1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 #include "smm.h" 34 35 #include <linux/clocksource.h> 36 #include <linux/interrupt.h> 37 #include <linux/kvm.h> 38 #include <linux/fs.h> 39 #include <linux/vmalloc.h> 40 #include <linux/export.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mman.h> 43 #include <linux/highmem.h> 44 #include <linux/iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 91 struct kvm_caps kvm_caps __read_mostly = { 92 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 93 }; 94 EXPORT_SYMBOL_GPL(kvm_caps); 95 96 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 97 98 #define emul_to_vcpu(ctxt) \ 99 ((struct kvm_vcpu *)(ctxt)->vcpu) 100 101 /* EFER defaults: 102 * - enable syscall per default because its emulated by KVM 103 * - enable LME and LMA per default on 64 bit KVM 104 */ 105 #ifdef CONFIG_X86_64 106 static 107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 108 #else 109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 110 #endif 111 112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 113 114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 115 116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 117 118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 119 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 120 121 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 122 static void process_nmi(struct kvm_vcpu *vcpu); 123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 124 static void store_regs(struct kvm_vcpu *vcpu); 125 static int sync_regs(struct kvm_vcpu *vcpu); 126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 127 128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 131 struct kvm_x86_ops kvm_x86_ops __read_mostly; 132 133 #define KVM_X86_OP(func) \ 134 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 135 *(((struct kvm_x86_ops *)0)->func)); 136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 138 #include <asm/kvm-x86-ops.h> 139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 141 142 static bool __read_mostly ignore_msrs = 0; 143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 144 145 bool __read_mostly report_ignored_msrs = true; 146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 147 EXPORT_SYMBOL_GPL(report_ignored_msrs); 148 149 unsigned int min_timer_period_us = 200; 150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly kvmclock_periodic_sync = true; 153 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 154 155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 156 static u32 __read_mostly tsc_tolerance_ppm = 250; 157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 158 159 /* 160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 161 * adaptive tuning starting from default advancement of 1000ns. '0' disables 162 * advancement entirely. Any other value is used as-is and disables adaptive 163 * tuning, i.e. allows privileged userspace to set an exact advancement time. 164 */ 165 static int __read_mostly lapic_timer_advance_ns = -1; 166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, S_IRUGO); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, S_IRUGO); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* 195 * Restoring the host value for MSRs that are only consumed when running in 196 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 197 * returns to userspace, i.e. the kernel can run with the guest's value. 198 */ 199 #define KVM_MAX_NR_USER_RETURN_MSRS 16 200 201 struct kvm_user_return_msrs { 202 struct user_return_notifier urn; 203 bool registered; 204 struct kvm_user_return_msr_values { 205 u64 host; 206 u64 curr; 207 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 208 }; 209 210 u32 __read_mostly kvm_nr_uret_msrs; 211 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 212 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 213 static struct kvm_user_return_msrs __percpu *user_return_msrs; 214 215 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 216 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 217 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 218 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 219 220 u64 __read_mostly host_efer; 221 EXPORT_SYMBOL_GPL(host_efer); 222 223 bool __read_mostly allow_smaller_maxphyaddr = 0; 224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 225 226 bool __read_mostly enable_apicv = true; 227 EXPORT_SYMBOL_GPL(enable_apicv); 228 229 u64 __read_mostly host_xss; 230 EXPORT_SYMBOL_GPL(host_xss); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 u64 __read_mostly host_xcr0; 306 307 static struct kmem_cache *x86_emulator_cache; 308 309 /* 310 * When called, it means the previous get/set msr reached an invalid msr. 311 * Return true if we want to ignore/silent this failed msr access. 312 */ 313 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 314 { 315 const char *op = write ? "wrmsr" : "rdmsr"; 316 317 if (ignore_msrs) { 318 if (report_ignored_msrs) 319 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 320 op, msr, data); 321 /* Mask the error */ 322 return true; 323 } else { 324 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 325 op, msr, data); 326 return false; 327 } 328 } 329 330 static struct kmem_cache *kvm_alloc_emulator_cache(void) 331 { 332 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 333 unsigned int size = sizeof(struct x86_emulate_ctxt); 334 335 return kmem_cache_create_usercopy("x86_emulator", size, 336 __alignof__(struct x86_emulate_ctxt), 337 SLAB_ACCOUNT, useroffset, 338 size - useroffset, NULL); 339 } 340 341 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 342 343 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 344 { 345 int i; 346 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 347 vcpu->arch.apf.gfns[i] = ~0; 348 } 349 350 static void kvm_on_user_return(struct user_return_notifier *urn) 351 { 352 unsigned slot; 353 struct kvm_user_return_msrs *msrs 354 = container_of(urn, struct kvm_user_return_msrs, urn); 355 struct kvm_user_return_msr_values *values; 356 unsigned long flags; 357 358 /* 359 * Disabling irqs at this point since the following code could be 360 * interrupted and executed through kvm_arch_hardware_disable() 361 */ 362 local_irq_save(flags); 363 if (msrs->registered) { 364 msrs->registered = false; 365 user_return_notifier_unregister(urn); 366 } 367 local_irq_restore(flags); 368 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 369 values = &msrs->values[slot]; 370 if (values->host != values->curr) { 371 wrmsrl(kvm_uret_msrs_list[slot], values->host); 372 values->curr = values->host; 373 } 374 } 375 } 376 377 static int kvm_probe_user_return_msr(u32 msr) 378 { 379 u64 val; 380 int ret; 381 382 preempt_disable(); 383 ret = rdmsrl_safe(msr, &val); 384 if (ret) 385 goto out; 386 ret = wrmsrl_safe(msr, val); 387 out: 388 preempt_enable(); 389 return ret; 390 } 391 392 int kvm_add_user_return_msr(u32 msr) 393 { 394 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 395 396 if (kvm_probe_user_return_msr(msr)) 397 return -1; 398 399 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 400 return kvm_nr_uret_msrs++; 401 } 402 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 403 404 int kvm_find_user_return_msr(u32 msr) 405 { 406 int i; 407 408 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 409 if (kvm_uret_msrs_list[i] == msr) 410 return i; 411 } 412 return -1; 413 } 414 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 415 416 static void kvm_user_return_msr_cpu_online(void) 417 { 418 unsigned int cpu = smp_processor_id(); 419 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 420 u64 value; 421 int i; 422 423 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 424 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 425 msrs->values[i].host = value; 426 msrs->values[i].curr = value; 427 } 428 } 429 430 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 431 { 432 unsigned int cpu = smp_processor_id(); 433 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 434 int err; 435 436 value = (value & mask) | (msrs->values[slot].host & ~mask); 437 if (value == msrs->values[slot].curr) 438 return 0; 439 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 440 if (err) 441 return 1; 442 443 msrs->values[slot].curr = value; 444 if (!msrs->registered) { 445 msrs->urn.on_user_return = kvm_on_user_return; 446 user_return_notifier_register(&msrs->urn); 447 msrs->registered = true; 448 } 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 452 453 static void drop_user_return_notifiers(void) 454 { 455 unsigned int cpu = smp_processor_id(); 456 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 457 458 if (msrs->registered) 459 kvm_on_user_return(&msrs->urn); 460 } 461 462 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 463 { 464 return vcpu->arch.apic_base; 465 } 466 467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 468 { 469 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 470 } 471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 472 473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 479 480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 481 return 1; 482 if (!msr_info->host_initiated) { 483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 484 return 1; 485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 486 return 1; 487 } 488 489 kvm_lapic_set_base(vcpu, msr_info->data); 490 kvm_recalculate_apic_map(vcpu->kvm); 491 return 0; 492 } 493 494 /* 495 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 496 * 497 * Hardware virtualization extension instructions may fault if a reboot turns 498 * off virtualization while processes are running. Usually after catching the 499 * fault we just panic; during reboot instead the instruction is ignored. 500 */ 501 noinstr void kvm_spurious_fault(void) 502 { 503 /* Fault while not rebooting. We want the trace. */ 504 BUG_ON(!kvm_rebooting); 505 } 506 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 507 508 #define EXCPT_BENIGN 0 509 #define EXCPT_CONTRIBUTORY 1 510 #define EXCPT_PF 2 511 512 static int exception_class(int vector) 513 { 514 switch (vector) { 515 case PF_VECTOR: 516 return EXCPT_PF; 517 case DE_VECTOR: 518 case TS_VECTOR: 519 case NP_VECTOR: 520 case SS_VECTOR: 521 case GP_VECTOR: 522 return EXCPT_CONTRIBUTORY; 523 default: 524 break; 525 } 526 return EXCPT_BENIGN; 527 } 528 529 #define EXCPT_FAULT 0 530 #define EXCPT_TRAP 1 531 #define EXCPT_ABORT 2 532 #define EXCPT_INTERRUPT 3 533 #define EXCPT_DB 4 534 535 static int exception_type(int vector) 536 { 537 unsigned int mask; 538 539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 540 return EXCPT_INTERRUPT; 541 542 mask = 1 << vector; 543 544 /* 545 * #DBs can be trap-like or fault-like, the caller must check other CPU 546 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 547 */ 548 if (mask & (1 << DB_VECTOR)) 549 return EXCPT_DB; 550 551 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 552 return EXCPT_TRAP; 553 554 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 555 return EXCPT_ABORT; 556 557 /* Reserved exceptions will result in fault */ 558 return EXCPT_FAULT; 559 } 560 561 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 562 struct kvm_queued_exception *ex) 563 { 564 if (!ex->has_payload) 565 return; 566 567 switch (ex->vector) { 568 case DB_VECTOR: 569 /* 570 * "Certain debug exceptions may clear bit 0-3. The 571 * remaining contents of the DR6 register are never 572 * cleared by the processor". 573 */ 574 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 575 /* 576 * In order to reflect the #DB exception payload in guest 577 * dr6, three components need to be considered: active low 578 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 579 * DR6_BS and DR6_BT) 580 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 581 * In the target guest dr6: 582 * FIXED_1 bits should always be set. 583 * Active low bits should be cleared if 1-setting in payload. 584 * Active high bits should be set if 1-setting in payload. 585 * 586 * Note, the payload is compatible with the pending debug 587 * exceptions/exit qualification under VMX, that active_low bits 588 * are active high in payload. 589 * So they need to be flipped for DR6. 590 */ 591 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 592 vcpu->arch.dr6 |= ex->payload; 593 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 594 595 /* 596 * The #DB payload is defined as compatible with the 'pending 597 * debug exceptions' field under VMX, not DR6. While bit 12 is 598 * defined in the 'pending debug exceptions' field (enabled 599 * breakpoint), it is reserved and must be zero in DR6. 600 */ 601 vcpu->arch.dr6 &= ~BIT(12); 602 break; 603 case PF_VECTOR: 604 vcpu->arch.cr2 = ex->payload; 605 break; 606 } 607 608 ex->has_payload = false; 609 ex->payload = 0; 610 } 611 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 612 613 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 614 bool has_error_code, u32 error_code, 615 bool has_payload, unsigned long payload) 616 { 617 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 618 619 ex->vector = vector; 620 ex->injected = false; 621 ex->pending = true; 622 ex->has_error_code = has_error_code; 623 ex->error_code = error_code; 624 ex->has_payload = has_payload; 625 ex->payload = payload; 626 } 627 628 /* Forcibly leave the nested mode in cases like a vCPU reset */ 629 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 630 { 631 kvm_x86_ops.nested_ops->leave_nested(vcpu); 632 } 633 634 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 635 unsigned nr, bool has_error, u32 error_code, 636 bool has_payload, unsigned long payload, bool reinject) 637 { 638 u32 prev_nr; 639 int class1, class2; 640 641 kvm_make_request(KVM_REQ_EVENT, vcpu); 642 643 /* 644 * If the exception is destined for L2 and isn't being reinjected, 645 * morph it to a VM-Exit if L1 wants to intercept the exception. A 646 * previously injected exception is not checked because it was checked 647 * when it was original queued, and re-checking is incorrect if _L1_ 648 * injected the exception, in which case it's exempt from interception. 649 */ 650 if (!reinject && is_guest_mode(vcpu) && 651 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 652 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 653 has_payload, payload); 654 return; 655 } 656 657 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 658 queue: 659 if (reinject) { 660 /* 661 * On VM-Entry, an exception can be pending if and only 662 * if event injection was blocked by nested_run_pending. 663 * In that case, however, vcpu_enter_guest() requests an 664 * immediate exit, and the guest shouldn't proceed far 665 * enough to need reinjection. 666 */ 667 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 668 vcpu->arch.exception.injected = true; 669 if (WARN_ON_ONCE(has_payload)) { 670 /* 671 * A reinjected event has already 672 * delivered its payload. 673 */ 674 has_payload = false; 675 payload = 0; 676 } 677 } else { 678 vcpu->arch.exception.pending = true; 679 vcpu->arch.exception.injected = false; 680 } 681 vcpu->arch.exception.has_error_code = has_error; 682 vcpu->arch.exception.vector = nr; 683 vcpu->arch.exception.error_code = error_code; 684 vcpu->arch.exception.has_payload = has_payload; 685 vcpu->arch.exception.payload = payload; 686 if (!is_guest_mode(vcpu)) 687 kvm_deliver_exception_payload(vcpu, 688 &vcpu->arch.exception); 689 return; 690 } 691 692 /* to check exception */ 693 prev_nr = vcpu->arch.exception.vector; 694 if (prev_nr == DF_VECTOR) { 695 /* triple fault -> shutdown */ 696 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 697 return; 698 } 699 class1 = exception_class(prev_nr); 700 class2 = exception_class(nr); 701 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 702 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 703 /* 704 * Synthesize #DF. Clear the previously injected or pending 705 * exception so as not to incorrectly trigger shutdown. 706 */ 707 vcpu->arch.exception.injected = false; 708 vcpu->arch.exception.pending = false; 709 710 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 711 } else { 712 /* replace previous exception with a new one in a hope 713 that instruction re-execution will regenerate lost 714 exception */ 715 goto queue; 716 } 717 } 718 719 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 720 { 721 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 722 } 723 EXPORT_SYMBOL_GPL(kvm_queue_exception); 724 725 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 728 } 729 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 730 731 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 732 unsigned long payload) 733 { 734 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 735 } 736 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 737 738 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 739 u32 error_code, unsigned long payload) 740 { 741 kvm_multiple_exception(vcpu, nr, true, error_code, 742 true, payload, false); 743 } 744 745 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 746 { 747 if (err) 748 kvm_inject_gp(vcpu, 0); 749 else 750 return kvm_skip_emulated_instruction(vcpu); 751 752 return 1; 753 } 754 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 755 756 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 757 { 758 if (err) { 759 kvm_inject_gp(vcpu, 0); 760 return 1; 761 } 762 763 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 764 EMULTYPE_COMPLETE_USER_EXIT); 765 } 766 767 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 768 { 769 ++vcpu->stat.pf_guest; 770 771 /* 772 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 773 * whether or not L1 wants to intercept "regular" #PF. 774 */ 775 if (is_guest_mode(vcpu) && fault->async_page_fault) 776 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 777 true, fault->error_code, 778 true, fault->address); 779 else 780 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 781 fault->address); 782 } 783 784 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 785 struct x86_exception *fault) 786 { 787 struct kvm_mmu *fault_mmu; 788 WARN_ON_ONCE(fault->vector != PF_VECTOR); 789 790 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 791 vcpu->arch.walk_mmu; 792 793 /* 794 * Invalidate the TLB entry for the faulting address, if it exists, 795 * else the access will fault indefinitely (and to emulate hardware). 796 */ 797 if ((fault->error_code & PFERR_PRESENT_MASK) && 798 !(fault->error_code & PFERR_RSVD_MASK)) 799 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 800 fault_mmu->root.hpa); 801 802 fault_mmu->inject_page_fault(vcpu, fault); 803 } 804 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 805 806 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 807 { 808 atomic_inc(&vcpu->arch.nmi_queued); 809 kvm_make_request(KVM_REQ_NMI, vcpu); 810 } 811 812 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 813 { 814 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 815 } 816 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 817 818 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 821 } 822 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 823 824 /* 825 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 826 * a #GP and return false. 827 */ 828 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 829 { 830 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 831 return true; 832 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 833 return false; 834 } 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1442 1443 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1444 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1448 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1452 1453 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1454 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1455 1456 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1457 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1458 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1459 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1460 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1461 1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1463 }; 1464 1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1466 static unsigned num_msrs_to_save; 1467 1468 static const u32 emulated_msrs_all[] = { 1469 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1470 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1471 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1472 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1473 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1474 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1475 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1476 HV_X64_MSR_RESET, 1477 HV_X64_MSR_VP_INDEX, 1478 HV_X64_MSR_VP_RUNTIME, 1479 HV_X64_MSR_SCONTROL, 1480 HV_X64_MSR_STIMER0_CONFIG, 1481 HV_X64_MSR_VP_ASSIST_PAGE, 1482 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1483 HV_X64_MSR_TSC_EMULATION_STATUS, 1484 HV_X64_MSR_SYNDBG_OPTIONS, 1485 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1486 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1487 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1488 1489 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1490 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1491 1492 MSR_IA32_TSC_ADJUST, 1493 MSR_IA32_TSC_DEADLINE, 1494 MSR_IA32_ARCH_CAPABILITIES, 1495 MSR_IA32_PERF_CAPABILITIES, 1496 MSR_IA32_MISC_ENABLE, 1497 MSR_IA32_MCG_STATUS, 1498 MSR_IA32_MCG_CTL, 1499 MSR_IA32_MCG_EXT_CTL, 1500 MSR_IA32_SMBASE, 1501 MSR_SMI_COUNT, 1502 MSR_PLATFORM_INFO, 1503 MSR_MISC_FEATURES_ENABLES, 1504 MSR_AMD64_VIRT_SPEC_CTRL, 1505 MSR_AMD64_TSC_RATIO, 1506 MSR_IA32_POWER_CTL, 1507 MSR_IA32_UCODE_REV, 1508 1509 /* 1510 * The following list leaves out MSRs whose values are determined 1511 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1512 * We always support the "true" VMX control MSRs, even if the host 1513 * processor does not, so I am putting these registers here rather 1514 * than in msrs_to_save_all. 1515 */ 1516 MSR_IA32_VMX_BASIC, 1517 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1518 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1519 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1520 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1521 MSR_IA32_VMX_MISC, 1522 MSR_IA32_VMX_CR0_FIXED0, 1523 MSR_IA32_VMX_CR4_FIXED0, 1524 MSR_IA32_VMX_VMCS_ENUM, 1525 MSR_IA32_VMX_PROCBASED_CTLS2, 1526 MSR_IA32_VMX_EPT_VPID_CAP, 1527 MSR_IA32_VMX_VMFUNC, 1528 1529 MSR_K7_HWCR, 1530 MSR_KVM_POLL_CONTROL, 1531 }; 1532 1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1534 static unsigned num_emulated_msrs; 1535 1536 /* 1537 * List of msr numbers which are used to expose MSR-based features that 1538 * can be used by a hypervisor to validate requested CPU features. 1539 */ 1540 static const u32 msr_based_features_all[] = { 1541 MSR_IA32_VMX_BASIC, 1542 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1543 MSR_IA32_VMX_PINBASED_CTLS, 1544 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1545 MSR_IA32_VMX_PROCBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1547 MSR_IA32_VMX_EXIT_CTLS, 1548 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1549 MSR_IA32_VMX_ENTRY_CTLS, 1550 MSR_IA32_VMX_MISC, 1551 MSR_IA32_VMX_CR0_FIXED0, 1552 MSR_IA32_VMX_CR0_FIXED1, 1553 MSR_IA32_VMX_CR4_FIXED0, 1554 MSR_IA32_VMX_CR4_FIXED1, 1555 MSR_IA32_VMX_VMCS_ENUM, 1556 MSR_IA32_VMX_PROCBASED_CTLS2, 1557 MSR_IA32_VMX_EPT_VPID_CAP, 1558 MSR_IA32_VMX_VMFUNC, 1559 1560 MSR_AMD64_DE_CFG, 1561 MSR_IA32_UCODE_REV, 1562 MSR_IA32_ARCH_CAPABILITIES, 1563 MSR_IA32_PERF_CAPABILITIES, 1564 }; 1565 1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1567 static unsigned int num_msr_based_features; 1568 1569 /* 1570 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1571 * does not yet virtualize. These include: 1572 * 10 - MISC_PACKAGE_CTRLS 1573 * 11 - ENERGY_FILTERING_CTL 1574 * 12 - DOITM 1575 * 18 - FB_CLEAR_CTRL 1576 * 21 - XAPIC_DISABLE_STATUS 1577 * 23 - OVERCLOCKING_STATUS 1578 */ 1579 1580 #define KVM_SUPPORTED_ARCH_CAP \ 1581 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1582 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1583 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1584 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1585 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1586 1587 static u64 kvm_get_arch_capabilities(void) 1588 { 1589 u64 data = 0; 1590 1591 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1592 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1593 data &= KVM_SUPPORTED_ARCH_CAP; 1594 } 1595 1596 /* 1597 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1598 * the nested hypervisor runs with NX huge pages. If it is not, 1599 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1600 * L1 guests, so it need not worry about its own (L2) guests. 1601 */ 1602 data |= ARCH_CAP_PSCHANGE_MC_NO; 1603 1604 /* 1605 * If we're doing cache flushes (either "always" or "cond") 1606 * we will do one whenever the guest does a vmlaunch/vmresume. 1607 * If an outer hypervisor is doing the cache flush for us 1608 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1609 * capability to the guest too, and if EPT is disabled we're not 1610 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1611 * require a nested hypervisor to do a flush of its own. 1612 */ 1613 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1614 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1615 1616 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1617 data |= ARCH_CAP_RDCL_NO; 1618 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1619 data |= ARCH_CAP_SSB_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1621 data |= ARCH_CAP_MDS_NO; 1622 1623 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1624 /* 1625 * If RTM=0 because the kernel has disabled TSX, the host might 1626 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1627 * and therefore knows that there cannot be TAA) but keep 1628 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1629 * and we want to allow migrating those guests to tsx=off hosts. 1630 */ 1631 data &= ~ARCH_CAP_TAA_NO; 1632 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1633 data |= ARCH_CAP_TAA_NO; 1634 } else { 1635 /* 1636 * Nothing to do here; we emulate TSX_CTRL if present on the 1637 * host so the guest can choose between disabling TSX or 1638 * using VERW to clear CPU buffers. 1639 */ 1640 } 1641 1642 return data; 1643 } 1644 1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1646 { 1647 switch (msr->index) { 1648 case MSR_IA32_ARCH_CAPABILITIES: 1649 msr->data = kvm_get_arch_capabilities(); 1650 break; 1651 case MSR_IA32_PERF_CAPABILITIES: 1652 msr->data = kvm_caps.supported_perf_cap; 1653 break; 1654 case MSR_IA32_UCODE_REV: 1655 rdmsrl_safe(msr->index, &msr->data); 1656 break; 1657 default: 1658 return static_call(kvm_x86_get_msr_feature)(msr); 1659 } 1660 return 0; 1661 } 1662 1663 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1664 { 1665 struct kvm_msr_entry msr; 1666 int r; 1667 1668 msr.index = index; 1669 r = kvm_get_msr_feature(&msr); 1670 1671 if (r == KVM_MSR_RET_INVALID) { 1672 /* Unconditionally clear the output for simplicity */ 1673 *data = 0; 1674 if (kvm_msr_ignored_check(index, 0, false)) 1675 r = 0; 1676 } 1677 1678 if (r) 1679 return r; 1680 1681 *data = msr.data; 1682 1683 return 0; 1684 } 1685 1686 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1687 { 1688 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1689 return false; 1690 1691 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1692 return false; 1693 1694 if (efer & (EFER_LME | EFER_LMA) && 1695 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1696 return false; 1697 1698 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1699 return false; 1700 1701 return true; 1702 1703 } 1704 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1705 { 1706 if (efer & efer_reserved_bits) 1707 return false; 1708 1709 return __kvm_valid_efer(vcpu, efer); 1710 } 1711 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1712 1713 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1714 { 1715 u64 old_efer = vcpu->arch.efer; 1716 u64 efer = msr_info->data; 1717 int r; 1718 1719 if (efer & efer_reserved_bits) 1720 return 1; 1721 1722 if (!msr_info->host_initiated) { 1723 if (!__kvm_valid_efer(vcpu, efer)) 1724 return 1; 1725 1726 if (is_paging(vcpu) && 1727 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1728 return 1; 1729 } 1730 1731 efer &= ~EFER_LMA; 1732 efer |= vcpu->arch.efer & EFER_LMA; 1733 1734 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1735 if (r) { 1736 WARN_ON(r > 0); 1737 return r; 1738 } 1739 1740 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1741 kvm_mmu_reset_context(vcpu); 1742 1743 return 0; 1744 } 1745 1746 void kvm_enable_efer_bits(u64 mask) 1747 { 1748 efer_reserved_bits &= ~mask; 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1751 1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1753 { 1754 struct kvm_x86_msr_filter *msr_filter; 1755 struct msr_bitmap_range *ranges; 1756 struct kvm *kvm = vcpu->kvm; 1757 bool allowed; 1758 int idx; 1759 u32 i; 1760 1761 /* x2APIC MSRs do not support filtering. */ 1762 if (index >= 0x800 && index <= 0x8ff) 1763 return true; 1764 1765 idx = srcu_read_lock(&kvm->srcu); 1766 1767 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1768 if (!msr_filter) { 1769 allowed = true; 1770 goto out; 1771 } 1772 1773 allowed = msr_filter->default_allow; 1774 ranges = msr_filter->ranges; 1775 1776 for (i = 0; i < msr_filter->count; i++) { 1777 u32 start = ranges[i].base; 1778 u32 end = start + ranges[i].nmsrs; 1779 u32 flags = ranges[i].flags; 1780 unsigned long *bitmap = ranges[i].bitmap; 1781 1782 if ((index >= start) && (index < end) && (flags & type)) { 1783 allowed = !!test_bit(index - start, bitmap); 1784 break; 1785 } 1786 } 1787 1788 out: 1789 srcu_read_unlock(&kvm->srcu, idx); 1790 1791 return allowed; 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1794 1795 /* 1796 * Write @data into the MSR specified by @index. Select MSR specific fault 1797 * checks are bypassed if @host_initiated is %true. 1798 * Returns 0 on success, non-0 otherwise. 1799 * Assumes vcpu_load() was already called. 1800 */ 1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1802 bool host_initiated) 1803 { 1804 struct msr_data msr; 1805 1806 switch (index) { 1807 case MSR_FS_BASE: 1808 case MSR_GS_BASE: 1809 case MSR_KERNEL_GS_BASE: 1810 case MSR_CSTAR: 1811 case MSR_LSTAR: 1812 if (is_noncanonical_address(data, vcpu)) 1813 return 1; 1814 break; 1815 case MSR_IA32_SYSENTER_EIP: 1816 case MSR_IA32_SYSENTER_ESP: 1817 /* 1818 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1819 * non-canonical address is written on Intel but not on 1820 * AMD (which ignores the top 32-bits, because it does 1821 * not implement 64-bit SYSENTER). 1822 * 1823 * 64-bit code should hence be able to write a non-canonical 1824 * value on AMD. Making the address canonical ensures that 1825 * vmentry does not fail on Intel after writing a non-canonical 1826 * value, and that something deterministic happens if the guest 1827 * invokes 64-bit SYSENTER. 1828 */ 1829 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1830 break; 1831 case MSR_TSC_AUX: 1832 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1833 return 1; 1834 1835 if (!host_initiated && 1836 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1837 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1838 return 1; 1839 1840 /* 1841 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1842 * incomplete and conflicting architectural behavior. Current 1843 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1844 * reserved and always read as zeros. Enforce Intel's reserved 1845 * bits check if and only if the guest CPU is Intel, and clear 1846 * the bits in all other cases. This ensures cross-vendor 1847 * migration will provide consistent behavior for the guest. 1848 */ 1849 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1850 return 1; 1851 1852 data = (u32)data; 1853 break; 1854 } 1855 1856 msr.data = data; 1857 msr.index = index; 1858 msr.host_initiated = host_initiated; 1859 1860 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1861 } 1862 1863 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1864 u32 index, u64 data, bool host_initiated) 1865 { 1866 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1867 1868 if (ret == KVM_MSR_RET_INVALID) 1869 if (kvm_msr_ignored_check(index, data, true)) 1870 ret = 0; 1871 1872 return ret; 1873 } 1874 1875 /* 1876 * Read the MSR specified by @index into @data. Select MSR specific fault 1877 * checks are bypassed if @host_initiated is %true. 1878 * Returns 0 on success, non-0 otherwise. 1879 * Assumes vcpu_load() was already called. 1880 */ 1881 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1882 bool host_initiated) 1883 { 1884 struct msr_data msr; 1885 int ret; 1886 1887 switch (index) { 1888 case MSR_TSC_AUX: 1889 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1890 return 1; 1891 1892 if (!host_initiated && 1893 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1894 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1895 return 1; 1896 break; 1897 } 1898 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1903 if (!ret) 1904 *data = msr.data; 1905 return ret; 1906 } 1907 1908 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1909 u32 index, u64 *data, bool host_initiated) 1910 { 1911 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1912 1913 if (ret == KVM_MSR_RET_INVALID) { 1914 /* Unconditionally clear *data for simplicity */ 1915 *data = 0; 1916 if (kvm_msr_ignored_check(index, 0, false)) 1917 ret = 0; 1918 } 1919 1920 return ret; 1921 } 1922 1923 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1924 { 1925 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1926 return KVM_MSR_RET_FILTERED; 1927 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1928 } 1929 1930 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1931 { 1932 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1933 return KVM_MSR_RET_FILTERED; 1934 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1935 } 1936 1937 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1938 { 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_get_msr); 1942 1943 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1944 { 1945 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1946 } 1947 EXPORT_SYMBOL_GPL(kvm_set_msr); 1948 1949 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1950 { 1951 if (!vcpu->run->msr.error) { 1952 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1953 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1954 } 1955 } 1956 1957 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1958 { 1959 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1960 } 1961 1962 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1963 { 1964 complete_userspace_rdmsr(vcpu); 1965 return complete_emulated_msr_access(vcpu); 1966 } 1967 1968 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1969 { 1970 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1971 } 1972 1973 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1974 { 1975 complete_userspace_rdmsr(vcpu); 1976 return complete_fast_msr_access(vcpu); 1977 } 1978 1979 static u64 kvm_msr_reason(int r) 1980 { 1981 switch (r) { 1982 case KVM_MSR_RET_INVALID: 1983 return KVM_MSR_EXIT_REASON_UNKNOWN; 1984 case KVM_MSR_RET_FILTERED: 1985 return KVM_MSR_EXIT_REASON_FILTER; 1986 default: 1987 return KVM_MSR_EXIT_REASON_INVAL; 1988 } 1989 } 1990 1991 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1992 u32 exit_reason, u64 data, 1993 int (*completion)(struct kvm_vcpu *vcpu), 1994 int r) 1995 { 1996 u64 msr_reason = kvm_msr_reason(r); 1997 1998 /* Check if the user wanted to know about this MSR fault */ 1999 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2000 return 0; 2001 2002 vcpu->run->exit_reason = exit_reason; 2003 vcpu->run->msr.error = 0; 2004 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2005 vcpu->run->msr.reason = msr_reason; 2006 vcpu->run->msr.index = index; 2007 vcpu->run->msr.data = data; 2008 vcpu->arch.complete_userspace_io = completion; 2009 2010 return 1; 2011 } 2012 2013 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2014 { 2015 u32 ecx = kvm_rcx_read(vcpu); 2016 u64 data; 2017 int r; 2018 2019 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2020 2021 if (!r) { 2022 trace_kvm_msr_read(ecx, data); 2023 2024 kvm_rax_write(vcpu, data & -1u); 2025 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2026 } else { 2027 /* MSR read failed? See if we should ask user space */ 2028 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2029 complete_fast_rdmsr, r)) 2030 return 0; 2031 trace_kvm_msr_read_ex(ecx); 2032 } 2033 2034 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2037 2038 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2039 { 2040 u32 ecx = kvm_rcx_read(vcpu); 2041 u64 data = kvm_read_edx_eax(vcpu); 2042 int r; 2043 2044 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2045 2046 if (!r) { 2047 trace_kvm_msr_write(ecx, data); 2048 } else { 2049 /* MSR write failed? See if we should ask user space */ 2050 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2051 complete_fast_msr_access, r)) 2052 return 0; 2053 /* Signal all other negative errors to userspace */ 2054 if (r < 0) 2055 return r; 2056 trace_kvm_msr_write_ex(ecx, data); 2057 } 2058 2059 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2060 } 2061 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2062 2063 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2064 { 2065 return kvm_skip_emulated_instruction(vcpu); 2066 } 2067 2068 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2069 { 2070 /* Treat an INVD instruction as a NOP and just skip it. */ 2071 return kvm_emulate_as_nop(vcpu); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2074 2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2076 { 2077 kvm_queue_exception(vcpu, UD_VECTOR); 2078 return 1; 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2081 2082 2083 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2084 { 2085 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2086 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2087 return kvm_handle_invalid_op(vcpu); 2088 2089 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2090 return kvm_emulate_as_nop(vcpu); 2091 } 2092 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2093 { 2094 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2095 } 2096 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2097 2098 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2099 { 2100 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2103 2104 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2105 { 2106 xfer_to_guest_mode_prepare(); 2107 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2108 xfer_to_guest_mode_work_pending(); 2109 } 2110 2111 /* 2112 * The fast path for frequent and performance sensitive wrmsr emulation, 2113 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2114 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2115 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2116 * other cases which must be called after interrupts are enabled on the host. 2117 */ 2118 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2119 { 2120 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2121 return 1; 2122 2123 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2124 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2125 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2126 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2127 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2128 2129 return 1; 2130 } 2131 2132 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2133 { 2134 if (!kvm_can_use_hv_timer(vcpu)) 2135 return 1; 2136 2137 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2138 return 0; 2139 } 2140 2141 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2142 { 2143 u32 msr = kvm_rcx_read(vcpu); 2144 u64 data; 2145 fastpath_t ret = EXIT_FASTPATH_NONE; 2146 2147 switch (msr) { 2148 case APIC_BASE_MSR + (APIC_ICR >> 4): 2149 data = kvm_read_edx_eax(vcpu); 2150 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2151 kvm_skip_emulated_instruction(vcpu); 2152 ret = EXIT_FASTPATH_EXIT_HANDLED; 2153 } 2154 break; 2155 case MSR_IA32_TSC_DEADLINE: 2156 data = kvm_read_edx_eax(vcpu); 2157 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2158 kvm_skip_emulated_instruction(vcpu); 2159 ret = EXIT_FASTPATH_REENTER_GUEST; 2160 } 2161 break; 2162 default: 2163 break; 2164 } 2165 2166 if (ret != EXIT_FASTPATH_NONE) 2167 trace_kvm_msr_write(msr, data); 2168 2169 return ret; 2170 } 2171 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2172 2173 /* 2174 * Adapt set_msr() to msr_io()'s calling convention 2175 */ 2176 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2177 { 2178 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2179 } 2180 2181 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2182 { 2183 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2184 } 2185 2186 #ifdef CONFIG_X86_64 2187 struct pvclock_clock { 2188 int vclock_mode; 2189 u64 cycle_last; 2190 u64 mask; 2191 u32 mult; 2192 u32 shift; 2193 u64 base_cycles; 2194 u64 offset; 2195 }; 2196 2197 struct pvclock_gtod_data { 2198 seqcount_t seq; 2199 2200 struct pvclock_clock clock; /* extract of a clocksource struct */ 2201 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2202 2203 ktime_t offs_boot; 2204 u64 wall_time_sec; 2205 }; 2206 2207 static struct pvclock_gtod_data pvclock_gtod_data; 2208 2209 static void update_pvclock_gtod(struct timekeeper *tk) 2210 { 2211 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2212 2213 write_seqcount_begin(&vdata->seq); 2214 2215 /* copy pvclock gtod data */ 2216 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2217 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2218 vdata->clock.mask = tk->tkr_mono.mask; 2219 vdata->clock.mult = tk->tkr_mono.mult; 2220 vdata->clock.shift = tk->tkr_mono.shift; 2221 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2222 vdata->clock.offset = tk->tkr_mono.base; 2223 2224 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2225 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2226 vdata->raw_clock.mask = tk->tkr_raw.mask; 2227 vdata->raw_clock.mult = tk->tkr_raw.mult; 2228 vdata->raw_clock.shift = tk->tkr_raw.shift; 2229 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2230 vdata->raw_clock.offset = tk->tkr_raw.base; 2231 2232 vdata->wall_time_sec = tk->xtime_sec; 2233 2234 vdata->offs_boot = tk->offs_boot; 2235 2236 write_seqcount_end(&vdata->seq); 2237 } 2238 2239 static s64 get_kvmclock_base_ns(void) 2240 { 2241 /* Count up from boot time, but with the frequency of the raw clock. */ 2242 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2243 } 2244 #else 2245 static s64 get_kvmclock_base_ns(void) 2246 { 2247 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2248 return ktime_get_boottime_ns(); 2249 } 2250 #endif 2251 2252 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2253 { 2254 int version; 2255 int r; 2256 struct pvclock_wall_clock wc; 2257 u32 wc_sec_hi; 2258 u64 wall_nsec; 2259 2260 if (!wall_clock) 2261 return; 2262 2263 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2264 if (r) 2265 return; 2266 2267 if (version & 1) 2268 ++version; /* first time write, random junk */ 2269 2270 ++version; 2271 2272 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2273 return; 2274 2275 /* 2276 * The guest calculates current wall clock time by adding 2277 * system time (updated by kvm_guest_time_update below) to the 2278 * wall clock specified here. We do the reverse here. 2279 */ 2280 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2281 2282 wc.nsec = do_div(wall_nsec, 1000000000); 2283 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2284 wc.version = version; 2285 2286 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2287 2288 if (sec_hi_ofs) { 2289 wc_sec_hi = wall_nsec >> 32; 2290 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2291 &wc_sec_hi, sizeof(wc_sec_hi)); 2292 } 2293 2294 version++; 2295 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2296 } 2297 2298 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2299 bool old_msr, bool host_initiated) 2300 { 2301 struct kvm_arch *ka = &vcpu->kvm->arch; 2302 2303 if (vcpu->vcpu_id == 0 && !host_initiated) { 2304 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2305 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2306 2307 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2308 } 2309 2310 vcpu->arch.time = system_time; 2311 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2312 2313 /* we verify if the enable bit is set... */ 2314 if (system_time & 1) 2315 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2316 sizeof(struct pvclock_vcpu_time_info)); 2317 else 2318 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2319 2320 return; 2321 } 2322 2323 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2324 { 2325 do_shl32_div32(dividend, divisor); 2326 return dividend; 2327 } 2328 2329 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2330 s8 *pshift, u32 *pmultiplier) 2331 { 2332 uint64_t scaled64; 2333 int32_t shift = 0; 2334 uint64_t tps64; 2335 uint32_t tps32; 2336 2337 tps64 = base_hz; 2338 scaled64 = scaled_hz; 2339 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2340 tps64 >>= 1; 2341 shift--; 2342 } 2343 2344 tps32 = (uint32_t)tps64; 2345 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2346 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2347 scaled64 >>= 1; 2348 else 2349 tps32 <<= 1; 2350 shift++; 2351 } 2352 2353 *pshift = shift; 2354 *pmultiplier = div_frac(scaled64, tps32); 2355 } 2356 2357 #ifdef CONFIG_X86_64 2358 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2359 #endif 2360 2361 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2362 static unsigned long max_tsc_khz; 2363 2364 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2365 { 2366 u64 v = (u64)khz * (1000000 + ppm); 2367 do_div(v, 1000000); 2368 return v; 2369 } 2370 2371 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2372 2373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2374 { 2375 u64 ratio; 2376 2377 /* Guest TSC same frequency as host TSC? */ 2378 if (!scale) { 2379 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2380 return 0; 2381 } 2382 2383 /* TSC scaling supported? */ 2384 if (!kvm_caps.has_tsc_control) { 2385 if (user_tsc_khz > tsc_khz) { 2386 vcpu->arch.tsc_catchup = 1; 2387 vcpu->arch.tsc_always_catchup = 1; 2388 return 0; 2389 } else { 2390 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2391 return -1; 2392 } 2393 } 2394 2395 /* TSC scaling required - calculate ratio */ 2396 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2397 user_tsc_khz, tsc_khz); 2398 2399 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2400 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2401 user_tsc_khz); 2402 return -1; 2403 } 2404 2405 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2406 return 0; 2407 } 2408 2409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2410 { 2411 u32 thresh_lo, thresh_hi; 2412 int use_scaling = 0; 2413 2414 /* tsc_khz can be zero if TSC calibration fails */ 2415 if (user_tsc_khz == 0) { 2416 /* set tsc_scaling_ratio to a safe value */ 2417 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2418 return -1; 2419 } 2420 2421 /* Compute a scale to convert nanoseconds in TSC cycles */ 2422 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2423 &vcpu->arch.virtual_tsc_shift, 2424 &vcpu->arch.virtual_tsc_mult); 2425 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2426 2427 /* 2428 * Compute the variation in TSC rate which is acceptable 2429 * within the range of tolerance and decide if the 2430 * rate being applied is within that bounds of the hardware 2431 * rate. If so, no scaling or compensation need be done. 2432 */ 2433 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2434 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2435 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2436 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2437 use_scaling = 1; 2438 } 2439 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2440 } 2441 2442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2443 { 2444 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2445 vcpu->arch.virtual_tsc_mult, 2446 vcpu->arch.virtual_tsc_shift); 2447 tsc += vcpu->arch.this_tsc_write; 2448 return tsc; 2449 } 2450 2451 #ifdef CONFIG_X86_64 2452 static inline int gtod_is_based_on_tsc(int mode) 2453 { 2454 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2455 } 2456 #endif 2457 2458 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2459 { 2460 #ifdef CONFIG_X86_64 2461 bool vcpus_matched; 2462 struct kvm_arch *ka = &vcpu->kvm->arch; 2463 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2464 2465 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2466 atomic_read(&vcpu->kvm->online_vcpus)); 2467 2468 /* 2469 * Once the masterclock is enabled, always perform request in 2470 * order to update it. 2471 * 2472 * In order to enable masterclock, the host clocksource must be TSC 2473 * and the vcpus need to have matched TSCs. When that happens, 2474 * perform request to enable masterclock. 