * interrupts on processors that implement an interrupt shadow, the 8563 * stat.exits increment will do nicely. 8564 */ 8565 kvm_before_interrupt(vcpu); 8566 local_irq_enable(); 8567 ++vcpu->stat.exits; 8568 local_irq_disable(); 8569 kvm_after_interrupt(vcpu); 8570 8571 guest_exit_irqoff(); 8572 if (lapic_in_kernel(vcpu)) { 8573 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8574 if (delta != S64_MIN) { 8575 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8576 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8577 } 8578 } 8579 8580 local_irq_enable(); 8581 preempt_enable(); 8582 8583 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8584 8585 /* 8586 * Profile KVM exit RIPs: 8587 */ 8588 if (unlikely(prof_on == KVM_PROFILING)) { 8589 unsigned long rip = kvm_rip_read(vcpu); 8590 profile_hit(KVM_PROFILING, (void *)rip); 8591 } 8592 8593 if (unlikely(vcpu->arch.tsc_always_catchup)) 8594 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8595 8596 if (vcpu->arch.apic_attention) 8597 kvm_lapic_sync_from_vapic(vcpu); 8598 8599 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8600 return r; 8601 8602 cancel_injection: 8603 if (req_immediate_exit) 8604 kvm_make_request(KVM_REQ_EVENT, vcpu); 8605 kvm_x86_ops.cancel_injection(vcpu); 8606 if (unlikely(vcpu->arch.apic_attention)) 8607 kvm_lapic_sync_from_vapic(vcpu); 8608 out: 8609 return r; 8610 } 8611 8612 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8613 { 8614 if (!kvm_arch_vcpu_runnable(vcpu) && 8615 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8616 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8617 kvm_vcpu_block(vcpu); 8618 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8619 8620 if (kvm_x86_ops.post_block) 8621 kvm_x86_ops.post_block(vcpu); 8622 8623 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8624 return 1; 8625 } 8626 8627 kvm_apic_accept_events(vcpu); 8628 switch(vcpu->arch.mp_state) { 8629 case KVM_MP_STATE_HALTED: 8630 vcpu->arch.pv.pv_unhalted = false; 8631 vcpu->arch.mp_state = 8632 KVM_MP_STATE_RUNNABLE; 8633 /* fall through */ 8634 case KVM_MP_STATE_RUNNABLE: 8635 vcpu->arch.apf.halted = false; 8636 break; 8637 case KVM_MP_STATE_INIT_RECEIVED: 8638 break; 8639 default: 8640 return -EINTR; 8641 } 8642 return 1; 8643 } 8644 8645 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8646 { 8647 if (is_guest_mode(vcpu)) 8648 kvm_x86_ops.nested_ops->check_events(vcpu); 8649 8650 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8651 !vcpu->arch.apf.halted); 8652 } 8653 8654 static int vcpu_run(struct kvm_vcpu *vcpu) 8655 { 8656 int r; 8657 struct kvm *kvm = vcpu->kvm; 8658 8659 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8660 vcpu->arch.l1tf_flush_l1d = true; 8661 8662 for (;;) { 8663 if (kvm_vcpu_running(vcpu)) { 8664 r = vcpu_enter_guest(vcpu); 8665 } else { 8666 r = vcpu_block(kvm, vcpu); 8667 } 8668 8669 if (r <= 0) 8670 break; 8671 8672 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8673 if (kvm_cpu_has_pending_timer(vcpu)) 8674 kvm_inject_pending_timer_irqs(vcpu); 8675 8676 if (dm_request_for_irq_injection(vcpu) && 8677 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8678 r = 0; 8679 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8680 ++vcpu->stat.request_irq_exits; 8681 break; 8682 } 8683 8684 if (signal_pending(current)) { 8685 r = -EINTR; 8686 vcpu->run->exit_reason = KVM_EXIT_INTR; 8687 ++vcpu->stat.signal_exits; 8688 break; 8689 } 8690 if (need_resched()) { 8691 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8692 cond_resched(); 8693 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8694 } 8695 } 8696 8697 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8698 8699 return r; 8700 } 8701 8702 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8703 { 8704 int r; 8705 8706 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8707 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8708 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8709 return r; 8710 } 8711 8712 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8713 { 8714 BUG_ON(!vcpu->arch.pio.count); 8715 8716 return complete_emulated_io(vcpu); 8717 } 8718 8719 /* 8720 * Implements the following, as a state machine: 8721 * 8722 * read: 8723 * for each fragment 8724 * for each mmio piece in the fragment 8725 * write gpa, len 8726 * exit 8727 * copy data 8728 * execute insn 8729 * 8730 * write: 8731 * for each fragment 8732 * for each mmio piece in the fragment 8733 * write gpa, len 8734 * copy data 8735 * exit 8736 */ 8737 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8738 { 8739 struct kvm_run *run = vcpu->run; 8740 struct kvm_mmio_fragment *frag; 8741 unsigned len; 8742 8743 BUG_ON(!vcpu->mmio_needed); 8744 8745 /* Complete previous fragment */ 8746 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8747 len = min(8u, frag->len); 8748 if (!vcpu->mmio_is_write) 8749 memcpy(frag->data, run->mmio.data, len); 8750 8751 if (frag->len <= 8) { 8752 /* Switch to the next fragment. */ 8753 frag++; 8754 vcpu->mmio_cur_fragment++; 8755 } else { 8756 /* Go forward to the next mmio piece. */ 8757 frag->data += len; 8758 frag->gpa += len; 8759 frag->len -= len; 8760 } 8761 8762 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8763 vcpu->mmio_needed = 0; 8764 8765 /* FIXME: return into emulator if single-stepping. */ 8766 if (vcpu->mmio_is_write) 8767 return 1; 8768 vcpu->mmio_read_completed = 1; 8769 return complete_emulated_io(vcpu); 8770 } 8771 8772 run->exit_reason = KVM_EXIT_MMIO; 8773 run->mmio.phys_addr = frag->gpa; 8774 if (vcpu->mmio_is_write) 8775 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8776 run->mmio.len = min(8u, frag->len); 8777 run->mmio.is_write = vcpu->mmio_is_write; 8778 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8779 return 0; 8780 } 8781 8782 static void kvm_save_current_fpu(struct fpu *fpu) 8783 { 8784 /* 8785 * If the target FPU state is not resident in the CPU registers, just 8786 * memcpy() from current, else save CPU state directly to the target. 8787 */ 8788 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8789 memcpy(&fpu->state, ¤t->thread.fpu.state, 8790 fpu_kernel_xstate_size); 8791 else 8792 copy_fpregs_to_fpstate(fpu); 8793 } 8794 8795 /* Swap (qemu) user FPU context for the guest FPU context. */ 8796 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8797 { 8798 fpregs_lock(); 8799 8800 kvm_save_current_fpu(vcpu->arch.user_fpu); 8801 8802 /* PKRU is separately restored in kvm_x86_ops.run. */ 8803 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8804 ~XFEATURE_MASK_PKRU); 8805 8806 fpregs_mark_activate(); 8807 fpregs_unlock(); 8808 8809 trace_kvm_fpu(1); 8810 } 8811 8812 /* When vcpu_run ends, restore user space FPU context. */ 8813 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8814 { 8815 fpregs_lock(); 8816 8817 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8818 8819 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8820 8821 fpregs_mark_activate(); 8822 fpregs_unlock(); 8823 8824 ++vcpu->stat.fpu_reload; 8825 trace_kvm_fpu(0); 8826 } 8827 8828 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 8829 { 8830 struct kvm_run *kvm_run = vcpu->run; 8831 int r; 8832 8833 vcpu_load(vcpu); 8834 kvm_sigset_activate(vcpu); 8835 kvm_load_guest_fpu(vcpu); 8836 8837 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8838 if (kvm_run->immediate_exit) { 8839 r = -EINTR; 8840 goto out; 8841 } 8842 kvm_vcpu_block(vcpu); 8843 kvm_apic_accept_events(vcpu); 8844 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8845 r = -EAGAIN; 8846 if (signal_pending(current)) { 8847 r = -EINTR; 8848 kvm_run->exit_reason = KVM_EXIT_INTR; 8849 ++vcpu->stat.signal_exits; 8850 } 8851 goto out; 8852 } 8853 8854 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8855 r = -EINVAL; 8856 goto out; 8857 } 8858 8859 if (kvm_run->kvm_dirty_regs) { 8860 r = sync_regs(vcpu); 8861 if (r != 0) 8862 goto out; 8863 } 8864 8865 /* re-sync apic's tpr */ 8866 if (!lapic_in_kernel(vcpu)) { 