1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 60 #include <trace/events/kvm.h> 61 62 #include <asm/debugreg.h> 63 #include <asm/msr.h> 64 #include <asm/desc.h> 65 #include <asm/mce.h> 66 #include <linux/kernel_stat.h> 67 #include <asm/fpu/internal.h> /* Ugh! */ 68 #include <asm/pvclock.h> 69 #include <asm/div64.h> 70 #include <asm/irq_remapping.h> 71 #include <asm/mshyperv.h> 72 #include <asm/hypervisor.h> 73 #include <asm/intel_pt.h> 74 #include <asm/emulate_prefix.h> 75 #include <clocksource/hyperv_timer.h> 76 77 #define CREATE_TRACE_POINTS 78 #include "trace.h" 79 80 #define MAX_IO_MSRS 256 81 #define KVM_MAX_MCE_BANKS 32 82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 84 85 #define emul_to_vcpu(ctxt) \ 86 ((struct kvm_vcpu *)(ctxt)->vcpu) 87 88 /* EFER defaults: 89 * - enable syscall per default because its emulated by KVM 90 * - enable LME and LMA per default on 64 bit KVM 91 */ 92 #ifdef CONFIG_X86_64 93 static 94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 95 #else 96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 97 #endif 98 99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 100 101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 102 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 103 104 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 105 static void process_nmi(struct kvm_vcpu *vcpu); 106 static void enter_smm(struct kvm_vcpu *vcpu); 107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 108 static void store_regs(struct kvm_vcpu *vcpu); 109 static int sync_regs(struct kvm_vcpu *vcpu); 110 111 struct kvm_x86_ops kvm_x86_ops __read_mostly; 112 EXPORT_SYMBOL_GPL(kvm_x86_ops); 113 114 static bool __read_mostly ignore_msrs = 0; 115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 116 117 static bool __read_mostly report_ignored_msrs = true; 118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 119 120 unsigned int min_timer_period_us = 200; 121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 122 123 static bool __read_mostly kvmclock_periodic_sync = true; 124 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 125 126 bool __read_mostly kvm_has_tsc_control; 127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 128 u32 __read_mostly kvm_max_guest_tsc_khz; 129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 130 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 132 u64 __read_mostly kvm_max_tsc_scaling_ratio; 133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 134 u64 __read_mostly kvm_default_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 136 137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 138 static u32 __read_mostly tsc_tolerance_ppm = 250; 139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 140 141 /* 142 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 143 * adaptive tuning starting from default advancment of 1000ns. '0' disables 144 * advancement entirely. Any other value is used as-is and disables adaptive 145 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 146 */ 147 static int __read_mostly lapic_timer_advance_ns = -1; 148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 149 150 static bool __read_mostly vector_hashing = true; 151 module_param(vector_hashing, bool, S_IRUGO); 152 153 bool __read_mostly enable_vmware_backdoor = false; 154 module_param(enable_vmware_backdoor, bool, S_IRUGO); 155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 156 157 static bool __read_mostly force_emulation_prefix = false; 158 module_param(force_emulation_prefix, bool, S_IRUGO); 159 160 int __read_mostly pi_inject_timer = -1; 161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 162 163 #define KVM_NR_SHARED_MSRS 16 164 165 struct kvm_shared_msrs_global { 166 int nr; 167 u32 msrs[KVM_NR_SHARED_MSRS]; 168 }; 169 170 struct kvm_shared_msrs { 171 struct user_return_notifier urn; 172 bool registered; 173 struct kvm_shared_msr_values { 174 u64 host; 175 u64 curr; 176 } values[KVM_NR_SHARED_MSRS]; 177 }; 178 179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 180 static struct kvm_shared_msrs __percpu *shared_msrs; 181 182 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 183 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 184 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 185 | XFEATURE_MASK_PKRU) 186 187 u64 __read_mostly host_efer; 188 EXPORT_SYMBOL_GPL(host_efer); 189 190 static u64 __read_mostly host_xss; 191 u64 __read_mostly supported_xss; 192 EXPORT_SYMBOL_GPL(supported_xss); 193 194 struct kvm_stats_debugfs_item debugfs_entries[] = { 195 VCPU_STAT("pf_fixed", pf_fixed), 196 VCPU_STAT("pf_guest", pf_guest), 197 VCPU_STAT("tlb_flush", tlb_flush), 198 VCPU_STAT("invlpg", invlpg), 199 VCPU_STAT("exits", exits), 200 VCPU_STAT("io_exits", io_exits), 201 VCPU_STAT("mmio_exits", mmio_exits), 202 VCPU_STAT("signal_exits", signal_exits), 203 VCPU_STAT("irq_window", irq_window_exits), 204 VCPU_STAT("nmi_window", nmi_window_exits), 205 VCPU_STAT("halt_exits", halt_exits), 206 VCPU_STAT("halt_successful_poll", halt_successful_poll), 207 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 208 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 209 VCPU_STAT("halt_wakeup", halt_wakeup), 210 VCPU_STAT("hypercalls", hypercalls), 211 VCPU_STAT("request_irq", request_irq_exits), 212 VCPU_STAT("irq_exits", irq_exits), 213 VCPU_STAT("host_state_reload", host_state_reload), 214 VCPU_STAT("fpu_reload", fpu_reload), 215 VCPU_STAT("insn_emulation", insn_emulation), 216 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 217 VCPU_STAT("irq_injections", irq_injections), 218 VCPU_STAT("nmi_injections", nmi_injections), 219 VCPU_STAT("req_event", req_event), 220 VCPU_STAT("l1d_flush", l1d_flush), 221 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 222 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 223 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 224 VM_STAT("mmu_pte_write", mmu_pte_write), 225 VM_STAT("mmu_pte_updated", mmu_pte_updated), 226 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 227 VM_STAT("mmu_flooded", mmu_flooded), 228 VM_STAT("mmu_recycled", mmu_recycled), 229 VM_STAT("mmu_cache_miss", mmu_cache_miss), 230 VM_STAT("mmu_unsync", mmu_unsync), 231 VM_STAT("remote_tlb_flush", remote_tlb_flush), 232 VM_STAT("largepages", lpages, .mode = 0444), 233 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 234 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 235 { NULL } 236 }; 237 238 u64 __read_mostly host_xcr0; 239 u64 __read_mostly supported_xcr0; 240 EXPORT_SYMBOL_GPL(supported_xcr0); 241 242 static struct kmem_cache *x86_fpu_cache; 243 244 static struct kmem_cache *x86_emulator_cache; 245 246 static struct kmem_cache *kvm_alloc_emulator_cache(void) 247 { 248 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 249 unsigned int size = sizeof(struct x86_emulate_ctxt); 250 251 return kmem_cache_create_usercopy("x86_emulator", size, 252 __alignof__(struct x86_emulate_ctxt), 253 SLAB_ACCOUNT, useroffset, 254 size - useroffset, NULL); 255 } 256 257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 258 259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 260 { 261 int i; 262 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 263 vcpu->arch.apf.gfns[i] = ~0; 264 } 265 266 static void kvm_on_user_return(struct user_return_notifier *urn) 267 { 268 unsigned slot; 269 struct kvm_shared_msrs *locals 270 = container_of(urn, struct kvm_shared_msrs, urn); 271 struct kvm_shared_msr_values *values; 272 unsigned long flags; 273 274 /* 275 * Disabling irqs at this point since the following code could be 276 * interrupted and executed through kvm_arch_hardware_disable() 277 */ 278 local_irq_save(flags); 279 if (locals->registered) { 280 locals->registered = false; 281 user_return_notifier_unregister(urn); 282 } 283 local_irq_restore(flags); 284 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 285 values = &locals->values[slot]; 286 if (values->host != values->curr) { 287 wrmsrl(shared_msrs_global.msrs[slot], values->host); 288 values->curr = values->host; 289 } 290 } 291 } 292 293 void kvm_define_shared_msr(unsigned slot, u32 msr) 294 { 295 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 296 shared_msrs_global.msrs[slot] = msr; 297 if (slot >= shared_msrs_global.nr) 298 shared_msrs_global.nr = slot + 1; 299 } 300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 301 302 static void kvm_shared_msr_cpu_online(void) 303 { 304 unsigned int cpu = smp_processor_id(); 305 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 306 u64 value; 307 int i; 308 309 for (i = 0; i < shared_msrs_global.nr; ++i) { 310 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 311 smsr->values[i].host = value; 312 smsr->values[i].curr = value; 313 } 314 } 315 316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 317 { 318 unsigned int cpu = smp_processor_id(); 319 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 320 int err; 321 322 value = (value & mask) | (smsr->values[slot].host & ~mask); 323 if (value == smsr->values[slot].curr) 324 return 0; 325 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 326 if (err) 327 return 1; 328 329 smsr->values[slot].curr = value; 330 if (!smsr->registered) { 331 smsr->urn.on_user_return = kvm_on_user_return; 332 user_return_notifier_register(&smsr->urn); 333 smsr->registered = true; 334 } 335 return 0; 336 } 337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 338 339 static void drop_user_return_notifiers(void) 340 { 341 unsigned int cpu = smp_processor_id(); 342 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 343 344 if (smsr->registered) 345 kvm_on_user_return(&smsr->urn); 346 } 347 348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 349 { 350 return vcpu->arch.apic_base; 351 } 352 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 353 354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 355 { 356 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 357 } 358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 359 360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 361 { 362 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 363 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 364 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 365 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 366 367 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 368 return 1; 369 if (!msr_info->host_initiated) { 370 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 371 return 1; 372 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 373 return 1; 374 } 375 376 kvm_lapic_set_base(vcpu, msr_info->data); 377 kvm_recalculate_apic_map(vcpu->kvm); 378 return 0; 379 } 380 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 381 382 asmlinkage __visible void kvm_spurious_fault(void) 383 { 384 /* Fault while not rebooting. We want the trace. */ 385 BUG_ON(!kvm_rebooting); 386 } 387 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 388 389 #define EXCPT_BENIGN 0 390 #define EXCPT_CONTRIBUTORY 1 391 #define EXCPT_PF 2 392 393 static int exception_class(int vector) 394 { 395 switch (vector) { 396 case PF_VECTOR: 397 return EXCPT_PF; 398 case DE_VECTOR: 399 case TS_VECTOR: 400 case NP_VECTOR: 401 case SS_VECTOR: 402 case GP_VECTOR: 403 return EXCPT_CONTRIBUTORY; 404 default: 405 break; 406 } 407 return EXCPT_BENIGN; 408 } 409 410 #define EXCPT_FAULT 0 411 #define EXCPT_TRAP 1 412 #define EXCPT_ABORT 2 413 #define EXCPT_INTERRUPT 3 414 415 static int exception_type(int vector) 416 { 417 unsigned int mask; 418 419 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 420 return EXCPT_INTERRUPT; 421 422 mask = 1 << vector; 423 424 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 425 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 426 return EXCPT_TRAP; 427 428 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 429 return EXCPT_ABORT; 430 431 /* Reserved exceptions will result in fault */ 432 return EXCPT_FAULT; 433 } 434 435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 436 { 437 unsigned nr = vcpu->arch.exception.nr; 438 bool has_payload = vcpu->arch.exception.has_payload; 439 unsigned long payload = vcpu->arch.exception.payload; 440 441 if (!has_payload) 442 return; 443 444 switch (nr) { 445 case DB_VECTOR: 446 /* 447 * "Certain debug exceptions may clear bit 0-3. The 448 * remaining contents of the DR6 register are never 449 * cleared by the processor". 450 */ 451 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 452 /* 453 * DR6.RTM is set by all #DB exceptions that don't clear it. 454 */ 455 vcpu->arch.dr6 |= DR6_RTM; 456 vcpu->arch.dr6 |= payload; 457 /* 458 * Bit 16 should be set in the payload whenever the #DB 459 * exception should clear DR6.RTM. This makes the payload 460 * compatible with the pending debug exceptions under VMX. 461 * Though not currently documented in the SDM, this also 462 * makes the payload compatible with the exit qualification 463 * for #DB exceptions under VMX. 464 */ 465 vcpu->arch.dr6 ^= payload & DR6_RTM; 466 467 /* 468 * The #DB payload is defined as compatible with the 'pending 469 * debug exceptions' field under VMX, not DR6. While bit 12 is 470 * defined in the 'pending debug exceptions' field (enabled 471 * breakpoint), it is reserved and must be zero in DR6. 472 */ 473 vcpu->arch.dr6 &= ~BIT(12); 474 break; 475 case PF_VECTOR: 476 vcpu->arch.cr2 = payload; 477 break; 478 } 479 480 vcpu->arch.exception.has_payload = false; 481 vcpu->arch.exception.payload = 0; 482 } 483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 484 485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 486 unsigned nr, bool has_error, u32 error_code, 487 bool has_payload, unsigned long payload, bool reinject) 488 { 489 u32 prev_nr; 490 int class1, class2; 491 492 kvm_make_request(KVM_REQ_EVENT, vcpu); 493 494 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 495 queue: 496 if (has_error && !is_protmode(vcpu)) 497 has_error = false; 498 if (reinject) { 499 /* 500 * On vmentry, vcpu->arch.exception.pending is only 501 * true if an event injection was blocked by 502 * nested_run_pending. In that case, however, 503 * vcpu_enter_guest requests an immediate exit, 504 * and the guest shouldn't proceed far enough to 505 * need reinjection. 506 */ 507 WARN_ON_ONCE(vcpu->arch.exception.pending); 508 vcpu->arch.exception.injected = true; 509 if (WARN_ON_ONCE(has_payload)) { 510 /* 511 * A reinjected event has already 512 * delivered its payload. 513 */ 514 has_payload = false; 515 payload = 0; 516 } 517 } else { 518 vcpu->arch.exception.pending = true; 519 vcpu->arch.exception.injected = false; 520 } 521 vcpu->arch.exception.has_error_code = has_error; 522 vcpu->arch.exception.nr = nr; 523 vcpu->arch.exception.error_code = error_code; 524 vcpu->arch.exception.has_payload = has_payload; 525 vcpu->arch.exception.payload = payload; 526 if (!is_guest_mode(vcpu)) 527 kvm_deliver_exception_payload(vcpu); 528 return; 529 } 530 531 /* to check exception */ 532 prev_nr = vcpu->arch.exception.nr; 533 if (prev_nr == DF_VECTOR) { 534 /* triple fault -> shutdown */ 535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 536 return; 537 } 538 class1 = exception_class(prev_nr); 539 class2 = exception_class(nr); 540 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 541 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 542 /* 543 * Generate double fault per SDM Table 5-5. Set 544 * exception.pending = true so that the double fault 545 * can trigger a nested vmexit. 546 */ 547 vcpu->arch.exception.pending = true; 548 vcpu->arch.exception.injected = false; 549 vcpu->arch.exception.has_error_code = true; 550 vcpu->arch.exception.nr = DF_VECTOR; 551 vcpu->arch.exception.error_code = 0; 552 vcpu->arch.exception.has_payload = false; 553 vcpu->arch.exception.payload = 0; 554 } else 555 /* replace previous exception with a new one in a hope 556 that instruction re-execution will regenerate lost 557 exception */ 558 goto queue; 559 } 560 561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 562 { 563 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 564 } 565 EXPORT_SYMBOL_GPL(kvm_queue_exception); 566 567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 568 { 569 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 570 } 571 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 572 573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 574 unsigned long payload) 575 { 576 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 577 } 578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 579 580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 581 u32 error_code, unsigned long payload) 582 { 583 kvm_multiple_exception(vcpu, nr, true, error_code, 584 true, payload, false); 585 } 586 587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 588 { 589 if (err) 590 kvm_inject_gp(vcpu, 0); 591 else 592 return kvm_skip_emulated_instruction(vcpu); 593 594 return 1; 595 } 596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 597 598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 599 { 600 ++vcpu->stat.pf_guest; 601 vcpu->arch.exception.nested_apf = 602 is_guest_mode(vcpu) && fault->async_page_fault; 603 if (vcpu->arch.exception.nested_apf) { 604 vcpu->arch.apf.nested_apf_token = fault->address; 605 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 606 } else { 607 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 608 fault->address); 609 } 610 } 611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 612 613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 614 struct x86_exception *fault) 615 { 616 struct kvm_mmu *fault_mmu; 617 WARN_ON_ONCE(fault->vector != PF_VECTOR); 618 619 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 620 vcpu->arch.walk_mmu; 621 622 /* 623 * Invalidate the TLB entry for the faulting address, if it exists, 624 * else the access will fault indefinitely (and to emulate hardware). 625 */ 626 if ((fault->error_code & PFERR_PRESENT_MASK) && 627 !(fault->error_code & PFERR_RSVD_MASK)) 628 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 629 fault_mmu->root_hpa); 630 631 fault_mmu->inject_page_fault(vcpu, fault); 632 return fault->nested_page_fault; 633 } 634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 635 636 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 637 { 638 atomic_inc(&vcpu->arch.nmi_queued); 639 kvm_make_request(KVM_REQ_NMI, vcpu); 640 } 641 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 642 643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 644 { 645 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 646 } 647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 648 649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 650 { 651 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 652 } 653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 654 655 /* 656 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 657 * a #GP and return false. 658 */ 659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 660 { 661 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 662 return true; 663 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 664 return false; 665 } 666 EXPORT_SYMBOL_GPL(kvm_require_cpl); 667 668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 669 { 670 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 671 return true; 672 673 kvm_queue_exception(vcpu, UD_VECTOR); 674 return false; 675 } 676 EXPORT_SYMBOL_GPL(kvm_require_dr); 677 678 /* 679 * This function will be used to read from the physical memory of the currently 680 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 681 * can read from guest physical or from the guest's guest physical memory. 682 */ 683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 684 gfn_t ngfn, void *data, int offset, int len, 685 u32 access) 686 { 687 struct x86_exception exception; 688 gfn_t real_gfn; 689 gpa_t ngpa; 690 691 ngpa = gfn_to_gpa(ngfn); 692 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 693 if (real_gfn == UNMAPPED_GVA) 694 return -EFAULT; 695 696 real_gfn = gpa_to_gfn(real_gfn); 697 698 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 699 } 700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 701 702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 703 void *data, int offset, int len, u32 access) 704 { 705 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 706 data, offset, len, access); 707 } 708 709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 710 { 711 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 712 rsvd_bits(1, 2); 713 } 714 715 /* 716 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 717 */ 718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 719 { 720 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 721 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 722 int i; 723 int ret; 724 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 725 726 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 727 offset * sizeof(u64), sizeof(pdpte), 728 PFERR_USER_MASK|PFERR_WRITE_MASK); 729 if (ret < 0) { 730 ret = 0; 731 goto out; 732 } 733 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 734 if ((pdpte[i] & PT_PRESENT_MASK) && 735 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 736 ret = 0; 737 goto out; 738 } 739 } 740 ret = 1; 741 742 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 743 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 744 745 out: 746 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(load_pdptrs); 750 751 bool pdptrs_changed(struct kvm_vcpu *vcpu) 752 { 753 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 754 int offset; 755 gfn_t gfn; 756 int r; 757 758 if (!is_pae_paging(vcpu)) 759 return false; 760 761 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 762 return true; 763 764 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 765 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 766 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 767 PFERR_USER_MASK | PFERR_WRITE_MASK); 768 if (r < 0) 769 return true; 770 771 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 772 } 773 EXPORT_SYMBOL_GPL(pdptrs_changed); 774 775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 776 { 777 unsigned long old_cr0 = kvm_read_cr0(vcpu); 778 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 779 780 cr0 |= X86_CR0_ET; 781 782 #ifdef CONFIG_X86_64 783 if (cr0 & 0xffffffff00000000UL) 784 return 1; 785 #endif 786 787 cr0 &= ~CR0_RESERVED_BITS; 788 789 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 790 return 1; 791 792 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 793 return 1; 794 795 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 796 #ifdef CONFIG_X86_64 797 if ((vcpu->arch.efer & EFER_LME)) { 798 int cs_db, cs_l; 799 800 if (!is_pae(vcpu)) 801 return 1; 802 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 803 if (cs_l) 804 return 1; 805 } else 806 #endif 807 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 808 kvm_read_cr3(vcpu))) 809 return 1; 810 } 811 812 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 813 return 1; 814 815 kvm_x86_ops.set_cr0(vcpu, cr0); 816 817 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 818 kvm_clear_async_pf_completion_queue(vcpu); 819 kvm_async_pf_hash_reset(vcpu); 820 } 821 822 if ((cr0 ^ old_cr0) & update_bits) 823 kvm_mmu_reset_context(vcpu); 824 825 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 826 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 827 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 828 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(kvm_set_cr0); 833 834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 835 { 836 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 837 } 838 EXPORT_SYMBOL_GPL(kvm_lmsw); 839 840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 841 { 842 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 843 844 if (vcpu->arch.xcr0 != host_xcr0) 845 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 846 847 if (vcpu->arch.xsaves_enabled && 848 vcpu->arch.ia32_xss != host_xss) 849 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 850 } 851 852 if (static_cpu_has(X86_FEATURE_PKU) && 853 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 854 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 855 vcpu->arch.pkru != vcpu->arch.host_pkru) 856 __write_pkru(vcpu->arch.pkru); 857 } 858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 859 860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 861 { 862 if (static_cpu_has(X86_FEATURE_PKU) && 863 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 864 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 865 vcpu->arch.pkru = rdpkru(); 866 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 867 __write_pkru(vcpu->arch.host_pkru); 868 } 869 870 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 871 872 if (vcpu->arch.xcr0 != host_xcr0) 873 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 874 875 if (vcpu->arch.xsaves_enabled && 876 vcpu->arch.ia32_xss != host_xss) 877 wrmsrl(MSR_IA32_XSS, host_xss); 878 } 879 880 } 881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 882 883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 884 { 885 u64 xcr0 = xcr; 886 u64 old_xcr0 = vcpu->arch.xcr0; 887 u64 valid_bits; 888 889 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 890 if (index != XCR_XFEATURE_ENABLED_MASK) 891 return 1; 892 if (!(xcr0 & XFEATURE_MASK_FP)) 893 return 1; 894 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 895 return 1; 896 897 /* 898 * Do not allow the guest to set bits that we do not support 899 * saving. However, xcr0 bit 0 is always set, even if the 900 * emulated CPU does not support XSAVE (see fx_init). 901 */ 902 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 903 if (xcr0 & ~valid_bits) 904 return 1; 905 906 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 907 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 908 return 1; 909 910 if (xcr0 & XFEATURE_MASK_AVX512) { 911 if (!(xcr0 & XFEATURE_MASK_YMM)) 912 return 1; 913 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 914 return 1; 915 } 916 vcpu->arch.xcr0 = xcr0; 917 918 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 919 kvm_update_cpuid(vcpu); 920 return 0; 921 } 922 923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 924 { 925 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 926 __kvm_set_xcr(vcpu, index, xcr)) { 927 kvm_inject_gp(vcpu, 0); 928 return 1; 929 } 930 return 0; 931 } 932 EXPORT_SYMBOL_GPL(kvm_set_xcr); 933 934 #define __cr4_reserved_bits(__cpu_has, __c) \ 935 ({ \ 936 u64 __reserved_bits = CR4_RESERVED_BITS; \ 937 \ 938 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 939 __reserved_bits |= X86_CR4_OSXSAVE; \ 940 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 941 __reserved_bits |= X86_CR4_SMEP; \ 942 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 943 __reserved_bits |= X86_CR4_SMAP; \ 944 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 945 __reserved_bits |= X86_CR4_FSGSBASE; \ 946 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 947 __reserved_bits |= X86_CR4_PKE; \ 948 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 949 __reserved_bits |= X86_CR4_LA57; \ 950 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 951 __reserved_bits |= X86_CR4_UMIP; \ 952 __reserved_bits; \ 953 }) 954 955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 956 { 957 if (cr4 & cr4_reserved_bits) 958 return -EINVAL; 959 960 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 961 return -EINVAL; 962 963 return 0; 964 } 965 966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 967 { 968 unsigned long old_cr4 = kvm_read_cr4(vcpu); 969 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 970 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 971 972 if (kvm_valid_cr4(vcpu, cr4)) 973 return 1; 974 975 if (is_long_mode(vcpu)) { 976 if (!(cr4 & X86_CR4_PAE)) 977 return 1; 978 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 979 && ((cr4 ^ old_cr4) & pdptr_bits) 980 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 981 kvm_read_cr3(vcpu))) 982 return 1; 983 984 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 985 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 986 return 1; 987 988 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 989 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 990 return 1; 991 } 992 993 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 994 return 1; 995 996 if (((cr4 ^ old_cr4) & pdptr_bits) || 997 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 998 kvm_mmu_reset_context(vcpu); 999 1000 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1001 kvm_update_cpuid(vcpu); 1002 1003 return 0; 1004 } 1005 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1006 1007 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1008 { 1009 bool skip_tlb_flush = false; 1010 #ifdef CONFIG_X86_64 1011 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1012 1013 if (pcid_enabled) { 1014 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1015 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1016 } 1017 #endif 1018 1019 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1020 if (!skip_tlb_flush) { 1021 kvm_mmu_sync_roots(vcpu); 1022 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1023 } 1024 return 0; 1025 } 1026 1027 if (is_long_mode(vcpu) && 1028 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1029 return 1; 1030 else if (is_pae_paging(vcpu) && 1031 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1032 return 1; 1033 1034 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1035 vcpu->arch.cr3 = cr3; 1036 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1037 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1041 1042 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1043 { 1044 if (cr8 & CR8_RESERVED_BITS) 1045 return 1; 1046 if (lapic_in_kernel(vcpu)) 1047 kvm_lapic_set_tpr(vcpu, cr8); 1048 else 1049 vcpu->arch.cr8 = cr8; 1050 return 0; 1051 } 1052 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1053 1054 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1055 { 1056 if (lapic_in_kernel(vcpu)) 1057 return kvm_lapic_get_cr8(vcpu); 1058 else 1059 return vcpu->arch.cr8; 1060 } 1061 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1062 1063 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1064 { 1065 int i; 1066 1067 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1068 for (i = 0; i < KVM_NR_DB_REGS; i++) 1069 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1070 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1071 } 1072 } 1073 1074 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1075 { 1076 unsigned long dr7; 1077 1078 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1079 dr7 = vcpu->arch.guest_debug_dr7; 1080 else 1081 dr7 = vcpu->arch.dr7; 1082 kvm_x86_ops.set_dr7(vcpu, dr7); 1083 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1084 if (dr7 & DR7_BP_EN_MASK) 1085 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1086 } 1087 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1088 1089 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1090 { 1091 u64 fixed = DR6_FIXED_1; 1092 1093 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1094 fixed |= DR6_RTM; 1095 return fixed; 1096 } 1097 1098 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1099 { 1100 size_t size = ARRAY_SIZE(vcpu->arch.db); 1101 1102 switch (dr) { 1103 case 0 ... 3: 1104 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1105 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1106 vcpu->arch.eff_db[dr] = val; 1107 break; 1108 case 4: 1109 /* fall through */ 1110 case 6: 1111 if (val & 0xffffffff00000000ULL) 1112 return -1; /* #GP */ 1113 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1114 break; 1115 case 5: 1116 /* fall through */ 1117 default: /* 7 */ 1118 if (!kvm_dr7_valid(val)) 1119 return -1; /* #GP */ 1120 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1121 kvm_update_dr7(vcpu); 1122 break; 1123 } 1124 1125 return 0; 1126 } 1127 1128 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1129 { 1130 if (__kvm_set_dr(vcpu, dr, val)) { 1131 kvm_inject_gp(vcpu, 0); 1132 return 1; 1133 } 1134 return 0; 1135 } 1136 EXPORT_SYMBOL_GPL(kvm_set_dr); 1137 1138 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1139 { 1140 size_t size = ARRAY_SIZE(vcpu->arch.db); 1141 1142 switch (dr) { 1143 case 0 ... 3: 1144 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1145 break; 1146 case 4: 1147 /* fall through */ 1148 case 6: 1149 *val = vcpu->arch.dr6; 1150 break; 1151 case 5: 1152 /* fall through */ 1153 default: /* 7 */ 1154 *val = vcpu->arch.dr7; 1155 break; 1156 } 1157 return 0; 1158 } 1159 EXPORT_SYMBOL_GPL(kvm_get_dr); 1160 1161 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1162 { 1163 u32 ecx = kvm_rcx_read(vcpu); 1164 u64 data; 1165 int err; 1166 1167 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1168 if (err) 1169 return err; 1170 kvm_rax_write(vcpu, (u32)data); 1171 kvm_rdx_write(vcpu, data >> 32); 1172 return err; 1173 } 1174 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1175 1176 /* 1177 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1178 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1179 * 1180 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1181 * extract the supported MSRs from the related const lists. 1182 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1183 * capabilities of the host cpu. This capabilities test skips MSRs that are 1184 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1185 * may depend on host virtualization features rather than host cpu features. 1186 */ 1187 1188 static const u32 msrs_to_save_all[] = { 1189 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1190 MSR_STAR, 1191 #ifdef CONFIG_X86_64 1192 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1193 #endif 1194 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1195 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1196 MSR_IA32_SPEC_CTRL, 1197 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1198 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1199 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1200 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1201 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1202 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1203 MSR_IA32_UMWAIT_CONTROL, 1204 1205 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1206 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1207 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1208 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1209 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1210 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1211 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1212 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1213 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1214 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1215 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1216 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1217 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1218 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1219 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1220 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1221 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1222 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1223 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1224 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1225 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1226 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1227 }; 1228 1229 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1230 static unsigned num_msrs_to_save; 1231 1232 static const u32 emulated_msrs_all[] = { 1233 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1234 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1235 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1236 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1237 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1238 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1239 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1240 HV_X64_MSR_RESET, 1241 HV_X64_MSR_VP_INDEX, 1242 HV_X64_MSR_VP_RUNTIME, 1243 HV_X64_MSR_SCONTROL, 1244 HV_X64_MSR_STIMER0_CONFIG, 1245 HV_X64_MSR_VP_ASSIST_PAGE, 1246 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1247 HV_X64_MSR_TSC_EMULATION_STATUS, 1248 HV_X64_MSR_SYNDBG_OPTIONS, 1249 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1250 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1251 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1252 1253 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1254 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1255 1256 MSR_IA32_TSC_ADJUST, 1257 MSR_IA32_TSCDEADLINE, 1258 MSR_IA32_ARCH_CAPABILITIES, 1259 MSR_IA32_PERF_CAPABILITIES, 1260 MSR_IA32_MISC_ENABLE, 1261 MSR_IA32_MCG_STATUS, 1262 MSR_IA32_MCG_CTL, 1263 MSR_IA32_MCG_EXT_CTL, 1264 MSR_IA32_SMBASE, 1265 MSR_SMI_COUNT, 1266 MSR_PLATFORM_INFO, 1267 MSR_MISC_FEATURES_ENABLES, 1268 MSR_AMD64_VIRT_SPEC_CTRL, 1269 MSR_IA32_POWER_CTL, 1270 MSR_IA32_UCODE_REV, 1271 1272 /* 1273 * The following list leaves out MSRs whose values are determined 1274 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1275 * We always support the "true" VMX control MSRs, even if the host 1276 * processor does not, so I am putting these registers here rather 1277 * than in msrs_to_save_all. 1278 */ 1279 MSR_IA32_VMX_BASIC, 1280 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1281 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1282 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1283 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1284 MSR_IA32_VMX_MISC, 1285 MSR_IA32_VMX_CR0_FIXED0, 1286 MSR_IA32_VMX_CR4_FIXED0, 1287 MSR_IA32_VMX_VMCS_ENUM, 1288 MSR_IA32_VMX_PROCBASED_CTLS2, 1289 MSR_IA32_VMX_EPT_VPID_CAP, 1290 MSR_IA32_VMX_VMFUNC, 1291 1292 MSR_K7_HWCR, 1293 MSR_KVM_POLL_CONTROL, 1294 }; 1295 1296 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1297 static unsigned num_emulated_msrs; 1298 1299 /* 1300 * List of msr numbers which are used to expose MSR-based features that 1301 * can be used by a hypervisor to validate requested CPU features. 1302 */ 1303 static const u32 msr_based_features_all[] = { 1304 MSR_IA32_VMX_BASIC, 1305 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1306 MSR_IA32_VMX_PINBASED_CTLS, 1307 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1308 MSR_IA32_VMX_PROCBASED_CTLS, 1309 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1310 MSR_IA32_VMX_EXIT_CTLS, 1311 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1312 MSR_IA32_VMX_ENTRY_CTLS, 1313 MSR_IA32_VMX_MISC, 1314 MSR_IA32_VMX_CR0_FIXED0, 1315 MSR_IA32_VMX_CR0_FIXED1, 1316 MSR_IA32_VMX_CR4_FIXED0, 1317 MSR_IA32_VMX_CR4_FIXED1, 1318 MSR_IA32_VMX_VMCS_ENUM, 1319 MSR_IA32_VMX_PROCBASED_CTLS2, 1320 MSR_IA32_VMX_EPT_VPID_CAP, 1321 MSR_IA32_VMX_VMFUNC, 1322 1323 MSR_F10H_DECFG, 1324 MSR_IA32_UCODE_REV, 1325 MSR_IA32_ARCH_CAPABILITIES, 1326 MSR_IA32_PERF_CAPABILITIES, 1327 }; 1328 1329 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1330 static unsigned int num_msr_based_features; 1331 1332 static u64 kvm_get_arch_capabilities(void) 1333 { 1334 u64 data = 0; 1335 1336 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1337 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1338 1339 /* 1340 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1341 * the nested hypervisor runs with NX huge pages. If it is not, 1342 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1343 * L1 guests, so it need not worry about its own (L2) guests. 