2475 */ 2476 if (ka->use_master_clock || 2477 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2478 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2479 2480 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2481 atomic_read(&vcpu->kvm->online_vcpus), 2482 ka->use_master_clock, gtod->clock.vclock_mode); 2483 #endif 2484 } 2485 2486 /* 2487 * Multiply tsc by a fixed point number represented by ratio. 2488 * 2489 * The most significant 64-N bits (mult) of ratio represent the 2490 * integral part of the fixed point number; the remaining N bits 2491 * (frac) represent the fractional part, ie. ratio represents a fixed 2492 * point number (mult + frac * 2^(-N)). 2493 * 2494 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2495 */ 2496 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2497 { 2498 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2499 } 2500 2501 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2502 { 2503 u64 _tsc = tsc; 2504 2505 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2506 _tsc = __scale_tsc(ratio, tsc); 2507 2508 return _tsc; 2509 } 2510 2511 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2512 { 2513 u64 tsc; 2514 2515 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2516 2517 return target_tsc - tsc; 2518 } 2519 2520 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2521 { 2522 return vcpu->arch.l1_tsc_offset + 2523 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2524 } 2525 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2526 2527 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2528 { 2529 u64 nested_offset; 2530 2531 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2532 nested_offset = l1_offset; 2533 else 2534 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2535 kvm_caps.tsc_scaling_ratio_frac_bits); 2536 2537 nested_offset += l2_offset; 2538 return nested_offset; 2539 } 2540 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2541 2542 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2543 { 2544 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2545 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2546 kvm_caps.tsc_scaling_ratio_frac_bits); 2547 2548 return l1_multiplier; 2549 } 2550 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2551 2552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2553 { 2554 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2555 vcpu->arch.l1_tsc_offset, 2556 l1_offset); 2557 2558 vcpu->arch.l1_tsc_offset = l1_offset; 2559 2560 /* 2561 * If we are here because L1 chose not to trap WRMSR to TSC then 2562 * according to the spec this should set L1's TSC (as opposed to 2563 * setting L1's offset for L2). 2564 */ 2565 if (is_guest_mode(vcpu)) 2566 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2567 l1_offset, 2568 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2569 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2570 else 2571 vcpu->arch.tsc_offset = l1_offset; 2572 2573 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2574 } 2575 2576 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2577 { 2578 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2579 2580 /* Userspace is changing the multiplier while L2 is active */ 2581 if (is_guest_mode(vcpu)) 2582 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2583 l1_multiplier, 2584 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2585 else 2586 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2587 2588 if (kvm_caps.has_tsc_control) 2589 static_call(kvm_x86_write_tsc_multiplier)( 2590 vcpu, vcpu->arch.tsc_scaling_ratio); 2591 } 2592 2593 static inline bool kvm_check_tsc_unstable(void) 2594 { 2595 #ifdef CONFIG_X86_64 2596 /* 2597 * TSC is marked unstable when we're running on Hyper-V, 2598 * 'TSC page' clocksource is good. 2599 */ 2600 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2601 return false; 2602 #endif 2603 return check_tsc_unstable(); 2604 } 2605 2606 /* 2607 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2608 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2609 * participates in. 2610 */ 2611 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2612 u64 ns, bool matched) 2613 { 2614 struct kvm *kvm = vcpu->kvm; 2615 2616 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2617 2618 /* 2619 * We also track th most recent recorded KHZ, write and time to 2620 * allow the matching interval to be extended at each write. 2621 */ 2622 kvm->arch.last_tsc_nsec = ns; 2623 kvm->arch.last_tsc_write = tsc; 2624 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2625 kvm->arch.last_tsc_offset = offset; 2626 2627 vcpu->arch.last_guest_tsc = tsc; 2628 2629 kvm_vcpu_write_tsc_offset(vcpu, offset); 2630 2631 if (!matched) { 2632 /* 2633 * We split periods of matched TSC writes into generations. 2634 * For each generation, we track the original measured 2635 * nanosecond time, offset, and write, so if TSCs are in 2636 * sync, we can match exact offset, and if not, we can match 2637 * exact software computation in compute_guest_tsc() 2638 * 2639 * These values are tracked in kvm->arch.cur_xxx variables. 2640 */ 2641 kvm->arch.cur_tsc_generation++; 2642 kvm->arch.cur_tsc_nsec = ns; 2643 kvm->arch.cur_tsc_write = tsc; 2644 kvm->arch.cur_tsc_offset = offset; 2645 kvm->arch.nr_vcpus_matched_tsc = 0; 2646 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2647 kvm->arch.nr_vcpus_matched_tsc++; 2648 } 2649 2650 /* Keep track of which generation this VCPU has synchronized to */ 2651 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2652 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2653 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2654 2655 kvm_track_tsc_matching(vcpu); 2656 } 2657 2658 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 u64 offset, ns, elapsed; 2662 unsigned long flags; 2663 bool matched = false; 2664 bool synchronizing = false; 2665 2666 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2667 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2668 ns = get_kvmclock_base_ns(); 2669 elapsed = ns - kvm->arch.last_tsc_nsec; 2670 2671 if (vcpu->arch.virtual_tsc_khz) { 2672 if (data == 0) { 2673 /* 2674 * detection of vcpu initialization -- need to sync 2675 * with other vCPUs. This particularly helps to keep 2676 * kvm_clock stable after CPU hotplug 2677 */ 2678 synchronizing = true; 2679 } else { 2680 u64 tsc_exp = kvm->arch.last_tsc_write + 2681 nsec_to_cycles(vcpu, elapsed); 2682 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2683 /* 2684 * Special case: TSC write with a small delta (1 second) 2685 * of virtual cycle time against real time is 2686 * interpreted as an attempt to synchronize the CPU. 2687 */ 2688 synchronizing = data < tsc_exp + tsc_hz && 2689 data + tsc_hz > tsc_exp; 2690 } 2691 } 2692 2693 /* 2694 * For a reliable TSC, we can match TSC offsets, and for an unstable 2695 * TSC, we add elapsed time in this computation. We could let the 2696 * compensation code attempt to catch up if we fall behind, but 2697 * it's better to try to match offsets from the beginning. 2698 */ 2699 if (synchronizing && 2700 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2701 if (!kvm_check_tsc_unstable()) { 2702 offset = kvm->arch.cur_tsc_offset; 2703 } else { 2704 u64 delta = nsec_to_cycles(vcpu, elapsed); 2705 data += delta; 2706 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2707 } 2708 matched = true; 2709 } 2710 2711 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2712 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2713 } 2714 2715 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2716 s64 adjustment) 2717 { 2718 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2719 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2720 } 2721 2722 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2723 { 2724 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2725 WARN_ON(adjustment < 0); 2726 adjustment = kvm_scale_tsc((u64) adjustment, 2727 vcpu->arch.l1_tsc_scaling_ratio); 2728 adjust_tsc_offset_guest(vcpu, adjustment); 2729 } 2730 2731 #ifdef CONFIG_X86_64 2732 2733 static u64 read_tsc(void) 2734 { 2735 u64 ret = (u64)rdtsc_ordered(); 2736 u64 last = pvclock_gtod_data.clock.cycle_last; 2737 2738 if (likely(ret >= last)) 2739 return ret; 2740 2741 /* 2742 * GCC likes to generate cmov here, but this branch is extremely 2743 * predictable (it's just a function of time and the likely is 2744 * very likely) and there's a data dependence, so force GCC 2745 * to generate a branch instead. I don't barrier() because 2746 * we don't actually need a barrier, and if this function 2747 * ever gets inlined it will generate worse code. 2748 */ 2749 asm volatile (""); 2750 return last; 2751 } 2752 2753 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2754 int *mode) 2755 { 2756 long v; 2757 u64 tsc_pg_val; 2758 2759 switch (clock->vclock_mode) { 2760 case VDSO_CLOCKMODE_HVCLOCK: 2761 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2762 tsc_timestamp); 2763 if (tsc_pg_val != U64_MAX) { 2764 /* TSC page valid */ 2765 *mode = VDSO_CLOCKMODE_HVCLOCK; 2766 v = (tsc_pg_val - clock->cycle_last) & 2767 clock->mask; 2768 } else { 2769 /* TSC page invalid */ 2770 *mode = VDSO_CLOCKMODE_NONE; 2771 } 2772 break; 2773 case VDSO_CLOCKMODE_TSC: 2774 *mode = VDSO_CLOCKMODE_TSC; 2775 *tsc_timestamp = read_tsc(); 2776 v = (*tsc_timestamp - clock->cycle_last) & 2777 clock->mask; 2778 break; 2779 default: 2780 *mode = VDSO_CLOCKMODE_NONE; 2781 } 2782 2783 if (*mode == VDSO_CLOCKMODE_NONE) 2784 *tsc_timestamp = v = 0; 2785 2786 return v * clock->mult; 2787 } 2788 2789 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2790 { 2791 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2792 unsigned long seq; 2793 int mode; 2794 u64 ns; 2795 2796 do { 2797 seq = read_seqcount_begin(>od->seq); 2798 ns = gtod->raw_clock.base_cycles; 2799 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2800 ns >>= gtod->raw_clock.shift; 2801 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2802 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2803 *t = ns; 2804 2805 return mode; 2806 } 2807 2808 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2809 { 2810 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2811 unsigned long seq; 2812 int mode; 2813 u64 ns; 2814 2815 do { 2816 seq = read_seqcount_begin(>od->seq); 2817 ts->tv_sec = gtod->wall_time_sec; 2818 ns = gtod->clock.base_cycles; 2819 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2820 ns >>= gtod->clock.shift; 2821 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2822 2823 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2824 ts->tv_nsec = ns; 2825 2826 return mode; 2827 } 2828 2829 /* returns true if host is using TSC based clocksource */ 2830 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2831 { 2832 /* checked again under seqlock below */ 2833 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2834 return false; 2835 2836 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2837 tsc_timestamp)); 2838 } 2839 2840 /* returns true if host is using TSC based clocksource */ 2841 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2842 u64 *tsc_timestamp) 2843 { 2844 /* checked again under seqlock below */ 2845 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2846 return false; 2847 2848 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2849 } 2850 #endif 2851 2852 /* 2853 * 2854 * Assuming a stable TSC across physical CPUS, and a stable TSC 2855 * across virtual CPUs, the following condition is possible. 2856 * Each numbered line represents an event visible to both 2857 * CPUs at the next numbered event. 2858 * 2859 * "timespecX" represents host monotonic time. "tscX" represents 2860 * RDTSC value. 2861 * 2862 * VCPU0 on CPU0 | VCPU1 on CPU1 2863 * 2864 * 1. read timespec0,tsc0 2865 * 2. | timespec1 = timespec0 + N 2866 * | tsc1 = tsc0 + M 2867 * 3. transition to guest | transition to guest 2868 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2869 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2870 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2871 * 2872 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2873 * 2874 * - ret0 < ret1 2875 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2876 * ... 2877 * - 0 < N - M => M < N 2878 * 2879 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2880 * always the case (the difference between two distinct xtime instances 2881 * might be smaller then the difference between corresponding TSC reads, 2882 * when updating guest vcpus pvclock areas). 2883 * 2884 * To avoid that problem, do not allow visibility of distinct 2885 * system_timestamp/tsc_timestamp values simultaneously: use a master 2886 * copy of host monotonic time values. Update that master copy 2887 * in lockstep. 2888 * 2889 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2890 * 2891 */ 2892 2893 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2894 { 2895 #ifdef CONFIG_X86_64 2896 struct kvm_arch *ka = &kvm->arch; 2897 int vclock_mode; 2898 bool host_tsc_clocksource, vcpus_matched; 2899 2900 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2901 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2902 atomic_read(&kvm->online_vcpus)); 2903 2904 /* 2905 * If the host uses TSC clock, then passthrough TSC as stable 2906 * to the guest. 2907 */ 2908 host_tsc_clocksource = kvm_get_time_and_clockread( 2909 &ka->master_kernel_ns, 2910 &ka->master_cycle_now); 2911 2912 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2913 && !ka->backwards_tsc_observed 2914 && !ka->boot_vcpu_runs_old_kvmclock; 2915 2916 if (ka->use_master_clock) 2917 atomic_set(&kvm_guest_has_master_clock, 1); 2918 2919 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2920 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2921 vcpus_matched); 2922 #endif 2923 } 2924 2925 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2926 { 2927 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2928 } 2929 2930 static void __kvm_start_pvclock_update(struct kvm *kvm) 2931 { 2932 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2933 write_seqcount_begin(&kvm->arch.pvclock_sc); 2934 } 2935 2936 static void kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 kvm_make_mclock_inprogress_request(kvm); 2939 2940 /* no guest entries from this point */ 2941 __kvm_start_pvclock_update(kvm); 2942 } 2943 2944 static void kvm_end_pvclock_update(struct kvm *kvm) 2945 { 2946 struct kvm_arch *ka = &kvm->arch; 2947 struct kvm_vcpu *vcpu; 2948 unsigned long i; 2949 2950 write_seqcount_end(&ka->pvclock_sc); 2951 raw_spin_unlock_irq(&ka->tsc_write_lock); 2952 kvm_for_each_vcpu(i, vcpu, kvm) 2953 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2954 2955 /* guest entries allowed */ 2956 kvm_for_each_vcpu(i, vcpu, kvm) 2957 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2958 } 2959 2960 static void kvm_update_masterclock(struct kvm *kvm) 2961 { 2962 kvm_hv_request_tsc_page_update(kvm); 2963 kvm_start_pvclock_update(kvm); 2964 pvclock_update_vm_gtod_copy(kvm); 2965 kvm_end_pvclock_update(kvm); 2966 } 2967 2968 /* 2969 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2970 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2971 * can change during boot even if the TSC is constant, as it's possible for KVM 2972 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2973 * notification when calibration completes, but practically speaking calibration 2974 * will complete before userspace is alive enough to create VMs. 2975 */ 2976 static unsigned long get_cpu_tsc_khz(void) 2977 { 2978 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2979 return tsc_khz; 2980 else 2981 return __this_cpu_read(cpu_tsc_khz); 2982 } 2983 2984 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2985 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2986 { 2987 struct kvm_arch *ka = &kvm->arch; 2988 struct pvclock_vcpu_time_info hv_clock; 2989 2990 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2991 get_cpu(); 2992 2993 data->flags = 0; 2994 if (ka->use_master_clock && 2995 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 2996 #ifdef CONFIG_X86_64 2997 struct timespec64 ts; 2998 2999 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3000 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3001 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3002 } else 3003 #endif 3004 data->host_tsc = rdtsc(); 3005 3006 data->flags |= KVM_CLOCK_TSC_STABLE; 3007 hv_clock.tsc_timestamp = ka->master_cycle_now; 3008 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3009 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3010 &hv_clock.tsc_shift, 3011 &hv_clock.tsc_to_system_mul); 3012 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3013 } else { 3014 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3015 } 3016 3017 put_cpu(); 3018 } 3019 3020 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3021 { 3022 struct kvm_arch *ka = &kvm->arch; 3023 unsigned seq; 3024 3025 do { 3026 seq = read_seqcount_begin(&ka->pvclock_sc); 3027 __get_kvmclock(kvm, data); 3028 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3029 } 3030 3031 u64 get_kvmclock_ns(struct kvm *kvm) 3032 { 3033 struct kvm_clock_data data; 3034 3035 get_kvmclock(kvm, &data); 3036 return data.clock; 3037 } 3038 3039 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3040 struct gfn_to_pfn_cache *gpc, 3041 unsigned int offset) 3042 { 3043 struct kvm_vcpu_arch *vcpu = &v->arch; 3044 struct pvclock_vcpu_time_info *guest_hv_clock; 3045 unsigned long flags; 3046 3047 read_lock_irqsave(&gpc->lock, flags); 3048 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3049 read_unlock_irqrestore(&gpc->lock, flags); 3050 3051 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3052 return; 3053 3054 read_lock_irqsave(&gpc->lock, flags); 3055 } 3056 3057 guest_hv_clock = (void *)(gpc->khva + offset); 3058 3059 /* 3060 * This VCPU is paused, but it's legal for a guest to read another 3061 * VCPU's kvmclock, so we really have to follow the specification where 3062 * it says that version is odd if data is being modified, and even after 3063 * it is consistent. 3064 */ 3065 3066 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3067 smp_wmb(); 3068 3069 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3070 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3071 3072 if (vcpu->pvclock_set_guest_stopped_request) { 3073 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3074 vcpu->pvclock_set_guest_stopped_request = false; 3075 } 3076 3077 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3078 smp_wmb(); 3079 3080 guest_hv_clock->version = ++vcpu->hv_clock.version; 3081 3082 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3083 read_unlock_irqrestore(&gpc->lock, flags); 3084 3085 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3086 } 3087 3088 static int kvm_guest_time_update(struct kvm_vcpu *v) 3089 { 3090 unsigned long flags, tgt_tsc_khz; 3091 unsigned seq; 3092 struct kvm_vcpu_arch *vcpu = &v->arch; 3093 struct kvm_arch *ka = &v->kvm->arch; 3094 s64 kernel_ns; 3095 u64 tsc_timestamp, host_tsc; 3096 u8 pvclock_flags; 3097 bool use_master_clock; 3098 3099 kernel_ns = 0; 3100 host_tsc = 0; 3101 3102 /* 3103 * If the host uses TSC clock, then passthrough TSC as stable 3104 * to the guest. 3105 */ 3106 do { 3107 seq = read_seqcount_begin(&ka->pvclock_sc); 3108 use_master_clock = ka->use_master_clock; 3109 if (use_master_clock) { 3110 host_tsc = ka->master_cycle_now; 3111 kernel_ns = ka->master_kernel_ns; 3112 } 3113 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3114 3115 /* Keep irq disabled to prevent changes to the clock */ 3116 local_irq_save(flags); 3117 tgt_tsc_khz = get_cpu_tsc_khz(); 3118 if (unlikely(tgt_tsc_khz == 0)) { 3119 local_irq_restore(flags); 3120 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3121 return 1; 3122 } 3123 if (!use_master_clock) { 3124 host_tsc = rdtsc(); 3125 kernel_ns = get_kvmclock_base_ns(); 3126 } 3127 3128 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3129 3130 /* 3131 * We may have to catch up the TSC to match elapsed wall clock 3132 * time for two reasons, even if kvmclock is used. 3133 * 1) CPU could have been running below the maximum TSC rate 3134 * 2) Broken TSC compensation resets the base at each VCPU 3135 * entry to avoid unknown leaps of TSC even when running 3136 * again on the same CPU. This may cause apparent elapsed 3137 * time to disappear, and the guest to stand still or run 3138 * very slowly. 3139 */ 3140 if (vcpu->tsc_catchup) { 3141 u64 tsc = compute_guest_tsc(v, kernel_ns); 3142 if (tsc > tsc_timestamp) { 3143 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3144 tsc_timestamp = tsc; 3145 } 3146 } 3147 3148 local_irq_restore(flags); 3149 3150 /* With all the info we got, fill in the values */ 3151 3152 if (kvm_caps.has_tsc_control) 3153 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3154 v->arch.l1_tsc_scaling_ratio); 3155 3156 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3157 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3158 &vcpu->hv_clock.tsc_shift, 3159 &vcpu->hv_clock.tsc_to_system_mul); 3160 vcpu->hw_tsc_khz = tgt_tsc_khz; 3161 } 3162 3163 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3164 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3165 vcpu->last_guest_tsc = tsc_timestamp; 3166 3167 /* If the host uses TSC clocksource, then it is stable */ 3168 pvclock_flags = 0; 3169 if (use_master_clock) 3170 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3171 3172 vcpu->hv_clock.flags = pvclock_flags; 3173 3174 if (vcpu->pv_time.active) 3175 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3176 if (vcpu->xen.vcpu_info_cache.active) 3177 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3178 offsetof(struct compat_vcpu_info, time)); 3179 if (vcpu->xen.vcpu_time_info_cache.active) 3180 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3181 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3182 return 0; 3183 } 3184 3185 /* 3186 * kvmclock updates which are isolated to a given vcpu, such as 3187 * vcpu->cpu migration, should not allow system_timestamp from 3188 * the rest of the vcpus to remain static. Otherwise ntp frequency 3189 * correction applies to one vcpu's system_timestamp but not 3190 * the others. 3191 * 3192 * So in those cases, request a kvmclock update for all vcpus. 3193 * We need to rate-limit these requests though, as they can 3194 * considerably slow guests that have a large number of vcpus. 3195 * The time for a remote vcpu to update its kvmclock is bound 3196 * by the delay we use to rate-limit the updates. 3197 */ 3198 3199 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3200 3201 static void kvmclock_update_fn(struct work_struct *work) 3202 { 3203 unsigned long i; 3204 struct delayed_work *dwork = to_delayed_work(work); 3205 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3206 kvmclock_update_work); 3207 struct kvm *kvm = container_of(ka, struct kvm, arch); 3208 struct kvm_vcpu *vcpu; 3209 3210 kvm_for_each_vcpu(i, vcpu, kvm) { 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3212 kvm_vcpu_kick(vcpu); 3213 } 3214 } 3215 3216 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3217 { 3218 struct kvm *kvm = v->kvm; 3219 3220 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3221 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3222 KVMCLOCK_UPDATE_DELAY); 3223 } 3224 3225 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3226 3227 static void kvmclock_sync_fn(struct work_struct *work) 3228 { 3229 struct delayed_work *dwork = to_delayed_work(work); 3230 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3231 kvmclock_sync_work); 3232 struct kvm *kvm = container_of(ka, struct kvm, arch); 3233 3234 if (!kvmclock_periodic_sync) 3235 return; 3236 3237 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3238 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3239 KVMCLOCK_SYNC_PERIOD); 3240 } 3241 3242 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3243 static bool is_mci_control_msr(u32 msr) 3244 { 3245 return (msr & 3) == 0; 3246 } 3247 static bool is_mci_status_msr(u32 msr) 3248 { 3249 return (msr & 3) == 1; 3250 } 3251 3252 /* 3253 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3254 */ 3255 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3256 { 3257 /* McStatusWrEn enabled? */ 3258 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3259 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3260 3261 return false; 3262 } 3263 3264 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3265 { 3266 u64 mcg_cap = vcpu->arch.mcg_cap; 3267 unsigned bank_num = mcg_cap & 0xff; 3268 u32 msr = msr_info->index; 3269 u64 data = msr_info->data; 3270 u32 offset, last_msr; 3271 3272 switch (msr) { 3273 case MSR_IA32_MCG_STATUS: 3274 vcpu->arch.mcg_status = data; 3275 break; 3276 case MSR_IA32_MCG_CTL: 3277 if (!(mcg_cap & MCG_CTL_P) && 3278 (data || !msr_info->host_initiated)) 3279 return 1; 3280 if (data != 0 && data != ~(u64)0) 3281 return 1; 3282 vcpu->arch.mcg_ctl = data; 3283 break; 3284 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3285 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3286 if (msr > last_msr) 3287 return 1; 3288 3289 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3290 return 1; 3291 /* An attempt to write a 1 to a reserved bit raises #GP */ 3292 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3293 return 1; 3294 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3295 last_msr + 1 - MSR_IA32_MC0_CTL2); 3296 vcpu->arch.mci_ctl2_banks[offset] = data; 3297 break; 3298 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3299 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3300 if (msr > last_msr) 3301 return 1; 3302 3303 /* 3304 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3305 * values are architecturally undefined. But, some Linux 3306 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3307 * issue on AMD K8s, allow bit 10 to be clear when setting all 3308 * other bits in order to avoid an uncaught #GP in the guest. 3309 * 3310 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3311 * single-bit ECC data errors. 3312 */ 3313 if (is_mci_control_msr(msr) && 3314 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3315 return 1; 3316 3317 /* 3318 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3319 * AMD-based CPUs allow non-zero values, but if and only if 3320 * HWCR[McStatusWrEn] is set. 3321 */ 3322 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3323 data != 0 && !can_set_mci_status(vcpu)) 3324 return 1; 3325 3326 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3327 last_msr + 1 - MSR_IA32_MC0_CTL); 3328 vcpu->arch.mce_banks[offset] = data; 3329 break; 3330 default: 3331 return 1; 3332 } 3333 return 0; 3334 } 3335 3336 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3337 { 3338 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3339 3340 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3341 } 3342 3343 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3344 { 3345 gpa_t gpa = data & ~0x3f; 3346 3347 /* Bits 4:5 are reserved, Should be zero */ 3348 if (data & 0x30) 3349 return 1; 3350 3351 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3352 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3353 return 1; 3354 3355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3356 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3357 return 1; 3358 3359 if (!lapic_in_kernel(vcpu)) 3360 return data ? 1 : 0; 3361 3362 vcpu->arch.apf.msr_en_val = data; 3363 3364 if (!kvm_pv_async_pf_enabled(vcpu)) { 3365 kvm_clear_async_pf_completion_queue(vcpu); 3366 kvm_async_pf_hash_reset(vcpu); 3367 return 0; 3368 } 3369 3370 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3371 sizeof(u64))) 3372 return 1; 3373 3374 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3375 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3376 3377 kvm_async_pf_wakeup_all(vcpu); 3378 3379 return 0; 3380 } 3381 3382 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3383 { 3384 /* Bits 8-63 are reserved */ 3385 if (data >> 8) 3386 return 1; 3387 3388 if (!lapic_in_kernel(vcpu)) 3389 return 1; 3390 3391 vcpu->arch.apf.msr_int_val = data; 3392 3393 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3394 3395 return 0; 3396 } 3397 3398 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3399 { 3400 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3401 vcpu->arch.time = 0; 3402 } 3403 3404 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3405 { 3406 ++vcpu->stat.tlb_flush; 3407 static_call(kvm_x86_flush_tlb_all)(vcpu); 3408 3409 /* Flushing all ASIDs flushes the current ASID... */ 3410 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3411 } 3412 3413 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3414 { 3415 ++vcpu->stat.tlb_flush; 3416 3417 if (!tdp_enabled) { 3418 /* 3419 * A TLB flush on behalf of the guest is equivalent to 3420 * INVPCID(all), toggling CR4.PGE, etc., which requires 3421 * a forced sync of the shadow page tables. Ensure all the 3422 * roots are synced and the guest TLB in hardware is clean. 3423 */ 3424 kvm_mmu_sync_roots(vcpu); 3425 kvm_mmu_sync_prev_roots(vcpu); 3426 } 3427 3428 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3429 3430 /* 3431 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3432 * grained flushing. 3433 */ 3434 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3435 } 3436 3437 3438 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3439 { 3440 ++vcpu->stat.tlb_flush; 3441 static_call(kvm_x86_flush_tlb_current)(vcpu); 3442 } 3443 3444 /* 3445 * Service "local" TLB flush requests, which are specific to the current MMU 3446 * context. In addition to the generic event handling in vcpu_enter_guest(), 3447 * TLB flushes that are targeted at an MMU context also need to be serviced 3448 * prior before nested VM-Enter/VM-Exit. 3449 */ 3450 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3451 { 3452 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3453 kvm_vcpu_flush_tlb_current(vcpu); 3454 3455 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3456 kvm_vcpu_flush_tlb_guest(vcpu); 3457 } 3458 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3459 3460 static void record_steal_time(struct kvm_vcpu *vcpu) 3461 { 3462 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3463 struct kvm_steal_time __user *st; 3464 struct kvm_memslots *slots; 3465 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3466 u64 steal; 3467 u32 version; 3468 3469 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3470 kvm_xen_runstate_set_running(vcpu); 3471 return; 3472 } 3473 3474 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3475 return; 3476 3477 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3478 return; 3479 3480 slots = kvm_memslots(vcpu->kvm); 3481 3482 if (unlikely(slots->generation != ghc->generation || 3483 gpa != ghc->gpa || 3484 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3485 /* We rely on the fact that it fits in a single page. */ 3486 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3487 3488 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3489 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3490 return; 3491 } 3492 3493 st = (struct kvm_steal_time __user *)ghc->hva; 3494 /* 3495 * Doing a TLB flush here, on the guest's behalf, can avoid 3496 * expensive IPIs. 3497 */ 3498 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3499 u8 st_preempted = 0; 3500 int err = -EFAULT; 3501 3502 if (!user_access_begin(st, sizeof(*st))) 3503 return; 3504 3505 asm volatile("1: xchgb %0, %2\n" 3506 "xor %1, %1\n" 3507 "2:\n" 3508 _ASM_EXTABLE_UA(1b, 2b) 3509 : "+q" (st_preempted), 3510 "+&r" (err), 3511 "+m" (st->preempted)); 3512 if (err) 3513 goto out; 3514 3515 user_access_end(); 3516 3517 vcpu->arch.st.preempted = 0; 3518 3519 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3520 st_preempted & KVM_VCPU_FLUSH_TLB); 3521 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3522 kvm_vcpu_flush_tlb_guest(vcpu); 3523 3524 if (!user_access_begin(st, sizeof(*st))) 3525 goto dirty; 3526 } else { 3527 if (!user_access_begin(st, sizeof(*st))) 3528 return; 3529 3530 unsafe_put_user(0, &st->preempted, out); 3531 vcpu->arch.st.preempted = 0; 3532 } 3533 3534 unsafe_get_user(version, &st->version, out); 3535 if (version & 1) 3536 version += 1; /* first time write, random junk */ 3537 3538 version += 1; 3539 unsafe_put_user(version, &st->version, out); 3540 3541 smp_wmb(); 3542 3543 unsafe_get_user(steal, &st->steal, out); 3544 steal += current->sched_info.run_delay - 3545 vcpu->arch.st.last_steal; 3546 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3547 unsafe_put_user(steal, &st->steal, out); 3548 3549 version += 1; 3550 unsafe_put_user(version, &st->version, out); 3551 3552 out: 3553 user_access_end(); 3554 dirty: 3555 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3556 } 3557 3558 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3559 { 3560 bool pr = false; 3561 u32 msr = msr_info->index; 3562 u64 data = msr_info->data; 3563 3564 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3565 return kvm_xen_write_hypercall_page(vcpu, data); 3566 3567 switch (msr) { 3568 case MSR_AMD64_NB_CFG: 3569 case MSR_IA32_UCODE_WRITE: 3570 case MSR_VM_HSAVE_PA: 3571 case MSR_AMD64_PATCH_LOADER: 3572 case MSR_AMD64_BU_CFG2: 3573 case MSR_AMD64_DC_CFG: 3574 case MSR_F15H_EX_CFG: 3575 break; 3576 3577 case MSR_IA32_UCODE_REV: 3578 if (msr_info->host_initiated) 3579 vcpu->arch.microcode_version = data; 3580 break; 3581 case MSR_IA32_ARCH_CAPABILITIES: 3582 if (!msr_info->host_initiated) 3583 return 1; 3584 vcpu->arch.arch_capabilities = data; 3585 break; 3586 case MSR_IA32_PERF_CAPABILITIES: 3587 if (!msr_info->host_initiated) 3588 return 1; 3589 if (data & ~kvm_caps.supported_perf_cap) 3590 return 1; 3591 3592 vcpu->arch.perf_capabilities = data; 3593 kvm_pmu_refresh(vcpu); 3594 return 0; 3595 case MSR_EFER: 3596 return set_efer(vcpu, msr_info); 3597 case MSR_K7_HWCR: 3598 data &= ~(u64)0x40; /* ignore flush filter disable */ 3599 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3600 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3601 3602 /* Handle McStatusWrEn */ 3603 if (data == BIT_ULL(18)) { 3604 vcpu->arch.msr_hwcr = data; 3605 } else if (data != 0) { 3606 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3607 data); 3608 return 1; 3609 } 3610 break; 3611 case MSR_FAM10H_MMIO_CONF_BASE: 3612 if (data != 0) { 3613 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3614 "0x%llx\n", data); 3615 return 1; 3616 } 3617 break; 3618 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3619 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3620 return kvm_mtrr_set_msr(vcpu, msr, data); 3621 case MSR_IA32_APICBASE: 3622 return kvm_set_apic_base(vcpu, msr_info); 3623 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3624 return kvm_x2apic_msr_write(vcpu, msr, data); 3625 case MSR_IA32_TSC_DEADLINE: 3626 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3627 break; 3628 case MSR_IA32_TSC_ADJUST: 3629 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3630 if (!msr_info->host_initiated) { 3631 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3632 adjust_tsc_offset_guest(vcpu, adj); 3633 /* Before back to guest, tsc_timestamp must be adjusted 3634 * as well, otherwise guest's percpu pvclock time could jump. 3635 */ 3636 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3637 } 3638 vcpu->arch.ia32_tsc_adjust_msr = data; 3639 } 3640 break; 3641 case MSR_IA32_MISC_ENABLE: { 3642 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3643 3644 if (!msr_info->host_initiated) { 3645 /* RO bits */ 3646 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3647 return 1; 3648 3649 /* R bits, i.e. writes are ignored, but don't fault. */ 3650 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3651 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3652 } 3653 3654 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3655 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3656 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3657 return 1; 3658 vcpu->arch.ia32_misc_enable_msr = data; 3659 kvm_update_cpuid_runtime(vcpu); 3660 } else { 3661 vcpu->arch.ia32_misc_enable_msr = data; 3662 } 3663 break; 3664 } 3665 case MSR_IA32_SMBASE: 3666 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3667 return 1; 3668 vcpu->arch.smbase = data; 3669 break; 3670 case MSR_IA32_POWER_CTL: 3671 vcpu->arch.msr_ia32_power_ctl = data; 3672 break; 3673 case MSR_IA32_TSC: 3674 if (msr_info->host_initiated) { 3675 kvm_synchronize_tsc(vcpu, data); 3676 } else { 3677 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3678 adjust_tsc_offset_guest(vcpu, adj); 3679 vcpu->arch.ia32_tsc_adjust_msr += adj; 3680 } 3681 break; 3682 case MSR_IA32_XSS: 3683 if (!msr_info->host_initiated && 3684 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3685 return 1; 3686 /* 3687 * KVM supports exposing PT to the guest, but does not support 3688 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3689 * XSAVES/XRSTORS to save/restore PT MSRs. 3690 */ 3691 if (data & ~kvm_caps.supported_xss) 3692 return 1; 3693 vcpu->arch.ia32_xss = data; 3694 kvm_update_cpuid_runtime(vcpu); 3695 break; 3696 case MSR_SMI_COUNT: 3697 if (!msr_info->host_initiated) 3698 return 1; 3699 vcpu->arch.smi_count = data; 3700 break; 3701 case MSR_KVM_WALL_CLOCK_NEW: 3702 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3703 return 1; 3704 3705 vcpu->kvm->arch.wall_clock = data; 3706 kvm_write_wall_clock(vcpu->kvm, data, 0); 3707 break; 3708 case MSR_KVM_WALL_CLOCK: 3709 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3710 return 1; 3711 3712 vcpu->kvm->arch.wall_clock = data; 3713 kvm_write_wall_clock(vcpu->kvm, data, 0); 3714 break; 3715 case MSR_KVM_SYSTEM_TIME_NEW: 3716 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3717 return 1; 3718 3719 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3720 break; 3721 case MSR_KVM_SYSTEM_TIME: 3722 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3723 return 1; 3724 3725 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3726 break; 3727 case MSR_KVM_ASYNC_PF_EN: 3728 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3729 return 1; 3730 3731 if (kvm_pv_enable_async_pf(vcpu, data)) 3732 return 1; 3733 break; 3734 case MSR_KVM_ASYNC_PF_INT: 3735 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3736 return 1; 3737 3738 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3739 return 1; 3740 break; 3741 case MSR_KVM_ASYNC_PF_ACK: 3742 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3743 return 1; 3744 if (data & 0x1) { 3745 vcpu->arch.apf.pageready_pending = false; 3746 kvm_check_async_pf_completion(vcpu); 3747 } 3748 break; 3749 case MSR_KVM_STEAL_TIME: 3750 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3751 return 1; 3752 3753 if (unlikely(!sched_info_on())) 3754 return 1; 3755 3756 if (data & KVM_STEAL_RESERVED_MASK) 3757 return 1; 3758 3759 vcpu->arch.st.msr_val = data; 3760 3761 if (!(data & KVM_MSR_ENABLED)) 3762 break; 3763 3764 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3765 3766 break; 3767 case MSR_KVM_PV_EOI_EN: 3768 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3769 return 1; 3770 3771 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3772 return 1; 3773 break; 3774 3775 case MSR_KVM_POLL_CONTROL: 3776 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3777 return 1; 3778 3779 /* only enable bit supported */ 3780 if (data & (-1ULL << 1)) 3781 return 1; 3782 3783 vcpu->arch.msr_kvm_poll_control = data; 3784 break; 3785 3786 case MSR_IA32_MCG_CTL: 3787 case MSR_IA32_MCG_STATUS: 3788 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3789 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3790 return set_msr_mce(vcpu, msr_info); 3791 3792 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3793 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3794 pr = true; 3795 fallthrough; 3796 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3797 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3798 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3799 return kvm_pmu_set_msr(vcpu, msr_info); 3800 3801 if (pr || data != 0) 3802 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3803 "0x%x data 0x%llx\n", msr, data); 3804 break; 3805 case MSR_K7_CLK_CTL: 3806 /* 3807 * Ignore all writes to this no longer documented MSR. 3808 * Writes are only relevant for old K7 processors, 3809 * all pre-dating SVM, but a recommended workaround from 3810 * AMD for these chips. It is possible to specify the 3811 * affected processor models on the command line, hence 3812 * the need to ignore the workaround. 3813 */ 3814 break; 3815 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3816 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3817 case HV_X64_MSR_SYNDBG_OPTIONS: 3818 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3819 case HV_X64_MSR_CRASH_CTL: 3820 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3821 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3822 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3823 case HV_X64_MSR_TSC_EMULATION_STATUS: 3824 return kvm_hv_set_msr_common(vcpu, msr, data, 3825 msr_info->host_initiated); 3826 case MSR_IA32_BBL_CR_CTL3: 3827 /* Drop writes to this legacy MSR -- see rdmsr 3828 * counterpart for further detail. 3829 */ 3830 if (report_ignored_msrs) 3831 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3832 msr, data); 3833 break; 3834 case MSR_AMD64_OSVW_ID_LENGTH: 3835 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3836 return 1; 3837 vcpu->arch.osvw.length = data; 3838 break; 3839 case MSR_AMD64_OSVW_STATUS: 3840 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3841 return 1; 3842 vcpu->arch.osvw.status = data; 3843 break; 3844 case MSR_PLATFORM_INFO: 3845 if (!msr_info->host_initiated || 3846 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3847 cpuid_fault_enabled(vcpu))) 3848 return 1; 3849 vcpu->arch.msr_platform_info = data; 3850 break; 3851 case MSR_MISC_FEATURES_ENABLES: 3852 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3853 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3854 !supports_cpuid_fault(vcpu))) 3855 return 1; 3856 vcpu->arch.msr_misc_features_enables = data; 3857 break; 3858 #ifdef CONFIG_X86_64 3859 case MSR_IA32_XFD: 3860 if (!msr_info->host_initiated && 3861 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3862 return 1; 3863 3864 if (data & ~kvm_guest_supported_xfd(vcpu)) 3865 return 1; 3866 3867 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3868 break; 3869 case MSR_IA32_XFD_ERR: 3870 if (!msr_info->host_initiated && 3871 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3872 return 1; 3873 3874 if (data & ~kvm_guest_supported_xfd(vcpu)) 3875 return 1; 3876 3877 vcpu->arch.guest_fpu.xfd_err = data; 3878 break; 3879 #endif 3880 case MSR_IA32_PEBS_ENABLE: 3881 case MSR_IA32_DS_AREA: 3882 case MSR_PEBS_DATA_CFG: 3883 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3884 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3885 return kvm_pmu_set_msr(vcpu, msr_info); 3886 /* 3887 * Userspace is allowed to write '0' to MSRs that KVM reports 3888 * as to-be-saved, even if an MSRs isn't fully supported. 3889 */ 3890 return !msr_info->host_initiated || data; 3891 default: 3892 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3893 return kvm_pmu_set_msr(vcpu, msr_info); 3894 return KVM_MSR_RET_INVALID; 3895 } 3896 return 0; 3897 } 3898 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3899 3900 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3901 { 3902 u64 data; 3903 u64 mcg_cap = vcpu->arch.mcg_cap; 3904 unsigned bank_num = mcg_cap & 0xff; 3905 u32 offset, last_msr; 3906 3907 switch (msr) { 3908 case MSR_IA32_P5_MC_ADDR: 3909 case MSR_IA32_P5_MC_TYPE: 3910 data = 0; 3911 break; 3912 case MSR_IA32_MCG_CAP: 3913 data = vcpu->arch.mcg_cap; 3914 break; 3915 case MSR_IA32_MCG_CTL: 3916 if (!(mcg_cap & MCG_CTL_P) && !host) 3917 return 1; 3918 data = vcpu->arch.mcg_ctl; 3919 break; 3920 case MSR_IA32_MCG_STATUS: 3921 data = vcpu->arch.mcg_status; 3922 break; 3923 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3924 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3925 if (msr > last_msr) 3926 return 1; 3927 3928 if (!