8867 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8868 r = -EINVAL; 8869 goto out; 8870 } 8871 } 8872 8873 if (unlikely(vcpu->arch.complete_userspace_io)) { 8874 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8875 vcpu->arch.complete_userspace_io = NULL; 8876 r = cui(vcpu); 8877 if (r <= 0) 8878 goto out; 8879 } else 8880 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8881 8882 if (kvm_run->immediate_exit) 8883 r = -EINTR; 8884 else 8885 r = vcpu_run(vcpu); 8886 8887 out: 8888 kvm_put_guest_fpu(vcpu); 8889 if (kvm_run->kvm_valid_regs) 8890 store_regs(vcpu); 8891 post_kvm_run_save(vcpu); 8892 kvm_sigset_deactivate(vcpu); 8893 8894 vcpu_put(vcpu); 8895 return r; 8896 } 8897 8898 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8899 { 8900 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8901 /* 8902 * We are here if userspace calls get_regs() in the middle of 8903 * instruction emulation. Registers state needs to be copied 8904 * back from emulation context to vcpu. Userspace shouldn't do 8905 * that usually, but some bad designed PV devices (vmware 8906 * backdoor interface) need this to work 8907 */ 8908 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8909 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8910 } 8911 regs->rax = kvm_rax_read(vcpu); 8912 regs->rbx = kvm_rbx_read(vcpu); 8913 regs->rcx = kvm_rcx_read(vcpu); 8914 regs->rdx = kvm_rdx_read(vcpu); 8915 regs->rsi = kvm_rsi_read(vcpu); 8916 regs->rdi = kvm_rdi_read(vcpu); 8917 regs->rsp = kvm_rsp_read(vcpu); 8918 regs->rbp = kvm_rbp_read(vcpu); 8919 #ifdef CONFIG_X86_64 8920 regs->r8 = kvm_r8_read(vcpu); 8921 regs->r9 = kvm_r9_read(vcpu); 8922 regs->r10 = kvm_r10_read(vcpu); 8923 regs->r11 = kvm_r11_read(vcpu); 8924 regs->r12 = kvm_r12_read(vcpu); 8925 regs->r13 = kvm_r13_read(vcpu); 8926 regs->r14 = kvm_r14_read(vcpu); 8927 regs->r15 = kvm_r15_read(vcpu); 8928 #endif 8929 8930 regs->rip = kvm_rip_read(vcpu); 8931 regs->rflags = kvm_get_rflags(vcpu); 8932 } 8933 8934 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8935 { 8936 vcpu_load(vcpu); 8937 __get_regs(vcpu, regs); 8938 vcpu_put(vcpu); 8939 return 0; 8940 } 8941 8942 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8943 { 8944 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8945 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8946 8947 kvm_rax_write(vcpu, regs->rax); 8948 kvm_rbx_write(vcpu, regs->rbx); 8949 kvm_rcx_write(vcpu, regs->rcx); 8950 kvm_rdx_write(vcpu, regs->rdx); 8951 kvm_rsi_write(vcpu, regs->rsi); 8952 kvm_rdi_write(vcpu, regs->rdi); 8953 kvm_rsp_write(vcpu, regs->rsp); 8954 kvm_rbp_write(vcpu, regs->rbp); 8955 #ifdef CONFIG_X86_64 8956 kvm_r8_write(vcpu, regs->r8); 8957 kvm_r9_write(vcpu, regs->r9); 8958 kvm_r10_write(vcpu, regs->r10); 8959 kvm_r11_write(vcpu, regs->r11); 8960 kvm_r12_write(vcpu, regs->r12); 8961 kvm_r13_write(vcpu, regs->r13); 8962 kvm_r14_write(vcpu, regs->r14); 8963 kvm_r15_write(vcpu, regs->r15); 8964 #endif 8965 8966 kvm_rip_write(vcpu, regs->rip); 8967 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8968 8969 vcpu->arch.exception.pending = false; 8970 8971 kvm_make_request(KVM_REQ_EVENT, vcpu); 8972 } 8973 8974 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8975 { 8976 vcpu_load(vcpu); 8977 __set_regs(vcpu, regs); 8978 vcpu_put(vcpu); 8979 return 0; 8980 } 8981 8982 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8983 { 8984 struct kvm_segment cs; 8985 8986 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8987 *db = cs.db; 8988 *l = cs.l; 8989 } 8990 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8991 8992 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8993 { 8994 struct desc_ptr dt; 8995 8996 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8997 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8998 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8999 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9000 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9001 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9002 9003 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9004 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9005 9006 kvm_x86_ops.get_idt(vcpu, &dt); 9007 sregs->idt.limit = dt.size; 9008 sregs->idt.base = dt.address; 9009 kvm_x86_ops.get_gdt(vcpu, &dt); 9010 sregs->gdt.limit = dt.size; 9011 sregs->gdt.base = dt.address; 9012 9013 sregs->cr0 = kvm_read_cr0(vcpu); 9014 sregs->cr2 = vcpu->arch.cr2; 9015 sregs->cr3 = kvm_read_cr3(vcpu); 9016 sregs->cr4 = kvm_read_cr4(vcpu); 9017 sregs->cr8 = kvm_get_cr8(vcpu); 9018 sregs->efer = vcpu->arch.efer; 9019 sregs->apic_base = kvm_get_apic_base(vcpu); 9020 9021 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9022 9023 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9024 set_bit(vcpu->arch.interrupt.nr, 9025 (unsigned long *)sregs->interrupt_bitmap); 9026 } 9027 9028 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9029 struct kvm_sregs *sregs) 9030 { 9031 vcpu_load(vcpu); 9032 __get_sregs(vcpu, sregs); 9033 vcpu_put(vcpu); 9034 return 0; 9035 } 9036 9037 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9038 struct kvm_mp_state *mp_state) 9039 { 9040 vcpu_load(vcpu); 9041 if (kvm_mpx_supported()) 9042 kvm_load_guest_fpu(vcpu); 9043 9044 kvm_apic_accept_events(vcpu); 9045 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9046 vcpu->arch.pv.pv_unhalted) 9047 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9048 else 9049 mp_state->mp_state = vcpu->arch.mp_state; 9050 9051 if (kvm_mpx_supported()) 9052 kvm_put_guest_fpu(vcpu); 9053 vcpu_put(vcpu); 9054 return 0; 9055 } 9056 9057 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9058 struct kvm_mp_state *mp_state) 9059 { 9060 int ret = -EINVAL; 9061 9062 vcpu_load(vcpu); 9063 9064 if (!lapic_in_kernel(vcpu) && 9065 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9066 goto out; 9067 9068 /* 9069 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9070 * INIT state; latched init should be reported using 9071 * KVM_SET_VCPU_EVENTS, so reject it here. 9072 */ 9073 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9074 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9075 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9076 goto out; 9077 9078 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9079 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9080 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9081 } else 9082 vcpu->arch.mp_state = mp_state->mp_state; 9083 kvm_make_request(KVM_REQ_EVENT, vcpu); 9084 9085 ret = 0; 9086 out: 9087 vcpu_put(vcpu); 9088 return ret; 9089 } 9090 9091 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9092 int reason, bool has_error_code, u32 error_code) 9093 { 9094 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9095 int ret; 9096 9097 init_emulate_ctxt(vcpu); 9098 9099 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9100 has_error_code, error_code); 9101 if (ret) { 9102 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9103 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9104 vcpu->run->internal.ndata = 0; 9105 return 0; 9106 } 9107 9108 kvm_rip_write(vcpu, ctxt->eip); 9109 kvm_set_rflags(vcpu, ctxt->eflags); 9110 return 1; 9111 } 9112 EXPORT_SYMBOL_GPL(kvm_task_switch); 9113 9114 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9115 { 9116 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9117 /* 9118 * When EFER.LME and CR0.PG are set, the processor is in 9119 * 64-bit mode (though maybe in a 32-bit code segment). 9120 * CR4.PAE and EFER.LMA must be set. 9121 */ 9122 if (!(sregs->cr4 & X86_CR4_PAE) 9123 || !