1344 */ 1345 data |= ARCH_CAP_PSCHANGE_MC_NO; 1346 1347 /* 1348 * If we're doing cache flushes (either "always" or "cond") 1349 * we will do one whenever the guest does a vmlaunch/vmresume. 1350 * If an outer hypervisor is doing the cache flush for us 1351 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1352 * capability to the guest too, and if EPT is disabled we're not 1353 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1354 * require a nested hypervisor to do a flush of its own. 1355 */ 1356 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1357 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1358 1359 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1360 data |= ARCH_CAP_RDCL_NO; 1361 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1362 data |= ARCH_CAP_SSB_NO; 1363 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1364 data |= ARCH_CAP_MDS_NO; 1365 1366 /* 1367 * On TAA affected systems: 1368 * - nothing to do if TSX is disabled on the host. 1369 * - we emulate TSX_CTRL if present on the host. 1370 * This lets the guest use VERW to clear CPU buffers. 1371 */ 1372 if (!boot_cpu_has(X86_FEATURE_RTM)) 1373 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1374 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1375 data |= ARCH_CAP_TAA_NO; 1376 1377 return data; 1378 } 1379 1380 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1381 { 1382 switch (msr->index) { 1383 case MSR_IA32_ARCH_CAPABILITIES: 1384 msr->data = kvm_get_arch_capabilities(); 1385 break; 1386 case MSR_IA32_UCODE_REV: 1387 rdmsrl_safe(msr->index, &msr->data); 1388 break; 1389 default: 1390 if (kvm_x86_ops.get_msr_feature(msr)) 1391 return 1; 1392 } 1393 return 0; 1394 } 1395 1396 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1397 { 1398 struct kvm_msr_entry msr; 1399 int r; 1400 1401 msr.index = index; 1402 r = kvm_get_msr_feature(&msr); 1403 if (r) 1404 return r; 1405 1406 *data = msr.data; 1407 1408 return 0; 1409 } 1410 1411 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1412 { 1413 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1414 return false; 1415 1416 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1417 return false; 1418 1419 if (efer & (EFER_LME | EFER_LMA) && 1420 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1421 return false; 1422 1423 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1424 return false; 1425 1426 return true; 1427 1428 } 1429 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1430 { 1431 if (efer & efer_reserved_bits) 1432 return false; 1433 1434 return __kvm_valid_efer(vcpu, efer); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1437 1438 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1439 { 1440 u64 old_efer = vcpu->arch.efer; 1441 u64 efer = msr_info->data; 1442 1443 if (efer & efer_reserved_bits) 1444 return 1; 1445 1446 if (!msr_info->host_initiated) { 1447 if (!__kvm_valid_efer(vcpu, efer)) 1448 return 1; 1449 1450 if (is_paging(vcpu) && 1451 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1452 return 1; 1453 } 1454 1455 efer &= ~EFER_LMA; 1456 efer |= vcpu->arch.efer & EFER_LMA; 1457 1458 kvm_x86_ops.set_efer(vcpu, efer); 1459 1460 /* Update reserved bits */ 1461 if ((efer ^ old_efer) & EFER_NX) 1462 kvm_mmu_reset_context(vcpu); 1463 1464 return 0; 1465 } 1466 1467 void kvm_enable_efer_bits(u64 mask) 1468 { 1469 efer_reserved_bits &= ~mask; 1470 } 1471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1472 1473 /* 1474 * Write @data into the MSR specified by @index. Select MSR specific fault 1475 * checks are bypassed if @host_initiated is %true. 1476 * Returns 0 on success, non-0 otherwise. 1477 * Assumes vcpu_load() was already called. 1478 */ 1479 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1480 bool host_initiated) 1481 { 1482 struct msr_data msr; 1483 1484 switch (index) { 1485 case MSR_FS_BASE: 1486 case MSR_GS_BASE: 1487 case MSR_KERNEL_GS_BASE: 1488 case MSR_CSTAR: 1489 case MSR_LSTAR: 1490 if (is_noncanonical_address(data, vcpu)) 1491 return 1; 1492 break; 1493 case MSR_IA32_SYSENTER_EIP: 1494 case MSR_IA32_SYSENTER_ESP: 1495 /* 1496 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1497 * non-canonical address is written on Intel but not on 1498 * AMD (which ignores the top 32-bits, because it does 1499 * not implement 64-bit SYSENTER). 1500 * 1501 * 64-bit code should hence be able to write a non-canonical 1502 * value on AMD. Making the address canonical ensures that 1503 * vmentry does not fail on Intel after writing a non-canonical 1504 * value, and that something deterministic happens if the guest 1505 * invokes 64-bit SYSENTER. 1506 */ 1507 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1508 } 1509 1510 msr.data = data; 1511 msr.index = index; 1512 msr.host_initiated = host_initiated; 1513 1514 return kvm_x86_ops.set_msr(vcpu, &msr); 1515 } 1516 1517 /* 1518 * Read the MSR specified by @index into @data. Select MSR specific fault 1519 * checks are bypassed if @host_initiated is %true. 1520 * Returns 0 on success, non-0 otherwise. 1521 * Assumes vcpu_load() was already called. 1522 */ 1523 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1524 bool host_initiated) 1525 { 1526 struct msr_data msr; 1527 int ret; 1528 1529 msr.index = index; 1530 msr.host_initiated = host_initiated; 1531 1532 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1533 if (!ret) 1534 *data = msr.data; 1535 return ret; 1536 } 1537 1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1539 { 1540 return __kvm_get_msr(vcpu, index, data, false); 1541 } 1542 EXPORT_SYMBOL_GPL(kvm_get_msr); 1543 1544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1545 { 1546 return __kvm_set_msr(vcpu, index, data, false); 1547 } 1548 EXPORT_SYMBOL_GPL(kvm_set_msr); 1549 1550 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1551 { 1552 u32 ecx = kvm_rcx_read(vcpu); 1553 u64 data; 1554 1555 if (kvm_get_msr(vcpu, ecx, &data)) { 1556 trace_kvm_msr_read_ex(ecx); 1557 kvm_inject_gp(vcpu, 0); 1558 return 1; 1559 } 1560 1561 trace_kvm_msr_read(ecx, data); 1562 1563 kvm_rax_write(vcpu, data & -1u); 1564 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1565 return kvm_skip_emulated_instruction(vcpu); 1566 } 1567 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1568 1569 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1570 { 1571 u32 ecx = kvm_rcx_read(vcpu); 1572 u64 data = kvm_read_edx_eax(vcpu); 1573 1574 if (kvm_set_msr(vcpu, ecx, data)) { 1575 trace_kvm_msr_write_ex(ecx, data); 1576 kvm_inject_gp(vcpu, 0); 1577 return 1; 1578 } 1579 1580 trace_kvm_msr_write(ecx, data); 1581 return kvm_skip_emulated_instruction(vcpu); 1582 } 1583 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1584 1585 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1586 { 1587 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1588 need_resched() || signal_pending(current); 1589 } 1590 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1591 1592 /* 1593 * The fast path for frequent and performance sensitive wrmsr emulation, 1594 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1595 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1596 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1597 * other cases which must be called after interrupts are enabled on the host. 1598 */ 1599 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1600 { 1601 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1602 return 1; 1603 1604 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1605 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1606 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1607 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1608 1609 data &= ~(1 << 12); 1610 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1611 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1612 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1613 trace_kvm_apic_write(APIC_ICR, (u32)data); 1614 return 0; 1615 } 1616 1617 return 1; 1618 } 1619 1620 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1621 { 1622 if (!kvm_can_use_hv_timer(vcpu)) 1623 return 1; 1624 1625 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1626 return 0; 1627 } 1628 1629 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1630 { 1631 u32 msr = kvm_rcx_read(vcpu); 1632 u64 data; 1633 fastpath_t ret = EXIT_FASTPATH_NONE; 1634 1635 switch (msr) { 1636 case APIC_BASE_MSR + (APIC_ICR >> 4): 1637 data = kvm_read_edx_eax(vcpu); 1638 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1639 kvm_skip_emulated_instruction(vcpu); 1640 ret = EXIT_FASTPATH_EXIT_HANDLED; 1641 } 1642 break; 1643 case MSR_IA32_TSCDEADLINE: 1644 data = kvm_read_edx_eax(vcpu); 1645 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1646 kvm_skip_emulated_instruction(vcpu); 1647 ret = EXIT_FASTPATH_REENTER_GUEST; 1648 } 1649 break; 1650 default: 1651 break; 1652 } 1653 1654 if (ret != EXIT_FASTPATH_NONE) 1655 trace_kvm_msr_write(msr, data); 1656 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1660 1661 /* 1662 * Adapt set_msr() to msr_io()'s calling convention 1663 */ 1664 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1665 { 1666 return __kvm_get_msr(vcpu, index, data, true); 1667 } 1668 1669 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1670 { 1671 return __kvm_set_msr(vcpu, index, *data, true); 1672 } 1673 1674 #ifdef CONFIG_X86_64 1675 struct pvclock_clock { 1676 int vclock_mode; 1677 u64 cycle_last; 1678 u64 mask; 1679 u32 mult; 1680 u32 shift; 1681 u64 base_cycles; 1682 u64 offset; 1683 }; 1684 1685 struct pvclock_gtod_data { 1686 seqcount_t seq; 1687 1688 struct pvclock_clock clock; /* extract of a clocksource struct */ 1689 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1690 1691 ktime_t offs_boot; 1692 u64 wall_time_sec; 1693 }; 1694 1695 static struct pvclock_gtod_data pvclock_gtod_data; 1696 1697 static void update_pvclock_gtod(struct timekeeper *tk) 1698 { 1699 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1700 1701 write_seqcount_begin(&vdata->seq); 1702 1703 /* copy pvclock gtod data */ 1704 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1705 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1706 vdata->clock.mask = tk->tkr_mono.mask; 1707 vdata->clock.mult = tk->tkr_mono.mult; 1708 vdata->clock.shift = tk->tkr_mono.shift; 1709 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1710 vdata->clock.offset = tk->tkr_mono.base; 1711 1712 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1713 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1714 vdata->raw_clock.mask = tk->tkr_raw.mask; 1715 vdata->raw_clock.mult = tk->tkr_raw.mult; 1716 vdata->raw_clock.shift = tk->tkr_raw.shift; 1717 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1718 vdata->raw_clock.offset = tk->tkr_raw.base; 1719 1720 vdata->wall_time_sec = tk->xtime_sec; 1721 1722 vdata->offs_boot = tk->offs_boot; 1723 1724 write_seqcount_end(&vdata->seq); 1725 } 1726 1727 static s64 get_kvmclock_base_ns(void) 1728 { 1729 /* Count up from boot time, but with the frequency of the raw clock. */ 1730 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1731 } 1732 #else 1733 static s64 get_kvmclock_base_ns(void) 1734 { 1735 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1736 return ktime_get_boottime_ns(); 1737 } 1738 #endif 1739 1740 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1741 { 1742 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1743 kvm_vcpu_kick(vcpu); 1744 } 1745 1746 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1747 { 1748 int version; 1749 int r; 1750 struct pvclock_wall_clock wc; 1751 u64 wall_nsec; 1752 1753 if (!wall_clock) 1754 return; 1755 1756 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1757 if (r) 1758 return; 1759 1760 if (version & 1) 1761 ++version; /* first time write, random junk */ 1762 1763 ++version; 1764 1765 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1766 return; 1767 1768 /* 1769 * The guest calculates current wall clock time by adding 1770 * system time (updated by kvm_guest_time_update below) to the 1771 * wall clock specified here. We do the reverse here. 1772 */ 1773 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1774 1775 wc.nsec = do_div(wall_nsec, 1000000000); 1776 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1777 wc.version = version; 1778 1779 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1780 1781 version++; 1782 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1783 } 1784 1785 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1786 { 1787 do_shl32_div32(dividend, divisor); 1788 return dividend; 1789 } 1790 1791 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1792 s8 *pshift, u32 *pmultiplier) 1793 { 1794 uint64_t scaled64; 1795 int32_t shift = 0; 1796 uint64_t tps64; 1797 uint32_t tps32; 1798 1799 tps64 = base_hz; 1800 scaled64 = scaled_hz; 1801 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1802 tps64 >>= 1; 1803 shift--; 1804 } 1805 1806 tps32 = (uint32_t)tps64; 1807 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1808 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1809 scaled64 >>= 1; 1810 else 1811 tps32 <<= 1; 1812 shift++; 1813 } 1814 1815 *pshift = shift; 1816 *pmultiplier = div_frac(scaled64, tps32); 1817 } 1818 1819 #ifdef CONFIG_X86_64 1820 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1821 #endif 1822 1823 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1824 static unsigned long max_tsc_khz; 1825 1826 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1827 { 1828 u64 v = (u64)khz * (1000000 + ppm); 1829 do_div(v, 1000000); 1830 return v; 1831 } 1832 1833 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1834 { 1835 u64 ratio; 1836 1837 /* Guest TSC same frequency as host TSC? */ 1838 if (!scale) { 1839 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1840 return 0; 1841 } 1842 1843 /* TSC scaling supported? */ 1844 if (!kvm_has_tsc_control) { 1845 if (user_tsc_khz > tsc_khz) { 1846 vcpu->arch.tsc_catchup = 1; 1847 vcpu->arch.tsc_always_catchup = 1; 1848 return 0; 1849 } else { 1850 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1851 return -1; 1852 } 1853 } 1854 1855 /* TSC scaling required - calculate ratio */ 1856 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1857 user_tsc_khz, tsc_khz); 1858 1859 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1860 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1861 user_tsc_khz); 1862 return -1; 1863 } 1864 1865 vcpu->arch.tsc_scaling_ratio = ratio; 1866 return 0; 1867 } 1868 1869 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1870 { 1871 u32 thresh_lo, thresh_hi; 1872 int use_scaling = 0; 1873 1874 /* tsc_khz can be zero if TSC calibration fails */ 1875 if (user_tsc_khz == 0) { 1876 /* set tsc_scaling_ratio to a safe value */ 1877 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1878 return -1; 1879 } 1880 1881 /* Compute a scale to convert nanoseconds in TSC cycles */ 1882 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1883 &vcpu->arch.virtual_tsc_shift, 1884 &vcpu->arch.virtual_tsc_mult); 1885 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1886 1887 /* 1888 * Compute the variation in TSC rate which is acceptable 1889 * within the range of tolerance and decide if the 1890 * rate being applied is within that bounds of the hardware 1891 * rate. If so, no scaling or compensation need be done. 1892 */ 1893 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1894 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1895 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1896 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1897 use_scaling = 1; 1898 } 1899 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1900 } 1901 1902 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1903 { 1904 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1905 vcpu->arch.virtual_tsc_mult, 1906 vcpu->arch.virtual_tsc_shift); 1907 tsc += vcpu->arch.this_tsc_write; 1908 return tsc; 1909 } 1910 1911 static inline int gtod_is_based_on_tsc(int mode) 1912 { 1913 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1914 } 1915 1916 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1917 { 1918 #ifdef CONFIG_X86_64 1919 bool vcpus_matched; 1920 struct kvm_arch *ka = &vcpu->kvm->arch; 1921 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1922 1923 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1924 atomic_read(&vcpu->kvm->online_vcpus)); 1925 1926 /* 1927 * Once the masterclock is enabled, always perform request in 1928 * order to update it. 1929 * 1930 * In order to enable masterclock, the host clocksource must be TSC 1931 * and the vcpus need to have matched TSCs. When that happens, 1932 * perform request to enable masterclock. 1933 */ 1934 if (ka->use_master_clock || 1935 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1936 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1937 1938 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1939 atomic_read(&vcpu->kvm->online_vcpus), 1940 ka->use_master_clock, gtod->clock.vclock_mode); 1941 #endif 1942 } 1943 1944 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1945 { 1946 u64 curr_offset = vcpu->arch.l1_tsc_offset; 1947 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1948 } 1949 1950 /* 1951 * Multiply tsc by a fixed point number represented by ratio. 1952 * 1953 * The most significant 64-N bits (mult) of ratio represent the 1954 * integral part of the fixed point number; the remaining N bits 1955 * (frac) represent the fractional part, ie. ratio represents a fixed 1956 * point number (mult + frac * 2^(-N)). 1957 * 1958 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1959 */ 1960 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1961 { 1962 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1963 } 1964 1965 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1966 { 1967 u64 _tsc = tsc; 1968 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1969 1970 if (ratio != kvm_default_tsc_scaling_ratio) 1971 _tsc = __scale_tsc(ratio, tsc); 1972 1973 return _tsc; 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1976 1977 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1978 { 1979 u64 tsc; 1980 1981 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1982 1983 return target_tsc - tsc; 1984 } 1985 1986 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1987 { 1988 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1989 } 1990 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1991 1992 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1993 { 1994 vcpu->arch.l1_tsc_offset = offset; 1995 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 1996 } 1997 1998 static inline bool kvm_check_tsc_unstable(void) 1999 { 2000 #ifdef CONFIG_X86_64 2001 /* 2002 * TSC is marked unstable when we're running on Hyper-V, 2003 * 'TSC page' clocksource is good. 2004 */ 2005 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2006 return false; 2007 #endif 2008 return check_tsc_unstable(); 2009 } 2010 2011 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 2012 { 2013 struct kvm *kvm = vcpu->kvm; 2014 u64 offset, ns, elapsed; 2015 unsigned long flags; 2016 bool matched; 2017 bool already_matched; 2018 u64 data = msr->data; 2019 bool synchronizing = false; 2020 2021 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2022 offset = kvm_compute_tsc_offset(vcpu, data); 2023 ns = get_kvmclock_base_ns(); 2024 elapsed = ns - kvm->arch.last_tsc_nsec; 2025 2026 if (vcpu->arch.virtual_tsc_khz) { 2027 if (data == 0 && msr->host_initiated) { 2028 /* 2029 * detection of vcpu initialization -- need to sync 2030 * with other vCPUs. This particularly helps to keep 2031 * kvm_clock stable after CPU hotplug 2032 */ 2033 synchronizing = true; 2034 } else { 2035 u64 tsc_exp = kvm->arch.last_tsc_write + 2036 nsec_to_cycles(vcpu, elapsed); 2037 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2038 /* 2039 * Special case: TSC write with a small delta (1 second) 2040 * of virtual cycle time against real time is 2041 * interpreted as an attempt to synchronize the CPU. 2042 */ 2043 synchronizing = data < tsc_exp + tsc_hz && 2044 data + tsc_hz > tsc_exp; 2045 } 2046 } 2047 2048 /* 2049 * For a reliable TSC, we can match TSC offsets, and for an unstable 2050 * TSC, we add elapsed time in this computation. We could let the 2051 * compensation code attempt to catch up if we fall behind, but 2052 * it's better to try to match offsets from the beginning. 2053 */ 2054 if (synchronizing && 2055 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2056 if (!kvm_check_tsc_unstable()) { 2057 offset = kvm->arch.cur_tsc_offset; 2058 } else { 2059 u64 delta = nsec_to_cycles(vcpu, elapsed); 2060 data += delta; 2061 offset = kvm_compute_tsc_offset(vcpu, data); 2062 } 2063 matched = true; 2064 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2065 } else { 2066 /* 2067 * We split periods of matched TSC writes into generations. 2068 * For each generation, we track the original measured 2069 * nanosecond time, offset, and write, so if TSCs are in 2070 * sync, we can match exact offset, and if not, we can match 2071 * exact software computation in compute_guest_tsc() 2072 * 2073 * These values are tracked in kvm->arch.cur_xxx variables. 2074 */ 2075 kvm->arch.cur_tsc_generation++; 2076 kvm->arch.cur_tsc_nsec = ns; 2077 kvm->arch.cur_tsc_write = data; 2078 kvm->arch.cur_tsc_offset = offset; 2079 matched = false; 2080 } 2081 2082 /* 2083 * We also track th most recent recorded KHZ, write and time to 2084 * allow the matching interval to be extended at each write. 2085 */ 2086 kvm->arch.last_tsc_nsec = ns; 2087 kvm->arch.last_tsc_write = data; 2088 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2089 2090 vcpu->arch.last_guest_tsc = data; 2091 2092 /* Keep track of which generation this VCPU has synchronized to */ 2093 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2094 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2095 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2096 2097 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2098 update_ia32_tsc_adjust_msr(vcpu, offset); 2099 2100 kvm_vcpu_write_tsc_offset(vcpu, offset); 2101 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2102 2103 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2104 if (!matched) { 2105 kvm->arch.nr_vcpus_matched_tsc = 0; 2106 } else if (!already_matched) { 2107 kvm->arch.nr_vcpus_matched_tsc++; 2108 } 2109 2110 kvm_track_tsc_matching(vcpu); 2111 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2112 } 2113 2114 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2115 2116 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2117 s64 adjustment) 2118 { 2119 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2120 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2121 } 2122 2123 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2124 { 2125 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2126 WARN_ON(adjustment < 0); 2127 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2128 adjust_tsc_offset_guest(vcpu, adjustment); 2129 } 2130 2131 #ifdef CONFIG_X86_64 2132 2133 static u64 read_tsc(void) 2134 { 2135 u64 ret = (u64)rdtsc_ordered(); 2136 u64 last = pvclock_gtod_data.clock.cycle_last; 2137 2138 if (likely(ret >= last)) 2139 return ret; 2140 2141 /* 2142 * GCC likes to generate cmov here, but this branch is extremely 2143 * predictable (it's just a function of time and the likely is 2144 * very likely) and there's a data dependence, so force GCC 2145 * to generate a branch instead. I don't barrier() because 2146 * we don't actually need a barrier, and if this function 2147 * ever gets inlined it will generate worse code. 2148 */ 2149 asm volatile (""); 2150 return last; 2151 } 2152 2153 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2154 int *mode) 2155 { 2156 long v; 2157 u64 tsc_pg_val; 2158 2159 switch (clock->vclock_mode) { 2160 case VDSO_CLOCKMODE_HVCLOCK: 2161 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2162 tsc_timestamp); 2163 if (tsc_pg_val != U64_MAX) { 2164 /* TSC page valid */ 2165 *mode = VDSO_CLOCKMODE_HVCLOCK; 2166 v = (tsc_pg_val - clock->cycle_last) & 2167 clock->mask; 2168 } else { 2169 /* TSC page invalid */ 2170 *mode = VDSO_CLOCKMODE_NONE; 2171 } 2172 break; 2173 case VDSO_CLOCKMODE_TSC: 2174 *mode = VDSO_CLOCKMODE_TSC; 2175 *tsc_timestamp = read_tsc(); 2176 v = (*tsc_timestamp - clock->cycle_last) & 2177 clock->mask; 2178 break; 2179 default: 2180 *mode = VDSO_CLOCKMODE_NONE; 2181 } 2182 2183 if (*mode == VDSO_CLOCKMODE_NONE) 2184 *tsc_timestamp = v = 0; 2185 2186 return v * clock->mult; 2187 } 2188 2189 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2190 { 2191 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2192 unsigned long seq; 2193 int mode; 2194 u64 ns; 2195 2196 do { 2197 seq = read_seqcount_begin(>od->seq); 2198 ns = gtod->raw_clock.base_cycles; 2199 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2200 ns >>= gtod->raw_clock.shift; 2201 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2202 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2203 *t = ns; 2204 2205 return mode; 2206 } 2207 2208 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2209 { 2210 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2211 unsigned long seq; 2212 int mode; 2213 u64 ns; 2214 2215 do { 2216 seq = read_seqcount_begin(>od->seq); 2217 ts->tv_sec = gtod->wall_time_sec; 2218 ns = gtod->clock.base_cycles; 2219 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2220 ns >>= gtod->clock.shift; 2221 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2222 2223 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2224 ts->tv_nsec = ns; 2225 2226 return mode; 2227 } 2228 2229 /* returns true if host is using TSC based clocksource */ 2230 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2231 { 2232 /* checked again under seqlock below */ 2233 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2234 return false; 2235 2236 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2237 tsc_timestamp)); 2238 } 2239 2240 /* returns true if host is using TSC based clocksource */ 2241 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2242 u64 *tsc_timestamp) 2243 { 2244 /* checked again under seqlock below */ 2245 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2246 return false; 2247 2248 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2249 } 2250 #endif 2251 2252 /* 2253 * 2254 * Assuming a stable TSC across physical CPUS, and a stable TSC 2255 * across virtual CPUs, the following condition is possible. 2256 * Each numbered line represents an event visible to both 2257 * CPUs at the next numbered event. 2258 * 2259 * "timespecX" represents host monotonic time. "tscX" represents 2260 * RDTSC value. 2261 * 2262 * VCPU0 on CPU0 | VCPU1 on CPU1 2263 * 2264 * 1. read timespec0,tsc0 2265 * 2. | timespec1 = timespec0 + N 2266 * | tsc1 = tsc0 + M 2267 * 3. transition to guest | transition to guest 2268 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2269 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2270 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2271 * 2272 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2273 * 2274 * - ret0 < ret1 2275 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2276 * ... 2277 * - 0 < N - M => M < N 2278 * 2279 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2280 * always the case (the difference between two distinct xtime instances 2281 * might be smaller then the difference between corresponding TSC reads, 2282 * when updating guest vcpus pvclock areas). 2283 * 2284 * To avoid that problem, do not allow visibility of distinct 2285 * system_timestamp/tsc_timestamp values simultaneously: use a master 2286 * copy of host monotonic time values. Update that master copy 2287 * in lockstep. 2288 * 2289 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2290 * 2291 */ 2292 2293 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2294 { 2295 #ifdef CONFIG_X86_64 2296 struct kvm_arch *ka = &kvm->arch; 2297 int vclock_mode; 2298 bool host_tsc_clocksource, vcpus_matched; 2299 2300 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2301 atomic_read(&kvm->online_vcpus)); 2302 2303 /* 2304 * If the host uses TSC clock, then passthrough TSC as stable 2305 * to the guest. 2306 */ 2307 host_tsc_clocksource = kvm_get_time_and_clockread( 2308 &ka->master_kernel_ns, 2309 &ka->master_cycle_now); 2310 2311 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2312 && !ka->backwards_tsc_observed 2313 && !ka->boot_vcpu_runs_old_kvmclock; 2314 2315 if (ka->use_master_clock) 2316 atomic_set(&kvm_guest_has_master_clock, 1); 2317 2318 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2319 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2320 vcpus_matched); 2321 #endif 2322 } 2323 2324 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2325 { 2326 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2327 } 2328 2329 static void kvm_gen_update_masterclock(struct kvm *kvm) 2330 { 2331 #ifdef CONFIG_X86_64 2332 int i; 2333 struct kvm_vcpu *vcpu; 2334 struct kvm_arch *ka = &kvm->arch; 2335 2336 spin_lock(&ka->pvclock_gtod_sync_lock); 2337 kvm_make_mclock_inprogress_request(kvm); 2338 /* no guest entries from this point */ 2339 pvclock_update_vm_gtod_copy(kvm); 2340 2341 kvm_for_each_vcpu(i, vcpu, kvm) 2342 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2343 2344 /* guest entries allowed */ 2345 kvm_for_each_vcpu(i, vcpu, kvm) 2346 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2347 2348 spin_unlock(&ka->pvclock_gtod_sync_lock); 2349 #endif 2350 } 2351 2352 u64 get_kvmclock_ns(struct kvm *kvm) 2353 { 2354 struct kvm_arch *ka = &kvm->arch; 2355 struct pvclock_vcpu_time_info hv_clock; 2356 u64 ret; 2357 2358 spin_lock(&ka->pvclock_gtod_sync_lock); 2359 if (!ka->use_master_clock) { 2360 spin_unlock(&ka->pvclock_gtod_sync_lock); 2361 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2362 } 2363 2364 hv_clock.tsc_timestamp = ka->master_cycle_now; 2365 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2366 spin_unlock(&ka->pvclock_gtod_sync_lock); 2367 2368 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2369 get_cpu(); 2370 2371 if (__this_cpu_read(cpu_tsc_khz)) { 2372 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2373 &hv_clock.tsc_shift, 2374 &hv_clock.tsc_to_system_mul); 2375 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2376 } else 2377 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2378 2379 put_cpu(); 2380 2381 return ret; 2382 } 2383 2384 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2385 { 2386 struct kvm_vcpu_arch *vcpu = &v->arch; 2387 struct pvclock_vcpu_time_info guest_hv_clock; 2388 2389 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2390 &guest_hv_clock, sizeof(guest_hv_clock)))) 2391 return; 2392 2393 /* This VCPU is paused, but it's legal for a guest to read another 2394 * VCPU's kvmclock, so we really have to follow the specification where 2395 * it says that version is odd if data is being modified, and even after 2396 * it is consistent. 2397 * 2398 * Version field updates must be kept separate. This is because 2399 * kvm_write_guest_cached might use a "rep movs" instruction, and 2400 * writes within a string instruction are weakly ordered. So there 2401 * are three writes overall. 2402 * 2403 * As a small optimization, only write the version field in the first 2404 * and third write. The vcpu->pv_time cache is still valid, because the 2405 * version field is the first in the struct. 2406 */ 2407 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2408 2409 if (guest_hv_clock.version & 1) 2410 ++guest_hv_clock.version; /* first time write, random junk */ 2411 2412 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2413 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2414 &vcpu->hv_clock, 2415 sizeof(vcpu->hv_clock.version)); 2416 2417 smp_wmb(); 2418 2419 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2420 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2421 2422 if (vcpu->pvclock_set_guest_stopped_request) { 2423 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2424 vcpu->pvclock_set_guest_stopped_request = false; 2425 } 2426 2427 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2428 2429 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2430 &vcpu->hv_clock, 2431 sizeof(vcpu->hv_clock)); 2432 2433 smp_wmb(); 2434 2435 vcpu->hv_clock.version++; 2436 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2437 &vcpu->hv_clock, 2438 sizeof(vcpu->hv_clock.version)); 2439 } 2440 2441 static int kvm_guest_time_update(struct kvm_vcpu *v) 2442 { 2443 unsigned long flags, tgt_tsc_khz; 2444 struct kvm_vcpu_arch *vcpu = &v->arch; 2445 struct kvm_arch *ka = &v->kvm->arch; 2446 s64 kernel_ns; 2447 u64 tsc_timestamp, host_tsc; 2448 u8 pvclock_flags; 2449 bool use_master_clock; 2450 2451 kernel_ns = 0; 2452 host_tsc = 0; 2453 2454 /* 2455 * If the host uses TSC clock, then passthrough TSC as stable 2456 * to the guest. 2457 */ 2458 spin_lock(&ka->pvclock_gtod_sync_lock); 2459 use_master_clock = ka->use_master_clock; 2460 if (use_master_clock) { 2461 host_tsc = ka->master_cycle_now; 2462 kernel_ns = ka->master_kernel_ns; 2463 } 2464 spin_unlock(&ka->pvclock_gtod_sync_lock); 2465 2466 /* Keep irq disabled to prevent changes to the clock */ 2467 local_irq_save(flags); 2468 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2469 if (unlikely(tgt_tsc_khz == 0)) { 2470 local_irq_restore(flags); 2471 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2472 return 1; 2473 } 2474 if (!use_master_clock) { 2475 host_tsc = rdtsc(); 2476 kernel_ns = get_kvmclock_base_ns(); 2477 } 2478 2479 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2480 2481 /* 2482 * We may have to catch up the TSC to match elapsed wall clock 2483 * time for two reasons, even if kvmclock is used. 2484 * 1) CPU could have been running below the maximum TSC rate 2485 * 2) Broken TSC compensation resets the base at each VCPU 2486 * entry to avoid unknown leaps of TSC even when running 2487 * again on the same CPU. This may cause apparent elapsed 2488 * time to disappear, and the guest to stand still or run 2489 * very slowly. 2490 */ 2491 if (vcpu->tsc_catchup) { 2492 u64 tsc = compute_guest_tsc(v, kernel_ns); 2493 if (tsc > tsc_timestamp) { 2494 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2495 tsc_timestamp = tsc; 2496 } 2497 } 2498 2499 local_irq_restore(flags); 2500 2501 /* With all the info we got, fill in the values */ 2502 2503 if (kvm_has_tsc_control) 2504 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2505 2506 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2507 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2508 &vcpu->hv_clock.tsc_shift, 2509 &vcpu->hv_clock.tsc_to_system_mul); 2510 vcpu->hw_tsc_khz = tgt_tsc_khz; 2511 } 2512 2513 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2514 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2515 vcpu->last_guest_tsc = tsc_timestamp; 2516 2517 /* If the host uses TSC clocksource, then it is stable */ 2518 pvclock_flags = 0; 2519 if (use_master_clock) 2520 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2521 2522 vcpu->hv_clock.flags = pvclock_flags; 2523 2524 if (vcpu->pv_time_enabled) 2525 kvm_setup_pvclock_page(v); 2526 if (v == kvm_get_vcpu(v->kvm, 0)) 2527 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2528 return 0; 2529 } 2530 2531 /* 2532 * kvmclock updates which are isolated to a given vcpu, such as 2533 * vcpu->cpu migration, should not allow system_timestamp from 2534 * the rest of the vcpus to remain static. Otherwise ntp frequency 2535 * correction applies to one vcpu's system_timestamp but not 2536 * the others. 2537 * 2538 * So in those cases, request a kvmclock update for all vcpus. 2539 * We need to rate-limit these requests though, as they can 2540 * considerably slow guests that have a large number of vcpus. 2541 * The time for a remote vcpu to update its kvmclock is bound 2542 * by the delay we use to rate-limit the updates. 2543 */ 2544 2545 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2546 2547 static void kvmclock_update_fn(struct work_struct *work) 2548 { 2549 int i; 2550 struct delayed_work *dwork = to_delayed_work(work); 2551 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2552 kvmclock_update_work); 2553 struct kvm *kvm = container_of(ka, struct kvm, arch); 2554 struct kvm_vcpu *vcpu; 2555 2556 kvm_for_each_vcpu(i, vcpu, kvm) { 2557 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2558 kvm_vcpu_kick(vcpu); 2559 } 2560 } 2561 2562 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2563 { 2564 struct kvm *kvm = v->kvm; 2565 2566 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2567 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2568 KVMCLOCK_UPDATE_DELAY); 2569 } 2570 2571 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2572 2573 static void kvmclock_sync_fn(struct work_struct *work) 2574 { 2575 struct delayed_work *dwork = to_delayed_work(work); 2576 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2577 kvmclock_sync_work); 2578 struct kvm *kvm = container_of(ka, struct kvm, arch); 2579 2580 if (!kvmclock_periodic_sync) 2581 return; 2582 2583 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2584 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2585 KVMCLOCK_SYNC_PERIOD); 2586 } 2587 2588 /* 2589 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2590 */ 2591 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2592 { 2593 /* McStatusWrEn enabled? */ 2594 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2595 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2596 2597 return false; 2598 } 2599 2600 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2601 { 2602 u64 mcg_cap = vcpu->arch.mcg_cap; 2603 unsigned bank_num = mcg_cap & 0xff; 2604 u32 msr = msr_info->index; 2605 u64 data = msr_info->data; 2606 2607 switch (msr) { 2608 case MSR_IA32_MCG_STATUS: 2609 vcpu->arch.mcg_status = data; 2610 break; 2611 case MSR_IA32_MCG_CTL: 2612 if (!