(mcg_cap & MCG_CMCI_P) && !host) 3929 return 1; 3930 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3931 last_msr + 1 - MSR_IA32_MC0_CTL2); 3932 data = vcpu->arch.mci_ctl2_banks[offset]; 3933 break; 3934 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3935 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3936 if (msr > last_msr) 3937 return 1; 3938 3939 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3940 last_msr + 1 - MSR_IA32_MC0_CTL); 3941 data = vcpu->arch.mce_banks[offset]; 3942 break; 3943 default: 3944 return 1; 3945 } 3946 *pdata = data; 3947 return 0; 3948 } 3949 3950 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3951 { 3952 switch (msr_info->index) { 3953 case MSR_IA32_PLATFORM_ID: 3954 case MSR_IA32_EBL_CR_POWERON: 3955 case MSR_IA32_LASTBRANCHFROMIP: 3956 case MSR_IA32_LASTBRANCHTOIP: 3957 case MSR_IA32_LASTINTFROMIP: 3958 case MSR_IA32_LASTINTTOIP: 3959 case MSR_AMD64_SYSCFG: 3960 case MSR_K8_TSEG_ADDR: 3961 case MSR_K8_TSEG_MASK: 3962 case MSR_VM_HSAVE_PA: 3963 case MSR_K8_INT_PENDING_MSG: 3964 case MSR_AMD64_NB_CFG: 3965 case MSR_FAM10H_MMIO_CONF_BASE: 3966 case MSR_AMD64_BU_CFG2: 3967 case MSR_IA32_PERF_CTL: 3968 case MSR_AMD64_DC_CFG: 3969 case MSR_F15H_EX_CFG: 3970 /* 3971 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3972 * limit) MSRs. Just return 0, as we do not want to expose the host 3973 * data here. Do not conditionalize this on CPUID, as KVM does not do 3974 * so for existing CPU-specific MSRs. 3975 */ 3976 case MSR_RAPL_POWER_UNIT: 3977 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3978 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3979 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3980 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3981 msr_info->data = 0; 3982 break; 3983 case MSR_IA32_PEBS_ENABLE: 3984 case MSR_IA32_DS_AREA: 3985 case MSR_PEBS_DATA_CFG: 3986 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3987 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3988 return kvm_pmu_get_msr(vcpu, msr_info); 3989 /* 3990 * Userspace is allowed to read MSRs that KVM reports as 3991 * to-be-saved, even if an MSR isn't fully supported. 3992 */ 3993 if (!msr_info->host_initiated) 3994 return 1; 3995 msr_info->data = 0; 3996 break; 3997 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3998 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3999 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4000 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4001 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4002 return kvm_pmu_get_msr(vcpu, msr_info); 4003 msr_info->data = 0; 4004 break; 4005 case MSR_IA32_UCODE_REV: 4006 msr_info->data = vcpu->arch.microcode_version; 4007 break; 4008 case MSR_IA32_ARCH_CAPABILITIES: 4009 if (!msr_info->host_initiated && 4010 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4011 return 1; 4012 msr_info->data = vcpu->arch.arch_capabilities; 4013 break; 4014 case MSR_IA32_PERF_CAPABILITIES: 4015 if (!msr_info->host_initiated && 4016 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4017 return 1; 4018 msr_info->data = vcpu->arch.perf_capabilities; 4019 break; 4020 case MSR_IA32_POWER_CTL: 4021 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4022 break; 4023 case MSR_IA32_TSC: { 4024 /* 4025 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4026 * even when not intercepted. AMD manual doesn't explicitly 4027 * state this but appears to behave the same. 4028 * 4029 * On userspace reads and writes, however, we unconditionally 4030 * return L1's TSC value to ensure backwards-compatible 4031 * behavior for migration. 4032 */ 4033 u64 offset, ratio; 4034 4035 if (msr_info->host_initiated) { 4036 offset = vcpu->arch.l1_tsc_offset; 4037 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4038 } else { 4039 offset = vcpu->arch.tsc_offset; 4040 ratio = vcpu->arch.tsc_scaling_ratio; 4041 } 4042 4043 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4044 break; 4045 } 4046 case MSR_MTRRcap: 4047 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4048 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4049 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4050 case 0xcd: /* fsb frequency */ 4051 msr_info->data = 3; 4052 break; 4053 /* 4054 * MSR_EBC_FREQUENCY_ID 4055 * Conservative value valid for even the basic CPU models. 4056 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4057 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4058 * and 266MHz for model 3, or 4. Set Core Clock 4059 * Frequency to System Bus Frequency Ratio to 1 (bits 4060 * 31:24) even though these are only valid for CPU 4061 * models > 2, however guests may end up dividing or 4062 * multiplying by zero otherwise. 4063 */ 4064 case MSR_EBC_FREQUENCY_ID: 4065 msr_info->data = 1 << 24; 4066 break; 4067 case MSR_IA32_APICBASE: 4068 msr_info->data = kvm_get_apic_base(vcpu); 4069 break; 4070 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4071 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4072 case MSR_IA32_TSC_DEADLINE: 4073 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4074 break; 4075 case MSR_IA32_TSC_ADJUST: 4076 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4077 break; 4078 case MSR_IA32_MISC_ENABLE: 4079 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4080 break; 4081 case MSR_IA32_SMBASE: 4082 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4083 return 1; 4084 msr_info->data = vcpu->arch.smbase; 4085 break; 4086 case MSR_SMI_COUNT: 4087 msr_info->data = vcpu->arch.smi_count; 4088 break; 4089 case MSR_IA32_PERF_STATUS: 4090 /* TSC increment by tick */ 4091 msr_info->data = 1000ULL; 4092 /* CPU multiplier */ 4093 msr_info->data |= (((uint64_t)4ULL) << 40); 4094 break; 4095 case MSR_EFER: 4096 msr_info->data = vcpu->arch.efer; 4097 break; 4098 case MSR_KVM_WALL_CLOCK: 4099 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4100 return 1; 4101 4102 msr_info->data = vcpu->kvm->arch.wall_clock; 4103 break; 4104 case MSR_KVM_WALL_CLOCK_NEW: 4105 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4106 return 1; 4107 4108 msr_info->data = vcpu->kvm->arch.wall_clock; 4109 break; 4110 case MSR_KVM_SYSTEM_TIME: 4111 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4112 return 1; 4113 4114 msr_info->data = vcpu->arch.time; 4115 break; 4116 case MSR_KVM_SYSTEM_TIME_NEW: 4117 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4118 return 1; 4119 4120 msr_info->data = vcpu->arch.time; 4121 break; 4122 case MSR_KVM_ASYNC_PF_EN: 4123 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4124 return 1; 4125 4126 msr_info->data = vcpu->arch.apf.msr_en_val; 4127 break; 4128 case MSR_KVM_ASYNC_PF_INT: 4129 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4130 return 1; 4131 4132 msr_info->data = vcpu->arch.apf.msr_int_val; 4133 break; 4134 case MSR_KVM_ASYNC_PF_ACK: 4135 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4136 return 1; 4137 4138 msr_info->data = 0; 4139 break; 4140 case MSR_KVM_STEAL_TIME: 4141 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4142 return 1; 4143 4144 msr_info->data = vcpu->arch.st.msr_val; 4145 break; 4146 case MSR_KVM_PV_EOI_EN: 4147 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4148 return 1; 4149 4150 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4151 break; 4152 case MSR_KVM_POLL_CONTROL: 4153 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4154 return 1; 4155 4156 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4157 break; 4158 case MSR_IA32_P5_MC_ADDR: 4159 case MSR_IA32_P5_MC_TYPE: 4160 case MSR_IA32_MCG_CAP: 4161 case MSR_IA32_MCG_CTL: 4162 case MSR_IA32_MCG_STATUS: 4163 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4164 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4165 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4166 msr_info->host_initiated); 4167 case MSR_IA32_XSS: 4168 if (!msr_info->host_initiated && 4169 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4170 return 1; 4171 msr_info->data = vcpu->arch.ia32_xss; 4172 break; 4173 case MSR_K7_CLK_CTL: 4174 /* 4175 * Provide expected ramp-up count for K7. All other 4176 * are set to zero, indicating minimum divisors for 4177 * every field. 4178 * 4179 * This prevents guest kernels on AMD host with CPU 4180 * type 6, model 8 and higher from exploding due to 4181 * the rdmsr failing. 4182 */ 4183 msr_info->data = 0x20000000; 4184 break; 4185 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4186 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4187 case HV_X64_MSR_SYNDBG_OPTIONS: 4188 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4189 case HV_X64_MSR_CRASH_CTL: 4190 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4191 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4192 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4193 case HV_X64_MSR_TSC_EMULATION_STATUS: 4194 return kvm_hv_get_msr_common(vcpu, 4195 msr_info->index, &msr_info->data, 4196 msr_info->host_initiated); 4197 case MSR_IA32_BBL_CR_CTL3: 4198 /* This legacy MSR exists but isn't fully documented in current 4199 * silicon. It is however accessed by winxp in very narrow 4200 * scenarios where it sets bit #19, itself documented as 4201 * a "reserved" bit. Best effort attempt to source coherent 4202 * read data here should the balance of the register be 4203 * interpreted by the guest: 4204 * 4205 * L2 cache control register 3: 64GB range, 256KB size, 4206 * enabled, latency 0x1, configured 4207 */ 4208 msr_info->data = 0xbe702111; 4209 break; 4210 case MSR_AMD64_OSVW_ID_LENGTH: 4211 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4212 return 1; 4213 msr_info->data = vcpu->arch.osvw.length; 4214 break; 4215 case MSR_AMD64_OSVW_STATUS: 4216 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4217 return 1; 4218 msr_info->data = vcpu->arch.osvw.status; 4219 break; 4220 case MSR_PLATFORM_INFO: 4221 if (!msr_info->host_initiated && 4222 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4223 return 1; 4224 msr_info->data = vcpu->arch.msr_platform_info; 4225 break; 4226 case MSR_MISC_FEATURES_ENABLES: 4227 msr_info->data = vcpu->arch.msr_misc_features_enables; 4228 break; 4229 case MSR_K7_HWCR: 4230 msr_info->data = vcpu->arch.msr_hwcr; 4231 break; 4232 #ifdef CONFIG_X86_64 4233 case MSR_IA32_XFD: 4234 if (!msr_info->host_initiated && 4235 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4236 return 1; 4237 4238 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4239 break; 4240 case MSR_IA32_XFD_ERR: 4241 if (!msr_info->host_initiated && 4242 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4243 return 1; 4244 4245 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4246 break; 4247 #endif 4248 default: 4249 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4250 return kvm_pmu_get_msr(vcpu, msr_info); 4251 return KVM_MSR_RET_INVALID; 4252 } 4253 return 0; 4254 } 4255 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4256 4257 /* 4258 * Read or write a bunch of msrs. All parameters are kernel addresses. 4259 * 4260 * @return number of msrs set successfully. 4261 */ 4262 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4263 struct kvm_msr_entry *entries, 4264 int (*do_msr)(struct kvm_vcpu *vcpu, 4265 unsigned index, u64 *data)) 4266 { 4267 int i; 4268 4269 for (i = 0; i < msrs->nmsrs; ++i) 4270 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4271 break; 4272 4273 return i; 4274 } 4275 4276 /* 4277 * Read or write a bunch of msrs. Parameters are user addresses. 4278 * 4279 * @return number of msrs set successfully. 4280 */ 4281 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4282 int (*do_msr)(struct kvm_vcpu *vcpu, 4283 unsigned index, u64 *data), 4284 int writeback) 4285 { 4286 struct kvm_msrs msrs; 4287 struct kvm_msr_entry *entries; 4288 int r, n; 4289 unsigned size; 4290 4291 r = -EFAULT; 4292 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4293 goto out; 4294 4295 r = -E2BIG; 4296 if (msrs.nmsrs >= MAX_IO_MSRS) 4297 goto out; 4298 4299 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4300 entries = memdup_user(user_msrs->entries, size); 4301 if (IS_ERR(entries)) { 4302 r = PTR_ERR(entries); 4303 goto out; 4304 } 4305 4306 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4307 if (r < 0) 4308 goto out_free; 4309 4310 r = -EFAULT; 4311 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4312 goto out_free; 4313 4314 r = n; 4315 4316 out_free: 4317 kfree(entries); 4318 out: 4319 return r; 4320 } 4321 4322 static inline bool kvm_can_mwait_in_guest(void) 4323 { 4324 return boot_cpu_has(X86_FEATURE_MWAIT) && 4325 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4326 boot_cpu_has(X86_FEATURE_ARAT); 4327 } 4328 4329 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4330 struct kvm_cpuid2 __user *cpuid_arg) 4331 { 4332 struct kvm_cpuid2 cpuid; 4333 int r; 4334 4335 r = -EFAULT; 4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4337 return r; 4338 4339 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4340 if (r) 4341 return r; 4342 4343 r = -EFAULT; 4344 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4345 return r; 4346 4347 return 0; 4348 } 4349 4350 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4351 { 4352 int r = 0; 4353 4354 switch (ext) { 4355 case KVM_CAP_IRQCHIP: 4356 case KVM_CAP_HLT: 4357 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4358 case KVM_CAP_SET_TSS_ADDR: 4359 case KVM_CAP_EXT_CPUID: 4360 case KVM_CAP_EXT_EMUL_CPUID: 4361 case KVM_CAP_CLOCKSOURCE: 4362 case KVM_CAP_PIT: 4363 case KVM_CAP_NOP_IO_DELAY: 4364 case KVM_CAP_MP_STATE: 4365 case KVM_CAP_SYNC_MMU: 4366 case KVM_CAP_USER_NMI: 4367 case KVM_CAP_REINJECT_CONTROL: 4368 case KVM_CAP_IRQ_INJECT_STATUS: 4369 case KVM_CAP_IOEVENTFD: 4370 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4371 case KVM_CAP_PIT2: 4372 case KVM_CAP_PIT_STATE2: 4373 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4374 case KVM_CAP_VCPU_EVENTS: 4375 case KVM_CAP_HYPERV: 4376 case KVM_CAP_HYPERV_VAPIC: 4377 case KVM_CAP_HYPERV_SPIN: 4378 case KVM_CAP_HYPERV_SYNIC: 4379 case KVM_CAP_HYPERV_SYNIC2: 4380 case KVM_CAP_HYPERV_VP_INDEX: 4381 case KVM_CAP_HYPERV_EVENTFD: 4382 case KVM_CAP_HYPERV_TLBFLUSH: 4383 case KVM_CAP_HYPERV_SEND_IPI: 4384 case KVM_CAP_HYPERV_CPUID: 4385 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4386 case KVM_CAP_SYS_HYPERV_CPUID: 4387 case KVM_CAP_PCI_SEGMENT: 4388 case KVM_CAP_DEBUGREGS: 4389 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4390 case KVM_CAP_XSAVE: 4391 case KVM_CAP_ASYNC_PF: 4392 case KVM_CAP_ASYNC_PF_INT: 4393 case KVM_CAP_GET_TSC_KHZ: 4394 case KVM_CAP_KVMCLOCK_CTRL: 4395 case KVM_CAP_READONLY_MEM: 4396 case KVM_CAP_HYPERV_TIME: 4397 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4398 case KVM_CAP_TSC_DEADLINE_TIMER: 4399 case KVM_CAP_DISABLE_QUIRKS: 4400 case KVM_CAP_SET_BOOT_CPU_ID: 4401 case KVM_CAP_SPLIT_IRQCHIP: 4402 case KVM_CAP_IMMEDIATE_EXIT: 4403 case KVM_CAP_PMU_EVENT_FILTER: 4404 case KVM_CAP_GET_MSR_FEATURES: 4405 case KVM_CAP_MSR_PLATFORM_INFO: 4406 case KVM_CAP_EXCEPTION_PAYLOAD: 4407 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4408 case KVM_CAP_SET_GUEST_DEBUG: 4409 case KVM_CAP_LAST_CPU: 4410 case KVM_CAP_X86_USER_SPACE_MSR: 4411 case KVM_CAP_X86_MSR_FILTER: 4412 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4413 #ifdef CONFIG_X86_SGX_KVM 4414 case KVM_CAP_SGX_ATTRIBUTE: 4415 #endif 4416 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4417 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4418 case KVM_CAP_SREGS2: 4419 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4420 case KVM_CAP_VCPU_ATTRIBUTES: 4421 case KVM_CAP_SYS_ATTRIBUTES: 4422 case KVM_CAP_VAPIC: 4423 case KVM_CAP_ENABLE_CAP: 4424 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4425 r = 1; 4426 break; 4427 case KVM_CAP_EXIT_HYPERCALL: 4428 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4429 break; 4430 case KVM_CAP_SET_GUEST_DEBUG2: 4431 return KVM_GUESTDBG_VALID_MASK; 4432 #ifdef CONFIG_KVM_XEN 4433 case KVM_CAP_XEN_HVM: 4434 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4435 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4436 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4437 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4438 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4439 if (sched_info_on()) 4440 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4441 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4442 break; 4443 #endif 4444 case KVM_CAP_SYNC_REGS: 4445 r = KVM_SYNC_X86_VALID_FIELDS; 4446 break; 4447 case KVM_CAP_ADJUST_CLOCK: 4448 r = KVM_CLOCK_VALID_FLAGS; 4449 break; 4450 case KVM_CAP_X86_DISABLE_EXITS: 4451 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4452 KVM_X86_DISABLE_EXITS_CSTATE; 4453 if(kvm_can_mwait_in_guest()) 4454 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4455 break; 4456 case KVM_CAP_X86_SMM: 4457 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4458 break; 4459 4460 /* SMBASE is usually relocated above 1M on modern chipsets, 4461 * and SMM handlers might indeed rely on 4G segment limits, 4462 * so do not report SMM to be available if real mode is 4463 * emulated via vm86 mode. Still, do not go to great lengths 4464 * to avoid userspace's usage of the feature, because it is a 4465 * fringe case that is not enabled except via specific settings 4466 * of the module parameters. 4467 */ 4468 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4469 break; 4470 case KVM_CAP_NR_VCPUS: 4471 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4472 break; 4473 case KVM_CAP_MAX_VCPUS: 4474 r = KVM_MAX_VCPUS; 4475 break; 4476 case KVM_CAP_MAX_VCPU_ID: 4477 r = KVM_MAX_VCPU_IDS; 4478 break; 4479 case KVM_CAP_PV_MMU: /* obsolete */ 4480 r = 0; 4481 break; 4482 case KVM_CAP_MCE: 4483 r = KVM_MAX_MCE_BANKS; 4484 break; 4485 case KVM_CAP_XCRS: 4486 r = boot_cpu_has(X86_FEATURE_XSAVE); 4487 break; 4488 case KVM_CAP_TSC_CONTROL: 4489 case KVM_CAP_VM_TSC_CONTROL: 4490 r = kvm_caps.has_tsc_control; 4491 break; 4492 case KVM_CAP_X2APIC_API: 4493 r = KVM_X2APIC_API_VALID_FLAGS; 4494 break; 4495 case KVM_CAP_NESTED_STATE: 4496 r = kvm_x86_ops.nested_ops->get_state ? 4497 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4498 break; 4499 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4500 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4501 break; 4502 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4503 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4504 break; 4505 case KVM_CAP_SMALLER_MAXPHYADDR: 4506 r = (int) allow_smaller_maxphyaddr; 4507 break; 4508 case KVM_CAP_STEAL_TIME: 4509 r = sched_info_on(); 4510 break; 4511 case KVM_CAP_X86_BUS_LOCK_EXIT: 4512 if (kvm_caps.has_bus_lock_exit) 4513 r = KVM_BUS_LOCK_DETECTION_OFF | 4514 KVM_BUS_LOCK_DETECTION_EXIT; 4515 else 4516 r = 0; 4517 break; 4518 case KVM_CAP_XSAVE2: { 4519 u64 guest_perm = xstate_get_guest_group_perm(); 4520 4521 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4522 if (r < sizeof(struct kvm_xsave)) 4523 r = sizeof(struct kvm_xsave); 4524 break; 4525 } 4526 case KVM_CAP_PMU_CAPABILITY: 4527 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4528 break; 4529 case KVM_CAP_DISABLE_QUIRKS2: 4530 r = KVM_X86_VALID_QUIRKS; 4531 break; 4532 case KVM_CAP_X86_NOTIFY_VMEXIT: 4533 r = kvm_caps.has_notify_vmexit; 4534 break; 4535 default: 4536 break; 4537 } 4538 return r; 4539 } 4540 4541 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4542 { 4543 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4544 4545 if ((u64)(unsigned long)uaddr != attr->addr) 4546 return ERR_PTR_USR(-EFAULT); 4547 return uaddr; 4548 } 4549 4550 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4551 { 4552 u64 __user *uaddr = kvm_get_attr_addr(attr); 4553 4554 if (attr->group) 4555 return -ENXIO; 4556 4557 if (IS_ERR(uaddr)) 4558 return PTR_ERR(uaddr); 4559 4560 switch (attr->attr) { 4561 case KVM_X86_XCOMP_GUEST_SUPP: 4562 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4563 return -EFAULT; 4564 return 0; 4565 default: 4566 return -ENXIO; 4567 break; 4568 } 4569 } 4570 4571 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4572 { 4573 if (attr->group) 4574 return -ENXIO; 4575 4576 switch (attr->attr) { 4577 case KVM_X86_XCOMP_GUEST_SUPP: 4578 return 0; 4579 default: 4580 return -ENXIO; 4581 } 4582 } 4583 4584 long kvm_arch_dev_ioctl(struct file *filp, 4585 unsigned int ioctl, unsigned long arg) 4586 { 4587 void __user *argp = (void __user *)arg; 4588 long r; 4589 4590 switch (ioctl) { 4591 case KVM_GET_MSR_INDEX_LIST: { 4592 struct kvm_msr_list __user *user_msr_list = argp; 4593 struct kvm_msr_list msr_list; 4594 unsigned n; 4595 4596 r = -EFAULT; 4597 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4598 goto out; 4599 n = msr_list.nmsrs; 4600 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4601 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4602 goto out; 4603 r = -E2BIG; 4604 if (n < msr_list.nmsrs) 4605 goto out; 4606 r = -EFAULT; 4607 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4608 num_msrs_to_save * sizeof(u32))) 4609 goto out; 4610 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4611 &emulated_msrs, 4612 num_emulated_msrs * sizeof(u32))) 4613 goto out; 4614 r = 0; 4615 break; 4616 } 4617 case KVM_GET_SUPPORTED_CPUID: 4618 case KVM_GET_EMULATED_CPUID: { 4619 struct kvm_cpuid2 __user *cpuid_arg = argp; 4620 struct kvm_cpuid2 cpuid; 4621 4622 r = -EFAULT; 4623 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4624 goto out; 4625 4626 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4627 ioctl); 4628 if (r) 4629 goto out; 4630 4631 r = -EFAULT; 4632 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4633 goto out; 4634 r = 0; 4635 break; 4636 } 4637 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4638 r = -EFAULT; 4639 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4640 sizeof(kvm_caps.supported_mce_cap))) 4641 goto out; 4642 r = 0; 4643 break; 4644 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4645 struct kvm_msr_list __user *user_msr_list = argp; 4646 struct kvm_msr_list msr_list; 4647 unsigned int n; 4648 4649 r = -EFAULT; 4650 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4651 goto out; 4652 n = msr_list.nmsrs; 4653 msr_list.nmsrs = num_msr_based_features; 4654 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4655 goto out; 4656 r = -E2BIG; 4657 if (n < msr_list.nmsrs) 4658 goto out; 4659 r = -EFAULT; 4660 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4661 num_msr_based_features * sizeof(u32))) 4662 goto out; 4663 r = 0; 4664 break; 4665 } 4666 case KVM_GET_MSRS: 4667 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4668 break; 4669 case KVM_GET_SUPPORTED_HV_CPUID: 4670 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4671 break; 4672 case KVM_GET_DEVICE_ATTR: { 4673 struct kvm_device_attr attr; 4674 r = -EFAULT; 4675 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4676 break; 4677 r = kvm_x86_dev_get_attr(&attr); 4678 break; 4679 } 4680 case KVM_HAS_DEVICE_ATTR: { 4681 struct kvm_device_attr attr; 4682 r = -EFAULT; 4683 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4684 break; 4685 r = kvm_x86_dev_has_attr(&attr); 4686 break; 4687 } 4688 default: 4689 r = -EINVAL; 4690 break; 4691 } 4692 out: 4693 return r; 4694 } 4695 4696 static void wbinvd_ipi(void *garbage) 4697 { 4698 wbinvd(); 4699 } 4700 4701 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4702 { 4703 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4704 } 4705 4706 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4707 { 4708 /* Address WBINVD may be executed by guest */ 4709 if (need_emulate_wbinvd(vcpu)) { 4710 if (static_call(kvm_x86_has_wbinvd_exit)()) 4711 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4712 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4713 smp_call_function_single(vcpu->cpu, 4714 wbinvd_ipi, NULL, 1); 4715 } 4716 4717 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4718 4719 /* Save host pkru register if supported */ 4720 vcpu->arch.host_pkru = read_pkru(); 4721 4722 /* Apply any externally detected TSC adjustments (due to suspend) */ 4723 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4724 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4725 vcpu->arch.tsc_offset_adjustment = 0; 4726 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4727 } 4728 4729 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4730 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4731 rdtsc() - vcpu->arch.last_host_tsc; 4732 if (tsc_delta < 0) 4733 mark_tsc_unstable("KVM discovered backwards TSC"); 4734 4735 if (kvm_check_tsc_unstable()) { 4736 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4737 vcpu->arch.last_guest_tsc); 4738 kvm_vcpu_write_tsc_offset(vcpu, offset); 4739 vcpu->arch.tsc_catchup = 1; 4740 } 4741 4742 if (kvm_lapic_hv_timer_in_use(vcpu)) 4743 kvm_lapic_restart_hv_timer(vcpu); 4744 4745 /* 4746 * On a host with synchronized TSC, there is no need to update 4747 * kvmclock on vcpu->cpu migration 4748 */ 4749 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4750 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4751 if (vcpu->cpu != cpu) 4752 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4753 vcpu->cpu = cpu; 4754 } 4755 4756 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4757 } 4758 4759 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4760 { 4761 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4762 struct kvm_steal_time __user *st; 4763 struct kvm_memslots *slots; 4764 static const u8 preempted = KVM_VCPU_PREEMPTED; 4765 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4766 4767 /* 4768 * The vCPU can be marked preempted if and only if the VM-Exit was on 4769 * an instruction boundary and will not trigger guest emulation of any 4770 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4771 * when this is true, for example allowing the vCPU to be marked 4772 * preempted if and only if the VM-Exit was due to a host interrupt. 4773 */ 4774 if (!vcpu->arch.at_instruction_boundary) { 4775 vcpu->stat.preemption_other++; 4776 return; 4777 } 4778 4779 vcpu->stat.preemption_reported++; 4780 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4781 return; 4782 4783 if (vcpu->arch.st.preempted) 4784 return; 4785 4786 /* This happens on process exit */ 4787 if (unlikely(current->mm != vcpu->kvm->mm)) 4788 return; 4789 4790 slots = kvm_memslots(vcpu->kvm); 4791 4792 if (unlikely(slots->generation != ghc->generation || 4793 gpa != ghc->gpa || 4794 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4795 return; 4796 4797 st = (struct kvm_steal_time __user *)ghc->hva; 4798 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4799 4800 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4801 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4802 4803 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4804 } 4805 4806 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4807 { 4808 int idx; 4809 4810 if (vcpu->preempted) { 4811 if (!vcpu->arch.guest_state_protected) 4812 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4813 4814 /* 4815 * Take the srcu lock as memslots will be accessed to check the gfn 4816 * cache generation against the memslots generation. 4817 */ 4818 idx = srcu_read_lock(&vcpu->kvm->srcu); 4819 if (kvm_xen_msr_enabled(vcpu->kvm)) 4820 kvm_xen_runstate_set_preempted(vcpu); 4821 else 4822 kvm_steal_time_set_preempted(vcpu); 4823 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4824 } 4825 4826 static_call(kvm_x86_vcpu_put)(vcpu); 4827 vcpu->arch.last_host_tsc = rdtsc(); 4828 } 4829 4830 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4831 struct kvm_lapic_state *s) 4832 { 4833 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4834 4835 return kvm_apic_get_state(vcpu, s); 4836 } 4837 4838 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4839 struct kvm_lapic_state *s) 4840 { 4841 int r; 4842 4843 r = kvm_apic_set_state(vcpu, s); 4844 if (r) 4845 return r; 4846 update_cr8_intercept(vcpu); 4847 4848 return 0; 4849 } 4850 4851 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4852 { 4853 /* 4854 * We can accept userspace's request for interrupt injection 4855 * as long as we have a place to store the interrupt number. 4856 * The actual injection will happen when the CPU is able to 4857 * deliver the interrupt. 4858 */ 4859 if (kvm_cpu_has_extint(vcpu)) 4860 return false; 4861 4862 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4863 return (!lapic_in_kernel(vcpu) || 4864 kvm_apic_accept_pic_intr(vcpu)); 4865 } 4866 4867 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4868 { 4869 /* 4870 * Do not cause an interrupt window exit if an exception 4871 * is pending or an event needs reinjection; userspace 4872 * might want to inject the interrupt manually using KVM_SET_REGS 4873 * or KVM_SET_SREGS. For that to work, we must be at an 4874 * instruction boundary and with no events half-injected. 4875 */ 4876 return (kvm_arch_interrupt_allowed(vcpu) && 4877 kvm_cpu_accept_dm_intr(vcpu) && 4878 !kvm_event_needs_reinjection(vcpu) && 4879 !kvm_is_exception_pending(vcpu)); 4880 } 4881 4882 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4883 struct kvm_interrupt *irq) 4884 { 4885 if (irq->irq >= KVM_NR_INTERRUPTS) 4886 return -EINVAL; 4887 4888 if (!irqchip_in_kernel(vcpu->kvm)) { 4889 kvm_queue_interrupt(vcpu, irq->irq, false); 4890 kvm_make_request(KVM_REQ_EVENT, vcpu); 4891 return 0; 4892 } 4893 4894 /* 4895 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4896 * fail for in-kernel 8259. 4897 */ 4898 if (pic_in_kernel(vcpu->kvm)) 4899 return -ENXIO; 4900 4901 if (vcpu->arch.pending_external_vector != -1) 4902 return -EEXIST; 4903 4904 vcpu->arch.pending_external_vector = irq->irq; 4905 kvm_make_request(KVM_REQ_EVENT, vcpu); 4906 return 0; 4907 } 4908 4909 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4910 { 4911 kvm_inject_nmi(vcpu); 4912 4913 return 0; 4914 } 4915 4916 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4917 struct kvm_tpr_access_ctl *tac) 4918 { 4919 if (tac->flags) 4920 return -EINVAL; 4921 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4922 return 0; 4923 } 4924 4925 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4926 u64 mcg_cap) 4927 { 4928 int r; 4929 unsigned bank_num = mcg_cap & 0xff, bank; 4930 4931 r = -EINVAL; 4932 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4933 goto out; 4934 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4935 goto out; 4936 r = 0; 4937 vcpu->arch.mcg_cap = mcg_cap; 4938 /* Init IA32_MCG_CTL to all 1s */ 4939 if (mcg_cap & MCG_CTL_P) 4940 vcpu->arch.mcg_ctl = ~(u64)0; 4941 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4942 for (bank = 0; bank < bank_num; bank++) { 4943 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4944 if (mcg_cap & MCG_CMCI_P) 4945 vcpu->arch.mci_ctl2_banks[bank] = 0; 4946 } 4947 4948 kvm_apic_after_set_mcg_cap(vcpu); 4949 4950 static_call(kvm_x86_setup_mce)(vcpu); 4951 out: 4952 return r; 4953 } 4954 4955 /* 4956 * Validate this is an UCNA (uncorrectable no action) error by checking the 4957 * MCG_STATUS and MCi_STATUS registers: 4958 * - none of the bits for Machine Check Exceptions are set 4959 * - both the VAL (valid) and UC (uncorrectable) bits are set 4960 * MCI_STATUS_PCC - Processor Context Corrupted 4961 * MCI_STATUS_S - Signaled as a Machine Check Exception 4962 * MCI_STATUS_AR - Software recoverable Action Required 4963 */ 4964 static bool is_ucna(struct kvm_x86_mce *mce) 4965 { 4966 return !mce->mcg_status && 4967 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4968 (mce->status & MCI_STATUS_VAL) && 4969 (mce->status & MCI_STATUS_UC); 4970 } 4971 4972 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4973 { 4974 u64 mcg_cap = vcpu->arch.mcg_cap; 4975 4976 banks[1] = mce->status; 4977 banks[2] = mce->addr; 4978 banks[3] = mce->misc; 4979 vcpu->arch.mcg_status = mce->mcg_status; 4980 4981 if (!(mcg_cap & MCG_CMCI_P) || 4982 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4983 return 0; 4984 4985 if (lapic_in_kernel(vcpu)) 4986 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4987 4988 return 0; 4989 } 4990 4991 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4992 struct kvm_x86_mce *mce) 4993 { 4994 u64 mcg_cap = vcpu->arch.mcg_cap; 4995 unsigned bank_num = mcg_cap & 0xff; 4996 u64 *banks = vcpu->arch.mce_banks; 4997 4998 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4999 return -EINVAL; 5000 5001 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5002 5003 if (is_ucna(mce)) 5004 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5005 5006 /* 5007 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5008 * reporting is disabled 5009 */ 5010 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5011 vcpu->arch.mcg_ctl != ~(u64)0) 5012 return 0; 5013 /* 5014 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5015 * reporting is disabled for the bank 5016 */ 5017 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5018 return 0; 5019 if (mce->status & MCI_STATUS_UC) { 5020 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5021 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5022 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5023 return 0; 5024 } 5025 if (banks[1] & MCI_STATUS_VAL) 5026 mce->status |= MCI_STATUS_OVER; 5027 banks[2] = mce->addr; 5028 banks[3] = mce->misc; 5029 vcpu->arch.mcg_status = mce->mcg_status; 5030 banks[1] = mce->status; 5031 kvm_queue_exception(vcpu, MC_VECTOR); 5032 } else if (!(banks[1] & MCI_STATUS_VAL) 5033 || !(banks[1] & MCI_STATUS_UC)) { 5034 if (banks[1] & MCI_STATUS_VAL) 5035 mce->status |= MCI_STATUS_OVER; 5036 banks[2] = mce->addr; 5037 banks[3] = mce->misc; 5038 banks[1] = mce->status; 5039 } else 5040 banks[1] |= MCI_STATUS_OVER; 5041 return 0; 5042 } 5043 5044 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5045 struct kvm_vcpu_events *events) 5046 { 5047 struct kvm_queued_exception *ex; 5048 5049 process_nmi(vcpu); 5050 5051 #ifdef CONFIG_KVM_SMM 5052 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5053 process_smi(vcpu); 5054 #endif 5055 5056 /* 5057 * KVM's ABI only allows for one exception to be migrated. Luckily, 5058 * the only time there can be two queued exceptions is if there's a 5059 * non-exiting _injected_ exception, and a pending exiting exception. 5060 * In that case, ignore the VM-Exiting exception as it's an extension 5061 * of the injected exception. 5062 */ 5063 if (vcpu->arch.exception_vmexit.pending && 5064 !vcpu->arch.exception.pending && 5065 !vcpu->arch.exception.injected) 5066 ex = &vcpu->arch.exception_vmexit; 5067 else 5068 ex = &vcpu->arch.exception; 5069 5070 /* 5071 * In guest mode, payload delivery should be deferred if the exception 5072 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5073 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5074 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5075 * propagate the payload and so it cannot be safely deferred. Deliver 5076 * the payload if the capability hasn't been requested. 5077 */ 5078 if (!vcpu->kvm->arch.exception_payload_enabled && 5079 ex->pending && ex->has_payload) 5080 kvm_deliver_exception_payload(vcpu, ex); 5081 5082 memset(events, 0, sizeof(*events)); 5083 5084 /* 5085 * The API doesn't provide the instruction length for software 5086 * exceptions, so don't report them. As long as the guest RIP 5087 * isn't advanced, we should expect to encounter the exception 5088 * again. 5089 */ 5090 if (!kvm_exception_is_soft(ex->vector)) { 5091 events->exception.injected = ex->injected; 5092 events->exception.pending = ex->pending; 5093 /* 5094 * For ABI compatibility, deliberately conflate 5095 * pending and injected exceptions when 5096 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5097 */ 5098 if (!vcpu->kvm->arch.exception_payload_enabled) 5099 events->exception.injected |= ex->pending; 5100 } 5101 events->exception.nr = ex->vector; 5102 events->exception.has_error_code = ex->has_error_code; 5103 events->exception.error_code = ex->error_code; 5104 events->exception_has_payload = ex->has_payload; 5105 events->exception_payload = ex->payload; 5106 5107 events->interrupt.injected = 5108 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5109 events->interrupt.nr = vcpu->arch.interrupt.nr; 5110 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5111 5112 events->nmi.injected = vcpu->arch.nmi_injected; 5113 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5114 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5115 5116 /* events->sipi_vector is never valid when reporting to user space */ 5117 5118 #ifdef CONFIG_KVM_SMM 5119 events->smi.smm = is_smm(vcpu); 5120 events->smi.pending = vcpu->arch.smi_pending; 5121 events->smi.smm_inside_nmi = 5122 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5123 #endif 5124 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5125 5126 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5127 | KVM_VCPUEVENT_VALID_SHADOW 5128 | KVM_VCPUEVENT_VALID_SMM); 5129 if (vcpu->kvm->arch.exception_payload_enabled) 5130 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5131 if (vcpu->kvm->arch.triple_fault_event) { 5132 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5133 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5134 } 5135 } 5136 5137 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5138 struct kvm_vcpu_events *events) 5139 { 5140 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5141 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5142 | KVM_VCPUEVENT_VALID_SHADOW 5143 | KVM_VCPUEVENT_VALID_SMM 5144 | KVM_VCPUEVENT_VALID_PAYLOAD 5145 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5146 return -EINVAL; 5147 5148 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5149 if (!vcpu->kvm->arch.exception_payload_enabled) 5150 return -EINVAL; 5151 if (events->exception.pending) 5152 events->exception.injected = 0; 5153 else 5154 events->exception_has_payload = 0; 5155 } else { 5156 events->exception.pending = 0; 5157 events->exception_has_payload = 0; 5158 } 5159 5160 if ((events->exception.injected || events->exception.pending) && 5161 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5162 return -EINVAL; 5163 5164 /* INITs are latched while in SMM */ 5165 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5166 (events->smi.smm || events->smi.pending) && 5167 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5168 return -EINVAL; 5169 5170 process_nmi(vcpu); 5171 5172 /* 5173 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5174 * morph the exception to a VM-Exit if appropriate. Do this only for 5175 * pending exceptions, already-injected exceptions are not subject to 5176 * intercpetion. Note, userspace that conflates pending and injected 5177 * is hosed, and will incorrectly convert an injected exception into a 5178 * pending exception, which in turn may cause a spurious VM-Exit. 5179 */ 5180 vcpu->arch.exception_from_userspace = events->exception.pending; 5181 5182 vcpu->arch.exception_vmexit.pending = false; 5183 5184 vcpu->arch.exception.injected = events->exception.injected; 5185 vcpu->arch.exception.pending = events->exception.pending; 5186 vcpu->arch.exception.vector = events->exception.nr; 5187 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5188 vcpu->arch.exception.error_code = events->exception.error_code; 5189 vcpu->arch.exception.has_payload = events->exception_has_payload; 5190 vcpu->arch.exception.payload = events->exception_payload; 5191 5192 vcpu->arch.interrupt.injected = events->interrupt.injected; 5193 vcpu->arch.interrupt.nr = events->interrupt.nr; 5194 vcpu->arch.interrupt.soft = events->interrupt.soft; 5195 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5196 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5197 events->interrupt.shadow); 5198 5199 vcpu->arch.nmi_injected = events->nmi.injected; 5200 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5201 vcpu->arch.nmi_pending = events->nmi.pending; 5202 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5203 5204 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5205 lapic_in_kernel(vcpu)) 5206 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5207 5208 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5209 #ifdef CONFIG_KVM_SMM 5210 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5211 kvm_leave_nested(vcpu); 5212 kvm_smm_changed(vcpu, events->smi.smm); 5213 } 5214 5215 vcpu->arch.smi_pending = events->smi.pending; 5216 5217 if (events->smi.smm) { 5218 if (events->smi.smm_inside_nmi) 5219 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5220 else 5221 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5222 } 5223 5224 #else 5225 if (events->smi.smm || events->smi.pending || 5226 events->smi.smm_inside_nmi) 5227 return -EINVAL; 5228 #endif 5229 5230 if (lapic_in_kernel(vcpu)) { 5231 if (events->smi.latched_init) 5232 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5233 else 5234 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5235 } 5236 } 5237 5238 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5239 if (!vcpu->kvm->arch.triple_fault_event) 5240 return -EINVAL; 5241 if (events->triple_fault.pending) 5242 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5243 else 5244 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5245 } 5246 5247 kvm_make_request(KVM_REQ_EVENT, vcpu); 5248 5249 return 0; 5250 } 5251 5252 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5253 struct kvm_debugregs *dbgregs) 5254 { 5255 unsigned long val; 5256 5257 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5258 kvm_get_dr(vcpu, 6, &val); 5259 dbgregs->dr6 = val; 5260 dbgregs->dr7 = vcpu->arch.dr7; 5261 dbgregs->flags = 0; 5262 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5263 } 5264 5265 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5266 struct kvm_debugregs *dbgregs) 5267 { 5268 if (dbgregs->flags) 5269 return -EINVAL; 5270 5271 if (!kvm_dr6_valid(dbgregs->dr6)) 5272 return -EINVAL; 5273 if (!kvm_dr7_valid(dbgregs->dr7)) 5274 return -EINVAL; 5275 5276 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5277 kvm_update_dr0123(vcpu); 5278 vcpu->arch.dr6 = dbgregs->dr6; 5279 vcpu->arch.dr7 = dbgregs->dr7; 5280 kvm_update_dr7(vcpu); 5281 5282 return 0; 5283 } 5284 5285 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5286 struct kvm_xsave *guest_xsave) 5287 { 5288 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5289 return; 5290 5291 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5292 guest_xsave->region, 5293 sizeof(guest_xsave->region), 5294 vcpu->arch.pkru); 5295 } 5296 5297 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5298 u8 *state, unsigned int size) 5299 { 5300 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5301 return; 5302 5303 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5304 state, size, vcpu->arch.pkru); 5305 } 5306 5307 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5308 struct kvm_xsave *guest_xsave) 5309 { 5310 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5311 return 0; 5312 5313 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5314 guest_xsave->region, 5315 kvm_caps.supported_xcr0, 5316 &vcpu->arch.pkru); 5317 } 5318 5319 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5320 struct kvm_xcrs *guest_xcrs) 5321 { 5322 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5323 guest_xcrs->nr_xcrs = 0; 5324 return; 5325 } 5326 5327 guest_xcrs->nr_xcrs = 1; 5328 guest_xcrs->flags = 0; 5329 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5330 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5331 } 5332 5333 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5334 struct kvm_xcrs *guest_xcrs) 5335 { 5336 int i, r = 0; 5337 5338 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5339 return -EINVAL; 5340 5341 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5342 return -EINVAL; 5343 5344 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5345 /* Only support XCR0 currently */ 5346 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5347 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5348 guest_xcrs->xcrs[i].value); 5349 break; 5350 } 5351 if (r) 5352 r = -EINVAL; 5353 return r; 5354 } 5355 5356 /* 5357 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5358 * stopped by the hypervisor. This function will be called from the host only. 5359 * EINVAL is returned when the host attempts to set the flag for a guest that 5360 * does not support pv clocks. 