xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 545e4006)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22 
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34 
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS						\
37 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS						\
41 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
43 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
44 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45 
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48  * - enable syscall per default because its emulated by KVM
49  * - enable LME and LMA per default on 64 bit KVM
50  */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56 
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59 
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 				    struct kvm_cpuid_entry2 __user *entries);
62 
63 struct kvm_x86_ops *kvm_x86_ops;
64 
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
67 	{ "pf_guest", VCPU_STAT(pf_guest) },
68 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
69 	{ "invlpg", VCPU_STAT(invlpg) },
70 	{ "exits", VCPU_STAT(exits) },
71 	{ "io_exits", VCPU_STAT(io_exits) },
72 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
73 	{ "signal_exits", VCPU_STAT(signal_exits) },
74 	{ "irq_window", VCPU_STAT(irq_window_exits) },
75 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
76 	{ "halt_exits", VCPU_STAT(halt_exits) },
77 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
78 	{ "hypercalls", VCPU_STAT(hypercalls) },
79 	{ "request_irq", VCPU_STAT(request_irq_exits) },
80 	{ "irq_exits", VCPU_STAT(irq_exits) },
81 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
82 	{ "efer_reload", VCPU_STAT(efer_reload) },
83 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
84 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
85 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
88 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
91 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
92 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94 	{ "largepages", VM_STAT(lpages) },
95 	{ NULL }
96 };
97 
98 
99 unsigned long segment_base(u16 selector)
100 {
101 	struct descriptor_table gdt;
102 	struct desc_struct *d;
103 	unsigned long table_base;
104 	unsigned long v;
105 
106 	if (selector == 0)
107 		return 0;
108 
109 	asm("sgdt %0" : "=m"(gdt));
110 	table_base = gdt.base;
111 
112 	if (selector & 4) {           /* from ldt */
113 		u16 ldt_selector;
114 
115 		asm("sldt %0" : "=g"(ldt_selector));
116 		table_base = segment_base(ldt_selector);
117 	}
118 	d = (struct desc_struct *)(table_base + (selector & ~7));
119 	v = d->base0 | ((unsigned long)d->base1 << 16) |
120 		((unsigned long)d->base2 << 24);
121 #ifdef CONFIG_X86_64
122 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 #endif
125 	return v;
126 }
127 EXPORT_SYMBOL_GPL(segment_base);
128 
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 {
131 	if (irqchip_in_kernel(vcpu->kvm))
132 		return vcpu->arch.apic_base;
133 	else
134 		return vcpu->arch.apic_base;
135 }
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137 
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 {
140 	/* TODO: reserve bits check */
141 	if (irqchip_in_kernel(vcpu->kvm))
142 		kvm_lapic_set_base(vcpu, data);
143 	else
144 		vcpu->arch.apic_base = data;
145 }
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147 
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 {
150 	WARN_ON(vcpu->arch.exception.pending);
151 	vcpu->arch.exception.pending = true;
152 	vcpu->arch.exception.has_error_code = false;
153 	vcpu->arch.exception.nr = nr;
154 }
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156 
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
158 			   u32 error_code)
159 {
160 	++vcpu->stat.pf_guest;
161 	if (vcpu->arch.exception.pending) {
162 		if (vcpu->arch.exception.nr == PF_VECTOR) {
163 			printk(KERN_DEBUG "kvm: inject_page_fault:"
164 					" double fault 0x%lx\n", addr);
165 			vcpu->arch.exception.nr = DF_VECTOR;
166 			vcpu->arch.exception.error_code = 0;
167 		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
168 			/* triple fault -> shutdown */
169 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
170 		}
171 		return;
172 	}
173 	vcpu->arch.cr2 = addr;
174 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 }
176 
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
178 {
179 	vcpu->arch.nmi_pending = 1;
180 }
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
182 
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
184 {
185 	WARN_ON(vcpu->arch.exception.pending);
186 	vcpu->arch.exception.pending = true;
187 	vcpu->arch.exception.has_error_code = true;
188 	vcpu->arch.exception.nr = nr;
189 	vcpu->arch.exception.error_code = error_code;
190 }
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
192 
193 static void __queue_exception(struct kvm_vcpu *vcpu)
194 {
195 	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196 				     vcpu->arch.exception.has_error_code,
197 				     vcpu->arch.exception.error_code);
198 }
199 
200 /*
201  * Load the pae pdptrs.  Return true is they are all valid.
202  */
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
204 {
205 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
207 	int i;
208 	int ret;
209 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210 
211 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212 				  offset * sizeof(u64), sizeof(pdpte));
213 	if (ret < 0) {
214 		ret = 0;
215 		goto out;
216 	}
217 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218 		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
219 			ret = 0;
220 			goto out;
221 		}
222 	}
223 	ret = 1;
224 
225 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 out:
227 
228 	return ret;
229 }
230 EXPORT_SYMBOL_GPL(load_pdptrs);
231 
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
233 {
234 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235 	bool changed = true;
236 	int r;
237 
238 	if (is_long_mode(vcpu) || !is_pae(vcpu))
239 		return false;
240 
241 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242 	if (r < 0)
243 		goto out;
244 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 out:
246 
247 	return changed;
248 }
249 
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 {
252 	if (cr0 & CR0_RESERVED_BITS) {
253 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254 		       cr0, vcpu->arch.cr0);
255 		kvm_inject_gp(vcpu, 0);
256 		return;
257 	}
258 
259 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261 		kvm_inject_gp(vcpu, 0);
262 		return;
263 	}
264 
265 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267 		       "and a clear PE flag\n");
268 		kvm_inject_gp(vcpu, 0);
269 		return;
270 	}
271 
272 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
273 #ifdef CONFIG_X86_64
274 		if ((vcpu->arch.shadow_efer & EFER_LME)) {
275 			int cs_db, cs_l;
276 
277 			if (!is_pae(vcpu)) {
278 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 				       "in long mode while PAE is disabled\n");
280 				kvm_inject_gp(vcpu, 0);
281 				return;
282 			}
283 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
284 			if (cs_l) {
285 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
286 				       "in long mode while CS.L == 1\n");
287 				kvm_inject_gp(vcpu, 0);
288 				return;
289 
290 			}
291 		} else
292 #endif
293 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
295 			       "reserved bits\n");
296 			kvm_inject_gp(vcpu, 0);
297 			return;
298 		}
299 
300 	}
301 
302 	kvm_x86_ops->set_cr0(vcpu, cr0);
303 	vcpu->arch.cr0 = cr0;
304 
305 	kvm_mmu_reset_context(vcpu);
306 	return;
307 }
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
309 
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311 {
312 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313 	KVMTRACE_1D(LMSW, vcpu,
314 		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
315 		    handler);
316 }
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
318 
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 {
321 	if (cr4 & CR4_RESERVED_BITS) {
322 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323 		kvm_inject_gp(vcpu, 0);
324 		return;
325 	}
326 
327 	if (is_long_mode(vcpu)) {
328 		if (!(cr4 & X86_CR4_PAE)) {
329 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
330 			       "in long mode\n");
331 			kvm_inject_gp(vcpu, 0);
332 			return;
333 		}
334 	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337 		kvm_inject_gp(vcpu, 0);
338 		return;
339 	}
340 
341 	if (cr4 & X86_CR4_VMXE) {
342 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343 		kvm_inject_gp(vcpu, 0);
344 		return;
345 	}
346 	kvm_x86_ops->set_cr4(vcpu, cr4);
347 	vcpu->arch.cr4 = cr4;
348 	kvm_mmu_reset_context(vcpu);
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
351 
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353 {
354 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355 		kvm_mmu_flush_tlb(vcpu);
356 		return;
357 	}
358 
359 	if (is_long_mode(vcpu)) {
360 		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362 			kvm_inject_gp(vcpu, 0);
363 			return;
364 		}
365 	} else {
366 		if (is_pae(vcpu)) {
367 			if (cr3 & CR3_PAE_RESERVED_BITS) {
368 				printk(KERN_DEBUG
369 				       "set_cr3: #GP, reserved bits\n");
370 				kvm_inject_gp(vcpu, 0);
371 				return;
372 			}
373 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
375 				       "reserved bits\n");
376 				kvm_inject_gp(vcpu, 0);
377 				return;
378 			}
379 		}
380 		/*
381 		 * We don't check reserved bits in nonpae mode, because
382 		 * this isn't enforced, and VMware depends on this.
383 		 */
384 	}
385 
386 	/*
387 	 * Does the new cr3 value map to physical memory? (Note, we
388 	 * catch an invalid cr3 even in real-mode, because it would
389 	 * cause trouble later on when we turn on paging anyway.)
390 	 *
391 	 * A real CPU would silently accept an invalid cr3 and would
392 	 * attempt to use it - with largely undefined (and often hard
393 	 * to debug) behavior on the guest side.
394 	 */
395 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396 		kvm_inject_gp(vcpu, 0);
397 	else {
398 		vcpu->arch.cr3 = cr3;
399 		vcpu->arch.mmu.new_cr3(vcpu);
400 	}
401 }
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
403 
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 {
406 	if (cr8 & CR8_RESERVED_BITS) {
407 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408 		kvm_inject_gp(vcpu, 0);
409 		return;
410 	}
411 	if (irqchip_in_kernel(vcpu->kvm))
412 		kvm_lapic_set_tpr(vcpu, cr8);
413 	else
414 		vcpu->arch.cr8 = cr8;
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
417 
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 {
420 	if (irqchip_in_kernel(vcpu->kvm))
421 		return kvm_lapic_get_cr8(vcpu);
422 	else
423 		return vcpu->arch.cr8;
424 }
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
426 
427 /*
428  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
430  *
431  * This list is modified at module load time to reflect the
432  * capabilities of the host cpu.
433  */
434 static u32 msrs_to_save[] = {
435 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
436 	MSR_K6_STAR,
437 #ifdef CONFIG_X86_64
438 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
439 #endif
440 	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441 	MSR_IA32_PERF_STATUS,
442 };
443 
444 static unsigned num_msrs_to_save;
445 
446 static u32 emulated_msrs[] = {
447 	MSR_IA32_MISC_ENABLE,
448 };
449 
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
451 {
452 	if (efer & efer_reserved_bits) {
453 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
454 		       efer);
455 		kvm_inject_gp(vcpu, 0);
456 		return;
457 	}
458 
459 	if (is_paging(vcpu)
460 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462 		kvm_inject_gp(vcpu, 0);
463 		return;
464 	}
465 
466 	kvm_x86_ops->set_efer(vcpu, efer);
467 
468 	efer &= ~EFER_LMA;
469 	efer |= vcpu->arch.shadow_efer & EFER_LMA;
470 
471 	vcpu->arch.shadow_efer = efer;
472 }
473 
474 void kvm_enable_efer_bits(u64 mask)
475 {
476        efer_reserved_bits &= ~mask;
477 }
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
479 
480 
481 /*
482  * Writes msr value into into the appropriate "register".
483  * Returns 0 on success, non-0 otherwise.
484  * Assumes vcpu_load() was already called.
485  */
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
487 {
488 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
489 }
490 
491 /*
492  * Adapt set_msr() to msr_io()'s calling convention
493  */
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
495 {
496 	return kvm_set_msr(vcpu, index, *data);
497 }
498 
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
500 {
501 	static int version;
502 	struct pvclock_wall_clock wc;
503 	struct timespec now, sys, boot;
504 
505 	if (!wall_clock)
506 		return;
507 
508 	version++;
509 
510 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511 
512 	/*
513 	 * The guest calculates current wall clock time by adding
514 	 * system time (updated by kvm_write_guest_time below) to the
515 	 * wall clock specified here.  guest system time equals host
516 	 * system time for us, thus we must fill in host boot time here.
517 	 */
518 	now = current_kernel_time();
519 	ktime_get_ts(&sys);
520 	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
521 
522 	wc.sec = boot.tv_sec;
523 	wc.nsec = boot.tv_nsec;
524 	wc.version = version;
525 
526 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
527 
528 	version++;
529 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
530 }
531 
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
533 {
534 	uint32_t quotient, remainder;
535 
536 	/* Don't try to replace with do_div(), this one calculates
537 	 * "(dividend << 32) / divisor" */
538 	__asm__ ( "divl %4"
539 		  : "=a" (quotient), "=d" (remainder)
540 		  : "0" (0), "1" (dividend), "r" (divisor) );
541 	return quotient;
542 }
543 
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
545 {
546 	uint64_t nsecs = 1000000000LL;
547 	int32_t  shift = 0;
548 	uint64_t tps64;
549 	uint32_t tps32;
550 
551 	tps64 = tsc_khz * 1000LL;
552 	while (tps64 > nsecs*2) {
553 		tps64 >>= 1;
554 		shift--;
555 	}
556 
557 	tps32 = (uint32_t)tps64;
558 	while (tps32 <= (uint32_t)nsecs) {
559 		tps32 <<= 1;
560 		shift++;
561 	}
562 
563 	hv_clock->tsc_shift = shift;
564 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
565 
566 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567 		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568 		 hv_clock->tsc_to_system_mul);
569 }
570 
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
572 {
573 	struct timespec ts;
574 	unsigned long flags;
575 	struct kvm_vcpu_arch *vcpu = &v->arch;
576 	void *shared_kaddr;
577 
578 	if ((!vcpu->time_page))
579 		return;
580 
581 	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582 		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583 		vcpu->hv_clock_tsc_khz = tsc_khz;
584 	}
585 
586 	/* Keep irq disabled to prevent changes to the clock */
587 	local_irq_save(flags);
588 	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589 			  &vcpu->hv_clock.tsc_timestamp);
590 	ktime_get_ts(&ts);
591 	local_irq_restore(flags);
592 
593 	/* With all the info we got, fill in the values */
594 
595 	vcpu->hv_clock.system_time = ts.tv_nsec +
596 				     (NSEC_PER_SEC * (u64)ts.tv_sec);
597 	/*
598 	 * The interface expects us to write an even number signaling that the
599 	 * update is finished. Since the guest won't see the intermediate
600 	 * state, we just increase by 2 at the end.