(mcg_cap & MCG_CTL_P) && 2613 (data || !msr_info->host_initiated)) 2614 return 1; 2615 if (data != 0 && data != ~(u64)0) 2616 return 1; 2617 vcpu->arch.mcg_ctl = data; 2618 break; 2619 default: 2620 if (msr >= MSR_IA32_MC0_CTL && 2621 msr < MSR_IA32_MCx_CTL(bank_num)) { 2622 u32 offset = array_index_nospec( 2623 msr - MSR_IA32_MC0_CTL, 2624 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2625 2626 /* only 0 or all 1s can be written to IA32_MCi_CTL 2627 * some Linux kernels though clear bit 10 in bank 4 to 2628 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2629 * this to avoid an uncatched #GP in the guest 2630 */ 2631 if ((offset & 0x3) == 0 && 2632 data != 0 && (data | (1 << 10)) != ~(u64)0) 2633 return -1; 2634 2635 /* MCi_STATUS */ 2636 if (!msr_info->host_initiated && 2637 (offset & 0x3) == 1 && data != 0) { 2638 if (!can_set_mci_status(vcpu)) 2639 return -1; 2640 } 2641 2642 vcpu->arch.mce_banks[offset] = data; 2643 break; 2644 } 2645 return 1; 2646 } 2647 return 0; 2648 } 2649 2650 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2651 { 2652 struct kvm *kvm = vcpu->kvm; 2653 int lm = is_long_mode(vcpu); 2654 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2655 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2656 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2657 : kvm->arch.xen_hvm_config.blob_size_32; 2658 u32 page_num = data & ~PAGE_MASK; 2659 u64 page_addr = data & PAGE_MASK; 2660 u8 *page; 2661 int r; 2662 2663 r = -E2BIG; 2664 if (page_num >= blob_size) 2665 goto out; 2666 r = -ENOMEM; 2667 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2668 if (IS_ERR(page)) { 2669 r = PTR_ERR(page); 2670 goto out; 2671 } 2672 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2673 goto out_free; 2674 r = 0; 2675 out_free: 2676 kfree(page); 2677 out: 2678 return r; 2679 } 2680 2681 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2682 { 2683 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2684 2685 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2686 } 2687 2688 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2689 { 2690 gpa_t gpa = data & ~0x3f; 2691 2692 /* Bits 4:5 are reserved, Should be zero */ 2693 if (data & 0x30) 2694 return 1; 2695 2696 vcpu->arch.apf.msr_en_val = data; 2697 2698 if (!kvm_pv_async_pf_enabled(vcpu)) { 2699 kvm_clear_async_pf_completion_queue(vcpu); 2700 kvm_async_pf_hash_reset(vcpu); 2701 return 0; 2702 } 2703 2704 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2705 sizeof(u64))) 2706 return 1; 2707 2708 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2709 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2710 2711 kvm_async_pf_wakeup_all(vcpu); 2712 2713 return 0; 2714 } 2715 2716 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2717 { 2718 /* Bits 8-63 are reserved */ 2719 if (data >> 8) 2720 return 1; 2721 2722 if (!lapic_in_kernel(vcpu)) 2723 return 1; 2724 2725 vcpu->arch.apf.msr_int_val = data; 2726 2727 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2728 2729 return 0; 2730 } 2731 2732 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2733 { 2734 vcpu->arch.pv_time_enabled = false; 2735 vcpu->arch.time = 0; 2736 } 2737 2738 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2739 { 2740 ++vcpu->stat.tlb_flush; 2741 kvm_x86_ops.tlb_flush_all(vcpu); 2742 } 2743 2744 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2745 { 2746 ++vcpu->stat.tlb_flush; 2747 kvm_x86_ops.tlb_flush_guest(vcpu); 2748 } 2749 2750 static void record_steal_time(struct kvm_vcpu *vcpu) 2751 { 2752 struct kvm_host_map map; 2753 struct kvm_steal_time *st; 2754 2755 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2756 return; 2757 2758 /* -EAGAIN is returned in atomic context so we can just return. */ 2759 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2760 &map, &vcpu->arch.st.cache, false)) 2761 return; 2762 2763 st = map.hva + 2764 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2765 2766 /* 2767 * Doing a TLB flush here, on the guest's behalf, can avoid 2768 * expensive IPIs. 2769 */ 2770 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2771 st->preempted & KVM_VCPU_FLUSH_TLB); 2772 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2773 kvm_vcpu_flush_tlb_guest(vcpu); 2774 2775 vcpu->arch.st.preempted = 0; 2776 2777 if (st->version & 1) 2778 st->version += 1; /* first time write, random junk */ 2779 2780 st->version += 1; 2781 2782 smp_wmb(); 2783 2784 st->steal += current->sched_info.run_delay - 2785 vcpu->arch.st.last_steal; 2786 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2787 2788 smp_wmb(); 2789 2790 st->version += 1; 2791 2792 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2793 } 2794 2795 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2796 { 2797 bool pr = false; 2798 u32 msr = msr_info->index; 2799 u64 data = msr_info->data; 2800 2801 switch (msr) { 2802 case MSR_AMD64_NB_CFG: 2803 case MSR_IA32_UCODE_WRITE: 2804 case MSR_VM_HSAVE_PA: 2805 case MSR_AMD64_PATCH_LOADER: 2806 case MSR_AMD64_BU_CFG2: 2807 case MSR_AMD64_DC_CFG: 2808 case MSR_F15H_EX_CFG: 2809 break; 2810 2811 case MSR_IA32_UCODE_REV: 2812 if (msr_info->host_initiated) 2813 vcpu->arch.microcode_version = data; 2814 break; 2815 case MSR_IA32_ARCH_CAPABILITIES: 2816 if (!msr_info->host_initiated) 2817 return 1; 2818 vcpu->arch.arch_capabilities = data; 2819 break; 2820 case MSR_EFER: 2821 return set_efer(vcpu, msr_info); 2822 case MSR_K7_HWCR: 2823 data &= ~(u64)0x40; /* ignore flush filter disable */ 2824 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2825 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2826 2827 /* Handle McStatusWrEn */ 2828 if (data == BIT_ULL(18)) { 2829 vcpu->arch.msr_hwcr = data; 2830 } else if (data != 0) { 2831 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2832 data); 2833 return 1; 2834 } 2835 break; 2836 case MSR_FAM10H_MMIO_CONF_BASE: 2837 if (data != 0) { 2838 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2839 "0x%llx\n", data); 2840 return 1; 2841 } 2842 break; 2843 case MSR_IA32_DEBUGCTLMSR: 2844 if (!data) { 2845 /* We support the non-activated case already */ 2846 break; 2847 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2848 /* Values other than LBR and BTF are vendor-specific, 2849 thus reserved and should throw a #GP */ 2850 return 1; 2851 } 2852 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2853 __func__, data); 2854 break; 2855 case 0x200 ... 0x2ff: 2856 return kvm_mtrr_set_msr(vcpu, msr, data); 2857 case MSR_IA32_APICBASE: 2858 return kvm_set_apic_base(vcpu, msr_info); 2859 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 2860 return kvm_x2apic_msr_write(vcpu, msr, data); 2861 case MSR_IA32_TSCDEADLINE: 2862 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2863 break; 2864 case MSR_IA32_TSC_ADJUST: 2865 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2866 if (!msr_info->host_initiated) { 2867 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2868 adjust_tsc_offset_guest(vcpu, adj); 2869 } 2870 vcpu->arch.ia32_tsc_adjust_msr = data; 2871 } 2872 break; 2873 case MSR_IA32_MISC_ENABLE: 2874 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2875 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2876 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2877 return 1; 2878 vcpu->arch.ia32_misc_enable_msr = data; 2879 kvm_update_cpuid(vcpu); 2880 } else { 2881 vcpu->arch.ia32_misc_enable_msr = data; 2882 } 2883 break; 2884 case MSR_IA32_SMBASE: 2885 if (!msr_info->host_initiated) 2886 return 1; 2887 vcpu->arch.smbase = data; 2888 break; 2889 case MSR_IA32_POWER_CTL: 2890 vcpu->arch.msr_ia32_power_ctl = data; 2891 break; 2892 case MSR_IA32_TSC: 2893 kvm_write_tsc(vcpu, msr_info); 2894 break; 2895 case MSR_IA32_XSS: 2896 if (!msr_info->host_initiated && 2897 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2898 return 1; 2899 /* 2900 * KVM supports exposing PT to the guest, but does not support 2901 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2902 * XSAVES/XRSTORS to save/restore PT MSRs. 2903 */ 2904 if (data & ~supported_xss) 2905 return 1; 2906 vcpu->arch.ia32_xss = data; 2907 break; 2908 case MSR_SMI_COUNT: 2909 if (!msr_info->host_initiated) 2910 return 1; 2911 vcpu->arch.smi_count = data; 2912 break; 2913 case MSR_KVM_WALL_CLOCK_NEW: 2914 case MSR_KVM_WALL_CLOCK: 2915 vcpu->kvm->arch.wall_clock = data; 2916 kvm_write_wall_clock(vcpu->kvm, data); 2917 break; 2918 case MSR_KVM_SYSTEM_TIME_NEW: 2919 case MSR_KVM_SYSTEM_TIME: { 2920 struct kvm_arch *ka = &vcpu->kvm->arch; 2921 2922 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2923 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2924 2925 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2926 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2927 2928 ka->boot_vcpu_runs_old_kvmclock = tmp; 2929 } 2930 2931 vcpu->arch.time = data; 2932 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2933 2934 /* we verify if the enable bit is set... */ 2935 vcpu->arch.pv_time_enabled = false; 2936 if (!(data & 1)) 2937 break; 2938 2939 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2940 &vcpu->arch.pv_time, data & ~1ULL, 2941 sizeof(struct pvclock_vcpu_time_info))) 2942 vcpu->arch.pv_time_enabled = true; 2943 2944 break; 2945 } 2946 case MSR_KVM_ASYNC_PF_EN: 2947 if (kvm_pv_enable_async_pf(vcpu, data)) 2948 return 1; 2949 break; 2950 case MSR_KVM_ASYNC_PF_INT: 2951 if (kvm_pv_enable_async_pf_int(vcpu, data)) 2952 return 1; 2953 break; 2954 case MSR_KVM_ASYNC_PF_ACK: 2955 if (data & 0x1) { 2956 vcpu->arch.apf.pageready_pending = false; 2957 kvm_check_async_pf_completion(vcpu); 2958 } 2959 break; 2960 case MSR_KVM_STEAL_TIME: 2961 2962 if (unlikely(!sched_info_on())) 2963 return 1; 2964 2965 if (data & KVM_STEAL_RESERVED_MASK) 2966 return 1; 2967 2968 vcpu->arch.st.msr_val = data; 2969 2970 if (!(data & KVM_MSR_ENABLED)) 2971 break; 2972 2973 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2974 2975 break; 2976 case MSR_KVM_PV_EOI_EN: 2977 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2978 return 1; 2979 break; 2980 2981 case MSR_KVM_POLL_CONTROL: 2982 /* only enable bit supported */ 2983 if (data & (-1ULL << 1)) 2984 return 1; 2985 2986 vcpu->arch.msr_kvm_poll_control = data; 2987 break; 2988 2989 case MSR_IA32_MCG_CTL: 2990 case MSR_IA32_MCG_STATUS: 2991 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2992 return set_msr_mce(vcpu, msr_info); 2993 2994 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2995 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2996 pr = true; /* fall through */ 2997 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2998 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2999 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3000 return kvm_pmu_set_msr(vcpu, msr_info); 3001 3002 if (pr || data != 0) 3003 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3004 "0x%x data 0x%llx\n", msr, data); 3005 break; 3006 case MSR_K7_CLK_CTL: 3007 /* 3008 * Ignore all writes to this no longer documented MSR. 3009 * Writes are only relevant for old K7 processors, 3010 * all pre-dating SVM, but a recommended workaround from 3011 * AMD for these chips. It is possible to specify the 3012 * affected processor models on the command line, hence 3013 * the need to ignore the workaround. 3014 */ 3015 break; 3016 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3017 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3018 case HV_X64_MSR_SYNDBG_OPTIONS: 3019 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3020 case HV_X64_MSR_CRASH_CTL: 3021 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3022 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3023 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3024 case HV_X64_MSR_TSC_EMULATION_STATUS: 3025 return kvm_hv_set_msr_common(vcpu, msr, data, 3026 msr_info->host_initiated); 3027 case MSR_IA32_BBL_CR_CTL3: 3028 /* Drop writes to this legacy MSR -- see rdmsr 3029 * counterpart for further detail. 3030 */ 3031 if (report_ignored_msrs) 3032 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3033 msr, data); 3034 break; 3035 case MSR_AMD64_OSVW_ID_LENGTH: 3036 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3037 return 1; 3038 vcpu->arch.osvw.length = data; 3039 break; 3040 case MSR_AMD64_OSVW_STATUS: 3041 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3042 return 1; 3043 vcpu->arch.osvw.status = data; 3044 break; 3045 case MSR_PLATFORM_INFO: 3046 if (!msr_info->host_initiated || 3047 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3048 cpuid_fault_enabled(vcpu))) 3049 return 1; 3050 vcpu->arch.msr_platform_info = data; 3051 break; 3052 case MSR_MISC_FEATURES_ENABLES: 3053 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3054 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3055 !supports_cpuid_fault(vcpu))) 3056 return 1; 3057 vcpu->arch.msr_misc_features_enables = data; 3058 break; 3059 default: 3060 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3061 return xen_hvm_config(vcpu, data); 3062 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3063 return kvm_pmu_set_msr(vcpu, msr_info); 3064 if (!ignore_msrs) { 3065 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 3066 msr, data); 3067 return 1; 3068 } else { 3069 if (report_ignored_msrs) 3070 vcpu_unimpl(vcpu, 3071 "ignored wrmsr: 0x%x data 0x%llx\n", 3072 msr, data); 3073 break; 3074 } 3075 } 3076 return 0; 3077 } 3078 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3079 3080 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3081 { 3082 u64 data; 3083 u64 mcg_cap = vcpu->arch.mcg_cap; 3084 unsigned bank_num = mcg_cap & 0xff; 3085 3086 switch (msr) { 3087 case MSR_IA32_P5_MC_ADDR: 3088 case MSR_IA32_P5_MC_TYPE: 3089 data = 0; 3090 break; 3091 case MSR_IA32_MCG_CAP: 3092 data = vcpu->arch.mcg_cap; 3093 break; 3094 case MSR_IA32_MCG_CTL: 3095 if (!(mcg_cap & MCG_CTL_P) && !host) 3096 return 1; 3097 data = vcpu->arch.mcg_ctl; 3098 break; 3099 case MSR_IA32_MCG_STATUS: 3100 data = vcpu->arch.mcg_status; 3101 break; 3102 default: 3103 if (msr >= MSR_IA32_MC0_CTL && 3104 msr < MSR_IA32_MCx_CTL(bank_num)) { 3105 u32 offset = array_index_nospec( 3106 msr - MSR_IA32_MC0_CTL, 3107 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3108 3109 data = vcpu->arch.mce_banks[offset]; 3110 break; 3111 } 3112 return 1; 3113 } 3114 *pdata = data; 3115 return 0; 3116 } 3117 3118 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3119 { 3120 switch (msr_info->index) { 3121 case MSR_IA32_PLATFORM_ID: 3122 case MSR_IA32_EBL_CR_POWERON: 3123 case MSR_IA32_DEBUGCTLMSR: 3124 case MSR_IA32_LASTBRANCHFROMIP: 3125 case MSR_IA32_LASTBRANCHTOIP: 3126 case MSR_IA32_LASTINTFROMIP: 3127 case MSR_IA32_LASTINTTOIP: 3128 case MSR_K8_SYSCFG: 3129 case MSR_K8_TSEG_ADDR: 3130 case MSR_K8_TSEG_MASK: 3131 case MSR_VM_HSAVE_PA: 3132 case MSR_K8_INT_PENDING_MSG: 3133 case MSR_AMD64_NB_CFG: 3134 case MSR_FAM10H_MMIO_CONF_BASE: 3135 case MSR_AMD64_BU_CFG2: 3136 case MSR_IA32_PERF_CTL: 3137 case MSR_AMD64_DC_CFG: 3138 case MSR_F15H_EX_CFG: 3139 /* 3140 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3141 * limit) MSRs. Just return 0, as we do not want to expose the host 3142 * data here. Do not conditionalize this on CPUID, as KVM does not do 3143 * so for existing CPU-specific MSRs. 3144 */ 3145 case MSR_RAPL_POWER_UNIT: 3146 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3147 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3148 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3149 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3150 msr_info->data = 0; 3151 break; 3152 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3153 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3154 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3155 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3156 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3157 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3158 return kvm_pmu_get_msr(vcpu, msr_info); 3159 msr_info->data = 0; 3160 break; 3161 case MSR_IA32_UCODE_REV: 3162 msr_info->data = vcpu->arch.microcode_version; 3163 break; 3164 case MSR_IA32_ARCH_CAPABILITIES: 3165 if (!msr_info->host_initiated && 3166 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3167 return 1; 3168 msr_info->data = vcpu->arch.arch_capabilities; 3169 break; 3170 case MSR_IA32_POWER_CTL: 3171 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3172 break; 3173 case MSR_IA32_TSC: 3174 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3175 break; 3176 case MSR_MTRRcap: 3177 case 0x200 ... 0x2ff: 3178 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3179 case 0xcd: /* fsb frequency */ 3180 msr_info->data = 3; 3181 break; 3182 /* 3183 * MSR_EBC_FREQUENCY_ID 3184 * Conservative value valid for even the basic CPU models. 3185 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3186 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3187 * and 266MHz for model 3, or 4. Set Core Clock 3188 * Frequency to System Bus Frequency Ratio to 1 (bits 3189 * 31:24) even though these are only valid for CPU 3190 * models > 2, however guests may end up dividing or 3191 * multiplying by zero otherwise. 3192 */ 3193 case MSR_EBC_FREQUENCY_ID: 3194 msr_info->data = 1 << 24; 3195 break; 3196 case MSR_IA32_APICBASE: 3197 msr_info->data = kvm_get_apic_base(vcpu); 3198 break; 3199 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3200 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3201 case MSR_IA32_TSCDEADLINE: 3202 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3203 break; 3204 case MSR_IA32_TSC_ADJUST: 3205 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3206 break; 3207 case MSR_IA32_MISC_ENABLE: 3208 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3209 break; 3210 case MSR_IA32_SMBASE: 3211 if (!msr_info->host_initiated) 3212 return 1; 3213 msr_info->data = vcpu->arch.smbase; 3214 break; 3215 case MSR_SMI_COUNT: 3216 msr_info->data = vcpu->arch.smi_count; 3217 break; 3218 case MSR_IA32_PERF_STATUS: 3219 /* TSC increment by tick */ 3220 msr_info->data = 1000ULL; 3221 /* CPU multiplier */ 3222 msr_info->data |= (((uint64_t)4ULL) << 40); 3223 break; 3224 case MSR_EFER: 3225 msr_info->data = vcpu->arch.efer; 3226 break; 3227 case MSR_KVM_WALL_CLOCK: 3228 case MSR_KVM_WALL_CLOCK_NEW: 3229 msr_info->data = vcpu->kvm->arch.wall_clock; 3230 break; 3231 case MSR_KVM_SYSTEM_TIME: 3232 case MSR_KVM_SYSTEM_TIME_NEW: 3233 msr_info->data = vcpu->arch.time; 3234 break; 3235 case MSR_KVM_ASYNC_PF_EN: 3236 msr_info->data = vcpu->arch.apf.msr_en_val; 3237 break; 3238 case MSR_KVM_ASYNC_PF_INT: 3239 msr_info->data = vcpu->arch.apf.msr_int_val; 3240 break; 3241 case MSR_KVM_ASYNC_PF_ACK: 3242 msr_info->data = 0; 3243 break; 3244 case MSR_KVM_STEAL_TIME: 3245 msr_info->data = vcpu->arch.st.msr_val; 3246 break; 3247 case MSR_KVM_PV_EOI_EN: 3248 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3249 break; 3250 case MSR_KVM_POLL_CONTROL: 3251 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3252 break; 3253 case MSR_IA32_P5_MC_ADDR: 3254 case MSR_IA32_P5_MC_TYPE: 3255 case MSR_IA32_MCG_CAP: 3256 case MSR_IA32_MCG_CTL: 3257 case MSR_IA32_MCG_STATUS: 3258 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3259 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3260 msr_info->host_initiated); 3261 case MSR_IA32_XSS: 3262 if (!msr_info->host_initiated && 3263 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3264 return 1; 3265 msr_info->data = vcpu->arch.ia32_xss; 3266 break; 3267 case MSR_K7_CLK_CTL: 3268 /* 3269 * Provide expected ramp-up count for K7. All other 3270 * are set to zero, indicating minimum divisors for 3271 * every field. 3272 * 3273 * This prevents guest kernels on AMD host with CPU 3274 * type 6, model 8 and higher from exploding due to 3275 * the rdmsr failing. 3276 */ 3277 msr_info->data = 0x20000000; 3278 break; 3279 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3280 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3281 case HV_X64_MSR_SYNDBG_OPTIONS: 3282 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3283 case HV_X64_MSR_CRASH_CTL: 3284 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3285 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3286 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3287 case HV_X64_MSR_TSC_EMULATION_STATUS: 3288 return kvm_hv_get_msr_common(vcpu, 3289 msr_info->index, &msr_info->data, 3290 msr_info->host_initiated); 3291 case MSR_IA32_BBL_CR_CTL3: 3292 /* This legacy MSR exists but isn't fully documented in current 3293 * silicon. It is however accessed by winxp in very narrow 3294 * scenarios where it sets bit #19, itself documented as 3295 * a "reserved" bit. Best effort attempt to source coherent 3296 * read data here should the balance of the register be 3297 * interpreted by the guest: 3298 * 3299 * L2 cache control register 3: 64GB range, 256KB size, 3300 * enabled, latency 0x1, configured 3301 */ 3302 msr_info->data = 0xbe702111; 3303 break; 3304 case MSR_AMD64_OSVW_ID_LENGTH: 3305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3306 return 1; 3307 msr_info->data = vcpu->arch.osvw.length; 3308 break; 3309 case MSR_AMD64_OSVW_STATUS: 3310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3311 return 1; 3312 msr_info->data = vcpu->arch.osvw.status; 3313 break; 3314 case MSR_PLATFORM_INFO: 3315 if (!msr_info->host_initiated && 3316 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3317 return 1; 3318 msr_info->data = vcpu->arch.msr_platform_info; 3319 break; 3320 case MSR_MISC_FEATURES_ENABLES: 3321 msr_info->data = vcpu->arch.msr_misc_features_enables; 3322 break; 3323 case MSR_K7_HWCR: 3324 msr_info->data = vcpu->arch.msr_hwcr; 3325 break; 3326 default: 3327 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3328 return kvm_pmu_get_msr(vcpu, msr_info); 3329 if (!ignore_msrs) { 3330 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3331 msr_info->index); 3332 return 1; 3333 } else { 3334 if (report_ignored_msrs) 3335 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3336 msr_info->index); 3337 msr_info->data = 0; 3338 } 3339 break; 3340 } 3341 return 0; 3342 } 3343 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3344 3345 /* 3346 * Read or write a bunch of msrs. All parameters are kernel addresses. 3347 * 3348 * @return number of msrs set successfully. 3349 */ 3350 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3351 struct kvm_msr_entry *entries, 3352 int (*do_msr)(struct kvm_vcpu *vcpu, 3353 unsigned index, u64 *data)) 3354 { 3355 int i; 3356 3357 for (i = 0; i < msrs->nmsrs; ++i) 3358 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3359 break; 3360 3361 return i; 3362 } 3363 3364 /* 3365 * Read or write a bunch of msrs. Parameters are user addresses. 3366 * 3367 * @return number of msrs set successfully. 3368 */ 3369 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3370 int (*do_msr)(struct kvm_vcpu *vcpu, 3371 unsigned index, u64 *data), 3372 int writeback) 3373 { 3374 struct kvm_msrs msrs; 3375 struct kvm_msr_entry *entries; 3376 int r, n; 3377 unsigned size; 3378 3379 r = -EFAULT; 3380 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3381 goto out; 3382 3383 r = -E2BIG; 3384 if (msrs.nmsrs >= MAX_IO_MSRS) 3385 goto out; 3386 3387 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3388 entries = memdup_user(user_msrs->entries, size); 3389 if (IS_ERR(entries)) { 3390 r = PTR_ERR(entries); 3391 goto out; 3392 } 3393 3394 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3395 if (r < 0) 3396 goto out_free; 3397 3398 r = -EFAULT; 3399 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3400 goto out_free; 3401 3402 r = n; 3403 3404 out_free: 3405 kfree(entries); 3406 out: 3407 return r; 3408 } 3409 3410 static inline bool kvm_can_mwait_in_guest(void) 3411 { 3412 return boot_cpu_has(X86_FEATURE_MWAIT) && 3413 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3414 boot_cpu_has(X86_FEATURE_ARAT); 3415 } 3416 3417 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3418 { 3419 int r = 0; 3420 3421 switch (ext) { 3422 case KVM_CAP_IRQCHIP: 3423 case KVM_CAP_HLT: 3424 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3425 case KVM_CAP_SET_TSS_ADDR: 3426 case KVM_CAP_EXT_CPUID: 3427 case KVM_CAP_EXT_EMUL_CPUID: 3428 case KVM_CAP_CLOCKSOURCE: 3429 case KVM_CAP_PIT: 3430 case KVM_CAP_NOP_IO_DELAY: 3431 case KVM_CAP_MP_STATE: 3432 case KVM_CAP_SYNC_MMU: 3433 case KVM_CAP_USER_NMI: 3434 case KVM_CAP_REINJECT_CONTROL: 3435 case KVM_CAP_IRQ_INJECT_STATUS: 3436 case KVM_CAP_IOEVENTFD: 3437 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3438 case KVM_CAP_PIT2: 3439 case KVM_CAP_PIT_STATE2: 3440 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3441 case KVM_CAP_XEN_HVM: 3442 case KVM_CAP_VCPU_EVENTS: 3443 case KVM_CAP_HYPERV: 3444 case KVM_CAP_HYPERV_VAPIC: 3445 case KVM_CAP_HYPERV_SPIN: 3446 case KVM_CAP_HYPERV_SYNIC: 3447 case KVM_CAP_HYPERV_SYNIC2: 3448 case KVM_CAP_HYPERV_VP_INDEX: 3449 case KVM_CAP_HYPERV_EVENTFD: 3450 case KVM_CAP_HYPERV_TLBFLUSH: 3451 case KVM_CAP_HYPERV_SEND_IPI: 3452 case KVM_CAP_HYPERV_CPUID: 3453 case KVM_CAP_PCI_SEGMENT: 3454 case KVM_CAP_DEBUGREGS: 3455 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3456 case KVM_CAP_XSAVE: 3457 case KVM_CAP_ASYNC_PF: 3458 case KVM_CAP_ASYNC_PF_INT: 3459 case KVM_CAP_GET_TSC_KHZ: 3460 case KVM_CAP_KVMCLOCK_CTRL: 3461 case KVM_CAP_READONLY_MEM: 3462 case KVM_CAP_HYPERV_TIME: 3463 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3464 case KVM_CAP_TSC_DEADLINE_TIMER: 3465 case KVM_CAP_DISABLE_QUIRKS: 3466 case KVM_CAP_SET_BOOT_CPU_ID: 3467 case KVM_CAP_SPLIT_IRQCHIP: 3468 case KVM_CAP_IMMEDIATE_EXIT: 3469 case KVM_CAP_PMU_EVENT_FILTER: 3470 case KVM_CAP_GET_MSR_FEATURES: 3471 case KVM_CAP_MSR_PLATFORM_INFO: 3472 case KVM_CAP_EXCEPTION_PAYLOAD: 3473 case KVM_CAP_SET_GUEST_DEBUG: 3474 r = 1; 3475 break; 3476 case KVM_CAP_SYNC_REGS: 3477 r = KVM_SYNC_X86_VALID_FIELDS; 3478 break; 3479 case KVM_CAP_ADJUST_CLOCK: 3480 r = KVM_CLOCK_TSC_STABLE; 3481 break; 3482 case KVM_CAP_X86_DISABLE_EXITS: 3483 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3484 KVM_X86_DISABLE_EXITS_CSTATE; 3485 if(kvm_can_mwait_in_guest()) 3486 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3487 break; 3488 case KVM_CAP_X86_SMM: 3489 /* SMBASE is usually relocated above 1M on modern chipsets, 3490 * and SMM handlers might indeed rely on 4G segment limits, 3491 * so do not report SMM to be available if real mode is 3492 * emulated via vm86 mode. Still, do not go to great lengths 3493 * to avoid userspace's usage of the feature, because it is a 3494 * fringe case that is not enabled except via specific settings 3495 * of the module parameters. 3496 */ 3497 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3498 break; 3499 case KVM_CAP_VAPIC: 3500 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3501 break; 3502 case KVM_CAP_NR_VCPUS: 3503 r = KVM_SOFT_MAX_VCPUS; 3504 break; 3505 case KVM_CAP_MAX_VCPUS: 3506 r = KVM_MAX_VCPUS; 3507 break; 3508 case KVM_CAP_MAX_VCPU_ID: 3509 r = KVM_MAX_VCPU_ID; 3510 break; 3511 case KVM_CAP_PV_MMU: /* obsolete */ 3512 r = 0; 3513 break; 3514 case KVM_CAP_MCE: 3515 r = KVM_MAX_MCE_BANKS; 3516 break; 3517 case KVM_CAP_XCRS: 3518 r = boot_cpu_has(X86_FEATURE_XSAVE); 3519 break; 3520 case KVM_CAP_TSC_CONTROL: 3521 r = kvm_has_tsc_control; 3522 break; 3523 case KVM_CAP_X2APIC_API: 3524 r = KVM_X2APIC_API_VALID_FLAGS; 3525 break; 3526 case KVM_CAP_NESTED_STATE: 3527 r = kvm_x86_ops.nested_ops->get_state ? 3528 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3529 break; 3530 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3531 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3532 break; 3533 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3534 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3535 break; 3536 default: 3537 break; 3538 } 3539 return r; 3540 3541 } 3542 3543 long kvm_arch_dev_ioctl(struct file *filp, 3544 unsigned int ioctl, unsigned long arg) 3545 { 3546 void __user *argp = (void __user *)arg; 3547 long r; 3548 3549 switch (ioctl) { 3550 case KVM_GET_MSR_INDEX_LIST: { 3551 struct kvm_msr_list __user *user_msr_list = argp; 3552 struct kvm_msr_list msr_list; 3553 unsigned n; 3554 3555 r = -EFAULT; 3556 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3557 goto out; 3558 n = msr_list.nmsrs; 3559 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3560 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3561 goto out; 3562 r = -E2BIG; 3563 if (n < msr_list.nmsrs) 3564 goto out; 3565 r = -EFAULT; 3566 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3567 num_msrs_to_save * sizeof(u32))) 3568 goto out; 3569 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3570 &emulated_msrs, 3571 num_emulated_msrs * sizeof(u32))) 3572 goto out; 3573 r = 0; 3574 break; 3575 } 3576 case KVM_GET_SUPPORTED_CPUID: 3577 case KVM_GET_EMULATED_CPUID: { 3578 struct kvm_cpuid2 __user *cpuid_arg = argp; 3579 struct kvm_cpuid2 cpuid; 3580 3581 r = -EFAULT; 3582 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3583 goto out; 3584 3585 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3586 ioctl); 3587 if (r) 3588 goto out; 3589 3590 r = -EFAULT; 3591 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3592 goto out; 3593 r = 0; 3594 break; 3595 } 3596 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3597 r = -EFAULT; 3598 if (copy_to_user(argp, &kvm_mce_cap_supported, 3599 sizeof(kvm_mce_cap_supported))) 3600 goto out; 3601 r = 0; 3602 break; 3603 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3604 struct kvm_msr_list __user *user_msr_list = argp; 3605 struct kvm_msr_list msr_list; 3606 unsigned int n; 3607 3608 r = -EFAULT; 3609 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3610 goto out; 3611 n = msr_list.nmsrs; 3612 msr_list.nmsrs = num_msr_based_features; 3613 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3614 goto out; 3615 r = -E2BIG; 3616 if (n < msr_list.nmsrs) 3617 goto out; 3618 r = -EFAULT; 3619 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3620 num_msr_based_features * sizeof(u32))) 3621 goto out; 3622 r = 0; 3623 break; 3624 } 3625 case KVM_GET_MSRS: 3626 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3627 break; 3628 default: 3629 r = -EINVAL; 3630 break; 3631 } 3632 out: 3633 return r; 3634 } 3635 3636 static void wbinvd_ipi(void *garbage) 3637 { 3638 wbinvd(); 3639 } 3640 3641 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3642 { 3643 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3644 } 3645 3646 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3647 { 3648 /* Address WBINVD may be executed by guest */ 3649 if (need_emulate_wbinvd(vcpu)) { 3650 if (kvm_x86_ops.has_wbinvd_exit()) 3651 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3652 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3653 smp_call_function_single(vcpu->cpu, 3654 wbinvd_ipi, NULL, 1); 3655 } 3656 3657 kvm_x86_ops.vcpu_load(vcpu, cpu); 3658 3659 /* Save host pkru register if supported */ 3660 vcpu->arch.host_pkru = read_pkru(); 3661 3662 /* Apply any externally detected TSC adjustments (due to suspend) */ 3663 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3664 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3665 vcpu->arch.tsc_offset_adjustment = 0; 3666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3667 } 3668 3669 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3670 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3671 rdtsc() - vcpu->arch.last_host_tsc; 3672 if (tsc_delta < 0) 3673 mark_tsc_unstable("KVM discovered backwards TSC"); 3674 3675 if (kvm_check_tsc_unstable()) { 3676 u64 offset = kvm_compute_tsc_offset(vcpu, 3677 vcpu->arch.last_guest_tsc); 3678 kvm_vcpu_write_tsc_offset(vcpu, offset); 3679 vcpu->arch.tsc_catchup = 1; 3680 } 3681 3682 if (kvm_lapic_hv_timer_in_use(vcpu)) 3683 kvm_lapic_restart_hv_timer(vcpu); 3684 3685 /* 3686 * On a host with synchronized TSC, there is no need to update 3687 * kvmclock on vcpu->cpu migration 3688 */ 3689 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3690 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3691 if (vcpu->cpu != cpu) 3692 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3693 vcpu->cpu = cpu; 3694 } 3695 3696 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3697 } 3698 3699 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3700 { 3701 struct kvm_host_map map; 3702 struct kvm_steal_time *st; 3703 3704 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3705 return; 3706 3707 if (vcpu->arch.st.preempted) 3708 return; 3709 3710 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3711 &vcpu->arch.st.cache, true)) 3712 return; 3713 3714 st = map.hva + 3715 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3716 3717 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3718 3719 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3720 } 3721 3722 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3723 { 3724 int idx; 3725 3726 if (vcpu->preempted) 3727 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3728 3729 /* 3730 * Disable page faults because we're in atomic context here. 3731 * kvm_write_guest_offset_cached() would call might_fault() 3732 * that relies on pagefault_disable() to tell if there's a 3733 * bug. NOTE: the write to guest memory may not go through if 3734 * during postcopy live migration or if there's heavy guest 3735 * paging. 3736 */ 3737 pagefault_disable(); 3738 /* 3739 * kvm_memslots() will be called by 3740 * kvm_write_guest_offset_cached() so take the srcu lock. 3741 */ 3742 idx = srcu_read_lock(&vcpu->kvm->srcu); 3743 kvm_steal_time_set_preempted(vcpu); 3744 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3745 pagefault_enable(); 3746 kvm_x86_ops.vcpu_put(vcpu); 3747 vcpu->arch.last_host_tsc = rdtsc(); 3748 /* 3749 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3750 * on every vmexit, but if not, we might have a stale dr6 from the 3751 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3752 */ 3753 set_debugreg(0, 6); 3754 } 3755 3756 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3757 struct kvm_lapic_state *s) 3758 { 3759 if (vcpu->arch.apicv_active) 3760 kvm_x86_ops.sync_pir_to_irr(vcpu); 3761 3762 return kvm_apic_get_state(vcpu, s); 3763 } 3764 3765 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3766 struct kvm_lapic_state *s) 3767 { 3768 int r; 3769 3770 r = kvm_apic_set_state(vcpu, s); 3771 if (r) 3772 return r; 3773 update_cr8_intercept(vcpu); 3774 3775 return 0; 3776 } 3777 3778 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3779 { 3780 return (!lapic_in_kernel(vcpu) || 3781 kvm_apic_accept_pic_intr(vcpu)); 3782 } 3783 3784 /* 3785 * if userspace requested an interrupt window, check that the 3786 * interrupt window is open. 3787 * 3788 * No need to exit to userspace if we already have an interrupt queued. 3789 */ 3790 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3791 { 3792 return kvm_arch_interrupt_allowed(vcpu) && 3793 !kvm_cpu_has_interrupt(vcpu) && 3794 !kvm_event_needs_reinjection(vcpu) && 3795 kvm_cpu_accept_dm_intr(vcpu); 3796 } 3797 3798 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3799 struct kvm_interrupt *irq) 3800 { 3801 if (irq->irq >= KVM_NR_INTERRUPTS) 3802 return -EINVAL; 3803 3804 if (!irqchip_in_kernel(vcpu->kvm)) { 3805 kvm_queue_interrupt(vcpu, irq->irq, false); 3806 kvm_make_request(KVM_REQ_EVENT, vcpu); 3807 return 0; 3808 } 3809 3810 /* 3811 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3812 * fail for in-kernel 8259. 3813 */ 3814 if (pic_in_kernel(vcpu->kvm)) 3815 return -ENXIO; 3816 3817 if (vcpu->arch.pending_external_vector != -1) 3818 return -EEXIST; 3819 3820 vcpu->arch.pending_external_vector = irq->irq; 3821 kvm_make_request(KVM_REQ_EVENT, vcpu); 3822 return 0; 3823 } 3824 3825 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3826 { 3827 kvm_inject_nmi(vcpu); 3828 3829 return 0; 3830 } 3831 3832 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3833 { 3834 kvm_make_request(KVM_REQ_SMI, vcpu); 3835 3836 return 0; 3837 } 3838 3839 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3840 struct kvm_tpr_access_ctl *tac) 3841 { 3842 if (tac->flags) 3843 return -EINVAL; 3844 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3845 return 0; 3846 } 3847 3848 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3849 u64 mcg_cap) 3850 { 3851 int r; 3852 unsigned bank_num = mcg_cap & 0xff, bank; 3853 3854 r = -EINVAL; 3855 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 3856 goto out; 3857 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3858 goto out; 3859 r = 0; 3860 vcpu->arch.mcg_cap = mcg_cap; 3861 /* Init IA32_MCG_CTL to all 1s */ 3862 if (mcg_cap & MCG_CTL_P) 3863 vcpu->arch.mcg_ctl = ~(u64)0; 3864 /* Init IA32_MCi_CTL to all 1s */ 3865 for (bank = 0; bank < bank_num; bank++) 3866 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3867 3868 kvm_x86_ops.setup_mce(vcpu); 3869 out: 3870 return r; 3871 } 3872 3873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3874 struct kvm_x86_mce *mce) 3875 { 3876 u64 mcg_cap = vcpu->arch.mcg_cap; 3877 unsigned bank_num = mcg_cap & 0xff; 3878 u64 *banks = vcpu->arch.mce_banks; 3879 3880 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3881 return -EINVAL; 3882 /* 3883 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3884 * reporting is disabled 3885 */ 3886 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3887 vcpu->arch.mcg_ctl != ~(u64)0) 3888 return 0; 3889 banks += 4 * mce->bank; 3890 /* 3891 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3892 * reporting is disabled for the bank 3893 */ 3894 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3895 return 0; 3896 if (mce->status & MCI_STATUS_UC) { 3897 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3898 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3899 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3900 return 0; 3901 } 3902 if (banks[1] & MCI_STATUS_VAL) 3903 mce->status |= MCI_STATUS_OVER; 3904 banks[2] = mce->addr; 3905 banks[3] = mce->misc; 3906 vcpu->arch.mcg_status = mce->mcg_status; 3907 banks[1] = mce->status; 3908 kvm_queue_exception(vcpu, MC_VECTOR); 3909 } else if (!(banks[1] & MCI_STATUS_VAL) 3910 || !(banks[1] & MCI_STATUS_UC)) { 3911 if (banks[1] & MCI_STATUS_VAL) 3912 mce->status |= MCI_STATUS_OVER; 3913 banks[2] = mce->addr; 3914 banks[3] = mce->misc; 3915 banks[1] = mce->status; 3916 } else 3917 banks[1] |= MCI_STATUS_OVER; 3918 return 0; 3919 } 3920 3921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3922 struct kvm_vcpu_events *events) 3923 { 3924 process_nmi(vcpu); 3925 3926 /* 3927 * In guest mode, payload delivery should be deferred, 3928 * so that the L1 hypervisor can intercept #PF before 3929 * CR2 is modified (or intercept #DB before DR6 is 3930 * modified under nVMX). Unless the per-VM capability, 3931 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3932 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3933 * opportunistically defer the exception payload, deliver it if the 3934 * capability hasn't been requested before processing a 3935 * KVM_GET_VCPU_EVENTS. 3936 */ 3937 if (!vcpu->kvm->arch.exception_payload_enabled && 3938 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3939 kvm_deliver_exception_payload(vcpu); 3940 3941 /* 3942 * The API doesn't provide the instruction length for software 3943 * exceptions, so don't report them. As long as the guest RIP 3944 * isn't advanced, we should expect to encounter the exception 3945 * again. 