xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 54618888)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 #include "smm.h"
34 
35 #include <linux/clocksource.h>
36 #include <linux/interrupt.h>
37 #include <linux/kvm.h>
38 #include <linux/fs.h>
39 #include <linux/vmalloc.h>
40 #include <linux/export.h>
41 #include <linux/moduleparam.h>
42 #include <linux/mman.h>
43 #include <linux/highmem.h>
44 #include <linux/iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 
91 struct kvm_caps kvm_caps __read_mostly = {
92 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
93 };
94 EXPORT_SYMBOL_GPL(kvm_caps);
95 
96 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
97 
98 #define emul_to_vcpu(ctxt) \
99 	((struct kvm_vcpu *)(ctxt)->vcpu)
100 
101 /* EFER defaults:
102  * - enable syscall per default because its emulated by KVM
103  * - enable LME and LMA per default on 64 bit KVM
104  */
105 #ifdef CONFIG_X86_64
106 static
107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
108 #else
109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
110 #endif
111 
112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
113 
114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
115 
116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
117 
118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
119                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
120 
121 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
122 static void process_nmi(struct kvm_vcpu *vcpu);
123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
124 static void store_regs(struct kvm_vcpu *vcpu);
125 static int sync_regs(struct kvm_vcpu *vcpu);
126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
127 
128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 
131 struct kvm_x86_ops kvm_x86_ops __read_mostly;
132 
133 #define KVM_X86_OP(func)					     \
134 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
135 				*(((struct kvm_x86_ops *)0)->func));
136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
138 #include <asm/kvm-x86-ops.h>
139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
141 
142 static bool __read_mostly ignore_msrs = 0;
143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
144 
145 bool __read_mostly report_ignored_msrs = true;
146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
147 EXPORT_SYMBOL_GPL(report_ignored_msrs);
148 
149 unsigned int min_timer_period_us = 200;
150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly kvmclock_periodic_sync = true;
153 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
154 
155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
156 static u32 __read_mostly tsc_tolerance_ppm = 250;
157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
158 
159 /*
160  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
161  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
162  * advancement entirely.  Any other value is used as-is and disables adaptive
163  * tuning, i.e. allows privileged userspace to set an exact advancement time.
164  */
165 static int __read_mostly lapic_timer_advance_ns = -1;
166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
167 
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, S_IRUGO);
170 
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, S_IRUGO);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174 
175 /*
176  * Flags to manipulate forced emulation behavior (any non-zero value will
177  * enable forced emulation).
178  */
179 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182 
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
185 
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190 
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193 
194 /*
195  * Restoring the host value for MSRs that are only consumed when running in
196  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
197  * returns to userspace, i.e. the kernel can run with the guest's value.
198  */
199 #define KVM_MAX_NR_USER_RETURN_MSRS 16
200 
201 struct kvm_user_return_msrs {
202 	struct user_return_notifier urn;
203 	bool registered;
204 	struct kvm_user_return_msr_values {
205 		u64 host;
206 		u64 curr;
207 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
208 };
209 
210 u32 __read_mostly kvm_nr_uret_msrs;
211 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
212 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
213 static struct kvm_user_return_msrs __percpu *user_return_msrs;
214 
215 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
216 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
217 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
218 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
219 
220 u64 __read_mostly host_efer;
221 EXPORT_SYMBOL_GPL(host_efer);
222 
223 bool __read_mostly allow_smaller_maxphyaddr = 0;
224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
225 
226 bool __read_mostly enable_apicv = true;
227 EXPORT_SYMBOL_GPL(enable_apicv);
228 
229 u64 __read_mostly host_xss;
230 EXPORT_SYMBOL_GPL(host_xss);
231 
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 	KVM_GENERIC_VM_STATS(),
234 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 	STATS_DESC_COUNTER(VM, mmu_pte_write),
236 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_flooded),
238 	STATS_DESC_COUNTER(VM, mmu_recycled),
239 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 	STATS_DESC_ICOUNTER(VM, pages_4k),
242 	STATS_DESC_ICOUNTER(VM, pages_2m),
243 	STATS_DESC_ICOUNTER(VM, pages_1g),
244 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248 
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 	.name_size = KVM_STATS_NAME_SIZE,
251 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 	.id_offset = sizeof(struct kvm_stats_header),
253 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 		       sizeof(kvm_vm_stats_desc),
256 };
257 
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 	KVM_GENERIC_VCPU_STATS(),
260 	STATS_DESC_COUNTER(VCPU, pf_taken),
261 	STATS_DESC_COUNTER(VCPU, pf_fixed),
262 	STATS_DESC_COUNTER(VCPU, pf_emulate),
263 	STATS_DESC_COUNTER(VCPU, pf_spurious),
264 	STATS_DESC_COUNTER(VCPU, pf_fast),
265 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 	STATS_DESC_COUNTER(VCPU, pf_guest),
267 	STATS_DESC_COUNTER(VCPU, tlb_flush),
268 	STATS_DESC_COUNTER(VCPU, invlpg),
269 	STATS_DESC_COUNTER(VCPU, exits),
270 	STATS_DESC_COUNTER(VCPU, io_exits),
271 	STATS_DESC_COUNTER(VCPU, mmio_exits),
272 	STATS_DESC_COUNTER(VCPU, signal_exits),
273 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 	STATS_DESC_COUNTER(VCPU, l1d_flush),
276 	STATS_DESC_COUNTER(VCPU, halt_exits),
277 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 	STATS_DESC_COUNTER(VCPU, irq_exits),
279 	STATS_DESC_COUNTER(VCPU, host_state_reload),
280 	STATS_DESC_COUNTER(VCPU, fpu_reload),
281 	STATS_DESC_COUNTER(VCPU, insn_emulation),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 	STATS_DESC_COUNTER(VCPU, hypercalls),
284 	STATS_DESC_COUNTER(VCPU, irq_injections),
285 	STATS_DESC_COUNTER(VCPU, nmi_injections),
286 	STATS_DESC_COUNTER(VCPU, req_event),
287 	STATS_DESC_COUNTER(VCPU, nested_run),
288 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 	STATS_DESC_COUNTER(VCPU, preemption_reported),
291 	STATS_DESC_COUNTER(VCPU, preemption_other),
292 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295 
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 	.name_size = KVM_STATS_NAME_SIZE,
298 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 	.id_offset = sizeof(struct kvm_stats_header),
300 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 		       sizeof(kvm_vcpu_stats_desc),
303 };
304 
305 u64 __read_mostly host_xcr0;
306 
307 static struct kmem_cache *x86_emulator_cache;
308 
309 /*
310  * When called, it means the previous get/set msr reached an invalid msr.
311  * Return true if we want to ignore/silent this failed msr access.
312  */
313 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
314 {
315 	const char *op = write ? "wrmsr" : "rdmsr";
316 
317 	if (ignore_msrs) {
318 		if (report_ignored_msrs)
319 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
320 				      op, msr, data);
321 		/* Mask the error */
322 		return true;
323 	} else {
324 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
325 				      op, msr, data);
326 		return false;
327 	}
328 }
329 
330 static struct kmem_cache *kvm_alloc_emulator_cache(void)
331 {
332 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
333 	unsigned int size = sizeof(struct x86_emulate_ctxt);
334 
335 	return kmem_cache_create_usercopy("x86_emulator", size,
336 					  __alignof__(struct x86_emulate_ctxt),
337 					  SLAB_ACCOUNT, useroffset,
338 					  size - useroffset, NULL);
339 }
340 
341 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
342 
343 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
344 {
345 	int i;
346 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
347 		vcpu->arch.apf.gfns[i] = ~0;
348 }
349 
350 static void kvm_on_user_return(struct user_return_notifier *urn)
351 {
352 	unsigned slot;
353 	struct kvm_user_return_msrs *msrs
354 		= container_of(urn, struct kvm_user_return_msrs, urn);
355 	struct kvm_user_return_msr_values *values;
356 	unsigned long flags;
357 
358 	/*
359 	 * Disabling irqs at this point since the following code could be
360 	 * interrupted and executed through kvm_arch_hardware_disable()
361 	 */
362 	local_irq_save(flags);
363 	if (msrs->registered) {
364 		msrs->registered = false;
365 		user_return_notifier_unregister(urn);
366 	}
367 	local_irq_restore(flags);
368 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
369 		values = &msrs->values[slot];
370 		if (values->host != values->curr) {
371 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
372 			values->curr = values->host;
373 		}
374 	}
375 }
376 
377 static int kvm_probe_user_return_msr(u32 msr)
378 {
379 	u64 val;
380 	int ret;
381 
382 	preempt_disable();
383 	ret = rdmsrl_safe(msr, &val);
384 	if (ret)
385 		goto out;
386 	ret = wrmsrl_safe(msr, val);
387 out:
388 	preempt_enable();
389 	return ret;
390 }
391 
392 int kvm_add_user_return_msr(u32 msr)
393 {
394 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
395 
396 	if (kvm_probe_user_return_msr(msr))
397 		return -1;
398 
399 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
400 	return kvm_nr_uret_msrs++;
401 }
402 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
403 
404 int kvm_find_user_return_msr(u32 msr)
405 {
406 	int i;
407 
408 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
409 		if (kvm_uret_msrs_list[i] == msr)
410 			return i;
411 	}
412 	return -1;
413 }
414 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
415 
416 static void kvm_user_return_msr_cpu_online(void)
417 {
418 	unsigned int cpu = smp_processor_id();
419 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
420 	u64 value;
421 	int i;
422 
423 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
424 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
425 		msrs->values[i].host = value;
426 		msrs->values[i].curr = value;
427 	}
428 }
429 
430 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
431 {
432 	unsigned int cpu = smp_processor_id();
433 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
434 	int err;
435 
436 	value = (value & mask) | (msrs->values[slot].host & ~mask);
437 	if (value == msrs->values[slot].curr)
438 		return 0;
439 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
440 	if (err)
441 		return 1;
442 
443 	msrs->values[slot].curr = value;
444 	if (!msrs->registered) {
445 		msrs->urn.on_user_return = kvm_on_user_return;
446 		user_return_notifier_register(&msrs->urn);
447 		msrs->registered = true;
448 	}
449 	return 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
452 
453 static void drop_user_return_notifiers(void)
454 {
455 	unsigned int cpu = smp_processor_id();
456 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
457 
458 	if (msrs->registered)
459 		kvm_on_user_return(&msrs->urn);
460 }
461 
462 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
463 {
464 	return vcpu->arch.apic_base;
465 }
466 
467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
468 {
469 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
470 }
471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
472 
473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
474 {
475 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
476 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
477 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
478 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
479 
480 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
481 		return 1;
482 	if (!msr_info->host_initiated) {
483 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
484 			return 1;
485 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
486 			return 1;
487 	}
488 
489 	kvm_lapic_set_base(vcpu, msr_info->data);
490 	kvm_recalculate_apic_map(vcpu->kvm);
491 	return 0;
492 }
493 
494 /*
495  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
496  *
497  * Hardware virtualization extension instructions may fault if a reboot turns
498  * off virtualization while processes are running.  Usually after catching the
499  * fault we just panic; during reboot instead the instruction is ignored.
500  */
501 noinstr void kvm_spurious_fault(void)
502 {
503 	/* Fault while not rebooting.  We want the trace. */
504 	BUG_ON(!kvm_rebooting);
505 }
506 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
507 
508 #define EXCPT_BENIGN		0
509 #define EXCPT_CONTRIBUTORY	1
510 #define EXCPT_PF		2
511 
512 static int exception_class(int vector)
513 {
514 	switch (vector) {
515 	case PF_VECTOR:
516 		return EXCPT_PF;
517 	case DE_VECTOR:
518 	case TS_VECTOR:
519 	case NP_VECTOR:
520 	case SS_VECTOR:
521 	case GP_VECTOR:
522 		return EXCPT_CONTRIBUTORY;
523 	default:
524 		break;
525 	}
526 	return EXCPT_BENIGN;
527 }
528 
529 #define EXCPT_FAULT		0
530 #define EXCPT_TRAP		1
531 #define EXCPT_ABORT		2
532 #define EXCPT_INTERRUPT		3
533 #define EXCPT_DB		4
534 
535 static int exception_type(int vector)
536 {
537 	unsigned int mask;
538 
539 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
540 		return EXCPT_INTERRUPT;
541 
542 	mask = 1 << vector;
543 
544 	/*
545 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
546 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
547 	 */
548 	if (mask & (1 << DB_VECTOR))
549 		return EXCPT_DB;
550 
551 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
552 		return EXCPT_TRAP;
553 
554 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
555 		return EXCPT_ABORT;
556 
557 	/* Reserved exceptions will result in fault */
558 	return EXCPT_FAULT;
559 }
560 
561 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
562 				   struct kvm_queued_exception *ex)
563 {
564 	if (!ex->has_payload)
565 		return;
566 
567 	switch (ex->vector) {
568 	case DB_VECTOR:
569 		/*
570 		 * "Certain debug exceptions may clear bit 0-3.  The
571 		 * remaining contents of the DR6 register are never
572 		 * cleared by the processor".
573 		 */
574 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
575 		/*
576 		 * In order to reflect the #DB exception payload in guest
577 		 * dr6, three components need to be considered: active low
578 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
579 		 * DR6_BS and DR6_BT)
580 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
581 		 * In the target guest dr6:
582 		 * FIXED_1 bits should always be set.
583 		 * Active low bits should be cleared if 1-setting in payload.
584 		 * Active high bits should be set if 1-setting in payload.
585 		 *
586 		 * Note, the payload is compatible with the pending debug
587 		 * exceptions/exit qualification under VMX, that active_low bits
588 		 * are active high in payload.
589 		 * So they need to be flipped for DR6.
590 		 */
591 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
592 		vcpu->arch.dr6 |= ex->payload;
593 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
594 
595 		/*
596 		 * The #DB payload is defined as compatible with the 'pending
597 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
598 		 * defined in the 'pending debug exceptions' field (enabled
599 		 * breakpoint), it is reserved and must be zero in DR6.
600 		 */
601 		vcpu->arch.dr6 &= ~BIT(12);
602 		break;
603 	case PF_VECTOR:
604 		vcpu->arch.cr2 = ex->payload;
605 		break;
606 	}
607 
608 	ex->has_payload = false;
609 	ex->payload = 0;
610 }
611 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
612 
613 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
614 				       bool has_error_code, u32 error_code,
615 				       bool has_payload, unsigned long payload)
616 {
617 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
618 
619 	ex->vector = vector;
620 	ex->injected = false;
621 	ex->pending = true;
622 	ex->has_error_code = has_error_code;
623 	ex->error_code = error_code;
624 	ex->has_payload = has_payload;
625 	ex->payload = payload;
626 }
627 
628 /* Forcibly leave the nested mode in cases like a vCPU reset */
629 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
630 {
631 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
632 }
633 
634 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
635 		unsigned nr, bool has_error, u32 error_code,
636 	        bool has_payload, unsigned long payload, bool reinject)
637 {
638 	u32 prev_nr;
639 	int class1, class2;
640 
641 	kvm_make_request(KVM_REQ_EVENT, vcpu);
642 
643 	/*
644 	 * If the exception is destined for L2 and isn't being reinjected,
645 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
646 	 * previously injected exception is not checked because it was checked
647 	 * when it was original queued, and re-checking is incorrect if _L1_
648 	 * injected the exception, in which case it's exempt from interception.
649 	 */
650 	if (!reinject && is_guest_mode(vcpu) &&
651 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
652 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
653 					   has_payload, payload);
654 		return;
655 	}
656 
657 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
658 	queue:
659 		if (reinject) {
660 			/*
661 			 * On VM-Entry, an exception can be pending if and only
662 			 * if event injection was blocked by nested_run_pending.
663 			 * In that case, however, vcpu_enter_guest() requests an
664 			 * immediate exit, and the guest shouldn't proceed far
665 			 * enough to need reinjection.
666 			 */
667 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
668 			vcpu->arch.exception.injected = true;
669 			if (WARN_ON_ONCE(has_payload)) {
670 				/*
671 				 * A reinjected event has already
672 				 * delivered its payload.
673 				 */
674 				has_payload = false;
675 				payload = 0;
676 			}
677 		} else {
678 			vcpu->arch.exception.pending = true;
679 			vcpu->arch.exception.injected = false;
680 		}
681 		vcpu->arch.exception.has_error_code = has_error;
682 		vcpu->arch.exception.vector = nr;
683 		vcpu->arch.exception.error_code = error_code;
684 		vcpu->arch.exception.has_payload = has_payload;
685 		vcpu->arch.exception.payload = payload;
686 		if (!is_guest_mode(vcpu))
687 			kvm_deliver_exception_payload(vcpu,
688 						      &vcpu->arch.exception);
689 		return;
690 	}
691 
692 	/* to check exception */
693 	prev_nr = vcpu->arch.exception.vector;
694 	if (prev_nr == DF_VECTOR) {
695 		/* triple fault -> shutdown */
696 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
697 		return;
698 	}
699 	class1 = exception_class(prev_nr);
700 	class2 = exception_class(nr);
701 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
702 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
703 		/*
704 		 * Synthesize #DF.  Clear the previously injected or pending
705 		 * exception so as not to incorrectly trigger shutdown.
706 		 */
707 		vcpu->arch.exception.injected = false;
708 		vcpu->arch.exception.pending = false;
709 
710 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
711 	} else {
712 		/* replace previous exception with a new one in a hope
713 		   that instruction re-execution will regenerate lost
714 		   exception */
715 		goto queue;
716 	}
717 }
718 
719 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
720 {
721 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
722 }
723 EXPORT_SYMBOL_GPL(kvm_queue_exception);
724 
725 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
726 {
727 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
728 }
729 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
730 
731 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
732 			   unsigned long payload)
733 {
734 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
735 }
736 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
737 
738 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
739 				    u32 error_code, unsigned long payload)
740 {
741 	kvm_multiple_exception(vcpu, nr, true, error_code,
742 			       true, payload, false);
743 }
744 
745 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
746 {
747 	if (err)
748 		kvm_inject_gp(vcpu, 0);
749 	else
750 		return kvm_skip_emulated_instruction(vcpu);
751 
752 	return 1;
753 }
754 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
755 
756 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
757 {
758 	if (err) {
759 		kvm_inject_gp(vcpu, 0);
760 		return 1;
761 	}
762 
763 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
764 				       EMULTYPE_COMPLETE_USER_EXIT);
765 }
766 
767 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
768 {
769 	++vcpu->stat.pf_guest;
770 
771 	/*
772 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
773 	 * whether or not L1 wants to intercept "regular" #PF.
774 	 */
775 	if (is_guest_mode(vcpu) && fault->async_page_fault)
776 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
777 					   true, fault->error_code,
778 					   true, fault->address);
779 	else
780 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
781 					fault->address);
782 }
783 
784 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
785 				    struct x86_exception *fault)
786 {
787 	struct kvm_mmu *fault_mmu;
788 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
789 
790 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
791 					       vcpu->arch.walk_mmu;
792 
793 	/*
794 	 * Invalidate the TLB entry for the faulting address, if it exists,
795 	 * else the access will fault indefinitely (and to emulate hardware).
796 	 */
797 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
798 	    !(fault->error_code & PFERR_RSVD_MASK))
799 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
800 				       fault_mmu->root.hpa);
801 
802 	fault_mmu->inject_page_fault(vcpu, fault);
803 }
804 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
805 
806 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
807 {
808 	atomic_inc(&vcpu->arch.nmi_queued);
809 	kvm_make_request(KVM_REQ_NMI, vcpu);
810 }
811 
812 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
813 {
814 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
815 }
816 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
817 
818 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
819 {
820 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
821 }
822 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
823 
824 /*
825  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
826  * a #GP and return false.
827  */
828 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
829 {
830 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
831 		return true;
832 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
833 	return false;
834 }
835 
836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
837 {
838 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
839 		return true;
840 
841 	kvm_queue_exception(vcpu, UD_VECTOR);
842 	return false;
843 }
844 EXPORT_SYMBOL_GPL(kvm_require_dr);
845 
846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
847 {
848 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
849 }
850 
851 /*
852  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
853  */
854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
855 {
856 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
857 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
858 	gpa_t real_gpa;
859 	int i;
860 	int ret;
861 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
862 
863 	/*
864 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
865 	 * to an L1 GPA.
866 	 */
867 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
868 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
869 	if (real_gpa == INVALID_GPA)
870 		return 0;
871 
872 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
873 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
874 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
875 	if (ret < 0)
876 		return 0;
877 
878 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
879 		if ((pdpte[i] & PT_PRESENT_MASK) &&
880 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
881 			return 0;
882 		}
883 	}
884 
885 	/*
886 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
887 	 * Shadow page roots need to be reconstructed instead.
888 	 */
889 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
890 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
891 
892 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
893 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
894 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
895 	vcpu->arch.pdptrs_from_userspace = false;
896 
897 	return 1;
898 }
899 EXPORT_SYMBOL_GPL(load_pdptrs);
900 
901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
902 {
903 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
904 		kvm_clear_async_pf_completion_queue(vcpu);
905 		kvm_async_pf_hash_reset(vcpu);
906 
907 		/*
908 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
909 		 * perspective.
910 		 */
911 		if (!(cr0 & X86_CR0_PG))
912 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
913 	}
914 
915 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
916 		kvm_mmu_reset_context(vcpu);
917 
918 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
919 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
920 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
921 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
922 }
923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
924 
925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
926 {
927 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
928 
929 	cr0 |= X86_CR0_ET;
930 
931 #ifdef CONFIG_X86_64
932 	if (cr0 & 0xffffffff00000000UL)
933 		return 1;
934 #endif
935 
936 	cr0 &= ~CR0_RESERVED_BITS;
937 
938 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
939 		return 1;
940 
941 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
942 		return 1;
943 
944 #ifdef CONFIG_X86_64
945 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
946 	    (cr0 & X86_CR0_PG)) {
947 		int cs_db, cs_l;
948 
949 		if (!is_pae(vcpu))
950 			return 1;
951 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
952 		if (cs_l)
953 			return 1;
954 	}
955 #endif
956 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
957 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
958 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
959 		return 1;
960 
961 	if (!(cr0 & X86_CR0_PG) &&
962 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
963 		return 1;
964 
965 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
966 
967 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr0);
972 
973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
974 {
975 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
976 }
977 EXPORT_SYMBOL_GPL(kvm_lmsw);
978 
979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
980 {
981 	if (vcpu->arch.guest_state_protected)
982 		return;
983 
984 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
985 
986 		if (vcpu->arch.xcr0 != host_xcr0)
987 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
988 
989 		if (vcpu->arch.xsaves_enabled &&
990 		    vcpu->arch.ia32_xss != host_xss)
991 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
992 	}
993 
994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
995 	if (static_cpu_has(X86_FEATURE_PKU) &&
996 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
997 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
998 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
999 		write_pkru(vcpu->arch.pkru);
1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1003 
1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1005 {
1006 	if (vcpu->arch.guest_state_protected)
1007 		return;
1008 
1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1010 	if (static_cpu_has(X86_FEATURE_PKU) &&
1011 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1012 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1013 		vcpu->arch.pkru = rdpkru();
1014 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1015 			write_pkru(vcpu->arch.host_pkru);
1016 	}
1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1018 
1019 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1020 
1021 		if (vcpu->arch.xcr0 != host_xcr0)
1022 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1023 
1024 		if (vcpu->arch.xsaves_enabled &&
1025 		    vcpu->arch.ia32_xss != host_xss)
1026 			wrmsrl(MSR_IA32_XSS, host_xss);
1027 	}
1028 
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1031 
1032 #ifdef CONFIG_X86_64
1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1034 {
1035 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1036 }
1037 #endif
1038 
1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1040 {
1041 	u64 xcr0 = xcr;
1042 	u64 old_xcr0 = vcpu->arch.xcr0;
1043 	u64 valid_bits;
1044 
1045 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1046 	if (index != XCR_XFEATURE_ENABLED_MASK)
1047 		return 1;
1048 	if (!(xcr0 & XFEATURE_MASK_FP))
1049 		return 1;
1050 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1051 		return 1;
1052 
1053 	/*
1054 	 * Do not allow the guest to set bits that we do not support
1055 	 * saving.  However, xcr0 bit 0 is always set, even if the
1056 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1057 	 */
1058 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1059 	if (xcr0 & ~valid_bits)
1060 		return 1;
1061 
1062 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1063 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1064 		return 1;
1065 
1066 	if (xcr0 & XFEATURE_MASK_AVX512) {
1067 		if (!(xcr0 & XFEATURE_MASK_YMM))
1068 			return 1;
1069 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1070 			return 1;
1071 	}
1072 
1073 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1074 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1075 		return 1;
1076 
1077 	vcpu->arch.xcr0 = xcr0;
1078 
1079 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1080 		kvm_update_cpuid_runtime(vcpu);
1081 	return 0;
1082 }
1083 
1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1085 {
1086 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1087 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 		kvm_inject_gp(vcpu, 0);
1090 		return 1;
1091 	}
1092 
1093 	return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096 
1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 	if (cr4 & cr4_reserved_bits)
1100 		return false;
1101 
1102 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 		return false;
1104 
1105 	return true;
1106 }
1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1108 
1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1112 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1113 }
1114 
1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1116 {
1117 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1118 		kvm_mmu_reset_context(vcpu);
1119 
1120 	/*
1121 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1122 	 * according to the SDM; however, stale prev_roots could be reused
1123 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1124 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1125 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1126 	 * so fall through.
1127 	 */
1128 	if (!tdp_enabled &&
1129 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1130 		kvm_mmu_unload(vcpu);
1131 
1132 	/*
1133 	 * The TLB has to be flushed for all PCIDs if any of the following
1134 	 * (architecturally required) changes happen:
1135 	 * - CR4.PCIDE is changed from 1 to 0
1136 	 * - CR4.PGE is toggled
1137 	 *
1138 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1139 	 */
1140 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1141 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1142 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143 
1144 	/*
1145 	 * The TLB has to be flushed for the current PCID if any of the
1146 	 * following (architecturally required) changes happen:
1147 	 * - CR4.SMEP is changed from 0 to 1
1148 	 * - CR4.PAE is toggled
1149 	 */
1150 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1151 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1152 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1153 
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1156 
1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1158 {
1159 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1160 
1161 	if (!kvm_is_valid_cr4(vcpu, cr4))
1162 		return 1;
1163 
1164 	if (is_long_mode(vcpu)) {
1165 		if (!(cr4 & X86_CR4_PAE))
1166 			return 1;
1167 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1168 			return 1;
1169 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1170 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1171 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172 		return 1;
1173 
1174 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1175 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1176 			return 1;
1177 
1178 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1179 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1180 			return 1;
1181 	}
1182 
1183 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1184 
1185 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1190 
1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1192 {
1193 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1194 	unsigned long roots_to_free = 0;
1195 	int i;
1196 
1197 	/*
1198 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1199 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1200 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1201 	 * the invalidation, but the guest's TLB entries need to be flushed as
1202 	 * the CPU may have cached entries in its TLB for the target PCID.
1203 	 */
1204 	if (unlikely(tdp_enabled)) {
1205 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * If neither the current CR3 nor any of the prev_roots use the given
1211 	 * PCID, then nothing needs to be done here because a resync will
1212 	 * happen anyway before switching to any other CR3.
1213 	 */
1214 	if (kvm_get_active_pcid(vcpu) == pcid) {
1215 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1216 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1217 	}
1218 
1219 	/*
1220 	 * If PCID is disabled, there is no need to free prev_roots even if the
1221 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1222 	 * with PCIDE=0.
1223 	 */
1224 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1225 		return;
1226 
1227 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1228 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1229 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1230 
1231 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1232 }
1233 
1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1235 {
1236 	bool skip_tlb_flush = false;
1237 	unsigned long pcid = 0;
1238 #ifdef CONFIG_X86_64
1239 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1240 
1241 	if (pcid_enabled) {
1242 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1243 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1244 		pcid = cr3 & X86_CR3_PCID_MASK;
1245 	}
1246 #endif
1247 
1248 	/* PDPTRs are always reloaded for PAE paging. */
1249 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1250 		goto handle_tlb_flush;
1251 
1252 	/*
1253 	 * Do not condition the GPA check on long mode, this helper is used to
1254 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1255 	 * the current vCPU mode is accurate.
1256 	 */
1257 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1258 		return 1;
1259 
1260 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1261 		return 1;
1262 
1263 	if (cr3 != kvm_read_cr3(vcpu))
1264 		kvm_mmu_new_pgd(vcpu, cr3);
1265 
1266 	vcpu->arch.cr3 = cr3;
1267 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1268 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1269 
1270 handle_tlb_flush:
1271 	/*
1272 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1273 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1274 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1275 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1276 	 * i.e. only PCID=0 can be relevant.
1277 	 */
1278 	if (!skip_tlb_flush)
1279 		kvm_invalidate_pcid(vcpu, pcid);
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1284 
1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1286 {
1287 	if (cr8 & CR8_RESERVED_BITS)
1288 		return 1;
1289 	if (lapic_in_kernel(vcpu))
1290 		kvm_lapic_set_tpr(vcpu, cr8);
1291 	else
1292 		vcpu->arch.cr8 = cr8;
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1296 
1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1298 {
1299 	if (lapic_in_kernel(vcpu))
1300 		return kvm_lapic_get_cr8(vcpu);
1301 	else
1302 		return vcpu->arch.cr8;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1305 
1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1307 {
1308 	int i;
1309 
1310 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1311 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1312 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1313 	}
1314 }
1315 
1316 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1317 {
1318 	unsigned long dr7;
1319 
1320 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321 		dr7 = vcpu->arch.guest_debug_dr7;
1322 	else
1323 		dr7 = vcpu->arch.dr7;
1324 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1325 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1326 	if (dr7 & DR7_BP_EN_MASK)
1327 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1330 
1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1332 {
1333 	u64 fixed = DR6_FIXED_1;
1334 
1335 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1336 		fixed |= DR6_RTM;
1337 
1338 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1339 		fixed |= DR6_BUS_LOCK;
1340 	return fixed;
1341 }
1342 
1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1344 {
1345 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1346 
1347 	switch (dr) {
1348 	case 0 ... 3:
1349 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1350 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1351 			vcpu->arch.eff_db[dr] = val;
1352 		break;
1353 	case 4:
1354 	case 6:
1355 		if (!kvm_dr6_valid(val))
1356 			return 1; /* #GP */
1357 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1358 		break;
1359 	case 5:
1360 	default: /* 7 */
1361 		if (!kvm_dr7_valid(val))
1362 			return 1; /* #GP */
1363 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1364 		kvm_update_dr7(vcpu);
1365 		break;
1366 	}
1367 
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_set_dr);
1371 
1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1373 {
1374 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1375 
1376 	switch (dr) {
1377 	case 0 ... 3:
1378 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1379 		break;
1380 	case 4:
1381 	case 6:
1382 		*val = vcpu->arch.dr6;
1383 		break;
1384 	case 5:
1385 	default: /* 7 */
1386 		*val = vcpu->arch.dr7;
1387 		break;
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_get_dr);
1391 
1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1393 {
1394 	u32 ecx = kvm_rcx_read(vcpu);
1395 	u64 data;
1396 
1397 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1398 		kvm_inject_gp(vcpu, 0);
1399 		return 1;
1400 	}
1401 
1402 	kvm_rax_write(vcpu, (u32)data);
1403 	kvm_rdx_write(vcpu, data >> 32);
1404 	return kvm_skip_emulated_instruction(vcpu);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1407 
1408 /*
1409  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1410  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1411  *
1412  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1413  * extract the supported MSRs from the related const lists.
1414  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1415  * capabilities of the host cpu. This capabilities test skips MSRs that are
1416  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1417  * may depend on host virtualization features rather than host cpu features.
1418  */
1419 
1420 static const u32 msrs_to_save_all[] = {
1421 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1422 	MSR_STAR,
1423 #ifdef CONFIG_X86_64
1424 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1425 #endif
1426 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1427 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1428 	MSR_IA32_SPEC_CTRL,
1429 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1430 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1431 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1432 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1433 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1434 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1435 	MSR_IA32_UMWAIT_CONTROL,
1436 
1437 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1438 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1439 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1440 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1441 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1442 
1443 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1444 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1445 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1446 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1448 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1449 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1450 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1452 
1453 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1454 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1455 
1456 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1457 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1458 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1459 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1460 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1461 
1462 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1463 };
1464 
1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1466 static unsigned num_msrs_to_save;
1467 
1468 static const u32 emulated_msrs_all[] = {
1469 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1470 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1471 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1472 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1473 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1474 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1475 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1476 	HV_X64_MSR_RESET,
1477 	HV_X64_MSR_VP_INDEX,
1478 	HV_X64_MSR_VP_RUNTIME,
1479 	HV_X64_MSR_SCONTROL,
1480 	HV_X64_MSR_STIMER0_CONFIG,
1481 	HV_X64_MSR_VP_ASSIST_PAGE,
1482 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1483 	HV_X64_MSR_TSC_EMULATION_STATUS,
1484 	HV_X64_MSR_SYNDBG_OPTIONS,
1485 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1486 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1487 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1488 
1489 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1490 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1491 
1492 	MSR_IA32_TSC_ADJUST,
1493 	MSR_IA32_TSC_DEADLINE,
1494 	MSR_IA32_ARCH_CAPABILITIES,
1495 	MSR_IA32_PERF_CAPABILITIES,
1496 	MSR_IA32_MISC_ENABLE,
1497 	MSR_IA32_MCG_STATUS,
1498 	MSR_IA32_MCG_CTL,
1499 	MSR_IA32_MCG_EXT_CTL,
1500 	MSR_IA32_SMBASE,
1501 	MSR_SMI_COUNT,
1502 	MSR_PLATFORM_INFO,
1503 	MSR_MISC_FEATURES_ENABLES,
1504 	MSR_AMD64_VIRT_SPEC_CTRL,
1505 	MSR_AMD64_TSC_RATIO,
1506 	MSR_IA32_POWER_CTL,
1507 	MSR_IA32_UCODE_REV,
1508 
1509 	/*
1510 	 * The following list leaves out MSRs whose values are determined
1511 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1512 	 * We always support the "true" VMX control MSRs, even if the host
1513 	 * processor does not, so I am putting these registers here rather
1514 	 * than in msrs_to_save_all.
1515 	 */
1516 	MSR_IA32_VMX_BASIC,
1517 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1518 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1519 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1520 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1521 	MSR_IA32_VMX_MISC,
1522 	MSR_IA32_VMX_CR0_FIXED0,
1523 	MSR_IA32_VMX_CR4_FIXED0,
1524 	MSR_IA32_VMX_VMCS_ENUM,
1525 	MSR_IA32_VMX_PROCBASED_CTLS2,
1526 	MSR_IA32_VMX_EPT_VPID_CAP,
1527 	MSR_IA32_VMX_VMFUNC,
1528 
1529 	MSR_K7_HWCR,
1530 	MSR_KVM_POLL_CONTROL,
1531 };
1532 
1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1534 static unsigned num_emulated_msrs;
1535 
1536 /*
1537  * List of msr numbers which are used to expose MSR-based features that
1538  * can be used by a hypervisor to validate requested CPU features.
1539  */
1540 static const u32 msr_based_features_all[] = {
1541 	MSR_IA32_VMX_BASIC,
1542 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1543 	MSR_IA32_VMX_PINBASED_CTLS,
1544 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1545 	MSR_IA32_VMX_PROCBASED_CTLS,
1546 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1547 	MSR_IA32_VMX_EXIT_CTLS,
1548 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1549 	MSR_IA32_VMX_ENTRY_CTLS,
1550 	MSR_IA32_VMX_MISC,
1551 	MSR_IA32_VMX_CR0_FIXED0,
1552 	MSR_IA32_VMX_CR0_FIXED1,
1553 	MSR_IA32_VMX_CR4_FIXED0,
1554 	MSR_IA32_VMX_CR4_FIXED1,
1555 	MSR_IA32_VMX_VMCS_ENUM,
1556 	MSR_IA32_VMX_PROCBASED_CTLS2,
1557 	MSR_IA32_VMX_EPT_VPID_CAP,
1558 	MSR_IA32_VMX_VMFUNC,
1559 
1560 	MSR_AMD64_DE_CFG,
1561 	MSR_IA32_UCODE_REV,
1562 	MSR_IA32_ARCH_CAPABILITIES,
1563 	MSR_IA32_PERF_CAPABILITIES,
1564 };
1565 
1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1567 static unsigned int num_msr_based_features;
1568 
1569 /*
1570  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1571  * does not yet virtualize. These include:
1572  *   10 - MISC_PACKAGE_CTRLS
1573  *   11 - ENERGY_FILTERING_CTL
1574  *   12 - DOITM
1575  *   18 - FB_CLEAR_CTRL
1576  *   21 - XAPIC_DISABLE_STATUS
1577  *   23 - OVERCLOCKING_STATUS
1578  */
1579 
1580 #define KVM_SUPPORTED_ARCH_CAP \
1581 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1582 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1583 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1584 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1585 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1586 
1587 static u64 kvm_get_arch_capabilities(void)
1588 {
1589 	u64 data = 0;
1590 
1591 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1592 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1593 		data &= KVM_SUPPORTED_ARCH_CAP;
1594 	}
1595 
1596 	/*
1597 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1598 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1599 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1600 	 * L1 guests, so it need not worry about its own (L2) guests.
1601 	 */
1602 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1603 
1604 	/*
1605 	 * If we're doing cache flushes (either "always" or "cond")
1606 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1607 	 * If an outer hypervisor is doing the cache flush for us
1608 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1609 	 * capability to the guest too, and if EPT is disabled we're not
1610 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1611 	 * require a nested hypervisor to do a flush of its own.
1612 	 */
1613 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1614 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1615 
1616 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1617 		data |= ARCH_CAP_RDCL_NO;
1618 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1619 		data |= ARCH_CAP_SSB_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1621 		data |= ARCH_CAP_MDS_NO;
1622 
1623 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1624 		/*
1625 		 * If RTM=0 because the kernel has disabled TSX, the host might
1626 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1627 		 * and therefore knows that there cannot be TAA) but keep
1628 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1629 		 * and we want to allow migrating those guests to tsx=off hosts.
1630 		 */
1631 		data &= ~ARCH_CAP_TAA_NO;
1632 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1633 		data |= ARCH_CAP_TAA_NO;
1634 	} else {
1635 		/*
1636 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1637 		 * host so the guest can choose between disabling TSX or
1638 		 * using VERW to clear CPU buffers.
1639 		 */
1640 	}
1641 
1642 	return data;
1643 }
1644 
1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1646 {
1647 	switch (msr->index) {
1648 	case MSR_IA32_ARCH_CAPABILITIES:
1649 		msr->data = kvm_get_arch_capabilities();
1650 		break;
1651 	case MSR_IA32_PERF_CAPABILITIES:
1652 		msr->data = kvm_caps.supported_perf_cap;
1653 		break;
1654 	case MSR_IA32_UCODE_REV:
1655 		rdmsrl_safe(msr->index, &msr->data);
1656 		break;
1657 	default:
1658 		return static_call(kvm_x86_get_msr_feature)(msr);
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1664 {
1665 	struct kvm_msr_entry msr;
1666 	int r;
1667 
1668 	msr.index = index;
1669 	r = kvm_get_msr_feature(&msr);
1670 
1671 	if (r == KVM_MSR_RET_INVALID) {
1672 		/* Unconditionally clear the output for simplicity */
1673 		*data = 0;
1674 		if (kvm_msr_ignored_check(index, 0, false))
1675 			r = 0;
1676 	}
1677 
1678 	if (r)
1679 		return r;
1680 
1681 	*data = msr.data;
1682 
1683 	return 0;
1684 }
1685 
1686 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1687 {
1688 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1689 		return false;
1690 
1691 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1692 		return false;
1693 
1694 	if (efer & (EFER_LME | EFER_LMA) &&
1695 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1696 		return false;
1697 
1698 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1699 		return false;
1700 
1701 	return true;
1702 
1703 }
1704 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1705 {
1706 	if (efer & efer_reserved_bits)
1707 		return false;
1708 
1709 	return __kvm_valid_efer(vcpu, efer);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1712 
1713 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1714 {
1715 	u64 old_efer = vcpu->arch.efer;
1716 	u64 efer = msr_info->data;
1717 	int r;
1718 
1719 	if (efer & efer_reserved_bits)
1720 		return 1;
1721 
1722 	if (!msr_info->host_initiated) {
1723 		if (!__kvm_valid_efer(vcpu, efer))
1724 			return 1;
1725 
1726 		if (is_paging(vcpu) &&
1727 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1728 			return 1;
1729 	}
1730 
1731 	efer &= ~EFER_LMA;
1732 	efer |= vcpu->arch.efer & EFER_LMA;
1733 
1734 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1735 	if (r) {
1736 		WARN_ON(r > 0);
1737 		return r;
1738 	}
1739 
1740 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1741 		kvm_mmu_reset_context(vcpu);
1742 
1743 	return 0;
1744 }
1745 
1746 void kvm_enable_efer_bits(u64 mask)
1747 {
1748        efer_reserved_bits &= ~mask;
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1751 
1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1753 {
1754 	struct kvm_x86_msr_filter *msr_filter;
1755 	struct msr_bitmap_range *ranges;
1756 	struct kvm *kvm = vcpu->kvm;
1757 	bool allowed;
1758 	int idx;
1759 	u32 i;
1760 
1761 	/* x2APIC MSRs do not support filtering. */
1762 	if (index >= 0x800 && index <= 0x8ff)
1763 		return true;
1764 
1765 	idx = srcu_read_lock(&kvm->srcu);
1766 
1767 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1768 	if (!msr_filter) {
1769 		allowed = true;
1770 		goto out;
1771 	}
1772 
1773 	allowed = msr_filter->default_allow;
1774 	ranges = msr_filter->ranges;
1775 
1776 	for (i = 0; i < msr_filter->count; i++) {
1777 		u32 start = ranges[i].base;
1778 		u32 end = start + ranges[i].nmsrs;
1779 		u32 flags = ranges[i].flags;
1780 		unsigned long *bitmap = ranges[i].bitmap;
1781 
1782 		if ((index >= start) && (index < end) && (flags & type)) {
1783 			allowed = !!test_bit(index - start, bitmap);
1784 			break;
1785 		}
1786 	}
1787 
1788 out:
1789 	srcu_read_unlock(&kvm->srcu, idx);
1790 
1791 	return allowed;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1794 
1795 /*
1796  * Write @data into the MSR specified by @index.  Select MSR specific fault
1797  * checks are bypassed if @host_initiated is %true.
1798  * Returns 0 on success, non-0 otherwise.
1799  * Assumes vcpu_load() was already called.
1800  */
1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1802 			 bool host_initiated)
1803 {
1804 	struct msr_data msr;
1805 
1806 	switch (index) {
1807 	case MSR_FS_BASE:
1808 	case MSR_GS_BASE:
1809 	case MSR_KERNEL_GS_BASE:
1810 	case MSR_CSTAR:
1811 	case MSR_LSTAR:
1812 		if (is_noncanonical_address(data, vcpu))
1813 			return 1;
1814 		break;
1815 	case MSR_IA32_SYSENTER_EIP:
1816 	case MSR_IA32_SYSENTER_ESP:
1817 		/*
1818 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1819 		 * non-canonical address is written on Intel but not on
1820 		 * AMD (which ignores the top 32-bits, because it does
1821 		 * not implement 64-bit SYSENTER).
1822 		 *
1823 		 * 64-bit code should hence be able to write a non-canonical
1824 		 * value on AMD.  Making the address canonical ensures that
1825 		 * vmentry does not fail on Intel after writing a non-canonical
1826 		 * value, and that something deterministic happens if the guest
1827 		 * invokes 64-bit SYSENTER.
1828 		 */
1829 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1830 		break;
1831 	case MSR_TSC_AUX:
1832 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1833 			return 1;
1834 
1835 		if (!host_initiated &&
1836 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1837 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1838 			return 1;
1839 
1840 		/*
1841 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1842 		 * incomplete and conflicting architectural behavior.  Current
1843 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1844 		 * reserved and always read as zeros.  Enforce Intel's reserved
1845 		 * bits check if and only if the guest CPU is Intel, and clear
1846 		 * the bits in all other cases.  This ensures cross-vendor
1847 		 * migration will provide consistent behavior for the guest.
1848 		 */
1849 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1850 			return 1;
1851 
1852 		data = (u32)data;
1853 		break;
1854 	}
1855 
1856 	msr.data = data;
1857 	msr.index = index;
1858 	msr.host_initiated = host_initiated;
1859 
1860 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1861 }
1862 
1863 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1864 				     u32 index, u64 data, bool host_initiated)
1865 {
1866 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1867 
1868 	if (ret == KVM_MSR_RET_INVALID)
1869 		if (kvm_msr_ignored_check(index, data, true))
1870 			ret = 0;
1871 
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Read the MSR specified by @index into @data.  Select MSR specific fault
1877  * checks are bypassed if @host_initiated is %true.
1878  * Returns 0 on success, non-0 otherwise.
1879  * Assumes vcpu_load() was already called.
