xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 
60 #include <trace/events/kvm.h>
61 
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 #include <asm/mshyperv.h>
72 #include <asm/hypervisor.h>
73 #include <asm/intel_pt.h>
74 #include <asm/emulate_prefix.h>
75 #include <clocksource/hyperv_timer.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include "trace.h"
79 
80 #define MAX_IO_MSRS 256
81 #define KVM_MAX_MCE_BANKS 32
82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
84 
85 #define emul_to_vcpu(ctxt) \
86 	((struct kvm_vcpu *)(ctxt)->vcpu)
87 
88 /* EFER defaults:
89  * - enable syscall per default because its emulated by KVM
90  * - enable LME and LMA per default on 64 bit KVM
91  */
92 #ifdef CONFIG_X86_64
93 static
94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
95 #else
96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
97 #endif
98 
99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
100 
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103 
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
110 
111 struct kvm_x86_ops kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
113 
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
122 
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
125 
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32  __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64  __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
136 
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140 
141 /*
142  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
143  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
144  * advancement entirely.  Any other value is used as-is and disables adaptive
145  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
146  */
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
149 
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
152 
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
156 
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
159 
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
162 
163 #define KVM_NR_SHARED_MSRS 16
164 
165 struct kvm_shared_msrs_global {
166 	int nr;
167 	u32 msrs[KVM_NR_SHARED_MSRS];
168 };
169 
170 struct kvm_shared_msrs {
171 	struct user_return_notifier urn;
172 	bool registered;
173 	struct kvm_shared_msr_values {
174 		u64 host;
175 		u64 curr;
176 	} values[KVM_NR_SHARED_MSRS];
177 };
178 
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
181 
182 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
183 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
184 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
185 				| XFEATURE_MASK_PKRU)
186 
187 u64 __read_mostly host_efer;
188 EXPORT_SYMBOL_GPL(host_efer);
189 
190 static u64 __read_mostly host_xss;
191 u64 __read_mostly supported_xss;
192 EXPORT_SYMBOL_GPL(supported_xss);
193 
194 struct kvm_stats_debugfs_item debugfs_entries[] = {
195 	VCPU_STAT("pf_fixed", pf_fixed),
196 	VCPU_STAT("pf_guest", pf_guest),
197 	VCPU_STAT("tlb_flush", tlb_flush),
198 	VCPU_STAT("invlpg", invlpg),
199 	VCPU_STAT("exits", exits),
200 	VCPU_STAT("io_exits", io_exits),
201 	VCPU_STAT("mmio_exits", mmio_exits),
202 	VCPU_STAT("signal_exits", signal_exits),
203 	VCPU_STAT("irq_window", irq_window_exits),
204 	VCPU_STAT("nmi_window", nmi_window_exits),
205 	VCPU_STAT("halt_exits", halt_exits),
206 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
207 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
208 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
209 	VCPU_STAT("halt_wakeup", halt_wakeup),
210 	VCPU_STAT("hypercalls", hypercalls),
211 	VCPU_STAT("request_irq", request_irq_exits),
212 	VCPU_STAT("irq_exits", irq_exits),
213 	VCPU_STAT("host_state_reload", host_state_reload),
214 	VCPU_STAT("fpu_reload", fpu_reload),
215 	VCPU_STAT("insn_emulation", insn_emulation),
216 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
217 	VCPU_STAT("irq_injections", irq_injections),
218 	VCPU_STAT("nmi_injections", nmi_injections),
219 	VCPU_STAT("req_event", req_event),
220 	VCPU_STAT("l1d_flush", l1d_flush),
221 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
222 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
223 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
224 	VM_STAT("mmu_pte_write", mmu_pte_write),
225 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
226 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
227 	VM_STAT("mmu_flooded", mmu_flooded),
228 	VM_STAT("mmu_recycled", mmu_recycled),
229 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
230 	VM_STAT("mmu_unsync", mmu_unsync),
231 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
232 	VM_STAT("largepages", lpages, .mode = 0444),
233 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
234 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
235 	{ NULL }
236 };
237 
238 u64 __read_mostly host_xcr0;
239 u64 __read_mostly supported_xcr0;
240 EXPORT_SYMBOL_GPL(supported_xcr0);
241 
242 static struct kmem_cache *x86_fpu_cache;
243 
244 static struct kmem_cache *x86_emulator_cache;
245 
246 static struct kmem_cache *kvm_alloc_emulator_cache(void)
247 {
248 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
249 	unsigned int size = sizeof(struct x86_emulate_ctxt);
250 
251 	return kmem_cache_create_usercopy("x86_emulator", size,
252 					  __alignof__(struct x86_emulate_ctxt),
253 					  SLAB_ACCOUNT, useroffset,
254 					  size - useroffset, NULL);
255 }
256 
257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
258 
259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
260 {
261 	int i;
262 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
263 		vcpu->arch.apf.gfns[i] = ~0;
264 }
265 
266 static void kvm_on_user_return(struct user_return_notifier *urn)
267 {
268 	unsigned slot;
269 	struct kvm_shared_msrs *locals
270 		= container_of(urn, struct kvm_shared_msrs, urn);
271 	struct kvm_shared_msr_values *values;
272 	unsigned long flags;
273 
274 	/*
275 	 * Disabling irqs at this point since the following code could be
276 	 * interrupted and executed through kvm_arch_hardware_disable()
277 	 */
278 	local_irq_save(flags);
279 	if (locals->registered) {
280 		locals->registered = false;
281 		user_return_notifier_unregister(urn);
282 	}
283 	local_irq_restore(flags);
284 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
285 		values = &locals->values[slot];
286 		if (values->host != values->curr) {
287 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
288 			values->curr = values->host;
289 		}
290 	}
291 }
292 
293 void kvm_define_shared_msr(unsigned slot, u32 msr)
294 {
295 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
296 	shared_msrs_global.msrs[slot] = msr;
297 	if (slot >= shared_msrs_global.nr)
298 		shared_msrs_global.nr = slot + 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
301 
302 static void kvm_shared_msr_cpu_online(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
306 	u64 value;
307 	int i;
308 
309 	for (i = 0; i < shared_msrs_global.nr; ++i) {
310 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
311 		smsr->values[i].host = value;
312 		smsr->values[i].curr = value;
313 	}
314 }
315 
316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
317 {
318 	unsigned int cpu = smp_processor_id();
319 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320 	int err;
321 
322 	value = (value & mask) | (smsr->values[slot].host & ~mask);
323 	if (value == smsr->values[slot].curr)
324 		return 0;
325 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
326 	if (err)
327 		return 1;
328 
329 	smsr->values[slot].curr = value;
330 	if (!smsr->registered) {
331 		smsr->urn.on_user_return = kvm_on_user_return;
332 		user_return_notifier_register(&smsr->urn);
333 		smsr->registered = true;
334 	}
335 	return 0;
336 }
337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
338 
339 static void drop_user_return_notifiers(void)
340 {
341 	unsigned int cpu = smp_processor_id();
342 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
343 
344 	if (smsr->registered)
345 		kvm_on_user_return(&smsr->urn);
346 }
347 
348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
349 {
350 	return vcpu->arch.apic_base;
351 }
352 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
353 
354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
355 {
356 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
357 }
358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
359 
360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
361 {
362 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
363 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
364 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
365 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
366 
367 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
368 		return 1;
369 	if (!msr_info->host_initiated) {
370 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
371 			return 1;
372 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
373 			return 1;
374 	}
375 
376 	kvm_lapic_set_base(vcpu, msr_info->data);
377 	kvm_recalculate_apic_map(vcpu->kvm);
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
381 
382 asmlinkage __visible void kvm_spurious_fault(void)
383 {
384 	/* Fault while not rebooting.  We want the trace. */
385 	BUG_ON(!kvm_rebooting);
386 }
387 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
388 
389 #define EXCPT_BENIGN		0
390 #define EXCPT_CONTRIBUTORY	1
391 #define EXCPT_PF		2
392 
393 static int exception_class(int vector)
394 {
395 	switch (vector) {
396 	case PF_VECTOR:
397 		return EXCPT_PF;
398 	case DE_VECTOR:
399 	case TS_VECTOR:
400 	case NP_VECTOR:
401 	case SS_VECTOR:
402 	case GP_VECTOR:
403 		return EXCPT_CONTRIBUTORY;
404 	default:
405 		break;
406 	}
407 	return EXCPT_BENIGN;
408 }
409 
410 #define EXCPT_FAULT		0
411 #define EXCPT_TRAP		1
412 #define EXCPT_ABORT		2
413 #define EXCPT_INTERRUPT		3
414 
415 static int exception_type(int vector)
416 {
417 	unsigned int mask;
418 
419 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
420 		return EXCPT_INTERRUPT;
421 
422 	mask = 1 << vector;
423 
424 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
425 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
426 		return EXCPT_TRAP;
427 
428 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
429 		return EXCPT_ABORT;
430 
431 	/* Reserved exceptions will result in fault */
432 	return EXCPT_FAULT;
433 }
434 
435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
436 {
437 	unsigned nr = vcpu->arch.exception.nr;
438 	bool has_payload = vcpu->arch.exception.has_payload;
439 	unsigned long payload = vcpu->arch.exception.payload;
440 
441 	if (!has_payload)
442 		return;
443 
444 	switch (nr) {
445 	case DB_VECTOR:
446 		/*
447 		 * "Certain debug exceptions may clear bit 0-3.  The
448 		 * remaining contents of the DR6 register are never
449 		 * cleared by the processor".
450 		 */
451 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
452 		/*
453 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
454 		 */
455 		vcpu->arch.dr6 |= DR6_RTM;
456 		vcpu->arch.dr6 |= payload;
457 		/*
458 		 * Bit 16 should be set in the payload whenever the #DB
459 		 * exception should clear DR6.RTM. This makes the payload
460 		 * compatible with the pending debug exceptions under VMX.
461 		 * Though not currently documented in the SDM, this also
462 		 * makes the payload compatible with the exit qualification
463 		 * for #DB exceptions under VMX.
464 		 */
465 		vcpu->arch.dr6 ^= payload & DR6_RTM;
466 
467 		/*
468 		 * The #DB payload is defined as compatible with the 'pending
469 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
470 		 * defined in the 'pending debug exceptions' field (enabled
471 		 * breakpoint), it is reserved and must be zero in DR6.
472 		 */
473 		vcpu->arch.dr6 &= ~BIT(12);
474 		break;
475 	case PF_VECTOR:
476 		vcpu->arch.cr2 = payload;
477 		break;
478 	}
479 
480 	vcpu->arch.exception.has_payload = false;
481 	vcpu->arch.exception.payload = 0;
482 }
483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
484 
485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
486 		unsigned nr, bool has_error, u32 error_code,
487 	        bool has_payload, unsigned long payload, bool reinject)
488 {
489 	u32 prev_nr;
490 	int class1, class2;
491 
492 	kvm_make_request(KVM_REQ_EVENT, vcpu);
493 
494 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
495 	queue:
496 		if (has_error && !is_protmode(vcpu))
497 			has_error = false;
498 		if (reinject) {
499 			/*
500 			 * On vmentry, vcpu->arch.exception.pending is only
501 			 * true if an event injection was blocked by
502 			 * nested_run_pending.  In that case, however,
503 			 * vcpu_enter_guest requests an immediate exit,
504 			 * and the guest shouldn't proceed far enough to
505 			 * need reinjection.
506 			 */
507 			WARN_ON_ONCE(vcpu->arch.exception.pending);
508 			vcpu->arch.exception.injected = true;
509 			if (WARN_ON_ONCE(has_payload)) {
510 				/*
511 				 * A reinjected event has already
512 				 * delivered its payload.
513 				 */
514 				has_payload = false;
515 				payload = 0;
516 			}
517 		} else {
518 			vcpu->arch.exception.pending = true;
519 			vcpu->arch.exception.injected = false;
520 		}
521 		vcpu->arch.exception.has_error_code = has_error;
522 		vcpu->arch.exception.nr = nr;
523 		vcpu->arch.exception.error_code = error_code;
524 		vcpu->arch.exception.has_payload = has_payload;
525 		vcpu->arch.exception.payload = payload;
526 		if (!is_guest_mode(vcpu))
527 			kvm_deliver_exception_payload(vcpu);
528 		return;
529 	}
530 
531 	/* to check exception */
532 	prev_nr = vcpu->arch.exception.nr;
533 	if (prev_nr == DF_VECTOR) {
534 		/* triple fault -> shutdown */
535 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
536 		return;
537 	}
538 	class1 = exception_class(prev_nr);
539 	class2 = exception_class(nr);
540 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
541 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
542 		/*
543 		 * Generate double fault per SDM Table 5-5.  Set
544 		 * exception.pending = true so that the double fault
545 		 * can trigger a nested vmexit.
546 		 */
547 		vcpu->arch.exception.pending = true;
548 		vcpu->arch.exception.injected = false;
549 		vcpu->arch.exception.has_error_code = true;
550 		vcpu->arch.exception.nr = DF_VECTOR;
551 		vcpu->arch.exception.error_code = 0;
552 		vcpu->arch.exception.has_payload = false;
553 		vcpu->arch.exception.payload = 0;
554 	} else
555 		/* replace previous exception with a new one in a hope
556 		   that instruction re-execution will regenerate lost
557 		   exception */
558 		goto queue;
559 }
560 
561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
562 {
563 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
564 }
565 EXPORT_SYMBOL_GPL(kvm_queue_exception);
566 
567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
568 {
569 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
570 }
571 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
572 
573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
574 			   unsigned long payload)
575 {
576 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
577 }
578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
579 
580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
581 				    u32 error_code, unsigned long payload)
582 {
583 	kvm_multiple_exception(vcpu, nr, true, error_code,
584 			       true, payload, false);
585 }
586 
587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
588 {
589 	if (err)
590 		kvm_inject_gp(vcpu, 0);
591 	else
592 		return kvm_skip_emulated_instruction(vcpu);
593 
594 	return 1;
595 }
596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
597 
598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
599 {
600 	++vcpu->stat.pf_guest;
601 	vcpu->arch.exception.nested_apf =
602 		is_guest_mode(vcpu) && fault->async_page_fault;
603 	if (vcpu->arch.exception.nested_apf) {
604 		vcpu->arch.apf.nested_apf_token = fault->address;
605 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
606 	} else {
607 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
608 					fault->address);
609 	}
610 }
611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
612 
613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
614 				    struct x86_exception *fault)
615 {
616 	struct kvm_mmu *fault_mmu;
617 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
618 
619 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
620 					       vcpu->arch.walk_mmu;
621 
622 	/*
623 	 * Invalidate the TLB entry for the faulting address, if it exists,
624 	 * else the access will fault indefinitely (and to emulate hardware).
625 	 */
626 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
627 	    !(fault->error_code & PFERR_RSVD_MASK))
628 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
629 				       fault_mmu->root_hpa);
630 
631 	fault_mmu->inject_page_fault(vcpu, fault);
632 	return fault->nested_page_fault;
633 }
634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
635 
636 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
637 {
638 	atomic_inc(&vcpu->arch.nmi_queued);
639 	kvm_make_request(KVM_REQ_NMI, vcpu);
640 }
641 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
642 
643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
644 {
645 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
646 }
647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
648 
649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
650 {
651 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
652 }
653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
654 
655 /*
656  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
657  * a #GP and return false.
658  */
659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
660 {
661 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
662 		return true;
663 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
664 	return false;
665 }
666 EXPORT_SYMBOL_GPL(kvm_require_cpl);
667 
668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
669 {
670 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
671 		return true;
672 
673 	kvm_queue_exception(vcpu, UD_VECTOR);
674 	return false;
675 }
676 EXPORT_SYMBOL_GPL(kvm_require_dr);
677 
678 /*
679  * This function will be used to read from the physical memory of the currently
680  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
681  * can read from guest physical or from the guest's guest physical memory.
682  */
683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
684 			    gfn_t ngfn, void *data, int offset, int len,
685 			    u32 access)
686 {
687 	struct x86_exception exception;
688 	gfn_t real_gfn;
689 	gpa_t ngpa;
690 
691 	ngpa     = gfn_to_gpa(ngfn);
692 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
693 	if (real_gfn == UNMAPPED_GVA)
694 		return -EFAULT;
695 
696 	real_gfn = gpa_to_gfn(real_gfn);
697 
698 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
699 }
700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
701 
702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
703 			       void *data, int offset, int len, u32 access)
704 {
705 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
706 				       data, offset, len, access);
707 }
708 
709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
710 {
711 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
712 	       rsvd_bits(1, 2);
713 }
714 
715 /*
716  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
717  */
718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
719 {
720 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
721 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
722 	int i;
723 	int ret;
724 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
725 
726 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
727 				      offset * sizeof(u64), sizeof(pdpte),
728 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
729 	if (ret < 0) {
730 		ret = 0;
731 		goto out;
732 	}
733 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
734 		if ((pdpte[i] & PT_PRESENT_MASK) &&
735 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
736 			ret = 0;
737 			goto out;
738 		}
739 	}
740 	ret = 1;
741 
742 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
743 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
744 
745 out:
746 
747 	return ret;
748 }
749 EXPORT_SYMBOL_GPL(load_pdptrs);
750 
751 bool pdptrs_changed(struct kvm_vcpu *vcpu)
752 {
753 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
754 	int offset;
755 	gfn_t gfn;
756 	int r;
757 
758 	if (!is_pae_paging(vcpu))
759 		return false;
760 
761 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
762 		return true;
763 
764 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
765 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
766 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
767 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
768 	if (r < 0)
769 		return true;
770 
771 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
772 }
773 EXPORT_SYMBOL_GPL(pdptrs_changed);
774 
775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
778 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
779 
780 	cr0 |= X86_CR0_ET;
781 
782 #ifdef CONFIG_X86_64
783 	if (cr0 & 0xffffffff00000000UL)
784 		return 1;
785 #endif
786 
787 	cr0 &= ~CR0_RESERVED_BITS;
788 
789 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
790 		return 1;
791 
792 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
793 		return 1;
794 
795 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
796 #ifdef CONFIG_X86_64
797 		if ((vcpu->arch.efer & EFER_LME)) {
798 			int cs_db, cs_l;
799 
800 			if (!is_pae(vcpu))
801 				return 1;
802 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
803 			if (cs_l)
804 				return 1;
805 		} else
806 #endif
807 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 						 kvm_read_cr3(vcpu)))
809 			return 1;
810 	}
811 
812 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
813 		return 1;
814 
815 	kvm_x86_ops.set_cr0(vcpu, cr0);
816 
817 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
818 		kvm_clear_async_pf_completion_queue(vcpu);
819 		kvm_async_pf_hash_reset(vcpu);
820 	}
821 
822 	if ((cr0 ^ old_cr0) & update_bits)
823 		kvm_mmu_reset_context(vcpu);
824 
825 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
826 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
827 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
828 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr0);
833 
834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
835 {
836 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
837 }
838 EXPORT_SYMBOL_GPL(kvm_lmsw);
839 
840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
841 {
842 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
843 
844 		if (vcpu->arch.xcr0 != host_xcr0)
845 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
846 
847 		if (vcpu->arch.xsaves_enabled &&
848 		    vcpu->arch.ia32_xss != host_xss)
849 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
850 	}
851 
852 	if (static_cpu_has(X86_FEATURE_PKU) &&
853 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
854 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
855 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
856 		__write_pkru(vcpu->arch.pkru);
857 }
858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
859 
860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
861 {
862 	if (static_cpu_has(X86_FEATURE_PKU) &&
863 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
864 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
865 		vcpu->arch.pkru = rdpkru();
866 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
867 			__write_pkru(vcpu->arch.host_pkru);
868 	}
869 
870 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871 
872 		if (vcpu->arch.xcr0 != host_xcr0)
873 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
874 
875 		if (vcpu->arch.xsaves_enabled &&
876 		    vcpu->arch.ia32_xss != host_xss)
877 			wrmsrl(MSR_IA32_XSS, host_xss);
878 	}
879 
880 }
881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
882 
883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
884 {
885 	u64 xcr0 = xcr;
886 	u64 old_xcr0 = vcpu->arch.xcr0;
887 	u64 valid_bits;
888 
889 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
890 	if (index != XCR_XFEATURE_ENABLED_MASK)
891 		return 1;
892 	if (!(xcr0 & XFEATURE_MASK_FP))
893 		return 1;
894 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
895 		return 1;
896 
897 	/*
898 	 * Do not allow the guest to set bits that we do not support
899 	 * saving.  However, xcr0 bit 0 is always set, even if the
900 	 * emulated CPU does not support XSAVE (see fx_init).
901 	 */
902 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
903 	if (xcr0 & ~valid_bits)
904 		return 1;
905 
906 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
907 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
908 		return 1;
909 
910 	if (xcr0 & XFEATURE_MASK_AVX512) {
911 		if (!(xcr0 & XFEATURE_MASK_YMM))
912 			return 1;
913 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
914 			return 1;
915 	}
916 	vcpu->arch.xcr0 = xcr0;
917 
918 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
919 		kvm_update_cpuid(vcpu);
920 	return 0;
921 }
922 
923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
924 {
925 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
926 	    __kvm_set_xcr(vcpu, index, xcr)) {
927 		kvm_inject_gp(vcpu, 0);
928 		return 1;
929 	}
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(kvm_set_xcr);
933 
934 #define __cr4_reserved_bits(__cpu_has, __c)		\
935 ({							\
936 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
937 							\
938 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
939 		__reserved_bits |= X86_CR4_OSXSAVE;	\
940 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
941 		__reserved_bits |= X86_CR4_SMEP;	\
942 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
943 		__reserved_bits |= X86_CR4_SMAP;	\
944 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
945 		__reserved_bits |= X86_CR4_FSGSBASE;	\
946 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
947 		__reserved_bits |= X86_CR4_PKE;		\
948 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
949 		__reserved_bits |= X86_CR4_LA57;	\
950 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
951 		__reserved_bits |= X86_CR4_UMIP;	\
952 	__reserved_bits;				\
953 })
954 
955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
956 {
957 	if (cr4 & cr4_reserved_bits)
958 		return -EINVAL;
959 
960 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
961 		return -EINVAL;
962 
963 	return 0;
964 }
965 
966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
967 {
968 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
969 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
970 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
971 
972 	if (kvm_valid_cr4(vcpu, cr4))
973 		return 1;
974 
975 	if (is_long_mode(vcpu)) {
976 		if (!(cr4 & X86_CR4_PAE))
977 			return 1;
978 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
979 		   && ((cr4 ^ old_cr4) & pdptr_bits)
980 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
981 				   kvm_read_cr3(vcpu)))
982 		return 1;
983 
984 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
985 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
986 			return 1;
987 
988 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
989 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
990 			return 1;
991 	}
992 
993 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
994 		return 1;
995 
996 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
997 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
998 		kvm_mmu_reset_context(vcpu);
999 
1000 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1001 		kvm_update_cpuid(vcpu);
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1006 
1007 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1008 {
1009 	bool skip_tlb_flush = false;
1010 #ifdef CONFIG_X86_64
1011 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1012 
1013 	if (pcid_enabled) {
1014 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1015 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1016 	}
1017 #endif
1018 
1019 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1020 		if (!skip_tlb_flush) {
1021 			kvm_mmu_sync_roots(vcpu);
1022 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1023 		}
1024 		return 0;
1025 	}
1026 
1027 	if (is_long_mode(vcpu) &&
1028 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1029 		return 1;
1030 	else if (is_pae_paging(vcpu) &&
1031 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1032 		return 1;
1033 
1034 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1035 	vcpu->arch.cr3 = cr3;
1036 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1041 
1042 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1043 {
1044 	if (cr8 & CR8_RESERVED_BITS)
1045 		return 1;
1046 	if (lapic_in_kernel(vcpu))
1047 		kvm_lapic_set_tpr(vcpu, cr8);
1048 	else
1049 		vcpu->arch.cr8 = cr8;
1050 	return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1053 
1054 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1055 {
1056 	if (lapic_in_kernel(vcpu))
1057 		return kvm_lapic_get_cr8(vcpu);
1058 	else
1059 		return vcpu->arch.cr8;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1062 
1063 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1064 {
1065 	int i;
1066 
1067 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1068 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1069 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1070 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1071 	}
1072 }
1073 
1074 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1075 {
1076 	unsigned long dr7;
1077 
1078 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1079 		dr7 = vcpu->arch.guest_debug_dr7;
1080 	else
1081 		dr7 = vcpu->arch.dr7;
1082 	kvm_x86_ops.set_dr7(vcpu, dr7);
1083 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1084 	if (dr7 & DR7_BP_EN_MASK)
1085 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1088 
1089 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1090 {
1091 	u64 fixed = DR6_FIXED_1;
1092 
1093 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1094 		fixed |= DR6_RTM;
1095 	return fixed;
1096 }
1097 
1098 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1099 {
1100 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1101 
1102 	switch (dr) {
1103 	case 0 ... 3:
1104 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1105 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1106 			vcpu->arch.eff_db[dr] = val;
1107 		break;
1108 	case 4:
1109 		/* fall through */
1110 	case 6:
1111 		if (val & 0xffffffff00000000ULL)
1112 			return -1; /* #GP */
1113 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1114 		break;
1115 	case 5:
1116 		/* fall through */
1117 	default: /* 7 */
1118 		if (!kvm_dr7_valid(val))
1119 			return -1; /* #GP */
1120 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1121 		kvm_update_dr7(vcpu);
1122 		break;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1129 {
1130 	if (__kvm_set_dr(vcpu, dr, val)) {
1131 		kvm_inject_gp(vcpu, 0);
1132 		return 1;
1133 	}
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_dr);
1137 
1138 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1139 {
1140 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1141 
1142 	switch (dr) {
1143 	case 0 ... 3:
1144 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1145 		break;
1146 	case 4:
1147 		/* fall through */
1148 	case 6:
1149 		*val = vcpu->arch.dr6;
1150 		break;
1151 	case 5:
1152 		/* fall through */
1153 	default: /* 7 */
1154 		*val = vcpu->arch.dr7;
1155 		break;
1156 	}
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_get_dr);
1160 
1161 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1162 {
1163 	u32 ecx = kvm_rcx_read(vcpu);
1164 	u64 data;
1165 	int err;
1166 
1167 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1168 	if (err)
1169 		return err;
1170 	kvm_rax_write(vcpu, (u32)data);
1171 	kvm_rdx_write(vcpu, data >> 32);
1172 	return err;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1175 
1176 /*
1177  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1178  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1179  *
1180  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1181  * extract the supported MSRs from the related const lists.
1182  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1183  * capabilities of the host cpu. This capabilities test skips MSRs that are
1184  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1185  * may depend on host virtualization features rather than host cpu features.
1186  */
1187 
1188 static const u32 msrs_to_save_all[] = {
1189 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1190 	MSR_STAR,
1191 #ifdef CONFIG_X86_64
1192 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1193 #endif
1194 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1195 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1196 	MSR_IA32_SPEC_CTRL,
1197 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1198 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1199 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1200 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1201 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1202 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1203 	MSR_IA32_UMWAIT_CONTROL,
1204 
1205 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1206 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1207 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1208 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1209 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1210 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1211 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1212 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1213 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1214 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1215 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1216 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1217 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1218 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1219 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1220 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1221 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1222 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1223 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1224 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1225 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1226 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1227 };
1228 
1229 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1230 static unsigned num_msrs_to_save;
1231 
1232 static const u32 emulated_msrs_all[] = {
1233 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1234 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1235 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1236 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1237 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1238 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1239 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1240 	HV_X64_MSR_RESET,
1241 	HV_X64_MSR_VP_INDEX,
1242 	HV_X64_MSR_VP_RUNTIME,
1243 	HV_X64_MSR_SCONTROL,
1244 	HV_X64_MSR_STIMER0_CONFIG,
1245 	HV_X64_MSR_VP_ASSIST_PAGE,
1246 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1247 	HV_X64_MSR_TSC_EMULATION_STATUS,
1248 	HV_X64_MSR_SYNDBG_OPTIONS,
1249 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1250 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1251 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1252 
1253 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1254 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1255 
1256 	MSR_IA32_TSC_ADJUST,
1257 	MSR_IA32_TSCDEADLINE,
1258 	MSR_IA32_ARCH_CAPABILITIES,
1259 	MSR_IA32_PERF_CAPABILITIES,
1260 	MSR_IA32_MISC_ENABLE,
1261 	MSR_IA32_MCG_STATUS,
1262 	MSR_IA32_MCG_CTL,
1263 	MSR_IA32_MCG_EXT_CTL,
1264 	MSR_IA32_SMBASE,
1265 	MSR_SMI_COUNT,
1266 	MSR_PLATFORM_INFO,
1267 	MSR_MISC_FEATURES_ENABLES,
1268 	MSR_AMD64_VIRT_SPEC_CTRL,
1269 	MSR_IA32_POWER_CTL,
1270 	MSR_IA32_UCODE_REV,
1271 
1272 	/*
1273 	 * The following list leaves out MSRs whose values are determined
1274 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1275 	 * We always support the "true" VMX control MSRs, even if the host
1276 	 * processor does not, so I am putting these registers here rather
1277 	 * than in msrs_to_save_all.
1278 	 */
1279 	MSR_IA32_VMX_BASIC,
1280 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1281 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1282 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1283 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1284 	MSR_IA32_VMX_MISC,
1285 	MSR_IA32_VMX_CR0_FIXED0,
1286 	MSR_IA32_VMX_CR4_FIXED0,
1287 	MSR_IA32_VMX_VMCS_ENUM,
1288 	MSR_IA32_VMX_PROCBASED_CTLS2,
1289 	MSR_IA32_VMX_EPT_VPID_CAP,
1290 	MSR_IA32_VMX_VMFUNC,
1291 
1292 	MSR_K7_HWCR,
1293 	MSR_KVM_POLL_CONTROL,
1294 };
1295 
1296 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1297 static unsigned num_emulated_msrs;
1298 
1299 /*
1300  * List of msr numbers which are used to expose MSR-based features that
1301  * can be used by a hypervisor to validate requested CPU features.
1302  */
1303 static const u32 msr_based_features_all[] = {
1304 	MSR_IA32_VMX_BASIC,
1305 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1306 	MSR_IA32_VMX_PINBASED_CTLS,
1307 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1308 	MSR_IA32_VMX_PROCBASED_CTLS,
1309 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1310 	MSR_IA32_VMX_EXIT_CTLS,
1311 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1312 	MSR_IA32_VMX_ENTRY_CTLS,
1313 	MSR_IA32_VMX_MISC,
1314 	MSR_IA32_VMX_CR0_FIXED0,
1315 	MSR_IA32_VMX_CR0_FIXED1,
1316 	MSR_IA32_VMX_CR4_FIXED0,
1317 	MSR_IA32_VMX_CR4_FIXED1,
1318 	MSR_IA32_VMX_VMCS_ENUM,
1319 	MSR_IA32_VMX_PROCBASED_CTLS2,
1320 	MSR_IA32_VMX_EPT_VPID_CAP,
1321 	MSR_IA32_VMX_VMFUNC,
1322 
1323 	MSR_F10H_DECFG,
1324 	MSR_IA32_UCODE_REV,
1325 	MSR_IA32_ARCH_CAPABILITIES,
1326 	MSR_IA32_PERF_CAPABILITIES,
1327 };
1328 
1329 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1330 static unsigned int num_msr_based_features;
1331 
1332 static u64 kvm_get_arch_capabilities(void)
1333 {
1334 	u64 data = 0;
1335 
1336 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1337 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1338 
1339 	/*
1340 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1341 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1342 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1343 	 * L1 guests, so it need not worry about its own (L2) guests.
1344 	 */
1345 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1346 
1347 	/*
1348 	 * If we're doing cache flushes (either "always" or "cond")
1349 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1350 	 * If an outer hypervisor is doing the cache flush for us
1351 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1352 	 * capability to the guest too, and if EPT is disabled we're not
1353 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1354 	 * require a nested hypervisor to do a flush of its own.
1355 	 */
1356 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1357 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1358 
1359 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1360 		data |= ARCH_CAP_RDCL_NO;
1361 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1362 		data |= ARCH_CAP_SSB_NO;
1363 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1364 		data |= ARCH_CAP_MDS_NO;
1365 
1366 	/*
1367 	 * On TAA affected systems:
1368 	 *      - nothing to do if TSX is disabled on the host.
1369 	 *      - we emulate TSX_CTRL if present on the host.
1370 	 *	  This lets the guest use VERW to clear CPU buffers.
1371 	 */
1372 	if (!boot_cpu_has(X86_FEATURE_RTM))
1373 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1374 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1375 		data |= ARCH_CAP_TAA_NO;
1376 
1377 	return data;
1378 }
1379 
1380 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1381 {
1382 	switch (msr->index) {
1383 	case MSR_IA32_ARCH_CAPABILITIES:
1384 		msr->data = kvm_get_arch_capabilities();
1385 		break;
1386 	case MSR_IA32_UCODE_REV:
1387 		rdmsrl_safe(msr->index, &msr->data);
1388 		break;
1389 	default:
1390 		if (kvm_x86_ops.get_msr_feature(msr))
1391 			return 1;
1392 	}
1393 	return 0;
1394 }
1395 
1396 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1397 {
1398 	struct kvm_msr_entry msr;
1399 	int r;
1400 
1401 	msr.index = index;
1402 	r = kvm_get_msr_feature(&msr);
1403 	if (r)
1404 		return r;
1405 
1406 	*data = msr.data;
1407 
1408 	return 0;
1409 }
1410 
1411 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1412 {
1413 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1414 		return false;
1415 
1416 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1417 		return false;
1418 
1419 	if (efer & (EFER_LME | EFER_LMA) &&
1420 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1421 		return false;
1422 
1423 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1424 		return false;
1425 
1426 	return true;
1427 
1428 }
1429 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1430 {
1431 	if (efer & efer_reserved_bits)
1432 		return false;
1433 
1434 	return __kvm_valid_efer(vcpu, efer);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1437 
1438 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1439 {
1440 	u64 old_efer = vcpu->arch.efer;
1441 	u64 efer = msr_info->data;
1442 
1443 	if (efer & efer_reserved_bits)
1444 		return 1;
1445 
1446 	if (!msr_info->host_initiated) {
1447 		if (!__kvm_valid_efer(vcpu, efer))
1448 			return 1;
1449 
1450 		if (is_paging(vcpu) &&
1451 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1452 			return 1;
1453 	}
1454 
1455 	efer &= ~EFER_LMA;
1456 	efer |= vcpu->arch.efer & EFER_LMA;
1457 
1458 	kvm_x86_ops.set_efer(vcpu, efer);
1459 
1460 	/* Update reserved bits */
1461 	if ((efer ^ old_efer) & EFER_NX)
1462 		kvm_mmu_reset_context(vcpu);
1463 
1464 	return 0;
1465 }
1466 
1467 void kvm_enable_efer_bits(u64 mask)
1468 {
1469        efer_reserved_bits &= ~mask;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1472 
1473 /*
1474  * Write @data into the MSR specified by @index.  Select MSR specific fault
1475  * checks are bypassed if @host_initiated is %true.
1476  * Returns 0 on success, non-0 otherwise.
1477  * Assumes vcpu_load() was already called.
1478  */
1479 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1480 			 bool host_initiated)
1481 {
1482 	struct msr_data msr;
1483 
1484 	switch (index) {
1485 	case MSR_FS_BASE:
1486 	case MSR_GS_BASE:
1487 	case MSR_KERNEL_GS_BASE:
1488 	case MSR_CSTAR:
1489 	case MSR_LSTAR:
1490 		if (is_noncanonical_address(data, vcpu))
1491 			return 1;
1492 		break;
1493 	case MSR_IA32_SYSENTER_EIP:
1494 	case MSR_IA32_SYSENTER_ESP:
1495 		/*
1496 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1497 		 * non-canonical address is written on Intel but not on
1498 		 * AMD (which ignores the top 32-bits, because it does
1499 		 * not implement 64-bit SYSENTER).
1500 		 *
1501 		 * 64-bit code should hence be able to write a non-canonical
1502 		 * value on AMD.  Making the address canonical ensures that
1503 		 * vmentry does not fail on Intel after writing a non-canonical
1504 		 * value, and that something deterministic happens if the guest
1505 		 * invokes 64-bit SYSENTER.
1506 		 */
1507 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1508 	}
1509 
1510 	msr.data = data;
1511 	msr.index = index;
1512 	msr.host_initiated = host_initiated;
1513 
1514 	return kvm_x86_ops.set_msr(vcpu, &msr);
1515 }
1516 
1517 /*
1518  * Read the MSR specified by @index into @data.  Select MSR specific fault
1519  * checks are bypassed if @host_initiated is %true.
1520  * Returns 0 on success, non-0 otherwise.
1521  * Assumes vcpu_load() was already called.