3946 */ 3947 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3948 events->exception.injected = 0; 3949 events->exception.pending = 0; 3950 } else { 3951 events->exception.injected = vcpu->arch.exception.injected; 3952 events->exception.pending = vcpu->arch.exception.pending; 3953 /* 3954 * For ABI compatibility, deliberately conflate 3955 * pending and injected exceptions when 3956 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3957 */ 3958 if (!vcpu->kvm->arch.exception_payload_enabled) 3959 events->exception.injected |= 3960 vcpu->arch.exception.pending; 3961 } 3962 events->exception.nr = vcpu->arch.exception.nr; 3963 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3964 events->exception.error_code = vcpu->arch.exception.error_code; 3965 events->exception_has_payload = vcpu->arch.exception.has_payload; 3966 events->exception_payload = vcpu->arch.exception.payload; 3967 3968 events->interrupt.injected = 3969 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3970 events->interrupt.nr = vcpu->arch.interrupt.nr; 3971 events->interrupt.soft = 0; 3972 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 3973 3974 events->nmi.injected = vcpu->arch.nmi_injected; 3975 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3976 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 3977 events->nmi.pad = 0; 3978 3979 events->sipi_vector = 0; /* never valid when reporting to user space */ 3980 3981 events->smi.smm = is_smm(vcpu); 3982 events->smi.pending = vcpu->arch.smi_pending; 3983 events->smi.smm_inside_nmi = 3984 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3985 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3986 3987 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3988 | KVM_VCPUEVENT_VALID_SHADOW 3989 | KVM_VCPUEVENT_VALID_SMM); 3990 if (vcpu->kvm->arch.exception_payload_enabled) 3991 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3992 3993 memset(&events->reserved, 0, sizeof(events->reserved)); 3994 } 3995 3996 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3997 3998 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3999 struct kvm_vcpu_events *events) 4000 { 4001 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4002 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4003 | KVM_VCPUEVENT_VALID_SHADOW 4004 | KVM_VCPUEVENT_VALID_SMM 4005 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4006 return -EINVAL; 4007 4008 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4009 if (!vcpu->kvm->arch.exception_payload_enabled) 4010 return -EINVAL; 4011 if (events->exception.pending) 4012 events->exception.injected = 0; 4013 else 4014 events->exception_has_payload = 0; 4015 } else { 4016 events->exception.pending = 0; 4017 events->exception_has_payload = 0; 4018 } 4019 4020 if ((events->exception.injected || events->exception.pending) && 4021 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4022 return -EINVAL; 4023 4024 /* INITs are latched while in SMM */ 4025 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4026 (events->smi.smm || events->smi.pending) && 4027 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4028 return -EINVAL; 4029 4030 process_nmi(vcpu); 4031 vcpu->arch.exception.injected = events->exception.injected; 4032 vcpu->arch.exception.pending = events->exception.pending; 4033 vcpu->arch.exception.nr = events->exception.nr; 4034 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4035 vcpu->arch.exception.error_code = events->exception.error_code; 4036 vcpu->arch.exception.has_payload = events->exception_has_payload; 4037 vcpu->arch.exception.payload = events->exception_payload; 4038 4039 vcpu->arch.interrupt.injected = events->interrupt.injected; 4040 vcpu->arch.interrupt.nr = events->interrupt.nr; 4041 vcpu->arch.interrupt.soft = events->interrupt.soft; 4042 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4043 kvm_x86_ops.set_interrupt_shadow(vcpu, 4044 events->interrupt.shadow); 4045 4046 vcpu->arch.nmi_injected = events->nmi.injected; 4047 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4048 vcpu->arch.nmi_pending = events->nmi.pending; 4049 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4050 4051 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4052 lapic_in_kernel(vcpu)) 4053 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4054 4055 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4056 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4057 if (events->smi.smm) 4058 vcpu->arch.hflags |= HF_SMM_MASK; 4059 else 4060 vcpu->arch.hflags &= ~HF_SMM_MASK; 4061 kvm_smm_changed(vcpu); 4062 } 4063 4064 vcpu->arch.smi_pending = events->smi.pending; 4065 4066 if (events->smi.smm) { 4067 if (events->smi.smm_inside_nmi) 4068 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4069 else 4070 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4071 } 4072 4073 if (lapic_in_kernel(vcpu)) { 4074 if (events->smi.latched_init) 4075 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4076 else 4077 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4078 } 4079 } 4080 4081 kvm_make_request(KVM_REQ_EVENT, vcpu); 4082 4083 return 0; 4084 } 4085 4086 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4087 struct kvm_debugregs *dbgregs) 4088 { 4089 unsigned long val; 4090 4091 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4092 kvm_get_dr(vcpu, 6, &val); 4093 dbgregs->dr6 = val; 4094 dbgregs->dr7 = vcpu->arch.dr7; 4095 dbgregs->flags = 0; 4096 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4097 } 4098 4099 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4100 struct kvm_debugregs *dbgregs) 4101 { 4102 if (dbgregs->flags) 4103 return -EINVAL; 4104 4105 if (dbgregs->dr6 & ~0xffffffffull) 4106 return -EINVAL; 4107 if (dbgregs->dr7 & ~0xffffffffull) 4108 return -EINVAL; 4109 4110 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4111 kvm_update_dr0123(vcpu); 4112 vcpu->arch.dr6 = dbgregs->dr6; 4113 vcpu->arch.dr7 = dbgregs->dr7; 4114 kvm_update_dr7(vcpu); 4115 4116 return 0; 4117 } 4118 4119 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4120 4121 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4122 { 4123 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4124 u64 xstate_bv = xsave->header.xfeatures; 4125 u64 valid; 4126 4127 /* 4128 * Copy legacy XSAVE area, to avoid complications with CPUID 4129 * leaves 0 and 1 in the loop below. 4130 */ 4131 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4132 4133 /* Set XSTATE_BV */ 4134 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4135 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4136 4137 /* 4138 * Copy each region from the possibly compacted offset to the 4139 * non-compacted offset. 4140 */ 4141 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4142 while (valid) { 4143 u64 xfeature_mask = valid & -valid; 4144 int xfeature_nr = fls64(xfeature_mask) - 1; 4145 void *src = get_xsave_addr(xsave, xfeature_nr); 4146 4147 if (src) { 4148 u32 size, offset, ecx, edx; 4149 cpuid_count(XSTATE_CPUID, xfeature_nr, 4150 &size, &offset, &ecx, &edx); 4151 if (xfeature_nr == XFEATURE_PKRU) 4152 memcpy(dest + offset, &vcpu->arch.pkru, 4153 sizeof(vcpu->arch.pkru)); 4154 else 4155 memcpy(dest + offset, src, size); 4156 4157 } 4158 4159 valid -= xfeature_mask; 4160 } 4161 } 4162 4163 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4164 { 4165 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4166 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4167 u64 valid; 4168 4169 /* 4170 * Copy legacy XSAVE area, to avoid complications with CPUID 4171 * leaves 0 and 1 in the loop below. 4172 */ 4173 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4174 4175 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4176 xsave->header.xfeatures = xstate_bv; 4177 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4178 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4179 4180 /* 4181 * Copy each region from the non-compacted offset to the 4182 * possibly compacted offset. 4183 */ 4184 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4185 while (valid) { 4186 u64 xfeature_mask = valid & -valid; 4187 int xfeature_nr = fls64(xfeature_mask) - 1; 4188 void *dest = get_xsave_addr(xsave, xfeature_nr); 4189 4190 if (dest) { 4191 u32 size, offset, ecx, edx; 4192 cpuid_count(XSTATE_CPUID, xfeature_nr, 4193 &size, &offset, &ecx, &edx); 4194 if (xfeature_nr == XFEATURE_PKRU) 4195 memcpy(&vcpu->arch.pkru, src + offset, 4196 sizeof(vcpu->arch.pkru)); 4197 else 4198 memcpy(dest, src + offset, size); 4199 } 4200 4201 valid -= xfeature_mask; 4202 } 4203 } 4204 4205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4206 struct kvm_xsave *guest_xsave) 4207 { 4208 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4209 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4210 fill_xsave((u8 *) guest_xsave->region, vcpu); 4211 } else { 4212 memcpy(guest_xsave->region, 4213 &vcpu->arch.guest_fpu->state.fxsave, 4214 sizeof(struct fxregs_state)); 4215 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4216 XFEATURE_MASK_FPSSE; 4217 } 4218 } 4219 4220 #define XSAVE_MXCSR_OFFSET 24 4221 4222 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4223 struct kvm_xsave *guest_xsave) 4224 { 4225 u64 xstate_bv = 4226 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4227 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4228 4229 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4230 /* 4231 * Here we allow setting states that are not present in 4232 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4233 * with old userspace. 4234 */ 4235 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4236 return -EINVAL; 4237 load_xsave(vcpu, (u8 *)guest_xsave->region); 4238 } else { 4239 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4240 mxcsr & ~mxcsr_feature_mask) 4241 return -EINVAL; 4242 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4243 guest_xsave->region, sizeof(struct fxregs_state)); 4244 } 4245 return 0; 4246 } 4247 4248 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4249 struct kvm_xcrs *guest_xcrs) 4250 { 4251 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4252 guest_xcrs->nr_xcrs = 0; 4253 return; 4254 } 4255 4256 guest_xcrs->nr_xcrs = 1; 4257 guest_xcrs->flags = 0; 4258 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4259 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4260 } 4261 4262 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4263 struct kvm_xcrs *guest_xcrs) 4264 { 4265 int i, r = 0; 4266 4267 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4268 return -EINVAL; 4269 4270 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4271 return -EINVAL; 4272 4273 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4274 /* Only support XCR0 currently */ 4275 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4276 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4277 guest_xcrs->xcrs[i].value); 4278 break; 4279 } 4280 if (r) 4281 r = -EINVAL; 4282 return r; 4283 } 4284 4285 /* 4286 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4287 * stopped by the hypervisor. This function will be called from the host only. 4288 * EINVAL is returned when the host attempts to set the flag for a guest that 4289 * does not support pv clocks. 4290 */ 4291 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4292 { 4293 if (!vcpu->arch.pv_time_enabled) 4294 return -EINVAL; 4295 vcpu->arch.pvclock_set_guest_stopped_request = true; 4296 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4297 return 0; 4298 } 4299 4300 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4301 struct kvm_enable_cap *cap) 4302 { 4303 int r; 4304 uint16_t vmcs_version; 4305 void __user *user_ptr; 4306 4307 if (cap->flags) 4308 return -EINVAL; 4309 4310 switch (cap->cap) { 4311 case KVM_CAP_HYPERV_SYNIC2: 4312 if (cap->args[0]) 4313 return -EINVAL; 4314 /* fall through */ 4315 4316 case KVM_CAP_HYPERV_SYNIC: 4317 if (!irqchip_in_kernel(vcpu->kvm)) 4318 return -EINVAL; 4319 return kvm_hv_activate_synic(vcpu, cap->cap == 4320 KVM_CAP_HYPERV_SYNIC2); 4321 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4322 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4323 return -ENOTTY; 4324 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4325 if (!r) { 4326 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4327 if (copy_to_user(user_ptr, &vmcs_version, 4328 sizeof(vmcs_version))) 4329 r = -EFAULT; 4330 } 4331 return r; 4332 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4333 if (!kvm_x86_ops.enable_direct_tlbflush) 4334 return -ENOTTY; 4335 4336 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4337 4338 default: 4339 return -EINVAL; 4340 } 4341 } 4342 4343 long kvm_arch_vcpu_ioctl(struct file *filp, 4344 unsigned int ioctl, unsigned long arg) 4345 { 4346 struct kvm_vcpu *vcpu = filp->private_data; 4347 void __user *argp = (void __user *)arg; 4348 int r; 4349 union { 4350 struct kvm_lapic_state *lapic; 4351 struct kvm_xsave *xsave; 4352 struct kvm_xcrs *xcrs; 4353 void *buffer; 4354 } u; 4355 4356 vcpu_load(vcpu); 4357 4358 u.buffer = NULL; 4359 switch (ioctl) { 4360 case KVM_GET_LAPIC: { 4361 r = -EINVAL; 4362 if (!lapic_in_kernel(vcpu)) 4363 goto out; 4364 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4365 GFP_KERNEL_ACCOUNT); 4366 4367 r = -ENOMEM; 4368 if (!u.lapic) 4369 goto out; 4370 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4371 if (r) 4372 goto out; 4373 r = -EFAULT; 4374 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4375 goto out; 4376 r = 0; 4377 break; 4378 } 4379 case KVM_SET_LAPIC: { 4380 r = -EINVAL; 4381 if (!lapic_in_kernel(vcpu)) 4382 goto out; 4383 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4384 if (IS_ERR(u.lapic)) { 4385 r = PTR_ERR(u.lapic); 4386 goto out_nofree; 4387 } 4388 4389 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4390 break; 4391 } 4392 case KVM_INTERRUPT: { 4393 struct kvm_interrupt irq; 4394 4395 r = -EFAULT; 4396 if (copy_from_user(&irq, argp, sizeof(irq))) 4397 goto out; 4398 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4399 break; 4400 } 4401 case KVM_NMI: { 4402 r = kvm_vcpu_ioctl_nmi(vcpu); 4403 break; 4404 } 4405 case KVM_SMI: { 4406 r = kvm_vcpu_ioctl_smi(vcpu); 4407 break; 4408 } 4409 case KVM_SET_CPUID: { 4410 struct kvm_cpuid __user *cpuid_arg = argp; 4411 struct kvm_cpuid cpuid; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4415 goto out; 4416 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4417 break; 4418 } 4419 case KVM_SET_CPUID2: { 4420 struct kvm_cpuid2 __user *cpuid_arg = argp; 4421 struct kvm_cpuid2 cpuid; 4422 4423 r = -EFAULT; 4424 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4425 goto out; 4426 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4427 cpuid_arg->entries); 4428 break; 4429 } 4430 case KVM_GET_CPUID2: { 4431 struct kvm_cpuid2 __user *cpuid_arg = argp; 4432 struct kvm_cpuid2 cpuid; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4436 goto out; 4437 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4438 cpuid_arg->entries); 4439 if (r) 4440 goto out; 4441 r = -EFAULT; 4442 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4443 goto out; 4444 r = 0; 4445 break; 4446 } 4447 case KVM_GET_MSRS: { 4448 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4449 r = msr_io(vcpu, argp, do_get_msr, 1); 4450 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4451 break; 4452 } 4453 case KVM_SET_MSRS: { 4454 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4455 r = msr_io(vcpu, argp, do_set_msr, 0); 4456 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4457 break; 4458 } 4459 case KVM_TPR_ACCESS_REPORTING: { 4460 struct kvm_tpr_access_ctl tac; 4461 4462 r = -EFAULT; 4463 if (copy_from_user(&tac, argp, sizeof(tac))) 4464 goto out; 4465 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4466 if (r) 4467 goto out; 4468 r = -EFAULT; 4469 if (copy_to_user(argp, &tac, sizeof(tac))) 4470 goto out; 4471 r = 0; 4472 break; 4473 }; 4474 case KVM_SET_VAPIC_ADDR: { 4475 struct kvm_vapic_addr va; 4476 int idx; 4477 4478 r = -EINVAL; 4479 if (!lapic_in_kernel(vcpu)) 4480 goto out; 4481 r = -EFAULT; 4482 if (copy_from_user(&va, argp, sizeof(va))) 4483 goto out; 4484 idx = srcu_read_lock(&vcpu->kvm->srcu); 4485 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4486 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4487 break; 4488 } 4489 case KVM_X86_SETUP_MCE: { 4490 u64 mcg_cap; 4491 4492 r = -EFAULT; 4493 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4494 goto out; 4495 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4496 break; 4497 } 4498 case KVM_X86_SET_MCE: { 4499 struct kvm_x86_mce mce; 4500 4501 r = -EFAULT; 4502 if (copy_from_user(&mce, argp, sizeof(mce))) 4503 goto out; 4504 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4505 break; 4506 } 4507 case KVM_GET_VCPU_EVENTS: { 4508 struct kvm_vcpu_events events; 4509 4510 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4511 4512 r = -EFAULT; 4513 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4514 break; 4515 r = 0; 4516 break; 4517 } 4518 case KVM_SET_VCPU_EVENTS: { 4519 struct kvm_vcpu_events events; 4520 4521 r = -EFAULT; 4522 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4523 break; 4524 4525 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4526 break; 4527 } 4528 case KVM_GET_DEBUGREGS: { 4529 struct kvm_debugregs dbgregs; 4530 4531 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4532 4533 r = -EFAULT; 4534 if (copy_to_user(argp, &dbgregs, 4535 sizeof(struct kvm_debugregs))) 4536 break; 4537 r = 0; 4538 break; 4539 } 4540 case KVM_SET_DEBUGREGS: { 4541 struct kvm_debugregs dbgregs; 4542 4543 r = -EFAULT; 4544 if (copy_from_user(&dbgregs, argp, 4545 sizeof(struct kvm_debugregs))) 4546 break; 4547 4548 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4549 break; 4550 } 4551 case KVM_GET_XSAVE: { 4552 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4553 r = -ENOMEM; 4554 if (!u.xsave) 4555 break; 4556 4557 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4558 4559 r = -EFAULT; 4560 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4561 break; 4562 r = 0; 4563 break; 4564 } 4565 case KVM_SET_XSAVE: { 4566 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4567 if (IS_ERR(u.xsave)) { 4568 r = PTR_ERR(u.xsave); 4569 goto out_nofree; 4570 } 4571 4572 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4573 break; 4574 } 4575 case KVM_GET_XCRS: { 4576 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4577 r = -ENOMEM; 4578 if (!u.xcrs) 4579 break; 4580 4581 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4582 4583 r = -EFAULT; 4584 if (copy_to_user(argp, u.xcrs, 4585 sizeof(struct kvm_xcrs))) 4586 break; 4587 r = 0; 4588 break; 4589 } 4590 case KVM_SET_XCRS: { 4591 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4592 if (IS_ERR(u.xcrs)) { 4593 r = PTR_ERR(u.xcrs); 4594 goto out_nofree; 4595 } 4596 4597 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4598 break; 4599 } 4600 case KVM_SET_TSC_KHZ: { 4601 u32 user_tsc_khz; 4602 4603 r = -EINVAL; 4604 user_tsc_khz = (u32)arg; 4605 4606 if (kvm_has_tsc_control && 4607 user_tsc_khz >= kvm_max_guest_tsc_khz) 4608 goto out; 4609 4610 if (user_tsc_khz == 0) 4611 user_tsc_khz = tsc_khz; 4612 4613 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4614 r = 0; 4615 4616 goto out; 4617 } 4618 case KVM_GET_TSC_KHZ: { 4619 r = vcpu->arch.virtual_tsc_khz; 4620 goto out; 4621 } 4622 case KVM_KVMCLOCK_CTRL: { 4623 r = kvm_set_guest_paused(vcpu); 4624 goto out; 4625 } 4626 case KVM_ENABLE_CAP: { 4627 struct kvm_enable_cap cap; 4628 4629 r = -EFAULT; 4630 if (copy_from_user(&cap, argp, sizeof(cap))) 4631 goto out; 4632 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4633 break; 4634 } 4635 case KVM_GET_NESTED_STATE: { 4636 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4637 u32 user_data_size; 4638 4639 r = -EINVAL; 4640 if (!kvm_x86_ops.nested_ops->get_state) 4641 break; 4642 4643 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4644 r = -EFAULT; 4645 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4646 break; 4647 4648 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4649 user_data_size); 4650 if (r < 0) 4651 break; 4652 4653 if (r > user_data_size) { 4654 if (put_user(r, &user_kvm_nested_state->size)) 4655 r = -EFAULT; 4656 else 4657 r = -E2BIG; 4658 break; 4659 } 4660 4661 r = 0; 4662 break; 4663 } 4664 case KVM_SET_NESTED_STATE: { 4665 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4666 struct kvm_nested_state kvm_state; 4667 int idx; 4668 4669 r = -EINVAL; 4670 if (!kvm_x86_ops.nested_ops->set_state) 4671 break; 4672 4673 r = -EFAULT; 4674 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4675 break; 4676 4677 r = -EINVAL; 4678 if (kvm_state.size < sizeof(kvm_state)) 4679 break; 4680 4681 if (kvm_state.flags & 4682 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4683 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 4684 | KVM_STATE_NESTED_GIF_SET)) 4685 break; 4686 4687 /* nested_run_pending implies guest_mode. */ 4688 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4689 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4690 break; 4691 4692 idx = srcu_read_lock(&vcpu->kvm->srcu); 4693 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 4694 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4695 break; 4696 } 4697 case KVM_GET_SUPPORTED_HV_CPUID: { 4698 struct kvm_cpuid2 __user *cpuid_arg = argp; 4699 struct kvm_cpuid2 cpuid; 4700 4701 r = -EFAULT; 4702 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4703 goto out; 4704 4705 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4706 cpuid_arg->entries); 4707 if (r) 4708 goto out; 4709 4710 r = -EFAULT; 4711 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4712 goto out; 4713 r = 0; 4714 break; 4715 } 4716 default: 4717 r = -EINVAL; 4718 } 4719 out: 4720 kfree(u.buffer); 4721 out_nofree: 4722 vcpu_put(vcpu); 4723 return r; 4724 } 4725 4726 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4727 { 4728 return VM_FAULT_SIGBUS; 4729 } 4730 4731 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4732 { 4733 int ret; 4734 4735 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4736 return -EINVAL; 4737 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4738 return ret; 4739 } 4740 4741 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4742 u64 ident_addr) 4743 { 4744 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4745 } 4746 4747 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4748 unsigned long kvm_nr_mmu_pages) 4749 { 4750 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4751 return -EINVAL; 4752 4753 mutex_lock(&kvm->slots_lock); 4754 4755 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4756 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4757 4758 mutex_unlock(&kvm->slots_lock); 4759 return 0; 4760 } 4761 4762 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4763 { 4764 return kvm->arch.n_max_mmu_pages; 4765 } 4766 4767 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4768 { 4769 struct kvm_pic *pic = kvm->arch.vpic; 4770 int r; 4771 4772 r = 0; 4773 switch (chip->chip_id) { 4774 case KVM_IRQCHIP_PIC_MASTER: 4775 memcpy(&chip->chip.pic, &pic->pics[0], 4776 sizeof(struct kvm_pic_state)); 4777 break; 4778 case KVM_IRQCHIP_PIC_SLAVE: 4779 memcpy(&chip->chip.pic, &pic->pics[1], 4780 sizeof(struct kvm_pic_state)); 4781 break; 4782 case KVM_IRQCHIP_IOAPIC: 4783 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4784 break; 4785 default: 4786 r = -EINVAL; 4787 break; 4788 } 4789 return r; 4790 } 4791 4792 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4793 { 4794 struct kvm_pic *pic = kvm->arch.vpic; 4795 int r; 4796 4797 r = 0; 4798 switch (chip->chip_id) { 4799 case KVM_IRQCHIP_PIC_MASTER: 4800 spin_lock(&pic->lock); 4801 memcpy(&pic->pics[0], &chip->chip.pic, 4802 sizeof(struct kvm_pic_state)); 4803 spin_unlock(&pic->lock); 4804 break; 4805 case KVM_IRQCHIP_PIC_SLAVE: 4806 spin_lock(&pic->lock); 4807 memcpy(&pic->pics[1], &chip->chip.pic, 4808 sizeof(struct kvm_pic_state)); 4809 spin_unlock(&pic->lock); 4810 break; 4811 case KVM_IRQCHIP_IOAPIC: 4812 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4813 break; 4814 default: 4815 r = -EINVAL; 4816 break; 4817 } 4818 kvm_pic_update_irq(pic); 4819 return r; 4820 } 4821 4822 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4823 { 4824 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4825 4826 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4827 4828 mutex_lock(&kps->lock); 4829 memcpy(ps, &kps->channels, sizeof(*ps)); 4830 mutex_unlock(&kps->lock); 4831 return 0; 4832 } 4833 4834 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4835 { 4836 int i; 4837 struct kvm_pit *pit = kvm->arch.vpit; 4838 4839 mutex_lock(&pit->pit_state.lock); 4840 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4841 for (i = 0; i < 3; i++) 4842 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4843 mutex_unlock(&pit->pit_state.lock); 4844 return 0; 4845 } 4846 4847 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4848 { 4849 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4850 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4851 sizeof(ps->channels)); 4852 ps->flags = kvm->arch.vpit->pit_state.flags; 4853 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4854 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4855 return 0; 4856 } 4857 4858 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4859 { 4860 int start = 0; 4861 int i; 4862 u32 prev_legacy, cur_legacy; 4863 struct kvm_pit *pit = kvm->arch.vpit; 4864 4865 mutex_lock(&pit->pit_state.lock); 4866 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4867 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4868 if (!prev_legacy && cur_legacy) 4869 start = 1; 4870 memcpy(&pit->pit_state.channels, &ps->channels, 4871 sizeof(pit->pit_state.channels)); 4872 pit->pit_state.flags = ps->flags; 4873 for (i = 0; i < 3; i++) 4874 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4875 start && i == 0); 4876 mutex_unlock(&pit->pit_state.lock); 4877 return 0; 4878 } 4879 4880 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4881 struct kvm_reinject_control *control) 4882 { 4883 struct kvm_pit *pit = kvm->arch.vpit; 4884 4885 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4886 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4887 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4888 */ 4889 mutex_lock(&pit->pit_state.lock); 4890 kvm_pit_set_reinject(pit, control->pit_reinject); 4891 mutex_unlock(&pit->pit_state.lock); 4892 4893 return 0; 4894 } 4895 4896 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4897 { 4898 /* 4899 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4900 */ 4901 if (kvm_x86_ops.flush_log_dirty) 4902 kvm_x86_ops.flush_log_dirty(kvm); 4903 } 4904 4905 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4906 bool line_status) 4907 { 4908 if (!irqchip_in_kernel(kvm)) 4909 return -ENXIO; 4910 4911 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4912 irq_event->irq, irq_event->level, 4913 line_status); 4914 return 0; 4915 } 4916 4917 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4918 struct kvm_enable_cap *cap) 4919 { 4920 int r; 4921 4922 if (cap->flags) 4923 return -EINVAL; 4924 4925 switch (cap->cap) { 4926 case KVM_CAP_DISABLE_QUIRKS: 4927 kvm->arch.disabled_quirks = cap->args[0]; 4928 r = 0; 4929 break; 4930 case KVM_CAP_SPLIT_IRQCHIP: { 4931 mutex_lock(&kvm->lock); 4932 r = -EINVAL; 4933 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4934 goto split_irqchip_unlock; 4935 r = -EEXIST; 4936 if (irqchip_in_kernel(kvm)) 4937 goto split_irqchip_unlock; 4938 if (kvm->created_vcpus) 4939 goto split_irqchip_unlock; 4940 r = kvm_setup_empty_irq_routing(kvm); 4941 if (r) 4942 goto split_irqchip_unlock; 4943 /* Pairs with irqchip_in_kernel. */ 4944 smp_wmb(); 4945 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4946 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4947 r = 0; 4948 split_irqchip_unlock: 4949 mutex_unlock(&kvm->lock); 4950 break; 4951 } 4952 case KVM_CAP_X2APIC_API: 4953 r = -EINVAL; 4954 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4955 break; 4956 4957 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4958 kvm->arch.x2apic_format = true; 4959 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4960 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4961 4962 r = 0; 4963 break; 4964 case KVM_CAP_X86_DISABLE_EXITS: 4965 r = -EINVAL; 4966 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4967 break; 4968 4969 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4970 kvm_can_mwait_in_guest()) 4971 kvm->arch.mwait_in_guest = true; 4972 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4973 kvm->arch.hlt_in_guest = true; 4974 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4975 kvm->arch.pause_in_guest = true; 4976 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4977 kvm->arch.cstate_in_guest = true; 4978 r = 0; 4979 break; 4980 case KVM_CAP_MSR_PLATFORM_INFO: 4981 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4982 r = 0; 4983 break; 4984 case KVM_CAP_EXCEPTION_PAYLOAD: 4985 kvm->arch.exception_payload_enabled = cap->args[0]; 4986 r = 0; 4987 break; 4988 default: 4989 r = -EINVAL; 4990 break; 4991 } 4992 return r; 4993 } 4994 4995 long kvm_arch_vm_ioctl(struct file *filp, 4996 unsigned int ioctl, unsigned long arg) 4997 { 4998 struct kvm *kvm = filp->private_data; 4999 void __user *argp = (void __user *)arg; 5000 int r = -ENOTTY; 5001 /* 5002 * This union makes it completely explicit to gcc-3.x 5003 * that these two variables' stack usage should be 5004 * combined, not added together. 5005 */ 5006 union { 5007 struct kvm_pit_state ps; 5008 struct kvm_pit_state2 ps2; 5009 struct kvm_pit_config pit_config; 5010 } u; 5011 5012 switch (ioctl) { 5013 case KVM_SET_TSS_ADDR: 5014 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5015 break; 5016 case KVM_SET_IDENTITY_MAP_ADDR: { 5017 u64 ident_addr; 5018 5019 mutex_lock(&kvm->lock); 5020 r = -EINVAL; 5021 if (kvm->created_vcpus) 5022 goto set_identity_unlock; 5023 r = -EFAULT; 5024 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5025 goto set_identity_unlock; 5026 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5027 set_identity_unlock: 5028 mutex_unlock(&kvm->lock); 5029 break; 5030 } 5031 case KVM_SET_NR_MMU_PAGES: 5032 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5033 break; 5034 case KVM_GET_NR_MMU_PAGES: 5035 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5036 break; 5037 case KVM_CREATE_IRQCHIP: { 5038 mutex_lock(&kvm->lock); 5039 5040 r = -EEXIST; 5041 if (irqchip_in_kernel(kvm)) 5042 goto create_irqchip_unlock; 5043 5044 r = -EINVAL; 5045 if (kvm->created_vcpus) 5046 goto create_irqchip_unlock; 5047 5048 r = kvm_pic_init(kvm); 5049 if (r) 5050 goto create_irqchip_unlock; 5051 5052 r = kvm_ioapic_init(kvm); 5053 if (r) { 5054 kvm_pic_destroy(kvm); 5055 goto create_irqchip_unlock; 5056 } 5057 5058 r = kvm_setup_default_irq_routing(kvm); 5059 if (r) { 5060 kvm_ioapic_destroy(kvm); 5061 kvm_pic_destroy(kvm); 5062 goto create_irqchip_unlock; 5063 } 5064 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5065 smp_wmb(); 5066 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5067 create_irqchip_unlock: 5068 mutex_unlock(&kvm->lock); 5069 break; 5070 } 5071 case KVM_CREATE_PIT: 5072 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5073 goto create_pit; 5074 case KVM_CREATE_PIT2: 5075 r = -EFAULT; 5076 if (copy_from_user(&u.pit_config, argp, 5077 sizeof(struct kvm_pit_config))) 5078 goto out; 5079 create_pit: 5080 mutex_lock(&kvm->lock); 5081 r = -EEXIST; 5082 if (kvm->arch.vpit) 5083 goto create_pit_unlock; 5084 r = -ENOMEM; 5085 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5086 if (kvm->arch.vpit) 5087 r = 0; 5088 create_pit_unlock: 5089 mutex_unlock(&kvm->lock); 5090 break; 5091 case KVM_GET_IRQCHIP: { 5092 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5093 struct kvm_irqchip *chip; 5094 5095 chip = memdup_user(argp, sizeof(*chip)); 5096 if (IS_ERR(chip)) { 5097 r = PTR_ERR(chip); 5098 goto out; 5099 } 5100 5101 r = -ENXIO; 5102 if (!irqchip_kernel(kvm)) 5103 goto get_irqchip_out; 5104 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5105 if (r) 5106 goto get_irqchip_out; 5107 r = -EFAULT; 5108 if (copy_to_user(argp, chip, sizeof(*chip))) 5109 goto get_irqchip_out; 5110 r = 0; 5111 get_irqchip_out: 5112 kfree(chip); 5113 break; 5114 } 5115 case KVM_SET_IRQCHIP: { 5116 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5117 struct kvm_irqchip *chip; 5118 5119 chip = memdup_user(argp, sizeof(*chip)); 5120 if (IS_ERR(chip)) { 5121 r = PTR_ERR(chip); 5122 goto out; 5123 } 5124 5125 r = -ENXIO; 5126 if (!irqchip_kernel(kvm)) 5127 goto set_irqchip_out; 5128 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5129 set_irqchip_out: 5130 kfree(chip); 5131 break; 5132 } 5133 case KVM_GET_PIT: { 5134 r = -EFAULT; 5135 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5136 goto out; 5137 r = -ENXIO; 5138 if (!kvm->arch.vpit) 5139 goto out; 5140 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5141 if (r) 5142 goto out; 5143 r = -EFAULT; 5144 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5145 goto out; 5146 r = 0; 5147 break; 5148 } 5149 case KVM_SET_PIT: { 5150 r = -EFAULT; 5151 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5152 goto out; 5153 mutex_lock(&kvm->lock); 5154 r = -ENXIO; 5155 if (!kvm->arch.vpit) 5156 goto set_pit_out; 5157 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5158 set_pit_out: 5159 mutex_unlock(&kvm->lock); 5160 break; 5161 } 5162 case KVM_GET_PIT2: { 5163 r = -ENXIO; 5164 if (!kvm->arch.vpit) 5165 goto out; 5166 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5167 if (r) 5168 goto out; 5169 r = -EFAULT; 5170 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5171 goto out; 5172 r = 0; 5173 break; 5174 } 5175 case KVM_SET_PIT2: { 5176 r = -EFAULT; 5177 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5178 goto out; 5179 mutex_lock(&kvm->lock); 5180 r = -ENXIO; 5181 if (!kvm->arch.vpit) 5182 goto set_pit2_out; 5183 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5184 set_pit2_out: 5185 mutex_unlock(&kvm->lock); 5186 break; 5187 } 5188 case KVM_REINJECT_CONTROL: { 5189 struct kvm_reinject_control control; 5190 r = -EFAULT; 5191 if (copy_from_user(&control, argp, sizeof(control))) 5192 goto out; 5193 r = -ENXIO; 5194 if (!kvm->arch.vpit) 5195 goto out; 5196 r = kvm_vm_ioctl_reinject(kvm, &control); 5197 break; 5198 } 5199 case KVM_SET_BOOT_CPU_ID: 5200 r = 0; 5201 mutex_lock(&kvm->lock); 5202 if (kvm->created_vcpus) 5203 r = -EBUSY; 5204 else 5205 kvm->arch.bsp_vcpu_id = arg; 5206 mutex_unlock(&kvm->lock); 5207 break; 5208 case KVM_XEN_HVM_CONFIG: { 5209 struct kvm_xen_hvm_config xhc; 5210 r = -EFAULT; 5211 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5212 goto out; 5213 r = -EINVAL; 5214 if (xhc.flags) 5215 goto out; 5216 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5217 r = 0; 5218 break; 5219 } 5220 case KVM_SET_CLOCK: { 5221 struct kvm_clock_data user_ns; 5222 u64 now_ns; 5223 5224 r = -EFAULT; 5225 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5226 goto out; 5227 5228 r = -EINVAL; 5229 if (user_ns.flags) 5230 goto out; 5231 5232 r = 0; 5233 /* 5234 * TODO: userspace has to take care of races with VCPU_RUN, so 5235 * kvm_gen_update_masterclock() can be cut down to locked 5236 * pvclock_update_vm_gtod_copy(). 5237 */ 5238 kvm_gen_update_masterclock(kvm); 5239 now_ns = get_kvmclock_ns(kvm); 5240 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5241 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5242 break; 5243 } 5244 case KVM_GET_CLOCK: { 5245 struct kvm_clock_data user_ns; 5246 u64 now_ns; 5247 5248 now_ns = get_kvmclock_ns(kvm); 5249 user_ns.clock = now_ns; 5250 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5251 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5252 5253 r = -EFAULT; 5254 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5255 goto out; 5256 r = 0; 5257 break; 5258 } 5259 case KVM_MEMORY_ENCRYPT_OP: { 5260 r = -ENOTTY; 5261 if (kvm_x86_ops.mem_enc_op) 5262 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5263 break; 5264 } 5265 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5266 struct kvm_enc_region region; 5267 5268 r = -EFAULT; 5269 if (copy_from_user(®ion, argp, sizeof(region))) 5270 goto out; 5271 5272 r = -ENOTTY; 5273 if (kvm_x86_ops.mem_enc_reg_region) 5274 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5275 break; 5276 } 5277 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5278 struct kvm_enc_region region; 5279 5280 r = -EFAULT; 5281 if (copy_from_user(®ion, argp, sizeof(region))) 5282 goto out; 5283 5284 r = -ENOTTY; 5285 if (kvm_x86_ops.mem_enc_unreg_region) 5286 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5287 break; 5288 } 5289 case KVM_HYPERV_EVENTFD: { 5290 struct kvm_hyperv_eventfd hvevfd; 5291 5292 r = -EFAULT; 5293 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5294 goto out; 5295 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5296 break; 5297 } 5298 case KVM_SET_PMU_EVENT_FILTER: 5299 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5300 break; 5301 default: 5302 r = -ENOTTY; 5303 } 5304 out: 5305 return r; 5306 } 5307 5308 static void kvm_init_msr_list(void) 5309 { 5310 struct x86_pmu_capability x86_pmu; 5311 u32 dummy[2]; 5312 unsigned i; 5313 5314 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5315 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5316 5317 perf_get_x86_pmu_capability(&x86_pmu); 5318 5319 num_msrs_to_save = 0; 5320 num_emulated_msrs = 0; 5321 num_msr_based_features = 0; 5322 5323 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5324 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5325 continue; 5326 5327 /* 5328 * Even MSRs that are valid in the host may not be exposed 5329 * to the guests in some cases. 5330 */ 5331 switch (msrs_to_save_all[i]) { 5332 case MSR_IA32_BNDCFGS: 5333 if (!kvm_mpx_supported()) 5334 continue; 5335 break; 5336 case MSR_TSC_AUX: 5337 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5338 continue; 5339 break; 5340 case MSR_IA32_UMWAIT_CONTROL: 5341 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5342 continue; 5343 break; 5344 case MSR_IA32_RTIT_CTL: 5345 case MSR_IA32_RTIT_STATUS: 5346 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5347 continue; 5348 break; 5349 case MSR_IA32_RTIT_CR3_MATCH: 5350 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5351 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5352 continue; 5353 break; 5354 case MSR_IA32_RTIT_OUTPUT_BASE: 5355 case MSR_IA32_RTIT_OUTPUT_MASK: 5356 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5357 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5358 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5359 continue; 5360 break; 5361 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5362 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5363 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5364 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5365 continue; 5366 break; 5367 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5368 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5369 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5370 continue; 5371 break; 5372 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5373 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5374 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5375 continue; 5376 break; 5377 default: 5378 break; 5379 } 5380 5381 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5382 } 5383 5384 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5385 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5386 continue; 5387 5388 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5389 } 5390 5391 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5392 struct kvm_msr_entry msr; 5393 5394 msr.index = msr_based_features_all[i]; 5395 if (kvm_get_msr_feature(&msr)) 5396 continue; 5397 5398 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5399 } 5400 } 5401 5402 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5403 const void *v) 5404 { 5405 int handled = 0; 5406 int n; 5407 5408 do { 5409 n = min(len, 8); 5410 if (!