1880  */
1881 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1882 		  bool host_initiated)
1883 {
1884 	struct msr_data msr;
1885 	int ret;
1886 
1887 	switch (index) {
1888 	case MSR_TSC_AUX:
1889 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1890 			return 1;
1891 
1892 		if (!host_initiated &&
1893 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1894 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1895 			return 1;
1896 		break;
1897 	}
1898 
1899 	msr.index = index;
1900 	msr.host_initiated = host_initiated;
1901 
1902 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1903 	if (!ret)
1904 		*data = msr.data;
1905 	return ret;
1906 }
1907 
1908 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1909 				     u32 index, u64 *data, bool host_initiated)
1910 {
1911 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1912 
1913 	if (ret == KVM_MSR_RET_INVALID) {
1914 		/* Unconditionally clear *data for simplicity */
1915 		*data = 0;
1916 		if (kvm_msr_ignored_check(index, 0, false))
1917 			ret = 0;
1918 	}
1919 
1920 	return ret;
1921 }
1922 
1923 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1924 {
1925 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1926 		return KVM_MSR_RET_FILTERED;
1927 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1928 }
1929 
1930 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1931 {
1932 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1933 		return KVM_MSR_RET_FILTERED;
1934 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1935 }
1936 
1937 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1938 {
1939 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_get_msr);
1942 
1943 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1944 {
1945 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_msr);
1948 
1949 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1950 {
1951 	if (!vcpu->run->msr.error) {
1952 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1953 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1954 	}
1955 }
1956 
1957 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1958 {
1959 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1960 }
1961 
1962 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1963 {
1964 	complete_userspace_rdmsr(vcpu);
1965 	return complete_emulated_msr_access(vcpu);
1966 }
1967 
1968 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1969 {
1970 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1971 }
1972 
1973 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1974 {
1975 	complete_userspace_rdmsr(vcpu);
1976 	return complete_fast_msr_access(vcpu);
1977 }
1978 
1979 static u64 kvm_msr_reason(int r)
1980 {
1981 	switch (r) {
1982 	case KVM_MSR_RET_INVALID:
1983 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1984 	case KVM_MSR_RET_FILTERED:
1985 		return KVM_MSR_EXIT_REASON_FILTER;
1986 	default:
1987 		return KVM_MSR_EXIT_REASON_INVAL;
1988 	}
1989 }
1990 
1991 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1992 			      u32 exit_reason, u64 data,
1993 			      int (*completion)(struct kvm_vcpu *vcpu),
1994 			      int r)
1995 {
1996 	u64 msr_reason = kvm_msr_reason(r);
1997 
1998 	/* Check if the user wanted to know about this MSR fault */
1999 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2000 		return 0;
2001 
2002 	vcpu->run->exit_reason = exit_reason;
2003 	vcpu->run->msr.error = 0;
2004 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2005 	vcpu->run->msr.reason = msr_reason;
2006 	vcpu->run->msr.index = index;
2007 	vcpu->run->msr.data = data;
2008 	vcpu->arch.complete_userspace_io = completion;
2009 
2010 	return 1;
2011 }
2012 
2013 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2014 {
2015 	u32 ecx = kvm_rcx_read(vcpu);
2016 	u64 data;
2017 	int r;
2018 
2019 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2020 
2021 	if (!r) {
2022 		trace_kvm_msr_read(ecx, data);
2023 
2024 		kvm_rax_write(vcpu, data & -1u);
2025 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2026 	} else {
2027 		/* MSR read failed? See if we should ask user space */
2028 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2029 				       complete_fast_rdmsr, r))
2030 			return 0;
2031 		trace_kvm_msr_read_ex(ecx);
2032 	}
2033 
2034 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2037 
2038 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2039 {
2040 	u32 ecx = kvm_rcx_read(vcpu);
2041 	u64 data = kvm_read_edx_eax(vcpu);
2042 	int r;
2043 
2044 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2045 
2046 	if (!r) {
2047 		trace_kvm_msr_write(ecx, data);
2048 	} else {
2049 		/* MSR write failed? See if we should ask user space */
2050 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2051 				       complete_fast_msr_access, r))
2052 			return 0;
2053 		/* Signal all other negative errors to userspace */
2054 		if (r < 0)
2055 			return r;
2056 		trace_kvm_msr_write_ex(ecx, data);
2057 	}
2058 
2059 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2062 
2063 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2064 {
2065 	return kvm_skip_emulated_instruction(vcpu);
2066 }
2067 
2068 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2069 {
2070 	/* Treat an INVD instruction as a NOP and just skip it. */
2071 	return kvm_emulate_as_nop(vcpu);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2074 
2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2076 {
2077 	kvm_queue_exception(vcpu, UD_VECTOR);
2078 	return 1;
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2081 
2082 
2083 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2084 {
2085 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2086 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2087 		return kvm_handle_invalid_op(vcpu);
2088 
2089 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2090 	return kvm_emulate_as_nop(vcpu);
2091 }
2092 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2093 {
2094 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2097 
2098 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2099 {
2100 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2103 
2104 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2105 {
2106 	xfer_to_guest_mode_prepare();
2107 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2108 		xfer_to_guest_mode_work_pending();
2109 }
2110 
2111 /*
2112  * The fast path for frequent and performance sensitive wrmsr emulation,
2113  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2114  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2115  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2116  * other cases which must be called after interrupts are enabled on the host.
2117  */
2118 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2119 {
2120 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2121 		return 1;
2122 
2123 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2124 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2125 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2126 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2127 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2128 
2129 	return 1;
2130 }
2131 
2132 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2133 {
2134 	if (!kvm_can_use_hv_timer(vcpu))
2135 		return 1;
2136 
2137 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2138 	return 0;
2139 }
2140 
2141 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2142 {
2143 	u32 msr = kvm_rcx_read(vcpu);
2144 	u64 data;
2145 	fastpath_t ret = EXIT_FASTPATH_NONE;
2146 
2147 	switch (msr) {
2148 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2149 		data = kvm_read_edx_eax(vcpu);
2150 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2151 			kvm_skip_emulated_instruction(vcpu);
2152 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2153 		}
2154 		break;
2155 	case MSR_IA32_TSC_DEADLINE:
2156 		data = kvm_read_edx_eax(vcpu);
2157 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2158 			kvm_skip_emulated_instruction(vcpu);
2159 			ret = EXIT_FASTPATH_REENTER_GUEST;
2160 		}
2161 		break;
2162 	default:
2163 		break;
2164 	}
2165 
2166 	if (ret != EXIT_FASTPATH_NONE)
2167 		trace_kvm_msr_write(msr, data);
2168 
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2172 
2173 /*
2174  * Adapt set_msr() to msr_io()'s calling convention
2175  */
2176 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2177 {
2178 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2179 }
2180 
2181 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2182 {
2183 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2184 }
2185 
2186 #ifdef CONFIG_X86_64
2187 struct pvclock_clock {
2188 	int vclock_mode;
2189 	u64 cycle_last;
2190 	u64 mask;
2191 	u32 mult;
2192 	u32 shift;
2193 	u64 base_cycles;
2194 	u64 offset;
2195 };
2196 
2197 struct pvclock_gtod_data {
2198 	seqcount_t	seq;
2199 
2200 	struct pvclock_clock clock; /* extract of a clocksource struct */
2201 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2202 
2203 	ktime_t		offs_boot;
2204 	u64		wall_time_sec;
2205 };
2206 
2207 static struct pvclock_gtod_data pvclock_gtod_data;
2208 
2209 static void update_pvclock_gtod(struct timekeeper *tk)
2210 {
2211 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2212 
2213 	write_seqcount_begin(&vdata->seq);
2214 
2215 	/* copy pvclock gtod data */
2216 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2217 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2218 	vdata->clock.mask		= tk->tkr_mono.mask;
2219 	vdata->clock.mult		= tk->tkr_mono.mult;
2220 	vdata->clock.shift		= tk->tkr_mono.shift;
2221 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2222 	vdata->clock.offset		= tk->tkr_mono.base;
2223 
2224 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2225 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2226 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2227 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2228 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2229 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2230 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2231 
2232 	vdata->wall_time_sec            = tk->xtime_sec;
2233 
2234 	vdata->offs_boot		= tk->offs_boot;
2235 
2236 	write_seqcount_end(&vdata->seq);
2237 }
2238 
2239 static s64 get_kvmclock_base_ns(void)
2240 {
2241 	/* Count up from boot time, but with the frequency of the raw clock.  */
2242 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2243 }
2244 #else
2245 static s64 get_kvmclock_base_ns(void)
2246 {
2247 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2248 	return ktime_get_boottime_ns();
2249 }
2250 #endif
2251 
2252 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2253 {
2254 	int version;
2255 	int r;
2256 	struct pvclock_wall_clock wc;
2257 	u32 wc_sec_hi;
2258 	u64 wall_nsec;
2259 
2260 	if (!wall_clock)
2261 		return;
2262 
2263 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2264 	if (r)
2265 		return;
2266 
2267 	if (version & 1)
2268 		++version;  /* first time write, random junk */
2269 
2270 	++version;
2271 
2272 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2273 		return;
2274 
2275 	/*
2276 	 * The guest calculates current wall clock time by adding
2277 	 * system time (updated by kvm_guest_time_update below) to the
2278 	 * wall clock specified here.  We do the reverse here.
2279 	 */
2280 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2281 
2282 	wc.nsec = do_div(wall_nsec, 1000000000);
2283 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2284 	wc.version = version;
2285 
2286 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2287 
2288 	if (sec_hi_ofs) {
2289 		wc_sec_hi = wall_nsec >> 32;
2290 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2291 				&wc_sec_hi, sizeof(wc_sec_hi));
2292 	}
2293 
2294 	version++;
2295 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2296 }
2297 
2298 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2299 				  bool old_msr, bool host_initiated)
2300 {
2301 	struct kvm_arch *ka = &vcpu->kvm->arch;
2302 
2303 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2304 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2305 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2306 
2307 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2308 	}
2309 
2310 	vcpu->arch.time = system_time;
2311 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2312 
2313 	/* we verify if the enable bit is set... */
2314 	if (system_time & 1)
2315 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2316 				 sizeof(struct pvclock_vcpu_time_info));
2317 	else
2318 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2319 
2320 	return;
2321 }
2322 
2323 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2324 {
2325 	do_shl32_div32(dividend, divisor);
2326 	return dividend;
2327 }
2328 
2329 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2330 			       s8 *pshift, u32 *pmultiplier)
2331 {
2332 	uint64_t scaled64;
2333 	int32_t  shift = 0;
2334 	uint64_t tps64;
2335 	uint32_t tps32;
2336 
2337 	tps64 = base_hz;
2338 	scaled64 = scaled_hz;
2339 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2340 		tps64 >>= 1;
2341 		shift--;
2342 	}
2343 
2344 	tps32 = (uint32_t)tps64;
2345 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2346 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2347 			scaled64 >>= 1;
2348 		else
2349 			tps32 <<= 1;
2350 		shift++;
2351 	}
2352 
2353 	*pshift = shift;
2354 	*pmultiplier = div_frac(scaled64, tps32);
2355 }
2356 
2357 #ifdef CONFIG_X86_64
2358 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2359 #endif
2360 
2361 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2362 static unsigned long max_tsc_khz;
2363 
2364 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2365 {
2366 	u64 v = (u64)khz * (1000000 + ppm);
2367 	do_div(v, 1000000);
2368 	return v;
2369 }
2370 
2371 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2372 
2373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2374 {
2375 	u64 ratio;
2376 
2377 	/* Guest TSC same frequency as host TSC? */
2378 	if (!scale) {
2379 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2380 		return 0;
2381 	}
2382 
2383 	/* TSC scaling supported? */
2384 	if (!kvm_caps.has_tsc_control) {
2385 		if (user_tsc_khz > tsc_khz) {
2386 			vcpu->arch.tsc_catchup = 1;
2387 			vcpu->arch.tsc_always_catchup = 1;
2388 			return 0;
2389 		} else {
2390 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2391 			return -1;
2392 		}
2393 	}
2394 
2395 	/* TSC scaling required  - calculate ratio */
2396 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2397 				user_tsc_khz, tsc_khz);
2398 
2399 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2400 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2401 			            user_tsc_khz);
2402 		return -1;
2403 	}
2404 
2405 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2406 	return 0;
2407 }
2408 
2409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2410 {
2411 	u32 thresh_lo, thresh_hi;
2412 	int use_scaling = 0;
2413 
2414 	/* tsc_khz can be zero if TSC calibration fails */
2415 	if (user_tsc_khz == 0) {
2416 		/* set tsc_scaling_ratio to a safe value */
2417 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2418 		return -1;
2419 	}
2420 
2421 	/* Compute a scale to convert nanoseconds in TSC cycles */
2422 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2423 			   &vcpu->arch.virtual_tsc_shift,
2424 			   &vcpu->arch.virtual_tsc_mult);
2425 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2426 
2427 	/*
2428 	 * Compute the variation in TSC rate which is acceptable
2429 	 * within the range of tolerance and decide if the
2430 	 * rate being applied is within that bounds of the hardware
2431 	 * rate.  If so, no scaling or compensation need be done.
2432 	 */
2433 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2434 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2435 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2436 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2437 		use_scaling = 1;
2438 	}
2439 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2440 }
2441 
2442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2443 {
2444 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2445 				      vcpu->arch.virtual_tsc_mult,
2446 				      vcpu->arch.virtual_tsc_shift);
2447 	tsc += vcpu->arch.this_tsc_write;
2448 	return tsc;
2449 }
2450 
2451 #ifdef CONFIG_X86_64
2452 static inline int gtod_is_based_on_tsc(int mode)
2453 {
2454 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2455 }
2456 #endif
2457 
2458 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2459 {
2460 #ifdef CONFIG_X86_64
2461 	bool vcpus_matched;
2462 	struct kvm_arch *ka = &vcpu->kvm->arch;
2463 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2464 
2465 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2466 			 atomic_read(&vcpu->kvm->online_vcpus));
2467 
2468 	/*
2469 	 * Once the masterclock is enabled, always perform request in
2470 	 * order to update it.
2471 	 *
2472 	 * In order to enable masterclock, the host clocksource must be TSC
2473 	 * and the vcpus need to have matched TSCs.  When that happens,
2474 	 * perform request to enable masterclock.
2475 	 */
2476 	if (ka->use_master_clock ||
2477 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2478 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2479 
2480 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2481 			    atomic_read(&vcpu->kvm->online_vcpus),
2482 		            ka->use_master_clock, gtod->clock.vclock_mode);
2483 #endif
2484 }
2485 
2486 /*
2487  * Multiply tsc by a fixed point number represented by ratio.
2488  *
2489  * The most significant 64-N bits (mult) of ratio represent the
2490  * integral part of the fixed point number; the remaining N bits
2491  * (frac) represent the fractional part, ie. ratio represents a fixed
2492  * point number (mult + frac * 2^(-N)).
2493  *
2494  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2495  */
2496 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2497 {
2498 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2499 }
2500 
2501 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2502 {
2503 	u64 _tsc = tsc;
2504 
2505 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2506 		_tsc = __scale_tsc(ratio, tsc);
2507 
2508 	return _tsc;
2509 }
2510 
2511 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2512 {
2513 	u64 tsc;
2514 
2515 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2516 
2517 	return target_tsc - tsc;
2518 }
2519 
2520 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2521 {
2522 	return vcpu->arch.l1_tsc_offset +
2523 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2524 }
2525 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2526 
2527 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2528 {
2529 	u64 nested_offset;
2530 
2531 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2532 		nested_offset = l1_offset;
2533 	else
2534 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2535 						kvm_caps.tsc_scaling_ratio_frac_bits);
2536 
2537 	nested_offset += l2_offset;
2538 	return nested_offset;
2539 }
2540 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2541 
2542 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2543 {
2544 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2545 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2546 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2547 
2548 	return l1_multiplier;
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2551 
2552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2553 {
2554 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2555 				   vcpu->arch.l1_tsc_offset,
2556 				   l1_offset);
2557 
2558 	vcpu->arch.l1_tsc_offset = l1_offset;
2559 
2560 	/*
2561 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2562 	 * according to the spec this should set L1's TSC (as opposed to
2563 	 * setting L1's offset for L2).
2564 	 */
2565 	if (is_guest_mode(vcpu))
2566 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2567 			l1_offset,
2568 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2569 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2570 	else
2571 		vcpu->arch.tsc_offset = l1_offset;
2572 
2573 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2574 }
2575 
2576 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2577 {
2578 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2579 
2580 	/* Userspace is changing the multiplier while L2 is active */
2581 	if (is_guest_mode(vcpu))
2582 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2583 			l1_multiplier,
2584 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2585 	else
2586 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2587 
2588 	if (kvm_caps.has_tsc_control)
2589 		static_call(kvm_x86_write_tsc_multiplier)(
2590 			vcpu, vcpu->arch.tsc_scaling_ratio);
2591 }
2592 
2593 static inline bool kvm_check_tsc_unstable(void)
2594 {
2595 #ifdef CONFIG_X86_64
2596 	/*
2597 	 * TSC is marked unstable when we're running on Hyper-V,
2598 	 * 'TSC page' clocksource is good.
2599 	 */
2600 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2601 		return false;
2602 #endif
2603 	return check_tsc_unstable();
2604 }
2605 
2606 /*
2607  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2608  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2609  * participates in.
2610  */
2611 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2612 				  u64 ns, bool matched)
2613 {
2614 	struct kvm *kvm = vcpu->kvm;
2615 
2616 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2617 
2618 	/*
2619 	 * We also track th most recent recorded KHZ, write and time to
2620 	 * allow the matching interval to be extended at each write.
2621 	 */
2622 	kvm->arch.last_tsc_nsec = ns;
2623 	kvm->arch.last_tsc_write = tsc;
2624 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2625 	kvm->arch.last_tsc_offset = offset;
2626 
2627 	vcpu->arch.last_guest_tsc = tsc;
2628 
2629 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2630 
2631 	if (!matched) {
2632 		/*
2633 		 * We split periods of matched TSC writes into generations.
2634 		 * For each generation, we track the original measured
2635 		 * nanosecond time, offset, and write, so if TSCs are in
2636 		 * sync, we can match exact offset, and if not, we can match
2637 		 * exact software computation in compute_guest_tsc()
2638 		 *
2639 		 * These values are tracked in kvm->arch.cur_xxx variables.
2640 		 */
2641 		kvm->arch.cur_tsc_generation++;
2642 		kvm->arch.cur_tsc_nsec = ns;
2643 		kvm->arch.cur_tsc_write = tsc;
2644 		kvm->arch.cur_tsc_offset = offset;
2645 		kvm->arch.nr_vcpus_matched_tsc = 0;
2646 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2647 		kvm->arch.nr_vcpus_matched_tsc++;
2648 	}
2649 
2650 	/* Keep track of which generation this VCPU has synchronized to */
2651 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2652 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2653 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2654 
2655 	kvm_track_tsc_matching(vcpu);
2656 }
2657 
2658 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2659 {
2660 	struct kvm *kvm = vcpu->kvm;
2661 	u64 offset, ns, elapsed;
2662 	unsigned long flags;
2663 	bool matched = false;
2664 	bool synchronizing = false;
2665 
2666 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2667 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2668 	ns = get_kvmclock_base_ns();
2669 	elapsed = ns - kvm->arch.last_tsc_nsec;
2670 
2671 	if (vcpu->arch.virtual_tsc_khz) {
2672 		if (data == 0) {
2673 			/*
2674 			 * detection of vcpu initialization -- need to sync
2675 			 * with other vCPUs. This particularly helps to keep
2676 			 * kvm_clock stable after CPU hotplug
2677 			 */
2678 			synchronizing = true;
2679 		} else {
2680 			u64 tsc_exp = kvm->arch.last_tsc_write +
2681 						nsec_to_cycles(vcpu, elapsed);
2682 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2683 			/*
2684 			 * Special case: TSC write with a small delta (1 second)
2685 			 * of virtual cycle time against real time is
2686 			 * interpreted as an attempt to synchronize the CPU.
2687 			 */
2688 			synchronizing = data < tsc_exp + tsc_hz &&
2689 					data + tsc_hz > tsc_exp;
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2695 	 * TSC, we add elapsed time in this computation.  We could let the
2696 	 * compensation code attempt to catch up if we fall behind, but
2697 	 * it's better to try to match offsets from the beginning.
2698          */
2699 	if (synchronizing &&
2700 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2701 		if (!kvm_check_tsc_unstable()) {
2702 			offset = kvm->arch.cur_tsc_offset;
2703 		} else {
2704 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2705 			data += delta;
2706 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2707 		}
2708 		matched = true;
2709 	}
2710 
2711 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2712 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2713 }
2714 
2715 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2716 					   s64 adjustment)
2717 {
2718 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2719 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2720 }
2721 
2722 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2723 {
2724 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2725 		WARN_ON(adjustment < 0);
2726 	adjustment = kvm_scale_tsc((u64) adjustment,
2727 				   vcpu->arch.l1_tsc_scaling_ratio);
2728 	adjust_tsc_offset_guest(vcpu, adjustment);
2729 }
2730 
2731 #ifdef CONFIG_X86_64
2732 
2733 static u64 read_tsc(void)
2734 {
2735 	u64 ret = (u64)rdtsc_ordered();
2736 	u64 last = pvclock_gtod_data.clock.cycle_last;
2737 
2738 	if (likely(ret >= last))
2739 		return ret;
2740 
2741 	/*
2742 	 * GCC likes to generate cmov here, but this branch is extremely
2743 	 * predictable (it's just a function of time and the likely is
2744 	 * very likely) and there's a data dependence, so force GCC
2745 	 * to generate a branch instead.  I don't barrier() because
2746 	 * we don't actually need a barrier, and if this function
2747 	 * ever gets inlined it will generate worse code.
2748 	 */
2749 	asm volatile ("");
2750 	return last;
2751 }
2752 
2753 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2754 			  int *mode)
2755 {
2756 	long v;
2757 	u64 tsc_pg_val;
2758 
2759 	switch (clock->vclock_mode) {
2760 	case VDSO_CLOCKMODE_HVCLOCK:
2761 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2762 						  tsc_timestamp);
2763 		if (tsc_pg_val != U64_MAX) {
2764 			/* TSC page valid */
2765 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2766 			v = (tsc_pg_val - clock->cycle_last) &
2767 				clock->mask;
2768 		} else {
2769 			/* TSC page invalid */
2770 			*mode = VDSO_CLOCKMODE_NONE;
2771 		}
2772 		break;
2773 	case VDSO_CLOCKMODE_TSC:
2774 		*mode = VDSO_CLOCKMODE_TSC;
2775 		*tsc_timestamp = read_tsc();
2776 		v = (*tsc_timestamp - clock->cycle_last) &
2777 			clock->mask;
2778 		break;
2779 	default:
2780 		*mode = VDSO_CLOCKMODE_NONE;
2781 	}
2782 
2783 	if (*mode == VDSO_CLOCKMODE_NONE)
2784 		*tsc_timestamp = v = 0;
2785 
2786 	return v * clock->mult;
2787 }
2788 
2789 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2790 {
2791 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2792 	unsigned long seq;
2793 	int mode;
2794 	u64 ns;
2795 
2796 	do {
2797 		seq = read_seqcount_begin(&gtod->seq);
2798 		ns = gtod->raw_clock.base_cycles;
2799 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2800 		ns >>= gtod->raw_clock.shift;
2801 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2802 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2803 	*t = ns;
2804 
2805 	return mode;
2806 }
2807 
2808 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2809 {
2810 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2811 	unsigned long seq;
2812 	int mode;
2813 	u64 ns;
2814 
2815 	do {
2816 		seq = read_seqcount_begin(&gtod->seq);
2817 		ts->tv_sec = gtod->wall_time_sec;
2818 		ns = gtod->clock.base_cycles;
2819 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2820 		ns >>= gtod->clock.shift;
2821 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2822 
2823 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2824 	ts->tv_nsec = ns;
2825 
2826 	return mode;
2827 }
2828 
2829 /* returns true if host is using TSC based clocksource */
2830 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2831 {
2832 	/* checked again under seqlock below */
2833 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2834 		return false;
2835 
2836 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2837 						      tsc_timestamp));
2838 }
2839 
2840 /* returns true if host is using TSC based clocksource */
2841 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2842 					   u64 *tsc_timestamp)
2843 {
2844 	/* checked again under seqlock below */
2845 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2846 		return false;
2847 
2848 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2849 }
2850 #endif
2851 
2852 /*
2853  *
2854  * Assuming a stable TSC across physical CPUS, and a stable TSC
2855  * across virtual CPUs, the following condition is possible.
2856  * Each numbered line represents an event visible to both
2857  * CPUs at the next numbered event.
2858  *
2859  * "timespecX" represents host monotonic time. "tscX" represents
2860  * RDTSC value.
2861  *
2862  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2863  *
2864  * 1.  read timespec0,tsc0
2865  * 2.					| timespec1 = timespec0 + N
2866  * 					| tsc1 = tsc0 + M
2867  * 3. transition to guest		| transition to guest
2868  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2869  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2870  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2871  *
2872  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2873  *
2874  * 	- ret0 < ret1
2875  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2876  *		...
2877  *	- 0 < N - M => M < N
2878  *
2879  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2880  * always the case (the difference between two distinct xtime instances
2881  * might be smaller then the difference between corresponding TSC reads,
2882  * when updating guest vcpus pvclock areas).
2883  *
2884  * To avoid that problem, do not allow visibility of distinct
2885  * system_timestamp/tsc_timestamp values simultaneously: use a master
2886  * copy of host monotonic time values. Update that master copy
2887  * in lockstep.
2888  *
2889  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2890  *
2891  */
2892 
2893 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2894 {
2895 #ifdef CONFIG_X86_64
2896 	struct kvm_arch *ka = &kvm->arch;
2897 	int vclock_mode;
2898 	bool host_tsc_clocksource, vcpus_matched;
2899 
2900 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2901 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2902 			atomic_read(&kvm->online_vcpus));
2903 
2904 	/*
2905 	 * If the host uses TSC clock, then passthrough TSC as stable
2906 	 * to the guest.
2907 	 */
2908 	host_tsc_clocksource = kvm_get_time_and_clockread(
2909 					&ka->master_kernel_ns,
2910 					&ka->master_cycle_now);
2911 
2912 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2913 				&& !ka->backwards_tsc_observed
2914 				&& !ka->boot_vcpu_runs_old_kvmclock;
2915 
2916 	if (ka->use_master_clock)
2917 		atomic_set(&kvm_guest_has_master_clock, 1);
2918 
2919 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2920 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2921 					vcpus_matched);
2922 #endif
2923 }
2924 
2925 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2926 {
2927 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2928 }
2929 
2930 static void __kvm_start_pvclock_update(struct kvm *kvm)
2931 {
2932 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2933 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2934 }
2935 
2936 static void kvm_start_pvclock_update(struct kvm *kvm)
2937 {
2938 	kvm_make_mclock_inprogress_request(kvm);
2939 
2940 	/* no guest entries from this point */
2941 	__kvm_start_pvclock_update(kvm);
2942 }
2943 
2944 static void kvm_end_pvclock_update(struct kvm *kvm)
2945 {
2946 	struct kvm_arch *ka = &kvm->arch;
2947 	struct kvm_vcpu *vcpu;
2948 	unsigned long i;
2949 
2950 	write_seqcount_end(&ka->pvclock_sc);
2951 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2952 	kvm_for_each_vcpu(i, vcpu, kvm)
2953 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2954 
2955 	/* guest entries allowed */
2956 	kvm_for_each_vcpu(i, vcpu, kvm)
2957 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2958 }
2959 
2960 static void kvm_update_masterclock(struct kvm *kvm)
2961 {
2962 	kvm_hv_request_tsc_page_update(kvm);
2963 	kvm_start_pvclock_update(kvm);
2964 	pvclock_update_vm_gtod_copy(kvm);
2965 	kvm_end_pvclock_update(kvm);
2966 }
2967 
2968 /*
2969  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
2970  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
2971  * can change during boot even if the TSC is constant, as it's possible for KVM
2972  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
2973  * notification when calibration completes, but practically speaking calibration
2974  * will complete before userspace is alive enough to create VMs.
2975  */
2976 static unsigned long get_cpu_tsc_khz(void)
2977 {
2978 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
2979 		return tsc_khz;
2980 	else
2981 		return __this_cpu_read(cpu_tsc_khz);
2982 }
2983 
2984 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2985 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2986 {
2987 	struct kvm_arch *ka = &kvm->arch;
2988 	struct pvclock_vcpu_time_info hv_clock;
2989 
2990 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2991 	get_cpu();
2992 
2993 	data->flags = 0;
2994 	if (ka->use_master_clock &&
2995 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
2996 #ifdef CONFIG_X86_64
2997 		struct timespec64 ts;
2998 
2999 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3000 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3001 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3002 		} else
3003 #endif
3004 		data->host_tsc = rdtsc();
3005 
3006 		data->flags |= KVM_CLOCK_TSC_STABLE;
3007 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3008 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3009 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3010 				   &hv_clock.tsc_shift,
3011 				   &hv_clock.tsc_to_system_mul);
3012 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3013 	} else {
3014 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3015 	}
3016 
3017 	put_cpu();
3018 }
3019 
3020 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3021 {
3022 	struct kvm_arch *ka = &kvm->arch;
3023 	unsigned seq;
3024 
3025 	do {
3026 		seq = read_seqcount_begin(&ka->pvclock_sc);
3027 		__get_kvmclock(kvm, data);
3028 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3029 }
3030 
3031 u64 get_kvmclock_ns(struct kvm *kvm)
3032 {
3033 	struct kvm_clock_data data;
3034 
3035 	get_kvmclock(kvm, &data);
3036 	return data.clock;
3037 }
3038 
3039 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3040 				    struct gfn_to_pfn_cache *gpc,
3041 				    unsigned int offset)
3042 {
3043 	struct kvm_vcpu_arch *vcpu = &v->arch;
3044 	struct pvclock_vcpu_time_info *guest_hv_clock;
3045 	unsigned long flags;
3046 
3047 	read_lock_irqsave(&gpc->lock, flags);
3048 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3049 		read_unlock_irqrestore(&gpc->lock, flags);
3050 
3051 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3052 			return;
3053 
3054 		read_lock_irqsave(&gpc->lock, flags);
3055 	}
3056 
3057 	guest_hv_clock = (void *)(gpc->khva + offset);
3058 
3059 	/*
3060 	 * This VCPU is paused, but it's legal for a guest to read another
3061 	 * VCPU's kvmclock, so we really have to follow the specification where
3062 	 * it says that version is odd if data is being modified, and even after
3063 	 * it is consistent.
3064 	 */
3065 
3066 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3067 	smp_wmb();
3068 
3069 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3070 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3071 
3072 	if (vcpu->pvclock_set_guest_stopped_request) {
3073 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3074 		vcpu->pvclock_set_guest_stopped_request = false;
3075 	}
3076 
3077 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3078 	smp_wmb();
3079 
3080 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3081 
3082 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3083 	read_unlock_irqrestore(&gpc->lock, flags);
3084 
3085 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3086 }
3087 
3088 static int kvm_guest_time_update(struct kvm_vcpu *v)
3089 {
3090 	unsigned long flags, tgt_tsc_khz;
3091 	unsigned seq;
3092 	struct kvm_vcpu_arch *vcpu = &v->arch;
3093 	struct kvm_arch *ka = &v->kvm->arch;
3094 	s64 kernel_ns;
3095 	u64 tsc_timestamp, host_tsc;
3096 	u8 pvclock_flags;
3097 	bool use_master_clock;
3098 
3099 	kernel_ns = 0;
3100 	host_tsc = 0;
3101 
3102 	/*
3103 	 * If the host uses TSC clock, then passthrough TSC as stable
3104 	 * to the guest.
3105 	 */
3106 	do {
3107 		seq = read_seqcount_begin(&ka->pvclock_sc);
3108 		use_master_clock = ka->use_master_clock;
3109 		if (use_master_clock) {
3110 			host_tsc = ka->master_cycle_now;
3111 			kernel_ns = ka->master_kernel_ns;
3112 		}
3113 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3114 
3115 	/* Keep irq disabled to prevent changes to the clock */
3116 	local_irq_save(flags);
3117 	tgt_tsc_khz = get_cpu_tsc_khz();
3118 	if (unlikely(tgt_tsc_khz == 0)) {
3119 		local_irq_restore(flags);
3120 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3121 		return 1;
3122 	}
3123 	if (!use_master_clock) {
3124 		host_tsc = rdtsc();
3125 		kernel_ns = get_kvmclock_base_ns();
3126 	}
3127 
3128 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3129 
3130 	/*
3131 	 * We may have to catch up the TSC to match elapsed wall clock
3132 	 * time for two reasons, even if kvmclock is used.
3133 	 *   1) CPU could have been running below the maximum TSC rate
3134 	 *   2) Broken TSC compensation resets the base at each VCPU
3135 	 *      entry to avoid unknown leaps of TSC even when running
3136 	 *      again on the same CPU.  This may cause apparent elapsed
3137 	 *      time to disappear, and the guest to stand still or run
3138 	 *	very slowly.
3139 	 */
3140 	if (vcpu->tsc_catchup) {
3141 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3142 		if (tsc > tsc_timestamp) {
3143 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3144 			tsc_timestamp = tsc;
3145 		}
3146 	}
3147 
3148 	local_irq_restore(flags);
3149 
3150 	/* With all the info we got, fill in the values */
3151 
3152 	if (kvm_caps.has_tsc_control)
3153 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3154 					    v->arch.l1_tsc_scaling_ratio);
3155 
3156 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3157 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3158 				   &vcpu->hv_clock.tsc_shift,
3159 				   &vcpu->hv_clock.tsc_to_system_mul);
3160 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3161 	}
3162 
3163 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3164 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3165 	vcpu->last_guest_tsc = tsc_timestamp;
3166 
3167 	/* If the host uses TSC clocksource, then it is stable */
3168 	pvclock_flags = 0;
3169 	if (use_master_clock)
3170 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3171 
3172 	vcpu->hv_clock.flags = pvclock_flags;
3173 
3174 	if (vcpu->pv_time.active)
3175 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3176 	if (vcpu->xen.vcpu_info_cache.active)
3177 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3178 					offsetof(struct compat_vcpu_info, time));
3179 	if (vcpu->xen.vcpu_time_info_cache.active)
3180 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3181 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3182 	return 0;
3183 }
3184 
3185 /*
3186  * kvmclock updates which are isolated to a given vcpu, such as
3187  * vcpu->cpu migration, should not allow system_timestamp from
3188  * the rest of the vcpus to remain static. Otherwise ntp frequency
3189  * correction applies to one vcpu's system_timestamp but not
3190  * the others.
3191  *
3192  * So in those cases, request a kvmclock update for all vcpus.
3193  * We need to rate-limit these requests though, as they can
3194  * considerably slow guests that have a large number of vcpus.
3195  * The time for a remote vcpu to update its kvmclock is bound
3196  * by the delay we use to rate-limit the updates.
3197  */
3198 
3199 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3200 
3201 static void kvmclock_update_fn(struct work_struct *work)
3202 {
3203 	unsigned long i;
3204 	struct delayed_work *dwork = to_delayed_work(work);
3205 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3206 					   kvmclock_update_work);
3207 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3208 	struct kvm_vcpu *vcpu;
3209 
3210 	kvm_for_each_vcpu(i, vcpu, kvm) {
3211 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3212 		kvm_vcpu_kick(vcpu);
3213 	}
3214 }
3215 
3216 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3217 {
3218 	struct kvm *kvm = v->kvm;
3219 
3220 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3221 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3222 					KVMCLOCK_UPDATE_DELAY);
3223 }
3224 
3225 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3226 
3227 static void kvmclock_sync_fn(struct work_struct *work)
3228 {
3229 	struct delayed_work *dwork = to_delayed_work(work);
3230 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3231 					   kvmclock_sync_work);
3232 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3233 
3234 	if (!kvmclock_periodic_sync)
3235 		return;
3236 
3237 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3238 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3239 					KVMCLOCK_SYNC_PERIOD);
3240 }
3241 
3242 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3243 static bool is_mci_control_msr(u32 msr)
3244 {
3245 	return (msr & 3) == 0;
3246 }
3247 static bool is_mci_status_msr(u32 msr)
3248 {
3249 	return (msr & 3) == 1;
3250 }
3251 
3252 /*
3253  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3254  */
3255 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3256 {
3257 	/* McStatusWrEn enabled? */
3258 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3259 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3260 
3261 	return false;
3262 }
3263 
3264 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3265 {
3266 	u64 mcg_cap = vcpu->arch.mcg_cap;
3267 	unsigned bank_num = mcg_cap & 0xff;
3268 	u32 msr = msr_info->index;
3269 	u64 data = msr_info->data;
3270 	u32 offset, last_msr;
3271 
3272 	switch (msr) {
3273 	case MSR_IA32_MCG_STATUS:
3274 		vcpu->arch.mcg_status = data;
3275 		break;
3276 	case MSR_IA32_MCG_CTL:
3277 		if (!(mcg_cap & MCG_CTL_P) &&
3278 		    (data || !msr_info->host_initiated))
3279 			return 1;
3280 		if (data != 0 && data != ~(u64)0)
3281 			return 1;
3282 		vcpu->arch.mcg_ctl = data;
3283 		break;
3284 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3285 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3286 		if (msr > last_msr)
3287 			return 1;
3288 
3289 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3290 			return 1;
3291 		/* An attempt to write a 1 to a reserved bit raises #GP */
3292 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3293 			return 1;
3294 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3295 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3296 		vcpu->arch.mci_ctl2_banks[offset] = data;
3297 		break;
3298 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3299 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3300 		if (msr > last_msr)
3301 			return 1;
3302 
3303 		/*
3304 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3305 		 * values are architecturally undefined.  But, some Linux
3306 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3307 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3308 		 * other bits in order to avoid an uncaught #GP in the guest.
3309 		 *
3310 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3311 		 * single-bit ECC data errors.
3312 		 */
3313 		if (is_mci_control_msr(msr) &&
3314 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3315 			return 1;
3316 
3317 		/*
3318 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3319 		 * AMD-based CPUs allow non-zero values, but if and only if
3320 		 * HWCR[McStatusWrEn] is set.
3321 		 */
3322 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3323 		    data != 0 && !can_set_mci_status(vcpu))
3324 			return 1;
3325 
3326 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3327 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3328 		vcpu->arch.mce_banks[offset] = data;
3329 		break;
3330 	default:
3331 		return 1;
3332 	}
3333 	return 0;
3334 }
3335 
3336 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3337 {
3338 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3339 
3340 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3341 }
3342 
3343 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3344 {
3345 	gpa_t gpa = data & ~0x3f;
3346 
3347 	/* Bits 4:5 are reserved, Should be zero */
3348 	if (data & 0x30)
3349 		return 1;
3350 
3351 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3352 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3353 		return 1;
3354 
3355 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3356 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3357 		return 1;
3358 
3359 	if (!lapic_in_kernel(vcpu))
3360 		return data ? 1 : 0;
3361 
3362 	vcpu->arch.apf.msr_en_val = data;
3363 
3364 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3365 		kvm_clear_async_pf_completion_queue(vcpu);
3366 		kvm_async_pf_hash_reset(vcpu);
3367 		return 0;
3368 	}
3369 
3370 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3371 					sizeof(u64)))
3372 		return 1;
3373 
3374 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3375 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3376 
3377 	kvm_async_pf_wakeup_all(vcpu);
3378 
3379 	return 0;
3380 }
3381 
3382 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3383 {
3384 	/* Bits 8-63 are reserved */
3385 	if (data >> 8)
3386 		return 1;
3387 
3388 	if (!lapic_in_kernel(vcpu))
3389 		return 1;
3390 
3391 	vcpu->arch.apf.msr_int_val = data;
3392 
3393 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3394 
3395 	return 0;
3396 }
3397 
3398 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3399 {
3400 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3401 	vcpu->arch.time = 0;
3402 }
3403 
3404 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3405 {
3406 	++vcpu->stat.tlb_flush;
3407 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3408 
3409 	/* Flushing all ASIDs flushes the current ASID... */
3410 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3411 }
3412 
3413 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3414 {
3415 	++vcpu->stat.tlb_flush;
3416 
3417 	if (!tdp_enabled) {
3418 		/*
3419 		 * A TLB flush on behalf of the guest is equivalent to
3420 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3421 		 * a forced sync of the shadow page tables.  Ensure all the
3422 		 * roots are synced and the guest TLB in hardware is clean.
3423 		 */
3424 		kvm_mmu_sync_roots(vcpu);
3425 		kvm_mmu_sync_prev_roots(vcpu);
3426 	}
3427 
3428 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3429 
3430 	/*
3431 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3432 	 * grained flushing.
3433 	 */
3434 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3435 }
3436 
3437 
3438 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3439 {
3440 	++vcpu->stat.tlb_flush;
3441 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3442 }
3443 
3444 /*
3445  * Service "local" TLB flush requests, which are specific to the current MMU
3446  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3447  * TLB flushes that are targeted at an MMU context also need to be serviced
3448  * prior before nested VM-Enter/VM-Exit.
3449  */
3450 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3451 {
3452 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3453 		kvm_vcpu_flush_tlb_current(vcpu);
3454 
3455 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3456 		kvm_vcpu_flush_tlb_guest(vcpu);
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3459 
3460 static void record_steal_time(struct kvm_vcpu *vcpu)
3461 {
3462 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3463 	struct kvm_steal_time __user *st;
3464 	struct kvm_memslots *slots;
3465 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3466 	u64 steal;
3467 	u32 version;
3468 
3469 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3470 		kvm_xen_runstate_set_running(vcpu);
3471 		return;
3472 	}
3473 
3474 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3475 		return;
3476 
3477 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3478 		return;
3479 
3480 	slots = kvm_memslots(vcpu->kvm);
3481 
3482 	if (unlikely(slots->generation != ghc->generation ||
3483 		     gpa != ghc->gpa ||
3484 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3485 		/* We rely on the fact that it fits in a single page. */
3486 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3487 
3488 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3489 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3490 			return;
3491 	}
3492 
3493 	st = (struct kvm_steal_time __user *)ghc->hva;
3494 	/*
3495 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3496 	 * expensive IPIs.
3497 	 */
3498 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3499 		u8 st_preempted = 0;
3500 		int err = -EFAULT;
3501 
3502 		if (!user_access_begin(st, sizeof(*st)))
3503 			return;
3504 
3505 		asm volatile("1: xchgb %0, %2\n"
3506 			     "xor %1, %1\n"
3507 			     "2:\n"
3508 			     _ASM_EXTABLE_UA(1b, 2b)
3509 			     : "+q" (st_preempted),
3510 			       "+&r" (err),
3511 			       "+m" (st->preempted));
3512 		if (err)
3513 			goto out;
3514 
3515 		user_access_end();
3516 
3517 		vcpu->arch.st.preempted = 0;
3518 
3519 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3520 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3521 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3522 			kvm_vcpu_flush_tlb_guest(vcpu);
3523 
3524 		if (!user_access_begin(st, sizeof(*st)))
3525 			goto dirty;
3526 	} else {
3527 		if (!user_access_begin(st, sizeof(*st)))
3528 			return;
3529 
3530 		unsafe_put_user(0, &st->preempted, out);
3531 		vcpu->arch.st.preempted = 0;
3532 	}
3533 
3534 	unsafe_get_user(version, &st->version, out);
3535 	if (version & 1)
3536 		version += 1;  /* first time write, random junk */
3537 
3538 	version += 1;
3539 	unsafe_put_user(version, &st->version, out);
3540 
3541 	smp_wmb();
3542 
3543 	unsafe_get_user(steal, &st->steal, out);
3544 	steal += current->sched_info.run_delay -
3545 		vcpu->arch.st.last_steal;
3546 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3547 	unsafe_put_user(steal, &st->steal, out);
3548 
3549 	version += 1;
3550 	unsafe_put_user(version, &st->version, out);
3551 
3552  out:
3553 	user_access_end();
3554  dirty:
3555 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3556 }
3557 
3558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3559 {
3560 	bool pr = false;
3561 	u32 msr = msr_info->index;
3562 	u64 data = msr_info->data;
3563 
3564 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3565 		return kvm_xen_write_hypercall_page(vcpu, data);
3566 
3567 	switch (msr) {
3568 	case MSR_AMD64_NB_CFG:
3569 	case MSR_IA32_UCODE_WRITE:
3570 	case MSR_VM_HSAVE_PA:
3571 	case MSR_AMD64_PATCH_LOADER:
3572 	case MSR_AMD64_BU_CFG2:
3573 	case MSR_AMD64_DC_CFG:
3574 	case MSR_F15H_EX_CFG:
3575 		break;
3576 
3577 	case MSR_IA32_UCODE_REV:
3578 		if (msr_info->host_initiated)
3579 			vcpu->arch.microcode_version = data;
3580 		break;
3581 	case MSR_IA32_ARCH_CAPABILITIES:
3582 		if (!msr_info->host_initiated)
3583 			return 1;
3584 		vcpu->arch.arch_capabilities = data;
3585 		break;
3586 	case MSR_IA32_PERF_CAPABILITIES:
3587 		if (!msr_info->host_initiated)
3588 			return 1;
3589 		if (data & ~kvm_caps.supported_perf_cap)
3590 			return 1;
3591 
3592 		vcpu->arch.perf_capabilities = data;
3593 		kvm_pmu_refresh(vcpu);
3594 		return 0;
3595 	case MSR_EFER:
3596 		return set_efer(vcpu, msr_info);
3597 	case MSR_K7_HWCR:
3598 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3599 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3600 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3601 
3602 		/* Handle McStatusWrEn */
3603 		if (data == BIT_ULL(18)) {
3604 			vcpu->arch.msr_hwcr = data;
3605 		} else if (data != 0) {
3606 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3607 				    data);
3608 			return 1;
3609 		}
3610 		break;
3611 	case MSR_FAM10H_MMIO_CONF_BASE:
3612 		if (data != 0) {
3613 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3614 				    "0x%llx\n", data);
3615 			return 1;
3616 		}
3617 		break;
3618 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3619 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3620 		return kvm_mtrr_set_msr(vcpu, msr, data);
3621 	case MSR_IA32_APICBASE:
3622 		return kvm_set_apic_base(vcpu, msr_info);
3623 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3624 		return kvm_x2apic_msr_write(vcpu, msr, data);
3625 	case MSR_IA32_TSC_DEADLINE:
3626 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3627 		break;
3628 	case MSR_IA32_TSC_ADJUST:
3629 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3630 			if (!msr_info->host_initiated) {
3631 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3632 				adjust_tsc_offset_guest(vcpu, adj);
3633 				/* Before back to guest, tsc_timestamp must be adjusted
3634 				 * as well, otherwise guest's percpu pvclock time could jump.