5361 */ 5362 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5363 { 5364 if (!vcpu->arch.pv_time.active) 5365 return -EINVAL; 5366 vcpu->arch.pvclock_set_guest_stopped_request = true; 5367 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5368 return 0; 5369 } 5370 5371 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5372 struct kvm_device_attr *attr) 5373 { 5374 int r; 5375 5376 switch (attr->attr) { 5377 case KVM_VCPU_TSC_OFFSET: 5378 r = 0; 5379 break; 5380 default: 5381 r = -ENXIO; 5382 } 5383 5384 return r; 5385 } 5386 5387 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5388 struct kvm_device_attr *attr) 5389 { 5390 u64 __user *uaddr = kvm_get_attr_addr(attr); 5391 int r; 5392 5393 if (IS_ERR(uaddr)) 5394 return PTR_ERR(uaddr); 5395 5396 switch (attr->attr) { 5397 case KVM_VCPU_TSC_OFFSET: 5398 r = -EFAULT; 5399 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5400 break; 5401 r = 0; 5402 break; 5403 default: 5404 r = -ENXIO; 5405 } 5406 5407 return r; 5408 } 5409 5410 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5411 struct kvm_device_attr *attr) 5412 { 5413 u64 __user *uaddr = kvm_get_attr_addr(attr); 5414 struct kvm *kvm = vcpu->kvm; 5415 int r; 5416 5417 if (IS_ERR(uaddr)) 5418 return PTR_ERR(uaddr); 5419 5420 switch (attr->attr) { 5421 case KVM_VCPU_TSC_OFFSET: { 5422 u64 offset, tsc, ns; 5423 unsigned long flags; 5424 bool matched; 5425 5426 r = -EFAULT; 5427 if (get_user(offset, uaddr)) 5428 break; 5429 5430 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5431 5432 matched = (vcpu->arch.virtual_tsc_khz && 5433 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5434 kvm->arch.last_tsc_offset == offset); 5435 5436 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5437 ns = get_kvmclock_base_ns(); 5438 5439 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5440 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5441 5442 r = 0; 5443 break; 5444 } 5445 default: 5446 r = -ENXIO; 5447 } 5448 5449 return r; 5450 } 5451 5452 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5453 unsigned int ioctl, 5454 void __user *argp) 5455 { 5456 struct kvm_device_attr attr; 5457 int r; 5458 5459 if (copy_from_user(&attr, argp, sizeof(attr))) 5460 return -EFAULT; 5461 5462 if (attr.group != KVM_VCPU_TSC_CTRL) 5463 return -ENXIO; 5464 5465 switch (ioctl) { 5466 case KVM_HAS_DEVICE_ATTR: 5467 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5468 break; 5469 case KVM_GET_DEVICE_ATTR: 5470 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5471 break; 5472 case KVM_SET_DEVICE_ATTR: 5473 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5474 break; 5475 } 5476 5477 return r; 5478 } 5479 5480 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5481 struct kvm_enable_cap *cap) 5482 { 5483 int r; 5484 uint16_t vmcs_version; 5485 void __user *user_ptr; 5486 5487 if (cap->flags) 5488 return -EINVAL; 5489 5490 switch (cap->cap) { 5491 case KVM_CAP_HYPERV_SYNIC2: 5492 if (cap->args[0]) 5493 return -EINVAL; 5494 fallthrough; 5495 5496 case KVM_CAP_HYPERV_SYNIC: 5497 if (!irqchip_in_kernel(vcpu->kvm)) 5498 return -EINVAL; 5499 return kvm_hv_activate_synic(vcpu, cap->cap == 5500 KVM_CAP_HYPERV_SYNIC2); 5501 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5502 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5503 return -ENOTTY; 5504 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5505 if (!r) { 5506 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5507 if (copy_to_user(user_ptr, &vmcs_version, 5508 sizeof(vmcs_version))) 5509 r = -EFAULT; 5510 } 5511 return r; 5512 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5513 if (!kvm_x86_ops.enable_l2_tlb_flush) 5514 return -ENOTTY; 5515 5516 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5517 5518 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5519 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5520 5521 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5522 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5523 if (vcpu->arch.pv_cpuid.enforce) 5524 kvm_update_pv_runtime(vcpu); 5525 5526 return 0; 5527 default: 5528 return -EINVAL; 5529 } 5530 } 5531 5532 long kvm_arch_vcpu_ioctl(struct file *filp, 5533 unsigned int ioctl, unsigned long arg) 5534 { 5535 struct kvm_vcpu *vcpu = filp->private_data; 5536 void __user *argp = (void __user *)arg; 5537 int r; 5538 union { 5539 struct kvm_sregs2 *sregs2; 5540 struct kvm_lapic_state *lapic; 5541 struct kvm_xsave *xsave; 5542 struct kvm_xcrs *xcrs; 5543 void *buffer; 5544 } u; 5545 5546 vcpu_load(vcpu); 5547 5548 u.buffer = NULL; 5549 switch (ioctl) { 5550 case KVM_GET_LAPIC: { 5551 r = -EINVAL; 5552 if (!lapic_in_kernel(vcpu)) 5553 goto out; 5554 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5555 GFP_KERNEL_ACCOUNT); 5556 5557 r = -ENOMEM; 5558 if (!u.lapic) 5559 goto out; 5560 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5561 if (r) 5562 goto out; 5563 r = -EFAULT; 5564 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5565 goto out; 5566 r = 0; 5567 break; 5568 } 5569 case KVM_SET_LAPIC: { 5570 r = -EINVAL; 5571 if (!lapic_in_kernel(vcpu)) 5572 goto out; 5573 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5574 if (IS_ERR(u.lapic)) { 5575 r = PTR_ERR(u.lapic); 5576 goto out_nofree; 5577 } 5578 5579 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5580 break; 5581 } 5582 case KVM_INTERRUPT: { 5583 struct kvm_interrupt irq; 5584 5585 r = -EFAULT; 5586 if (copy_from_user(&irq, argp, sizeof(irq))) 5587 goto out; 5588 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5589 break; 5590 } 5591 case KVM_NMI: { 5592 r = kvm_vcpu_ioctl_nmi(vcpu); 5593 break; 5594 } 5595 case KVM_SMI: { 5596 r = kvm_inject_smi(vcpu); 5597 break; 5598 } 5599 case KVM_SET_CPUID: { 5600 struct kvm_cpuid __user *cpuid_arg = argp; 5601 struct kvm_cpuid cpuid; 5602 5603 r = -EFAULT; 5604 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5605 goto out; 5606 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5607 break; 5608 } 5609 case KVM_SET_CPUID2: { 5610 struct kvm_cpuid2 __user *cpuid_arg = argp; 5611 struct kvm_cpuid2 cpuid; 5612 5613 r = -EFAULT; 5614 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5615 goto out; 5616 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5617 cpuid_arg->entries); 5618 break; 5619 } 5620 case KVM_GET_CPUID2: { 5621 struct kvm_cpuid2 __user *cpuid_arg = argp; 5622 struct kvm_cpuid2 cpuid; 5623 5624 r = -EFAULT; 5625 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5626 goto out; 5627 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5628 cpuid_arg->entries); 5629 if (r) 5630 goto out; 5631 r = -EFAULT; 5632 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5633 goto out; 5634 r = 0; 5635 break; 5636 } 5637 case KVM_GET_MSRS: { 5638 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5639 r = msr_io(vcpu, argp, do_get_msr, 1); 5640 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5641 break; 5642 } 5643 case KVM_SET_MSRS: { 5644 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5645 r = msr_io(vcpu, argp, do_set_msr, 0); 5646 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5647 break; 5648 } 5649 case KVM_TPR_ACCESS_REPORTING: { 5650 struct kvm_tpr_access_ctl tac; 5651 5652 r = -EFAULT; 5653 if (copy_from_user(&tac, argp, sizeof(tac))) 5654 goto out; 5655 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5656 if (r) 5657 goto out; 5658 r = -EFAULT; 5659 if (copy_to_user(argp, &tac, sizeof(tac))) 5660 goto out; 5661 r = 0; 5662 break; 5663 }; 5664 case KVM_SET_VAPIC_ADDR: { 5665 struct kvm_vapic_addr va; 5666 int idx; 5667 5668 r = -EINVAL; 5669 if (!lapic_in_kernel(vcpu)) 5670 goto out; 5671 r = -EFAULT; 5672 if (copy_from_user(&va, argp, sizeof(va))) 5673 goto out; 5674 idx = srcu_read_lock(&vcpu->kvm->srcu); 5675 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5676 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5677 break; 5678 } 5679 case KVM_X86_SETUP_MCE: { 5680 u64 mcg_cap; 5681 5682 r = -EFAULT; 5683 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5684 goto out; 5685 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5686 break; 5687 } 5688 case KVM_X86_SET_MCE: { 5689 struct kvm_x86_mce mce; 5690 5691 r = -EFAULT; 5692 if (copy_from_user(&mce, argp, sizeof(mce))) 5693 goto out; 5694 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5695 break; 5696 } 5697 case KVM_GET_VCPU_EVENTS: { 5698 struct kvm_vcpu_events events; 5699 5700 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5701 5702 r = -EFAULT; 5703 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5704 break; 5705 r = 0; 5706 break; 5707 } 5708 case KVM_SET_VCPU_EVENTS: { 5709 struct kvm_vcpu_events events; 5710 5711 r = -EFAULT; 5712 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5713 break; 5714 5715 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5716 break; 5717 } 5718 case KVM_GET_DEBUGREGS: { 5719 struct kvm_debugregs dbgregs; 5720 5721 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5722 5723 r = -EFAULT; 5724 if (copy_to_user(argp, &dbgregs, 5725 sizeof(struct kvm_debugregs))) 5726 break; 5727 r = 0; 5728 break; 5729 } 5730 case KVM_SET_DEBUGREGS: { 5731 struct kvm_debugregs dbgregs; 5732 5733 r = -EFAULT; 5734 if (copy_from_user(&dbgregs, argp, 5735 sizeof(struct kvm_debugregs))) 5736 break; 5737 5738 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5739 break; 5740 } 5741 case KVM_GET_XSAVE: { 5742 r = -EINVAL; 5743 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5744 break; 5745 5746 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5747 r = -ENOMEM; 5748 if (!u.xsave) 5749 break; 5750 5751 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5752 5753 r = -EFAULT; 5754 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5755 break; 5756 r = 0; 5757 break; 5758 } 5759 case KVM_SET_XSAVE: { 5760 int size = vcpu->arch.guest_fpu.uabi_size; 5761 5762 u.xsave = memdup_user(argp, size); 5763 if (IS_ERR(u.xsave)) { 5764 r = PTR_ERR(u.xsave); 5765 goto out_nofree; 5766 } 5767 5768 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5769 break; 5770 } 5771 5772 case KVM_GET_XSAVE2: { 5773 int size = vcpu->arch.guest_fpu.uabi_size; 5774 5775 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5776 r = -ENOMEM; 5777 if (!u.xsave) 5778 break; 5779 5780 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5781 5782 r = -EFAULT; 5783 if (copy_to_user(argp, u.xsave, size)) 5784 break; 5785 5786 r = 0; 5787 break; 5788 } 5789 5790 case KVM_GET_XCRS: { 5791 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5792 r = -ENOMEM; 5793 if (!u.xcrs) 5794 break; 5795 5796 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5797 5798 r = -EFAULT; 5799 if (copy_to_user(argp, u.xcrs, 5800 sizeof(struct kvm_xcrs))) 5801 break; 5802 r = 0; 5803 break; 5804 } 5805 case KVM_SET_XCRS: { 5806 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5807 if (IS_ERR(u.xcrs)) { 5808 r = PTR_ERR(u.xcrs); 5809 goto out_nofree; 5810 } 5811 5812 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5813 break; 5814 } 5815 case KVM_SET_TSC_KHZ: { 5816 u32 user_tsc_khz; 5817 5818 r = -EINVAL; 5819 user_tsc_khz = (u32)arg; 5820 5821 if (kvm_caps.has_tsc_control && 5822 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5823 goto out; 5824 5825 if (user_tsc_khz == 0) 5826 user_tsc_khz = tsc_khz; 5827 5828 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5829 r = 0; 5830 5831 goto out; 5832 } 5833 case KVM_GET_TSC_KHZ: { 5834 r = vcpu->arch.virtual_tsc_khz; 5835 goto out; 5836 } 5837 case KVM_KVMCLOCK_CTRL: { 5838 r = kvm_set_guest_paused(vcpu); 5839 goto out; 5840 } 5841 case KVM_ENABLE_CAP: { 5842 struct kvm_enable_cap cap; 5843 5844 r = -EFAULT; 5845 if (copy_from_user(&cap, argp, sizeof(cap))) 5846 goto out; 5847 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5848 break; 5849 } 5850 case KVM_GET_NESTED_STATE: { 5851 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5852 u32 user_data_size; 5853 5854 r = -EINVAL; 5855 if (!kvm_x86_ops.nested_ops->get_state) 5856 break; 5857 5858 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5859 r = -EFAULT; 5860 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5861 break; 5862 5863 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5864 user_data_size); 5865 if (r < 0) 5866 break; 5867 5868 if (r > user_data_size) { 5869 if (put_user(r, &user_kvm_nested_state->size)) 5870 r = -EFAULT; 5871 else 5872 r = -E2BIG; 5873 break; 5874 } 5875 5876 r = 0; 5877 break; 5878 } 5879 case KVM_SET_NESTED_STATE: { 5880 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5881 struct kvm_nested_state kvm_state; 5882 int idx; 5883 5884 r = -EINVAL; 5885 if (!kvm_x86_ops.nested_ops->set_state) 5886 break; 5887 5888 r = -EFAULT; 5889 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5890 break; 5891 5892 r = -EINVAL; 5893 if (kvm_state.size < sizeof(kvm_state)) 5894 break; 5895 5896 if (kvm_state.flags & 5897 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5898 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5899 | KVM_STATE_NESTED_GIF_SET)) 5900 break; 5901 5902 /* nested_run_pending implies guest_mode. */ 5903 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5904 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5905 break; 5906 5907 idx = srcu_read_lock(&vcpu->kvm->srcu); 5908 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5909 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5910 break; 5911 } 5912 case KVM_GET_SUPPORTED_HV_CPUID: 5913 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5914 break; 5915 #ifdef CONFIG_KVM_XEN 5916 case KVM_XEN_VCPU_GET_ATTR: { 5917 struct kvm_xen_vcpu_attr xva; 5918 5919 r = -EFAULT; 5920 if (copy_from_user(&xva, argp, sizeof(xva))) 5921 goto out; 5922 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5923 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5924 r = -EFAULT; 5925 break; 5926 } 5927 case KVM_XEN_VCPU_SET_ATTR: { 5928 struct kvm_xen_vcpu_attr xva; 5929 5930 r = -EFAULT; 5931 if (copy_from_user(&xva, argp, sizeof(xva))) 5932 goto out; 5933 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5934 break; 5935 } 5936 #endif 5937 case KVM_GET_SREGS2: { 5938 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5939 r = -ENOMEM; 5940 if (!u.sregs2) 5941 goto out; 5942 __get_sregs2(vcpu, u.sregs2); 5943 r = -EFAULT; 5944 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5945 goto out; 5946 r = 0; 5947 break; 5948 } 5949 case KVM_SET_SREGS2: { 5950 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5951 if (IS_ERR(u.sregs2)) { 5952 r = PTR_ERR(u.sregs2); 5953 u.sregs2 = NULL; 5954 goto out; 5955 } 5956 r = __set_sregs2(vcpu, u.sregs2); 5957 break; 5958 } 5959 case KVM_HAS_DEVICE_ATTR: 5960 case KVM_GET_DEVICE_ATTR: 5961 case KVM_SET_DEVICE_ATTR: 5962 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5963 break; 5964 default: 5965 r = -EINVAL; 5966 } 5967 out: 5968 kfree(u.buffer); 5969 out_nofree: 5970 vcpu_put(vcpu); 5971 return r; 5972 } 5973 5974 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5975 { 5976 return VM_FAULT_SIGBUS; 5977 } 5978 5979 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5980 { 5981 int ret; 5982 5983 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5984 return -EINVAL; 5985 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5986 return ret; 5987 } 5988 5989 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5990 u64 ident_addr) 5991 { 5992 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5993 } 5994 5995 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5996 unsigned long kvm_nr_mmu_pages) 5997 { 5998 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5999 return -EINVAL; 6000 6001 mutex_lock(&kvm->slots_lock); 6002 6003 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6004 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6005 6006 mutex_unlock(&kvm->slots_lock); 6007 return 0; 6008 } 6009 6010 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6011 { 6012 return kvm->arch.n_max_mmu_pages; 6013 } 6014 6015 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6016 { 6017 struct kvm_pic *pic = kvm->arch.vpic; 6018 int r; 6019 6020 r = 0; 6021 switch (chip->chip_id) { 6022 case KVM_IRQCHIP_PIC_MASTER: 6023 memcpy(&chip->chip.pic, &pic->pics[0], 6024 sizeof(struct kvm_pic_state)); 6025 break; 6026 case KVM_IRQCHIP_PIC_SLAVE: 6027 memcpy(&chip->chip.pic, &pic->pics[1], 6028 sizeof(struct kvm_pic_state)); 6029 break; 6030 case KVM_IRQCHIP_IOAPIC: 6031 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6032 break; 6033 default: 6034 r = -EINVAL; 6035 break; 6036 } 6037 return r; 6038 } 6039 6040 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6041 { 6042 struct kvm_pic *pic = kvm->arch.vpic; 6043 int r; 6044 6045 r = 0; 6046 switch (chip->chip_id) { 6047 case KVM_IRQCHIP_PIC_MASTER: 6048 spin_lock(&pic->lock); 6049 memcpy(&pic->pics[0], &chip->chip.pic, 6050 sizeof(struct kvm_pic_state)); 6051 spin_unlock(&pic->lock); 6052 break; 6053 case KVM_IRQCHIP_PIC_SLAVE: 6054 spin_lock(&pic->lock); 6055 memcpy(&pic->pics[1], &chip->chip.pic, 6056 sizeof(struct kvm_pic_state)); 6057 spin_unlock(&pic->lock); 6058 break; 6059 case KVM_IRQCHIP_IOAPIC: 6060 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6061 break; 6062 default: 6063 r = -EINVAL; 6064 break; 6065 } 6066 kvm_pic_update_irq(pic); 6067 return r; 6068 } 6069 6070 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6071 { 6072 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6073 6074 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6075 6076 mutex_lock(&kps->lock); 6077 memcpy(ps, &kps->channels, sizeof(*ps)); 6078 mutex_unlock(&kps->lock); 6079 return 0; 6080 } 6081 6082 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6083 { 6084 int i; 6085 struct kvm_pit *pit = kvm->arch.vpit; 6086 6087 mutex_lock(&pit->pit_state.lock); 6088 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6089 for (i = 0; i < 3; i++) 6090 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6091 mutex_unlock(&pit->pit_state.lock); 6092 return 0; 6093 } 6094 6095 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6096 { 6097 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6098 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6099 sizeof(ps->channels)); 6100 ps->flags = kvm->arch.vpit->pit_state.flags; 6101 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6102 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6103 return 0; 6104 } 6105 6106 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6107 { 6108 int start = 0; 6109 int i; 6110 u32 prev_legacy, cur_legacy; 6111 struct kvm_pit *pit = kvm->arch.vpit; 6112 6113 mutex_lock(&pit->pit_state.lock); 6114 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6115 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6116 if (!prev_legacy && cur_legacy) 6117 start = 1; 6118 memcpy(&pit->pit_state.channels, &ps->channels, 6119 sizeof(pit->pit_state.channels)); 6120 pit->pit_state.flags = ps->flags; 6121 for (i = 0; i < 3; i++) 6122 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6123 start && i == 0); 6124 mutex_unlock(&pit->pit_state.lock); 6125 return 0; 6126 } 6127 6128 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6129 struct kvm_reinject_control *control) 6130 { 6131 struct kvm_pit *pit = kvm->arch.vpit; 6132 6133 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6134 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6135 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6136 */ 6137 mutex_lock(&pit->pit_state.lock); 6138 kvm_pit_set_reinject(pit, control->pit_reinject); 6139 mutex_unlock(&pit->pit_state.lock); 6140 6141 return 0; 6142 } 6143 6144 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6145 { 6146 6147 /* 6148 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6149 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6150 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6151 * VM-Exit. 6152 */ 6153 struct kvm_vcpu *vcpu; 6154 unsigned long i; 6155 6156 kvm_for_each_vcpu(i, vcpu, kvm) 6157 kvm_vcpu_kick(vcpu); 6158 } 6159 6160 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6161 bool line_status) 6162 { 6163 if (!irqchip_in_kernel(kvm)) 6164 return -ENXIO; 6165 6166 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6167 irq_event->irq, irq_event->level, 6168 line_status); 6169 return 0; 6170 } 6171 6172 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6173 struct kvm_enable_cap *cap) 6174 { 6175 int r; 6176 6177 if (cap->flags) 6178 return -EINVAL; 6179 6180 switch (cap->cap) { 6181 case KVM_CAP_DISABLE_QUIRKS2: 6182 r = -EINVAL; 6183 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6184 break; 6185 fallthrough; 6186 case KVM_CAP_DISABLE_QUIRKS: 6187 kvm->arch.disabled_quirks = cap->args[0]; 6188 r = 0; 6189 break; 6190 case KVM_CAP_SPLIT_IRQCHIP: { 6191 mutex_lock(&kvm->lock); 6192 r = -EINVAL; 6193 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6194 goto split_irqchip_unlock; 6195 r = -EEXIST; 6196 if (irqchip_in_kernel(kvm)) 6197 goto split_irqchip_unlock; 6198 if (kvm->created_vcpus) 6199 goto split_irqchip_unlock; 6200 r = kvm_setup_empty_irq_routing(kvm); 6201 if (r) 6202 goto split_irqchip_unlock; 6203 /* Pairs with irqchip_in_kernel. */ 6204 smp_wmb(); 6205 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6206 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6207 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6208 r = 0; 6209 split_irqchip_unlock: 6210 mutex_unlock(&kvm->lock); 6211 break; 6212 } 6213 case KVM_CAP_X2APIC_API: 6214 r = -EINVAL; 6215 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6216 break; 6217 6218 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6219 kvm->arch.x2apic_format = true; 6220 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6221 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6222 6223 r = 0; 6224 break; 6225 case KVM_CAP_X86_DISABLE_EXITS: 6226 r = -EINVAL; 6227 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6228 break; 6229 6230 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6231 kvm_can_mwait_in_guest()) 6232 kvm->arch.mwait_in_guest = true; 6233 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6234 kvm->arch.hlt_in_guest = true; 6235 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6236 kvm->arch.pause_in_guest = true; 6237 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6238 kvm->arch.cstate_in_guest = true; 6239 r = 0; 6240 break; 6241 case KVM_CAP_MSR_PLATFORM_INFO: 6242 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6243 r = 0; 6244 break; 6245 case KVM_CAP_EXCEPTION_PAYLOAD: 6246 kvm->arch.exception_payload_enabled = cap->args[0]; 6247 r = 0; 6248 break; 6249 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6250 kvm->arch.triple_fault_event = cap->args[0]; 6251 r = 0; 6252 break; 6253 case KVM_CAP_X86_USER_SPACE_MSR: 6254 r = -EINVAL; 6255 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6256 break; 6257 kvm->arch.user_space_msr_mask = cap->args[0]; 6258 r = 0; 6259 break; 6260 case KVM_CAP_X86_BUS_LOCK_EXIT: 6261 r = -EINVAL; 6262 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6263 break; 6264 6265 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6266 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6267 break; 6268 6269 if (kvm_caps.has_bus_lock_exit && 6270 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6271 kvm->arch.bus_lock_detection_enabled = true; 6272 r = 0; 6273 break; 6274 #ifdef CONFIG_X86_SGX_KVM 6275 case KVM_CAP_SGX_ATTRIBUTE: { 6276 unsigned long allowed_attributes = 0; 6277 6278 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6279 if (r) 6280 break; 6281 6282 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6283 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6284 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6285 kvm->arch.sgx_provisioning_allowed = true; 6286 else 6287 r = -EINVAL; 6288 break; 6289 } 6290 #endif 6291 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6292 r = -EINVAL; 6293 if (!kvm_x86_ops.vm_copy_enc_context_from) 6294 break; 6295 6296 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6297 break; 6298 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6299 r = -EINVAL; 6300 if (!kvm_x86_ops.vm_move_enc_context_from) 6301 break; 6302 6303 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6304 break; 6305 case KVM_CAP_EXIT_HYPERCALL: 6306 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6307 r = -EINVAL; 6308 break; 6309 } 6310 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6311 r = 0; 6312 break; 6313 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6314 r = -EINVAL; 6315 if (cap->args[0] & ~1) 6316 break; 6317 kvm->arch.exit_on_emulation_error = cap->args[0]; 6318 r = 0; 6319 break; 6320 case KVM_CAP_PMU_CAPABILITY: 6321 r = -EINVAL; 6322 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6323 break; 6324 6325 mutex_lock(&kvm->lock); 6326 if (!kvm->created_vcpus) { 6327 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6328 r = 0; 6329 } 6330 mutex_unlock(&kvm->lock); 6331 break; 6332 case KVM_CAP_MAX_VCPU_ID: 6333 r = -EINVAL; 6334 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6335 break; 6336 6337 mutex_lock(&kvm->lock); 6338 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6339 r = 0; 6340 } else if (!kvm->arch.max_vcpu_ids) { 6341 kvm->arch.max_vcpu_ids = cap->args[0]; 6342 r = 0; 6343 } 6344 mutex_unlock(&kvm->lock); 6345 break; 6346 case KVM_CAP_X86_NOTIFY_VMEXIT: 6347 r = -EINVAL; 6348 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6349 break; 6350 if (!kvm_caps.has_notify_vmexit) 6351 break; 6352 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6353 break; 6354 mutex_lock(&kvm->lock); 6355 if (!kvm->created_vcpus) { 6356 kvm->arch.notify_window = cap->args[0] >> 32; 6357 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6358 r = 0; 6359 } 6360 mutex_unlock(&kvm->lock); 6361 break; 6362 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6363 r = -EINVAL; 6364 6365 /* 6366 * Since the risk of disabling NX hugepages is a guest crashing 6367 * the system, ensure the userspace process has permission to 6368 * reboot the system. 6369 * 6370 * Note that unlike the reboot() syscall, the process must have 6371 * this capability in the root namespace because exposing 6372 * /dev/kvm into a container does not limit the scope of the 6373 * iTLB multihit bug to that container. In other words, 6374 * this must use capable(), not ns_capable(). 6375 */ 6376 if (!capable(CAP_SYS_BOOT)) { 6377 r = -EPERM; 6378 break; 6379 } 6380 6381 if (cap->args[0]) 6382 break; 6383 6384 mutex_lock(&kvm->lock); 6385 if (!kvm->created_vcpus) { 6386 kvm->arch.disable_nx_huge_pages = true; 6387 r = 0; 6388 } 6389 mutex_unlock(&kvm->lock); 6390 break; 6391 default: 6392 r = -EINVAL; 6393 break; 6394 } 6395 return r; 6396 } 6397 6398 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6399 { 6400 struct kvm_x86_msr_filter *msr_filter; 6401 6402 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6403 if (!msr_filter) 6404 return NULL; 6405 6406 msr_filter->default_allow = default_allow; 6407 return msr_filter; 6408 } 6409 6410 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6411 { 6412 u32 i; 6413 6414 if (!msr_filter) 6415 return; 6416 6417 for (i = 0; i < msr_filter->count; i++) 6418 kfree(msr_filter->ranges[i].bitmap); 6419 6420 kfree(msr_filter); 6421 } 6422 6423 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6424 struct kvm_msr_filter_range *user_range) 6425 { 6426 unsigned long *bitmap = NULL; 6427 size_t bitmap_size; 6428 6429 if (!user_range->nmsrs) 6430 return 0; 6431 6432 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6433 return -EINVAL; 6434 6435 if (!user_range->flags) 6436 return -EINVAL; 6437 6438 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6439 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6440 return -EINVAL; 6441 6442 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6443 if (IS_ERR(bitmap)) 6444 return PTR_ERR(bitmap); 6445 6446 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6447 .flags = user_range->flags, 6448 .base = user_range->base, 6449 .nmsrs = user_range->nmsrs, 6450 .bitmap = bitmap, 6451 }; 6452 6453 msr_filter->count++; 6454 return 0; 6455 } 6456 6457 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6458 struct kvm_msr_filter *filter) 6459 { 6460 struct kvm_x86_msr_filter *new_filter, *old_filter; 6461 bool default_allow; 6462 bool empty = true; 6463 int r = 0; 6464 u32 i; 6465 6466 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6467 return -EINVAL; 6468 6469 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6470 empty &= !filter->ranges[i].nmsrs; 6471 6472 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6473 if (empty && !default_allow) 6474 return -EINVAL; 6475 6476 new_filter = kvm_alloc_msr_filter(default_allow); 6477 if (!new_filter) 6478 return -ENOMEM; 6479 6480 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6481 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6482 if (r) { 6483 kvm_free_msr_filter(new_filter); 6484 return r; 6485 } 6486 } 6487 6488 mutex_lock(&kvm->lock); 6489 6490 /* The per-VM filter is protected by kvm->lock... */ 6491 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6492 6493 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6494 synchronize_srcu(&kvm->srcu); 6495 6496 kvm_free_msr_filter(old_filter); 6497 6498 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6499 mutex_unlock(&kvm->lock); 6500 6501 return 0; 6502 } 6503 6504 #ifdef CONFIG_KVM_COMPAT 6505 /* for KVM_X86_SET_MSR_FILTER */ 6506 struct kvm_msr_filter_range_compat { 6507 __u32 flags; 6508 __u32 nmsrs; 6509 __u32 base; 6510 __u32 bitmap; 6511 }; 6512 6513 struct kvm_msr_filter_compat { 6514 __u32 flags; 6515 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6516 }; 6517 6518 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6519 6520 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6521 unsigned long arg) 6522 { 6523 void __user *argp = (void __user *)arg; 6524 struct kvm *kvm = filp->private_data; 6525 long r = -ENOTTY; 6526 6527 switch (ioctl) { 6528 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6529 struct kvm_msr_filter __user *user_msr_filter = argp; 6530 struct kvm_msr_filter_compat filter_compat; 6531 struct kvm_msr_filter filter; 6532 int i; 6533 6534 if (copy_from_user(&filter_compat, user_msr_filter, 6535 sizeof(filter_compat))) 6536 return -EFAULT; 6537 6538 filter.flags = filter_compat.flags; 6539 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6540 struct kvm_msr_filter_range_compat *cr; 6541 6542 cr = &filter_compat.ranges[i]; 6543 filter.ranges[i] = (struct kvm_msr_filter_range) { 6544 .flags = cr->flags, 6545 .nmsrs = cr->nmsrs, 6546 .base = cr->base, 6547 .bitmap = (__u8 *)(ulong)cr->bitmap, 6548 }; 6549 } 6550 6551 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6552 break; 6553 } 6554 } 6555 6556 return r; 6557 } 6558 #endif 6559 6560 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6561 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6562 { 6563 struct kvm_vcpu *vcpu; 6564 unsigned long i; 6565 int ret = 0; 6566 6567 mutex_lock(&kvm->lock); 6568 kvm_for_each_vcpu(i, vcpu, kvm) { 6569 if (!vcpu->arch.pv_time.active) 6570 continue; 6571 6572 ret = kvm_set_guest_paused(vcpu); 6573 if (ret) { 6574 kvm_err("Failed to pause guest VCPU%d: %d\n", 6575 vcpu->vcpu_id, ret); 6576 break; 6577 } 6578 } 6579 mutex_unlock(&kvm->lock); 6580 6581 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6582 } 6583 6584 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6585 { 6586 switch (state) { 6587 case PM_HIBERNATION_PREPARE: 6588 case PM_SUSPEND_PREPARE: 6589 return kvm_arch_suspend_notifier(kvm); 6590 } 6591 6592 return NOTIFY_DONE; 6593 } 6594 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6595 6596 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6597 { 6598 struct kvm_clock_data data = { 0 }; 6599 6600 get_kvmclock(kvm, &data); 6601 if (copy_to_user(argp, &data, sizeof(data))) 6602 return -EFAULT; 6603 6604 return 0; 6605 } 6606 6607 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6608 { 6609 struct kvm_arch *ka = &kvm->arch; 6610 struct kvm_clock_data data; 6611 u64 now_raw_ns; 6612 6613 if (copy_from_user(&data, argp, sizeof(data))) 6614 return -EFAULT; 6615 6616 /* 6617 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6618 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6619 */ 6620 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6621 return -EINVAL; 6622 6623 kvm_hv_request_tsc_page_update(kvm); 6624 kvm_start_pvclock_update(kvm); 6625 pvclock_update_vm_gtod_copy(kvm); 6626 6627 /* 6628 * This pairs with kvm_guest_time_update(): when masterclock is 6629 * in use, we use master_kernel_ns + kvmclock_offset to set 6630 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6631 * is slightly ahead) here we risk going negative on unsigned 6632 * 'system_time' when 'data.clock' is very small. 6633 */ 6634 if (data.flags & KVM_CLOCK_REALTIME) { 6635 u64 now_real_ns = ktime_get_real_ns(); 6636 6637 /* 6638 * Avoid stepping the kvmclock backwards. 6639 */ 6640 if (now_real_ns > data.realtime) 6641 data.clock += now_real_ns - data.realtime; 6642 } 6643 6644 if (ka->use_master_clock) 6645 now_raw_ns = ka->master_kernel_ns; 6646 else 6647 now_raw_ns = get_kvmclock_base_ns(); 6648 ka->kvmclock_offset = data.clock - now_raw_ns; 6649 kvm_end_pvclock_update(kvm); 6650 return 0; 6651 } 6652 6653 long kvm_arch_vm_ioctl(struct file *filp, 6654 unsigned int ioctl, unsigned long arg) 6655 { 6656 struct kvm *kvm = filp->private_data; 6657 void __user *argp = (void __user *)arg; 6658 int r = -ENOTTY; 6659 /* 6660 * This union makes it completely explicit to gcc-3.x 6661 * that these two variables' stack usage should be 6662 * combined, not added together. 6663 */ 6664 union { 6665 struct kvm_pit_state ps; 6666 struct kvm_pit_state2 ps2; 6667 struct kvm_pit_config pit_config; 6668 } u; 6669 6670 switch (ioctl) { 6671 case KVM_SET_TSS_ADDR: 6672 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6673 break; 6674 case KVM_SET_IDENTITY_MAP_ADDR: { 6675 u64 ident_addr; 6676 6677 mutex_lock(&kvm->lock); 6678 r = -EINVAL; 6679 if (kvm->created_vcpus) 6680 goto set_identity_unlock; 6681 r = -EFAULT; 6682 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6683 goto set_identity_unlock; 6684 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6685 set_identity_unlock: 6686 mutex_unlock(&kvm->lock); 6687 break; 6688 } 6689 case KVM_SET_NR_MMU_PAGES: 6690 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6691 break; 6692 case KVM_GET_NR_MMU_PAGES: 6693 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6694 break; 6695 case KVM_CREATE_IRQCHIP: { 6696 mutex_lock(&kvm->lock); 6697 6698 r = -EEXIST; 6699 if (irqchip_in_kernel(kvm)) 6700 goto create_irqchip_unlock; 6701 6702 r = -EINVAL; 6703 if (kvm->created_vcpus) 6704 goto create_irqchip_unlock; 6705 6706 r = kvm_pic_init(kvm); 6707 if (r) 6708 goto create_irqchip_unlock; 6709 6710 r = kvm_ioapic_init(kvm); 6711 if (r) { 6712 kvm_pic_destroy(kvm); 6713 goto create_irqchip_unlock; 6714 } 6715 6716 r = kvm_setup_default_irq_routing(kvm); 6717 if (r) { 6718 kvm_ioapic_destroy(kvm); 6719 kvm_pic_destroy(kvm); 6720 goto create_irqchip_unlock; 6721 } 6722 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6723 smp_wmb(); 6724 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6725 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6726 create_irqchip_unlock: 6727 mutex_unlock(&kvm->lock); 6728 break; 6729 } 6730 case KVM_CREATE_PIT: 6731 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6732 goto create_pit; 6733 case KVM_CREATE_PIT2: 6734 r = -EFAULT; 6735 if (copy_from_user(&u.pit_config, argp, 6736 sizeof(struct kvm_pit_config))) 6737 goto out; 6738 create_pit: 6739 mutex_lock(&kvm->lock); 6740 r = -EEXIST; 6741 if (kvm->arch.vpit) 6742 goto create_pit_unlock; 6743 r = -ENOMEM; 6744 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6745 if (kvm->arch.vpit) 6746 r = 0; 6747 create_pit_unlock: 6748 mutex_unlock(&kvm->lock); 6749 break; 6750 case KVM_GET_IRQCHIP: { 6751 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6752 struct kvm_irqchip *chip; 6753 6754 chip = memdup_user(argp, sizeof(*chip)); 6755 if (IS_ERR(chip)) { 6756 r = PTR_ERR(chip); 6757 goto out; 6758 } 6759 6760 r = -ENXIO; 6761 if (!irqchip_kernel(kvm)) 6762 goto get_irqchip_out; 6763 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6764 if (r) 6765 goto get_irqchip_out; 6766 r = -EFAULT; 6767 if (copy_to_user(argp, chip, sizeof(*chip))) 6768 goto get_irqchip_out; 6769 r = 0; 6770 get_irqchip_out: 6771 kfree(chip); 6772 break; 6773 } 6774 case KVM_SET_IRQCHIP: { 6775 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6776 struct kvm_irqchip *chip; 6777 6778 chip = memdup_user(argp, sizeof(*chip)); 6779 if (IS_ERR(chip)) { 6780 r = PTR_ERR(chip); 6781 goto out; 6782 } 6783 6784 r = -ENXIO; 6785 if (!irqchip_kernel(kvm)) 6786 goto set_irqchip_out; 6787 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6788 set_irqchip_out: 6789 kfree(chip); 6790 break; 6791 } 6792 case KVM_GET_PIT: { 6793 r = -EFAULT; 6794 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6795 goto out; 6796 r = -ENXIO; 6797 if (!kvm->arch.vpit) 6798 goto out; 6799 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6800 if (r) 6801 goto out; 6802 r = -EFAULT; 6803 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6804 goto out; 6805 r = 0; 6806 break; 6807 } 6808 case KVM_SET_PIT: { 6809 r = -EFAULT; 6810 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6811 goto out; 6812 mutex_lock(&kvm->lock); 6813 r = -ENXIO; 6814 if (!kvm->arch.vpit) 6815 goto set_pit_out; 6816 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6817 set_pit_out: 6818 mutex_unlock(&kvm->lock); 6819 break; 6820 } 6821 case KVM_GET_PIT2: { 6822 r = -ENXIO; 6823 if (!kvm->arch.vpit) 6824 goto out; 6825 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6826 if (r) 6827 goto out; 6828 r = -EFAULT; 6829 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6830 goto out; 6831 r = 0; 6832 break; 6833 } 6834 case KVM_SET_PIT2: { 6835 r = -EFAULT; 6836 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6837 goto out; 6838 mutex_lock(&kvm->lock); 6839 r = -ENXIO; 6840 if (!kvm->arch.vpit) 6841 goto set_pit2_out; 6842 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6843 set_pit2_out: 6844 mutex_unlock(&kvm->lock); 6845 break; 6846 } 6847 case KVM_REINJECT_CONTROL: { 6848 struct kvm_reinject_control control; 6849 r = -EFAULT; 6850 if (copy_from_user(&control, argp, sizeof(control))) 6851 goto out; 6852 r = -ENXIO; 6853 if (!kvm->arch.vpit) 6854 goto out; 6855 r = kvm_vm_ioctl_reinject(kvm, &control); 6856 break; 6857 } 6858 case KVM_SET_BOOT_CPU_ID: 6859 r = 0; 6860 mutex_lock(&kvm->lock); 6861 if (kvm->created_vcpus) 6862 r = -EBUSY; 6863 else 6864 kvm->arch.bsp_vcpu_id = arg; 6865 mutex_unlock(&kvm->lock); 6866 break; 6867 #ifdef CONFIG_KVM_XEN 6868 case KVM_XEN_HVM_CONFIG: { 6869 struct kvm_xen_hvm_config xhc; 6870 r = -EFAULT; 6871 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6872 goto out; 6873 r = kvm_xen_hvm_config(kvm, &xhc); 6874 break; 6875 } 6876 case KVM_XEN_HVM_GET_ATTR: { 6877 struct kvm_xen_hvm_attr xha; 6878 6879 r = -EFAULT; 6880 if (copy_from_user(&xha, argp, sizeof(xha))) 6881 goto out; 6882 r = kvm_xen_hvm_get_attr(kvm, &xha); 6883 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6884 r = -EFAULT; 6885 break; 6886 } 6887 case KVM_XEN_HVM_SET_ATTR: { 6888 struct kvm_xen_hvm_attr xha; 6889 6890 r = -EFAULT; 6891 if (copy_from_user(&xha, argp, sizeof(xha))) 6892 goto out; 6893 r = kvm_xen_hvm_set_attr(kvm, &xha); 6894 break; 6895 } 6896 case KVM_XEN_HVM_EVTCHN_SEND: { 6897 struct kvm_irq_routing_xen_evtchn uxe; 6898 6899 r = -EFAULT; 6900 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6901 goto out; 6902 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6903 break; 6904 } 6905 #endif 6906 case KVM_SET_CLOCK: 6907 r = kvm_vm_ioctl_set_clock(kvm, argp); 6908 break; 6909 case KVM_GET_CLOCK: 6910 r = kvm_vm_ioctl_get_clock(kvm, argp); 6911 break; 6912 case KVM_SET_TSC_KHZ: { 6913 u32 user_tsc_khz; 6914 6915 r = -EINVAL; 6916 user_tsc_khz = (u32)arg; 6917 6918 if (kvm_caps.has_tsc_control && 6919 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6920 goto out; 6921 6922 if (user_tsc_khz == 0) 6923 user_tsc_khz = tsc_khz; 6924 6925 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6926 r = 0; 6927 6928 goto out; 6929 } 6930 case KVM_GET_TSC_KHZ: { 6931 r = READ_ONCE(kvm->arch.default_tsc_khz); 6932 goto out; 6933 } 6934 case KVM_MEMORY_ENCRYPT_OP: { 6935 r = -ENOTTY; 6936 if (!kvm_x86_ops.mem_enc_ioctl) 6937 goto out; 6938 6939 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6940 break; 6941 } 6942 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6943 struct kvm_enc_region region; 6944 6945 r = -EFAULT; 6946 if (copy_from_user(®ion, argp, sizeof(region))) 6947 goto out; 6948 6949 r = -ENOTTY; 6950 if (!kvm_x86_ops.mem_enc_register_region) 6951 goto out; 6952 6953 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6954 break; 6955 } 6956 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6957 struct kvm_enc_region region; 6958 6959 r = -EFAULT; 6960 if (copy_from_user(®ion, argp, sizeof(region))) 6961 goto out; 6962 6963 r = -ENOTTY; 6964 if (!kvm_x86_ops.mem_enc_unregister_region) 6965 goto out; 6966 6967 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6968 break; 6969 } 6970 case KVM_HYPERV_EVENTFD: { 6971 struct kvm_hyperv_eventfd hvevfd; 6972 6973 r = -EFAULT; 6974 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6975 goto out; 6976 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6977 break; 6978 } 6979 case KVM_SET_PMU_EVENT_FILTER: 6980 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6981 break; 6982 case KVM_X86_SET_MSR_FILTER: { 6983 struct kvm_msr_filter __user *user_msr_filter = argp; 6984 struct kvm_msr_filter filter; 6985 6986 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6987 return -EFAULT; 6988 6989 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6990 break; 6991 } 6992 default: 6993 r = -ENOTTY; 6994 } 6995 out: 6996 return r; 6997 } 6998 6999 static void kvm_init_msr_list(void) 7000 { 7001 u32 dummy[2]; 7002 unsigned i; 7003 7004 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7005 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7006 7007 num_msrs_to_save = 0; 7008 num_emulated_msrs = 0; 7009 num_msr_based_features = 0; 7010 7011 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7012 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7013 continue; 7014 7015 /* 7016 * Even MSRs that are valid in the host may not be exposed 7017 * to the guests in some cases. 7018 */ 7019 switch (msrs_to_save_all[i]) { 7020 case MSR_IA32_BNDCFGS: 7021 if (!kvm_mpx_supported()) 7022 continue; 7023 break; 7024 case MSR_TSC_AUX: 7025 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7026 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7027 continue; 7028 break; 7029 case MSR_IA32_UMWAIT_CONTROL: 7030 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7031 continue; 7032 break; 7033 case MSR_IA32_RTIT_CTL: 7034 case MSR_IA32_RTIT_STATUS: 7035 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7036 continue; 7037 break; 7038 case MSR_IA32_RTIT_CR3_MATCH: 7039 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7040 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7041 continue; 7042 break; 7043 case MSR_IA32_RTIT_OUTPUT_BASE: 7044 case MSR_IA32_RTIT_OUTPUT_MASK: 7045 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7046 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7047 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7048 continue; 7049 break; 7050 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7051 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7052 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7053 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7054 continue; 7055 break; 7056 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7057 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7058 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7059 continue; 7060 break; 7061 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7062 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7063 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7064 continue; 7065 break; 7066 case MSR_IA32_XFD: 7067 case MSR_IA32_XFD_ERR: 7068 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7069 continue; 7070 break; 7071 default: 7072 break; 7073 } 7074 7075 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7076 } 7077 7078 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7079 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7080 continue; 7081 7082 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7083 } 7084 7085 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7086 struct kvm_msr_entry msr; 7087 7088 msr.index = msr_based_features_all[i]; 7089 if (kvm_get_msr_feature(&msr)) 7090 continue; 7091 7092 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7093 } 7094 } 7095 7096 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7097 const void *v) 7098 { 7099 int handled = 0; 7100 int n; 7101 7102 do { 7103 n = min(len, 8); 7104 if (!(lapic_in_kernel(vcpu) && 7105 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7106 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7107 break; 7108 handled += n; 7109 addr += n; 7110 len -= n; 7111 v += n; 7112 } while (len); 7113 7114 return handled; 7115 } 7116 7117 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7118 { 7119 int handled = 0; 7120 int n; 7121 7122 do { 7123 n = min(len, 8); 7124 if (!(lapic_in_kernel(vcpu) && 7125 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7126 addr, n, v)) 7127 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7128 break; 7129 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7130 handled += n; 7131 addr += n; 7132 len -= n; 7133 v += n; 7134 } while (len); 7135 7136 return handled; 7137 } 7138 7139 void kvm_set_segment(struct kvm_vcpu *vcpu, 7140 struct kvm_segment *var, int seg) 7141 { 7142 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7143 } 7144 7145 void kvm_get_segment(struct kvm_vcpu *vcpu, 7146 struct kvm_segment *var, int seg) 7147 { 7148 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7149 } 7150 7151 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7152 struct x86_exception *exception) 7153 { 7154 struct kvm_mmu *mmu = vcpu->arch.mmu; 7155 gpa_t t_gpa; 7156 7157 BUG_ON(!mmu_is_nested(vcpu)); 7158 7159 /* NPT walks are always user-walks */ 7160 access |= PFERR_USER_MASK; 7161 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7162 7163 return t_gpa; 7164 } 7165 7166 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7167 struct x86_exception *exception) 7168 { 7169 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7170 7171 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7172 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7173 } 7174 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7175 7176 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7177 struct x86_exception *exception) 7178 { 7179 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7180 7181 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7182 access |= PFERR_WRITE_MASK; 7183 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7184 } 7185 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7186 7187 /* uses this to access any guest's mapped memory without checking CPL */ 7188 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7189 struct x86_exception *exception) 7190 { 7191 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7192 7193 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7194 } 7195 7196 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7197 struct kvm_vcpu *vcpu, u64 access, 7198 struct x86_exception *exception) 7199 { 7200 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7201 void *data = val; 7202 int r = X86EMUL_CONTINUE; 7203 7204 while (bytes) { 7205 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7206 unsigned offset = addr & (PAGE_SIZE-1); 7207 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7208 int ret; 7209 7210 if (gpa == INVALID_GPA) 7211 return X86EMUL_PROPAGATE_FAULT; 7212 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7213 offset, toread); 7214 if (ret < 0) { 7215 r = X86EMUL_IO_NEEDED; 7216 goto out; 7217 } 7218 7219 bytes -= toread; 7220 data += toread; 7221 addr += toread; 7222 } 7223 out: 7224 return r; 7225 } 7226 7227 /* used for instruction fetching */ 7228 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7229 gva_t addr, void *val, unsigned int bytes, 7230 struct x86_exception *exception) 7231 { 7232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7233 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7234 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7235 unsigned offset; 7236 int ret; 7237 7238 /* Inline kvm_read_guest_virt_helper for speed. */ 7239 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7240 exception); 7241 if (unlikely(gpa == INVALID_GPA)) 7242 return X86EMUL_PROPAGATE_FAULT; 7243 7244 offset = addr & (PAGE_SIZE-1); 7245 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7246 bytes = (unsigned)PAGE_SIZE - offset; 7247 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7248 offset, bytes); 7249 if (unlikely(ret < 0)) 7250 return X86EMUL_IO_NEEDED; 7251 7252 return X86EMUL_CONTINUE; 7253 } 7254 7255 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7256 gva_t addr, void *val, unsigned int bytes, 7257 struct x86_exception *exception) 7258 { 7259 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7260 7261 /* 7262 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7263 * is returned, but our callers are not ready for that and they blindly 7264 * call kvm_inject_page_fault. Ensure that they at least do not leak 7265 * uninitialized kernel stack memory into cr2 and error code. 7266 */ 7267 memset(exception, 0, sizeof(*exception)); 7268 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7269 exception); 7270 } 7271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7272 7273 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7274 gva_t addr, void *val, unsigned int bytes, 7275 struct x86_exception *exception, bool system) 7276 { 7277 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7278 u64 access = 0; 7279 7280 if (system) 7281 access |= PFERR_IMPLICIT_ACCESS; 7282 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7283 access |= PFERR_USER_MASK; 7284 7285 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7286 } 7287 7288 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7289 struct kvm_vcpu *vcpu, u64 access, 7290 struct x86_exception *exception) 7291 { 7292 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7293 void *data = val; 7294 int r = X86EMUL_CONTINUE; 7295 7296 while (bytes) { 7297 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7298 unsigned offset = addr & (PAGE_SIZE-1); 7299 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7300 int ret; 7301 7302 if (gpa == INVALID_GPA) 7303 return X86EMUL_PROPAGATE_FAULT; 7304 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7305 if (ret < 0) { 7306 r = X86EMUL_IO_NEEDED; 7307 goto out; 7308 } 7309 7310 bytes -= towrite; 7311 data += towrite; 7312 addr += towrite; 7313 } 7314 out: 7315 return r; 7316 } 7317 7318 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7319 unsigned int bytes, struct x86_exception *exception, 7320 bool system) 7321 { 7322 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7323 u64 access = PFERR_WRITE_MASK; 7324 7325 if (system) 7326 access |= PFERR_IMPLICIT_ACCESS; 7327 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7328 access |= PFERR_USER_MASK; 7329 7330 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7331 access, exception); 7332 } 7333 7334 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7335 unsigned int bytes, struct x86_exception *exception) 7336 { 7337 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7338 vcpu->arch.l1tf_flush_l1d = true; 7339 7340 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7341 PFERR_WRITE_MASK, exception); 7342 } 7343 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7344 7345 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7346 void *insn, int insn_len) 7347 { 7348 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7349 insn, insn_len); 7350 } 7351 7352 int handle_ud(struct kvm_vcpu *vcpu) 7353 { 7354 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7355 int fep_flags = READ_ONCE(force_emulation_prefix); 7356 int emul_type = EMULTYPE_TRAP_UD; 7357 char sig[5]; /* ud2; .ascii "kvm" */ 7358 struct x86_exception e; 7359 7360 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7361 return 1; 7362 7363 if (fep_flags && 7364 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7365 sig, sizeof(sig), &e) == 0 && 7366 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7367 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7368 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7369 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7370 emul_type = EMULTYPE_TRAP_UD_FORCED; 7371 } 7372 7373 return kvm_emulate_instruction(vcpu, emul_type); 7374 } 7375 EXPORT_SYMBOL_GPL(handle_ud); 7376 7377 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7378 gpa_t gpa, bool write) 7379 { 7380 /* For APIC access vmexit */ 7381 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7382 return 1; 7383 7384 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7385 trace_vcpu_match_mmio(gva, gpa, write, true); 7386 return 1; 7387 } 7388 7389 return 0; 7390 } 7391 7392 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7393 gpa_t *gpa, struct x86_exception *exception, 7394 bool write) 7395 { 7396 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7397 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7398 | (write ? PFERR_WRITE_MASK : 0); 7399 7400 /* 7401 * currently PKRU is only applied to ept enabled guest so 7402 * there is no pkey in EPT page table for L1 guest or EPT 7403 * shadow page table for L2 guest. 