(lapic_in_kernel(vcpu) && 5411 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5412 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5413 break; 5414 handled += n; 5415 addr += n; 5416 len -= n; 5417 v += n; 5418 } while (len); 5419 5420 return handled; 5421 } 5422 5423 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5424 { 5425 int handled = 0; 5426 int n; 5427 5428 do { 5429 n = min(len, 8); 5430 if (!(lapic_in_kernel(vcpu) && 5431 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5432 addr, n, v)) 5433 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5434 break; 5435 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5436 handled += n; 5437 addr += n; 5438 len -= n; 5439 v += n; 5440 } while (len); 5441 5442 return handled; 5443 } 5444 5445 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5446 struct kvm_segment *var, int seg) 5447 { 5448 kvm_x86_ops.set_segment(vcpu, var, seg); 5449 } 5450 5451 void kvm_get_segment(struct kvm_vcpu *vcpu, 5452 struct kvm_segment *var, int seg) 5453 { 5454 kvm_x86_ops.get_segment(vcpu, var, seg); 5455 } 5456 5457 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5458 struct x86_exception *exception) 5459 { 5460 gpa_t t_gpa; 5461 5462 BUG_ON(!mmu_is_nested(vcpu)); 5463 5464 /* NPT walks are always user-walks */ 5465 access |= PFERR_USER_MASK; 5466 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5467 5468 return t_gpa; 5469 } 5470 5471 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5472 struct x86_exception *exception) 5473 { 5474 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5475 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5476 } 5477 5478 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5479 struct x86_exception *exception) 5480 { 5481 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5482 access |= PFERR_FETCH_MASK; 5483 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5484 } 5485 5486 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5487 struct x86_exception *exception) 5488 { 5489 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5490 access |= PFERR_WRITE_MASK; 5491 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5492 } 5493 5494 /* uses this to access any guest's mapped memory without checking CPL */ 5495 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5496 struct x86_exception *exception) 5497 { 5498 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5499 } 5500 5501 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5502 struct kvm_vcpu *vcpu, u32 access, 5503 struct x86_exception *exception) 5504 { 5505 void *data = val; 5506 int r = X86EMUL_CONTINUE; 5507 5508 while (bytes) { 5509 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5510 exception); 5511 unsigned offset = addr & (PAGE_SIZE-1); 5512 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5513 int ret; 5514 5515 if (gpa == UNMAPPED_GVA) 5516 return X86EMUL_PROPAGATE_FAULT; 5517 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5518 offset, toread); 5519 if (ret < 0) { 5520 r = X86EMUL_IO_NEEDED; 5521 goto out; 5522 } 5523 5524 bytes -= toread; 5525 data += toread; 5526 addr += toread; 5527 } 5528 out: 5529 return r; 5530 } 5531 5532 /* used for instruction fetching */ 5533 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5534 gva_t addr, void *val, unsigned int bytes, 5535 struct x86_exception *exception) 5536 { 5537 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5538 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5539 unsigned offset; 5540 int ret; 5541 5542 /* Inline kvm_read_guest_virt_helper for speed. */ 5543 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5544 exception); 5545 if (unlikely(gpa == UNMAPPED_GVA)) 5546 return X86EMUL_PROPAGATE_FAULT; 5547 5548 offset = addr & (PAGE_SIZE-1); 5549 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5550 bytes = (unsigned)PAGE_SIZE - offset; 5551 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5552 offset, bytes); 5553 if (unlikely(ret < 0)) 5554 return X86EMUL_IO_NEEDED; 5555 5556 return X86EMUL_CONTINUE; 5557 } 5558 5559 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5560 gva_t addr, void *val, unsigned int bytes, 5561 struct x86_exception *exception) 5562 { 5563 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5564 5565 /* 5566 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5567 * is returned, but our callers are not ready for that and they blindly 5568 * call kvm_inject_page_fault. Ensure that they at least do not leak 5569 * uninitialized kernel stack memory into cr2 and error code. 5570 */ 5571 memset(exception, 0, sizeof(*exception)); 5572 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5573 exception); 5574 } 5575 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5576 5577 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5578 gva_t addr, void *val, unsigned int bytes, 5579 struct x86_exception *exception, bool system) 5580 { 5581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5582 u32 access = 0; 5583 5584 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5585 access |= PFERR_USER_MASK; 5586 5587 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5588 } 5589 5590 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5591 unsigned long addr, void *val, unsigned int bytes) 5592 { 5593 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5594 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5595 5596 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5597 } 5598 5599 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5600 struct kvm_vcpu *vcpu, u32 access, 5601 struct x86_exception *exception) 5602 { 5603 void *data = val; 5604 int r = X86EMUL_CONTINUE; 5605 5606 while (bytes) { 5607 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5608 access, 5609 exception); 5610 unsigned offset = addr & (PAGE_SIZE-1); 5611 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5612 int ret; 5613 5614 if (gpa == UNMAPPED_GVA) 5615 return X86EMUL_PROPAGATE_FAULT; 5616 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5617 if (ret < 0) { 5618 r = X86EMUL_IO_NEEDED; 5619 goto out; 5620 } 5621 5622 bytes -= towrite; 5623 data += towrite; 5624 addr += towrite; 5625 } 5626 out: 5627 return r; 5628 } 5629 5630 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5631 unsigned int bytes, struct x86_exception *exception, 5632 bool system) 5633 { 5634 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5635 u32 access = PFERR_WRITE_MASK; 5636 5637 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5638 access |= PFERR_USER_MASK; 5639 5640 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5641 access, exception); 5642 } 5643 5644 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5645 unsigned int bytes, struct x86_exception *exception) 5646 { 5647 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5648 vcpu->arch.l1tf_flush_l1d = true; 5649 5650 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5651 PFERR_WRITE_MASK, exception); 5652 } 5653 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5654 5655 int handle_ud(struct kvm_vcpu *vcpu) 5656 { 5657 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5658 int emul_type = EMULTYPE_TRAP_UD; 5659 char sig[5]; /* ud2; .ascii "kvm" */ 5660 struct x86_exception e; 5661 5662 if (force_emulation_prefix && 5663 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5664 sig, sizeof(sig), &e) == 0 && 5665 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5666 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5667 emul_type = EMULTYPE_TRAP_UD_FORCED; 5668 } 5669 5670 return kvm_emulate_instruction(vcpu, emul_type); 5671 } 5672 EXPORT_SYMBOL_GPL(handle_ud); 5673 5674 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5675 gpa_t gpa, bool write) 5676 { 5677 /* For APIC access vmexit */ 5678 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5679 return 1; 5680 5681 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5682 trace_vcpu_match_mmio(gva, gpa, write, true); 5683 return 1; 5684 } 5685 5686 return 0; 5687 } 5688 5689 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5690 gpa_t *gpa, struct x86_exception *exception, 5691 bool write) 5692 { 5693 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5694 | (write ? PFERR_WRITE_MASK : 0); 5695 5696 /* 5697 * currently PKRU is only applied to ept enabled guest so 5698 * there is no pkey in EPT page table for L1 guest or EPT 5699 * shadow page table for L2 guest. 5700 */ 5701 if (vcpu_match_mmio_gva(vcpu, gva) 5702 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5703 vcpu->arch.mmio_access, 0, access)) { 5704 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5705 (gva & (PAGE_SIZE - 1)); 5706 trace_vcpu_match_mmio(gva, *gpa, write, false); 5707 return 1; 5708 } 5709 5710 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5711 5712 if (*gpa == UNMAPPED_GVA) 5713 return -1; 5714 5715 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5716 } 5717 5718 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5719 const void *val, int bytes) 5720 { 5721 int ret; 5722 5723 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5724 if (ret < 0) 5725 return 0; 5726 kvm_page_track_write(vcpu, gpa, val, bytes); 5727 return 1; 5728 } 5729 5730 struct read_write_emulator_ops { 5731 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5732 int bytes); 5733 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5734 void *val, int bytes); 5735 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5736 int bytes, void *val); 5737 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5738 void *val, int bytes); 5739 bool write; 5740 }; 5741 5742 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5743 { 5744 if (vcpu->mmio_read_completed) { 5745 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5746 vcpu->mmio_fragments[0].gpa, val); 5747 vcpu->mmio_read_completed = 0; 5748 return 1; 5749 } 5750 5751 return 0; 5752 } 5753 5754 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5755 void *val, int bytes) 5756 { 5757 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5758 } 5759 5760 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5761 void *val, int bytes) 5762 { 5763 return emulator_write_phys(vcpu, gpa, val, bytes); 5764 } 5765 5766 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5767 { 5768 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5769 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5770 } 5771 5772 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5773 void *val, int bytes) 5774 { 5775 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5776 return X86EMUL_IO_NEEDED; 5777 } 5778 5779 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5780 void *val, int bytes) 5781 { 5782 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5783 5784 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5785 return X86EMUL_CONTINUE; 5786 } 5787 5788 static const struct read_write_emulator_ops read_emultor = { 5789 .read_write_prepare = read_prepare, 5790 .read_write_emulate = read_emulate, 5791 .read_write_mmio = vcpu_mmio_read, 5792 .read_write_exit_mmio = read_exit_mmio, 5793 }; 5794 5795 static const struct read_write_emulator_ops write_emultor = { 5796 .read_write_emulate = write_emulate, 5797 .read_write_mmio = write_mmio, 5798 .read_write_exit_mmio = write_exit_mmio, 5799 .write = true, 5800 }; 5801 5802 static int emulator_read_write_onepage(unsigned long addr, void *val, 5803 unsigned int bytes, 5804 struct x86_exception *exception, 5805 struct kvm_vcpu *vcpu, 5806 const struct read_write_emulator_ops *ops) 5807 { 5808 gpa_t gpa; 5809 int handled, ret; 5810 bool write = ops->write; 5811 struct kvm_mmio_fragment *frag; 5812 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5813 5814 /* 5815 * If the exit was due to a NPF we may already have a GPA. 5816 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5817 * Note, this cannot be used on string operations since string 5818 * operation using rep will only have the initial GPA from the NPF 5819 * occurred. 5820 */ 5821 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5822 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5823 gpa = ctxt->gpa_val; 5824 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5825 } else { 5826 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5827 if (ret < 0) 5828 return X86EMUL_PROPAGATE_FAULT; 5829 } 5830 5831 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5832 return X86EMUL_CONTINUE; 5833 5834 /* 5835 * Is this MMIO handled locally? 5836 */ 5837 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5838 if (handled == bytes) 5839 return X86EMUL_CONTINUE; 5840 5841 gpa += handled; 5842 bytes -= handled; 5843 val += handled; 5844 5845 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5846 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5847 frag->gpa = gpa; 5848 frag->data = val; 5849 frag->len = bytes; 5850 return X86EMUL_CONTINUE; 5851 } 5852 5853 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5854 unsigned long addr, 5855 void *val, unsigned int bytes, 5856 struct x86_exception *exception, 5857 const struct read_write_emulator_ops *ops) 5858 { 5859 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5860 gpa_t gpa; 5861 int rc; 5862 5863 if (ops->read_write_prepare && 5864 ops->read_write_prepare(vcpu, val, bytes)) 5865 return X86EMUL_CONTINUE; 5866 5867 vcpu->mmio_nr_fragments = 0; 5868 5869 /* Crossing a page boundary? */ 5870 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5871 int now; 5872 5873 now = -addr & ~PAGE_MASK; 5874 rc = emulator_read_write_onepage(addr, val, now, exception, 5875 vcpu, ops); 5876 5877 if (rc != X86EMUL_CONTINUE) 5878 return rc; 5879 addr += now; 5880 if (ctxt->mode != X86EMUL_MODE_PROT64) 5881 addr = (u32)addr; 5882 val += now; 5883 bytes -= now; 5884 } 5885 5886 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5887 vcpu, ops); 5888 if (rc != X86EMUL_CONTINUE) 5889 return rc; 5890 5891 if (!vcpu->mmio_nr_fragments) 5892 return rc; 5893 5894 gpa = vcpu->mmio_fragments[0].gpa; 5895 5896 vcpu->mmio_needed = 1; 5897 vcpu->mmio_cur_fragment = 0; 5898 5899 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5900 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5901 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5902 vcpu->run->mmio.phys_addr = gpa; 5903 5904 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5905 } 5906 5907 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5908 unsigned long addr, 5909 void *val, 5910 unsigned int bytes, 5911 struct x86_exception *exception) 5912 { 5913 return emulator_read_write(ctxt, addr, val, bytes, 5914 exception, &read_emultor); 5915 } 5916 5917 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5918 unsigned long addr, 5919 const void *val, 5920 unsigned int bytes, 5921 struct x86_exception *exception) 5922 { 5923 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5924 exception, &write_emultor); 5925 } 5926 5927 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5928 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5929 5930 #ifdef CONFIG_X86_64 5931 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5932 #else 5933 # define CMPXCHG64(ptr, old, new) \ 5934 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5935 #endif 5936 5937 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5938 unsigned long addr, 5939 const void *old, 5940 const void *new, 5941 unsigned int bytes, 5942 struct x86_exception *exception) 5943 { 5944 struct kvm_host_map map; 5945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5946 u64 page_line_mask; 5947 gpa_t gpa; 5948 char *kaddr; 5949 bool exchanged; 5950 5951 /* guests cmpxchg8b have to be emulated atomically */ 5952 if (bytes > 8 || (bytes & (bytes - 1))) 5953 goto emul_write; 5954 5955 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5956 5957 if (gpa == UNMAPPED_GVA || 5958 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5959 goto emul_write; 5960 5961 /* 5962 * Emulate the atomic as a straight write to avoid #AC if SLD is 5963 * enabled in the host and the access splits a cache line. 5964 */ 5965 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5966 page_line_mask = ~(cache_line_size() - 1); 5967 else 5968 page_line_mask = PAGE_MASK; 5969 5970 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 5971 goto emul_write; 5972 5973 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5974 goto emul_write; 5975 5976 kaddr = map.hva + offset_in_page(gpa); 5977 5978 switch (bytes) { 5979 case 1: 5980 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5981 break; 5982 case 2: 5983 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5984 break; 5985 case 4: 5986 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5987 break; 5988 case 8: 5989 exchanged = CMPXCHG64(kaddr, old, new); 5990 break; 5991 default: 5992 BUG(); 5993 } 5994 5995 kvm_vcpu_unmap(vcpu, &map, true); 5996 5997 if (!exchanged) 5998 return X86EMUL_CMPXCHG_FAILED; 5999 6000 kvm_page_track_write(vcpu, gpa, new, bytes); 6001 6002 return X86EMUL_CONTINUE; 6003 6004 emul_write: 6005 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6006 6007 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6008 } 6009 6010 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6011 { 6012 int r = 0, i; 6013 6014 for (i = 0; i < vcpu->arch.pio.count; i++) { 6015 if (vcpu->arch.pio.in) 6016 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6017 vcpu->arch.pio.size, pd); 6018 else 6019 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6020 vcpu->arch.pio.port, vcpu->arch.pio.size, 6021 pd); 6022 if (r) 6023 break; 6024 pd += vcpu->arch.pio.size; 6025 } 6026 return r; 6027 } 6028 6029 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6030 unsigned short port, void *val, 6031 unsigned int count, bool in) 6032 { 6033 vcpu->arch.pio.port = port; 6034 vcpu->arch.pio.in = in; 6035 vcpu->arch.pio.count = count; 6036 vcpu->arch.pio.size = size; 6037 6038 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6039 vcpu->arch.pio.count = 0; 6040 return 1; 6041 } 6042 6043 vcpu->run->exit_reason = KVM_EXIT_IO; 6044 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6045 vcpu->run->io.size = size; 6046 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6047 vcpu->run->io.count = count; 6048 vcpu->run->io.port = port; 6049 6050 return 0; 6051 } 6052 6053 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6054 unsigned short port, void *val, unsigned int count) 6055 { 6056 int ret; 6057 6058 if (vcpu->arch.pio.count) 6059 goto data_avail; 6060 6061 memset(vcpu->arch.pio_data, 0, size * count); 6062 6063 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6064 if (ret) { 6065 data_avail: 6066 memcpy(val, vcpu->arch.pio_data, size * count); 6067 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6068 vcpu->arch.pio.count = 0; 6069 return 1; 6070 } 6071 6072 return 0; 6073 } 6074 6075 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6076 int size, unsigned short port, void *val, 6077 unsigned int count) 6078 { 6079 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6080 6081 } 6082 6083 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6084 unsigned short port, const void *val, 6085 unsigned int count) 6086 { 6087 memcpy(vcpu->arch.pio_data, val, size * count); 6088 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6089 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6090 } 6091 6092 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6093 int size, unsigned short port, 6094 const void *val, unsigned int count) 6095 { 6096 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6097 } 6098 6099 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6100 { 6101 return kvm_x86_ops.get_segment_base(vcpu, seg); 6102 } 6103 6104 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6105 { 6106 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6107 } 6108 6109 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6110 { 6111 if (!need_emulate_wbinvd(vcpu)) 6112 return X86EMUL_CONTINUE; 6113 6114 if (kvm_x86_ops.has_wbinvd_exit()) { 6115 int cpu = get_cpu(); 6116 6117 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6118 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6119 wbinvd_ipi, NULL, 1); 6120 put_cpu(); 6121 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6122 } else 6123 wbinvd(); 6124 return X86EMUL_CONTINUE; 6125 } 6126 6127 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6128 { 6129 kvm_emulate_wbinvd_noskip(vcpu); 6130 return kvm_skip_emulated_instruction(vcpu); 6131 } 6132 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6133 6134 6135 6136 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6137 { 6138 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6139 } 6140 6141 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6142 unsigned long *dest) 6143 { 6144 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6145 } 6146 6147 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6148 unsigned long value) 6149 { 6150 6151 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6152 } 6153 6154 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6155 { 6156 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6157 } 6158 6159 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6160 { 6161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6162 unsigned long value; 6163 6164 switch (cr) { 6165 case 0: 6166 value = kvm_read_cr0(vcpu); 6167 break; 6168 case 2: 6169 value = vcpu->arch.cr2; 6170 break; 6171 case 3: 6172 value = kvm_read_cr3(vcpu); 6173 break; 6174 case 4: 6175 value = kvm_read_cr4(vcpu); 6176 break; 6177 case 8: 6178 value = kvm_get_cr8(vcpu); 6179 break; 6180 default: 6181 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6182 return 0; 6183 } 6184 6185 return value; 6186 } 6187 6188 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6189 { 6190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6191 int res = 0; 6192 6193 switch (cr) { 6194 case 0: 6195 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6196 break; 6197 case 2: 6198 vcpu->arch.cr2 = val; 6199 break; 6200 case 3: 6201 res = kvm_set_cr3(vcpu, val); 6202 break; 6203 case 4: 6204 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6205 break; 6206 case 8: 6207 res = kvm_set_cr8(vcpu, val); 6208 break; 6209 default: 6210 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6211 res = -1; 6212 } 6213 6214 return res; 6215 } 6216 6217 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6218 { 6219 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6220 } 6221 6222 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6223 { 6224 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6225 } 6226 6227 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6228 { 6229 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6230 } 6231 6232 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6233 { 6234 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6235 } 6236 6237 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6238 { 6239 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6240 } 6241 6242 static unsigned long emulator_get_cached_segment_base( 6243 struct x86_emulate_ctxt *ctxt, int seg) 6244 { 6245 return get_segment_base(emul_to_vcpu(ctxt), seg); 6246 } 6247 6248 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6249 struct desc_struct *desc, u32 *base3, 6250 int seg) 6251 { 6252 struct kvm_segment var; 6253 6254 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6255 *selector = var.selector; 6256 6257 if (var.unusable) { 6258 memset(desc, 0, sizeof(*desc)); 6259 if (base3) 6260 *base3 = 0; 6261 return false; 6262 } 6263 6264 if (var.g) 6265 var.limit >>= 12; 6266 set_desc_limit(desc, var.limit); 6267 set_desc_base(desc, (unsigned long)var.base); 6268 #ifdef CONFIG_X86_64 6269 if (base3) 6270 *base3 = var.base >> 32; 6271 #endif 6272 desc->type = var.type; 6273 desc->s = var.s; 6274 desc->dpl = var.dpl; 6275 desc->p = var.present; 6276 desc->avl = var.avl; 6277 desc->l = var.l; 6278 desc->d = var.db; 6279 desc->g = var.g; 6280 6281 return true; 6282 } 6283 6284 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6285 struct desc_struct *desc, u32 base3, 6286 int seg) 6287 { 6288 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6289 struct kvm_segment var; 6290 6291 var.selector = selector; 6292 var.base = get_desc_base(desc); 6293 #ifdef CONFIG_X86_64 6294 var.base |= ((u64)base3) << 32; 6295 #endif 6296 var.limit = get_desc_limit(desc); 6297 if (desc->g) 6298 var.limit = (var.limit << 12) | 0xfff; 6299 var.type = desc->type; 6300 var.dpl = desc->dpl; 6301 var.db = desc->d; 6302 var.s = desc->s; 6303 var.l = desc->l; 6304 var.g = desc->g; 6305 var.avl = desc->avl; 6306 var.present = desc->p; 6307 var.unusable = !var.present; 6308 var.padding = 0; 6309 6310 kvm_set_segment(vcpu, &var, seg); 6311 return; 6312 } 6313 6314 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6315 u32 msr_index, u64 *pdata) 6316 { 6317 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6318 } 6319 6320 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6321 u32 msr_index, u64 data) 6322 { 6323 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6324 } 6325 6326 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6327 { 6328 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6329 6330 return vcpu->arch.smbase; 6331 } 6332 6333 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6334 { 6335 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6336 6337 vcpu->arch.smbase = smbase; 6338 } 6339 6340 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6341 u32 pmc) 6342 { 6343 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6344 } 6345 6346 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6347 u32 pmc, u64 *pdata) 6348 { 6349 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6350 } 6351 6352 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6353 { 6354 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6355 } 6356 6357 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6358 struct x86_instruction_info *info, 6359 enum x86_intercept_stage stage) 6360 { 6361 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6362 &ctxt->exception); 6363 } 6364 6365 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6366 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6367 bool exact_only) 6368 { 6369 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6370 } 6371 6372 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6373 { 6374 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6375 } 6376 6377 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6378 { 6379 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6380 } 6381 6382 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6383 { 6384 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6385 } 6386 6387 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6388 { 6389 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6390 } 6391 6392 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6393 { 6394 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6395 } 6396 6397 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6398 { 6399 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6400 } 6401 6402 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6403 { 6404 return emul_to_vcpu(ctxt)->arch.hflags; 6405 } 6406 6407 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6408 { 6409 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6410 } 6411 6412 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6413 const char *smstate) 6414 { 6415 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6416 } 6417 6418 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6419 { 6420 kvm_smm_changed(emul_to_vcpu(ctxt)); 6421 } 6422 6423 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6424 { 6425 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6426 } 6427 6428 static const struct x86_emulate_ops emulate_ops = { 6429 .read_gpr = emulator_read_gpr, 6430 .write_gpr = emulator_write_gpr, 6431 .read_std = emulator_read_std, 6432 .write_std = emulator_write_std, 6433 .read_phys = kvm_read_guest_phys_system, 6434 .fetch = kvm_fetch_guest_virt, 6435 .read_emulated = emulator_read_emulated, 6436 .write_emulated = emulator_write_emulated, 6437 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6438 .invlpg = emulator_invlpg, 6439 .pio_in_emulated = emulator_pio_in_emulated, 6440 .pio_out_emulated = emulator_pio_out_emulated, 6441 .get_segment = emulator_get_segment, 6442 .set_segment = emulator_set_segment, 6443 .get_cached_segment_base = emulator_get_cached_segment_base, 6444 .get_gdt = emulator_get_gdt, 6445 .get_idt = emulator_get_idt, 6446 .set_gdt = emulator_set_gdt, 6447 .set_idt = emulator_set_idt, 6448 .get_cr = emulator_get_cr, 6449 .set_cr = emulator_set_cr, 6450 .cpl = emulator_get_cpl, 6451 .get_dr = emulator_get_dr, 6452 .set_dr = emulator_set_dr, 6453 .get_smbase = emulator_get_smbase, 6454 .set_smbase = emulator_set_smbase, 6455 .set_msr = emulator_set_msr, 6456 .get_msr = emulator_get_msr, 6457 .check_pmc = emulator_check_pmc, 6458 .read_pmc = emulator_read_pmc, 6459 .halt = emulator_halt, 6460 .wbinvd = emulator_wbinvd, 6461 .fix_hypercall = emulator_fix_hypercall, 6462 .intercept = emulator_intercept, 6463 .get_cpuid = emulator_get_cpuid, 6464 .guest_has_long_mode = emulator_guest_has_long_mode, 6465 .guest_has_movbe = emulator_guest_has_movbe, 6466 .guest_has_fxsr = emulator_guest_has_fxsr, 6467 .set_nmi_mask = emulator_set_nmi_mask, 6468 .get_hflags = emulator_get_hflags, 6469 .set_hflags = emulator_set_hflags, 6470 .pre_leave_smm = emulator_pre_leave_smm, 6471 .post_leave_smm = emulator_post_leave_smm, 6472 .set_xcr = emulator_set_xcr, 6473 }; 6474 6475 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6476 { 6477 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6478 /* 6479 * an sti; sti; sequence only disable interrupts for the first 6480 * instruction. So, if the last instruction, be it emulated or 6481 * not, left the system with the INT_STI flag enabled, it 6482 * means that the last instruction is an sti. We should not 6483 * leave the flag on in this case. The same goes for mov ss 6484 */ 6485 if (int_shadow & mask) 6486 mask = 0; 6487 if (unlikely(int_shadow || mask)) { 6488 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6489 if (!mask) 6490 kvm_make_request(KVM_REQ_EVENT, vcpu); 6491 } 6492 } 6493 6494 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6495 { 6496 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6497 if (ctxt->exception.vector == PF_VECTOR) 6498 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6499 6500 if (ctxt->exception.error_code_valid) 6501 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6502 ctxt->exception.error_code); 6503 else 6504 kvm_queue_exception(vcpu, ctxt->exception.vector); 6505 return false; 6506 } 6507 6508 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6509 { 6510 struct x86_emulate_ctxt *ctxt; 6511 6512 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6513 if (!ctxt) { 6514 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6515 return NULL; 6516 } 6517 6518 ctxt->vcpu = vcpu; 6519 ctxt->ops = &emulate_ops; 6520 vcpu->arch.emulate_ctxt = ctxt; 6521 6522 return ctxt; 6523 } 6524 6525 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6526 { 6527 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6528 int cs_db, cs_l; 6529 6530 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6531 6532 ctxt->gpa_available = false; 6533 ctxt->eflags = kvm_get_rflags(vcpu); 6534 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6535 6536 ctxt->eip = kvm_rip_read(vcpu); 6537 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6538 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6539 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6540 cs_db ? X86EMUL_MODE_PROT32 : 6541 X86EMUL_MODE_PROT16; 6542 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6543 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6544 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6545 6546 init_decode_cache(ctxt); 6547 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6548 } 6549 6550 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6551 { 6552 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6553 int ret; 6554 6555 init_emulate_ctxt(vcpu); 6556 6557 ctxt->op_bytes = 2; 6558 ctxt->ad_bytes = 2; 6559 ctxt->_eip = ctxt->eip + inc_eip; 6560 ret = emulate_int_real(ctxt, irq); 6561 6562 if (ret != X86EMUL_CONTINUE) { 6563 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6564 } else { 6565 ctxt->eip = ctxt->_eip; 6566 kvm_rip_write(vcpu, ctxt->eip); 6567 kvm_set_rflags(vcpu, ctxt->eflags); 6568 } 6569 } 6570 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6571 6572 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6573 { 6574 ++vcpu->stat.insn_emulation_fail; 6575 trace_kvm_emulate_insn_failed(vcpu); 6576 6577 if (emulation_type & EMULTYPE_VMWARE_GP) { 6578 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6579 return 1; 6580 } 6581 6582 if (emulation_type & EMULTYPE_SKIP) { 6583 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6584 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6585 vcpu->run->internal.ndata = 0; 6586 return 0; 6587 } 6588 6589 kvm_queue_exception(vcpu, UD_VECTOR); 6590 6591 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6592 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6593 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6594 vcpu->run->internal.ndata = 0; 6595 return 0; 6596 } 6597 6598 return 1; 6599 } 6600 6601 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6602 bool write_fault_to_shadow_pgtable, 6603 int emulation_type) 6604 { 6605 gpa_t gpa = cr2_or_gpa; 6606 kvm_pfn_t pfn; 6607 6608 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6609 return false; 6610 6611 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6612 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6613 return false; 6614 6615 if (!vcpu->arch.mmu->direct_map) { 6616 /* 6617 * Write permission should be allowed since only 6618 * write access need to be emulated. 6619 */ 6620 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6621 6622 /* 6623 * If the mapping is invalid in guest, let cpu retry 6624 * it to generate fault. 6625 */ 6626 if (gpa == UNMAPPED_GVA) 6627 return true; 6628 } 6629 6630 /* 6631 * Do not retry the unhandleable instruction if it faults on the 6632 * readonly host memory, otherwise it will goto a infinite loop: 6633 * retry instruction -> write #PF -> emulation fail -> retry 6634 * instruction -> ... 6635 */ 6636 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6637 6638 /* 6639 * If the instruction failed on the error pfn, it can not be fixed, 6640 * report the error to userspace. 6641 */ 6642 if (is_error_noslot_pfn(pfn)) 6643 return false; 6644 6645 kvm_release_pfn_clean(pfn); 6646 6647 /* The instructions are well-emulated on direct mmu. */ 6648 if (vcpu->arch.mmu->direct_map) { 6649 unsigned int indirect_shadow_pages; 6650 6651 spin_lock(&vcpu->kvm->mmu_lock); 6652 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6653 spin_unlock(&vcpu->kvm->mmu_lock); 6654 6655 if (indirect_shadow_pages) 6656 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6657 6658 return true; 6659 } 6660 6661 /* 6662 * if emulation was due to access to shadowed page table 6663 * and it failed try to unshadow page and re-enter the 6664 * guest to let CPU execute the instruction. 6665 */ 6666 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6667 6668 /* 6669 * If the access faults on its page table, it can not 6670 * be fixed by unprotecting shadow page and it should 6671 * be reported to userspace. 6672 */ 6673 return !write_fault_to_shadow_pgtable; 6674 } 6675 6676 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6677 gpa_t cr2_or_gpa, int emulation_type) 6678 { 6679 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6680 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6681 6682 last_retry_eip = vcpu->arch.last_retry_eip; 6683 last_retry_addr = vcpu->arch.last_retry_addr; 6684 6685 /* 6686 * If the emulation is caused by #PF and it is non-page_table 6687 * writing instruction, it means the VM-EXIT is caused by shadow 6688 * page protected, we can zap the shadow page and retry this 6689 * instruction directly. 6690 * 6691 * Note: if the guest uses a non-page-table modifying instruction 6692 * on the PDE that points to the instruction, then we will unmap 6693 * the instruction and go to an infinite loop. So, we cache the 6694 * last retried eip and the last fault address, if we meet the eip 6695 * and the address again, we can break out of the potential infinite 6696 * loop. 6697 */ 6698 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6699 6700 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6701 return false; 6702 6703 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6704 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6705 return false; 6706 6707 if (x86_page_table_writing_insn(ctxt)) 6708 return false; 6709 6710 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6711 return false; 6712 6713 vcpu->arch.last_retry_eip = ctxt->eip; 6714 vcpu->arch.last_retry_addr = cr2_or_gpa; 6715 6716 if (!vcpu->arch.mmu->direct_map) 6717 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6718 6719 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6720 6721 return true; 6722 } 6723 6724 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6725 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6726 6727 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6728 { 6729 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6730 /* This is a good place to trace that we are exiting SMM. */ 6731 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6732 6733 /* Process a latched INIT or SMI, if any. */ 6734 kvm_make_request(KVM_REQ_EVENT, vcpu); 6735 } 6736 6737 kvm_mmu_reset_context(vcpu); 6738 } 6739 6740 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6741 unsigned long *db) 6742 { 6743 u32 dr6 = 0; 6744 int i; 6745 u32 enable, rwlen; 6746 6747 enable = dr7; 6748 rwlen = dr7 >> 16; 6749 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6750 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6751 dr6 |= (1 << i); 6752 return dr6; 6753 } 6754 6755 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6756 { 6757 struct kvm_run *kvm_run = vcpu->run; 6758 6759 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6760 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6761 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 6762 kvm_run->debug.arch.exception = DB_VECTOR; 6763 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6764 return 0; 6765 } 6766 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6767 return 1; 6768 } 6769 6770 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6771 { 6772 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6773 int r; 6774 6775 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6776 if (unlikely(!r)) 6777 return 0; 6778 6779 /* 6780 * rflags is the old, "raw" value of the flags. The new value has 6781 * not been saved yet. 6782 * 6783 * This is correct even for TF set by the guest, because "the 6784 * processor will not generate this exception after the instruction 6785 * that sets the TF flag". 