601 	 */
602 	vcpu->hv_clock.version += 2;
603 
604 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
605 
606 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607 	       sizeof(vcpu->hv_clock));
608 
609 	kunmap_atomic(shared_kaddr, KM_USER0);
610 
611 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
612 }
613 
614 static bool msr_mtrr_valid(unsigned msr)
615 {
616 	switch (msr) {
617 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618 	case MSR_MTRRfix64K_00000:
619 	case MSR_MTRRfix16K_80000:
620 	case MSR_MTRRfix16K_A0000:
621 	case MSR_MTRRfix4K_C0000:
622 	case MSR_MTRRfix4K_C8000:
623 	case MSR_MTRRfix4K_D0000:
624 	case MSR_MTRRfix4K_D8000:
625 	case MSR_MTRRfix4K_E0000:
626 	case MSR_MTRRfix4K_E8000:
627 	case MSR_MTRRfix4K_F0000:
628 	case MSR_MTRRfix4K_F8000:
629 	case MSR_MTRRdefType:
630 	case MSR_IA32_CR_PAT:
631 		return true;
632 	case 0x2f8:
633 		return true;
634 	}
635 	return false;
636 }
637 
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
639 {
640 	if (!msr_mtrr_valid(msr))
641 		return 1;
642 
643 	vcpu->arch.mtrr[msr - 0x200] = data;
644 	return 0;
645 }
646 
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
648 {
649 	switch (msr) {
650 	case MSR_EFER:
651 		set_efer(vcpu, data);
652 		break;
653 	case MSR_IA32_MC0_STATUS:
654 		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655 		       __func__, data);
656 		break;
657 	case MSR_IA32_MCG_STATUS:
658 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659 			__func__, data);
660 		break;
661 	case MSR_IA32_MCG_CTL:
662 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663 			__func__, data);
664 		break;
665 	case MSR_IA32_UCODE_REV:
666 	case MSR_IA32_UCODE_WRITE:
667 		break;
668 	case 0x200 ... 0x2ff:
669 		return set_msr_mtrr(vcpu, msr, data);
670 	case MSR_IA32_APICBASE:
671 		kvm_set_apic_base(vcpu, data);
672 		break;
673 	case MSR_IA32_MISC_ENABLE:
674 		vcpu->arch.ia32_misc_enable_msr = data;
675 		break;
676 	case MSR_KVM_WALL_CLOCK:
677 		vcpu->kvm->arch.wall_clock = data;
678 		kvm_write_wall_clock(vcpu->kvm, data);
679 		break;
680 	case MSR_KVM_SYSTEM_TIME: {
681 		if (vcpu->arch.time_page) {
682 			kvm_release_page_dirty(vcpu->arch.time_page);
683 			vcpu->arch.time_page = NULL;
684 		}
685 
686 		vcpu->arch.time = data;
687 
688 		/* we verify if the enable bit is set... */
689 		if (!(data & 1))
690 			break;
691 
692 		/* ...but clean it before doing the actual write */
693 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
694 
695 		down_read(&current->mm->mmap_sem);
696 		vcpu->arch.time_page =
697 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698 		up_read(&current->mm->mmap_sem);
699 
700 		if (is_error_page(vcpu->arch.time_page)) {
701 			kvm_release_page_clean(vcpu->arch.time_page);
702 			vcpu->arch.time_page = NULL;
703 		}
704 
705 		kvm_write_guest_time(vcpu);
706 		break;
707 	}
708 	default:
709 		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710 		return 1;
711 	}
712 	return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
715 
716 
717 /*
718  * Reads an msr value (of 'msr_index') into 'pdata'.
719  * Returns 0 on success, non-0 otherwise.
720  * Assumes vcpu_load() was already called.
721  */
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
723 {
724 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
725 }
726 
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
728 {
729 	if (!msr_mtrr_valid(msr))
730 		return 1;
731 
732 	*pdata = vcpu->arch.mtrr[msr - 0x200];
733 	return 0;
734 }
735 
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
737 {
738 	u64 data;
739 
740 	switch (msr) {
741 	case 0xc0010010: /* SYSCFG */
742 	case 0xc0010015: /* HWCR */
743 	case MSR_IA32_PLATFORM_ID:
744 	case MSR_IA32_P5_MC_ADDR:
745 	case MSR_IA32_P5_MC_TYPE:
746 	case MSR_IA32_MC0_CTL:
747 	case MSR_IA32_MCG_STATUS:
748 	case MSR_IA32_MCG_CAP:
749 	case MSR_IA32_MCG_CTL:
750 	case MSR_IA32_MC0_MISC:
751 	case MSR_IA32_MC0_MISC+4:
752 	case MSR_IA32_MC0_MISC+8:
753 	case MSR_IA32_MC0_MISC+12:
754 	case MSR_IA32_MC0_MISC+16:
755 	case MSR_IA32_UCODE_REV:
756 	case MSR_IA32_EBL_CR_POWERON:
757 		data = 0;
758 		break;
759 	case MSR_MTRRcap:
760 		data = 0x500 | KVM_NR_VAR_MTRR;
761 		break;
762 	case 0x200 ... 0x2ff:
763 		return get_msr_mtrr(vcpu, msr, pdata);
764 	case 0xcd: /* fsb frequency */
765 		data = 3;
766 		break;
767 	case MSR_IA32_APICBASE:
768 		data = kvm_get_apic_base(vcpu);
769 		break;
770 	case MSR_IA32_MISC_ENABLE:
771 		data = vcpu->arch.ia32_misc_enable_msr;
772 		break;
773 	case MSR_IA32_PERF_STATUS:
774 		/* TSC increment by tick */
775 		data = 1000ULL;
776 		/* CPU multiplier */
777 		data |= (((uint64_t)4ULL) << 40);
778 		break;
779 	case MSR_EFER:
780 		data = vcpu->arch.shadow_efer;
781 		break;
782 	case MSR_KVM_WALL_CLOCK:
783 		data = vcpu->kvm->arch.wall_clock;
784 		break;
785 	case MSR_KVM_SYSTEM_TIME:
786 		data = vcpu->arch.time;
787 		break;
788 	default:
789 		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
790 		return 1;
791 	}
792 	*pdata = data;
793 	return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
796 
797 /*
798  * Read or write a bunch of msrs. All parameters are kernel addresses.
799  *
800  * @return number of msrs set successfully.
801  */
802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
803 		    struct kvm_msr_entry *entries,
804 		    int (*do_msr)(struct kvm_vcpu *vcpu,
805 				  unsigned index, u64 *data))
806 {
807 	int i;
808 
809 	vcpu_load(vcpu);
810 
811 	down_read(&vcpu->kvm->slots_lock);
812 	for (i = 0; i < msrs->nmsrs; ++i)
813 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
814 			break;
815 	up_read(&vcpu->kvm->slots_lock);
816 
817 	vcpu_put(vcpu);
818 
819 	return i;
820 }
821 
822 /*
823  * Read or write a bunch of msrs. Parameters are user addresses.
824  *
825  * @return number of msrs set successfully.
826  */
827 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
828 		  int (*do_msr)(struct kvm_vcpu *vcpu,
829 				unsigned index, u64 *data),
830 		  int writeback)
831 {
832 	struct kvm_msrs msrs;
833 	struct kvm_msr_entry *entries;
834 	int r, n;
835 	unsigned size;
836 
837 	r = -EFAULT;
838 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
839 		goto out;
840 
841 	r = -E2BIG;
842 	if (msrs.nmsrs >= MAX_IO_MSRS)
843 		goto out;
844 
845 	r = -ENOMEM;
846 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
847 	entries = vmalloc(size);
848 	if (!entries)
849 		goto out;
850 
851 	r = -EFAULT;
852 	if (copy_from_user(entries, user_msrs->entries, size))
853 		goto out_free;
854 
855 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
856 	if (r < 0)
857 		goto out_free;
858 
859 	r = -EFAULT;
860 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
861 		goto out_free;
862 
863 	r = n;
864 
865 out_free:
866 	vfree(entries);
867 out:
868 	return r;
869 }
870 
871 int kvm_dev_ioctl_check_extension(long ext)
872 {
873 	int r;
874 
875 	switch (ext) {
876 	case KVM_CAP_IRQCHIP:
877 	case KVM_CAP_HLT:
878 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
879 	case KVM_CAP_USER_MEMORY:
880 	case KVM_CAP_SET_TSS_ADDR:
881 	case KVM_CAP_EXT_CPUID:
882 	case KVM_CAP_CLOCKSOURCE:
883 	case KVM_CAP_PIT:
884 	case KVM_CAP_NOP_IO_DELAY:
885 	case KVM_CAP_MP_STATE:
886 		r = 1;
887 		break;
888 	case KVM_CAP_COALESCED_MMIO:
889 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
890 		break;
891 	case KVM_CAP_VAPIC:
892 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
893 		break;
894 	case KVM_CAP_NR_VCPUS:
895 		r = KVM_MAX_VCPUS;
896 		break;
897 	case KVM_CAP_NR_MEMSLOTS:
898 		r = KVM_MEMORY_SLOTS;
899 		break;
900 	case KVM_CAP_PV_MMU:
901 		r = !tdp_enabled;
902 		break;
903 	default:
904 		r = 0;
905 		break;
906 	}
907 	return r;
908 
909 }
910 
911 long kvm_arch_dev_ioctl(struct file *filp,
912 			unsigned int ioctl, unsigned long arg)
913 {
914 	void __user *argp = (void __user *)arg;
915 	long r;
916 
917 	switch (ioctl) {
918 	case KVM_GET_MSR_INDEX_LIST: {
919 		struct kvm_msr_list __user *user_msr_list = argp;
920 		struct kvm_msr_list msr_list;
921 		unsigned n;
922 
923 		r = -EFAULT;
924 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
925 			goto out;
926 		n = msr_list.nmsrs;
927 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
928 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
929 			goto out;
930 		r = -E2BIG;
931 		if (n < num_msrs_to_save)
932 			goto out;
933 		r = -EFAULT;
934 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
935 				 num_msrs_to_save * sizeof(u32)))
936 			goto out;
937 		if (copy_to_user(user_msr_list->indices
938 				 + num_msrs_to_save * sizeof(u32),
939 				 &emulated_msrs,
940 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
941 			goto out;
942 		r = 0;
943 		break;
944 	}
945 	case KVM_GET_SUPPORTED_CPUID: {
946 		struct kvm_cpuid2 __user *cpuid_arg = argp;
947 		struct kvm_cpuid2 cpuid;
948 
949 		r = -EFAULT;
950 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
951 			goto out;
952 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
953 			cpuid_arg->entries);
954 		if (r)
955 			goto out;
956 
957 		r = -EFAULT;
958 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
959 			goto out;
960 		r = 0;
961 		break;
962 	}
963 	default:
964 		r = -EINVAL;
965 	}
966 out:
967 	return r;
968 }
969 
970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
971 {
972 	kvm_x86_ops->vcpu_load(vcpu, cpu);
973 	kvm_write_guest_time(vcpu);
974 }
975 
976 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
977 {
978 	kvm_x86_ops->vcpu_put(vcpu);
979 	kvm_put_guest_fpu(vcpu);
980 }
981 
982 static int is_efer_nx(void)
983 {
984 	u64 efer;
985 
986 	rdmsrl(MSR_EFER, efer);
987 	return efer & EFER_NX;
988 }
989 
990 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
991 {
992 	int i;
993 	struct kvm_cpuid_entry2 *e, *entry;
994 
995 	entry = NULL;
996 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
997 		e = &vcpu->arch.cpuid_entries[i];
998 		if (e->function == 0x80000001) {
999 			entry = e;
1000 			break;
1001 		}
1002 	}
1003 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1004 		entry->edx &= ~(1 << 20);
1005 		printk(KERN_INFO "kvm: guest NX capability removed\n");
1006 	}
1007 }
1008 
1009 /* when an old userspace process fills a new kernel module */
1010 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1011 				    struct kvm_cpuid *cpuid,
1012 				    struct kvm_cpuid_entry __user *entries)
1013 {
1014 	int r, i;
1015 	struct kvm_cpuid_entry *cpuid_entries;
1016 
1017 	r = -E2BIG;
1018 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1019 		goto out;
1020 	r = -ENOMEM;
1021 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1022 	if (!cpuid_entries)
1023 		goto out;
1024 	r = -EFAULT;
1025 	if (copy_from_user(cpuid_entries, entries,
1026 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1027 		goto out_free;
1028 	for (i = 0; i < cpuid->nent; i++) {
1029 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1030 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1031 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1032 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1033 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1034 		vcpu->arch.cpuid_entries[i].index = 0;
1035 		vcpu->arch.cpuid_entries[i].flags = 0;
1036 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
1037 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
1038 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
1039 	}
1040 	vcpu->arch.cpuid_nent = cpuid->nent;
1041 	cpuid_fix_nx_cap(vcpu);
1042 	r = 0;
1043 
1044 out_free:
1045 	vfree(cpuid_entries);
1046 out:
1047 	return r;
1048 }
1049 
1050 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1051 				    struct kvm_cpuid2 *cpuid,
1052 				    struct kvm_cpuid_entry2 __user *entries)
1053 {
1054 	int r;
1055 
1056 	r = -E2BIG;
1057 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1058 		goto out;
1059 	r = -EFAULT;
1060 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1061 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1062 		goto out;
1063 	vcpu->arch.cpuid_nent = cpuid->nent;
1064 	return 0;
1065 
1066 out:
1067 	return r;
1068 }
1069 
1070 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1071 				    struct kvm_cpuid2 *cpuid,
1072 				    struct kvm_cpuid_entry2 __user *entries)
1073 {
1074 	int r;
1075 
1076 	r = -E2BIG;
1077 	if (cpuid->nent < vcpu->arch.cpuid_nent)
1078 		goto out;
1079 	r = -EFAULT;
1080 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1081 			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1082 		goto out;
1083 	return 0;
1084 
1085 out:
1086 	cpuid->nent = vcpu->arch.cpuid_nent;
1087 	return r;
1088 }
1089 
1090 static inline u32 bit(int bitno)
1091 {
1092 	return 1 << (bitno & 31);
1093 }
1094 
1095 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1096 			  u32 index)
1097 {
1098 	entry->function = function;
1099 	entry->index = index;
1100 	cpuid_count(entry->function, entry->index,
1101 		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1102 	entry->flags = 0;
1103 }
1104 
1105 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1106 			 u32 index, int *nent, int maxnent)
1107 {