(sregs->efer & EFER_LMA)) 9124 return -EINVAL; 9125 } else { 9126 /* 9127 * Not in 64-bit mode: EFER.LMA is clear and the code 9128 * segment cannot be 64-bit. 9129 */ 9130 if (sregs->efer & EFER_LMA || sregs->cs.l) 9131 return -EINVAL; 9132 } 9133 9134 return kvm_valid_cr4(vcpu, sregs->cr4); 9135 } 9136 9137 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9138 { 9139 struct msr_data apic_base_msr; 9140 int mmu_reset_needed = 0; 9141 int cpuid_update_needed = 0; 9142 int pending_vec, max_bits, idx; 9143 struct desc_ptr dt; 9144 int ret = -EINVAL; 9145 9146 if (kvm_valid_sregs(vcpu, sregs)) 9147 goto out; 9148 9149 apic_base_msr.data = sregs->apic_base; 9150 apic_base_msr.host_initiated = true; 9151 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9152 goto out; 9153 9154 dt.size = sregs->idt.limit; 9155 dt.address = sregs->idt.base; 9156 kvm_x86_ops.set_idt(vcpu, &dt); 9157 dt.size = sregs->gdt.limit; 9158 dt.address = sregs->gdt.base; 9159 kvm_x86_ops.set_gdt(vcpu, &dt); 9160 9161 vcpu->arch.cr2 = sregs->cr2; 9162 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9163 vcpu->arch.cr3 = sregs->cr3; 9164 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9165 9166 kvm_set_cr8(vcpu, sregs->cr8); 9167 9168 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9169 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9170 9171 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9172 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9173 vcpu->arch.cr0 = sregs->cr0; 9174 9175 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9176 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9177 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9178 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9179 if (cpuid_update_needed) 9180 kvm_update_cpuid(vcpu); 9181 9182 idx = srcu_read_lock(&vcpu->kvm->srcu); 9183 if (is_pae_paging(vcpu)) { 9184 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9185 mmu_reset_needed = 1; 9186 } 9187 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9188 9189 if (mmu_reset_needed) 9190 kvm_mmu_reset_context(vcpu); 9191 9192 max_bits = KVM_NR_INTERRUPTS; 9193 pending_vec = find_first_bit( 9194 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9195 if (pending_vec < max_bits) { 9196 kvm_queue_interrupt(vcpu, pending_vec, false); 9197 pr_debug("Set back pending irq %d\n", pending_vec); 9198 } 9199 9200 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9201 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9202 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9203 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9204 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9205 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9206 9207 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9208 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9209 9210 update_cr8_intercept(vcpu); 9211 9212 /* Older userspace won't unhalt the vcpu on reset. */ 9213 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9214 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9215 !is_protmode(vcpu)) 9216 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9217 9218 kvm_make_request(KVM_REQ_EVENT, vcpu); 9219 9220 ret = 0; 9221 out: 9222 return ret; 9223 } 9224 9225 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9226 struct kvm_sregs *sregs) 9227 { 9228 int ret; 9229 9230 vcpu_load(vcpu); 9231 ret = __set_sregs(vcpu, sregs); 9232 vcpu_put(vcpu); 9233 return ret; 9234 } 9235 9236 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9237 struct kvm_guest_debug *dbg) 9238 { 9239 unsigned long rflags; 9240 int i, r; 9241 9242 vcpu_load(vcpu); 9243 9244 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9245 r = -EBUSY; 9246 if (vcpu->arch.exception.pending) 9247 goto out; 9248 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9249 kvm_queue_exception(vcpu, DB_VECTOR); 9250 else 9251 kvm_queue_exception(vcpu, BP_VECTOR); 9252 } 9253 9254 /* 9255 * Read rflags as long as potentially injected trace flags are still 9256 * filtered out. 9257 */ 9258 rflags = kvm_get_rflags(vcpu); 9259 9260 vcpu->guest_debug = dbg->control; 9261 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9262 vcpu->guest_debug = 0; 9263 9264 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9265 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9266 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9267 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9268 } else { 9269 for (i = 0; i < KVM_NR_DB_REGS; i++) 9270 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9271 } 9272 kvm_update_dr7(vcpu); 9273 9274 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9275 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9276 get_segment_base(vcpu, VCPU_SREG_CS); 9277 9278 /* 9279 * Trigger an rflags update that will inject or remove the trace 9280 * flags. 9281 */ 9282 kvm_set_rflags(vcpu, rflags); 9283 9284 kvm_x86_ops.update_bp_intercept(vcpu); 9285 9286 r = 0; 9287 9288 out: 9289 vcpu_put(vcpu); 9290 return r; 9291 } 9292 9293 /* 9294 * Translate a guest virtual address to a guest physical address. 9295 */ 9296 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9297 struct kvm_translation *tr) 9298 { 9299 unsigned long vaddr = tr->linear_address; 9300 gpa_t gpa; 9301 int idx; 9302 9303 vcpu_load(vcpu); 9304 9305 idx = srcu_read_lock(&vcpu->kvm->srcu); 9306 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9307 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9308 tr->physical_address = gpa; 9309 tr->valid = gpa != UNMAPPED_GVA; 9310 tr->writeable = 1; 9311 tr->usermode = 0; 9312 9313 vcpu_put(vcpu); 9314 return 0; 9315 } 9316 9317 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9318 { 9319 struct fxregs_state *fxsave; 9320 9321 vcpu_load(vcpu); 9322 9323 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9324 memcpy(fpu->fpr, fxsave->st_space, 128); 9325 fpu->fcw = fxsave->cwd; 9326 fpu->fsw = fxsave->swd; 9327 fpu->ftwx = fxsave->twd; 9328 fpu->last_opcode = fxsave->fop; 9329 fpu->last_ip = fxsave->rip; 9330 fpu->last_dp = fxsave->rdp; 9331 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9332 9333 vcpu_put(vcpu); 9334 return 0; 9335 } 9336 9337 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9338 { 9339 struct fxregs_state *fxsave; 9340 9341 vcpu_load(vcpu); 9342 9343 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9344 9345 memcpy(fxsave->st_space, fpu->fpr, 128); 9346 fxsave->cwd = fpu->fcw; 9347 fxsave->swd = fpu->fsw; 9348 fxsave->twd = fpu->ftwx; 9349 fxsave->fop = fpu->last_opcode; 9350 fxsave->rip = fpu->last_ip; 9351 fxsave->rdp = fpu->last_dp; 9352 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9353 9354 vcpu_put(vcpu); 9355 return 0; 9356 } 9357 9358 static void store_regs(struct kvm_vcpu *vcpu) 9359 { 9360 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9361 9362 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9363 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9364 9365 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9366 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9367 9368 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9369 kvm_vcpu_ioctl_x86_get_vcpu_events( 9370 vcpu, &vcpu->run->s.regs.events); 9371 } 9372 9373 static int sync_regs(struct kvm_vcpu *vcpu) 9374 { 9375 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9376 return -EINVAL; 9377 9378 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9379 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9380 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9381 } 9382 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9383 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9384 return -EINVAL; 9385 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9386 } 9387 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9388 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9389 vcpu, &vcpu->run->s.regs.events)) 9390 return -EINVAL; 9391 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9392 } 9393 9394 return 0; 9395 } 9396 9397 static void fx_init(struct kvm_vcpu *vcpu) 9398 { 9399 fpstate_init(&vcpu->arch.guest_fpu->state); 9400 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9401 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9402 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9403 9404 /* 9405 * Ensure guest xcr0 is valid