6786 */ 6787 if (unlikely(rflags & X86_EFLAGS_TF)) 6788 r = kvm_vcpu_do_singlestep(vcpu); 6789 return r; 6790 } 6791 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6792 6793 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6794 { 6795 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6796 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6797 struct kvm_run *kvm_run = vcpu->run; 6798 unsigned long eip = kvm_get_linear_rip(vcpu); 6799 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6800 vcpu->arch.guest_debug_dr7, 6801 vcpu->arch.eff_db); 6802 6803 if (dr6 != 0) { 6804 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6805 kvm_run->debug.arch.pc = eip; 6806 kvm_run->debug.arch.exception = DB_VECTOR; 6807 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6808 *r = 0; 6809 return true; 6810 } 6811 } 6812 6813 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6814 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6815 unsigned long eip = kvm_get_linear_rip(vcpu); 6816 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6817 vcpu->arch.dr7, 6818 vcpu->arch.db); 6819 6820 if (dr6 != 0) { 6821 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 6822 *r = 1; 6823 return true; 6824 } 6825 } 6826 6827 return false; 6828 } 6829 6830 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6831 { 6832 switch (ctxt->opcode_len) { 6833 case 1: 6834 switch (ctxt->b) { 6835 case 0xe4: /* IN */ 6836 case 0xe5: 6837 case 0xec: 6838 case 0xed: 6839 case 0xe6: /* OUT */ 6840 case 0xe7: 6841 case 0xee: 6842 case 0xef: 6843 case 0x6c: /* INS */ 6844 case 0x6d: 6845 case 0x6e: /* OUTS */ 6846 case 0x6f: 6847 return true; 6848 } 6849 break; 6850 case 2: 6851 switch (ctxt->b) { 6852 case 0x33: /* RDPMC */ 6853 return true; 6854 } 6855 break; 6856 } 6857 6858 return false; 6859 } 6860 6861 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6862 int emulation_type, void *insn, int insn_len) 6863 { 6864 int r; 6865 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6866 bool writeback = true; 6867 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6868 6869 vcpu->arch.l1tf_flush_l1d = true; 6870 6871 /* 6872 * Clear write_fault_to_shadow_pgtable here to ensure it is 6873 * never reused. 6874 */ 6875 vcpu->arch.write_fault_to_shadow_pgtable = false; 6876 kvm_clear_exception_queue(vcpu); 6877 6878 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6879 init_emulate_ctxt(vcpu); 6880 6881 /* 6882 * We will reenter on the same instruction since 6883 * we do not set complete_userspace_io. This does not 6884 * handle watchpoints yet, those would be handled in 6885 * the emulate_ops. 6886 */ 6887 if (!(emulation_type & EMULTYPE_SKIP) && 6888 kvm_vcpu_check_breakpoint(vcpu, &r)) 6889 return r; 6890 6891 ctxt->interruptibility = 0; 6892 ctxt->have_exception = false; 6893 ctxt->exception.vector = -1; 6894 ctxt->perm_ok = false; 6895 6896 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6897 6898 r = x86_decode_insn(ctxt, insn, insn_len); 6899 6900 trace_kvm_emulate_insn_start(vcpu); 6901 ++vcpu->stat.insn_emulation; 6902 if (r != EMULATION_OK) { 6903 if ((emulation_type & EMULTYPE_TRAP_UD) || 6904 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6905 kvm_queue_exception(vcpu, UD_VECTOR); 6906 return 1; 6907 } 6908 if (reexecute_instruction(vcpu, cr2_or_gpa, 6909 write_fault_to_spt, 6910 emulation_type)) 6911 return 1; 6912 if (ctxt->have_exception) { 6913 /* 6914 * #UD should result in just EMULATION_FAILED, and trap-like 6915 * exception should not be encountered during decode. 6916 */ 6917 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6918 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6919 inject_emulated_exception(vcpu); 6920 return 1; 6921 } 6922 return handle_emulation_failure(vcpu, emulation_type); 6923 } 6924 } 6925 6926 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6927 !is_vmware_backdoor_opcode(ctxt)) { 6928 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6929 return 1; 6930 } 6931 6932 /* 6933 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6934 * for kvm_skip_emulated_instruction(). The caller is responsible for 6935 * updating interruptibility state and injecting single-step #DBs. 6936 */ 6937 if (emulation_type & EMULTYPE_SKIP) { 6938 kvm_rip_write(vcpu, ctxt->_eip); 6939 if (ctxt->eflags & X86_EFLAGS_RF) 6940 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6941 return 1; 6942 } 6943 6944 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6945 return 1; 6946 6947 /* this is needed for vmware backdoor interface to work since it 6948 changes registers values during IO operation */ 6949 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6950 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6951 emulator_invalidate_register_cache(ctxt); 6952 } 6953 6954 restart: 6955 if (emulation_type & EMULTYPE_PF) { 6956 /* Save the faulting GPA (cr2) in the address field */ 6957 ctxt->exception.address = cr2_or_gpa; 6958 6959 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 6960 if (vcpu->arch.mmu->direct_map) { 6961 ctxt->gpa_available = true; 6962 ctxt->gpa_val = cr2_or_gpa; 6963 } 6964 } else { 6965 /* Sanitize the address out of an abundance of paranoia. */ 6966 ctxt->exception.address = 0; 6967 } 6968 6969 r = x86_emulate_insn(ctxt); 6970 6971 if (r == EMULATION_INTERCEPTED) 6972 return 1; 6973 6974 if (r == EMULATION_FAILED) { 6975 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6976 emulation_type)) 6977 return 1; 6978 6979 return handle_emulation_failure(vcpu, emulation_type); 6980 } 6981 6982 if (ctxt->have_exception) { 6983 r = 1; 6984 if (inject_emulated_exception(vcpu)) 6985 return r; 6986 } else if (vcpu->arch.pio.count) { 6987 if (!vcpu->arch.pio.in) { 6988 /* FIXME: return into emulator if single-stepping. */ 6989 vcpu->arch.pio.count = 0; 6990 } else { 6991 writeback = false; 6992 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6993 } 6994 r = 0; 6995 } else if (vcpu->mmio_needed) { 6996 ++vcpu->stat.mmio_exits; 6997 6998 if (!vcpu->mmio_is_write) 6999 writeback = false; 7000 r = 0; 7001 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7002 } else if (r == EMULATION_RESTART) 7003 goto restart; 7004 else 7005 r = 1; 7006 7007 if (writeback) { 7008 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7009 toggle_interruptibility(vcpu, ctxt->interruptibility); 7010 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7011 if (!ctxt->have_exception || 7012 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7013 kvm_rip_write(vcpu, ctxt->eip); 7014 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7015 r = kvm_vcpu_do_singlestep(vcpu); 7016 if (kvm_x86_ops.update_emulated_instruction) 7017 kvm_x86_ops.update_emulated_instruction(vcpu); 7018 __kvm_set_rflags(vcpu, ctxt->eflags); 7019 } 7020 7021 /* 7022 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7023 * do nothing, and it will be requested again as soon as 7024 * the shadow expires. But we still need to check here, 7025 * because POPF has no interrupt shadow. 7026 */ 7027 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7028 kvm_make_request(KVM_REQ_EVENT, vcpu); 7029 } else 7030 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7031 7032 return r; 7033 } 7034 7035 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7036 { 7037 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7038 } 7039 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7040 7041 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7042 void *insn, int insn_len) 7043 { 7044 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7045 } 7046 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7047 7048 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7049 { 7050 vcpu->arch.pio.count = 0; 7051 return 1; 7052 } 7053 7054 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7055 { 7056 vcpu->arch.pio.count = 0; 7057 7058 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7059 return 1; 7060 7061 return kvm_skip_emulated_instruction(vcpu); 7062 } 7063 7064 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7065 unsigned short port) 7066 { 7067 unsigned long val = kvm_rax_read(vcpu); 7068 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7069 7070 if (ret) 7071 return ret; 7072 7073 /* 7074 * Workaround userspace that relies on old KVM behavior of %rip being 7075 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7076 */ 7077 if (port == 0x7e && 7078 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7079 vcpu->arch.complete_userspace_io = 7080 complete_fast_pio_out_port_0x7e; 7081 kvm_skip_emulated_instruction(vcpu); 7082 } else { 7083 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7084 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7085 } 7086 return 0; 7087 } 7088 7089 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7090 { 7091 unsigned long val; 7092 7093 /* We should only ever be called with arch.pio.count equal to 1 */ 7094 BUG_ON(vcpu->arch.pio.count != 1); 7095 7096 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7097 vcpu->arch.pio.count = 0; 7098 return 1; 7099 } 7100 7101 /* For size less than 4 we merge, else we zero extend */ 7102 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7103 7104 /* 7105 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7106 * the copy and tracing 7107 */ 7108 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7109 kvm_rax_write(vcpu, val); 7110 7111 return kvm_skip_emulated_instruction(vcpu); 7112 } 7113 7114 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7115 unsigned short port) 7116 { 7117 unsigned long val; 7118 int ret; 7119 7120 /* For size less than 4 we merge, else we zero extend */ 7121 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7122 7123 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7124 if (ret) { 7125 kvm_rax_write(vcpu, val); 7126 return ret; 7127 } 7128 7129 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7130 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7131 7132 return 0; 7133 } 7134 7135 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7136 { 7137 int ret; 7138 7139 if (in) 7140 ret = kvm_fast_pio_in(vcpu, size, port); 7141 else 7142 ret = kvm_fast_pio_out(vcpu, size, port); 7143 return ret && kvm_skip_emulated_instruction(vcpu); 7144 } 7145 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7146 7147 static int kvmclock_cpu_down_prep(unsigned int cpu) 7148 { 7149 __this_cpu_write(cpu_tsc_khz, 0); 7150 return 0; 7151 } 7152 7153 static void tsc_khz_changed(void *data) 7154 { 7155 struct cpufreq_freqs *freq = data; 7156 unsigned long khz = 0; 7157 7158 if (data) 7159 khz = freq->new; 7160 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7161 khz = cpufreq_quick_get(raw_smp_processor_id()); 7162 if (!khz) 7163 khz = tsc_khz; 7164 __this_cpu_write(cpu_tsc_khz, khz); 7165 } 7166 7167 #ifdef CONFIG_X86_64 7168 static void kvm_hyperv_tsc_notifier(void) 7169 { 7170 struct kvm *kvm; 7171 struct kvm_vcpu *vcpu; 7172 int cpu; 7173 7174 mutex_lock(&kvm_lock); 7175 list_for_each_entry(kvm, &vm_list, vm_list) 7176 kvm_make_mclock_inprogress_request(kvm); 7177 7178 hyperv_stop_tsc_emulation(); 7179 7180 /* TSC frequency always matches when on Hyper-V */ 7181 for_each_present_cpu(cpu) 7182 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7183 kvm_max_guest_tsc_khz = tsc_khz; 7184 7185 list_for_each_entry(kvm, &vm_list, vm_list) { 7186 struct kvm_arch *ka = &kvm->arch; 7187 7188 spin_lock(&ka->pvclock_gtod_sync_lock); 7189 7190 pvclock_update_vm_gtod_copy(kvm); 7191 7192 kvm_for_each_vcpu(cpu, vcpu, kvm) 7193 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7194 7195 kvm_for_each_vcpu(cpu, vcpu, kvm) 7196 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7197 7198 spin_unlock(&ka->pvclock_gtod_sync_lock); 7199 } 7200 mutex_unlock(&kvm_lock); 7201 } 7202 #endif 7203 7204 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7205 { 7206 struct kvm *kvm; 7207 struct kvm_vcpu *vcpu; 7208 int i, send_ipi = 0; 7209 7210 /* 7211 * We allow guests to temporarily run on slowing clocks, 7212 * provided we notify them after, or to run on accelerating 7213 * clocks, provided we notify them before. Thus time never 7214 * goes backwards. 7215 * 7216 * However, we have a problem. We can't atomically update 7217 * the frequency of a given CPU from this function; it is 7218 * merely a notifier, which can be called from any CPU. 7219 * Changing the TSC frequency at arbitrary points in time 7220 * requires a recomputation of local variables related to 7221 * the TSC for each VCPU. We must flag these local variables 7222 * to be updated and be sure the update takes place with the 7223 * new frequency before any guests proceed. 7224 * 7225 * Unfortunately, the combination of hotplug CPU and frequency 7226 * change creates an intractable locking scenario; the order 7227 * of when these callouts happen is undefined with respect to 7228 * CPU hotplug, and they can race with each other. As such, 7229 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7230 * undefined; you can actually have a CPU frequency change take 7231 * place in between the computation of X and the setting of the 7232 * variable. To protect against this problem, all updates of 7233 * the per_cpu tsc_khz variable are done in an interrupt 7234 * protected IPI, and all callers wishing to update the value 7235 * must wait for a synchronous IPI to complete (which is trivial 7236 * if the caller is on the CPU already). This establishes the 7237 * necessary total order on variable updates. 7238 * 7239 * Note that because a guest time update may take place 7240 * anytime after the setting of the VCPU's request bit, the 7241 * correct TSC value must be set before the request. However, 7242 * to ensure the update actually makes it to any guest which 7243 * starts running in hardware virtualization between the set 7244 * and the acquisition of the spinlock, we must also ping the 7245 * CPU after setting the request bit. 7246 * 7247 */ 7248 7249 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7250 7251 mutex_lock(&kvm_lock); 7252 list_for_each_entry(kvm, &vm_list, vm_list) { 7253 kvm_for_each_vcpu(i, vcpu, kvm) { 7254 if (vcpu->cpu != cpu) 7255 continue; 7256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7257 if (vcpu->cpu != raw_smp_processor_id()) 7258 send_ipi = 1; 7259 } 7260 } 7261 mutex_unlock(&kvm_lock); 7262 7263 if (freq->old < freq->new && send_ipi) { 7264 /* 7265 * We upscale the frequency. Must make the guest 7266 * doesn't see old kvmclock values while running with 7267 * the new frequency, otherwise we risk the guest sees 7268 * time go backwards. 7269 * 7270 * In case we update the frequency for another cpu 7271 * (which might be in guest context) send an interrupt 7272 * to kick the cpu out of guest context. Next time 7273 * guest context is entered kvmclock will be updated, 7274 * so the guest will not see stale values. 7275 */ 7276 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7277 } 7278 } 7279 7280 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7281 void *data) 7282 { 7283 struct cpufreq_freqs *freq = data; 7284 int cpu; 7285 7286 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7287 return 0; 7288 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7289 return 0; 7290 7291 for_each_cpu(cpu, freq->policy->cpus) 7292 __kvmclock_cpufreq_notifier(freq, cpu); 7293 7294 return 0; 7295 } 7296 7297 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7298 .notifier_call = kvmclock_cpufreq_notifier 7299 }; 7300 7301 static int kvmclock_cpu_online(unsigned int cpu) 7302 { 7303 tsc_khz_changed(NULL); 7304 return 0; 7305 } 7306 7307 static void kvm_timer_init(void) 7308 { 7309 max_tsc_khz = tsc_khz; 7310 7311 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7312 #ifdef CONFIG_CPU_FREQ 7313 struct cpufreq_policy *policy; 7314 int cpu; 7315 7316 cpu = get_cpu(); 7317 policy = cpufreq_cpu_get(cpu); 7318 if (policy) { 7319 if (policy->cpuinfo.max_freq) 7320 max_tsc_khz = policy->cpuinfo.max_freq; 7321 cpufreq_cpu_put(policy); 7322 } 7323 put_cpu(); 7324 #endif 7325 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7326 CPUFREQ_TRANSITION_NOTIFIER); 7327 } 7328 7329 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7330 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7331 } 7332 7333 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7334 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7335 7336 int kvm_is_in_guest(void) 7337 { 7338 return __this_cpu_read(current_vcpu) != NULL; 7339 } 7340 7341 static int kvm_is_user_mode(void) 7342 { 7343 int user_mode = 3; 7344 7345 if (__this_cpu_read(current_vcpu)) 7346 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7347 7348 return user_mode != 0; 7349 } 7350 7351 static unsigned long kvm_get_guest_ip(void) 7352 { 7353 unsigned long ip = 0; 7354 7355 if (__this_cpu_read(current_vcpu)) 7356 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7357 7358 return ip; 7359 } 7360 7361 static void kvm_handle_intel_pt_intr(void) 7362 { 7363 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7364 7365 kvm_make_request(KVM_REQ_PMI, vcpu); 7366 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7367 (unsigned long *)&vcpu->arch.pmu.global_status); 7368 } 7369 7370 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7371 .is_in_guest = kvm_is_in_guest, 7372 .is_user_mode = kvm_is_user_mode, 7373 .get_guest_ip = kvm_get_guest_ip, 7374 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7375 }; 7376 7377 #ifdef CONFIG_X86_64 7378 static void pvclock_gtod_update_fn(struct work_struct *work) 7379 { 7380 struct kvm *kvm; 7381 7382 struct kvm_vcpu *vcpu; 7383 int i; 7384 7385 mutex_lock(&kvm_lock); 7386 list_for_each_entry(kvm, &vm_list, vm_list) 7387 kvm_for_each_vcpu(i, vcpu, kvm) 7388 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7389 atomic_set(&kvm_guest_has_master_clock, 0); 7390 mutex_unlock(&kvm_lock); 7391 } 7392 7393 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7394 7395 /* 7396 * Notification about pvclock gtod data update. 7397 */ 7398 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7399 void *priv) 7400 { 7401 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7402 struct timekeeper *tk = priv; 7403 7404 update_pvclock_gtod(tk); 7405 7406 /* disable master clock if host does not trust, or does not 7407 * use, TSC based clocksource. 7408 */ 7409 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7410 atomic_read(&kvm_guest_has_master_clock) != 0) 7411 queue_work(system_long_wq, &pvclock_gtod_work); 7412 7413 return 0; 7414 } 7415 7416 static struct notifier_block pvclock_gtod_notifier = { 7417 .notifier_call = pvclock_gtod_notify, 7418 }; 7419 #endif 7420 7421 int kvm_arch_init(void *opaque) 7422 { 7423 struct kvm_x86_init_ops *ops = opaque; 7424 int r; 7425 7426 if (kvm_x86_ops.hardware_enable) { 7427 printk(KERN_ERR "kvm: already loaded the other module\n"); 7428 r = -EEXIST; 7429 goto out; 7430 } 7431 7432 if (!ops->cpu_has_kvm_support()) { 7433 pr_err_ratelimited("kvm: no hardware support\n"); 7434 r = -EOPNOTSUPP; 7435 goto out; 7436 } 7437 if (ops->disabled_by_bios()) { 7438 pr_err_ratelimited("kvm: disabled by bios\n"); 7439 r = -EOPNOTSUPP; 7440 goto out; 7441 } 7442 7443 /* 7444 * KVM explicitly assumes that the guest has an FPU and 7445 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7446 * vCPU's FPU state as a fxregs_state struct. 7447 */ 7448 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7449 printk(KERN_ERR "kvm: inadequate fpu\n"); 7450 r = -EOPNOTSUPP; 7451 goto out; 7452 } 7453 7454 r = -ENOMEM; 7455 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7456 __alignof__(struct fpu), SLAB_ACCOUNT, 7457 NULL); 7458 if (!x86_fpu_cache) { 7459 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7460 goto out; 7461 } 7462 7463 x86_emulator_cache = kvm_alloc_emulator_cache(); 7464 if (!x86_emulator_cache) { 7465 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7466 goto out_free_x86_fpu_cache; 7467 } 7468 7469 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7470 if (!shared_msrs) { 7471 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7472 goto out_free_x86_emulator_cache; 7473 } 7474 7475 r = kvm_mmu_module_init(); 7476 if (r) 7477 goto out_free_percpu; 7478 7479 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7480 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7481 PT_PRESENT_MASK, 0, sme_me_mask); 7482 kvm_timer_init(); 7483 7484 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7485 7486 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7487 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7488 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7489 } 7490 7491 kvm_lapic_init(); 7492 if (pi_inject_timer == -1) 7493 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7494 #ifdef CONFIG_X86_64 7495 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7496 7497 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7498 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7499 #endif 7500 7501 return 0; 7502 7503 out_free_percpu: 7504 free_percpu(shared_msrs); 7505 out_free_x86_emulator_cache: 7506 kmem_cache_destroy(x86_emulator_cache); 7507 out_free_x86_fpu_cache: 7508 kmem_cache_destroy(x86_fpu_cache); 7509 out: 7510 return r; 7511 } 7512 7513 void kvm_arch_exit(void) 7514 { 7515 #ifdef CONFIG_X86_64 7516 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7517 clear_hv_tscchange_cb(); 7518 #endif 7519 kvm_lapic_exit(); 7520 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7521 7522 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7523 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7524 CPUFREQ_TRANSITION_NOTIFIER); 7525 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7526 #ifdef CONFIG_X86_64 7527 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7528 #endif 7529 kvm_x86_ops.hardware_enable = NULL; 7530 kvm_mmu_module_exit(); 7531 free_percpu(shared_msrs); 7532 kmem_cache_destroy(x86_fpu_cache); 7533 } 7534 7535 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7536 { 7537 ++vcpu->stat.halt_exits; 7538 if (lapic_in_kernel(vcpu)) { 7539 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7540 return 1; 7541 } else { 7542 vcpu->run->exit_reason = KVM_EXIT_HLT; 7543 return 0; 7544 } 7545 } 7546 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7547 7548 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7549 { 7550 int ret = kvm_skip_emulated_instruction(vcpu); 7551 /* 7552 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7553 * KVM_EXIT_DEBUG here. 7554 */ 7555 return kvm_vcpu_halt(vcpu) && ret; 7556 } 7557 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7558 7559 #ifdef CONFIG_X86_64 7560 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7561 unsigned long clock_type) 7562 { 7563 struct kvm_clock_pairing clock_pairing; 7564 struct timespec64 ts; 7565 u64 cycle; 7566 int ret; 7567 7568 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7569 return -KVM_EOPNOTSUPP; 7570 7571 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7572 return -KVM_EOPNOTSUPP; 7573 7574 clock_pairing.sec = ts.tv_sec; 7575 clock_pairing.nsec = ts.tv_nsec; 7576 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7577 clock_pairing.flags = 0; 7578 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7579 7580 ret = 0; 7581 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7582 sizeof(struct kvm_clock_pairing))) 7583 ret = -KVM_EFAULT; 7584 7585 return ret; 7586 } 7587 #endif 7588 7589 /* 7590 * kvm_pv_kick_cpu_op: Kick a vcpu. 7591 * 7592 * @apicid - apicid of vcpu to be kicked. 7593 */ 7594 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7595 { 7596 struct kvm_lapic_irq lapic_irq; 7597 7598 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7599 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7600 lapic_irq.level = 0; 7601 lapic_irq.dest_id = apicid; 7602 lapic_irq.msi_redir_hint = false; 7603 7604 lapic_irq.delivery_mode = APIC_DM_REMRD; 7605 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7606 } 7607 7608 bool kvm_apicv_activated(struct kvm *kvm) 7609 { 7610 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7611 } 7612 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7613 7614 void kvm_apicv_init(struct kvm *kvm, bool enable) 7615 { 7616 if (enable) 7617 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7618 &kvm->arch.apicv_inhibit_reasons); 7619 else 7620 set_bit(APICV_INHIBIT_REASON_DISABLE, 7621 &kvm->arch.apicv_inhibit_reasons); 7622 } 7623 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7624 7625 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7626 { 7627 struct kvm_vcpu *target = NULL; 7628 struct kvm_apic_map *map; 7629 7630 rcu_read_lock(); 7631 map = rcu_dereference(kvm->arch.apic_map); 7632 7633 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7634 target = map->phys_map[dest_id]->vcpu; 7635 7636 rcu_read_unlock(); 7637 7638 if (target && READ_ONCE(target->ready)) 7639 kvm_vcpu_yield_to(target); 7640 } 7641 7642 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7643 { 7644 unsigned long nr, a0, a1, a2, a3, ret; 7645 int op_64_bit; 7646 7647 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7648 return kvm_hv_hypercall(vcpu); 7649 7650 nr = kvm_rax_read(vcpu); 7651 a0 = kvm_rbx_read(vcpu); 7652 a1 = kvm_rcx_read(vcpu); 7653 a2 = kvm_rdx_read(vcpu); 7654 a3 = kvm_rsi_read(vcpu); 7655 7656 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7657 7658 op_64_bit = is_64_bit_mode(vcpu); 7659 if (!op_64_bit) { 7660 nr &= 0xFFFFFFFF; 7661 a0 &= 0xFFFFFFFF; 7662 a1 &= 0xFFFFFFFF; 7663 a2 &= 0xFFFFFFFF; 7664 a3 &= 0xFFFFFFFF; 7665 } 7666 7667 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7668 ret = -KVM_EPERM; 7669 goto out; 7670 } 7671 7672 switch (nr) { 7673 case KVM_HC_VAPIC_POLL_IRQ: 7674 ret = 0; 7675 break; 7676 case KVM_HC_KICK_CPU: 7677 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7678 kvm_sched_yield(vcpu->kvm, a1); 7679 ret = 0; 7680 break; 7681 #ifdef CONFIG_X86_64 7682 case KVM_HC_CLOCK_PAIRING: 7683 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7684 break; 7685 #endif 7686 case KVM_HC_SEND_IPI: 7687 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7688 break; 7689 case KVM_HC_SCHED_YIELD: 7690 kvm_sched_yield(vcpu->kvm, a0); 7691 ret = 0; 7692 break; 7693 default: 7694 ret = -KVM_ENOSYS; 7695 break; 7696 } 7697 out: 7698 if (!op_64_bit) 7699 ret = (u32)ret; 7700 kvm_rax_write(vcpu, ret); 7701 7702 ++vcpu->stat.hypercalls; 7703 return kvm_skip_emulated_instruction(vcpu); 7704 } 7705 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7706 7707 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7708 { 7709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7710 char instruction[3]; 7711 unsigned long rip = kvm_rip_read(vcpu); 7712 7713 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7714 7715 return emulator_write_emulated(ctxt, rip, instruction, 3, 7716 &ctxt->exception); 7717 } 7718 7719 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7720 { 7721 return vcpu->run->request_interrupt_window && 7722 likely(!pic_in_kernel(vcpu->kvm)); 7723 } 7724 7725 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7726 { 7727 struct kvm_run *kvm_run = vcpu->run; 7728 7729 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7730 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7731 kvm_run->cr8 = kvm_get_cr8(vcpu); 7732 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7733 kvm_run->ready_for_interrupt_injection = 7734 pic_in_kernel(vcpu->kvm) || 7735 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7736 } 7737 7738 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7739 { 7740 int max_irr, tpr; 7741 7742 if (!kvm_x86_ops.update_cr8_intercept) 7743 return; 7744 7745 if (!lapic_in_kernel(vcpu)) 7746 return; 7747 7748 if (vcpu->arch.apicv_active) 7749 return; 7750 7751 if (!vcpu->arch.apic->vapic_addr) 7752 max_irr = kvm_lapic_find_highest_irr(vcpu); 7753 else 7754 max_irr = -1; 7755 7756 if (max_irr != -1) 7757 max_irr >>= 4; 7758 7759 tpr = kvm_lapic_get_cr8(vcpu); 7760 7761 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7762 } 7763 7764 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 7765 { 7766 int r; 7767 bool can_inject = true; 7768 7769 /* try to reinject previous events if any */ 7770 7771 if (vcpu->arch.exception.injected) { 7772 kvm_x86_ops.queue_exception(vcpu); 7773 can_inject = false; 7774 } 7775 /* 7776 * Do not inject an NMI or interrupt if there is a pending 7777 * exception. Exceptions and interrupts are recognized at 7778 * instruction boundaries, i.e. the start of an instruction. 7779 * Trap-like exceptions, e.g. #DB, have higher priority than 7780 * NMIs and interrupts, i.e. traps are recognized before an 7781 * NMI/interrupt that's pending on the same instruction. 7782 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7783 * priority, but are only generated (pended) during instruction 7784 * execution, i.e. a pending fault-like exception means the 7785 * fault occurred on the *previous* instruction and must be 7786 * serviced prior to recognizing any new events in order to 7787 * fully complete the previous instruction. 7788 */ 7789 else if (!vcpu->arch.exception.pending) { 7790 if (vcpu->arch.nmi_injected) { 7791 kvm_x86_ops.set_nmi(vcpu); 7792 can_inject = false; 7793 } else if (vcpu->arch.interrupt.injected) { 7794 kvm_x86_ops.set_irq(vcpu); 7795 can_inject = false; 7796 } 7797 } 7798 7799 WARN_ON_ONCE(vcpu->arch.exception.injected && 7800 vcpu->arch.exception.pending); 7801 7802 /* 7803 * Call check_nested_events() even if we reinjected a previous event 7804 * in order for caller to determine if it should require immediate-exit 7805 * from L2 to L1 due to pending L1 events which require exit 7806 * from L2 to L1. 7807 */ 7808 if (is_guest_mode(vcpu)) { 7809 r = kvm_x86_ops.nested_ops->check_events(vcpu); 7810 if (r < 0) 7811 goto busy; 7812 } 7813 7814 /* try to inject new event if pending */ 7815 if (vcpu->arch.exception.pending) { 7816 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7817 vcpu->arch.exception.has_error_code, 7818 vcpu->arch.exception.error_code); 7819 7820 vcpu->arch.exception.pending = false; 7821 vcpu->arch.exception.injected = true; 7822 7823 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7824 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7825 X86_EFLAGS_RF); 7826 7827 if (vcpu->arch.exception.nr == DB_VECTOR) { 7828 kvm_deliver_exception_payload(vcpu); 7829 if (vcpu->arch.dr7 & DR7_GD) { 7830 vcpu->arch.dr7 &= ~DR7_GD; 7831 kvm_update_dr7(vcpu); 7832 } 7833 } 7834 7835 kvm_x86_ops.queue_exception(vcpu); 7836 can_inject = false; 7837 } 7838 7839 /* 7840 * Finally, inject interrupt events. If an event cannot be injected 7841 * due to architectural conditions (e.g. IF=0) a window-open exit 7842 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 7843 * and can architecturally be injected, but we cannot do it right now: 7844 * an interrupt could have arrived just now and we have to inject it 7845 * as a vmexit, or there could already an event in the queue, which is 7846 * indicated by can_inject. In that case we request an immediate exit 7847 * in order to make progress and get back here for another iteration. 7848 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 7849 */ 7850 if (vcpu->arch.smi_pending) { 7851 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 7852 if (r < 0) 7853 goto busy; 7854 if (r) { 7855 vcpu->arch.smi_pending = false; 7856 ++vcpu->arch.smi_count; 7857 enter_smm(vcpu); 7858 can_inject = false; 7859 } else 7860 kvm_x86_ops.enable_smi_window(vcpu); 7861 } 7862 7863 if (vcpu->arch.nmi_pending) { 7864 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 7865 if (r < 0) 7866 goto busy; 7867 if (r) { 7868 --vcpu->arch.nmi_pending; 7869 vcpu->arch.nmi_injected = true; 7870 kvm_x86_ops.set_nmi(vcpu); 7871 can_inject = false; 7872 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 7873 } 7874 if (vcpu->arch.nmi_pending) 7875 kvm_x86_ops.enable_nmi_window(vcpu); 7876 } 7877 7878 if (kvm_cpu_has_injectable_intr(vcpu)) { 7879 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 7880 if (r < 0) 7881 goto busy; 7882 if (r) { 7883 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 7884 kvm_x86_ops.set_irq(vcpu); 7885 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 7886 } 7887 if (kvm_cpu_has_injectable_intr(vcpu)) 7888 kvm_x86_ops.enable_irq_window(vcpu); 7889 } 7890 7891 if (is_guest_mode(vcpu) && 7892 kvm_x86_ops.nested_ops->hv_timer_pending && 7893 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 7894 *req_immediate_exit = true; 7895 7896 WARN_ON(vcpu->arch.exception.pending); 7897 return; 7898 7899 busy: 7900 *req_immediate_exit = true; 7901 return; 7902 } 7903 7904 static void process_nmi(struct kvm_vcpu *vcpu) 7905 { 7906 unsigned limit = 2; 7907 7908 /* 7909 * x86 is limited to one NMI running, and one NMI pending after it. 7910 * If an NMI is already in progress, limit further NMIs to just one. 7911 * Otherwise, allow two (and we'll inject the first one immediately). 7912 */ 7913 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7914 limit = 1; 7915 7916 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7917 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7918 kvm_make_request(KVM_REQ_EVENT, vcpu); 7919 } 7920 7921 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7922 { 7923 u32 flags = 0; 7924 flags |= seg->g << 23; 7925 flags |= seg->db << 22; 7926 flags |= seg->l << 21; 7927 flags |= seg->avl << 20; 7928 flags |= seg->present << 15; 7929 flags |= seg->dpl << 13; 7930 flags |= seg->s << 12; 7931 flags |= seg->type << 8; 7932 return flags; 7933 } 7934 7935 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7936 { 7937 struct kvm_segment seg; 7938 int offset; 7939 7940 kvm_get_segment(vcpu, &seg, n); 7941 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7942 7943 if (n < 3) 7944 offset = 0x7f84 + n * 12; 7945 else 7946 offset = 0x7f2c + (n - 3) * 12; 7947 7948 put_smstate(u32, buf, offset + 8, seg.base); 7949 put_smstate(u32, buf, offset + 4, seg.limit); 7950 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7951 } 7952 7953 #ifdef CONFIG_X86_64 7954 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7955 { 7956 struct kvm_segment seg; 7957 int offset; 7958 u16 flags; 7959 7960 kvm_get_segment(vcpu, &seg, n); 7961 offset = 0x7e00 + n * 16; 7962 7963 flags = enter_smm_get_segment_flags(&seg) >> 8; 7964 put_smstate(u16, buf, offset, seg.selector); 7965 put_smstate(u16, buf, offset + 2, flags); 7966 put_smstate(u32, buf, offset + 4, seg.limit); 7967 put_smstate(u64, buf, offset + 8, seg.base); 7968 } 7969 #endif 7970 7971 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7972 { 7973 struct desc_ptr dt; 7974 struct kvm_segment seg; 7975 unsigned long val; 7976 int i; 7977 7978 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7979 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7980 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7981 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7982 7983 for (i = 0; i < 8; i++) 7984 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7985 7986 kvm_get_dr(vcpu, 6, &val); 7987 put_smstate(u32, buf, 0x7fcc, (u32)val); 7988 kvm_get_dr(vcpu, 7, &val); 7989 put_smstate(u32, buf, 0x7fc8, (u32)val); 7990 7991 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7992 put_smstate(u32, buf, 0x7fc4, seg.selector); 7993 put_smstate(u32, buf, 0x7f64, seg.base); 7994 put_smstate(u32, buf, 0x7f60, seg.limit); 7995 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7996 7997 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7998 put_smstate(u32, buf, 0x7fc0, seg.selector); 7999 put_smstate(u32, buf, 0x7f80, seg.base); 8000 put_smstate(u32, buf, 0x7f7c, seg.limit); 8001 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8002 8003 kvm_x86_ops.get_gdt(vcpu, &dt); 8004 put_smstate(u32, buf, 0x7f74, dt.address); 8005 put_smstate(u32, buf, 0x7f70, dt.size); 8006 8007 kvm_x86_ops.get_idt(vcpu, &dt); 8008 put_smstate(u32, buf, 0x7f58, dt.address); 8009 put_smstate(u32, buf, 0x7f54, dt.size); 8010 8011 for (i = 0; i < 6; i++) 8012 enter_smm_save_seg_32(vcpu, buf, i); 8013 8014 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8015 8016 /* revision id */ 8017 put_smstate(u32, buf, 0x7efc, 0x00020000); 8018 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8019 } 8020 8021 #ifdef CONFIG_X86_64 8022 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8023 { 8024 struct desc_ptr dt; 8025 struct kvm_segment seg; 8026 unsigned long val; 8027 int i; 8028 8029 for (i = 0; i < 16; i++) 8030 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8031 8032 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8033 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8034 8035 kvm_get_dr(vcpu, 6, &val); 8036 put_smstate(u64, buf, 0x7f68, val); 8037 kvm_get_dr(vcpu, 7, &val); 8038 put_smstate(u64, buf, 0x7f60, val); 8039 8040 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8041 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8042 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8043 8044 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8045 8046 /* revision id */ 8047 put_smstate(u32, buf, 0x7efc, 0x00020064); 8048 8049 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8050 8051 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8052 put_smstate(u16, buf, 0x7e90, seg.selector); 8053 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8054 put_smstate(u32, buf, 0x7e94, seg.limit); 8055 put_smstate(u64, buf, 0x7e98, seg.base); 8056 8057 kvm_x86_ops.get_idt(vcpu, &dt); 8058 put_smstate(u32, buf, 0x7e84, dt.size); 8059 put_smstate(u64, buf, 0x7e88, dt.address); 8060 8061 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8062 put_smstate(u16, buf, 0x7e70, seg.selector); 8063 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8064 put_smstate(u32, buf, 0x7e74, seg.limit); 8065 put_smstate(u64, buf, 0x7e78, seg.base); 8066 8067 kvm_x86_ops.get_gdt(vcpu, &dt); 8068 put_smstate(u32, buf, 0x7e64, dt.size); 8069 put_smstate(u64, buf, 0x7e68, dt.address); 8070 8071 for (i = 0; i < 6; i++) 8072 enter_smm_save_seg_64(vcpu, buf, i); 8073 } 8074 #endif 8075 8076 static void enter_smm(struct kvm_vcpu *vcpu) 8077 { 8078 struct kvm_segment cs, ds; 8079 struct desc_ptr dt; 8080 char buf[512]; 8081 u32 cr0; 8082 8083 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8084 memset(buf, 0, 512); 8085 #ifdef CONFIG_X86_64 8086 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8087 enter_smm_save_state_64(vcpu, buf); 8088 else 8089 #endif 8090 enter_smm_save_state_32(vcpu, buf); 8091 8092 /* 8093 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8094 * vCPU state (e.g. leave guest mode) after we've saved the state into 8095 * the SMM state-save area. 8096 */ 8097 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8098 8099 vcpu->arch.hflags |= HF_SMM_MASK; 8100 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8101 8102 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8103 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8104 else 8105 kvm_x86_ops.set_nmi_mask(vcpu, true); 8106 8107 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8108 kvm_rip_write(vcpu, 0x8000); 8109 8110 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8111 kvm_x86_ops.set_cr0(vcpu, cr0); 8112 vcpu->arch.cr0 = cr0; 8113 8114 kvm_x86_ops.set_cr4(vcpu, 0); 8115 8116 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8117 dt.address = dt.size = 0; 8118 kvm_x86_ops.set_idt(vcpu, &dt); 8119 8120 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8121 8122 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8123 cs.base = vcpu->arch.smbase; 8124 8125 ds.selector = 0; 8126 ds.base = 0; 8127 8128 cs.limit = ds.limit = 0xffffffff; 8129 cs.type = ds.type = 0x3; 8130 cs.dpl = ds.dpl = 0; 8131 cs.db = ds.db = 0; 8132 cs.s = ds.s = 1; 8133 cs.l = ds.l = 0; 8134 cs.g = ds.g = 1; 8135 cs.avl = ds.avl = 0; 8136 cs.present = ds.present = 1; 8137 cs.unusable = ds.unusable = 0; 8138 cs.padding = ds.padding = 0; 8139 8140 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8141 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8142 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8143 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8144 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8145 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8146 8147 #ifdef CONFIG_X86_64 8148 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8149 kvm_x86_ops.set_efer(vcpu, 0); 8150 #endif 8151 8152 kvm_update_cpuid(vcpu); 8153 kvm_mmu_reset_context(vcpu); 8154 } 8155 8156 static void process_smi(struct kvm_vcpu *vcpu) 8157 { 8158 vcpu->arch.smi_pending = true; 8159 kvm_make_request(KVM_REQ_EVENT, vcpu); 8160 } 8161 8162 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8163 unsigned long *vcpu_bitmap) 8164 { 8165 cpumask_var_t cpus; 8166 8167 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8168 8169 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8170 NULL, vcpu_bitmap, cpus); 8171 8172 free_cpumask_var(cpus); 8173 } 8174 8175 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8176 { 8177 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8178 } 8179 8180 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8181 { 8182 if (!lapic_in_kernel(vcpu)) 8183 return; 8184 8185 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8186 kvm_apic_update_apicv(vcpu); 8187 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8188 } 8189 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8190 8191 /* 8192 * NOTE: Do not hold any lock prior to calling this. 8193 * 8194 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8195 * locked, because it calls __x86_set_memory_region() which does 8196 * synchronize_srcu(&kvm->srcu). 