1108 	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1109 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1110 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1111 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1112 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1113 		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1114 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1115 		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1116 		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1117 		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1118 	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1119 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1120 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1121 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1122 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1123 		bit(X86_FEATURE_PGE) |
1124 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1125 		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1126 		bit(X86_FEATURE_SYSCALL) |
1127 		(bit(X86_FEATURE_NX) && is_efer_nx()) |
1128 #ifdef CONFIG_X86_64
1129 		bit(X86_FEATURE_LM) |
1130 #endif
1131 		bit(X86_FEATURE_MMXEXT) |
1132 		bit(X86_FEATURE_3DNOWEXT) |
1133 		bit(X86_FEATURE_3DNOW);
1134 	const u32 kvm_supported_word3_x86_features =
1135 		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1136 	const u32 kvm_supported_word6_x86_features =
1137 		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1138 
1139 	/* all func 2 cpuid_count() should be called on the same cpu */
1140 	get_cpu();
1141 	do_cpuid_1_ent(entry, function, index);
1142 	++*nent;
1143 
1144 	switch (function) {
1145 	case 0:
1146 		entry->eax = min(entry->eax, (u32)0xb);
1147 		break;
1148 	case 1:
1149 		entry->edx &= kvm_supported_word0_x86_features;
1150 		entry->ecx &= kvm_supported_word3_x86_features;
1151 		break;
1152 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
1153 	 * may return different values. This forces us to get_cpu() before
1154 	 * issuing the first command, and also to emulate this annoying behavior
1155 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1156 	case 2: {
1157 		int t, times = entry->eax & 0xff;
1158 
1159 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1160 		for (t = 1; t < times && *nent < maxnent; ++t) {
1161 			do_cpuid_1_ent(&entry[t], function, 0);
1162 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1163 			++*nent;
1164 		}
1165 		break;
1166 	}
1167 	/* function 4 and 0xb have additional index. */
1168 	case 4: {
1169 		int i, cache_type;
1170 
1171 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1172 		/* read more entries until cache_type is zero */
1173 		for (i = 1; *nent < maxnent; ++i) {
1174 			cache_type = entry[i - 1].eax & 0x1f;
1175 			if (!cache_type)
1176 				break;
1177 			do_cpuid_1_ent(&entry[i], function, i);
1178 			entry[i].flags |=
1179 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1180 			++*nent;
1181 		}
1182 		break;
1183 	}
1184 	case 0xb: {
1185 		int i, level_type;
1186 
1187 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1188 		/* read more entries until level_type is zero */
1189 		for (i = 1; *nent < maxnent; ++i) {
1190 			level_type = entry[i - 1].ecx & 0xff;
1191 			if (!level_type)
1192 				break;
1193 			do_cpuid_1_ent(&entry[i], function, i);
1194 			entry[i].flags |=
1195 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1196 			++*nent;
1197 		}
1198 		break;
1199 	}
1200 	case 0x80000000:
1201 		entry->eax = min(entry->eax, 0x8000001a);
1202 		break;
1203 	case 0x80000001:
1204 		entry->edx &= kvm_supported_word1_x86_features;
1205 		entry->ecx &= kvm_supported_word6_x86_features;
1206 		break;
1207 	}
1208 	put_cpu();
1209 }
1210 
1211 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1212 				    struct kvm_cpuid_entry2 __user *entries)
1213 {
1214 	struct kvm_cpuid_entry2 *cpuid_entries;
1215 	int limit, nent = 0, r = -E2BIG;
1216 	u32 func;
1217 
1218 	if (cpuid->nent < 1)
1219 		goto out;
1220 	r = -ENOMEM;
1221 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1222 	if (!cpuid_entries)
1223 		goto out;
1224 
1225 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1226 	limit = cpuid_entries[0].eax;
1227 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1228 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1229 				&nent, cpuid->nent);
1230 	r = -E2BIG;
1231 	if (nent >= cpuid->nent)
1232 		goto out_free;
1233 
1234 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1235 	limit = cpuid_entries[nent - 1].eax;
1236 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1237 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1238 			       &nent, cpuid->nent);
1239 	r = -EFAULT;
1240 	if (copy_to_user(entries, cpuid_entries,
1241 			nent * sizeof(struct kvm_cpuid_entry2)))
1242 		goto out_free;
1243 	cpuid->nent = nent;
1244 	r = 0;
1245 
1246 out_free:
1247 	vfree(cpuid_entries);
1248 out:
1249 	return r;
1250 }
1251 
1252 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1253 				    struct kvm_lapic_state *s)
1254 {
1255 	vcpu_load(vcpu);
1256 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1257 	vcpu_put(vcpu);
1258 
1259 	return 0;
1260 }
1261 
1262 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1263 				    struct kvm_lapic_state *s)
1264 {
1265 	vcpu_load(vcpu);
1266 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1267 	kvm_apic_post_state_restore(vcpu);
1268 	vcpu_put(vcpu);
1269 
1270 	return 0;
1271 }
1272 
1273 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1274 				    struct kvm_interrupt *irq)
1275 {
1276 	if (irq->irq < 0 || irq->irq >= 256)
1277 		return -EINVAL;
1278 	if (irqchip_in_kernel(vcpu->kvm))
1279 		return -ENXIO;
1280 	vcpu_load(vcpu);
1281 
1282 	set_bit(irq->irq, vcpu->arch.irq_pending);
1283 	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1284 
1285 	vcpu_put(vcpu);
1286 
1287 	return 0;
1288 }
1289 
1290 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1291 					   struct kvm_tpr_access_ctl *tac)
1292 {
1293 	if (tac->flags)
1294 		return -EINVAL;
1295 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
1296 	return 0;
1297 }
1298 
1299 long kvm_arch_vcpu_ioctl(struct file *filp,
1300 			 unsigned int ioctl, unsigned long arg)
1301 {
1302 	struct kvm_vcpu *vcpu = filp->private_data;
1303 	void __user *argp = (void __user *)arg;
1304 	int r;
1305 
1306 	switch (ioctl) {
1307 	case KVM_GET_LAPIC: {
1308 		struct kvm_lapic_state lapic;
1309 
1310 		memset(&lapic, 0, sizeof lapic);
1311 		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1312 		if (r)
1313 			goto out;
1314 		r = -EFAULT;
1315 		if (copy_to_user(argp, &lapic, sizeof lapic))
1316 			goto out;
1317 		r = 0;
1318 		break;
1319 	}
1320 	case KVM_SET_LAPIC: {
1321 		struct kvm_lapic_state lapic;
1322 
1323 		r = -EFAULT;
1324 		if (copy_from_user(&lapic, argp, sizeof lapic))
1325 			goto out;
1326 		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1327 		if (r)
1328 			goto out;
1329 		r = 0;
1330 		break;
1331 	}
1332 	case KVM_INTERRUPT: {
1333 		struct kvm_interrupt irq;
1334 
1335 		r = -EFAULT;
1336 		if (copy_from_user(&irq, argp, sizeof irq))
1337 			goto out;
1338 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1339 		if (r)
1340 			goto out;
1341 		r = 0;
1342 		break;
1343 	}
1344 	case KVM_SET_CPUID: {
1345 		struct kvm_cpuid __user *cpuid_arg = argp;
1346 		struct kvm_cpuid cpuid;
1347 
1348 		r = -EFAULT;
1349 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1350 			goto out;
1351 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1352 		if (r)
1353 			goto out;
1354 		break;
1355 	}
1356 	case KVM_SET_CPUID2: {
1357 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1358 		struct kvm_cpuid2 cpuid;
1359 
1360 		r = -EFAULT;
1361 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1362 			goto out;
1363 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1364 				cpuid_arg->entries);
1365 		if (r)
1366 			goto out;
1367 		break;
1368 	}
1369 	case KVM_GET_CPUID2: {
1370 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1371 		struct kvm_cpuid2 cpuid;
1372 
1373 		r = -EFAULT;
1374 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1375 			goto out;
1376 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1377 				cpuid_arg->entries);
1378 		if (r)
1379 			goto out;
1380 		r = -EFAULT;
1381 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1382 			goto out;
1383 		r = 0;
1384 		break;
1385 	}
1386 	case KVM_GET_MSRS:
1387 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
1388 		break;
1389 	case KVM_SET_MSRS:
1390 		r = msr_io(vcpu, argp, do_set_msr, 0);
1391 		break;
1392 	case KVM_TPR_ACCESS_REPORTING: {
1393 		struct kvm_tpr_access_ctl tac;
1394 
1395 		r = -EFAULT;
1396 		if (copy_from_user(&tac, argp, sizeof tac))
1397 			goto out;
1398 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1399 		if (r)
1400 			goto out;
1401 		r = -EFAULT;
1402 		if (copy_to_user(argp, &tac, sizeof tac))
1403 			goto out;
1404 		r = 0;
1405 		break;
1406 	};
1407 	case KVM_SET_VAPIC_ADDR: {
1408 		struct kvm_vapic_addr va;
1409 
1410 		r = -EINVAL;
1411 		if (!irqchip_in_kernel(vcpu->kvm))
1412 			goto out;
1413 		r = -EFAULT;
1414 		if (copy_from_user(&va, argp, sizeof va))
1415 			goto out;
1416 		r = 0;
1417 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1418 		break;
1419 	}
1420 	default:
1421 		r = -EINVAL;
1422 	}
1423 out:
1424 	return r;
1425 }
1426 
1427 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1428 {
1429 	int ret;
1430 
1431 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
1432 		return -1;
1433 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1434 	return ret;
1435 }
1436 
1437 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1438 					  u32 kvm_nr_mmu_pages)
1439 {
1440 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1441 		return -EINVAL;
1442 
1443 	down_write(&kvm->slots_lock);
1444 
1445 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1446 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1447 
1448 	up_write(&kvm->slots_lock);
1449 	return 0;
1450 }
1451 
1452 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1453 {
1454 	return kvm->arch.n_alloc_mmu_pages;
1455 }
1456 
1457 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1458 {
1459 	int i;
1460 	struct kvm_mem_alias *alias;
1461 
1462 	for (i = 0; i < kvm->arch.naliases; ++i) {
1463 		alias = &kvm->arch.aliases[i];
1464 		if (gfn >= alias->base_gfn
1465 		    && gfn < alias->base_gfn + alias->npages)
1466 			return alias->target_gfn + gfn - alias->base_gfn;
1467 	}
1468 	return gfn;
1469 }
1470 
1471 /*
1472  * Set a new alias region.  Aliases map a portion of physical memory into
1473  * another portion.  This is useful for memory windows, for example the PC
1474  * VGA region.
1475  */
1476 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1477 					 struct kvm_memory_alias *alias)
1478 {
1479 	int r, n;
1480 	struct kvm_mem_alias *p;
1481 
1482 	r = -EINVAL;
1483 	/* General sanity checks */
1484 	if (alias->memory_size & (PAGE_SIZE - 1))
1485 		goto out;
1486 	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1487 		goto out;
1488 	if (alias->slot >= KVM_ALIAS_SLOTS)
1489 		goto out;
1490 	if (alias->guest_phys_addr + alias->memory_size
1491 	    < alias->guest_phys_addr)
1492 		goto out;
1493 	if (alias->target_phys_addr + alias->memory_size
1494 	    < alias->target_phys_addr)
1495 		goto out;
1496 
1497 	down_write(&kvm->slots_lock);
1498 
1499 	p = &kvm->arch.aliases[alias->slot];
1500 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1501 	p->npages = alias->memory_size >> PAGE_SHIFT;
1502 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1503 
1504 	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1505 		if (kvm->arch.aliases[n - 1].npages)
1506 			break;
1507 	kvm->arch.naliases = n;
1508 
1509 	kvm_mmu_zap_all(kvm);
1510 
1511 	up_write(&kvm->slots_lock);
1512 
1513 	return 0;
1514 
1515 out:
1516 	return r;
1517 }
1518 
1519 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1520 {
1521 	int r;
1522 
1523 	r = 0;
1524 	switch (chip->chip_id) {
1525 	case KVM_IRQCHIP_PIC_MASTER:
1526 		memcpy(&chip->chip.pic,
1527 			&pic_irqchip(kvm)->pics[0],
1528 			sizeof(struct kvm_pic_state));
1529 		break;
1530 	case KVM_IRQCHIP_PIC_SLAVE:
1531 		memcpy(&chip->chip.pic,
1532 			&pic_irqchip(kvm)->pics[1],
1533 			sizeof(struct kvm_pic_state));
1534 		break;
1535 	case KVM_IRQCHIP_IOAPIC:
1536 		memcpy(&chip->chip.ioapic,
1537 			ioapic_irqchip(kvm),
1538 			sizeof(struct kvm_ioapic_state));
1539 		break;
1540 	default:
1541 		r = -EINVAL;
1542 		break;
1543 	}
1544 	return r;
1545 }
1546 
1547 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1548 {
1549 	int r;
1550 
1551 	r = 0;
1552 	switch (chip->chip_id) {
1553 	case KVM_IRQCHIP_PIC_MASTER:
1554 		memcpy(&pic_irqchip(kvm)->pics[0],
1555 			&chip->chip.pic,
1556 			sizeof(struct kvm_pic_state));
1557 		break;
1558 	case KVM_IRQCHIP_PIC_SLAVE:
1559 		memcpy(&pic_irqchip(kvm)->pics[1],
1560 			&chip->chip.pic,
1561 			sizeof(struct kvm_pic_state));
1562 		break;
1563 	case KVM_IRQCHIP_IOAPIC:
1564 		memcpy(ioapic_irqchip(kvm),
1565 			&chip->chip.ioapic,
1566 			sizeof(struct kvm_ioapic_state));
1567 		break;
1568 	default:
1569 		r = -EINVAL;
1570 		break;
1571 	}
1572 	kvm_pic_update_irq(pic_irqchip(kvm));
1573 	return r;
1574 }
1575 
1576 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1577 {
1578 	int r = 0;
1579 
1580 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1581 	return r;
1582 }
1583 
1584 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1585 {
1586 	int r = 0;
1587 
1588 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1589 	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1590 	return r;
1591 }
1592 
1593 /*
1594  * Get (and clear) the dirty memory log for a memory slot.