for loading 9406 */ 9407 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9408 9409 vcpu->arch.cr0 |= X86_CR0_ET; 9410 } 9411 9412 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9413 { 9414 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9415 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9416 "guest TSC will not be reliable\n"); 9417 9418 return 0; 9419 } 9420 9421 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9422 { 9423 struct page *page; 9424 int r; 9425 9426 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9427 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9428 else 9429 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9430 9431 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9432 9433 r = kvm_mmu_create(vcpu); 9434 if (r < 0) 9435 return r; 9436 9437 if (irqchip_in_kernel(vcpu->kvm)) { 9438 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9439 if (r < 0) 9440 goto fail_mmu_destroy; 9441 if (kvm_apicv_activated(vcpu->kvm)) 9442 vcpu->arch.apicv_active = true; 9443 } else 9444 static_key_slow_inc(&kvm_no_apic_vcpu); 9445 9446 r = -ENOMEM; 9447 9448 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9449 if (!page) 9450 goto fail_free_lapic; 9451 vcpu->arch.pio_data = page_address(page); 9452 9453 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9454 GFP_KERNEL_ACCOUNT); 9455 if (!vcpu->arch.mce_banks) 9456 goto fail_free_pio_data; 9457 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9458 9459 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9460 GFP_KERNEL_ACCOUNT)) 9461 goto fail_free_mce_banks; 9462 9463 if (!alloc_emulate_ctxt(vcpu)) 9464 goto free_wbinvd_dirty_mask; 9465 9466 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9467 GFP_KERNEL_ACCOUNT); 9468 if (!vcpu->arch.user_fpu) { 9469 pr_err("kvm: failed to allocate userspace's fpu\n"); 9470 goto free_emulate_ctxt; 9471 } 9472 9473 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9474 GFP_KERNEL_ACCOUNT); 9475 if (!vcpu->arch.guest_fpu) { 9476 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9477 goto free_user_fpu; 9478 } 9479 fx_init(vcpu); 9480 9481 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9482 vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu); 9483 9484 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9485 9486 kvm_async_pf_hash_reset(vcpu); 9487 kvm_pmu_init(vcpu); 9488 9489 vcpu->arch.pending_external_vector = -1; 9490 vcpu->arch.preempted_in_kernel = false; 9491 9492 kvm_hv_vcpu_init(vcpu); 9493 9494 r = kvm_x86_ops.vcpu_create(vcpu); 9495 if (r) 9496 goto free_guest_fpu; 9497 9498 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9499 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9500 kvm_vcpu_mtrr_init(vcpu); 9501 vcpu_load(vcpu); 9502 kvm_vcpu_reset(vcpu, false); 9503 kvm_init_mmu(vcpu, false); 9504 vcpu_put(vcpu); 9505 return 0; 9506 9507 free_guest_fpu: 9508 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9509 free_user_fpu: 9510 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9511 free_emulate_ctxt: 9512 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9513 free_wbinvd_dirty_mask: 9514 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9515 fail_free_mce_banks: 9516 kfree(vcpu->arch.mce_banks); 9517 fail_free_pio_data: 9518 free_page((unsigned long)vcpu->arch.pio_data); 9519 fail_free_lapic: 9520 kvm_free_lapic(vcpu); 9521 fail_mmu_destroy: 9522 kvm_mmu_destroy(vcpu); 9523 return r; 9524 } 9525 9526 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9527 { 9528 struct msr_data msr; 9529 struct kvm *kvm = vcpu->kvm; 9530 9531 kvm_hv_vcpu_postcreate(vcpu); 9532 9533 if (mutex_lock_killable(&vcpu->mutex)) 9534 return; 9535 vcpu_load(vcpu); 9536 msr.data = 0x0; 9537 msr.index = MSR_IA32_TSC; 9538 msr.host_initiated = true; 9539 kvm_write_tsc(vcpu, &msr); 9540 vcpu_put(vcpu); 9541 9542 /* poll control enabled by default */ 9543 vcpu->arch.msr_kvm_poll_control = 1; 9544 9545 mutex_unlock(&vcpu->mutex); 9546 9547 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9548 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9549 KVMCLOCK_SYNC_PERIOD); 9550 } 9551 9552 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9553 { 9554 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9555 int idx; 9556 9557 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9558 9559 kvmclock_reset(vcpu); 9560 9561 kvm_x86_ops.vcpu_free(vcpu); 9562 9563 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9564 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9565 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9566 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9567 9568 kvm_hv_vcpu_uninit(vcpu); 9569 kvm_pmu_destroy(vcpu); 9570 kfree(vcpu->arch.mce_banks); 9571 kvm_free_lapic(vcpu); 9572 idx = srcu_read_lock(&vcpu->kvm->srcu); 9573 kvm_mmu_destroy(vcpu); 9574 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9575 free_page((unsigned long)vcpu->arch.pio_data); 9576 if (!lapic_in_kernel(vcpu)) 9577 static_key_slow_dec(&kvm_no_apic_vcpu); 9578 } 9579 9580 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9581 { 9582 kvm_lapic_reset(vcpu, init_event); 9583 9584 vcpu->arch.hflags = 0; 9585 9586 vcpu->arch.smi_pending = 0; 9587 vcpu->arch.smi_count = 0; 9588 atomic_set(&vcpu->arch.nmi_queued, 0); 9589 vcpu->arch.nmi_pending = 0; 9590 vcpu->arch.nmi_injected = false; 9591 kvm_clear_interrupt_queue(vcpu); 9592 kvm_clear_exception_queue(vcpu); 9593 9594 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9595 kvm_update_dr0123(vcpu); 9596 vcpu->arch.dr6 = DR6_INIT; 9597 vcpu->arch.dr7 = DR7_FIXED_1; 9598 kvm_update_dr7(vcpu); 9599 9600 vcpu->arch.cr2 = 0; 9601 9602 kvm_make_request(KVM_REQ_EVENT, vcpu); 9603 vcpu->arch.apf.msr_en_val = 0; 9604 vcpu->arch.apf.msr_int_val = 0; 9605 vcpu->arch.st.msr_val = 0; 9606 9607 kvmclock_reset(vcpu); 9608 9609 kvm_clear_async_pf_completion_queue(vcpu); 9610 kvm_async_pf_hash_reset(vcpu); 9611 vcpu->arch.apf.halted = false; 9612 9613 if (kvm_mpx_supported()) { 9614 void *mpx_state_buffer; 9615 9616 /* 9617 * To avoid have the INIT path from kvm_apic_has_events() that be 9618 * called with loaded FPU and does not let userspace fix the state. 9619 */ 9620 if (init_event) 9621 kvm_put_guest_fpu(vcpu); 9622 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9623 XFEATURE_BNDREGS); 9624 if (mpx_state_buffer) 9625 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9626 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9627 XFEATURE_BNDCSR); 9628 if (mpx_state_buffer) 9629 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9630 if (init_event) 9631 kvm_load_guest_fpu(vcpu); 9632 } 9633 9634 if (!init_event) { 9635 kvm_pmu_reset(vcpu); 9636 vcpu->arch.smbase = 0x30000; 9637 9638 vcpu->arch.msr_misc_features_enables = 0; 9639 9640 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9641 } 9642 9643 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9644 vcpu->arch.regs_avail = ~0; 9645 vcpu->arch.regs_dirty = ~0; 9646 9647 vcpu->arch.ia32_xss = 0; 9648 9649 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9650 } 9651 9652 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9653 { 9654 struct kvm_segment cs; 9655 9656 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9657 cs.selector = vector << 8; 9658 cs.base = vector << 12; 9659 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9660 kvm_rip_write(vcpu, 0); 9661 } 9662 9663 int kvm_arch_hardware_enable(void) 9664 { 9665 struct kvm *kvm; 9666 struct kvm_vcpu *vcpu; 9667 int i; 9668 int ret; 9669 u64 local_tsc; 9670 u64 max_tsc = 0; 9671 bool stable, backwards_tsc = false; 9672 9673 kvm_shared_msr_cpu_online(); 9674 ret = kvm_x86_ops.hardware_enable(); 9675 if (ret != 0) 9676 return ret; 9677 9678 local_tsc = rdtsc(); 9679 stable = !kvm_check_tsc_unstable(); 9680 list_for_each_entry(kvm, &vm_list, vm_list) { 9681 kvm_for_each_vcpu(i, vcpu, kvm) { 9682 if (!stable && vcpu->cpu == smp_processor_id()) 9683 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9684 