8197 */ 8198 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8199 { 8200 struct kvm_vcpu *except; 8201 unsigned long old, new, expected; 8202 8203 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8204 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8205 return; 8206 8207 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8208 do { 8209 expected = new = old; 8210 if (activate) 8211 __clear_bit(bit, &new); 8212 else 8213 __set_bit(bit, &new); 8214 if (new == old) 8215 break; 8216 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8217 } while (old != expected); 8218 8219 if (!!old == !!new) 8220 return; 8221 8222 trace_kvm_apicv_update_request(activate, bit); 8223 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8224 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8225 8226 /* 8227 * Sending request to update APICV for all other vcpus, 8228 * while update the calling vcpu immediately instead of 8229 * waiting for another #VMEXIT to handle the request. 8230 */ 8231 except = kvm_get_running_vcpu(); 8232 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8233 except); 8234 if (except) 8235 kvm_vcpu_update_apicv(except); 8236 } 8237 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8238 8239 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8240 { 8241 if (!kvm_apic_present(vcpu)) 8242 return; 8243 8244 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8245 8246 if (irqchip_split(vcpu->kvm)) 8247 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8248 else { 8249 if (vcpu->arch.apicv_active) 8250 kvm_x86_ops.sync_pir_to_irr(vcpu); 8251 if (ioapic_in_kernel(vcpu->kvm)) 8252 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8253 } 8254 8255 if (is_guest_mode(vcpu)) 8256 vcpu->arch.load_eoi_exitmap_pending = true; 8257 else 8258 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8259 } 8260 8261 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8262 { 8263 u64 eoi_exit_bitmap[4]; 8264 8265 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8266 return; 8267 8268 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8269 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8270 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8271 } 8272 8273 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8274 unsigned long start, unsigned long end) 8275 { 8276 unsigned long apic_address; 8277 8278 /* 8279 * The physical address of apic access page is stored in the VMCS. 8280 * Update it when it becomes invalid. 8281 */ 8282 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8283 if (start <= apic_address && apic_address < end) 8284 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8285 } 8286 8287 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8288 { 8289 if (!lapic_in_kernel(vcpu)) 8290 return; 8291 8292 if (!kvm_x86_ops.set_apic_access_page_addr) 8293 return; 8294 8295 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8296 } 8297 8298 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8299 { 8300 smp_send_reschedule(vcpu->cpu); 8301 } 8302 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8303 8304 /* 8305 * Returns 1 to let vcpu_run() continue the guest execution loop without 8306 * exiting to the userspace. Otherwise, the value will be returned to the 8307 * userspace. 8308 */ 8309 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8310 { 8311 int r; 8312 bool req_int_win = 8313 dm_request_for_irq_injection(vcpu) && 8314 kvm_cpu_accept_dm_intr(vcpu); 8315 fastpath_t exit_fastpath; 8316 8317 bool req_immediate_exit = false; 8318 8319 if (kvm_request_pending(vcpu)) { 8320 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8321 if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) { 8322 r = 0; 8323 goto out; 8324 } 8325 } 8326 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8327 kvm_mmu_unload(vcpu); 8328 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8329 __kvm_migrate_timers(vcpu); 8330 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8331 kvm_gen_update_masterclock(vcpu->kvm); 8332 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8333 kvm_gen_kvmclock_update(vcpu); 8334 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8335 r = kvm_guest_time_update(vcpu); 8336 if (unlikely(r)) 8337 goto out; 8338 } 8339 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8340 kvm_mmu_sync_roots(vcpu); 8341 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8342 kvm_mmu_load_pgd(vcpu); 8343 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8344 kvm_vcpu_flush_tlb_all(vcpu); 8345 8346 /* Flushing all ASIDs flushes the current ASID... */ 8347 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8348 } 8349 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8350 kvm_vcpu_flush_tlb_current(vcpu); 8351 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8352 kvm_vcpu_flush_tlb_guest(vcpu); 8353 8354 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8355 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8356 r = 0; 8357 goto out; 8358 } 8359 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8360 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8361 vcpu->mmio_needed = 0; 8362 r = 0; 8363 goto out; 8364 } 8365 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8366 /* Page is swapped out. Do synthetic halt */ 8367 vcpu->arch.apf.halted = true; 8368 r = 1; 8369 goto out; 8370 } 8371 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8372 record_steal_time(vcpu); 8373 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8374 process_smi(vcpu); 8375 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8376 process_nmi(vcpu); 8377 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8378 kvm_pmu_handle_event(vcpu); 8379 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8380 kvm_pmu_deliver_pmi(vcpu); 8381 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8382 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8383 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8384 vcpu->arch.ioapic_handled_vectors)) { 8385 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8386 vcpu->run->eoi.vector = 8387 vcpu->arch.pending_ioapic_eoi; 8388 r = 0; 8389 goto out; 8390 } 8391 } 8392 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8393 vcpu_scan_ioapic(vcpu); 8394 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8395 vcpu_load_eoi_exitmap(vcpu); 8396 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8397 kvm_vcpu_reload_apic_access_page(vcpu); 8398 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8399 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8400 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8401 r = 0; 8402 goto out; 8403 } 8404 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8405 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8406 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8407 r = 0; 8408 goto out; 8409 } 8410 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8411 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8412 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8413 r = 0; 8414 goto out; 8415 } 8416 8417 /* 8418 * KVM_REQ_HV_STIMER has to be processed after 8419 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8420 * depend on the guest clock being up-to-date 8421 */ 8422 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8423 kvm_hv_process_stimers(vcpu); 8424 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8425 kvm_vcpu_update_apicv(vcpu); 8426 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8427 kvm_check_async_pf_completion(vcpu); 8428 } 8429 8430 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8431 ++vcpu->stat.req_event; 8432 kvm_apic_accept_events(vcpu); 8433 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8434 r = 1; 8435 goto out; 8436 } 8437 8438 inject_pending_event(vcpu, &req_immediate_exit); 8439 if (req_int_win) 8440 kvm_x86_ops.enable_irq_window(vcpu); 8441 8442 if (kvm_lapic_enabled(vcpu)) { 8443 update_cr8_intercept(vcpu); 8444 kvm_lapic_sync_to_vapic(vcpu); 8445 } 8446 } 8447 8448 r = kvm_mmu_reload(vcpu); 8449 if (unlikely(r)) { 8450 goto cancel_injection; 8451 } 8452 8453 preempt_disable(); 8454 8455 kvm_x86_ops.prepare_guest_switch(vcpu); 8456 8457 /* 8458 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8459 * IPI are then delayed after guest entry, which ensures that they 8460 * result in virtual interrupt delivery. 8461 */ 8462 local_irq_disable(); 8463 vcpu->mode = IN_GUEST_MODE; 8464 8465 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8466 8467 /* 8468 * 1) We should set ->mode before checking ->requests. Please see 8469 * the comment in kvm_vcpu_exiting_guest_mode(). 8470 * 8471 * 2) For APICv, we should set ->mode before checking PID.ON. This 8472 * pairs with the memory barrier implicit in pi_test_and_set_on 8473 * (see vmx_deliver_posted_interrupt). 8474 * 8475 * 3) This also orders the write to mode from any reads to the page 8476 * tables done while the VCPU is running. Please see the comment 8477 * in kvm_flush_remote_tlbs. 8478 */ 8479 smp_mb__after_srcu_read_unlock(); 8480 8481 /* 8482 * This handles the case where a posted interrupt was 8483 * notified with kvm_vcpu_kick. 8484 */ 8485 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8486 kvm_x86_ops.sync_pir_to_irr(vcpu); 8487 8488 if (kvm_vcpu_exit_request(vcpu)) { 8489 vcpu->mode = OUTSIDE_GUEST_MODE; 8490 smp_wmb(); 8491 local_irq_enable(); 8492 preempt_enable(); 8493 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8494 r = 1; 8495 goto cancel_injection; 8496 } 8497 8498 if (req_immediate_exit) { 8499 kvm_make_request(KVM_REQ_EVENT, vcpu); 8500 kvm_x86_ops.request_immediate_exit(vcpu); 8501 } 8502 8503 trace_kvm_entry(vcpu->vcpu_id); 8504 guest_enter_irqoff(); 8505 8506 fpregs_assert_state_consistent(); 8507 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8508 switch_fpu_return(); 8509 8510 if (unlikely(vcpu->arch.switch_db_regs)) { 8511 set_debugreg(0, 7); 8512 set_debugreg(vcpu->arch.eff_db[0], 0); 8513 set_debugreg(vcpu->arch.eff_db[1], 1); 8514 set_debugreg(vcpu->arch.eff_db[2], 2); 8515 set_debugreg(vcpu->arch.eff_db[3], 3); 8516 set_debugreg(vcpu->arch.dr6, 6); 8517 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8518 } 8519 8520 exit_fastpath = kvm_x86_ops.run(vcpu); 8521 8522 /* 8523 * Do this here before restoring debug registers on the host. And 8524 * since we do this before handling the vmexit, a DR access vmexit 8525 * can (a) read the correct value of the debug registers, (b) set 8526 * KVM_DEBUGREG_WONT_EXIT again. 8527 */ 8528 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8529 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8530 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8531 kvm_update_dr0123(vcpu); 8532 kvm_update_dr7(vcpu); 8533 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8534 } 8535 8536 /* 8537 * If the guest has used debug registers, at least dr7 8538 * will be disabled while returning to the host. 8539 * If we don't have active breakpoints in the host, we don't 8540 * care about the messed up debug address registers. But if 8541 * we have some of them active, restore the old state. 8542 */ 8543 if (hw_breakpoint_active()) 8544 hw_breakpoint_restore(); 8545 8546 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8547 8548 vcpu->mode = OUTSIDE_GUEST_MODE; 8549 smp_wmb(); 8550 8551 kvm_x86_ops.handle_exit_irqoff(vcpu); 8552 8553 /* 8554 * Consume any pending interrupts, including the possible source of 8555 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8556 * An instruction is required after local_irq_enable() to fully unblock 8557 * interrupts on processors that implement an interrupt shadow, the 8558 * stat.exits increment will do nicely. 8559 */ 8560 kvm_before_interrupt(vcpu); 8561 local_irq_enable(); 8562 ++vcpu->stat.exits; 8563 local_irq_disable(); 8564 kvm_after_interrupt(vcpu); 8565 8566 guest_exit_irqoff(); 8567 if (lapic_in_kernel(vcpu)) { 8568 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8569 if (delta != S64_MIN) { 8570 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8571 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8572 } 8573 } 8574 8575 local_irq_enable(); 8576 preempt_enable(); 8577 8578 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8579 8580 /* 8581 * Profile KVM exit RIPs: 8582 */ 8583 if (unlikely(prof_on == KVM_PROFILING)) { 8584 unsigned long rip = kvm_rip_read(vcpu); 8585 profile_hit(KVM_PROFILING, (void *)rip); 8586 } 8587 8588 if (unlikely(vcpu->arch.tsc_always_catchup)) 8589 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8590 8591 if (vcpu->arch.apic_attention) 8592 kvm_lapic_sync_from_vapic(vcpu); 8593 8594 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8595 return r; 8596 8597 cancel_injection: 8598 if (req_immediate_exit) 8599 kvm_make_request(KVM_REQ_EVENT, vcpu); 8600 kvm_x86_ops.cancel_injection(vcpu); 8601 if (unlikely(vcpu->arch.apic_attention)) 8602 kvm_lapic_sync_from_vapic(vcpu); 8603 out: 8604 return r; 8605 } 8606 8607 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8608 { 8609 if (!kvm_arch_vcpu_runnable(vcpu) && 8610 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8611 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8612 kvm_vcpu_block(vcpu); 8613 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8614 8615 if (kvm_x86_ops.post_block) 8616 kvm_x86_ops.post_block(vcpu); 8617 8618 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8619 return 1; 8620 } 8621 8622 kvm_apic_accept_events(vcpu); 8623 switch(vcpu->arch.mp_state) { 8624 case KVM_MP_STATE_HALTED: 8625 vcpu->arch.pv.pv_unhalted = false; 8626 vcpu->arch.mp_state = 8627 KVM_MP_STATE_RUNNABLE; 8628 /* fall through */ 8629 case KVM_MP_STATE_RUNNABLE: 8630 vcpu->arch.apf.halted = false; 8631 break; 8632 case KVM_MP_STATE_INIT_RECEIVED: 8633 break; 8634 default: 8635 return -EINTR; 8636 } 8637 return 1; 8638 } 8639 8640 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8641 { 8642 if (is_guest_mode(vcpu)) 8643 kvm_x86_ops.nested_ops->check_events(vcpu); 8644 8645 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8646 !vcpu->arch.apf.halted); 8647 } 8648 8649 static int vcpu_run(struct kvm_vcpu *vcpu) 8650 { 8651 int r; 8652 struct kvm *kvm = vcpu->kvm; 8653 8654 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8655 vcpu->arch.l1tf_flush_l1d = true; 8656 8657 for (;;) { 8658 if (kvm_vcpu_running(vcpu)) { 8659 r = vcpu_enter_guest(vcpu); 8660 } else { 8661 r = vcpu_block(kvm, vcpu); 8662 } 8663 8664 if (r <= 0) 8665 break; 8666 8667 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8668 if (kvm_cpu_has_pending_timer(vcpu)) 8669 kvm_inject_pending_timer_irqs(vcpu); 8670 8671 if (dm_request_for_irq_injection(vcpu) && 8672 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8673 r = 0; 8674 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8675 ++vcpu->stat.request_irq_exits; 8676 break; 8677 } 8678 8679 if (signal_pending(current)) { 8680 r = -EINTR; 8681 vcpu->run->exit_reason = KVM_EXIT_INTR; 8682 ++vcpu->stat.signal_exits; 8683 break; 8684 } 8685 if (need_resched()) { 8686 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8687 cond_resched(); 8688 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8689 } 8690 } 8691 8692 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8693 8694 return r; 8695 } 8696 8697 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8698 { 8699 int r; 8700 8701 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8702 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8703 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8704 return r; 8705 } 8706 8707 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8708 { 8709 BUG_ON(!vcpu->arch.pio.count); 8710 8711 return complete_emulated_io(vcpu); 8712 } 8713 8714 /* 8715 * Implements the following, as a state machine: 8716 * 8717 * read: 8718 * for each fragment 8719 * for each mmio piece in the fragment 8720 * write gpa, len 8721 * exit 8722 * copy data 8723 * execute insn 8724 * 8725 * write: 8726 * for each fragment 8727 * for each mmio piece in the fragment 8728 * write gpa, len 8729 * copy data 8730 * exit 8731 */ 8732 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8733 { 8734 struct kvm_run *run = vcpu->run; 8735 struct kvm_mmio_fragment *frag; 8736 unsigned len; 8737 8738 BUG_ON(!vcpu->mmio_needed); 8739 8740 /* Complete previous fragment */ 8741 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8742 len = min(8u, frag->len); 8743 if (!vcpu->mmio_is_write) 8744 memcpy(frag->data, run->mmio.data, len); 8745 8746 if (frag->len <= 8) { 8747 /* Switch to the next fragment. */ 8748 frag++; 8749 vcpu->mmio_cur_fragment++; 8750 } else { 8751 /* Go forward to the next mmio piece. */ 8752 frag->data += len; 8753 frag->gpa += len; 8754 frag->len -= len; 8755 } 8756 8757 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8758 vcpu->mmio_needed = 0; 8759 8760 /* FIXME: return into emulator if single-stepping. */ 8761 if (vcpu->mmio_is_write) 8762 return 1; 8763 vcpu->mmio_read_completed = 1; 8764 return complete_emulated_io(vcpu); 8765 } 8766 8767 run->exit_reason = KVM_EXIT_MMIO; 8768 run->mmio.phys_addr = frag->gpa; 8769 if (vcpu->mmio_is_write) 8770 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8771 run->mmio.len = min(8u, frag->len); 8772 run->mmio.is_write = vcpu->mmio_is_write; 8773 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8774 return 0; 8775 } 8776 8777 static void kvm_save_current_fpu(struct fpu *fpu) 8778 { 8779 /* 8780 * If the target FPU state is not resident in the CPU registers, just 8781 * memcpy() from current, else save CPU state directly to the target. 8782 */ 8783 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8784 memcpy(&fpu->state, ¤t->thread.fpu.state, 8785 fpu_kernel_xstate_size); 8786 else 8787 copy_fpregs_to_fpstate(fpu); 8788 } 8789 8790 /* Swap (qemu) user FPU context for the guest FPU context. */ 8791 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8792 { 8793 fpregs_lock(); 8794 8795 kvm_save_current_fpu(vcpu->arch.user_fpu); 8796 8797 /* PKRU is separately restored in kvm_x86_ops.run. */ 8798 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8799 ~XFEATURE_MASK_PKRU); 8800 8801 fpregs_mark_activate(); 8802 fpregs_unlock(); 8803 8804 trace_kvm_fpu(1); 8805 } 8806 8807 /* When vcpu_run ends, restore user space FPU context. */ 8808 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8809 { 8810 fpregs_lock(); 8811 8812 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8813 8814 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8815 8816 fpregs_mark_activate(); 8817 fpregs_unlock(); 8818 8819 ++vcpu->stat.fpu_reload; 8820 trace_kvm_fpu(0); 8821 } 8822 8823 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 8824 { 8825 struct kvm_run *kvm_run = vcpu->run; 8826 int r; 8827 8828 vcpu_load(vcpu); 8829 kvm_sigset_activate(vcpu); 8830 kvm_load_guest_fpu(vcpu); 8831 8832 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8833 if (kvm_run->immediate_exit) { 8834 r = -EINTR; 8835 goto out; 8836 } 8837 kvm_vcpu_block(vcpu); 8838 kvm_apic_accept_events(vcpu); 8839 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8840 r = -EAGAIN; 8841 if (signal_pending(current)) { 8842 r = -EINTR; 8843 kvm_run->exit_reason = KVM_EXIT_INTR; 8844 ++vcpu->stat.signal_exits; 8845 } 8846 goto out; 8847 } 8848 8849 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8850 r = -EINVAL; 8851 goto out; 8852 } 8853 8854 if (kvm_run->kvm_dirty_regs) { 8855 r = sync_regs(vcpu); 8856 if (r != 0) 8857 goto out; 8858 } 8859 8860 /* re-sync apic's tpr */ 8861 if (!lapic_in_kernel(vcpu)) { 8862 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8863 r = -EINVAL; 8864 goto out; 8865 } 8866 } 8867 8868 if (unlikely(vcpu->arch.complete_userspace_io)) { 8869 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8870 vcpu->arch.complete_userspace_io = NULL; 8871 r = cui(vcpu); 8872 if (r <= 0) 8873 goto out; 8874 } else 8875 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8876 8877 if (kvm_run->immediate_exit) 8878 r = -EINTR; 8879 else 8880 r = vcpu_run(vcpu); 8881 8882 out: 8883 kvm_put_guest_fpu(vcpu); 8884 if (kvm_run->kvm_valid_regs) 8885 store_regs(vcpu); 8886 post_kvm_run_save(vcpu); 8887 kvm_sigset_deactivate(vcpu); 8888 8889 vcpu_put(vcpu); 8890 return r; 8891 } 8892 8893 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8894 { 8895 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8896 /* 8897 * We are here if userspace calls get_regs() in the middle of 8898 * instruction emulation. Registers state needs to be copied 8899 * back from emulation context to vcpu. Userspace shouldn't do 8900 * that usually, but some bad designed PV devices (vmware 8901 * backdoor interface) need this to work 8902 */ 8903 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8904 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8905 } 8906 regs->rax = kvm_rax_read(vcpu); 8907 regs->rbx = kvm_rbx_read(vcpu); 8908 regs->rcx = kvm_rcx_read(vcpu); 8909 regs->rdx = kvm_rdx_read(vcpu); 8910 regs->rsi = kvm_rsi_read(vcpu); 8911 regs->rdi = kvm_rdi_read(vcpu); 8912 regs->rsp = kvm_rsp_read(vcpu); 8913 regs->rbp = kvm_rbp_read(vcpu); 8914 #ifdef CONFIG_X86_64 8915 regs->r8 = kvm_r8_read(vcpu); 8916 regs->r9 = kvm_r9_read(vcpu); 8917 regs->r10 = kvm_r10_read(vcpu); 8918 regs->r11 = kvm_r11_read(vcpu); 8919 regs->r12 = kvm_r12_read(vcpu); 8920 regs->r13 = kvm_r13_read(vcpu); 8921 regs->r14 = kvm_r14_read(vcpu); 8922 regs->r15 = kvm_r15_read(vcpu); 8923 #endif 8924 8925 regs->rip = kvm_rip_read(vcpu); 8926 regs->rflags = kvm_get_rflags(vcpu); 8927 } 8928 8929 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8930 { 8931 vcpu_load(vcpu); 8932 __get_regs(vcpu, regs); 8933 vcpu_put(vcpu); 8934 return 0; 8935 } 8936 8937 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8938 { 8939 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8940 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8941 8942 kvm_rax_write(vcpu, regs->rax); 8943 kvm_rbx_write(vcpu, regs->rbx); 8944 kvm_rcx_write(vcpu, regs->rcx); 8945 kvm_rdx_write(vcpu, regs->rdx); 8946 kvm_rsi_write(vcpu, regs->rsi); 8947 kvm_rdi_write(vcpu, regs->rdi); 8948 kvm_rsp_write(vcpu, regs->rsp); 8949 kvm_rbp_write(vcpu, regs->rbp); 8950 #ifdef CONFIG_X86_64 8951 kvm_r8_write(vcpu, regs->r8); 8952 kvm_r9_write(vcpu, regs->r9); 8953 kvm_r10_write(vcpu, regs->r10); 8954 kvm_r11_write(vcpu, regs->r11); 8955 kvm_r12_write(vcpu, regs->r12); 8956 kvm_r13_write(vcpu, regs->r13); 8957 kvm_r14_write(vcpu, regs->r14); 8958 kvm_r15_write(vcpu, regs->r15); 8959 #endif 8960 8961 kvm_rip_write(vcpu, regs->rip); 8962 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8963 8964 vcpu->arch.exception.pending = false; 8965 8966 kvm_make_request(KVM_REQ_EVENT, vcpu); 8967 } 8968 8969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8970 { 8971 vcpu_load(vcpu); 8972 __set_regs(vcpu, regs); 8973 vcpu_put(vcpu); 8974 return 0; 8975 } 8976 8977 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8978 { 8979 struct kvm_segment cs; 8980 8981 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8982 *db = cs.db; 8983 *l = cs.l; 8984 } 8985 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8986 8987 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8988 { 8989 struct desc_ptr dt; 8990 8991 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8992 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8993 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8994 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8995 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8996 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8997 8998 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8999 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9000 9001 kvm_x86_ops.get_idt(vcpu, &dt); 9002 sregs->idt.limit = dt.size; 9003 sregs->idt.base = dt.address; 9004 kvm_x86_ops.get_gdt(vcpu, &dt); 9005 sregs->gdt.limit = dt.size; 9006 sregs->gdt.base = dt.address; 9007 9008 sregs->cr0 = kvm_read_cr0(vcpu); 9009 sregs->cr2 = vcpu->arch.cr2; 9010 sregs->cr3 = kvm_read_cr3(vcpu); 9011 sregs->cr4 = kvm_read_cr4(vcpu); 9012 sregs->cr8 = kvm_get_cr8(vcpu); 9013 sregs->efer = vcpu->arch.efer; 9014 sregs->apic_base = kvm_get_apic_base(vcpu); 9015 9016 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9017 9018 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9019 set_bit(vcpu->arch.interrupt.nr, 9020 (unsigned long *)sregs->interrupt_bitmap); 9021 } 9022 9023 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9024 struct kvm_sregs *sregs) 9025 { 9026 vcpu_load(vcpu); 9027 __get_sregs(vcpu, sregs); 9028 vcpu_put(vcpu); 9029 return 0; 9030 } 9031 9032 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9033 struct kvm_mp_state *mp_state) 9034 { 9035 vcpu_load(vcpu); 9036 if (kvm_mpx_supported()) 9037 kvm_load_guest_fpu(vcpu); 9038 9039 kvm_apic_accept_events(vcpu); 9040 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9041 vcpu->arch.pv.pv_unhalted) 9042 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9043 else 9044 mp_state->mp_state = vcpu->arch.mp_state; 9045 9046 if (kvm_mpx_supported()) 9047 kvm_put_guest_fpu(vcpu); 9048 vcpu_put(vcpu); 9049 return 0; 9050 } 9051 9052 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9053 struct kvm_mp_state *mp_state) 9054 { 9055 int ret = -EINVAL; 9056 9057 vcpu_load(vcpu); 9058 9059 if (!lapic_in_kernel(vcpu) && 9060 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9061 goto out; 9062 9063 /* 9064 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9065 * INIT state; latched init should be reported using 9066 * KVM_SET_VCPU_EVENTS, so reject it here. 9067 */ 9068 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9069 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9070 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9071 goto out; 9072 9073 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9074 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9075 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9076 } else 9077 vcpu->arch.mp_state = mp_state->mp_state; 9078 kvm_make_request(KVM_REQ_EVENT, vcpu); 9079 9080 ret = 0; 9081 out: 9082 vcpu_put(vcpu); 9083 return ret; 9084 } 9085 9086 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9087 int reason, bool has_error_code, u32 error_code) 9088 { 9089 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9090 int ret; 9091 9092 init_emulate_ctxt(vcpu); 9093 9094 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9095 has_error_code, error_code); 9096 if (ret) { 9097 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9098 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9099 vcpu->run->internal.ndata = 0; 9100 return 0; 9101 } 9102 9103 kvm_rip_write(vcpu, ctxt->eip); 9104 kvm_set_rflags(vcpu, ctxt->eflags); 9105 return 1; 9106 } 9107 EXPORT_SYMBOL_GPL(kvm_task_switch); 9108 9109 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9110 { 9111 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9112 /* 9113 * When EFER.LME and CR0.PG are set, the processor is in 9114 * 64-bit mode (though maybe in a 32-bit code segment). 9115 * CR4.PAE and EFER.LMA must be set. 9116 */ 9117 if (!(sregs->cr4 & X86_CR4_PAE) 9118 || !(sregs->efer & EFER_LMA)) 9119 return -EINVAL; 9120 } else { 9121 /* 9122 * Not in 64-bit mode: EFER.LMA is clear and the code 9123 * segment cannot be 64-bit. 9124 */ 9125 if (sregs->efer & EFER_LMA || sregs->cs.l) 9126 return -EINVAL; 9127 } 9128 9129 return kvm_valid_cr4(vcpu, sregs->cr4); 9130 } 9131 9132 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9133 { 9134 struct msr_data apic_base_msr; 9135 int mmu_reset_needed = 0; 9136 int cpuid_update_needed = 0; 9137 int pending_vec, max_bits, idx; 9138 struct desc_ptr dt; 9139 int ret = -EINVAL; 9140 9141 if (kvm_valid_sregs(vcpu, sregs)) 9142 goto out; 9143 9144 apic_base_msr.data = sregs->apic_base; 9145 apic_base_msr.host_initiated = true; 9146 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9147 goto out; 9148 9149 dt.size = sregs->idt.limit; 9150 dt.address = sregs->idt.base; 9151 kvm_x86_ops.set_idt(vcpu, &dt); 9152 dt.size = sregs->gdt.limit; 9153 dt.address = sregs->gdt.base; 9154 kvm_x86_ops.set_gdt(vcpu, &dt); 9155 9156 vcpu->arch.cr2 = sregs->cr2; 9157 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9158 vcpu->arch.cr3 = sregs->cr3; 9159 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9160 9161 kvm_set_cr8(vcpu, sregs->cr8); 9162 9163 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9164 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9165 9166 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9167 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9168 vcpu->arch.cr0 = sregs->cr0; 9169 9170 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9171 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9172 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9173 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9174 if (cpuid_update_needed) 9175 kvm_update_cpuid(vcpu); 9176 9177 idx = srcu_read_lock(&vcpu->kvm->srcu); 9178 if (is_pae_paging(vcpu)) { 9179 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9180 mmu_reset_needed = 1; 9181 } 9182 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9183 9184 if (mmu_reset_needed) 9185 kvm_mmu_reset_context(vcpu); 9186 9187 max_bits = KVM_NR_INTERRUPTS; 9188 pending_vec = find_first_bit( 9189 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9190 if (pending_vec < max_bits) { 9191 kvm_queue_interrupt(vcpu, pending_vec, false); 9192 pr_debug("Set back pending irq %d\n", pending_vec); 9193 } 9194 9195 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9196 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9197 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9198 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9199 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9200 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9201 9202 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9203 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9204 9205 update_cr8_intercept(vcpu); 9206 9207 /* Older userspace won't unhalt the vcpu on reset. */ 9208 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9209 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9210 !is_protmode(vcpu)) 9211 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9212 9213 kvm_make_request(KVM_REQ_EVENT, vcpu); 9214 9215 ret = 0; 9216 out: 9217 return ret; 9218 } 9219 9220 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9221 struct kvm_sregs *sregs) 9222 { 9223 int ret; 9224 9225 vcpu_load(vcpu); 9226 ret = __set_sregs(vcpu, sregs); 9227 vcpu_put(vcpu); 9228 return ret; 9229 } 9230 9231 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9232 struct kvm_guest_debug *dbg) 9233 { 9234 unsigned long rflags; 9235 int i, r; 9236 9237 vcpu_load(vcpu); 9238 9239 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9240 r = -EBUSY; 9241 if (vcpu->arch.exception.pending) 9242 goto out; 9243 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9244 kvm_queue_exception(vcpu, DB_VECTOR); 9245 else 9246 kvm_queue_exception(vcpu, BP_VECTOR); 9247 } 9248 9249 /* 9250 * Read rflags as long as potentially injected trace flags are still 9251 * filtered out. 9252 */ 9253 rflags = kvm_get_rflags(vcpu); 9254 9255 vcpu->guest_debug = dbg->control; 9256 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9257 vcpu->guest_debug = 0; 9258 9259 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9260 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9261 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9262 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9263 } else { 9264 for (i = 0; i < KVM_NR_DB_REGS; i++) 9265 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9266 } 9267 kvm_update_dr7(vcpu); 9268 9269 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9270 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9271 get_segment_base(vcpu, VCPU_SREG_CS); 9272 9273 /* 9274 * Trigger an rflags update that will inject or remove the trace 9275 * flags. 9276 */ 9277 kvm_set_rflags(vcpu, rflags); 9278 9279 kvm_x86_ops.update_bp_intercept(vcpu); 9280 9281 r = 0; 9282 9283 out: 9284 vcpu_put(vcpu); 9285 return r; 9286 } 9287 9288 /* 9289 * Translate a guest virtual address to a guest physical address. 