1595  */
1596 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1597 				      struct kvm_dirty_log *log)
1598 {
1599 	int r;
1600 	int n;
1601 	struct kvm_memory_slot *memslot;
1602 	int is_dirty = 0;
1603 
1604 	down_write(&kvm->slots_lock);
1605 
1606 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1607 	if (r)
1608 		goto out;
1609 
1610 	/* If nothing is dirty, don't bother messing with page tables. */
1611 	if (is_dirty) {
1612 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
1613 		kvm_flush_remote_tlbs(kvm);
1614 		memslot = &kvm->memslots[log->slot];
1615 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1616 		memset(memslot->dirty_bitmap, 0, n);
1617 	}
1618 	r = 0;
1619 out:
1620 	up_write(&kvm->slots_lock);
1621 	return r;
1622 }
1623 
1624 long kvm_arch_vm_ioctl(struct file *filp,
1625 		       unsigned int ioctl, unsigned long arg)
1626 {
1627 	struct kvm *kvm = filp->private_data;
1628 	void __user *argp = (void __user *)arg;
1629 	int r = -EINVAL;
1630 
1631 	switch (ioctl) {
1632 	case KVM_SET_TSS_ADDR:
1633 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1634 		if (r < 0)
1635 			goto out;
1636 		break;
1637 	case KVM_SET_MEMORY_REGION: {
1638 		struct kvm_memory_region kvm_mem;
1639 		struct kvm_userspace_memory_region kvm_userspace_mem;
1640 
1641 		r = -EFAULT;
1642 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1643 			goto out;
1644 		kvm_userspace_mem.slot = kvm_mem.slot;
1645 		kvm_userspace_mem.flags = kvm_mem.flags;
1646 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1647 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1648 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1649 		if (r)
1650 			goto out;
1651 		break;
1652 	}
1653 	case KVM_SET_NR_MMU_PAGES:
1654 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1655 		if (r)
1656 			goto out;
1657 		break;
1658 	case KVM_GET_NR_MMU_PAGES:
1659 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1660 		break;
1661 	case KVM_SET_MEMORY_ALIAS: {
1662 		struct kvm_memory_alias alias;
1663 
1664 		r = -EFAULT;
1665 		if (copy_from_user(&alias, argp, sizeof alias))
1666 			goto out;
1667 		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1668 		if (r)
1669 			goto out;
1670 		break;
1671 	}
1672 	case KVM_CREATE_IRQCHIP:
1673 		r = -ENOMEM;
1674 		kvm->arch.vpic = kvm_create_pic(kvm);
1675 		if (kvm->arch.vpic) {
1676 			r = kvm_ioapic_init(kvm);
1677 			if (r) {
1678 				kfree(kvm->arch.vpic);
1679 				kvm->arch.vpic = NULL;
1680 				goto out;
1681 			}
1682 		} else
1683 			goto out;
1684 		break;
1685 	case KVM_CREATE_PIT:
1686 		r = -ENOMEM;
1687 		kvm->arch.vpit = kvm_create_pit(kvm);
1688 		if (kvm->arch.vpit)
1689 			r = 0;
1690 		break;
1691 	case KVM_IRQ_LINE: {
1692 		struct kvm_irq_level irq_event;
1693 
1694 		r = -EFAULT;
1695 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
1696 			goto out;
1697 		if (irqchip_in_kernel(kvm)) {
1698 			mutex_lock(&kvm->lock);
1699 			if (irq_event.irq < 16)
1700 				kvm_pic_set_irq(pic_irqchip(kvm),
1701 					irq_event.irq,
1702 					irq_event.level);
1703 			kvm_ioapic_set_irq(kvm->arch.vioapic,
1704 					irq_event.irq,
1705 					irq_event.level);
1706 			mutex_unlock(&kvm->lock);
1707 			r = 0;
1708 		}
1709 		break;
1710 	}
1711 	case KVM_GET_IRQCHIP: {
1712 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1713 		struct kvm_irqchip chip;
1714 
1715 		r = -EFAULT;
1716 		if (copy_from_user(&chip, argp, sizeof chip))
1717 			goto out;
1718 		r = -ENXIO;
1719 		if (!irqchip_in_kernel(kvm))
1720 			goto out;
1721 		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1722 		if (r)
1723 			goto out;
1724 		r = -EFAULT;
1725 		if (copy_to_user(argp, &chip, sizeof chip))
1726 			goto out;
1727 		r = 0;
1728 		break;
1729 	}
1730 	case KVM_SET_IRQCHIP: {
1731 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1732 		struct kvm_irqchip chip;
1733 
1734 		r = -EFAULT;
1735 		if (copy_from_user(&chip, argp, sizeof chip))
1736 			goto out;
1737 		r = -ENXIO;
1738 		if (!irqchip_in_kernel(kvm))
1739 			goto out;
1740 		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1741 		if (r)
1742 			goto out;
1743 		r = 0;
1744 		break;
1745 	}
1746 	case KVM_GET_PIT: {
1747 		struct kvm_pit_state ps;
1748 		r = -EFAULT;
1749 		if (copy_from_user(&ps, argp, sizeof ps))
1750 			goto out;
1751 		r = -ENXIO;
1752 		if (!kvm->arch.vpit)
1753 			goto out;
1754 		r = kvm_vm_ioctl_get_pit(kvm, &ps);
1755 		if (r)
1756 			goto out;
1757 		r = -EFAULT;
1758 		if (copy_to_user(argp, &ps, sizeof ps))
1759 			goto out;
1760 		r = 0;
1761 		break;
1762 	}
1763 	case KVM_SET_PIT: {
1764 		struct kvm_pit_state ps;
1765 		r = -EFAULT;
1766 		if (copy_from_user(&ps, argp, sizeof ps))
1767 			goto out;
1768 		r = -ENXIO;
1769 		if (!kvm->arch.vpit)
1770 			goto out;
1771 		r = kvm_vm_ioctl_set_pit(kvm, &ps);
1772 		if (r)
1773 			goto out;
1774 		r = 0;
1775 		break;
1776 	}
1777 	default:
1778 		;
1779 	}
1780 out:
1781 	return r;
1782 }
1783 
1784 static void kvm_init_msr_list(void)
1785 {
1786 	u32 dummy[2];
1787 	unsigned i, j;
1788 
1789 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1790 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1791 			continue;
1792 		if (j < i)
1793 			msrs_to_save[j] = msrs_to_save[i];
1794 		j++;
1795 	}
1796 	num_msrs_to_save = j;
1797 }
1798 
1799 /*
1800  * Only apic need an MMIO device hook, so shortcut now..
1801  */
1802 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1803 						gpa_t addr, int len,
1804 						int is_write)
1805 {
1806 	struct kvm_io_device *dev;
1807 
1808 	if (vcpu->arch.apic) {
1809 		dev = &vcpu->arch.apic->dev;
1810 		if (dev->in_range(dev, addr, len, is_write))
1811 			return dev;
1812 	}
1813 	return NULL;
1814 }
1815 
1816 
1817 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1818 						gpa_t addr, int len,
1819 						int is_write)
1820 {
1821 	struct kvm_io_device *dev;
1822 
1823 	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1824 	if (dev == NULL)
1825 		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1826 					  is_write);
1827 	return dev;
1828 }
1829 
1830 int emulator_read_std(unsigned long addr,
1831 			     void *val,
1832 			     unsigned int bytes,
1833 			     struct kvm_vcpu *vcpu)
1834 {
1835 	void *data = val;
1836 	int r = X86EMUL_CONTINUE;
1837 
1838 	while (bytes) {
1839 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1840 		unsigned offset = addr & (PAGE_SIZE-1);
1841 		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1842 		int ret;
1843 
1844 		if (gpa == UNMAPPED_GVA) {
1845 			r = X86EMUL_PROPAGATE_FAULT;
1846 			goto out;
1847 		}
1848 		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1849 		if (ret < 0) {
1850 			r = X86EMUL_UNHANDLEABLE;
1851 			goto out;
1852 		}
1853 
1854 		bytes -= tocopy;
1855 		data += tocopy;
1856 		addr += tocopy;
1857 	}
1858 out:
1859 	return r;
1860 }
1861 EXPORT_SYMBOL_GPL(emulator_read_std);
1862 
1863 static int emulator_read_emulated(unsigned long addr,
1864 				  void *val,
1865 				  unsigned int bytes,
1866 				  struct kvm_vcpu *vcpu)
1867 {
1868 	struct kvm_io_device *mmio_dev;
1869 	gpa_t                 gpa;
1870 
1871 	if (vcpu->mmio_read_completed) {
1872 		memcpy(val, vcpu->mmio_data, bytes);
1873 		vcpu->mmio_read_completed = 0;
1874 		return X86EMUL_CONTINUE;
1875 	}
1876 
1877 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1878 
1879 	/* For APIC access vmexit */
1880 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1881 		goto mmio;
1882 
1883 	if (emulator_read_std(addr, val, bytes, vcpu)
1884 			== X86EMUL_CONTINUE)
1885 		return X86EMUL_CONTINUE;
1886 	if (gpa == UNMAPPED_GVA)
1887 		return X86EMUL_PROPAGATE_FAULT;
1888 
1889 mmio:
1890 	/*
1891 	 * Is this MMIO handled locally?
1892 	 */
1893 	mutex_lock(&vcpu->kvm->lock);
1894 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1895 	if (mmio_dev) {
1896 		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1897 		mutex_unlock(&vcpu->kvm->lock);
1898 		return X86EMUL_CONTINUE;
1899 	}
1900 	mutex_unlock(&vcpu->kvm->lock);
1901 
1902 	vcpu->mmio_needed = 1;
1903 	vcpu->mmio_phys_addr = gpa;
1904 	vcpu->mmio_size = bytes;
1905 	vcpu->mmio_is_write = 0;
1906 
1907 	return X86EMUL_UNHANDLEABLE;
1908 }
1909 
1910 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1911 			  const void *val, int bytes)
1912 {
1913 	int ret;
1914 
1915 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1916 	if (ret < 0)
1917 		return 0;
1918 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1919 	return 1;
1920 }
1921 
1922 static int emulator_write_emulated_onepage(unsigned long addr,
1923 					   const void *val,
1924 					   unsigned int bytes,
1925 					   struct kvm_vcpu *vcpu)
1926 {
1927 	struct kvm_io_device *mmio_dev;
1928 	gpa_t                 gpa;
1929 
1930 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1931 
1932 	if (gpa == UNMAPPED_GVA) {
1933 		kvm_inject_page_fault(vcpu, addr, 2);
1934 		return X86EMUL_PROPAGATE_FAULT;
1935 	}
1936 
1937 	/* For APIC access vmexit */
1938 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1939 		goto mmio;
1940 
1941 	if (emulator_write_phys(vcpu, gpa, val, bytes))
1942 		return X86EMUL_CONTINUE;
1943 
1944 mmio:
1945 	/*
1946 	 * Is this MMIO handled locally?