3635 				 */
3636 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3637 			}
3638 			vcpu->arch.ia32_tsc_adjust_msr = data;
3639 		}
3640 		break;
3641 	case MSR_IA32_MISC_ENABLE: {
3642 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3643 
3644 		if (!msr_info->host_initiated) {
3645 			/* RO bits */
3646 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3647 				return 1;
3648 
3649 			/* R bits, i.e. writes are ignored, but don't fault. */
3650 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3651 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3652 		}
3653 
3654 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3655 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3656 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3657 				return 1;
3658 			vcpu->arch.ia32_misc_enable_msr = data;
3659 			kvm_update_cpuid_runtime(vcpu);
3660 		} else {
3661 			vcpu->arch.ia32_misc_enable_msr = data;
3662 		}
3663 		break;
3664 	}
3665 	case MSR_IA32_SMBASE:
3666 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3667 			return 1;
3668 		vcpu->arch.smbase = data;
3669 		break;
3670 	case MSR_IA32_POWER_CTL:
3671 		vcpu->arch.msr_ia32_power_ctl = data;
3672 		break;
3673 	case MSR_IA32_TSC:
3674 		if (msr_info->host_initiated) {
3675 			kvm_synchronize_tsc(vcpu, data);
3676 		} else {
3677 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3678 			adjust_tsc_offset_guest(vcpu, adj);
3679 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3680 		}
3681 		break;
3682 	case MSR_IA32_XSS:
3683 		if (!msr_info->host_initiated &&
3684 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3685 			return 1;
3686 		/*
3687 		 * KVM supports exposing PT to the guest, but does not support
3688 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3689 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3690 		 */
3691 		if (data & ~kvm_caps.supported_xss)
3692 			return 1;
3693 		vcpu->arch.ia32_xss = data;
3694 		kvm_update_cpuid_runtime(vcpu);
3695 		break;
3696 	case MSR_SMI_COUNT:
3697 		if (!msr_info->host_initiated)
3698 			return 1;
3699 		vcpu->arch.smi_count = data;
3700 		break;
3701 	case MSR_KVM_WALL_CLOCK_NEW:
3702 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3703 			return 1;
3704 
3705 		vcpu->kvm->arch.wall_clock = data;
3706 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3707 		break;
3708 	case MSR_KVM_WALL_CLOCK:
3709 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3710 			return 1;
3711 
3712 		vcpu->kvm->arch.wall_clock = data;
3713 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3714 		break;
3715 	case MSR_KVM_SYSTEM_TIME_NEW:
3716 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3717 			return 1;
3718 
3719 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3720 		break;
3721 	case MSR_KVM_SYSTEM_TIME:
3722 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3723 			return 1;
3724 
3725 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3726 		break;
3727 	case MSR_KVM_ASYNC_PF_EN:
3728 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3729 			return 1;
3730 
3731 		if (kvm_pv_enable_async_pf(vcpu, data))
3732 			return 1;
3733 		break;
3734 	case MSR_KVM_ASYNC_PF_INT:
3735 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3736 			return 1;
3737 
3738 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3739 			return 1;
3740 		break;
3741 	case MSR_KVM_ASYNC_PF_ACK:
3742 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3743 			return 1;
3744 		if (data & 0x1) {
3745 			vcpu->arch.apf.pageready_pending = false;
3746 			kvm_check_async_pf_completion(vcpu);
3747 		}
3748 		break;
3749 	case MSR_KVM_STEAL_TIME:
3750 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3751 			return 1;
3752 
3753 		if (unlikely(!sched_info_on()))
3754 			return 1;
3755 
3756 		if (data & KVM_STEAL_RESERVED_MASK)
3757 			return 1;
3758 
3759 		vcpu->arch.st.msr_val = data;
3760 
3761 		if (!(data & KVM_MSR_ENABLED))
3762 			break;
3763 
3764 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3765 
3766 		break;
3767 	case MSR_KVM_PV_EOI_EN:
3768 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3769 			return 1;
3770 
3771 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3772 			return 1;
3773 		break;
3774 
3775 	case MSR_KVM_POLL_CONTROL:
3776 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3777 			return 1;
3778 
3779 		/* only enable bit supported */
3780 		if (data & (-1ULL << 1))
3781 			return 1;
3782 
3783 		vcpu->arch.msr_kvm_poll_control = data;
3784 		break;
3785 
3786 	case MSR_IA32_MCG_CTL:
3787 	case MSR_IA32_MCG_STATUS:
3788 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3789 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3790 		return set_msr_mce(vcpu, msr_info);
3791 
3792 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3793 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3794 		pr = true;
3795 		fallthrough;
3796 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3797 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3798 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3799 			return kvm_pmu_set_msr(vcpu, msr_info);
3800 
3801 		if (pr || data != 0)
3802 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3803 				    "0x%x data 0x%llx\n", msr, data);
3804 		break;
3805 	case MSR_K7_CLK_CTL:
3806 		/*
3807 		 * Ignore all writes to this no longer documented MSR.
3808 		 * Writes are only relevant for old K7 processors,
3809 		 * all pre-dating SVM, but a recommended workaround from
3810 		 * AMD for these chips. It is possible to specify the
3811 		 * affected processor models on the command line, hence
3812 		 * the need to ignore the workaround.
3813 		 */
3814 		break;
3815 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3816 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3817 	case HV_X64_MSR_SYNDBG_OPTIONS:
3818 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3819 	case HV_X64_MSR_CRASH_CTL:
3820 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3821 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3822 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3823 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3824 		return kvm_hv_set_msr_common(vcpu, msr, data,
3825 					     msr_info->host_initiated);
3826 	case MSR_IA32_BBL_CR_CTL3:
3827 		/* Drop writes to this legacy MSR -- see rdmsr
3828 		 * counterpart for further detail.
3829 		 */
3830 		if (report_ignored_msrs)
3831 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3832 				msr, data);
3833 		break;
3834 	case MSR_AMD64_OSVW_ID_LENGTH:
3835 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3836 			return 1;
3837 		vcpu->arch.osvw.length = data;
3838 		break;
3839 	case MSR_AMD64_OSVW_STATUS:
3840 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841 			return 1;
3842 		vcpu->arch.osvw.status = data;
3843 		break;
3844 	case MSR_PLATFORM_INFO:
3845 		if (!msr_info->host_initiated ||
3846 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3847 		     cpuid_fault_enabled(vcpu)))
3848 			return 1;
3849 		vcpu->arch.msr_platform_info = data;
3850 		break;
3851 	case MSR_MISC_FEATURES_ENABLES:
3852 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3853 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3854 		     !supports_cpuid_fault(vcpu)))
3855 			return 1;
3856 		vcpu->arch.msr_misc_features_enables = data;
3857 		break;
3858 #ifdef CONFIG_X86_64
3859 	case MSR_IA32_XFD:
3860 		if (!msr_info->host_initiated &&
3861 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3862 			return 1;
3863 
3864 		if (data & ~kvm_guest_supported_xfd(vcpu))
3865 			return 1;
3866 
3867 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3868 		break;
3869 	case MSR_IA32_XFD_ERR:
3870 		if (!msr_info->host_initiated &&
3871 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3872 			return 1;
3873 
3874 		if (data & ~kvm_guest_supported_xfd(vcpu))
3875 			return 1;
3876 
3877 		vcpu->arch.guest_fpu.xfd_err = data;
3878 		break;
3879 #endif
3880 	case MSR_IA32_PEBS_ENABLE:
3881 	case MSR_IA32_DS_AREA:
3882 	case MSR_PEBS_DATA_CFG:
3883 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3884 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3885 			return kvm_pmu_set_msr(vcpu, msr_info);
3886 		/*
3887 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3888 		 * as to-be-saved, even if an MSRs isn't fully supported.
3889 		 */
3890 		return !msr_info->host_initiated || data;
3891 	default:
3892 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3893 			return kvm_pmu_set_msr(vcpu, msr_info);
3894 		return KVM_MSR_RET_INVALID;
3895 	}
3896 	return 0;
3897 }
3898 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3899 
3900 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3901 {
3902 	u64 data;
3903 	u64 mcg_cap = vcpu->arch.mcg_cap;
3904 	unsigned bank_num = mcg_cap & 0xff;
3905 	u32 offset, last_msr;
3906 
3907 	switch (msr) {
3908 	case MSR_IA32_P5_MC_ADDR:
3909 	case MSR_IA32_P5_MC_TYPE:
3910 		data = 0;
3911 		break;
3912 	case MSR_IA32_MCG_CAP:
3913 		data = vcpu->arch.mcg_cap;
3914 		break;
3915 	case MSR_IA32_MCG_CTL:
3916 		if (!(mcg_cap & MCG_CTL_P) && !host)
3917 			return 1;
3918 		data = vcpu->arch.mcg_ctl;
3919 		break;
3920 	case MSR_IA32_MCG_STATUS:
3921 		data = vcpu->arch.mcg_status;
3922 		break;
3923 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3924 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3925 		if (msr > last_msr)
3926 			return 1;
3927 
3928 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3929 			return 1;
3930 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3931 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3932 		data = vcpu->arch.mci_ctl2_banks[offset];
3933 		break;
3934 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3935 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3936 		if (msr > last_msr)
3937 			return 1;
3938 
3939 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3940 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3941 		data = vcpu->arch.mce_banks[offset];
3942 		break;
3943 	default:
3944 		return 1;
3945 	}
3946 	*pdata = data;
3947 	return 0;
3948 }
3949 
3950 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3951 {
3952 	switch (msr_info->index) {
3953 	case MSR_IA32_PLATFORM_ID:
3954 	case MSR_IA32_EBL_CR_POWERON:
3955 	case MSR_IA32_LASTBRANCHFROMIP:
3956 	case MSR_IA32_LASTBRANCHTOIP:
3957 	case MSR_IA32_LASTINTFROMIP:
3958 	case MSR_IA32_LASTINTTOIP:
3959 	case MSR_AMD64_SYSCFG:
3960 	case MSR_K8_TSEG_ADDR:
3961 	case MSR_K8_TSEG_MASK:
3962 	case MSR_VM_HSAVE_PA:
3963 	case MSR_K8_INT_PENDING_MSG:
3964 	case MSR_AMD64_NB_CFG:
3965 	case MSR_FAM10H_MMIO_CONF_BASE:
3966 	case MSR_AMD64_BU_CFG2:
3967 	case MSR_IA32_PERF_CTL:
3968 	case MSR_AMD64_DC_CFG:
3969 	case MSR_F15H_EX_CFG:
3970 	/*
3971 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3972 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3973 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3974 	 * so for existing CPU-specific MSRs.
3975 	 */
3976 	case MSR_RAPL_POWER_UNIT:
3977 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3978 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3979 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3980 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3981 		msr_info->data = 0;
3982 		break;
3983 	case MSR_IA32_PEBS_ENABLE:
3984 	case MSR_IA32_DS_AREA:
3985 	case MSR_PEBS_DATA_CFG:
3986 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3987 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3988 			return kvm_pmu_get_msr(vcpu, msr_info);
3989 		/*
3990 		 * Userspace is allowed to read MSRs that KVM reports as
3991 		 * to-be-saved, even if an MSR isn't fully supported.
3992 		 */
3993 		if (!msr_info->host_initiated)
3994 			return 1;
3995 		msr_info->data = 0;
3996 		break;
3997 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3998 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3999 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4000 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4001 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4002 			return kvm_pmu_get_msr(vcpu, msr_info);
4003 		msr_info->data = 0;
4004 		break;
4005 	case MSR_IA32_UCODE_REV:
4006 		msr_info->data = vcpu->arch.microcode_version;
4007 		break;
4008 	case MSR_IA32_ARCH_CAPABILITIES:
4009 		if (!msr_info->host_initiated &&
4010 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4011 			return 1;
4012 		msr_info->data = vcpu->arch.arch_capabilities;
4013 		break;
4014 	case MSR_IA32_PERF_CAPABILITIES:
4015 		if (!msr_info->host_initiated &&
4016 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4017 			return 1;
4018 		msr_info->data = vcpu->arch.perf_capabilities;
4019 		break;
4020 	case MSR_IA32_POWER_CTL:
4021 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4022 		break;
4023 	case MSR_IA32_TSC: {
4024 		/*
4025 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4026 		 * even when not intercepted. AMD manual doesn't explicitly
4027 		 * state this but appears to behave the same.
4028 		 *
4029 		 * On userspace reads and writes, however, we unconditionally
4030 		 * return L1's TSC value to ensure backwards-compatible
4031 		 * behavior for migration.
4032 		 */
4033 		u64 offset, ratio;
4034 
4035 		if (msr_info->host_initiated) {
4036 			offset = vcpu->arch.l1_tsc_offset;
4037 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4038 		} else {
4039 			offset = vcpu->arch.tsc_offset;
4040 			ratio = vcpu->arch.tsc_scaling_ratio;
4041 		}
4042 
4043 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4044 		break;
4045 	}
4046 	case MSR_MTRRcap:
4047 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4048 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4049 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4050 	case 0xcd: /* fsb frequency */
4051 		msr_info->data = 3;
4052 		break;
4053 		/*
4054 		 * MSR_EBC_FREQUENCY_ID
4055 		 * Conservative value valid for even the basic CPU models.
4056 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4057 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4058 		 * and 266MHz for model 3, or 4. Set Core Clock
4059 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4060 		 * 31:24) even though these are only valid for CPU
4061 		 * models > 2, however guests may end up dividing or
4062 		 * multiplying by zero otherwise.
4063 		 */
4064 	case MSR_EBC_FREQUENCY_ID:
4065 		msr_info->data = 1 << 24;
4066 		break;
4067 	case MSR_IA32_APICBASE:
4068 		msr_info->data = kvm_get_apic_base(vcpu);
4069 		break;
4070 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4071 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4072 	case MSR_IA32_TSC_DEADLINE:
4073 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4074 		break;
4075 	case MSR_IA32_TSC_ADJUST:
4076 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4077 		break;
4078 	case MSR_IA32_MISC_ENABLE:
4079 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4080 		break;
4081 	case MSR_IA32_SMBASE:
4082 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4083 			return 1;
4084 		msr_info->data = vcpu->arch.smbase;
4085 		break;
4086 	case MSR_SMI_COUNT:
4087 		msr_info->data = vcpu->arch.smi_count;
4088 		break;
4089 	case MSR_IA32_PERF_STATUS:
4090 		/* TSC increment by tick */
4091 		msr_info->data = 1000ULL;
4092 		/* CPU multiplier */
4093 		msr_info->data |= (((uint64_t)4ULL) << 40);
4094 		break;
4095 	case MSR_EFER:
4096 		msr_info->data = vcpu->arch.efer;
4097 		break;
4098 	case MSR_KVM_WALL_CLOCK:
4099 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4100 			return 1;
4101 
4102 		msr_info->data = vcpu->kvm->arch.wall_clock;
4103 		break;
4104 	case MSR_KVM_WALL_CLOCK_NEW:
4105 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4106 			return 1;
4107 
4108 		msr_info->data = vcpu->kvm->arch.wall_clock;
4109 		break;
4110 	case MSR_KVM_SYSTEM_TIME:
4111 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4112 			return 1;
4113 
4114 		msr_info->data = vcpu->arch.time;
4115 		break;
4116 	case MSR_KVM_SYSTEM_TIME_NEW:
4117 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4118 			return 1;
4119 
4120 		msr_info->data = vcpu->arch.time;
4121 		break;
4122 	case MSR_KVM_ASYNC_PF_EN:
4123 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4124 			return 1;
4125 
4126 		msr_info->data = vcpu->arch.apf.msr_en_val;
4127 		break;
4128 	case MSR_KVM_ASYNC_PF_INT:
4129 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4130 			return 1;
4131 
4132 		msr_info->data = vcpu->arch.apf.msr_int_val;
4133 		break;
4134 	case MSR_KVM_ASYNC_PF_ACK:
4135 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4136 			return 1;
4137 
4138 		msr_info->data = 0;
4139 		break;
4140 	case MSR_KVM_STEAL_TIME:
4141 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4142 			return 1;
4143 
4144 		msr_info->data = vcpu->arch.st.msr_val;
4145 		break;
4146 	case MSR_KVM_PV_EOI_EN:
4147 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4148 			return 1;
4149 
4150 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4151 		break;
4152 	case MSR_KVM_POLL_CONTROL:
4153 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4154 			return 1;
4155 
4156 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4157 		break;
4158 	case MSR_IA32_P5_MC_ADDR:
4159 	case MSR_IA32_P5_MC_TYPE:
4160 	case MSR_IA32_MCG_CAP:
4161 	case MSR_IA32_MCG_CTL:
4162 	case MSR_IA32_MCG_STATUS:
4163 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4164 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4165 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4166 				   msr_info->host_initiated);
4167 	case MSR_IA32_XSS:
4168 		if (!msr_info->host_initiated &&
4169 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4170 			return 1;
4171 		msr_info->data = vcpu->arch.ia32_xss;
4172 		break;
4173 	case MSR_K7_CLK_CTL:
4174 		/*
4175 		 * Provide expected ramp-up count for K7. All other
4176 		 * are set to zero, indicating minimum divisors for
4177 		 * every field.
4178 		 *
4179 		 * This prevents guest kernels on AMD host with CPU
4180 		 * type 6, model 8 and higher from exploding due to
4181 		 * the rdmsr failing.
4182 		 */
4183 		msr_info->data = 0x20000000;
4184 		break;
4185 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4186 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4187 	case HV_X64_MSR_SYNDBG_OPTIONS:
4188 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4189 	case HV_X64_MSR_CRASH_CTL:
4190 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4191 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4192 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4193 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4194 		return kvm_hv_get_msr_common(vcpu,
4195 					     msr_info->index, &msr_info->data,
4196 					     msr_info->host_initiated);
4197 	case MSR_IA32_BBL_CR_CTL3:
4198 		/* This legacy MSR exists but isn't fully documented in current
4199 		 * silicon.  It is however accessed by winxp in very narrow
4200 		 * scenarios where it sets bit #19, itself documented as
4201 		 * a "reserved" bit.  Best effort attempt to source coherent
4202 		 * read data here should the balance of the register be
4203 		 * interpreted by the guest:
4204 		 *
4205 		 * L2 cache control register 3: 64GB range, 256KB size,
4206 		 * enabled, latency 0x1, configured
4207 		 */
4208 		msr_info->data = 0xbe702111;
4209 		break;
4210 	case MSR_AMD64_OSVW_ID_LENGTH:
4211 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4212 			return 1;
4213 		msr_info->data = vcpu->arch.osvw.length;
4214 		break;
4215 	case MSR_AMD64_OSVW_STATUS:
4216 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4217 			return 1;
4218 		msr_info->data = vcpu->arch.osvw.status;
4219 		break;
4220 	case MSR_PLATFORM_INFO:
4221 		if (!msr_info->host_initiated &&
4222 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4223 			return 1;
4224 		msr_info->data = vcpu->arch.msr_platform_info;
4225 		break;
4226 	case MSR_MISC_FEATURES_ENABLES:
4227 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4228 		break;
4229 	case MSR_K7_HWCR:
4230 		msr_info->data = vcpu->arch.msr_hwcr;
4231 		break;
4232 #ifdef CONFIG_X86_64
4233 	case MSR_IA32_XFD:
4234 		if (!msr_info->host_initiated &&
4235 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4236 			return 1;
4237 
4238 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4239 		break;
4240 	case MSR_IA32_XFD_ERR:
4241 		if (!msr_info->host_initiated &&
4242 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4243 			return 1;
4244 
4245 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4246 		break;
4247 #endif
4248 	default:
4249 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4250 			return kvm_pmu_get_msr(vcpu, msr_info);
4251 		return KVM_MSR_RET_INVALID;
4252 	}
4253 	return 0;
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4256 
4257 /*
4258  * Read or write a bunch of msrs. All parameters are kernel addresses.
4259  *
4260  * @return number of msrs set successfully.
4261  */
4262 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4263 		    struct kvm_msr_entry *entries,
4264 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4265 				  unsigned index, u64 *data))
4266 {
4267 	int i;
4268 
4269 	for (i = 0; i < msrs->nmsrs; ++i)
4270 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4271 			break;
4272 
4273 	return i;
4274 }
4275 
4276 /*
4277  * Read or write a bunch of msrs. Parameters are user addresses.
4278  *
4279  * @return number of msrs set successfully.
4280  */
4281 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4282 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4283 				unsigned index, u64 *data),
4284 		  int writeback)
4285 {
4286 	struct kvm_msrs msrs;
4287 	struct kvm_msr_entry *entries;
4288 	int r, n;
4289 	unsigned size;
4290 
4291 	r = -EFAULT;
4292 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4293 		goto out;
4294 
4295 	r = -E2BIG;
4296 	if (msrs.nmsrs >= MAX_IO_MSRS)
4297 		goto out;
4298 
4299 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4300 	entries = memdup_user(user_msrs->entries, size);
4301 	if (IS_ERR(entries)) {
4302 		r = PTR_ERR(entries);
4303 		goto out;
4304 	}
4305 
4306 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4307 	if (r < 0)
4308 		goto out_free;
4309 
4310 	r = -EFAULT;
4311 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4312 		goto out_free;
4313 
4314 	r = n;
4315 
4316 out_free:
4317 	kfree(entries);
4318 out:
4319 	return r;
4320 }
4321 
4322 static inline bool kvm_can_mwait_in_guest(void)
4323 {
4324 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4325 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4326 		boot_cpu_has(X86_FEATURE_ARAT);
4327 }
4328 
4329 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4330 					    struct kvm_cpuid2 __user *cpuid_arg)
4331 {
4332 	struct kvm_cpuid2 cpuid;
4333 	int r;
4334 
4335 	r = -EFAULT;
4336 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4337 		return r;
4338 
4339 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4340 	if (r)
4341 		return r;
4342 
4343 	r = -EFAULT;
4344 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4345 		return r;
4346 
4347 	return 0;
4348 }
4349 
4350 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4351 {
4352 	int r = 0;
4353 
4354 	switch (ext) {
4355 	case KVM_CAP_IRQCHIP:
4356 	case KVM_CAP_HLT:
4357 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4358 	case KVM_CAP_SET_TSS_ADDR:
4359 	case KVM_CAP_EXT_CPUID:
4360 	case KVM_CAP_EXT_EMUL_CPUID:
4361 	case KVM_CAP_CLOCKSOURCE:
4362 	case KVM_CAP_PIT:
4363 	case KVM_CAP_NOP_IO_DELAY:
4364 	case KVM_CAP_MP_STATE:
4365 	case KVM_CAP_SYNC_MMU:
4366 	case KVM_CAP_USER_NMI:
4367 	case KVM_CAP_REINJECT_CONTROL:
4368 	case KVM_CAP_IRQ_INJECT_STATUS:
4369 	case KVM_CAP_IOEVENTFD:
4370 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4371 	case KVM_CAP_PIT2:
4372 	case KVM_CAP_PIT_STATE2:
4373 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4374 	case KVM_CAP_VCPU_EVENTS:
4375 	case KVM_CAP_HYPERV:
4376 	case KVM_CAP_HYPERV_VAPIC:
4377 	case KVM_CAP_HYPERV_SPIN:
4378 	case KVM_CAP_HYPERV_SYNIC:
4379 	case KVM_CAP_HYPERV_SYNIC2:
4380 	case KVM_CAP_HYPERV_VP_INDEX:
4381 	case KVM_CAP_HYPERV_EVENTFD:
4382 	case KVM_CAP_HYPERV_TLBFLUSH:
4383 	case KVM_CAP_HYPERV_SEND_IPI:
4384 	case KVM_CAP_HYPERV_CPUID:
4385 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4386 	case KVM_CAP_SYS_HYPERV_CPUID:
4387 	case KVM_CAP_PCI_SEGMENT:
4388 	case KVM_CAP_DEBUGREGS:
4389 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4390 	case KVM_CAP_XSAVE:
4391 	case KVM_CAP_ASYNC_PF:
4392 	case KVM_CAP_ASYNC_PF_INT:
4393 	case KVM_CAP_GET_TSC_KHZ:
4394 	case KVM_CAP_KVMCLOCK_CTRL:
4395 	case KVM_CAP_READONLY_MEM:
4396 	case KVM_CAP_HYPERV_TIME:
4397 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4398 	case KVM_CAP_TSC_DEADLINE_TIMER:
4399 	case KVM_CAP_DISABLE_QUIRKS:
4400 	case KVM_CAP_SET_BOOT_CPU_ID:
4401  	case KVM_CAP_SPLIT_IRQCHIP:
4402 	case KVM_CAP_IMMEDIATE_EXIT:
4403 	case KVM_CAP_PMU_EVENT_FILTER:
4404 	case KVM_CAP_GET_MSR_FEATURES:
4405 	case KVM_CAP_MSR_PLATFORM_INFO:
4406 	case KVM_CAP_EXCEPTION_PAYLOAD:
4407 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4408 	case KVM_CAP_SET_GUEST_DEBUG:
4409 	case KVM_CAP_LAST_CPU:
4410 	case KVM_CAP_X86_USER_SPACE_MSR:
4411 	case KVM_CAP_X86_MSR_FILTER:
4412 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4413 #ifdef CONFIG_X86_SGX_KVM
4414 	case KVM_CAP_SGX_ATTRIBUTE:
4415 #endif
4416 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4417 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4418 	case KVM_CAP_SREGS2:
4419 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4420 	case KVM_CAP_VCPU_ATTRIBUTES:
4421 	case KVM_CAP_SYS_ATTRIBUTES:
4422 	case KVM_CAP_VAPIC:
4423 	case KVM_CAP_ENABLE_CAP:
4424 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4425 		r = 1;
4426 		break;
4427 	case KVM_CAP_EXIT_HYPERCALL:
4428 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4429 		break;
4430 	case KVM_CAP_SET_GUEST_DEBUG2:
4431 		return KVM_GUESTDBG_VALID_MASK;
4432 #ifdef CONFIG_KVM_XEN
4433 	case KVM_CAP_XEN_HVM:
4434 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4435 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4436 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4437 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4438 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4439 		if (sched_info_on())
4440 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4441 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4442 		break;
4443 #endif
4444 	case KVM_CAP_SYNC_REGS:
4445 		r = KVM_SYNC_X86_VALID_FIELDS;
4446 		break;
4447 	case KVM_CAP_ADJUST_CLOCK:
4448 		r = KVM_CLOCK_VALID_FLAGS;
4449 		break;
4450 	case KVM_CAP_X86_DISABLE_EXITS:
4451 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4452 		      KVM_X86_DISABLE_EXITS_CSTATE;
4453 		if(kvm_can_mwait_in_guest())
4454 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4455 		break;
4456 	case KVM_CAP_X86_SMM:
4457 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4458 			break;
4459 
4460 		/* SMBASE is usually relocated above 1M on modern chipsets,
4461 		 * and SMM handlers might indeed rely on 4G segment limits,
4462 		 * so do not report SMM to be available if real mode is
4463 		 * emulated via vm86 mode.  Still, do not go to great lengths
4464 		 * to avoid userspace's usage of the feature, because it is a
4465 		 * fringe case that is not enabled except via specific settings
4466 		 * of the module parameters.
4467 		 */
4468 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4469 		break;
4470 	case KVM_CAP_NR_VCPUS:
4471 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4472 		break;
4473 	case KVM_CAP_MAX_VCPUS:
4474 		r = KVM_MAX_VCPUS;
4475 		break;
4476 	case KVM_CAP_MAX_VCPU_ID:
4477 		r = KVM_MAX_VCPU_IDS;
4478 		break;
4479 	case KVM_CAP_PV_MMU:	/* obsolete */
4480 		r = 0;
4481 		break;
4482 	case KVM_CAP_MCE:
4483 		r = KVM_MAX_MCE_BANKS;
4484 		break;
4485 	case KVM_CAP_XCRS:
4486 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4487 		break;
4488 	case KVM_CAP_TSC_CONTROL:
4489 	case KVM_CAP_VM_TSC_CONTROL:
4490 		r = kvm_caps.has_tsc_control;
4491 		break;
4492 	case KVM_CAP_X2APIC_API:
4493 		r = KVM_X2APIC_API_VALID_FLAGS;
4494 		break;
4495 	case KVM_CAP_NESTED_STATE:
4496 		r = kvm_x86_ops.nested_ops->get_state ?
4497 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4498 		break;
4499 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4500 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4501 		break;
4502 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4503 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4504 		break;
4505 	case KVM_CAP_SMALLER_MAXPHYADDR:
4506 		r = (int) allow_smaller_maxphyaddr;
4507 		break;
4508 	case KVM_CAP_STEAL_TIME:
4509 		r = sched_info_on();
4510 		break;
4511 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4512 		if (kvm_caps.has_bus_lock_exit)
4513 			r = KVM_BUS_LOCK_DETECTION_OFF |
4514 			    KVM_BUS_LOCK_DETECTION_EXIT;
4515 		else
4516 			r = 0;
4517 		break;
4518 	case KVM_CAP_XSAVE2: {
4519 		u64 guest_perm = xstate_get_guest_group_perm();
4520 
4521 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4522 		if (r < sizeof(struct kvm_xsave))
4523 			r = sizeof(struct kvm_xsave);
4524 		break;
4525 	}
4526 	case KVM_CAP_PMU_CAPABILITY:
4527 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4528 		break;
4529 	case KVM_CAP_DISABLE_QUIRKS2:
4530 		r = KVM_X86_VALID_QUIRKS;
4531 		break;
4532 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4533 		r = kvm_caps.has_notify_vmexit;
4534 		break;
4535 	default:
4536 		break;
4537 	}
4538 	return r;
4539 }
4540 
4541 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4542 {
4543 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4544 
4545 	if ((u64)(unsigned long)uaddr != attr->addr)
4546 		return ERR_PTR_USR(-EFAULT);
4547 	return uaddr;
4548 }
4549 
4550 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4551 {
4552 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4553 
4554 	if (attr->group)
4555 		return -ENXIO;
4556 
4557 	if (IS_ERR(uaddr))
4558 		return PTR_ERR(uaddr);
4559 
4560 	switch (attr->attr) {
4561 	case KVM_X86_XCOMP_GUEST_SUPP:
4562 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4563 			return -EFAULT;
4564 		return 0;
4565 	default:
4566 		return -ENXIO;
4567 		break;
4568 	}
4569 }
4570 
4571 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4572 {
4573 	if (attr->group)
4574 		return -ENXIO;
4575 
4576 	switch (attr->attr) {
4577 	case KVM_X86_XCOMP_GUEST_SUPP:
4578 		return 0;
4579 	default:
4580 		return -ENXIO;
4581 	}
4582 }
4583 
4584 long kvm_arch_dev_ioctl(struct file *filp,
4585 			unsigned int ioctl, unsigned long arg)
4586 {
4587 	void __user *argp = (void __user *)arg;
4588 	long r;
4589 
4590 	switch (ioctl) {
4591 	case KVM_GET_MSR_INDEX_LIST: {
4592 		struct kvm_msr_list __user *user_msr_list = argp;
4593 		struct kvm_msr_list msr_list;
4594 		unsigned n;
4595 
4596 		r = -EFAULT;
4597 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4598 			goto out;
4599 		n = msr_list.nmsrs;
4600 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4601 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4602 			goto out;
4603 		r = -E2BIG;
4604 		if (n < msr_list.nmsrs)
4605 			goto out;
4606 		r = -EFAULT;
4607 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4608 				 num_msrs_to_save * sizeof(u32)))
4609 			goto out;
4610 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4611 				 &emulated_msrs,
4612 				 num_emulated_msrs * sizeof(u32)))
4613 			goto out;
4614 		r = 0;
4615 		break;
4616 	}
4617 	case KVM_GET_SUPPORTED_CPUID:
4618 	case KVM_GET_EMULATED_CPUID: {
4619 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4620 		struct kvm_cpuid2 cpuid;
4621 
4622 		r = -EFAULT;
4623 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4624 			goto out;
4625 
4626 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4627 					    ioctl);
4628 		if (r)
4629 			goto out;
4630 
4631 		r = -EFAULT;
4632 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4633 			goto out;
4634 		r = 0;
4635 		break;
4636 	}
4637 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4638 		r = -EFAULT;
4639 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4640 				 sizeof(kvm_caps.supported_mce_cap)))
4641 			goto out;
4642 		r = 0;
4643 		break;
4644 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4645 		struct kvm_msr_list __user *user_msr_list = argp;
4646 		struct kvm_msr_list msr_list;
4647 		unsigned int n;
4648 
4649 		r = -EFAULT;
4650 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4651 			goto out;
4652 		n = msr_list.nmsrs;
4653 		msr_list.nmsrs = num_msr_based_features;
4654 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4655 			goto out;
4656 		r = -E2BIG;
4657 		if (n < msr_list.nmsrs)
4658 			goto out;
4659 		r = -EFAULT;
4660 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4661 				 num_msr_based_features * sizeof(u32)))
4662 			goto out;
4663 		r = 0;
4664 		break;
4665 	}
4666 	case KVM_GET_MSRS:
4667 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4668 		break;
4669 	case KVM_GET_SUPPORTED_HV_CPUID:
4670 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4671 		break;
4672 	case KVM_GET_DEVICE_ATTR: {
4673 		struct kvm_device_attr attr;
4674 		r = -EFAULT;
4675 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676 			break;
4677 		r = kvm_x86_dev_get_attr(&attr);
4678 		break;
4679 	}
4680 	case KVM_HAS_DEVICE_ATTR: {
4681 		struct kvm_device_attr attr;
4682 		r = -EFAULT;
4683 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4684 			break;
4685 		r = kvm_x86_dev_has_attr(&attr);
4686 		break;
4687 	}
4688 	default:
4689 		r = -EINVAL;
4690 		break;
4691 	}
4692 out:
4693 	return r;
4694 }
4695 
4696 static void wbinvd_ipi(void *garbage)
4697 {
4698 	wbinvd();
4699 }
4700 
4701 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4702 {
4703 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4704 }
4705 
4706 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4707 {
4708 	/* Address WBINVD may be executed by guest */
4709 	if (need_emulate_wbinvd(vcpu)) {
4710 		if (static_call(kvm_x86_has_wbinvd_exit)())
4711 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4712 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4713 			smp_call_function_single(vcpu->cpu,
4714 					wbinvd_ipi, NULL, 1);
4715 	}
4716 
4717 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4718 
4719 	/* Save host pkru register if supported */
4720 	vcpu->arch.host_pkru = read_pkru();
4721 
4722 	/* Apply any externally detected TSC adjustments (due to suspend) */
4723 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4724 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4725 		vcpu->arch.tsc_offset_adjustment = 0;
4726 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4727 	}
4728 
4729 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4730 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4731 				rdtsc() - vcpu->arch.last_host_tsc;
4732 		if (tsc_delta < 0)
4733 			mark_tsc_unstable("KVM discovered backwards TSC");
4734 
4735 		if (kvm_check_tsc_unstable()) {
4736 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4737 						vcpu->arch.last_guest_tsc);
4738 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4739 			vcpu->arch.tsc_catchup = 1;
4740 		}
4741 
4742 		if (kvm_lapic_hv_timer_in_use(vcpu))
4743 			kvm_lapic_restart_hv_timer(vcpu);
4744 
4745 		/*
4746 		 * On a host with synchronized TSC, there is no need to update
4747 		 * kvmclock on vcpu->cpu migration
4748 		 */
4749 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4750 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4751 		if (vcpu->cpu != cpu)
4752 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4753 		vcpu->cpu = cpu;
4754 	}
4755 
4756 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4757 }
4758 
4759 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4760 {
4761 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4762 	struct kvm_steal_time __user *st;
4763 	struct kvm_memslots *slots;
4764 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4765 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4766 
4767 	/*
4768 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4769 	 * an instruction boundary and will not trigger guest emulation of any
4770 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4771 	 * when this is true, for example allowing the vCPU to be marked
4772 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4773 	 */
4774 	if (!vcpu->arch.at_instruction_boundary) {
4775 		vcpu->stat.preemption_other++;
4776 		return;
4777 	}
4778 
4779 	vcpu->stat.preemption_reported++;
4780 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4781 		return;
4782 
4783 	if (vcpu->arch.st.preempted)
4784 		return;
4785 
4786 	/* This happens on process exit */
4787 	if (unlikely(current->mm != vcpu->kvm->mm))
4788 		return;
4789 
4790 	slots = kvm_memslots(vcpu->kvm);
4791 
4792 	if (unlikely(slots->generation != ghc->generation ||
4793 		     gpa != ghc->gpa ||
4794 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4795 		return;
4796 
4797 	st = (struct kvm_steal_time __user *)ghc->hva;
4798 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4799 
4800 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4801 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4802 
4803 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4804 }
4805 
4806 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4807 {
4808 	int idx;
4809 
4810 	if (vcpu->preempted) {
4811 		if (!vcpu->arch.guest_state_protected)
4812 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4813 
4814 		/*
4815 		 * Take the srcu lock as memslots will be accessed to check the gfn
4816 		 * cache generation against the memslots generation.
4817 		 */
4818 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4819 		if (kvm_xen_msr_enabled(vcpu->kvm))
4820 			kvm_xen_runstate_set_preempted(vcpu);
4821 		else
4822 			kvm_steal_time_set_preempted(vcpu);
4823 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4824 	}
4825 
4826 	static_call(kvm_x86_vcpu_put)(vcpu);
4827 	vcpu->arch.last_host_tsc = rdtsc();
4828 }
4829 
4830 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4831 				    struct kvm_lapic_state *s)
4832 {
4833 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4834 
4835 	return kvm_apic_get_state(vcpu, s);
4836 }
4837 
4838 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4839 				    struct kvm_lapic_state *s)
4840 {
4841 	int r;
4842 
4843 	r = kvm_apic_set_state(vcpu, s);
4844 	if (r)
4845 		return r;
4846 	update_cr8_intercept(vcpu);
4847 
4848 	return 0;
4849 }
4850 
4851 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4852 {
4853 	/*
4854 	 * We can accept userspace's request for interrupt injection
4855 	 * as long as we have a place to store the interrupt number.
4856 	 * The actual injection will happen when the CPU is able to
4857 	 * deliver the interrupt.
4858 	 */
4859 	if (kvm_cpu_has_extint(vcpu))
4860 		return false;
4861 
4862 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4863 	return (!lapic_in_kernel(vcpu) ||
4864 		kvm_apic_accept_pic_intr(vcpu));
4865 }
4866 
4867 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4868 {
4869 	/*
4870 	 * Do not cause an interrupt window exit if an exception
4871 	 * is pending or an event needs reinjection; userspace
4872 	 * might want to inject the interrupt manually using KVM_SET_REGS
4873 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4874 	 * instruction boundary and with no events half-injected.
4875 	 */
4876 	return (kvm_arch_interrupt_allowed(vcpu) &&
4877 		kvm_cpu_accept_dm_intr(vcpu) &&
4878 		!kvm_event_needs_reinjection(vcpu) &&
4879 		!kvm_is_exception_pending(vcpu));
4880 }
4881 
4882 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4883 				    struct kvm_interrupt *irq)
4884 {
4885 	if (irq->irq >= KVM_NR_INTERRUPTS)
4886 		return -EINVAL;
4887 
4888 	if (!irqchip_in_kernel(vcpu->kvm)) {
4889 		kvm_queue_interrupt(vcpu, irq->irq, false);
4890 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4891 		return 0;
4892 	}
4893 
4894 	/*
4895 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4896 	 * fail for in-kernel 8259.
4897 	 */
4898 	if (pic_in_kernel(vcpu->kvm))
4899 		return -ENXIO;
4900 
4901 	if (vcpu->arch.pending_external_vector != -1)
4902 		return -EEXIST;
4903 
4904 	vcpu->arch.pending_external_vector = irq->irq;
4905 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4906 	return 0;
4907 }
4908 
4909 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4910 {
4911 	kvm_inject_nmi(vcpu);
4912 
4913 	return 0;
4914 }
4915 
4916 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4917 					   struct kvm_tpr_access_ctl *tac)
4918 {
4919 	if (tac->flags)
4920 		return -EINVAL;
4921 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4922 	return 0;
4923 }
4924 
4925 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4926 					u64 mcg_cap)
4927 {
4928 	int r;
4929 	unsigned bank_num = mcg_cap & 0xff, bank;
4930 
4931 	r = -EINVAL;
4932 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4933 		goto out;
4934 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4935 		goto out;
4936 	r = 0;
4937 	vcpu->arch.mcg_cap = mcg_cap;
4938 	/* Init IA32_MCG_CTL to all 1s */
4939 	if (mcg_cap & MCG_CTL_P)
4940 		vcpu->arch.mcg_ctl = ~(u64)0;
4941 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4942 	for (bank = 0; bank < bank_num; bank++) {
4943 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4944 		if (mcg_cap & MCG_CMCI_P)
4945 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4946 	}
4947 
4948 	kvm_apic_after_set_mcg_cap(vcpu);
4949 
4950 	static_call(kvm_x86_setup_mce)(vcpu);
4951 out:
4952 	return r;
4953 }
4954 
4955 /*
4956  * Validate this is an UCNA (uncorrectable no action) error by checking the
4957  * MCG_STATUS and MCi_STATUS registers:
4958  * - none of the bits for Machine Check Exceptions are set
4959  * - both the VAL (valid) and UC (uncorrectable) bits are set
4960  * MCI_STATUS_PCC - Processor Context Corrupted
4961  * MCI_STATUS_S - Signaled as a Machine Check Exception
4962  * MCI_STATUS_AR - Software recoverable Action Required
4963  */
4964 static bool is_ucna(struct kvm_x86_mce *mce)
4965 {
4966 	return	!mce->mcg_status &&
4967 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4968 		(mce->status & MCI_STATUS_VAL) &&
4969 		(mce->status & MCI_STATUS_UC);
4970 }
4971 
4972 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4973 {
4974 	u64 mcg_cap = vcpu->arch.mcg_cap;
4975 
4976 	banks[1] = mce->status;
4977 	banks[2] = mce->addr;
4978 	banks[3] = mce->misc;
4979 	vcpu->arch.mcg_status = mce->mcg_status;
4980 
4981 	if (!(mcg_cap & MCG_CMCI_P) ||
4982 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4983 		return 0;
4984 
4985 	if (lapic_in_kernel(vcpu))
4986 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4987 
4988 	return 0;
4989 }
4990 
4991 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4992 				      struct kvm_x86_mce *mce)
4993 {
4994 	u64 mcg_cap = vcpu->arch.mcg_cap;
4995 	unsigned bank_num = mcg_cap & 0xff;
4996 	u64 *banks = vcpu->arch.mce_banks;
4997 
4998 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4999 		return -EINVAL;
5000 
5001 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5002 
5003 	if (is_ucna(mce))
5004 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5005 
5006 	/*
5007 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5008 	 * reporting is disabled
5009 	 */
5010 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5011 	    vcpu->arch.mcg_ctl != ~(u64)0)
5012 		return 0;
5013 	/*
5014 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5015 	 * reporting is disabled for the bank
5016 	 */
5017 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5018 		return 0;
5019 	if (mce->status & MCI_STATUS_UC) {
5020 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5021 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5022 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5023 			return 0;
5024 		}
5025 		if (banks[1] & MCI_STATUS_VAL)
5026 			mce->status |= MCI_STATUS_OVER;
5027 		banks[2] = mce->addr;
5028 		banks[3] = mce->misc;
5029 		vcpu->arch.mcg_status = mce->mcg_status;
5030 		banks[1] = mce->status;
5031 		kvm_queue_exception(vcpu, MC_VECTOR);
5032 	} else if (!(banks[1] & MCI_STATUS_VAL)
5033 		   || !(banks[1] & MCI_STATUS_UC)) {
5034 		if (banks[1] & MCI_STATUS_VAL)
5035 			mce->status |= MCI_STATUS_OVER;
5036 		banks[2] = mce->addr;
5037 		banks[3] = mce->misc;
5038 		banks[1] = mce->status;
5039 	} else
5040 		banks[1] |= MCI_STATUS_OVER;
5041 	return 0;
5042 }
5043 
5044 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5045 					       struct kvm_vcpu_events *events)
5046 {
5047 	struct kvm_queued_exception *ex;
5048 
5049 	process_nmi(vcpu);
5050 
5051 #ifdef CONFIG_KVM_SMM
5052 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5053 		process_smi(vcpu);
5054 #endif
5055 
5056 	/*
5057 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5058 	 * the only time there can be two queued exceptions is if there's a
5059 	 * non-exiting _injected_ exception, and a pending exiting exception.
5060 	 * In that case, ignore the VM-Exiting exception as it's an extension
5061 	 * of the injected exception.
5062 	 */
5063 	if (vcpu->arch.exception_vmexit.pending &&
5064 	    !vcpu->arch.exception.pending &&
5065 	    !vcpu->arch.exception.injected)
5066 		ex = &vcpu->arch.exception_vmexit;
5067 	else
5068 		ex = &vcpu->arch.exception;
5069 
5070 	/*
5071 	 * In guest mode, payload delivery should be deferred if the exception
5072 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5073 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5074 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5075 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5076 	 * the payload if the capability hasn't been requested.
5077 	 */
5078 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5079 	    ex->pending && ex->has_payload)
5080 		kvm_deliver_exception_payload(vcpu, ex);
5081 
5082 	memset(events, 0, sizeof(*events));
5083 
5084 	/*
5085 	 * The API doesn't provide the instruction length for software
5086 	 * exceptions, so don't report them. As long as the guest RIP
5087 	 * isn't advanced, we should expect to encounter the exception
5088 	 * again.