1522  */
1523 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1524 		  bool host_initiated)
1525 {
1526 	struct msr_data msr;
1527 	int ret;
1528 
1529 	msr.index = index;
1530 	msr.host_initiated = host_initiated;
1531 
1532 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1533 	if (!ret)
1534 		*data = msr.data;
1535 	return ret;
1536 }
1537 
1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1539 {
1540 	return __kvm_get_msr(vcpu, index, data, false);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_get_msr);
1543 
1544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1545 {
1546 	return __kvm_set_msr(vcpu, index, data, false);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_set_msr);
1549 
1550 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1551 {
1552 	u32 ecx = kvm_rcx_read(vcpu);
1553 	u64 data;
1554 
1555 	if (kvm_get_msr(vcpu, ecx, &data)) {
1556 		trace_kvm_msr_read_ex(ecx);
1557 		kvm_inject_gp(vcpu, 0);
1558 		return 1;
1559 	}
1560 
1561 	trace_kvm_msr_read(ecx, data);
1562 
1563 	kvm_rax_write(vcpu, data & -1u);
1564 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1565 	return kvm_skip_emulated_instruction(vcpu);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1568 
1569 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1570 {
1571 	u32 ecx = kvm_rcx_read(vcpu);
1572 	u64 data = kvm_read_edx_eax(vcpu);
1573 
1574 	if (kvm_set_msr(vcpu, ecx, data)) {
1575 		trace_kvm_msr_write_ex(ecx, data);
1576 		kvm_inject_gp(vcpu, 0);
1577 		return 1;
1578 	}
1579 
1580 	trace_kvm_msr_write(ecx, data);
1581 	return kvm_skip_emulated_instruction(vcpu);
1582 }
1583 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1584 
1585 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1586 {
1587 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1588 		need_resched() || signal_pending(current);
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1591 
1592 /*
1593  * The fast path for frequent and performance sensitive wrmsr emulation,
1594  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1595  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1596  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1597  * other cases which must be called after interrupts are enabled on the host.
1598  */
1599 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1600 {
1601 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1602 		return 1;
1603 
1604 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1605 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1606 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1607 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1608 
1609 		data &= ~(1 << 12);
1610 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1611 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1612 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1613 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1614 		return 0;
1615 	}
1616 
1617 	return 1;
1618 }
1619 
1620 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1621 {
1622 	if (!kvm_can_use_hv_timer(vcpu))
1623 		return 1;
1624 
1625 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1626 	return 0;
1627 }
1628 
1629 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1630 {
1631 	u32 msr = kvm_rcx_read(vcpu);
1632 	u64 data;
1633 	fastpath_t ret = EXIT_FASTPATH_NONE;
1634 
1635 	switch (msr) {
1636 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1637 		data = kvm_read_edx_eax(vcpu);
1638 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1639 			kvm_skip_emulated_instruction(vcpu);
1640 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1641 		}
1642 		break;
1643 	case MSR_IA32_TSCDEADLINE:
1644 		data = kvm_read_edx_eax(vcpu);
1645 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1646 			kvm_skip_emulated_instruction(vcpu);
1647 			ret = EXIT_FASTPATH_REENTER_GUEST;
1648 		}
1649 		break;
1650 	default:
1651 		break;
1652 	}
1653 
1654 	if (ret != EXIT_FASTPATH_NONE)
1655 		trace_kvm_msr_write(msr, data);
1656 
1657 	return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1660 
1661 /*
1662  * Adapt set_msr() to msr_io()'s calling convention
1663  */
1664 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1665 {
1666 	return __kvm_get_msr(vcpu, index, data, true);
1667 }
1668 
1669 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1670 {
1671 	return __kvm_set_msr(vcpu, index, *data, true);
1672 }
1673 
1674 #ifdef CONFIG_X86_64
1675 struct pvclock_clock {
1676 	int vclock_mode;
1677 	u64 cycle_last;
1678 	u64 mask;
1679 	u32 mult;
1680 	u32 shift;
1681 	u64 base_cycles;
1682 	u64 offset;
1683 };
1684 
1685 struct pvclock_gtod_data {
1686 	seqcount_t	seq;
1687 
1688 	struct pvclock_clock clock; /* extract of a clocksource struct */
1689 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1690 
1691 	ktime_t		offs_boot;
1692 	u64		wall_time_sec;
1693 };
1694 
1695 static struct pvclock_gtod_data pvclock_gtod_data;
1696 
1697 static void update_pvclock_gtod(struct timekeeper *tk)
1698 {
1699 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1700 
1701 	write_seqcount_begin(&vdata->seq);
1702 
1703 	/* copy pvclock gtod data */
1704 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1705 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1706 	vdata->clock.mask		= tk->tkr_mono.mask;
1707 	vdata->clock.mult		= tk->tkr_mono.mult;
1708 	vdata->clock.shift		= tk->tkr_mono.shift;
1709 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1710 	vdata->clock.offset		= tk->tkr_mono.base;
1711 
1712 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1713 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1714 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1715 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1716 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1717 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1718 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1719 
1720 	vdata->wall_time_sec            = tk->xtime_sec;
1721 
1722 	vdata->offs_boot		= tk->offs_boot;
1723 
1724 	write_seqcount_end(&vdata->seq);
1725 }
1726 
1727 static s64 get_kvmclock_base_ns(void)
1728 {
1729 	/* Count up from boot time, but with the frequency of the raw clock.  */
1730 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1731 }
1732 #else
1733 static s64 get_kvmclock_base_ns(void)
1734 {
1735 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1736 	return ktime_get_boottime_ns();
1737 }
1738 #endif
1739 
1740 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1741 {
1742 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1743 	kvm_vcpu_kick(vcpu);
1744 }
1745 
1746 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1747 {
1748 	int version;
1749 	int r;
1750 	struct pvclock_wall_clock wc;
1751 	u64 wall_nsec;
1752 
1753 	if (!wall_clock)
1754 		return;
1755 
1756 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1757 	if (r)
1758 		return;
1759 
1760 	if (version & 1)
1761 		++version;  /* first time write, random junk */
1762 
1763 	++version;
1764 
1765 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1766 		return;
1767 
1768 	/*
1769 	 * The guest calculates current wall clock time by adding
1770 	 * system time (updated by kvm_guest_time_update below) to the
1771 	 * wall clock specified here.  We do the reverse here.
1772 	 */
1773 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1774 
1775 	wc.nsec = do_div(wall_nsec, 1000000000);
1776 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1777 	wc.version = version;
1778 
1779 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1780 
1781 	version++;
1782 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1783 }
1784 
1785 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1786 {
1787 	do_shl32_div32(dividend, divisor);
1788 	return dividend;
1789 }
1790 
1791 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1792 			       s8 *pshift, u32 *pmultiplier)
1793 {
1794 	uint64_t scaled64;
1795 	int32_t  shift = 0;
1796 	uint64_t tps64;
1797 	uint32_t tps32;
1798 
1799 	tps64 = base_hz;
1800 	scaled64 = scaled_hz;
1801 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1802 		tps64 >>= 1;
1803 		shift--;
1804 	}
1805 
1806 	tps32 = (uint32_t)tps64;
1807 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1808 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1809 			scaled64 >>= 1;
1810 		else
1811 			tps32 <<= 1;
1812 		shift++;
1813 	}
1814 
1815 	*pshift = shift;
1816 	*pmultiplier = div_frac(scaled64, tps32);
1817 }
1818 
1819 #ifdef CONFIG_X86_64
1820 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1821 #endif
1822 
1823 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1824 static unsigned long max_tsc_khz;
1825 
1826 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1827 {
1828 	u64 v = (u64)khz * (1000000 + ppm);
1829 	do_div(v, 1000000);
1830 	return v;
1831 }
1832 
1833 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1834 {
1835 	u64 ratio;
1836 
1837 	/* Guest TSC same frequency as host TSC? */
1838 	if (!scale) {
1839 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1840 		return 0;
1841 	}
1842 
1843 	/* TSC scaling supported? */
1844 	if (!kvm_has_tsc_control) {
1845 		if (user_tsc_khz > tsc_khz) {
1846 			vcpu->arch.tsc_catchup = 1;
1847 			vcpu->arch.tsc_always_catchup = 1;
1848 			return 0;
1849 		} else {
1850 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1851 			return -1;
1852 		}
1853 	}
1854 
1855 	/* TSC scaling required  - calculate ratio */
1856 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1857 				user_tsc_khz, tsc_khz);
1858 
1859 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1860 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1861 			            user_tsc_khz);
1862 		return -1;
1863 	}
1864 
1865 	vcpu->arch.tsc_scaling_ratio = ratio;
1866 	return 0;
1867 }
1868 
1869 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1870 {
1871 	u32 thresh_lo, thresh_hi;
1872 	int use_scaling = 0;
1873 
1874 	/* tsc_khz can be zero if TSC calibration fails */
1875 	if (user_tsc_khz == 0) {
1876 		/* set tsc_scaling_ratio to a safe value */
1877 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1878 		return -1;
1879 	}
1880 
1881 	/* Compute a scale to convert nanoseconds in TSC cycles */
1882 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1883 			   &vcpu->arch.virtual_tsc_shift,
1884 			   &vcpu->arch.virtual_tsc_mult);
1885 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1886 
1887 	/*
1888 	 * Compute the variation in TSC rate which is acceptable
1889 	 * within the range of tolerance and decide if the
1890 	 * rate being applied is within that bounds of the hardware
1891 	 * rate.  If so, no scaling or compensation need be done.
1892 	 */
1893 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1894 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1895 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1896 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1897 		use_scaling = 1;
1898 	}
1899 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1900 }
1901 
1902 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1903 {
1904 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1905 				      vcpu->arch.virtual_tsc_mult,
1906 				      vcpu->arch.virtual_tsc_shift);
1907 	tsc += vcpu->arch.this_tsc_write;
1908 	return tsc;
1909 }
1910 
1911 static inline int gtod_is_based_on_tsc(int mode)
1912 {
1913 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1914 }
1915 
1916 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1917 {
1918 #ifdef CONFIG_X86_64
1919 	bool vcpus_matched;
1920 	struct kvm_arch *ka = &vcpu->kvm->arch;
1921 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1922 
1923 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1924 			 atomic_read(&vcpu->kvm->online_vcpus));
1925 
1926 	/*
1927 	 * Once the masterclock is enabled, always perform request in
1928 	 * order to update it.
1929 	 *
1930 	 * In order to enable masterclock, the host clocksource must be TSC
1931 	 * and the vcpus need to have matched TSCs.  When that happens,
1932 	 * perform request to enable masterclock.
1933 	 */
1934 	if (ka->use_master_clock ||
1935 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1936 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1937 
1938 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1939 			    atomic_read(&vcpu->kvm->online_vcpus),
1940 		            ka->use_master_clock, gtod->clock.vclock_mode);
1941 #endif
1942 }
1943 
1944 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1945 {
1946 	u64 curr_offset = vcpu->arch.l1_tsc_offset;
1947 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1948 }
1949 
1950 /*
1951  * Multiply tsc by a fixed point number represented by ratio.
1952  *
1953  * The most significant 64-N bits (mult) of ratio represent the
1954  * integral part of the fixed point number; the remaining N bits
1955  * (frac) represent the fractional part, ie. ratio represents a fixed
1956  * point number (mult + frac * 2^(-N)).
1957  *
1958  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1959  */
1960 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1961 {
1962 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1963 }
1964 
1965 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1966 {
1967 	u64 _tsc = tsc;
1968 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1969 
1970 	if (ratio != kvm_default_tsc_scaling_ratio)
1971 		_tsc = __scale_tsc(ratio, tsc);
1972 
1973 	return _tsc;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1976 
1977 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1978 {
1979 	u64 tsc;
1980 
1981 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1982 
1983 	return target_tsc - tsc;
1984 }
1985 
1986 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1987 {
1988 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1991 
1992 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1993 {
1994 	vcpu->arch.l1_tsc_offset = offset;
1995 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1996 }
1997 
1998 static inline bool kvm_check_tsc_unstable(void)
1999 {
2000 #ifdef CONFIG_X86_64
2001 	/*
2002 	 * TSC is marked unstable when we're running on Hyper-V,
2003 	 * 'TSC page' clocksource is good.
2004 	 */
2005 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2006 		return false;
2007 #endif
2008 	return check_tsc_unstable();
2009 }
2010 
2011 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2012 {
2013 	struct kvm *kvm = vcpu->kvm;
2014 	u64 offset, ns, elapsed;
2015 	unsigned long flags;
2016 	bool matched;
2017 	bool already_matched;
2018 	u64 data = msr->data;
2019 	bool synchronizing = false;
2020 
2021 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2022 	offset = kvm_compute_tsc_offset(vcpu, data);
2023 	ns = get_kvmclock_base_ns();
2024 	elapsed = ns - kvm->arch.last_tsc_nsec;
2025 
2026 	if (vcpu->arch.virtual_tsc_khz) {
2027 		if (data == 0 && msr->host_initiated) {
2028 			/*
2029 			 * detection of vcpu initialization -- need to sync
2030 			 * with other vCPUs. This particularly helps to keep
2031 			 * kvm_clock stable after CPU hotplug
2032 			 */
2033 			synchronizing = true;
2034 		} else {
2035 			u64 tsc_exp = kvm->arch.last_tsc_write +
2036 						nsec_to_cycles(vcpu, elapsed);
2037 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2038 			/*
2039 			 * Special case: TSC write with a small delta (1 second)
2040 			 * of virtual cycle time against real time is
2041 			 * interpreted as an attempt to synchronize the CPU.
2042 			 */
2043 			synchronizing = data < tsc_exp + tsc_hz &&
2044 					data + tsc_hz > tsc_exp;
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2050 	 * TSC, we add elapsed time in this computation.  We could let the
2051 	 * compensation code attempt to catch up if we fall behind, but
2052 	 * it's better to try to match offsets from the beginning.
2053          */
2054 	if (synchronizing &&
2055 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2056 		if (!kvm_check_tsc_unstable()) {
2057 			offset = kvm->arch.cur_tsc_offset;
2058 		} else {
2059 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2060 			data += delta;
2061 			offset = kvm_compute_tsc_offset(vcpu, data);
2062 		}
2063 		matched = true;
2064 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2065 	} else {
2066 		/*
2067 		 * We split periods of matched TSC writes into generations.
2068 		 * For each generation, we track the original measured
2069 		 * nanosecond time, offset, and write, so if TSCs are in
2070 		 * sync, we can match exact offset, and if not, we can match
2071 		 * exact software computation in compute_guest_tsc()
2072 		 *
2073 		 * These values are tracked in kvm->arch.cur_xxx variables.
2074 		 */
2075 		kvm->arch.cur_tsc_generation++;
2076 		kvm->arch.cur_tsc_nsec = ns;
2077 		kvm->arch.cur_tsc_write = data;
2078 		kvm->arch.cur_tsc_offset = offset;
2079 		matched = false;
2080 	}
2081 
2082 	/*
2083 	 * We also track th most recent recorded KHZ, write and time to
2084 	 * allow the matching interval to be extended at each write.
2085 	 */
2086 	kvm->arch.last_tsc_nsec = ns;
2087 	kvm->arch.last_tsc_write = data;
2088 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2089 
2090 	vcpu->arch.last_guest_tsc = data;
2091 
2092 	/* Keep track of which generation this VCPU has synchronized to */
2093 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2094 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2095 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2096 
2097 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2098 		update_ia32_tsc_adjust_msr(vcpu, offset);
2099 
2100 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2101 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2102 
2103 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2104 	if (!matched) {
2105 		kvm->arch.nr_vcpus_matched_tsc = 0;
2106 	} else if (!already_matched) {
2107 		kvm->arch.nr_vcpus_matched_tsc++;
2108 	}
2109 
2110 	kvm_track_tsc_matching(vcpu);
2111 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2112 }
2113 
2114 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2115 
2116 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2117 					   s64 adjustment)
2118 {
2119 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2120 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2121 }
2122 
2123 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2124 {
2125 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2126 		WARN_ON(adjustment < 0);
2127 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2128 	adjust_tsc_offset_guest(vcpu, adjustment);
2129 }
2130 
2131 #ifdef CONFIG_X86_64
2132 
2133 static u64 read_tsc(void)
2134 {
2135 	u64 ret = (u64)rdtsc_ordered();
2136 	u64 last = pvclock_gtod_data.clock.cycle_last;
2137 
2138 	if (likely(ret >= last))
2139 		return ret;
2140 
2141 	/*
2142 	 * GCC likes to generate cmov here, but this branch is extremely
2143 	 * predictable (it's just a function of time and the likely is
2144 	 * very likely) and there's a data dependence, so force GCC
2145 	 * to generate a branch instead.  I don't barrier() because
2146 	 * we don't actually need a barrier, and if this function
2147 	 * ever gets inlined it will generate worse code.
2148 	 */
2149 	asm volatile ("");
2150 	return last;
2151 }
2152 
2153 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2154 			  int *mode)
2155 {
2156 	long v;
2157 	u64 tsc_pg_val;
2158 
2159 	switch (clock->vclock_mode) {
2160 	case VDSO_CLOCKMODE_HVCLOCK:
2161 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2162 						  tsc_timestamp);
2163 		if (tsc_pg_val != U64_MAX) {
2164 			/* TSC page valid */
2165 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2166 			v = (tsc_pg_val - clock->cycle_last) &
2167 				clock->mask;
2168 		} else {
2169 			/* TSC page invalid */
2170 			*mode = VDSO_CLOCKMODE_NONE;
2171 		}
2172 		break;
2173 	case VDSO_CLOCKMODE_TSC:
2174 		*mode = VDSO_CLOCKMODE_TSC;
2175 		*tsc_timestamp = read_tsc();
2176 		v = (*tsc_timestamp - clock->cycle_last) &
2177 			clock->mask;
2178 		break;
2179 	default:
2180 		*mode = VDSO_CLOCKMODE_NONE;
2181 	}
2182 
2183 	if (*mode == VDSO_CLOCKMODE_NONE)
2184 		*tsc_timestamp = v = 0;
2185 
2186 	return v * clock->mult;
2187 }
2188 
2189 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2190 {
2191 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2192 	unsigned long seq;
2193 	int mode;
2194 	u64 ns;
2195 
2196 	do {
2197 		seq = read_seqcount_begin(&gtod->seq);
2198 		ns = gtod->raw_clock.base_cycles;
2199 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2200 		ns >>= gtod->raw_clock.shift;
2201 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2202 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2203 	*t = ns;
2204 
2205 	return mode;
2206 }
2207 
2208 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2209 {
2210 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2211 	unsigned long seq;
2212 	int mode;
2213 	u64 ns;
2214 
2215 	do {
2216 		seq = read_seqcount_begin(&gtod->seq);
2217 		ts->tv_sec = gtod->wall_time_sec;
2218 		ns = gtod->clock.base_cycles;
2219 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2220 		ns >>= gtod->clock.shift;
2221 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2222 
2223 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2224 	ts->tv_nsec = ns;
2225 
2226 	return mode;
2227 }
2228 
2229 /* returns true if host is using TSC based clocksource */
2230 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2231 {
2232 	/* checked again under seqlock below */
2233 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2234 		return false;
2235 
2236 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2237 						      tsc_timestamp));
2238 }
2239 
2240 /* returns true if host is using TSC based clocksource */
2241 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2242 					   u64 *tsc_timestamp)
2243 {
2244 	/* checked again under seqlock below */
2245 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2246 		return false;
2247 
2248 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2249 }
2250 #endif
2251 
2252 /*
2253  *
2254  * Assuming a stable TSC across physical CPUS, and a stable TSC
2255  * across virtual CPUs, the following condition is possible.
2256  * Each numbered line represents an event visible to both
2257  * CPUs at the next numbered event.
2258  *
2259  * "timespecX" represents host monotonic time. "tscX" represents
2260  * RDTSC value.
2261  *
2262  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2263  *
2264  * 1.  read timespec0,tsc0
2265  * 2.					| timespec1 = timespec0 + N
2266  * 					| tsc1 = tsc0 + M
2267  * 3. transition to guest		| transition to guest
2268  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2269  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2270  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2271  *
2272  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2273  *
2274  * 	- ret0 < ret1
2275  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2276  *		...
2277  *	- 0 < N - M => M < N
2278  *
2279  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2280  * always the case (the difference between two distinct xtime instances
2281  * might be smaller then the difference between corresponding TSC reads,
2282  * when updating guest vcpus pvclock areas).
2283  *
2284  * To avoid that problem, do not allow visibility of distinct
2285  * system_timestamp/tsc_timestamp values simultaneously: use a master
2286  * copy of host monotonic time values. Update that master copy
2287  * in lockstep.
2288  *
2289  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2290  *
2291  */
2292 
2293 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2294 {
2295 #ifdef CONFIG_X86_64
2296 	struct kvm_arch *ka = &kvm->arch;
2297 	int vclock_mode;
2298 	bool host_tsc_clocksource, vcpus_matched;
2299 
2300 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2301 			atomic_read(&kvm->online_vcpus));
2302 
2303 	/*
2304 	 * If the host uses TSC clock, then passthrough TSC as stable
2305 	 * to the guest.
2306 	 */
2307 	host_tsc_clocksource = kvm_get_time_and_clockread(
2308 					&ka->master_kernel_ns,
2309 					&ka->master_cycle_now);
2310 
2311 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2312 				&& !ka->backwards_tsc_observed
2313 				&& !ka->boot_vcpu_runs_old_kvmclock;
2314 
2315 	if (ka->use_master_clock)
2316 		atomic_set(&kvm_guest_has_master_clock, 1);
2317 
2318 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2319 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2320 					vcpus_matched);
2321 #endif
2322 }
2323 
2324 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2325 {
2326 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2327 }
2328 
2329 static void kvm_gen_update_masterclock(struct kvm *kvm)
2330 {
2331 #ifdef CONFIG_X86_64
2332 	int i;
2333 	struct kvm_vcpu *vcpu;
2334 	struct kvm_arch *ka = &kvm->arch;
2335 
2336 	spin_lock(&ka->pvclock_gtod_sync_lock);
2337 	kvm_make_mclock_inprogress_request(kvm);
2338 	/* no guest entries from this point */
2339 	pvclock_update_vm_gtod_copy(kvm);
2340 
2341 	kvm_for_each_vcpu(i, vcpu, kvm)
2342 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2343 
2344 	/* guest entries allowed */
2345 	kvm_for_each_vcpu(i, vcpu, kvm)
2346 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2347 
2348 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2349 #endif
2350 }
2351 
2352 u64 get_kvmclock_ns(struct kvm *kvm)
2353 {
2354 	struct kvm_arch *ka = &kvm->arch;
2355 	struct pvclock_vcpu_time_info hv_clock;
2356 	u64 ret;
2357 
2358 	spin_lock(&ka->pvclock_gtod_sync_lock);
2359 	if (!ka->use_master_clock) {
2360 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2361 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2362 	}
2363 
2364 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2365 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2366 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2367 
2368 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2369 	get_cpu();
2370 
2371 	if (__this_cpu_read(cpu_tsc_khz)) {
2372 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2373 				   &hv_clock.tsc_shift,
2374 				   &hv_clock.tsc_to_system_mul);
2375 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2376 	} else
2377 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2378 
2379 	put_cpu();
2380 
2381 	return ret;
2382 }
2383 
2384 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2385 {
2386 	struct kvm_vcpu_arch *vcpu = &v->arch;
2387 	struct pvclock_vcpu_time_info guest_hv_clock;
2388 
2389 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2390 		&guest_hv_clock, sizeof(guest_hv_clock))))
2391 		return;
2392 
2393 	/* This VCPU is paused, but it's legal for a guest to read another
2394 	 * VCPU's kvmclock, so we really have to follow the specification where
2395 	 * it says that version is odd if data is being modified, and even after
2396 	 * it is consistent.
2397 	 *
2398 	 * Version field updates must be kept separate.  This is because
2399 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2400 	 * writes within a string instruction are weakly ordered.  So there
2401 	 * are three writes overall.
2402 	 *
2403 	 * As a small optimization, only write the version field in the first
2404 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2405 	 * version field is the first in the struct.
2406 	 */
2407 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2408 
2409 	if (guest_hv_clock.version & 1)
2410 		++guest_hv_clock.version;  /* first time write, random junk */
2411 
2412 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2413 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2414 				&vcpu->hv_clock,
2415 				sizeof(vcpu->hv_clock.version));
2416 
2417 	smp_wmb();
2418 
2419 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2420 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2421 
2422 	if (vcpu->pvclock_set_guest_stopped_request) {
2423 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2424 		vcpu->pvclock_set_guest_stopped_request = false;
2425 	}
2426 
2427 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2428 
2429 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2430 				&vcpu->hv_clock,
2431 				sizeof(vcpu->hv_clock));
2432 
2433 	smp_wmb();
2434 
2435 	vcpu->hv_clock.version++;
2436 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2437 				&vcpu->hv_clock,
2438 				sizeof(vcpu->hv_clock.version));
2439 }
2440 
2441 static int kvm_guest_time_update(struct kvm_vcpu *v)
2442 {
2443 	unsigned long flags, tgt_tsc_khz;
2444 	struct kvm_vcpu_arch *vcpu = &v->arch;
2445 	struct kvm_arch *ka = &v->kvm->arch;
2446 	s64 kernel_ns;
2447 	u64 tsc_timestamp, host_tsc;
2448 	u8 pvclock_flags;
2449 	bool use_master_clock;
2450 
2451 	kernel_ns = 0;
2452 	host_tsc = 0;
2453 
2454 	/*
2455 	 * If the host uses TSC clock, then passthrough TSC as stable
2456 	 * to the guest.
2457 	 */
2458 	spin_lock(&ka->pvclock_gtod_sync_lock);
2459 	use_master_clock = ka->use_master_clock;
2460 	if (use_master_clock) {
2461 		host_tsc = ka->master_cycle_now;
2462 		kernel_ns = ka->master_kernel_ns;
2463 	}
2464 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2465 
2466 	/* Keep irq disabled to prevent changes to the clock */
2467 	local_irq_save(flags);
2468 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2469 	if (unlikely(tgt_tsc_khz == 0)) {
2470 		local_irq_restore(flags);
2471 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2472 		return 1;
2473 	}
2474 	if (!use_master_clock) {
2475 		host_tsc = rdtsc();
2476 		kernel_ns = get_kvmclock_base_ns();
2477 	}
2478 
2479 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2480 
2481 	/*
2482 	 * We may have to catch up the TSC to match elapsed wall clock
2483 	 * time for two reasons, even if kvmclock is used.
2484 	 *   1) CPU could have been running below the maximum TSC rate
2485 	 *   2) Broken TSC compensation resets the base at each VCPU
2486 	 *      entry to avoid unknown leaps of TSC even when running
2487 	 *      again on the same CPU.  This may cause apparent elapsed
2488 	 *      time to disappear, and the guest to stand still or run
2489 	 *	very slowly.
2490 	 */
2491 	if (vcpu->tsc_catchup) {
2492 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2493 		if (tsc > tsc_timestamp) {
2494 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2495 			tsc_timestamp = tsc;
2496 		}
2497 	}
2498 
2499 	local_irq_restore(flags);
2500 
2501 	/* With all the info we got, fill in the values */
2502 
2503 	if (kvm_has_tsc_control)
2504 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2505 
2506 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2507 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2508 				   &vcpu->hv_clock.tsc_shift,
2509 				   &vcpu->hv_clock.tsc_to_system_mul);
2510 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2511 	}
2512 
2513 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2514 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2515 	vcpu->last_guest_tsc = tsc_timestamp;
2516 
2517 	/* If the host uses TSC clocksource, then it is stable */
2518 	pvclock_flags = 0;
2519 	if (use_master_clock)
2520 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2521 
2522 	vcpu->hv_clock.flags = pvclock_flags;
2523 
2524 	if (vcpu->pv_time_enabled)
2525 		kvm_setup_pvclock_page(v);
2526 	if (v == kvm_get_vcpu(v->kvm, 0))
2527 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2528 	return 0;
2529 }
2530 
2531 /*
2532  * kvmclock updates which are isolated to a given vcpu, such as
2533  * vcpu->cpu migration, should not allow system_timestamp from
2534  * the rest of the vcpus to remain static. Otherwise ntp frequency
2535  * correction applies to one vcpu's system_timestamp but not
2536  * the others.
2537  *
2538  * So in those cases, request a kvmclock update for all vcpus.
2539  * We need to rate-limit these requests though, as they can
2540  * considerably slow guests that have a large number of vcpus.
2541  * The time for a remote vcpu to update its kvmclock is bound
2542  * by the delay we use to rate-limit the updates.
2543  */
2544 
2545 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2546 
2547 static void kvmclock_update_fn(struct work_struct *work)
2548 {
2549 	int i;
2550 	struct delayed_work *dwork = to_delayed_work(work);
2551 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2552 					   kvmclock_update_work);
2553 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2554 	struct kvm_vcpu *vcpu;
2555 
2556 	kvm_for_each_vcpu(i, vcpu, kvm) {
2557 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2558 		kvm_vcpu_kick(vcpu);
2559 	}
2560 }
2561 
2562 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2563 {
2564 	struct kvm *kvm = v->kvm;
2565 
2566 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2567 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2568 					KVMCLOCK_UPDATE_DELAY);
2569 }
2570 
2571 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2572 
2573 static void kvmclock_sync_fn(struct work_struct *work)
2574 {
2575 	struct delayed_work *dwork = to_delayed_work(work);
2576 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2577 					   kvmclock_sync_work);
2578 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2579 
2580 	if (!kvmclock_periodic_sync)
2581 		return;
2582 
2583 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2584 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2585 					KVMCLOCK_SYNC_PERIOD);
2586 }
2587 
2588 /*
2589  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2590  */
2591 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2592 {
2593 	/* McStatusWrEn enabled? */
2594 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2595 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2596 
2597 	return false;
2598 }
2599 
2600 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2601 {
2602 	u64 mcg_cap = vcpu->arch.mcg_cap;
2603 	unsigned bank_num = mcg_cap & 0xff;
2604 	u32 msr = msr_info->index;
2605 	u64 data = msr_info->data;
2606 
2607 	switch (msr) {
2608 	case MSR_IA32_MCG_STATUS:
2609 		vcpu->arch.mcg_status = data;
2610 		break;
2611 	case MSR_IA32_MCG_CTL:
2612 		if (!(mcg_cap & MCG_CTL_P) &&
2613 		    (data || !msr_info->host_initiated))
2614 			return 1;
2615 		if (data != 0 && data != ~(u64)0)
2616 			return 1;
2617 		vcpu->arch.mcg_ctl = data;
2618 		break;
2619 	default:
2620 		if (msr >= MSR_IA32_MC0_CTL &&
2621 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2622 			u32 offset = array_index_nospec(
2623 				msr - MSR_IA32_MC0_CTL,
2624 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2625 
2626 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2627 			 * some Linux kernels though clear bit 10 in bank 4 to
2628 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2629 			 * this to avoid an uncatched #GP in the guest
2630 			 */
2631 			if ((offset & 0x3) == 0 &&
2632 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2633 				return -1;
2634 
2635 			/* MCi_STATUS */
2636 			if (!msr_info->host_initiated &&
2637 			    (offset & 0x3) == 1 && data != 0) {
2638 				if (!can_set_mci_status(vcpu))
2639 					return -1;
2640 			}
2641 
2642 			vcpu->arch.mce_banks[offset] = data;
2643 			break;
2644 		}
2645 		return 1;
2646 	}
2647 	return 0;
2648 }
2649 
2650 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2651 {
2652 	struct kvm *kvm = vcpu->kvm;
2653 	int lm = is_long_mode(vcpu);
2654 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2655 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2656 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2657 		: kvm->arch.xen_hvm_config.blob_size_32;
2658 	u32 page_num = data & ~PAGE_MASK;
2659 	u64 page_addr = data & PAGE_MASK;
2660 	u8 *page;
2661 	int r;
2662 
2663 	r = -E2BIG;
2664 	if (page_num >= blob_size)
2665 		goto out;
2666 	r = -ENOMEM;
2667 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2668 	if (IS_ERR(page)) {
2669 		r = PTR_ERR(page);
2670 		goto out;
2671 	}
2672 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2673 		goto out_free;
2674 	r = 0;
2675 out_free:
2676 	kfree(page);
2677 out:
2678 	return r;
2679 }
2680 
2681 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2682 {
2683 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2684 
2685 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2686 }
2687 
2688 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2689 {
2690 	gpa_t gpa = data & ~0x3f;
2691 
2692 	/* Bits 4:5 are reserved, Should be zero */
2693 	if (data & 0x30)
2694 		return 1;
2695 
2696 	vcpu->arch.apf.msr_en_val = data;
2697 
2698 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2699 		kvm_clear_async_pf_completion_queue(vcpu);
2700 		kvm_async_pf_hash_reset(vcpu);
2701 		return 0;
2702 	}
2703 
2704 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2705 					sizeof(u64)))
2706 		return 1;
2707 
2708 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2709 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2710 
2711 	kvm_async_pf_wakeup_all(vcpu);
2712 
2713 	return 0;
2714 }
2715 
2716 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2717 {
2718 	/* Bits 8-63 are reserved */
2719 	if (data >> 8)
2720 		return 1;
2721 
2722 	if (!lapic_in_kernel(vcpu))
2723 		return 1;
2724 
2725 	vcpu->arch.apf.msr_int_val = data;
2726 
2727 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2728 
2729 	return 0;
2730 }
2731 
2732 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2733 {
2734 	vcpu->arch.pv_time_enabled = false;
2735 	vcpu->arch.time = 0;
2736 }
2737 
2738 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2739 {
2740 	++vcpu->stat.tlb_flush;
2741 	kvm_x86_ops.tlb_flush_all(vcpu);
2742 }
2743 
2744 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2745 {
2746 	++vcpu->stat.tlb_flush;
2747 	kvm_x86_ops.tlb_flush_guest(vcpu);
2748 }
2749 
2750 static void record_steal_time(struct kvm_vcpu *vcpu)
2751 {
2752 	struct kvm_host_map map;
2753 	struct kvm_steal_time *st;
2754 
2755 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2756 		return;
2757 
2758 	/* -EAGAIN is returned in atomic context so we can just return. */
2759 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2760 			&map, &vcpu->arch.st.cache, false))
2761 		return;
2762 
2763 	st = map.hva +
2764 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2765 
2766 	/*
2767 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2768 	 * expensive IPIs.