1947 	 */
1948 	mutex_lock(&vcpu->kvm->lock);
1949 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1950 	if (mmio_dev) {
1951 		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1952 		mutex_unlock(&vcpu->kvm->lock);
1953 		return X86EMUL_CONTINUE;
1954 	}
1955 	mutex_unlock(&vcpu->kvm->lock);
1956 
1957 	vcpu->mmio_needed = 1;
1958 	vcpu->mmio_phys_addr = gpa;
1959 	vcpu->mmio_size = bytes;
1960 	vcpu->mmio_is_write = 1;
1961 	memcpy(vcpu->mmio_data, val, bytes);
1962 
1963 	return X86EMUL_CONTINUE;
1964 }
1965 
1966 int emulator_write_emulated(unsigned long addr,
1967 				   const void *val,
1968 				   unsigned int bytes,
1969 				   struct kvm_vcpu *vcpu)
1970 {
1971 	/* Crossing a page boundary? */
1972 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1973 		int rc, now;
1974 
1975 		now = -addr & ~PAGE_MASK;
1976 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1977 		if (rc != X86EMUL_CONTINUE)
1978 			return rc;
1979 		addr += now;
1980 		val += now;
1981 		bytes -= now;
1982 	}
1983 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1984 }
1985 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1986 
1987 static int emulator_cmpxchg_emulated(unsigned long addr,
1988 				     const void *old,
1989 				     const void *new,
1990 				     unsigned int bytes,
1991 				     struct kvm_vcpu *vcpu)
1992 {
1993 	static int reported;
1994 
1995 	if (!reported) {
1996 		reported = 1;
1997 		printk(KERN_WARNING "kvm: emulating exchange as write\n");
1998 	}
1999 #ifndef CONFIG_X86_64
2000 	/* guests cmpxchg8b have to be emulated atomically */
2001 	if (bytes == 8) {
2002 		gpa_t gpa;
2003 		struct page *page;
2004 		char *kaddr;
2005 		u64 val;
2006 
2007 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2008 
2009 		if (gpa == UNMAPPED_GVA ||
2010 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2011 			goto emul_write;
2012 
2013 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2014 			goto emul_write;
2015 
2016 		val = *(u64 *)new;
2017 
2018 		down_read(&current->mm->mmap_sem);
2019 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2020 		up_read(&current->mm->mmap_sem);
2021 
2022 		kaddr = kmap_atomic(page, KM_USER0);
2023 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2024 		kunmap_atomic(kaddr, KM_USER0);
2025 		kvm_release_page_dirty(page);
2026 	}
2027 emul_write:
2028 #endif
2029 
2030 	return emulator_write_emulated(addr, new, bytes, vcpu);
2031 }
2032 
2033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2034 {
2035 	return kvm_x86_ops->get_segment_base(vcpu, seg);
2036 }
2037 
2038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2039 {
2040 	return X86EMUL_CONTINUE;
2041 }
2042 
2043 int emulate_clts(struct kvm_vcpu *vcpu)
2044 {
2045 	KVMTRACE_0D(CLTS, vcpu, handler);
2046 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2047 	return X86EMUL_CONTINUE;
2048 }
2049 
2050 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2051 {
2052 	struct kvm_vcpu *vcpu = ctxt->vcpu;
2053 
2054 	switch (dr) {
2055 	case 0 ... 3:
2056 		*dest = kvm_x86_ops->get_dr(vcpu, dr);
2057 		return X86EMUL_CONTINUE;
2058 	default:
2059 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2060 		return X86EMUL_UNHANDLEABLE;
2061 	}
2062 }
2063 
2064 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2065 {
2066 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2067 	int exception;
2068 
2069 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2070 	if (exception) {
2071 		/* FIXME: better handling */
2072 		return X86EMUL_UNHANDLEABLE;
2073 	}
2074 	return X86EMUL_CONTINUE;
2075 }
2076 
2077 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2078 {
2079 	u8 opcodes[4];
2080 	unsigned long rip = vcpu->arch.rip;
2081 	unsigned long rip_linear;
2082 
2083 	if (!printk_ratelimit())
2084 		return;
2085 
2086 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2087 
2088 	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2089 
2090 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2091 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2094 
2095 static struct x86_emulate_ops emulate_ops = {
2096 	.read_std            = emulator_read_std,
2097 	.read_emulated       = emulator_read_emulated,
2098 	.write_emulated      = emulator_write_emulated,
2099 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
2100 };
2101 
2102 int emulate_instruction(struct kvm_vcpu *vcpu,
2103 			struct kvm_run *run,
2104 			unsigned long cr2,
2105 			u16 error_code,
2106 			int emulation_type)
2107 {
2108 	int r;
2109 	struct decode_cache *c;
2110 
2111 	vcpu->arch.mmio_fault_cr2 = cr2;
2112 	kvm_x86_ops->cache_regs(vcpu);
2113 
2114 	vcpu->mmio_is_write = 0;
2115 	vcpu->arch.pio.string = 0;
2116 
2117 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2118 		int cs_db, cs_l;
2119 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2120 
2121 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
2122 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2123 		vcpu->arch.emulate_ctxt.mode =
2124 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2125 			? X86EMUL_MODE_REAL : cs_l
2126 			? X86EMUL_MODE_PROT64 :	cs_db
2127 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2128 
2129 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2130 
2131 		/* Reject the instructions other than VMCALL/VMMCALL when
2132 		 * try to emulate invalid opcode */
2133 		c = &vcpu->arch.emulate_ctxt.decode;
2134 		if ((emulation_type & EMULTYPE_TRAP_UD) &&
2135 		    (!(c->twobyte && c->b == 0x01 &&
2136 		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2137 		       c->modrm_mod == 3 && c->modrm_rm == 1)))
2138 			return EMULATE_FAIL;
2139 
2140 		++vcpu->stat.insn_emulation;
2141 		if (r)  {
2142 			++vcpu->stat.insn_emulation_fail;
2143 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2144 				return EMULATE_DONE;
2145 			return EMULATE_FAIL;
2146 		}
2147 	}
2148 
2149 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2150 
2151 	if (vcpu->arch.pio.string)
2152 		return EMULATE_DO_MMIO;
2153 
2154 	if ((r || vcpu->mmio_is_write) && run) {
2155 		run->exit_reason = KVM_EXIT_MMIO;
2156 		run->mmio.phys_addr = vcpu->mmio_phys_addr;
2157 		memcpy(run->mmio.data, vcpu->mmio_data, 8);
2158 		run->mmio.len = vcpu->mmio_size;
2159 		run->mmio.is_write = vcpu->mmio_is_write;
2160 	}
2161 
2162 	if (r) {
2163 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2164 			return EMULATE_DONE;
2165 		if (!vcpu->mmio_needed) {
2166 			kvm_report_emulation_failure(vcpu, "mmio");
2167 			return EMULATE_FAIL;
2168 		}
2169 		return EMULATE_DO_MMIO;
2170 	}
2171 
2172 	kvm_x86_ops->decache_regs(vcpu);
2173 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2174 
2175 	if (vcpu->mmio_is_write) {
2176 		vcpu->mmio_needed = 0;
2177 		return EMULATE_DO_MMIO;
2178 	}
2179 
2180 	return EMULATE_DONE;
2181 }
2182 EXPORT_SYMBOL_GPL(emulate_instruction);
2183 
2184 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2185 {
2186 	int i;
2187 
2188 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2189 		if (vcpu->arch.pio.guest_pages[i]) {
2190 			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2191 			vcpu->arch.pio.guest_pages[i] = NULL;
2192 		}
2193 }
2194 
2195 static int pio_copy_data(struct kvm_vcpu *vcpu)
2196 {
2197 	void *p = vcpu->arch.pio_data;
2198 	void *q;
2199 	unsigned bytes;
2200 	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2201 
2202 	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2203 		 PAGE_KERNEL);
2204 	if (!q) {
2205 		free_pio_guest_pages(vcpu);
2206 		return -ENOMEM;
2207 	}
2208 	q += vcpu->arch.pio.guest_page_offset;
2209 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2210 	if (vcpu->arch.pio.in)
2211 		memcpy(q, p, bytes);
2212 	else
2213 		memcpy(p, q, bytes);
2214 	q -= vcpu->arch.pio.guest_page_offset;
2215 	vunmap(q);
2216 	free_pio_guest_pages(vcpu);
2217 	return 0;
2218 }
2219 
2220 int complete_pio(struct kvm_vcpu *vcpu)
2221 {
2222 	struct kvm_pio_request *io = &vcpu->arch.pio;
2223 	long delta;
2224 	int r;
2225 
2226 	kvm_x86_ops->cache_regs(vcpu);
2227 
2228 	if (!io->string) {
2229 		if (io->in)
2230 			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2231 			       io->size);
2232 	} else {
2233 		if (io->in) {
2234 			r = pio_copy_data(vcpu);
2235 			if (r) {
2236 				kvm_x86_ops->cache_regs(vcpu);
2237 				return r;
2238 			}
2239 		}
2240 
2241 		delta = 1;
2242 		if (io->rep) {
2243 			delta *= io->cur_count;
2244 			/*
2245 			 * The size of the register should really depend on
2246 			 * current address size.
2247 			 */
2248 			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2249 		}
2250 		if (io->down)
2251 			delta = -delta;
2252 		delta *= io->size;
2253 		if (io->in)
2254 			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2255 		else
2256 			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2257 	}
2258 
2259 	kvm_x86_ops->decache_regs(vcpu);
2260 
2261 	io->count -= io->cur_count;
2262 	io->cur_count = 0;
2263 
2264 	return 0;
2265 }
2266 
2267 static void kernel_pio(struct kvm_io_device *pio_dev,
2268 		       struct kvm_vcpu *vcpu,
2269 		       void *pd)
2270 {
2271 	/* TODO: String I/O for in kernel device */
2272 
2273 	mutex_lock(&vcpu->kvm->lock);
2274 	if (vcpu->arch.pio.in)
2275 		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2276 				  vcpu->arch.pio.size,
2277 				  pd);
2278 	else
2279 		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2280 				   vcpu->arch.pio.size,
2281 				   pd);
2282 	mutex_unlock(&vcpu->kvm->lock);
2283 }
2284 
2285 static void pio_string_write(struct kvm_io_device *pio_dev,
2286 			     struct kvm_vcpu *vcpu)
2287 {
2288 	struct kvm_pio_request *io = &vcpu->arch.pio;
2289 	void *pd = vcpu->arch.pio_data;
2290 	int i;
2291 
2292 	mutex_lock(&vcpu->kvm->lock);
2293 	for (i = 0; i < io->cur_count; i++) {
2294 		kvm_iodevice_write(pio_dev, io->port,
2295 				   io->size,
2296 				   pd);
2297 		pd += io->size;
2298 	}
2299 	mutex_unlock(&vcpu->kvm->lock);
2300 }
2301 
2302 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2303 					       gpa_t addr, int len,
2304 					       int is_write)
2305 {
2306 	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2307 }
2308 
2309 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2310 		  int size, unsigned port)
2311 {
2312 	struct kvm_io_device *pio_dev;
2313 
2314 	vcpu->run->exit_reason = KVM_EXIT_IO;
2315 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2316 	vcpu->run->io.size = vcpu->arch.pio.size = size;
2317 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2318 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2319 	vcpu->run->io.port = vcpu->arch.pio.port = port;
2320 	vcpu->arch.pio.in = in;
2321 	vcpu->arch.pio.string = 0;
2322 	vcpu->arch.pio.down = 0;
2323 	vcpu->arch.pio.guest_page_offset = 0;
2324 	vcpu->arch.pio.rep = 0;
2325 
2326 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2327 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2328 			    handler);
2329 	else
2330 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2331 			    handler);
2332 
2333 	kvm_x86_ops->cache_regs(vcpu);
2334 	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2335 
2336 	kvm_x86_ops->skip_emulated_instruction(vcpu);
2337 
2338 	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2339 	if (pio_dev) {
2340 		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2341 		complete_pio(vcpu);
2342 		return 1;
2343 	}
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2347 
2348 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2349 		  int size, unsigned long count, int down,
2350 		  gva_t address, int rep, unsigned port)
2351 {
2352 	unsigned now, in_page;
2353 	int i, ret = 0;
2354 	int nr_pages = 1;
2355 	struct page *page;
2356 	struct kvm_io_device *pio_dev;
2357 
2358 	vcpu->run->exit_reason = KVM_EXIT_IO;
2359 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2360 	vcpu->run->io.size = vcpu->arch.pio.size = size;
2361 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2362 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2363 	vcpu->run->io.port = vcpu->arch.pio.port = port;
2364 	vcpu->arch.pio.in = in;
2365 	vcpu->arch.pio.string = 1;
2366 	vcpu->arch.pio.down = down;
2367 	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2368 	vcpu->arch.pio.rep = rep;
2369 
2370 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2371 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2372 			    handler);
2373 	else
2374 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2375 			    handler);
2376 
2377 	if (!count) {
2378 		kvm_x86_ops->skip_emulated_instruction(vcpu);
2379 		return 1;
2380 	}
2381 
2382 	if (!down)
2383 		in_page = PAGE_SIZE - offset_in_page(address);
2384 	else
2385 		in_page = offset_in_page(address) + size;
2386 	now = min(count, (unsigned long)in_page / size);
2387 	if (!now) {
2388 		/*
2389 		 * String I/O straddles page boundary.  Pin two guest pages
2390 		 * so that we satisfy atomicity constraints.  Do just one
2391 		 * transaction to avoid complexity.
2392 		 */
2393 		nr_pages = 2;
2394 		now = 1;
2395 	}
2396 	if (down) {
2397 		/*
2398 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2399 		 */
2400 		pr_unimpl(vcpu, "guest string pio down\n");
2401 		kvm_inject_gp(vcpu, 0);
2402 		return 1;
2403 	}
2404 	vcpu->run->io.count = now;
2405 	vcpu->arch.pio.cur_count = now;
2406 
2407 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2408 		kvm_x86_ops->skip_emulated_instruction(vcpu);
2409 
2410 	for (i = 0; i < nr_pages; ++i) {
2411 		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2412 		vcpu->arch.pio.guest_pages[i] = page;
2413 		if (!page) {
2414 			kvm_inject_gp(vcpu, 0);
2415 			free_pio_guest_pages(vcpu);
2416 			return 1;
2417 		}
2418 	}
2419 
2420 	pio_dev = vcpu_find_pio_dev(vcpu, port,
2421 				    vcpu->arch.pio.cur_count,
2422 				    !vcpu->arch.pio.in);
2423 	if (!vcpu->arch.pio.in) {
2424 		/* string PIO write */
2425 		ret = pio_copy_data(vcpu);
2426 		if (ret >= 0 && pio_dev) {
2427 			pio_string_write(pio_dev, vcpu);
2428 			complete_pio(vcpu);
2429 			if (vcpu->arch.pio.count == 0)
2430 				ret = 1;
2431 		}
2432 	} else if (pio_dev)
2433 		pr_unimpl(vcpu, "no string pio read support yet, "
2434 		       "port %x size %d count %ld\n",
2435 			port, size, count);
2436 
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2440 
2441 int kvm_arch_init(void *opaque)
2442 {
2443 	int r;
2444 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2445 
2446 	if (kvm_x86_ops) {
2447 		printk(KERN_ERR "kvm: already loaded the other module\n");
2448 		r = -EEXIST;
2449 		goto out;
2450 	}
2451 
2452 	if (!ops->cpu_has_kvm_support()) {
2453 		printk(KERN_ERR "kvm: no hardware support\n");
2454 		r = -EOPNOTSUPP;
2455 		goto out;
2456 	}
2457 	if (ops->disabled_by_bios()) {
2458 		printk(KERN_ERR "kvm: disabled by bios\n");
2459 		r = -EOPNOTSUPP;
2460 		goto out;
2461 	}
2462 
2463 	r = kvm_mmu_module_init();
2464 	if (r)
2465 		goto out;
2466 
2467 	kvm_init_msr_list();
2468 
2469 	kvm_x86_ops = ops;
2470 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2471 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2472 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2473 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2474 	return 0;
2475 
2476 out:
2477 	return r;
2478 }
2479 
2480 void kvm_arch_exit(void)
2481 {
2482 	kvm_x86_ops = NULL;
2483 	kvm_mmu_module_exit();
2484 }
2485 
2486 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2487 {
2488 	++vcpu->stat.halt_exits;
2489 	KVMTRACE_0D(HLT, vcpu, handler);
2490 	if (irqchip_in_kernel(vcpu->kvm)) {
2491 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2492 		up_read(&vcpu->kvm->slots_lock);
2493 		kvm_vcpu_block(vcpu);
2494 		down_read(&vcpu->kvm->slots_lock);
2495 		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2496 			return -EINTR;
2497 		return 1;
2498 	} else {
2499 		vcpu->run->exit_reason = KVM_EXIT_HLT;
2500 		return 0;
2501 	}
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2504 
2505 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2506 			   unsigned long a1)
2507 {
2508 	if (is_long_mode(vcpu))
2509 		return a0;
2510 	else
2511 		return a0 | ((gpa_t)a1 << 32);
2512 }
2513 
2514 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2515 {
2516 	unsigned long nr, a0, a1, a2, a3, ret;
2517 	int r = 1;
2518 
2519 	kvm_x86_ops->cache_regs(vcpu);
2520 
2521 	nr = vcpu->arch.regs[VCPU_REGS_RAX];
2522 	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2523 	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2524 	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2525 	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2526 
2527 	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2528 
2529 	if (!is_long_mode(vcpu)) {
2530 		nr &= 0xFFFFFFFF;
2531 		a0 &= 0xFFFFFFFF;
2532 		a1 &= 0xFFFFFFFF;
2533 		a2 &= 0xFFFFFFFF;
2534 		a3 &= 0xFFFFFFFF;
2535 	}
2536 
2537 	switch (nr) {
2538 	case KVM_HC_VAPIC_POLL_IRQ:
2539 		ret = 0;
2540 		break;
2541 	case KVM_HC_MMU_OP:
2542 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2543 		break;
2544 	default:
2545 		ret = -KVM_ENOSYS;
2546 		break;
2547 	}
2548 	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2549 	kvm_x86_ops->decache_regs(vcpu);
2550 	++vcpu->stat.hypercalls;
2551 	return r;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2554 
2555 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2556 {
2557 	char instruction[3];
2558 	int ret = 0;
2559 
2560 
2561 	/*
2562 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
2563 	 * to ensure that the updated hypercall appears atomically across all
2564 	 * VCPUs.
