xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 4f6cce39)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 
79 #define emul_to_vcpu(ctxt) \
80 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92 
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106 
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109 
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112 
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115 
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32  __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64  __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126 
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130 
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134 
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137 
138 static bool __read_mostly backwards_tsc_observed = false;
139 
140 #define KVM_NR_SHARED_MSRS 16
141 
142 struct kvm_shared_msrs_global {
143 	int nr;
144 	u32 msrs[KVM_NR_SHARED_MSRS];
145 };
146 
147 struct kvm_shared_msrs {
148 	struct user_return_notifier urn;
149 	bool registered;
150 	struct kvm_shared_msr_values {
151 		u64 host;
152 		u64 curr;
153 	} values[KVM_NR_SHARED_MSRS];
154 };
155 
156 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
157 static struct kvm_shared_msrs __percpu *shared_msrs;
158 
159 struct kvm_stats_debugfs_item debugfs_entries[] = {
160 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
161 	{ "pf_guest", VCPU_STAT(pf_guest) },
162 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
163 	{ "invlpg", VCPU_STAT(invlpg) },
164 	{ "exits", VCPU_STAT(exits) },
165 	{ "io_exits", VCPU_STAT(io_exits) },
166 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
167 	{ "signal_exits", VCPU_STAT(signal_exits) },
168 	{ "irq_window", VCPU_STAT(irq_window_exits) },
169 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
170 	{ "halt_exits", VCPU_STAT(halt_exits) },
171 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
172 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
173 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
174 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
175 	{ "hypercalls", VCPU_STAT(hypercalls) },
176 	{ "request_irq", VCPU_STAT(request_irq_exits) },
177 	{ "irq_exits", VCPU_STAT(irq_exits) },
178 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
179 	{ "efer_reload", VCPU_STAT(efer_reload) },
180 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
181 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
182 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
183 	{ "irq_injections", VCPU_STAT(irq_injections) },
184 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
185 	{ "req_event", VCPU_STAT(req_event) },
186 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
187 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
188 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
189 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
190 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
191 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
192 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
193 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
194 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
195 	{ "largepages", VM_STAT(lpages) },
196 	{ "max_mmu_page_hash_collisions",
197 		VM_STAT(max_mmu_page_hash_collisions) },
198 	{ NULL }
199 };
200 
201 u64 __read_mostly host_xcr0;
202 
203 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
204 
205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
206 {
207 	int i;
208 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
209 		vcpu->arch.apf.gfns[i] = ~0;
210 }
211 
212 static void kvm_on_user_return(struct user_return_notifier *urn)
213 {
214 	unsigned slot;
215 	struct kvm_shared_msrs *locals
216 		= container_of(urn, struct kvm_shared_msrs, urn);
217 	struct kvm_shared_msr_values *values;
218 	unsigned long flags;
219 
220 	/*
221 	 * Disabling irqs at this point since the following code could be
222 	 * interrupted and executed through kvm_arch_hardware_disable()
223 	 */
224 	local_irq_save(flags);
225 	if (locals->registered) {
226 		locals->registered = false;
227 		user_return_notifier_unregister(urn);
228 	}
229 	local_irq_restore(flags);
230 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
231 		values = &locals->values[slot];
232 		if (values->host != values->curr) {
233 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
234 			values->curr = values->host;
235 		}
236 	}
237 }
238 
239 static void shared_msr_update(unsigned slot, u32 msr)
240 {
241 	u64 value;
242 	unsigned int cpu = smp_processor_id();
243 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244 
245 	/* only read, and nobody should modify it at this time,
246 	 * so don't need lock */
247 	if (slot >= shared_msrs_global.nr) {
248 		printk(KERN_ERR "kvm: invalid MSR slot!");
249 		return;
250 	}
251 	rdmsrl_safe(msr, &value);
252 	smsr->values[slot].host = value;
253 	smsr->values[slot].curr = value;
254 }
255 
256 void kvm_define_shared_msr(unsigned slot, u32 msr)
257 {
258 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
259 	shared_msrs_global.msrs[slot] = msr;
260 	if (slot >= shared_msrs_global.nr)
261 		shared_msrs_global.nr = slot + 1;
262 }
263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
264 
265 static void kvm_shared_msr_cpu_online(void)
266 {
267 	unsigned i;
268 
269 	for (i = 0; i < shared_msrs_global.nr; ++i)
270 		shared_msr_update(i, shared_msrs_global.msrs[i]);
271 }
272 
273 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
274 {
275 	unsigned int cpu = smp_processor_id();
276 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 	int err;
278 
279 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
280 		return 0;
281 	smsr->values[slot].curr = value;
282 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
283 	if (err)
284 		return 1;
285 
286 	if (!smsr->registered) {