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9685 backwards_tsc = true; 9686 if (vcpu->arch.last_host_tsc > max_tsc) 9687 max_tsc = vcpu->arch.last_host_tsc; 9688 } 9689 } 9690 } 9691 9692 /* 9693 * Sometimes, even reliable TSCs go backwards. This happens on 9694 * platforms that reset TSC during suspend or hibernate actions, but 9695 * maintain synchronization. We must compensate. Fortunately, we can 9696 * detect that condition here, which happens early in CPU bringup, 9697 * before any KVM threads can be running. Unfortunately, we can't 9698 * bring the TSCs fully up to date with real time, as we aren't yet far 9699 * enough into CPU bringup that we know how much real time has actually 9700 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9701 * variables that haven't been updated yet. 9702 * 9703 * So we simply find the maximum observed TSC above, then record the 9704 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9705 * the adjustment will be applied. Note that we accumulate 9706 * adjustments, in case multiple suspend cycles happen before some VCPU 9707 * gets a chance to run again. In the event that no KVM threads get a 9708 * chance to run, we will miss the entire elapsed period, as we'll have 9709 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9710 * loose cycle time. This isn't too big a deal, since the loss will be 9711 * uniform across all VCPUs (not to mention the scenario is extremely 9712 * unlikely). It is possible that a second hibernate recovery happens 9713 * much faster than a first, causing the observed TSC here to be 9714 * smaller; this would require additional padding adjustment, which is 9715 * why we set last_host_tsc to the local tsc observed here. 9716 * 9717 * N.B. - this code below runs only on platforms with reliable TSC, 9718 * as that is the only way backwards_tsc is set above. Also note 9719 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9720 * have the same delta_cyc adjustment applied if backwards_tsc 9721 * is detected. Note further, this adjustment is only done once, 9722 * as we reset last_host_tsc on all VCPUs to stop this from being 9723 * called multiple times (one for each physical CPU bringup). 9724 * 9725 * Platforms with unreliable TSCs don't have to deal with this, they 9726 * will be compensated by the logic in vcpu_load, which sets the TSC to 9727 * catchup mode. This will catchup all VCPUs to real time, but cannot 9728 * guarantee that they stay in perfect synchronization. 9729 */ 9730 if (backwards_tsc) { 9731 u64 delta_cyc = max_tsc - local_tsc; 9732 list_for_each_entry(kvm, &vm_list, vm_list) { 9733 kvm->arch.backwards_tsc_observed = true; 9734 kvm_for_each_vcpu(i, vcpu, kvm) { 9735 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9736 vcpu->arch.last_host_tsc = local_tsc; 9737 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9738 } 9739 9740 /* 9741 * We have to disable TSC offset matching.. if you were 9742 * booting a VM while issuing an S4 host suspend.... 9743 * you may have some problem. Solving this issue is 9744 * left as an exercise to the reader. 9745 */ 9746 kvm->arch.last_tsc_nsec = 0; 9747 kvm->arch.last_tsc_write = 0; 9748 } 9749 9750 } 9751 return 0; 9752 } 9753 9754 void kvm_arch_hardware_disable(void) 9755 { 9756 kvm_x86_ops.hardware_disable(); 9757 drop_user_return_notifiers(); 9758 } 9759 9760 int kvm_arch_hardware_setup(void *opaque) 9761 { 9762 struct kvm_x86_init_ops *ops = opaque; 9763 int r; 9764 9765 rdmsrl_safe(MSR_EFER, &host_efer); 9766 9767 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9768 rdmsrl(MSR_IA32_XSS, host_xss); 9769 9770 r = ops->hardware_setup(); 9771 if (r != 0) 9772 return r; 9773 9774 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9775 9776 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9777 supported_xss = 0; 9778 9779 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9780 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9781 #undef __kvm_cpu_cap_has 9782 9783 if (kvm_has_tsc_control) { 9784 /* 9785 * Make sure the user can only configure tsc_khz values that 9786 * fit into a signed integer. 9787 * A min value is not calculated because it will always 9788 * be 1 on all machines. 9789 */ 9790 u64 max = min(0x7fffffffULL, 9791 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9792 kvm_max_guest_tsc_khz = max; 9793 9794 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9795 } 9796 9797 kvm_init_msr_list(); 9798 return 0; 9799 } 9800 9801 void kvm_arch_hardware_unsetup(void) 9802 { 9803 kvm_x86_ops.hardware_unsetup(); 9804 } 9805 9806 int kvm_arch_check_processor_compat(void *opaque) 9807 { 9808 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9809 struct kvm_x86_init_ops *ops = opaque; 9810 9811 WARN_ON(!irqs_disabled()); 9812 9813 if (__cr4_reserved_bits(cpu_has, c) != 9814 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9815 return -EIO; 9816 9817 return ops->check_processor_compatibility(); 9818 } 9819 9820 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9821 { 9822 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9823 } 9824 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9825 9826 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9827 { 9828 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9829 } 9830 9831 struct static_key kvm_no_apic_vcpu __read_mostly; 9832 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9833 9834 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9835 { 9836 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9837 9838 vcpu->arch.l1tf_flush_l1d = true; 9839 if (pmu->version && unlikely(pmu->event_count)) { 9840 pmu->need_cleanup = true; 9841 kvm_make_request(KVM_REQ_PMU, vcpu); 9842 } 9843 kvm_x86_ops.sched_in(vcpu, cpu); 9844 } 9845 9846 void kvm_arch_free_vm(struct kvm *kvm) 9847 { 9848 kfree(kvm->arch.hyperv.hv_pa_pg); 9849 vfree(kvm); 9850 } 9851 9852 9853 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9854 { 9855 if (type) 9856 return -EINVAL; 9857 9858 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9859 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9860 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9861 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9862 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9863 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9864 9865 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9866 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9867 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9868 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9869 &kvm->arch.irq_sources_bitmap); 9870 9871 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9872 mutex_init(&kvm->arch.apic_map_lock); 9873 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9874 9875 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9876 pvclock_update_vm_gtod_copy(kvm); 9877 9878 kvm->arch.guest_can_read_msr_platform_info = true; 9879 9880 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9881 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9882 9883 kvm_hv_init_vm(kvm); 9884 kvm_page_track_init(kvm); 9885 kvm_mmu_init_vm(kvm); 9886 9887 return kvm_x86_ops.vm_init(kvm); 9888 } 9889 9890 int kvm_arch_post_init_vm(struct kvm *kvm) 9891 { 9892 return kvm_mmu_post_init_vm(kvm); 9893 } 9894 9895 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9896 { 9897 vcpu_load(vcpu); 9898 kvm_mmu_unload(vcpu); 9899 vcpu_put(vcpu); 9900 } 9901 9902 static void kvm_free_vcpus(struct kvm *kvm) 9903 { 9904 unsigned int i; 9905 struct kvm_vcpu *vcpu; 9906 9907 /* 9908 * Unpin any mmu pages first. 