2565 	 */
2566 	kvm_mmu_zap_all(vcpu->kvm);
2567 
2568 	kvm_x86_ops->cache_regs(vcpu);
2569 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2570 	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2571 	    != X86EMUL_CONTINUE)
2572 		ret = -EFAULT;
2573 
2574 	return ret;
2575 }
2576 
2577 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2578 {
2579 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2580 }
2581 
2582 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2583 {
2584 	struct descriptor_table dt = { limit, base };
2585 
2586 	kvm_x86_ops->set_gdt(vcpu, &dt);
2587 }
2588 
2589 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2590 {
2591 	struct descriptor_table dt = { limit, base };
2592 
2593 	kvm_x86_ops->set_idt(vcpu, &dt);
2594 }
2595 
2596 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2597 		   unsigned long *rflags)
2598 {
2599 	kvm_lmsw(vcpu, msw);
2600 	*rflags = kvm_x86_ops->get_rflags(vcpu);
2601 }
2602 
2603 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2604 {
2605 	unsigned long value;
2606 
2607 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2608 	switch (cr) {
2609 	case 0:
2610 		value = vcpu->arch.cr0;
2611 		break;
2612 	case 2:
2613 		value = vcpu->arch.cr2;
2614 		break;
2615 	case 3:
2616 		value = vcpu->arch.cr3;
2617 		break;
2618 	case 4:
2619 		value = vcpu->arch.cr4;
2620 		break;
2621 	case 8:
2622 		value = kvm_get_cr8(vcpu);
2623 		break;
2624 	default:
2625 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2626 		return 0;
2627 	}
2628 	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2629 		    (u32)((u64)value >> 32), handler);
2630 
2631 	return value;
2632 }
2633 
2634 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2635 		     unsigned long *rflags)
2636 {
2637 	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2638 		    (u32)((u64)val >> 32), handler);
2639 
2640 	switch (cr) {
2641 	case 0:
2642 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2643 		*rflags = kvm_x86_ops->get_rflags(vcpu);
2644 		break;
2645 	case 2:
2646 		vcpu->arch.cr2 = val;
2647 		break;
2648 	case 3:
2649 		kvm_set_cr3(vcpu, val);
2650 		break;
2651 	case 4:
2652 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2653 		break;
2654 	case 8:
2655 		kvm_set_cr8(vcpu, val & 0xfUL);
2656 		break;
2657 	default:
2658 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2659 	}
2660 }
2661 
2662 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2663 {
2664 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2665 	int j, nent = vcpu->arch.cpuid_nent;
2666 
2667 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2668 	/* when no next entry is found, the current entry[i] is reselected */
2669 	for (j = i + 1; j == i; j = (j + 1) % nent) {
2670 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2671 		if (ej->function == e->function) {
2672 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2673 			return j;
2674 		}
2675 	}
2676 	return 0; /* silence gcc, even though control never reaches here */
2677 }
2678 
2679 /* find an entry with matching function, matching index (if needed), and that
2680  * should be read next (if it's stateful) */
2681 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2682 	u32 function, u32 index)
2683 {
2684 	if (e->function != function)
2685 		return 0;
2686 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2687 		return 0;
2688 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2689 		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2690 		return 0;
2691 	return 1;
2692 }
2693 
2694 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2695 {
2696 	int i;
2697 	u32 function, index;
2698 	struct kvm_cpuid_entry2 *e, *best;
2699 
2700 	kvm_x86_ops->cache_regs(vcpu);
2701 	function = vcpu->arch.regs[VCPU_REGS_RAX];
2702 	index = vcpu->arch.regs[VCPU_REGS_RCX];
2703 	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2704 	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2705 	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2706 	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2707 	best = NULL;
2708 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2709 		e = &vcpu->arch.cpuid_entries[i];
2710 		if (is_matching_cpuid_entry(e, function, index)) {
2711 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2712 				move_to_next_stateful_cpuid_entry(vcpu, i);
2713 			best = e;
2714 			break;
2715 		}
2716 		/*
2717 		 * Both basic or both extended?
2718 		 */
2719 		if (((e->function ^ function) & 0x80000000) == 0)
2720 			if (!best || e->function > best->function)
2721 				best = e;
2722 	}
2723 	if (best) {
2724 		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2725 		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2726 		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2727 		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2728 	}
2729 	kvm_x86_ops->decache_regs(vcpu);
2730 	kvm_x86_ops->skip_emulated_instruction(vcpu);
2731 	KVMTRACE_5D(CPUID, vcpu, function,
2732 		    (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2733 		    (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2734 		    (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2735 		    (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2738 
2739 /*
2740  * Check if userspace requested an interrupt window, and that the
2741  * interrupt window is open.
2742  *
2743  * No need to exit to userspace if we already have an interrupt queued.
2744  */
2745 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2746 					  struct kvm_run *kvm_run)
2747 {
2748 	return (!vcpu->arch.irq_summary &&
2749 		kvm_run->request_interrupt_window &&
2750 		vcpu->arch.interrupt_window_open &&
2751 		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2752 }
2753 
2754 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2755 			      struct kvm_run *kvm_run)
2756 {
2757 	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2758 	kvm_run->cr8 = kvm_get_cr8(vcpu);
2759 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
2760 	if (irqchip_in_kernel(vcpu->kvm))
2761 		kvm_run->ready_for_interrupt_injection = 1;
2762 	else
2763 		kvm_run->ready_for_interrupt_injection =
2764 					(vcpu->arch.interrupt_window_open &&
2765 					 vcpu->arch.irq_summary == 0);
2766 }
2767 
2768 static void vapic_enter(struct kvm_vcpu *vcpu)
2769 {
2770 	struct kvm_lapic *apic = vcpu->arch.apic;
2771 	struct page *page;
2772 
2773 	if (!apic || !apic->vapic_addr)
2774 		return;
2775 
2776 	down_read(&current->mm->mmap_sem);
2777 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2778 	up_read(&current->mm->mmap_sem);
2779 
2780 	vcpu->arch.apic->vapic_page = page;
2781 }
2782 
2783 static void vapic_exit(struct kvm_vcpu *vcpu)
2784 {
2785 	struct kvm_lapic *apic = vcpu->arch.apic;
2786 
2787 	if (!apic || !apic->vapic_addr)
2788 		return;
2789 
2790 	down_read(&vcpu->kvm->slots_lock);
2791 	kvm_release_page_dirty(apic->vapic_page);
2792 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2793 	up_read(&vcpu->kvm->slots_lock);
2794 }
2795 
2796 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2797 {
2798 	int r;
2799 
2800 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2801 		pr_debug("vcpu %d received sipi with vector # %x\n",
2802 		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2803 		kvm_lapic_reset(vcpu);
2804 		r = kvm_x86_ops->vcpu_reset(vcpu);
2805 		if (r)
2806 			return r;
2807 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2808 	}
2809 
2810 	down_read(&vcpu->kvm->slots_lock);
2811 	vapic_enter(vcpu);
2812 
2813 preempted:
2814 	if (vcpu->guest_debug.enabled)
2815 		kvm_x86_ops->guest_debug_pre(vcpu);
2816 
2817 again:
2818 	if (vcpu->requests)
2819 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2820 			kvm_mmu_unload(vcpu);
2821 
2822 	r = kvm_mmu_reload(vcpu);
2823 	if (unlikely(r))
2824 		goto out;
2825 
2826 	if (vcpu->requests) {
2827 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2828 			__kvm_migrate_timers(vcpu);
2829 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2830 			kvm_x86_ops->tlb_flush(vcpu);
2831 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2832 				       &vcpu->requests)) {
2833 			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2834 			r = 0;
2835 			goto out;
2836 		}
2837 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2838 			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2839 			r = 0;
2840 			goto out;
2841 		}
2842 	}
2843 
2844 	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2845 	kvm_inject_pending_timer_irqs(vcpu);
2846 
2847 	preempt_disable();
2848 
2849 	kvm_x86_ops->prepare_guest_switch(vcpu);
2850 	kvm_load_guest_fpu(vcpu);
2851 
2852 	local_irq_disable();
2853 
2854 	if (vcpu->requests || need_resched()) {
2855 		local_irq_enable();
2856 		preempt_enable();
2857 		r = 1;
2858 		goto out;
2859 	}
2860 
2861 	if (signal_pending(current)) {
2862 		local_irq_enable();
2863 		preempt_enable();
2864 		r = -EINTR;
2865 		kvm_run->exit_reason = KVM_EXIT_INTR;
2866 		++vcpu->stat.signal_exits;
2867 		goto out;
2868 	}
2869 
2870 	vcpu->guest_mode = 1;
2871 	/*
2872 	 * Make sure that guest_mode assignment won't happen after
2873 	 * testing the pending IRQ vector bitmap.
2874 	 */
2875 	smp_wmb();
2876 
2877 	if (vcpu->arch.exception.pending)
2878 		__queue_exception(vcpu);
2879 	else if (irqchip_in_kernel(vcpu->kvm))
2880 		kvm_x86_ops->inject_pending_irq(vcpu);
2881 	else
2882 		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2883 
2884 	kvm_lapic_sync_to_vapic(vcpu);
2885 
2886 	up_read(&vcpu->kvm->slots_lock);
2887 
2888 	kvm_guest_enter();
2889 
2890 
2891 	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2892 	kvm_x86_ops->run(vcpu, kvm_run);
2893 
2894 	vcpu->guest_mode = 0;
2895 	local_irq_enable();
2896 
2897 	++vcpu->stat.exits;
2898 
2899 	/*
2900 	 * We must have an instruction between local_irq_enable() and
2901 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2902 	 * the interrupt shadow.  The stat.exits increment will do nicely.
2903 	 * But we need to prevent reordering, hence this barrier():
2904 	 */
2905 	barrier();
2906 
2907 	kvm_guest_exit();
2908 
2909 	preempt_enable();
2910 
2911 	down_read(&vcpu->kvm->slots_lock);
2912 
2913 	/*
2914 	 * Profile KVM exit RIPs:
2915 	 */
2916 	if (unlikely(prof_on == KVM_PROFILING)) {
2917 		kvm_x86_ops->cache_regs(vcpu);
2918 		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2919 	}
2920 
2921 	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2922 		vcpu->arch.exception.pending = false;
2923 
2924 	kvm_lapic_sync_from_vapic(vcpu);
2925 
2926 	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2927 
2928 	if (r > 0) {
2929 		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2930 			r = -EINTR;
2931 			kvm_run->exit_reason = KVM_EXIT_INTR;
2932 			++vcpu->stat.request_irq_exits;
2933 			goto out;
2934 		}
2935 		if (!need_resched())
2936 			goto again;
2937 	}
2938 
2939 out:
2940 	up_read(&vcpu->kvm->slots_lock);
2941 	if (r > 0) {
2942 		kvm_resched(vcpu);
2943 		down_read(&vcpu->kvm->slots_lock);
2944 		goto preempted;
2945 	}
2946 
2947 	post_kvm_run_save(vcpu, kvm_run);
2948 
2949 	vapic_exit(vcpu);
2950 
2951 	return r;
2952 }
2953 
2954 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2955 {
2956 	int r;
2957 	sigset_t sigsaved;
2958 
2959 	vcpu_load(vcpu);
2960 
2961 	if (vcpu->sigset_active)
2962 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2963 
2964 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2965 		kvm_vcpu_block(vcpu);
2966 		r = -EAGAIN;
2967 		goto out;
2968 	}
2969 
2970 	/* re-sync apic's tpr */
2971 	if (!irqchip_in_kernel(vcpu->kvm))
2972 		kvm_set_cr8(vcpu, kvm_run->cr8);
2973 
2974 	if (vcpu->arch.pio.cur_count) {
2975 		r = complete_pio(vcpu);
2976 		if (r)
2977 			goto out;
2978 	}
2979 #if CONFIG_HAS_IOMEM
2980 	if (vcpu->mmio_needed) {
2981 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2982 		vcpu->mmio_read_completed = 1;
2983 		vcpu->mmio_needed = 0;
2984 
2985 		down_read(&vcpu->kvm->slots_lock);
2986 		r = emulate_instruction(vcpu, kvm_run,
2987 					vcpu->arch.mmio_fault_cr2, 0,
2988 					EMULTYPE_NO_DECODE);
2989 		up_read(&vcpu->kvm->slots_lock);
2990 		if (r == EMULATE_DO_MMIO) {
2991 			/*
2992 			 * Read-modify-write.  Back to userspace.