287 		smsr->urn.on_user_return = kvm_on_user_return;
288 		user_return_notifier_register(&smsr->urn);
289 		smsr->registered = true;
290 	}
291 	return 0;
292 }
293 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
294 
295 static void drop_user_return_notifiers(void)
296 {
297 	unsigned int cpu = smp_processor_id();
298 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
299 
300 	if (smsr->registered)
301 		kvm_on_user_return(&smsr->urn);
302 }
303 
304 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
305 {
306 	return vcpu->arch.apic_base;
307 }
308 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
309 
310 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
311 {
312 	u64 old_state = vcpu->arch.apic_base &
313 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 	u64 new_state = msr_info->data &
315 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
317 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
318 
319 	if (!msr_info->host_initiated &&
320 	    ((msr_info->data & reserved_bits) != 0 ||
321 	     new_state == X2APIC_ENABLE ||
322 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
323 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
324 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
325 	      old_state == 0)))
326 		return 1;
327 
328 	kvm_lapic_set_base(vcpu, msr_info->data);
329 	return 0;
330 }
331 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
332 
333 asmlinkage __visible void kvm_spurious_fault(void)
334 {
335 	/* Fault while not rebooting.  We want the trace. */
336 	BUG();
337 }
338 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
339 
340 #define EXCPT_BENIGN		0
341 #define EXCPT_CONTRIBUTORY	1
342 #define EXCPT_PF		2
343 
344 static int exception_class(int vector)
345 {
346 	switch (vector) {
347 	case PF_VECTOR:
348 		return EXCPT_PF;
349 	case DE_VECTOR:
350 	case TS_VECTOR:
351 	case NP_VECTOR:
352 	case SS_VECTOR:
353 	case GP_VECTOR:
354 		return EXCPT_CONTRIBUTORY;
355 	default:
356 		break;
357 	}
358 	return EXCPT_BENIGN;
359 }
360 
361 #define EXCPT_FAULT		0
362 #define EXCPT_TRAP		1
363 #define EXCPT_ABORT		2
364 #define EXCPT_INTERRUPT		3
365 
366 static int exception_type(int vector)
367 {
368 	unsigned int mask;
369 
370 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
371 		return EXCPT_INTERRUPT;
372 
373 	mask = 1 << vector;
374 
375 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
376 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
377 		return EXCPT_TRAP;
378 
379 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
380 		return EXCPT_ABORT;
381 
382 	/* Reserved exceptions will result in fault */
383 	return EXCPT_FAULT;
384 }
385 
386 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
387 		unsigned nr, bool has_error, u32 error_code,
388 		bool reinject)
389 {
390 	u32 prev_nr;
391 	int class1, class2;
392 
393 	kvm_make_request(KVM_REQ_EVENT, vcpu);
394 
395 	if (!vcpu->arch.exception.pending) {
396 	queue:
397 		if (has_error && !is_protmode(vcpu))
398 			has_error = false;
399 		vcpu->arch.exception.pending = true;
400 		vcpu->arch.exception.has_error_code = has_error;
401 		vcpu->arch.exception.nr = nr;
402 		vcpu->arch.exception.error_code = error_code;
403 		vcpu->arch.exception.reinject = reinject;
404 		return;
405 	}
406 
407 	/* to check exception */
408 	prev_nr = vcpu->arch.exception.nr;
409 	if (prev_nr == DF_VECTOR) {
410 		/* triple fault -> shutdown */
411 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
412 		return;
413 	}
414 	class1 = exception_class(prev_nr);
415 	class2 = exception_class(nr);
416 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
417 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
418 		/* generate double fault per SDM Table 5-5 */
419 		vcpu->arch.exception.pending = true;
420 		vcpu->arch.exception.has_error_code = true;
421 		vcpu->arch.exception.nr = DF_VECTOR;
422 		vcpu->arch.exception.error_code = 0;
423 	} else
424 		/* replace previous exception with a new one in a hope
425 		   that instruction re-execution will regenerate lost
426 		   exception */
427 		goto queue;
428 }
429 
430 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
431 {
432 	kvm_multiple_exception(vcpu, nr, false, 0, false);
433 }
434 EXPORT_SYMBOL_GPL(kvm_queue_exception);
435 
436 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
437 {
438 	kvm_multiple_exception(vcpu, nr, false, 0, true);
439 }
440 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
441 
442 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
443 {
444 	if (err)
445 		kvm_inject_gp(vcpu, 0);
446 	else
447 		return kvm_skip_emulated_instruction(vcpu);
448 
449 	return 1;
450 }
451 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
452 
453 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
454 {
455 	++vcpu->stat.pf_guest;
456 	vcpu->arch.cr2 = fault->address;
457 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
458 }
459 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
460 
461 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
462 {
463 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
464 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
465 	else
466 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
467 
468 	return fault->nested_page_fault;
469 }
470 
471 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
472 {
473 	atomic_inc(&vcpu->arch.nmi_queued);
474 	kvm_make_request(KVM_REQ_NMI, vcpu);
475 }
476 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
477 
478 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
479 {
480 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
481 }
482 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
483 
484 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
485 {
486 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
487 }
488 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
489 
490 /*
491  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
492  * a #GP and return false.