2769 	 */
2770 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2771 		st->preempted & KVM_VCPU_FLUSH_TLB);
2772 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2773 		kvm_vcpu_flush_tlb_guest(vcpu);
2774 
2775 	vcpu->arch.st.preempted = 0;
2776 
2777 	if (st->version & 1)
2778 		st->version += 1;  /* first time write, random junk */
2779 
2780 	st->version += 1;
2781 
2782 	smp_wmb();
2783 
2784 	st->steal += current->sched_info.run_delay -
2785 		vcpu->arch.st.last_steal;
2786 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2787 
2788 	smp_wmb();
2789 
2790 	st->version += 1;
2791 
2792 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2793 }
2794 
2795 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2796 {
2797 	bool pr = false;
2798 	u32 msr = msr_info->index;
2799 	u64 data = msr_info->data;
2800 
2801 	switch (msr) {
2802 	case MSR_AMD64_NB_CFG:
2803 	case MSR_IA32_UCODE_WRITE:
2804 	case MSR_VM_HSAVE_PA:
2805 	case MSR_AMD64_PATCH_LOADER:
2806 	case MSR_AMD64_BU_CFG2:
2807 	case MSR_AMD64_DC_CFG:
2808 	case MSR_F15H_EX_CFG:
2809 		break;
2810 
2811 	case MSR_IA32_UCODE_REV:
2812 		if (msr_info->host_initiated)
2813 			vcpu->arch.microcode_version = data;
2814 		break;
2815 	case MSR_IA32_ARCH_CAPABILITIES:
2816 		if (!msr_info->host_initiated)
2817 			return 1;
2818 		vcpu->arch.arch_capabilities = data;
2819 		break;
2820 	case MSR_EFER:
2821 		return set_efer(vcpu, msr_info);
2822 	case MSR_K7_HWCR:
2823 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2824 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2825 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2826 
2827 		/* Handle McStatusWrEn */
2828 		if (data == BIT_ULL(18)) {
2829 			vcpu->arch.msr_hwcr = data;
2830 		} else if (data != 0) {
2831 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2832 				    data);
2833 			return 1;
2834 		}
2835 		break;
2836 	case MSR_FAM10H_MMIO_CONF_BASE:
2837 		if (data != 0) {
2838 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2839 				    "0x%llx\n", data);
2840 			return 1;
2841 		}
2842 		break;
2843 	case MSR_IA32_DEBUGCTLMSR:
2844 		if (!data) {
2845 			/* We support the non-activated case already */
2846 			break;
2847 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2848 			/* Values other than LBR and BTF are vendor-specific,
2849 			   thus reserved and should throw a #GP */
2850 			return 1;
2851 		}
2852 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2853 			    __func__, data);
2854 		break;
2855 	case 0x200 ... 0x2ff:
2856 		return kvm_mtrr_set_msr(vcpu, msr, data);
2857 	case MSR_IA32_APICBASE:
2858 		return kvm_set_apic_base(vcpu, msr_info);
2859 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2860 		return kvm_x2apic_msr_write(vcpu, msr, data);
2861 	case MSR_IA32_TSCDEADLINE:
2862 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2863 		break;
2864 	case MSR_IA32_TSC_ADJUST:
2865 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2866 			if (!msr_info->host_initiated) {
2867 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2868 				adjust_tsc_offset_guest(vcpu, adj);
2869 			}
2870 			vcpu->arch.ia32_tsc_adjust_msr = data;
2871 		}
2872 		break;
2873 	case MSR_IA32_MISC_ENABLE:
2874 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2875 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2876 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2877 				return 1;
2878 			vcpu->arch.ia32_misc_enable_msr = data;
2879 			kvm_update_cpuid(vcpu);
2880 		} else {
2881 			vcpu->arch.ia32_misc_enable_msr = data;
2882 		}
2883 		break;
2884 	case MSR_IA32_SMBASE:
2885 		if (!msr_info->host_initiated)
2886 			return 1;
2887 		vcpu->arch.smbase = data;
2888 		break;
2889 	case MSR_IA32_POWER_CTL:
2890 		vcpu->arch.msr_ia32_power_ctl = data;
2891 		break;
2892 	case MSR_IA32_TSC:
2893 		kvm_write_tsc(vcpu, msr_info);
2894 		break;
2895 	case MSR_IA32_XSS:
2896 		if (!msr_info->host_initiated &&
2897 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2898 			return 1;
2899 		/*
2900 		 * KVM supports exposing PT to the guest, but does not support
2901 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2902 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2903 		 */
2904 		if (data & ~supported_xss)
2905 			return 1;
2906 		vcpu->arch.ia32_xss = data;
2907 		break;
2908 	case MSR_SMI_COUNT:
2909 		if (!msr_info->host_initiated)
2910 			return 1;
2911 		vcpu->arch.smi_count = data;
2912 		break;
2913 	case MSR_KVM_WALL_CLOCK_NEW:
2914 	case MSR_KVM_WALL_CLOCK:
2915 		vcpu->kvm->arch.wall_clock = data;
2916 		kvm_write_wall_clock(vcpu->kvm, data);
2917 		break;
2918 	case MSR_KVM_SYSTEM_TIME_NEW:
2919 	case MSR_KVM_SYSTEM_TIME: {
2920 		struct kvm_arch *ka = &vcpu->kvm->arch;
2921 
2922 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2923 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2924 
2925 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2926 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2927 
2928 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2929 		}
2930 
2931 		vcpu->arch.time = data;
2932 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2933 
2934 		/* we verify if the enable bit is set... */
2935 		vcpu->arch.pv_time_enabled = false;
2936 		if (!(data & 1))
2937 			break;
2938 
2939 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2940 		     &vcpu->arch.pv_time, data & ~1ULL,
2941 		     sizeof(struct pvclock_vcpu_time_info)))
2942 			vcpu->arch.pv_time_enabled = true;
2943 
2944 		break;
2945 	}
2946 	case MSR_KVM_ASYNC_PF_EN:
2947 		if (kvm_pv_enable_async_pf(vcpu, data))
2948 			return 1;
2949 		break;
2950 	case MSR_KVM_ASYNC_PF_INT:
2951 		if (kvm_pv_enable_async_pf_int(vcpu, data))
2952 			return 1;
2953 		break;
2954 	case MSR_KVM_ASYNC_PF_ACK:
2955 		if (data & 0x1) {
2956 			vcpu->arch.apf.pageready_pending = false;
2957 			kvm_check_async_pf_completion(vcpu);
2958 		}
2959 		break;
2960 	case MSR_KVM_STEAL_TIME:
2961 
2962 		if (unlikely(!sched_info_on()))
2963 			return 1;
2964 
2965 		if (data & KVM_STEAL_RESERVED_MASK)
2966 			return 1;
2967 
2968 		vcpu->arch.st.msr_val = data;
2969 
2970 		if (!(data & KVM_MSR_ENABLED))
2971 			break;
2972 
2973 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2974 
2975 		break;
2976 	case MSR_KVM_PV_EOI_EN:
2977 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2978 			return 1;
2979 		break;
2980 
2981 	case MSR_KVM_POLL_CONTROL:
2982 		/* only enable bit supported */
2983 		if (data & (-1ULL << 1))
2984 			return 1;
2985 
2986 		vcpu->arch.msr_kvm_poll_control = data;
2987 		break;
2988 
2989 	case MSR_IA32_MCG_CTL:
2990 	case MSR_IA32_MCG_STATUS:
2991 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2992 		return set_msr_mce(vcpu, msr_info);
2993 
2994 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2995 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2996 		pr = true; /* fall through */
2997 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2998 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2999 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3000 			return kvm_pmu_set_msr(vcpu, msr_info);
3001 
3002 		if (pr || data != 0)
3003 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3004 				    "0x%x data 0x%llx\n", msr, data);
3005 		break;
3006 	case MSR_K7_CLK_CTL:
3007 		/*
3008 		 * Ignore all writes to this no longer documented MSR.
3009 		 * Writes are only relevant for old K7 processors,
3010 		 * all pre-dating SVM, but a recommended workaround from
3011 		 * AMD for these chips. It is possible to specify the
3012 		 * affected processor models on the command line, hence
3013 		 * the need to ignore the workaround.
3014 		 */
3015 		break;
3016 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3017 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3018 	case HV_X64_MSR_SYNDBG_OPTIONS:
3019 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3020 	case HV_X64_MSR_CRASH_CTL:
3021 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3022 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3023 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3024 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3025 		return kvm_hv_set_msr_common(vcpu, msr, data,
3026 					     msr_info->host_initiated);
3027 	case MSR_IA32_BBL_CR_CTL3:
3028 		/* Drop writes to this legacy MSR -- see rdmsr
3029 		 * counterpart for further detail.
3030 		 */
3031 		if (report_ignored_msrs)
3032 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3033 				msr, data);
3034 		break;
3035 	case MSR_AMD64_OSVW_ID_LENGTH:
3036 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3037 			return 1;
3038 		vcpu->arch.osvw.length = data;
3039 		break;
3040 	case MSR_AMD64_OSVW_STATUS:
3041 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3042 			return 1;
3043 		vcpu->arch.osvw.status = data;
3044 		break;
3045 	case MSR_PLATFORM_INFO:
3046 		if (!msr_info->host_initiated ||
3047 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3048 		     cpuid_fault_enabled(vcpu)))
3049 			return 1;
3050 		vcpu->arch.msr_platform_info = data;
3051 		break;
3052 	case MSR_MISC_FEATURES_ENABLES:
3053 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3054 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3055 		     !supports_cpuid_fault(vcpu)))
3056 			return 1;
3057 		vcpu->arch.msr_misc_features_enables = data;
3058 		break;
3059 	default:
3060 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3061 			return xen_hvm_config(vcpu, data);
3062 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3063 			return kvm_pmu_set_msr(vcpu, msr_info);
3064 		if (!ignore_msrs) {
3065 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
3066 				    msr, data);
3067 			return 1;
3068 		} else {
3069 			if (report_ignored_msrs)
3070 				vcpu_unimpl(vcpu,
3071 					"ignored wrmsr: 0x%x data 0x%llx\n",
3072 					msr, data);
3073 			break;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3079 
3080 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3081 {
3082 	u64 data;
3083 	u64 mcg_cap = vcpu->arch.mcg_cap;
3084 	unsigned bank_num = mcg_cap & 0xff;
3085 
3086 	switch (msr) {
3087 	case MSR_IA32_P5_MC_ADDR:
3088 	case MSR_IA32_P5_MC_TYPE:
3089 		data = 0;
3090 		break;
3091 	case MSR_IA32_MCG_CAP:
3092 		data = vcpu->arch.mcg_cap;
3093 		break;
3094 	case MSR_IA32_MCG_CTL:
3095 		if (!(mcg_cap & MCG_CTL_P) && !host)
3096 			return 1;
3097 		data = vcpu->arch.mcg_ctl;
3098 		break;
3099 	case MSR_IA32_MCG_STATUS:
3100 		data = vcpu->arch.mcg_status;
3101 		break;
3102 	default:
3103 		if (msr >= MSR_IA32_MC0_CTL &&
3104 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3105 			u32 offset = array_index_nospec(
3106 				msr - MSR_IA32_MC0_CTL,
3107 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3108 
3109 			data = vcpu->arch.mce_banks[offset];
3110 			break;
3111 		}
3112 		return 1;
3113 	}
3114 	*pdata = data;
3115 	return 0;
3116 }
3117 
3118 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3119 {
3120 	switch (msr_info->index) {
3121 	case MSR_IA32_PLATFORM_ID:
3122 	case MSR_IA32_EBL_CR_POWERON:
3123 	case MSR_IA32_DEBUGCTLMSR:
3124 	case MSR_IA32_LASTBRANCHFROMIP:
3125 	case MSR_IA32_LASTBRANCHTOIP:
3126 	case MSR_IA32_LASTINTFROMIP:
3127 	case MSR_IA32_LASTINTTOIP:
3128 	case MSR_K8_SYSCFG:
3129 	case MSR_K8_TSEG_ADDR:
3130 	case MSR_K8_TSEG_MASK:
3131 	case MSR_VM_HSAVE_PA:
3132 	case MSR_K8_INT_PENDING_MSG:
3133 	case MSR_AMD64_NB_CFG:
3134 	case MSR_FAM10H_MMIO_CONF_BASE:
3135 	case MSR_AMD64_BU_CFG2:
3136 	case MSR_IA32_PERF_CTL:
3137 	case MSR_AMD64_DC_CFG:
3138 	case MSR_F15H_EX_CFG:
3139 	/*
3140 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3141 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3142 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3143 	 * so for existing CPU-specific MSRs.
3144 	 */
3145 	case MSR_RAPL_POWER_UNIT:
3146 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3147 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3148 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3149 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3150 		msr_info->data = 0;
3151 		break;
3152 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3153 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3154 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3155 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3156 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3157 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3158 			return kvm_pmu_get_msr(vcpu, msr_info);
3159 		msr_info->data = 0;
3160 		break;
3161 	case MSR_IA32_UCODE_REV:
3162 		msr_info->data = vcpu->arch.microcode_version;
3163 		break;
3164 	case MSR_IA32_ARCH_CAPABILITIES:
3165 		if (!msr_info->host_initiated &&
3166 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3167 			return 1;
3168 		msr_info->data = vcpu->arch.arch_capabilities;
3169 		break;
3170 	case MSR_IA32_POWER_CTL:
3171 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3172 		break;
3173 	case MSR_IA32_TSC:
3174 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3175 		break;
3176 	case MSR_MTRRcap:
3177 	case 0x200 ... 0x2ff:
3178 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3179 	case 0xcd: /* fsb frequency */
3180 		msr_info->data = 3;
3181 		break;
3182 		/*
3183 		 * MSR_EBC_FREQUENCY_ID
3184 		 * Conservative value valid for even the basic CPU models.
3185 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3186 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3187 		 * and 266MHz for model 3, or 4. Set Core Clock
3188 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3189 		 * 31:24) even though these are only valid for CPU
3190 		 * models > 2, however guests may end up dividing or
3191 		 * multiplying by zero otherwise.
3192 		 */
3193 	case MSR_EBC_FREQUENCY_ID:
3194 		msr_info->data = 1 << 24;
3195 		break;
3196 	case MSR_IA32_APICBASE:
3197 		msr_info->data = kvm_get_apic_base(vcpu);
3198 		break;
3199 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3200 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3201 	case MSR_IA32_TSCDEADLINE:
3202 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3203 		break;
3204 	case MSR_IA32_TSC_ADJUST:
3205 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3206 		break;
3207 	case MSR_IA32_MISC_ENABLE:
3208 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3209 		break;
3210 	case MSR_IA32_SMBASE:
3211 		if (!msr_info->host_initiated)
3212 			return 1;
3213 		msr_info->data = vcpu->arch.smbase;
3214 		break;
3215 	case MSR_SMI_COUNT:
3216 		msr_info->data = vcpu->arch.smi_count;
3217 		break;
3218 	case MSR_IA32_PERF_STATUS:
3219 		/* TSC increment by tick */
3220 		msr_info->data = 1000ULL;
3221 		/* CPU multiplier */
3222 		msr_info->data |= (((uint64_t)4ULL) << 40);
3223 		break;
3224 	case MSR_EFER:
3225 		msr_info->data = vcpu->arch.efer;
3226 		break;
3227 	case MSR_KVM_WALL_CLOCK:
3228 	case MSR_KVM_WALL_CLOCK_NEW:
3229 		msr_info->data = vcpu->kvm->arch.wall_clock;
3230 		break;
3231 	case MSR_KVM_SYSTEM_TIME:
3232 	case MSR_KVM_SYSTEM_TIME_NEW:
3233 		msr_info->data = vcpu->arch.time;
3234 		break;
3235 	case MSR_KVM_ASYNC_PF_EN:
3236 		msr_info->data = vcpu->arch.apf.msr_en_val;
3237 		break;
3238 	case MSR_KVM_ASYNC_PF_INT:
3239 		msr_info->data = vcpu->arch.apf.msr_int_val;
3240 		break;
3241 	case MSR_KVM_ASYNC_PF_ACK:
3242 		msr_info->data = 0;
3243 		break;
3244 	case MSR_KVM_STEAL_TIME:
3245 		msr_info->data = vcpu->arch.st.msr_val;
3246 		break;
3247 	case MSR_KVM_PV_EOI_EN:
3248 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3249 		break;
3250 	case MSR_KVM_POLL_CONTROL:
3251 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3252 		break;
3253 	case MSR_IA32_P5_MC_ADDR:
3254 	case MSR_IA32_P5_MC_TYPE:
3255 	case MSR_IA32_MCG_CAP:
3256 	case MSR_IA32_MCG_CTL:
3257 	case MSR_IA32_MCG_STATUS:
3258 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3259 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3260 				   msr_info->host_initiated);
3261 	case MSR_IA32_XSS:
3262 		if (!msr_info->host_initiated &&
3263 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3264 			return 1;
3265 		msr_info->data = vcpu->arch.ia32_xss;
3266 		break;
3267 	case MSR_K7_CLK_CTL:
3268 		/*
3269 		 * Provide expected ramp-up count for K7. All other
3270 		 * are set to zero, indicating minimum divisors for
3271 		 * every field.
3272 		 *
3273 		 * This prevents guest kernels on AMD host with CPU
3274 		 * type 6, model 8 and higher from exploding due to
3275 		 * the rdmsr failing.
3276 		 */
3277 		msr_info->data = 0x20000000;
3278 		break;
3279 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3280 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3281 	case HV_X64_MSR_SYNDBG_OPTIONS:
3282 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3283 	case HV_X64_MSR_CRASH_CTL:
3284 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3285 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3286 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3287 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3288 		return kvm_hv_get_msr_common(vcpu,
3289 					     msr_info->index, &msr_info->data,
3290 					     msr_info->host_initiated);
3291 	case MSR_IA32_BBL_CR_CTL3:
3292 		/* This legacy MSR exists but isn't fully documented in current
3293 		 * silicon.  It is however accessed by winxp in very narrow
3294 		 * scenarios where it sets bit #19, itself documented as
3295 		 * a "reserved" bit.  Best effort attempt to source coherent
3296 		 * read data here should the balance of the register be
3297 		 * interpreted by the guest:
3298 		 *
3299 		 * L2 cache control register 3: 64GB range, 256KB size,
3300 		 * enabled, latency 0x1, configured
3301 		 */
3302 		msr_info->data = 0xbe702111;
3303 		break;
3304 	case MSR_AMD64_OSVW_ID_LENGTH:
3305 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3306 			return 1;
3307 		msr_info->data = vcpu->arch.osvw.length;
3308 		break;
3309 	case MSR_AMD64_OSVW_STATUS:
3310 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3311 			return 1;
3312 		msr_info->data = vcpu->arch.osvw.status;
3313 		break;
3314 	case MSR_PLATFORM_INFO:
3315 		if (!msr_info->host_initiated &&
3316 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3317 			return 1;
3318 		msr_info->data = vcpu->arch.msr_platform_info;
3319 		break;
3320 	case MSR_MISC_FEATURES_ENABLES:
3321 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3322 		break;
3323 	case MSR_K7_HWCR:
3324 		msr_info->data = vcpu->arch.msr_hwcr;
3325 		break;
3326 	default:
3327 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3328 			return kvm_pmu_get_msr(vcpu, msr_info);
3329 		if (!ignore_msrs) {
3330 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3331 					       msr_info->index);
3332 			return 1;
3333 		} else {
3334 			if (report_ignored_msrs)
3335 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3336 					msr_info->index);
3337 			msr_info->data = 0;
3338 		}
3339 		break;
3340 	}
3341 	return 0;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3344 
3345 /*
3346  * Read or write a bunch of msrs. All parameters are kernel addresses.
3347  *
3348  * @return number of msrs set successfully.
3349  */
3350 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3351 		    struct kvm_msr_entry *entries,
3352 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3353 				  unsigned index, u64 *data))
3354 {
3355 	int i;
3356 
3357 	for (i = 0; i < msrs->nmsrs; ++i)
3358 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3359 			break;
3360 
3361 	return i;
3362 }
3363 
3364 /*
3365  * Read or write a bunch of msrs. Parameters are user addresses.
3366  *
3367  * @return number of msrs set successfully.
3368  */
3369 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3370 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3371 				unsigned index, u64 *data),
3372 		  int writeback)
3373 {
3374 	struct kvm_msrs msrs;
3375 	struct kvm_msr_entry *entries;
3376 	int r, n;
3377 	unsigned size;
3378 
3379 	r = -EFAULT;
3380 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3381 		goto out;
3382 
3383 	r = -E2BIG;
3384 	if (msrs.nmsrs >= MAX_IO_MSRS)
3385 		goto out;
3386 
3387 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3388 	entries = memdup_user(user_msrs->entries, size);
3389 	if (IS_ERR(entries)) {
3390 		r = PTR_ERR(entries);
3391 		goto out;
3392 	}
3393 
3394 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3395 	if (r < 0)
3396 		goto out_free;
3397 
3398 	r = -EFAULT;
3399 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3400 		goto out_free;
3401 
3402 	r = n;
3403 
3404 out_free:
3405 	kfree(entries);
3406 out:
3407 	return r;
3408 }
3409 
3410 static inline bool kvm_can_mwait_in_guest(void)
3411 {
3412 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3413 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3414 		boot_cpu_has(X86_FEATURE_ARAT);
3415 }
3416 
3417 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3418 {
3419 	int r = 0;
3420 
3421 	switch (ext) {
3422 	case KVM_CAP_IRQCHIP:
3423 	case KVM_CAP_HLT:
3424 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3425 	case KVM_CAP_SET_TSS_ADDR:
3426 	case KVM_CAP_EXT_CPUID:
3427 	case KVM_CAP_EXT_EMUL_CPUID:
3428 	case KVM_CAP_CLOCKSOURCE:
3429 	case KVM_CAP_PIT:
3430 	case KVM_CAP_NOP_IO_DELAY:
3431 	case KVM_CAP_MP_STATE:
3432 	case KVM_CAP_SYNC_MMU:
3433 	case KVM_CAP_USER_NMI:
3434 	case KVM_CAP_REINJECT_CONTROL:
3435 	case KVM_CAP_IRQ_INJECT_STATUS:
3436 	case KVM_CAP_IOEVENTFD:
3437 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3438 	case KVM_CAP_PIT2:
3439 	case KVM_CAP_PIT_STATE2:
3440 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3441 	case KVM_CAP_XEN_HVM:
3442 	case KVM_CAP_VCPU_EVENTS:
3443 	case KVM_CAP_HYPERV:
3444 	case KVM_CAP_HYPERV_VAPIC:
3445 	case KVM_CAP_HYPERV_SPIN:
3446 	case KVM_CAP_HYPERV_SYNIC:
3447 	case KVM_CAP_HYPERV_SYNIC2:
3448 	case KVM_CAP_HYPERV_VP_INDEX:
3449 	case KVM_CAP_HYPERV_EVENTFD:
3450 	case KVM_CAP_HYPERV_TLBFLUSH:
3451 	case KVM_CAP_HYPERV_SEND_IPI:
3452 	case KVM_CAP_HYPERV_CPUID:
3453 	case KVM_CAP_PCI_SEGMENT:
3454 	case KVM_CAP_DEBUGREGS:
3455 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3456 	case KVM_CAP_XSAVE:
3457 	case KVM_CAP_ASYNC_PF:
3458 	case KVM_CAP_ASYNC_PF_INT:
3459 	case KVM_CAP_GET_TSC_KHZ:
3460 	case KVM_CAP_KVMCLOCK_CTRL:
3461 	case KVM_CAP_READONLY_MEM:
3462 	case KVM_CAP_HYPERV_TIME:
3463 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3464 	case KVM_CAP_TSC_DEADLINE_TIMER:
3465 	case KVM_CAP_DISABLE_QUIRKS:
3466 	case KVM_CAP_SET_BOOT_CPU_ID:
3467  	case KVM_CAP_SPLIT_IRQCHIP:
3468 	case KVM_CAP_IMMEDIATE_EXIT:
3469 	case KVM_CAP_PMU_EVENT_FILTER:
3470 	case KVM_CAP_GET_MSR_FEATURES:
3471 	case KVM_CAP_MSR_PLATFORM_INFO:
3472 	case KVM_CAP_EXCEPTION_PAYLOAD:
3473 	case KVM_CAP_SET_GUEST_DEBUG:
3474 		r = 1;
3475 		break;
3476 	case KVM_CAP_SYNC_REGS:
3477 		r = KVM_SYNC_X86_VALID_FIELDS;
3478 		break;
3479 	case KVM_CAP_ADJUST_CLOCK:
3480 		r = KVM_CLOCK_TSC_STABLE;
3481 		break;
3482 	case KVM_CAP_X86_DISABLE_EXITS:
3483 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3484 		      KVM_X86_DISABLE_EXITS_CSTATE;
3485 		if(kvm_can_mwait_in_guest())
3486 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3487 		break;
3488 	case KVM_CAP_X86_SMM:
3489 		/* SMBASE is usually relocated above 1M on modern chipsets,
3490 		 * and SMM handlers might indeed rely on 4G segment limits,
3491 		 * so do not report SMM to be available if real mode is
3492 		 * emulated via vm86 mode.  Still, do not go to great lengths
3493 		 * to avoid userspace's usage of the feature, because it is a
3494 		 * fringe case that is not enabled except via specific settings
3495 		 * of the module parameters.
3496 		 */
3497 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3498 		break;
3499 	case KVM_CAP_VAPIC:
3500 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3501 		break;
3502 	case KVM_CAP_NR_VCPUS:
3503 		r = KVM_SOFT_MAX_VCPUS;
3504 		break;
3505 	case KVM_CAP_MAX_VCPUS:
3506 		r = KVM_MAX_VCPUS;
3507 		break;
3508 	case KVM_CAP_MAX_VCPU_ID:
3509 		r = KVM_MAX_VCPU_ID;
3510 		break;
3511 	case KVM_CAP_PV_MMU:	/* obsolete */
3512 		r = 0;
3513 		break;
3514 	case KVM_CAP_MCE:
3515 		r = KVM_MAX_MCE_BANKS;
3516 		break;
3517 	case KVM_CAP_XCRS:
3518 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3519 		break;
3520 	case KVM_CAP_TSC_CONTROL:
3521 		r = kvm_has_tsc_control;
3522 		break;
3523 	case KVM_CAP_X2APIC_API:
3524 		r = KVM_X2APIC_API_VALID_FLAGS;
3525 		break;
3526 	case KVM_CAP_NESTED_STATE:
3527 		r = kvm_x86_ops.nested_ops->get_state ?
3528 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3529 		break;
3530 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3531 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3532 		break;
3533 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3534 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3535 		break;
3536 	default:
3537 		break;
3538 	}
3539 	return r;
3540 
3541 }
3542 
3543 long kvm_arch_dev_ioctl(struct file *filp,
3544 			unsigned int ioctl, unsigned long arg)
3545 {
3546 	void __user *argp = (void __user *)arg;
3547 	long r;
3548 
3549 	switch (ioctl) {
3550 	case KVM_GET_MSR_INDEX_LIST: {
3551 		struct kvm_msr_list __user *user_msr_list = argp;
3552 		struct kvm_msr_list msr_list;
3553 		unsigned n;
3554 
3555 		r = -EFAULT;
3556 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3557 			goto out;
3558 		n = msr_list.nmsrs;
3559 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3560 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3561 			goto out;
3562 		r = -E2BIG;
3563 		if (n < msr_list.nmsrs)
3564 			goto out;
3565 		r = -EFAULT;
3566 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3567 				 num_msrs_to_save * sizeof(u32)))
3568 			goto out;
3569 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3570 				 &emulated_msrs,
3571 				 num_emulated_msrs * sizeof(u32)))
3572 			goto out;
3573 		r = 0;
3574 		break;
3575 	}
3576 	case KVM_GET_SUPPORTED_CPUID:
3577 	case KVM_GET_EMULATED_CPUID: {
3578 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3579 		struct kvm_cpuid2 cpuid;
3580 
3581 		r = -EFAULT;
3582 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3583 			goto out;
3584 
3585 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3586 					    ioctl);
3587 		if (r)
3588 			goto out;
3589 
3590 		r = -EFAULT;
3591 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3592 			goto out;
3593 		r = 0;
3594 		break;
3595 	}
3596 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3597 		r = -EFAULT;
3598 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3599 				 sizeof(kvm_mce_cap_supported)))
3600 			goto out;
3601 		r = 0;
3602 		break;
3603 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3604 		struct kvm_msr_list __user *user_msr_list = argp;
3605 		struct kvm_msr_list msr_list;
3606 		unsigned int n;
3607 
3608 		r = -EFAULT;
3609 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3610 			goto out;
3611 		n = msr_list.nmsrs;
3612 		msr_list.nmsrs = num_msr_based_features;
3613 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3614 			goto out;
3615 		r = -E2BIG;
3616 		if (n < msr_list.nmsrs)
3617 			goto out;
3618 		r = -EFAULT;
3619 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3620 				 num_msr_based_features * sizeof(u32)))
3621 			goto out;
3622 		r = 0;
3623 		break;
3624 	}
3625 	case KVM_GET_MSRS:
3626 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3627 		break;
3628 	default:
3629 		r = -EINVAL;
3630 		break;
3631 	}
3632 out:
3633 	return r;
3634 }
3635 
3636 static void wbinvd_ipi(void *garbage)
3637 {
3638 	wbinvd();
3639 }
3640 
3641 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3642 {
3643 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3644 }
3645 
3646 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3647 {
3648 	/* Address WBINVD may be executed by guest */
3649 	if (need_emulate_wbinvd(vcpu)) {
3650 		if (kvm_x86_ops.has_wbinvd_exit())
3651 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3652 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3653 			smp_call_function_single(vcpu->cpu,
3654 					wbinvd_ipi, NULL, 1);
3655 	}
3656 
3657 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3658 
3659 	/* Save host pkru register if supported */
3660 	vcpu->arch.host_pkru = read_pkru();
3661 
3662 	/* Apply any externally detected TSC adjustments (due to suspend) */
3663 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3664 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3665 		vcpu->arch.tsc_offset_adjustment = 0;
3666 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3667 	}
3668 
3669 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3670 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3671 				rdtsc() - vcpu->arch.last_host_tsc;
3672 		if (tsc_delta < 0)
3673 			mark_tsc_unstable("KVM discovered backwards TSC");
3674 
3675 		if (kvm_check_tsc_unstable()) {
3676 			u64 offset = kvm_compute_tsc_offset(vcpu,
3677 						vcpu->arch.last_guest_tsc);
3678 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3679 			vcpu->arch.tsc_catchup = 1;
3680 		}
3681 
3682 		if (kvm_lapic_hv_timer_in_use(vcpu))
3683 			kvm_lapic_restart_hv_timer(vcpu);
3684 
3685 		/*
3686 		 * On a host with synchronized TSC, there is no need to update
3687 		 * kvmclock on vcpu->cpu migration
3688 		 */
3689 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3690 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3691 		if (vcpu->cpu != cpu)
3692 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3693 		vcpu->cpu = cpu;
3694 	}
3695 
3696 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3697 }
3698 
3699 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3700 {
3701 	struct kvm_host_map map;
3702 	struct kvm_steal_time *st;
3703 
3704 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3705 		return;
3706 
3707 	if (vcpu->arch.st.preempted)
3708 		return;
3709 
3710 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3711 			&vcpu->arch.st.cache, true))
3712 		return;
3713 
3714 	st = map.hva +
3715 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3716 
3717 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3718 
3719 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3720 }
3721 
3722 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3723 {
3724 	int idx;
3725 
3726 	if (vcpu->preempted)
3727 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3728 
3729 	/*
3730 	 * Disable page faults because we're in atomic context here.
3731 	 * kvm_write_guest_offset_cached() would call might_fault()
3732 	 * that relies on pagefault_disable() to tell if there's a
3733 	 * bug. NOTE: the write to guest memory may not go through if
3734 	 * during postcopy live migration or if there's heavy guest
3735 	 * paging.
3736 	 */
3737 	pagefault_disable();
3738 	/*
3739 	 * kvm_memslots() will be called by
3740 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3741 	 */
3742 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 	kvm_steal_time_set_preempted(vcpu);
3744 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3745 	pagefault_enable();
3746 	kvm_x86_ops.vcpu_put(vcpu);
3747 	vcpu->arch.last_host_tsc = rdtsc();
3748 	/*
3749 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3750 	 * on every vmexit, but if not, we might have a stale dr6 from the
3751 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3752 	 */
3753 	set_debugreg(0, 6);
3754 }
3755 
3756 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3757 				    struct kvm_lapic_state *s)
3758 {
3759 	if (vcpu->arch.apicv_active)
3760 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3761 
3762 	return kvm_apic_get_state(vcpu, s);
3763 }
3764 
3765 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3766 				    struct kvm_lapic_state *s)
3767 {
3768 	int r;
3769 
3770 	r = kvm_apic_set_state(vcpu, s);
3771 	if (r)
3772 		return r;
3773 	update_cr8_intercept(vcpu);
3774 
3775 	return 0;
3776 }
3777 
3778 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3779 {
3780 	return (!lapic_in_kernel(vcpu) ||
3781 		kvm_apic_accept_pic_intr(vcpu));
3782 }
3783 
3784 /*
3785  * if userspace requested an interrupt window, check that the
3786  * interrupt window is open.
3787  *
3788  * No need to exit to userspace if we already have an interrupt queued.
3789  */
3790 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3791 {
3792 	return kvm_arch_interrupt_allowed(vcpu) &&
3793 		!kvm_cpu_has_interrupt(vcpu) &&
3794 		!kvm_event_needs_reinjection(vcpu) &&
3795 		kvm_cpu_accept_dm_intr(vcpu);
3796 }
3797 
3798 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3799 				    struct kvm_interrupt *irq)
3800 {
3801 	if (irq->irq >= KVM_NR_INTERRUPTS)
3802 		return -EINVAL;
3803 
3804 	if (!irqchip_in_kernel(vcpu->kvm)) {
3805 		kvm_queue_interrupt(vcpu, irq->irq, false);
3806 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3807 		return 0;
3808 	}
3809 
3810 	/*
3811 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3812 	 * fail for in-kernel 8259.
3813 	 */
3814 	if (pic_in_kernel(vcpu->kvm))
3815 		return -ENXIO;
3816 
3817 	if (vcpu->arch.pending_external_vector != -1)
3818 		return -EEXIST;
3819 
3820 	vcpu->arch.pending_external_vector = irq->irq;
3821 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3822 	return 0;
3823 }
3824 
3825 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3826 {
3827 	kvm_inject_nmi(vcpu);
3828 
3829 	return 0;
3830 }
3831 
3832 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3833 {
3834 	kvm_make_request(KVM_REQ_SMI, vcpu);
3835 
3836 	return 0;
3837 }
3838 
3839 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3840 					   struct kvm_tpr_access_ctl *tac)
3841 {
3842 	if (tac->flags)
3843 		return -EINVAL;
3844 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3845 	return 0;
3846 }
3847 
3848 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3849 					u64 mcg_cap)
3850 {
3851 	int r;
3852 	unsigned bank_num = mcg_cap & 0xff, bank;
3853 
3854 	r = -EINVAL;
3855 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3856 		goto out;
3857 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3858 		goto out;
3859 	r = 0;
3860 	vcpu->arch.mcg_cap = mcg_cap;
3861 	/* Init IA32_MCG_CTL to all 1s */
3862 	if (mcg_cap & MCG_CTL_P)
3863 		vcpu->arch.mcg_ctl = ~(u64)0;
3864 	/* Init IA32_MCi_CTL to all 1s */
3865 	for (bank = 0; bank < bank_num; bank++)
3866 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3867 
3868 	kvm_x86_ops.setup_mce(vcpu);
3869 out:
3870 	return r;
3871 }
3872 
3873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3874 				      struct kvm_x86_mce *mce)
3875 {
3876 	u64 mcg_cap = vcpu->arch.mcg_cap;
3877 	unsigned bank_num = mcg_cap & 0xff;
3878 	u64 *banks = vcpu->arch.mce_banks;
3879 
3880 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3881 		return -EINVAL;
3882 	/*
3883 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3884 	 * reporting is disabled
3885 	 */
3886 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3887 	    vcpu->arch.mcg_ctl != ~(u64)0)
3888 		return 0;
3889 	banks += 4 * mce->bank;
3890 	/*
3891 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3892 	 * reporting is disabled for the bank
3893 	 */
3894 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3895 		return 0;
3896 	if (mce->status & MCI_STATUS_UC) {
3897 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3898 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3899 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3900 			return 0;
3901 		}
3902 		if (banks[1] & MCI_STATUS_VAL)
3903 			mce->status |= MCI_STATUS_OVER;
3904 		banks[2] = mce->addr;
3905 		banks[3] = mce->misc;
3906 		vcpu->arch.mcg_status = mce->mcg_status;
3907 		banks[1] = mce->status;
3908 		kvm_queue_exception(vcpu, MC_VECTOR);
3909 	} else if (!(banks[1] & MCI_STATUS_VAL)
3910 		   || !(banks[1] & MCI_STATUS_UC)) {
3911 		if (banks[1] & MCI_STATUS_VAL)
3912 			mce->status |= MCI_STATUS_OVER;
3913 		banks[2] = mce->addr;
3914 		banks[3] = mce->misc;
3915 		banks[1] = mce->status;
3916 	} else
3917 		banks[1] |= MCI_STATUS_OVER;
3918 	return 0;
3919 }
3920 
3921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3922 					       struct kvm_vcpu_events *events)
3923 {
3924 	process_nmi(vcpu);
3925 
3926 	/*
3927 	 * In guest mode, payload delivery should be deferred,
3928 	 * so that the L1 hypervisor can intercept #PF before
3929 	 * CR2 is modified (or intercept #DB before DR6 is
3930 	 * modified under nVMX). Unless the per-VM capability,
3931 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3932 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3933 	 * opportunistically defer the exception payload, deliver it if the
3934 	 * capability hasn't been requested before processing a
3935 	 * KVM_GET_VCPU_EVENTS.
3936 	 */
3937 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3938 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3939 		kvm_deliver_exception_payload(vcpu);
3940 
3941 	/*
3942 	 * The API doesn't provide the instruction length for software
3943 	 * exceptions, so don't report them. As long as the guest RIP
3944 	 * isn't advanced, we should expect to encounter the exception
3945 	 * again.