2993 			 */
2994 			r = 0;
2995 			goto out;
2996 		}
2997 	}
2998 #endif
2999 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3000 		kvm_x86_ops->cache_regs(vcpu);
3001 		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3002 		kvm_x86_ops->decache_regs(vcpu);
3003 	}
3004 
3005 	r = __vcpu_run(vcpu, kvm_run);
3006 
3007 out:
3008 	if (vcpu->sigset_active)
3009 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3010 
3011 	vcpu_put(vcpu);
3012 	return r;
3013 }
3014 
3015 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3016 {
3017 	vcpu_load(vcpu);
3018 
3019 	kvm_x86_ops->cache_regs(vcpu);
3020 
3021 	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3022 	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3023 	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3024 	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3025 	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3026 	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3027 	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3028 	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3029 #ifdef CONFIG_X86_64
3030 	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3031 	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3032 	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3033 	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3034 	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3035 	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3036 	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3037 	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3038 #endif
3039 
3040 	regs->rip = vcpu->arch.rip;
3041 	regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3042 
3043 	/*
3044 	 * Don't leak debug flags in case they were set for guest debugging
3045 	 */
3046 	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3047 		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3048 
3049 	vcpu_put(vcpu);
3050 
3051 	return 0;
3052 }
3053 
3054 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3055 {
3056 	vcpu_load(vcpu);
3057 
3058 	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3059 	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3060 	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3061 	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3062 	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3063 	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3064 	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3065 	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3066 #ifdef CONFIG_X86_64
3067 	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3068 	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3069 	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3070 	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3071 	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3072 	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3073 	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3074 	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3075 #endif
3076 
3077 	vcpu->arch.rip = regs->rip;
3078 	kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3079 
3080 	kvm_x86_ops->decache_regs(vcpu);
3081 
3082 	vcpu->arch.exception.pending = false;
3083 
3084 	vcpu_put(vcpu);
3085 
3086 	return 0;
3087 }
3088 
3089 void kvm_get_segment(struct kvm_vcpu *vcpu,
3090 		     struct kvm_segment *var, int seg)
3091 {
3092 	kvm_x86_ops->get_segment(vcpu, var, seg);
3093 }
3094 
3095 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3096 {
3097 	struct kvm_segment cs;
3098 
3099 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3100 	*db = cs.db;
3101 	*l = cs.l;
3102 }
3103 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3104 
3105 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3106 				  struct kvm_sregs *sregs)
3107 {
3108 	struct descriptor_table dt;
3109 	int pending_vec;
3110 
3111 	vcpu_load(vcpu);
3112 
3113 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3114 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3115 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3116 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3117 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3118 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3119 
3120 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3121 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3122 
3123 	kvm_x86_ops->get_idt(vcpu, &dt);
3124 	sregs->idt.limit = dt.limit;
3125 	sregs->idt.base = dt.base;
3126 	kvm_x86_ops->get_gdt(vcpu, &dt);
3127 	sregs->gdt.limit = dt.limit;
3128 	sregs->gdt.base = dt.base;
3129 
3130 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3131 	sregs->cr0 = vcpu->arch.cr0;
3132 	sregs->cr2 = vcpu->arch.cr2;
3133 	sregs->cr3 = vcpu->arch.cr3;
3134 	sregs->cr4 = vcpu->arch.cr4;
3135 	sregs->cr8 = kvm_get_cr8(vcpu);
3136 	sregs->efer = vcpu->arch.shadow_efer;
3137 	sregs->apic_base = kvm_get_apic_base(vcpu);
3138 
3139 	if (irqchip_in_kernel(vcpu->kvm)) {
3140 		memset(sregs->interrupt_bitmap, 0,
3141 		       sizeof sregs->interrupt_bitmap);
3142 		pending_vec = kvm_x86_ops->get_irq(vcpu);
3143 		if (pending_vec >= 0)
3144 			set_bit(pending_vec,
3145 				(unsigned long *)sregs->interrupt_bitmap);
3146 	} else
3147 		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3148 		       sizeof sregs->interrupt_bitmap);
3149 
3150 	vcpu_put(vcpu);
3151 
3152 	return 0;
3153 }
3154 
3155 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3156 				    struct kvm_mp_state *mp_state)
3157 {
3158 	vcpu_load(vcpu);
3159 	mp_state->mp_state = vcpu->arch.mp_state;
3160 	vcpu_put(vcpu);
3161 	return 0;
3162 }
3163 
3164 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3165 				    struct kvm_mp_state *mp_state)
3166 {
3167 	vcpu_load(vcpu);
3168 	vcpu->arch.mp_state = mp_state->mp_state;
3169 	vcpu_put(vcpu);
3170 	return 0;
3171 }
3172 
3173 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3174 			struct kvm_segment *var, int seg)
3175 {
3176 	kvm_x86_ops->set_segment(vcpu, var, seg);
3177 }
3178 
3179 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3180 				   struct kvm_segment *kvm_desct)
3181 {
3182 	kvm_desct->base = seg_desc->base0;
3183 	kvm_desct->base |= seg_desc->base1 << 16;
3184 	kvm_desct->base |= seg_desc->base2 << 24;
3185 	kvm_desct->limit = seg_desc->limit0;
3186 	kvm_desct->limit |= seg_desc->limit << 16;
3187 	kvm_desct->selector = selector;
3188 	kvm_desct->type = seg_desc->type;
3189 	kvm_desct->present = seg_desc->p;
3190 	kvm_desct->dpl = seg_desc->dpl;
3191 	kvm_desct->db = seg_desc->d;
3192 	kvm_desct->s = seg_desc->s;
3193 	kvm_desct->l = seg_desc->l;
3194 	kvm_desct->g = seg_desc->g;
3195 	kvm_desct->avl = seg_desc->avl;
3196 	if (!selector)
3197 		kvm_desct->unusable = 1;
3198 	else
3199 		kvm_desct->unusable = 0;
3200 	kvm_desct->padding = 0;
3201 }
3202 
3203 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3204 					   u16 selector,
3205 					   struct descriptor_table *dtable)
3206 {
3207 	if (selector & 1 << 2) {
3208 		struct kvm_segment kvm_seg;
3209 
3210 		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3211 
3212 		if (kvm_seg.unusable)
3213 			dtable->limit = 0;
3214 		else
3215 			dtable->limit = kvm_seg.limit;
3216 		dtable->base = kvm_seg.base;
3217 	}
3218 	else
3219 		kvm_x86_ops->get_gdt(vcpu, dtable);
3220 }
3221 
3222 /* allowed just for 8 bytes segments */
3223 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3224 					 struct desc_struct *seg_desc)
3225 {
3226 	struct descriptor_table dtable;
3227 	u16 index = selector >> 3;
3228 
3229 	get_segment_descritptor_dtable(vcpu, selector, &dtable);
3230 
3231 	if (dtable.limit < index * 8 + 7) {
3232 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3233 		return 1;
3234 	}
3235 	return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3236 }
3237 
3238 /* allowed just for 8 bytes segments */
3239 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3240 					 struct desc_struct *seg_desc)
3241 {
3242 	struct descriptor_table dtable;
3243 	u16 index = selector >> 3;
3244 
3245 	get_segment_descritptor_dtable(vcpu, selector, &dtable);
3246 
3247 	if (dtable.limit < index * 8 + 7)
3248 		return 1;
3249 	return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3250 }
3251 
3252 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3253 			     struct desc_struct *seg_desc)
3254 {
3255 	u32 base_addr;
3256 
3257 	base_addr = seg_desc->base0;
3258 	base_addr |= (seg_desc->base1 << 16);
3259 	base_addr |= (seg_desc->base2 << 24);
3260 
3261 	return base_addr;
3262 }
3263 
3264 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3265 			      struct desc_struct *seg_desc,
3266 			      struct tss_segment_32 *tss)
3267 {
3268 	u32 base_addr;
3269 
3270 	base_addr = get_tss_base_addr(vcpu, seg_desc);
3271 
3272 	return kvm_read_guest(vcpu->kvm, base_addr, tss,
3273 			      sizeof(struct tss_segment_32));
3274 }
3275 
3276 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3277 			      struct desc_struct *seg_desc,
3278 			      struct tss_segment_32 *tss)
3279 {
3280 	u32 base_addr;
3281 
3282 	base_addr = get_tss_base_addr(vcpu, seg_desc);
3283 
3284 	return kvm_write_guest(vcpu->kvm, base_addr, tss,
3285 			       sizeof(struct tss_segment_32));
3286 }
3287 
3288 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3289 			      struct desc_struct *seg_desc,
3290 			      struct tss_segment_16 *tss)
3291 {
3292 	u32 base_addr;
3293 
3294 	base_addr = get_tss_base_addr(vcpu, seg_desc);
3295 
3296 	return kvm_read_guest(vcpu->kvm, base_addr, tss,
3297 			      sizeof(struct tss_segment_16));
3298 }
3299 
3300 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3301 			      struct desc_struct *seg_desc,
3302 			      struct tss_segment_16 *tss)
3303 {
3304 	u32 base_addr;
3305 
3306 	base_addr = get_tss_base_addr(vcpu, seg_desc);
3307 
3308 	return kvm_write_guest(vcpu->kvm, base_addr, tss,
3309 			       sizeof(struct tss_segment_16));
3310 }
3311 
3312 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3313 {
3314 	struct kvm_segment kvm_seg;
3315 
3316 	kvm_get_segment(vcpu, &kvm_seg, seg);
3317 	return kvm_seg.selector;
3318 }
3319 
3320 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3321 						u16 selector,
3322 						struct kvm_segment *kvm_seg)
3323 {
3324 	struct desc_struct seg_desc;
3325 
3326 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3327 		return 1;
3328 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3329 	return 0;
3330 }
3331 
3332 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3333 				int type_bits, int seg)
3334 {
3335 	struct kvm_segment kvm_seg;
3336 
3337 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3338 		return 1;
3339 	kvm_seg.type |= type_bits;
3340 
3341 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3342 	    seg != VCPU_SREG_LDTR)
3343 		if (!kvm_seg.s)
3344 			kvm_seg.unusable = 1;
3345 
3346 	kvm_set_segment(vcpu, &kvm_seg, seg);
3347 	return 0;
3348 }
3349 
3350 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3351 				struct tss_segment_32 *tss)
3352 {
3353 	tss->cr3 = vcpu->arch.cr3;
3354 	tss->eip = vcpu->arch.rip;
3355 	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3356 	tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3357 	tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3358 	tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3359 	tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3360 	tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3361 	tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3362 	tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3363 	tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3364 
3365 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3366 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3367 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3368 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3369 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3370 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3371 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3372 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3373 }
3374 
3375 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3376 				  struct tss_segment_32 *tss)
3377 {
3378 	kvm_set_cr3(vcpu, tss->cr3);
3379 
3380 	vcpu->arch.rip = tss->eip;
3381 	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3382 
3383 	vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3384 	vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3385 	vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3386 	vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3387 	vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3388 	vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3389 	vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3390 	vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3391 
3392 	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3393 		return 1;
3394 
3395 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3396 		return 1;
3397 
3398 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3399 		return 1;
3400 
3401 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3402 		return 1;
3403 
3404 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3405 		return 1;
3406 
3407 	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3408 		return 1;
3409 
3410 	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3411 		return 1;
3412 	return 0;
3413 }
3414 
3415 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3416 				struct tss_segment_16 *tss)
3417 {
3418 	tss->ip = vcpu->arch.rip;
3419 	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3420 	tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3421 	tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3422 	tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3423 	tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3424 	tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3425 	tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3426 	tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3427 	tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3428 
3429 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3430 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3431 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3432 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3433 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3434 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3435 }
3436 
3437 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3438 				 struct tss_segment_16 *tss)
3439 {
3440 	vcpu->arch.rip = tss->ip;
3441 	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3442 	vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3443 	vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3444 	vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3445 	vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3446 	vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3447 	vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3448 	vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3449 	vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3450 
3451 	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3452 		return 1;
3453 
3454 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3455 		return 1;
3456 
3457 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3458 		return 1;
3459 
3460 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3461 		return 1;
3462 
3463 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3464 		return 1;
3465 	return 0;
3466 }
3467 
3468 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3469 		       struct desc_struct *cseg_desc,
3470 		       struct desc_struct *nseg_desc)
3471 {
3472 	struct tss_segment_16 tss_segment_16;
3473 	int ret = 0;
3474 
3475 	if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
3476 		goto out;
3477 
3478 	save_state_to_tss16(vcpu, &tss_segment_16);
3479 	save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
3480 
3481 	if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
3482 		goto out;
3483 	if (load_state_from_tss16(vcpu, &tss_segment_16))
3484 		goto out;
3485 
3486 	ret = 1;
3487 out:
3488 	return ret;
3489 }
3490 
3491 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3492 		       struct desc_struct *cseg_desc,
3493 		       struct desc_struct *nseg_desc)
3494 {
3495 	struct tss_segment_32 tss_segment_32;
3496 	int ret = 0;
3497 
3498 	if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
3499 		goto out;
3500 
3501 	save_state_to_tss32(vcpu, &tss_segment_32);
3502 	save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
3503 
3504 	if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
3505 		goto out;
3506 	if (load_state_from_tss32(vcpu, &tss_segment_32))
3507 		goto out;
3508 
3509 	ret = 1;
3510 out:
3511 	return ret;
3512 }
3513 
3514 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3515 {
3516 	struct kvm_segment tr_seg;
3517 	struct desc_struct cseg_desc;
3518 	struct desc_struct nseg_desc;
3519 	int ret = 0;
3520 
3521 	kvm_get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3522 
3523 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3524 		goto out;
3525 
3526 	if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
3527 		goto out;
3528 
3529 
3530 	if (reason != TASK_SWITCH_IRET) {
3531 		int cpl;
3532 
3533 		cpl = kvm_x86_ops->get_cpl(vcpu);
3534 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3535 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3536 			return 1;
3537 		}
3538 	}
3539 
3540 	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3541 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3542 		return 1;
3543 	}
3544 
3545 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3546 		cseg_desc.type &= ~(1 << 1); //clear the B flag
3547 		save_guest_segment_descriptor(vcpu, tr_seg.selector,
3548 					      &cseg_desc);
3549 	}
3550 
3551 	if (reason == TASK_SWITCH_IRET) {
3552 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3553 		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3554 	}
3555 
3556 	kvm_x86_ops->skip_emulated_instruction(vcpu);
3557 	kvm_x86_ops->cache_regs(vcpu);
3558 
3559 	if (nseg_desc.type & 8)
3560 		ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
3561 					 &nseg_desc);
3562 	else
3563 		ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
3564 					 &nseg_desc);
3565 
3566 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3567 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3568 		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3569 	}
3570 
3571 	if (reason != TASK_SWITCH_IRET) {
3572 		nseg_desc.type |= (1 << 1);
3573 		save_guest_segment_descriptor(vcpu, tss_selector,
3574 					      &nseg_desc);
3575 	}
3576 
3577 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3578 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3579 	tr_seg.type = 11;
3580 	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3581 out:
3582 	kvm_x86_ops->decache_regs(vcpu);
3583 	return ret;
3584 }
3585 EXPORT_SYMBOL_GPL(kvm_task_switch);
3586 
3587 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3588 				  struct kvm_sregs *sregs)
3589 {
3590 	int mmu_reset_needed = 0;
3591 	int i, pending_vec, max_bits;
3592 	struct descriptor_table dt;
3593 
3594 	vcpu_load(vcpu);
3595 
3596 	dt.limit = sregs->idt.limit;
3597 	dt.base = sregs->idt.base;
3598 	kvm_x86_ops->set_idt(vcpu, &dt);
3599 	dt.limit = sregs->gdt.limit;
3600 	dt.base = sregs->gdt.base;
3601 	kvm_x86_ops->set_gdt(vcpu, &dt);
3602 
3603 	vcpu->arch.cr2 = sregs->cr2;
3604 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3605 	vcpu->arch.cr3 = sregs->cr3;
3606 
3607 	kvm_set_cr8(vcpu, sregs->cr8);
3608 
3609 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3610 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
3611 	kvm_set_apic_base(vcpu, sregs->apic_base);
3612 
3613 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3614 
3615 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3616 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3617 	vcpu->arch.cr0 = sregs->cr0;
3618 
3619 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3620 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3621 	if (!is_long_mode(vcpu) && is_pae(vcpu))
3622 		load_pdptrs(vcpu, vcpu->arch.cr3);
3623 
3624 	if (mmu_reset_needed)
3625 		kvm_mmu_reset_context(vcpu);
3626 
3627 	if (!irqchip_in_kernel(vcpu->kvm)) {
3628 		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3629 		       sizeof vcpu->arch.irq_pending);
3630 		vcpu->arch.irq_summary = 0;
3631 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3632 			if (vcpu->arch.irq_pending[i])
3633 				__set_bit(i, &vcpu->arch.irq_summary);
3634 	} else {
3635 		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3636 		pending_vec = find_first_bit(
3637 			(const unsigned long *)sregs->interrupt_bitmap,
3638 			max_bits);
3639 		/* Only pending external irq is handled here */
3640 		if (pending_vec < max_bits) {
3641 			kvm_x86_ops->set_irq(vcpu, pending_vec);
3642 			pr_debug("Set back pending irq %d\n",
3643 				 pending_vec);
3644 		}
3645 	}
3646 
3647 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3648 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3649 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3650 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3651 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3652 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3653 
3654 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3655 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3656 
3657 	vcpu_put(vcpu);
3658 
3659 	return 0;
3660 }
3661 
3662 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3663 				    struct kvm_debug_guest *dbg)
3664 {
3665 	int r;
3666 
3667 	vcpu_load(vcpu);
3668 
3669 	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3670 
3671 	vcpu_put(vcpu);
3672 
3673 	return r;
3674 }
3675 
3676 /*
3677  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3678  * we have asm/x86/processor.h
3679  */
3680 struct fxsave {
3681 	u16	cwd;
3682 	u16	swd;
3683 	u16	twd;
3684 	u16	fop;
3685 	u64	rip;
3686 	u64	rdp;
3687 	u32	mxcsr;
3688 	u32	mxcsr_mask;
3689 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
3690 #ifdef CONFIG_X86_64
3691 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
3692 #else
3693 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
3694 #endif
3695 };
3696 
3697 /*
3698  * Translate a guest virtual address to a guest physical address.