5089 	 */
5090 	if (!kvm_exception_is_soft(ex->vector)) {
5091 		events->exception.injected = ex->injected;
5092 		events->exception.pending = ex->pending;
5093 		/*
5094 		 * For ABI compatibility, deliberately conflate
5095 		 * pending and injected exceptions when
5096 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5097 		 */
5098 		if (!vcpu->kvm->arch.exception_payload_enabled)
5099 			events->exception.injected |= ex->pending;
5100 	}
5101 	events->exception.nr = ex->vector;
5102 	events->exception.has_error_code = ex->has_error_code;
5103 	events->exception.error_code = ex->error_code;
5104 	events->exception_has_payload = ex->has_payload;
5105 	events->exception_payload = ex->payload;
5106 
5107 	events->interrupt.injected =
5108 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5109 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5110 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5111 
5112 	events->nmi.injected = vcpu->arch.nmi_injected;
5113 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5114 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5115 
5116 	/* events->sipi_vector is never valid when reporting to user space */
5117 
5118 #ifdef CONFIG_KVM_SMM
5119 	events->smi.smm = is_smm(vcpu);
5120 	events->smi.pending = vcpu->arch.smi_pending;
5121 	events->smi.smm_inside_nmi =
5122 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5123 #endif
5124 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5125 
5126 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5127 			 | KVM_VCPUEVENT_VALID_SHADOW
5128 			 | KVM_VCPUEVENT_VALID_SMM);
5129 	if (vcpu->kvm->arch.exception_payload_enabled)
5130 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5131 	if (vcpu->kvm->arch.triple_fault_event) {
5132 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5133 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5134 	}
5135 }
5136 
5137 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5138 					      struct kvm_vcpu_events *events)
5139 {
5140 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5141 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5142 			      | KVM_VCPUEVENT_VALID_SHADOW
5143 			      | KVM_VCPUEVENT_VALID_SMM
5144 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5145 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5146 		return -EINVAL;
5147 
5148 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5149 		if (!vcpu->kvm->arch.exception_payload_enabled)
5150 			return -EINVAL;
5151 		if (events->exception.pending)
5152 			events->exception.injected = 0;
5153 		else
5154 			events->exception_has_payload = 0;
5155 	} else {
5156 		events->exception.pending = 0;
5157 		events->exception_has_payload = 0;
5158 	}
5159 
5160 	if ((events->exception.injected || events->exception.pending) &&
5161 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5162 		return -EINVAL;
5163 
5164 	/* INITs are latched while in SMM */
5165 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5166 	    (events->smi.smm || events->smi.pending) &&
5167 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5168 		return -EINVAL;
5169 
5170 	process_nmi(vcpu);
5171 
5172 	/*
5173 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5174 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5175 	 * pending exceptions, already-injected exceptions are not subject to
5176 	 * intercpetion.  Note, userspace that conflates pending and injected
5177 	 * is hosed, and will incorrectly convert an injected exception into a
5178 	 * pending exception, which in turn may cause a spurious VM-Exit.
5179 	 */
5180 	vcpu->arch.exception_from_userspace = events->exception.pending;
5181 
5182 	vcpu->arch.exception_vmexit.pending = false;
5183 
5184 	vcpu->arch.exception.injected = events->exception.injected;
5185 	vcpu->arch.exception.pending = events->exception.pending;
5186 	vcpu->arch.exception.vector = events->exception.nr;
5187 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5188 	vcpu->arch.exception.error_code = events->exception.error_code;
5189 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5190 	vcpu->arch.exception.payload = events->exception_payload;
5191 
5192 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5193 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5194 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5195 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5196 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5197 						events->interrupt.shadow);
5198 
5199 	vcpu->arch.nmi_injected = events->nmi.injected;
5200 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5201 		vcpu->arch.nmi_pending = events->nmi.pending;
5202 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5203 
5204 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5205 	    lapic_in_kernel(vcpu))
5206 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5207 
5208 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5209 #ifdef CONFIG_KVM_SMM
5210 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5211 			kvm_leave_nested(vcpu);
5212 			kvm_smm_changed(vcpu, events->smi.smm);
5213 		}
5214 
5215 		vcpu->arch.smi_pending = events->smi.pending;
5216 
5217 		if (events->smi.smm) {
5218 			if (events->smi.smm_inside_nmi)
5219 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5220 			else
5221 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5222 		}
5223 
5224 #else
5225 		if (events->smi.smm || events->smi.pending ||
5226 		    events->smi.smm_inside_nmi)
5227 			return -EINVAL;
5228 #endif
5229 
5230 		if (lapic_in_kernel(vcpu)) {
5231 			if (events->smi.latched_init)
5232 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5233 			else
5234 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5235 		}
5236 	}
5237 
5238 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5239 		if (!vcpu->kvm->arch.triple_fault_event)
5240 			return -EINVAL;
5241 		if (events->triple_fault.pending)
5242 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5243 		else
5244 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5245 	}
5246 
5247 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5248 
5249 	return 0;
5250 }
5251 
5252 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5253 					     struct kvm_debugregs *dbgregs)
5254 {
5255 	unsigned long val;
5256 
5257 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5258 	kvm_get_dr(vcpu, 6, &val);
5259 	dbgregs->dr6 = val;
5260 	dbgregs->dr7 = vcpu->arch.dr7;
5261 	dbgregs->flags = 0;
5262 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5263 }
5264 
5265 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5266 					    struct kvm_debugregs *dbgregs)
5267 {
5268 	if (dbgregs->flags)
5269 		return -EINVAL;
5270 
5271 	if (!kvm_dr6_valid(dbgregs->dr6))
5272 		return -EINVAL;
5273 	if (!kvm_dr7_valid(dbgregs->dr7))
5274 		return -EINVAL;
5275 
5276 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5277 	kvm_update_dr0123(vcpu);
5278 	vcpu->arch.dr6 = dbgregs->dr6;
5279 	vcpu->arch.dr7 = dbgregs->dr7;
5280 	kvm_update_dr7(vcpu);
5281 
5282 	return 0;
5283 }
5284 
5285 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5286 					 struct kvm_xsave *guest_xsave)
5287 {
5288 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5289 		return;
5290 
5291 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5292 				       guest_xsave->region,
5293 				       sizeof(guest_xsave->region),
5294 				       vcpu->arch.pkru);
5295 }
5296 
5297 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5298 					  u8 *state, unsigned int size)
5299 {
5300 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5301 		return;
5302 
5303 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5304 				       state, size, vcpu->arch.pkru);
5305 }
5306 
5307 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5308 					struct kvm_xsave *guest_xsave)
5309 {
5310 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5311 		return 0;
5312 
5313 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5314 					      guest_xsave->region,
5315 					      kvm_caps.supported_xcr0,
5316 					      &vcpu->arch.pkru);
5317 }
5318 
5319 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5320 					struct kvm_xcrs *guest_xcrs)
5321 {
5322 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5323 		guest_xcrs->nr_xcrs = 0;
5324 		return;
5325 	}
5326 
5327 	guest_xcrs->nr_xcrs = 1;
5328 	guest_xcrs->flags = 0;
5329 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5330 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5331 }
5332 
5333 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5334 				       struct kvm_xcrs *guest_xcrs)
5335 {
5336 	int i, r = 0;
5337 
5338 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5339 		return -EINVAL;
5340 
5341 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5342 		return -EINVAL;
5343 
5344 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5345 		/* Only support XCR0 currently */
5346 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5347 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5348 				guest_xcrs->xcrs[i].value);
5349 			break;
5350 		}
5351 	if (r)
5352 		r = -EINVAL;
5353 	return r;
5354 }
5355 
5356 /*
5357  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5358  * stopped by the hypervisor.  This function will be called from the host only.
5359  * EINVAL is returned when the host attempts to set the flag for a guest that
5360  * does not support pv clocks.
5361  */
5362 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5363 {
5364 	if (!vcpu->arch.pv_time.active)
5365 		return -EINVAL;
5366 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5367 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5368 	return 0;
5369 }
5370 
5371 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5372 				 struct kvm_device_attr *attr)
5373 {
5374 	int r;
5375 
5376 	switch (attr->attr) {
5377 	case KVM_VCPU_TSC_OFFSET:
5378 		r = 0;
5379 		break;
5380 	default:
5381 		r = -ENXIO;
5382 	}
5383 
5384 	return r;
5385 }
5386 
5387 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5388 				 struct kvm_device_attr *attr)
5389 {
5390 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5391 	int r;
5392 
5393 	if (IS_ERR(uaddr))
5394 		return PTR_ERR(uaddr);
5395 
5396 	switch (attr->attr) {
5397 	case KVM_VCPU_TSC_OFFSET:
5398 		r = -EFAULT;
5399 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5400 			break;
5401 		r = 0;
5402 		break;
5403 	default:
5404 		r = -ENXIO;
5405 	}
5406 
5407 	return r;
5408 }
5409 
5410 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5411 				 struct kvm_device_attr *attr)
5412 {
5413 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5414 	struct kvm *kvm = vcpu->kvm;
5415 	int r;
5416 
5417 	if (IS_ERR(uaddr))
5418 		return PTR_ERR(uaddr);
5419 
5420 	switch (attr->attr) {
5421 	case KVM_VCPU_TSC_OFFSET: {
5422 		u64 offset, tsc, ns;
5423 		unsigned long flags;
5424 		bool matched;
5425 
5426 		r = -EFAULT;
5427 		if (get_user(offset, uaddr))
5428 			break;
5429 
5430 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5431 
5432 		matched = (vcpu->arch.virtual_tsc_khz &&
5433 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5434 			   kvm->arch.last_tsc_offset == offset);
5435 
5436 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5437 		ns = get_kvmclock_base_ns();
5438 
5439 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5440 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5441 
5442 		r = 0;
5443 		break;
5444 	}
5445 	default:
5446 		r = -ENXIO;
5447 	}
5448 
5449 	return r;
5450 }
5451 
5452 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5453 				      unsigned int ioctl,
5454 				      void __user *argp)
5455 {
5456 	struct kvm_device_attr attr;
5457 	int r;
5458 
5459 	if (copy_from_user(&attr, argp, sizeof(attr)))
5460 		return -EFAULT;
5461 
5462 	if (attr.group != KVM_VCPU_TSC_CTRL)
5463 		return -ENXIO;
5464 
5465 	switch (ioctl) {
5466 	case KVM_HAS_DEVICE_ATTR:
5467 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5468 		break;
5469 	case KVM_GET_DEVICE_ATTR:
5470 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5471 		break;
5472 	case KVM_SET_DEVICE_ATTR:
5473 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5474 		break;
5475 	}
5476 
5477 	return r;
5478 }
5479 
5480 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5481 				     struct kvm_enable_cap *cap)
5482 {
5483 	int r;
5484 	uint16_t vmcs_version;
5485 	void __user *user_ptr;
5486 
5487 	if (cap->flags)
5488 		return -EINVAL;
5489 
5490 	switch (cap->cap) {
5491 	case KVM_CAP_HYPERV_SYNIC2:
5492 		if (cap->args[0])
5493 			return -EINVAL;
5494 		fallthrough;
5495 
5496 	case KVM_CAP_HYPERV_SYNIC:
5497 		if (!irqchip_in_kernel(vcpu->kvm))
5498 			return -EINVAL;
5499 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5500 					     KVM_CAP_HYPERV_SYNIC2);
5501 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5502 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5503 			return -ENOTTY;
5504 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5505 		if (!r) {
5506 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5507 			if (copy_to_user(user_ptr, &vmcs_version,
5508 					 sizeof(vmcs_version)))
5509 				r = -EFAULT;
5510 		}
5511 		return r;
5512 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5513 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5514 			return -ENOTTY;
5515 
5516 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5517 
5518 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5519 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5520 
5521 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5522 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5523 		if (vcpu->arch.pv_cpuid.enforce)
5524 			kvm_update_pv_runtime(vcpu);
5525 
5526 		return 0;
5527 	default:
5528 		return -EINVAL;
5529 	}
5530 }
5531 
5532 long kvm_arch_vcpu_ioctl(struct file *filp,
5533 			 unsigned int ioctl, unsigned long arg)
5534 {
5535 	struct kvm_vcpu *vcpu = filp->private_data;
5536 	void __user *argp = (void __user *)arg;
5537 	int r;
5538 	union {
5539 		struct kvm_sregs2 *sregs2;
5540 		struct kvm_lapic_state *lapic;
5541 		struct kvm_xsave *xsave;
5542 		struct kvm_xcrs *xcrs;
5543 		void *buffer;
5544 	} u;
5545 
5546 	vcpu_load(vcpu);
5547 
5548 	u.buffer = NULL;
5549 	switch (ioctl) {
5550 	case KVM_GET_LAPIC: {
5551 		r = -EINVAL;
5552 		if (!lapic_in_kernel(vcpu))
5553 			goto out;
5554 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5555 				GFP_KERNEL_ACCOUNT);
5556 
5557 		r = -ENOMEM;
5558 		if (!u.lapic)
5559 			goto out;
5560 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5561 		if (r)
5562 			goto out;
5563 		r = -EFAULT;
5564 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5565 			goto out;
5566 		r = 0;
5567 		break;
5568 	}
5569 	case KVM_SET_LAPIC: {
5570 		r = -EINVAL;
5571 		if (!lapic_in_kernel(vcpu))
5572 			goto out;
5573 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5574 		if (IS_ERR(u.lapic)) {
5575 			r = PTR_ERR(u.lapic);
5576 			goto out_nofree;
5577 		}
5578 
5579 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5580 		break;
5581 	}
5582 	case KVM_INTERRUPT: {
5583 		struct kvm_interrupt irq;
5584 
5585 		r = -EFAULT;
5586 		if (copy_from_user(&irq, argp, sizeof(irq)))
5587 			goto out;
5588 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5589 		break;
5590 	}
5591 	case KVM_NMI: {
5592 		r = kvm_vcpu_ioctl_nmi(vcpu);
5593 		break;
5594 	}
5595 	case KVM_SMI: {
5596 		r = kvm_inject_smi(vcpu);
5597 		break;
5598 	}
5599 	case KVM_SET_CPUID: {
5600 		struct kvm_cpuid __user *cpuid_arg = argp;
5601 		struct kvm_cpuid cpuid;
5602 
5603 		r = -EFAULT;
5604 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5605 			goto out;
5606 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5607 		break;
5608 	}
5609 	case KVM_SET_CPUID2: {
5610 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5611 		struct kvm_cpuid2 cpuid;
5612 
5613 		r = -EFAULT;
5614 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5615 			goto out;
5616 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5617 					      cpuid_arg->entries);
5618 		break;
5619 	}
5620 	case KVM_GET_CPUID2: {
5621 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5622 		struct kvm_cpuid2 cpuid;
5623 
5624 		r = -EFAULT;
5625 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5626 			goto out;
5627 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5628 					      cpuid_arg->entries);
5629 		if (r)
5630 			goto out;
5631 		r = -EFAULT;
5632 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5633 			goto out;
5634 		r = 0;
5635 		break;
5636 	}
5637 	case KVM_GET_MSRS: {
5638 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5639 		r = msr_io(vcpu, argp, do_get_msr, 1);
5640 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5641 		break;
5642 	}
5643 	case KVM_SET_MSRS: {
5644 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5645 		r = msr_io(vcpu, argp, do_set_msr, 0);
5646 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5647 		break;
5648 	}
5649 	case KVM_TPR_ACCESS_REPORTING: {
5650 		struct kvm_tpr_access_ctl tac;
5651 
5652 		r = -EFAULT;
5653 		if (copy_from_user(&tac, argp, sizeof(tac)))
5654 			goto out;
5655 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5656 		if (r)
5657 			goto out;
5658 		r = -EFAULT;
5659 		if (copy_to_user(argp, &tac, sizeof(tac)))
5660 			goto out;
5661 		r = 0;
5662 		break;
5663 	};
5664 	case KVM_SET_VAPIC_ADDR: {
5665 		struct kvm_vapic_addr va;
5666 		int idx;
5667 
5668 		r = -EINVAL;
5669 		if (!lapic_in_kernel(vcpu))
5670 			goto out;
5671 		r = -EFAULT;
5672 		if (copy_from_user(&va, argp, sizeof(va)))
5673 			goto out;
5674 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5675 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5676 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5677 		break;
5678 	}
5679 	case KVM_X86_SETUP_MCE: {
5680 		u64 mcg_cap;
5681 
5682 		r = -EFAULT;
5683 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5684 			goto out;
5685 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5686 		break;
5687 	}
5688 	case KVM_X86_SET_MCE: {
5689 		struct kvm_x86_mce mce;
5690 
5691 		r = -EFAULT;
5692 		if (copy_from_user(&mce, argp, sizeof(mce)))
5693 			goto out;
5694 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5695 		break;
5696 	}
5697 	case KVM_GET_VCPU_EVENTS: {
5698 		struct kvm_vcpu_events events;
5699 
5700 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5701 
5702 		r = -EFAULT;
5703 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5704 			break;
5705 		r = 0;
5706 		break;
5707 	}
5708 	case KVM_SET_VCPU_EVENTS: {
5709 		struct kvm_vcpu_events events;
5710 
5711 		r = -EFAULT;
5712 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5713 			break;
5714 
5715 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5716 		break;
5717 	}
5718 	case KVM_GET_DEBUGREGS: {
5719 		struct kvm_debugregs dbgregs;
5720 
5721 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5722 
5723 		r = -EFAULT;
5724 		if (copy_to_user(argp, &dbgregs,
5725 				 sizeof(struct kvm_debugregs)))
5726 			break;
5727 		r = 0;
5728 		break;
5729 	}
5730 	case KVM_SET_DEBUGREGS: {
5731 		struct kvm_debugregs dbgregs;
5732 
5733 		r = -EFAULT;
5734 		if (copy_from_user(&dbgregs, argp,
5735 				   sizeof(struct kvm_debugregs)))
5736 			break;
5737 
5738 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5739 		break;
5740 	}
5741 	case KVM_GET_XSAVE: {
5742 		r = -EINVAL;
5743 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5744 			break;
5745 
5746 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5747 		r = -ENOMEM;
5748 		if (!u.xsave)
5749 			break;
5750 
5751 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5752 
5753 		r = -EFAULT;
5754 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5755 			break;
5756 		r = 0;
5757 		break;
5758 	}
5759 	case KVM_SET_XSAVE: {
5760 		int size = vcpu->arch.guest_fpu.uabi_size;
5761 
5762 		u.xsave = memdup_user(argp, size);
5763 		if (IS_ERR(u.xsave)) {
5764 			r = PTR_ERR(u.xsave);
5765 			goto out_nofree;
5766 		}
5767 
5768 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5769 		break;
5770 	}
5771 
5772 	case KVM_GET_XSAVE2: {
5773 		int size = vcpu->arch.guest_fpu.uabi_size;
5774 
5775 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5776 		r = -ENOMEM;
5777 		if (!u.xsave)
5778 			break;
5779 
5780 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5781 
5782 		r = -EFAULT;
5783 		if (copy_to_user(argp, u.xsave, size))
5784 			break;
5785 
5786 		r = 0;
5787 		break;
5788 	}
5789 
5790 	case KVM_GET_XCRS: {
5791 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5792 		r = -ENOMEM;
5793 		if (!u.xcrs)
5794 			break;
5795 
5796 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5797 
5798 		r = -EFAULT;
5799 		if (copy_to_user(argp, u.xcrs,
5800 				 sizeof(struct kvm_xcrs)))
5801 			break;
5802 		r = 0;
5803 		break;
5804 	}
5805 	case KVM_SET_XCRS: {
5806 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5807 		if (IS_ERR(u.xcrs)) {
5808 			r = PTR_ERR(u.xcrs);
5809 			goto out_nofree;
5810 		}
5811 
5812 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5813 		break;
5814 	}
5815 	case KVM_SET_TSC_KHZ: {
5816 		u32 user_tsc_khz;
5817 
5818 		r = -EINVAL;
5819 		user_tsc_khz = (u32)arg;
5820 
5821 		if (kvm_caps.has_tsc_control &&
5822 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5823 			goto out;
5824 
5825 		if (user_tsc_khz == 0)
5826 			user_tsc_khz = tsc_khz;
5827 
5828 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5829 			r = 0;
5830 
5831 		goto out;
5832 	}
5833 	case KVM_GET_TSC_KHZ: {
5834 		r = vcpu->arch.virtual_tsc_khz;
5835 		goto out;
5836 	}
5837 	case KVM_KVMCLOCK_CTRL: {
5838 		r = kvm_set_guest_paused(vcpu);
5839 		goto out;
5840 	}
5841 	case KVM_ENABLE_CAP: {
5842 		struct kvm_enable_cap cap;
5843 
5844 		r = -EFAULT;
5845 		if (copy_from_user(&cap, argp, sizeof(cap)))
5846 			goto out;
5847 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5848 		break;
5849 	}
5850 	case KVM_GET_NESTED_STATE: {
5851 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5852 		u32 user_data_size;
5853 
5854 		r = -EINVAL;
5855 		if (!kvm_x86_ops.nested_ops->get_state)
5856 			break;
5857 
5858 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5859 		r = -EFAULT;
5860 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5861 			break;
5862 
5863 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5864 						     user_data_size);
5865 		if (r < 0)
5866 			break;
5867 
5868 		if (r > user_data_size) {
5869 			if (put_user(r, &user_kvm_nested_state->size))
5870 				r = -EFAULT;
5871 			else
5872 				r = -E2BIG;
5873 			break;
5874 		}
5875 
5876 		r = 0;
5877 		break;
5878 	}
5879 	case KVM_SET_NESTED_STATE: {
5880 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5881 		struct kvm_nested_state kvm_state;
5882 		int idx;
5883 
5884 		r = -EINVAL;
5885 		if (!kvm_x86_ops.nested_ops->set_state)
5886 			break;
5887 
5888 		r = -EFAULT;
5889 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5890 			break;
5891 
5892 		r = -EINVAL;
5893 		if (kvm_state.size < sizeof(kvm_state))
5894 			break;
5895 
5896 		if (kvm_state.flags &
5897 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5898 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5899 		      | KVM_STATE_NESTED_GIF_SET))
5900 			break;
5901 
5902 		/* nested_run_pending implies guest_mode.  */
5903 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5904 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5905 			break;
5906 
5907 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5908 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5909 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5910 		break;
5911 	}
5912 	case KVM_GET_SUPPORTED_HV_CPUID:
5913 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5914 		break;
5915 #ifdef CONFIG_KVM_XEN
5916 	case KVM_XEN_VCPU_GET_ATTR: {
5917 		struct kvm_xen_vcpu_attr xva;
5918 
5919 		r = -EFAULT;
5920 		if (copy_from_user(&xva, argp, sizeof(xva)))
5921 			goto out;
5922 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5923 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5924 			r = -EFAULT;
5925 		break;
5926 	}
5927 	case KVM_XEN_VCPU_SET_ATTR: {
5928 		struct kvm_xen_vcpu_attr xva;
5929 
5930 		r = -EFAULT;
5931 		if (copy_from_user(&xva, argp, sizeof(xva)))
5932 			goto out;
5933 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5934 		break;
5935 	}
5936 #endif
5937 	case KVM_GET_SREGS2: {
5938 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5939 		r = -ENOMEM;
5940 		if (!u.sregs2)
5941 			goto out;
5942 		__get_sregs2(vcpu, u.sregs2);
5943 		r = -EFAULT;
5944 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5945 			goto out;
5946 		r = 0;
5947 		break;
5948 	}
5949 	case KVM_SET_SREGS2: {
5950 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5951 		if (IS_ERR(u.sregs2)) {
5952 			r = PTR_ERR(u.sregs2);
5953 			u.sregs2 = NULL;
5954 			goto out;
5955 		}
5956 		r = __set_sregs2(vcpu, u.sregs2);
5957 		break;
5958 	}
5959 	case KVM_HAS_DEVICE_ATTR:
5960 	case KVM_GET_DEVICE_ATTR:
5961 	case KVM_SET_DEVICE_ATTR:
5962 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5963 		break;
5964 	default:
5965 		r = -EINVAL;
5966 	}
5967 out:
5968 	kfree(u.buffer);
5969 out_nofree:
5970 	vcpu_put(vcpu);
5971 	return r;
5972 }
5973 
5974 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5975 {
5976 	return VM_FAULT_SIGBUS;
5977 }
5978 
5979 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5980 {
5981 	int ret;
5982 
5983 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5984 		return -EINVAL;
5985 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5986 	return ret;
5987 }
5988 
5989 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5990 					      u64 ident_addr)
5991 {
5992 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5993 }
5994 
5995 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5996 					 unsigned long kvm_nr_mmu_pages)
5997 {
5998 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5999 		return -EINVAL;
6000 
6001 	mutex_lock(&kvm->slots_lock);
6002 
6003 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6004 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6005 
6006 	mutex_unlock(&kvm->slots_lock);
6007 	return 0;
6008 }
6009 
6010 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
6011 {
6012 	return kvm->arch.n_max_mmu_pages;
6013 }
6014 
6015 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6016 {
6017 	struct kvm_pic *pic = kvm->arch.vpic;
6018 	int r;
6019 
6020 	r = 0;
6021 	switch (chip->chip_id) {
6022 	case KVM_IRQCHIP_PIC_MASTER:
6023 		memcpy(&chip->chip.pic, &pic->pics[0],
6024 			sizeof(struct kvm_pic_state));
6025 		break;
6026 	case KVM_IRQCHIP_PIC_SLAVE:
6027 		memcpy(&chip->chip.pic, &pic->pics[1],
6028 			sizeof(struct kvm_pic_state));
6029 		break;
6030 	case KVM_IRQCHIP_IOAPIC:
6031 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6032 		break;
6033 	default:
6034 		r = -EINVAL;
6035 		break;
6036 	}
6037 	return r;
6038 }
6039 
6040 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6041 {
6042 	struct kvm_pic *pic = kvm->arch.vpic;
6043 	int r;
6044 
6045 	r = 0;
6046 	switch (chip->chip_id) {
6047 	case KVM_IRQCHIP_PIC_MASTER:
6048 		spin_lock(&pic->lock);
6049 		memcpy(&pic->pics[0], &chip->chip.pic,
6050 			sizeof(struct kvm_pic_state));
6051 		spin_unlock(&pic->lock);
6052 		break;
6053 	case KVM_IRQCHIP_PIC_SLAVE:
6054 		spin_lock(&pic->lock);
6055 		memcpy(&pic->pics[1], &chip->chip.pic,
6056 			sizeof(struct kvm_pic_state));
6057 		spin_unlock(&pic->lock);
6058 		break;
6059 	case KVM_IRQCHIP_IOAPIC:
6060 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6061 		break;
6062 	default:
6063 		r = -EINVAL;
6064 		break;
6065 	}
6066 	kvm_pic_update_irq(pic);
6067 	return r;
6068 }
6069 
6070 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6071 {
6072 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6073 
6074 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6075 
6076 	mutex_lock(&kps->lock);
6077 	memcpy(ps, &kps->channels, sizeof(*ps));
6078 	mutex_unlock(&kps->lock);
6079 	return 0;
6080 }
6081 
6082 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6083 {
6084 	int i;
6085 	struct kvm_pit *pit = kvm->arch.vpit;
6086 
6087 	mutex_lock(&pit->pit_state.lock);
6088 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6089 	for (i = 0; i < 3; i++)
6090 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6091 	mutex_unlock(&pit->pit_state.lock);
6092 	return 0;
6093 }
6094 
6095 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6096 {
6097 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6098 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6099 		sizeof(ps->channels));
6100 	ps->flags = kvm->arch.vpit->pit_state.flags;
6101 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6102 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6103 	return 0;
6104 }
6105 
6106 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6107 {
6108 	int start = 0;
6109 	int i;
6110 	u32 prev_legacy, cur_legacy;
6111 	struct kvm_pit *pit = kvm->arch.vpit;
6112 
6113 	mutex_lock(&pit->pit_state.lock);
6114 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6115 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6116 	if (!prev_legacy && cur_legacy)
6117 		start = 1;
6118 	memcpy(&pit->pit_state.channels, &ps->channels,
6119 	       sizeof(pit->pit_state.channels));
6120 	pit->pit_state.flags = ps->flags;
6121 	for (i = 0; i < 3; i++)
6122 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6123 				   start && i == 0);
6124 	mutex_unlock(&pit->pit_state.lock);
6125 	return 0;
6126 }
6127 
6128 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6129 				 struct kvm_reinject_control *control)
6130 {
6131 	struct kvm_pit *pit = kvm->arch.vpit;
6132 
6133 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6134 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6135 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6136 	 */
6137 	mutex_lock(&pit->pit_state.lock);
6138 	kvm_pit_set_reinject(pit, control->pit_reinject);
6139 	mutex_unlock(&pit->pit_state.lock);
6140 
6141 	return 0;
6142 }
6143 
6144 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6145 {
6146 
6147 	/*
6148 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6149 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6150 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6151 	 * VM-Exit.
6152 	 */
6153 	struct kvm_vcpu *vcpu;
6154 	unsigned long i;
6155 
6156 	kvm_for_each_vcpu(i, vcpu, kvm)
6157 		kvm_vcpu_kick(vcpu);
6158 }
6159 
6160 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6161 			bool line_status)
6162 {
6163 	if (!irqchip_in_kernel(kvm))
6164 		return -ENXIO;
6165 
6166 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6167 					irq_event->irq, irq_event->level,
6168 					line_status);
6169 	return 0;
6170 }
6171 
6172 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6173 			    struct kvm_enable_cap *cap)
6174 {
6175 	int r;
6176 
6177 	if (cap->flags)
6178 		return -EINVAL;
6179 
6180 	switch (cap->cap) {
6181 	case KVM_CAP_DISABLE_QUIRKS2:
6182 		r = -EINVAL;
6183 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6184 			break;
6185 		fallthrough;
6186 	case KVM_CAP_DISABLE_QUIRKS:
6187 		kvm->arch.disabled_quirks = cap->args[0];
6188 		r = 0;
6189 		break;
6190 	case KVM_CAP_SPLIT_IRQCHIP: {
6191 		mutex_lock(&kvm->lock);
6192 		r = -EINVAL;
6193 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6194 			goto split_irqchip_unlock;
6195 		r = -EEXIST;
6196 		if (irqchip_in_kernel(kvm))
6197 			goto split_irqchip_unlock;
6198 		if (kvm->created_vcpus)
6199 			goto split_irqchip_unlock;
6200 		r = kvm_setup_empty_irq_routing(kvm);
6201 		if (r)
6202 			goto split_irqchip_unlock;
6203 		/* Pairs with irqchip_in_kernel. */
6204 		smp_wmb();
6205 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6206 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6207 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6208 		r = 0;
6209 split_irqchip_unlock:
6210 		mutex_unlock(&kvm->lock);
6211 		break;
6212 	}
6213 	case KVM_CAP_X2APIC_API:
6214 		r = -EINVAL;
6215 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6216 			break;
6217 
6218 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6219 			kvm->arch.x2apic_format = true;
6220 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6221 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6222 
6223 		r = 0;
6224 		break;
6225 	case KVM_CAP_X86_DISABLE_EXITS:
6226 		r = -EINVAL;
6227 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6228 			break;
6229 
6230 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6231 			kvm_can_mwait_in_guest())
6232 			kvm->arch.mwait_in_guest = true;
6233 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6234 			kvm->arch.hlt_in_guest = true;
6235 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6236 			kvm->arch.pause_in_guest = true;
6237 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6238 			kvm->arch.cstate_in_guest = true;
6239 		r = 0;
6240 		break;
6241 	case KVM_CAP_MSR_PLATFORM_INFO:
6242 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6243 		r = 0;
6244 		break;
6245 	case KVM_CAP_EXCEPTION_PAYLOAD:
6246 		kvm->arch.exception_payload_enabled = cap->args[0];
6247 		r = 0;
6248 		break;
6249 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6250 		kvm->arch.triple_fault_event = cap->args[0];
6251 		r = 0;
6252 		break;
6253 	case KVM_CAP_X86_USER_SPACE_MSR:
6254 		r = -EINVAL;
6255 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6256 			break;
6257 		kvm->arch.user_space_msr_mask = cap->args[0];
6258 		r = 0;
6259 		break;
6260 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6261 		r = -EINVAL;
6262 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6263 			break;
6264 
6265 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6266 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6267 			break;
6268 
6269 		if (kvm_caps.has_bus_lock_exit &&
6270 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6271 			kvm->arch.bus_lock_detection_enabled = true;
6272 		r = 0;
6273 		break;
6274 #ifdef CONFIG_X86_SGX_KVM
6275 	case KVM_CAP_SGX_ATTRIBUTE: {
6276 		unsigned long allowed_attributes = 0;
6277 
6278 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6279 		if (r)
6280 			break;
6281 
6282 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6283 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6284 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6285 			kvm->arch.sgx_provisioning_allowed = true;
6286 		else
6287 			r = -EINVAL;
6288 		break;
6289 	}
6290 #endif
6291 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6292 		r = -EINVAL;
6293 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6294 			break;
6295 
6296 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6297 		break;
6298 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6299 		r = -EINVAL;
6300 		if (!kvm_x86_ops.vm_move_enc_context_from)
6301 			break;
6302 
6303 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6304 		break;
6305 	case KVM_CAP_EXIT_HYPERCALL:
6306 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6307 			r = -EINVAL;
6308 			break;
6309 		}
6310 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6311 		r = 0;
6312 		break;
6313 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6314 		r = -EINVAL;
6315 		if (cap->args[0] & ~1)
6316 			break;
6317 		kvm->arch.exit_on_emulation_error = cap->args[0];
6318 		r = 0;
6319 		break;
6320 	case KVM_CAP_PMU_CAPABILITY:
6321 		r = -EINVAL;
6322 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6323 			break;
6324 
6325 		mutex_lock(&kvm->lock);
6326 		if (!kvm->created_vcpus) {
6327 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6328 			r = 0;
6329 		}
6330 		mutex_unlock(&kvm->lock);
6331 		break;
6332 	case KVM_CAP_MAX_VCPU_ID:
6333 		r = -EINVAL;
6334 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6335 			break;
6336 
6337 		mutex_lock(&kvm->lock);
6338 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6339 			r = 0;
6340 		} else if (!kvm->arch.max_vcpu_ids) {
6341 			kvm->arch.max_vcpu_ids = cap->args[0];
6342 			r = 0;
6343 		}
6344 		mutex_unlock(&kvm->lock);
6345 		break;
6346 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6347 		r = -EINVAL;
6348 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6349 			break;
6350 		if (!kvm_caps.has_notify_vmexit)
6351 			break;
6352 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6353 			break;
6354 		mutex_lock(&kvm->lock);
6355 		if (!kvm->created_vcpus) {
6356 			kvm->arch.notify_window = cap->args[0] >> 32;
6357 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6358 			r = 0;
6359 		}
6360 		mutex_unlock(&kvm->lock);
6361 		break;
6362 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6363 		r = -EINVAL;
6364 
6365 		/*
6366 		 * Since the risk of disabling NX hugepages is a guest crashing
6367 		 * the system, ensure the userspace process has permission to
6368 		 * reboot the system.
6369 		 *
6370 		 * Note that unlike the reboot() syscall, the process must have
6371 		 * this capability in the root namespace because exposing
6372 		 * /dev/kvm into a container does not limit the scope of the
6373 		 * iTLB multihit bug to that container. In other words,
6374 		 * this must use capable(), not ns_capable().
6375 		 */
6376 		if (!capable(CAP_SYS_BOOT)) {
6377 			r = -EPERM;
6378 			break;
6379 		}
6380 
6381 		if (cap->args[0])
6382 			break;
6383 
6384 		mutex_lock(&kvm->lock);
6385 		if (!kvm->created_vcpus) {
6386 			kvm->arch.disable_nx_huge_pages = true;
6387 			r = 0;
6388 		}
6389 		mutex_unlock(&kvm->lock);
6390 		break;
6391 	default:
6392 		r = -EINVAL;
6393 		break;
6394 	}
6395 	return r;
6396 }
6397 
6398 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6399 {
6400 	struct kvm_x86_msr_filter *msr_filter;
6401 
6402 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6403 	if (!msr_filter)
6404 		return NULL;
6405 
6406 	msr_filter->default_allow = default_allow;
6407 	return msr_filter;
6408 }
6409 
6410 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6411 {
6412 	u32 i;
6413 
6414 	if (!msr_filter)
6415 		return;
6416 
6417 	for (i = 0; i < msr_filter->count; i++)
6418 		kfree(msr_filter->ranges[i].bitmap);
6419 
6420 	kfree(msr_filter);
6421 }
6422 
6423 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6424 			      struct kvm_msr_filter_range *user_range)
6425 {
6426 	unsigned long *bitmap = NULL;
6427 	size_t bitmap_size;
6428 
6429 	if (!user_range->nmsrs)
6430 		return 0;
6431 
6432 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6433 		return -EINVAL;
6434 
6435 	if (!user_range->flags)
6436 		return -EINVAL;
6437 
6438 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6439 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6440 		return -EINVAL;
6441 
6442 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6443 	if (IS_ERR(bitmap))
6444 		return PTR_ERR(bitmap);
6445 
6446 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6447 		.flags = user_range->flags,
6448 		.base = user_range->base,
6449 		.nmsrs = user_range->nmsrs,
6450 		.bitmap = bitmap,
6451 	};
6452 
6453 	msr_filter->count++;
6454 	return 0;
6455 }
6456 
6457 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6458 				       struct kvm_msr_filter *filter)
6459 {
6460 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6461 	bool default_allow;
6462 	bool empty = true;
6463 	int r = 0;
6464 	u32 i;
6465 
6466 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6467 		return -EINVAL;
6468 
6469 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6470 		empty &= !filter->ranges[i].nmsrs;
6471 
6472 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6473 	if (empty && !default_allow)
6474 		return -EINVAL;
6475 
6476 	new_filter = kvm_alloc_msr_filter(default_allow);
6477 	if (!new_filter)
6478 		return -ENOMEM;
6479 
6480 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6481 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6482 		if (r) {
6483 			kvm_free_msr_filter(new_filter);
6484 			return r;
6485 		}
6486 	}
6487 
6488 	mutex_lock(&kvm->lock);
6489 
6490 	/* The per-VM filter is protected by kvm->lock... */
6491 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6492 
6493 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6494 	synchronize_srcu(&kvm->srcu);
6495 
6496 	kvm_free_msr_filter(old_filter);
6497 
6498 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6499 	mutex_unlock(&kvm->lock);
6500 
6501 	return 0;
6502 }
6503 
6504 #ifdef CONFIG_KVM_COMPAT
6505 /* for KVM_X86_SET_MSR_FILTER */
6506 struct kvm_msr_filter_range_compat {
6507 	__u32 flags;
6508 	__u32 nmsrs;
6509 	__u32 base;
6510 	__u32 bitmap;
6511 };
6512 
6513 struct kvm_msr_filter_compat {
6514 	__u32 flags;
6515 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6516 };
6517 
6518 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6519 
6520 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6521 			      unsigned long arg)
6522 {
6523 	void __user *argp = (void __user *)arg;
6524 	struct kvm *kvm = filp->private_data;
6525 	long r = -ENOTTY;
6526 
6527 	switch (ioctl) {
6528 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6529 		struct kvm_msr_filter __user *user_msr_filter = argp;
6530 		struct kvm_msr_filter_compat filter_compat;
6531 		struct kvm_msr_filter filter;
6532 		int i;
6533 
6534 		if (copy_from_user(&filter_compat, user_msr_filter,
6535 				   sizeof(filter_compat)))
6536 			return -EFAULT;
6537 
6538 		filter.flags = filter_compat.flags;
6539 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6540 			struct kvm_msr_filter_range_compat *cr;
6541 
6542 			cr = &filter_compat.ranges[i];
6543 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6544 				.flags = cr->flags,
6545 				.nmsrs = cr->nmsrs,
6546 				.base = cr->base,
6547 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6548 			};
6549 		}
6550 
6551 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6552 		break;
6553 	}
6554 	}
6555 
6556 	return r;
6557 }
6558 #endif
6559 
6560 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6561 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6562 {
6563 	struct kvm_vcpu *vcpu;
6564 	unsigned long i;
6565 	int ret = 0;
6566 
6567 	mutex_lock(&kvm->lock);
6568 	kvm_for_each_vcpu(i, vcpu, kvm) {
6569 		if (!vcpu->arch.pv_time.active)
6570 			continue;
6571 
6572 		ret = kvm_set_guest_paused(vcpu);
6573 		if (ret) {
6574 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6575 				vcpu->vcpu_id, ret);
6576 			break;
6577 		}
6578 	}
6579 	mutex_unlock(&kvm->lock);
6580 
6581 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6582 }
6583 
6584 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6585 {
6586 	switch (state) {
6587 	case PM_HIBERNATION_PREPARE:
6588 	case PM_SUSPEND_PREPARE:
6589 		return kvm_arch_suspend_notifier(kvm);
6590 	}
6591 
6592 	return NOTIFY_DONE;
6593 }
6594 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6595 
6596 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6597 {
6598 	struct kvm_clock_data data = { 0 };
6599 
6600 	get_kvmclock(kvm, &data);
6601 	if (copy_to_user(argp, &data, sizeof(data)))
6602 		return -EFAULT;
6603 
6604 	return 0;
6605 }
6606 
6607 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6608 {
6609 	struct kvm_arch *ka = &kvm->arch;
6610 	struct kvm_clock_data data;
6611 	u64 now_raw_ns;
6612 
6613 	if (copy_from_user(&data, argp, sizeof(data)))
6614 		return -EFAULT;
6615 
6616 	/*
6617 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6618 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6619 	 */
6620 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6621 		return -EINVAL;
6622 
6623 	kvm_hv_request_tsc_page_update(kvm);
6624 	kvm_start_pvclock_update(kvm);
6625 	pvclock_update_vm_gtod_copy(kvm);
6626 
6627 	/*
6628 	 * This pairs with kvm_guest_time_update(): when masterclock is
6629 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6630 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6631 	 * is slightly ahead) here we risk going negative on unsigned
6632 	 * 'system_time' when 'data.clock' is very small.
6633 	 */
6634 	if (data.flags & KVM_CLOCK_REALTIME) {
6635 		u64 now_real_ns = ktime_get_real_ns();
6636 
6637 		/*
6638 		 * Avoid stepping the kvmclock backwards.
6639 		 */
6640 		if (now_real_ns > data.realtime)
6641 			data.clock += now_real_ns - data.realtime;
6642 	}
6643 
6644 	if (ka->use_master_clock)
6645 		now_raw_ns = ka->master_kernel_ns;
6646 	else
6647 		now_raw_ns = get_kvmclock_base_ns();
6648 	ka->kvmclock_offset = data.clock - now_raw_ns;
6649 	kvm_end_pvclock_update(kvm);
6650 	return 0;
6651 }
6652 
6653 long kvm_arch_vm_ioctl(struct file *filp,
6654 		       unsigned int ioctl, unsigned long arg)
6655 {
6656 	struct kvm *kvm = filp->private_data;
6657 	void __user *argp = (void __user *)arg;
6658 	int r = -ENOTTY;
6659 	/*
6660 	 * This union makes it completely explicit to gcc-3.x
6661 	 * that these two variables' stack usage should be
6662 	 * combined, not added together.