3946 	 */
3947 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3948 		events->exception.injected = 0;
3949 		events->exception.pending = 0;
3950 	} else {
3951 		events->exception.injected = vcpu->arch.exception.injected;
3952 		events->exception.pending = vcpu->arch.exception.pending;
3953 		/*
3954 		 * For ABI compatibility, deliberately conflate
3955 		 * pending and injected exceptions when
3956 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3957 		 */
3958 		if (!vcpu->kvm->arch.exception_payload_enabled)
3959 			events->exception.injected |=
3960 				vcpu->arch.exception.pending;
3961 	}
3962 	events->exception.nr = vcpu->arch.exception.nr;
3963 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3964 	events->exception.error_code = vcpu->arch.exception.error_code;
3965 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3966 	events->exception_payload = vcpu->arch.exception.payload;
3967 
3968 	events->interrupt.injected =
3969 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3970 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3971 	events->interrupt.soft = 0;
3972 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3973 
3974 	events->nmi.injected = vcpu->arch.nmi_injected;
3975 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3976 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3977 	events->nmi.pad = 0;
3978 
3979 	events->sipi_vector = 0; /* never valid when reporting to user space */
3980 
3981 	events->smi.smm = is_smm(vcpu);
3982 	events->smi.pending = vcpu->arch.smi_pending;
3983 	events->smi.smm_inside_nmi =
3984 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3985 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3986 
3987 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3988 			 | KVM_VCPUEVENT_VALID_SHADOW
3989 			 | KVM_VCPUEVENT_VALID_SMM);
3990 	if (vcpu->kvm->arch.exception_payload_enabled)
3991 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3992 
3993 	memset(&events->reserved, 0, sizeof(events->reserved));
3994 }
3995 
3996 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3997 
3998 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3999 					      struct kvm_vcpu_events *events)
4000 {
4001 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4002 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4003 			      | KVM_VCPUEVENT_VALID_SHADOW
4004 			      | KVM_VCPUEVENT_VALID_SMM
4005 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4006 		return -EINVAL;
4007 
4008 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4009 		if (!vcpu->kvm->arch.exception_payload_enabled)
4010 			return -EINVAL;
4011 		if (events->exception.pending)
4012 			events->exception.injected = 0;
4013 		else
4014 			events->exception_has_payload = 0;
4015 	} else {
4016 		events->exception.pending = 0;
4017 		events->exception_has_payload = 0;
4018 	}
4019 
4020 	if ((events->exception.injected || events->exception.pending) &&
4021 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4022 		return -EINVAL;
4023 
4024 	/* INITs are latched while in SMM */
4025 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4026 	    (events->smi.smm || events->smi.pending) &&
4027 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4028 		return -EINVAL;
4029 
4030 	process_nmi(vcpu);
4031 	vcpu->arch.exception.injected = events->exception.injected;
4032 	vcpu->arch.exception.pending = events->exception.pending;
4033 	vcpu->arch.exception.nr = events->exception.nr;
4034 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4035 	vcpu->arch.exception.error_code = events->exception.error_code;
4036 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4037 	vcpu->arch.exception.payload = events->exception_payload;
4038 
4039 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4040 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4041 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4042 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4043 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4044 						  events->interrupt.shadow);
4045 
4046 	vcpu->arch.nmi_injected = events->nmi.injected;
4047 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4048 		vcpu->arch.nmi_pending = events->nmi.pending;
4049 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4050 
4051 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4052 	    lapic_in_kernel(vcpu))
4053 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4054 
4055 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4056 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4057 			if (events->smi.smm)
4058 				vcpu->arch.hflags |= HF_SMM_MASK;
4059 			else
4060 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4061 			kvm_smm_changed(vcpu);
4062 		}
4063 
4064 		vcpu->arch.smi_pending = events->smi.pending;
4065 
4066 		if (events->smi.smm) {
4067 			if (events->smi.smm_inside_nmi)
4068 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4069 			else
4070 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4071 		}
4072 
4073 		if (lapic_in_kernel(vcpu)) {
4074 			if (events->smi.latched_init)
4075 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4076 			else
4077 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4078 		}
4079 	}
4080 
4081 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4082 
4083 	return 0;
4084 }
4085 
4086 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4087 					     struct kvm_debugregs *dbgregs)
4088 {
4089 	unsigned long val;
4090 
4091 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4092 	kvm_get_dr(vcpu, 6, &val);
4093 	dbgregs->dr6 = val;
4094 	dbgregs->dr7 = vcpu->arch.dr7;
4095 	dbgregs->flags = 0;
4096 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4097 }
4098 
4099 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4100 					    struct kvm_debugregs *dbgregs)
4101 {
4102 	if (dbgregs->flags)
4103 		return -EINVAL;
4104 
4105 	if (dbgregs->dr6 & ~0xffffffffull)
4106 		return -EINVAL;
4107 	if (dbgregs->dr7 & ~0xffffffffull)
4108 		return -EINVAL;
4109 
4110 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4111 	kvm_update_dr0123(vcpu);
4112 	vcpu->arch.dr6 = dbgregs->dr6;
4113 	vcpu->arch.dr7 = dbgregs->dr7;
4114 	kvm_update_dr7(vcpu);
4115 
4116 	return 0;
4117 }
4118 
4119 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4120 
4121 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4122 {
4123 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4124 	u64 xstate_bv = xsave->header.xfeatures;
4125 	u64 valid;
4126 
4127 	/*
4128 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4129 	 * leaves 0 and 1 in the loop below.
4130 	 */
4131 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4132 
4133 	/* Set XSTATE_BV */
4134 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4135 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4136 
4137 	/*
4138 	 * Copy each region from the possibly compacted offset to the
4139 	 * non-compacted offset.
4140 	 */
4141 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4142 	while (valid) {
4143 		u64 xfeature_mask = valid & -valid;
4144 		int xfeature_nr = fls64(xfeature_mask) - 1;
4145 		void *src = get_xsave_addr(xsave, xfeature_nr);
4146 
4147 		if (src) {
4148 			u32 size, offset, ecx, edx;
4149 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4150 				    &size, &offset, &ecx, &edx);
4151 			if (xfeature_nr == XFEATURE_PKRU)
4152 				memcpy(dest + offset, &vcpu->arch.pkru,
4153 				       sizeof(vcpu->arch.pkru));
4154 			else
4155 				memcpy(dest + offset, src, size);
4156 
4157 		}
4158 
4159 		valid -= xfeature_mask;
4160 	}
4161 }
4162 
4163 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4164 {
4165 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4166 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4167 	u64 valid;
4168 
4169 	/*
4170 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4171 	 * leaves 0 and 1 in the loop below.
4172 	 */
4173 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4174 
4175 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4176 	xsave->header.xfeatures = xstate_bv;
4177 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4178 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4179 
4180 	/*
4181 	 * Copy each region from the non-compacted offset to the
4182 	 * possibly compacted offset.
4183 	 */
4184 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4185 	while (valid) {
4186 		u64 xfeature_mask = valid & -valid;
4187 		int xfeature_nr = fls64(xfeature_mask) - 1;
4188 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4189 
4190 		if (dest) {
4191 			u32 size, offset, ecx, edx;
4192 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4193 				    &size, &offset, &ecx, &edx);
4194 			if (xfeature_nr == XFEATURE_PKRU)
4195 				memcpy(&vcpu->arch.pkru, src + offset,
4196 				       sizeof(vcpu->arch.pkru));
4197 			else
4198 				memcpy(dest, src + offset, size);
4199 		}
4200 
4201 		valid -= xfeature_mask;
4202 	}
4203 }
4204 
4205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4206 					 struct kvm_xsave *guest_xsave)
4207 {
4208 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4209 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4210 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4211 	} else {
4212 		memcpy(guest_xsave->region,
4213 			&vcpu->arch.guest_fpu->state.fxsave,
4214 			sizeof(struct fxregs_state));
4215 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4216 			XFEATURE_MASK_FPSSE;
4217 	}
4218 }
4219 
4220 #define XSAVE_MXCSR_OFFSET 24
4221 
4222 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4223 					struct kvm_xsave *guest_xsave)
4224 {
4225 	u64 xstate_bv =
4226 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4227 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4228 
4229 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4230 		/*
4231 		 * Here we allow setting states that are not present in
4232 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4233 		 * with old userspace.
4234 		 */
4235 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4236 			return -EINVAL;
4237 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4238 	} else {
4239 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4240 			mxcsr & ~mxcsr_feature_mask)
4241 			return -EINVAL;
4242 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4243 			guest_xsave->region, sizeof(struct fxregs_state));
4244 	}
4245 	return 0;
4246 }
4247 
4248 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4249 					struct kvm_xcrs *guest_xcrs)
4250 {
4251 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4252 		guest_xcrs->nr_xcrs = 0;
4253 		return;
4254 	}
4255 
4256 	guest_xcrs->nr_xcrs = 1;
4257 	guest_xcrs->flags = 0;
4258 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4259 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4260 }
4261 
4262 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4263 				       struct kvm_xcrs *guest_xcrs)
4264 {
4265 	int i, r = 0;
4266 
4267 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4268 		return -EINVAL;
4269 
4270 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4271 		return -EINVAL;
4272 
4273 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4274 		/* Only support XCR0 currently */
4275 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4276 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4277 				guest_xcrs->xcrs[i].value);
4278 			break;
4279 		}
4280 	if (r)
4281 		r = -EINVAL;
4282 	return r;
4283 }
4284 
4285 /*
4286  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4287  * stopped by the hypervisor.  This function will be called from the host only.
4288  * EINVAL is returned when the host attempts to set the flag for a guest that
4289  * does not support pv clocks.
4290  */
4291 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4292 {
4293 	if (!vcpu->arch.pv_time_enabled)
4294 		return -EINVAL;
4295 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4296 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4297 	return 0;
4298 }
4299 
4300 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4301 				     struct kvm_enable_cap *cap)
4302 {
4303 	int r;
4304 	uint16_t vmcs_version;
4305 	void __user *user_ptr;
4306 
4307 	if (cap->flags)
4308 		return -EINVAL;
4309 
4310 	switch (cap->cap) {
4311 	case KVM_CAP_HYPERV_SYNIC2:
4312 		if (cap->args[0])
4313 			return -EINVAL;
4314 		/* fall through */
4315 
4316 	case KVM_CAP_HYPERV_SYNIC:
4317 		if (!irqchip_in_kernel(vcpu->kvm))
4318 			return -EINVAL;
4319 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4320 					     KVM_CAP_HYPERV_SYNIC2);
4321 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4322 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4323 			return -ENOTTY;
4324 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4325 		if (!r) {
4326 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4327 			if (copy_to_user(user_ptr, &vmcs_version,
4328 					 sizeof(vmcs_version)))
4329 				r = -EFAULT;
4330 		}
4331 		return r;
4332 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4333 		if (!kvm_x86_ops.enable_direct_tlbflush)
4334 			return -ENOTTY;
4335 
4336 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4337 
4338 	default:
4339 		return -EINVAL;
4340 	}
4341 }
4342 
4343 long kvm_arch_vcpu_ioctl(struct file *filp,
4344 			 unsigned int ioctl, unsigned long arg)
4345 {
4346 	struct kvm_vcpu *vcpu = filp->private_data;
4347 	void __user *argp = (void __user *)arg;
4348 	int r;
4349 	union {
4350 		struct kvm_lapic_state *lapic;
4351 		struct kvm_xsave *xsave;
4352 		struct kvm_xcrs *xcrs;
4353 		void *buffer;
4354 	} u;
4355 
4356 	vcpu_load(vcpu);
4357 
4358 	u.buffer = NULL;
4359 	switch (ioctl) {
4360 	case KVM_GET_LAPIC: {
4361 		r = -EINVAL;
4362 		if (!lapic_in_kernel(vcpu))
4363 			goto out;
4364 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4365 				GFP_KERNEL_ACCOUNT);
4366 
4367 		r = -ENOMEM;
4368 		if (!u.lapic)
4369 			goto out;
4370 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4371 		if (r)
4372 			goto out;
4373 		r = -EFAULT;
4374 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4375 			goto out;
4376 		r = 0;
4377 		break;
4378 	}
4379 	case KVM_SET_LAPIC: {
4380 		r = -EINVAL;
4381 		if (!lapic_in_kernel(vcpu))
4382 			goto out;
4383 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4384 		if (IS_ERR(u.lapic)) {
4385 			r = PTR_ERR(u.lapic);
4386 			goto out_nofree;
4387 		}
4388 
4389 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4390 		break;
4391 	}
4392 	case KVM_INTERRUPT: {
4393 		struct kvm_interrupt irq;
4394 
4395 		r = -EFAULT;
4396 		if (copy_from_user(&irq, argp, sizeof(irq)))
4397 			goto out;
4398 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4399 		break;
4400 	}
4401 	case KVM_NMI: {
4402 		r = kvm_vcpu_ioctl_nmi(vcpu);
4403 		break;
4404 	}
4405 	case KVM_SMI: {
4406 		r = kvm_vcpu_ioctl_smi(vcpu);
4407 		break;
4408 	}
4409 	case KVM_SET_CPUID: {
4410 		struct kvm_cpuid __user *cpuid_arg = argp;
4411 		struct kvm_cpuid cpuid;
4412 
4413 		r = -EFAULT;
4414 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4415 			goto out;
4416 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4417 		break;
4418 	}
4419 	case KVM_SET_CPUID2: {
4420 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4421 		struct kvm_cpuid2 cpuid;
4422 
4423 		r = -EFAULT;
4424 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4425 			goto out;
4426 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4427 					      cpuid_arg->entries);
4428 		break;
4429 	}
4430 	case KVM_GET_CPUID2: {
4431 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4432 		struct kvm_cpuid2 cpuid;
4433 
4434 		r = -EFAULT;
4435 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436 			goto out;
4437 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4438 					      cpuid_arg->entries);
4439 		if (r)
4440 			goto out;
4441 		r = -EFAULT;
4442 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4443 			goto out;
4444 		r = 0;
4445 		break;
4446 	}
4447 	case KVM_GET_MSRS: {
4448 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4449 		r = msr_io(vcpu, argp, do_get_msr, 1);
4450 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4451 		break;
4452 	}
4453 	case KVM_SET_MSRS: {
4454 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4455 		r = msr_io(vcpu, argp, do_set_msr, 0);
4456 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4457 		break;
4458 	}
4459 	case KVM_TPR_ACCESS_REPORTING: {
4460 		struct kvm_tpr_access_ctl tac;
4461 
4462 		r = -EFAULT;
4463 		if (copy_from_user(&tac, argp, sizeof(tac)))
4464 			goto out;
4465 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4466 		if (r)
4467 			goto out;
4468 		r = -EFAULT;
4469 		if (copy_to_user(argp, &tac, sizeof(tac)))
4470 			goto out;
4471 		r = 0;
4472 		break;
4473 	};
4474 	case KVM_SET_VAPIC_ADDR: {
4475 		struct kvm_vapic_addr va;
4476 		int idx;
4477 
4478 		r = -EINVAL;
4479 		if (!lapic_in_kernel(vcpu))
4480 			goto out;
4481 		r = -EFAULT;
4482 		if (copy_from_user(&va, argp, sizeof(va)))
4483 			goto out;
4484 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4485 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4486 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4487 		break;
4488 	}
4489 	case KVM_X86_SETUP_MCE: {
4490 		u64 mcg_cap;
4491 
4492 		r = -EFAULT;
4493 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4494 			goto out;
4495 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4496 		break;
4497 	}
4498 	case KVM_X86_SET_MCE: {
4499 		struct kvm_x86_mce mce;
4500 
4501 		r = -EFAULT;
4502 		if (copy_from_user(&mce, argp, sizeof(mce)))
4503 			goto out;
4504 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4505 		break;
4506 	}
4507 	case KVM_GET_VCPU_EVENTS: {
4508 		struct kvm_vcpu_events events;
4509 
4510 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4511 
4512 		r = -EFAULT;
4513 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4514 			break;
4515 		r = 0;
4516 		break;
4517 	}
4518 	case KVM_SET_VCPU_EVENTS: {
4519 		struct kvm_vcpu_events events;
4520 
4521 		r = -EFAULT;
4522 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4523 			break;
4524 
4525 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4526 		break;
4527 	}
4528 	case KVM_GET_DEBUGREGS: {
4529 		struct kvm_debugregs dbgregs;
4530 
4531 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4532 
4533 		r = -EFAULT;
4534 		if (copy_to_user(argp, &dbgregs,
4535 				 sizeof(struct kvm_debugregs)))
4536 			break;
4537 		r = 0;
4538 		break;
4539 	}
4540 	case KVM_SET_DEBUGREGS: {
4541 		struct kvm_debugregs dbgregs;
4542 
4543 		r = -EFAULT;
4544 		if (copy_from_user(&dbgregs, argp,
4545 				   sizeof(struct kvm_debugregs)))
4546 			break;
4547 
4548 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4549 		break;
4550 	}
4551 	case KVM_GET_XSAVE: {
4552 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4553 		r = -ENOMEM;
4554 		if (!u.xsave)
4555 			break;
4556 
4557 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4558 
4559 		r = -EFAULT;
4560 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4561 			break;
4562 		r = 0;
4563 		break;
4564 	}
4565 	case KVM_SET_XSAVE: {
4566 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4567 		if (IS_ERR(u.xsave)) {
4568 			r = PTR_ERR(u.xsave);
4569 			goto out_nofree;
4570 		}
4571 
4572 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4573 		break;
4574 	}
4575 	case KVM_GET_XCRS: {
4576 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4577 		r = -ENOMEM;
4578 		if (!u.xcrs)
4579 			break;
4580 
4581 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4582 
4583 		r = -EFAULT;
4584 		if (copy_to_user(argp, u.xcrs,
4585 				 sizeof(struct kvm_xcrs)))
4586 			break;
4587 		r = 0;
4588 		break;
4589 	}
4590 	case KVM_SET_XCRS: {
4591 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4592 		if (IS_ERR(u.xcrs)) {
4593 			r = PTR_ERR(u.xcrs);
4594 			goto out_nofree;
4595 		}
4596 
4597 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4598 		break;
4599 	}
4600 	case KVM_SET_TSC_KHZ: {
4601 		u32 user_tsc_khz;
4602 
4603 		r = -EINVAL;
4604 		user_tsc_khz = (u32)arg;
4605 
4606 		if (kvm_has_tsc_control &&
4607 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4608 			goto out;
4609 
4610 		if (user_tsc_khz == 0)
4611 			user_tsc_khz = tsc_khz;
4612 
4613 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4614 			r = 0;
4615 
4616 		goto out;
4617 	}
4618 	case KVM_GET_TSC_KHZ: {
4619 		r = vcpu->arch.virtual_tsc_khz;
4620 		goto out;
4621 	}
4622 	case KVM_KVMCLOCK_CTRL: {
4623 		r = kvm_set_guest_paused(vcpu);
4624 		goto out;
4625 	}
4626 	case KVM_ENABLE_CAP: {
4627 		struct kvm_enable_cap cap;
4628 
4629 		r = -EFAULT;
4630 		if (copy_from_user(&cap, argp, sizeof(cap)))
4631 			goto out;
4632 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4633 		break;
4634 	}
4635 	case KVM_GET_NESTED_STATE: {
4636 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4637 		u32 user_data_size;
4638 
4639 		r = -EINVAL;
4640 		if (!kvm_x86_ops.nested_ops->get_state)
4641 			break;
4642 
4643 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4644 		r = -EFAULT;
4645 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4646 			break;
4647 
4648 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4649 						     user_data_size);
4650 		if (r < 0)
4651 			break;
4652 
4653 		if (r > user_data_size) {
4654 			if (put_user(r, &user_kvm_nested_state->size))
4655 				r = -EFAULT;
4656 			else
4657 				r = -E2BIG;
4658 			break;
4659 		}
4660 
4661 		r = 0;
4662 		break;
4663 	}
4664 	case KVM_SET_NESTED_STATE: {
4665 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4666 		struct kvm_nested_state kvm_state;
4667 		int idx;
4668 
4669 		r = -EINVAL;
4670 		if (!kvm_x86_ops.nested_ops->set_state)
4671 			break;
4672 
4673 		r = -EFAULT;
4674 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4675 			break;
4676 
4677 		r = -EINVAL;
4678 		if (kvm_state.size < sizeof(kvm_state))
4679 			break;
4680 
4681 		if (kvm_state.flags &
4682 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4683 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4684 		      | KVM_STATE_NESTED_GIF_SET))
4685 			break;
4686 
4687 		/* nested_run_pending implies guest_mode.  */
4688 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4689 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4690 			break;
4691 
4692 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4693 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4694 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4695 		break;
4696 	}
4697 	case KVM_GET_SUPPORTED_HV_CPUID: {
4698 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4699 		struct kvm_cpuid2 cpuid;
4700 
4701 		r = -EFAULT;
4702 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4703 			goto out;
4704 
4705 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4706 						cpuid_arg->entries);
4707 		if (r)
4708 			goto out;
4709 
4710 		r = -EFAULT;
4711 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4712 			goto out;
4713 		r = 0;
4714 		break;
4715 	}
4716 	default:
4717 		r = -EINVAL;
4718 	}
4719 out:
4720 	kfree(u.buffer);
4721 out_nofree:
4722 	vcpu_put(vcpu);
4723 	return r;
4724 }
4725 
4726 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4727 {
4728 	return VM_FAULT_SIGBUS;
4729 }
4730 
4731 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4732 {
4733 	int ret;
4734 
4735 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4736 		return -EINVAL;
4737 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4738 	return ret;
4739 }
4740 
4741 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4742 					      u64 ident_addr)
4743 {
4744 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4745 }
4746 
4747 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4748 					 unsigned long kvm_nr_mmu_pages)
4749 {
4750 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4751 		return -EINVAL;
4752 
4753 	mutex_lock(&kvm->slots_lock);
4754 
4755 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4756 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4757 
4758 	mutex_unlock(&kvm->slots_lock);
4759 	return 0;
4760 }
4761 
4762 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4763 {
4764 	return kvm->arch.n_max_mmu_pages;
4765 }
4766 
4767 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4768 {
4769 	struct kvm_pic *pic = kvm->arch.vpic;
4770 	int r;
4771 
4772 	r = 0;
4773 	switch (chip->chip_id) {
4774 	case KVM_IRQCHIP_PIC_MASTER:
4775 		memcpy(&chip->chip.pic, &pic->pics[0],
4776 			sizeof(struct kvm_pic_state));
4777 		break;
4778 	case KVM_IRQCHIP_PIC_SLAVE:
4779 		memcpy(&chip->chip.pic, &pic->pics[1],
4780 			sizeof(struct kvm_pic_state));
4781 		break;
4782 	case KVM_IRQCHIP_IOAPIC:
4783 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4784 		break;
4785 	default:
4786 		r = -EINVAL;
4787 		break;
4788 	}
4789 	return r;
4790 }
4791 
4792 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4793 {
4794 	struct kvm_pic *pic = kvm->arch.vpic;
4795 	int r;
4796 
4797 	r = 0;
4798 	switch (chip->chip_id) {
4799 	case KVM_IRQCHIP_PIC_MASTER:
4800 		spin_lock(&pic->lock);
4801 		memcpy(&pic->pics[0], &chip->chip.pic,
4802 			sizeof(struct kvm_pic_state));
4803 		spin_unlock(&pic->lock);
4804 		break;
4805 	case KVM_IRQCHIP_PIC_SLAVE:
4806 		spin_lock(&pic->lock);
4807 		memcpy(&pic->pics[1], &chip->chip.pic,
4808 			sizeof(struct kvm_pic_state));
4809 		spin_unlock(&pic->lock);
4810 		break;
4811 	case KVM_IRQCHIP_IOAPIC:
4812 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4813 		break;
4814 	default:
4815 		r = -EINVAL;
4816 		break;
4817 	}
4818 	kvm_pic_update_irq(pic);
4819 	return r;
4820 }
4821 
4822 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4823 {
4824 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4825 
4826 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4827 
4828 	mutex_lock(&kps->lock);
4829 	memcpy(ps, &kps->channels, sizeof(*ps));
4830 	mutex_unlock(&kps->lock);
4831 	return 0;
4832 }
4833 
4834 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4835 {
4836 	int i;
4837 	struct kvm_pit *pit = kvm->arch.vpit;
4838 
4839 	mutex_lock(&pit->pit_state.lock);
4840 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4841 	for (i = 0; i < 3; i++)
4842 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4843 	mutex_unlock(&pit->pit_state.lock);
4844 	return 0;
4845 }
4846 
4847 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4848 {
4849 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4850 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4851 		sizeof(ps->channels));
4852 	ps->flags = kvm->arch.vpit->pit_state.flags;
4853 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4854 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4855 	return 0;
4856 }
4857 
4858 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4859 {
4860 	int start = 0;
4861 	int i;
4862 	u32 prev_legacy, cur_legacy;
4863 	struct kvm_pit *pit = kvm->arch.vpit;
4864 
4865 	mutex_lock(&pit->pit_state.lock);
4866 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4867 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4868 	if (!prev_legacy && cur_legacy)
4869 		start = 1;
4870 	memcpy(&pit->pit_state.channels, &ps->channels,
4871 	       sizeof(pit->pit_state.channels));
4872 	pit->pit_state.flags = ps->flags;
4873 	for (i = 0; i < 3; i++)
4874 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4875 				   start && i == 0);
4876 	mutex_unlock(&pit->pit_state.lock);
4877 	return 0;
4878 }
4879 
4880 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4881 				 struct kvm_reinject_control *control)
4882 {
4883 	struct kvm_pit *pit = kvm->arch.vpit;
4884 
4885 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4886 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4887 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4888 	 */
4889 	mutex_lock(&pit->pit_state.lock);
4890 	kvm_pit_set_reinject(pit, control->pit_reinject);
4891 	mutex_unlock(&pit->pit_state.lock);
4892 
4893 	return 0;
4894 }
4895 
4896 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4897 {
4898 	/*
4899 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4900 	 */
4901 	if (kvm_x86_ops.flush_log_dirty)
4902 		kvm_x86_ops.flush_log_dirty(kvm);
4903 }
4904 
4905 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4906 			bool line_status)
4907 {
4908 	if (!irqchip_in_kernel(kvm))
4909 		return -ENXIO;
4910 
4911 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4912 					irq_event->irq, irq_event->level,
4913 					line_status);
4914 	return 0;
4915 }
4916 
4917 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4918 			    struct kvm_enable_cap *cap)
4919 {
4920 	int r;
4921 
4922 	if (cap->flags)
4923 		return -EINVAL;
4924 
4925 	switch (cap->cap) {
4926 	case KVM_CAP_DISABLE_QUIRKS:
4927 		kvm->arch.disabled_quirks = cap->args[0];
4928 		r = 0;
4929 		break;
4930 	case KVM_CAP_SPLIT_IRQCHIP: {
4931 		mutex_lock(&kvm->lock);
4932 		r = -EINVAL;
4933 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4934 			goto split_irqchip_unlock;
4935 		r = -EEXIST;
4936 		if (irqchip_in_kernel(kvm))
4937 			goto split_irqchip_unlock;
4938 		if (kvm->created_vcpus)
4939 			goto split_irqchip_unlock;
4940 		r = kvm_setup_empty_irq_routing(kvm);
4941 		if (r)
4942 			goto split_irqchip_unlock;
4943 		/* Pairs with irqchip_in_kernel. */
4944 		smp_wmb();
4945 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4946 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4947 		r = 0;
4948 split_irqchip_unlock:
4949 		mutex_unlock(&kvm->lock);
4950 		break;
4951 	}
4952 	case KVM_CAP_X2APIC_API:
4953 		r = -EINVAL;
4954 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4955 			break;
4956 
4957 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4958 			kvm->arch.x2apic_format = true;
4959 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4960 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4961 
4962 		r = 0;
4963 		break;
4964 	case KVM_CAP_X86_DISABLE_EXITS:
4965 		r = -EINVAL;
4966 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4967 			break;
4968 
4969 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4970 			kvm_can_mwait_in_guest())
4971 			kvm->arch.mwait_in_guest = true;
4972 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4973 			kvm->arch.hlt_in_guest = true;
4974 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4975 			kvm->arch.pause_in_guest = true;
4976 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4977 			kvm->arch.cstate_in_guest = true;
4978 		r = 0;
4979 		break;
4980 	case KVM_CAP_MSR_PLATFORM_INFO:
4981 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4982 		r = 0;
4983 		break;
4984 	case KVM_CAP_EXCEPTION_PAYLOAD:
4985 		kvm->arch.exception_payload_enabled = cap->args[0];
4986 		r = 0;
4987 		break;
4988 	default:
4989 		r = -EINVAL;
4990 		break;
4991 	}
4992 	return r;
4993 }
4994 
4995 long kvm_arch_vm_ioctl(struct file *filp,
4996 		       unsigned int ioctl, unsigned long arg)
4997 {
4998 	struct kvm *kvm = filp->private_data;
4999 	void __user *argp = (void __user *)arg;
5000 	int r = -ENOTTY;
5001 	/*
5002 	 * This union makes it completely explicit to gcc-3.x
5003 	 * that these two variables' stack usage should be
5004 	 * combined, not added together.
5005 	 */
5006 	union {
5007 		struct kvm_pit_state ps;
5008 		struct kvm_pit_state2 ps2;
5009 		struct kvm_pit_config pit_config;
5010 	} u;
5011 
5012 	switch (ioctl) {
5013 	case KVM_SET_TSS_ADDR:
5014 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5015 		break;
5016 	case KVM_SET_IDENTITY_MAP_ADDR: {
5017 		u64 ident_addr;
5018 
5019 		mutex_lock(&kvm->lock);
5020 		r = -EINVAL;
5021 		if (kvm->created_vcpus)
5022 			goto set_identity_unlock;
5023 		r = -EFAULT;
5024 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5025 			goto set_identity_unlock;
5026 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5027 set_identity_unlock:
5028 		mutex_unlock(&kvm->lock);
5029 		break;
5030 	}
5031 	case KVM_SET_NR_MMU_PAGES:
5032 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5033 		break;
5034 	case KVM_GET_NR_MMU_PAGES:
5035 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5036 		break;
5037 	case KVM_CREATE_IRQCHIP: {
5038 		mutex_lock(&kvm->lock);
5039 
5040 		r = -EEXIST;
5041 		if (irqchip_in_kernel(kvm))
5042 			goto create_irqchip_unlock;
5043 
5044 		r = -EINVAL;
5045 		if (kvm->created_vcpus)
5046 			goto create_irqchip_unlock;
5047 
5048 		r = kvm_pic_init(kvm);
5049 		if (r)
5050 			goto create_irqchip_unlock;
5051 
5052 		r = kvm_ioapic_init(kvm);
5053 		if (r) {
5054 			kvm_pic_destroy(kvm);
5055 			goto create_irqchip_unlock;
5056 		}
5057 
5058 		r = kvm_setup_default_irq_routing(kvm);
5059 		if (r) {
5060 			kvm_ioapic_destroy(kvm);
5061 			kvm_pic_destroy(kvm);
5062 			goto create_irqchip_unlock;
5063 		}
5064 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5065 		smp_wmb();
5066 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5067 	create_irqchip_unlock:
5068 		mutex_unlock(&kvm->lock);
5069 		break;
5070 	}
5071 	case KVM_CREATE_PIT:
5072 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5073 		goto create_pit;
5074 	case KVM_CREATE_PIT2:
5075 		r = -EFAULT;
5076 		if (copy_from_user(&u.pit_config, argp,
5077 				   sizeof(struct kvm_pit_config)))
5078 			goto out;
5079 	create_pit:
5080 		mutex_lock(&kvm->lock);
5081 		r = -EEXIST;
5082 		if (kvm->arch.vpit)
5083 			goto create_pit_unlock;
5084 		r = -ENOMEM;
5085 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5086 		if (kvm->arch.vpit)
5087 			r = 0;
5088 	create_pit_unlock:
5089 		mutex_unlock(&kvm->lock);
5090 		break;
5091 	case KVM_GET_IRQCHIP: {
5092 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5093 		struct kvm_irqchip *chip;
5094 
5095 		chip = memdup_user(argp, sizeof(*chip));
5096 		if (IS_ERR(chip)) {
5097 			r = PTR_ERR(chip);
5098 			goto out;
5099 		}
5100 
5101 		r = -ENXIO;
5102 		if (!irqchip_kernel(kvm))
5103 			goto get_irqchip_out;
5104 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5105 		if (r)
5106 			goto get_irqchip_out;
5107 		r = -EFAULT;
5108 		if (copy_to_user(argp, chip, sizeof(*chip)))
5109 			goto get_irqchip_out;
5110 		r = 0;
5111 	get_irqchip_out:
5112 		kfree(chip);
5113 		break;
5114 	}
5115 	case KVM_SET_IRQCHIP: {
5116 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5117 		struct kvm_irqchip *chip;
5118 
5119 		chip = memdup_user(argp, sizeof(*chip));
5120 		if (IS_ERR(chip)) {
5121 			r = PTR_ERR(chip);
5122 			goto out;
5123 		}
5124 
5125 		r = -ENXIO;
5126 		if (!irqchip_kernel(kvm))
5127 			goto set_irqchip_out;
5128 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5129 	set_irqchip_out:
5130 		kfree(chip);
5131 		break;
5132 	}
5133 	case KVM_GET_PIT: {
5134 		r = -EFAULT;
5135 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5136 			goto out;
5137 		r = -ENXIO;
5138 		if (!kvm->arch.vpit)
5139 			goto out;
5140 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5141 		if (r)
5142 			goto out;
5143 		r = -EFAULT;
5144 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5145 			goto out;
5146 		r = 0;
5147 		break;
5148 	}
5149 	case KVM_SET_PIT: {
5150 		r = -EFAULT;
5151 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5152 			goto out;
5153 		mutex_lock(&kvm->lock);
5154 		r = -ENXIO;
5155 		if (!kvm->arch.vpit)
5156 			goto set_pit_out;
5157 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5158 set_pit_out:
5159 		mutex_unlock(&kvm->lock);
5160 		break;
5161 	}
5162 	case KVM_GET_PIT2: {
5163 		r = -ENXIO;
5164 		if (!kvm->arch.vpit)
5165 			goto out;
5166 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5167 		if (r)
5168 			goto out;
5169 		r = -EFAULT;
5170 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5171 			goto out;
5172 		r = 0;
5173 		break;
5174 	}
5175 	case KVM_SET_PIT2: {
5176 		r = -EFAULT;
5177 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5178 			goto out;
5179 		mutex_lock(&kvm->lock);
5180 		r = -ENXIO;
5181 		if (!kvm->arch.vpit)
5182 			goto set_pit2_out;
5183 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5184 set_pit2_out:
5185 		mutex_unlock(&kvm->lock);
5186 		break;
5187 	}
5188 	case KVM_REINJECT_CONTROL: {
5189 		struct kvm_reinject_control control;
5190 		r =  -EFAULT;
5191 		if (copy_from_user(&control, argp, sizeof(control)))
5192 			goto out;
5193 		r = -ENXIO;
5194 		if (!kvm->arch.vpit)
5195 			goto out;
5196 		r = kvm_vm_ioctl_reinject(kvm, &control);
5197 		break;
5198 	}
5199 	case KVM_SET_BOOT_CPU_ID:
5200 		r = 0;
5201 		mutex_lock(&kvm->lock);
5202 		if (kvm->created_vcpus)
5203 			r = -EBUSY;
5204 		else
5205 			kvm->arch.bsp_vcpu_id = arg;
5206 		mutex_unlock(&kvm->lock);
5207 		break;
5208 	case KVM_XEN_HVM_CONFIG: {
5209 		struct kvm_xen_hvm_config xhc;
5210 		r = -EFAULT;
5211 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5212 			goto out;
5213 		r = -EINVAL;
5214 		if (xhc.flags)
5215 			goto out;
5216 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5217 		r = 0;
5218 		break;
5219 	}
5220 	case KVM_SET_CLOCK: {
5221 		struct kvm_clock_data user_ns;
5222 		u64 now_ns;
5223 
5224 		r = -EFAULT;
5225 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5226 			goto out;
5227 
5228 		r = -EINVAL;
5229 		if (user_ns.flags)
5230 			goto out;
5231 
5232 		r = 0;
5233 		/*
5234 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5235 		 * kvm_gen_update_masterclock() can be cut down to locked
5236 		 * pvclock_update_vm_gtod_copy().
5237 		 */
5238 		kvm_gen_update_masterclock(kvm);
5239 		now_ns = get_kvmclock_ns(kvm);
5240 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5241 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5242 		break;
5243 	}
5244 	case KVM_GET_CLOCK: {
5245 		struct kvm_clock_data user_ns;
5246 		u64 now_ns;
5247 
5248 		now_ns = get_kvmclock_ns(kvm);
5249 		user_ns.clock = now_ns;
5250 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5251 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5252 
5253 		r = -EFAULT;
5254 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5255 			goto out;
5256 		r = 0;
5257 		break;
5258 	}
5259 	case KVM_MEMORY_ENCRYPT_OP: {
5260 		r = -ENOTTY;
5261 		if (kvm_x86_ops.mem_enc_op)
5262 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5263 		break;
5264 	}
5265 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5266 		struct kvm_enc_region region;
5267 
5268 		r = -EFAULT;
5269 		if (copy_from_user(&region, argp, sizeof(region)))
5270 			goto out;
5271 
5272 		r = -ENOTTY;
5273 		if (kvm_x86_ops.mem_enc_reg_region)
5274 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5275 		break;
5276 	}
5277 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5278 		struct kvm_enc_region region;
5279 
5280 		r = -EFAULT;
5281 		if (copy_from_user(&region, argp, sizeof(region)))
5282 			goto out;
5283 
5284 		r = -ENOTTY;
5285 		if (kvm_x86_ops.mem_enc_unreg_region)
5286 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5287 		break;
5288 	}
5289 	case KVM_HYPERV_EVENTFD: {
5290 		struct kvm_hyperv_eventfd hvevfd;
5291 
5292 		r = -EFAULT;
5293 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5294 			goto out;
5295 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5296 		break;
5297 	}
5298 	case KVM_SET_PMU_EVENT_FILTER:
5299 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5300 		break;
5301 	default:
5302 		r = -ENOTTY;
5303 	}
5304 out:
5305 	return r;
5306 }
5307 
5308 static void kvm_init_msr_list(void)
5309 {
5310 	struct x86_pmu_capability x86_pmu;
5311 	u32 dummy[2];
5312 	unsigned i;
5313 
5314 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5315 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5316 
5317 	perf_get_x86_pmu_capability(&x86_pmu);
5318 
5319 	num_msrs_to_save = 0;
5320 	num_emulated_msrs = 0;
5321 	num_msr_based_features = 0;
5322 
5323 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5324 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5325 			continue;
5326 
5327 		/*
5328 		 * Even MSRs that are valid in the host may not be exposed
5329 		 * to the guests in some cases.