9909 */ 9910 kvm_for_each_vcpu(i, vcpu, kvm) { 9911 kvm_clear_async_pf_completion_queue(vcpu); 9912 kvm_unload_vcpu_mmu(vcpu); 9913 } 9914 kvm_for_each_vcpu(i, vcpu, kvm) 9915 kvm_vcpu_destroy(vcpu); 9916 9917 mutex_lock(&kvm->lock); 9918 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9919 kvm->vcpus[i] = NULL; 9920 9921 atomic_set(&kvm->online_vcpus, 0); 9922 mutex_unlock(&kvm->lock); 9923 } 9924 9925 void kvm_arch_sync_events(struct kvm *kvm) 9926 { 9927 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9928 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9929 kvm_free_pit(kvm); 9930 } 9931 9932 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9933 { 9934 int i, r; 9935 unsigned long hva, uninitialized_var(old_npages); 9936 struct kvm_memslots *slots = kvm_memslots(kvm); 9937 struct kvm_memory_slot *slot; 9938 9939 /* Called with kvm->slots_lock held. */ 9940 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9941 return -EINVAL; 9942 9943 slot = id_to_memslot(slots, id); 9944 if (size) { 9945 if (slot && slot->npages) 9946 return -EEXIST; 9947 9948 /* 9949 * MAP_SHARED to prevent internal slot pages from being moved 9950 * by fork()/COW. 9951 */ 9952 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9953 MAP_SHARED | MAP_ANONYMOUS, 0); 9954 if (IS_ERR((void *)hva)) 9955 return PTR_ERR((void *)hva); 9956 } else { 9957 if (!slot || !slot->npages) 9958 return 0; 9959 9960 old_npages = slot->npages; 9961 hva = 0; 9962 } 9963 9964 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9965 struct kvm_userspace_memory_region m; 9966 9967 m.slot = id | (i << 16); 9968 m.flags = 0; 9969 m.guest_phys_addr = gpa; 9970 m.userspace_addr = hva; 9971 m.memory_size = size; 9972 r = __kvm_set_memory_region(kvm, &m); 9973 if (r < 0) 9974 return r; 9975 } 9976 9977 if (!size) 9978 vm_munmap(hva, old_npages * PAGE_SIZE); 9979 9980 return 0; 9981 } 9982 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9983 9984 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9985 { 9986 kvm_mmu_pre_destroy_vm(kvm); 9987 } 9988 9989 void kvm_arch_destroy_vm(struct kvm *kvm) 9990 { 9991 if (current->mm == kvm->mm) { 9992 /* 9993 * Free memory regions allocated on behalf of userspace, 9994 * unless the the memory map has changed due to process exit 9995 * or fd copying. 9996 */ 9997 mutex_lock(&kvm->slots_lock); 9998 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9999 0, 0); 10000 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10001 0, 0); 10002 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10003 mutex_unlock(&kvm->slots_lock); 10004 } 10005 if (kvm_x86_ops.vm_destroy) 10006 kvm_x86_ops.vm_destroy(kvm); 10007 kvm_pic_destroy(kvm); 10008 kvm_ioapic_destroy(kvm); 10009 kvm_free_vcpus(kvm); 10010 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10011 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10012 kvm_mmu_uninit_vm(kvm); 10013 kvm_page_track_cleanup(kvm); 10014 kvm_hv_destroy_vm(kvm); 10015 } 10016 10017 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10018 { 10019 int i; 10020 10021 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10022 kvfree(slot->arch.rmap[i]); 10023 slot->arch.rmap[i] = NULL; 10024 10025 if (i == 0) 10026 continue; 10027 10028 kvfree(slot->arch.lpage_info[i - 1]); 10029 slot->arch.lpage_info[i - 1] = NULL; 10030 } 10031 10032 kvm_page_track_free_memslot(slot); 10033 } 10034 10035 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10036 unsigned long npages) 10037 { 10038 int i; 10039 10040 /* 10041 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10042 * old arrays will be freed by __kvm_set_memory_region() if installing 10043 * the new memslot is successful. 10044 */ 10045 memset(&slot->arch, 0, sizeof(slot->arch)); 10046 10047 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10048 struct kvm_lpage_info *linfo; 10049 unsigned long ugfn; 10050 int lpages; 10051 int level = i + 1; 10052 10053 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10054 slot->base_gfn, level) + 1; 10055 10056 slot->arch.rmap[i] = 10057 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10058 GFP_KERNEL_ACCOUNT); 10059 if (!slot->arch.rmap[i]) 10060 goto out_free; 10061 if (i == 0) 10062 continue; 10063 10064 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10065 if (!linfo) 10066 goto out_free; 10067 10068 slot->arch.lpage_info[i - 1] = linfo; 10069 10070 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10071 linfo[0].disallow_lpage = 1; 10072 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10073 linfo[lpages - 1].disallow_lpage = 1; 10074 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10075 /* 10076 * If the gfn and userspace address are not aligned wrt each 10077 * other, disable large page support for this slot. 10078 */ 10079 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10080 unsigned long j; 10081 10082 for (j = 0; j < lpages; ++j) 10083 linfo[j].disallow_lpage = 1; 10084 } 10085 } 10086 10087 if (kvm_page_track_create_memslot(slot, npages)) 10088 goto out_free; 10089 10090 return 0; 10091 10092 out_free: 10093 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10094 kvfree(slot->arch.rmap[i]); 10095 slot->arch.rmap[i] = NULL; 10096 if (i == 0) 10097 continue; 10098 10099 kvfree(slot->arch.lpage_info[i - 1]); 10100 slot->arch.lpage_info[i - 1] = NULL; 10101 } 10102 return -ENOMEM; 10103 } 10104 10105 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10106 { 10107 struct kvm_vcpu *vcpu; 10108 int i; 10109 10110 /* 10111 * memslots->generation has been incremented. 10112 * mmio generation may have reached its maximum value. 10113 */ 10114 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10115 10116 /* Force re-initialization of steal_time cache */ 10117 kvm_for_each_vcpu(i, vcpu, kvm) 10118 kvm_vcpu_kick(vcpu); 10119 } 10120 10121 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10122 struct kvm_memory_slot *memslot, 10123 const struct kvm_userspace_memory_region *mem, 10124 enum kvm_mr_change change) 10125 { 10126 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10127 return kvm_alloc_memslot_metadata(memslot, 10128 mem->memory_size >> PAGE_SHIFT); 10129 return 0; 10130 } 10131 10132 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10133 struct kvm_memory_slot *old, 10134 struct kvm_memory_slot *new, 10135 enum kvm_mr_change change) 10136 { 10137 /* 10138 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10139 * See comments below. 10140 */ 10141 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10142 return; 10143 10144 /* 10145 * Dirty logging tracks sptes in 4k granularity, meaning that large 10146 * sptes have to be split. If live migration is successful, the guest 10147 * in the source machine will be destroyed and large sptes will be 10148 * created in the destination. However, if the guest continues to run 10149 * in the source machine (for example if live migration fails), small 10150 * sptes will remain around and cause bad performance. 10151 * 10152 * Scan sptes if dirty logging has been stopped, dropping those 10153 * which can be collapsed into a single large-page spte. Later 10154 * page faults will create the large-page sptes. 10155 * 10156 * There is no need to do this in any of the following cases: 10157 * CREATE: No dirty mappings will already exist. 10158 * MOVE/DELETE: The old mappings will already have been cleaned up by 10159 * kvm_arch_flush_shadow_memslot() 10160 */ 10161 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10162 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10163 kvm_mmu_zap_collapsible_sptes(kvm, new); 10164 10165 /* 10166 * Enable or disable dirty logging for the slot. 10167 * 10168 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10169 * slot have been zapped so no dirty logging updates are needed for 10170 * the old slot. 10171 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10172 * any mappings that might be created in it will consume the 10173 * properties of the new slot and do not need to be updated here. 10174 * 10175 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10176 * called to enable/disable dirty logging. 10177 * 10178 * When disabling dirty logging with PML enabled, the D-bit is set 10179 * for sptes in the slot in order to prevent unnecessary GPA 10180 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10181 * This guarantees leaving PML enabled for the guest's lifetime 10182 * won't have any additional overhead from PML when the guest is 10183 * running with dirty logging disabled. 