6663 	 */
6664 	union {
6665 		struct kvm_pit_state ps;
6666 		struct kvm_pit_state2 ps2;
6667 		struct kvm_pit_config pit_config;
6668 	} u;
6669 
6670 	switch (ioctl) {
6671 	case KVM_SET_TSS_ADDR:
6672 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6673 		break;
6674 	case KVM_SET_IDENTITY_MAP_ADDR: {
6675 		u64 ident_addr;
6676 
6677 		mutex_lock(&kvm->lock);
6678 		r = -EINVAL;
6679 		if (kvm->created_vcpus)
6680 			goto set_identity_unlock;
6681 		r = -EFAULT;
6682 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6683 			goto set_identity_unlock;
6684 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6685 set_identity_unlock:
6686 		mutex_unlock(&kvm->lock);
6687 		break;
6688 	}
6689 	case KVM_SET_NR_MMU_PAGES:
6690 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6691 		break;
6692 	case KVM_GET_NR_MMU_PAGES:
6693 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6694 		break;
6695 	case KVM_CREATE_IRQCHIP: {
6696 		mutex_lock(&kvm->lock);
6697 
6698 		r = -EEXIST;
6699 		if (irqchip_in_kernel(kvm))
6700 			goto create_irqchip_unlock;
6701 
6702 		r = -EINVAL;
6703 		if (kvm->created_vcpus)
6704 			goto create_irqchip_unlock;
6705 
6706 		r = kvm_pic_init(kvm);
6707 		if (r)
6708 			goto create_irqchip_unlock;
6709 
6710 		r = kvm_ioapic_init(kvm);
6711 		if (r) {
6712 			kvm_pic_destroy(kvm);
6713 			goto create_irqchip_unlock;
6714 		}
6715 
6716 		r = kvm_setup_default_irq_routing(kvm);
6717 		if (r) {
6718 			kvm_ioapic_destroy(kvm);
6719 			kvm_pic_destroy(kvm);
6720 			goto create_irqchip_unlock;
6721 		}
6722 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6723 		smp_wmb();
6724 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6725 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6726 	create_irqchip_unlock:
6727 		mutex_unlock(&kvm->lock);
6728 		break;
6729 	}
6730 	case KVM_CREATE_PIT:
6731 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6732 		goto create_pit;
6733 	case KVM_CREATE_PIT2:
6734 		r = -EFAULT;
6735 		if (copy_from_user(&u.pit_config, argp,
6736 				   sizeof(struct kvm_pit_config)))
6737 			goto out;
6738 	create_pit:
6739 		mutex_lock(&kvm->lock);
6740 		r = -EEXIST;
6741 		if (kvm->arch.vpit)
6742 			goto create_pit_unlock;
6743 		r = -ENOMEM;
6744 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6745 		if (kvm->arch.vpit)
6746 			r = 0;
6747 	create_pit_unlock:
6748 		mutex_unlock(&kvm->lock);
6749 		break;
6750 	case KVM_GET_IRQCHIP: {
6751 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6752 		struct kvm_irqchip *chip;
6753 
6754 		chip = memdup_user(argp, sizeof(*chip));
6755 		if (IS_ERR(chip)) {
6756 			r = PTR_ERR(chip);
6757 			goto out;
6758 		}
6759 
6760 		r = -ENXIO;
6761 		if (!irqchip_kernel(kvm))
6762 			goto get_irqchip_out;
6763 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6764 		if (r)
6765 			goto get_irqchip_out;
6766 		r = -EFAULT;
6767 		if (copy_to_user(argp, chip, sizeof(*chip)))
6768 			goto get_irqchip_out;
6769 		r = 0;
6770 	get_irqchip_out:
6771 		kfree(chip);
6772 		break;
6773 	}
6774 	case KVM_SET_IRQCHIP: {
6775 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6776 		struct kvm_irqchip *chip;
6777 
6778 		chip = memdup_user(argp, sizeof(*chip));
6779 		if (IS_ERR(chip)) {
6780 			r = PTR_ERR(chip);
6781 			goto out;
6782 		}
6783 
6784 		r = -ENXIO;
6785 		if (!irqchip_kernel(kvm))
6786 			goto set_irqchip_out;
6787 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6788 	set_irqchip_out:
6789 		kfree(chip);
6790 		break;
6791 	}
6792 	case KVM_GET_PIT: {
6793 		r = -EFAULT;
6794 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6795 			goto out;
6796 		r = -ENXIO;
6797 		if (!kvm->arch.vpit)
6798 			goto out;
6799 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6800 		if (r)
6801 			goto out;
6802 		r = -EFAULT;
6803 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6804 			goto out;
6805 		r = 0;
6806 		break;
6807 	}
6808 	case KVM_SET_PIT: {
6809 		r = -EFAULT;
6810 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6811 			goto out;
6812 		mutex_lock(&kvm->lock);
6813 		r = -ENXIO;
6814 		if (!kvm->arch.vpit)
6815 			goto set_pit_out;
6816 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6817 set_pit_out:
6818 		mutex_unlock(&kvm->lock);
6819 		break;
6820 	}
6821 	case KVM_GET_PIT2: {
6822 		r = -ENXIO;
6823 		if (!kvm->arch.vpit)
6824 			goto out;
6825 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6826 		if (r)
6827 			goto out;
6828 		r = -EFAULT;
6829 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6830 			goto out;
6831 		r = 0;
6832 		break;
6833 	}
6834 	case KVM_SET_PIT2: {
6835 		r = -EFAULT;
6836 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6837 			goto out;
6838 		mutex_lock(&kvm->lock);
6839 		r = -ENXIO;
6840 		if (!kvm->arch.vpit)
6841 			goto set_pit2_out;
6842 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6843 set_pit2_out:
6844 		mutex_unlock(&kvm->lock);
6845 		break;
6846 	}
6847 	case KVM_REINJECT_CONTROL: {
6848 		struct kvm_reinject_control control;
6849 		r =  -EFAULT;
6850 		if (copy_from_user(&control, argp, sizeof(control)))
6851 			goto out;
6852 		r = -ENXIO;
6853 		if (!kvm->arch.vpit)
6854 			goto out;
6855 		r = kvm_vm_ioctl_reinject(kvm, &control);
6856 		break;
6857 	}
6858 	case KVM_SET_BOOT_CPU_ID:
6859 		r = 0;
6860 		mutex_lock(&kvm->lock);
6861 		if (kvm->created_vcpus)
6862 			r = -EBUSY;
6863 		else
6864 			kvm->arch.bsp_vcpu_id = arg;
6865 		mutex_unlock(&kvm->lock);
6866 		break;
6867 #ifdef CONFIG_KVM_XEN
6868 	case KVM_XEN_HVM_CONFIG: {
6869 		struct kvm_xen_hvm_config xhc;
6870 		r = -EFAULT;
6871 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6872 			goto out;
6873 		r = kvm_xen_hvm_config(kvm, &xhc);
6874 		break;
6875 	}
6876 	case KVM_XEN_HVM_GET_ATTR: {
6877 		struct kvm_xen_hvm_attr xha;
6878 
6879 		r = -EFAULT;
6880 		if (copy_from_user(&xha, argp, sizeof(xha)))
6881 			goto out;
6882 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6883 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6884 			r = -EFAULT;
6885 		break;
6886 	}
6887 	case KVM_XEN_HVM_SET_ATTR: {
6888 		struct kvm_xen_hvm_attr xha;
6889 
6890 		r = -EFAULT;
6891 		if (copy_from_user(&xha, argp, sizeof(xha)))
6892 			goto out;
6893 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6894 		break;
6895 	}
6896 	case KVM_XEN_HVM_EVTCHN_SEND: {
6897 		struct kvm_irq_routing_xen_evtchn uxe;
6898 
6899 		r = -EFAULT;
6900 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6901 			goto out;
6902 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6903 		break;
6904 	}
6905 #endif
6906 	case KVM_SET_CLOCK:
6907 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6908 		break;
6909 	case KVM_GET_CLOCK:
6910 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6911 		break;
6912 	case KVM_SET_TSC_KHZ: {
6913 		u32 user_tsc_khz;
6914 
6915 		r = -EINVAL;
6916 		user_tsc_khz = (u32)arg;
6917 
6918 		if (kvm_caps.has_tsc_control &&
6919 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6920 			goto out;
6921 
6922 		if (user_tsc_khz == 0)
6923 			user_tsc_khz = tsc_khz;
6924 
6925 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6926 		r = 0;
6927 
6928 		goto out;
6929 	}
6930 	case KVM_GET_TSC_KHZ: {
6931 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6932 		goto out;
6933 	}
6934 	case KVM_MEMORY_ENCRYPT_OP: {
6935 		r = -ENOTTY;
6936 		if (!kvm_x86_ops.mem_enc_ioctl)
6937 			goto out;
6938 
6939 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6940 		break;
6941 	}
6942 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6943 		struct kvm_enc_region region;
6944 
6945 		r = -EFAULT;
6946 		if (copy_from_user(&region, argp, sizeof(region)))
6947 			goto out;
6948 
6949 		r = -ENOTTY;
6950 		if (!kvm_x86_ops.mem_enc_register_region)
6951 			goto out;
6952 
6953 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6954 		break;
6955 	}
6956 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6957 		struct kvm_enc_region region;
6958 
6959 		r = -EFAULT;
6960 		if (copy_from_user(&region, argp, sizeof(region)))
6961 			goto out;
6962 
6963 		r = -ENOTTY;
6964 		if (!kvm_x86_ops.mem_enc_unregister_region)
6965 			goto out;
6966 
6967 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6968 		break;
6969 	}
6970 	case KVM_HYPERV_EVENTFD: {
6971 		struct kvm_hyperv_eventfd hvevfd;
6972 
6973 		r = -EFAULT;
6974 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6975 			goto out;
6976 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6977 		break;
6978 	}
6979 	case KVM_SET_PMU_EVENT_FILTER:
6980 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6981 		break;
6982 	case KVM_X86_SET_MSR_FILTER: {
6983 		struct kvm_msr_filter __user *user_msr_filter = argp;
6984 		struct kvm_msr_filter filter;
6985 
6986 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6987 			return -EFAULT;
6988 
6989 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6990 		break;
6991 	}
6992 	default:
6993 		r = -ENOTTY;
6994 	}
6995 out:
6996 	return r;
6997 }
6998 
6999 static void kvm_init_msr_list(void)
7000 {
7001 	u32 dummy[2];
7002 	unsigned i;
7003 
7004 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7005 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
7006 
7007 	num_msrs_to_save = 0;
7008 	num_emulated_msrs = 0;
7009 	num_msr_based_features = 0;
7010 
7011 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7012 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7013 			continue;
7014 
7015 		/*
7016 		 * Even MSRs that are valid in the host may not be exposed
7017 		 * to the guests in some cases.
7018 		 */
7019 		switch (msrs_to_save_all[i]) {
7020 		case MSR_IA32_BNDCFGS:
7021 			if (!kvm_mpx_supported())
7022 				continue;
7023 			break;
7024 		case MSR_TSC_AUX:
7025 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7026 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7027 				continue;
7028 			break;
7029 		case MSR_IA32_UMWAIT_CONTROL:
7030 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7031 				continue;
7032 			break;
7033 		case MSR_IA32_RTIT_CTL:
7034 		case MSR_IA32_RTIT_STATUS:
7035 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7036 				continue;
7037 			break;
7038 		case MSR_IA32_RTIT_CR3_MATCH:
7039 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7040 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7041 				continue;
7042 			break;
7043 		case MSR_IA32_RTIT_OUTPUT_BASE:
7044 		case MSR_IA32_RTIT_OUTPUT_MASK:
7045 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7046 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7047 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7048 				continue;
7049 			break;
7050 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7051 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7052 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7053 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7054 				continue;
7055 			break;
7056 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7057 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7058 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7059 				continue;
7060 			break;
7061 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7062 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7063 			    min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7064 				continue;
7065 			break;
7066 		case MSR_IA32_XFD:
7067 		case MSR_IA32_XFD_ERR:
7068 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7069 				continue;
7070 			break;
7071 		default:
7072 			break;
7073 		}
7074 
7075 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7076 	}
7077 
7078 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7079 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7080 			continue;
7081 
7082 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7083 	}
7084 
7085 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7086 		struct kvm_msr_entry msr;
7087 
7088 		msr.index = msr_based_features_all[i];
7089 		if (kvm_get_msr_feature(&msr))
7090 			continue;
7091 
7092 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7093 	}
7094 }
7095 
7096 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7097 			   const void *v)
7098 {
7099 	int handled = 0;
7100 	int n;
7101 
7102 	do {
7103 		n = min(len, 8);
7104 		if (!(lapic_in_kernel(vcpu) &&
7105 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7106 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7107 			break;
7108 		handled += n;
7109 		addr += n;
7110 		len -= n;
7111 		v += n;
7112 	} while (len);
7113 
7114 	return handled;
7115 }
7116 
7117 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7118 {
7119 	int handled = 0;
7120 	int n;
7121 
7122 	do {
7123 		n = min(len, 8);
7124 		if (!(lapic_in_kernel(vcpu) &&
7125 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7126 					 addr, n, v))
7127 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7128 			break;
7129 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7130 		handled += n;
7131 		addr += n;
7132 		len -= n;
7133 		v += n;
7134 	} while (len);
7135 
7136 	return handled;
7137 }
7138 
7139 void kvm_set_segment(struct kvm_vcpu *vcpu,
7140 		     struct kvm_segment *var, int seg)
7141 {
7142 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7143 }
7144 
7145 void kvm_get_segment(struct kvm_vcpu *vcpu,
7146 		     struct kvm_segment *var, int seg)
7147 {
7148 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7149 }
7150 
7151 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7152 			   struct x86_exception *exception)
7153 {
7154 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7155 	gpa_t t_gpa;
7156 
7157 	BUG_ON(!mmu_is_nested(vcpu));
7158 
7159 	/* NPT walks are always user-walks */
7160 	access |= PFERR_USER_MASK;
7161 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7162 
7163 	return t_gpa;
7164 }
7165 
7166 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7167 			      struct x86_exception *exception)
7168 {
7169 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7170 
7171 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7172 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7173 }
7174 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7175 
7176 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7177 			       struct x86_exception *exception)
7178 {
7179 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7180 
7181 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7182 	access |= PFERR_WRITE_MASK;
7183 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7184 }
7185 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7186 
7187 /* uses this to access any guest's mapped memory without checking CPL */
7188 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7189 				struct x86_exception *exception)
7190 {
7191 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7192 
7193 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7194 }
7195 
7196 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7197 				      struct kvm_vcpu *vcpu, u64 access,
7198 				      struct x86_exception *exception)
7199 {
7200 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7201 	void *data = val;
7202 	int r = X86EMUL_CONTINUE;
7203 
7204 	while (bytes) {
7205 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7206 		unsigned offset = addr & (PAGE_SIZE-1);
7207 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7208 		int ret;
7209 
7210 		if (gpa == INVALID_GPA)
7211 			return X86EMUL_PROPAGATE_FAULT;
7212 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7213 					       offset, toread);
7214 		if (ret < 0) {
7215 			r = X86EMUL_IO_NEEDED;
7216 			goto out;
7217 		}
7218 
7219 		bytes -= toread;
7220 		data += toread;
7221 		addr += toread;
7222 	}
7223 out:
7224 	return r;
7225 }
7226 
7227 /* used for instruction fetching */
7228 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7229 				gva_t addr, void *val, unsigned int bytes,
7230 				struct x86_exception *exception)
7231 {
7232 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7233 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7234 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7235 	unsigned offset;
7236 	int ret;
7237 
7238 	/* Inline kvm_read_guest_virt_helper for speed.  */
7239 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7240 				    exception);
7241 	if (unlikely(gpa == INVALID_GPA))
7242 		return X86EMUL_PROPAGATE_FAULT;
7243 
7244 	offset = addr & (PAGE_SIZE-1);
7245 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7246 		bytes = (unsigned)PAGE_SIZE - offset;
7247 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7248 				       offset, bytes);
7249 	if (unlikely(ret < 0))
7250 		return X86EMUL_IO_NEEDED;
7251 
7252 	return X86EMUL_CONTINUE;
7253 }
7254 
7255 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7256 			       gva_t addr, void *val, unsigned int bytes,
7257 			       struct x86_exception *exception)
7258 {
7259 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7260 
7261 	/*
7262 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7263 	 * is returned, but our callers are not ready for that and they blindly
7264 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7265 	 * uninitialized kernel stack memory into cr2 and error code.
7266 	 */
7267 	memset(exception, 0, sizeof(*exception));
7268 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7269 					  exception);
7270 }
7271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7272 
7273 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7274 			     gva_t addr, void *val, unsigned int bytes,
7275 			     struct x86_exception *exception, bool system)
7276 {
7277 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7278 	u64 access = 0;
7279 
7280 	if (system)
7281 		access |= PFERR_IMPLICIT_ACCESS;
7282 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7283 		access |= PFERR_USER_MASK;
7284 
7285 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7286 }
7287 
7288 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7289 				      struct kvm_vcpu *vcpu, u64 access,
7290 				      struct x86_exception *exception)
7291 {
7292 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7293 	void *data = val;
7294 	int r = X86EMUL_CONTINUE;
7295 
7296 	while (bytes) {
7297 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7298 		unsigned offset = addr & (PAGE_SIZE-1);
7299 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7300 		int ret;
7301 
7302 		if (gpa == INVALID_GPA)
7303 			return X86EMUL_PROPAGATE_FAULT;
7304 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7305 		if (ret < 0) {
7306 			r = X86EMUL_IO_NEEDED;
7307 			goto out;
7308 		}
7309 
7310 		bytes -= towrite;
7311 		data += towrite;
7312 		addr += towrite;
7313 	}
7314 out:
7315 	return r;
7316 }
7317 
7318 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7319 			      unsigned int bytes, struct x86_exception *exception,
7320 			      bool system)
7321 {
7322 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7323 	u64 access = PFERR_WRITE_MASK;
7324 
7325 	if (system)
7326 		access |= PFERR_IMPLICIT_ACCESS;
7327 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7328 		access |= PFERR_USER_MASK;
7329 
7330 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7331 					   access, exception);
7332 }
7333 
7334 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7335 				unsigned int bytes, struct x86_exception *exception)
7336 {
7337 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7338 	vcpu->arch.l1tf_flush_l1d = true;
7339 
7340 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7341 					   PFERR_WRITE_MASK, exception);
7342 }
7343 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7344 
7345 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7346 				void *insn, int insn_len)
7347 {
7348 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7349 							    insn, insn_len);
7350 }
7351 
7352 int handle_ud(struct kvm_vcpu *vcpu)
7353 {
7354 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7355 	int fep_flags = READ_ONCE(force_emulation_prefix);
7356 	int emul_type = EMULTYPE_TRAP_UD;
7357 	char sig[5]; /* ud2; .ascii "kvm" */
7358 	struct x86_exception e;
7359 
7360 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7361 		return 1;
7362 
7363 	if (fep_flags &&
7364 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7365 				sig, sizeof(sig), &e) == 0 &&
7366 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7367 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7368 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7369 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7370 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7371 	}
7372 
7373 	return kvm_emulate_instruction(vcpu, emul_type);
7374 }
7375 EXPORT_SYMBOL_GPL(handle_ud);
7376 
7377 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7378 			    gpa_t gpa, bool write)
7379 {
7380 	/* For APIC access vmexit */
7381 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7382 		return 1;
7383 
7384 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7385 		trace_vcpu_match_mmio(gva, gpa, write, true);
7386 		return 1;
7387 	}
7388 
7389 	return 0;
7390 }
7391 
7392 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7393 				gpa_t *gpa, struct x86_exception *exception,
7394 				bool write)
7395 {
7396 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7397 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7398 		| (write ? PFERR_WRITE_MASK : 0);
7399 
7400 	/*
7401 	 * currently PKRU is only applied to ept enabled guest so
7402 	 * there is no pkey in EPT page table for L1 guest or EPT
7403 	 * shadow page table for L2 guest.
7404 	 */
7405 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7406 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7407 			      vcpu->arch.mmio_access, 0, access))) {
7408 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7409 					(gva & (PAGE_SIZE - 1));
7410 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7411 		return 1;
7412 	}
7413 
7414 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7415 
7416 	if (*gpa == INVALID_GPA)
7417 		return -1;
7418 
7419 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7420 }
7421 
7422 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7423 			const void *val, int bytes)
7424 {
7425 	int ret;
7426 
7427 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7428 	if (ret < 0)
7429 		return 0;
7430 	kvm_page_track_write(vcpu, gpa, val, bytes);
7431 	return 1;
7432 }
7433 
7434 struct read_write_emulator_ops {
7435 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7436 				  int bytes);
7437 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7438 				  void *val, int bytes);
7439 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7440 			       int bytes, void *val);
7441 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7442 				    void *val, int bytes);
7443 	bool write;
7444 };
7445 
7446 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7447 {
7448 	if (vcpu->mmio_read_completed) {
7449 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7450 			       vcpu->mmio_fragments[0].gpa, val);
7451 		vcpu->mmio_read_completed = 0;
7452 		return 1;
7453 	}
7454 
7455 	return 0;
7456 }
7457 
7458 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7459 			void *val, int bytes)
7460 {
7461 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7462 }
7463 
7464 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7465 			 void *val, int bytes)
7466 {
7467 	return emulator_write_phys(vcpu, gpa, val, bytes);
7468 }
7469 
7470 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7471 {
7472 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7473 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7474 }
7475 
7476 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7477 			  void *val, int bytes)
7478 {
7479 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7480 	return X86EMUL_IO_NEEDED;
7481 }
7482 
7483 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7484 			   void *val, int bytes)
7485 {
7486 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7487 
7488 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7489 	return X86EMUL_CONTINUE;
7490 }
7491 
7492 static const struct read_write_emulator_ops read_emultor = {
7493 	.read_write_prepare = read_prepare,
7494 	.read_write_emulate = read_emulate,
7495 	.read_write_mmio = vcpu_mmio_read,
7496 	.read_write_exit_mmio = read_exit_mmio,
7497 };
7498 
7499 static const struct read_write_emulator_ops write_emultor = {
7500 	.read_write_emulate = write_emulate,
7501 	.read_write_mmio = write_mmio,
7502 	.read_write_exit_mmio = write_exit_mmio,
7503 	.write = true,
7504 };
7505 
7506 static int emulator_read_write_onepage(unsigned long addr, void *val,
7507 				       unsigned int bytes,
7508 				       struct x86_exception *exception,
7509 				       struct kvm_vcpu *vcpu,
7510 				       const struct read_write_emulator_ops *ops)
7511 {
7512 	gpa_t gpa;
7513 	int handled, ret;
7514 	bool write = ops->write;
7515 	struct kvm_mmio_fragment *frag;
7516 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7517 
7518 	/*
7519 	 * If the exit was due to a NPF we may already have a GPA.
7520 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7521 	 * Note, this cannot be used on string operations since string
7522 	 * operation using rep will only have the initial GPA from the NPF
7523 	 * occurred.
7524 	 */
7525 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7526 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7527 		gpa = ctxt->gpa_val;
7528 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7529 	} else {
7530 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7531 		if (ret < 0)
7532 			return X86EMUL_PROPAGATE_FAULT;
7533 	}
7534 
7535 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7536 		return X86EMUL_CONTINUE;
7537 
7538 	/*
7539 	 * Is this MMIO handled locally?
7540 	 */
7541 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7542 	if (handled == bytes)
7543 		return X86EMUL_CONTINUE;
7544 
7545 	gpa += handled;
7546 	bytes -= handled;
7547 	val += handled;
7548 
7549 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7550 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7551 	frag->gpa = gpa;
7552 	frag->data = val;
7553 	frag->len = bytes;
7554 	return X86EMUL_CONTINUE;
7555 }
7556 
7557 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7558 			unsigned long addr,
7559 			void *val, unsigned int bytes,
7560 			struct x86_exception *exception,
7561 			const struct read_write_emulator_ops *ops)
7562 {
7563 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7564 	gpa_t gpa;
7565 	int rc;
7566 
7567 	if (ops->read_write_prepare &&
7568 		  ops->read_write_prepare(vcpu, val, bytes))
7569 		return X86EMUL_CONTINUE;
7570 
7571 	vcpu->mmio_nr_fragments = 0;
7572 
7573 	/* Crossing a page boundary? */
7574 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7575 		int now;
7576 
7577 		now = -addr & ~PAGE_MASK;
7578 		rc = emulator_read_write_onepage(addr, val, now, exception,
7579 						 vcpu, ops);
7580 
7581 		if (rc != X86EMUL_CONTINUE)
7582 			return rc;
7583 		addr += now;
7584 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7585 			addr = (u32)addr;
7586 		val += now;
7587 		bytes -= now;
7588 	}
7589 
7590 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7591 					 vcpu, ops);
7592 	if (rc != X86EMUL_CONTINUE)
7593 		return rc;
7594 
7595 	if (!vcpu->mmio_nr_fragments)
7596 		return rc;
7597 
7598 	gpa = vcpu->mmio_fragments[0].gpa;
7599 
7600 	vcpu->mmio_needed = 1;
7601 	vcpu->mmio_cur_fragment = 0;
7602 
7603 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7604 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7605 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7606 	vcpu->run->mmio.phys_addr = gpa;
7607 
7608 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7609 }
7610 
7611 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7612 				  unsigned long addr,
7613 				  void *val,
7614 				  unsigned int bytes,
7615 				  struct x86_exception *exception)
7616 {
7617 	return emulator_read_write(ctxt, addr, val, bytes,
7618 				   exception, &read_emultor);
7619 }
7620 
7621 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7622 			    unsigned long addr,
7623 			    const void *val,
7624 			    unsigned int bytes,
7625 			    struct x86_exception *exception)
7626 {
7627 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7628 				   exception, &write_emultor);
7629 }
7630 
7631 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7632 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7633 
7634 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7635 				     unsigned long addr,
7636 				     const void *old,
7637 				     const void *new,
7638 				     unsigned int bytes,
7639 				     struct x86_exception *exception)
7640 {
7641 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7642 	u64 page_line_mask;
7643 	unsigned long hva;
7644 	gpa_t gpa;
7645 	int r;
7646 
7647 	/* guests cmpxchg8b have to be emulated atomically */
7648 	if (bytes > 8 || (bytes & (bytes - 1)))
7649 		goto emul_write;
7650 
7651 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7652 
7653 	if (gpa == INVALID_GPA ||
7654 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7655 		goto emul_write;
7656 
7657 	/*
7658 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7659 	 * enabled in the host and the access splits a cache line.
7660 	 */
7661 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7662 		page_line_mask = ~(cache_line_size() - 1);
7663 	else
7664 		page_line_mask = PAGE_MASK;
7665 
7666 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7667 		goto emul_write;
7668 
7669 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7670 	if (kvm_is_error_hva(hva))
7671 		goto emul_write;
7672 
7673 	hva += offset_in_page(gpa);
7674 
7675 	switch (bytes) {
7676 	case 1:
7677 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7678 		break;
7679 	case 2:
7680 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7681 		break;
7682 	case 4:
7683 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7684 		break;
7685 	case 8:
7686 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7687 		break;
7688 	default:
7689 		BUG();
7690 	}
7691 
7692 	if (r < 0)
7693 		return X86EMUL_UNHANDLEABLE;
7694 	if (r)
7695 		return X86EMUL_CMPXCHG_FAILED;
7696 
7697 	kvm_page_track_write(vcpu, gpa, new, bytes);
7698 
7699 	return X86EMUL_CONTINUE;
7700 
7701 emul_write:
7702 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7703 
7704 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7705 }
7706 
7707 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7708 			       unsigned short port, void *data,
7709 			       unsigned int count, bool in)
7710 {
7711 	unsigned i;
7712 	int r;
7713 
7714 	WARN_ON_ONCE(vcpu->arch.pio.count);
7715 	for (i = 0; i < count; i++) {
7716 		if (in)
7717 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7718 		else
7719 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7720 
7721 		if (r) {
7722 			if (i == 0)
7723 				goto userspace_io;
7724 
7725 			/*
7726 			 * Userspace must have unregistered the device while PIO
7727 			 * was running.  Drop writes / read as 0.
7728 			 */
7729 			if (in)
7730 				memset(data, 0, size * (count - i));
7731 			break;
7732 		}
7733 
7734 		data += size;
7735 	}
7736 	return 1;
7737 
7738 userspace_io:
7739 	vcpu->arch.pio.port = port;
7740 	vcpu->arch.pio.in = in;
7741 	vcpu->arch.pio.count = count;
7742 	vcpu->arch.pio.size = size;
7743 
7744 	if (in)
7745 		memset(vcpu->arch.pio_data, 0, size * count);
7746 	else
7747 		memcpy(vcpu->arch.pio_data, data, size * count);
7748 
7749 	vcpu->run->exit_reason = KVM_EXIT_IO;
7750 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7751 	vcpu->run->io.size = size;
7752 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7753 	vcpu->run->io.count = count;
7754 	vcpu->run->io.port = port;
7755 	return 0;
7756 }
7757 
7758 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7759       			   unsigned short port, void *val, unsigned int count)
7760 {
7761 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7762 	if (r)
7763 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7764 
7765 	return r;
7766 }
7767 
7768 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7769 {
7770 	int size = vcpu->arch.pio.size;
7771 	unsigned int count = vcpu->arch.pio.count;
7772 	memcpy(val, vcpu->arch.pio_data, size * count);
7773 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7774 	vcpu->arch.pio.count = 0;
7775 }
7776 
7777 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7778 				    int size, unsigned short port, void *val,
7779 				    unsigned int count)
7780 {
7781 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7782 	if (vcpu->arch.pio.count) {
7783 		/*
7784 		 * Complete a previous iteration that required userspace I/O.
7785 		 * Note, @count isn't guaranteed to match pio.count as userspace
7786 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7787 		 * shenanigans as KVM doesn't support modifying the rep count,
7788 		 * and the emulator ensures @count doesn't overflow the buffer.
7789 		 */
7790 		complete_emulator_pio_in(vcpu, val);
7791 		return 1;
7792 	}
7793 
7794 	return emulator_pio_in(vcpu, size, port, val, count);
7795 }
7796 
7797 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7798 			    unsigned short port, const void *val,
7799 			    unsigned int count)
7800 {
7801 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7802 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7803 }
7804 
7805 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7806 				     int size, unsigned short port,
7807 				     const void *val, unsigned int count)
7808 {
7809 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7810 }
7811 
7812 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7813 {
7814 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7815 }
7816 
7817 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7818 {
7819 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7820 }
7821 
7822 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7823 {
7824 	if (!need_emulate_wbinvd(vcpu))
7825 		return X86EMUL_CONTINUE;
7826 
7827 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7828 		int cpu = get_cpu();
7829 
7830 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7831 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7832 				wbinvd_ipi, NULL, 1);
7833 		put_cpu();
7834 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7835 	} else
7836 		wbinvd();
7837 	return X86EMUL_CONTINUE;
7838 }
7839 
7840 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7841 {
7842 	kvm_emulate_wbinvd_noskip(vcpu);
7843 	return kvm_skip_emulated_instruction(vcpu);
7844 }
7845 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7846 
7847 
7848 
7849 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7850 {
7851 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7852 }
7853 
7854 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7855 			    unsigned long *dest)
7856 {
7857 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7858 }
7859 
7860 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7861 			   unsigned long value)
7862 {
7863 
7864 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7865 }
7866 
7867 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7868 {
7869 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7870 }
7871 
7872 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7873 {
7874 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7875 	unsigned long value;
7876 
7877 	switch (cr) {
7878 	case 0:
7879 		value = kvm_read_cr0(vcpu);
7880 		break;
7881 	case 2:
7882 		value = vcpu->arch.cr2;
7883 		break;
7884 	case 3:
7885 		value = kvm_read_cr3(vcpu);
7886 		break;
7887 	case 4:
7888 		value = kvm_read_cr4(vcpu);
7889 		break;
7890 	case 8:
7891 		value = kvm_get_cr8(vcpu);
7892 		break;
7893 	default:
7894 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7895 		return 0;
7896 	}
7897 
7898 	return value;
7899 }
7900 
7901 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7902 {
7903 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7904 	int res = 0;
7905 
7906 	switch (cr) {
7907 	case 0:
7908 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7909 		break;
7910 	case 2:
7911 		vcpu->arch.cr2 = val;
7912 		break;
7913 	case 3:
7914 		res = kvm_set_cr3(vcpu, val);
7915 		break;
7916 	case 4:
7917 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7918 		break;
7919 	case 8:
7920 		res = kvm_set_cr8(vcpu, val);
7921 		break;
7922 	default:
7923 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7924 		res = -1;
7925 	}
7926 
7927 	return res;
7928 }
7929 
7930 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7931 {
7932 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7933 }
7934 
7935 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7936 {
7937 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7938 }
7939 
7940 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7941 {
7942 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7943 }
7944 
7945 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7946 {
7947 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7948 }
7949 
7950 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7951 {
7952 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7953 }
7954 
7955 static unsigned long emulator_get_cached_segment_base(
7956 	struct x86_emulate_ctxt *ctxt, int seg)
7957 {
7958 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7959 }
7960 
7961 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7962 				 struct desc_struct *desc, u32 *base3,
7963 				 int seg)
7964 {
7965 	struct kvm_segment var;
7966 
7967 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7968 	*selector = var.selector;
7969 
7970 	if (var.unusable) {
7971 		memset(desc, 0, sizeof(*desc));
7972 		if (base3)
7973 			*base3 = 0;
7974 		return false;
7975 	}
7976 
7977 	if (var.g)
7978 		var.limit >>= 12;
7979 	set_desc_limit(desc, var.limit);
7980 	set_desc_base(desc, (unsigned long)var.base);
7981 #ifdef CONFIG_X86_64
7982 	if (base3)
7983 		*base3 = var.base >> 32;
7984 #endif
7985 	desc->type = var.type;
7986 	desc->s = var.s;
7987 	desc->dpl = var.dpl;
7988 	desc->p = var.present;
7989 	desc->avl = var.avl;
7990 	desc->l = var.l;
7991 	desc->d = var.db;
7992 	desc->g = var.g;
7993 
7994 	return true;
7995 }
7996 
7997 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7998 				 struct desc_struct *desc, u32 base3,
7999 				 int seg)
8000 {
8001 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8002 	struct kvm_segment var;
8003 
8004 	var.selector = selector;
8005 	var.base = get_desc_base(desc);
8006 #ifdef CONFIG_X86_64
8007 	var.base |= ((u64)base3) << 32;
8008 #endif
8009 	var.limit = get_desc_limit(desc);
8010 	if (desc->g)
8011 		var.limit = (var.limit << 12) | 0xfff;
8012 	var.type = desc->type;
8013 	var.dpl = desc->dpl;
8014 	var.db = desc->d;
8015 	var.s = desc->s;
8016 	var.l = desc->l;
8017 	var.g = desc->g;
8018 	var.avl = desc->avl;
8019 	var.present = desc->p;
8020 	var.unusable = !var.present;
8021 	var.padding = 0;
8022 
8023 	kvm_set_segment(vcpu, &var, seg);
8024 	return;
8025 }
8026 
8027 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8028 					u32 msr_index, u64 *pdata)
8029 {
8030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8031 	int r;
8032 
8033 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8034 	if (r < 0)
8035 		return X86EMUL_UNHANDLEABLE;
8036 
8037 	if (r) {
8038 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8039 				       complete_emulated_rdmsr, r))
8040 			return X86EMUL_IO_NEEDED;
8041 
8042 		trace_kvm_msr_read_ex(msr_index);
8043 		return X86EMUL_PROPAGATE_FAULT;
8044 	}
8045 
8046 	trace_kvm_msr_read(msr_index, *pdata);
8047 	return X86EMUL_CONTINUE;
8048 }
8049 
8050 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8051 					u32 msr_index, u64 data)
8052 {
8053 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8054 	int r;
8055 
8056 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8057 	if (r < 0)
8058 		return X86EMUL_UNHANDLEABLE;
8059 
8060 	if (r) {
8061 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8062 				       complete_emulated_msr_access, r))
8063 			return X86EMUL_IO_NEEDED;
8064 
8065 		trace_kvm_msr_write_ex(msr_index, data);
8066 		return X86EMUL_PROPAGATE_FAULT;
8067 	}
8068 
8069 	trace_kvm_msr_write(msr_index, data);
8070 	return X86EMUL_CONTINUE;
8071 }
8072 
8073 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8074 			    u32 msr_index, u64 *pdata)
8075 {
8076 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8077 }
8078 
8079 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8080 			      u32 pmc)
8081 {
8082 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8083 		return 0;
8084 	return -EINVAL;
8085 }
8086 
8087 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8088 			     u32 pmc, u64 *pdata)
8089 {
8090 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8091 }
8092 
8093 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8094 {
8095 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8096 }
8097 
8098 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8099 			      struct x86_instruction_info *info,
8100 			      enum x86_intercept_stage stage)
8101 {
8102 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8103 					    &ctxt->exception);
8104 }
8105 
8106 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8107 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8108 			      bool exact_only)
8109 {
8110 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8111 }
8112 
8113 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8114 {
8115 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8116 }
8117 
8118 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8119 {
8120 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8121 }
8122 
8123 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8124 {
8125 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8126 }
8127 
8128 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8129 {
8130 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8131 }
8132 
8133 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8134 {
8135 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8136 }
8137 
8138 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8139 {
8140 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8141 }
8142 
8143 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8144 {
8145 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8146 }
8147 
8148 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8149 {
8150 	return emul_to_vcpu(ctxt)->arch.hflags;
8151 }
8152 
8153 #ifndef CONFIG_KVM_SMM
8154 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8155 {
8156 	WARN_ON_ONCE(1);
8157 	return X86EMUL_UNHANDLEABLE;
8158 }
8159 #endif
8160 
8161 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8162 {
8163 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8164 }
8165 
8166 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8167 {
8168 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8169 }
8170 
8171 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8172 {
8173 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8174 
8175 	if (!kvm->vm_bugged)
8176 		kvm_vm_bugged(kvm);
8177 }
8178 
8179 static const struct x86_emulate_ops emulate_ops = {
8180 	.vm_bugged           = emulator_vm_bugged,
8181 	.read_gpr            = emulator_read_gpr,
8182 	.write_gpr           = emulator_write_gpr,
8183 	.read_std            = emulator_read_std,
8184 	.write_std           = emulator_write_std,
8185 	.fetch               = kvm_fetch_guest_virt,
8186 	.read_emulated       = emulator_read_emulated,
8187 	.write_emulated      = emulator_write_emulated,
8188 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8189 	.invlpg              = emulator_invlpg,
8190 	.pio_in_emulated     = emulator_pio_in_emulated,
8191 	.pio_out_emulated    = emulator_pio_out_emulated,
8192 	.get_segment         = emulator_get_segment,
8193 	.set_segment         = emulator_set_segment,
8194 	.get_cached_segment_base = emulator_get_cached_segment_base,
8195 	.get_gdt             = emulator_get_gdt,
8196 	.get_idt	     = emulator_get_idt,
8197 	.set_gdt             = emulator_set_gdt,
8198 	.set_idt	     = emulator_set_idt,
8199 	.get_cr              = emulator_get_cr,
8200 	.set_cr              = emulator_set_cr,
8201 	.cpl                 = emulator_get_cpl,
8202 	.get_dr              = emulator_get_dr,
8203 	.set_dr              = emulator_set_dr,
8204 	.set_msr_with_filter = emulator_set_msr_with_filter,
8205 	.get_msr_with_filter = emulator_get_msr_with_filter,
8206 	.get_msr             = emulator_get_msr,
8207 	.check_pmc	     = emulator_check_pmc,
8208 	.read_pmc            = emulator_read_pmc,
8209 	.halt                = emulator_halt,
8210 	.wbinvd              = emulator_wbinvd,
8211 	.fix_hypercall       = emulator_fix_hypercall,
8212 	.intercept           = emulator_intercept,
8213 	.get_cpuid           = emulator_get_cpuid,
8214 	.guest_has_long_mode = emulator_guest_has_long_mode,
8215 	.guest_has_movbe     = emulator_guest_has_movbe,
8216 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8217 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8218 	.set_nmi_mask        = emulator_set_nmi_mask,
8219 	.get_hflags          = emulator_get_hflags,
8220 	.leave_smm           = emulator_leave_smm,
8221 	.triple_fault        = emulator_triple_fault,
8222 	.set_xcr             = emulator_set_xcr,
8223 };
8224 
8225 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8226 {
8227 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8228 	/*
8229 	 * an sti; sti; sequence only disable interrupts for the first
8230 	 * instruction. So, if the last instruction, be it emulated or
8231 	 * not, left the system with the INT_STI flag enabled, it
8232 	 * means that the last instruction is an sti. We should not
8233 	 * leave the flag on in this case. The same goes for mov ss
8234 	 */
8235 	if (int_shadow & mask)
8236 		mask = 0;
8237 	if (unlikely(int_shadow || mask)) {
8238 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8239 		if (!mask)
8240 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8241 	}
8242 }
8243 
8244 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8245 {
8246 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8247 
8248 	if (ctxt->exception.vector == PF_VECTOR)
8249 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8250 	else if (ctxt->exception.error_code_valid)
8251 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8252 				      ctxt->exception.error_code);
8253 	else
8254 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8255 }
8256 
8257 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8258 {
8259 	struct x86_emulate_ctxt *ctxt;
8260 
8261 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8262 	if (!ctxt) {
8263 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8264 		return NULL;
8265 	}
8266 
8267 	ctxt->vcpu = vcpu;
8268 	ctxt->ops = &emulate_ops;
8269 	vcpu->arch.emulate_ctxt = ctxt;
8270 
8271 	return ctxt;
8272 }
8273 
8274 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8275 {
8276 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8277 	int cs_db, cs_l;
8278 
8279 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8280 
8281 	ctxt->gpa_available = false;
8282 	ctxt->eflags = kvm_get_rflags(vcpu);
8283 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8284 
8285 	ctxt->eip = kvm_rip_read(vcpu);
8286 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8287 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8288 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8289 		     cs_db				? X86EMUL_MODE_PROT32 :
8290 							  X86EMUL_MODE_PROT16;
8291 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8292 
8293 	ctxt->interruptibility = 0;
8294 	ctxt->have_exception = false;
8295 	ctxt->exception.vector = -1;
8296 	ctxt->perm_ok = false;
8297 
8298 	init_decode_cache(ctxt);
8299 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8300 }
8301 
8302 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8303 {
8304 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8305 	int ret;
8306 
8307 	init_emulate_ctxt(vcpu);
8308 
8309 	ctxt->op_bytes = 2;
8310 	ctxt->ad_bytes = 2;
8311 	ctxt->_eip = ctxt->eip + inc_eip;
8312 	ret = emulate_int_real(ctxt, irq);
8313 
8314 	if (ret != X86EMUL_CONTINUE) {
8315 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8316 	} else {
8317 		ctxt->eip = ctxt->_eip;
8318 		kvm_rip_write(vcpu, ctxt->eip);
8319 		kvm_set_rflags(vcpu, ctxt->eflags);
8320 	}
8321 }
8322 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8323 
8324 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8325 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8326 {
8327 	struct kvm_run *run = vcpu->run;
8328 	u64 info[5];
8329 	u8 info_start;
8330 
8331 	/*
8332 	 * Zero the whole array used to retrieve the exit info, as casting to
8333 	 * u32 for select entries will leave some chunks uninitialized.
8334 	 */
8335 	memset(&info, 0, sizeof(info));
8336 
8337 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8338 					   &info[2], (u32 *)&info[3],
8339 					   (u32 *)&info[4]);
8340 
8341 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8342 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8343 
8344 	/*
8345 	 * There's currently space for 13 entries, but 5 are used for the exit
8346 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8347 	 * when expanding kvm_run.emulation_failure in the future.
8348 	 */
8349 	if (WARN_ON_ONCE(ndata > 4))
8350 		ndata = 4;
8351 
8352 	/* Always include the flags as a 'data' entry. */
8353 	info_start = 1;
8354 	run->emulation_failure.flags = 0;
8355 
8356 	if (insn_size) {
8357 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8358 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8359 		info_start += 2;
8360 		run->emulation_failure.flags |=
8361 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8362 		run->emulation_failure.insn_size = insn_size;
8363 		memset(run->emulation_failure.insn_bytes, 0x90,
8364 		       sizeof(run->emulation_failure.insn_bytes));
8365 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8366 	}
8367 
8368 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8369 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8370 	       ndata * sizeof(data[0]));
8371 
8372 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8373 }
8374 
8375 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8376 {
8377 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8378 
8379 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8380 				       ctxt->fetch.end - ctxt->fetch.data);
8381 }
8382 
8383 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8384 					  u8 ndata)
8385 {
8386 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8387 }
8388 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8389 
8390 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8391 {
8392 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8393 }
8394 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8395 
8396 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8397 {
8398 	struct kvm *kvm = vcpu->kvm;
8399 
8400 	++vcpu->stat.insn_emulation_fail;
8401 	trace_kvm_emulate_insn_failed(vcpu);
8402 
8403 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8404 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8405 		return 1;
8406 	}
8407 
8408 	if (kvm->arch.exit_on_emulation_error ||
8409 	    (emulation_type & EMULTYPE_SKIP)) {
8410 		prepare_emulation_ctxt_failure_exit(vcpu);
8411 		return 0;
8412 	}
8413 
8414 	kvm_queue_exception(vcpu, UD_VECTOR);
8415 
8416 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8417 		prepare_emulation_ctxt_failure_exit(vcpu);
8418 		return 0;
8419 	}
8420 
8421 	return 1;
8422 }
8423 
8424 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8425 				  bool write_fault_to_shadow_pgtable,
8426 				  int emulation_type)
8427 {
8428 	gpa_t gpa = cr2_or_gpa;
8429 	kvm_pfn_t pfn;
8430 
8431 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8432 		return false;
8433 
8434 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8435 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8436 		return false;
8437 
8438 	if (!vcpu->arch.mmu->root_role.direct) {
8439 		/*
8440 		 * Write permission should be allowed since only
8441 		 * write access need to be emulated.
8442 		 */
8443 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8444 
8445 		/*
8446 		 * If the mapping is invalid in guest, let cpu retry
8447 		 * it to generate fault.
8448 		 */
8449 		if (gpa == INVALID_GPA)
8450 			return true;
8451 	}
8452 
8453 	/*
8454 	 * Do not retry the unhandleable instruction if it faults on the
8455 	 * readonly host memory, otherwise it will goto a infinite loop:
8456 	 * retry instruction -> write #PF -> emulation fail -> retry
8457 	 * instruction -> ...
8458 	 */
8459 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8460 
8461 	/*
8462 	 * If the instruction failed on the error pfn, it can not be fixed,
8463 	 * report the error to userspace.
8464 	 */
8465 	if (is_error_noslot_pfn(pfn))
8466 		return false;
8467 
8468 	kvm_release_pfn_clean(pfn);
8469 
8470 	/* The instructions are well-emulated on direct mmu. */
8471 	if (vcpu->arch.mmu->root_role.direct) {
8472 		unsigned int indirect_shadow_pages;
8473 
8474 		write_lock(&vcpu->kvm->mmu_lock);
8475 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8476 		write_unlock(&vcpu->kvm->mmu_lock);
8477 
8478 		if (indirect_shadow_pages)
8479 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8480 
8481 		return true;
8482 	}
8483 
8484 	/*
8485 	 * if emulation was due to access to shadowed page table
8486 	 * and it failed try to unshadow page and re-enter the
8487 	 * guest to let CPU execute the instruction.
8488 	 */
8489 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8490 
8491 	/*
8492 	 * If the access faults on its page table, it can not
8493 	 * be fixed by unprotecting shadow page and it should
8494 	 * be reported to userspace.
8495 	 */
8496 	return !write_fault_to_shadow_pgtable;
8497 }
8498 
8499 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8500 			      gpa_t cr2_or_gpa,  int emulation_type)
8501 {
8502 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8503 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8504 
8505 	last_retry_eip = vcpu->arch.last_retry_eip;
8506 	last_retry_addr = vcpu->arch.last_retry_addr;
8507 
8508 	/*
8509 	 * If the emulation is caused by #PF and it is non-page_table
8510 	 * writing instruction, it means the VM-EXIT is caused by shadow
8511 	 * page protected, we can zap the shadow page and retry this
8512 	 * instruction directly.
8513 	 *
8514 	 * Note: if the guest uses a non-page-table modifying instruction
8515 	 * on the PDE that points to the instruction, then we will unmap
8516 	 * the instruction and go to an infinite loop. So, we cache the
8517 	 * last retried eip and the last fault address, if we meet the eip
8518 	 * and the address again, we can break out of the potential infinite
8519 	 * loop.
8520 	 */
8521 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8522 
8523 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8524 		return false;
8525 
8526 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8527 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8528 		return false;
8529 
8530 	if (x86_page_table_writing_insn(ctxt))
8531 		return false;
8532 
8533 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8534 		return false;
8535 
8536 	vcpu->arch.last_retry_eip = ctxt->eip;
8537 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8538 
8539 	if (!vcpu->arch.mmu->root_role.direct)
8540 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8541 
8542 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8543 
8544 	return true;
8545 }
8546 
8547 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8548 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8549 
8550 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8551 				unsigned long *db)
8552 {
8553 	u32 dr6 = 0;
8554 	int i;
8555 	u32 enable, rwlen;
8556 
8557 	enable = dr7;
8558 	rwlen = dr7 >> 16;
8559 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8560 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8561 			dr6 |= (1 << i);
8562 	return dr6;
8563 }
8564 
8565 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8566 {
8567 	struct kvm_run *kvm_run = vcpu->run;
8568 
8569 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8570 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8571 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8572 		kvm_run->debug.arch.exception = DB_VECTOR;
8573 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8574 		return 0;
8575 	}
8576 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8577 	return 1;
8578 }
8579 
8580 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8581 {
8582 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8583 	int r;
8584 
8585 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8586 	if (unlikely(!r))
8587 		return 0;
8588 
8589 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8590 
8591 	/*
8592 	 * rflags is the old, "raw" value of the flags.  The new value has
8593 	 * not been saved yet.