5330 		 */
5331 		switch (msrs_to_save_all[i]) {
5332 		case MSR_IA32_BNDCFGS:
5333 			if (!kvm_mpx_supported())
5334 				continue;
5335 			break;
5336 		case MSR_TSC_AUX:
5337 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5338 				continue;
5339 			break;
5340 		case MSR_IA32_UMWAIT_CONTROL:
5341 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5342 				continue;
5343 			break;
5344 		case MSR_IA32_RTIT_CTL:
5345 		case MSR_IA32_RTIT_STATUS:
5346 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5347 				continue;
5348 			break;
5349 		case MSR_IA32_RTIT_CR3_MATCH:
5350 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5351 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5352 				continue;
5353 			break;
5354 		case MSR_IA32_RTIT_OUTPUT_BASE:
5355 		case MSR_IA32_RTIT_OUTPUT_MASK:
5356 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5357 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5358 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5359 				continue;
5360 			break;
5361 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5362 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5363 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5364 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5365 				continue;
5366 			break;
5367 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5368 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5369 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5370 				continue;
5371 			break;
5372 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5373 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5374 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5375 				continue;
5376 			break;
5377 		default:
5378 			break;
5379 		}
5380 
5381 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5382 	}
5383 
5384 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5385 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5386 			continue;
5387 
5388 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5389 	}
5390 
5391 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5392 		struct kvm_msr_entry msr;
5393 
5394 		msr.index = msr_based_features_all[i];
5395 		if (kvm_get_msr_feature(&msr))
5396 			continue;
5397 
5398 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5399 	}
5400 }
5401 
5402 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5403 			   const void *v)
5404 {
5405 	int handled = 0;
5406 	int n;
5407 
5408 	do {
5409 		n = min(len, 8);
5410 		if (!(lapic_in_kernel(vcpu) &&
5411 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5412 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5413 			break;
5414 		handled += n;
5415 		addr += n;
5416 		len -= n;
5417 		v += n;
5418 	} while (len);
5419 
5420 	return handled;
5421 }
5422 
5423 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5424 {
5425 	int handled = 0;
5426 	int n;
5427 
5428 	do {
5429 		n = min(len, 8);
5430 		if (!(lapic_in_kernel(vcpu) &&
5431 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5432 					 addr, n, v))
5433 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5434 			break;
5435 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5436 		handled += n;
5437 		addr += n;
5438 		len -= n;
5439 		v += n;
5440 	} while (len);
5441 
5442 	return handled;
5443 }
5444 
5445 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5446 			struct kvm_segment *var, int seg)
5447 {
5448 	kvm_x86_ops.set_segment(vcpu, var, seg);
5449 }
5450 
5451 void kvm_get_segment(struct kvm_vcpu *vcpu,
5452 		     struct kvm_segment *var, int seg)
5453 {
5454 	kvm_x86_ops.get_segment(vcpu, var, seg);
5455 }
5456 
5457 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5458 			   struct x86_exception *exception)
5459 {
5460 	gpa_t t_gpa;
5461 
5462 	BUG_ON(!mmu_is_nested(vcpu));
5463 
5464 	/* NPT walks are always user-walks */
5465 	access |= PFERR_USER_MASK;
5466 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5467 
5468 	return t_gpa;
5469 }
5470 
5471 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5472 			      struct x86_exception *exception)
5473 {
5474 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5475 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5476 }
5477 
5478  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5479 				struct x86_exception *exception)
5480 {
5481 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5482 	access |= PFERR_FETCH_MASK;
5483 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5484 }
5485 
5486 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5487 			       struct x86_exception *exception)
5488 {
5489 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5490 	access |= PFERR_WRITE_MASK;
5491 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5492 }
5493 
5494 /* uses this to access any guest's mapped memory without checking CPL */
5495 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5496 				struct x86_exception *exception)
5497 {
5498 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5499 }
5500 
5501 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5502 				      struct kvm_vcpu *vcpu, u32 access,
5503 				      struct x86_exception *exception)
5504 {
5505 	void *data = val;
5506 	int r = X86EMUL_CONTINUE;
5507 
5508 	while (bytes) {
5509 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5510 							    exception);
5511 		unsigned offset = addr & (PAGE_SIZE-1);
5512 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5513 		int ret;
5514 
5515 		if (gpa == UNMAPPED_GVA)
5516 			return X86EMUL_PROPAGATE_FAULT;
5517 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5518 					       offset, toread);
5519 		if (ret < 0) {
5520 			r = X86EMUL_IO_NEEDED;
5521 			goto out;
5522 		}
5523 
5524 		bytes -= toread;
5525 		data += toread;
5526 		addr += toread;
5527 	}
5528 out:
5529 	return r;
5530 }
5531 
5532 /* used for instruction fetching */
5533 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5534 				gva_t addr, void *val, unsigned int bytes,
5535 				struct x86_exception *exception)
5536 {
5537 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5538 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5539 	unsigned offset;
5540 	int ret;
5541 
5542 	/* Inline kvm_read_guest_virt_helper for speed.  */
5543 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5544 						    exception);
5545 	if (unlikely(gpa == UNMAPPED_GVA))
5546 		return X86EMUL_PROPAGATE_FAULT;
5547 
5548 	offset = addr & (PAGE_SIZE-1);
5549 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5550 		bytes = (unsigned)PAGE_SIZE - offset;
5551 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5552 				       offset, bytes);
5553 	if (unlikely(ret < 0))
5554 		return X86EMUL_IO_NEEDED;
5555 
5556 	return X86EMUL_CONTINUE;
5557 }
5558 
5559 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5560 			       gva_t addr, void *val, unsigned int bytes,
5561 			       struct x86_exception *exception)
5562 {
5563 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5564 
5565 	/*
5566 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5567 	 * is returned, but our callers are not ready for that and they blindly
5568 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5569 	 * uninitialized kernel stack memory into cr2 and error code.
5570 	 */
5571 	memset(exception, 0, sizeof(*exception));
5572 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5573 					  exception);
5574 }
5575 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5576 
5577 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5578 			     gva_t addr, void *val, unsigned int bytes,
5579 			     struct x86_exception *exception, bool system)
5580 {
5581 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5582 	u32 access = 0;
5583 
5584 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5585 		access |= PFERR_USER_MASK;
5586 
5587 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5588 }
5589 
5590 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5591 		unsigned long addr, void *val, unsigned int bytes)
5592 {
5593 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5594 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5595 
5596 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5597 }
5598 
5599 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5600 				      struct kvm_vcpu *vcpu, u32 access,
5601 				      struct x86_exception *exception)
5602 {
5603 	void *data = val;
5604 	int r = X86EMUL_CONTINUE;
5605 
5606 	while (bytes) {
5607 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5608 							     access,
5609 							     exception);
5610 		unsigned offset = addr & (PAGE_SIZE-1);
5611 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5612 		int ret;
5613 
5614 		if (gpa == UNMAPPED_GVA)
5615 			return X86EMUL_PROPAGATE_FAULT;
5616 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5617 		if (ret < 0) {
5618 			r = X86EMUL_IO_NEEDED;
5619 			goto out;
5620 		}
5621 
5622 		bytes -= towrite;
5623 		data += towrite;
5624 		addr += towrite;
5625 	}
5626 out:
5627 	return r;
5628 }
5629 
5630 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5631 			      unsigned int bytes, struct x86_exception *exception,
5632 			      bool system)
5633 {
5634 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5635 	u32 access = PFERR_WRITE_MASK;
5636 
5637 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5638 		access |= PFERR_USER_MASK;
5639 
5640 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5641 					   access, exception);
5642 }
5643 
5644 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5645 				unsigned int bytes, struct x86_exception *exception)
5646 {
5647 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5648 	vcpu->arch.l1tf_flush_l1d = true;
5649 
5650 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5651 					   PFERR_WRITE_MASK, exception);
5652 }
5653 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5654 
5655 int handle_ud(struct kvm_vcpu *vcpu)
5656 {
5657 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5658 	int emul_type = EMULTYPE_TRAP_UD;
5659 	char sig[5]; /* ud2; .ascii "kvm" */
5660 	struct x86_exception e;
5661 
5662 	if (force_emulation_prefix &&
5663 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5664 				sig, sizeof(sig), &e) == 0 &&
5665 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5666 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5667 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5668 	}
5669 
5670 	return kvm_emulate_instruction(vcpu, emul_type);
5671 }
5672 EXPORT_SYMBOL_GPL(handle_ud);
5673 
5674 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5675 			    gpa_t gpa, bool write)
5676 {
5677 	/* For APIC access vmexit */
5678 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5679 		return 1;
5680 
5681 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5682 		trace_vcpu_match_mmio(gva, gpa, write, true);
5683 		return 1;
5684 	}
5685 
5686 	return 0;
5687 }
5688 
5689 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5690 				gpa_t *gpa, struct x86_exception *exception,
5691 				bool write)
5692 {
5693 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5694 		| (write ? PFERR_WRITE_MASK : 0);
5695 
5696 	/*
5697 	 * currently PKRU is only applied to ept enabled guest so
5698 	 * there is no pkey in EPT page table for L1 guest or EPT
5699 	 * shadow page table for L2 guest.
5700 	 */
5701 	if (vcpu_match_mmio_gva(vcpu, gva)
5702 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5703 				 vcpu->arch.mmio_access, 0, access)) {
5704 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5705 					(gva & (PAGE_SIZE - 1));
5706 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5707 		return 1;
5708 	}
5709 
5710 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5711 
5712 	if (*gpa == UNMAPPED_GVA)
5713 		return -1;
5714 
5715 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5716 }
5717 
5718 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5719 			const void *val, int bytes)
5720 {
5721 	int ret;
5722 
5723 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5724 	if (ret < 0)
5725 		return 0;
5726 	kvm_page_track_write(vcpu, gpa, val, bytes);
5727 	return 1;
5728 }
5729 
5730 struct read_write_emulator_ops {
5731 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5732 				  int bytes);
5733 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5734 				  void *val, int bytes);
5735 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5736 			       int bytes, void *val);
5737 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5738 				    void *val, int bytes);
5739 	bool write;
5740 };
5741 
5742 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5743 {
5744 	if (vcpu->mmio_read_completed) {
5745 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5746 			       vcpu->mmio_fragments[0].gpa, val);
5747 		vcpu->mmio_read_completed = 0;
5748 		return 1;
5749 	}
5750 
5751 	return 0;
5752 }
5753 
5754 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5755 			void *val, int bytes)
5756 {
5757 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5758 }
5759 
5760 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5761 			 void *val, int bytes)
5762 {
5763 	return emulator_write_phys(vcpu, gpa, val, bytes);
5764 }
5765 
5766 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5767 {
5768 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5769 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5770 }
5771 
5772 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5773 			  void *val, int bytes)
5774 {
5775 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5776 	return X86EMUL_IO_NEEDED;
5777 }
5778 
5779 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5780 			   void *val, int bytes)
5781 {
5782 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5783 
5784 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5785 	return X86EMUL_CONTINUE;
5786 }
5787 
5788 static const struct read_write_emulator_ops read_emultor = {
5789 	.read_write_prepare = read_prepare,
5790 	.read_write_emulate = read_emulate,
5791 	.read_write_mmio = vcpu_mmio_read,
5792 	.read_write_exit_mmio = read_exit_mmio,
5793 };
5794 
5795 static const struct read_write_emulator_ops write_emultor = {
5796 	.read_write_emulate = write_emulate,
5797 	.read_write_mmio = write_mmio,
5798 	.read_write_exit_mmio = write_exit_mmio,
5799 	.write = true,
5800 };
5801 
5802 static int emulator_read_write_onepage(unsigned long addr, void *val,
5803 				       unsigned int bytes,
5804 				       struct x86_exception *exception,
5805 				       struct kvm_vcpu *vcpu,
5806 				       const struct read_write_emulator_ops *ops)
5807 {
5808 	gpa_t gpa;
5809 	int handled, ret;
5810 	bool write = ops->write;
5811 	struct kvm_mmio_fragment *frag;
5812 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5813 
5814 	/*
5815 	 * If the exit was due to a NPF we may already have a GPA.
5816 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5817 	 * Note, this cannot be used on string operations since string
5818 	 * operation using rep will only have the initial GPA from the NPF
5819 	 * occurred.
5820 	 */
5821 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5822 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5823 		gpa = ctxt->gpa_val;
5824 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5825 	} else {
5826 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5827 		if (ret < 0)
5828 			return X86EMUL_PROPAGATE_FAULT;
5829 	}
5830 
5831 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5832 		return X86EMUL_CONTINUE;
5833 
5834 	/*
5835 	 * Is this MMIO handled locally?
5836 	 */
5837 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5838 	if (handled == bytes)
5839 		return X86EMUL_CONTINUE;
5840 
5841 	gpa += handled;
5842 	bytes -= handled;
5843 	val += handled;
5844 
5845 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5846 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5847 	frag->gpa = gpa;
5848 	frag->data = val;
5849 	frag->len = bytes;
5850 	return X86EMUL_CONTINUE;
5851 }
5852 
5853 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5854 			unsigned long addr,
5855 			void *val, unsigned int bytes,
5856 			struct x86_exception *exception,
5857 			const struct read_write_emulator_ops *ops)
5858 {
5859 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5860 	gpa_t gpa;
5861 	int rc;
5862 
5863 	if (ops->read_write_prepare &&
5864 		  ops->read_write_prepare(vcpu, val, bytes))
5865 		return X86EMUL_CONTINUE;
5866 
5867 	vcpu->mmio_nr_fragments = 0;
5868 
5869 	/* Crossing a page boundary? */
5870 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5871 		int now;
5872 
5873 		now = -addr & ~PAGE_MASK;
5874 		rc = emulator_read_write_onepage(addr, val, now, exception,
5875 						 vcpu, ops);
5876 
5877 		if (rc != X86EMUL_CONTINUE)
5878 			return rc;
5879 		addr += now;
5880 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5881 			addr = (u32)addr;
5882 		val += now;
5883 		bytes -= now;
5884 	}
5885 
5886 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5887 					 vcpu, ops);
5888 	if (rc != X86EMUL_CONTINUE)
5889 		return rc;
5890 
5891 	if (!vcpu->mmio_nr_fragments)
5892 		return rc;
5893 
5894 	gpa = vcpu->mmio_fragments[0].gpa;
5895 
5896 	vcpu->mmio_needed = 1;
5897 	vcpu->mmio_cur_fragment = 0;
5898 
5899 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5900 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5901 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5902 	vcpu->run->mmio.phys_addr = gpa;
5903 
5904 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5905 }
5906 
5907 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5908 				  unsigned long addr,
5909 				  void *val,
5910 				  unsigned int bytes,
5911 				  struct x86_exception *exception)
5912 {
5913 	return emulator_read_write(ctxt, addr, val, bytes,
5914 				   exception, &read_emultor);
5915 }
5916 
5917 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5918 			    unsigned long addr,
5919 			    const void *val,
5920 			    unsigned int bytes,
5921 			    struct x86_exception *exception)
5922 {
5923 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5924 				   exception, &write_emultor);
5925 }
5926 
5927 #define CMPXCHG_TYPE(t, ptr, old, new) \
5928 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5929 
5930 #ifdef CONFIG_X86_64
5931 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5932 #else
5933 #  define CMPXCHG64(ptr, old, new) \
5934 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5935 #endif
5936 
5937 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5938 				     unsigned long addr,
5939 				     const void *old,
5940 				     const void *new,
5941 				     unsigned int bytes,
5942 				     struct x86_exception *exception)
5943 {
5944 	struct kvm_host_map map;
5945 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946 	u64 page_line_mask;
5947 	gpa_t gpa;
5948 	char *kaddr;
5949 	bool exchanged;
5950 
5951 	/* guests cmpxchg8b have to be emulated atomically */
5952 	if (bytes > 8 || (bytes & (bytes - 1)))
5953 		goto emul_write;
5954 
5955 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5956 
5957 	if (gpa == UNMAPPED_GVA ||
5958 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5959 		goto emul_write;
5960 
5961 	/*
5962 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
5963 	 * enabled in the host and the access splits a cache line.
5964 	 */
5965 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5966 		page_line_mask = ~(cache_line_size() - 1);
5967 	else
5968 		page_line_mask = PAGE_MASK;
5969 
5970 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5971 		goto emul_write;
5972 
5973 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5974 		goto emul_write;
5975 
5976 	kaddr = map.hva + offset_in_page(gpa);
5977 
5978 	switch (bytes) {
5979 	case 1:
5980 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5981 		break;
5982 	case 2:
5983 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5984 		break;
5985 	case 4:
5986 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5987 		break;
5988 	case 8:
5989 		exchanged = CMPXCHG64(kaddr, old, new);
5990 		break;
5991 	default:
5992 		BUG();
5993 	}
5994 
5995 	kvm_vcpu_unmap(vcpu, &map, true);
5996 
5997 	if (!exchanged)
5998 		return X86EMUL_CMPXCHG_FAILED;
5999 
6000 	kvm_page_track_write(vcpu, gpa, new, bytes);
6001 
6002 	return X86EMUL_CONTINUE;
6003 
6004 emul_write:
6005 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6006 
6007 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6008 }
6009 
6010 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6011 {
6012 	int r = 0, i;
6013 
6014 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6015 		if (vcpu->arch.pio.in)
6016 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6017 					    vcpu->arch.pio.size, pd);
6018 		else
6019 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6020 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6021 					     pd);
6022 		if (r)
6023 			break;
6024 		pd += vcpu->arch.pio.size;
6025 	}
6026 	return r;
6027 }
6028 
6029 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6030 			       unsigned short port, void *val,
6031 			       unsigned int count, bool in)
6032 {
6033 	vcpu->arch.pio.port = port;
6034 	vcpu->arch.pio.in = in;
6035 	vcpu->arch.pio.count  = count;
6036 	vcpu->arch.pio.size = size;
6037 
6038 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6039 		vcpu->arch.pio.count = 0;
6040 		return 1;
6041 	}
6042 
6043 	vcpu->run->exit_reason = KVM_EXIT_IO;
6044 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6045 	vcpu->run->io.size = size;
6046 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6047 	vcpu->run->io.count = count;
6048 	vcpu->run->io.port = port;
6049 
6050 	return 0;
6051 }
6052 
6053 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6054 			   unsigned short port, void *val, unsigned int count)
6055 {
6056 	int ret;
6057 
6058 	if (vcpu->arch.pio.count)
6059 		goto data_avail;
6060 
6061 	memset(vcpu->arch.pio_data, 0, size * count);
6062 
6063 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6064 	if (ret) {
6065 data_avail:
6066 		memcpy(val, vcpu->arch.pio_data, size * count);
6067 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6068 		vcpu->arch.pio.count = 0;
6069 		return 1;
6070 	}
6071 
6072 	return 0;
6073 }
6074 
6075 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6076 				    int size, unsigned short port, void *val,
6077 				    unsigned int count)
6078 {
6079 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6080 
6081 }
6082 
6083 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6084 			    unsigned short port, const void *val,
6085 			    unsigned int count)
6086 {
6087 	memcpy(vcpu->arch.pio_data, val, size * count);
6088 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6089 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6090 }
6091 
6092 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6093 				     int size, unsigned short port,
6094 				     const void *val, unsigned int count)
6095 {
6096 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6097 }
6098 
6099 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6100 {
6101 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6102 }
6103 
6104 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6105 {
6106 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6107 }
6108 
6109 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6110 {
6111 	if (!need_emulate_wbinvd(vcpu))
6112 		return X86EMUL_CONTINUE;
6113 
6114 	if (kvm_x86_ops.has_wbinvd_exit()) {
6115 		int cpu = get_cpu();
6116 
6117 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6118 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6119 				wbinvd_ipi, NULL, 1);
6120 		put_cpu();
6121 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6122 	} else
6123 		wbinvd();
6124 	return X86EMUL_CONTINUE;
6125 }
6126 
6127 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6128 {
6129 	kvm_emulate_wbinvd_noskip(vcpu);
6130 	return kvm_skip_emulated_instruction(vcpu);
6131 }
6132 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6133 
6134 
6135 
6136 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6137 {
6138 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6139 }
6140 
6141 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6142 			   unsigned long *dest)
6143 {
6144 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6145 }
6146 
6147 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6148 			   unsigned long value)
6149 {
6150 
6151 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6152 }
6153 
6154 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6155 {
6156 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6157 }
6158 
6159 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6160 {
6161 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6162 	unsigned long value;
6163 
6164 	switch (cr) {
6165 	case 0:
6166 		value = kvm_read_cr0(vcpu);
6167 		break;
6168 	case 2:
6169 		value = vcpu->arch.cr2;
6170 		break;
6171 	case 3:
6172 		value = kvm_read_cr3(vcpu);
6173 		break;
6174 	case 4:
6175 		value = kvm_read_cr4(vcpu);
6176 		break;
6177 	case 8:
6178 		value = kvm_get_cr8(vcpu);
6179 		break;
6180 	default:
6181 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6182 		return 0;
6183 	}
6184 
6185 	return value;
6186 }
6187 
6188 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6189 {
6190 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6191 	int res = 0;
6192 
6193 	switch (cr) {
6194 	case 0:
6195 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6196 		break;
6197 	case 2:
6198 		vcpu->arch.cr2 = val;
6199 		break;
6200 	case 3:
6201 		res = kvm_set_cr3(vcpu, val);
6202 		break;
6203 	case 4:
6204 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6205 		break;
6206 	case 8:
6207 		res = kvm_set_cr8(vcpu, val);
6208 		break;
6209 	default:
6210 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6211 		res = -1;
6212 	}
6213 
6214 	return res;
6215 }
6216 
6217 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6218 {
6219 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6220 }
6221 
6222 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6223 {
6224 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6225 }
6226 
6227 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6228 {
6229 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6230 }
6231 
6232 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6233 {
6234 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6235 }
6236 
6237 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6238 {
6239 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6240 }
6241 
6242 static unsigned long emulator_get_cached_segment_base(
6243 	struct x86_emulate_ctxt *ctxt, int seg)
6244 {
6245 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6246 }
6247 
6248 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6249 				 struct desc_struct *desc, u32 *base3,
6250 				 int seg)
6251 {
6252 	struct kvm_segment var;
6253 
6254 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6255 	*selector = var.selector;
6256 
6257 	if (var.unusable) {
6258 		memset(desc, 0, sizeof(*desc));
6259 		if (base3)
6260 			*base3 = 0;
6261 		return false;
6262 	}
6263 
6264 	if (var.g)
6265 		var.limit >>= 12;
6266 	set_desc_limit(desc, var.limit);
6267 	set_desc_base(desc, (unsigned long)var.base);
6268 #ifdef CONFIG_X86_64
6269 	if (base3)
6270 		*base3 = var.base >> 32;
6271 #endif
6272 	desc->type = var.type;
6273 	desc->s = var.s;
6274 	desc->dpl = var.dpl;
6275 	desc->p = var.present;
6276 	desc->avl = var.avl;
6277 	desc->l = var.l;
6278 	desc->d = var.db;
6279 	desc->g = var.g;
6280 
6281 	return true;
6282 }
6283 
6284 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6285 				 struct desc_struct *desc, u32 base3,
6286 				 int seg)
6287 {
6288 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6289 	struct kvm_segment var;
6290 
6291 	var.selector = selector;
6292 	var.base = get_desc_base(desc);
6293 #ifdef CONFIG_X86_64
6294 	var.base |= ((u64)base3) << 32;
6295 #endif
6296 	var.limit = get_desc_limit(desc);
6297 	if (desc->g)
6298 		var.limit = (var.limit << 12) | 0xfff;
6299 	var.type = desc->type;
6300 	var.dpl = desc->dpl;
6301 	var.db = desc->d;
6302 	var.s = desc->s;
6303 	var.l = desc->l;
6304 	var.g = desc->g;
6305 	var.avl = desc->avl;
6306 	var.present = desc->p;
6307 	var.unusable = !var.present;
6308 	var.padding = 0;
6309 
6310 	kvm_set_segment(vcpu, &var, seg);
6311 	return;
6312 }
6313 
6314 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6315 			    u32 msr_index, u64 *pdata)
6316 {
6317 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6318 }
6319 
6320 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6321 			    u32 msr_index, u64 data)
6322 {
6323 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6324 }
6325 
6326 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6327 {
6328 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6329 
6330 	return vcpu->arch.smbase;
6331 }
6332 
6333 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6334 {
6335 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6336 
6337 	vcpu->arch.smbase = smbase;
6338 }
6339 
6340 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6341 			      u32 pmc)
6342 {
6343 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6344 }
6345 
6346 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6347 			     u32 pmc, u64 *pdata)
6348 {
6349 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6350 }
6351 
6352 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6353 {
6354 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6355 }
6356 
6357 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6358 			      struct x86_instruction_info *info,
6359 			      enum x86_intercept_stage stage)
6360 {
6361 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6362 					    &ctxt->exception);
6363 }
6364 
6365 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6366 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6367 			      bool exact_only)
6368 {
6369 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6370 }
6371 
6372 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6373 {
6374 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6375 }
6376 
6377 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6378 {
6379 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6380 }
6381 
6382 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6383 {
6384 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6385 }
6386 
6387 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6388 {
6389 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6390 }
6391 
6392 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6393 {
6394 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6395 }
6396 
6397 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6398 {
6399 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6400 }
6401 
6402 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6403 {
6404 	return emul_to_vcpu(ctxt)->arch.hflags;
6405 }
6406 
6407 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6408 {
6409 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6410 }
6411 
6412 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6413 				  const char *smstate)
6414 {
6415 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6416 }
6417 
6418 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6419 {
6420 	kvm_smm_changed(emul_to_vcpu(ctxt));
6421 }
6422 
6423 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6424 {
6425 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6426 }
6427 
6428 static const struct x86_emulate_ops emulate_ops = {
6429 	.read_gpr            = emulator_read_gpr,
6430 	.write_gpr           = emulator_write_gpr,
6431 	.read_std            = emulator_read_std,
6432 	.write_std           = emulator_write_std,
6433 	.read_phys           = kvm_read_guest_phys_system,
6434 	.fetch               = kvm_fetch_guest_virt,
6435 	.read_emulated       = emulator_read_emulated,
6436 	.write_emulated      = emulator_write_emulated,
6437 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6438 	.invlpg              = emulator_invlpg,
6439 	.pio_in_emulated     = emulator_pio_in_emulated,
6440 	.pio_out_emulated    = emulator_pio_out_emulated,
6441 	.get_segment         = emulator_get_segment,
6442 	.set_segment         = emulator_set_segment,
6443 	.get_cached_segment_base = emulator_get_cached_segment_base,
6444 	.get_gdt             = emulator_get_gdt,
6445 	.get_idt	     = emulator_get_idt,
6446 	.set_gdt             = emulator_set_gdt,
6447 	.set_idt	     = emulator_set_idt,
6448 	.get_cr              = emulator_get_cr,
6449 	.set_cr              = emulator_set_cr,
6450 	.cpl                 = emulator_get_cpl,
6451 	.get_dr              = emulator_get_dr,
6452 	.set_dr              = emulator_set_dr,
6453 	.get_smbase          = emulator_get_smbase,
6454 	.set_smbase          = emulator_set_smbase,
6455 	.set_msr             = emulator_set_msr,
6456 	.get_msr             = emulator_get_msr,
6457 	.check_pmc	     = emulator_check_pmc,
6458 	.read_pmc            = emulator_read_pmc,
6459 	.halt                = emulator_halt,
6460 	.wbinvd              = emulator_wbinvd,
6461 	.fix_hypercall       = emulator_fix_hypercall,
6462 	.intercept           = emulator_intercept,
6463 	.get_cpuid           = emulator_get_cpuid,
6464 	.guest_has_long_mode = emulator_guest_has_long_mode,
6465 	.guest_has_movbe     = emulator_guest_has_movbe,
6466 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6467 	.set_nmi_mask        = emulator_set_nmi_mask,
6468 	.get_hflags          = emulator_get_hflags,
6469 	.set_hflags          = emulator_set_hflags,
6470 	.pre_leave_smm       = emulator_pre_leave_smm,
6471 	.post_leave_smm      = emulator_post_leave_smm,
6472 	.set_xcr             = emulator_set_xcr,
6473 };
6474 
6475 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6476 {
6477 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6478 	/*
6479 	 * an sti; sti; sequence only disable interrupts for the first
6480 	 * instruction. So, if the last instruction, be it emulated or
6481 	 * not, left the system with the INT_STI flag enabled, it
6482 	 * means that the last instruction is an sti. We should not
6483 	 * leave the flag on in this case. The same goes for mov ss
6484 	 */
6485 	if (int_shadow & mask)
6486 		mask = 0;
6487 	if (unlikely(int_shadow || mask)) {
6488 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6489 		if (!mask)
6490 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6491 	}
6492 }
6493 
6494 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6495 {
6496 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6497 	if (ctxt->exception.vector == PF_VECTOR)
6498 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6499 
6500 	if (ctxt->exception.error_code_valid)
6501 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6502 				      ctxt->exception.error_code);
6503 	else
6504 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6505 	return false;
6506 }
6507 
6508 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6509 {
6510 	struct x86_emulate_ctxt *ctxt;
6511 
6512 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6513 	if (!ctxt) {
6514 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6515 		return NULL;
6516 	}
6517 
6518 	ctxt->vcpu = vcpu;
6519 	ctxt->ops = &emulate_ops;
6520 	vcpu->arch.emulate_ctxt = ctxt;
6521 
6522 	return ctxt;
6523 }
6524 
6525 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6526 {
6527 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6528 	int cs_db, cs_l;
6529 
6530 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6531 
6532 	ctxt->gpa_available = false;
6533 	ctxt->eflags = kvm_get_rflags(vcpu);
6534 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6535 
6536 	ctxt->eip = kvm_rip_read(vcpu);
6537 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6538 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6539 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6540 		     cs_db				? X86EMUL_MODE_PROT32 :
6541 							  X86EMUL_MODE_PROT16;
6542 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6543 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6544 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6545 
6546 	init_decode_cache(ctxt);
6547 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6548 }
6549 
6550 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6551 {
6552 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6553 	int ret;
6554 
6555 	init_emulate_ctxt(vcpu);
6556 
6557 	ctxt->op_bytes = 2;
6558 	ctxt->ad_bytes = 2;
6559 	ctxt->_eip = ctxt->eip + inc_eip;
6560 	ret = emulate_int_real(ctxt, irq);
6561 
6562 	if (ret != X86EMUL_CONTINUE) {
6563 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6564 	} else {
6565 		ctxt->eip = ctxt->_eip;
6566 		kvm_rip_write(vcpu, ctxt->eip);
6567 		kvm_set_rflags(vcpu, ctxt->eflags);
6568 	}
6569 }
6570 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6571 
6572 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6573 {
6574 	++vcpu->stat.insn_emulation_fail;
6575 	trace_kvm_emulate_insn_failed(vcpu);
6576 
6577 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6578 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6579 		return 1;
6580 	}
6581 
6582 	if (emulation_type & EMULTYPE_SKIP) {
6583 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6584 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6585 		vcpu->run->internal.ndata = 0;
6586 		return 0;
6587 	}
6588 
6589 	kvm_queue_exception(vcpu, UD_VECTOR);
6590 
6591 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6592 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6593 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6594 		vcpu->run->internal.ndata = 0;
6595 		return 0;
6596 	}
6597 
6598 	return 1;
6599 }
6600 
6601 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6602 				  bool write_fault_to_shadow_pgtable,
6603 				  int emulation_type)
6604 {
6605 	gpa_t gpa = cr2_or_gpa;
6606 	kvm_pfn_t pfn;
6607 
6608 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6609 		return false;
6610 
6611 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6612 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6613 		return false;
6614 
6615 	if (!vcpu->arch.mmu->direct_map) {
6616 		/*
6617 		 * Write permission should be allowed since only
6618 		 * write access need to be emulated.
6619 		 */
6620 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6621 
6622 		/*
6623 		 * If the mapping is invalid in guest, let cpu retry
6624 		 * it to generate fault.
6625 		 */
6626 		if (gpa == UNMAPPED_GVA)
6627 			return true;
6628 	}
6629 
6630 	/*
6631 	 * Do not retry the unhandleable instruction if it faults on the
6632 	 * readonly host memory, otherwise it will goto a infinite loop:
6633 	 * retry instruction -> write #PF -> emulation fail -> retry
6634 	 * instruction -> ...
6635 	 */
6636 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6637 
6638 	/*
6639 	 * If the instruction failed on the error pfn, it can not be fixed,
6640 	 * report the error to userspace.
6641 	 */
6642 	if (is_error_noslot_pfn(pfn))
6643 		return false;
6644 
6645 	kvm_release_pfn_clean(pfn);
6646 
6647 	/* The instructions are well-emulated on direct mmu. */
6648 	if (vcpu->arch.mmu->direct_map) {
6649 		unsigned int indirect_shadow_pages;
6650 
6651 		spin_lock(&vcpu->kvm->mmu_lock);
6652 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6653 		spin_unlock(&vcpu->kvm->mmu_lock);
6654 
6655 		if (indirect_shadow_pages)
6656 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6657 
6658 		return true;
6659 	}
6660 
6661 	/*
6662 	 * if emulation was due to access to shadowed page table
6663 	 * and it failed try to unshadow page and re-enter the
6664 	 * guest to let CPU execute the instruction.
6665 	 */
6666 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6667 
6668 	/*
6669 	 * If the access faults on its page table, it can not
6670 	 * be fixed by unprotecting shadow page and it should
6671 	 * be reported to userspace.
6672 	 */
6673 	return !write_fault_to_shadow_pgtable;
6674 }
6675 
6676 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6677 			      gpa_t cr2_or_gpa,  int emulation_type)
6678 {
6679 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6680 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6681 
6682 	last_retry_eip = vcpu->arch.last_retry_eip;
6683 	last_retry_addr = vcpu->arch.last_retry_addr;
6684 
6685 	/*
6686 	 * If the emulation is caused by #PF and it is non-page_table
6687 	 * writing instruction, it means the VM-EXIT is caused by shadow
6688 	 * page protected, we can zap the shadow page and retry this
6689 	 * instruction directly.
6690 	 *
6691 	 * Note: if the guest uses a non-page-table modifying instruction
6692 	 * on the PDE that points to the instruction, then we will unmap
6693 	 * the instruction and go to an infinite loop. So, we cache the
6694 	 * last retried eip and the last fault address, if we meet the eip
6695 	 * and the address again, we can break out of the potential infinite
6696 	 * loop.
6697 	 */
6698 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6699 
6700 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6701 		return false;
6702 
6703 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6704 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6705 		return false;
6706 
6707 	if (x86_page_table_writing_insn(ctxt))
6708 		return false;
6709 
6710 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6711 		return false;
6712 
6713 	vcpu->arch.last_retry_eip = ctxt->eip;
6714 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6715 
6716 	if (!vcpu->arch.mmu->direct_map)
6717 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6718 
6719 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6720 
6721 	return true;
6722 }
6723 
6724 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6725 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6726 
6727 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6728 {
6729 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6730 		/* This is a good place to trace that we are exiting SMM.  */
6731 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6732 
6733 		/* Process a latched INIT or SMI, if any.  */
6734 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6735 	}
6736 
6737 	kvm_mmu_reset_context(vcpu);
6738 }
6739 
6740 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6741 				unsigned long *db)
6742 {
6743 	u32 dr6 = 0;
6744 	int i;
6745 	u32 enable, rwlen;
6746 
6747 	enable = dr7;
6748 	rwlen = dr7 >> 16;
6749 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6750 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6751 			dr6 |= (1 << i);
6752 	return dr6;
6753 }
6754 
6755 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6756 {
6757 	struct kvm_run *kvm_run = vcpu->run;
6758 
6759 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6760 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6761 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6762 		kvm_run->debug.arch.exception = DB_VECTOR;
6763 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6764 		return 0;
6765 	}
6766 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6767 	return 1;
6768 }
6769 
6770 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6771 {
6772 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6773 	int r;
6774 
6775 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6776 	if (unlikely(!r))
6777 		return 0;
6778 
6779 	/*
6780 	 * rflags is the old, "raw" value of the flags.  The new value has
6781 	 * not been saved yet.
6782 	 *
6783 	 * This is correct even for TF set by the guest, because "the
6784 	 * processor will not generate this exception after the instruction
6785 	 * that sets the TF flag".