7404 */ 7405 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7406 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7407 vcpu->arch.mmio_access, 0, access))) { 7408 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7409 (gva & (PAGE_SIZE - 1)); 7410 trace_vcpu_match_mmio(gva, *gpa, write, false); 7411 return 1; 7412 } 7413 7414 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7415 7416 if (*gpa == INVALID_GPA) 7417 return -1; 7418 7419 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7420 } 7421 7422 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7423 const void *val, int bytes) 7424 { 7425 int ret; 7426 7427 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7428 if (ret < 0) 7429 return 0; 7430 kvm_page_track_write(vcpu, gpa, val, bytes); 7431 return 1; 7432 } 7433 7434 struct read_write_emulator_ops { 7435 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7436 int bytes); 7437 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7438 void *val, int bytes); 7439 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7440 int bytes, void *val); 7441 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7442 void *val, int bytes); 7443 bool write; 7444 }; 7445 7446 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7447 { 7448 if (vcpu->mmio_read_completed) { 7449 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7450 vcpu->mmio_fragments[0].gpa, val); 7451 vcpu->mmio_read_completed = 0; 7452 return 1; 7453 } 7454 7455 return 0; 7456 } 7457 7458 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7459 void *val, int bytes) 7460 { 7461 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7462 } 7463 7464 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7465 void *val, int bytes) 7466 { 7467 return emulator_write_phys(vcpu, gpa, val, bytes); 7468 } 7469 7470 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7471 { 7472 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7473 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7474 } 7475 7476 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7477 void *val, int bytes) 7478 { 7479 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7480 return X86EMUL_IO_NEEDED; 7481 } 7482 7483 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7484 void *val, int bytes) 7485 { 7486 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7487 7488 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7489 return X86EMUL_CONTINUE; 7490 } 7491 7492 static const struct read_write_emulator_ops read_emultor = { 7493 .read_write_prepare = read_prepare, 7494 .read_write_emulate = read_emulate, 7495 .read_write_mmio = vcpu_mmio_read, 7496 .read_write_exit_mmio = read_exit_mmio, 7497 }; 7498 7499 static const struct read_write_emulator_ops write_emultor = { 7500 .read_write_emulate = write_emulate, 7501 .read_write_mmio = write_mmio, 7502 .read_write_exit_mmio = write_exit_mmio, 7503 .write = true, 7504 }; 7505 7506 static int emulator_read_write_onepage(unsigned long addr, void *val, 7507 unsigned int bytes, 7508 struct x86_exception *exception, 7509 struct kvm_vcpu *vcpu, 7510 const struct read_write_emulator_ops *ops) 7511 { 7512 gpa_t gpa; 7513 int handled, ret; 7514 bool write = ops->write; 7515 struct kvm_mmio_fragment *frag; 7516 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7517 7518 /* 7519 * If the exit was due to a NPF we may already have a GPA. 7520 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7521 * Note, this cannot be used on string operations since string 7522 * operation using rep will only have the initial GPA from the NPF 7523 * occurred. 7524 */ 7525 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7526 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7527 gpa = ctxt->gpa_val; 7528 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7529 } else { 7530 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7531 if (ret < 0) 7532 return X86EMUL_PROPAGATE_FAULT; 7533 } 7534 7535 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7536 return X86EMUL_CONTINUE; 7537 7538 /* 7539 * Is this MMIO handled locally? 7540 */ 7541 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7542 if (handled == bytes) 7543 return X86EMUL_CONTINUE; 7544 7545 gpa += handled; 7546 bytes -= handled; 7547 val += handled; 7548 7549 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7550 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7551 frag->gpa = gpa; 7552 frag->data = val; 7553 frag->len = bytes; 7554 return X86EMUL_CONTINUE; 7555 } 7556 7557 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7558 unsigned long addr, 7559 void *val, unsigned int bytes, 7560 struct x86_exception *exception, 7561 const struct read_write_emulator_ops *ops) 7562 { 7563 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7564 gpa_t gpa; 7565 int rc; 7566 7567 if (ops->read_write_prepare && 7568 ops->read_write_prepare(vcpu, val, bytes)) 7569 return X86EMUL_CONTINUE; 7570 7571 vcpu->mmio_nr_fragments = 0; 7572 7573 /* Crossing a page boundary? */ 7574 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7575 int now; 7576 7577 now = -addr & ~PAGE_MASK; 7578 rc = emulator_read_write_onepage(addr, val, now, exception, 7579 vcpu, ops); 7580 7581 if (rc != X86EMUL_CONTINUE) 7582 return rc; 7583 addr += now; 7584 if (ctxt->mode != X86EMUL_MODE_PROT64) 7585 addr = (u32)addr; 7586 val += now; 7587 bytes -= now; 7588 } 7589 7590 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7591 vcpu, ops); 7592 if (rc != X86EMUL_CONTINUE) 7593 return rc; 7594 7595 if (!vcpu->mmio_nr_fragments) 7596 return rc; 7597 7598 gpa = vcpu->mmio_fragments[0].gpa; 7599 7600 vcpu->mmio_needed = 1; 7601 vcpu->mmio_cur_fragment = 0; 7602 7603 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7604 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7605 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7606 vcpu->run->mmio.phys_addr = gpa; 7607 7608 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7609 } 7610 7611 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7612 unsigned long addr, 7613 void *val, 7614 unsigned int bytes, 7615 struct x86_exception *exception) 7616 { 7617 return emulator_read_write(ctxt, addr, val, bytes, 7618 exception, &read_emultor); 7619 } 7620 7621 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7622 unsigned long addr, 7623 const void *val, 7624 unsigned int bytes, 7625 struct x86_exception *exception) 7626 { 7627 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7628 exception, &write_emultor); 7629 } 7630 7631 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7632 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7633 7634 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7635 unsigned long addr, 7636 const void *old, 7637 const void *new, 7638 unsigned int bytes, 7639 struct x86_exception *exception) 7640 { 7641 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7642 u64 page_line_mask; 7643 unsigned long hva; 7644 gpa_t gpa; 7645 int r; 7646 7647 /* guests cmpxchg8b have to be emulated atomically */ 7648 if (bytes > 8 || (bytes & (bytes - 1))) 7649 goto emul_write; 7650 7651 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7652 7653 if (gpa == INVALID_GPA || 7654 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7655 goto emul_write; 7656 7657 /* 7658 * Emulate the atomic as a straight write to avoid #AC if SLD is 7659 * enabled in the host and the access splits a cache line. 7660 */ 7661 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7662 page_line_mask = ~(cache_line_size() - 1); 7663 else 7664 page_line_mask = PAGE_MASK; 7665 7666 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7667 goto emul_write; 7668 7669 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7670 if (kvm_is_error_hva(hva)) 7671 goto emul_write; 7672 7673 hva += offset_in_page(gpa); 7674 7675 switch (bytes) { 7676 case 1: 7677 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7678 break; 7679 case 2: 7680 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7681 break; 7682 case 4: 7683 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7684 break; 7685 case 8: 7686 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7687 break; 7688 default: 7689 BUG(); 7690 } 7691 7692 if (r < 0) 7693 return X86EMUL_UNHANDLEABLE; 7694 if (r) 7695 return X86EMUL_CMPXCHG_FAILED; 7696 7697 kvm_page_track_write(vcpu, gpa, new, bytes); 7698 7699 return X86EMUL_CONTINUE; 7700 7701 emul_write: 7702 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7703 7704 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7705 } 7706 7707 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7708 unsigned short port, void *data, 7709 unsigned int count, bool in) 7710 { 7711 unsigned i; 7712 int r; 7713 7714 WARN_ON_ONCE(vcpu->arch.pio.count); 7715 for (i = 0; i < count; i++) { 7716 if (in) 7717 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7718 else 7719 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7720 7721 if (r) { 7722 if (i == 0) 7723 goto userspace_io; 7724 7725 /* 7726 * Userspace must have unregistered the device while PIO 7727 * was running. Drop writes / read as 0. 7728 */ 7729 if (in) 7730 memset(data, 0, size * (count - i)); 7731 break; 7732 } 7733 7734 data += size; 7735 } 7736 return 1; 7737 7738 userspace_io: 7739 vcpu->arch.pio.port = port; 7740 vcpu->arch.pio.in = in; 7741 vcpu->arch.pio.count = count; 7742 vcpu->arch.pio.size = size; 7743 7744 if (in) 7745 memset(vcpu->arch.pio_data, 0, size * count); 7746 else 7747 memcpy(vcpu->arch.pio_data, data, size * count); 7748 7749 vcpu->run->exit_reason = KVM_EXIT_IO; 7750 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7751 vcpu->run->io.size = size; 7752 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7753 vcpu->run->io.count = count; 7754 vcpu->run->io.port = port; 7755 return 0; 7756 } 7757 7758 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7759 unsigned short port, void *val, unsigned int count) 7760 { 7761 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7762 if (r) 7763 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7764 7765 return r; 7766 } 7767 7768 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7769 { 7770 int size = vcpu->arch.pio.size; 7771 unsigned int count = vcpu->arch.pio.count; 7772 memcpy(val, vcpu->arch.pio_data, size * count); 7773 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7774 vcpu->arch.pio.count = 0; 7775 } 7776 7777 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7778 int size, unsigned short port, void *val, 7779 unsigned int count) 7780 { 7781 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7782 if (vcpu->arch.pio.count) { 7783 /* 7784 * Complete a previous iteration that required userspace I/O. 7785 * Note, @count isn't guaranteed to match pio.count as userspace 7786 * can modify ECX before rerunning the vCPU. Ignore any such 7787 * shenanigans as KVM doesn't support modifying the rep count, 7788 * and the emulator ensures @count doesn't overflow the buffer. 7789 */ 7790 complete_emulator_pio_in(vcpu, val); 7791 return 1; 7792 } 7793 7794 return emulator_pio_in(vcpu, size, port, val, count); 7795 } 7796 7797 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7798 unsigned short port, const void *val, 7799 unsigned int count) 7800 { 7801 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7802 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7803 } 7804 7805 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7806 int size, unsigned short port, 7807 const void *val, unsigned int count) 7808 { 7809 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7810 } 7811 7812 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7813 { 7814 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7815 } 7816 7817 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7818 { 7819 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7820 } 7821 7822 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7823 { 7824 if (!need_emulate_wbinvd(vcpu)) 7825 return X86EMUL_CONTINUE; 7826 7827 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7828 int cpu = get_cpu(); 7829 7830 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7831 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7832 wbinvd_ipi, NULL, 1); 7833 put_cpu(); 7834 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7835 } else 7836 wbinvd(); 7837 return X86EMUL_CONTINUE; 7838 } 7839 7840 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7841 { 7842 kvm_emulate_wbinvd_noskip(vcpu); 7843 return kvm_skip_emulated_instruction(vcpu); 7844 } 7845 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7846 7847 7848 7849 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7850 { 7851 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7852 } 7853 7854 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7855 unsigned long *dest) 7856 { 7857 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7858 } 7859 7860 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7861 unsigned long value) 7862 { 7863 7864 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7865 } 7866 7867 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7868 { 7869 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7870 } 7871 7872 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7873 { 7874 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7875 unsigned long value; 7876 7877 switch (cr) { 7878 case 0: 7879 value = kvm_read_cr0(vcpu); 7880 break; 7881 case 2: 7882 value = vcpu->arch.cr2; 7883 break; 7884 case 3: 7885 value = kvm_read_cr3(vcpu); 7886 break; 7887 case 4: 7888 value = kvm_read_cr4(vcpu); 7889 break; 7890 case 8: 7891 value = kvm_get_cr8(vcpu); 7892 break; 7893 default: 7894 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7895 return 0; 7896 } 7897 7898 return value; 7899 } 7900 7901 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7902 { 7903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7904 int res = 0; 7905 7906 switch (cr) { 7907 case 0: 7908 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7909 break; 7910 case 2: 7911 vcpu->arch.cr2 = val; 7912 break; 7913 case 3: 7914 res = kvm_set_cr3(vcpu, val); 7915 break; 7916 case 4: 7917 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7918 break; 7919 case 8: 7920 res = kvm_set_cr8(vcpu, val); 7921 break; 7922 default: 7923 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7924 res = -1; 7925 } 7926 7927 return res; 7928 } 7929 7930 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7931 { 7932 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7933 } 7934 7935 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7936 { 7937 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7938 } 7939 7940 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7941 { 7942 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7943 } 7944 7945 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7946 { 7947 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7948 } 7949 7950 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7951 { 7952 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7953 } 7954 7955 static unsigned long emulator_get_cached_segment_base( 7956 struct x86_emulate_ctxt *ctxt, int seg) 7957 { 7958 return get_segment_base(emul_to_vcpu(ctxt), seg); 7959 } 7960 7961 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7962 struct desc_struct *desc, u32 *base3, 7963 int seg) 7964 { 7965 struct kvm_segment var; 7966 7967 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7968 *selector = var.selector; 7969 7970 if (var.unusable) { 7971 memset(desc, 0, sizeof(*desc)); 7972 if (base3) 7973 *base3 = 0; 7974 return false; 7975 } 7976 7977 if (var.g) 7978 var.limit >>= 12; 7979 set_desc_limit(desc, var.limit); 7980 set_desc_base(desc, (unsigned long)var.base); 7981 #ifdef CONFIG_X86_64 7982 if (base3) 7983 *base3 = var.base >> 32; 7984 #endif 7985 desc->type = var.type; 7986 desc->s = var.s; 7987 desc->dpl = var.dpl; 7988 desc->p = var.present; 7989 desc->avl = var.avl; 7990 desc->l = var.l; 7991 desc->d = var.db; 7992 desc->g = var.g; 7993 7994 return true; 7995 } 7996 7997 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7998 struct desc_struct *desc, u32 base3, 7999 int seg) 8000 { 8001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8002 struct kvm_segment var; 8003 8004 var.selector = selector; 8005 var.base = get_desc_base(desc); 8006 #ifdef CONFIG_X86_64 8007 var.base |= ((u64)base3) << 32; 8008 #endif 8009 var.limit = get_desc_limit(desc); 8010 if (desc->g) 8011 var.limit = (var.limit << 12) | 0xfff; 8012 var.type = desc->type; 8013 var.dpl = desc->dpl; 8014 var.db = desc->d; 8015 var.s = desc->s; 8016 var.l = desc->l; 8017 var.g = desc->g; 8018 var.avl = desc->avl; 8019 var.present = desc->p; 8020 var.unusable = !var.present; 8021 var.padding = 0; 8022 8023 kvm_set_segment(vcpu, &var, seg); 8024 return; 8025 } 8026 8027 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8028 u32 msr_index, u64 *pdata) 8029 { 8030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8031 int r; 8032 8033 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8034 if (r < 0) 8035 return X86EMUL_UNHANDLEABLE; 8036 8037 if (r) { 8038 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8039 complete_emulated_rdmsr, r)) 8040 return X86EMUL_IO_NEEDED; 8041 8042 trace_kvm_msr_read_ex(msr_index); 8043 return X86EMUL_PROPAGATE_FAULT; 8044 } 8045 8046 trace_kvm_msr_read(msr_index, *pdata); 8047 return X86EMUL_CONTINUE; 8048 } 8049 8050 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8051 u32 msr_index, u64 data) 8052 { 8053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8054 int r; 8055 8056 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8057 if (r < 0) 8058 return X86EMUL_UNHANDLEABLE; 8059 8060 if (r) { 8061 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8062 complete_emulated_msr_access, r)) 8063 return X86EMUL_IO_NEEDED; 8064 8065 trace_kvm_msr_write_ex(msr_index, data); 8066 return X86EMUL_PROPAGATE_FAULT; 8067 } 8068 8069 trace_kvm_msr_write(msr_index, data); 8070 return X86EMUL_CONTINUE; 8071 } 8072 8073 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8074 u32 msr_index, u64 *pdata) 8075 { 8076 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8077 } 8078 8079 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8080 u32 pmc) 8081 { 8082 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8083 return 0; 8084 return -EINVAL; 8085 } 8086 8087 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8088 u32 pmc, u64 *pdata) 8089 { 8090 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8091 } 8092 8093 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8094 { 8095 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8096 } 8097 8098 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8099 struct x86_instruction_info *info, 8100 enum x86_intercept_stage stage) 8101 { 8102 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8103 &ctxt->exception); 8104 } 8105 8106 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8107 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8108 bool exact_only) 8109 { 8110 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8111 } 8112 8113 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8114 { 8115 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8116 } 8117 8118 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8119 { 8120 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8121 } 8122 8123 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8124 { 8125 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8126 } 8127 8128 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8129 { 8130 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8131 } 8132 8133 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8134 { 8135 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8136 } 8137 8138 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8139 { 8140 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8141 } 8142 8143 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8144 { 8145 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8146 } 8147 8148 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8149 { 8150 return emul_to_vcpu(ctxt)->arch.hflags; 8151 } 8152 8153 #ifndef CONFIG_KVM_SMM 8154 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8155 { 8156 WARN_ON_ONCE(1); 8157 return X86EMUL_UNHANDLEABLE; 8158 } 8159 #endif 8160 8161 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8162 { 8163 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8164 } 8165 8166 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8167 { 8168 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8169 } 8170 8171 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8172 { 8173 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8174 8175 if (!kvm->vm_bugged) 8176 kvm_vm_bugged(kvm); 8177 } 8178 8179 static const struct x86_emulate_ops emulate_ops = { 8180 .vm_bugged = emulator_vm_bugged, 8181 .read_gpr = emulator_read_gpr, 8182 .write_gpr = emulator_write_gpr, 8183 .read_std = emulator_read_std, 8184 .write_std = emulator_write_std, 8185 .fetch = kvm_fetch_guest_virt, 8186 .read_emulated = emulator_read_emulated, 8187 .write_emulated = emulator_write_emulated, 8188 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8189 .invlpg = emulator_invlpg, 8190 .pio_in_emulated = emulator_pio_in_emulated, 8191 .pio_out_emulated = emulator_pio_out_emulated, 8192 .get_segment = emulator_get_segment, 8193 .set_segment = emulator_set_segment, 8194 .get_cached_segment_base = emulator_get_cached_segment_base, 8195 .get_gdt = emulator_get_gdt, 8196 .get_idt = emulator_get_idt, 8197 .set_gdt = emulator_set_gdt, 8198 .set_idt = emulator_set_idt, 8199 .get_cr = emulator_get_cr, 8200 .set_cr = emulator_set_cr, 8201 .cpl = emulator_get_cpl, 8202 .get_dr = emulator_get_dr, 8203 .set_dr = emulator_set_dr, 8204 .set_msr_with_filter = emulator_set_msr_with_filter, 8205 .get_msr_with_filter = emulator_get_msr_with_filter, 8206 .get_msr = emulator_get_msr, 8207 .check_pmc = emulator_check_pmc, 8208 .read_pmc = emulator_read_pmc, 8209 .halt = emulator_halt, 8210 .wbinvd = emulator_wbinvd, 8211 .fix_hypercall = emulator_fix_hypercall, 8212 .intercept = emulator_intercept, 8213 .get_cpuid = emulator_get_cpuid, 8214 .guest_has_long_mode = emulator_guest_has_long_mode, 8215 .guest_has_movbe = emulator_guest_has_movbe, 8216 .guest_has_fxsr = emulator_guest_has_fxsr, 8217 .guest_has_rdpid = emulator_guest_has_rdpid, 8218 .set_nmi_mask = emulator_set_nmi_mask, 8219 .get_hflags = emulator_get_hflags, 8220 .leave_smm = emulator_leave_smm, 8221 .triple_fault = emulator_triple_fault, 8222 .set_xcr = emulator_set_xcr, 8223 }; 8224 8225 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8226 { 8227 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8228 /* 8229 * an sti; sti; sequence only disable interrupts for the first 8230 * instruction. So, if the last instruction, be it emulated or 8231 * not, left the system with the INT_STI flag enabled, it 8232 * means that the last instruction is an sti. We should not 8233 * leave the flag on in this case. The same goes for mov ss 8234 */ 8235 if (int_shadow & mask) 8236 mask = 0; 8237 if (unlikely(int_shadow || mask)) { 8238 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8239 if (!mask) 8240 kvm_make_request(KVM_REQ_EVENT, vcpu); 8241 } 8242 } 8243 8244 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8245 { 8246 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8247 8248 if (ctxt->exception.vector == PF_VECTOR) 8249 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8250 else if (ctxt->exception.error_code_valid) 8251 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8252 ctxt->exception.error_code); 8253 else 8254 kvm_queue_exception(vcpu, ctxt->exception.vector); 8255 } 8256 8257 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8258 { 8259 struct x86_emulate_ctxt *ctxt; 8260 8261 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8262 if (!ctxt) { 8263 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8264 return NULL; 8265 } 8266 8267 ctxt->vcpu = vcpu; 8268 ctxt->ops = &emulate_ops; 8269 vcpu->arch.emulate_ctxt = ctxt; 8270 8271 return ctxt; 8272 } 8273 8274 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8275 { 8276 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8277 int cs_db, cs_l; 8278 8279 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8280 8281 ctxt->gpa_available = false; 8282 ctxt->eflags = kvm_get_rflags(vcpu); 8283 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8284 8285 ctxt->eip = kvm_rip_read(vcpu); 8286 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8287 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8288 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8289 cs_db ? X86EMUL_MODE_PROT32 : 8290 X86EMUL_MODE_PROT16; 8291 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8292 8293 ctxt->interruptibility = 0; 8294 ctxt->have_exception = false; 8295 ctxt->exception.vector = -1; 8296 ctxt->perm_ok = false; 8297 8298 init_decode_cache(ctxt); 8299 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8300 } 8301 8302 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8303 { 8304 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8305 int ret; 8306 8307 init_emulate_ctxt(vcpu); 8308 8309 ctxt->op_bytes = 2; 8310 ctxt->ad_bytes = 2; 8311 ctxt->_eip = ctxt->eip + inc_eip; 8312 ret = emulate_int_real(ctxt, irq); 8313 8314 if (ret != X86EMUL_CONTINUE) { 8315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8316 } else { 8317 ctxt->eip = ctxt->_eip; 8318 kvm_rip_write(vcpu, ctxt->eip); 8319 kvm_set_rflags(vcpu, ctxt->eflags); 8320 } 8321 } 8322 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8323 8324 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8325 u8 ndata, u8 *insn_bytes, u8 insn_size) 8326 { 8327 struct kvm_run *run = vcpu->run; 8328 u64 info[5]; 8329 u8 info_start; 8330 8331 /* 8332 * Zero the whole array used to retrieve the exit info, as casting to 8333 * u32 for select entries will leave some chunks uninitialized. 8334 */ 8335 memset(&info, 0, sizeof(info)); 8336 8337 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8338 &info[2], (u32 *)&info[3], 8339 (u32 *)&info[4]); 8340 8341 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8342 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8343 8344 /* 8345 * There's currently space for 13 entries, but 5 are used for the exit 8346 * reason and info. Restrict to 4 to reduce the maintenance burden 8347 * when expanding kvm_run.emulation_failure in the future. 8348 */ 8349 if (WARN_ON_ONCE(ndata > 4)) 8350 ndata = 4; 8351 8352 /* Always include the flags as a 'data' entry. */ 8353 info_start = 1; 8354 run->emulation_failure.flags = 0; 8355 8356 if (insn_size) { 8357 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8358 sizeof(run->emulation_failure.insn_bytes) != 16)); 8359 info_start += 2; 8360 run->emulation_failure.flags |= 8361 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8362 run->emulation_failure.insn_size = insn_size; 8363 memset(run->emulation_failure.insn_bytes, 0x90, 8364 sizeof(run->emulation_failure.insn_bytes)); 8365 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8366 } 8367 8368 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8369 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8370 ndata * sizeof(data[0])); 8371 8372 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8373 } 8374 8375 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8376 { 8377 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8378 8379 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8380 ctxt->fetch.end - ctxt->fetch.data); 8381 } 8382 8383 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8384 u8 ndata) 8385 { 8386 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8387 } 8388 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8389 8390 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8391 { 8392 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8393 } 8394 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8395 8396 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8397 { 8398 struct kvm *kvm = vcpu->kvm; 8399 8400 ++vcpu->stat.insn_emulation_fail; 8401 trace_kvm_emulate_insn_failed(vcpu); 8402 8403 if (emulation_type & EMULTYPE_VMWARE_GP) { 8404 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8405 return 1; 8406 } 8407 8408 if (kvm->arch.exit_on_emulation_error || 8409 (emulation_type & EMULTYPE_SKIP)) { 8410 prepare_emulation_ctxt_failure_exit(vcpu); 8411 return 0; 8412 } 8413 8414 kvm_queue_exception(vcpu, UD_VECTOR); 8415 8416 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8417 prepare_emulation_ctxt_failure_exit(vcpu); 8418 return 0; 8419 } 8420 8421 return 1; 8422 } 8423 8424 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8425 bool write_fault_to_shadow_pgtable, 8426 int emulation_type) 8427 { 8428 gpa_t gpa = cr2_or_gpa; 8429 kvm_pfn_t pfn; 8430 8431 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8432 return false; 8433 8434 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8435 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8436 return false; 8437 8438 if (!vcpu->arch.mmu->root_role.direct) { 8439 /* 8440 * Write permission should be allowed since only 8441 * write access need to be emulated. 8442 */ 8443 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8444 8445 /* 8446 * If the mapping is invalid in guest, let cpu retry 8447 * it to generate fault. 8448 */ 8449 if (gpa == INVALID_GPA) 8450 return true; 8451 } 8452 8453 /* 8454 * Do not retry the unhandleable instruction if it faults on the 8455 * readonly host memory, otherwise it will goto a infinite loop: 8456 * retry instruction -> write #PF -> emulation fail -> retry 8457 * instruction -> ... 8458 */ 8459 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8460 8461 /* 8462 * If the instruction failed on the error pfn, it can not be fixed, 8463 * report the error to userspace. 8464 */ 8465 if (is_error_noslot_pfn(pfn)) 8466 return false; 8467 8468 kvm_release_pfn_clean(pfn); 8469 8470 /* The instructions are well-emulated on direct mmu. */ 8471 if (vcpu->arch.mmu->root_role.direct) { 8472 unsigned int indirect_shadow_pages; 8473 8474 write_lock(&vcpu->kvm->mmu_lock); 8475 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8476 write_unlock(&vcpu->kvm->mmu_lock); 8477 8478 if (indirect_shadow_pages) 8479 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8480 8481 return true; 8482 } 8483 8484 /* 8485 * if emulation was due to access to shadowed page table 8486 * and it failed try to unshadow page and re-enter the 8487 * guest to let CPU execute the instruction. 8488 */ 8489 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8490 8491 /* 8492 * If the access faults on its page table, it can not 8493 * be fixed by unprotecting shadow page and it should 8494 * be reported to userspace. 8495 */ 8496 return !write_fault_to_shadow_pgtable; 8497 } 8498 8499 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8500 gpa_t cr2_or_gpa, int emulation_type) 8501 { 8502 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8503 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8504 8505 last_retry_eip = vcpu->arch.last_retry_eip; 8506 last_retry_addr = vcpu->arch.last_retry_addr; 8507 8508 /* 8509 * If the emulation is caused by #PF and it is non-page_table 8510 * writing instruction, it means the VM-EXIT is caused by shadow 8511 * page protected, we can zap the shadow page and retry this 8512 * instruction directly. 8513 * 8514 * Note: if the guest uses a non-page-table modifying instruction 8515 * on the PDE that points to the instruction, then we will unmap 8516 * the instruction and go to an infinite loop. So, we cache the 8517 * last retried eip and the last fault address, if we meet the eip 8518 * and the address again, we can break out of the potential infinite 8519 * loop. 8520 */ 8521 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8522 8523 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8524 return false; 8525 8526 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8527 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8528 return false; 8529 8530 if (x86_page_table_writing_insn(ctxt)) 8531 return false; 8532 8533 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8534 return false; 8535 8536 vcpu->arch.last_retry_eip = ctxt->eip; 8537 vcpu->arch.last_retry_addr = cr2_or_gpa; 8538 8539 if (!vcpu->arch.mmu->root_role.direct) 8540 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8541 8542 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8543 8544 return true; 8545 } 8546 8547 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8548 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8549 8550 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8551 unsigned long *db) 8552 { 8553 u32 dr6 = 0; 8554 int i; 8555 u32 enable, rwlen; 8556 8557 enable = dr7; 8558 rwlen = dr7 >> 16; 8559 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8560 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8561 dr6 |= (1 << i); 8562 return dr6; 8563 } 8564 8565 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8566 { 8567 struct kvm_run *kvm_run = vcpu->run; 8568 8569 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8570 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8571 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8572 kvm_run->debug.arch.exception = DB_VECTOR; 8573 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8574 return 0; 8575 } 8576 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8577 return 1; 8578 } 8579 8580 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8581 { 8582 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8583 int r; 8584 8585 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8586 if (unlikely(!r)) 8587 return 0; 8588 8589 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8590 8591 /* 8592 * rflags is the old, "raw" value of the flags. The new value has 8593 * not been saved yet. 8594 * 8595 * This is correct even for TF set by the guest, because "the 8596 * processor will not generate this exception after the instruction 8597 * that sets the TF flag". 8598 */ 8599 if (unlikely(rflags & X86_EFLAGS_TF)) 8600 r = kvm_vcpu_do_singlestep(vcpu); 8601 return r; 8602 } 8603 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8604 8605 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8606 { 8607 u32 shadow; 8608 8609 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8610 return true; 8611 8612 /* 8613 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8614 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8615 * to avoid the relatively expensive CPUID lookup. 8616 */ 8617 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8618 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8619 guest_cpuid_is_intel(vcpu); 8620 } 8621 8622 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8623 int emulation_type, int *r) 8624 { 8625 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8626 8627 /* 8628 * Do not check for code breakpoints if hardware has already done the 8629 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8630 * the instruction has passed all exception checks, and all intercepted 8631 * exceptions that trigger emulation have lower priority than code 8632 * breakpoints, i.e. the fact that the intercepted exception occurred 8633 * means any code breakpoints have already been serviced. 8634 * 8635 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8636 * hardware has checked the RIP of the magic prefix, but not the RIP of 8637 * the instruction being emulated. The intent of forced emulation is 8638 * to behave as if KVM intercepted the instruction without an exception 8639 * and without a prefix. 8640 */ 8641 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8642 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8643 return false; 8644 8645 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8646 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8647 struct kvm_run *kvm_run = vcpu->run; 8648 unsigned long eip = kvm_get_linear_rip(vcpu); 8649 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8650 vcpu->arch.guest_debug_dr7, 8651 vcpu->arch.eff_db); 8652 8653 if (dr6 != 0) { 8654 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8655 kvm_run->debug.arch.pc = eip; 8656 kvm_run->debug.arch.exception = DB_VECTOR; 8657 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8658 *r = 0; 8659 return true; 8660 } 8661 } 8662 8663 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8664 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8665 unsigned long eip = kvm_get_linear_rip(vcpu); 8666 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8667 vcpu->arch.dr7, 8668 vcpu->arch.db); 8669 8670 if (dr6 != 0) { 8671 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8672 *r = 1; 8673 return true; 8674 } 8675 } 8676 8677 return false; 8678 } 8679 8680 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8681 { 8682 switch (ctxt->opcode_len) { 8683 case 1: 8684 switch (ctxt->b) { 8685 case 0xe4: /* IN */ 8686 case 0xe5: 8687 case 0xec: 8688 case 0xed: 8689 case 0xe6: /* OUT */ 8690 case 0xe7: 8691 case 0xee: 8692 case 0xef: 8693 case 0x6c: /* INS */ 8694 case 0x6d: 8695 case 0x6e: /* OUTS */ 8696 case 0x6f: 8697 return true; 8698 } 8699 break; 8700 case 2: 8701 switch (ctxt->b) { 8702 case 0x33: /* RDPMC */ 8703 return true; 8704 } 8705 break; 8706 } 8707 8708 return false; 8709 } 8710 8711 /* 8712 * Decode an instruction for emulation. The caller is responsible for handling 8713 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8714 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8715 * code breakpoints have higher priority and thus have already been done by 8716 * hardware. 8717 * 8718 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8719 * response to a machine check. 8720 */ 8721 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8722 void *insn, int insn_len) 8723 { 8724 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8725 int r; 8726 8727 init_emulate_ctxt(vcpu); 8728 8729 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8730 8731 trace_kvm_emulate_insn_start(vcpu); 8732 ++vcpu->stat.insn_emulation; 8733 8734 return r; 8735 } 8736 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8737 8738 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8739 int emulation_type, void *insn, int insn_len) 8740 { 8741 int r; 8742 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8743 bool writeback = true; 8744 bool write_fault_to_spt; 8745 8746 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8747 return 1; 8748 8749 vcpu->arch.l1tf_flush_l1d = true; 8750 8751 /* 8752 * Clear write_fault_to_shadow_pgtable here to ensure it is 8753 * never reused. 8754 */ 8755 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8756 vcpu->arch.write_fault_to_shadow_pgtable = false; 8757 8758 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8759 kvm_clear_exception_queue(vcpu); 8760 8761 /* 8762 * Return immediately if RIP hits a code breakpoint, such #DBs 8763 * are fault-like and are higher priority than any faults on 8764 * the code fetch itself. 8765 */ 8766 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8767 return r; 8768 8769 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8770 insn, insn_len); 8771 if (r != EMULATION_OK) { 8772 if ((emulation_type & EMULTYPE_TRAP_UD) || 8773 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8774 kvm_queue_exception(vcpu, UD_VECTOR); 8775 return 1; 8776 } 8777 if (reexecute_instruction(vcpu, cr2_or_gpa, 8778 write_fault_to_spt, 8779 emulation_type)) 8780 return 1; 8781 8782 if (ctxt->have_exception && 8783 !(emulation_type & EMULTYPE_SKIP)) { 8784 /* 8785 * #UD should result in just EMULATION_FAILED, and trap-like 8786 * exception should not be encountered during decode. 8787 */ 8788 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8789 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8790 inject_emulated_exception(vcpu); 8791 return 1; 8792 } 8793 return handle_emulation_failure(vcpu, emulation_type); 8794 } 8795 } 8796 8797 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8798 !is_vmware_backdoor_opcode(ctxt)) { 8799 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8800 return 1; 8801 } 8802 8803 /* 8804 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8805 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8806 * The caller is responsible for updating interruptibility state and 8807 * injecting single-step #DBs. 8808 */ 8809 if (emulation_type & EMULTYPE_SKIP) { 8810 if (ctxt->mode != X86EMUL_MODE_PROT64) 8811 ctxt->eip = (u32)ctxt->_eip; 8812 else 8813 ctxt->eip = ctxt->_eip; 8814 8815 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8816 r = 1; 8817 goto writeback; 8818 } 8819 8820 kvm_rip_write(vcpu, ctxt->eip); 8821 if (ctxt->eflags & X86_EFLAGS_RF) 8822 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8823 return 1; 8824 } 8825 8826 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8827 return 1; 8828 8829 /* this is needed for vmware backdoor interface to work since it 8830 changes registers values during IO operation */ 8831 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8832 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8833 emulator_invalidate_register_cache(ctxt); 8834 } 8835 8836 restart: 8837 if (emulation_type & EMULTYPE_PF) { 8838 /* Save the faulting GPA (cr2) in the address field */ 8839 ctxt->exception.address = cr2_or_gpa; 8840 8841 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8842 if (vcpu->arch.mmu->root_role.direct) { 8843 ctxt->gpa_available = true; 8844 ctxt->gpa_val = cr2_or_gpa; 8845 } 8846 } else { 8847 /* Sanitize the address out of an abundance of paranoia. */ 8848 ctxt->exception.address = 0; 8849 } 8850 8851 r = x86_emulate_insn(ctxt); 8852 8853 if (r == EMULATION_INTERCEPTED) 8854 return 1; 8855 8856 if (r == EMULATION_FAILED) { 8857 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8858 emulation_type)) 8859 return 1; 8860 8861 return handle_emulation_failure(vcpu, emulation_type); 8862 } 8863 8864 if (ctxt->have_exception) { 8865 r = 1; 8866 inject_emulated_exception(vcpu); 8867 } else if (vcpu->arch.pio.count) { 8868 if (!vcpu->arch.pio.in) { 8869 /* FIXME: return into emulator if single-stepping. */ 8870 vcpu->arch.pio.count = 0; 8871 } else { 8872 writeback = false; 8873 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8874 } 8875 r = 0; 8876 } else if (vcpu->mmio_needed) { 8877 ++vcpu->stat.mmio_exits; 8878 8879 if (!vcpu->mmio_is_write) 8880 writeback = false; 8881 r = 0; 8882 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8883 } else if (vcpu->arch.complete_userspace_io) { 8884 writeback = false; 8885 r = 0; 8886 } else if (r == EMULATION_RESTART) 8887 goto restart; 8888 else 8889 r = 1; 8890 8891 writeback: 8892 if (writeback) { 8893 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8894 toggle_interruptibility(vcpu, ctxt->interruptibility); 8895 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8896 8897 /* 8898 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8899 * only supports code breakpoints and general detect #DB, both 8900 * of which are fault-like. 8901 */ 8902 if (!ctxt->have_exception || 8903 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8904 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8905 if (ctxt->is_branch) 8906 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8907 kvm_rip_write(vcpu, ctxt->eip); 8908 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8909 r = kvm_vcpu_do_singlestep(vcpu); 8910 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8911 __kvm_set_rflags(vcpu, ctxt->eflags); 8912 } 8913 8914 /* 8915 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8916 * do nothing, and it will be requested again as soon as 8917 * the shadow expires. But we still need to check here, 8918 * because POPF has no interrupt shadow. 