8594 	 *
8595 	 * This is correct even for TF set by the guest, because "the
8596 	 * processor will not generate this exception after the instruction
8597 	 * that sets the TF flag".
8598 	 */
8599 	if (unlikely(rflags & X86_EFLAGS_TF))
8600 		r = kvm_vcpu_do_singlestep(vcpu);
8601 	return r;
8602 }
8603 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8604 
8605 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8606 {
8607 	u32 shadow;
8608 
8609 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8610 		return true;
8611 
8612 	/*
8613 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8614 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8615 	 * to avoid the relatively expensive CPUID lookup.
8616 	 */
8617 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8618 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8619 	       guest_cpuid_is_intel(vcpu);
8620 }
8621 
8622 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8623 					   int emulation_type, int *r)
8624 {
8625 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8626 
8627 	/*
8628 	 * Do not check for code breakpoints if hardware has already done the
8629 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8630 	 * the instruction has passed all exception checks, and all intercepted
8631 	 * exceptions that trigger emulation have lower priority than code
8632 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8633 	 * means any code breakpoints have already been serviced.
8634 	 *
8635 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8636 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8637 	 * the instruction being emulated.  The intent of forced emulation is
8638 	 * to behave as if KVM intercepted the instruction without an exception
8639 	 * and without a prefix.
8640 	 */
8641 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8642 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8643 		return false;
8644 
8645 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8646 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8647 		struct kvm_run *kvm_run = vcpu->run;
8648 		unsigned long eip = kvm_get_linear_rip(vcpu);
8649 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8650 					   vcpu->arch.guest_debug_dr7,
8651 					   vcpu->arch.eff_db);
8652 
8653 		if (dr6 != 0) {
8654 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8655 			kvm_run->debug.arch.pc = eip;
8656 			kvm_run->debug.arch.exception = DB_VECTOR;
8657 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8658 			*r = 0;
8659 			return true;
8660 		}
8661 	}
8662 
8663 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8664 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8665 		unsigned long eip = kvm_get_linear_rip(vcpu);
8666 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8667 					   vcpu->arch.dr7,
8668 					   vcpu->arch.db);
8669 
8670 		if (dr6 != 0) {
8671 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8672 			*r = 1;
8673 			return true;
8674 		}
8675 	}
8676 
8677 	return false;
8678 }
8679 
8680 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8681 {
8682 	switch (ctxt->opcode_len) {
8683 	case 1:
8684 		switch (ctxt->b) {
8685 		case 0xe4:	/* IN */
8686 		case 0xe5:
8687 		case 0xec:
8688 		case 0xed:
8689 		case 0xe6:	/* OUT */
8690 		case 0xe7:
8691 		case 0xee:
8692 		case 0xef:
8693 		case 0x6c:	/* INS */
8694 		case 0x6d:
8695 		case 0x6e:	/* OUTS */
8696 		case 0x6f:
8697 			return true;
8698 		}
8699 		break;
8700 	case 2:
8701 		switch (ctxt->b) {
8702 		case 0x33:	/* RDPMC */
8703 			return true;
8704 		}
8705 		break;
8706 	}
8707 
8708 	return false;
8709 }
8710 
8711 /*
8712  * Decode an instruction for emulation.  The caller is responsible for handling
8713  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8714  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8715  * code breakpoints have higher priority and thus have already been done by
8716  * hardware.
8717  *
8718  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8719  *     response to a machine check.
8720  */
8721 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8722 				    void *insn, int insn_len)
8723 {
8724 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8725 	int r;
8726 
8727 	init_emulate_ctxt(vcpu);
8728 
8729 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8730 
8731 	trace_kvm_emulate_insn_start(vcpu);
8732 	++vcpu->stat.insn_emulation;
8733 
8734 	return r;
8735 }
8736 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8737 
8738 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8739 			    int emulation_type, void *insn, int insn_len)
8740 {
8741 	int r;
8742 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8743 	bool writeback = true;
8744 	bool write_fault_to_spt;
8745 
8746 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8747 		return 1;
8748 
8749 	vcpu->arch.l1tf_flush_l1d = true;
8750 
8751 	/*
8752 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8753 	 * never reused.
8754 	 */
8755 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8756 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8757 
8758 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8759 		kvm_clear_exception_queue(vcpu);
8760 
8761 		/*
8762 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8763 		 * are fault-like and are higher priority than any faults on
8764 		 * the code fetch itself.
8765 		 */
8766 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8767 			return r;
8768 
8769 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8770 						    insn, insn_len);
8771 		if (r != EMULATION_OK)  {
8772 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8773 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8774 				kvm_queue_exception(vcpu, UD_VECTOR);
8775 				return 1;
8776 			}
8777 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8778 						  write_fault_to_spt,
8779 						  emulation_type))
8780 				return 1;
8781 
8782 			if (ctxt->have_exception &&
8783 			    !(emulation_type & EMULTYPE_SKIP)) {
8784 				/*
8785 				 * #UD should result in just EMULATION_FAILED, and trap-like
8786 				 * exception should not be encountered during decode.
8787 				 */
8788 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8789 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8790 				inject_emulated_exception(vcpu);
8791 				return 1;
8792 			}
8793 			return handle_emulation_failure(vcpu, emulation_type);
8794 		}
8795 	}
8796 
8797 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8798 	    !is_vmware_backdoor_opcode(ctxt)) {
8799 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8800 		return 1;
8801 	}
8802 
8803 	/*
8804 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8805 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8806 	 * The caller is responsible for updating interruptibility state and
8807 	 * injecting single-step #DBs.
8808 	 */
8809 	if (emulation_type & EMULTYPE_SKIP) {
8810 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8811 			ctxt->eip = (u32)ctxt->_eip;
8812 		else
8813 			ctxt->eip = ctxt->_eip;
8814 
8815 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8816 			r = 1;
8817 			goto writeback;
8818 		}
8819 
8820 		kvm_rip_write(vcpu, ctxt->eip);
8821 		if (ctxt->eflags & X86_EFLAGS_RF)
8822 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8823 		return 1;
8824 	}
8825 
8826 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8827 		return 1;
8828 
8829 	/* this is needed for vmware backdoor interface to work since it
8830 	   changes registers values  during IO operation */
8831 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8832 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8833 		emulator_invalidate_register_cache(ctxt);
8834 	}
8835 
8836 restart:
8837 	if (emulation_type & EMULTYPE_PF) {
8838 		/* Save the faulting GPA (cr2) in the address field */
8839 		ctxt->exception.address = cr2_or_gpa;
8840 
8841 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8842 		if (vcpu->arch.mmu->root_role.direct) {
8843 			ctxt->gpa_available = true;
8844 			ctxt->gpa_val = cr2_or_gpa;
8845 		}
8846 	} else {
8847 		/* Sanitize the address out of an abundance of paranoia. */
8848 		ctxt->exception.address = 0;
8849 	}
8850 
8851 	r = x86_emulate_insn(ctxt);
8852 
8853 	if (r == EMULATION_INTERCEPTED)
8854 		return 1;
8855 
8856 	if (r == EMULATION_FAILED) {
8857 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8858 					emulation_type))
8859 			return 1;
8860 
8861 		return handle_emulation_failure(vcpu, emulation_type);
8862 	}
8863 
8864 	if (ctxt->have_exception) {
8865 		r = 1;
8866 		inject_emulated_exception(vcpu);
8867 	} else if (vcpu->arch.pio.count) {
8868 		if (!vcpu->arch.pio.in) {
8869 			/* FIXME: return into emulator if single-stepping.  */
8870 			vcpu->arch.pio.count = 0;
8871 		} else {
8872 			writeback = false;
8873 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8874 		}
8875 		r = 0;
8876 	} else if (vcpu->mmio_needed) {
8877 		++vcpu->stat.mmio_exits;
8878 
8879 		if (!vcpu->mmio_is_write)
8880 			writeback = false;
8881 		r = 0;
8882 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8883 	} else if (vcpu->arch.complete_userspace_io) {
8884 		writeback = false;
8885 		r = 0;
8886 	} else if (r == EMULATION_RESTART)
8887 		goto restart;
8888 	else
8889 		r = 1;
8890 
8891 writeback:
8892 	if (writeback) {
8893 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8894 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8895 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8896 
8897 		/*
8898 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8899 		 * only supports code breakpoints and general detect #DB, both
8900 		 * of which are fault-like.
8901 		 */
8902 		if (!ctxt->have_exception ||
8903 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8904 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8905 			if (ctxt->is_branch)
8906 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8907 			kvm_rip_write(vcpu, ctxt->eip);
8908 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8909 				r = kvm_vcpu_do_singlestep(vcpu);
8910 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8911 			__kvm_set_rflags(vcpu, ctxt->eflags);
8912 		}
8913 
8914 		/*
8915 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8916 		 * do nothing, and it will be requested again as soon as
8917 		 * the shadow expires.  But we still need to check here,
8918 		 * because POPF has no interrupt shadow.
8919 		 */
8920 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8921 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8922 	} else
8923 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8924 
8925 	return r;
8926 }
8927 
8928 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8929 {
8930 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8931 }
8932 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8933 
8934 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8935 					void *insn, int insn_len)
8936 {
8937 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8938 }
8939 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8940 
8941 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8942 {
8943 	vcpu->arch.pio.count = 0;
8944 	return 1;
8945 }
8946 
8947 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8948 {
8949 	vcpu->arch.pio.count = 0;
8950 
8951 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8952 		return 1;
8953 
8954 	return kvm_skip_emulated_instruction(vcpu);
8955 }
8956 
8957 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8958 			    unsigned short port)
8959 {
8960 	unsigned long val = kvm_rax_read(vcpu);
8961 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8962 
8963 	if (ret)
8964 		return ret;
8965 
8966 	/*
8967 	 * Workaround userspace that relies on old KVM behavior of %rip being
8968 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8969 	 */
8970 	if (port == 0x7e &&
8971 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8972 		vcpu->arch.complete_userspace_io =
8973 			complete_fast_pio_out_port_0x7e;
8974 		kvm_skip_emulated_instruction(vcpu);
8975 	} else {
8976 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8977 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8978 	}
8979 	return 0;
8980 }
8981 
8982 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8983 {
8984 	unsigned long val;
8985 
8986 	/* We should only ever be called with arch.pio.count equal to 1 */
8987 	BUG_ON(vcpu->arch.pio.count != 1);
8988 
8989 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8990 		vcpu->arch.pio.count = 0;
8991 		return 1;
8992 	}
8993 
8994 	/* For size less than 4 we merge, else we zero extend */
8995 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8996 
8997 	complete_emulator_pio_in(vcpu, &val);
8998 	kvm_rax_write(vcpu, val);
8999 
9000 	return kvm_skip_emulated_instruction(vcpu);
9001 }
9002 
9003 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9004 			   unsigned short port)
9005 {
9006 	unsigned long val;
9007 	int ret;
9008 
9009 	/* For size less than 4 we merge, else we zero extend */
9010 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9011 
9012 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9013 	if (ret) {
9014 		kvm_rax_write(vcpu, val);
9015 		return ret;
9016 	}
9017 
9018 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9019 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9020 
9021 	return 0;
9022 }
9023 
9024 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9025 {
9026 	int ret;
9027 
9028 	if (in)
9029 		ret = kvm_fast_pio_in(vcpu, size, port);
9030 	else
9031 		ret = kvm_fast_pio_out(vcpu, size, port);
9032 	return ret && kvm_skip_emulated_instruction(vcpu);
9033 }
9034 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9035 
9036 static int kvmclock_cpu_down_prep(unsigned int cpu)
9037 {
9038 	__this_cpu_write(cpu_tsc_khz, 0);
9039 	return 0;
9040 }
9041 
9042 static void tsc_khz_changed(void *data)
9043 {
9044 	struct cpufreq_freqs *freq = data;
9045 	unsigned long khz = 0;
9046 
9047 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9048 
9049 	if (data)
9050 		khz = freq->new;
9051 	else
9052 		khz = cpufreq_quick_get(raw_smp_processor_id());
9053 	if (!khz)
9054 		khz = tsc_khz;
9055 	__this_cpu_write(cpu_tsc_khz, khz);
9056 }
9057 
9058 #ifdef CONFIG_X86_64
9059 static void kvm_hyperv_tsc_notifier(void)
9060 {
9061 	struct kvm *kvm;
9062 	int cpu;
9063 
9064 	mutex_lock(&kvm_lock);
9065 	list_for_each_entry(kvm, &vm_list, vm_list)
9066 		kvm_make_mclock_inprogress_request(kvm);
9067 
9068 	/* no guest entries from this point */
9069 	hyperv_stop_tsc_emulation();
9070 
9071 	/* TSC frequency always matches when on Hyper-V */
9072 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9073 		for_each_present_cpu(cpu)
9074 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9075 	}
9076 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9077 
9078 	list_for_each_entry(kvm, &vm_list, vm_list) {
9079 		__kvm_start_pvclock_update(kvm);
9080 		pvclock_update_vm_gtod_copy(kvm);
9081 		kvm_end_pvclock_update(kvm);
9082 	}
9083 
9084 	mutex_unlock(&kvm_lock);
9085 }
9086 #endif
9087 
9088 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9089 {
9090 	struct kvm *kvm;
9091 	struct kvm_vcpu *vcpu;
9092 	int send_ipi = 0;
9093 	unsigned long i;
9094 
9095 	/*
9096 	 * We allow guests to temporarily run on slowing clocks,
9097 	 * provided we notify them after, or to run on accelerating
9098 	 * clocks, provided we notify them before.  Thus time never
9099 	 * goes backwards.
9100 	 *
9101 	 * However, we have a problem.  We can't atomically update
9102 	 * the frequency of a given CPU from this function; it is
9103 	 * merely a notifier, which can be called from any CPU.
9104 	 * Changing the TSC frequency at arbitrary points in time
9105 	 * requires a recomputation of local variables related to
9106 	 * the TSC for each VCPU.  We must flag these local variables
9107 	 * to be updated and be sure the update takes place with the
9108 	 * new frequency before any guests proceed.
9109 	 *
9110 	 * Unfortunately, the combination of hotplug CPU and frequency
9111 	 * change creates an intractable locking scenario; the order
9112 	 * of when these callouts happen is undefined with respect to
9113 	 * CPU hotplug, and they can race with each other.  As such,
9114 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9115 	 * undefined; you can actually have a CPU frequency change take
9116 	 * place in between the computation of X and the setting of the
9117 	 * variable.  To protect against this problem, all updates of
9118 	 * the per_cpu tsc_khz variable are done in an interrupt
9119 	 * protected IPI, and all callers wishing to update the value
9120 	 * must wait for a synchronous IPI to complete (which is trivial
9121 	 * if the caller is on the CPU already).  This establishes the
9122 	 * necessary total order on variable updates.
9123 	 *
9124 	 * Note that because a guest time update may take place
9125 	 * anytime after the setting of the VCPU's request bit, the
9126 	 * correct TSC value must be set before the request.  However,
9127 	 * to ensure the update actually makes it to any guest which
9128 	 * starts running in hardware virtualization between the set
9129 	 * and the acquisition of the spinlock, we must also ping the
9130 	 * CPU after setting the request bit.
9131 	 *
9132 	 */
9133 
9134 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9135 
9136 	mutex_lock(&kvm_lock);
9137 	list_for_each_entry(kvm, &vm_list, vm_list) {
9138 		kvm_for_each_vcpu(i, vcpu, kvm) {
9139 			if (vcpu->cpu != cpu)
9140 				continue;
9141 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9142 			if (vcpu->cpu != raw_smp_processor_id())
9143 				send_ipi = 1;
9144 		}
9145 	}
9146 	mutex_unlock(&kvm_lock);
9147 
9148 	if (freq->old < freq->new && send_ipi) {
9149 		/*
9150 		 * We upscale the frequency.  Must make the guest
9151 		 * doesn't see old kvmclock values while running with
9152 		 * the new frequency, otherwise we risk the guest sees
9153 		 * time go backwards.
9154 		 *
9155 		 * In case we update the frequency for another cpu
9156 		 * (which might be in guest context) send an interrupt
9157 		 * to kick the cpu out of guest context.  Next time
9158 		 * guest context is entered kvmclock will be updated,
9159 		 * so the guest will not see stale values.
9160 		 */
9161 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9162 	}
9163 }
9164 
9165 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9166 				     void *data)
9167 {
9168 	struct cpufreq_freqs *freq = data;
9169 	int cpu;
9170 
9171 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9172 		return 0;
9173 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9174 		return 0;
9175 
9176 	for_each_cpu(cpu, freq->policy->cpus)
9177 		__kvmclock_cpufreq_notifier(freq, cpu);
9178 
9179 	return 0;
9180 }
9181 
9182 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9183 	.notifier_call  = kvmclock_cpufreq_notifier
9184 };
9185 
9186 static int kvmclock_cpu_online(unsigned int cpu)
9187 {
9188 	tsc_khz_changed(NULL);
9189 	return 0;
9190 }
9191 
9192 static void kvm_timer_init(void)
9193 {
9194 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9195 		max_tsc_khz = tsc_khz;
9196 
9197 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9198 			struct cpufreq_policy *policy;
9199 			int cpu;
9200 
9201 			cpu = get_cpu();
9202 			policy = cpufreq_cpu_get(cpu);
9203 			if (policy) {
9204 				if (policy->cpuinfo.max_freq)
9205 					max_tsc_khz = policy->cpuinfo.max_freq;
9206 				cpufreq_cpu_put(policy);
9207 			}
9208 			put_cpu();
9209 		}
9210 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9211 					  CPUFREQ_TRANSITION_NOTIFIER);
9212 
9213 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9214 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9215 	}
9216 }
9217 
9218 #ifdef CONFIG_X86_64
9219 static void pvclock_gtod_update_fn(struct work_struct *work)
9220 {
9221 	struct kvm *kvm;
9222 	struct kvm_vcpu *vcpu;
9223 	unsigned long i;
9224 
9225 	mutex_lock(&kvm_lock);
9226 	list_for_each_entry(kvm, &vm_list, vm_list)
9227 		kvm_for_each_vcpu(i, vcpu, kvm)
9228 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9229 	atomic_set(&kvm_guest_has_master_clock, 0);
9230 	mutex_unlock(&kvm_lock);
9231 }
9232 
9233 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9234 
9235 /*
9236  * Indirection to move queue_work() out of the tk_core.seq write held
9237  * region to prevent possible deadlocks against time accessors which
9238  * are invoked with work related locks held.
9239  */
9240 static void pvclock_irq_work_fn(struct irq_work *w)
9241 {
9242 	queue_work(system_long_wq, &pvclock_gtod_work);
9243 }
9244 
9245 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9246 
9247 /*
9248  * Notification about pvclock gtod data update.
9249  */
9250 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9251 			       void *priv)
9252 {
9253 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9254 	struct timekeeper *tk = priv;
9255 
9256 	update_pvclock_gtod(tk);
9257 
9258 	/*
9259 	 * Disable master clock if host does not trust, or does not use,
9260 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9261 	 * this is invoked with tk_core.seq write held.
9262 	 */
9263 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9264 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9265 		irq_work_queue(&pvclock_irq_work);
9266 	return 0;
9267 }
9268 
9269 static struct notifier_block pvclock_gtod_notifier = {
9270 	.notifier_call = pvclock_gtod_notify,
9271 };
9272 #endif
9273 
9274 int kvm_arch_init(void *opaque)
9275 {
9276 	struct kvm_x86_init_ops *ops = opaque;
9277 	u64 host_pat;
9278 	int r;
9279 
9280 	if (kvm_x86_ops.hardware_enable) {
9281 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9282 		return -EEXIST;
9283 	}
9284 
9285 	if (!ops->cpu_has_kvm_support()) {
9286 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9287 				   ops->runtime_ops->name);
9288 		return -EOPNOTSUPP;
9289 	}
9290 	if (ops->disabled_by_bios()) {
9291 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9292 				   ops->runtime_ops->name);
9293 		return -EOPNOTSUPP;
9294 	}
9295 
9296 	/*
9297 	 * KVM explicitly assumes that the guest has an FPU and
9298 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9299 	 * vCPU's FPU state as a fxregs_state struct.
9300 	 */
9301 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9302 		printk(KERN_ERR "kvm: inadequate fpu\n");
9303 		return -EOPNOTSUPP;
9304 	}
9305 
9306 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9307 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9308 		return -EOPNOTSUPP;
9309 	}
9310 
9311 	/*
9312 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9313 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9314 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9315 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9316 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9317 	 */
9318 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9319 	    (host_pat & GENMASK(2, 0)) != 6) {
9320 		pr_err("kvm: host PAT[0] is not WB\n");
9321 		return -EIO;
9322 	}
9323 
9324 	x86_emulator_cache = kvm_alloc_emulator_cache();
9325 	if (!x86_emulator_cache) {
9326 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9327 		return -ENOMEM;
9328 	}
9329 
9330 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9331 	if (!user_return_msrs) {
9332 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9333 		r = -ENOMEM;
9334 		goto out_free_x86_emulator_cache;
9335 	}
9336 	kvm_nr_uret_msrs = 0;
9337 
9338 	r = kvm_mmu_vendor_module_init();
9339 	if (r)
9340 		goto out_free_percpu;
9341 
9342 	kvm_timer_init();
9343 
9344 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9345 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9346 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9347 	}
9348 
9349 	if (pi_inject_timer == -1)
9350 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9351 #ifdef CONFIG_X86_64
9352 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9353 
9354 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9355 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9356 #endif
9357 
9358 	return 0;
9359 
9360 out_free_percpu:
9361 	free_percpu(user_return_msrs);
9362 out_free_x86_emulator_cache:
9363 	kmem_cache_destroy(x86_emulator_cache);
9364 	return r;
9365 }
9366 
9367 void kvm_arch_exit(void)
9368 {
9369 #ifdef CONFIG_X86_64
9370 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9371 		clear_hv_tscchange_cb();
9372 #endif
9373 	kvm_lapic_exit();
9374 
9375 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9376 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9377 					    CPUFREQ_TRANSITION_NOTIFIER);
9378 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9379 	}
9380 #ifdef CONFIG_X86_64
9381 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9382 	irq_work_sync(&pvclock_irq_work);
9383 	cancel_work_sync(&pvclock_gtod_work);
9384 #endif
9385 	kvm_x86_ops.hardware_enable = NULL;
9386 	kvm_mmu_vendor_module_exit();
9387 	free_percpu(user_return_msrs);
9388 	kmem_cache_destroy(x86_emulator_cache);
9389 #ifdef CONFIG_KVM_XEN
9390 	static_key_deferred_flush(&kvm_xen_enabled);
9391 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9392 #endif
9393 }
9394 
9395 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9396 {
9397 	/*
9398 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9399 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9400 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9401 	 * managed by userspace, in which case userspace is responsible for
9402 	 * handling wake events.
9403 	 */
9404 	++vcpu->stat.halt_exits;
9405 	if (lapic_in_kernel(vcpu)) {
9406 		vcpu->arch.mp_state = state;
9407 		return 1;
9408 	} else {
9409 		vcpu->run->exit_reason = reason;
9410 		return 0;
9411 	}
9412 }
9413 
9414 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9415 {
9416 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9417 }
9418 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9419 
9420 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9421 {
9422 	int ret = kvm_skip_emulated_instruction(vcpu);
9423 	/*
9424 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9425 	 * KVM_EXIT_DEBUG here.
9426 	 */
9427 	return kvm_emulate_halt_noskip(vcpu) && ret;
9428 }
9429 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9430 
9431 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9432 {
9433 	int ret = kvm_skip_emulated_instruction(vcpu);
9434 
9435 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9436 					KVM_EXIT_AP_RESET_HOLD) && ret;
9437 }
9438 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9439 
9440 #ifdef CONFIG_X86_64
9441 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9442 			        unsigned long clock_type)
9443 {
9444 	struct kvm_clock_pairing clock_pairing;
9445 	struct timespec64 ts;
9446 	u64 cycle;
9447 	int ret;
9448 
9449 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9450 		return -KVM_EOPNOTSUPP;
9451 
9452 	/*
9453 	 * When tsc is in permanent catchup mode guests won't be able to use
9454 	 * pvclock_read_retry loop to get consistent view of pvclock
9455 	 */
9456 	if (vcpu->arch.tsc_always_catchup)
9457 		return -KVM_EOPNOTSUPP;
9458 
9459 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9460 		return -KVM_EOPNOTSUPP;
9461 
9462 	clock_pairing.sec = ts.tv_sec;
9463 	clock_pairing.nsec = ts.tv_nsec;
9464 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9465 	clock_pairing.flags = 0;
9466 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9467 
9468 	ret = 0;
9469 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9470 			    sizeof(struct kvm_clock_pairing)))
9471 		ret = -KVM_EFAULT;
9472 
9473 	return ret;
9474 }
9475 #endif
9476 
9477 /*
9478  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9479  *
9480  * @apicid - apicid of vcpu to be kicked.
9481  */
9482 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9483 {
9484 	/*
9485 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9486 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9487 	 */
9488 	struct kvm_lapic_irq lapic_irq = {
9489 		.delivery_mode = APIC_DM_REMRD,
9490 		.dest_mode = APIC_DEST_PHYSICAL,
9491 		.shorthand = APIC_DEST_NOSHORT,
9492 		.dest_id = apicid,
9493 	};
9494 
9495 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9496 }
9497 
9498 bool kvm_apicv_activated(struct kvm *kvm)
9499 {
9500 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9501 }
9502 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9503 
9504 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9505 {
9506 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9507 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9508 
9509 	return (vm_reasons | vcpu_reasons) == 0;
9510 }
9511 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9512 
9513 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9514 				       enum kvm_apicv_inhibit reason, bool set)
9515 {
9516 	if (set)
9517 		__set_bit(reason, inhibits);
9518 	else
9519 		__clear_bit(reason, inhibits);
9520 
9521 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9522 }
9523 
9524 static void kvm_apicv_init(struct kvm *kvm)
9525 {
9526 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9527 
9528 	init_rwsem(&kvm->arch.apicv_update_lock);
9529 
9530 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9531 
9532 	if (!enable_apicv)
9533 		set_or_clear_apicv_inhibit(inhibits,
9534 					   APICV_INHIBIT_REASON_DISABLE, true);
9535 }
9536 
9537 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9538 {
9539 	struct kvm_vcpu *target = NULL;
9540 	struct kvm_apic_map *map;
9541 
9542 	vcpu->stat.directed_yield_attempted++;
9543 
9544 	if (single_task_running())
9545 		goto no_yield;
9546 
9547 	rcu_read_lock();
9548 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9549 
9550 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9551 		target = map->phys_map[dest_id]->vcpu;
9552 
9553 	rcu_read_unlock();
9554 
9555 	if (!target || !READ_ONCE(target->ready))
9556 		goto no_yield;
9557 
9558 	/* Ignore requests to yield to self */
9559 	if (vcpu == target)
9560 		goto no_yield;
9561 
9562 	if (kvm_vcpu_yield_to(target) <= 0)
9563 		goto no_yield;
9564 
9565 	vcpu->stat.directed_yield_successful++;
9566 
9567 no_yield:
9568 	return;
9569 }
9570 
9571 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9572 {
9573 	u64 ret = vcpu->run->hypercall.ret;
9574 
9575 	if (!is_64_bit_mode(vcpu))
9576 		ret = (u32)ret;
9577 	kvm_rax_write(vcpu, ret);
9578 	++vcpu->stat.hypercalls;
9579 	return kvm_skip_emulated_instruction(vcpu);
9580 }
9581 
9582 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9583 {
9584 	unsigned long nr, a0, a1, a2, a3, ret;
9585 	int op_64_bit;
9586 
9587 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9588 		return kvm_xen_hypercall(vcpu);
9589 
9590 	if (kvm_hv_hypercall_enabled(vcpu))
9591 		return kvm_hv_hypercall(vcpu);
9592 
9593 	nr = kvm_rax_read(vcpu);
9594 	a0 = kvm_rbx_read(vcpu);
9595 	a1 = kvm_rcx_read(vcpu);
9596 	a2 = kvm_rdx_read(vcpu);
9597 	a3 = kvm_rsi_read(vcpu);
9598 
9599 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9600 
9601 	op_64_bit = is_64_bit_hypercall(vcpu);
9602 	if (!op_64_bit) {
9603 		nr &= 0xFFFFFFFF;
9604 		a0 &= 0xFFFFFFFF;
9605 		a1 &= 0xFFFFFFFF;
9606 		a2 &= 0xFFFFFFFF;
9607 		a3 &= 0xFFFFFFFF;
9608 	}
9609 
9610 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9611 		ret = -KVM_EPERM;
9612 		goto out;
9613 	}
9614 
9615 	ret = -KVM_ENOSYS;
9616 
9617 	switch (nr) {
9618 	case KVM_HC_VAPIC_POLL_IRQ:
9619 		ret = 0;
9620 		break;
9621 	case KVM_HC_KICK_CPU:
9622 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9623 			break;
9624 
9625 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9626 		kvm_sched_yield(vcpu, a1);
9627 		ret = 0;
9628 		break;
9629 #ifdef CONFIG_X86_64
9630 	case KVM_HC_CLOCK_PAIRING:
9631 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9632 		break;
9633 #endif
9634 	case KVM_HC_SEND_IPI:
9635 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9636 			break;
9637 
9638 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9639 		break;
9640 	case KVM_HC_SCHED_YIELD:
9641 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9642 			break;
9643 
9644 		kvm_sched_yield(vcpu, a0);
9645 		ret = 0;
9646 		break;
9647 	case KVM_HC_MAP_GPA_RANGE: {
9648 		u64 gpa = a0, npages = a1, attrs = a2;
9649 
9650 		ret = -KVM_ENOSYS;
9651 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9652 			break;
9653 
9654 		if (!PAGE_ALIGNED(gpa) || !npages ||
9655 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9656 			ret = -KVM_EINVAL;
9657 			break;
9658 		}
9659 
9660 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9661 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9662 		vcpu->run->hypercall.args[0]  = gpa;
9663 		vcpu->run->hypercall.args[1]  = npages;
9664 		vcpu->run->hypercall.args[2]  = attrs;
9665 		vcpu->run->hypercall.longmode = op_64_bit;
9666 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9667 		return 0;
9668 	}
9669 	default:
9670 		ret = -KVM_ENOSYS;
9671 		break;
9672 	}
9673 out:
9674 	if (!op_64_bit)
9675 		ret = (u32)ret;
9676 	kvm_rax_write(vcpu, ret);
9677 
9678 	++vcpu->stat.hypercalls;
9679 	return kvm_skip_emulated_instruction(vcpu);
9680 }
9681 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9682 
9683 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9684 {
9685 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9686 	char instruction[3];
9687 	unsigned long rip = kvm_rip_read(vcpu);
9688 
9689 	/*
9690 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9691 	 * the pieces.
9692 	 */
9693 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9694 		ctxt->exception.error_code_valid = false;
9695 		ctxt->exception.vector = UD_VECTOR;
9696 		ctxt->have_exception = true;
9697 		return X86EMUL_PROPAGATE_FAULT;
9698 	}
9699 
9700 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9701 
9702 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9703 		&ctxt->exception);
9704 }
9705 
9706 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9707 {
9708 	return vcpu->run->request_interrupt_window &&
9709 		likely(!pic_in_kernel(vcpu->kvm));
9710 }
9711 
9712 /* Called within kvm->srcu read side.  */
9713 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9714 {
9715 	struct kvm_run *kvm_run = vcpu->run;
9716 
9717 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9718 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9719 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9720 
9721 	kvm_run->ready_for_interrupt_injection =
9722 		pic_in_kernel(vcpu->kvm) ||
9723 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9724 
9725 	if (is_smm(vcpu))
9726 		kvm_run->flags |= KVM_RUN_X86_SMM;
9727 }
9728 
9729 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9730 {
9731 	int max_irr, tpr;
9732 
9733 	if (!kvm_x86_ops.update_cr8_intercept)
9734 		return;
9735 
9736 	if (!lapic_in_kernel(vcpu))
9737 		return;
9738 
9739 	if (vcpu->arch.apic->apicv_active)
9740 		return;
9741 
9742 	if (!vcpu->arch.apic->vapic_addr)
9743 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9744 	else
9745 		max_irr = -1;
9746 
9747 	if (max_irr != -1)
9748 		max_irr >>= 4;
9749 
9750 	tpr = kvm_lapic_get_cr8(vcpu);
9751 
9752 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9753 }
9754 
9755 
9756 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9757 {
9758 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9759 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9760 		return 1;
9761 	}
9762 
9763 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9764 }
9765 
9766 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9767 {
9768 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9769 				vcpu->arch.exception.has_error_code,
9770 				vcpu->arch.exception.error_code,
9771 				vcpu->arch.exception.injected);
9772 
9773 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9774 		vcpu->arch.exception.error_code = false;
9775 	static_call(kvm_x86_inject_exception)(vcpu);
9776 }
9777 
9778 /*
9779  * Check for any event (interrupt or exception) that is ready to be injected,
9780  * and if there is at least one event, inject the event with the highest
9781  * priority.  This handles both "pending" events, i.e. events that have never
9782  * been injected into the guest, and "injected" events, i.e. events that were
9783  * injected as part of a previous VM-Enter, but weren't successfully delivered
9784  * and need to be re-injected.
9785  *
9786  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9787  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9788  * be able to inject exceptions in the "middle" of an instruction, and so must
9789  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9790  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9791  * boundaries is necessary and correct.
9792  *
9793  * For simplicity, KVM uses a single path to inject all events (except events
9794  * that are injected directly from L1 to L2) and doesn't explicitly track
9795  * instruction boundaries for asynchronous events.  However, because VM-Exits
9796  * that can occur during instruction execution typically result in KVM skipping
9797  * the instruction or injecting an exception, e.g. instruction and exception
9798  * intercepts, and because pending exceptions have higher priority than pending
9799  * interrupts, KVM still honors instruction boundaries in most scenarios.
9800  *
9801  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9802  * the instruction or inject an exception, then KVM can incorrecty inject a new
9803  * asynchrounous event if the event became pending after the CPU fetched the
9804  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9805  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9806  * injected on the restarted instruction instead of being deferred until the
9807  * instruction completes.
9808  *
9809  * In practice, this virtualization hole is unlikely to be observed by the
9810  * guest, and even less likely to cause functional problems.  To detect the
9811  * hole, the guest would have to trigger an event on a side effect of an early
9812  * phase of instruction execution, e.g. on the instruction fetch from memory.
9813  * And for it to be a functional problem, the guest would need to depend on the
9814  * ordering between that side effect, the instruction completing, _and_ the
9815  * delivery of the asynchronous event.
9816  */
9817 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9818 				       bool *req_immediate_exit)
9819 {
9820 	bool can_inject;
9821 	int r;
9822 
9823 	/*
9824 	 * Process nested events first, as nested VM-Exit supercedes event
9825 	 * re-injection.  If there's an event queued for re-injection, it will
9826 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9827 	 */
9828 	if (is_guest_mode(vcpu))
9829 		r = kvm_check_nested_events(vcpu);
9830 	else
9831 		r = 0;
9832 
9833 	/*
9834 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9835 	 * to/from L2 is needed, as any event that has already been injected
9836 	 * into L2 needs to complete its lifecycle before injecting a new event.
9837 	 *
9838 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9839 	 * This collision arises if an exception occurred while vectoring the
9840 	 * injected event, KVM intercepted said exception, and KVM ultimately
9841 	 * determined the fault belongs to the guest and queues the exception
9842 	 * for injection back into the guest.
9843 	 *
9844 	 * "Injected" interrupts can also collide with pending exceptions if
9845 	 * userspace ignores the "ready for injection" flag and blindly queues
9846 	 * an interrupt.  In that case, prioritizing the exception is correct,
9847 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9848 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9849 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9850 	 * priority, they're only generated (pended) during instruction
9851 	 * execution, and interrupts are recognized at instruction boundaries.
9852 	 * Thus a pending fault-like exception means the fault occurred on the
9853 	 * *previous* instruction and must be serviced prior to recognizing any
9854 	 * new events in order to fully complete the previous instruction.
9855 	 */
9856 	if (vcpu->arch.exception.injected)
9857 		kvm_inject_exception(vcpu);
9858 	else if (kvm_is_exception_pending(vcpu))
9859 		; /* see above */
9860 	else if (vcpu->arch.nmi_injected)
9861 		static_call(kvm_x86_inject_nmi)(vcpu);
9862 	else if (vcpu->arch.interrupt.injected)
9863 		static_call(kvm_x86_inject_irq)(vcpu, true);
9864 
9865 	/*
9866 	 * Exceptions that morph to VM-Exits are handled above, and pending
9867 	 * exceptions on top of injected exceptions that do not VM-Exit should
9868 	 * either morph to #DF or, sadly, override the injected exception.
9869 	 */
9870 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9871 		     vcpu->arch.exception.pending);
9872 
9873 	/*
9874 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9875 	 * nested VM-Enter or event re-injection so that a different pending
9876 	 * event can be serviced (or if KVM needs to exit to userspace).
9877 	 *
9878 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9879 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9880 	 * there may now be events that can be injected into L1.
9881 	 */
9882 	if (r < 0)
9883 		goto out;
9884 
9885 	/*
9886 	 * A pending exception VM-Exit should either result in nested VM-Exit
9887 	 * or force an immediate re-entry and exit to/from L2, and exception
9888 	 * VM-Exits cannot be injected (flag should _never_ be set).
9889 	 */
9890 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9891 		     vcpu->arch.exception_vmexit.pending);
9892 
9893 	/*
9894 	 * New events, other than exceptions, cannot be injected if KVM needs
9895 	 * to re-inject a previous event.  See above comments on re-injecting
9896 	 * for why pending exceptions get priority.
9897 	 */
9898 	can_inject = !kvm_event_needs_reinjection(vcpu);
9899 
9900 	if (vcpu->arch.exception.pending) {
9901 		/*
9902 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9903 		 * value pushed on the stack.  Trap-like exception and all #DBs
9904 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
9905 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9906 		 *
9907 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9908 		 * describe the behavior of General Detect #DBs, which are
9909 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
9910 		 */
9911 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9912 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9913 					     X86_EFLAGS_RF);
9914 
9915 		if (vcpu->arch.exception.vector == DB_VECTOR) {
9916 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9917 			if (vcpu->arch.dr7 & DR7_GD) {
9918 				vcpu->arch.dr7 &= ~DR7_GD;
9919 				kvm_update_dr7(vcpu);
9920 			}
9921 		}
9922 
9923 		kvm_inject_exception(vcpu);
9924 
9925 		vcpu->arch.exception.pending = false;
9926 		vcpu->arch.exception.injected = true;
9927 
9928 		can_inject = false;
9929 	}
9930 
9931 	/* Don't inject interrupts if the user asked to avoid doing so */
9932 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9933 		return 0;
9934 
9935 	/*
9936 	 * Finally, inject interrupt events.  If an event cannot be injected
9937 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9938 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9939 	 * and can architecturally be injected, but we cannot do it right now:
9940 	 * an interrupt could have arrived just now and we have to inject it
9941 	 * as a vmexit, or there could already an event in the queue, which is
9942 	 * indicated by can_inject.  In that case we request an immediate exit
9943 	 * in order to make progress and get back here for another iteration.
9944 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9945 	 */
9946 #ifdef CONFIG_KVM_SMM
9947 	if (vcpu->arch.smi_pending) {
9948 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9949 		if (r < 0)
9950 			goto out;
9951 		if (r) {
9952 			vcpu->arch.smi_pending = false;
9953 			++vcpu->arch.smi_count;
9954 			enter_smm(vcpu);
9955 			can_inject = false;
9956 		} else
9957 			static_call(kvm_x86_enable_smi_window)(vcpu);
9958 	}
9959 #endif
9960 
9961 	if (vcpu->arch.nmi_pending) {
9962 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9963 		if (r < 0)
9964 			goto out;
9965 		if (r) {
9966 			--vcpu->arch.nmi_pending;
9967 			vcpu->arch.nmi_injected = true;
9968 			static_call(kvm_x86_inject_nmi)(vcpu);
9969 			can_inject = false;
9970 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9971 		}
9972 		if (vcpu->arch.nmi_pending)
9973 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9974 	}
9975 
9976 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9977 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9978 		if (r < 0)
9979 			goto out;
9980 		if (r) {
9981 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9982 			static_call(kvm_x86_inject_irq)(vcpu, false);
9983 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9984 		}
9985 		if (kvm_cpu_has_injectable_intr(vcpu))
9986 			static_call(kvm_x86_enable_irq_window)(vcpu);
9987 	}
9988 
9989 	if (is_guest_mode(vcpu) &&
9990 	    kvm_x86_ops.nested_ops->has_events &&
9991 	    kvm_x86_ops.nested_ops->has_events(vcpu))
9992 		*req_immediate_exit = true;
9993 
9994 	/*
9995 	 * KVM must never queue a new exception while injecting an event; KVM
9996 	 * is done emulating and should only propagate the to-be-injected event
9997 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
9998 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
9999 	 * exception and start the cycle all over.
10000 	 *
10001 	 * Exempt triple faults as they have special handling and won't put the
10002 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10003 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10004 	 * Mode events (see kvm_inject_realmode_interrupt()).
10005 	 */
10006 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10007 		     vcpu->arch.exception_vmexit.pending);
10008 	return 0;
10009 
10010 out:
10011 	if (r == -EBUSY) {
10012 		*req_immediate_exit = true;
10013 		r = 0;
10014 	}
10015 	return r;
10016 }
10017 
10018 static void process_nmi(struct kvm_vcpu *vcpu)
10019 {
10020 	unsigned limit = 2;
10021 
10022 	/*
10023 	 * x86 is limited to one NMI running, and one NMI pending after it.
10024 	 * If an NMI is already in progress, limit further NMIs to just one.
10025 	 * Otherwise, allow two (and we'll inject the first one immediately).
10026 	 */
10027 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10028 		limit = 1;
10029 
10030 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10031 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10032 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10033 }
10034 
10035 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10036 				       unsigned long *vcpu_bitmap)
10037 {
10038 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10039 }
10040 
10041 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10042 {
10043 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10044 }
10045 
10046 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10047 {
10048 	struct kvm_lapic *apic = vcpu->arch.apic;
10049 	bool activate;
10050 
10051 	if (!lapic_in_kernel(vcpu))
10052 		return;
10053 
10054 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10055 	preempt_disable();
10056 
10057 	/* Do not activate APICV when APIC is disabled */
10058 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10059 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10060 
10061 	if (apic->apicv_active == activate)
10062 		goto out;
10063 
10064 	apic->apicv_active = activate;
10065 	kvm_apic_update_apicv(vcpu);
10066 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10067 
10068 	/*
10069 	 * When APICv gets disabled, we may still have injected interrupts
10070 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10071 	 * still active when the interrupt got accepted. Make sure
10072 	 * kvm_check_and_inject_events() is called to check for that.
10073 	 */
10074 	if (!apic->apicv_active)
10075 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10076 
10077 out:
10078 	preempt_enable();
10079 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10080 }
10081 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10082 
10083 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10084 				      enum kvm_apicv_inhibit reason, bool set)
10085 {
10086 	unsigned long old, new;
10087 
10088 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10089 
10090 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10091 		return;
10092 
10093 	old = new = kvm->arch.apicv_inhibit_reasons;
10094 
10095 	set_or_clear_apicv_inhibit(&new, reason, set);
10096 
10097 	if (!!old != !!new) {
10098 		/*
10099 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10100 		 * false positives in the sanity check WARN in svm_vcpu_run().
10101 		 * This task will wait for all vCPUs to ack the kick IRQ before
10102 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10103 		 * block on acquiring apicv_update_lock so that vCPUs can't
10104 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10105 		 *
10106 		 * Note, holding apicv_update_lock and taking it in the read
10107 		 * side (handling the request) also prevents other vCPUs from
10108 		 * servicing the request with a stale apicv_inhibit_reasons.
10109 		 */
10110 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10111 		kvm->arch.apicv_inhibit_reasons = new;
10112 		if (new) {
10113 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10114 			int idx = srcu_read_lock(&kvm->srcu);
10115 
10116 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10117 			srcu_read_unlock(&kvm->srcu, idx);
10118 		}
10119 	} else {
10120 		kvm->arch.apicv_inhibit_reasons = new;
10121 	}
10122 }
10123 
10124 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10125 				    enum kvm_apicv_inhibit reason, bool set)
10126 {
10127 	if (!enable_apicv)
10128 		return;
10129 
10130 	down_write(&kvm->arch.apicv_update_lock);
10131 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10132 	up_write(&kvm->arch.apicv_update_lock);
10133 }
10134 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10135 
10136 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10137 {
10138 	if (!kvm_apic_present(vcpu))
10139 		return;
10140 
10141 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10142 
10143 	if (irqchip_split(vcpu->kvm))
10144 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10145 	else {
10146 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10147 		if (ioapic_in_kernel(vcpu->kvm))
10148 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10149 	}
10150 
10151 	if (is_guest_mode(vcpu))
10152 		vcpu->arch.load_eoi_exitmap_pending = true;
10153 	else
10154 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10155 }
10156 
10157 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10158 {
10159 	u64 eoi_exit_bitmap[4];
10160 
10161 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10162 		return;
10163 
10164 	if (to_hv_vcpu(vcpu)) {
10165 		bitmap_or((ulong *)eoi_exit_bitmap,
10166 			  vcpu->arch.ioapic_handled_vectors,
10167 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10168 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10169 		return;
10170 	}
10171 
10172 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10173 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10174 }
10175 
10176 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10177 					    unsigned long start, unsigned long end)
10178 {
10179 	unsigned long apic_address;
10180 
10181 	/*
10182 	 * The physical address of apic access page is stored in the VMCS.