6786 	 */
6787 	if (unlikely(rflags & X86_EFLAGS_TF))
6788 		r = kvm_vcpu_do_singlestep(vcpu);
6789 	return r;
6790 }
6791 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6792 
6793 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6794 {
6795 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6796 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6797 		struct kvm_run *kvm_run = vcpu->run;
6798 		unsigned long eip = kvm_get_linear_rip(vcpu);
6799 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6800 					   vcpu->arch.guest_debug_dr7,
6801 					   vcpu->arch.eff_db);
6802 
6803 		if (dr6 != 0) {
6804 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6805 			kvm_run->debug.arch.pc = eip;
6806 			kvm_run->debug.arch.exception = DB_VECTOR;
6807 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6808 			*r = 0;
6809 			return true;
6810 		}
6811 	}
6812 
6813 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6814 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6815 		unsigned long eip = kvm_get_linear_rip(vcpu);
6816 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6817 					   vcpu->arch.dr7,
6818 					   vcpu->arch.db);
6819 
6820 		if (dr6 != 0) {
6821 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6822 			*r = 1;
6823 			return true;
6824 		}
6825 	}
6826 
6827 	return false;
6828 }
6829 
6830 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6831 {
6832 	switch (ctxt->opcode_len) {
6833 	case 1:
6834 		switch (ctxt->b) {
6835 		case 0xe4:	/* IN */
6836 		case 0xe5:
6837 		case 0xec:
6838 		case 0xed:
6839 		case 0xe6:	/* OUT */
6840 		case 0xe7:
6841 		case 0xee:
6842 		case 0xef:
6843 		case 0x6c:	/* INS */
6844 		case 0x6d:
6845 		case 0x6e:	/* OUTS */
6846 		case 0x6f:
6847 			return true;
6848 		}
6849 		break;
6850 	case 2:
6851 		switch (ctxt->b) {
6852 		case 0x33:	/* RDPMC */
6853 			return true;
6854 		}
6855 		break;
6856 	}
6857 
6858 	return false;
6859 }
6860 
6861 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6862 			    int emulation_type, void *insn, int insn_len)
6863 {
6864 	int r;
6865 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6866 	bool writeback = true;
6867 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6868 
6869 	vcpu->arch.l1tf_flush_l1d = true;
6870 
6871 	/*
6872 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6873 	 * never reused.
6874 	 */
6875 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6876 	kvm_clear_exception_queue(vcpu);
6877 
6878 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6879 		init_emulate_ctxt(vcpu);
6880 
6881 		/*
6882 		 * We will reenter on the same instruction since
6883 		 * we do not set complete_userspace_io.  This does not
6884 		 * handle watchpoints yet, those would be handled in
6885 		 * the emulate_ops.
6886 		 */
6887 		if (!(emulation_type & EMULTYPE_SKIP) &&
6888 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6889 			return r;
6890 
6891 		ctxt->interruptibility = 0;
6892 		ctxt->have_exception = false;
6893 		ctxt->exception.vector = -1;
6894 		ctxt->perm_ok = false;
6895 
6896 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6897 
6898 		r = x86_decode_insn(ctxt, insn, insn_len);
6899 
6900 		trace_kvm_emulate_insn_start(vcpu);
6901 		++vcpu->stat.insn_emulation;
6902 		if (r != EMULATION_OK)  {
6903 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6904 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6905 				kvm_queue_exception(vcpu, UD_VECTOR);
6906 				return 1;
6907 			}
6908 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6909 						  write_fault_to_spt,
6910 						  emulation_type))
6911 				return 1;
6912 			if (ctxt->have_exception) {
6913 				/*
6914 				 * #UD should result in just EMULATION_FAILED, and trap-like
6915 				 * exception should not be encountered during decode.
6916 				 */
6917 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6918 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6919 				inject_emulated_exception(vcpu);
6920 				return 1;
6921 			}
6922 			return handle_emulation_failure(vcpu, emulation_type);
6923 		}
6924 	}
6925 
6926 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6927 	    !is_vmware_backdoor_opcode(ctxt)) {
6928 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6929 		return 1;
6930 	}
6931 
6932 	/*
6933 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6934 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6935 	 * updating interruptibility state and injecting single-step #DBs.
6936 	 */
6937 	if (emulation_type & EMULTYPE_SKIP) {
6938 		kvm_rip_write(vcpu, ctxt->_eip);
6939 		if (ctxt->eflags & X86_EFLAGS_RF)
6940 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6941 		return 1;
6942 	}
6943 
6944 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6945 		return 1;
6946 
6947 	/* this is needed for vmware backdoor interface to work since it
6948 	   changes registers values  during IO operation */
6949 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6950 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6951 		emulator_invalidate_register_cache(ctxt);
6952 	}
6953 
6954 restart:
6955 	if (emulation_type & EMULTYPE_PF) {
6956 		/* Save the faulting GPA (cr2) in the address field */
6957 		ctxt->exception.address = cr2_or_gpa;
6958 
6959 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6960 		if (vcpu->arch.mmu->direct_map) {
6961 			ctxt->gpa_available = true;
6962 			ctxt->gpa_val = cr2_or_gpa;
6963 		}
6964 	} else {
6965 		/* Sanitize the address out of an abundance of paranoia. */
6966 		ctxt->exception.address = 0;
6967 	}
6968 
6969 	r = x86_emulate_insn(ctxt);
6970 
6971 	if (r == EMULATION_INTERCEPTED)
6972 		return 1;
6973 
6974 	if (r == EMULATION_FAILED) {
6975 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6976 					emulation_type))
6977 			return 1;
6978 
6979 		return handle_emulation_failure(vcpu, emulation_type);
6980 	}
6981 
6982 	if (ctxt->have_exception) {
6983 		r = 1;
6984 		if (inject_emulated_exception(vcpu))
6985 			return r;
6986 	} else if (vcpu->arch.pio.count) {
6987 		if (!vcpu->arch.pio.in) {
6988 			/* FIXME: return into emulator if single-stepping.  */
6989 			vcpu->arch.pio.count = 0;
6990 		} else {
6991 			writeback = false;
6992 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6993 		}
6994 		r = 0;
6995 	} else if (vcpu->mmio_needed) {
6996 		++vcpu->stat.mmio_exits;
6997 
6998 		if (!vcpu->mmio_is_write)
6999 			writeback = false;
7000 		r = 0;
7001 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7002 	} else if (r == EMULATION_RESTART)
7003 		goto restart;
7004 	else
7005 		r = 1;
7006 
7007 	if (writeback) {
7008 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7009 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7010 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7011 		if (!ctxt->have_exception ||
7012 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7013 			kvm_rip_write(vcpu, ctxt->eip);
7014 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7015 				r = kvm_vcpu_do_singlestep(vcpu);
7016 			if (kvm_x86_ops.update_emulated_instruction)
7017 				kvm_x86_ops.update_emulated_instruction(vcpu);
7018 			__kvm_set_rflags(vcpu, ctxt->eflags);
7019 		}
7020 
7021 		/*
7022 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7023 		 * do nothing, and it will be requested again as soon as
7024 		 * the shadow expires.  But we still need to check here,
7025 		 * because POPF has no interrupt shadow.
7026 		 */
7027 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7028 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7029 	} else
7030 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7031 
7032 	return r;
7033 }
7034 
7035 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7036 {
7037 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7038 }
7039 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7040 
7041 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7042 					void *insn, int insn_len)
7043 {
7044 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7045 }
7046 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7047 
7048 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7049 {
7050 	vcpu->arch.pio.count = 0;
7051 	return 1;
7052 }
7053 
7054 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7055 {
7056 	vcpu->arch.pio.count = 0;
7057 
7058 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7059 		return 1;
7060 
7061 	return kvm_skip_emulated_instruction(vcpu);
7062 }
7063 
7064 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7065 			    unsigned short port)
7066 {
7067 	unsigned long val = kvm_rax_read(vcpu);
7068 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7069 
7070 	if (ret)
7071 		return ret;
7072 
7073 	/*
7074 	 * Workaround userspace that relies on old KVM behavior of %rip being
7075 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7076 	 */
7077 	if (port == 0x7e &&
7078 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7079 		vcpu->arch.complete_userspace_io =
7080 			complete_fast_pio_out_port_0x7e;
7081 		kvm_skip_emulated_instruction(vcpu);
7082 	} else {
7083 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7084 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7085 	}
7086 	return 0;
7087 }
7088 
7089 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7090 {
7091 	unsigned long val;
7092 
7093 	/* We should only ever be called with arch.pio.count equal to 1 */
7094 	BUG_ON(vcpu->arch.pio.count != 1);
7095 
7096 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7097 		vcpu->arch.pio.count = 0;
7098 		return 1;
7099 	}
7100 
7101 	/* For size less than 4 we merge, else we zero extend */
7102 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7103 
7104 	/*
7105 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7106 	 * the copy and tracing
7107 	 */
7108 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7109 	kvm_rax_write(vcpu, val);
7110 
7111 	return kvm_skip_emulated_instruction(vcpu);
7112 }
7113 
7114 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7115 			   unsigned short port)
7116 {
7117 	unsigned long val;
7118 	int ret;
7119 
7120 	/* For size less than 4 we merge, else we zero extend */
7121 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7122 
7123 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7124 	if (ret) {
7125 		kvm_rax_write(vcpu, val);
7126 		return ret;
7127 	}
7128 
7129 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7130 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7131 
7132 	return 0;
7133 }
7134 
7135 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7136 {
7137 	int ret;
7138 
7139 	if (in)
7140 		ret = kvm_fast_pio_in(vcpu, size, port);
7141 	else
7142 		ret = kvm_fast_pio_out(vcpu, size, port);
7143 	return ret && kvm_skip_emulated_instruction(vcpu);
7144 }
7145 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7146 
7147 static int kvmclock_cpu_down_prep(unsigned int cpu)
7148 {
7149 	__this_cpu_write(cpu_tsc_khz, 0);
7150 	return 0;
7151 }
7152 
7153 static void tsc_khz_changed(void *data)
7154 {
7155 	struct cpufreq_freqs *freq = data;
7156 	unsigned long khz = 0;
7157 
7158 	if (data)
7159 		khz = freq->new;
7160 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7161 		khz = cpufreq_quick_get(raw_smp_processor_id());
7162 	if (!khz)
7163 		khz = tsc_khz;
7164 	__this_cpu_write(cpu_tsc_khz, khz);
7165 }
7166 
7167 #ifdef CONFIG_X86_64
7168 static void kvm_hyperv_tsc_notifier(void)
7169 {
7170 	struct kvm *kvm;
7171 	struct kvm_vcpu *vcpu;
7172 	int cpu;
7173 
7174 	mutex_lock(&kvm_lock);
7175 	list_for_each_entry(kvm, &vm_list, vm_list)
7176 		kvm_make_mclock_inprogress_request(kvm);
7177 
7178 	hyperv_stop_tsc_emulation();
7179 
7180 	/* TSC frequency always matches when on Hyper-V */
7181 	for_each_present_cpu(cpu)
7182 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7183 	kvm_max_guest_tsc_khz = tsc_khz;
7184 
7185 	list_for_each_entry(kvm, &vm_list, vm_list) {
7186 		struct kvm_arch *ka = &kvm->arch;
7187 
7188 		spin_lock(&ka->pvclock_gtod_sync_lock);
7189 
7190 		pvclock_update_vm_gtod_copy(kvm);
7191 
7192 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7193 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7194 
7195 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7196 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7197 
7198 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7199 	}
7200 	mutex_unlock(&kvm_lock);
7201 }
7202 #endif
7203 
7204 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7205 {
7206 	struct kvm *kvm;
7207 	struct kvm_vcpu *vcpu;
7208 	int i, send_ipi = 0;
7209 
7210 	/*
7211 	 * We allow guests to temporarily run on slowing clocks,
7212 	 * provided we notify them after, or to run on accelerating
7213 	 * clocks, provided we notify them before.  Thus time never
7214 	 * goes backwards.
7215 	 *
7216 	 * However, we have a problem.  We can't atomically update
7217 	 * the frequency of a given CPU from this function; it is
7218 	 * merely a notifier, which can be called from any CPU.
7219 	 * Changing the TSC frequency at arbitrary points in time
7220 	 * requires a recomputation of local variables related to
7221 	 * the TSC for each VCPU.  We must flag these local variables
7222 	 * to be updated and be sure the update takes place with the
7223 	 * new frequency before any guests proceed.
7224 	 *
7225 	 * Unfortunately, the combination of hotplug CPU and frequency
7226 	 * change creates an intractable locking scenario; the order
7227 	 * of when these callouts happen is undefined with respect to
7228 	 * CPU hotplug, and they can race with each other.  As such,
7229 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7230 	 * undefined; you can actually have a CPU frequency change take
7231 	 * place in between the computation of X and the setting of the
7232 	 * variable.  To protect against this problem, all updates of
7233 	 * the per_cpu tsc_khz variable are done in an interrupt
7234 	 * protected IPI, and all callers wishing to update the value
7235 	 * must wait for a synchronous IPI to complete (which is trivial
7236 	 * if the caller is on the CPU already).  This establishes the
7237 	 * necessary total order on variable updates.
7238 	 *
7239 	 * Note that because a guest time update may take place
7240 	 * anytime after the setting of the VCPU's request bit, the
7241 	 * correct TSC value must be set before the request.  However,
7242 	 * to ensure the update actually makes it to any guest which
7243 	 * starts running in hardware virtualization between the set
7244 	 * and the acquisition of the spinlock, we must also ping the
7245 	 * CPU after setting the request bit.
7246 	 *
7247 	 */
7248 
7249 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7250 
7251 	mutex_lock(&kvm_lock);
7252 	list_for_each_entry(kvm, &vm_list, vm_list) {
7253 		kvm_for_each_vcpu(i, vcpu, kvm) {
7254 			if (vcpu->cpu != cpu)
7255 				continue;
7256 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7257 			if (vcpu->cpu != raw_smp_processor_id())
7258 				send_ipi = 1;
7259 		}
7260 	}
7261 	mutex_unlock(&kvm_lock);
7262 
7263 	if (freq->old < freq->new && send_ipi) {
7264 		/*
7265 		 * We upscale the frequency.  Must make the guest
7266 		 * doesn't see old kvmclock values while running with
7267 		 * the new frequency, otherwise we risk the guest sees
7268 		 * time go backwards.
7269 		 *
7270 		 * In case we update the frequency for another cpu
7271 		 * (which might be in guest context) send an interrupt
7272 		 * to kick the cpu out of guest context.  Next time
7273 		 * guest context is entered kvmclock will be updated,
7274 		 * so the guest will not see stale values.
7275 		 */
7276 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7277 	}
7278 }
7279 
7280 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7281 				     void *data)
7282 {
7283 	struct cpufreq_freqs *freq = data;
7284 	int cpu;
7285 
7286 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7287 		return 0;
7288 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7289 		return 0;
7290 
7291 	for_each_cpu(cpu, freq->policy->cpus)
7292 		__kvmclock_cpufreq_notifier(freq, cpu);
7293 
7294 	return 0;
7295 }
7296 
7297 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7298 	.notifier_call  = kvmclock_cpufreq_notifier
7299 };
7300 
7301 static int kvmclock_cpu_online(unsigned int cpu)
7302 {
7303 	tsc_khz_changed(NULL);
7304 	return 0;
7305 }
7306 
7307 static void kvm_timer_init(void)
7308 {
7309 	max_tsc_khz = tsc_khz;
7310 
7311 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7312 #ifdef CONFIG_CPU_FREQ
7313 		struct cpufreq_policy *policy;
7314 		int cpu;
7315 
7316 		cpu = get_cpu();
7317 		policy = cpufreq_cpu_get(cpu);
7318 		if (policy) {
7319 			if (policy->cpuinfo.max_freq)
7320 				max_tsc_khz = policy->cpuinfo.max_freq;
7321 			cpufreq_cpu_put(policy);
7322 		}
7323 		put_cpu();
7324 #endif
7325 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7326 					  CPUFREQ_TRANSITION_NOTIFIER);
7327 	}
7328 
7329 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7330 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7331 }
7332 
7333 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7334 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7335 
7336 int kvm_is_in_guest(void)
7337 {
7338 	return __this_cpu_read(current_vcpu) != NULL;
7339 }
7340 
7341 static int kvm_is_user_mode(void)
7342 {
7343 	int user_mode = 3;
7344 
7345 	if (__this_cpu_read(current_vcpu))
7346 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7347 
7348 	return user_mode != 0;
7349 }
7350 
7351 static unsigned long kvm_get_guest_ip(void)
7352 {
7353 	unsigned long ip = 0;
7354 
7355 	if (__this_cpu_read(current_vcpu))
7356 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7357 
7358 	return ip;
7359 }
7360 
7361 static void kvm_handle_intel_pt_intr(void)
7362 {
7363 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7364 
7365 	kvm_make_request(KVM_REQ_PMI, vcpu);
7366 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7367 			(unsigned long *)&vcpu->arch.pmu.global_status);
7368 }
7369 
7370 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7371 	.is_in_guest		= kvm_is_in_guest,
7372 	.is_user_mode		= kvm_is_user_mode,
7373 	.get_guest_ip		= kvm_get_guest_ip,
7374 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7375 };
7376 
7377 #ifdef CONFIG_X86_64
7378 static void pvclock_gtod_update_fn(struct work_struct *work)
7379 {
7380 	struct kvm *kvm;
7381 
7382 	struct kvm_vcpu *vcpu;
7383 	int i;
7384 
7385 	mutex_lock(&kvm_lock);
7386 	list_for_each_entry(kvm, &vm_list, vm_list)
7387 		kvm_for_each_vcpu(i, vcpu, kvm)
7388 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7389 	atomic_set(&kvm_guest_has_master_clock, 0);
7390 	mutex_unlock(&kvm_lock);
7391 }
7392 
7393 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7394 
7395 /*
7396  * Notification about pvclock gtod data update.
7397  */
7398 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7399 			       void *priv)
7400 {
7401 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7402 	struct timekeeper *tk = priv;
7403 
7404 	update_pvclock_gtod(tk);
7405 
7406 	/* disable master clock if host does not trust, or does not
7407 	 * use, TSC based clocksource.
7408 	 */
7409 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7410 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7411 		queue_work(system_long_wq, &pvclock_gtod_work);
7412 
7413 	return 0;
7414 }
7415 
7416 static struct notifier_block pvclock_gtod_notifier = {
7417 	.notifier_call = pvclock_gtod_notify,
7418 };
7419 #endif
7420 
7421 int kvm_arch_init(void *opaque)
7422 {
7423 	struct kvm_x86_init_ops *ops = opaque;
7424 	int r;
7425 
7426 	if (kvm_x86_ops.hardware_enable) {
7427 		printk(KERN_ERR "kvm: already loaded the other module\n");
7428 		r = -EEXIST;
7429 		goto out;
7430 	}
7431 
7432 	if (!ops->cpu_has_kvm_support()) {
7433 		pr_err_ratelimited("kvm: no hardware support\n");
7434 		r = -EOPNOTSUPP;
7435 		goto out;
7436 	}
7437 	if (ops->disabled_by_bios()) {
7438 		pr_err_ratelimited("kvm: disabled by bios\n");
7439 		r = -EOPNOTSUPP;
7440 		goto out;
7441 	}
7442 
7443 	/*
7444 	 * KVM explicitly assumes that the guest has an FPU and
7445 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7446 	 * vCPU's FPU state as a fxregs_state struct.
7447 	 */
7448 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7449 		printk(KERN_ERR "kvm: inadequate fpu\n");
7450 		r = -EOPNOTSUPP;
7451 		goto out;
7452 	}
7453 
7454 	r = -ENOMEM;
7455 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7456 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7457 					  NULL);
7458 	if (!x86_fpu_cache) {
7459 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7460 		goto out;
7461 	}
7462 
7463 	x86_emulator_cache = kvm_alloc_emulator_cache();
7464 	if (!x86_emulator_cache) {
7465 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7466 		goto out_free_x86_fpu_cache;
7467 	}
7468 
7469 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7470 	if (!shared_msrs) {
7471 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7472 		goto out_free_x86_emulator_cache;
7473 	}
7474 
7475 	r = kvm_mmu_module_init();
7476 	if (r)
7477 		goto out_free_percpu;
7478 
7479 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7480 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7481 			PT_PRESENT_MASK, 0, sme_me_mask);
7482 	kvm_timer_init();
7483 
7484 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7485 
7486 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7487 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7488 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7489 	}
7490 
7491 	kvm_lapic_init();
7492 	if (pi_inject_timer == -1)
7493 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7494 #ifdef CONFIG_X86_64
7495 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7496 
7497 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7498 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7499 #endif
7500 
7501 	return 0;
7502 
7503 out_free_percpu:
7504 	free_percpu(shared_msrs);
7505 out_free_x86_emulator_cache:
7506 	kmem_cache_destroy(x86_emulator_cache);
7507 out_free_x86_fpu_cache:
7508 	kmem_cache_destroy(x86_fpu_cache);
7509 out:
7510 	return r;
7511 }
7512 
7513 void kvm_arch_exit(void)
7514 {
7515 #ifdef CONFIG_X86_64
7516 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7517 		clear_hv_tscchange_cb();
7518 #endif
7519 	kvm_lapic_exit();
7520 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7521 
7522 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7523 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7524 					    CPUFREQ_TRANSITION_NOTIFIER);
7525 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7526 #ifdef CONFIG_X86_64
7527 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7528 #endif
7529 	kvm_x86_ops.hardware_enable = NULL;
7530 	kvm_mmu_module_exit();
7531 	free_percpu(shared_msrs);
7532 	kmem_cache_destroy(x86_fpu_cache);
7533 }
7534 
7535 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7536 {
7537 	++vcpu->stat.halt_exits;
7538 	if (lapic_in_kernel(vcpu)) {
7539 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7540 		return 1;
7541 	} else {
7542 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7543 		return 0;
7544 	}
7545 }
7546 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7547 
7548 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7549 {
7550 	int ret = kvm_skip_emulated_instruction(vcpu);
7551 	/*
7552 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7553 	 * KVM_EXIT_DEBUG here.
7554 	 */
7555 	return kvm_vcpu_halt(vcpu) && ret;
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7558 
7559 #ifdef CONFIG_X86_64
7560 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7561 			        unsigned long clock_type)
7562 {
7563 	struct kvm_clock_pairing clock_pairing;
7564 	struct timespec64 ts;
7565 	u64 cycle;
7566 	int ret;
7567 
7568 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7569 		return -KVM_EOPNOTSUPP;
7570 
7571 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7572 		return -KVM_EOPNOTSUPP;
7573 
7574 	clock_pairing.sec = ts.tv_sec;
7575 	clock_pairing.nsec = ts.tv_nsec;
7576 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7577 	clock_pairing.flags = 0;
7578 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7579 
7580 	ret = 0;
7581 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7582 			    sizeof(struct kvm_clock_pairing)))
7583 		ret = -KVM_EFAULT;
7584 
7585 	return ret;
7586 }
7587 #endif
7588 
7589 /*
7590  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7591  *
7592  * @apicid - apicid of vcpu to be kicked.
7593  */
7594 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7595 {
7596 	struct kvm_lapic_irq lapic_irq;
7597 
7598 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7599 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7600 	lapic_irq.level = 0;
7601 	lapic_irq.dest_id = apicid;
7602 	lapic_irq.msi_redir_hint = false;
7603 
7604 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7605 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7606 }
7607 
7608 bool kvm_apicv_activated(struct kvm *kvm)
7609 {
7610 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7611 }
7612 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7613 
7614 void kvm_apicv_init(struct kvm *kvm, bool enable)
7615 {
7616 	if (enable)
7617 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7618 			  &kvm->arch.apicv_inhibit_reasons);
7619 	else
7620 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7621 			&kvm->arch.apicv_inhibit_reasons);
7622 }
7623 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7624 
7625 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7626 {
7627 	struct kvm_vcpu *target = NULL;
7628 	struct kvm_apic_map *map;
7629 
7630 	rcu_read_lock();
7631 	map = rcu_dereference(kvm->arch.apic_map);
7632 
7633 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7634 		target = map->phys_map[dest_id]->vcpu;
7635 
7636 	rcu_read_unlock();
7637 
7638 	if (target && READ_ONCE(target->ready))
7639 		kvm_vcpu_yield_to(target);
7640 }
7641 
7642 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7643 {
7644 	unsigned long nr, a0, a1, a2, a3, ret;
7645 	int op_64_bit;
7646 
7647 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7648 		return kvm_hv_hypercall(vcpu);
7649 
7650 	nr = kvm_rax_read(vcpu);
7651 	a0 = kvm_rbx_read(vcpu);
7652 	a1 = kvm_rcx_read(vcpu);
7653 	a2 = kvm_rdx_read(vcpu);
7654 	a3 = kvm_rsi_read(vcpu);
7655 
7656 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7657 
7658 	op_64_bit = is_64_bit_mode(vcpu);
7659 	if (!op_64_bit) {
7660 		nr &= 0xFFFFFFFF;
7661 		a0 &= 0xFFFFFFFF;
7662 		a1 &= 0xFFFFFFFF;
7663 		a2 &= 0xFFFFFFFF;
7664 		a3 &= 0xFFFFFFFF;
7665 	}
7666 
7667 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7668 		ret = -KVM_EPERM;
7669 		goto out;
7670 	}
7671 
7672 	switch (nr) {
7673 	case KVM_HC_VAPIC_POLL_IRQ:
7674 		ret = 0;
7675 		break;
7676 	case KVM_HC_KICK_CPU:
7677 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7678 		kvm_sched_yield(vcpu->kvm, a1);
7679 		ret = 0;
7680 		break;
7681 #ifdef CONFIG_X86_64
7682 	case KVM_HC_CLOCK_PAIRING:
7683 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7684 		break;
7685 #endif
7686 	case KVM_HC_SEND_IPI:
7687 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7688 		break;
7689 	case KVM_HC_SCHED_YIELD:
7690 		kvm_sched_yield(vcpu->kvm, a0);
7691 		ret = 0;
7692 		break;
7693 	default:
7694 		ret = -KVM_ENOSYS;
7695 		break;
7696 	}
7697 out:
7698 	if (!op_64_bit)
7699 		ret = (u32)ret;
7700 	kvm_rax_write(vcpu, ret);
7701 
7702 	++vcpu->stat.hypercalls;
7703 	return kvm_skip_emulated_instruction(vcpu);
7704 }
7705 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7706 
7707 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7708 {
7709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 	char instruction[3];
7711 	unsigned long rip = kvm_rip_read(vcpu);
7712 
7713 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7714 
7715 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7716 		&ctxt->exception);
7717 }
7718 
7719 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7720 {
7721 	return vcpu->run->request_interrupt_window &&
7722 		likely(!pic_in_kernel(vcpu->kvm));
7723 }
7724 
7725 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7726 {
7727 	struct kvm_run *kvm_run = vcpu->run;
7728 
7729 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7730 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7731 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7732 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7733 	kvm_run->ready_for_interrupt_injection =
7734 		pic_in_kernel(vcpu->kvm) ||
7735 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7736 }
7737 
7738 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7739 {
7740 	int max_irr, tpr;
7741 
7742 	if (!kvm_x86_ops.update_cr8_intercept)
7743 		return;
7744 
7745 	if (!lapic_in_kernel(vcpu))
7746 		return;
7747 
7748 	if (vcpu->arch.apicv_active)
7749 		return;
7750 
7751 	if (!vcpu->arch.apic->vapic_addr)
7752 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7753 	else
7754 		max_irr = -1;
7755 
7756 	if (max_irr != -1)
7757 		max_irr >>= 4;
7758 
7759 	tpr = kvm_lapic_get_cr8(vcpu);
7760 
7761 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7762 }
7763 
7764 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7765 {
7766 	int r;
7767 	bool can_inject = true;
7768 
7769 	/* try to reinject previous events if any */
7770 
7771 	if (vcpu->arch.exception.injected) {
7772 		kvm_x86_ops.queue_exception(vcpu);
7773 		can_inject = false;
7774 	}
7775 	/*
7776 	 * Do not inject an NMI or interrupt if there is a pending
7777 	 * exception.  Exceptions and interrupts are recognized at
7778 	 * instruction boundaries, i.e. the start of an instruction.
7779 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7780 	 * NMIs and interrupts, i.e. traps are recognized before an
7781 	 * NMI/interrupt that's pending on the same instruction.
7782 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7783 	 * priority, but are only generated (pended) during instruction
7784 	 * execution, i.e. a pending fault-like exception means the
7785 	 * fault occurred on the *previous* instruction and must be
7786 	 * serviced prior to recognizing any new events in order to
7787 	 * fully complete the previous instruction.
7788 	 */
7789 	else if (!vcpu->arch.exception.pending) {
7790 		if (vcpu->arch.nmi_injected) {
7791 			kvm_x86_ops.set_nmi(vcpu);
7792 			can_inject = false;
7793 		} else if (vcpu->arch.interrupt.injected) {
7794 			kvm_x86_ops.set_irq(vcpu);
7795 			can_inject = false;
7796 		}
7797 	}
7798 
7799 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
7800 		     vcpu->arch.exception.pending);
7801 
7802 	/*
7803 	 * Call check_nested_events() even if we reinjected a previous event
7804 	 * in order for caller to determine if it should require immediate-exit
7805 	 * from L2 to L1 due to pending L1 events which require exit
7806 	 * from L2 to L1.
7807 	 */
7808 	if (is_guest_mode(vcpu)) {
7809 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
7810 		if (r < 0)
7811 			goto busy;
7812 	}
7813 
7814 	/* try to inject new event if pending */
7815 	if (vcpu->arch.exception.pending) {
7816 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7817 					vcpu->arch.exception.has_error_code,
7818 					vcpu->arch.exception.error_code);
7819 
7820 		vcpu->arch.exception.pending = false;
7821 		vcpu->arch.exception.injected = true;
7822 
7823 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7824 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7825 					     X86_EFLAGS_RF);
7826 
7827 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7828 			kvm_deliver_exception_payload(vcpu);
7829 			if (vcpu->arch.dr7 & DR7_GD) {
7830 				vcpu->arch.dr7 &= ~DR7_GD;
7831 				kvm_update_dr7(vcpu);
7832 			}
7833 		}
7834 
7835 		kvm_x86_ops.queue_exception(vcpu);
7836 		can_inject = false;
7837 	}
7838 
7839 	/*
7840 	 * Finally, inject interrupt events.  If an event cannot be injected
7841 	 * due to architectural conditions (e.g. IF=0) a window-open exit
7842 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7843 	 * and can architecturally be injected, but we cannot do it right now:
7844 	 * an interrupt could have arrived just now and we have to inject it
7845 	 * as a vmexit, or there could already an event in the queue, which is
7846 	 * indicated by can_inject.  In that case we request an immediate exit
7847 	 * in order to make progress and get back here for another iteration.
7848 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7849 	 */
7850 	if (vcpu->arch.smi_pending) {
7851 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7852 		if (r < 0)
7853 			goto busy;
7854 		if (r) {
7855 			vcpu->arch.smi_pending = false;
7856 			++vcpu->arch.smi_count;
7857 			enter_smm(vcpu);
7858 			can_inject = false;
7859 		} else
7860 			kvm_x86_ops.enable_smi_window(vcpu);
7861 	}
7862 
7863 	if (vcpu->arch.nmi_pending) {
7864 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7865 		if (r < 0)
7866 			goto busy;
7867 		if (r) {
7868 			--vcpu->arch.nmi_pending;
7869 			vcpu->arch.nmi_injected = true;
7870 			kvm_x86_ops.set_nmi(vcpu);
7871 			can_inject = false;
7872 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7873 		}
7874 		if (vcpu->arch.nmi_pending)
7875 			kvm_x86_ops.enable_nmi_window(vcpu);
7876 	}
7877 
7878 	if (kvm_cpu_has_injectable_intr(vcpu)) {
7879 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7880 		if (r < 0)
7881 			goto busy;
7882 		if (r) {
7883 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7884 			kvm_x86_ops.set_irq(vcpu);
7885 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7886 		}
7887 		if (kvm_cpu_has_injectable_intr(vcpu))
7888 			kvm_x86_ops.enable_irq_window(vcpu);
7889 	}
7890 
7891 	if (is_guest_mode(vcpu) &&
7892 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
7893 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7894 		*req_immediate_exit = true;
7895 
7896 	WARN_ON(vcpu->arch.exception.pending);
7897 	return;
7898 
7899 busy:
7900 	*req_immediate_exit = true;
7901 	return;
7902 }
7903 
7904 static void process_nmi(struct kvm_vcpu *vcpu)
7905 {
7906 	unsigned limit = 2;
7907 
7908 	/*
7909 	 * x86 is limited to one NMI running, and one NMI pending after it.
7910 	 * If an NMI is already in progress, limit further NMIs to just one.
7911 	 * Otherwise, allow two (and we'll inject the first one immediately).
7912 	 */
7913 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7914 		limit = 1;
7915 
7916 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7917 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7918 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7919 }
7920 
7921 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7922 {
7923 	u32 flags = 0;
7924 	flags |= seg->g       << 23;
7925 	flags |= seg->db      << 22;
7926 	flags |= seg->l       << 21;
7927 	flags |= seg->avl     << 20;
7928 	flags |= seg->present << 15;
7929 	flags |= seg->dpl     << 13;
7930 	flags |= seg->s       << 12;
7931 	flags |= seg->type    << 8;
7932 	return flags;
7933 }
7934 
7935 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7936 {
7937 	struct kvm_segment seg;
7938 	int offset;
7939 
7940 	kvm_get_segment(vcpu, &seg, n);
7941 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7942 
7943 	if (n < 3)
7944 		offset = 0x7f84 + n * 12;
7945 	else
7946 		offset = 0x7f2c + (n - 3) * 12;
7947 
7948 	put_smstate(u32, buf, offset + 8, seg.base);
7949 	put_smstate(u32, buf, offset + 4, seg.limit);
7950 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7951 }
7952 
7953 #ifdef CONFIG_X86_64
7954 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7955 {
7956 	struct kvm_segment seg;
7957 	int offset;
7958 	u16 flags;
7959 
7960 	kvm_get_segment(vcpu, &seg, n);
7961 	offset = 0x7e00 + n * 16;
7962 
7963 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7964 	put_smstate(u16, buf, offset, seg.selector);
7965 	put_smstate(u16, buf, offset + 2, flags);
7966 	put_smstate(u32, buf, offset + 4, seg.limit);
7967 	put_smstate(u64, buf, offset + 8, seg.base);
7968 }
7969 #endif
7970 
7971 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7972 {
7973 	struct desc_ptr dt;
7974 	struct kvm_segment seg;
7975 	unsigned long val;
7976 	int i;
7977 
7978 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7979 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7980 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7981 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7982 
7983 	for (i = 0; i < 8; i++)
7984 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7985 
7986 	kvm_get_dr(vcpu, 6, &val);
7987 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7988 	kvm_get_dr(vcpu, 7, &val);
7989 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7990 
7991 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7992 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7993 	put_smstate(u32, buf, 0x7f64, seg.base);
7994 	put_smstate(u32, buf, 0x7f60, seg.limit);
7995 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7996 
7997 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7998 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7999 	put_smstate(u32, buf, 0x7f80, seg.base);
8000 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8001 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8002 
8003 	kvm_x86_ops.get_gdt(vcpu, &dt);
8004 	put_smstate(u32, buf, 0x7f74, dt.address);
8005 	put_smstate(u32, buf, 0x7f70, dt.size);
8006 
8007 	kvm_x86_ops.get_idt(vcpu, &dt);
8008 	put_smstate(u32, buf, 0x7f58, dt.address);
8009 	put_smstate(u32, buf, 0x7f54, dt.size);
8010 
8011 	for (i = 0; i < 6; i++)
8012 		enter_smm_save_seg_32(vcpu, buf, i);
8013 
8014 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8015 
8016 	/* revision id */
8017 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8018 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8019 }
8020 
8021 #ifdef CONFIG_X86_64
8022 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8023 {
8024 	struct desc_ptr dt;
8025 	struct kvm_segment seg;
8026 	unsigned long val;
8027 	int i;
8028 
8029 	for (i = 0; i < 16; i++)
8030 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8031 
8032 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8033 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8034 
8035 	kvm_get_dr(vcpu, 6, &val);
8036 	put_smstate(u64, buf, 0x7f68, val);
8037 	kvm_get_dr(vcpu, 7, &val);
8038 	put_smstate(u64, buf, 0x7f60, val);
8039 
8040 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8041 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8042 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8043 
8044 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8045 
8046 	/* revision id */
8047 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8048 
8049 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8050 
8051 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8052 	put_smstate(u16, buf, 0x7e90, seg.selector);
8053 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8054 	put_smstate(u32, buf, 0x7e94, seg.limit);
8055 	put_smstate(u64, buf, 0x7e98, seg.base);
8056 
8057 	kvm_x86_ops.get_idt(vcpu, &dt);
8058 	put_smstate(u32, buf, 0x7e84, dt.size);
8059 	put_smstate(u64, buf, 0x7e88, dt.address);
8060 
8061 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8062 	put_smstate(u16, buf, 0x7e70, seg.selector);
8063 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8064 	put_smstate(u32, buf, 0x7e74, seg.limit);
8065 	put_smstate(u64, buf, 0x7e78, seg.base);
8066 
8067 	kvm_x86_ops.get_gdt(vcpu, &dt);
8068 	put_smstate(u32, buf, 0x7e64, dt.size);
8069 	put_smstate(u64, buf, 0x7e68, dt.address);
8070 
8071 	for (i = 0; i < 6; i++)
8072 		enter_smm_save_seg_64(vcpu, buf, i);
8073 }
8074 #endif
8075 
8076 static void enter_smm(struct kvm_vcpu *vcpu)
8077 {
8078 	struct kvm_segment cs, ds;
8079 	struct desc_ptr dt;
8080 	char buf[512];
8081 	u32 cr0;
8082 
8083 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8084 	memset(buf, 0, 512);
8085 #ifdef CONFIG_X86_64
8086 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8087 		enter_smm_save_state_64(vcpu, buf);
8088 	else
8089 #endif
8090 		enter_smm_save_state_32(vcpu, buf);
8091 
8092 	/*
8093 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8094 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8095 	 * the SMM state-save area.