493  */
494 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
495 {
496 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
497 		return true;
498 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
499 	return false;
500 }
501 EXPORT_SYMBOL_GPL(kvm_require_cpl);
502 
503 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
504 {
505 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
506 		return true;
507 
508 	kvm_queue_exception(vcpu, UD_VECTOR);
509 	return false;
510 }
511 EXPORT_SYMBOL_GPL(kvm_require_dr);
512 
513 /*
514  * This function will be used to read from the physical memory of the currently
515  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
516  * can read from guest physical or from the guest's guest physical memory.
517  */
518 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
519 			    gfn_t ngfn, void *data, int offset, int len,
520 			    u32 access)
521 {
522 	struct x86_exception exception;
523 	gfn_t real_gfn;
524 	gpa_t ngpa;
525 
526 	ngpa     = gfn_to_gpa(ngfn);
527 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
528 	if (real_gfn == UNMAPPED_GVA)
529 		return -EFAULT;
530 
531 	real_gfn = gpa_to_gfn(real_gfn);
532 
533 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
534 }
535 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
536 
537 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
538 			       void *data, int offset, int len, u32 access)
539 {
540 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
541 				       data, offset, len, access);
542 }
543 
544 /*
545  * Load the pae pdptrs.  Return true is they are all valid.
546  */
547 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
548 {
549 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
550 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
551 	int i;
552 	int ret;
553 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
554 
555 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
556 				      offset * sizeof(u64), sizeof(pdpte),
557 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
558 	if (ret < 0) {
559 		ret = 0;
560 		goto out;
561 	}
562 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
563 		if ((pdpte[i] & PT_PRESENT_MASK) &&
564 		    (pdpte[i] &
565 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
566 			ret = 0;
567 			goto out;
568 		}
569 	}
570 	ret = 1;
571 
572 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
573 	__set_bit(VCPU_EXREG_PDPTR,
574 		  (unsigned long *)&vcpu->arch.regs_avail);
575 	__set_bit(VCPU_EXREG_PDPTR,
576 		  (unsigned long *)&vcpu->arch.regs_dirty);
577 out:
578 
579 	return ret;
580 }
581 EXPORT_SYMBOL_GPL(load_pdptrs);
582 
583 bool pdptrs_changed(struct kvm_vcpu *vcpu)
584 {
585 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
586 	bool changed = true;
587 	int offset;
588 	gfn_t gfn;
589 	int r;
590 
591 	if (is_long_mode(vcpu) || !is_pae(vcpu))
592 		return false;
593 
594 	if (!test_bit(VCPU_EXREG_PDPTR,
595 		      (unsigned long *)&vcpu->arch.regs_avail))
596 		return true;
597 
598 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
599 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
600 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
601 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
602 	if (r < 0)
603 		goto out;
604 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
605 out:
606 
607 	return changed;
608 }
609 EXPORT_SYMBOL_GPL(pdptrs_changed);
610 
611 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
612 {
613 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
614 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
615 
616 	cr0 |= X86_CR0_ET;
617 
618 #ifdef CONFIG_X86_64
619 	if (cr0 & 0xffffffff00000000UL)
620 		return 1;
621 #endif
622 
623 	cr0 &= ~CR0_RESERVED_BITS;
624 
625 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
626 		return 1;
627 
628 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
629 		return 1;
630 
631 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
632 #ifdef CONFIG_X86_64
633 		if ((vcpu->arch.efer & EFER_LME)) {
634 			int cs_db, cs_l;
635 
636 			if (!is_pae(vcpu))
637 				return 1;
638 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
639 			if (cs_l)
640 				return 1;
641 		} else
642 #endif
643 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
644 						 kvm_read_cr3(vcpu)))
645 			return 1;
646 	}
647 
648 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
649 		return 1;
650 
651 	kvm_x86_ops->set_cr0(vcpu, cr0);
652 
653 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
654 		kvm_clear_async_pf_completion_queue(vcpu);
655 		kvm_async_pf_hash_reset(vcpu);
656 	}
657 
658 	if ((cr0 ^ old_cr0) & update_bits)
659 		kvm_mmu_reset_context(vcpu);
660 
661 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
662 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
663 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
664 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
665 
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr0);
669 
670 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
671 {
672 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
673 }
674 EXPORT_SYMBOL_GPL(kvm_lmsw);
675 
676 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
677 {
678 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
679 			!vcpu->guest_xcr0_loaded) {
680 		/* kvm_set_xcr() also depends on this */
681 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
682 		vcpu->guest_xcr0_loaded = 1;
683 	}
684 }
685 
686 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
687 {
688 	if (vcpu->guest_xcr0_loaded) {
689 		if (vcpu->arch.xcr0 != host_xcr0)
690 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
691 		vcpu->guest_xcr0_loaded = 0;
692 	}
693 }
694 
695 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
696 {
697 	u64 xcr0 = xcr;
698 	u64 old_xcr0 = vcpu->arch.xcr0;
699 	u64 valid_bits;
700 
701 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
702 	if (index != XCR_XFEATURE_ENABLED_MASK)
703 		return 1;
704 	if (!(xcr0 & XFEATURE_MASK_FP))
705 		return 1;
706 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
707 		return 1;
708 
709 	/*
710 	 * Do not allow the guest to set bits that we do not support
711 	 * saving.  However, xcr0 bit 0 is always set, even if the
712 	 * emulated CPU does not support XSAVE (see fx_init).