10183 	 * Update it when it becomes invalid.
10184 	 */
10185 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10186 	if (start <= apic_address && apic_address < end)
10187 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10188 }
10189 
10190 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10191 {
10192 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10193 }
10194 
10195 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10196 {
10197 	if (!lapic_in_kernel(vcpu))
10198 		return;
10199 
10200 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10201 }
10202 
10203 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10204 {
10205 	smp_send_reschedule(vcpu->cpu);
10206 }
10207 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10208 
10209 /*
10210  * Called within kvm->srcu read side.
10211  * Returns 1 to let vcpu_run() continue the guest execution loop without
10212  * exiting to the userspace.  Otherwise, the value will be returned to the
10213  * userspace.
10214  */
10215 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10216 {
10217 	int r;
10218 	bool req_int_win =
10219 		dm_request_for_irq_injection(vcpu) &&
10220 		kvm_cpu_accept_dm_intr(vcpu);
10221 	fastpath_t exit_fastpath;
10222 
10223 	bool req_immediate_exit = false;
10224 
10225 	if (kvm_request_pending(vcpu)) {
10226 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10227 			r = -EIO;
10228 			goto out;
10229 		}
10230 
10231 		if (kvm_dirty_ring_check_request(vcpu)) {
10232 			r = 0;
10233 			goto out;
10234 		}
10235 
10236 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10237 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10238 				r = 0;
10239 				goto out;
10240 			}
10241 		}
10242 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10243 			kvm_mmu_free_obsolete_roots(vcpu);
10244 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10245 			__kvm_migrate_timers(vcpu);
10246 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10247 			kvm_update_masterclock(vcpu->kvm);
10248 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10249 			kvm_gen_kvmclock_update(vcpu);
10250 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10251 			r = kvm_guest_time_update(vcpu);
10252 			if (unlikely(r))
10253 				goto out;
10254 		}
10255 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10256 			kvm_mmu_sync_roots(vcpu);
10257 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10258 			kvm_mmu_load_pgd(vcpu);
10259 
10260 		/*
10261 		 * Note, the order matters here, as flushing "all" TLB entries
10262 		 * also flushes the "current" TLB entries, i.e. servicing the
10263 		 * flush "all" will clear any request to flush "current".
10264 		 */
10265 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10266 			kvm_vcpu_flush_tlb_all(vcpu);
10267 
10268 		kvm_service_local_tlb_flush_requests(vcpu);
10269 
10270 		/*
10271 		 * Fall back to a "full" guest flush if Hyper-V's precise
10272 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10273 		 * the flushes are considered "remote" and not "local" because
10274 		 * the requests can be initiated from other vCPUs.
10275 		 */
10276 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10277 		    kvm_hv_vcpu_flush_tlb(vcpu))
10278 			kvm_vcpu_flush_tlb_guest(vcpu);
10279 
10280 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10281 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10282 			r = 0;
10283 			goto out;
10284 		}
10285 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10286 			if (is_guest_mode(vcpu))
10287 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10288 
10289 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10290 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10291 				vcpu->mmio_needed = 0;
10292 				r = 0;
10293 				goto out;
10294 			}
10295 		}
10296 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10297 			/* Page is swapped out. Do synthetic halt */
10298 			vcpu->arch.apf.halted = true;
10299 			r = 1;
10300 			goto out;
10301 		}
10302 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10303 			record_steal_time(vcpu);
10304 #ifdef CONFIG_KVM_SMM
10305 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10306 			process_smi(vcpu);
10307 #endif
10308 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10309 			process_nmi(vcpu);
10310 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10311 			kvm_pmu_handle_event(vcpu);
10312 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10313 			kvm_pmu_deliver_pmi(vcpu);
10314 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10315 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10316 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10317 				     vcpu->arch.ioapic_handled_vectors)) {
10318 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10319 				vcpu->run->eoi.vector =
10320 						vcpu->arch.pending_ioapic_eoi;
10321 				r = 0;
10322 				goto out;
10323 			}
10324 		}
10325 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10326 			vcpu_scan_ioapic(vcpu);
10327 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10328 			vcpu_load_eoi_exitmap(vcpu);
10329 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10330 			kvm_vcpu_reload_apic_access_page(vcpu);
10331 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10332 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10333 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10334 			vcpu->run->system_event.ndata = 0;
10335 			r = 0;
10336 			goto out;
10337 		}
10338 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10339 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10340 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10341 			vcpu->run->system_event.ndata = 0;
10342 			r = 0;
10343 			goto out;
10344 		}
10345 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10346 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10347 
10348 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10349 			vcpu->run->hyperv = hv_vcpu->exit;
10350 			r = 0;
10351 			goto out;
10352 		}
10353 
10354 		/*
10355 		 * KVM_REQ_HV_STIMER has to be processed after
10356 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10357 		 * depend on the guest clock being up-to-date
10358 		 */
10359 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10360 			kvm_hv_process_stimers(vcpu);
10361 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10362 			kvm_vcpu_update_apicv(vcpu);
10363 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10364 			kvm_check_async_pf_completion(vcpu);
10365 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10366 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10367 
10368 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10369 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10370 	}
10371 
10372 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10373 	    kvm_xen_has_interrupt(vcpu)) {
10374 		++vcpu->stat.req_event;
10375 		r = kvm_apic_accept_events(vcpu);
10376 		if (r < 0) {
10377 			r = 0;
10378 			goto out;
10379 		}
10380 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10381 			r = 1;
10382 			goto out;
10383 		}
10384 
10385 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10386 		if (r < 0) {
10387 			r = 0;
10388 			goto out;
10389 		}
10390 		if (req_int_win)
10391 			static_call(kvm_x86_enable_irq_window)(vcpu);
10392 
10393 		if (kvm_lapic_enabled(vcpu)) {
10394 			update_cr8_intercept(vcpu);
10395 			kvm_lapic_sync_to_vapic(vcpu);
10396 		}
10397 	}
10398 
10399 	r = kvm_mmu_reload(vcpu);
10400 	if (unlikely(r)) {
10401 		goto cancel_injection;
10402 	}
10403 
10404 	preempt_disable();
10405 
10406 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10407 
10408 	/*
10409 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10410 	 * IPI are then delayed after guest entry, which ensures that they
10411 	 * result in virtual interrupt delivery.
10412 	 */
10413 	local_irq_disable();
10414 
10415 	/* Store vcpu->apicv_active before vcpu->mode.  */
10416 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10417 
10418 	kvm_vcpu_srcu_read_unlock(vcpu);
10419 
10420 	/*
10421 	 * 1) We should set ->mode before checking ->requests.  Please see
10422 	 * the comment in kvm_vcpu_exiting_guest_mode().
10423 	 *
10424 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10425 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10426 	 * (see vmx_deliver_posted_interrupt).
10427 	 *
10428 	 * 3) This also orders the write to mode from any reads to the page
10429 	 * tables done while the VCPU is running.  Please see the comment
10430 	 * in kvm_flush_remote_tlbs.
10431 	 */
10432 	smp_mb__after_srcu_read_unlock();
10433 
10434 	/*
10435 	 * Process pending posted interrupts to handle the case where the
10436 	 * notification IRQ arrived in the host, or was never sent (because the
10437 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10438 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10439 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10440 	 */
10441 	if (kvm_lapic_enabled(vcpu))
10442 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10443 
10444 	if (kvm_vcpu_exit_request(vcpu)) {
10445 		vcpu->mode = OUTSIDE_GUEST_MODE;
10446 		smp_wmb();
10447 		local_irq_enable();
10448 		preempt_enable();
10449 		kvm_vcpu_srcu_read_lock(vcpu);
10450 		r = 1;
10451 		goto cancel_injection;
10452 	}
10453 
10454 	if (req_immediate_exit) {
10455 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10456 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10457 	}
10458 
10459 	fpregs_assert_state_consistent();
10460 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10461 		switch_fpu_return();
10462 
10463 	if (vcpu->arch.guest_fpu.xfd_err)
10464 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10465 
10466 	if (unlikely(vcpu->arch.switch_db_regs)) {
10467 		set_debugreg(0, 7);
10468 		set_debugreg(vcpu->arch.eff_db[0], 0);
10469 		set_debugreg(vcpu->arch.eff_db[1], 1);
10470 		set_debugreg(vcpu->arch.eff_db[2], 2);
10471 		set_debugreg(vcpu->arch.eff_db[3], 3);
10472 	} else if (unlikely(hw_breakpoint_active())) {
10473 		set_debugreg(0, 7);
10474 	}
10475 
10476 	guest_timing_enter_irqoff();
10477 
10478 	for (;;) {
10479 		/*
10480 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10481 		 * update must kick and wait for all vCPUs before toggling the
10482 		 * per-VM state, and responsing vCPUs must wait for the update
10483 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10484 		 */
10485 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10486 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10487 
10488 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10489 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10490 			break;
10491 
10492 		if (kvm_lapic_enabled(vcpu))
10493 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10494 
10495 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10496 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10497 			break;
10498 		}
10499 	}
10500 
10501 	/*
10502 	 * Do this here before restoring debug registers on the host.  And
10503 	 * since we do this before handling the vmexit, a DR access vmexit
10504 	 * can (a) read the correct value of the debug registers, (b) set
10505 	 * KVM_DEBUGREG_WONT_EXIT again.
10506 	 */
10507 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10508 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10509 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10510 		kvm_update_dr0123(vcpu);
10511 		kvm_update_dr7(vcpu);
10512 	}
10513 
10514 	/*
10515 	 * If the guest has used debug registers, at least dr7
10516 	 * will be disabled while returning to the host.
10517 	 * If we don't have active breakpoints in the host, we don't
10518 	 * care about the messed up debug address registers. But if
10519 	 * we have some of them active, restore the old state.
10520 	 */
10521 	if (hw_breakpoint_active())
10522 		hw_breakpoint_restore();
10523 
10524 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10525 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10526 
10527 	vcpu->mode = OUTSIDE_GUEST_MODE;
10528 	smp_wmb();
10529 
10530 	/*
10531 	 * Sync xfd before calling handle_exit_irqoff() which may
10532 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10533 	 * in #NM irqoff handler).
10534 	 */
10535 	if (vcpu->arch.xfd_no_write_intercept)
10536 		fpu_sync_guest_vmexit_xfd_state();
10537 
10538 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10539 
10540 	if (vcpu->arch.guest_fpu.xfd_err)
10541 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10542 
10543 	/*
10544 	 * Consume any pending interrupts, including the possible source of
10545 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10546 	 * An instruction is required after local_irq_enable() to fully unblock
10547 	 * interrupts on processors that implement an interrupt shadow, the
10548 	 * stat.exits increment will do nicely.
10549 	 */
10550 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10551 	local_irq_enable();
10552 	++vcpu->stat.exits;
10553 	local_irq_disable();
10554 	kvm_after_interrupt(vcpu);
10555 
10556 	/*
10557 	 * Wait until after servicing IRQs to account guest time so that any
10558 	 * ticks that occurred while running the guest are properly accounted
10559 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10560 	 * of accounting via context tracking, but the loss of accuracy is
10561 	 * acceptable for all known use cases.
10562 	 */
10563 	guest_timing_exit_irqoff();
10564 
10565 	local_irq_enable();
10566 	preempt_enable();
10567 
10568 	kvm_vcpu_srcu_read_lock(vcpu);
10569 
10570 	/*
10571 	 * Profile KVM exit RIPs:
10572 	 */
10573 	if (unlikely(prof_on == KVM_PROFILING)) {
10574 		unsigned long rip = kvm_rip_read(vcpu);
10575 		profile_hit(KVM_PROFILING, (void *)rip);
10576 	}
10577 
10578 	if (unlikely(vcpu->arch.tsc_always_catchup))
10579 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10580 
10581 	if (vcpu->arch.apic_attention)
10582 		kvm_lapic_sync_from_vapic(vcpu);
10583 
10584 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10585 	return r;
10586 
10587 cancel_injection:
10588 	if (req_immediate_exit)
10589 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10590 	static_call(kvm_x86_cancel_injection)(vcpu);
10591 	if (unlikely(vcpu->arch.apic_attention))
10592 		kvm_lapic_sync_from_vapic(vcpu);
10593 out:
10594 	return r;
10595 }
10596 
10597 /* Called within kvm->srcu read side.  */
10598 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10599 {
10600 	bool hv_timer;
10601 
10602 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10603 		/*
10604 		 * Switch to the software timer before halt-polling/blocking as
10605 		 * the guest's timer may be a break event for the vCPU, and the
10606 		 * hypervisor timer runs only when the CPU is in guest mode.
10607 		 * Switch before halt-polling so that KVM recognizes an expired
10608 		 * timer before blocking.
10609 		 */
10610 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10611 		if (hv_timer)
10612 			kvm_lapic_switch_to_sw_timer(vcpu);
10613 
10614 		kvm_vcpu_srcu_read_unlock(vcpu);
10615 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10616 			kvm_vcpu_halt(vcpu);
10617 		else
10618 			kvm_vcpu_block(vcpu);
10619 		kvm_vcpu_srcu_read_lock(vcpu);
10620 
10621 		if (hv_timer)
10622 			kvm_lapic_switch_to_hv_timer(vcpu);
10623 
10624 		/*
10625 		 * If the vCPU is not runnable, a signal or another host event
10626 		 * of some kind is pending; service it without changing the
10627 		 * vCPU's activity state.
10628 		 */
10629 		if (!kvm_arch_vcpu_runnable(vcpu))
10630 			return 1;
10631 	}
10632 
10633 	/*
10634 	 * Evaluate nested events before exiting the halted state.  This allows
10635 	 * the halt state to be recorded properly in the VMCS12's activity
10636 	 * state field (AMD does not have a similar field and a VM-Exit always
10637 	 * causes a spurious wakeup from HLT).
10638 	 */
10639 	if (is_guest_mode(vcpu)) {
10640 		if (kvm_check_nested_events(vcpu) < 0)
10641 			return 0;
10642 	}
10643 
10644 	if (kvm_apic_accept_events(vcpu) < 0)
10645 		return 0;
10646 	switch(vcpu->arch.mp_state) {
10647 	case KVM_MP_STATE_HALTED:
10648 	case KVM_MP_STATE_AP_RESET_HOLD:
10649 		vcpu->arch.pv.pv_unhalted = false;
10650 		vcpu->arch.mp_state =
10651 			KVM_MP_STATE_RUNNABLE;
10652 		fallthrough;
10653 	case KVM_MP_STATE_RUNNABLE:
10654 		vcpu->arch.apf.halted = false;
10655 		break;
10656 	case KVM_MP_STATE_INIT_RECEIVED:
10657 		break;
10658 	default:
10659 		WARN_ON_ONCE(1);
10660 		break;
10661 	}
10662 	return 1;
10663 }
10664 
10665 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10666 {
10667 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10668 		!vcpu->arch.apf.halted);
10669 }
10670 
10671 /* Called within kvm->srcu read side.  */
10672 static int vcpu_run(struct kvm_vcpu *vcpu)
10673 {
10674 	int r;
10675 
10676 	vcpu->arch.l1tf_flush_l1d = true;
10677 
10678 	for (;;) {
10679 		/*
10680 		 * If another guest vCPU requests a PV TLB flush in the middle
10681 		 * of instruction emulation, the rest of the emulation could
10682 		 * use a stale page translation. Assume that any code after
10683 		 * this point can start executing an instruction.
10684 		 */
10685 		vcpu->arch.at_instruction_boundary = false;
10686 		if (kvm_vcpu_running(vcpu)) {
10687 			r = vcpu_enter_guest(vcpu);
10688 		} else {
10689 			r = vcpu_block(vcpu);
10690 		}
10691 
10692 		if (r <= 0)
10693 			break;
10694 
10695 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10696 		if (kvm_xen_has_pending_events(vcpu))
10697 			kvm_xen_inject_pending_events(vcpu);
10698 
10699 		if (kvm_cpu_has_pending_timer(vcpu))
10700 			kvm_inject_pending_timer_irqs(vcpu);
10701 
10702 		if (dm_request_for_irq_injection(vcpu) &&
10703 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10704 			r = 0;
10705 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10706 			++vcpu->stat.request_irq_exits;
10707 			break;
10708 		}
10709 
10710 		if (__xfer_to_guest_mode_work_pending()) {
10711 			kvm_vcpu_srcu_read_unlock(vcpu);
10712 			r = xfer_to_guest_mode_handle_work(vcpu);
10713 			kvm_vcpu_srcu_read_lock(vcpu);
10714 			if (r)
10715 				return r;
10716 		}
10717 	}
10718 
10719 	return r;
10720 }
10721 
10722 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10723 {
10724 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10725 }
10726 
10727 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10728 {
10729 	BUG_ON(!vcpu->arch.pio.count);
10730 
10731 	return complete_emulated_io(vcpu);
10732 }
10733 
10734 /*
10735  * Implements the following, as a state machine:
10736  *
10737  * read:
10738  *   for each fragment
10739  *     for each mmio piece in the fragment
10740  *       write gpa, len
10741  *       exit
10742  *       copy data
10743  *   execute insn
10744  *
10745  * write:
10746  *   for each fragment
10747  *     for each mmio piece in the fragment
10748  *       write gpa, len
10749  *       copy data
10750  *       exit
10751  */
10752 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10753 {
10754 	struct kvm_run *run = vcpu->run;
10755 	struct kvm_mmio_fragment *frag;
10756 	unsigned len;
10757 
10758 	BUG_ON(!vcpu->mmio_needed);
10759 
10760 	/* Complete previous fragment */
10761 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10762 	len = min(8u, frag->len);
10763 	if (!vcpu->mmio_is_write)
10764 		memcpy(frag->data, run->mmio.data, len);
10765 
10766 	if (frag->len <= 8) {
10767 		/* Switch to the next fragment. */
10768 		frag++;
10769 		vcpu->mmio_cur_fragment++;
10770 	} else {
10771 		/* Go forward to the next mmio piece. */
10772 		frag->data += len;
10773 		frag->gpa += len;
10774 		frag->len -= len;
10775 	}
10776 
10777 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10778 		vcpu->mmio_needed = 0;
10779 
10780 		/* FIXME: return into emulator if single-stepping.  */
10781 		if (vcpu->mmio_is_write)
10782 			return 1;
10783 		vcpu->mmio_read_completed = 1;
10784 		return complete_emulated_io(vcpu);
10785 	}
10786 
10787 	run->exit_reason = KVM_EXIT_MMIO;
10788 	run->mmio.phys_addr = frag->gpa;
10789 	if (vcpu->mmio_is_write)
10790 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10791 	run->mmio.len = min(8u, frag->len);
10792 	run->mmio.is_write = vcpu->mmio_is_write;
10793 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10794 	return 0;
10795 }
10796 
10797 /* Swap (qemu) user FPU context for the guest FPU context. */
10798 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10799 {
10800 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10801 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10802 	trace_kvm_fpu(1);
10803 }
10804 
10805 /* When vcpu_run ends, restore user space FPU context. */
10806 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10807 {
10808 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10809 	++vcpu->stat.fpu_reload;
10810 	trace_kvm_fpu(0);
10811 }
10812 
10813 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10814 {
10815 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
10816 	struct kvm_run *kvm_run = vcpu->run;
10817 	int r;
10818 
10819 	vcpu_load(vcpu);
10820 	kvm_sigset_activate(vcpu);
10821 	kvm_run->flags = 0;
10822 	kvm_load_guest_fpu(vcpu);
10823 
10824 	kvm_vcpu_srcu_read_lock(vcpu);
10825 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10826 		if (kvm_run->immediate_exit) {
10827 			r = -EINTR;
10828 			goto out;
10829 		}
10830 		/*
10831 		 * It should be impossible for the hypervisor timer to be in
10832 		 * use before KVM has ever run the vCPU.
10833 		 */
10834 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10835 
10836 		kvm_vcpu_srcu_read_unlock(vcpu);
10837 		kvm_vcpu_block(vcpu);
10838 		kvm_vcpu_srcu_read_lock(vcpu);
10839 
10840 		if (kvm_apic_accept_events(vcpu) < 0) {
10841 			r = 0;
10842 			goto out;
10843 		}
10844 		r = -EAGAIN;
10845 		if (signal_pending(current)) {
10846 			r = -EINTR;
10847 			kvm_run->exit_reason = KVM_EXIT_INTR;
10848 			++vcpu->stat.signal_exits;
10849 		}
10850 		goto out;
10851 	}
10852 
10853 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10854 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10855 		r = -EINVAL;
10856 		goto out;
10857 	}
10858 
10859 	if (kvm_run->kvm_dirty_regs) {
10860 		r = sync_regs(vcpu);
10861 		if (r != 0)
10862 			goto out;
10863 	}
10864 
10865 	/* re-sync apic's tpr */
10866 	if (!lapic_in_kernel(vcpu)) {
10867 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10868 			r = -EINVAL;
10869 			goto out;
10870 		}
10871 	}
10872 
10873 	/*
10874 	 * If userspace set a pending exception and L2 is active, convert it to
10875 	 * a pending VM-Exit if L1 wants to intercept the exception.
10876 	 */
10877 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
10878 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
10879 							ex->error_code)) {
10880 		kvm_queue_exception_vmexit(vcpu, ex->vector,
10881 					   ex->has_error_code, ex->error_code,
10882 					   ex->has_payload, ex->payload);
10883 		ex->injected = false;
10884 		ex->pending = false;
10885 	}
10886 	vcpu->arch.exception_from_userspace = false;
10887 
10888 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10889 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10890 		vcpu->arch.complete_userspace_io = NULL;
10891 		r = cui(vcpu);
10892 		if (r <= 0)
10893 			goto out;
10894 	} else {
10895 		WARN_ON_ONCE(vcpu->arch.pio.count);
10896 		WARN_ON_ONCE(vcpu->mmio_needed);
10897 	}
10898 
10899 	if (kvm_run->immediate_exit) {
10900 		r = -EINTR;
10901 		goto out;
10902 	}
10903 
10904 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10905 	if (r <= 0)
10906 		goto out;
10907 
10908 	r = vcpu_run(vcpu);
10909 
10910 out:
10911 	kvm_put_guest_fpu(vcpu);
10912 	if (kvm_run->kvm_valid_regs)
10913 		store_regs(vcpu);
10914 	post_kvm_run_save(vcpu);
10915 	kvm_vcpu_srcu_read_unlock(vcpu);
10916 
10917 	kvm_sigset_deactivate(vcpu);
10918 	vcpu_put(vcpu);
10919 	return r;
10920 }
10921 
10922 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10923 {
10924 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10925 		/*
10926 		 * We are here if userspace calls get_regs() in the middle of
10927 		 * instruction emulation. Registers state needs to be copied
10928 		 * back from emulation context to vcpu. Userspace shouldn't do
10929 		 * that usually, but some bad designed PV devices (vmware
10930 		 * backdoor interface) need this to work
10931 		 */
10932 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10933 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10934 	}
10935 	regs->rax = kvm_rax_read(vcpu);
10936 	regs->rbx = kvm_rbx_read(vcpu);
10937 	regs->rcx = kvm_rcx_read(vcpu);
10938 	regs->rdx = kvm_rdx_read(vcpu);
10939 	regs->rsi = kvm_rsi_read(vcpu);
10940 	regs->rdi = kvm_rdi_read(vcpu);
10941 	regs->rsp = kvm_rsp_read(vcpu);
10942 	regs->rbp = kvm_rbp_read(vcpu);
10943 #ifdef CONFIG_X86_64
10944 	regs->r8 = kvm_r8_read(vcpu);
10945 	regs->r9 = kvm_r9_read(vcpu);
10946 	regs->r10 = kvm_r10_read(vcpu);
10947 	regs->r11 = kvm_r11_read(vcpu);
10948 	regs->r12 = kvm_r12_read(vcpu);
10949 	regs->r13 = kvm_r13_read(vcpu);
10950 	regs->r14 = kvm_r14_read(vcpu);
10951 	regs->r15 = kvm_r15_read(vcpu);
10952 #endif
10953 
10954 	regs->rip = kvm_rip_read(vcpu);
10955 	regs->rflags = kvm_get_rflags(vcpu);
10956 }
10957 
10958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10959 {
10960 	vcpu_load(vcpu);
10961 	__get_regs(vcpu, regs);
10962 	vcpu_put(vcpu);
10963 	return 0;
10964 }
10965 
10966 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10967 {
10968 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10969 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10970 
10971 	kvm_rax_write(vcpu, regs->rax);
10972 	kvm_rbx_write(vcpu, regs->rbx);
10973 	kvm_rcx_write(vcpu, regs->rcx);
10974 	kvm_rdx_write(vcpu, regs->rdx);
10975 	kvm_rsi_write(vcpu, regs->rsi);
10976 	kvm_rdi_write(vcpu, regs->rdi);
10977 	kvm_rsp_write(vcpu, regs->rsp);
10978 	kvm_rbp_write(vcpu, regs->rbp);
10979 #ifdef CONFIG_X86_64
10980 	kvm_r8_write(vcpu, regs->r8);
10981 	kvm_r9_write(vcpu, regs->r9);
10982 	kvm_r10_write(vcpu, regs->r10);
10983 	kvm_r11_write(vcpu, regs->r11);
10984 	kvm_r12_write(vcpu, regs->r12);
10985 	kvm_r13_write(vcpu, regs->r13);
10986 	kvm_r14_write(vcpu, regs->r14);
10987 	kvm_r15_write(vcpu, regs->r15);
10988 #endif
10989 
10990 	kvm_rip_write(vcpu, regs->rip);
10991 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10992 
10993 	vcpu->arch.exception.pending = false;
10994 	vcpu->arch.exception_vmexit.pending = false;
10995 
10996 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10997 }
10998 
10999 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11000 {
11001 	vcpu_load(vcpu);
11002 	__set_regs(vcpu, regs);
11003 	vcpu_put(vcpu);
11004 	return 0;
11005 }
11006 
11007 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11008 {
11009 	struct desc_ptr dt;
11010 
11011 	if (vcpu->arch.guest_state_protected)
11012 		goto skip_protected_regs;
11013 
11014 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11015 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11016 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11017 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11018 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11019 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11020 
11021 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11022 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11023 
11024 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11025 	sregs->idt.limit = dt.size;
11026 	sregs->idt.base = dt.address;
11027 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11028 	sregs->gdt.limit = dt.size;
11029 	sregs->gdt.base = dt.address;
11030 
11031 	sregs->cr2 = vcpu->arch.cr2;
11032 	sregs->cr3 = kvm_read_cr3(vcpu);
11033 
11034 skip_protected_regs:
11035 	sregs->cr0 = kvm_read_cr0(vcpu);
11036 	sregs->cr4 = kvm_read_cr4(vcpu);
11037 	sregs->cr8 = kvm_get_cr8(vcpu);
11038 	sregs->efer = vcpu->arch.efer;
11039 	sregs->apic_base = kvm_get_apic_base(vcpu);
11040 }
11041 
11042 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11043 {
11044 	__get_sregs_common(vcpu, sregs);
11045 
11046 	if (vcpu->arch.guest_state_protected)
11047 		return;
11048 
11049 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11050 		set_bit(vcpu->arch.interrupt.nr,
11051 			(unsigned long *)sregs->interrupt_bitmap);
11052 }
11053 
11054 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11055 {
11056 	int i;
11057 
11058 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11059 
11060 	if (vcpu->arch.guest_state_protected)
11061 		return;
11062 
11063 	if (is_pae_paging(vcpu)) {
11064 		for (i = 0 ; i < 4 ; i++)
11065 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11066 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11067 	}
11068 }
11069 
11070 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11071 				  struct kvm_sregs *sregs)
11072 {
11073 	vcpu_load(vcpu);
11074 	__get_sregs(vcpu, sregs);
11075 	vcpu_put(vcpu);
11076 	return 0;
11077 }
11078 
11079 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11080 				    struct kvm_mp_state *mp_state)
11081 {
11082 	int r;
11083 
11084 	vcpu_load(vcpu);
11085 	if (kvm_mpx_supported())
11086 		kvm_load_guest_fpu(vcpu);
11087 
11088 	r = kvm_apic_accept_events(vcpu);
11089 	if (r < 0)
11090 		goto out;
11091 	r = 0;
11092 
11093 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11094 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11095 	    vcpu->arch.pv.pv_unhalted)
11096 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11097 	else
11098 		mp_state->mp_state = vcpu->arch.mp_state;
11099 
11100 out:
11101 	if (kvm_mpx_supported())
11102 		kvm_put_guest_fpu(vcpu);
11103 	vcpu_put(vcpu);
11104 	return r;
11105 }
11106 
11107 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11108 				    struct kvm_mp_state *mp_state)
11109 {
11110 	int ret = -EINVAL;
11111 
11112 	vcpu_load(vcpu);
11113 
11114 	switch (mp_state->mp_state) {
11115 	case KVM_MP_STATE_UNINITIALIZED:
11116 	case KVM_MP_STATE_HALTED:
11117 	case KVM_MP_STATE_AP_RESET_HOLD:
11118 	case KVM_MP_STATE_INIT_RECEIVED:
11119 	case KVM_MP_STATE_SIPI_RECEIVED:
11120 		if (!lapic_in_kernel(vcpu))
11121 			goto out;
11122 		break;
11123 
11124 	case KVM_MP_STATE_RUNNABLE:
11125 		break;
11126 
11127 	default:
11128 		goto out;
11129 	}
11130 
11131 	/*
11132 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11133 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11134 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11135 	 * if an SMI is pending as well.
11136 	 */
11137 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11138 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11139 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11140 		goto out;
11141 
11142 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11143 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11144 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11145 	} else
11146 		vcpu->arch.mp_state = mp_state->mp_state;
11147 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11148 
11149 	ret = 0;
11150 out:
11151 	vcpu_put(vcpu);
11152 	return ret;
11153 }
11154 
11155 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11156 		    int reason, bool has_error_code, u32 error_code)
11157 {
11158 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11159 	int ret;
11160 
11161 	init_emulate_ctxt(vcpu);
11162 
11163 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11164 				   has_error_code, error_code);
11165 	if (ret) {
11166 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11167 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11168 		vcpu->run->internal.ndata = 0;
11169 		return 0;
11170 	}
11171 
11172 	kvm_rip_write(vcpu, ctxt->eip);
11173 	kvm_set_rflags(vcpu, ctxt->eflags);
11174 	return 1;
11175 }
11176 EXPORT_SYMBOL_GPL(kvm_task_switch);
11177 
11178 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11179 {
11180 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11181 		/*
11182 		 * When EFER.LME and CR0.PG are set, the processor is in
11183 		 * 64-bit mode (though maybe in a 32-bit code segment).
11184 		 * CR4.PAE and EFER.LMA must be set.
11185 		 */
11186 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11187 			return false;
11188 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11189 			return false;
11190 	} else {
11191 		/*
11192 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11193 		 * segment cannot be 64-bit.
11194 		 */
11195 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11196 			return false;
11197 	}
11198 
11199 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11200 }
11201 
11202 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11203 		int *mmu_reset_needed, bool update_pdptrs)
11204 {
11205 	struct msr_data apic_base_msr;
11206 	int idx;
11207 	struct desc_ptr dt;
11208 
11209 	if (!kvm_is_valid_sregs(vcpu, sregs))
11210 		return -EINVAL;
11211 
11212 	apic_base_msr.data = sregs->apic_base;
11213 	apic_base_msr.host_initiated = true;
11214 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11215 		return -EINVAL;
11216 
11217 	if (vcpu->arch.guest_state_protected)
11218 		return 0;
11219 
11220 	dt.size = sregs->idt.limit;
11221 	dt.address = sregs->idt.base;
11222 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11223 	dt.size = sregs->gdt.limit;
11224 	dt.address = sregs->gdt.base;
11225 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11226 
11227 	vcpu->arch.cr2 = sregs->cr2;
11228 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11229 	vcpu->arch.cr3 = sregs->cr3;
11230 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11231 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11232 
11233 	kvm_set_cr8(vcpu, sregs->cr8);
11234 
11235 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11236 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11237 
11238 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11239 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11240 	vcpu->arch.cr0 = sregs->cr0;
11241 
11242 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11243 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11244 
11245 	if (update_pdptrs) {
11246 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11247 		if (is_pae_paging(vcpu)) {
11248 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11249 			*mmu_reset_needed = 1;
11250 		}
11251 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11252 	}
11253 
11254 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11255 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11256 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11257 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11258 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11259 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11260 
11261 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11262 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11263 
11264 	update_cr8_intercept(vcpu);
11265 
11266 	/* Older userspace won't unhalt the vcpu on reset. */
11267 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11268 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11269 	    !is_protmode(vcpu))
11270 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11271 
11272 	return 0;
11273 }
11274 
11275 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11276 {
11277 	int pending_vec, max_bits;
11278 	int mmu_reset_needed = 0;
11279 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11280 
11281 	if (ret)
11282 		return ret;
11283 
11284 	if (mmu_reset_needed)
11285 		kvm_mmu_reset_context(vcpu);
11286 
11287 	max_bits = KVM_NR_INTERRUPTS;
11288 	pending_vec = find_first_bit(
11289 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11290 
11291 	if (pending_vec < max_bits) {
11292 		kvm_queue_interrupt(vcpu, pending_vec, false);
11293 		pr_debug("Set back pending irq %d\n", pending_vec);
11294 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11295 	}
11296 	return 0;
11297 }
11298 
11299 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11300 {
11301 	int mmu_reset_needed = 0;
11302 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11303 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11304 		!(sregs2->efer & EFER_LMA);
11305 	int i, ret;
11306 
11307 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11308 		return -EINVAL;
11309 
11310 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11311 		return -EINVAL;
11312 
11313 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11314 				 &mmu_reset_needed, !valid_pdptrs);
11315 	if (ret)
11316 		return ret;
11317 
11318 	if (valid_pdptrs) {
11319 		for (i = 0; i < 4 ; i++)
11320 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11321 
11322 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11323 		mmu_reset_needed = 1;
11324 		vcpu->arch.pdptrs_from_userspace = true;
11325 	}
11326 	if (mmu_reset_needed)
11327 		kvm_mmu_reset_context(vcpu);
11328 	return 0;
11329 }
11330 
11331 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11332 				  struct kvm_sregs *sregs)
11333 {
11334 	int ret;
11335 
11336 	vcpu_load(vcpu);
11337 	ret = __set_sregs(vcpu, sregs);
11338 	vcpu_put(vcpu);
11339 	return ret;
11340 }
11341 
11342 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11343 {
11344 	bool set = false;
11345 	struct kvm_vcpu *vcpu;
11346 	unsigned long i;
11347 
11348 	if (!enable_apicv)
11349 		return;
11350 
11351 	down_write(&kvm->arch.apicv_update_lock);
11352 
11353 	kvm_for_each_vcpu(i, vcpu, kvm) {
11354 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11355 			set = true;
11356 			break;
11357 		}
11358 	}
11359 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11360 	up_write(&kvm->arch.apicv_update_lock);
11361 }
11362 
11363 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11364 					struct kvm_guest_debug *dbg)
11365 {
11366 	unsigned long rflags;
11367 	int i, r;
11368 
11369 	if (vcpu->arch.guest_state_protected)
11370 		return -EINVAL;
11371 
11372 	vcpu_load(vcpu);
11373 
11374 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11375 		r = -EBUSY;
11376 		if (kvm_is_exception_pending(vcpu))
11377 			goto out;
11378 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11379 			kvm_queue_exception(vcpu, DB_VECTOR);
11380 		else
11381 			kvm_queue_exception(vcpu, BP_VECTOR);
11382 	}
11383 
11384 	/*
11385 	 * Read rflags as long as potentially injected trace flags are still
11386 	 * filtered out.
11387 	 */
11388 	rflags = kvm_get_rflags(vcpu);
11389 
11390 	vcpu->guest_debug = dbg->control;
11391 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11392 		vcpu->guest_debug = 0;
11393 
11394 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11395 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11396 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11397 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11398 	} else {
11399 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11400 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11401 	}
11402 	kvm_update_dr7(vcpu);
11403 
11404 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11405 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11406 
11407 	/*
11408 	 * Trigger an rflags update that will inject or remove the trace
11409 	 * flags.
11410 	 */
11411 	kvm_set_rflags(vcpu, rflags);
11412 
11413 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11414 
11415 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11416 
11417 	r = 0;
11418 
11419 out:
11420 	vcpu_put(vcpu);
11421 	return r;
11422 }
11423 
11424 /*
11425  * Translate a guest virtual address to a guest physical address.
11426  */
11427 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11428 				    struct kvm_translation *tr)
11429 {
11430 	unsigned long vaddr = tr->linear_address;
11431 	gpa_t gpa;
11432 	int idx;
11433 
11434 	vcpu_load(vcpu);
11435 
11436 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11437 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11438 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11439 	tr->physical_address = gpa;
11440 	tr->valid = gpa != INVALID_GPA;
11441 	tr->writeable = 1;
11442 	tr->usermode = 0;
11443 
11444 	vcpu_put(vcpu);
11445 	return 0;
11446 }
11447 
11448 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11449 {
11450 	struct fxregs_state *fxsave;
11451 
11452 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11453 		return 0;
11454 
11455 	vcpu_load(vcpu);
11456 
11457 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11458 	memcpy(fpu->fpr, fxsave->st_space, 128);
11459 	fpu->fcw = fxsave->cwd;
11460 	fpu->fsw = fxsave->swd;
11461 	fpu->ftwx = fxsave->twd;
11462 	fpu->last_opcode = fxsave->fop;
11463 	fpu->last_ip = fxsave->rip;
11464 	fpu->last_dp = fxsave->rdp;
11465 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11466 
11467 	vcpu_put(vcpu);
11468 	return 0;
11469 }
11470 
11471 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11472 {
11473 	struct fxregs_state *fxsave;
11474 
11475 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11476 		return 0;
11477 
11478 	vcpu_load(vcpu);
11479 
11480 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11481 
11482 	memcpy(fxsave->st_space, fpu->fpr, 128);
11483 	fxsave->cwd = fpu->fcw;
11484 	fxsave->swd = fpu->fsw;
11485 	fxsave->twd = fpu->ftwx;
11486 	fxsave->fop = fpu->last_opcode;
11487 	fxsave->rip = fpu->last_ip;
11488 	fxsave->rdp = fpu->last_dp;
11489 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11490 
11491 	vcpu_put(vcpu);
11492 	return 0;
11493 }
11494 
11495 static void store_regs(struct kvm_vcpu *vcpu)
11496 {
11497 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11498 
11499 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11500 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11501 
11502 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11503 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11504 
11505 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11506 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11507 				vcpu, &vcpu->run->s.regs.events);
11508 }
11509 
11510 static int sync_regs(struct kvm_vcpu *vcpu)
11511 {
11512 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11513 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11514 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11515 	}
11516 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11517 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11518 			return -EINVAL;
11519 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11520 	}
11521 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11522 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11523 				vcpu, &vcpu->run->s.regs.events))
11524 			return -EINVAL;
11525 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11526 	}
11527 
11528 	return 0;
11529 }
11530 
11531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11532 {
11533 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11534 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11535 			     "guest TSC will not be reliable\n");
11536 
11537 	if (!kvm->arch.max_vcpu_ids)
11538 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11539 
11540 	if (id >= kvm->arch.max_vcpu_ids)
11541 		return -EINVAL;
11542 
11543 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11544 }
11545 
11546 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11547 {
11548 	struct page *page;
11549 	int r;
11550 
11551 	vcpu->arch.last_vmentry_cpu = -1;
11552 	vcpu->arch.regs_avail = ~0;
11553 	vcpu->arch.regs_dirty = ~0;
11554 
11555 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11556 
11557 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11558 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11559 	else
11560 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11561 
11562 	r = kvm_mmu_create(vcpu);
11563 	if (r < 0)
11564 		return r;
11565 
11566 	if (irqchip_in_kernel(vcpu->kvm)) {
11567 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11568 		if (r < 0)
11569 			goto fail_mmu_destroy;
11570 
11571 		/*
11572 		 * Defer evaluating inhibits until the vCPU is first run, as
11573 		 * this vCPU will not get notified of any changes until this
11574 		 * vCPU is visible to other vCPUs (marked online and added to
11575 		 * the set of vCPUs).  Opportunistically mark APICv active as
11576 		 * VMX in particularly is highly unlikely to have inhibits.
11577 		 * Ignore the current per-VM APICv state so that vCPU creation
11578 		 * is guaranteed to run with a deterministic value, the request
11579 		 * will ensure the vCPU gets the correct state before VM-Entry.
11580 		 */
11581 		if (enable_apicv) {
11582 			vcpu->arch.apic->apicv_active = true;
11583 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11584 		}
11585 	} else
11586 		static_branch_inc(&kvm_has_noapic_vcpu);
11587 
11588 	r = -ENOMEM;
11589 
11590 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11591 	if (!page)
11592 		goto fail_free_lapic;
11593 	vcpu->arch.pio_data = page_address(page);
11594 
11595 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11596 				       GFP_KERNEL_ACCOUNT);
11597 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11598 					    GFP_KERNEL_ACCOUNT);
11599 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11600 		goto fail_free_mce_banks;
11601 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11602 
11603 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11604 				GFP_KERNEL_ACCOUNT))
11605 		goto fail_free_mce_banks;
11606 
11607 	if (!alloc_emulate_ctxt(vcpu))
11608 		goto free_wbinvd_dirty_mask;
11609 
11610 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11611 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11612 		goto free_emulate_ctxt;
11613 	}
11614 
11615 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11616 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11617 
11618 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11619 
11620 	kvm_async_pf_hash_reset(vcpu);
11621 
11622 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11623 	kvm_pmu_init(vcpu);
11624 
11625 	vcpu->arch.pending_external_vector = -1;
11626 	vcpu->arch.preempted_in_kernel = false;
11627 
11628 #if IS_ENABLED(CONFIG_HYPERV)
11629 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11630 #endif
11631 
11632 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11633 	if (r)
11634 		goto free_guest_fpu;
11635 
11636 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11637 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11638 	kvm_xen_init_vcpu(vcpu);
11639 	kvm_vcpu_mtrr_init(vcpu);
11640 	vcpu_load(vcpu);
11641 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11642 	kvm_vcpu_reset(vcpu, false);
11643 	kvm_init_mmu(vcpu);
11644 	vcpu_put(vcpu);
11645 	return 0;
11646 
11647 free_guest_fpu:
11648 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11649 free_emulate_ctxt:
11650 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11651 free_wbinvd_dirty_mask:
11652 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11653 fail_free_mce_banks:
11654 	kfree(vcpu->arch.mce_banks);
11655 	kfree(vcpu->arch.mci_ctl2_banks);
11656 	free_page((unsigned long)vcpu->arch.pio_data);
11657 fail_free_lapic:
11658 	kvm_free_lapic(vcpu);
11659 fail_mmu_destroy:
11660 	kvm_mmu_destroy(vcpu);
11661 	return r;
11662 }
11663 
11664 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11665 {
11666 	struct kvm *kvm = vcpu->kvm;
11667 
11668 	if (mutex_lock_killable(&vcpu->mutex))
11669 		return;
11670 	vcpu_load(vcpu);
11671 	kvm_synchronize_tsc(vcpu, 0);
11672 	vcpu_put(vcpu);
11673 
11674 	/* poll control enabled by default */
11675 	vcpu->arch.msr_kvm_poll_control = 1;
11676 
11677 	mutex_unlock(&vcpu->mutex);
11678 
11679 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11680 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11681 						KVMCLOCK_SYNC_PERIOD);
11682 }
11683 
11684 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11685 {
11686 	int idx;
11687 
11688 	kvmclock_reset(vcpu);
11689 
11690 	static_call(kvm_x86_vcpu_free)(vcpu);
11691 
11692 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11693 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11694 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11695 
11696 	kvm_xen_destroy_vcpu(vcpu);
11697 	kvm_hv_vcpu_uninit(vcpu);
11698 	kvm_pmu_destroy(vcpu);
11699 	kfree(vcpu->arch.mce_banks);
11700 	kfree(vcpu->arch.mci_ctl2_banks);
11701 	kvm_free_lapic(vcpu);
11702 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11703 	kvm_mmu_destroy(vcpu);
11704 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11705 	free_page((unsigned long)vcpu->arch.pio_data);
11706 	kvfree(vcpu->arch.cpuid_entries);
11707 	if (!lapic_in_kernel(vcpu))
11708 		static_branch_dec(&kvm_has_noapic_vcpu);
11709 }
11710 
11711 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11712 {
11713 	struct kvm_cpuid_entry2 *cpuid_0x1;
11714 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11715 	unsigned long new_cr0;
11716 
11717 	/*
11718 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11719 	 * to handle side effects.  RESET emulation hits those flows and relies
11720 	 * on emulated/virtualized registers, including those that are loaded
11721 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11722 	 * to detect improper or missing initialization.
11723 	 */
11724 	WARN_ON_ONCE(!init_event &&
11725 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11726 
11727 	/*
11728 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11729 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11730 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11731 	 * bits), i.e. virtualization is disabled.
11732 	 */
11733 	if (is_guest_mode(vcpu))
11734 		kvm_leave_nested(vcpu);
11735 
11736 	kvm_lapic_reset(vcpu, init_event);
11737 
11738 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11739 	vcpu->arch.hflags = 0;
11740 
11741 	vcpu->arch.smi_pending = 0;
11742 	vcpu->arch.smi_count = 0;
11743 	atomic_set(&vcpu->arch.nmi_queued, 0);
11744 	vcpu->arch.nmi_pending = 0;
11745 	vcpu->arch.nmi_injected = false;
11746 	kvm_clear_interrupt_queue(vcpu);
11747 	kvm_clear_exception_queue(vcpu);
11748 
11749 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11750 	kvm_update_dr0123(vcpu);
11751 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11752 	vcpu->arch.dr7 = DR7_FIXED_1;
11753 	kvm_update_dr7(vcpu);
11754 
11755 	vcpu->arch.cr2 = 0;
11756 
11757 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11758 	vcpu->arch.apf.msr_en_val = 0;
11759 	vcpu->arch.apf.msr_int_val = 0;
11760 	vcpu->arch.st.msr_val = 0;
11761 
11762 	kvmclock_reset(vcpu);
11763 
11764 	kvm_clear_async_pf_completion_queue(vcpu);
11765 	kvm_async_pf_hash_reset(vcpu);
11766 	vcpu->arch.apf.halted = false;
11767 
11768 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11769 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11770 
11771 		/*
11772 		 * All paths that lead to INIT are required to load the guest's
11773 		 * FPU state (because most paths are buried in KVM_RUN).