8096 	 */
8097 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8098 
8099 	vcpu->arch.hflags |= HF_SMM_MASK;
8100 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8101 
8102 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8103 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8104 	else
8105 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8106 
8107 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8108 	kvm_rip_write(vcpu, 0x8000);
8109 
8110 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8111 	kvm_x86_ops.set_cr0(vcpu, cr0);
8112 	vcpu->arch.cr0 = cr0;
8113 
8114 	kvm_x86_ops.set_cr4(vcpu, 0);
8115 
8116 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8117 	dt.address = dt.size = 0;
8118 	kvm_x86_ops.set_idt(vcpu, &dt);
8119 
8120 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8121 
8122 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8123 	cs.base = vcpu->arch.smbase;
8124 
8125 	ds.selector = 0;
8126 	ds.base = 0;
8127 
8128 	cs.limit    = ds.limit = 0xffffffff;
8129 	cs.type     = ds.type = 0x3;
8130 	cs.dpl      = ds.dpl = 0;
8131 	cs.db       = ds.db = 0;
8132 	cs.s        = ds.s = 1;
8133 	cs.l        = ds.l = 0;
8134 	cs.g        = ds.g = 1;
8135 	cs.avl      = ds.avl = 0;
8136 	cs.present  = ds.present = 1;
8137 	cs.unusable = ds.unusable = 0;
8138 	cs.padding  = ds.padding = 0;
8139 
8140 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8141 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8142 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8143 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8144 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8145 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8146 
8147 #ifdef CONFIG_X86_64
8148 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8149 		kvm_x86_ops.set_efer(vcpu, 0);
8150 #endif
8151 
8152 	kvm_update_cpuid(vcpu);
8153 	kvm_mmu_reset_context(vcpu);
8154 }
8155 
8156 static void process_smi(struct kvm_vcpu *vcpu)
8157 {
8158 	vcpu->arch.smi_pending = true;
8159 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8160 }
8161 
8162 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8163 				       unsigned long *vcpu_bitmap)
8164 {
8165 	cpumask_var_t cpus;
8166 
8167 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8168 
8169 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8170 				    NULL, vcpu_bitmap, cpus);
8171 
8172 	free_cpumask_var(cpus);
8173 }
8174 
8175 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8176 {
8177 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8178 }
8179 
8180 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8181 {
8182 	if (!lapic_in_kernel(vcpu))
8183 		return;
8184 
8185 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8186 	kvm_apic_update_apicv(vcpu);
8187 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8188 }
8189 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8190 
8191 /*
8192  * NOTE: Do not hold any lock prior to calling this.
8193  *
8194  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8195  * locked, because it calls __x86_set_memory_region() which does
8196  * synchronize_srcu(&kvm->srcu).
8197  */
8198 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8199 {
8200 	struct kvm_vcpu *except;
8201 	unsigned long old, new, expected;
8202 
8203 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8204 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8205 		return;
8206 
8207 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8208 	do {
8209 		expected = new = old;
8210 		if (activate)
8211 			__clear_bit(bit, &new);
8212 		else
8213 			__set_bit(bit, &new);
8214 		if (new == old)
8215 			break;
8216 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8217 	} while (old != expected);
8218 
8219 	if (!!old == !!new)
8220 		return;
8221 
8222 	trace_kvm_apicv_update_request(activate, bit);
8223 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8224 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8225 
8226 	/*
8227 	 * Sending request to update APICV for all other vcpus,
8228 	 * while update the calling vcpu immediately instead of
8229 	 * waiting for another #VMEXIT to handle the request.
8230 	 */
8231 	except = kvm_get_running_vcpu();
8232 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8233 					 except);
8234 	if (except)
8235 		kvm_vcpu_update_apicv(except);
8236 }
8237 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8238 
8239 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8240 {
8241 	if (!kvm_apic_present(vcpu))
8242 		return;
8243 
8244 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8245 
8246 	if (irqchip_split(vcpu->kvm))
8247 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8248 	else {
8249 		if (vcpu->arch.apicv_active)
8250 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8251 		if (ioapic_in_kernel(vcpu->kvm))
8252 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8253 	}
8254 
8255 	if (is_guest_mode(vcpu))
8256 		vcpu->arch.load_eoi_exitmap_pending = true;
8257 	else
8258 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8259 }
8260 
8261 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8262 {
8263 	u64 eoi_exit_bitmap[4];
8264 
8265 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8266 		return;
8267 
8268 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8269 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8270 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8271 }
8272 
8273 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8274 					    unsigned long start, unsigned long end)
8275 {
8276 	unsigned long apic_address;
8277 
8278 	/*
8279 	 * The physical address of apic access page is stored in the VMCS.
8280 	 * Update it when it becomes invalid.
8281 	 */
8282 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8283 	if (start <= apic_address && apic_address < end)
8284 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8285 }
8286 
8287 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8288 {
8289 	if (!lapic_in_kernel(vcpu))
8290 		return;
8291 
8292 	if (!kvm_x86_ops.set_apic_access_page_addr)
8293 		return;
8294 
8295 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8296 }
8297 
8298 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8299 {
8300 	smp_send_reschedule(vcpu->cpu);
8301 }
8302 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8303 
8304 /*
8305  * Returns 1 to let vcpu_run() continue the guest execution loop without
8306  * exiting to the userspace.  Otherwise, the value will be returned to the
8307  * userspace.
8308  */
8309 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8310 {
8311 	int r;
8312 	bool req_int_win =
8313 		dm_request_for_irq_injection(vcpu) &&
8314 		kvm_cpu_accept_dm_intr(vcpu);
8315 	fastpath_t exit_fastpath;
8316 
8317 	bool req_immediate_exit = false;
8318 
8319 	if (kvm_request_pending(vcpu)) {
8320 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8321 			if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8322 				r = 0;
8323 				goto out;
8324 			}
8325 		}
8326 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8327 			kvm_mmu_unload(vcpu);
8328 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8329 			__kvm_migrate_timers(vcpu);
8330 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8331 			kvm_gen_update_masterclock(vcpu->kvm);
8332 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8333 			kvm_gen_kvmclock_update(vcpu);
8334 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8335 			r = kvm_guest_time_update(vcpu);
8336 			if (unlikely(r))
8337 				goto out;
8338 		}
8339 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8340 			kvm_mmu_sync_roots(vcpu);
8341 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8342 			kvm_mmu_load_pgd(vcpu);
8343 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8344 			kvm_vcpu_flush_tlb_all(vcpu);
8345 
8346 			/* Flushing all ASIDs flushes the current ASID... */
8347 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8348 		}
8349 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8350 			kvm_vcpu_flush_tlb_current(vcpu);
8351 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8352 			kvm_vcpu_flush_tlb_guest(vcpu);
8353 
8354 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8355 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8356 			r = 0;
8357 			goto out;
8358 		}
8359 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8360 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8361 			vcpu->mmio_needed = 0;
8362 			r = 0;
8363 			goto out;
8364 		}
8365 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8366 			/* Page is swapped out. Do synthetic halt */
8367 			vcpu->arch.apf.halted = true;
8368 			r = 1;
8369 			goto out;
8370 		}
8371 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8372 			record_steal_time(vcpu);
8373 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8374 			process_smi(vcpu);
8375 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8376 			process_nmi(vcpu);
8377 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8378 			kvm_pmu_handle_event(vcpu);
8379 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8380 			kvm_pmu_deliver_pmi(vcpu);
8381 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8382 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8383 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8384 				     vcpu->arch.ioapic_handled_vectors)) {
8385 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8386 				vcpu->run->eoi.vector =
8387 						vcpu->arch.pending_ioapic_eoi;
8388 				r = 0;
8389 				goto out;
8390 			}
8391 		}
8392 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8393 			vcpu_scan_ioapic(vcpu);
8394 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8395 			vcpu_load_eoi_exitmap(vcpu);
8396 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8397 			kvm_vcpu_reload_apic_access_page(vcpu);
8398 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8399 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8400 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8401 			r = 0;
8402 			goto out;
8403 		}
8404 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8405 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8406 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8407 			r = 0;
8408 			goto out;
8409 		}
8410 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8411 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8412 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8413 			r = 0;
8414 			goto out;
8415 		}
8416 
8417 		/*
8418 		 * KVM_REQ_HV_STIMER has to be processed after
8419 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8420 		 * depend on the guest clock being up-to-date
8421 		 */
8422 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8423 			kvm_hv_process_stimers(vcpu);
8424 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8425 			kvm_vcpu_update_apicv(vcpu);
8426 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8427 			kvm_check_async_pf_completion(vcpu);
8428 	}
8429 
8430 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8431 		++vcpu->stat.req_event;
8432 		kvm_apic_accept_events(vcpu);
8433 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8434 			r = 1;
8435 			goto out;
8436 		}
8437 
8438 		inject_pending_event(vcpu, &req_immediate_exit);
8439 		if (req_int_win)
8440 			kvm_x86_ops.enable_irq_window(vcpu);
8441 
8442 		if (kvm_lapic_enabled(vcpu)) {
8443 			update_cr8_intercept(vcpu);
8444 			kvm_lapic_sync_to_vapic(vcpu);
8445 		}
8446 	}
8447 
8448 	r = kvm_mmu_reload(vcpu);
8449 	if (unlikely(r)) {
8450 		goto cancel_injection;
8451 	}
8452 
8453 	preempt_disable();
8454 
8455 	kvm_x86_ops.prepare_guest_switch(vcpu);
8456 
8457 	/*
8458 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8459 	 * IPI are then delayed after guest entry, which ensures that they
8460 	 * result in virtual interrupt delivery.
8461 	 */
8462 	local_irq_disable();
8463 	vcpu->mode = IN_GUEST_MODE;
8464 
8465 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8466 
8467 	/*
8468 	 * 1) We should set ->mode before checking ->requests.  Please see
8469 	 * the comment in kvm_vcpu_exiting_guest_mode().
8470 	 *
8471 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8472 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8473 	 * (see vmx_deliver_posted_interrupt).
8474 	 *
8475 	 * 3) This also orders the write to mode from any reads to the page
8476 	 * tables done while the VCPU is running.  Please see the comment
8477 	 * in kvm_flush_remote_tlbs.
8478 	 */
8479 	smp_mb__after_srcu_read_unlock();
8480 
8481 	/*
8482 	 * This handles the case where a posted interrupt was
8483 	 * notified with kvm_vcpu_kick.
8484 	 */
8485 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8486 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8487 
8488 	if (kvm_vcpu_exit_request(vcpu)) {
8489 		vcpu->mode = OUTSIDE_GUEST_MODE;
8490 		smp_wmb();
8491 		local_irq_enable();
8492 		preempt_enable();
8493 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8494 		r = 1;
8495 		goto cancel_injection;
8496 	}
8497 
8498 	if (req_immediate_exit) {
8499 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8500 		kvm_x86_ops.request_immediate_exit(vcpu);
8501 	}
8502 
8503 	trace_kvm_entry(vcpu->vcpu_id);
8504 	guest_enter_irqoff();
8505 
8506 	fpregs_assert_state_consistent();
8507 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8508 		switch_fpu_return();
8509 
8510 	if (unlikely(vcpu->arch.switch_db_regs)) {
8511 		set_debugreg(0, 7);
8512 		set_debugreg(vcpu->arch.eff_db[0], 0);
8513 		set_debugreg(vcpu->arch.eff_db[1], 1);
8514 		set_debugreg(vcpu->arch.eff_db[2], 2);
8515 		set_debugreg(vcpu->arch.eff_db[3], 3);
8516 		set_debugreg(vcpu->arch.dr6, 6);
8517 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8518 	}
8519 
8520 	exit_fastpath = kvm_x86_ops.run(vcpu);
8521 
8522 	/*
8523 	 * Do this here before restoring debug registers on the host.  And
8524 	 * since we do this before handling the vmexit, a DR access vmexit
8525 	 * can (a) read the correct value of the debug registers, (b) set
8526 	 * KVM_DEBUGREG_WONT_EXIT again.
8527 	 */
8528 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8529 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8530 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8531 		kvm_update_dr0123(vcpu);
8532 		kvm_update_dr7(vcpu);
8533 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8534 	}
8535 
8536 	/*
8537 	 * If the guest has used debug registers, at least dr7
8538 	 * will be disabled while returning to the host.
8539 	 * If we don't have active breakpoints in the host, we don't
8540 	 * care about the messed up debug address registers. But if
8541 	 * we have some of them active, restore the old state.
8542 	 */
8543 	if (hw_breakpoint_active())
8544 		hw_breakpoint_restore();
8545 
8546 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8547 
8548 	vcpu->mode = OUTSIDE_GUEST_MODE;
8549 	smp_wmb();
8550 
8551 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8552 
8553 	/*
8554 	 * Consume any pending interrupts, including the possible source of
8555 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8556 	 * An instruction is required after local_irq_enable() to fully unblock
8557 	 * interrupts on processors that implement an interrupt shadow, the
8558 	 * stat.exits increment will do nicely.
8559 	 */
8560 	kvm_before_interrupt(vcpu);
8561 	local_irq_enable();
8562 	++vcpu->stat.exits;
8563 	local_irq_disable();
8564 	kvm_after_interrupt(vcpu);
8565 
8566 	guest_exit_irqoff();
8567 	if (lapic_in_kernel(vcpu)) {
8568 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8569 		if (delta != S64_MIN) {
8570 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8571 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8572 		}
8573 	}
8574 
8575 	local_irq_enable();
8576 	preempt_enable();
8577 
8578 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8579 
8580 	/*
8581 	 * Profile KVM exit RIPs:
8582 	 */
8583 	if (unlikely(prof_on == KVM_PROFILING)) {
8584 		unsigned long rip = kvm_rip_read(vcpu);
8585 		profile_hit(KVM_PROFILING, (void *)rip);
8586 	}
8587 
8588 	if (unlikely(vcpu->arch.tsc_always_catchup))
8589 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8590 
8591 	if (vcpu->arch.apic_attention)
8592 		kvm_lapic_sync_from_vapic(vcpu);
8593 
8594 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8595 	return r;
8596 
8597 cancel_injection:
8598 	if (req_immediate_exit)
8599 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8600 	kvm_x86_ops.cancel_injection(vcpu);
8601 	if (unlikely(vcpu->arch.apic_attention))
8602 		kvm_lapic_sync_from_vapic(vcpu);
8603 out:
8604 	return r;
8605 }
8606 
8607 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8608 {
8609 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8610 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8611 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8612 		kvm_vcpu_block(vcpu);
8613 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8614 
8615 		if (kvm_x86_ops.post_block)
8616 			kvm_x86_ops.post_block(vcpu);
8617 
8618 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8619 			return 1;
8620 	}
8621 
8622 	kvm_apic_accept_events(vcpu);
8623 	switch(vcpu->arch.mp_state) {
8624 	case KVM_MP_STATE_HALTED:
8625 		vcpu->arch.pv.pv_unhalted = false;
8626 		vcpu->arch.mp_state =
8627 			KVM_MP_STATE_RUNNABLE;
8628 		/* fall through */
8629 	case KVM_MP_STATE_RUNNABLE:
8630 		vcpu->arch.apf.halted = false;
8631 		break;
8632 	case KVM_MP_STATE_INIT_RECEIVED:
8633 		break;
8634 	default:
8635 		return -EINTR;
8636 	}
8637 	return 1;
8638 }
8639 
8640 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8641 {
8642 	if (is_guest_mode(vcpu))
8643 		kvm_x86_ops.nested_ops->check_events(vcpu);
8644 
8645 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8646 		!vcpu->arch.apf.halted);
8647 }
8648 
8649 static int vcpu_run(struct kvm_vcpu *vcpu)
8650 {
8651 	int r;
8652 	struct kvm *kvm = vcpu->kvm;
8653 
8654 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8655 	vcpu->arch.l1tf_flush_l1d = true;
8656 
8657 	for (;;) {
8658 		if (kvm_vcpu_running(vcpu)) {
8659 			r = vcpu_enter_guest(vcpu);
8660 		} else {
8661 			r = vcpu_block(kvm, vcpu);
8662 		}
8663 
8664 		if (r <= 0)
8665 			break;
8666 
8667 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8668 		if (kvm_cpu_has_pending_timer(vcpu))
8669 			kvm_inject_pending_timer_irqs(vcpu);
8670 
8671 		if (dm_request_for_irq_injection(vcpu) &&
8672 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8673 			r = 0;
8674 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8675 			++vcpu->stat.request_irq_exits;
8676 			break;
8677 		}
8678 
8679 		if (signal_pending(current)) {
8680 			r = -EINTR;
8681 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8682 			++vcpu->stat.signal_exits;
8683 			break;
8684 		}
8685 		if (need_resched()) {
8686 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8687 			cond_resched();
8688 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8689 		}
8690 	}
8691 
8692 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8693 
8694 	return r;
8695 }
8696 
8697 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8698 {
8699 	int r;
8700 
8701 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8702 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8703 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8704 	return r;
8705 }
8706 
8707 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8708 {
8709 	BUG_ON(!vcpu->arch.pio.count);
8710 
8711 	return complete_emulated_io(vcpu);
8712 }
8713 
8714 /*
8715  * Implements the following, as a state machine:
8716  *
8717  * read:
8718  *   for each fragment
8719  *     for each mmio piece in the fragment
8720  *       write gpa, len
8721  *       exit
8722  *       copy data
8723  *   execute insn
8724  *
8725  * write:
8726  *   for each fragment
8727  *     for each mmio piece in the fragment
8728  *       write gpa, len
8729  *       copy data
8730  *       exit
8731  */
8732 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8733 {
8734 	struct kvm_run *run = vcpu->run;
8735 	struct kvm_mmio_fragment *frag;
8736 	unsigned len;
8737 
8738 	BUG_ON(!vcpu->mmio_needed);
8739 
8740 	/* Complete previous fragment */
8741 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8742 	len = min(8u, frag->len);
8743 	if (!vcpu->mmio_is_write)
8744 		memcpy(frag->data, run->mmio.data, len);
8745 
8746 	if (frag->len <= 8) {
8747 		/* Switch to the next fragment. */
8748 		frag++;
8749 		vcpu->mmio_cur_fragment++;
8750 	} else {
8751 		/* Go forward to the next mmio piece. */
8752 		frag->data += len;
8753 		frag->gpa += len;
8754 		frag->len -= len;
8755 	}
8756 
8757 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8758 		vcpu->mmio_needed = 0;
8759 
8760 		/* FIXME: return into emulator if single-stepping.  */
8761 		if (vcpu->mmio_is_write)
8762 			return 1;
8763 		vcpu->mmio_read_completed = 1;
8764 		return complete_emulated_io(vcpu);
8765 	}
8766 
8767 	run->exit_reason = KVM_EXIT_MMIO;
8768 	run->mmio.phys_addr = frag->gpa;
8769 	if (vcpu->mmio_is_write)
8770 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8771 	run->mmio.len = min(8u, frag->len);
8772 	run->mmio.is_write = vcpu->mmio_is_write;
8773 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8774 	return 0;
8775 }
8776 
8777 static void kvm_save_current_fpu(struct fpu *fpu)
8778 {
8779 	/*
8780 	 * If the target FPU state is not resident in the CPU registers, just
8781 	 * memcpy() from current, else save CPU state directly to the target.
8782 	 */
8783 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8784 		memcpy(&fpu->state, &current->thread.fpu.state,
8785 		       fpu_kernel_xstate_size);
8786 	else
8787 		copy_fpregs_to_fpstate(fpu);
8788 }
8789 
8790 /* Swap (qemu) user FPU context for the guest FPU context. */
8791 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8792 {
8793 	fpregs_lock();
8794 
8795 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8796 
8797 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8798 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8799 				~XFEATURE_MASK_PKRU);
8800 
8801 	fpregs_mark_activate();
8802 	fpregs_unlock();
8803 
8804 	trace_kvm_fpu(1);
8805 }
8806 
8807 /* When vcpu_run ends, restore user space FPU context. */
8808 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8809 {
8810 	fpregs_lock();
8811 
8812 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8813 
8814 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8815 
8816 	fpregs_mark_activate();
8817 	fpregs_unlock();
8818 
8819 	++vcpu->stat.fpu_reload;
8820 	trace_kvm_fpu(0);
8821 }
8822 
8823 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8824 {
8825 	struct kvm_run *kvm_run = vcpu->run;
8826 	int r;
8827 
8828 	vcpu_load(vcpu);
8829 	kvm_sigset_activate(vcpu);
8830 	kvm_load_guest_fpu(vcpu);
8831 
8832 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8833 		if (kvm_run->immediate_exit) {
8834 			r = -EINTR;
8835 			goto out;
8836 		}
8837 		kvm_vcpu_block(vcpu);
8838 		kvm_apic_accept_events(vcpu);
8839 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8840 		r = -EAGAIN;
8841 		if (signal_pending(current)) {
8842 			r = -EINTR;
8843 			kvm_run->exit_reason = KVM_EXIT_INTR;
8844 			++vcpu->stat.signal_exits;
8845 		}
8846 		goto out;
8847 	}
8848 
8849 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8850 		r = -EINVAL;
8851 		goto out;
8852 	}
8853 
8854 	if (kvm_run->kvm_dirty_regs) {
8855 		r = sync_regs(vcpu);
8856 		if (r != 0)
8857 			goto out;
8858 	}
8859 
8860 	/* re-sync apic's tpr */
8861 	if (!lapic_in_kernel(vcpu)) {
8862 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8863 			r = -EINVAL;
8864 			goto out;
8865 		}
8866 	}
8867 
8868 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8869 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8870 		vcpu->arch.complete_userspace_io = NULL;
8871 		r = cui(vcpu);
8872 		if (r <= 0)
8873 			goto out;
8874 	} else
8875 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8876 
8877 	if (kvm_run->immediate_exit)
8878 		r = -EINTR;
8879 	else
8880 		r = vcpu_run(vcpu);
8881 
8882 out:
8883 	kvm_put_guest_fpu(vcpu);
8884 	if (kvm_run->kvm_valid_regs)
8885 		store_regs(vcpu);
8886 	post_kvm_run_save(vcpu);
8887 	kvm_sigset_deactivate(vcpu);
8888 
8889 	vcpu_put(vcpu);
8890 	return r;
8891 }
8892 
8893 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8894 {
8895 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8896 		/*
8897 		 * We are here if userspace calls get_regs() in the middle of
8898 		 * instruction emulation. Registers state needs to be copied
8899 		 * back from emulation context to vcpu. Userspace shouldn't do
8900 		 * that usually, but some bad designed PV devices (vmware
8901 		 * backdoor interface) need this to work
8902 		 */
8903 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8904 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8905 	}
8906 	regs->rax = kvm_rax_read(vcpu);
8907 	regs->rbx = kvm_rbx_read(vcpu);
8908 	regs->rcx = kvm_rcx_read(vcpu);
8909 	regs->rdx = kvm_rdx_read(vcpu);
8910 	regs->rsi = kvm_rsi_read(vcpu);
8911 	regs->rdi = kvm_rdi_read(vcpu);
8912 	regs->rsp = kvm_rsp_read(vcpu);
8913 	regs->rbp = kvm_rbp_read(vcpu);
8914 #ifdef CONFIG_X86_64
8915 	regs->r8 = kvm_r8_read(vcpu);
8916 	regs->r9 = kvm_r9_read(vcpu);
8917 	regs->r10 = kvm_r10_read(vcpu);
8918 	regs->r11 = kvm_r11_read(vcpu);
8919 	regs->r12 = kvm_r12_read(vcpu);
8920 	regs->r13 = kvm_r13_read(vcpu);
8921 	regs->r14 = kvm_r14_read(vcpu);
8922 	regs->r15 = kvm_r15_read(vcpu);
8923 #endif
8924 
8925 	regs->rip = kvm_rip_read(vcpu);
8926 	regs->rflags = kvm_get_rflags(vcpu);
8927 }
8928 
8929 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8930 {
8931 	vcpu_load(vcpu);
8932 	__get_regs(vcpu, regs);
8933 	vcpu_put(vcpu);
8934 	return 0;
8935 }
8936 
8937 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8938 {
8939 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8940 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8941 
8942 	kvm_rax_write(vcpu, regs->rax);
8943 	kvm_rbx_write(vcpu, regs->rbx);
8944 	kvm_rcx_write(vcpu, regs->rcx);
8945 	kvm_rdx_write(vcpu, regs->rdx);
8946 	kvm_rsi_write(vcpu, regs->rsi);
8947 	kvm_rdi_write(vcpu, regs->rdi);
8948 	kvm_rsp_write(vcpu, regs->rsp);
8949 	kvm_rbp_write(vcpu, regs->rbp);
8950 #ifdef CONFIG_X86_64
8951 	kvm_r8_write(vcpu, regs->r8);
8952 	kvm_r9_write(vcpu, regs->r9);
8953 	kvm_r10_write(vcpu, regs->r10);
8954 	kvm_r11_write(vcpu, regs->r11);
8955 	kvm_r12_write(vcpu, regs->r12);
8956 	kvm_r13_write(vcpu, regs->r13);
8957 	kvm_r14_write(vcpu, regs->r14);
8958 	kvm_r15_write(vcpu, regs->r15);
8959 #endif
8960 
8961 	kvm_rip_write(vcpu, regs->rip);
8962 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8963 
8964 	vcpu->arch.exception.pending = false;
8965 
8966 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8967 }
8968 
8969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8970 {
8971 	vcpu_load(vcpu);
8972 	__set_regs(vcpu, regs);
8973 	vcpu_put(vcpu);
8974 	return 0;
8975 }
8976 
8977 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8978 {
8979 	struct kvm_segment cs;
8980 
8981 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8982 	*db = cs.db;
8983 	*l = cs.l;
8984 }
8985 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8986 
8987 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8988 {
8989 	struct desc_ptr dt;
8990 
8991 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8992 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8993 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8994 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8995 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8996 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8997 
8998 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8999 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9000 
9001 	kvm_x86_ops.get_idt(vcpu, &dt);
9002 	sregs->idt.limit = dt.size;
9003 	sregs->idt.base = dt.address;
9004 	kvm_x86_ops.get_gdt(vcpu, &dt);
9005 	sregs->gdt.limit = dt.size;
9006 	sregs->gdt.base = dt.address;
9007 
9008 	sregs->cr0 = kvm_read_cr0(vcpu);
9009 	sregs->cr2 = vcpu->arch.cr2;
9010 	sregs->cr3 = kvm_read_cr3(vcpu);
9011 	sregs->cr4 = kvm_read_cr4(vcpu);
9012 	sregs->cr8 = kvm_get_cr8(vcpu);
9013 	sregs->efer = vcpu->arch.efer;
9014 	sregs->apic_base = kvm_get_apic_base(vcpu);
9015 
9016 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9017 
9018 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9019 		set_bit(vcpu->arch.interrupt.nr,
9020 			(unsigned long *)sregs->interrupt_bitmap);
9021 }
9022 
9023 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9024 				  struct kvm_sregs *sregs)
9025 {
9026 	vcpu_load(vcpu);
9027 	__get_sregs(vcpu, sregs);
9028 	vcpu_put(vcpu);
9029 	return 0;
9030 }
9031 
9032 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9033 				    struct kvm_mp_state *mp_state)
9034 {
9035 	vcpu_load(vcpu);
9036 	if (kvm_mpx_supported())
9037 		kvm_load_guest_fpu(vcpu);
9038 
9039 	kvm_apic_accept_events(vcpu);
9040 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9041 					vcpu->arch.pv.pv_unhalted)
9042 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9043 	else
9044 		mp_state->mp_state = vcpu->arch.mp_state;
9045 
9046 	if (kvm_mpx_supported())
9047 		kvm_put_guest_fpu(vcpu);
9048 	vcpu_put(vcpu);
9049 	return 0;
9050 }
9051 
9052 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9053 				    struct kvm_mp_state *mp_state)
9054 {
9055 	int ret = -EINVAL;
9056 
9057 	vcpu_load(vcpu);
9058 
9059 	if (!lapic_in_kernel(vcpu) &&
9060 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9061 		goto out;
9062 
9063 	/*
9064 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9065 	 * INIT state; latched init should be reported using
9066 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9067 	 */
9068 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9069 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9070 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9071 		goto out;
9072 
9073 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9074 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9075 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9076 	} else
9077 		vcpu->arch.mp_state = mp_state->mp_state;
9078 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9079 
9080 	ret = 0;
9081 out:
9082 	vcpu_put(vcpu);
9083 	return ret;
9084 }
9085 
9086 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9087 		    int reason, bool has_error_code, u32 error_code)
9088 {
9089 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9090 	int ret;
9091 
9092 	init_emulate_ctxt(vcpu);
9093 
9094 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9095 				   has_error_code, error_code);
9096 	if (ret) {
9097 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9098 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9099 		vcpu->run->internal.ndata = 0;
9100 		return 0;
9101 	}
9102 
9103 	kvm_rip_write(vcpu, ctxt->eip);
9104 	kvm_set_rflags(vcpu, ctxt->eflags);
9105 	return 1;
9106 }
9107 EXPORT_SYMBOL_GPL(kvm_task_switch);
9108 
9109 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9110 {
9111 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9112 		/*
9113 		 * When EFER.LME and CR0.PG are set, the processor is in
9114 		 * 64-bit mode (though maybe in a 32-bit code segment).
9115 		 * CR4.PAE and EFER.LMA must be set.
9116 		 */
9117 		if (!(sregs->cr4 & X86_CR4_PAE)
9118 		    || !(sregs->efer & EFER_LMA))
9119 			return -EINVAL;
9120 	} else {
9121 		/*
9122 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9123 		 * segment cannot be 64-bit.
9124 		 */
9125 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9126 			return -EINVAL;
9127 	}
9128 
9129 	return kvm_valid_cr4(vcpu, sregs->cr4);
9130 }
9131 
9132 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9133 {
9134 	struct msr_data apic_base_msr;
9135 	int mmu_reset_needed = 0;
9136 	int cpuid_update_needed = 0;
9137 	int pending_vec, max_bits, idx;
9138 	struct desc_ptr dt;
9139 	int ret = -EINVAL;
9140 
9141 	if (kvm_valid_sregs(vcpu, sregs))
9142 		goto out;
9143 
9144 	apic_base_msr.data = sregs->apic_base;
9145 	apic_base_msr.host_initiated = true;
9146 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9147 		goto out;
9148 
9149 	dt.size = sregs->idt.limit;
9150 	dt.address = sregs->idt.base;
9151 	kvm_x86_ops.set_idt(vcpu, &dt);
9152 	dt.size = sregs->gdt.limit;
9153 	dt.address = sregs->gdt.base;
9154 	kvm_x86_ops.set_gdt(vcpu, &dt);
9155 
9156 	vcpu->arch.cr2 = sregs->cr2;
9157 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9158 	vcpu->arch.cr3 = sregs->cr3;
9159 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9160 
9161 	kvm_set_cr8(vcpu, sregs->cr8);
9162 
9163 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9164 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9165 
9166 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9167 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9168 	vcpu->arch.cr0 = sregs->cr0;
9169 
9170 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9171 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9172 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9173 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9174 	if (cpuid_update_needed)
9175 		kvm_update_cpuid(vcpu);
9176 
9177 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9178 	if (is_pae_paging(vcpu)) {
9179 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9180 		mmu_reset_needed = 1;
9181 	}
9182 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9183 
9184 	if (mmu_reset_needed)
9185 		kvm_mmu_reset_context(vcpu);
9186 
9187 	max_bits = KVM_NR_INTERRUPTS;
9188 	pending_vec = find_first_bit(
9189 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9190 	if (pending_vec < max_bits) {
9191 		kvm_queue_interrupt(vcpu, pending_vec, false);
9192 		pr_debug("Set back pending irq %d\n", pending_vec);
9193 	}
9194 
9195 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9196 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9197 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9198 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9199 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9200 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9201 
9202 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9203 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9204 
9205 	update_cr8_intercept(vcpu);
9206 
9207 	/* Older userspace won't unhalt the vcpu on reset. */
9208 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9209 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9210 	    !is_protmode(vcpu))
9211 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9212 
9213 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9214 
9215 	ret = 0;
9216 out:
9217 	return ret;
9218 }
9219 
9220 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9221 				  struct kvm_sregs *sregs)
9222 {
9223 	int ret;
9224 
9225 	vcpu_load(vcpu);
9226 	ret = __set_sregs(vcpu, sregs);
9227 	vcpu_put(vcpu);
9228 	return ret;
9229 }
9230 
9231 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9232 					struct kvm_guest_debug *dbg)
9233 {
9234 	unsigned long rflags;
9235 	int i, r;
9236 
9237 	vcpu_load(vcpu);
9238 
9239 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9240 		r = -EBUSY;
9241 		if (vcpu->arch.exception.pending)
9242 			goto out;
9243 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9244 			kvm_queue_exception(vcpu, DB_VECTOR);
9245 		else
9246 			kvm_queue_exception(vcpu, BP_VECTOR);
9247 	}
9248 
9249 	/*
9250 	 * Read rflags as long as potentially injected trace flags are still
9251 	 * filtered out.
9252 	 */
9253 	rflags = kvm_get_rflags(vcpu);
9254 
9255 	vcpu->guest_debug = dbg->control;
9256 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9257 		vcpu->guest_debug = 0;
9258 
9259 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9260 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9261 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9262 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9263 	} else {
9264 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9265 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9266 	}
9267 	kvm_update_dr7(vcpu);
9268 
9269 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9270 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9271 			get_segment_base(vcpu, VCPU_SREG_CS);
9272 
9273 	/*
9274 	 * Trigger an rflags update that will inject or remove the trace
9275 	 * flags.
9276 	 */
9277 	kvm_set_rflags(vcpu, rflags);
9278 
9279 	kvm_x86_ops.update_bp_intercept(vcpu);
9280 
9281 	r = 0;
9282 
9283 out:
9284 	vcpu_put(vcpu);
9285 	return r;
9286 }
9287 
9288 /*
9289  * Translate a guest virtual address to a guest physical address.