10184 * 10185 * When enabling dirty logging, large sptes are write-protected 10186 * so they can be split on first write. New large sptes cannot 10187 * be created for this slot until the end of the logging. 10188 * See the comments in fast_page_fault(). 10189 * For small sptes, nothing is done if the dirty log is in the 10190 * initial-all-set state. Otherwise, depending on whether pml 10191 * is enabled the D-bit or the W-bit will be cleared. 10192 */ 10193 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10194 if (kvm_x86_ops.slot_enable_log_dirty) { 10195 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10196 } else { 10197 int level = 10198 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10199 PG_LEVEL_2M : PG_LEVEL_4K; 10200 10201 /* 10202 * If we're with initial-all-set, we don't need 10203 * to write protect any small page because 10204 * they're reported as dirty already. However 10205 * we still need to write-protect huge pages 10206 * so that the page split can happen lazily on 10207 * the first write to the huge page. 10208 */ 10209 kvm_mmu_slot_remove_write_access(kvm, new, level); 10210 } 10211 } else { 10212 if (kvm_x86_ops.slot_disable_log_dirty) 10213 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10214 } 10215 } 10216 10217 void kvm_arch_commit_memory_region(struct kvm *kvm, 10218 const struct kvm_userspace_memory_region *mem, 10219 struct kvm_memory_slot *old, 10220 const struct kvm_memory_slot *new, 10221 enum kvm_mr_change change) 10222 { 10223 if (!kvm->arch.n_requested_mmu_pages) 10224 kvm_mmu_change_mmu_pages(kvm, 10225 kvm_mmu_calculate_default_mmu_pages(kvm)); 10226 10227 /* 10228 * FIXME: const-ify all uses of struct kvm_memory_slot. 10229 */ 10230 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10231 10232 /* Free the arrays associated with the old memslot. */ 10233 if (change == KVM_MR_MOVE) 10234 kvm_arch_free_memslot(kvm, old); 10235 } 10236 10237 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10238 { 10239 kvm_mmu_zap_all(kvm); 10240 } 10241 10242 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10243 struct kvm_memory_slot *slot) 10244 { 10245 kvm_page_track_flush_slot(kvm, slot); 10246 } 10247 10248 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10249 { 10250 return (is_guest_mode(vcpu) && 10251 kvm_x86_ops.guest_apic_has_interrupt && 10252 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10253 } 10254 10255 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10256 { 10257 if (!list_empty_careful(&vcpu->async_pf.done)) 10258 return true; 10259 10260 if (kvm_apic_has_events(vcpu)) 10261 return true; 10262 10263 if (vcpu->arch.pv.pv_unhalted) 10264 return true; 10265 10266 if (vcpu->arch.exception.pending) 10267 return true; 10268 10269 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10270 (vcpu->arch.nmi_pending && 10271 kvm_x86_ops.nmi_allowed(vcpu, false))) 10272 return true; 10273 10274 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10275 (vcpu->arch.smi_pending && 10276 kvm_x86_ops.smi_allowed(vcpu, false))) 10277 return true; 10278 10279 if (kvm_arch_interrupt_allowed(vcpu) && 10280 (kvm_cpu_has_interrupt(vcpu) || 10281 kvm_guest_apic_has_interrupt(vcpu))) 10282 return true; 10283 10284 if (kvm_hv_has_stimer_pending(vcpu)) 10285 return true; 10286 10287 if (is_guest_mode(vcpu) && 10288 kvm_x86_ops.nested_ops->hv_timer_pending && 10289 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10290 return true; 10291 10292 return false; 10293 } 10294 10295 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10296 { 10297 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10298 } 10299 10300 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10301 { 10302 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10303 return true; 10304 10305 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10306 kvm_test_request(KVM_REQ_SMI, vcpu) || 10307 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10308 return true; 10309 10310 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10311 return true; 10312 10313 return false; 10314 } 10315 10316 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10317 { 10318 return vcpu->arch.preempted_in_kernel; 10319 } 10320 10321 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10322 { 10323 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10324 } 10325 10326 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10327 { 10328 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10329 } 10330 10331 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10332 { 10333 if (is_64_bit_mode(vcpu)) 10334 return kvm_rip_read(vcpu); 10335 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10336 kvm_rip_read(vcpu)); 10337 } 10338 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10339 10340 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10341 { 10342 return kvm_get_linear_rip(vcpu) == linear_rip; 10343 } 10344 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10345 10346 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10347 { 10348 unsigned long rflags; 10349 10350 rflags = kvm_x86_ops.get_rflags(vcpu); 10351 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10352 rflags &= ~X86_EFLAGS_TF; 10353 return rflags; 10354 } 10355 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10356 10357 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10358 { 10359 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10360 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10361 rflags |= X86_EFLAGS_TF; 10362 kvm_x86_ops.set_rflags(vcpu, rflags); 10363 } 10364 10365 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10366 { 10367 __kvm_set_rflags(vcpu, rflags); 10368 kvm_make_request(KVM_REQ_EVENT, vcpu); 10369 } 10370 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10371 10372 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10373 { 10374 int r; 10375 10376 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10377 work->wakeup_all) 10378 return; 10379 10380 r = kvm_mmu_reload(vcpu); 10381 if (unlikely(r)) 10382 return; 10383 10384 if (!vcpu->arch.mmu->direct_map && 10385 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10386 return; 10387 10388 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10389 } 10390 10391 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10392 { 10393 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10394 10395 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10396 } 10397 10398 static inline u32 kvm_async_pf_next_probe(u32 key) 10399 { 10400 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10401 } 10402 10403 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10404 { 10405 u32 key = kvm_async_pf_hash_fn(gfn); 10406 10407 while (vcpu->arch.apf.gfns[key] != ~0) 10408 key = kvm_async_pf_next_probe(key); 10409 10410 vcpu->arch.apf.gfns[key] = gfn; 10411 } 10412 10413 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10414 { 10415 int i; 10416 u32 key = kvm_async_pf_hash_fn(gfn); 10417 10418 for (i = 0; i < ASYNC_PF_PER_VCPU && 10419 (vcpu->arch.apf.gfns[key] != gfn && 10420 vcpu->arch.apf.gfns[key] != ~0); i++) 10421 key = kvm_async_pf_next_probe(key); 10422 10423 return key; 10424 } 10425 10426 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10427 { 10428 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10429 } 10430 10431 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10432 { 10433 u32 i, j, k; 10434 10435 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10436 10437 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10438 return; 10439 10440 while (true) { 10441 vcpu->arch.apf.gfns[i] = ~0; 10442 do { 10443 j = kvm_async_pf_next_probe(j); 10444 if (vcpu->arch.apf.gfns[j] == ~0) 10445 return; 10446 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10447 /* 10448 * k lies cyclically in ]i,j] 10449 * | i.k.j | 10450 * |....j i.k.