8919 */ 8920 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8921 kvm_make_request(KVM_REQ_EVENT, vcpu); 8922 } else 8923 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8924 8925 return r; 8926 } 8927 8928 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8929 { 8930 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8931 } 8932 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8933 8934 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8935 void *insn, int insn_len) 8936 { 8937 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8938 } 8939 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8940 8941 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8942 { 8943 vcpu->arch.pio.count = 0; 8944 return 1; 8945 } 8946 8947 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8948 { 8949 vcpu->arch.pio.count = 0; 8950 8951 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8952 return 1; 8953 8954 return kvm_skip_emulated_instruction(vcpu); 8955 } 8956 8957 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8958 unsigned short port) 8959 { 8960 unsigned long val = kvm_rax_read(vcpu); 8961 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8962 8963 if (ret) 8964 return ret; 8965 8966 /* 8967 * Workaround userspace that relies on old KVM behavior of %rip being 8968 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8969 */ 8970 if (port == 0x7e && 8971 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8972 vcpu->arch.complete_userspace_io = 8973 complete_fast_pio_out_port_0x7e; 8974 kvm_skip_emulated_instruction(vcpu); 8975 } else { 8976 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8977 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8978 } 8979 return 0; 8980 } 8981 8982 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8983 { 8984 unsigned long val; 8985 8986 /* We should only ever be called with arch.pio.count equal to 1 */ 8987 BUG_ON(vcpu->arch.pio.count != 1); 8988 8989 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8990 vcpu->arch.pio.count = 0; 8991 return 1; 8992 } 8993 8994 /* For size less than 4 we merge, else we zero extend */ 8995 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8996 8997 complete_emulator_pio_in(vcpu, &val); 8998 kvm_rax_write(vcpu, val); 8999 9000 return kvm_skip_emulated_instruction(vcpu); 9001 } 9002 9003 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9004 unsigned short port) 9005 { 9006 unsigned long val; 9007 int ret; 9008 9009 /* For size less than 4 we merge, else we zero extend */ 9010 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9011 9012 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9013 if (ret) { 9014 kvm_rax_write(vcpu, val); 9015 return ret; 9016 } 9017 9018 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9019 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9020 9021 return 0; 9022 } 9023 9024 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9025 { 9026 int ret; 9027 9028 if (in) 9029 ret = kvm_fast_pio_in(vcpu, size, port); 9030 else 9031 ret = kvm_fast_pio_out(vcpu, size, port); 9032 return ret && kvm_skip_emulated_instruction(vcpu); 9033 } 9034 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9035 9036 static int kvmclock_cpu_down_prep(unsigned int cpu) 9037 { 9038 __this_cpu_write(cpu_tsc_khz, 0); 9039 return 0; 9040 } 9041 9042 static void tsc_khz_changed(void *data) 9043 { 9044 struct cpufreq_freqs *freq = data; 9045 unsigned long khz = 0; 9046 9047 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9048 9049 if (data) 9050 khz = freq->new; 9051 else 9052 khz = cpufreq_quick_get(raw_smp_processor_id()); 9053 if (!khz) 9054 khz = tsc_khz; 9055 __this_cpu_write(cpu_tsc_khz, khz); 9056 } 9057 9058 #ifdef CONFIG_X86_64 9059 static void kvm_hyperv_tsc_notifier(void) 9060 { 9061 struct kvm *kvm; 9062 int cpu; 9063 9064 mutex_lock(&kvm_lock); 9065 list_for_each_entry(kvm, &vm_list, vm_list) 9066 kvm_make_mclock_inprogress_request(kvm); 9067 9068 /* no guest entries from this point */ 9069 hyperv_stop_tsc_emulation(); 9070 9071 /* TSC frequency always matches when on Hyper-V */ 9072 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9073 for_each_present_cpu(cpu) 9074 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9075 } 9076 kvm_caps.max_guest_tsc_khz = tsc_khz; 9077 9078 list_for_each_entry(kvm, &vm_list, vm_list) { 9079 __kvm_start_pvclock_update(kvm); 9080 pvclock_update_vm_gtod_copy(kvm); 9081 kvm_end_pvclock_update(kvm); 9082 } 9083 9084 mutex_unlock(&kvm_lock); 9085 } 9086 #endif 9087 9088 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9089 { 9090 struct kvm *kvm; 9091 struct kvm_vcpu *vcpu; 9092 int send_ipi = 0; 9093 unsigned long i; 9094 9095 /* 9096 * We allow guests to temporarily run on slowing clocks, 9097 * provided we notify them after, or to run on accelerating 9098 * clocks, provided we notify them before. Thus time never 9099 * goes backwards. 9100 * 9101 * However, we have a problem. We can't atomically update 9102 * the frequency of a given CPU from this function; it is 9103 * merely a notifier, which can be called from any CPU. 9104 * Changing the TSC frequency at arbitrary points in time 9105 * requires a recomputation of local variables related to 9106 * the TSC for each VCPU. We must flag these local variables 9107 * to be updated and be sure the update takes place with the 9108 * new frequency before any guests proceed. 9109 * 9110 * Unfortunately, the combination of hotplug CPU and frequency 9111 * change creates an intractable locking scenario; the order 9112 * of when these callouts happen is undefined with respect to 9113 * CPU hotplug, and they can race with each other. As such, 9114 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9115 * undefined; you can actually have a CPU frequency change take 9116 * place in between the computation of X and the setting of the 9117 * variable. To protect against this problem, all updates of 9118 * the per_cpu tsc_khz variable are done in an interrupt 9119 * protected IPI, and all callers wishing to update the value 9120 * must wait for a synchronous IPI to complete (which is trivial 9121 * if the caller is on the CPU already). This establishes the 9122 * necessary total order on variable updates. 9123 * 9124 * Note that because a guest time update may take place 9125 * anytime after the setting of the VCPU's request bit, the 9126 * correct TSC value must be set before the request. However, 9127 * to ensure the update actually makes it to any guest which 9128 * starts running in hardware virtualization between the set 9129 * and the acquisition of the spinlock, we must also ping the 9130 * CPU after setting the request bit. 9131 * 9132 */ 9133 9134 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9135 9136 mutex_lock(&kvm_lock); 9137 list_for_each_entry(kvm, &vm_list, vm_list) { 9138 kvm_for_each_vcpu(i, vcpu, kvm) { 9139 if (vcpu->cpu != cpu) 9140 continue; 9141 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9142 if (vcpu->cpu != raw_smp_processor_id()) 9143 send_ipi = 1; 9144 } 9145 } 9146 mutex_unlock(&kvm_lock); 9147 9148 if (freq->old < freq->new && send_ipi) { 9149 /* 9150 * We upscale the frequency. Must make the guest 9151 * doesn't see old kvmclock values while running with 9152 * the new frequency, otherwise we risk the guest sees 9153 * time go backwards. 9154 * 9155 * In case we update the frequency for another cpu 9156 * (which might be in guest context) send an interrupt 9157 * to kick the cpu out of guest context. Next time 9158 * guest context is entered kvmclock will be updated, 9159 * so the guest will not see stale values. 9160 */ 9161 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9162 } 9163 } 9164 9165 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9166 void *data) 9167 { 9168 struct cpufreq_freqs *freq = data; 9169 int cpu; 9170 9171 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9172 return 0; 9173 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9174 return 0; 9175 9176 for_each_cpu(cpu, freq->policy->cpus) 9177 __kvmclock_cpufreq_notifier(freq, cpu); 9178 9179 return 0; 9180 } 9181 9182 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9183 .notifier_call = kvmclock_cpufreq_notifier 9184 }; 9185 9186 static int kvmclock_cpu_online(unsigned int cpu) 9187 { 9188 tsc_khz_changed(NULL); 9189 return 0; 9190 } 9191 9192 static void kvm_timer_init(void) 9193 { 9194 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9195 max_tsc_khz = tsc_khz; 9196 9197 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9198 struct cpufreq_policy *policy; 9199 int cpu; 9200 9201 cpu = get_cpu(); 9202 policy = cpufreq_cpu_get(cpu); 9203 if (policy) { 9204 if (policy->cpuinfo.max_freq) 9205 max_tsc_khz = policy->cpuinfo.max_freq; 9206 cpufreq_cpu_put(policy); 9207 } 9208 put_cpu(); 9209 } 9210 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9211 CPUFREQ_TRANSITION_NOTIFIER); 9212 9213 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9214 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9215 } 9216 } 9217 9218 #ifdef CONFIG_X86_64 9219 static void pvclock_gtod_update_fn(struct work_struct *work) 9220 { 9221 struct kvm *kvm; 9222 struct kvm_vcpu *vcpu; 9223 unsigned long i; 9224 9225 mutex_lock(&kvm_lock); 9226 list_for_each_entry(kvm, &vm_list, vm_list) 9227 kvm_for_each_vcpu(i, vcpu, kvm) 9228 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9229 atomic_set(&kvm_guest_has_master_clock, 0); 9230 mutex_unlock(&kvm_lock); 9231 } 9232 9233 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9234 9235 /* 9236 * Indirection to move queue_work() out of the tk_core.seq write held 9237 * region to prevent possible deadlocks against time accessors which 9238 * are invoked with work related locks held. 9239 */ 9240 static void pvclock_irq_work_fn(struct irq_work *w) 9241 { 9242 queue_work(system_long_wq, &pvclock_gtod_work); 9243 } 9244 9245 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9246 9247 /* 9248 * Notification about pvclock gtod data update. 9249 */ 9250 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9251 void *priv) 9252 { 9253 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9254 struct timekeeper *tk = priv; 9255 9256 update_pvclock_gtod(tk); 9257 9258 /* 9259 * Disable master clock if host does not trust, or does not use, 9260 * TSC based clocksource. Delegate queue_work() to irq_work as 9261 * this is invoked with tk_core.seq write held. 9262 */ 9263 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9264 atomic_read(&kvm_guest_has_master_clock) != 0) 9265 irq_work_queue(&pvclock_irq_work); 9266 return 0; 9267 } 9268 9269 static struct notifier_block pvclock_gtod_notifier = { 9270 .notifier_call = pvclock_gtod_notify, 9271 }; 9272 #endif 9273 9274 int kvm_arch_init(void *opaque) 9275 { 9276 struct kvm_x86_init_ops *ops = opaque; 9277 u64 host_pat; 9278 int r; 9279 9280 if (kvm_x86_ops.hardware_enable) { 9281 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9282 return -EEXIST; 9283 } 9284 9285 if (!ops->cpu_has_kvm_support()) { 9286 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9287 ops->runtime_ops->name); 9288 return -EOPNOTSUPP; 9289 } 9290 if (ops->disabled_by_bios()) { 9291 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9292 ops->runtime_ops->name); 9293 return -EOPNOTSUPP; 9294 } 9295 9296 /* 9297 * KVM explicitly assumes that the guest has an FPU and 9298 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9299 * vCPU's FPU state as a fxregs_state struct. 9300 */ 9301 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9302 printk(KERN_ERR "kvm: inadequate fpu\n"); 9303 return -EOPNOTSUPP; 9304 } 9305 9306 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9307 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9308 return -EOPNOTSUPP; 9309 } 9310 9311 /* 9312 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9313 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9314 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9315 * with an exception. PAT[0] is set to WB on RESET and also by the 9316 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9317 */ 9318 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9319 (host_pat & GENMASK(2, 0)) != 6) { 9320 pr_err("kvm: host PAT[0] is not WB\n"); 9321 return -EIO; 9322 } 9323 9324 x86_emulator_cache = kvm_alloc_emulator_cache(); 9325 if (!x86_emulator_cache) { 9326 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9327 return -ENOMEM; 9328 } 9329 9330 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9331 if (!user_return_msrs) { 9332 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9333 r = -ENOMEM; 9334 goto out_free_x86_emulator_cache; 9335 } 9336 kvm_nr_uret_msrs = 0; 9337 9338 r = kvm_mmu_vendor_module_init(); 9339 if (r) 9340 goto out_free_percpu; 9341 9342 kvm_timer_init(); 9343 9344 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9345 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9346 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9347 } 9348 9349 if (pi_inject_timer == -1) 9350 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9351 #ifdef CONFIG_X86_64 9352 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9353 9354 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9355 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9356 #endif 9357 9358 return 0; 9359 9360 out_free_percpu: 9361 free_percpu(user_return_msrs); 9362 out_free_x86_emulator_cache: 9363 kmem_cache_destroy(x86_emulator_cache); 9364 return r; 9365 } 9366 9367 void kvm_arch_exit(void) 9368 { 9369 #ifdef CONFIG_X86_64 9370 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9371 clear_hv_tscchange_cb(); 9372 #endif 9373 kvm_lapic_exit(); 9374 9375 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9376 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9377 CPUFREQ_TRANSITION_NOTIFIER); 9378 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9379 } 9380 #ifdef CONFIG_X86_64 9381 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9382 irq_work_sync(&pvclock_irq_work); 9383 cancel_work_sync(&pvclock_gtod_work); 9384 #endif 9385 kvm_x86_ops.hardware_enable = NULL; 9386 kvm_mmu_vendor_module_exit(); 9387 free_percpu(user_return_msrs); 9388 kmem_cache_destroy(x86_emulator_cache); 9389 #ifdef CONFIG_KVM_XEN 9390 static_key_deferred_flush(&kvm_xen_enabled); 9391 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9392 #endif 9393 } 9394 9395 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9396 { 9397 /* 9398 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9399 * local APIC is in-kernel, the run loop will detect the non-runnable 9400 * state and halt the vCPU. Exit to userspace if the local APIC is 9401 * managed by userspace, in which case userspace is responsible for 9402 * handling wake events. 9403 */ 9404 ++vcpu->stat.halt_exits; 9405 if (lapic_in_kernel(vcpu)) { 9406 vcpu->arch.mp_state = state; 9407 return 1; 9408 } else { 9409 vcpu->run->exit_reason = reason; 9410 return 0; 9411 } 9412 } 9413 9414 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9415 { 9416 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9417 } 9418 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9419 9420 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9421 { 9422 int ret = kvm_skip_emulated_instruction(vcpu); 9423 /* 9424 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9425 * KVM_EXIT_DEBUG here. 9426 */ 9427 return kvm_emulate_halt_noskip(vcpu) && ret; 9428 } 9429 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9430 9431 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9432 { 9433 int ret = kvm_skip_emulated_instruction(vcpu); 9434 9435 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9436 KVM_EXIT_AP_RESET_HOLD) && ret; 9437 } 9438 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9439 9440 #ifdef CONFIG_X86_64 9441 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9442 unsigned long clock_type) 9443 { 9444 struct kvm_clock_pairing clock_pairing; 9445 struct timespec64 ts; 9446 u64 cycle; 9447 int ret; 9448 9449 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9450 return -KVM_EOPNOTSUPP; 9451 9452 /* 9453 * When tsc is in permanent catchup mode guests won't be able to use 9454 * pvclock_read_retry loop to get consistent view of pvclock 9455 */ 9456 if (vcpu->arch.tsc_always_catchup) 9457 return -KVM_EOPNOTSUPP; 9458 9459 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9460 return -KVM_EOPNOTSUPP; 9461 9462 clock_pairing.sec = ts.tv_sec; 9463 clock_pairing.nsec = ts.tv_nsec; 9464 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9465 clock_pairing.flags = 0; 9466 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9467 9468 ret = 0; 9469 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9470 sizeof(struct kvm_clock_pairing))) 9471 ret = -KVM_EFAULT; 9472 9473 return ret; 9474 } 9475 #endif 9476 9477 /* 9478 * kvm_pv_kick_cpu_op: Kick a vcpu. 9479 * 9480 * @apicid - apicid of vcpu to be kicked. 9481 */ 9482 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9483 { 9484 /* 9485 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9486 * common code, e.g. for tracing. Defer initialization to the compiler. 9487 */ 9488 struct kvm_lapic_irq lapic_irq = { 9489 .delivery_mode = APIC_DM_REMRD, 9490 .dest_mode = APIC_DEST_PHYSICAL, 9491 .shorthand = APIC_DEST_NOSHORT, 9492 .dest_id = apicid, 9493 }; 9494 9495 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9496 } 9497 9498 bool kvm_apicv_activated(struct kvm *kvm) 9499 { 9500 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9501 } 9502 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9503 9504 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9505 { 9506 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9507 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9508 9509 return (vm_reasons | vcpu_reasons) == 0; 9510 } 9511 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9512 9513 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9514 enum kvm_apicv_inhibit reason, bool set) 9515 { 9516 if (set) 9517 __set_bit(reason, inhibits); 9518 else 9519 __clear_bit(reason, inhibits); 9520 9521 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9522 } 9523 9524 static void kvm_apicv_init(struct kvm *kvm) 9525 { 9526 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9527 9528 init_rwsem(&kvm->arch.apicv_update_lock); 9529 9530 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9531 9532 if (!enable_apicv) 9533 set_or_clear_apicv_inhibit(inhibits, 9534 APICV_INHIBIT_REASON_DISABLE, true); 9535 } 9536 9537 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9538 { 9539 struct kvm_vcpu *target = NULL; 9540 struct kvm_apic_map *map; 9541 9542 vcpu->stat.directed_yield_attempted++; 9543 9544 if (single_task_running()) 9545 goto no_yield; 9546 9547 rcu_read_lock(); 9548 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9549 9550 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9551 target = map->phys_map[dest_id]->vcpu; 9552 9553 rcu_read_unlock(); 9554 9555 if (!target || !READ_ONCE(target->ready)) 9556 goto no_yield; 9557 9558 /* Ignore requests to yield to self */ 9559 if (vcpu == target) 9560 goto no_yield; 9561 9562 if (kvm_vcpu_yield_to(target) <= 0) 9563 goto no_yield; 9564 9565 vcpu->stat.directed_yield_successful++; 9566 9567 no_yield: 9568 return; 9569 } 9570 9571 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9572 { 9573 u64 ret = vcpu->run->hypercall.ret; 9574 9575 if (!is_64_bit_mode(vcpu)) 9576 ret = (u32)ret; 9577 kvm_rax_write(vcpu, ret); 9578 ++vcpu->stat.hypercalls; 9579 return kvm_skip_emulated_instruction(vcpu); 9580 } 9581 9582 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9583 { 9584 unsigned long nr, a0, a1, a2, a3, ret; 9585 int op_64_bit; 9586 9587 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9588 return kvm_xen_hypercall(vcpu); 9589 9590 if (kvm_hv_hypercall_enabled(vcpu)) 9591 return kvm_hv_hypercall(vcpu); 9592 9593 nr = kvm_rax_read(vcpu); 9594 a0 = kvm_rbx_read(vcpu); 9595 a1 = kvm_rcx_read(vcpu); 9596 a2 = kvm_rdx_read(vcpu); 9597 a3 = kvm_rsi_read(vcpu); 9598 9599 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9600 9601 op_64_bit = is_64_bit_hypercall(vcpu); 9602 if (!op_64_bit) { 9603 nr &= 0xFFFFFFFF; 9604 a0 &= 0xFFFFFFFF; 9605 a1 &= 0xFFFFFFFF; 9606 a2 &= 0xFFFFFFFF; 9607 a3 &= 0xFFFFFFFF; 9608 } 9609 9610 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9611 ret = -KVM_EPERM; 9612 goto out; 9613 } 9614 9615 ret = -KVM_ENOSYS; 9616 9617 switch (nr) { 9618 case KVM_HC_VAPIC_POLL_IRQ: 9619 ret = 0; 9620 break; 9621 case KVM_HC_KICK_CPU: 9622 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9623 break; 9624 9625 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9626 kvm_sched_yield(vcpu, a1); 9627 ret = 0; 9628 break; 9629 #ifdef CONFIG_X86_64 9630 case KVM_HC_CLOCK_PAIRING: 9631 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9632 break; 9633 #endif 9634 case KVM_HC_SEND_IPI: 9635 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9636 break; 9637 9638 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9639 break; 9640 case KVM_HC_SCHED_YIELD: 9641 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9642 break; 9643 9644 kvm_sched_yield(vcpu, a0); 9645 ret = 0; 9646 break; 9647 case KVM_HC_MAP_GPA_RANGE: { 9648 u64 gpa = a0, npages = a1, attrs = a2; 9649 9650 ret = -KVM_ENOSYS; 9651 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9652 break; 9653 9654 if (!PAGE_ALIGNED(gpa) || !npages || 9655 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9656 ret = -KVM_EINVAL; 9657 break; 9658 } 9659 9660 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9661 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9662 vcpu->run->hypercall.args[0] = gpa; 9663 vcpu->run->hypercall.args[1] = npages; 9664 vcpu->run->hypercall.args[2] = attrs; 9665 vcpu->run->hypercall.longmode = op_64_bit; 9666 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9667 return 0; 9668 } 9669 default: 9670 ret = -KVM_ENOSYS; 9671 break; 9672 } 9673 out: 9674 if (!op_64_bit) 9675 ret = (u32)ret; 9676 kvm_rax_write(vcpu, ret); 9677 9678 ++vcpu->stat.hypercalls; 9679 return kvm_skip_emulated_instruction(vcpu); 9680 } 9681 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9682 9683 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9684 { 9685 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9686 char instruction[3]; 9687 unsigned long rip = kvm_rip_read(vcpu); 9688 9689 /* 9690 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9691 * the pieces. 9692 */ 9693 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9694 ctxt->exception.error_code_valid = false; 9695 ctxt->exception.vector = UD_VECTOR; 9696 ctxt->have_exception = true; 9697 return X86EMUL_PROPAGATE_FAULT; 9698 } 9699 9700 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9701 9702 return emulator_write_emulated(ctxt, rip, instruction, 3, 9703 &ctxt->exception); 9704 } 9705 9706 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9707 { 9708 return vcpu->run->request_interrupt_window && 9709 likely(!pic_in_kernel(vcpu->kvm)); 9710 } 9711 9712 /* Called within kvm->srcu read side. */ 9713 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9714 { 9715 struct kvm_run *kvm_run = vcpu->run; 9716 9717 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9718 kvm_run->cr8 = kvm_get_cr8(vcpu); 9719 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9720 9721 kvm_run->ready_for_interrupt_injection = 9722 pic_in_kernel(vcpu->kvm) || 9723 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9724 9725 if (is_smm(vcpu)) 9726 kvm_run->flags |= KVM_RUN_X86_SMM; 9727 } 9728 9729 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9730 { 9731 int max_irr, tpr; 9732 9733 if (!kvm_x86_ops.update_cr8_intercept) 9734 return; 9735 9736 if (!lapic_in_kernel(vcpu)) 9737 return; 9738 9739 if (vcpu->arch.apic->apicv_active) 9740 return; 9741 9742 if (!vcpu->arch.apic->vapic_addr) 9743 max_irr = kvm_lapic_find_highest_irr(vcpu); 9744 else 9745 max_irr = -1; 9746 9747 if (max_irr != -1) 9748 max_irr >>= 4; 9749 9750 tpr = kvm_lapic_get_cr8(vcpu); 9751 9752 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9753 } 9754 9755 9756 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9757 { 9758 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9759 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9760 return 1; 9761 } 9762 9763 return kvm_x86_ops.nested_ops->check_events(vcpu); 9764 } 9765 9766 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9767 { 9768 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9769 vcpu->arch.exception.has_error_code, 9770 vcpu->arch.exception.error_code, 9771 vcpu->arch.exception.injected); 9772 9773 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9774 vcpu->arch.exception.error_code = false; 9775 static_call(kvm_x86_inject_exception)(vcpu); 9776 } 9777 9778 /* 9779 * Check for any event (interrupt or exception) that is ready to be injected, 9780 * and if there is at least one event, inject the event with the highest 9781 * priority. This handles both "pending" events, i.e. events that have never 9782 * been injected into the guest, and "injected" events, i.e. events that were 9783 * injected as part of a previous VM-Enter, but weren't successfully delivered 9784 * and need to be re-injected. 9785 * 9786 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9787 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9788 * be able to inject exceptions in the "middle" of an instruction, and so must 9789 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9790 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9791 * boundaries is necessary and correct. 9792 * 9793 * For simplicity, KVM uses a single path to inject all events (except events 9794 * that are injected directly from L1 to L2) and doesn't explicitly track 9795 * instruction boundaries for asynchronous events. However, because VM-Exits 9796 * that can occur during instruction execution typically result in KVM skipping 9797 * the instruction or injecting an exception, e.g. instruction and exception 9798 * intercepts, and because pending exceptions have higher priority than pending 9799 * interrupts, KVM still honors instruction boundaries in most scenarios. 9800 * 9801 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9802 * the instruction or inject an exception, then KVM can incorrecty inject a new 9803 * asynchrounous event if the event became pending after the CPU fetched the 9804 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9805 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9806 * injected on the restarted instruction instead of being deferred until the 9807 * instruction completes. 9808 * 9809 * In practice, this virtualization hole is unlikely to be observed by the 9810 * guest, and even less likely to cause functional problems. To detect the 9811 * hole, the guest would have to trigger an event on a side effect of an early 9812 * phase of instruction execution, e.g. on the instruction fetch from memory. 9813 * And for it to be a functional problem, the guest would need to depend on the 9814 * ordering between that side effect, the instruction completing, _and_ the 9815 * delivery of the asynchronous event. 9816 */ 9817 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9818 bool *req_immediate_exit) 9819 { 9820 bool can_inject; 9821 int r; 9822 9823 /* 9824 * Process nested events first, as nested VM-Exit supercedes event 9825 * re-injection. If there's an event queued for re-injection, it will 9826 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9827 */ 9828 if (is_guest_mode(vcpu)) 9829 r = kvm_check_nested_events(vcpu); 9830 else 9831 r = 0; 9832 9833 /* 9834 * Re-inject exceptions and events *especially* if immediate entry+exit 9835 * to/from L2 is needed, as any event that has already been injected 9836 * into L2 needs to complete its lifecycle before injecting a new event. 9837 * 9838 * Don't re-inject an NMI or interrupt if there is a pending exception. 9839 * This collision arises if an exception occurred while vectoring the 9840 * injected event, KVM intercepted said exception, and KVM ultimately 9841 * determined the fault belongs to the guest and queues the exception 9842 * for injection back into the guest. 9843 * 9844 * "Injected" interrupts can also collide with pending exceptions if 9845 * userspace ignores the "ready for injection" flag and blindly queues 9846 * an interrupt. In that case, prioritizing the exception is correct, 9847 * as the exception "occurred" before the exit to userspace. Trap-like 9848 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9849 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9850 * priority, they're only generated (pended) during instruction 9851 * execution, and interrupts are recognized at instruction boundaries. 9852 * Thus a pending fault-like exception means the fault occurred on the 9853 * *previous* instruction and must be serviced prior to recognizing any 9854 * new events in order to fully complete the previous instruction. 9855 */ 9856 if (vcpu->arch.exception.injected) 9857 kvm_inject_exception(vcpu); 9858 else if (kvm_is_exception_pending(vcpu)) 9859 ; /* see above */ 9860 else if (vcpu->arch.nmi_injected) 9861 static_call(kvm_x86_inject_nmi)(vcpu); 9862 else if (vcpu->arch.interrupt.injected) 9863 static_call(kvm_x86_inject_irq)(vcpu, true); 9864 9865 /* 9866 * Exceptions that morph to VM-Exits are handled above, and pending 9867 * exceptions on top of injected exceptions that do not VM-Exit should 9868 * either morph to #DF or, sadly, override the injected exception. 9869 */ 9870 WARN_ON_ONCE(vcpu->arch.exception.injected && 9871 vcpu->arch.exception.pending); 9872 9873 /* 9874 * Bail if immediate entry+exit to/from the guest is needed to complete 9875 * nested VM-Enter or event re-injection so that a different pending 9876 * event can be serviced (or if KVM needs to exit to userspace). 9877 * 9878 * Otherwise, continue processing events even if VM-Exit occurred. The 9879 * VM-Exit will have cleared exceptions that were meant for L2, but 9880 * there may now be events that can be injected into L1. 9881 */ 9882 if (r < 0) 9883 goto out; 9884 9885 /* 9886 * A pending exception VM-Exit should either result in nested VM-Exit 9887 * or force an immediate re-entry and exit to/from L2, and exception 9888 * VM-Exits cannot be injected (flag should _never_ be set). 9889 */ 9890 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9891 vcpu->arch.exception_vmexit.pending); 9892 9893 /* 9894 * New events, other than exceptions, cannot be injected if KVM needs 9895 * to re-inject a previous event. See above comments on re-injecting 9896 * for why pending exceptions get priority. 9897 */ 9898 can_inject = !kvm_event_needs_reinjection(vcpu); 9899 9900 if (vcpu->arch.exception.pending) { 9901 /* 9902 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9903 * value pushed on the stack. Trap-like exception and all #DBs 9904 * leave RF as-is (KVM follows Intel's behavior in this regard; 9905 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9906 * 9907 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9908 * describe the behavior of General Detect #DBs, which are 9909 * fault-like. They do _not_ set RF, a la code breakpoints. 9910 */ 9911 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9912 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9913 X86_EFLAGS_RF); 9914 9915 if (vcpu->arch.exception.vector == DB_VECTOR) { 9916 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9917 if (vcpu->arch.dr7 & DR7_GD) { 9918 vcpu->arch.dr7 &= ~DR7_GD; 9919 kvm_update_dr7(vcpu); 9920 } 9921 } 9922 9923 kvm_inject_exception(vcpu); 9924 9925 vcpu->arch.exception.pending = false; 9926 vcpu->arch.exception.injected = true; 9927 9928 can_inject = false; 9929 } 9930 9931 /* Don't inject interrupts if the user asked to avoid doing so */ 9932 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9933 return 0; 9934 9935 /* 9936 * Finally, inject interrupt events. If an event cannot be injected 9937 * due to architectural conditions (e.g. IF=0) a window-open exit 9938 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9939 * and can architecturally be injected, but we cannot do it right now: 9940 * an interrupt could have arrived just now and we have to inject it 9941 * as a vmexit, or there could already an event in the queue, which is 9942 * indicated by can_inject. In that case we request an immediate exit 9943 * in order to make progress and get back here for another iteration. 9944 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9945 */ 9946 #ifdef CONFIG_KVM_SMM 9947 if (vcpu->arch.smi_pending) { 9948 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9949 if (r < 0) 9950 goto out; 9951 if (r) { 9952 vcpu->arch.smi_pending = false; 9953 ++vcpu->arch.smi_count; 9954 enter_smm(vcpu); 9955 can_inject = false; 9956 } else 9957 static_call(kvm_x86_enable_smi_window)(vcpu); 9958 } 9959 #endif 9960 9961 if (vcpu->arch.nmi_pending) { 9962 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9963 if (r < 0) 9964 goto out; 9965 if (r) { 9966 --vcpu->arch.nmi_pending; 9967 vcpu->arch.nmi_injected = true; 9968 static_call(kvm_x86_inject_nmi)(vcpu); 9969 can_inject = false; 9970 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9971 } 9972 if (vcpu->arch.nmi_pending) 9973 static_call(kvm_x86_enable_nmi_window)(vcpu); 9974 } 9975 9976 if (kvm_cpu_has_injectable_intr(vcpu)) { 9977 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9978 if (r < 0) 9979 goto out; 9980 if (r) { 9981 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9982 static_call(kvm_x86_inject_irq)(vcpu, false); 9983 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9984 } 9985 if (kvm_cpu_has_injectable_intr(vcpu)) 9986 static_call(kvm_x86_enable_irq_window)(vcpu); 9987 } 9988 9989 if (is_guest_mode(vcpu) && 9990 kvm_x86_ops.nested_ops->has_events && 9991 kvm_x86_ops.nested_ops->has_events(vcpu)) 9992 *req_immediate_exit = true; 9993 9994 /* 9995 * KVM must never queue a new exception while injecting an event; KVM 9996 * is done emulating and should only propagate the to-be-injected event 9997 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 9998 * infinite loop as KVM will bail from VM-Enter to inject the pending 9999 * exception and start the cycle all over. 10000 * 10001 * Exempt triple faults as they have special handling and won't put the 10002 * vCPU into an infinite loop. Triple fault can be queued when running 10003 * VMX without unrestricted guest, as that requires KVM to emulate Real 10004 * Mode events (see kvm_inject_realmode_interrupt()). 10005 */ 10006 WARN_ON_ONCE(vcpu->arch.exception.pending || 10007 vcpu->arch.exception_vmexit.pending); 10008 return 0; 10009 10010 out: 10011 if (r == -EBUSY) { 10012 *req_immediate_exit = true; 10013 r = 0; 10014 } 10015 return r; 10016 } 10017 10018 static void process_nmi(struct kvm_vcpu *vcpu) 10019 { 10020 unsigned limit = 2; 10021 10022 /* 10023 * x86 is limited to one NMI running, and one NMI pending after it. 10024 * If an NMI is already in progress, limit further NMIs to just one. 10025 * Otherwise, allow two (and we'll inject the first one immediately). 10026 */ 10027 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10028 limit = 1; 10029 10030 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10031 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10032 kvm_make_request(KVM_REQ_EVENT, vcpu); 10033 } 10034 10035 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10036 unsigned long *vcpu_bitmap) 10037 { 10038 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10039 } 10040 10041 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10042 { 10043 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10044 } 10045 10046 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10047 { 10048 struct kvm_lapic *apic = vcpu->arch.apic; 10049 bool activate; 10050 10051 if (!lapic_in_kernel(vcpu)) 10052 return; 10053 10054 down_read(&vcpu->kvm->arch.apicv_update_lock); 10055 preempt_disable(); 10056 10057 /* Do not activate APICV when APIC is disabled */ 10058 activate = kvm_vcpu_apicv_activated(vcpu) && 10059 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10060 10061 if (apic->apicv_active == activate) 10062 goto out; 10063 10064 apic->apicv_active = activate; 10065 kvm_apic_update_apicv(vcpu); 10066 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10067 10068 /* 10069 * When APICv gets disabled, we may still have injected interrupts 10070 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10071 * still active when the interrupt got accepted. Make sure 10072 * kvm_check_and_inject_events() is called to check for that. 10073 */ 10074 if (!apic->apicv_active) 10075 kvm_make_request(KVM_REQ_EVENT, vcpu); 10076 10077 out: 10078 preempt_enable(); 10079 up_read(&vcpu->kvm->arch.apicv_update_lock); 10080 } 10081 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10082 10083 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10084 enum kvm_apicv_inhibit reason, bool set) 10085 { 10086 unsigned long old, new; 10087 10088 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10089 10090 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10091 return; 10092 10093 old = new = kvm->arch.apicv_inhibit_reasons; 10094 10095 set_or_clear_apicv_inhibit(&new, reason, set); 10096 10097 if (!!old != !!new) { 10098 /* 10099 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10100 * false positives in the sanity check WARN in svm_vcpu_run(). 10101 * This task will wait for all vCPUs to ack the kick IRQ before 10102 * updating apicv_inhibit_reasons, and all other vCPUs will 10103 * block on acquiring apicv_update_lock so that vCPUs can't 10104 * redo svm_vcpu_run() without seeing the new inhibit state. 10105 * 10106 * Note, holding apicv_update_lock and taking it in the read 10107 * side (handling the request) also prevents other vCPUs from 10108 * servicing the request with a stale apicv_inhibit_reasons. 10109 */ 10110 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10111 kvm->arch.apicv_inhibit_reasons = new; 10112 if (new) { 10113 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10114 int idx = srcu_read_lock(&kvm->srcu); 10115 10116 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10117 srcu_read_unlock(&kvm->srcu, idx); 10118 } 10119 } else { 10120 kvm->arch.apicv_inhibit_reasons = new; 10121 } 10122 } 10123 10124 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10125 enum kvm_apicv_inhibit reason, bool set) 10126 { 10127 if (!enable_apicv) 10128 return; 10129 10130 down_write(&kvm->arch.apicv_update_lock); 10131 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10132 up_write(&kvm->arch.apicv_update_lock); 10133 } 10134 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10135 10136 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10137 { 10138 if (!kvm_apic_present(vcpu)) 10139 return; 10140 10141 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10142 10143 if (irqchip_split(vcpu->kvm)) 10144 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10145 else { 10146 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10147 if (ioapic_in_kernel(vcpu->kvm)) 10148 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10149 } 10150 10151 if (is_guest_mode(vcpu)) 10152 vcpu->arch.load_eoi_exitmap_pending = true; 10153 else 10154 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10155 } 10156 10157 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10158 { 10159 u64 eoi_exit_bitmap[4]; 10160 10161 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10162 return; 10163 10164 if (to_hv_vcpu(vcpu)) { 10165 bitmap_or((ulong *)eoi_exit_bitmap, 10166 vcpu->arch.ioapic_handled_vectors, 10167 to_hv_synic(vcpu)->vec_bitmap, 256); 10168 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10169 return; 10170 } 10171 10172 static_call_cond(kvm_x86_load_eoi_exitmap)( 10173 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10174 } 10175 10176 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10177 unsigned long start, unsigned long end) 10178 { 10179 unsigned long apic_address; 10180 10181 /* 10182 * The physical address of apic access page is stored in the VMCS. 10183 * Update it when it becomes invalid. 10184 */ 10185 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10186 if (start <= apic_address && apic_address < end) 10187 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10188 } 10189 10190 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10191 { 10192 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10193 } 10194 10195 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10196 { 10197 if (!lapic_in_kernel(vcpu)) 10198 return; 10199 10200 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10201 } 10202 10203 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10204 { 10205 smp_send_reschedule(vcpu->cpu); 10206 } 10207 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10208 10209 /* 10210 * Called within kvm->srcu read side. 10211 * Returns 1 to let vcpu_run() continue the guest execution loop without 10212 * exiting to the userspace. Otherwise, the value will be returned to the 10213 * userspace. 10214 */ 10215 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10216 { 10217 int r; 10218 bool req_int_win = 10219 dm_request_for_irq_injection(vcpu) && 10220 kvm_cpu_accept_dm_intr(vcpu); 10221 fastpath_t exit_fastpath; 10222 10223 bool req_immediate_exit = false; 10224 10225 if (kvm_request_pending(vcpu)) { 10226 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10227 r = -EIO; 10228 goto out; 10229 } 10230 10231 if (kvm_dirty_ring_check_request(vcpu)) { 10232 r = 0; 10233 goto out; 10234 } 10235 10236 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10237 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10238 r = 0; 10239 goto out; 10240 } 10241 } 10242 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10243 kvm_mmu_free_obsolete_roots(vcpu); 10244 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10245 __kvm_migrate_timers(vcpu); 10246 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10247 kvm_update_masterclock(vcpu->kvm); 10248 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10249 kvm_gen_kvmclock_update(vcpu); 10250 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10251 r = kvm_guest_time_update(vcpu); 10252 if (unlikely(r)) 10253 goto out; 10254 } 10255 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10256 kvm_mmu_sync_roots(vcpu); 10257 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10258 kvm_mmu_load_pgd(vcpu); 10259 10260 /* 10261 * Note, the order matters here, as flushing "all" TLB entries 10262 * also flushes the "current" TLB entries, i.e. servicing the 10263 * flush "all" will clear any request to flush "current". 10264 */ 10265 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10266 kvm_vcpu_flush_tlb_all(vcpu); 10267 10268 kvm_service_local_tlb_flush_requests(vcpu); 10269 10270 /* 10271 * Fall back to a "full" guest flush if Hyper-V's precise 10272 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10273 * the flushes are considered "remote" and not "local" because 10274 * the requests can be initiated from other vCPUs. 10275 */ 10276 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10277 kvm_hv_vcpu_flush_tlb(vcpu)) 10278 kvm_vcpu_flush_tlb_guest(vcpu); 10279 10280 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10281 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10282 r = 0; 10283 goto out; 10284 } 10285 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10286 if (is_guest_mode(vcpu)) 10287 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10288 10289 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10290 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10291 vcpu->mmio_needed = 0; 10292 r = 0; 10293 goto out; 10294 } 10295 } 10296 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10297 /* Page is swapped out. Do synthetic halt */ 10298 vcpu->arch.apf.halted = true; 10299 r = 1; 10300 goto out; 10301 } 10302 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10303 record_steal_time(vcpu); 10304 #ifdef CONFIG_KVM_SMM 10305 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10306 process_smi(vcpu); 10307 #endif 10308 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10309 process_nmi(vcpu); 10310 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10311 kvm_pmu_handle_event(vcpu); 10312 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10313 kvm_pmu_deliver_pmi(vcpu); 10314 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10315 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10316 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10317 vcpu->arch.ioapic_handled_vectors)) { 10318 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10319 vcpu->run->eoi.vector = 10320 vcpu->arch.pending_ioapic_eoi; 10321 r = 0; 10322 goto out; 10323 } 10324 } 10325 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10326 vcpu_scan_ioapic(vcpu); 10327 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10328 vcpu_load_eoi_exitmap(vcpu); 10329 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10330 kvm_vcpu_reload_apic_access_page(vcpu); 10331 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10332 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10333 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10334 vcpu->run->system_event.ndata = 0; 10335 r = 0; 10336 goto out; 10337 } 10338 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10339 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10340 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10341 vcpu->run->system_event.ndata = 0; 10342 r = 0; 10343 goto out; 10344 } 10345 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10346 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10347 10348 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10349 vcpu->run->hyperv = hv_vcpu->exit; 10350 r = 0; 10351 goto out; 10352 } 10353 10354 /* 10355 * KVM_REQ_HV_STIMER has to be processed after 10356 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10357 * depend on the guest clock being up-to-date 10358 */ 10359 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10360 kvm_hv_process_stimers(vcpu); 10361 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10362 kvm_vcpu_update_apicv(vcpu); 10363 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10364 kvm_check_async_pf_completion(vcpu); 10365 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10366 static_call(kvm_x86_msr_filter_changed)(vcpu); 10367 10368 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10369 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10370 } 10371 10372 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10373 kvm_xen_has_interrupt(vcpu)) { 10374 ++vcpu->stat.req_event; 10375 r = kvm_apic_accept_events(vcpu); 10376 if (r < 0) { 10377 r = 0; 10378 goto out; 10379 } 10380 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10381 r = 1; 10382 goto out; 10383 } 10384 10385 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10386 if (r < 0) { 10387 r = 0; 10388 goto out; 10389 } 10390 if (req_int_win) 10391 static_call(kvm_x86_enable_irq_window)(vcpu); 10392 10393 if (kvm_lapic_enabled(vcpu)) { 10394 update_cr8_intercept(vcpu); 10395 kvm_lapic_sync_to_vapic(vcpu); 10396 } 10397 } 10398 10399 r = kvm_mmu_reload(vcpu); 10400 if (unlikely(r)) { 10401 goto cancel_injection; 10402 } 10403 10404 preempt_disable(); 10405 10406 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10407 10408 /* 10409 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10410 * IPI are then delayed after guest entry, which ensures that they 10411 * result in virtual interrupt delivery. 