9290 */ 9291 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9292 struct kvm_translation *tr) 9293 { 9294 unsigned long vaddr = tr->linear_address; 9295 gpa_t gpa; 9296 int idx; 9297 9298 vcpu_load(vcpu); 9299 9300 idx = srcu_read_lock(&vcpu->kvm->srcu); 9301 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9302 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9303 tr->physical_address = gpa; 9304 tr->valid = gpa != UNMAPPED_GVA; 9305 tr->writeable = 1; 9306 tr->usermode = 0; 9307 9308 vcpu_put(vcpu); 9309 return 0; 9310 } 9311 9312 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9313 { 9314 struct fxregs_state *fxsave; 9315 9316 vcpu_load(vcpu); 9317 9318 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9319 memcpy(fpu->fpr, fxsave->st_space, 128); 9320 fpu->fcw = fxsave->cwd; 9321 fpu->fsw = fxsave->swd; 9322 fpu->ftwx = fxsave->twd; 9323 fpu->last_opcode = fxsave->fop; 9324 fpu->last_ip = fxsave->rip; 9325 fpu->last_dp = fxsave->rdp; 9326 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9327 9328 vcpu_put(vcpu); 9329 return 0; 9330 } 9331 9332 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9333 { 9334 struct fxregs_state *fxsave; 9335 9336 vcpu_load(vcpu); 9337 9338 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9339 9340 memcpy(fxsave->st_space, fpu->fpr, 128); 9341 fxsave->cwd = fpu->fcw; 9342 fxsave->swd = fpu->fsw; 9343 fxsave->twd = fpu->ftwx; 9344 fxsave->fop = fpu->last_opcode; 9345 fxsave->rip = fpu->last_ip; 9346 fxsave->rdp = fpu->last_dp; 9347 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9348 9349 vcpu_put(vcpu); 9350 return 0; 9351 } 9352 9353 static void store_regs(struct kvm_vcpu *vcpu) 9354 { 9355 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9356 9357 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9358 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9359 9360 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9361 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9362 9363 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9364 kvm_vcpu_ioctl_x86_get_vcpu_events( 9365 vcpu, &vcpu->run->s.regs.events); 9366 } 9367 9368 static int sync_regs(struct kvm_vcpu *vcpu) 9369 { 9370 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9371 return -EINVAL; 9372 9373 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9374 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9375 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9376 } 9377 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9378 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9379 return -EINVAL; 9380 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9381 } 9382 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9383 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9384 vcpu, &vcpu->run->s.regs.events)) 9385 return -EINVAL; 9386 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9387 } 9388 9389 return 0; 9390 } 9391 9392 static void fx_init(struct kvm_vcpu *vcpu) 9393 { 9394 fpstate_init(&vcpu->arch.guest_fpu->state); 9395 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9396 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9397 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9398 9399 /* 9400 * Ensure guest xcr0 is valid for loading 9401 */ 9402 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9403 9404 vcpu->arch.cr0 |= X86_CR0_ET; 9405 } 9406 9407 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9408 { 9409 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9410 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9411 "guest TSC will not be reliable\n"); 9412 9413 return 0; 9414 } 9415 9416 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9417 { 9418 struct page *page; 9419 int r; 9420 9421 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9422 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9423 else 9424 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9425 9426 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9427 9428 r = kvm_mmu_create(vcpu); 9429 if (r < 0) 9430 return r; 9431 9432 if (irqchip_in_kernel(vcpu->kvm)) { 9433 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9434 if (r < 0) 9435 goto fail_mmu_destroy; 9436 if (kvm_apicv_activated(vcpu->kvm)) 9437 vcpu->arch.apicv_active = true; 9438 } else 9439 static_key_slow_inc(&kvm_no_apic_vcpu); 9440 9441 r = -ENOMEM; 9442 9443 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9444 if (!page) 9445 goto fail_free_lapic; 9446 vcpu->arch.pio_data = page_address(page); 9447 9448 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9449 GFP_KERNEL_ACCOUNT); 9450 if (!vcpu->arch.mce_banks) 9451 goto fail_free_pio_data; 9452 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9453 9454 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9455 GFP_KERNEL_ACCOUNT)) 9456 goto fail_free_mce_banks; 9457 9458 if (!alloc_emulate_ctxt(vcpu)) 9459 goto free_wbinvd_dirty_mask; 9460 9461 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9462 GFP_KERNEL_ACCOUNT); 9463 if (!vcpu->arch.user_fpu) { 9464 pr_err("kvm: failed to allocate userspace's fpu\n"); 9465 goto free_emulate_ctxt; 9466 } 9467 9468 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9469 GFP_KERNEL_ACCOUNT); 9470 if (!vcpu->arch.guest_fpu) { 9471 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9472 goto free_user_fpu; 9473 } 9474 fx_init(vcpu); 9475 9476 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9477 vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu); 9478 9479 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9480 9481 kvm_async_pf_hash_reset(vcpu); 9482 kvm_pmu_init(vcpu); 9483 9484 vcpu->arch.pending_external_vector = -1; 9485 vcpu->arch.preempted_in_kernel = false; 9486 9487 kvm_hv_vcpu_init(vcpu); 9488 9489 r = kvm_x86_ops.vcpu_create(vcpu); 9490 if (r) 9491 goto free_guest_fpu; 9492 9493 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9494 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9495 kvm_vcpu_mtrr_init(vcpu); 9496 vcpu_load(vcpu); 9497 kvm_vcpu_reset(vcpu, false); 9498 kvm_init_mmu(vcpu, false); 9499 vcpu_put(vcpu); 9500 return 0; 9501 9502 free_guest_fpu: 9503 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9504 free_user_fpu: 9505 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9506 free_emulate_ctxt: 9507 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9508 free_wbinvd_dirty_mask: 9509 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9510 fail_free_mce_banks: 9511 kfree(vcpu->arch.mce_banks); 9512 fail_free_pio_data: 9513 free_page((unsigned long)vcpu->arch.pio_data); 9514 fail_free_lapic: 9515 kvm_free_lapic(vcpu); 9516 fail_mmu_destroy: 9517 kvm_mmu_destroy(vcpu); 9518 return r; 9519 } 9520 9521 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9522 { 9523 struct msr_data msr; 9524 struct kvm *kvm = vcpu->kvm; 9525 9526 kvm_hv_vcpu_postcreate(vcpu); 9527 9528 if (mutex_lock_killable(&vcpu->mutex)) 9529 return; 9530 vcpu_load(vcpu); 9531 msr.data = 0x0; 9532 msr.index = MSR_IA32_TSC; 9533 msr.host_initiated = true; 9534 kvm_write_tsc(vcpu, &msr); 9535 vcpu_put(vcpu); 9536 9537 /* poll control enabled by default */ 9538 vcpu->arch.msr_kvm_poll_control = 1; 9539 9540 mutex_unlock(&vcpu->mutex); 9541 9542 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9543 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9544 KVMCLOCK_SYNC_PERIOD); 9545 } 9546 9547 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9548 { 9549 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9550 int idx; 9551 9552 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9553 9554 kvmclock_reset(vcpu); 9555 9556 kvm_x86_ops.vcpu_free(vcpu); 9557 9558 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9559 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9560 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9561 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9562 9563 kvm_hv_vcpu_uninit(vcpu); 9564 kvm_pmu_destroy(vcpu); 9565 kfree(vcpu->arch.mce_banks); 9566 kvm_free_lapic(vcpu); 9567 idx = srcu_read_lock(&vcpu->kvm->srcu); 9568 kvm_mmu_destroy(vcpu); 9569 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9570 free_page((unsigned long)vcpu->arch.pio_data); 9571 if (!lapic_in_kernel(vcpu)) 9572 static_key_slow_dec(&kvm_no_apic_vcpu); 9573 } 9574 9575 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9576 { 9577 kvm_lapic_reset(vcpu, init_event); 9578 9579 vcpu->arch.hflags = 0; 9580 9581 vcpu->arch.smi_pending = 0; 9582 vcpu->arch.smi_count = 0; 9583 atomic_set(&vcpu->arch.nmi_queued, 0); 9584 vcpu->arch.nmi_pending = 0; 9585 vcpu->arch.nmi_injected = false; 9586 kvm_clear_interrupt_queue(vcpu); 9587 kvm_clear_exception_queue(vcpu); 9588 9589 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9590 kvm_update_dr0123(vcpu); 9591 vcpu->arch.dr6 = DR6_INIT; 9592 vcpu->arch.dr7 = DR7_FIXED_1; 9593 kvm_update_dr7(vcpu); 9594 9595 vcpu->arch.cr2 = 0; 9596 9597 kvm_make_request(KVM_REQ_EVENT, vcpu); 9598 vcpu->arch.apf.msr_en_val = 0; 9599 vcpu->arch.apf.msr_int_val = 0; 9600 vcpu->arch.st.msr_val = 0; 9601 9602 kvmclock_reset(vcpu); 9603 9604 kvm_clear_async_pf_completion_queue(vcpu); 9605 kvm_async_pf_hash_reset(vcpu); 9606 vcpu->arch.apf.halted = false; 9607 9608 if (kvm_mpx_supported()) { 9609 void *mpx_state_buffer; 9610 9611 /* 9612 * To avoid have the INIT path from kvm_apic_has_events() that be 9613 * called with loaded FPU and does not let userspace fix the state. 9614 */ 9615 if (init_event) 9616 kvm_put_guest_fpu(vcpu); 9617 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9618 XFEATURE_BNDREGS); 9619 if (mpx_state_buffer) 9620 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9621 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9622 XFEATURE_BNDCSR); 9623 if (mpx_state_buffer) 9624 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9625 if (init_event) 9626 kvm_load_guest_fpu(vcpu); 9627 } 9628 9629 if (!init_event) { 9630 kvm_pmu_reset(vcpu); 9631 vcpu->arch.smbase = 0x30000; 9632 9633 vcpu->arch.msr_misc_features_enables = 0; 9634 9635 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9636 } 9637 9638 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9639 vcpu->arch.regs_avail = ~0; 9640 vcpu->arch.regs_dirty = ~0; 9641 9642 vcpu->arch.ia32_xss = 0; 9643 9644 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9645 } 9646 9647 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9648 { 9649 struct kvm_segment cs; 9650 9651 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9652 cs.selector = vector << 8; 9653 cs.base = vector << 12; 9654 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9655 kvm_rip_write(vcpu, 0); 9656 } 9657 9658 int kvm_arch_hardware_enable(void) 9659 { 9660 struct kvm *kvm; 9661 struct kvm_vcpu *vcpu; 9662 int i; 9663 int ret; 9664 u64 local_tsc; 9665 u64 max_tsc = 0; 9666 bool stable, backwards_tsc = false; 9667 9668 kvm_shared_msr_cpu_online(); 9669 ret = kvm_x86_ops.hardware_enable(); 9670 if (ret != 0) 9671 return ret; 9672 9673 local_tsc = rdtsc(); 9674 stable = !kvm_check_tsc_unstable(); 9675 list_for_each_entry(kvm, &vm_list, vm_list) { 9676 kvm_for_each_vcpu(i, vcpu, kvm) { 9677 if (!stable && vcpu->cpu == smp_processor_id()) 9678 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9679 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9680 backwards_tsc = true; 9681 if (vcpu->arch.last_host_tsc > max_tsc) 9682 max_tsc = vcpu->arch.last_host_tsc; 9683 } 9684 } 9685 } 9686 9687 /* 9688 * Sometimes, even reliable TSCs go backwards. This happens on 9689 * platforms that reset TSC during suspend or hibernate actions, but 9690 * maintain synchronization. We must compensate. Fortunately, we can 9691 * detect that condition here, which happens early in CPU bringup, 9692 * before any KVM threads can be running. Unfortunately, we can't 9693 * bring the TSCs fully up to date with real time, as we aren't yet far 9694 * enough into CPU bringup that we know how much real time has actually 9695 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9696 * variables that haven't been updated yet. 9697 * 9698 * So we simply find the maximum observed TSC above, then record the 9699 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9700 * the adjustment will be applied. Note that we accumulate 9701 * adjustments, in case multiple suspend cycles happen before some VCPU 9702 * gets a chance to run again. In the event that no KVM threads get a 9703 * chance to run, we will miss the entire elapsed period, as we'll have 9704 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9705 * loose cycle time. This isn't too big a deal, since the loss will be 9706 * uniform across all VCPUs (not to mention the scenario is extremely 9707 * unlikely). It is possible that a second hibernate recovery happens 9708 * much faster than a first, causing the observed TSC here to be 9709 * smaller; this would require additional padding adjustment, which is 9710 * why we set last_host_tsc to the local tsc observed here. 9711 * 9712 * N.B. - this code below runs only on platforms with reliable TSC, 9713 * as that is the only way backwards_tsc is set above. Also note 9714 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9715 * have the same delta_cyc adjustment applied if backwards_tsc 9716 * is detected. Note further, this adjustment is only done once, 9717 * as we reset last_host_tsc on all VCPUs to stop this from being 9718 * called multiple times (one for each physical CPU bringup). 9719 * 9720 * Platforms with unreliable TSCs don't have to deal with this, they 9721 * will be compensated by the logic in vcpu_load, which sets the TSC to 9722 * catchup mode. This will catchup all VCPUs to real time, but cannot 9723 * guarantee that they stay in perfect synchronization. 9724 */ 9725 if (backwards_tsc) { 9726 u64 delta_cyc = max_tsc - local_tsc; 9727 list_for_each_entry(kvm, &vm_list, vm_list) { 9728 kvm->arch.backwards_tsc_observed = true; 9729 kvm_for_each_vcpu(i, vcpu, kvm) { 9730 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9731 vcpu->arch.last_host_tsc = local_tsc; 9732 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9733 } 9734 9735 /* 9736 * We have to disable TSC offset matching.. if you were 9737 * booting a VM while issuing an S4 host suspend.... 9738 * you may have some problem. Solving this issue is 9739 * left as an exercise to the reader. 9740 */ 9741 kvm->arch.last_tsc_nsec = 0; 9742 kvm->arch.last_tsc_write = 0; 9743 } 9744 9745 } 9746 return 0; 9747 } 9748 9749 void kvm_arch_hardware_disable(void) 9750 { 9751 kvm_x86_ops.hardware_disable(); 9752 drop_user_return_notifiers(); 9753 } 9754 9755 int kvm_arch_hardware_setup(void *opaque) 9756 { 9757 struct kvm_x86_init_ops *ops = opaque; 9758 int r; 9759 9760 rdmsrl_safe(MSR_EFER, &host_efer); 9761 9762 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9763 rdmsrl(MSR_IA32_XSS, host_xss); 9764 9765 r = ops->hardware_setup(); 9766 if (r != 0) 9767 return r; 9768 9769 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9770 9771 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9772 supported_xss = 0; 9773 9774 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9775 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9776 #undef __kvm_cpu_cap_has 9777 9778 if (kvm_has_tsc_control) { 9779 /* 9780 * Make sure the user can only configure tsc_khz values that 9781 * fit into a signed integer. 9782 * A min value is not calculated because it will always 9783 * be 1 on all machines. 9784 */ 9785 u64 max = min(0x7fffffffULL, 9786 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9787 kvm_max_guest_tsc_khz = max; 9788 9789 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9790 } 9791 9792 kvm_init_msr_list(); 9793 return 0; 9794 } 9795 9796 void kvm_arch_hardware_unsetup(void) 9797 { 9798 kvm_x86_ops.hardware_unsetup(); 9799 } 9800 9801 int kvm_arch_check_processor_compat(void *opaque) 9802 { 9803 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9804 struct kvm_x86_init_ops *ops = opaque; 9805 9806 WARN_ON(!irqs_disabled()); 9807 9808 if (__cr4_reserved_bits(cpu_has, c) != 9809 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9810 return -EIO; 9811 9812 return ops->check_processor_compatibility(); 9813 } 9814 9815 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9816 { 9817 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9818 } 9819 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9820 9821 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9822 { 9823 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9824 } 9825 9826 struct static_key kvm_no_apic_vcpu __read_mostly; 9827 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9828 9829 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9830 { 9831 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9832 9833 vcpu->arch.l1tf_flush_l1d = true; 9834 if (pmu->version && unlikely(pmu->event_count)) { 9835 pmu->need_cleanup = true; 9836 kvm_make_request(KVM_REQ_PMU, vcpu); 9837 } 9838 kvm_x86_ops.sched_in(vcpu, cpu); 9839 } 9840 9841 void kvm_arch_free_vm(struct kvm *kvm) 9842 { 9843 kfree(kvm->arch.hyperv.hv_pa_pg); 9844 vfree(kvm); 9845 } 9846 9847 9848 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9849 { 9850 if (type) 9851 return -EINVAL; 9852 9853 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9854 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9855 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9856 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9857 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9858 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9859 9860 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9861 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9862 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9863 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9864 &kvm->arch.irq_sources_bitmap); 9865 9866 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9867 mutex_init(&kvm->arch.apic_map_lock); 9868 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9869 9870 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9871 pvclock_update_vm_gtod_copy(kvm); 9872 9873 kvm->arch.guest_can_read_msr_platform_info = true; 9874 9875 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9876 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9877 9878 kvm_hv_init_vm(kvm); 9879 kvm_page_track_init(kvm); 9880 kvm_mmu_init_vm(kvm); 9881 9882 return kvm_x86_ops.vm_init(kvm); 9883 } 9884 9885 int kvm_arch_post_init_vm(struct kvm *kvm) 9886 { 9887 return kvm_mmu_post_init_vm(kvm); 9888 } 9889 9890 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9891 { 9892 vcpu_load(vcpu); 9893 kvm_mmu_unload(vcpu); 9894 vcpu_put(vcpu); 9895 } 9896 9897 static void kvm_free_vcpus(struct kvm *kvm) 9898 { 9899 unsigned int i; 9900 struct kvm_vcpu *vcpu; 9901 9902 /* 9903 * Unpin any mmu pages first. 9904 */ 9905 kvm_for_each_vcpu(i, vcpu, kvm) { 9906 kvm_clear_async_pf_completion_queue(vcpu); 9907 kvm_unload_vcpu_mmu(vcpu); 9908 } 9909 kvm_for_each_vcpu(i, vcpu, kvm) 9910 kvm_vcpu_destroy(vcpu); 9911 9912 mutex_lock(&kvm->lock); 9913 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9914 kvm->vcpus[i] = NULL; 9915 9916 atomic_set(&kvm->online_vcpus, 0); 9917 mutex_unlock(&kvm->lock); 9918 } 9919 9920 void kvm_arch_sync_events(struct kvm *kvm) 9921 { 9922 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9923 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9924 kvm_free_pit(kvm); 9925 } 9926 9927 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9928 { 9929 int i, r; 9930 unsigned long hva, uninitialized_var(old_npages); 9931 struct kvm_memslots *slots = kvm_memslots(kvm); 9932 struct kvm_memory_slot *slot; 9933 9934 /* Called with kvm->slots_lock held. */ 9935 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9936 return -EINVAL; 9937 9938 slot = id_to_memslot(slots, id); 9939 if (size) { 9940 if (slot && slot->npages) 9941 return -EEXIST; 9942 9943 /* 9944 * MAP_SHARED to prevent internal slot pages from being moved 9945 * by fork()/COW. 9946 */ 9947 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9948 MAP_SHARED | MAP_ANONYMOUS, 0); 9949 if (IS_ERR((void *)hva)) 9950 return PTR_ERR((void *)hva); 9951 } else { 9952 if (!slot || !slot->npages) 9953 return 0; 9954 9955 old_npages = slot->npages; 9956 hva = 0; 9957 } 9958 9959 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9960 struct kvm_userspace_memory_region m; 9961 9962 m.slot = id | (i << 16); 9963 m.flags = 0; 9964 m.guest_phys_addr = gpa; 9965 m.userspace_addr = hva; 9966 m.memory_size = size; 9967 r = __kvm_set_memory_region(kvm, &m); 9968 if (r < 0) 9969 return r; 9970 } 9971 9972 if (!size) 9973 vm_munmap(hva, old_npages * PAGE_SIZE); 9974 9975 return 0; 9976 } 9977 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9978 9979 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9980 { 9981 kvm_mmu_pre_destroy_vm(kvm); 9982 } 9983 9984 void kvm_arch_destroy_vm(struct kvm *kvm) 9985 { 9986 if (current->mm == kvm->mm) { 9987 /* 9988 * Free memory regions allocated on behalf of userspace, 9989 * unless the the memory map has changed due to process exit 9990 * or fd copying. 9991 */ 9992 mutex_lock(&kvm->slots_lock); 9993 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9994 0, 0); 9995 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 9996 0, 0); 9997 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9998 mutex_unlock(&kvm->slots_lock); 9999 } 10000 if (kvm_x86_ops.vm_destroy) 10001 kvm_x86_ops.vm_destroy(kvm); 10002 kvm_pic_destroy(kvm); 10003 kvm_ioapic_destroy(kvm); 10004 kvm_free_vcpus(kvm); 10005 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10006 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10007 kvm_mmu_uninit_vm(kvm); 10008 kvm_page_track_cleanup(kvm); 10009 kvm_hv_destroy_vm(kvm); 10010 } 10011 10012 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10013 { 10014 int i; 10015 10016 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10017 kvfree(slot->arch.rmap[i]); 10018 slot->arch.rmap[i] = NULL; 10019 10020 if (i == 0) 10021 continue; 10022 10023 kvfree(slot->arch.lpage_info[i - 1]); 10024 slot->arch.lpage_info[i - 1] = NULL; 10025 } 10026 10027 kvm_page_track_free_memslot(slot); 10028 } 10029 10030 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10031 unsigned long npages) 10032 { 10033 int i; 10034 10035 /* 10036 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10037 * old arrays will be freed by __kvm_set_memory_region() if installing 10038 * the new memslot is successful. 10039 */ 10040 memset(&slot->arch, 0, sizeof(slot->arch)); 10041 10042 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10043 struct kvm_lpage_info *linfo; 10044 unsigned long ugfn; 10045 int lpages; 10046 int level = i + 1; 10047 10048 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10049 slot->base_gfn, level) + 1; 10050 10051 slot->arch.rmap[i] = 10052 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10053 GFP_KERNEL_ACCOUNT); 10054 if (!slot->arch.rmap[i]) 10055 goto out_free; 10056 if (i == 0) 10057 continue; 10058 10059 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10060 if (!linfo) 10061 goto out_free; 10062 10063 slot->arch.lpage_info[i - 1] = linfo; 10064 10065 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10066 linfo[0].disallow_lpage = 1; 10067 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10068 linfo[lpages - 1].disallow_lpage = 1; 10069 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10070 /* 10071 * If the gfn and userspace address are not aligned wrt each 10072 * other, disable large page support for this slot. 10073 */ 10074 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10075 unsigned long j; 10076 10077 for (j = 0; j < lpages; ++j) 10078 linfo[j].disallow_lpage = 1; 10079 } 10080 } 10081 10082 if (kvm_page_track_create_memslot(slot, npages)) 10083 goto out_free; 10084 10085 return 0; 10086 10087 out_free: 10088 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10089 kvfree(slot->arch.rmap[i]); 10090 slot->arch.rmap[i] = NULL; 10091 if (i == 0) 10092 continue; 10093 10094 kvfree(slot->arch.lpage_info[i - 1]); 10095 slot->arch.lpage_info[i - 1] = NULL; 10096 } 10097 return -ENOMEM; 10098 } 10099 10100 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10101 { 10102 struct kvm_vcpu *vcpu; 10103 int i; 10104 10105 /* 10106 * memslots->generation has been incremented. 10107 * mmio generation may have reached its maximum value. 10108 */ 10109 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10110 10111 /* Force re-initialization of steal_time cache */ 10112 kvm_for_each_vcpu(i, vcpu, kvm) 10113 kvm_vcpu_kick(vcpu); 10114 } 10115 10116 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10117 struct kvm_memory_slot *memslot, 10118 const struct kvm_userspace_memory_region *mem, 10119 enum kvm_mr_change change) 10120 { 10121 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10122 return kvm_alloc_memslot_metadata(memslot, 10123 mem->memory_size >> PAGE_SHIFT); 10124 return 0; 10125 } 10126 10127 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10128 struct kvm_memory_slot *old, 10129 struct kvm_memory_slot *new, 10130 enum kvm_mr_change change) 10131 { 10132 /* 10133 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10134 * See comments below. 10135 */ 10136 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10137 return; 10138 10139 /* 10140 * Dirty logging tracks sptes in 4k granularity, meaning that large 10141 * sptes have to be split. If live migration is successful, the guest 10142 * in the source machine will be destroyed and large sptes will be 10143 * created in the destination. However, if the guest continues to run 10144 * in the source machine (for example if live migration fails), small 10145 * sptes will remain around and cause bad performance. 10146 * 10147 * Scan sptes if dirty logging has been stopped, dropping those 10148 * which can be collapsed into a single large-page spte. Later 10149 * page faults will create the large-page sptes. 10150 * 10151 * There is no need to do this in any of the following cases: 10152 * CREATE: No dirty mappings will already exist. 10153 * MOVE/DELETE: The old mappings will already have been cleaned up by 10154 * kvm_arch_flush_shadow_memslot() 10155 */ 10156 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10157 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10158 kvm_mmu_zap_collapsible_sptes(kvm, new); 10159 10160 /* 10161 * Enable or disable dirty logging for the slot. 10162 * 10163 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10164 * slot have been zapped so no dirty logging updates are needed for 10165 * the old slot. 10166 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10167 * any mappings that might be created in it will consume the 10168 * properties of the new slot and do not need to be updated here. 10169 * 10170 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10171 * called to enable/disable dirty logging. 10172 * 10173 * When disabling dirty logging with PML enabled, the D-bit is set 10174 * for sptes in the slot in order to prevent unnecessary GPA 10175 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10176 * This guarantees leaving PML enabled for the guest's lifetime 10177 * won't have any additional overhead from PML when the guest is 10178 * running with dirty logging disabled. 10179 * 10180 * When enabling dirty logging, large sptes are write-protected 10181 * so they can be split on first write. New large sptes cannot 10182 * be created for this slot until the end of the logging. 10183 * See the comments in fast_page_fault(). 10184 * For small sptes, nothing is done if the dirty log is in the 10185 * initial-all-set state. Otherwise, depending on whether pml 10186 * is enabled the D-bit or the W-bit will be cleared. 10187 */ 10188 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10189 if (kvm_x86_ops.slot_enable_log_dirty) { 10190 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10191 } else { 10192 int level = 10193 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10194 PG_LEVEL_2M : PG_LEVEL_4K; 10195 10196 /* 10197 * If we're with initial-all-set, we don't need 10198 * to write protect any small page because 10199 * they're reported as dirty already. However 10200 * we still need to write-protect huge pages 10201 * so that the page split can happen lazily on 10202 * the first write to the huge page. 10203 */ 10204 kvm_mmu_slot_remove_write_access(kvm, new, level); 10205 } 10206 } else { 10207 if (kvm_x86_ops.slot_disable_log_dirty) 10208 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10209 } 10210 } 10211 10212 void kvm_arch_commit_memory_region(struct kvm *kvm, 10213 const struct kvm_userspace_memory_region *mem, 10214 struct kvm_memory_slot *old, 10215 const struct kvm_memory_slot *new, 10216 enum kvm_mr_change change) 10217 { 10218 if (!kvm->arch.n_requested_mmu_pages) 10219 kvm_mmu_change_mmu_pages(kvm, 10220 kvm_mmu_calculate_default_mmu_pages(kvm)); 10221 10222 /* 10223 * FIXME: const-ify all uses of struct kvm_memory_slot. 10224 */ 10225 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10226 10227 /* Free the arrays associated with the old memslot. */ 10228 if (change == KVM_MR_MOVE) 10229 kvm_arch_free_memslot(kvm, old); 10230 } 10231 10232 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10233 { 10234 kvm_mmu_zap_all(kvm); 10235 } 10236 10237 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10238 struct kvm_memory_slot *slot) 10239 { 10240 kvm_page_track_flush_slot(kvm, slot); 10241 } 10242 10243 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10244 { 10245 return (is_guest_mode(vcpu) && 10246 kvm_x86_ops.guest_apic_has_interrupt && 10247 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10248 } 10249 10250 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10251 { 10252 if (!list_empty_careful(&vcpu->async_pf.done)) 10253 return true; 10254 10255 if (kvm_apic_has_events(vcpu)) 10256 return true; 10257 10258 if (vcpu->arch.pv.pv_unhalted) 10259 return true; 10260 10261 if (vcpu->arch.exception.pending) 10262 return true; 10263 10264 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10265 (vcpu->arch.nmi_pending && 10266 kvm_x86_ops.nmi_allowed(vcpu, false))) 10267 return true; 10268 10269 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10270 (vcpu->arch.smi_pending && 10271 kvm_x86_ops.smi_allowed(vcpu, false))) 10272 return true; 10273 10274 if (kvm_arch_interrupt_allowed(vcpu) && 10275 (kvm_cpu_has_interrupt(vcpu) || 10276 kvm_guest_apic_has_interrupt(vcpu))) 10277 return true; 10278 10279 if (kvm_hv_has_stimer_pending(vcpu)) 10280 return true; 10281 10282 if (is_guest_mode(vcpu) && 10283 kvm_x86_ops.nested_ops->hv_timer_pending && 10284 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10285 return true; 10286 10287 return false; 10288 } 10289 10290 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10291 { 10292 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10293 } 10294 10295 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10296 { 10297 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10298 return true; 10299 10300 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10301 kvm_test_request(KVM_REQ_SMI, vcpu) || 10302 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10303 return true; 10304 10305 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10306 return true; 10307 10308 return false; 10309 } 10310 10311 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10312 { 10313 return vcpu->arch.preempted_in_kernel; 10314 } 10315 10316 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10317 { 10318 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10319 } 10320 10321 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10322 { 10323 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10324 } 10325 10326 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10327 { 10328 if (is_64_bit_mode(vcpu)) 10329 return kvm_rip_read(vcpu); 10330 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10331 kvm_rip_read(vcpu)); 10332 } 10333 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10334 10335 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10336 { 10337 return kvm_get_linear_rip(vcpu) == linear_rip; 10338 } 10339 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10340 10341 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10342 { 10343 unsigned long rflags; 10344 10345 rflags = kvm_x86_ops.get_rflags(vcpu); 10346 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10347 rflags &= ~X86_EFLAGS_TF; 10348 return rflags; 10349 } 10350 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10351 10352 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10353 { 10354 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10355 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10356 rflags |= X86_EFLAGS_TF; 10357 kvm_x86_ops.set_rflags(vcpu, rflags); 10358 } 10359 10360 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10361 { 10362 __kvm_set_rflags(vcpu, rflags); 10363 kvm_make_request(KVM_REQ_EVENT, vcpu); 10364 } 10365 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10366 10367 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10368 { 10369 int r; 10370 10371 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10372 work->wakeup_all) 10373 return; 10374 10375 r = kvm_mmu_reload(vcpu); 10376 if (unlikely(r)) 10377 return; 10378 10379 if (!vcpu->arch.mmu->direct_map && 10380 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10381 return; 10382 10383 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10384 } 10385 10386 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10387 { 10388 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10389 10390 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10391 } 10392 10393 static inline u32 kvm_async_pf_next_probe(u32 key) 10394 { 10395 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10396 } 10397 10398 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10399 { 10400 u32 key = kvm_async_pf_hash_fn(gfn); 10401 10402 while (vcpu->arch.apf.gfns[key] != ~0) 10403 key = kvm_async_pf_next_probe(key); 10404 10405 vcpu->arch.apf.gfns[key] = gfn; 10406 } 10407 10408 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10409 { 10410 int i; 10411 u32 key = kvm_async_pf_hash_fn(gfn); 10412 10413 for (i = 0; i < ASYNC_PF_PER_VCPU && 10414 (vcpu->arch.apf.gfns[key] != gfn && 10415 vcpu->arch.apf.gfns[key] != ~0); i++) 10416 key = kvm_async_pf_next_probe(key); 10417 10418 return key; 10419 } 10420 10421 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10422 { 10423 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10424 } 10425 10426 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10427 { 10428 u32 i, j, k; 10429 10430 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10431 10432 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10433 return; 10434 10435 while (true) { 10436 vcpu->arch.apf.gfns[i] = ~0; 10437 do { 10438 j = kvm_async_pf_next_probe(j); 10439 if (vcpu->arch.apf.gfns[j] == ~0) 10440 return; 10441 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10442 /* 10443 * k lies cyclically in ]i,j] 10444 * | i.k.j | 10445 * |....j i.k.| or |.k..j i...| 10446 */ 10447 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10448 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10449 i = j; 10450 } 10451 } 10452 10453 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10454 { 10455 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10456 10457 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10458 sizeof(reason)); 10459 } 10460 10461 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10462 { 10463 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10464 10465 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10466 &token, offset, sizeof(token)); 10467 } 10468 10469 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 10470 { 10471 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10472 u32 val; 10473 10474 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10475 &val, offset, sizeof(val))) 10476 return false; 10477 10478 return !val; 10479 } 10480 10481 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10482 { 10483 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10484 return false; 10485 10486 if (!kvm_pv_async_pf_enabled(vcpu) || 10487 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 10488 return false; 10489 10490 return true; 10491 } 10492 10493 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10494 { 10495 if (unlikely(!lapic_in_kernel(vcpu) || 10496 kvm_event_needs_reinjection(vcpu) || 10497 vcpu->arch.exception.pending)) 10498 return false; 10499 10500 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10501 return false; 10502 10503 /* 10504 * If interrupts are off we cannot even use an artificial 10505 * halt state. 10506 */ 10507 return kvm_arch_interrupt_allowed(vcpu); 10508 } 10509 10510 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10511 struct kvm_async_pf *work) 10512 { 10513 struct x86_exception fault; 10514 10515 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10516 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10517 10518 if (kvm_can_deliver_async_pf(vcpu) && 10519 !apf_put_user_notpresent(vcpu)) { 10520 fault.vector = PF_VECTOR; 10521 fault.error_code_valid = true; 10522 fault.error_code = 0; 10523 fault.nested_page_fault = false; 10524 fault.address = work->arch.token; 10525 fault.async_page_fault = true; 10526 kvm_inject_page_fault(vcpu, &fault); 10527 return true; 10528 } else { 10529 /* 10530 * It is not possible to deliver a paravirtualized asynchronous 10531 * page fault, but putting the guest in an artificial halt state 10532 * can be beneficial nevertheless: if an interrupt arrives, we 10533 * can deliver it timely and perhaps the guest will schedule 10534 * another process. When the instruction that triggered a page 10535 * fault is retried, hopefully the page will be ready in the host. 10536 */ 10537 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10538 return false; 10539 } 10540 } 10541 10542 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10543 struct kvm_async_pf *work) 10544 { 10545 struct kvm_lapic_irq irq = { 10546 .delivery_mode = APIC_DM_FIXED, 10547 .vector = vcpu->arch.apf.vec 10548 }; 10549 10550 if (work->wakeup_all) 10551 work->arch.token = ~0; /* broadcast wakeup */ 10552 else 10553 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10554 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10555 10556 if ((work->wakeup_all || work->notpresent_injected) && 10557 kvm_pv_async_pf_enabled(vcpu) && 10558 !apf_put_user_ready(vcpu, work->arch.token)) { 10559 vcpu->arch.apf.pageready_pending = true; 10560 kvm_apic_set_irq(vcpu, &irq, NULL); 10561 } 10562 10563 vcpu->arch.apf.halted = false; 10564 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10565 } 10566 10567 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 10568 { 10569 kvm_make_request(KVM_REQ_APF_READY, vcpu); 10570 if (!vcpu->arch.apf.pageready_pending) 10571 kvm_vcpu_kick(vcpu); 10572 } 10573 10574 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 10575 { 10576 if (!kvm_pv_async_pf_enabled(vcpu)) 10577 return true; 10578 else 10579 return apf_pageready_slot_free(vcpu); 10580 } 10581 10582 void kvm_arch_start_assignment(struct kvm *kvm) 10583 { 10584 atomic_inc(&kvm->arch.assigned_device_count); 10585 } 10586 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10587 10588 void kvm_arch_end_assignment(struct kvm *kvm) 10589 { 10590 atomic_dec(&kvm->arch.assigned_device_count); 10591 } 10592 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10593 10594 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10595 { 10596 return atomic_read(&kvm->arch.assigned_device_count); 10597 } 10598 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10599 10600 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10601 { 10602 atomic_inc(&kvm->arch.noncoherent_dma_count); 10603 } 10604 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10605 10606 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10607 { 10608 atomic_dec(&kvm->arch.noncoherent_dma_count); 10609 } 10610 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10611 10612 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10613 { 10614 return atomic_read(&kvm->arch.noncoherent_dma_count); 10615 } 10616 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10617 10618 bool kvm_arch_has_irq_bypass(void) 10619 { 10620 return true; 10621 } 10622 10623 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10624 struct irq_bypass_producer *prod) 10625 { 10626 struct kvm_kernel_irqfd *irqfd = 10627 container_of(cons, struct kvm_kernel_irqfd, consumer); 10628 10629 irqfd->producer = prod; 10630 10631 return kvm_x86_ops.update_pi_irte(irqfd->kvm, 10632 prod->irq, irqfd->gsi, 1); 10633 } 10634 10635 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10636 struct irq_bypass_producer *prod) 10637 { 10638 int ret; 10639 struct kvm_kernel_irqfd *irqfd = 10640 container_of(cons, struct kvm_kernel_irqfd, consumer); 10641 10642 WARN_ON(irqfd->producer != prod); 10643 irqfd->producer = NULL; 10644 10645 /* 10646 * When producer of consumer is unregistered, we change back to 10647 * remapped mode, so we can re-use the current implementation 10648 * when the irq is masked/disabled or the consumer side (KVM 10649 * int this case doesn't want to receive the interrupts. 10650 */ 10651 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10652 if (ret) 10653 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10654 " fails: %d\n", irqfd->consumer.token, ret); 10655 } 10656 10657 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10658 uint32_t guest_irq, bool set) 10659 { 10660 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10661 } 10662 10663 bool kvm_vector_hashing_enabled(void) 10664 { 10665 return vector_hashing; 10666 } 10667 10668 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10669 { 10670 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10671 } 10672 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10673 10674 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10675 { 10676 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10677 10678 /* The STIBP bit doesn't fault even if it's not advertised */ 10679 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10680 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10681 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10682 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10683 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10684 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10685 10686 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10687 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10688 bits &= ~SPEC_CTRL_SSBD; 10689 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10690 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10691 bits &= ~SPEC_CTRL_SSBD; 10692 10693 return bits; 10694 } 10695 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10696 10697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10719