| or |.k..j i...| 10451 */ 10452 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10453 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10454 i = j; 10455 } 10456 } 10457 10458 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10459 { 10460 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10461 10462 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10463 sizeof(reason)); 10464 } 10465 10466 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10467 { 10468 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10469 10470 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10471 &token, offset, sizeof(token)); 10472 } 10473 10474 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10475 { 10476 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10477 u32 val; 10478 10479 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10480 &val, offset, sizeof(val))) 10481 return false; 10482 10483 return !val; 10484 } 10485 10486 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10487 { 10488 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10489 return false; 10490 10491 if (!kvm_pv_async_pf_enabled(vcpu) || 10492 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10493 return false; 10494 10495 return true; 10496 } 10497 10498 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10499 { 10500 if (unlikely(!lapic_in_kernel(vcpu) || 10501 kvm_event_needs_reinjection(vcpu) || 10502 vcpu->arch.exception.pending)) 10503 return false; 10504 10505 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10506 return false; 10507 10508 /* 10509 * If interrupts are off we cannot even use an artificial 10510 * halt state. 10511 */ 10512 return kvm_arch_interrupt_allowed(vcpu); 10513 } 10514 10515 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10516 struct kvm_async_pf *work) 10517 { 10518 struct x86_exception fault; 10519 10520 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10521 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10522 10523 if (kvm_can_deliver_async_pf(vcpu) && 10524 !apf_put_user_notpresent(vcpu)) { 10525 fault.vector = PF_VECTOR; 10526 fault.error_code_valid = true; 10527 fault.error_code = 0; 10528 fault.nested_page_fault = false; 10529 fault.address = work->arch.token; 10530 fault.async_page_fault = true; 10531 kvm_inject_page_fault(vcpu, &fault); 10532 return true; 10533 } else { 10534 /* 10535 * It is not possible to deliver a paravirtualized asynchronous 10536 * page fault, but putting the guest in an artificial halt state 10537 * can be beneficial nevertheless: if an interrupt arrives, we 10538 * can deliver it timely and perhaps the guest will schedule 10539 * another process. When the instruction that triggered a page 10540 * fault is retried, hopefully the page will be ready in the host. 10541 */ 10542 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10543 return false; 10544 } 10545 } 10546 10547 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10548 struct kvm_async_pf *work) 10549 { 10550 struct kvm_lapic_irq irq = { 10551 .delivery_mode = APIC_DM_FIXED, 10552 .vector = vcpu->arch.apf.vec 10553 }; 10554 10555 if (work->wakeup_all) 10556 work->arch.token = ~0; /* broadcast wakeup */ 10557 else 10558 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10559 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10560 10561 if ((work->wakeup_all || work->notpresent_injected) && 10562 kvm_pv_async_pf_enabled(vcpu) && 10563 !apf_put_user_ready(vcpu, work->arch.token)) { 10564 vcpu->arch.apf.pageready_pending = true; 10565 kvm_apic_set_irq(vcpu, &irq, NULL); 10566 } 10567 10568 vcpu->arch.apf.halted = false; 10569 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10570 } 10571 10572 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10573 { 10574 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10575 if (!vcpu->arch.apf.pageready_pending) 10576 kvm_vcpu_kick(vcpu); 10577 } 10578 10579 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 10580 { 10581 if (!kvm_pv_async_pf_enabled(vcpu)) 10582 return true; 10583 else 10584 return apf_pageready_slot_free(vcpu); 10585 } 10586 10587 void kvm_arch_start_assignment(struct kvm *kvm) 10588 { 10589 atomic_inc(&kvm->arch.assigned_device_count); 10590 } 10591 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10592 10593 void kvm_arch_end_assignment(struct kvm *kvm) 10594 { 10595 atomic_dec(&kvm->arch.assigned_device_count); 10596 } 10597 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10598 10599 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10600 { 10601 return atomic_read(&kvm->arch.assigned_device_count); 10602 } 10603 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10604 10605 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10606 { 10607 atomic_inc(&kvm->arch.noncoherent_dma_count); 10608 } 10609 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10610 10611 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10612 { 10613 atomic_dec(&kvm->arch.noncoherent_dma_count); 10614 } 10615 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10616 10617 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10618 { 10619 return atomic_read(&kvm->arch.noncoherent_dma_count); 10620 } 10621 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10622 10623 bool kvm_arch_has_irq_bypass(void) 10624 { 10625 return true; 10626 } 10627 10628 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10629 struct irq_bypass_producer *prod) 10630 { 10631 struct kvm_kernel_irqfd *irqfd = 10632 container_of(cons, struct kvm_kernel_irqfd, consumer); 10633 10634 irqfd->producer = prod; 10635 10636 return kvm_x86_ops.update_pi_irte(irqfd->kvm, 10637 prod->irq, irqfd->gsi, 1); 10638 } 10639 10640 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10641 struct irq_bypass_producer *prod) 10642 { 10643 int ret; 10644 struct kvm_kernel_irqfd *irqfd = 10645 container_of(cons, struct kvm_kernel_irqfd, consumer); 10646 10647 WARN_ON(irqfd->producer != prod); 10648 irqfd->producer = NULL; 10649 10650 /* 10651 * When producer of consumer is unregistered, we change back to 10652 * remapped mode, so we can re-use the current implementation 10653 * when the irq is masked/disabled or the consumer side (KVM 10654 * int this case doesn't want to receive the interrupts. 10655 */ 10656 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10657 if (ret) 10658 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10659 " fails: %d\n", irqfd->consumer.token, ret); 10660 } 10661 10662 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10663 uint32_t guest_irq, bool set) 10664 { 10665 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10666 } 10667 10668 bool kvm_vector_hashing_enabled(void) 10669 { 10670 return vector_hashing; 10671 } 10672 10673 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10674 { 10675 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10676 } 10677 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10678 10679 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10680 { 10681 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10682 10683 /* The STIBP bit doesn't fault even if it's not advertised */ 10684 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10685 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10686 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10687 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10688 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10689 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10690 10691 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10692 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10693 bits &= ~SPEC_CTRL_SSBD; 10694 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10695 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10696 bits &= ~SPEC_CTRL_SSBD; 10697 10698 return bits; 10699 } 10700 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10701 10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10724