11774 		 */
11775 		if (init_event)
11776 			kvm_put_guest_fpu(vcpu);
11777 
11778 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11779 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11780 
11781 		if (init_event)
11782 			kvm_load_guest_fpu(vcpu);
11783 	}
11784 
11785 	if (!init_event) {
11786 		kvm_pmu_reset(vcpu);
11787 		vcpu->arch.smbase = 0x30000;
11788 
11789 		vcpu->arch.msr_misc_features_enables = 0;
11790 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11791 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11792 
11793 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11794 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11795 	}
11796 
11797 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11798 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11799 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11800 
11801 	/*
11802 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11803 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11804 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11805 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11806 	 * on RESET.  But, go through the motions in case that's ever remedied.
11807 	 */
11808 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11809 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11810 
11811 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11812 
11813 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11814 	kvm_rip_write(vcpu, 0xfff0);
11815 
11816 	vcpu->arch.cr3 = 0;
11817 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11818 
11819 	/*
11820 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11821 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11822 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11823 	 */
11824 	new_cr0 = X86_CR0_ET;
11825 	if (init_event)
11826 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11827 	else
11828 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11829 
11830 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11831 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11832 	static_call(kvm_x86_set_efer)(vcpu, 0);
11833 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11834 
11835 	/*
11836 	 * On the standard CR0/CR4/EFER modification paths, there are several
11837 	 * complex conditions determining whether the MMU has to be reset and/or
11838 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11839 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11840 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11841 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11842 	 */
11843 	if (old_cr0 & X86_CR0_PG) {
11844 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11845 		kvm_mmu_reset_context(vcpu);
11846 	}
11847 
11848 	/*
11849 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11850 	 * APM states the TLBs are untouched by INIT, but it also states that
11851 	 * the TLBs are flushed on "External initialization of the processor."
11852 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11853 	 * benefit in relying on the guest to flush the TLB immediately after
11854 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11855 	 * performance perspective.
11856 	 */
11857 	if (init_event)
11858 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11859 }
11860 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11861 
11862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11863 {
11864 	struct kvm_segment cs;
11865 
11866 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11867 	cs.selector = vector << 8;
11868 	cs.base = vector << 12;
11869 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11870 	kvm_rip_write(vcpu, 0);
11871 }
11872 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11873 
11874 int kvm_arch_hardware_enable(void)
11875 {
11876 	struct kvm *kvm;
11877 	struct kvm_vcpu *vcpu;
11878 	unsigned long i;
11879 	int ret;
11880 	u64 local_tsc;
11881 	u64 max_tsc = 0;
11882 	bool stable, backwards_tsc = false;
11883 
11884 	kvm_user_return_msr_cpu_online();
11885 	ret = static_call(kvm_x86_hardware_enable)();
11886 	if (ret != 0)
11887 		return ret;
11888 
11889 	local_tsc = rdtsc();
11890 	stable = !kvm_check_tsc_unstable();
11891 	list_for_each_entry(kvm, &vm_list, vm_list) {
11892 		kvm_for_each_vcpu(i, vcpu, kvm) {
11893 			if (!stable && vcpu->cpu == smp_processor_id())
11894 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11895 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11896 				backwards_tsc = true;
11897 				if (vcpu->arch.last_host_tsc > max_tsc)
11898 					max_tsc = vcpu->arch.last_host_tsc;
11899 			}
11900 		}
11901 	}
11902 
11903 	/*
11904 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11905 	 * platforms that reset TSC during suspend or hibernate actions, but
11906 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11907 	 * detect that condition here, which happens early in CPU bringup,
11908 	 * before any KVM threads can be running.  Unfortunately, we can't
11909 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11910 	 * enough into CPU bringup that we know how much real time has actually
11911 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11912 	 * variables that haven't been updated yet.
11913 	 *
11914 	 * So we simply find the maximum observed TSC above, then record the
11915 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11916 	 * the adjustment will be applied.  Note that we accumulate
11917 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11918 	 * gets a chance to run again.  In the event that no KVM threads get a
11919 	 * chance to run, we will miss the entire elapsed period, as we'll have
11920 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11921 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11922 	 * uniform across all VCPUs (not to mention the scenario is extremely
11923 	 * unlikely). It is possible that a second hibernate recovery happens
11924 	 * much faster than a first, causing the observed TSC here to be
11925 	 * smaller; this would require additional padding adjustment, which is
11926 	 * why we set last_host_tsc to the local tsc observed here.
11927 	 *
11928 	 * N.B. - this code below runs only on platforms with reliable TSC,
11929 	 * as that is the only way backwards_tsc is set above.  Also note
11930 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11931 	 * have the same delta_cyc adjustment applied if backwards_tsc
11932 	 * is detected.  Note further, this adjustment is only done once,
11933 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11934 	 * called multiple times (one for each physical CPU bringup).
11935 	 *
11936 	 * Platforms with unreliable TSCs don't have to deal with this, they
11937 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11938 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11939 	 * guarantee that they stay in perfect synchronization.
11940 	 */
11941 	if (backwards_tsc) {
11942 		u64 delta_cyc = max_tsc - local_tsc;
11943 		list_for_each_entry(kvm, &vm_list, vm_list) {
11944 			kvm->arch.backwards_tsc_observed = true;
11945 			kvm_for_each_vcpu(i, vcpu, kvm) {
11946 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11947 				vcpu->arch.last_host_tsc = local_tsc;
11948 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11949 			}
11950 
11951 			/*
11952 			 * We have to disable TSC offset matching.. if you were
11953 			 * booting a VM while issuing an S4 host suspend....
11954 			 * you may have some problem.  Solving this issue is
11955 			 * left as an exercise to the reader.
11956 			 */
11957 			kvm->arch.last_tsc_nsec = 0;
11958 			kvm->arch.last_tsc_write = 0;
11959 		}
11960 
11961 	}
11962 	return 0;
11963 }
11964 
11965 void kvm_arch_hardware_disable(void)
11966 {
11967 	static_call(kvm_x86_hardware_disable)();
11968 	drop_user_return_notifiers();
11969 }
11970 
11971 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11972 {
11973 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11974 
11975 #define __KVM_X86_OP(func) \
11976 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11977 #define KVM_X86_OP(func) \
11978 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11979 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11980 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11981 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11982 					   (void *)__static_call_return0);
11983 #include <asm/kvm-x86-ops.h>
11984 #undef __KVM_X86_OP
11985 
11986 	kvm_pmu_ops_update(ops->pmu_ops);
11987 }
11988 
11989 int kvm_arch_hardware_setup(void *opaque)
11990 {
11991 	struct kvm_x86_init_ops *ops = opaque;
11992 	int r;
11993 
11994 	rdmsrl_safe(MSR_EFER, &host_efer);
11995 
11996 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11997 		rdmsrl(MSR_IA32_XSS, host_xss);
11998 
11999 	kvm_init_pmu_capability();
12000 
12001 	r = ops->hardware_setup();
12002 	if (r != 0)
12003 		return r;
12004 
12005 	kvm_ops_update(ops);
12006 
12007 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12008 
12009 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12010 		kvm_caps.supported_xss = 0;
12011 
12012 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12013 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12014 #undef __kvm_cpu_cap_has
12015 
12016 	if (kvm_caps.has_tsc_control) {
12017 		/*
12018 		 * Make sure the user can only configure tsc_khz values that
12019 		 * fit into a signed integer.
12020 		 * A min value is not calculated because it will always
12021 		 * be 1 on all machines.
12022 		 */
12023 		u64 max = min(0x7fffffffULL,
12024 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12025 		kvm_caps.max_guest_tsc_khz = max;
12026 	}
12027 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12028 	kvm_init_msr_list();
12029 	return 0;
12030 }
12031 
12032 void kvm_arch_hardware_unsetup(void)
12033 {
12034 	kvm_unregister_perf_callbacks();
12035 
12036 	static_call(kvm_x86_hardware_unsetup)();
12037 }
12038 
12039 int kvm_arch_check_processor_compat(void *opaque)
12040 {
12041 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12042 	struct kvm_x86_init_ops *ops = opaque;
12043 
12044 	WARN_ON(!irqs_disabled());
12045 
12046 	if (__cr4_reserved_bits(cpu_has, c) !=
12047 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12048 		return -EIO;
12049 
12050 	return ops->check_processor_compatibility();
12051 }
12052 
12053 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12054 {
12055 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12056 }
12057 
12058 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12059 {
12060 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12061 }
12062 
12063 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12064 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12065 
12066 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12067 {
12068 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12069 
12070 	vcpu->arch.l1tf_flush_l1d = true;
12071 	if (pmu->version && unlikely(pmu->event_count)) {
12072 		pmu->need_cleanup = true;
12073 		kvm_make_request(KVM_REQ_PMU, vcpu);
12074 	}
12075 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12076 }
12077 
12078 void kvm_arch_free_vm(struct kvm *kvm)
12079 {
12080 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12081 	__kvm_arch_free_vm(kvm);
12082 }
12083 
12084 
12085 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12086 {
12087 	int ret;
12088 	unsigned long flags;
12089 
12090 	if (type)
12091 		return -EINVAL;
12092 
12093 	ret = kvm_page_track_init(kvm);
12094 	if (ret)
12095 		goto out;
12096 
12097 	ret = kvm_mmu_init_vm(kvm);
12098 	if (ret)
12099 		goto out_page_track;
12100 
12101 	ret = static_call(kvm_x86_vm_init)(kvm);
12102 	if (ret)
12103 		goto out_uninit_mmu;
12104 
12105 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12106 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12107 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12108 
12109 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12110 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12111 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12112 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12113 		&kvm->arch.irq_sources_bitmap);
12114 
12115 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12116 	mutex_init(&kvm->arch.apic_map_lock);
12117 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12118 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12119 
12120 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12121 	pvclock_update_vm_gtod_copy(kvm);
12122 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12123 
12124 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12125 	kvm->arch.guest_can_read_msr_platform_info = true;
12126 	kvm->arch.enable_pmu = enable_pmu;
12127 
12128 #if IS_ENABLED(CONFIG_HYPERV)
12129 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12130 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12131 #endif
12132 
12133 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12134 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12135 
12136 	kvm_apicv_init(kvm);
12137 	kvm_hv_init_vm(kvm);
12138 	kvm_xen_init_vm(kvm);
12139 
12140 	return 0;
12141 
12142 out_uninit_mmu:
12143 	kvm_mmu_uninit_vm(kvm);
12144 out_page_track:
12145 	kvm_page_track_cleanup(kvm);
12146 out:
12147 	return ret;
12148 }
12149 
12150 int kvm_arch_post_init_vm(struct kvm *kvm)
12151 {
12152 	return kvm_mmu_post_init_vm(kvm);
12153 }
12154 
12155 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12156 {
12157 	vcpu_load(vcpu);
12158 	kvm_mmu_unload(vcpu);
12159 	vcpu_put(vcpu);
12160 }
12161 
12162 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12163 {
12164 	unsigned long i;
12165 	struct kvm_vcpu *vcpu;
12166 
12167 	kvm_for_each_vcpu(i, vcpu, kvm) {
12168 		kvm_clear_async_pf_completion_queue(vcpu);
12169 		kvm_unload_vcpu_mmu(vcpu);
12170 	}
12171 }
12172 
12173 void kvm_arch_sync_events(struct kvm *kvm)
12174 {
12175 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12176 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12177 	kvm_free_pit(kvm);
12178 }
12179 
12180 /**
12181  * __x86_set_memory_region: Setup KVM internal memory slot
12182  *
12183  * @kvm: the kvm pointer to the VM.
12184  * @id: the slot ID to setup.
12185  * @gpa: the GPA to install the slot (unused when @size == 0).
12186  * @size: the size of the slot. Set to zero to uninstall a slot.
12187  *
12188  * This function helps to setup a KVM internal memory slot.  Specify
12189  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12190  * slot.  The return code can be one of the following:
12191  *
12192  *   HVA:           on success (uninstall will return a bogus HVA)
12193  *   -errno:        on error
12194  *
12195  * The caller should always use IS_ERR() to check the return value
12196  * before use.  Note, the KVM internal memory slots are guaranteed to
12197  * remain valid and unchanged until the VM is destroyed, i.e., the
12198  * GPA->HVA translation will not change.  However, the HVA is a user
12199  * address, i.e. its accessibility is not guaranteed, and must be
12200  * accessed via __copy_{to,from}_user().
12201  */
12202 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12203 				      u32 size)
12204 {
12205 	int i, r;
12206 	unsigned long hva, old_npages;
12207 	struct kvm_memslots *slots = kvm_memslots(kvm);
12208 	struct kvm_memory_slot *slot;
12209 
12210 	/* Called with kvm->slots_lock held.  */
12211 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12212 		return ERR_PTR_USR(-EINVAL);
12213 
12214 	slot = id_to_memslot(slots, id);
12215 	if (size) {
12216 		if (slot && slot->npages)
12217 			return ERR_PTR_USR(-EEXIST);
12218 
12219 		/*
12220 		 * MAP_SHARED to prevent internal slot pages from being moved
12221 		 * by fork()/COW.
12222 		 */
12223 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12224 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12225 		if (IS_ERR((void *)hva))
12226 			return (void __user *)hva;
12227 	} else {
12228 		if (!slot || !slot->npages)
12229 			return NULL;
12230 
12231 		old_npages = slot->npages;
12232 		hva = slot->userspace_addr;
12233 	}
12234 
12235 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12236 		struct kvm_userspace_memory_region m;
12237 
12238 		m.slot = id | (i << 16);
12239 		m.flags = 0;
12240 		m.guest_phys_addr = gpa;
12241 		m.userspace_addr = hva;
12242 		m.memory_size = size;
12243 		r = __kvm_set_memory_region(kvm, &m);
12244 		if (r < 0)
12245 			return ERR_PTR_USR(r);
12246 	}
12247 
12248 	if (!size)
12249 		vm_munmap(hva, old_npages * PAGE_SIZE);
12250 
12251 	return (void __user *)hva;
12252 }
12253 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12254 
12255 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12256 {
12257 	kvm_mmu_pre_destroy_vm(kvm);
12258 }
12259 
12260 void kvm_arch_destroy_vm(struct kvm *kvm)
12261 {
12262 	if (current->mm == kvm->mm) {
12263 		/*
12264 		 * Free memory regions allocated on behalf of userspace,
12265 		 * unless the memory map has changed due to process exit
12266 		 * or fd copying.
12267 		 */
12268 		mutex_lock(&kvm->slots_lock);
12269 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12270 					0, 0);
12271 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12272 					0, 0);
12273 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12274 		mutex_unlock(&kvm->slots_lock);
12275 	}
12276 	kvm_unload_vcpu_mmus(kvm);
12277 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12278 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12279 	kvm_pic_destroy(kvm);
12280 	kvm_ioapic_destroy(kvm);
12281 	kvm_destroy_vcpus(kvm);
12282 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12283 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12284 	kvm_mmu_uninit_vm(kvm);
12285 	kvm_page_track_cleanup(kvm);
12286 	kvm_xen_destroy_vm(kvm);
12287 	kvm_hv_destroy_vm(kvm);
12288 }
12289 
12290 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12291 {
12292 	int i;
12293 
12294 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12295 		kvfree(slot->arch.rmap[i]);
12296 		slot->arch.rmap[i] = NULL;
12297 	}
12298 }
12299 
12300 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12301 {
12302 	int i;
12303 
12304 	memslot_rmap_free(slot);
12305 
12306 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12307 		kvfree(slot->arch.lpage_info[i - 1]);
12308 		slot->arch.lpage_info[i - 1] = NULL;
12309 	}
12310 
12311 	kvm_page_track_free_memslot(slot);
12312 }
12313 
12314 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12315 {
12316 	const int sz = sizeof(*slot->arch.rmap[0]);
12317 	int i;
12318 
12319 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12320 		int level = i + 1;
12321 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12322 
12323 		if (slot->arch.rmap[i])
12324 			continue;
12325 
12326 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12327 		if (!slot->arch.rmap[i]) {
12328 			memslot_rmap_free(slot);
12329 			return -ENOMEM;
12330 		}
12331 	}
12332 
12333 	return 0;
12334 }
12335 
12336 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12337 				      struct kvm_memory_slot *slot)
12338 {
12339 	unsigned long npages = slot->npages;
12340 	int i, r;
12341 
12342 	/*
12343 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12344 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12345 	 * the new memslot is successful.
12346 	 */
12347 	memset(&slot->arch, 0, sizeof(slot->arch));
12348 
12349 	if (kvm_memslots_have_rmaps(kvm)) {
12350 		r = memslot_rmap_alloc(slot, npages);
12351 		if (r)
12352 			return r;
12353 	}
12354 
12355 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12356 		struct kvm_lpage_info *linfo;
12357 		unsigned long ugfn;
12358 		int lpages;
12359 		int level = i + 1;
12360 
12361 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12362 
12363 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12364 		if (!linfo)
12365 			goto out_free;
12366 
12367 		slot->arch.lpage_info[i - 1] = linfo;
12368 
12369 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12370 			linfo[0].disallow_lpage = 1;
12371 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12372 			linfo[lpages - 1].disallow_lpage = 1;
12373 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12374 		/*
12375 		 * If the gfn and userspace address are not aligned wrt each
12376 		 * other, disable large page support for this slot.
12377 		 */
12378 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12379 			unsigned long j;
12380 
12381 			for (j = 0; j < lpages; ++j)
12382 				linfo[j].disallow_lpage = 1;
12383 		}
12384 	}
12385 
12386 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12387 		goto out_free;
12388 
12389 	return 0;
12390 
12391 out_free:
12392 	memslot_rmap_free(slot);
12393 
12394 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12395 		kvfree(slot->arch.lpage_info[i - 1]);
12396 		slot->arch.lpage_info[i - 1] = NULL;
12397 	}
12398 	return -ENOMEM;
12399 }
12400 
12401 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12402 {
12403 	struct kvm_vcpu *vcpu;
12404 	unsigned long i;
12405 
12406 	/*
12407 	 * memslots->generation has been incremented.
12408 	 * mmio generation may have reached its maximum value.
12409 	 */
12410 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12411 
12412 	/* Force re-initialization of steal_time cache */
12413 	kvm_for_each_vcpu(i, vcpu, kvm)
12414 		kvm_vcpu_kick(vcpu);
12415 }
12416 
12417 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12418 				   const struct kvm_memory_slot *old,
12419 				   struct kvm_memory_slot *new,
12420 				   enum kvm_mr_change change)
12421 {
12422 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12423 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12424 			return -EINVAL;
12425 
12426 		return kvm_alloc_memslot_metadata(kvm, new);
12427 	}
12428 
12429 	if (change == KVM_MR_FLAGS_ONLY)
12430 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12431 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12432 		return -EIO;
12433 
12434 	return 0;
12435 }
12436 
12437 
12438 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12439 {
12440 	struct kvm_arch *ka = &kvm->arch;
12441 
12442 	if (!kvm_x86_ops.cpu_dirty_log_size)
12443 		return;
12444 
12445 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12446 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12447 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12448 
12449 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12450 }
12451 
12452 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12453 				     struct kvm_memory_slot *old,
12454 				     const struct kvm_memory_slot *new,
12455 				     enum kvm_mr_change change)
12456 {
12457 	u32 old_flags = old ? old->flags : 0;
12458 	u32 new_flags = new ? new->flags : 0;
12459 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12460 
12461 	/*
12462 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12463 	 * applies to all operations.
12464 	 */
12465 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12466 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12467 
12468 	/*
12469 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12470 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12471 	 *
12472 	 * For a memslot with dirty logging disabled:
12473 	 * CREATE:      No dirty mappings will already exist.
12474 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12475 	 *		kvm_arch_flush_shadow_memslot()
12476 	 *
12477 	 * For a memslot with dirty logging enabled:
12478 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12479 	 *		and no dirty bits to clear.
12480 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12481 	 *		kvm_arch_flush_shadow_memslot().
12482 	 */
12483 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12484 		return;
12485 
12486 	/*
12487 	 * READONLY and non-flags changes were filtered out above, and the only
12488 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12489 	 * logging isn't being toggled on or off.
12490 	 */
12491 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12492 		return;
12493 
12494 	if (!log_dirty_pages) {
12495 		/*
12496 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12497 		 * large sptes have to be split.  If live migration succeeds,
12498 		 * the guest in the source machine will be destroyed and large
12499 		 * sptes will be created in the destination.  However, if the
12500 		 * guest continues to run in the source machine (for example if
12501 		 * live migration fails), small sptes will remain around and
12502 		 * cause bad performance.
12503 		 *
12504 		 * Scan sptes if dirty logging has been stopped, dropping those
12505 		 * which can be collapsed into a single large-page spte.  Later
12506 		 * page faults will create the large-page sptes.
12507 		 */
12508 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12509 	} else {
12510 		/*
12511 		 * Initially-all-set does not require write protecting any page,
12512 		 * because they're all assumed to be dirty.
12513 		 */
12514 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12515 			return;
12516 
12517 		if (READ_ONCE(eager_page_split))
12518 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12519 
12520 		if (kvm_x86_ops.cpu_dirty_log_size) {
12521 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12522 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12523 		} else {
12524 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12525 		}
12526 
12527 		/*
12528 		 * Unconditionally flush the TLBs after enabling dirty logging.
12529 		 * A flush is almost always going to be necessary (see below),
12530 		 * and unconditionally flushing allows the helpers to omit
12531 		 * the subtly complex checks when removing write access.
12532 		 *
12533 		 * Do the flush outside of mmu_lock to reduce the amount of
12534 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12535 		 * safe as KVM only needs to guarantee the slot is fully
12536 		 * write-protected before returning to userspace, i.e. before
12537 		 * userspace can consume the dirty status.
12538 		 *
12539 		 * Flushing outside of mmu_lock requires KVM to be careful when
12540 		 * making decisions based on writable status of an SPTE, e.g. a
12541 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12542 		 *
12543 		 * Specifically, KVM also write-protects guest page tables to
12544 		 * monitor changes when using shadow paging, and must guarantee
12545 		 * no CPUs can write to those page before mmu_lock is dropped.
12546 		 * Because CPUs may have stale TLB entries at this point, a
12547 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12548 		 *
12549 		 * KVM also allows making SPTES writable outside of mmu_lock,
12550 		 * e.g. to allow dirty logging without taking mmu_lock.
12551 		 *
12552 		 * To handle these scenarios, KVM uses a separate software-only
12553 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12554 		 * a guest page table being write-protected (KVM clears the
12555 		 * MMU-writable flag when write-protecting for shadow paging).
12556 		 *
12557 		 * The use of MMU-writable is also the primary motivation for
12558 		 * the unconditional flush.  Because KVM must guarantee that a
12559 		 * CPU doesn't contain stale, writable TLB entries for a
12560 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12561 		 * MMU-writable SPTE regardless of whether the actual hardware
12562 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12563 		 * to flush, while unconditionally flushing allows the "remove
12564 		 * write access" helpers to ignore MMU-writable entirely.
12565 		 *
12566 		 * See is_writable_pte() for more details (the case involving
12567 		 * access-tracked SPTEs is particularly relevant).
12568 		 */
12569 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12570 	}
12571 }
12572 
12573 void kvm_arch_commit_memory_region(struct kvm *kvm,
12574 				struct kvm_memory_slot *old,
12575 				const struct kvm_memory_slot *new,
12576 				enum kvm_mr_change change)
12577 {
12578 	if (!kvm->arch.n_requested_mmu_pages &&
12579 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12580 		unsigned long nr_mmu_pages;
12581 
12582 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12583 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12584 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12585 	}
12586 
12587 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12588 
12589 	/* Free the arrays associated with the old memslot. */
12590 	if (change == KVM_MR_MOVE)
12591 		kvm_arch_free_memslot(kvm, old);
12592 }
12593 
12594 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12595 {
12596 	kvm_mmu_zap_all(kvm);
12597 }
12598 
12599 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12600 				   struct kvm_memory_slot *slot)
12601 {
12602 	kvm_page_track_flush_slot(kvm, slot);
12603 }
12604 
12605 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12606 {
12607 	return (is_guest_mode(vcpu) &&
12608 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12609 }
12610 
12611 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12612 {
12613 	if (!list_empty_careful(&vcpu->async_pf.done))
12614 		return true;
12615 
12616 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12617 	    kvm_apic_init_sipi_allowed(vcpu))
12618 		return true;
12619 
12620 	if (vcpu->arch.pv.pv_unhalted)
12621 		return true;
12622 
12623 	if (kvm_is_exception_pending(vcpu))
12624 		return true;
12625 
12626 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12627 	    (vcpu->arch.nmi_pending &&
12628 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12629 		return true;
12630 
12631 #ifdef CONFIG_KVM_SMM
12632 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12633 	    (vcpu->arch.smi_pending &&
12634 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12635 		return true;
12636 #endif
12637 
12638 	if (kvm_arch_interrupt_allowed(vcpu) &&
12639 	    (kvm_cpu_has_interrupt(vcpu) ||
12640 	    kvm_guest_apic_has_interrupt(vcpu)))
12641 		return true;
12642 
12643 	if (kvm_hv_has_stimer_pending(vcpu))
12644 		return true;
12645 
12646 	if (is_guest_mode(vcpu) &&
12647 	    kvm_x86_ops.nested_ops->has_events &&
12648 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12649 		return true;
12650 
12651 	if (kvm_xen_has_pending_events(vcpu))
12652 		return true;
12653 
12654 	return false;
12655 }
12656 
12657 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12658 {
12659 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12660 }
12661 
12662 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12663 {
12664 	if (kvm_vcpu_apicv_active(vcpu) &&
12665 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12666 		return true;
12667 
12668 	return false;
12669 }
12670 
12671 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12672 {
12673 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12674 		return true;
12675 
12676 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12677 #ifdef CONFIG_KVM_SMM
12678 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12679 #endif
12680 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12681 		return true;
12682 
12683 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12684 }
12685 
12686 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12687 {
12688 	if (vcpu->arch.guest_state_protected)
12689 		return true;
12690 
12691 	return vcpu->arch.preempted_in_kernel;
12692 }
12693 
12694 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12695 {
12696 	return kvm_rip_read(vcpu);
12697 }
12698 
12699 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12700 {
12701 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12702 }
12703 
12704 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12705 {
12706 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12707 }
12708 
12709 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12710 {
12711 	/* Can't read the RIP when guest state is protected, just return 0 */
12712 	if (vcpu->arch.guest_state_protected)
12713 		return 0;
12714 
12715 	if (is_64_bit_mode(vcpu))
12716 		return kvm_rip_read(vcpu);
12717 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12718 		     kvm_rip_read(vcpu));
12719 }
12720 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12721 
12722 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12723 {
12724 	return kvm_get_linear_rip(vcpu) == linear_rip;
12725 }
12726 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12727 
12728 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12729 {
12730 	unsigned long rflags;
12731 
12732 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12733 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12734 		rflags &= ~X86_EFLAGS_TF;
12735 	return rflags;
12736 }
12737 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12738 
12739 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12740 {
12741 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12742 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12743 		rflags |= X86_EFLAGS_TF;
12744 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12745 }
12746 
12747 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12748 {
12749 	__kvm_set_rflags(vcpu, rflags);
12750 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12751 }
12752 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12753 
12754 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12755 {
12756 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12757 
12758 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12759 }
12760 
12761 static inline u32 kvm_async_pf_next_probe(u32 key)
12762 {
12763 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12764 }
12765 
12766 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12767 {
12768 	u32 key = kvm_async_pf_hash_fn(gfn);
12769 
12770 	while (vcpu->arch.apf.gfns[key] != ~0)
12771 		key = kvm_async_pf_next_probe(key);
12772 
12773 	vcpu->arch.apf.gfns[key] = gfn;
12774 }
12775 
12776 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12777 {
12778 	int i;
12779 	u32 key = kvm_async_pf_hash_fn(gfn);
12780 
12781 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12782 		     (vcpu->arch.apf.gfns[key] != gfn &&
12783 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12784 		key = kvm_async_pf_next_probe(key);
12785 
12786 	return key;
12787 }
12788 
12789 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12790 {
12791 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12792 }
12793 
12794 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12795 {
12796 	u32 i, j, k;
12797 
12798 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12799 
12800 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12801 		return;
12802 
12803 	while (true) {
12804 		vcpu->arch.apf.gfns[i] = ~0;
12805 		do {
12806 			j = kvm_async_pf_next_probe(j);
12807 			if (vcpu->arch.apf.gfns[j] == ~0)
12808 				return;
12809 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12810 			/*
12811 			 * k lies cyclically in ]i,j]
12812 			 * |    i.k.j |
12813 			 * |....j i.k.| or  |.k..j i...|
12814 			 */
12815 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12816 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12817 		i = j;
12818 	}
12819 }
12820 
12821 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12822 {
12823 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12824 
12825 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12826 				      sizeof(reason));
12827 }
12828 
12829 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12830 {
12831 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12832 
12833 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12834 					     &token, offset, sizeof(token));
12835 }
12836 
12837 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12838 {
12839 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12840 	u32 val;
12841 
12842 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12843 					 &val, offset, sizeof(val)))
12844 		return false;
12845 
12846 	return !val;
12847 }
12848 
12849 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12850 {
12851 
12852 	if (!kvm_pv_async_pf_enabled(vcpu))
12853 		return false;
12854 
12855 	if (vcpu->arch.apf.send_user_only &&
12856 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12857 		return false;
12858 
12859 	if (is_guest_mode(vcpu)) {
12860 		/*
12861 		 * L1 needs to opt into the special #PF vmexits that are
12862 		 * used to deliver async page faults.
12863 		 */
12864 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12865 	} else {
12866 		/*
12867 		 * Play it safe in case the guest temporarily disables paging.
12868 		 * The real mode IDT in particular is unlikely to have a #PF
12869 		 * exception setup.
12870 		 */
12871 		return is_paging(vcpu);
12872 	}
12873 }
12874 
12875 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12876 {
12877 	if (unlikely(!lapic_in_kernel(vcpu) ||
12878 		     kvm_event_needs_reinjection(vcpu) ||
12879 		     kvm_is_exception_pending(vcpu)))
12880 		return false;
12881 
12882 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12883 		return false;
12884 
12885 	/*
12886 	 * If interrupts are off we cannot even use an artificial
12887 	 * halt state.
12888 	 */
12889 	return kvm_arch_interrupt_allowed(vcpu);
12890 }
12891 
12892 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12893 				     struct kvm_async_pf *work)
12894 {
12895 	struct x86_exception fault;
12896 
12897 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12898 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12899 
12900 	if (kvm_can_deliver_async_pf(vcpu) &&
12901 	    !apf_put_user_notpresent(vcpu)) {
12902 		fault.vector = PF_VECTOR;
12903 		fault.error_code_valid = true;
12904 		fault.error_code = 0;
12905 		fault.nested_page_fault = false;
12906 		fault.address = work->arch.token;
12907 		fault.async_page_fault = true;
12908 		kvm_inject_page_fault(vcpu, &fault);
12909 		return true;
12910 	} else {
12911 		/*
12912 		 * It is not possible to deliver a paravirtualized asynchronous
12913 		 * page fault, but putting the guest in an artificial halt state
12914 		 * can be beneficial nevertheless: if an interrupt arrives, we
12915 		 * can deliver it timely and perhaps the guest will schedule
12916 		 * another process.  When the instruction that triggered a page
12917 		 * fault is retried, hopefully the page will be ready in the host.
12918 		 */
12919 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12920 		return false;
12921 	}
12922 }
12923 
12924 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12925 				 struct kvm_async_pf *work)
12926 {
12927 	struct kvm_lapic_irq irq = {
12928 		.delivery_mode = APIC_DM_FIXED,
12929 		.vector = vcpu->arch.apf.vec
12930 	};
12931 
12932 	if (work->wakeup_all)
12933 		work->arch.token = ~0; /* broadcast wakeup */
12934 	else
12935 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12936 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12937 
12938 	if ((work->wakeup_all || work->notpresent_injected) &&
12939 	    kvm_pv_async_pf_enabled(vcpu) &&
12940 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12941 		vcpu->arch.apf.pageready_pending = true;
12942 		kvm_apic_set_irq(vcpu, &irq, NULL);
12943 	}
12944 
12945 	vcpu->arch.apf.halted = false;
12946 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12947 }
12948 
12949 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12950 {
12951 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12952 	if (!vcpu->arch.apf.pageready_pending)
12953 		kvm_vcpu_kick(vcpu);
12954 }
12955 
12956 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12957 {
12958 	if (!kvm_pv_async_pf_enabled(vcpu))
12959 		return true;
12960 	else
12961 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12962 }
12963 
12964 void kvm_arch_start_assignment(struct kvm *kvm)
12965 {
12966 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12967 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12968 }
12969 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12970 
12971 void kvm_arch_end_assignment(struct kvm *kvm)
12972 {
12973 	atomic_dec(&kvm->arch.assigned_device_count);
12974 }
12975 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12976 
12977 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12978 {
12979 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12980 }
12981 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12982 
12983 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12984 {
12985 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12986 }
12987 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12988 
12989 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12990 {
12991 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12992 }
12993 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12994 
12995 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12996 {
12997 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12998 }
12999 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13000 
13001 bool kvm_arch_has_irq_bypass(void)
13002 {
13003 	return true;
13004 }
13005 
13006 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13007 				      struct irq_bypass_producer *prod)
13008 {
13009 	struct kvm_kernel_irqfd *irqfd =
13010 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13011 	int ret;
13012 
13013 	irqfd->producer = prod;
13014 	kvm_arch_start_assignment(irqfd->kvm);
13015 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13016 					 prod->irq, irqfd->gsi, 1);
13017 
13018 	if (ret)
13019 		kvm_arch_end_assignment(irqfd->kvm);
13020 
13021 	return ret;
13022 }
13023 
13024 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13025 				      struct irq_bypass_producer *prod)
13026 {
13027 	int ret;
13028 	struct kvm_kernel_irqfd *irqfd =
13029 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13030 
13031 	WARN_ON(irqfd->producer != prod);
13032 	irqfd->producer = NULL;
13033 
13034 	/*
13035 	 * When producer of consumer is unregistered, we change back to
13036 	 * remapped mode, so we can re-use the current implementation
13037 	 * when the irq is masked/disabled or the consumer side (KVM
13038 	 * int this case doesn't want to receive the interrupts.
13039 	*/
13040 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13041 	if (ret)
13042 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13043 		       " fails: %d\n", irqfd->consumer.token, ret);
13044 
13045 	kvm_arch_end_assignment(irqfd->kvm);
13046 }
13047 
13048 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13049 				   uint32_t guest_irq, bool set)
13050 {
13051 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13052 }
13053 
13054 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13055 				  struct kvm_kernel_irq_routing_entry *new)
13056 {
13057 	if (new->type != KVM_IRQ_ROUTING_MSI)
13058 		return true;
13059 
13060 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13061 }
13062 
13063 bool kvm_vector_hashing_enabled(void)
13064 {
13065 	return vector_hashing;
13066 }
13067 
13068 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13069 {
13070 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13071 }
13072 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13073 
13074 
13075 int kvm_spec_ctrl_test_value(u64 value)
13076 {
13077 	/*
13078 	 * test that setting IA32_SPEC_CTRL to given value
13079 	 * is allowed by the host processor
13080 	 */
13081 
13082 	u64 saved_value;
13083 	unsigned long flags;
13084 	int ret = 0;
13085 
13086 	local_irq_save(flags);
13087 
13088 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13089 		ret = 1;
13090 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13091 		ret = 1;
13092 	else
13093 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13094 
13095 	local_irq_restore(flags);
13096 
13097 	return ret;
13098 }
13099 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13100 
13101 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13102 {
13103 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13104 	struct x86_exception fault;
13105 	u64 access = error_code &
13106 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13107 
13108 	if (!(error_code & PFERR_PRESENT_MASK) ||
13109 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13110 		/*
13111 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13112 		 * tables probably do not match the TLB.  Just proceed
13113 		 * with the error code that the processor gave.
13114 		 */
13115 		fault.vector = PF_VECTOR;
13116 		fault.error_code_valid = true;
13117 		fault.error_code = error_code;
13118 		fault.nested_page_fault = false;
13119 		fault.address = gva;
13120 		fault.async_page_fault = false;
13121 	}
13122 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13123 }
13124 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13125 
13126 /*
13127  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13128  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13129  * indicates whether exit to userspace is needed.
13130  */
13131 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13132 			      struct x86_exception *e)
13133 {
13134 	if (r == X86EMUL_PROPAGATE_FAULT) {
13135 		if (KVM_BUG_ON(!e, vcpu->kvm))
13136 			return -EIO;
13137 
13138 		kvm_inject_emulated_page_fault(vcpu, e);
13139 		return 1;
13140 	}
13141 
13142 	/*
13143 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13144 	 * while handling a VMX instruction KVM could've handled the request
13145 	 * correctly by exiting to userspace and performing I/O but there
13146 	 * doesn't seem to be a real use-case behind such requests, just return
13147 	 * KVM_EXIT_INTERNAL_ERROR for now.
13148 	 */
13149 	kvm_prepare_emulation_failure_exit(vcpu);
13150 
13151 	return 0;
13152 }
13153 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13154 
13155 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13156 {
13157 	bool pcid_enabled;
13158 	struct x86_exception e;
13159 	struct {
13160 		u64 pcid;
13161 		u64 gla;
13162 	} operand;
13163 	int r;
13164 
13165 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13166 	if (r != X86EMUL_CONTINUE)
13167 		return kvm_handle_memory_failure(vcpu, r, &e);
13168 
13169 	if (operand.pcid >> 12 != 0) {
13170 		kvm_inject_gp(vcpu, 0);
13171 		return 1;
13172 	}
13173 
13174 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13175 
13176 	switch (type) {
13177 	case INVPCID_TYPE_INDIV_ADDR:
13178 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13179 		    is_noncanonical_address(operand.gla, vcpu)) {
13180 			kvm_inject_gp(vcpu, 0);
13181 			return 1;
13182 		}
13183 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13184 		return kvm_skip_emulated_instruction(vcpu);
13185 
13186 	case INVPCID_TYPE_SINGLE_CTXT:
13187 		if (!pcid_enabled && (operand.pcid != 0)) {
13188 			kvm_inject_gp(vcpu, 0);
13189 			return 1;
13190 		}
13191 
13192 		kvm_invalidate_pcid(vcpu, operand.pcid);
13193 		return kvm_skip_emulated_instruction(vcpu);
13194 
13195 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13196 		/*
13197 		 * Currently, KVM doesn't mark global entries in the shadow
13198 		 * page tables, so a non-global flush just degenerates to a
13199 		 * global flush. If needed, we could optimize this later by
13200 		 * keeping track of global entries in shadow page tables.
13201 		 */
13202 
13203 		fallthrough;
13204 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13205 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13206 		return kvm_skip_emulated_instruction(vcpu);
13207 
13208 	default:
13209 		kvm_inject_gp(vcpu, 0);
13210 		return 1;
13211 	}
13212 }
13213 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13214 
13215 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13216 {
13217 	struct kvm_run *run = vcpu->run;
13218 	struct kvm_mmio_fragment *frag;
13219 	unsigned int len;
13220 
13221 	BUG_ON(!vcpu->mmio_needed);
13222 
13223 	/* Complete previous fragment */
13224 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13225 	len = min(8u, frag->len);
13226 	if (!vcpu->mmio_is_write)
13227 		memcpy(frag->data, run->mmio.data, len);
13228 
13229 	if (frag->len <= 8) {
13230 		/* Switch to the next fragment. */
13231 		frag++;
13232 		vcpu->mmio_cur_fragment++;
13233 	} else {
13234 		/* Go forward to the next mmio piece. */
13235 		frag->data += len;
13236 		frag->gpa += len;
13237 		frag->len -= len;
13238 	}
13239 
13240 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13241 		vcpu->mmio_needed = 0;
13242 
13243 		// VMG change, at this point, we're always done
13244 		// RIP has already been advanced
13245 		return 1;
13246 	}
13247 
13248 	// More MMIO is needed
13249 	run->mmio.phys_addr = frag->gpa;
13250 	run->mmio.len = min(8u, frag->len);
13251 	run->mmio.is_write = vcpu->mmio_is_write;
13252 	if (run->mmio.is_write)
13253 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13254 	run->exit_reason = KVM_EXIT_MMIO;
13255 
13256 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13257 
13258 	return 0;
13259 }
13260 
13261 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13262 			  void *data)
13263 {
13264 	int handled;
13265 	struct kvm_mmio_fragment *frag;
13266 
13267 	if (!data)
13268 		return -EINVAL;
13269 
13270 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13271 	if (handled == bytes)
13272 		return 1;
13273 
13274 	bytes -= handled;
13275 	gpa += handled;
13276 	data += handled;
13277 
13278 	/*TODO: Check if need to increment number of frags */
13279 	frag = vcpu->mmio_fragments;
13280 	vcpu->mmio_nr_fragments = 1;
13281 	frag->len = bytes;
13282 	frag->gpa = gpa;
13283 	frag->data = data;
13284 
13285 	vcpu->mmio_needed = 1;
13286 	vcpu->mmio_cur_fragment = 0;
13287 
13288 	vcpu->run->mmio.phys_addr = gpa;
13289 	vcpu->run->mmio.len = min(8u, frag->len);
13290 	vcpu->run->mmio.is_write = 1;
13291 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13292 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13293 
13294 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13295 
13296 	return 0;
13297 }
13298 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13299 
13300 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13301 			 void *data)
13302 {
13303 	int handled;
13304 	struct kvm_mmio_fragment *frag;
13305 
13306 	if (!data)
13307 		return -EINVAL;
13308 
13309 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13310 	if (handled == bytes)
13311 		return 1;
13312 
13313 	bytes -= handled;
13314 	gpa += handled;
13315 	data += handled;
13316 
13317 	/*TODO: Check if need to increment number of frags */
13318 	frag = vcpu->mmio_fragments;
13319 	vcpu->mmio_nr_fragments = 1;
13320 	frag->len = bytes;
13321 	frag->gpa = gpa;
13322 	frag->data = data;
13323 
13324 	vcpu->mmio_needed = 1;
13325 	vcpu->mmio_cur_fragment = 0;
13326 
13327 	vcpu->run->mmio.phys_addr = gpa;
13328 	vcpu->run->mmio.len = min(8u, frag->len);
13329 	vcpu->run->mmio.is_write = 0;
13330 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13331 
13332 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13333 
13334 	return 0;
13335 }
13336 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13337 
13338 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13339 {
13340 	vcpu->arch.sev_pio_count -= count;
13341 	vcpu->arch.sev_pio_data += count * size;
13342 }
13343 
13344 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13345 			   unsigned int port);
13346 
13347 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13348 {
13349 	int size = vcpu->arch.pio.size;
13350 	int port = vcpu->arch.pio.port;
13351 
13352 	vcpu->arch.pio.count = 0;
13353 	if (vcpu->arch.sev_pio_count)
13354 		return kvm_sev_es_outs(vcpu, size, port);
13355 	return 1;
13356 }
13357 
13358 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13359 			   unsigned int port)
13360 {
13361 	for (;;) {
13362 		unsigned int count =
13363 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13364 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13365 
13366 		/* memcpy done already by emulator_pio_out.  */
13367 		advance_sev_es_emulated_pio(vcpu, count, size);
13368 		if (!ret)
13369 			break;
13370 
13371 		/* Emulation done by the kernel.  */
13372 		if (!vcpu->arch.sev_pio_count)
13373 			return 1;
13374 	}
13375 
13376 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13377 	return 0;
13378 }
13379 
13380 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13381 			  unsigned int port);
13382 
13383 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13384 {
13385 	unsigned count = vcpu->arch.pio.count;
13386 	int size = vcpu->arch.pio.size;
13387 	int port = vcpu->arch.pio.port;
13388 
13389 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13390 	advance_sev_es_emulated_pio(vcpu, count, size);
13391 	if (vcpu->arch.sev_pio_count)
13392 		return kvm_sev_es_ins(vcpu, size, port);
13393 	return 1;
13394 }
13395 
13396 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13397 			  unsigned int port)
13398 {
13399 	for (;;) {
13400 		unsigned int count =
13401 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13402 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13403 			break;
13404 
13405 		/* Emulation done by the kernel.  */
13406 		advance_sev_es_emulated_pio(vcpu, count, size);
13407 		if (!vcpu->arch.sev_pio_count)
13408 			return 1;
13409 	}
13410 
13411 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13412 	return 0;
13413 }
13414 
13415 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13416 			 unsigned int port, void *data,  unsigned int count,
13417 			 int in)
13418 {
13419 	vcpu->arch.sev_pio_data = data;
13420 	vcpu->arch.sev_pio_count = count;
13421 	return in ? kvm_sev_es_ins(vcpu, size, port)
13422 		  : kvm_sev_es_outs(vcpu, size, port);
13423 }
13424 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13425 
13426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13455 
13456 static int __init kvm_x86_init(void)
13457 {
13458 	kvm_mmu_x86_module_init();
13459 	return 0;
13460 }
13461 module_init(kvm_x86_init);
13462 
13463 static void __exit kvm_x86_exit(void)
13464 {
13465 	/*
13466 	 * If module_init() is implemented, module_exit() must also be
13467 	 * implemented to allow module unload.
13468 	 */
13469 }
13470 module_exit(kvm_x86_exit);
13471