9290  */
9291 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9292 				    struct kvm_translation *tr)
9293 {
9294 	unsigned long vaddr = tr->linear_address;
9295 	gpa_t gpa;
9296 	int idx;
9297 
9298 	vcpu_load(vcpu);
9299 
9300 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9301 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9302 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9303 	tr->physical_address = gpa;
9304 	tr->valid = gpa != UNMAPPED_GVA;
9305 	tr->writeable = 1;
9306 	tr->usermode = 0;
9307 
9308 	vcpu_put(vcpu);
9309 	return 0;
9310 }
9311 
9312 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9313 {
9314 	struct fxregs_state *fxsave;
9315 
9316 	vcpu_load(vcpu);
9317 
9318 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9319 	memcpy(fpu->fpr, fxsave->st_space, 128);
9320 	fpu->fcw = fxsave->cwd;
9321 	fpu->fsw = fxsave->swd;
9322 	fpu->ftwx = fxsave->twd;
9323 	fpu->last_opcode = fxsave->fop;
9324 	fpu->last_ip = fxsave->rip;
9325 	fpu->last_dp = fxsave->rdp;
9326 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9327 
9328 	vcpu_put(vcpu);
9329 	return 0;
9330 }
9331 
9332 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9333 {
9334 	struct fxregs_state *fxsave;
9335 
9336 	vcpu_load(vcpu);
9337 
9338 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9339 
9340 	memcpy(fxsave->st_space, fpu->fpr, 128);
9341 	fxsave->cwd = fpu->fcw;
9342 	fxsave->swd = fpu->fsw;
9343 	fxsave->twd = fpu->ftwx;
9344 	fxsave->fop = fpu->last_opcode;
9345 	fxsave->rip = fpu->last_ip;
9346 	fxsave->rdp = fpu->last_dp;
9347 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9348 
9349 	vcpu_put(vcpu);
9350 	return 0;
9351 }
9352 
9353 static void store_regs(struct kvm_vcpu *vcpu)
9354 {
9355 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9356 
9357 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9358 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9359 
9360 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9361 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9362 
9363 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9364 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9365 				vcpu, &vcpu->run->s.regs.events);
9366 }
9367 
9368 static int sync_regs(struct kvm_vcpu *vcpu)
9369 {
9370 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9371 		return -EINVAL;
9372 
9373 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9374 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9375 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9376 	}
9377 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9378 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9379 			return -EINVAL;
9380 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9381 	}
9382 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9383 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9384 				vcpu, &vcpu->run->s.regs.events))
9385 			return -EINVAL;
9386 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9387 	}
9388 
9389 	return 0;
9390 }
9391 
9392 static void fx_init(struct kvm_vcpu *vcpu)
9393 {
9394 	fpstate_init(&vcpu->arch.guest_fpu->state);
9395 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9396 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9397 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9398 
9399 	/*
9400 	 * Ensure guest xcr0 is valid for loading
9401 	 */
9402 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9403 
9404 	vcpu->arch.cr0 |= X86_CR0_ET;
9405 }
9406 
9407 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9408 {
9409 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9410 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9411 			     "guest TSC will not be reliable\n");
9412 
9413 	return 0;
9414 }
9415 
9416 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9417 {
9418 	struct page *page;
9419 	int r;
9420 
9421 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9422 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9423 	else
9424 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9425 
9426 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9427 
9428 	r = kvm_mmu_create(vcpu);
9429 	if (r < 0)
9430 		return r;
9431 
9432 	if (irqchip_in_kernel(vcpu->kvm)) {
9433 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9434 		if (r < 0)
9435 			goto fail_mmu_destroy;
9436 		if (kvm_apicv_activated(vcpu->kvm))
9437 			vcpu->arch.apicv_active = true;
9438 	} else
9439 		static_key_slow_inc(&kvm_no_apic_vcpu);
9440 
9441 	r = -ENOMEM;
9442 
9443 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9444 	if (!page)
9445 		goto fail_free_lapic;
9446 	vcpu->arch.pio_data = page_address(page);
9447 
9448 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9449 				       GFP_KERNEL_ACCOUNT);
9450 	if (!vcpu->arch.mce_banks)
9451 		goto fail_free_pio_data;
9452 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9453 
9454 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9455 				GFP_KERNEL_ACCOUNT))
9456 		goto fail_free_mce_banks;
9457 
9458 	if (!alloc_emulate_ctxt(vcpu))
9459 		goto free_wbinvd_dirty_mask;
9460 
9461 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9462 						GFP_KERNEL_ACCOUNT);
9463 	if (!vcpu->arch.user_fpu) {
9464 		pr_err("kvm: failed to allocate userspace's fpu\n");
9465 		goto free_emulate_ctxt;
9466 	}
9467 
9468 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9469 						 GFP_KERNEL_ACCOUNT);
9470 	if (!vcpu->arch.guest_fpu) {
9471 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9472 		goto free_user_fpu;
9473 	}
9474 	fx_init(vcpu);
9475 
9476 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9477 	vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
9478 
9479 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9480 
9481 	kvm_async_pf_hash_reset(vcpu);
9482 	kvm_pmu_init(vcpu);
9483 
9484 	vcpu->arch.pending_external_vector = -1;
9485 	vcpu->arch.preempted_in_kernel = false;
9486 
9487 	kvm_hv_vcpu_init(vcpu);
9488 
9489 	r = kvm_x86_ops.vcpu_create(vcpu);
9490 	if (r)
9491 		goto free_guest_fpu;
9492 
9493 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9494 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9495 	kvm_vcpu_mtrr_init(vcpu);
9496 	vcpu_load(vcpu);
9497 	kvm_vcpu_reset(vcpu, false);
9498 	kvm_init_mmu(vcpu, false);
9499 	vcpu_put(vcpu);
9500 	return 0;
9501 
9502 free_guest_fpu:
9503 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9504 free_user_fpu:
9505 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9506 free_emulate_ctxt:
9507 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9508 free_wbinvd_dirty_mask:
9509 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9510 fail_free_mce_banks:
9511 	kfree(vcpu->arch.mce_banks);
9512 fail_free_pio_data:
9513 	free_page((unsigned long)vcpu->arch.pio_data);
9514 fail_free_lapic:
9515 	kvm_free_lapic(vcpu);
9516 fail_mmu_destroy:
9517 	kvm_mmu_destroy(vcpu);
9518 	return r;
9519 }
9520 
9521 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9522 {
9523 	struct msr_data msr;
9524 	struct kvm *kvm = vcpu->kvm;
9525 
9526 	kvm_hv_vcpu_postcreate(vcpu);
9527 
9528 	if (mutex_lock_killable(&vcpu->mutex))
9529 		return;
9530 	vcpu_load(vcpu);
9531 	msr.data = 0x0;
9532 	msr.index = MSR_IA32_TSC;
9533 	msr.host_initiated = true;
9534 	kvm_write_tsc(vcpu, &msr);
9535 	vcpu_put(vcpu);
9536 
9537 	/* poll control enabled by default */
9538 	vcpu->arch.msr_kvm_poll_control = 1;
9539 
9540 	mutex_unlock(&vcpu->mutex);
9541 
9542 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9543 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9544 						KVMCLOCK_SYNC_PERIOD);
9545 }
9546 
9547 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9548 {
9549 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9550 	int idx;
9551 
9552 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9553 
9554 	kvmclock_reset(vcpu);
9555 
9556 	kvm_x86_ops.vcpu_free(vcpu);
9557 
9558 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9559 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9560 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9561 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9562 
9563 	kvm_hv_vcpu_uninit(vcpu);
9564 	kvm_pmu_destroy(vcpu);
9565 	kfree(vcpu->arch.mce_banks);
9566 	kvm_free_lapic(vcpu);
9567 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9568 	kvm_mmu_destroy(vcpu);
9569 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9570 	free_page((unsigned long)vcpu->arch.pio_data);
9571 	if (!lapic_in_kernel(vcpu))
9572 		static_key_slow_dec(&kvm_no_apic_vcpu);
9573 }
9574 
9575 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9576 {
9577 	kvm_lapic_reset(vcpu, init_event);
9578 
9579 	vcpu->arch.hflags = 0;
9580 
9581 	vcpu->arch.smi_pending = 0;
9582 	vcpu->arch.smi_count = 0;
9583 	atomic_set(&vcpu->arch.nmi_queued, 0);
9584 	vcpu->arch.nmi_pending = 0;
9585 	vcpu->arch.nmi_injected = false;
9586 	kvm_clear_interrupt_queue(vcpu);
9587 	kvm_clear_exception_queue(vcpu);
9588 
9589 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9590 	kvm_update_dr0123(vcpu);
9591 	vcpu->arch.dr6 = DR6_INIT;
9592 	vcpu->arch.dr7 = DR7_FIXED_1;
9593 	kvm_update_dr7(vcpu);
9594 
9595 	vcpu->arch.cr2 = 0;
9596 
9597 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9598 	vcpu->arch.apf.msr_en_val = 0;
9599 	vcpu->arch.apf.msr_int_val = 0;
9600 	vcpu->arch.st.msr_val = 0;
9601 
9602 	kvmclock_reset(vcpu);
9603 
9604 	kvm_clear_async_pf_completion_queue(vcpu);
9605 	kvm_async_pf_hash_reset(vcpu);
9606 	vcpu->arch.apf.halted = false;
9607 
9608 	if (kvm_mpx_supported()) {
9609 		void *mpx_state_buffer;
9610 
9611 		/*
9612 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9613 		 * called with loaded FPU and does not let userspace fix the state.
9614 		 */
9615 		if (init_event)
9616 			kvm_put_guest_fpu(vcpu);
9617 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9618 					XFEATURE_BNDREGS);
9619 		if (mpx_state_buffer)
9620 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9621 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9622 					XFEATURE_BNDCSR);
9623 		if (mpx_state_buffer)
9624 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9625 		if (init_event)
9626 			kvm_load_guest_fpu(vcpu);
9627 	}
9628 
9629 	if (!init_event) {
9630 		kvm_pmu_reset(vcpu);
9631 		vcpu->arch.smbase = 0x30000;
9632 
9633 		vcpu->arch.msr_misc_features_enables = 0;
9634 
9635 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9636 	}
9637 
9638 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9639 	vcpu->arch.regs_avail = ~0;
9640 	vcpu->arch.regs_dirty = ~0;
9641 
9642 	vcpu->arch.ia32_xss = 0;
9643 
9644 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9645 }
9646 
9647 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9648 {
9649 	struct kvm_segment cs;
9650 
9651 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9652 	cs.selector = vector << 8;
9653 	cs.base = vector << 12;
9654 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9655 	kvm_rip_write(vcpu, 0);
9656 }
9657 
9658 int kvm_arch_hardware_enable(void)
9659 {
9660 	struct kvm *kvm;
9661 	struct kvm_vcpu *vcpu;
9662 	int i;
9663 	int ret;
9664 	u64 local_tsc;
9665 	u64 max_tsc = 0;
9666 	bool stable, backwards_tsc = false;
9667 
9668 	kvm_shared_msr_cpu_online();
9669 	ret = kvm_x86_ops.hardware_enable();
9670 	if (ret != 0)
9671 		return ret;
9672 
9673 	local_tsc = rdtsc();
9674 	stable = !kvm_check_tsc_unstable();
9675 	list_for_each_entry(kvm, &vm_list, vm_list) {
9676 		kvm_for_each_vcpu(i, vcpu, kvm) {
9677 			if (!stable && vcpu->cpu == smp_processor_id())
9678 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9679 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9680 				backwards_tsc = true;
9681 				if (vcpu->arch.last_host_tsc > max_tsc)
9682 					max_tsc = vcpu->arch.last_host_tsc;
9683 			}
9684 		}
9685 	}
9686 
9687 	/*
9688 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9689 	 * platforms that reset TSC during suspend or hibernate actions, but
9690 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9691 	 * detect that condition here, which happens early in CPU bringup,
9692 	 * before any KVM threads can be running.  Unfortunately, we can't
9693 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9694 	 * enough into CPU bringup that we know how much real time has actually
9695 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9696 	 * variables that haven't been updated yet.
9697 	 *
9698 	 * So we simply find the maximum observed TSC above, then record the
9699 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9700 	 * the adjustment will be applied.  Note that we accumulate
9701 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9702 	 * gets a chance to run again.  In the event that no KVM threads get a
9703 	 * chance to run, we will miss the entire elapsed period, as we'll have
9704 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9705 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9706 	 * uniform across all VCPUs (not to mention the scenario is extremely
9707 	 * unlikely). It is possible that a second hibernate recovery happens
9708 	 * much faster than a first, causing the observed TSC here to be
9709 	 * smaller; this would require additional padding adjustment, which is
9710 	 * why we set last_host_tsc to the local tsc observed here.
9711 	 *
9712 	 * N.B. - this code below runs only on platforms with reliable TSC,
9713 	 * as that is the only way backwards_tsc is set above.  Also note
9714 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9715 	 * have the same delta_cyc adjustment applied if backwards_tsc
9716 	 * is detected.  Note further, this adjustment is only done once,
9717 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9718 	 * called multiple times (one for each physical CPU bringup).
9719 	 *
9720 	 * Platforms with unreliable TSCs don't have to deal with this, they
9721 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9722 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9723 	 * guarantee that they stay in perfect synchronization.
9724 	 */
9725 	if (backwards_tsc) {
9726 		u64 delta_cyc = max_tsc - local_tsc;
9727 		list_for_each_entry(kvm, &vm_list, vm_list) {
9728 			kvm->arch.backwards_tsc_observed = true;
9729 			kvm_for_each_vcpu(i, vcpu, kvm) {
9730 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9731 				vcpu->arch.last_host_tsc = local_tsc;
9732 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9733 			}
9734 
9735 			/*
9736 			 * We have to disable TSC offset matching.. if you were
9737 			 * booting a VM while issuing an S4 host suspend....
9738 			 * you may have some problem.  Solving this issue is
9739 			 * left as an exercise to the reader.
9740 			 */
9741 			kvm->arch.last_tsc_nsec = 0;
9742 			kvm->arch.last_tsc_write = 0;
9743 		}
9744 
9745 	}
9746 	return 0;
9747 }
9748 
9749 void kvm_arch_hardware_disable(void)
9750 {
9751 	kvm_x86_ops.hardware_disable();
9752 	drop_user_return_notifiers();
9753 }
9754 
9755 int kvm_arch_hardware_setup(void *opaque)
9756 {
9757 	struct kvm_x86_init_ops *ops = opaque;
9758 	int r;
9759 
9760 	rdmsrl_safe(MSR_EFER, &host_efer);
9761 
9762 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9763 		rdmsrl(MSR_IA32_XSS, host_xss);
9764 
9765 	r = ops->hardware_setup();
9766 	if (r != 0)
9767 		return r;
9768 
9769 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9770 
9771 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9772 		supported_xss = 0;
9773 
9774 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9775 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9776 #undef __kvm_cpu_cap_has
9777 
9778 	if (kvm_has_tsc_control) {
9779 		/*
9780 		 * Make sure the user can only configure tsc_khz values that
9781 		 * fit into a signed integer.
9782 		 * A min value is not calculated because it will always
9783 		 * be 1 on all machines.
9784 		 */
9785 		u64 max = min(0x7fffffffULL,
9786 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9787 		kvm_max_guest_tsc_khz = max;
9788 
9789 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9790 	}
9791 
9792 	kvm_init_msr_list();
9793 	return 0;
9794 }
9795 
9796 void kvm_arch_hardware_unsetup(void)
9797 {
9798 	kvm_x86_ops.hardware_unsetup();
9799 }
9800 
9801 int kvm_arch_check_processor_compat(void *opaque)
9802 {
9803 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9804 	struct kvm_x86_init_ops *ops = opaque;
9805 
9806 	WARN_ON(!irqs_disabled());
9807 
9808 	if (__cr4_reserved_bits(cpu_has, c) !=
9809 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9810 		return -EIO;
9811 
9812 	return ops->check_processor_compatibility();
9813 }
9814 
9815 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9816 {
9817 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9818 }
9819 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9820 
9821 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9822 {
9823 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9824 }
9825 
9826 struct static_key kvm_no_apic_vcpu __read_mostly;
9827 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9828 
9829 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9830 {
9831 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9832 
9833 	vcpu->arch.l1tf_flush_l1d = true;
9834 	if (pmu->version && unlikely(pmu->event_count)) {
9835 		pmu->need_cleanup = true;
9836 		kvm_make_request(KVM_REQ_PMU, vcpu);
9837 	}
9838 	kvm_x86_ops.sched_in(vcpu, cpu);
9839 }
9840 
9841 void kvm_arch_free_vm(struct kvm *kvm)
9842 {
9843 	kfree(kvm->arch.hyperv.hv_pa_pg);
9844 	vfree(kvm);
9845 }
9846 
9847 
9848 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9849 {
9850 	if (type)
9851 		return -EINVAL;
9852 
9853 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9854 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9855 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9856 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9857 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9858 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9859 
9860 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9861 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9862 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9863 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9864 		&kvm->arch.irq_sources_bitmap);
9865 
9866 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9867 	mutex_init(&kvm->arch.apic_map_lock);
9868 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9869 
9870 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9871 	pvclock_update_vm_gtod_copy(kvm);
9872 
9873 	kvm->arch.guest_can_read_msr_platform_info = true;
9874 
9875 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9876 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9877 
9878 	kvm_hv_init_vm(kvm);
9879 	kvm_page_track_init(kvm);
9880 	kvm_mmu_init_vm(kvm);
9881 
9882 	return kvm_x86_ops.vm_init(kvm);
9883 }
9884 
9885 int kvm_arch_post_init_vm(struct kvm *kvm)
9886 {
9887 	return kvm_mmu_post_init_vm(kvm);
9888 }
9889 
9890 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9891 {
9892 	vcpu_load(vcpu);
9893 	kvm_mmu_unload(vcpu);
9894 	vcpu_put(vcpu);
9895 }
9896 
9897 static void kvm_free_vcpus(struct kvm *kvm)
9898 {
9899 	unsigned int i;
9900 	struct kvm_vcpu *vcpu;
9901 
9902 	/*
9903 	 * Unpin any mmu pages first.
9904 	 */
9905 	kvm_for_each_vcpu(i, vcpu, kvm) {
9906 		kvm_clear_async_pf_completion_queue(vcpu);
9907 		kvm_unload_vcpu_mmu(vcpu);
9908 	}
9909 	kvm_for_each_vcpu(i, vcpu, kvm)
9910 		kvm_vcpu_destroy(vcpu);
9911 
9912 	mutex_lock(&kvm->lock);
9913 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9914 		kvm->vcpus[i] = NULL;
9915 
9916 	atomic_set(&kvm->online_vcpus, 0);
9917 	mutex_unlock(&kvm->lock);
9918 }
9919 
9920 void kvm_arch_sync_events(struct kvm *kvm)
9921 {
9922 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9923 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9924 	kvm_free_pit(kvm);
9925 }
9926 
9927 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9928 {
9929 	int i, r;
9930 	unsigned long hva, uninitialized_var(old_npages);
9931 	struct kvm_memslots *slots = kvm_memslots(kvm);
9932 	struct kvm_memory_slot *slot;
9933 
9934 	/* Called with kvm->slots_lock held.  */
9935 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9936 		return -EINVAL;
9937 
9938 	slot = id_to_memslot(slots, id);
9939 	if (size) {
9940 		if (slot && slot->npages)
9941 			return -EEXIST;
9942 
9943 		/*
9944 		 * MAP_SHARED to prevent internal slot pages from being moved
9945 		 * by fork()/COW.
9946 		 */
9947 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9948 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9949 		if (IS_ERR((void *)hva))
9950 			return PTR_ERR((void *)hva);
9951 	} else {
9952 		if (!slot || !slot->npages)
9953 			return 0;
9954 
9955 		old_npages = slot->npages;
9956 		hva = 0;
9957 	}
9958 
9959 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9960 		struct kvm_userspace_memory_region m;
9961 
9962 		m.slot = id | (i << 16);
9963 		m.flags = 0;
9964 		m.guest_phys_addr = gpa;
9965 		m.userspace_addr = hva;
9966 		m.memory_size = size;
9967 		r = __kvm_set_memory_region(kvm, &m);
9968 		if (r < 0)
9969 			return r;
9970 	}
9971 
9972 	if (!size)
9973 		vm_munmap(hva, old_npages * PAGE_SIZE);
9974 
9975 	return 0;
9976 }
9977 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9978 
9979 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9980 {
9981 	kvm_mmu_pre_destroy_vm(kvm);
9982 }
9983 
9984 void kvm_arch_destroy_vm(struct kvm *kvm)
9985 {
9986 	if (current->mm == kvm->mm) {
9987 		/*
9988 		 * Free memory regions allocated on behalf of userspace,
9989 		 * unless the the memory map has changed due to process exit
9990 		 * or fd copying.
9991 		 */
9992 		mutex_lock(&kvm->slots_lock);
9993 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9994 					0, 0);
9995 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9996 					0, 0);
9997 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9998 		mutex_unlock(&kvm->slots_lock);
9999 	}
10000 	if (kvm_x86_ops.vm_destroy)
10001 		kvm_x86_ops.vm_destroy(kvm);
10002 	kvm_pic_destroy(kvm);
10003 	kvm_ioapic_destroy(kvm);
10004 	kvm_free_vcpus(kvm);
10005 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10006 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10007 	kvm_mmu_uninit_vm(kvm);
10008 	kvm_page_track_cleanup(kvm);
10009 	kvm_hv_destroy_vm(kvm);
10010 }
10011 
10012 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10013 {
10014 	int i;
10015 
10016 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10017 		kvfree(slot->arch.rmap[i]);
10018 		slot->arch.rmap[i] = NULL;
10019 
10020 		if (i == 0)
10021 			continue;
10022 
10023 		kvfree(slot->arch.lpage_info[i - 1]);
10024 		slot->arch.lpage_info[i - 1] = NULL;
10025 	}
10026 
10027 	kvm_page_track_free_memslot(slot);
10028 }
10029 
10030 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10031 				      unsigned long npages)
10032 {
10033 	int i;
10034 
10035 	/*
10036 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10037 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10038 	 * the new memslot is successful.
10039 	 */
10040 	memset(&slot->arch, 0, sizeof(slot->arch));
10041 
10042 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10043 		struct kvm_lpage_info *linfo;
10044 		unsigned long ugfn;
10045 		int lpages;
10046 		int level = i + 1;
10047 
10048 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10049 				      slot->base_gfn, level) + 1;
10050 
10051 		slot->arch.rmap[i] =
10052 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10053 				 GFP_KERNEL_ACCOUNT);
10054 		if (!slot->arch.rmap[i])
10055 			goto out_free;
10056 		if (i == 0)
10057 			continue;
10058 
10059 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10060 		if (!linfo)
10061 			goto out_free;
10062 
10063 		slot->arch.lpage_info[i - 1] = linfo;
10064 
10065 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10066 			linfo[0].disallow_lpage = 1;
10067 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10068 			linfo[lpages - 1].disallow_lpage = 1;
10069 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10070 		/*
10071 		 * If the gfn and userspace address are not aligned wrt each
10072 		 * other, disable large page support for this slot.
10073 		 */
10074 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10075 			unsigned long j;
10076 
10077 			for (j = 0; j < lpages; ++j)
10078 				linfo[j].disallow_lpage = 1;
10079 		}
10080 	}
10081 
10082 	if (kvm_page_track_create_memslot(slot, npages))
10083 		goto out_free;
10084 
10085 	return 0;
10086 
10087 out_free:
10088 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10089 		kvfree(slot->arch.rmap[i]);
10090 		slot->arch.rmap[i] = NULL;
10091 		if (i == 0)
10092 			continue;
10093 
10094 		kvfree(slot->arch.lpage_info[i - 1]);
10095 		slot->arch.lpage_info[i - 1] = NULL;
10096 	}
10097 	return -ENOMEM;
10098 }
10099 
10100 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10101 {
10102 	struct kvm_vcpu *vcpu;
10103 	int i;
10104 
10105 	/*
10106 	 * memslots->generation has been incremented.
10107 	 * mmio generation may have reached its maximum value.
10108 	 */
10109 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10110 
10111 	/* Force re-initialization of steal_time cache */
10112 	kvm_for_each_vcpu(i, vcpu, kvm)
10113 		kvm_vcpu_kick(vcpu);
10114 }
10115 
10116 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10117 				struct kvm_memory_slot *memslot,
10118 				const struct kvm_userspace_memory_region *mem,
10119 				enum kvm_mr_change change)
10120 {
10121 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10122 		return kvm_alloc_memslot_metadata(memslot,
10123 						  mem->memory_size >> PAGE_SHIFT);
10124 	return 0;
10125 }
10126 
10127 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10128 				     struct kvm_memory_slot *old,
10129 				     struct kvm_memory_slot *new,
10130 				     enum kvm_mr_change change)
10131 {
10132 	/*
10133 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10134 	 * See comments below.
10135 	 */
10136 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10137 		return;
10138 
10139 	/*
10140 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10141 	 * sptes have to be split.  If live migration is successful, the guest
10142 	 * in the source machine will be destroyed and large sptes will be
10143 	 * created in the destination. However, if the guest continues to run
10144 	 * in the source machine (for example if live migration fails), small
10145 	 * sptes will remain around and cause bad performance.
10146 	 *
10147 	 * Scan sptes if dirty logging has been stopped, dropping those
10148 	 * which can be collapsed into a single large-page spte.  Later
10149 	 * page faults will create the large-page sptes.
10150 	 *
10151 	 * There is no need to do this in any of the following cases:
10152 	 * CREATE:      No dirty mappings will already exist.
10153 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10154 	 *		kvm_arch_flush_shadow_memslot()
10155 	 */
10156 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10157 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10158 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10159 
10160 	/*
10161 	 * Enable or disable dirty logging for the slot.
10162 	 *
10163 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10164 	 * slot have been zapped so no dirty logging updates are needed for
10165 	 * the old slot.
10166 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10167 	 * any mappings that might be created in it will consume the
10168 	 * properties of the new slot and do not need to be updated here.
10169 	 *
10170 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10171 	 * called to enable/disable dirty logging.
10172 	 *
10173 	 * When disabling dirty logging with PML enabled, the D-bit is set
10174 	 * for sptes in the slot in order to prevent unnecessary GPA
10175 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10176 	 * This guarantees leaving PML enabled for the guest's lifetime
10177 	 * won't have any additional overhead from PML when the guest is
10178 	 * running with dirty logging disabled.
10179 	 *
10180 	 * When enabling dirty logging, large sptes are write-protected
10181 	 * so they can be split on first write.  New large sptes cannot
10182 	 * be created for this slot until the end of the logging.
10183 	 * See the comments in fast_page_fault().
10184 	 * For small sptes, nothing is done if the dirty log is in the
10185 	 * initial-all-set state.  Otherwise, depending on whether pml
10186 	 * is enabled the D-bit or the W-bit will be cleared.
10187 	 */
10188 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10189 		if (kvm_x86_ops.slot_enable_log_dirty) {
10190 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10191 		} else {
10192 			int level =
10193 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10194 				PG_LEVEL_2M : PG_LEVEL_4K;
10195 
10196 			/*
10197 			 * If we're with initial-all-set, we don't need
10198 			 * to write protect any small page because
10199 			 * they're reported as dirty already.  However
10200 			 * we still need to write-protect huge pages
10201 			 * so that the page split can happen lazily on
10202 			 * the first write to the huge page.
10203 			 */
10204 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10205 		}
10206 	} else {
10207 		if (kvm_x86_ops.slot_disable_log_dirty)
10208 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10209 	}
10210 }
10211 
10212 void kvm_arch_commit_memory_region(struct kvm *kvm,
10213 				const struct kvm_userspace_memory_region *mem,
10214 				struct kvm_memory_slot *old,
10215 				const struct kvm_memory_slot *new,
10216 				enum kvm_mr_change change)
10217 {
10218 	if (!kvm->arch.n_requested_mmu_pages)
10219 		kvm_mmu_change_mmu_pages(kvm,
10220 				kvm_mmu_calculate_default_mmu_pages(kvm));
10221 
10222 	/*
10223 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10224 	 */
10225 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10226 
10227 	/* Free the arrays associated with the old memslot. */
10228 	if (change == KVM_MR_MOVE)
10229 		kvm_arch_free_memslot(kvm, old);
10230 }
10231 
10232 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10233 {
10234 	kvm_mmu_zap_all(kvm);
10235 }
10236 
10237 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10238 				   struct kvm_memory_slot *slot)
10239 {
10240 	kvm_page_track_flush_slot(kvm, slot);
10241 }
10242 
10243 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10244 {
10245 	return (is_guest_mode(vcpu) &&
10246 			kvm_x86_ops.guest_apic_has_interrupt &&
10247 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10248 }
10249 
10250 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10251 {
10252 	if (!list_empty_careful(&vcpu->async_pf.done))
10253 		return true;
10254 
10255 	if (kvm_apic_has_events(vcpu))
10256 		return true;
10257 
10258 	if (vcpu->arch.pv.pv_unhalted)
10259 		return true;
10260 
10261 	if (vcpu->arch.exception.pending)
10262 		return true;
10263 
10264 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10265 	    (vcpu->arch.nmi_pending &&
10266 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10267 		return true;
10268 
10269 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10270 	    (vcpu->arch.smi_pending &&
10271 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10272 		return true;
10273 
10274 	if (kvm_arch_interrupt_allowed(vcpu) &&
10275 	    (kvm_cpu_has_interrupt(vcpu) ||
10276 	    kvm_guest_apic_has_interrupt(vcpu)))
10277 		return true;
10278 
10279 	if (kvm_hv_has_stimer_pending(vcpu))
10280 		return true;
10281 
10282 	if (is_guest_mode(vcpu) &&
10283 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10284 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10285 		return true;
10286 
10287 	return false;
10288 }
10289 
10290 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10291 {
10292 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10293 }
10294 
10295 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10296 {
10297 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10298 		return true;
10299 
10300 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10301 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10302 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10303 		return true;
10304 
10305 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10306 		return true;
10307 
10308 	return false;
10309 }
10310 
10311 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10312 {
10313 	return vcpu->arch.preempted_in_kernel;
10314 }
10315 
10316 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10317 {
10318 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10319 }
10320 
10321 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10322 {
10323 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10324 }
10325 
10326 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10327 {
10328 	if (is_64_bit_mode(vcpu))
10329 		return kvm_rip_read(vcpu);
10330 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10331 		     kvm_rip_read(vcpu));
10332 }
10333 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10334 
10335 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10336 {
10337 	return kvm_get_linear_rip(vcpu) == linear_rip;
10338 }
10339 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10340 
10341 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10342 {
10343 	unsigned long rflags;
10344 
10345 	rflags = kvm_x86_ops.get_rflags(vcpu);
10346 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10347 		rflags &= ~X86_EFLAGS_TF;
10348 	return rflags;
10349 }
10350 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10351 
10352 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10353 {
10354 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10355 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10356 		rflags |= X86_EFLAGS_TF;
10357 	kvm_x86_ops.set_rflags(vcpu, rflags);
10358 }
10359 
10360 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10361 {
10362 	__kvm_set_rflags(vcpu, rflags);
10363 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10364 }
10365 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10366 
10367 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10368 {
10369 	int r;
10370 
10371 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10372 	      work->wakeup_all)
10373 		return;
10374 
10375 	r = kvm_mmu_reload(vcpu);
10376 	if (unlikely(r))
10377 		return;
10378 
10379 	if (!vcpu->arch.mmu->direct_map &&
10380 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10381 		return;
10382 
10383 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10384 }
10385 
10386 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10387 {
10388 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10389 
10390 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10391 }
10392 
10393 static inline u32 kvm_async_pf_next_probe(u32 key)
10394 {
10395 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10396 }
10397 
10398 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10399 {
10400 	u32 key = kvm_async_pf_hash_fn(gfn);
10401 
10402 	while (vcpu->arch.apf.gfns[key] != ~0)
10403 		key = kvm_async_pf_next_probe(key);
10404 
10405 	vcpu->arch.apf.gfns[key] = gfn;
10406 }
10407 
10408 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10409 {
10410 	int i;
10411 	u32 key = kvm_async_pf_hash_fn(gfn);
10412 
10413 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10414 		     (vcpu->arch.apf.gfns[key] != gfn &&
10415 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10416 		key = kvm_async_pf_next_probe(key);
10417 
10418 	return key;
10419 }
10420 
10421 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10422 {
10423 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10424 }
10425 
10426 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10427 {
10428 	u32 i, j, k;
10429 
10430 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10431 
10432 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10433 		return;
10434 
10435 	while (true) {
10436 		vcpu->arch.apf.gfns[i] = ~0;
10437 		do {
10438 			j = kvm_async_pf_next_probe(j);
10439 			if (vcpu->arch.apf.gfns[j] == ~0)
10440 				return;
10441 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10442 			/*
10443 			 * k lies cyclically in ]i,j]
10444 			 * |    i.k.j |
10445 			 * |....j i.k.| or  |.k..j i...|
10446 			 */
10447 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10448 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10449 		i = j;
10450 	}
10451 }
10452 
10453 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10454 {
10455 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10456 
10457 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10458 				      sizeof(reason));
10459 }
10460 
10461 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10462 {
10463 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10464 
10465 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10466 					     &token, offset, sizeof(token));
10467 }
10468 
10469 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10470 {
10471 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10472 	u32 val;
10473 
10474 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10475 					 &val, offset, sizeof(val)))
10476 		return false;
10477 
10478 	return !val;
10479 }
10480 
10481 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10482 {
10483 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10484 		return false;
10485 
10486 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10487 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10488 		return false;
10489 
10490 	return true;
10491 }
10492 
10493 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10494 {
10495 	if (unlikely(!lapic_in_kernel(vcpu) ||
10496 		     kvm_event_needs_reinjection(vcpu) ||
10497 		     vcpu->arch.exception.pending))
10498 		return false;
10499 
10500 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10501 		return false;
10502 
10503 	/*
10504 	 * If interrupts are off we cannot even use an artificial
10505 	 * halt state.
10506 	 */
10507 	return kvm_arch_interrupt_allowed(vcpu);
10508 }
10509 
10510 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10511 				     struct kvm_async_pf *work)
10512 {
10513 	struct x86_exception fault;
10514 
10515 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10516 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10517 
10518 	if (kvm_can_deliver_async_pf(vcpu) &&
10519 	    !apf_put_user_notpresent(vcpu)) {
10520 		fault.vector = PF_VECTOR;
10521 		fault.error_code_valid = true;
10522 		fault.error_code = 0;
10523 		fault.nested_page_fault = false;
10524 		fault.address = work->arch.token;
10525 		fault.async_page_fault = true;
10526 		kvm_inject_page_fault(vcpu, &fault);
10527 		return true;
10528 	} else {
10529 		/*
10530 		 * It is not possible to deliver a paravirtualized asynchronous
10531 		 * page fault, but putting the guest in an artificial halt state
10532 		 * can be beneficial nevertheless: if an interrupt arrives, we
10533 		 * can deliver it timely and perhaps the guest will schedule
10534 		 * another process.  When the instruction that triggered a page
10535 		 * fault is retried, hopefully the page will be ready in the host.
10536 		 */
10537 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10538 		return false;
10539 	}
10540 }
10541 
10542 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10543 				 struct kvm_async_pf *work)
10544 {
10545 	struct kvm_lapic_irq irq = {
10546 		.delivery_mode = APIC_DM_FIXED,
10547 		.vector = vcpu->arch.apf.vec
10548 	};
10549 
10550 	if (work->wakeup_all)
10551 		work->arch.token = ~0; /* broadcast wakeup */
10552 	else
10553 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10554 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10555 
10556 	if ((work->wakeup_all || work->notpresent_injected) &&
10557 	    kvm_pv_async_pf_enabled(vcpu) &&
10558 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10559 		vcpu->arch.apf.pageready_pending = true;
10560 		kvm_apic_set_irq(vcpu, &irq, NULL);
10561 	}
10562 
10563 	vcpu->arch.apf.halted = false;
10564 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10565 }
10566 
10567 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10568 {
10569 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10570 	if (!vcpu->arch.apf.pageready_pending)
10571 		kvm_vcpu_kick(vcpu);
10572 }
10573 
10574 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10575 {
10576 	if (!kvm_pv_async_pf_enabled(vcpu))
10577 		return true;
10578 	else
10579 		return apf_pageready_slot_free(vcpu);
10580 }
10581 
10582 void kvm_arch_start_assignment(struct kvm *kvm)
10583 {
10584 	atomic_inc(&kvm->arch.assigned_device_count);
10585 }
10586 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10587 
10588 void kvm_arch_end_assignment(struct kvm *kvm)
10589 {
10590 	atomic_dec(&kvm->arch.assigned_device_count);
10591 }
10592 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10593 
10594 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10595 {
10596 	return atomic_read(&kvm->arch.assigned_device_count);
10597 }
10598 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10599 
10600 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10601 {
10602 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10603 }
10604 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10605 
10606 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10607 {
10608 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10609 }
10610 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10611 
10612 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10613 {
10614 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10615 }
10616 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10617 
10618 bool kvm_arch_has_irq_bypass(void)
10619 {
10620 	return true;
10621 }
10622 
10623 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10624 				      struct irq_bypass_producer *prod)
10625 {
10626 	struct kvm_kernel_irqfd *irqfd =
10627 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10628 
10629 	irqfd->producer = prod;
10630 
10631 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10632 					   prod->irq, irqfd->gsi, 1);
10633 }
10634 
10635 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10636 				      struct irq_bypass_producer *prod)
10637 {
10638 	int ret;
10639 	struct kvm_kernel_irqfd *irqfd =
10640 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10641 
10642 	WARN_ON(irqfd->producer != prod);
10643 	irqfd->producer = NULL;
10644 
10645 	/*
10646 	 * When producer of consumer is unregistered, we change back to
10647 	 * remapped mode, so we can re-use the current implementation
10648 	 * when the irq is masked/disabled or the consumer side (KVM
10649 	 * int this case doesn't want to receive the interrupts.
10650 	*/
10651 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10652 	if (ret)
10653 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10654 		       " fails: %d\n", irqfd->consumer.token, ret);
10655 }
10656 
10657 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10658 				   uint32_t guest_irq, bool set)
10659 {
10660 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10661 }
10662 
10663 bool kvm_vector_hashing_enabled(void)
10664 {
10665 	return vector_hashing;
10666 }
10667 
10668 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10669 {
10670 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10671 }
10672 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10673 
10674 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10675 {
10676 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10677 
10678 	/* The STIBP bit doesn't fault even if it's not advertised */
10679 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10680 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10681 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10682 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10683 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10684 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10685 
10686 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10687 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10688 		bits &= ~SPEC_CTRL_SSBD;
10689 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10690 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10691 		bits &= ~SPEC_CTRL_SSBD;
10692 
10693 	return bits;
10694 }
10695 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10696 
10697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10719