10412 */ 10413 local_irq_disable(); 10414 10415 /* Store vcpu->apicv_active before vcpu->mode. */ 10416 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10417 10418 kvm_vcpu_srcu_read_unlock(vcpu); 10419 10420 /* 10421 * 1) We should set ->mode before checking ->requests. Please see 10422 * the comment in kvm_vcpu_exiting_guest_mode(). 10423 * 10424 * 2) For APICv, we should set ->mode before checking PID.ON. This 10425 * pairs with the memory barrier implicit in pi_test_and_set_on 10426 * (see vmx_deliver_posted_interrupt). 10427 * 10428 * 3) This also orders the write to mode from any reads to the page 10429 * tables done while the VCPU is running. Please see the comment 10430 * in kvm_flush_remote_tlbs. 10431 */ 10432 smp_mb__after_srcu_read_unlock(); 10433 10434 /* 10435 * Process pending posted interrupts to handle the case where the 10436 * notification IRQ arrived in the host, or was never sent (because the 10437 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10438 * status, KVM doesn't update assigned devices when APICv is inhibited, 10439 * i.e. they can post interrupts even if APICv is temporarily disabled. 10440 */ 10441 if (kvm_lapic_enabled(vcpu)) 10442 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10443 10444 if (kvm_vcpu_exit_request(vcpu)) { 10445 vcpu->mode = OUTSIDE_GUEST_MODE; 10446 smp_wmb(); 10447 local_irq_enable(); 10448 preempt_enable(); 10449 kvm_vcpu_srcu_read_lock(vcpu); 10450 r = 1; 10451 goto cancel_injection; 10452 } 10453 10454 if (req_immediate_exit) { 10455 kvm_make_request(KVM_REQ_EVENT, vcpu); 10456 static_call(kvm_x86_request_immediate_exit)(vcpu); 10457 } 10458 10459 fpregs_assert_state_consistent(); 10460 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10461 switch_fpu_return(); 10462 10463 if (vcpu->arch.guest_fpu.xfd_err) 10464 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10465 10466 if (unlikely(vcpu->arch.switch_db_regs)) { 10467 set_debugreg(0, 7); 10468 set_debugreg(vcpu->arch.eff_db[0], 0); 10469 set_debugreg(vcpu->arch.eff_db[1], 1); 10470 set_debugreg(vcpu->arch.eff_db[2], 2); 10471 set_debugreg(vcpu->arch.eff_db[3], 3); 10472 } else if (unlikely(hw_breakpoint_active())) { 10473 set_debugreg(0, 7); 10474 } 10475 10476 guest_timing_enter_irqoff(); 10477 10478 for (;;) { 10479 /* 10480 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10481 * update must kick and wait for all vCPUs before toggling the 10482 * per-VM state, and responsing vCPUs must wait for the update 10483 * to complete before servicing KVM_REQ_APICV_UPDATE. 10484 */ 10485 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10486 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10487 10488 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10489 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10490 break; 10491 10492 if (kvm_lapic_enabled(vcpu)) 10493 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10494 10495 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10496 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10497 break; 10498 } 10499 } 10500 10501 /* 10502 * Do this here before restoring debug registers on the host. And 10503 * since we do this before handling the vmexit, a DR access vmexit 10504 * can (a) read the correct value of the debug registers, (b) set 10505 * KVM_DEBUGREG_WONT_EXIT again. 10506 */ 10507 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10508 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10509 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10510 kvm_update_dr0123(vcpu); 10511 kvm_update_dr7(vcpu); 10512 } 10513 10514 /* 10515 * If the guest has used debug registers, at least dr7 10516 * will be disabled while returning to the host. 10517 * If we don't have active breakpoints in the host, we don't 10518 * care about the messed up debug address registers. But if 10519 * we have some of them active, restore the old state. 10520 */ 10521 if (hw_breakpoint_active()) 10522 hw_breakpoint_restore(); 10523 10524 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10525 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10526 10527 vcpu->mode = OUTSIDE_GUEST_MODE; 10528 smp_wmb(); 10529 10530 /* 10531 * Sync xfd before calling handle_exit_irqoff() which may 10532 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10533 * in #NM irqoff handler). 10534 */ 10535 if (vcpu->arch.xfd_no_write_intercept) 10536 fpu_sync_guest_vmexit_xfd_state(); 10537 10538 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10539 10540 if (vcpu->arch.guest_fpu.xfd_err) 10541 wrmsrl(MSR_IA32_XFD_ERR, 0); 10542 10543 /* 10544 * Consume any pending interrupts, including the possible source of 10545 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10546 * An instruction is required after local_irq_enable() to fully unblock 10547 * interrupts on processors that implement an interrupt shadow, the 10548 * stat.exits increment will do nicely. 10549 */ 10550 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10551 local_irq_enable(); 10552 ++vcpu->stat.exits; 10553 local_irq_disable(); 10554 kvm_after_interrupt(vcpu); 10555 10556 /* 10557 * Wait until after servicing IRQs to account guest time so that any 10558 * ticks that occurred while running the guest are properly accounted 10559 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10560 * of accounting via context tracking, but the loss of accuracy is 10561 * acceptable for all known use cases. 10562 */ 10563 guest_timing_exit_irqoff(); 10564 10565 local_irq_enable(); 10566 preempt_enable(); 10567 10568 kvm_vcpu_srcu_read_lock(vcpu); 10569 10570 /* 10571 * Profile KVM exit RIPs: 10572 */ 10573 if (unlikely(prof_on == KVM_PROFILING)) { 10574 unsigned long rip = kvm_rip_read(vcpu); 10575 profile_hit(KVM_PROFILING, (void *)rip); 10576 } 10577 10578 if (unlikely(vcpu->arch.tsc_always_catchup)) 10579 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10580 10581 if (vcpu->arch.apic_attention) 10582 kvm_lapic_sync_from_vapic(vcpu); 10583 10584 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10585 return r; 10586 10587 cancel_injection: 10588 if (req_immediate_exit) 10589 kvm_make_request(KVM_REQ_EVENT, vcpu); 10590 static_call(kvm_x86_cancel_injection)(vcpu); 10591 if (unlikely(vcpu->arch.apic_attention)) 10592 kvm_lapic_sync_from_vapic(vcpu); 10593 out: 10594 return r; 10595 } 10596 10597 /* Called within kvm->srcu read side. */ 10598 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10599 { 10600 bool hv_timer; 10601 10602 if (!kvm_arch_vcpu_runnable(vcpu)) { 10603 /* 10604 * Switch to the software timer before halt-polling/blocking as 10605 * the guest's timer may be a break event for the vCPU, and the 10606 * hypervisor timer runs only when the CPU is in guest mode. 10607 * Switch before halt-polling so that KVM recognizes an expired 10608 * timer before blocking. 10609 */ 10610 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10611 if (hv_timer) 10612 kvm_lapic_switch_to_sw_timer(vcpu); 10613 10614 kvm_vcpu_srcu_read_unlock(vcpu); 10615 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10616 kvm_vcpu_halt(vcpu); 10617 else 10618 kvm_vcpu_block(vcpu); 10619 kvm_vcpu_srcu_read_lock(vcpu); 10620 10621 if (hv_timer) 10622 kvm_lapic_switch_to_hv_timer(vcpu); 10623 10624 /* 10625 * If the vCPU is not runnable, a signal or another host event 10626 * of some kind is pending; service it without changing the 10627 * vCPU's activity state. 10628 */ 10629 if (!kvm_arch_vcpu_runnable(vcpu)) 10630 return 1; 10631 } 10632 10633 /* 10634 * Evaluate nested events before exiting the halted state. This allows 10635 * the halt state to be recorded properly in the VMCS12's activity 10636 * state field (AMD does not have a similar field and a VM-Exit always 10637 * causes a spurious wakeup from HLT). 10638 */ 10639 if (is_guest_mode(vcpu)) { 10640 if (kvm_check_nested_events(vcpu) < 0) 10641 return 0; 10642 } 10643 10644 if (kvm_apic_accept_events(vcpu) < 0) 10645 return 0; 10646 switch(vcpu->arch.mp_state) { 10647 case KVM_MP_STATE_HALTED: 10648 case KVM_MP_STATE_AP_RESET_HOLD: 10649 vcpu->arch.pv.pv_unhalted = false; 10650 vcpu->arch.mp_state = 10651 KVM_MP_STATE_RUNNABLE; 10652 fallthrough; 10653 case KVM_MP_STATE_RUNNABLE: 10654 vcpu->arch.apf.halted = false; 10655 break; 10656 case KVM_MP_STATE_INIT_RECEIVED: 10657 break; 10658 default: 10659 WARN_ON_ONCE(1); 10660 break; 10661 } 10662 return 1; 10663 } 10664 10665 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10666 { 10667 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10668 !vcpu->arch.apf.halted); 10669 } 10670 10671 /* Called within kvm->srcu read side. */ 10672 static int vcpu_run(struct kvm_vcpu *vcpu) 10673 { 10674 int r; 10675 10676 vcpu->arch.l1tf_flush_l1d = true; 10677 10678 for (;;) { 10679 /* 10680 * If another guest vCPU requests a PV TLB flush in the middle 10681 * of instruction emulation, the rest of the emulation could 10682 * use a stale page translation. Assume that any code after 10683 * this point can start executing an instruction. 10684 */ 10685 vcpu->arch.at_instruction_boundary = false; 10686 if (kvm_vcpu_running(vcpu)) { 10687 r = vcpu_enter_guest(vcpu); 10688 } else { 10689 r = vcpu_block(vcpu); 10690 } 10691 10692 if (r <= 0) 10693 break; 10694 10695 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10696 if (kvm_xen_has_pending_events(vcpu)) 10697 kvm_xen_inject_pending_events(vcpu); 10698 10699 if (kvm_cpu_has_pending_timer(vcpu)) 10700 kvm_inject_pending_timer_irqs(vcpu); 10701 10702 if (dm_request_for_irq_injection(vcpu) && 10703 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10704 r = 0; 10705 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10706 ++vcpu->stat.request_irq_exits; 10707 break; 10708 } 10709 10710 if (__xfer_to_guest_mode_work_pending()) { 10711 kvm_vcpu_srcu_read_unlock(vcpu); 10712 r = xfer_to_guest_mode_handle_work(vcpu); 10713 kvm_vcpu_srcu_read_lock(vcpu); 10714 if (r) 10715 return r; 10716 } 10717 } 10718 10719 return r; 10720 } 10721 10722 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10723 { 10724 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10725 } 10726 10727 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10728 { 10729 BUG_ON(!vcpu->arch.pio.count); 10730 10731 return complete_emulated_io(vcpu); 10732 } 10733 10734 /* 10735 * Implements the following, as a state machine: 10736 * 10737 * read: 10738 * for each fragment 10739 * for each mmio piece in the fragment 10740 * write gpa, len 10741 * exit 10742 * copy data 10743 * execute insn 10744 * 10745 * write: 10746 * for each fragment 10747 * for each mmio piece in the fragment 10748 * write gpa, len 10749 * copy data 10750 * exit 10751 */ 10752 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10753 { 10754 struct kvm_run *run = vcpu->run; 10755 struct kvm_mmio_fragment *frag; 10756 unsigned len; 10757 10758 BUG_ON(!vcpu->mmio_needed); 10759 10760 /* Complete previous fragment */ 10761 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10762 len = min(8u, frag->len); 10763 if (!vcpu->mmio_is_write) 10764 memcpy(frag->data, run->mmio.data, len); 10765 10766 if (frag->len <= 8) { 10767 /* Switch to the next fragment. */ 10768 frag++; 10769 vcpu->mmio_cur_fragment++; 10770 } else { 10771 /* Go forward to the next mmio piece. */ 10772 frag->data += len; 10773 frag->gpa += len; 10774 frag->len -= len; 10775 } 10776 10777 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10778 vcpu->mmio_needed = 0; 10779 10780 /* FIXME: return into emulator if single-stepping. */ 10781 if (vcpu->mmio_is_write) 10782 return 1; 10783 vcpu->mmio_read_completed = 1; 10784 return complete_emulated_io(vcpu); 10785 } 10786 10787 run->exit_reason = KVM_EXIT_MMIO; 10788 run->mmio.phys_addr = frag->gpa; 10789 if (vcpu->mmio_is_write) 10790 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10791 run->mmio.len = min(8u, frag->len); 10792 run->mmio.is_write = vcpu->mmio_is_write; 10793 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10794 return 0; 10795 } 10796 10797 /* Swap (qemu) user FPU context for the guest FPU context. */ 10798 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10799 { 10800 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10801 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10802 trace_kvm_fpu(1); 10803 } 10804 10805 /* When vcpu_run ends, restore user space FPU context. */ 10806 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10807 { 10808 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10809 ++vcpu->stat.fpu_reload; 10810 trace_kvm_fpu(0); 10811 } 10812 10813 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10814 { 10815 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10816 struct kvm_run *kvm_run = vcpu->run; 10817 int r; 10818 10819 vcpu_load(vcpu); 10820 kvm_sigset_activate(vcpu); 10821 kvm_run->flags = 0; 10822 kvm_load_guest_fpu(vcpu); 10823 10824 kvm_vcpu_srcu_read_lock(vcpu); 10825 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10826 if (kvm_run->immediate_exit) { 10827 r = -EINTR; 10828 goto out; 10829 } 10830 /* 10831 * It should be impossible for the hypervisor timer to be in 10832 * use before KVM has ever run the vCPU. 10833 */ 10834 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10835 10836 kvm_vcpu_srcu_read_unlock(vcpu); 10837 kvm_vcpu_block(vcpu); 10838 kvm_vcpu_srcu_read_lock(vcpu); 10839 10840 if (kvm_apic_accept_events(vcpu) < 0) { 10841 r = 0; 10842 goto out; 10843 } 10844 r = -EAGAIN; 10845 if (signal_pending(current)) { 10846 r = -EINTR; 10847 kvm_run->exit_reason = KVM_EXIT_INTR; 10848 ++vcpu->stat.signal_exits; 10849 } 10850 goto out; 10851 } 10852 10853 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10854 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10855 r = -EINVAL; 10856 goto out; 10857 } 10858 10859 if (kvm_run->kvm_dirty_regs) { 10860 r = sync_regs(vcpu); 10861 if (r != 0) 10862 goto out; 10863 } 10864 10865 /* re-sync apic's tpr */ 10866 if (!lapic_in_kernel(vcpu)) { 10867 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10868 r = -EINVAL; 10869 goto out; 10870 } 10871 } 10872 10873 /* 10874 * If userspace set a pending exception and L2 is active, convert it to 10875 * a pending VM-Exit if L1 wants to intercept the exception. 10876 */ 10877 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10878 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 10879 ex->error_code)) { 10880 kvm_queue_exception_vmexit(vcpu, ex->vector, 10881 ex->has_error_code, ex->error_code, 10882 ex->has_payload, ex->payload); 10883 ex->injected = false; 10884 ex->pending = false; 10885 } 10886 vcpu->arch.exception_from_userspace = false; 10887 10888 if (unlikely(vcpu->arch.complete_userspace_io)) { 10889 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10890 vcpu->arch.complete_userspace_io = NULL; 10891 r = cui(vcpu); 10892 if (r <= 0) 10893 goto out; 10894 } else { 10895 WARN_ON_ONCE(vcpu->arch.pio.count); 10896 WARN_ON_ONCE(vcpu->mmio_needed); 10897 } 10898 10899 if (kvm_run->immediate_exit) { 10900 r = -EINTR; 10901 goto out; 10902 } 10903 10904 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10905 if (r <= 0) 10906 goto out; 10907 10908 r = vcpu_run(vcpu); 10909 10910 out: 10911 kvm_put_guest_fpu(vcpu); 10912 if (kvm_run->kvm_valid_regs) 10913 store_regs(vcpu); 10914 post_kvm_run_save(vcpu); 10915 kvm_vcpu_srcu_read_unlock(vcpu); 10916 10917 kvm_sigset_deactivate(vcpu); 10918 vcpu_put(vcpu); 10919 return r; 10920 } 10921 10922 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10923 { 10924 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10925 /* 10926 * We are here if userspace calls get_regs() in the middle of 10927 * instruction emulation. Registers state needs to be copied 10928 * back from emulation context to vcpu. Userspace shouldn't do 10929 * that usually, but some bad designed PV devices (vmware 10930 * backdoor interface) need this to work 10931 */ 10932 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10933 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10934 } 10935 regs->rax = kvm_rax_read(vcpu); 10936 regs->rbx = kvm_rbx_read(vcpu); 10937 regs->rcx = kvm_rcx_read(vcpu); 10938 regs->rdx = kvm_rdx_read(vcpu); 10939 regs->rsi = kvm_rsi_read(vcpu); 10940 regs->rdi = kvm_rdi_read(vcpu); 10941 regs->rsp = kvm_rsp_read(vcpu); 10942 regs->rbp = kvm_rbp_read(vcpu); 10943 #ifdef CONFIG_X86_64 10944 regs->r8 = kvm_r8_read(vcpu); 10945 regs->r9 = kvm_r9_read(vcpu); 10946 regs->r10 = kvm_r10_read(vcpu); 10947 regs->r11 = kvm_r11_read(vcpu); 10948 regs->r12 = kvm_r12_read(vcpu); 10949 regs->r13 = kvm_r13_read(vcpu); 10950 regs->r14 = kvm_r14_read(vcpu); 10951 regs->r15 = kvm_r15_read(vcpu); 10952 #endif 10953 10954 regs->rip = kvm_rip_read(vcpu); 10955 regs->rflags = kvm_get_rflags(vcpu); 10956 } 10957 10958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10959 { 10960 vcpu_load(vcpu); 10961 __get_regs(vcpu, regs); 10962 vcpu_put(vcpu); 10963 return 0; 10964 } 10965 10966 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10967 { 10968 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10969 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10970 10971 kvm_rax_write(vcpu, regs->rax); 10972 kvm_rbx_write(vcpu, regs->rbx); 10973 kvm_rcx_write(vcpu, regs->rcx); 10974 kvm_rdx_write(vcpu, regs->rdx); 10975 kvm_rsi_write(vcpu, regs->rsi); 10976 kvm_rdi_write(vcpu, regs->rdi); 10977 kvm_rsp_write(vcpu, regs->rsp); 10978 kvm_rbp_write(vcpu, regs->rbp); 10979 #ifdef CONFIG_X86_64 10980 kvm_r8_write(vcpu, regs->r8); 10981 kvm_r9_write(vcpu, regs->r9); 10982 kvm_r10_write(vcpu, regs->r10); 10983 kvm_r11_write(vcpu, regs->r11); 10984 kvm_r12_write(vcpu, regs->r12); 10985 kvm_r13_write(vcpu, regs->r13); 10986 kvm_r14_write(vcpu, regs->r14); 10987 kvm_r15_write(vcpu, regs->r15); 10988 #endif 10989 10990 kvm_rip_write(vcpu, regs->rip); 10991 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10992 10993 vcpu->arch.exception.pending = false; 10994 vcpu->arch.exception_vmexit.pending = false; 10995 10996 kvm_make_request(KVM_REQ_EVENT, vcpu); 10997 } 10998 10999 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11000 { 11001 vcpu_load(vcpu); 11002 __set_regs(vcpu, regs); 11003 vcpu_put(vcpu); 11004 return 0; 11005 } 11006 11007 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11008 { 11009 struct desc_ptr dt; 11010 11011 if (vcpu->arch.guest_state_protected) 11012 goto skip_protected_regs; 11013 11014 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11015 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11016 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11017 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11018 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11019 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11020 11021 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11022 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11023 11024 static_call(kvm_x86_get_idt)(vcpu, &dt); 11025 sregs->idt.limit = dt.size; 11026 sregs->idt.base = dt.address; 11027 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11028 sregs->gdt.limit = dt.size; 11029 sregs->gdt.base = dt.address; 11030 11031 sregs->cr2 = vcpu->arch.cr2; 11032 sregs->cr3 = kvm_read_cr3(vcpu); 11033 11034 skip_protected_regs: 11035 sregs->cr0 = kvm_read_cr0(vcpu); 11036 sregs->cr4 = kvm_read_cr4(vcpu); 11037 sregs->cr8 = kvm_get_cr8(vcpu); 11038 sregs->efer = vcpu->arch.efer; 11039 sregs->apic_base = kvm_get_apic_base(vcpu); 11040 } 11041 11042 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11043 { 11044 __get_sregs_common(vcpu, sregs); 11045 11046 if (vcpu->arch.guest_state_protected) 11047 return; 11048 11049 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11050 set_bit(vcpu->arch.interrupt.nr, 11051 (unsigned long *)sregs->interrupt_bitmap); 11052 } 11053 11054 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11055 { 11056 int i; 11057 11058 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11059 11060 if (vcpu->arch.guest_state_protected) 11061 return; 11062 11063 if (is_pae_paging(vcpu)) { 11064 for (i = 0 ; i < 4 ; i++) 11065 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11066 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11067 } 11068 } 11069 11070 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11071 struct kvm_sregs *sregs) 11072 { 11073 vcpu_load(vcpu); 11074 __get_sregs(vcpu, sregs); 11075 vcpu_put(vcpu); 11076 return 0; 11077 } 11078 11079 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11080 struct kvm_mp_state *mp_state) 11081 { 11082 int r; 11083 11084 vcpu_load(vcpu); 11085 if (kvm_mpx_supported()) 11086 kvm_load_guest_fpu(vcpu); 11087 11088 r = kvm_apic_accept_events(vcpu); 11089 if (r < 0) 11090 goto out; 11091 r = 0; 11092 11093 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11094 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11095 vcpu->arch.pv.pv_unhalted) 11096 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11097 else 11098 mp_state->mp_state = vcpu->arch.mp_state; 11099 11100 out: 11101 if (kvm_mpx_supported()) 11102 kvm_put_guest_fpu(vcpu); 11103 vcpu_put(vcpu); 11104 return r; 11105 } 11106 11107 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11108 struct kvm_mp_state *mp_state) 11109 { 11110 int ret = -EINVAL; 11111 11112 vcpu_load(vcpu); 11113 11114 switch (mp_state->mp_state) { 11115 case KVM_MP_STATE_UNINITIALIZED: 11116 case KVM_MP_STATE_HALTED: 11117 case KVM_MP_STATE_AP_RESET_HOLD: 11118 case KVM_MP_STATE_INIT_RECEIVED: 11119 case KVM_MP_STATE_SIPI_RECEIVED: 11120 if (!lapic_in_kernel(vcpu)) 11121 goto out; 11122 break; 11123 11124 case KVM_MP_STATE_RUNNABLE: 11125 break; 11126 11127 default: 11128 goto out; 11129 } 11130 11131 /* 11132 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11133 * forcing the guest into INIT/SIPI if those events are supposed to be 11134 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11135 * if an SMI is pending as well. 11136 */ 11137 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11138 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11139 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11140 goto out; 11141 11142 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11143 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11144 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11145 } else 11146 vcpu->arch.mp_state = mp_state->mp_state; 11147 kvm_make_request(KVM_REQ_EVENT, vcpu); 11148 11149 ret = 0; 11150 out: 11151 vcpu_put(vcpu); 11152 return ret; 11153 } 11154 11155 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11156 int reason, bool has_error_code, u32 error_code) 11157 { 11158 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11159 int ret; 11160 11161 init_emulate_ctxt(vcpu); 11162 11163 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11164 has_error_code, error_code); 11165 if (ret) { 11166 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11167 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11168 vcpu->run->internal.ndata = 0; 11169 return 0; 11170 } 11171 11172 kvm_rip_write(vcpu, ctxt->eip); 11173 kvm_set_rflags(vcpu, ctxt->eflags); 11174 return 1; 11175 } 11176 EXPORT_SYMBOL_GPL(kvm_task_switch); 11177 11178 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11179 { 11180 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11181 /* 11182 * When EFER.LME and CR0.PG are set, the processor is in 11183 * 64-bit mode (though maybe in a 32-bit code segment). 11184 * CR4.PAE and EFER.LMA must be set. 11185 */ 11186 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11187 return false; 11188 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11189 return false; 11190 } else { 11191 /* 11192 * Not in 64-bit mode: EFER.LMA is clear and the code 11193 * segment cannot be 64-bit. 11194 */ 11195 if (sregs->efer & EFER_LMA || sregs->cs.l) 11196 return false; 11197 } 11198 11199 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11200 } 11201 11202 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11203 int *mmu_reset_needed, bool update_pdptrs) 11204 { 11205 struct msr_data apic_base_msr; 11206 int idx; 11207 struct desc_ptr dt; 11208 11209 if (!kvm_is_valid_sregs(vcpu, sregs)) 11210 return -EINVAL; 11211 11212 apic_base_msr.data = sregs->apic_base; 11213 apic_base_msr.host_initiated = true; 11214 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11215 return -EINVAL; 11216 11217 if (vcpu->arch.guest_state_protected) 11218 return 0; 11219 11220 dt.size = sregs->idt.limit; 11221 dt.address = sregs->idt.base; 11222 static_call(kvm_x86_set_idt)(vcpu, &dt); 11223 dt.size = sregs->gdt.limit; 11224 dt.address = sregs->gdt.base; 11225 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11226 11227 vcpu->arch.cr2 = sregs->cr2; 11228 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11229 vcpu->arch.cr3 = sregs->cr3; 11230 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11231 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11232 11233 kvm_set_cr8(vcpu, sregs->cr8); 11234 11235 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11236 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11237 11238 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11239 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11240 vcpu->arch.cr0 = sregs->cr0; 11241 11242 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11243 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11244 11245 if (update_pdptrs) { 11246 idx = srcu_read_lock(&vcpu->kvm->srcu); 11247 if (is_pae_paging(vcpu)) { 11248 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11249 *mmu_reset_needed = 1; 11250 } 11251 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11252 } 11253 11254 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11255 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11256 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11257 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11258 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11259 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11260 11261 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11262 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11263 11264 update_cr8_intercept(vcpu); 11265 11266 /* Older userspace won't unhalt the vcpu on reset. */ 11267 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11268 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11269 !is_protmode(vcpu)) 11270 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11271 11272 return 0; 11273 } 11274 11275 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11276 { 11277 int pending_vec, max_bits; 11278 int mmu_reset_needed = 0; 11279 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11280 11281 if (ret) 11282 return ret; 11283 11284 if (mmu_reset_needed) 11285 kvm_mmu_reset_context(vcpu); 11286 11287 max_bits = KVM_NR_INTERRUPTS; 11288 pending_vec = find_first_bit( 11289 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11290 11291 if (pending_vec < max_bits) { 11292 kvm_queue_interrupt(vcpu, pending_vec, false); 11293 pr_debug("Set back pending irq %d\n", pending_vec); 11294 kvm_make_request(KVM_REQ_EVENT, vcpu); 11295 } 11296 return 0; 11297 } 11298 11299 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11300 { 11301 int mmu_reset_needed = 0; 11302 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11303 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11304 !(sregs2->efer & EFER_LMA); 11305 int i, ret; 11306 11307 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11308 return -EINVAL; 11309 11310 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11311 return -EINVAL; 11312 11313 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11314 &mmu_reset_needed, !valid_pdptrs); 11315 if (ret) 11316 return ret; 11317 11318 if (valid_pdptrs) { 11319 for (i = 0; i < 4 ; i++) 11320 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11321 11322 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11323 mmu_reset_needed = 1; 11324 vcpu->arch.pdptrs_from_userspace = true; 11325 } 11326 if (mmu_reset_needed) 11327 kvm_mmu_reset_context(vcpu); 11328 return 0; 11329 } 11330 11331 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11332 struct kvm_sregs *sregs) 11333 { 11334 int ret; 11335 11336 vcpu_load(vcpu); 11337 ret = __set_sregs(vcpu, sregs); 11338 vcpu_put(vcpu); 11339 return ret; 11340 } 11341 11342 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11343 { 11344 bool set = false; 11345 struct kvm_vcpu *vcpu; 11346 unsigned long i; 11347 11348 if (!enable_apicv) 11349 return; 11350 11351 down_write(&kvm->arch.apicv_update_lock); 11352 11353 kvm_for_each_vcpu(i, vcpu, kvm) { 11354 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11355 set = true; 11356 break; 11357 } 11358 } 11359 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11360 up_write(&kvm->arch.apicv_update_lock); 11361 } 11362 11363 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11364 struct kvm_guest_debug *dbg) 11365 { 11366 unsigned long rflags; 11367 int i, r; 11368 11369 if (vcpu->arch.guest_state_protected) 11370 return -EINVAL; 11371 11372 vcpu_load(vcpu); 11373 11374 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11375 r = -EBUSY; 11376 if (kvm_is_exception_pending(vcpu)) 11377 goto out; 11378 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11379 kvm_queue_exception(vcpu, DB_VECTOR); 11380 else 11381 kvm_queue_exception(vcpu, BP_VECTOR); 11382 } 11383 11384 /* 11385 * Read rflags as long as potentially injected trace flags are still 11386 * filtered out. 11387 */ 11388 rflags = kvm_get_rflags(vcpu); 11389 11390 vcpu->guest_debug = dbg->control; 11391 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11392 vcpu->guest_debug = 0; 11393 11394 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11395 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11396 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11397 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11398 } else { 11399 for (i = 0; i < KVM_NR_DB_REGS; i++) 11400 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11401 } 11402 kvm_update_dr7(vcpu); 11403 11404 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11405 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11406 11407 /* 11408 * Trigger an rflags update that will inject or remove the trace 11409 * flags. 11410 */ 11411 kvm_set_rflags(vcpu, rflags); 11412 11413 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11414 11415 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11416 11417 r = 0; 11418 11419 out: 11420 vcpu_put(vcpu); 11421 return r; 11422 } 11423 11424 /* 11425 * Translate a guest virtual address to a guest physical address. 11426 */ 11427 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11428 struct kvm_translation *tr) 11429 { 11430 unsigned long vaddr = tr->linear_address; 11431 gpa_t gpa; 11432 int idx; 11433 11434 vcpu_load(vcpu); 11435 11436 idx = srcu_read_lock(&vcpu->kvm->srcu); 11437 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11438 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11439 tr->physical_address = gpa; 11440 tr->valid = gpa != INVALID_GPA; 11441 tr->writeable = 1; 11442 tr->usermode = 0; 11443 11444 vcpu_put(vcpu); 11445 return 0; 11446 } 11447 11448 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11449 { 11450 struct fxregs_state *fxsave; 11451 11452 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11453 return 0; 11454 11455 vcpu_load(vcpu); 11456 11457 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11458 memcpy(fpu->fpr, fxsave->st_space, 128); 11459 fpu->fcw = fxsave->cwd; 11460 fpu->fsw = fxsave->swd; 11461 fpu->ftwx = fxsave->twd; 11462 fpu->last_opcode = fxsave->fop; 11463 fpu->last_ip = fxsave->rip; 11464 fpu->last_dp = fxsave->rdp; 11465 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11466 11467 vcpu_put(vcpu); 11468 return 0; 11469 } 11470 11471 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11472 { 11473 struct fxregs_state *fxsave; 11474 11475 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11476 return 0; 11477 11478 vcpu_load(vcpu); 11479 11480 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11481 11482 memcpy(fxsave->st_space, fpu->fpr, 128); 11483 fxsave->cwd = fpu->fcw; 11484 fxsave->swd = fpu->fsw; 11485 fxsave->twd = fpu->ftwx; 11486 fxsave->fop = fpu->last_opcode; 11487 fxsave->rip = fpu->last_ip; 11488 fxsave->rdp = fpu->last_dp; 11489 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11490 11491 vcpu_put(vcpu); 11492 return 0; 11493 } 11494 11495 static void store_regs(struct kvm_vcpu *vcpu) 11496 { 11497 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11498 11499 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11500 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11501 11502 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11503 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11504 11505 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11506 kvm_vcpu_ioctl_x86_get_vcpu_events( 11507 vcpu, &vcpu->run->s.regs.events); 11508 } 11509 11510 static int sync_regs(struct kvm_vcpu *vcpu) 11511 { 11512 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11513 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11514 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11515 } 11516 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11517 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11518 return -EINVAL; 11519 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11520 } 11521 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11522 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11523 vcpu, &vcpu->run->s.regs.events)) 11524 return -EINVAL; 11525 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11526 } 11527 11528 return 0; 11529 } 11530 11531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11532 { 11533 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11534 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11535 "guest TSC will not be reliable\n"); 11536 11537 if (!kvm->arch.max_vcpu_ids) 11538 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11539 11540 if (id >= kvm->arch.max_vcpu_ids) 11541 return -EINVAL; 11542 11543 return static_call(kvm_x86_vcpu_precreate)(kvm); 11544 } 11545 11546 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11547 { 11548 struct page *page; 11549 int r; 11550 11551 vcpu->arch.last_vmentry_cpu = -1; 11552 vcpu->arch.regs_avail = ~0; 11553 vcpu->arch.regs_dirty = ~0; 11554 11555 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11556 11557 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11558 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11559 else 11560 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11561 11562 r = kvm_mmu_create(vcpu); 11563 if (r < 0) 11564 return r; 11565 11566 if (irqchip_in_kernel(vcpu->kvm)) { 11567 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11568 if (r < 0) 11569 goto fail_mmu_destroy; 11570 11571 /* 11572 * Defer evaluating inhibits until the vCPU is first run, as 11573 * this vCPU will not get notified of any changes until this 11574 * vCPU is visible to other vCPUs (marked online and added to 11575 * the set of vCPUs). Opportunistically mark APICv active as 11576 * VMX in particularly is highly unlikely to have inhibits. 11577 * Ignore the current per-VM APICv state so that vCPU creation 11578 * is guaranteed to run with a deterministic value, the request 11579 * will ensure the vCPU gets the correct state before VM-Entry. 11580 */ 11581 if (enable_apicv) { 11582 vcpu->arch.apic->apicv_active = true; 11583 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11584 } 11585 } else 11586 static_branch_inc(&kvm_has_noapic_vcpu); 11587 11588 r = -ENOMEM; 11589 11590 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11591 if (!page) 11592 goto fail_free_lapic; 11593 vcpu->arch.pio_data = page_address(page); 11594 11595 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11596 GFP_KERNEL_ACCOUNT); 11597 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11598 GFP_KERNEL_ACCOUNT); 11599 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11600 goto fail_free_mce_banks; 11601 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11602 11603 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11604 GFP_KERNEL_ACCOUNT)) 11605 goto fail_free_mce_banks; 11606 11607 if (!alloc_emulate_ctxt(vcpu)) 11608 goto free_wbinvd_dirty_mask; 11609 11610 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11611 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11612 goto free_emulate_ctxt; 11613 } 11614 11615 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11616 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11617 11618 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11619 11620 kvm_async_pf_hash_reset(vcpu); 11621 11622 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11623 kvm_pmu_init(vcpu); 11624 11625 vcpu->arch.pending_external_vector = -1; 11626 vcpu->arch.preempted_in_kernel = false; 11627 11628 #if IS_ENABLED(CONFIG_HYPERV) 11629 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11630 #endif 11631 11632 r = static_call(kvm_x86_vcpu_create)(vcpu); 11633 if (r) 11634 goto free_guest_fpu; 11635 11636 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11637 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11638 kvm_xen_init_vcpu(vcpu); 11639 kvm_vcpu_mtrr_init(vcpu); 11640 vcpu_load(vcpu); 11641 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11642 kvm_vcpu_reset(vcpu, false); 11643 kvm_init_mmu(vcpu); 11644 vcpu_put(vcpu); 11645 return 0; 11646 11647 free_guest_fpu: 11648 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11649 free_emulate_ctxt: 11650 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11651 free_wbinvd_dirty_mask: 11652 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11653 fail_free_mce_banks: 11654 kfree(vcpu->arch.mce_banks); 11655 kfree(vcpu->arch.mci_ctl2_banks); 11656 free_page((unsigned long)vcpu->arch.pio_data); 11657 fail_free_lapic: 11658 kvm_free_lapic(vcpu); 11659 fail_mmu_destroy: 11660 kvm_mmu_destroy(vcpu); 11661 return r; 11662 } 11663 11664 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11665 { 11666 struct kvm *kvm = vcpu->kvm; 11667 11668 if (mutex_lock_killable(&vcpu->mutex)) 11669 return; 11670 vcpu_load(vcpu); 11671 kvm_synchronize_tsc(vcpu, 0); 11672 vcpu_put(vcpu); 11673 11674 /* poll control enabled by default */ 11675 vcpu->arch.msr_kvm_poll_control = 1; 11676 11677 mutex_unlock(&vcpu->mutex); 11678 11679 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11680 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11681 KVMCLOCK_SYNC_PERIOD); 11682 } 11683 11684 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11685 { 11686 int idx; 11687 11688 kvmclock_reset(vcpu); 11689 11690 static_call(kvm_x86_vcpu_free)(vcpu); 11691 11692 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11693 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11694 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11695 11696 kvm_xen_destroy_vcpu(vcpu); 11697 kvm_hv_vcpu_uninit(vcpu); 11698 kvm_pmu_destroy(vcpu); 11699 kfree(vcpu->arch.mce_banks); 11700 kfree(vcpu->arch.mci_ctl2_banks); 11701 kvm_free_lapic(vcpu); 11702 idx = srcu_read_lock(&vcpu->kvm->srcu); 11703 kvm_mmu_destroy(vcpu); 11704 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11705 free_page((unsigned long)vcpu->arch.pio_data); 11706 kvfree(vcpu->arch.cpuid_entries); 11707 if (!lapic_in_kernel(vcpu)) 11708 static_branch_dec(&kvm_has_noapic_vcpu); 11709 } 11710 11711 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11712 { 11713 struct kvm_cpuid_entry2 *cpuid_0x1; 11714 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11715 unsigned long new_cr0; 11716 11717 /* 11718 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11719 * to handle side effects. RESET emulation hits those flows and relies 11720 * on emulated/virtualized registers, including those that are loaded 11721 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11722 * to detect improper or missing initialization. 11723 */ 11724 WARN_ON_ONCE(!init_event && 11725 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11726 11727 /* 11728 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11729 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11730 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11731 * bits), i.e. virtualization is disabled. 11732 */ 11733 if (is_guest_mode(vcpu)) 11734 kvm_leave_nested(vcpu); 11735 11736 kvm_lapic_reset(vcpu, init_event); 11737 11738 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11739 vcpu->arch.hflags = 0; 11740 11741 vcpu->arch.smi_pending = 0; 11742 vcpu->arch.smi_count = 0; 11743 atomic_set(&vcpu->arch.nmi_queued, 0); 11744 vcpu->arch.nmi_pending = 0; 11745 vcpu->arch.nmi_injected = false; 11746 kvm_clear_interrupt_queue(vcpu); 11747 kvm_clear_exception_queue(vcpu); 11748 11749 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11750 kvm_update_dr0123(vcpu); 11751 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11752 vcpu->arch.dr7 = DR7_FIXED_1; 11753 kvm_update_dr7(vcpu); 11754 11755 vcpu->arch.cr2 = 0; 11756 11757 kvm_make_request(KVM_REQ_EVENT, vcpu); 11758 vcpu->arch.apf.msr_en_val = 0; 11759 vcpu->arch.apf.msr_int_val = 0; 11760 vcpu->arch.st.msr_val = 0; 11761 11762 kvmclock_reset(vcpu); 11763 11764 kvm_clear_async_pf_completion_queue(vcpu); 11765 kvm_async_pf_hash_reset(vcpu); 11766 vcpu->arch.apf.halted = false; 11767 11768 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11769 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11770 11771 /* 11772 * All paths that lead to INIT are required to load the guest's 11773 * FPU state (because most paths are buried in KVM_RUN). 11774 */ 11775 if (init_event) 11776 kvm_put_guest_fpu(vcpu); 11777 11778 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11779 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11780 11781 if (init_event) 11782 kvm_load_guest_fpu(vcpu); 11783 } 11784 11785 if (!init_event) { 11786 kvm_pmu_reset(vcpu); 11787 vcpu->arch.smbase = 0x30000; 11788 11789 vcpu->arch.msr_misc_features_enables = 0; 11790 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11791 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11792 11793 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11794 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11795 } 11796 11797 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11798 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11799 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11800 11801 /* 11802 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11803 * if no CPUID match is found. Note, it's impossible to get a match at 11804 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11805 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11806 * on RESET. But, go through the motions in case that's ever remedied. 11807 */ 11808 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11809 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11810 11811 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11812 11813 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11814 kvm_rip_write(vcpu, 0xfff0); 11815 11816 vcpu->arch.cr3 = 0; 11817 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11818 11819 /* 11820 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11821 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11822 * (or qualify) that with a footnote stating that CD/NW are preserved. 11823 */ 11824 new_cr0 = X86_CR0_ET; 11825 if (init_event) 11826 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11827 else 11828 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11829 11830 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11831 static_call(kvm_x86_set_cr4)(vcpu, 0); 11832 static_call(kvm_x86_set_efer)(vcpu, 0); 11833 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11834 11835 /* 11836 * On the standard CR0/CR4/EFER modification paths, there are several 11837 * complex conditions determining whether the MMU has to be reset and/or 11838 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11839 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11840 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11841 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11842 */ 11843 if (old_cr0 & X86_CR0_PG) { 11844 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11845 kvm_mmu_reset_context(vcpu); 11846 } 11847 11848 /* 11849 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11850 * APM states the TLBs are untouched by INIT, but it also states that 11851 * the TLBs are flushed on "External initialization of the processor." 11852 * Flush the guest TLB regardless of vendor, there is no meaningful 11853 * benefit in relying on the guest to flush the TLB immediately after 11854 * INIT. A spurious TLB flush is benign and likely negligible from a 11855 * performance perspective. 11856 */ 11857 if (init_event) 11858 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11859 } 11860 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11861 11862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11863 { 11864 struct kvm_segment cs; 11865 11866 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11867 cs.selector = vector << 8; 11868 cs.base = vector << 12; 11869 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11870 kvm_rip_write(vcpu, 0); 11871 } 11872 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11873 11874 int kvm_arch_hardware_enable(void) 11875 { 11876 struct kvm *kvm; 11877 struct kvm_vcpu *vcpu; 11878 unsigned long i; 11879 int ret; 11880 u64 local_tsc; 11881 u64 max_tsc = 0; 11882 bool stable, backwards_tsc = false; 11883 11884 kvm_user_return_msr_cpu_online(); 11885 ret = static_call(kvm_x86_hardware_enable)(); 11886 if (ret != 0) 11887 return ret; 11888 11889 local_tsc = rdtsc(); 11890 stable = !kvm_check_tsc_unstable(); 11891 list_for_each_entry(kvm, &vm_list, vm_list) { 11892 kvm_for_each_vcpu(i, vcpu, kvm) { 11893 if (!stable && vcpu->cpu == smp_processor_id()) 11894 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11895 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11896 backwards_tsc = true; 11897 if (vcpu->arch.last_host_tsc > max_tsc) 11898 max_tsc = vcpu->arch.last_host_tsc; 11899 } 11900 } 11901 } 11902 11903 /* 11904 * Sometimes, even reliable TSCs go backwards. This happens on 11905 * platforms that reset TSC during suspend or hibernate actions, but 11906 * maintain synchronization. We must compensate. Fortunately, we can 11907 * detect that condition here, which happens early in CPU bringup, 11908 * before any KVM threads can be running. Unfortunately, we can't 11909 * bring the TSCs fully up to date with real time, as we aren't yet far 11910 * enough into CPU bringup that we know how much real time has actually 11911 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11912 * variables that haven't been updated yet. 11913 * 11914 * So we simply find the maximum observed TSC above, then record the 11915 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11916 * the adjustment will be applied. Note that we accumulate 11917 * adjustments, in case multiple suspend cycles happen before some VCPU 11918 * gets a chance to run again. In the event that no KVM threads get a 11919 * chance to run, we will miss the entire elapsed period, as we'll have 11920 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11921 * loose cycle time. This isn't too big a deal, since the loss will be 11922 * uniform across all VCPUs (not to mention the scenario is extremely 11923 * unlikely). It is possible that a second hibernate recovery happens 11924 * much faster than a first, causing the observed TSC here to be 11925 * smaller; this would require additional padding adjustment, which is 11926 * why we set last_host_tsc to the local tsc observed here. 11927 * 11928 * N.B. - this code below runs only on platforms with reliable TSC, 11929 * as that is the only way backwards_tsc is set above. Also note 11930 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11931 * have the same delta_cyc adjustment applied if backwards_tsc 11932 * is detected. Note further, this adjustment is only done once, 11933 * as we reset last_host_tsc on all VCPUs to stop this from being 11934 * called multiple times (one for each physical CPU bringup). 