3699  */
3700 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3701 				    struct kvm_translation *tr)
3702 {
3703 	unsigned long vaddr = tr->linear_address;
3704 	gpa_t gpa;
3705 
3706 	vcpu_load(vcpu);
3707 	down_read(&vcpu->kvm->slots_lock);
3708 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3709 	up_read(&vcpu->kvm->slots_lock);
3710 	tr->physical_address = gpa;
3711 	tr->valid = gpa != UNMAPPED_GVA;
3712 	tr->writeable = 1;
3713 	tr->usermode = 0;
3714 	vcpu_put(vcpu);
3715 
3716 	return 0;
3717 }
3718 
3719 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3720 {
3721 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3722 
3723 	vcpu_load(vcpu);
3724 
3725 	memcpy(fpu->fpr, fxsave->st_space, 128);
3726 	fpu->fcw = fxsave->cwd;
3727 	fpu->fsw = fxsave->swd;
3728 	fpu->ftwx = fxsave->twd;
3729 	fpu->last_opcode = fxsave->fop;
3730 	fpu->last_ip = fxsave->rip;
3731 	fpu->last_dp = fxsave->rdp;
3732 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3733 
3734 	vcpu_put(vcpu);
3735 
3736 	return 0;
3737 }
3738 
3739 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3740 {
3741 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3742 
3743 	vcpu_load(vcpu);
3744 
3745 	memcpy(fxsave->st_space, fpu->fpr, 128);
3746 	fxsave->cwd = fpu->fcw;
3747 	fxsave->swd = fpu->fsw;
3748 	fxsave->twd = fpu->ftwx;
3749 	fxsave->fop = fpu->last_opcode;
3750 	fxsave->rip = fpu->last_ip;
3751 	fxsave->rdp = fpu->last_dp;
3752 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3753 
3754 	vcpu_put(vcpu);
3755 
3756 	return 0;
3757 }
3758 
3759 void fx_init(struct kvm_vcpu *vcpu)
3760 {
3761 	unsigned after_mxcsr_mask;
3762 
3763 	/*
3764 	 * Touch the fpu the first time in non atomic context as if
3765 	 * this is the first fpu instruction the exception handler
3766 	 * will fire before the instruction returns and it'll have to
3767 	 * allocate ram with GFP_KERNEL.
3768 	 */
3769 	if (!used_math())
3770 		kvm_fx_save(&vcpu->arch.host_fx_image);
3771 
3772 	/* Initialize guest FPU by resetting ours and saving into guest's */
3773 	preempt_disable();
3774 	kvm_fx_save(&vcpu->arch.host_fx_image);
3775 	kvm_fx_finit();
3776 	kvm_fx_save(&vcpu->arch.guest_fx_image);
3777 	kvm_fx_restore(&vcpu->arch.host_fx_image);
3778 	preempt_enable();
3779 
3780 	vcpu->arch.cr0 |= X86_CR0_ET;
3781 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3782 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3783 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3784 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3785 }
3786 EXPORT_SYMBOL_GPL(fx_init);
3787 
3788 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3789 {
3790 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3791 		return;
3792 
3793 	vcpu->guest_fpu_loaded = 1;
3794 	kvm_fx_save(&vcpu->arch.host_fx_image);
3795 	kvm_fx_restore(&vcpu->arch.guest_fx_image);
3796 }
3797 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3798 
3799 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3800 {
3801 	if (!vcpu->guest_fpu_loaded)
3802 		return;
3803 
3804 	vcpu->guest_fpu_loaded = 0;
3805 	kvm_fx_save(&vcpu->arch.guest_fx_image);
3806 	kvm_fx_restore(&vcpu->arch.host_fx_image);
3807 	++vcpu->stat.fpu_reload;
3808 }
3809 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3810 
3811 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3812 {
3813 	kvm_x86_ops->vcpu_free(vcpu);
3814 }
3815 
3816 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3817 						unsigned int id)
3818 {
3819 	return kvm_x86_ops->vcpu_create(kvm, id);
3820 }
3821 
3822 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3823 {
3824 	int r;
3825 
3826 	/* We do fxsave: this must be aligned. */
3827 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3828 
3829 	vcpu_load(vcpu);
3830 	r = kvm_arch_vcpu_reset(vcpu);
3831 	if (r == 0)
3832 		r = kvm_mmu_setup(vcpu);
3833 	vcpu_put(vcpu);
3834 	if (r < 0)
3835 		goto free_vcpu;
3836 
3837 	return 0;
3838 free_vcpu:
3839 	kvm_x86_ops->vcpu_free(vcpu);
3840 	return r;
3841 }
3842 
3843 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3844 {
3845 	vcpu_load(vcpu);
3846 	kvm_mmu_unload(vcpu);
3847 	vcpu_put(vcpu);
3848 
3849 	kvm_x86_ops->vcpu_free(vcpu);
3850 }
3851 
3852 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3853 {
3854 	return kvm_x86_ops->vcpu_reset(vcpu);
3855 }
3856 
3857 void kvm_arch_hardware_enable(void *garbage)
3858 {
3859 	kvm_x86_ops->hardware_enable(garbage);
3860 }
3861 
3862 void kvm_arch_hardware_disable(void *garbage)
3863 {
3864 	kvm_x86_ops->hardware_disable(garbage);
3865 }
3866 
3867 int kvm_arch_hardware_setup(void)
3868 {
3869 	return kvm_x86_ops->hardware_setup();
3870 }
3871 
3872 void kvm_arch_hardware_unsetup(void)
3873 {
3874 	kvm_x86_ops->hardware_unsetup();
3875 }
3876 
3877 void kvm_arch_check_processor_compat(void *rtn)
3878 {
3879 	kvm_x86_ops->check_processor_compatibility(rtn);
3880 }
3881 
3882 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3883 {
3884 	struct page *page;
3885 	struct kvm *kvm;
3886 	int r;
3887 
3888 	BUG_ON(vcpu->kvm == NULL);
3889 	kvm = vcpu->kvm;
3890 
3891 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3892 	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3893 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3894 	else
3895 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3896 
3897 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3898 	if (!page) {
3899 		r = -ENOMEM;
3900 		goto fail;
3901 	}
3902 	vcpu->arch.pio_data = page_address(page);
3903 
3904 	r = kvm_mmu_create(vcpu);
3905 	if (r < 0)
3906 		goto fail_free_pio_data;
3907 
3908 	if (irqchip_in_kernel(kvm)) {
3909 		r = kvm_create_lapic(vcpu);
3910 		if (r < 0)
3911 			goto fail_mmu_destroy;
3912 	}
3913 
3914 	return 0;
3915 
3916 fail_mmu_destroy:
3917 	kvm_mmu_destroy(vcpu);
3918 fail_free_pio_data:
3919 	free_page((unsigned long)vcpu->arch.pio_data);
3920 fail:
3921 	return r;
3922 }
3923 
3924 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3925 {
3926 	kvm_free_lapic(vcpu);
3927 	down_read(&vcpu->kvm->slots_lock);
3928 	kvm_mmu_destroy(vcpu);
3929 	up_read(&vcpu->kvm->slots_lock);
3930 	free_page((unsigned long)vcpu->arch.pio_data);
3931 }
3932 
3933 struct  kvm *kvm_arch_create_vm(void)
3934 {
3935 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3936 
3937 	if (!kvm)
3938 		return ERR_PTR(-ENOMEM);
3939 
3940 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3941 
3942 	return kvm;
3943 }
3944 
3945 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3946 {
3947 	vcpu_load(vcpu);
3948 	kvm_mmu_unload(vcpu);
3949 	vcpu_put(vcpu);
3950 }
3951 
3952 static void kvm_free_vcpus(struct kvm *kvm)
3953 {
3954 	unsigned int i;
3955 
3956 	/*
3957 	 * Unpin any mmu pages first.
3958 	 */
3959 	for (i = 0; i < KVM_MAX_VCPUS; ++i)
3960 		if (kvm->vcpus[i])
3961 			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3962 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3963 		if (kvm->vcpus[i]) {
3964 			kvm_arch_vcpu_free(kvm->vcpus[i]);
3965 			kvm->vcpus[i] = NULL;
3966 		}
3967 	}
3968 
3969 }
3970 
3971 void kvm_arch_destroy_vm(struct kvm *kvm)
3972 {
3973 	kvm_free_pit(kvm);
3974 	kfree(kvm->arch.vpic);
3975 	kfree(kvm->arch.vioapic);
3976 	kvm_free_vcpus(kvm);
3977 	kvm_free_physmem(kvm);
3978 	if (kvm->arch.apic_access_page)
3979 		put_page(kvm->arch.apic_access_page);
3980 	if (kvm->arch.ept_identity_pagetable)
3981 		put_page(kvm->arch.ept_identity_pagetable);
3982 	kfree(kvm);
3983 }
3984 
3985 int kvm_arch_set_memory_region(struct kvm *kvm,
3986 				struct kvm_userspace_memory_region *mem,
3987 				struct kvm_memory_slot old,
3988 				int user_alloc)
3989 {
3990 	int npages = mem->memory_size >> PAGE_SHIFT;
3991 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3992 
3993 	/*To keep backward compatibility with older userspace,
3994 	 *x86 needs to hanlde !user_alloc case.
3995 	 */
3996 	if (!user_alloc) {
3997 		if (npages && !old.rmap) {
3998 			down_write(&current->mm->mmap_sem);
3999 			memslot->userspace_addr = do_mmap(NULL, 0,
4000 						     npages * PAGE_SIZE,
4001 						     PROT_READ | PROT_WRITE,
4002 						     MAP_SHARED | MAP_ANONYMOUS,
4003 						     0);
4004 			up_write(&current->mm->mmap_sem);
4005 
4006 			if (IS_ERR((void *)memslot->userspace_addr))
4007 				return PTR_ERR((void *)memslot->userspace_addr);
4008 		} else {
4009 			if (!old.user_alloc && old.rmap) {
4010 				int ret;
4011 
4012 				down_write(&current->mm->mmap_sem);
4013 				ret = do_munmap(current->mm, old.userspace_addr,
4014 						old.npages * PAGE_SIZE);
4015 				up_write(&current->mm->mmap_sem);
4016 				if (ret < 0)
4017 					printk(KERN_WARNING
4018 				       "kvm_vm_ioctl_set_memory_region: "
4019 				       "failed to munmap memory\n");
4020 			}
4021 		}
4022 	}
4023 
4024 	if (!kvm->arch.n_requested_mmu_pages) {
4025 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4026 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4027 	}
4028 
4029 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4030 	kvm_flush_remote_tlbs(kvm);
4031 
4032 	return 0;
4033 }
4034 
4035 void kvm_arch_flush_shadow(struct kvm *kvm)
4036 {
4037 	kvm_mmu_zap_all(kvm);
4038 }
4039 
4040 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4041 {
4042 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4043 	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4044 }
4045 
4046 static void vcpu_kick_intr(void *info)
4047 {
4048 #ifdef DEBUG
4049 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4050 	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4051 #endif
4052 }
4053 
4054 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4055 {
4056 	int ipi_pcpu = vcpu->cpu;
4057 	int cpu = get_cpu();
4058 
4059 	if (waitqueue_active(&vcpu->wq)) {
4060 		wake_up_interruptible(&vcpu->wq);
4061 		++vcpu->stat.halt_wakeup;
4062 	}
4063 	/*
4064 	 * We may be called synchronously with irqs disabled in guest mode,
4065 	 * So need not to call smp_call_function_single() in that case.
4066 	 */
4067 	if (vcpu->guest_mode && vcpu->cpu != cpu)
4068 		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4069 	put_cpu();
4070 }
4071