11935 * 11936 * Platforms with unreliable TSCs don't have to deal with this, they 11937 * will be compensated by the logic in vcpu_load, which sets the TSC to 11938 * catchup mode. This will catchup all VCPUs to real time, but cannot 11939 * guarantee that they stay in perfect synchronization. 11940 */ 11941 if (backwards_tsc) { 11942 u64 delta_cyc = max_tsc - local_tsc; 11943 list_for_each_entry(kvm, &vm_list, vm_list) { 11944 kvm->arch.backwards_tsc_observed = true; 11945 kvm_for_each_vcpu(i, vcpu, kvm) { 11946 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11947 vcpu->arch.last_host_tsc = local_tsc; 11948 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11949 } 11950 11951 /* 11952 * We have to disable TSC offset matching.. if you were 11953 * booting a VM while issuing an S4 host suspend.... 11954 * you may have some problem. Solving this issue is 11955 * left as an exercise to the reader. 11956 */ 11957 kvm->arch.last_tsc_nsec = 0; 11958 kvm->arch.last_tsc_write = 0; 11959 } 11960 11961 } 11962 return 0; 11963 } 11964 11965 void kvm_arch_hardware_disable(void) 11966 { 11967 static_call(kvm_x86_hardware_disable)(); 11968 drop_user_return_notifiers(); 11969 } 11970 11971 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11972 { 11973 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11974 11975 #define __KVM_X86_OP(func) \ 11976 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11977 #define KVM_X86_OP(func) \ 11978 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11979 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11980 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11981 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11982 (void *)__static_call_return0); 11983 #include <asm/kvm-x86-ops.h> 11984 #undef __KVM_X86_OP 11985 11986 kvm_pmu_ops_update(ops->pmu_ops); 11987 } 11988 11989 int kvm_arch_hardware_setup(void *opaque) 11990 { 11991 struct kvm_x86_init_ops *ops = opaque; 11992 int r; 11993 11994 rdmsrl_safe(MSR_EFER, &host_efer); 11995 11996 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11997 rdmsrl(MSR_IA32_XSS, host_xss); 11998 11999 kvm_init_pmu_capability(); 12000 12001 r = ops->hardware_setup(); 12002 if (r != 0) 12003 return r; 12004 12005 kvm_ops_update(ops); 12006 12007 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12008 12009 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12010 kvm_caps.supported_xss = 0; 12011 12012 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12013 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12014 #undef __kvm_cpu_cap_has 12015 12016 if (kvm_caps.has_tsc_control) { 12017 /* 12018 * Make sure the user can only configure tsc_khz values that 12019 * fit into a signed integer. 12020 * A min value is not calculated because it will always 12021 * be 1 on all machines. 12022 */ 12023 u64 max = min(0x7fffffffULL, 12024 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12025 kvm_caps.max_guest_tsc_khz = max; 12026 } 12027 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12028 kvm_init_msr_list(); 12029 return 0; 12030 } 12031 12032 void kvm_arch_hardware_unsetup(void) 12033 { 12034 kvm_unregister_perf_callbacks(); 12035 12036 static_call(kvm_x86_hardware_unsetup)(); 12037 } 12038 12039 int kvm_arch_check_processor_compat(void *opaque) 12040 { 12041 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12042 struct kvm_x86_init_ops *ops = opaque; 12043 12044 WARN_ON(!irqs_disabled()); 12045 12046 if (__cr4_reserved_bits(cpu_has, c) != 12047 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12048 return -EIO; 12049 12050 return ops->check_processor_compatibility(); 12051 } 12052 12053 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12054 { 12055 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12056 } 12057 12058 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12059 { 12060 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12061 } 12062 12063 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12064 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12065 12066 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12067 { 12068 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12069 12070 vcpu->arch.l1tf_flush_l1d = true; 12071 if (pmu->version && unlikely(pmu->event_count)) { 12072 pmu->need_cleanup = true; 12073 kvm_make_request(KVM_REQ_PMU, vcpu); 12074 } 12075 static_call(kvm_x86_sched_in)(vcpu, cpu); 12076 } 12077 12078 void kvm_arch_free_vm(struct kvm *kvm) 12079 { 12080 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12081 __kvm_arch_free_vm(kvm); 12082 } 12083 12084 12085 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12086 { 12087 int ret; 12088 unsigned long flags; 12089 12090 if (type) 12091 return -EINVAL; 12092 12093 ret = kvm_page_track_init(kvm); 12094 if (ret) 12095 goto out; 12096 12097 ret = kvm_mmu_init_vm(kvm); 12098 if (ret) 12099 goto out_page_track; 12100 12101 ret = static_call(kvm_x86_vm_init)(kvm); 12102 if (ret) 12103 goto out_uninit_mmu; 12104 12105 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12106 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12107 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12108 12109 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12110 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12111 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12112 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12113 &kvm->arch.irq_sources_bitmap); 12114 12115 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12116 mutex_init(&kvm->arch.apic_map_lock); 12117 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12118 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12119 12120 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12121 pvclock_update_vm_gtod_copy(kvm); 12122 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12123 12124 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12125 kvm->arch.guest_can_read_msr_platform_info = true; 12126 kvm->arch.enable_pmu = enable_pmu; 12127 12128 #if IS_ENABLED(CONFIG_HYPERV) 12129 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12130 kvm->arch.hv_root_tdp = INVALID_PAGE; 12131 #endif 12132 12133 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12134 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12135 12136 kvm_apicv_init(kvm); 12137 kvm_hv_init_vm(kvm); 12138 kvm_xen_init_vm(kvm); 12139 12140 return 0; 12141 12142 out_uninit_mmu: 12143 kvm_mmu_uninit_vm(kvm); 12144 out_page_track: 12145 kvm_page_track_cleanup(kvm); 12146 out: 12147 return ret; 12148 } 12149 12150 int kvm_arch_post_init_vm(struct kvm *kvm) 12151 { 12152 return kvm_mmu_post_init_vm(kvm); 12153 } 12154 12155 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12156 { 12157 vcpu_load(vcpu); 12158 kvm_mmu_unload(vcpu); 12159 vcpu_put(vcpu); 12160 } 12161 12162 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12163 { 12164 unsigned long i; 12165 struct kvm_vcpu *vcpu; 12166 12167 kvm_for_each_vcpu(i, vcpu, kvm) { 12168 kvm_clear_async_pf_completion_queue(vcpu); 12169 kvm_unload_vcpu_mmu(vcpu); 12170 } 12171 } 12172 12173 void kvm_arch_sync_events(struct kvm *kvm) 12174 { 12175 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12176 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12177 kvm_free_pit(kvm); 12178 } 12179 12180 /** 12181 * __x86_set_memory_region: Setup KVM internal memory slot 12182 * 12183 * @kvm: the kvm pointer to the VM. 12184 * @id: the slot ID to setup. 12185 * @gpa: the GPA to install the slot (unused when @size == 0). 12186 * @size: the size of the slot. Set to zero to uninstall a slot. 12187 * 12188 * This function helps to setup a KVM internal memory slot. Specify 12189 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12190 * slot. The return code can be one of the following: 12191 * 12192 * HVA: on success (uninstall will return a bogus HVA) 12193 * -errno: on error 12194 * 12195 * The caller should always use IS_ERR() to check the return value 12196 * before use. Note, the KVM internal memory slots are guaranteed to 12197 * remain valid and unchanged until the VM is destroyed, i.e., the 12198 * GPA->HVA translation will not change. However, the HVA is a user 12199 * address, i.e. its accessibility is not guaranteed, and must be 12200 * accessed via __copy_{to,from}_user(). 12201 */ 12202 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12203 u32 size) 12204 { 12205 int i, r; 12206 unsigned long hva, old_npages; 12207 struct kvm_memslots *slots = kvm_memslots(kvm); 12208 struct kvm_memory_slot *slot; 12209 12210 /* Called with kvm->slots_lock held. */ 12211 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12212 return ERR_PTR_USR(-EINVAL); 12213 12214 slot = id_to_memslot(slots, id); 12215 if (size) { 12216 if (slot && slot->npages) 12217 return ERR_PTR_USR(-EEXIST); 12218 12219 /* 12220 * MAP_SHARED to prevent internal slot pages from being moved 12221 * by fork()/COW. 12222 */ 12223 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12224 MAP_SHARED | MAP_ANONYMOUS, 0); 12225 if (IS_ERR((void *)hva)) 12226 return (void __user *)hva; 12227 } else { 12228 if (!slot || !slot->npages) 12229 return NULL; 12230 12231 old_npages = slot->npages; 12232 hva = slot->userspace_addr; 12233 } 12234 12235 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12236 struct kvm_userspace_memory_region m; 12237 12238 m.slot = id | (i << 16); 12239 m.flags = 0; 12240 m.guest_phys_addr = gpa; 12241 m.userspace_addr = hva; 12242 m.memory_size = size; 12243 r = __kvm_set_memory_region(kvm, &m); 12244 if (r < 0) 12245 return ERR_PTR_USR(r); 12246 } 12247 12248 if (!size) 12249 vm_munmap(hva, old_npages * PAGE_SIZE); 12250 12251 return (void __user *)hva; 12252 } 12253 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12254 12255 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12256 { 12257 kvm_mmu_pre_destroy_vm(kvm); 12258 } 12259 12260 void kvm_arch_destroy_vm(struct kvm *kvm) 12261 { 12262 if (current->mm == kvm->mm) { 12263 /* 12264 * Free memory regions allocated on behalf of userspace, 12265 * unless the memory map has changed due to process exit 12266 * or fd copying. 12267 */ 12268 mutex_lock(&kvm->slots_lock); 12269 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12270 0, 0); 12271 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12272 0, 0); 12273 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12274 mutex_unlock(&kvm->slots_lock); 12275 } 12276 kvm_unload_vcpu_mmus(kvm); 12277 static_call_cond(kvm_x86_vm_destroy)(kvm); 12278 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12279 kvm_pic_destroy(kvm); 12280 kvm_ioapic_destroy(kvm); 12281 kvm_destroy_vcpus(kvm); 12282 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12283 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12284 kvm_mmu_uninit_vm(kvm); 12285 kvm_page_track_cleanup(kvm); 12286 kvm_xen_destroy_vm(kvm); 12287 kvm_hv_destroy_vm(kvm); 12288 } 12289 12290 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12291 { 12292 int i; 12293 12294 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12295 kvfree(slot->arch.rmap[i]); 12296 slot->arch.rmap[i] = NULL; 12297 } 12298 } 12299 12300 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12301 { 12302 int i; 12303 12304 memslot_rmap_free(slot); 12305 12306 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12307 kvfree(slot->arch.lpage_info[i - 1]); 12308 slot->arch.lpage_info[i - 1] = NULL; 12309 } 12310 12311 kvm_page_track_free_memslot(slot); 12312 } 12313 12314 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12315 { 12316 const int sz = sizeof(*slot->arch.rmap[0]); 12317 int i; 12318 12319 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12320 int level = i + 1; 12321 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12322 12323 if (slot->arch.rmap[i]) 12324 continue; 12325 12326 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12327 if (!slot->arch.rmap[i]) { 12328 memslot_rmap_free(slot); 12329 return -ENOMEM; 12330 } 12331 } 12332 12333 return 0; 12334 } 12335 12336 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12337 struct kvm_memory_slot *slot) 12338 { 12339 unsigned long npages = slot->npages; 12340 int i, r; 12341 12342 /* 12343 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12344 * old arrays will be freed by __kvm_set_memory_region() if installing 12345 * the new memslot is successful. 12346 */ 12347 memset(&slot->arch, 0, sizeof(slot->arch)); 12348 12349 if (kvm_memslots_have_rmaps(kvm)) { 12350 r = memslot_rmap_alloc(slot, npages); 12351 if (r) 12352 return r; 12353 } 12354 12355 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12356 struct kvm_lpage_info *linfo; 12357 unsigned long ugfn; 12358 int lpages; 12359 int level = i + 1; 12360 12361 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12362 12363 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12364 if (!linfo) 12365 goto out_free; 12366 12367 slot->arch.lpage_info[i - 1] = linfo; 12368 12369 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12370 linfo[0].disallow_lpage = 1; 12371 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12372 linfo[lpages - 1].disallow_lpage = 1; 12373 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12374 /* 12375 * If the gfn and userspace address are not aligned wrt each 12376 * other, disable large page support for this slot. 12377 */ 12378 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12379 unsigned long j; 12380 12381 for (j = 0; j < lpages; ++j) 12382 linfo[j].disallow_lpage = 1; 12383 } 12384 } 12385 12386 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12387 goto out_free; 12388 12389 return 0; 12390 12391 out_free: 12392 memslot_rmap_free(slot); 12393 12394 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12395 kvfree(slot->arch.lpage_info[i - 1]); 12396 slot->arch.lpage_info[i - 1] = NULL; 12397 } 12398 return -ENOMEM; 12399 } 12400 12401 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12402 { 12403 struct kvm_vcpu *vcpu; 12404 unsigned long i; 12405 12406 /* 12407 * memslots->generation has been incremented. 12408 * mmio generation may have reached its maximum value. 12409 */ 12410 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12411 12412 /* Force re-initialization of steal_time cache */ 12413 kvm_for_each_vcpu(i, vcpu, kvm) 12414 kvm_vcpu_kick(vcpu); 12415 } 12416 12417 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12418 const struct kvm_memory_slot *old, 12419 struct kvm_memory_slot *new, 12420 enum kvm_mr_change change) 12421 { 12422 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12423 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12424 return -EINVAL; 12425 12426 return kvm_alloc_memslot_metadata(kvm, new); 12427 } 12428 12429 if (change == KVM_MR_FLAGS_ONLY) 12430 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12431 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12432 return -EIO; 12433 12434 return 0; 12435 } 12436 12437 12438 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12439 { 12440 struct kvm_arch *ka = &kvm->arch; 12441 12442 if (!kvm_x86_ops.cpu_dirty_log_size) 12443 return; 12444 12445 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12446 (!enable && --ka->cpu_dirty_logging_count == 0)) 12447 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12448 12449 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12450 } 12451 12452 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12453 struct kvm_memory_slot *old, 12454 const struct kvm_memory_slot *new, 12455 enum kvm_mr_change change) 12456 { 12457 u32 old_flags = old ? old->flags : 0; 12458 u32 new_flags = new ? new->flags : 0; 12459 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12460 12461 /* 12462 * Update CPU dirty logging if dirty logging is being toggled. This 12463 * applies to all operations. 12464 */ 12465 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12466 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12467 12468 /* 12469 * Nothing more to do for RO slots (which can't be dirtied and can't be 12470 * made writable) or CREATE/MOVE/DELETE of a slot. 12471 * 12472 * For a memslot with dirty logging disabled: 12473 * CREATE: No dirty mappings will already exist. 12474 * MOVE/DELETE: The old mappings will already have been cleaned up by 12475 * kvm_arch_flush_shadow_memslot() 12476 * 12477 * For a memslot with dirty logging enabled: 12478 * CREATE: No shadow pages exist, thus nothing to write-protect 12479 * and no dirty bits to clear. 12480 * MOVE/DELETE: The old mappings will already have been cleaned up by 12481 * kvm_arch_flush_shadow_memslot(). 12482 */ 12483 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12484 return; 12485 12486 /* 12487 * READONLY and non-flags changes were filtered out above, and the only 12488 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12489 * logging isn't being toggled on or off. 12490 */ 12491 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12492 return; 12493 12494 if (!log_dirty_pages) { 12495 /* 12496 * Dirty logging tracks sptes in 4k granularity, meaning that 12497 * large sptes have to be split. If live migration succeeds, 12498 * the guest in the source machine will be destroyed and large 12499 * sptes will be created in the destination. However, if the 12500 * guest continues to run in the source machine (for example if 12501 * live migration fails), small sptes will remain around and 12502 * cause bad performance. 12503 * 12504 * Scan sptes if dirty logging has been stopped, dropping those 12505 * which can be collapsed into a single large-page spte. Later 12506 * page faults will create the large-page sptes. 12507 */ 12508 kvm_mmu_zap_collapsible_sptes(kvm, new); 12509 } else { 12510 /* 12511 * Initially-all-set does not require write protecting any page, 12512 * because they're all assumed to be dirty. 12513 */ 12514 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12515 return; 12516 12517 if (READ_ONCE(eager_page_split)) 12518 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12519 12520 if (kvm_x86_ops.cpu_dirty_log_size) { 12521 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12522 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12523 } else { 12524 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12525 } 12526 12527 /* 12528 * Unconditionally flush the TLBs after enabling dirty logging. 12529 * A flush is almost always going to be necessary (see below), 12530 * and unconditionally flushing allows the helpers to omit 12531 * the subtly complex checks when removing write access. 12532 * 12533 * Do the flush outside of mmu_lock to reduce the amount of 12534 * time mmu_lock is held. Flushing after dropping mmu_lock is 12535 * safe as KVM only needs to guarantee the slot is fully 12536 * write-protected before returning to userspace, i.e. before 12537 * userspace can consume the dirty status. 12538 * 12539 * Flushing outside of mmu_lock requires KVM to be careful when 12540 * making decisions based on writable status of an SPTE, e.g. a 12541 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12542 * 12543 * Specifically, KVM also write-protects guest page tables to 12544 * monitor changes when using shadow paging, and must guarantee 12545 * no CPUs can write to those page before mmu_lock is dropped. 12546 * Because CPUs may have stale TLB entries at this point, a 12547 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12548 * 12549 * KVM also allows making SPTES writable outside of mmu_lock, 12550 * e.g. to allow dirty logging without taking mmu_lock. 12551 * 12552 * To handle these scenarios, KVM uses a separate software-only 12553 * bit (MMU-writable) to track if a SPTE is !writable due to 12554 * a guest page table being write-protected (KVM clears the 12555 * MMU-writable flag when write-protecting for shadow paging). 12556 * 12557 * The use of MMU-writable is also the primary motivation for 12558 * the unconditional flush. Because KVM must guarantee that a 12559 * CPU doesn't contain stale, writable TLB entries for a 12560 * !MMU-writable SPTE, KVM must flush if it encounters any 12561 * MMU-writable SPTE regardless of whether the actual hardware 12562 * writable bit was set. I.e. KVM is almost guaranteed to need 12563 * to flush, while unconditionally flushing allows the "remove 12564 * write access" helpers to ignore MMU-writable entirely. 12565 * 12566 * See is_writable_pte() for more details (the case involving 12567 * access-tracked SPTEs is particularly relevant). 12568 */ 12569 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12570 } 12571 } 12572 12573 void kvm_arch_commit_memory_region(struct kvm *kvm, 12574 struct kvm_memory_slot *old, 12575 const struct kvm_memory_slot *new, 12576 enum kvm_mr_change change) 12577 { 12578 if (!kvm->arch.n_requested_mmu_pages && 12579 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12580 unsigned long nr_mmu_pages; 12581 12582 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12583 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12584 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12585 } 12586 12587 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12588 12589 /* Free the arrays associated with the old memslot. */ 12590 if (change == KVM_MR_MOVE) 12591 kvm_arch_free_memslot(kvm, old); 12592 } 12593 12594 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12595 { 12596 kvm_mmu_zap_all(kvm); 12597 } 12598 12599 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12600 struct kvm_memory_slot *slot) 12601 { 12602 kvm_page_track_flush_slot(kvm, slot); 12603 } 12604 12605 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12606 { 12607 return (is_guest_mode(vcpu) && 12608 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12609 } 12610 12611 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12612 { 12613 if (!list_empty_careful(&vcpu->async_pf.done)) 12614 return true; 12615 12616 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12617 kvm_apic_init_sipi_allowed(vcpu)) 12618 return true; 12619 12620 if (vcpu->arch.pv.pv_unhalted) 12621 return true; 12622 12623 if (kvm_is_exception_pending(vcpu)) 12624 return true; 12625 12626 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12627 (vcpu->arch.nmi_pending && 12628 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12629 return true; 12630 12631 #ifdef CONFIG_KVM_SMM 12632 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12633 (vcpu->arch.smi_pending && 12634 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12635 return true; 12636 #endif 12637 12638 if (kvm_arch_interrupt_allowed(vcpu) && 12639 (kvm_cpu_has_interrupt(vcpu) || 12640 kvm_guest_apic_has_interrupt(vcpu))) 12641 return true; 12642 12643 if (kvm_hv_has_stimer_pending(vcpu)) 12644 return true; 12645 12646 if (is_guest_mode(vcpu) && 12647 kvm_x86_ops.nested_ops->has_events && 12648 kvm_x86_ops.nested_ops->has_events(vcpu)) 12649 return true; 12650 12651 if (kvm_xen_has_pending_events(vcpu)) 12652 return true; 12653 12654 return false; 12655 } 12656 12657 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12658 { 12659 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12660 } 12661 12662 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12663 { 12664 if (kvm_vcpu_apicv_active(vcpu) && 12665 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12666 return true; 12667 12668 return false; 12669 } 12670 12671 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12672 { 12673 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12674 return true; 12675 12676 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12677 #ifdef CONFIG_KVM_SMM 12678 kvm_test_request(KVM_REQ_SMI, vcpu) || 12679 #endif 12680 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12681 return true; 12682 12683 return kvm_arch_dy_has_pending_interrupt(vcpu); 12684 } 12685 12686 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12687 { 12688 if (vcpu->arch.guest_state_protected) 12689 return true; 12690 12691 return vcpu->arch.preempted_in_kernel; 12692 } 12693 12694 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12695 { 12696 return kvm_rip_read(vcpu); 12697 } 12698 12699 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12700 { 12701 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12702 } 12703 12704 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12705 { 12706 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12707 } 12708 12709 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12710 { 12711 /* Can't read the RIP when guest state is protected, just return 0 */ 12712 if (vcpu->arch.guest_state_protected) 12713 return 0; 12714 12715 if (is_64_bit_mode(vcpu)) 12716 return kvm_rip_read(vcpu); 12717 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12718 kvm_rip_read(vcpu)); 12719 } 12720 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12721 12722 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12723 { 12724 return kvm_get_linear_rip(vcpu) == linear_rip; 12725 } 12726 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12727 12728 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12729 { 12730 unsigned long rflags; 12731 12732 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12733 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12734 rflags &= ~X86_EFLAGS_TF; 12735 return rflags; 12736 } 12737 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12738 12739 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12740 { 12741 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12742 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12743 rflags |= X86_EFLAGS_TF; 12744 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12745 } 12746 12747 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12748 { 12749 __kvm_set_rflags(vcpu, rflags); 12750 kvm_make_request(KVM_REQ_EVENT, vcpu); 12751 } 12752 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12753 12754 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12755 { 12756 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12757 12758 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12759 } 12760 12761 static inline u32 kvm_async_pf_next_probe(u32 key) 12762 { 12763 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12764 } 12765 12766 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12767 { 12768 u32 key = kvm_async_pf_hash_fn(gfn); 12769 12770 while (vcpu->arch.apf.gfns[key] != ~0) 12771 key = kvm_async_pf_next_probe(key); 12772 12773 vcpu->arch.apf.gfns[key] = gfn; 12774 } 12775 12776 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12777 { 12778 int i; 12779 u32 key = kvm_async_pf_hash_fn(gfn); 12780 12781 for (i = 0; i < ASYNC_PF_PER_VCPU && 12782 (vcpu->arch.apf.gfns[key] != gfn && 12783 vcpu->arch.apf.gfns[key] != ~0); i++) 12784 key = kvm_async_pf_next_probe(key); 12785 12786 return key; 12787 } 12788 12789 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12790 { 12791 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12792 } 12793 12794 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12795 { 12796 u32 i, j, k; 12797 12798 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12799 12800 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12801 return; 12802 12803 while (true) { 12804 vcpu->arch.apf.gfns[i] = ~0; 12805 do { 12806 j = kvm_async_pf_next_probe(j); 12807 if (vcpu->arch.apf.gfns[j] == ~0) 12808 return; 12809 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12810 /* 12811 * k lies cyclically in ]i,j] 12812 * | i.k.j | 12813 * |....j i.k.| or |.k..j i...| 12814 */ 12815 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12816 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12817 i = j; 12818 } 12819 } 12820 12821 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12822 { 12823 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12824 12825 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12826 sizeof(reason)); 12827 } 12828 12829 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12830 { 12831 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12832 12833 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12834 &token, offset, sizeof(token)); 12835 } 12836 12837 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12838 { 12839 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12840 u32 val; 12841 12842 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12843 &val, offset, sizeof(val))) 12844 return false; 12845 12846 return !val; 12847 } 12848 12849 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12850 { 12851 12852 if (!kvm_pv_async_pf_enabled(vcpu)) 12853 return false; 12854 12855 if (vcpu->arch.apf.send_user_only && 12856 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12857 return false; 12858 12859 if (is_guest_mode(vcpu)) { 12860 /* 12861 * L1 needs to opt into the special #PF vmexits that are 12862 * used to deliver async page faults. 12863 */ 12864 return vcpu->arch.apf.delivery_as_pf_vmexit; 12865 } else { 12866 /* 12867 * Play it safe in case the guest temporarily disables paging. 12868 * The real mode IDT in particular is unlikely to have a #PF 12869 * exception setup. 12870 */ 12871 return is_paging(vcpu); 12872 } 12873 } 12874 12875 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12876 { 12877 if (unlikely(!lapic_in_kernel(vcpu) || 12878 kvm_event_needs_reinjection(vcpu) || 12879 kvm_is_exception_pending(vcpu))) 12880 return false; 12881 12882 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12883 return false; 12884 12885 /* 12886 * If interrupts are off we cannot even use an artificial 12887 * halt state. 12888 */ 12889 return kvm_arch_interrupt_allowed(vcpu); 12890 } 12891 12892 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12893 struct kvm_async_pf *work) 12894 { 12895 struct x86_exception fault; 12896 12897 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12898 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12899 12900 if (kvm_can_deliver_async_pf(vcpu) && 12901 !apf_put_user_notpresent(vcpu)) { 12902 fault.vector = PF_VECTOR; 12903 fault.error_code_valid = true; 12904 fault.error_code = 0; 12905 fault.nested_page_fault = false; 12906 fault.address = work->arch.token; 12907 fault.async_page_fault = true; 12908 kvm_inject_page_fault(vcpu, &fault); 12909 return true; 12910 } else { 12911 /* 12912 * It is not possible to deliver a paravirtualized asynchronous 12913 * page fault, but putting the guest in an artificial halt state 12914 * can be beneficial nevertheless: if an interrupt arrives, we 12915 * can deliver it timely and perhaps the guest will schedule 12916 * another process. When the instruction that triggered a page 12917 * fault is retried, hopefully the page will be ready in the host. 12918 */ 12919 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12920 return false; 12921 } 12922 } 12923 12924 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12925 struct kvm_async_pf *work) 12926 { 12927 struct kvm_lapic_irq irq = { 12928 .delivery_mode = APIC_DM_FIXED, 12929 .vector = vcpu->arch.apf.vec 12930 }; 12931 12932 if (work->wakeup_all) 12933 work->arch.token = ~0; /* broadcast wakeup */ 12934 else 12935 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12936 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12937 12938 if ((work->wakeup_all || work->notpresent_injected) && 12939 kvm_pv_async_pf_enabled(vcpu) && 12940 !apf_put_user_ready(vcpu, work->arch.token)) { 12941 vcpu->arch.apf.pageready_pending = true; 12942 kvm_apic_set_irq(vcpu, &irq, NULL); 12943 } 12944 12945 vcpu->arch.apf.halted = false; 12946 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12947 } 12948 12949 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12950 { 12951 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12952 if (!vcpu->arch.apf.pageready_pending) 12953 kvm_vcpu_kick(vcpu); 12954 } 12955 12956 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12957 { 12958 if (!kvm_pv_async_pf_enabled(vcpu)) 12959 return true; 12960 else 12961 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12962 } 12963 12964 void kvm_arch_start_assignment(struct kvm *kvm) 12965 { 12966 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12967 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12968 } 12969 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12970 12971 void kvm_arch_end_assignment(struct kvm *kvm) 12972 { 12973 atomic_dec(&kvm->arch.assigned_device_count); 12974 } 12975 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12976 12977 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12978 { 12979 return arch_atomic_read(&kvm->arch.assigned_device_count); 12980 } 12981 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12982 12983 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12984 { 12985 atomic_inc(&kvm->arch.noncoherent_dma_count); 12986 } 12987 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12988 12989 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12990 { 12991 atomic_dec(&kvm->arch.noncoherent_dma_count); 12992 } 12993 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12994 12995 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12996 { 12997 return atomic_read(&kvm->arch.noncoherent_dma_count); 12998 } 12999 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13000 13001 bool kvm_arch_has_irq_bypass(void) 13002 { 13003 return true; 13004 } 13005 13006 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13007 struct irq_bypass_producer *prod) 13008 { 13009 struct kvm_kernel_irqfd *irqfd = 13010 container_of(cons, struct kvm_kernel_irqfd, consumer); 13011 int ret; 13012 13013 irqfd->producer = prod; 13014 kvm_arch_start_assignment(irqfd->kvm); 13015 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13016 prod->irq, irqfd->gsi, 1); 13017 13018 if (ret) 13019 kvm_arch_end_assignment(irqfd->kvm); 13020 13021 return ret; 13022 } 13023 13024 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13025 struct irq_bypass_producer *prod) 13026 { 13027 int ret; 13028 struct kvm_kernel_irqfd *irqfd = 13029 container_of(cons, struct kvm_kernel_irqfd, consumer); 13030 13031 WARN_ON(irqfd->producer != prod); 13032 irqfd->producer = NULL; 13033 13034 /* 13035 * When producer of consumer is unregistered, we change back to 13036 * remapped mode, so we can re-use the current implementation 13037 * when the irq is masked/disabled or the consumer side (KVM 13038 * int this case doesn't want to receive the interrupts. 13039 */ 13040 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13041 if (ret) 13042 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13043 " fails: %d\n", irqfd->consumer.token, ret); 13044 13045 kvm_arch_end_assignment(irqfd->kvm); 13046 } 13047 13048 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13049 uint32_t guest_irq, bool set) 13050 { 13051 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13052 } 13053 13054 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13055 struct kvm_kernel_irq_routing_entry *new) 13056 { 13057 if (new->type != KVM_IRQ_ROUTING_MSI) 13058 return true; 13059 13060 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13061 } 13062 13063 bool kvm_vector_hashing_enabled(void) 13064 { 13065 return vector_hashing; 13066 } 13067 13068 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13069 { 13070 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13071 } 13072 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13073 13074 13075 int kvm_spec_ctrl_test_value(u64 value) 13076 { 13077 /* 13078 * test that setting IA32_SPEC_CTRL to given value 13079 * is allowed by the host processor 13080 */ 13081 13082 u64 saved_value; 13083 unsigned long flags; 13084 int ret = 0; 13085 13086 local_irq_save(flags); 13087 13088 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13089 ret = 1; 13090 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13091 ret = 1; 13092 else 13093 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13094 13095 local_irq_restore(flags); 13096 13097 return ret; 13098 } 13099 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13100 13101 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13102 { 13103 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13104 struct x86_exception fault; 13105 u64 access = error_code & 13106 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13107 13108 if (!(error_code & PFERR_PRESENT_MASK) || 13109 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13110 /* 13111 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13112 * tables probably do not match the TLB. Just proceed 13113 * with the error code that the processor gave. 13114 */ 13115 fault.vector = PF_VECTOR; 13116 fault.error_code_valid = true; 13117 fault.error_code = error_code; 13118 fault.nested_page_fault = false; 13119 fault.address = gva; 13120 fault.async_page_fault = false; 13121 } 13122 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13123 } 13124 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13125 13126 /* 13127 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13128 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13129 * indicates whether exit to userspace is needed. 13130 */ 13131 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13132 struct x86_exception *e) 13133 { 13134 if (r == X86EMUL_PROPAGATE_FAULT) { 13135 if (KVM_BUG_ON(!e, vcpu->kvm)) 13136 return -EIO; 13137 13138 kvm_inject_emulated_page_fault(vcpu, e); 13139 return 1; 13140 } 13141 13142 /* 13143 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13144 * while handling a VMX instruction KVM could've handled the request 13145 * correctly by exiting to userspace and performing I/O but there 13146 * doesn't seem to be a real use-case behind such requests, just return 13147 * KVM_EXIT_INTERNAL_ERROR for now. 13148 */ 13149 kvm_prepare_emulation_failure_exit(vcpu); 13150 13151 return 0; 13152 } 13153 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13154 13155 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13156 { 13157 bool pcid_enabled; 13158 struct x86_exception e; 13159 struct { 13160 u64 pcid; 13161 u64 gla; 13162 } operand; 13163 int r; 13164 13165 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13166 if (r != X86EMUL_CONTINUE) 13167 return kvm_handle_memory_failure(vcpu, r, &e); 13168 13169 if (operand.pcid >> 12 != 0) { 13170 kvm_inject_gp(vcpu, 0); 13171 return 1; 13172 } 13173 13174 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13175 13176 switch (type) { 13177 case INVPCID_TYPE_INDIV_ADDR: 13178 if ((!pcid_enabled && (operand.pcid != 0)) || 13179 is_noncanonical_address(operand.gla, vcpu)) { 13180 kvm_inject_gp(vcpu, 0); 13181 return 1; 13182 } 13183 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13184 return kvm_skip_emulated_instruction(vcpu); 13185 13186 case INVPCID_TYPE_SINGLE_CTXT: 13187 if (!pcid_enabled && (operand.pcid != 0)) { 13188 kvm_inject_gp(vcpu, 0); 13189 return 1; 13190 } 13191 13192 kvm_invalidate_pcid(vcpu, operand.pcid); 13193 return kvm_skip_emulated_instruction(vcpu); 13194 13195 case INVPCID_TYPE_ALL_NON_GLOBAL: 13196 /* 13197 * Currently, KVM doesn't mark global entries in the shadow 13198 * page tables, so a non-global flush just degenerates to a 13199 * global flush. If needed, we could optimize this later by 13200 * keeping track of global entries in shadow page tables. 13201 */ 13202 13203 fallthrough; 13204 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13206 return kvm_skip_emulated_instruction(vcpu); 13207 13208 default: 13209 kvm_inject_gp(vcpu, 0); 13210 return 1; 13211 } 13212 } 13213 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13214 13215 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13216 { 13217 struct kvm_run *run = vcpu->run; 13218 struct kvm_mmio_fragment *frag; 13219 unsigned int len; 13220 13221 BUG_ON(!vcpu->mmio_needed); 13222 13223 /* Complete previous fragment */ 13224 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13225 len = min(8u, frag->len); 13226 if (!vcpu->mmio_is_write) 13227 memcpy(frag->data, run->mmio.data, len); 13228 13229 if (frag->len <= 8) { 13230 /* Switch to the next fragment. */ 13231 frag++; 13232 vcpu->mmio_cur_fragment++; 13233 } else { 13234 /* Go forward to the next mmio piece. */ 13235 frag->data += len; 13236 frag->gpa += len; 13237 frag->len -= len; 13238 } 13239 13240 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13241 vcpu->mmio_needed = 0; 13242 13243 // VMG change, at this point, we're always done 13244 // RIP has already been advanced 13245 return 1; 13246 } 13247 13248 // More MMIO is needed 13249 run->mmio.phys_addr = frag->gpa; 13250 run->mmio.len = min(8u, frag->len); 13251 run->mmio.is_write = vcpu->mmio_is_write; 13252 if (run->mmio.is_write) 13253 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13254 run->exit_reason = KVM_EXIT_MMIO; 13255 13256 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13257 13258 return 0; 13259 } 13260 13261 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13262 void *data) 13263 { 13264 int handled; 13265 struct kvm_mmio_fragment *frag; 13266 13267 if (!data) 13268 return -EINVAL; 13269 13270 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13271 if (handled == bytes) 13272 return 1; 13273 13274 bytes -= handled; 13275 gpa += handled; 13276 data += handled; 13277 13278 /*TODO: Check if need to increment number of frags */ 13279 frag = vcpu->mmio_fragments; 13280 vcpu->mmio_nr_fragments = 1; 13281 frag->len = bytes; 13282 frag->gpa = gpa; 13283 frag->data = data; 13284 13285 vcpu->mmio_needed = 1; 13286 vcpu->mmio_cur_fragment = 0; 13287 13288 vcpu->run->mmio.phys_addr = gpa; 13289 vcpu->run->mmio.len = min(8u, frag->len); 13290 vcpu->run->mmio.is_write = 1; 13291 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13292 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13293 13294 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13295 13296 return 0; 13297 } 13298 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13299 13300 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13301 void *data) 13302 { 13303 int handled; 13304 struct kvm_mmio_fragment *frag; 13305 13306 if (!data) 13307 return -EINVAL; 13308 13309 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13310 if (handled == bytes) 13311 return 1; 13312 13313 bytes -= handled; 13314 gpa += handled; 13315 data += handled; 13316 13317 /*TODO: Check if need to increment number of frags */ 13318 frag = vcpu->mmio_fragments; 13319 vcpu->mmio_nr_fragments = 1; 13320 frag->len = bytes; 13321 frag->gpa = gpa; 13322 frag->data = data; 13323 13324 vcpu->mmio_needed = 1; 13325 vcpu->mmio_cur_fragment = 0; 13326 13327 vcpu->run->mmio.phys_addr = gpa; 13328 vcpu->run->mmio.len = min(8u, frag->len); 13329 vcpu->run->mmio.is_write = 0; 13330 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13331 13332 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13333 13334 return 0; 13335 } 13336 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13337 13338 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13339 { 13340 vcpu->arch.sev_pio_count -= count; 13341 vcpu->arch.sev_pio_data += count * size; 13342 } 13343 13344 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13345 unsigned int port); 13346 13347 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13348 { 13349 int size = vcpu->arch.pio.size; 13350 int port = vcpu->arch.pio.port; 13351 13352 vcpu->arch.pio.count = 0; 13353 if (vcpu->arch.sev_pio_count) 13354 return kvm_sev_es_outs(vcpu, size, port); 13355 return 1; 13356 } 13357 13358 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13359 unsigned int port) 13360 { 13361 for (;;) { 13362 unsigned int count = 13363 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13364 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13365 13366 /* memcpy done already by emulator_pio_out. */ 13367 advance_sev_es_emulated_pio(vcpu, count, size); 13368 if (!ret) 13369 break; 13370 13371 /* Emulation done by the kernel. */ 13372 if (!vcpu->arch.sev_pio_count) 13373 return 1; 13374 } 13375 13376 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13377 return 0; 13378 } 13379 13380 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13381 unsigned int port); 13382 13383 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13384 { 13385 unsigned count = vcpu->arch.pio.count; 13386 int size = vcpu->arch.pio.size; 13387 int port = vcpu->arch.pio.port; 13388 13389 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13390 advance_sev_es_emulated_pio(vcpu, count, size); 13391 if (vcpu->arch.sev_pio_count) 13392 return kvm_sev_es_ins(vcpu, size, port); 13393 return 1; 13394 } 13395 13396 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13397 unsigned int port) 13398 { 13399 for (;;) { 13400 unsigned int count = 13401 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13402 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13403 break; 13404 13405 /* Emulation done by the kernel. */ 13406 advance_sev_es_emulated_pio(vcpu, count, size); 13407 if (!vcpu->arch.sev_pio_count) 13408 return 1; 13409 } 13410 13411 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13412 return 0; 13413 } 13414 13415 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13416 unsigned int port, void *data, unsigned int count, 13417 int in) 13418 { 13419 vcpu->arch.sev_pio_data = data; 13420 vcpu->arch.sev_pio_count = count; 13421 return in ? kvm_sev_es_ins(vcpu, size, port) 13422 : kvm_sev_es_outs(vcpu, size, port); 13423 } 13424 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13425 13426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13455 13456 static int __init kvm_x86_init(void) 13457 { 13458 kvm_mmu_x86_module_init(); 13459 return 0; 13460 } 13461 module_init(kvm_x86_init); 13462 13463 static void __exit kvm_x86_exit(void) 13464 { 13465 /* 13466 * If module_init() is implemented, module_exit() must also be 13467 * implemented to allow module unload. 13468 */ 13469 } 13470 module_exit(kvm_x86_exit); 13471