713 	 */
714 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
715 	if (xcr0 & ~valid_bits)
716 		return 1;
717 
718 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
719 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
720 		return 1;
721 
722 	if (xcr0 & XFEATURE_MASK_AVX512) {
723 		if (!(xcr0 & XFEATURE_MASK_YMM))
724 			return 1;
725 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
726 			return 1;
727 	}
728 	vcpu->arch.xcr0 = xcr0;
729 
730 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
731 		kvm_update_cpuid(vcpu);
732 	return 0;
733 }
734 
735 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
738 	    __kvm_set_xcr(vcpu, index, xcr)) {
739 		kvm_inject_gp(vcpu, 0);
740 		return 1;
741 	}
742 	return 0;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_xcr);
745 
746 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
747 {
748 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
749 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
750 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
751 
752 	if (cr4 & CR4_RESERVED_BITS)
753 		return 1;
754 
755 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
756 		return 1;
757 
758 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
759 		return 1;
760 
761 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
762 		return 1;
763 
764 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
765 		return 1;
766 
767 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
768 		return 1;
769 
770 	if (is_long_mode(vcpu)) {
771 		if (!(cr4 & X86_CR4_PAE))
772 			return 1;
773 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
774 		   && ((cr4 ^ old_cr4) & pdptr_bits)
775 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
776 				   kvm_read_cr3(vcpu)))
777 		return 1;
778 
779 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
780 		if (!guest_cpuid_has_pcid(vcpu))
781 			return 1;
782 
783 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
784 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
785 			return 1;
786 	}
787 
788 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
789 		return 1;
790 
791 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
792 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
793 		kvm_mmu_reset_context(vcpu);
794 
795 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
796 		kvm_update_cpuid(vcpu);
797 
798 	return 0;
799 }
800 EXPORT_SYMBOL_GPL(kvm_set_cr4);
801 
802 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
803 {
804 #ifdef CONFIG_X86_64
805 	cr3 &= ~CR3_PCID_INVD;
806 #endif
807 
808 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
809 		kvm_mmu_sync_roots(vcpu);
810 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
811 		return 0;
812 	}
813 
814 	if (is_long_mode(vcpu)) {
815 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
816 			return 1;
817 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
818 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
819 		return 1;
820 
821 	vcpu->arch.cr3 = cr3;
822 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
823 	kvm_mmu_new_cr3(vcpu);
824 	return 0;
825 }
826 EXPORT_SYMBOL_GPL(kvm_set_cr3);
827 
828 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
829 {
830 	if (cr8 & CR8_RESERVED_BITS)
831 		return 1;
832 	if (lapic_in_kernel(vcpu))
833 		kvm_lapic_set_tpr(vcpu, cr8);
834 	else
835 		vcpu->arch.cr8 = cr8;
836 	return 0;
837 }
838 EXPORT_SYMBOL_GPL(kvm_set_cr8);
839 
840 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
841 {
842 	if (lapic_in_kernel(vcpu))
843 		return kvm_lapic_get_cr8(vcpu);
844 	else
845 		return vcpu->arch.cr8;
846 }
847 EXPORT_SYMBOL_GPL(kvm_get_cr8);
848 
849 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
850 {
851 	int i;
852 
853 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
854 		for (i = 0; i < KVM_NR_DB_REGS; i++)
855 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
856 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
857 	}
858 }
859 
860 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
861 {
862 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
863 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
864 }
865 
866 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
867 {
868 	unsigned long dr7;
869 
870 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
871 		dr7 = vcpu->arch.guest_debug_dr7;
872 	else
873 		dr7 = vcpu->arch.dr7;
874 	kvm_x86_ops->set_dr7(vcpu, dr7);
875 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
876 	if (dr7 & DR7_BP_EN_MASK)
877 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
878 }
879 
880 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
881 {
882 	u64 fixed = DR6_FIXED_1;
883 
884 	if (!guest_cpuid_has_rtm(vcpu))
885 		fixed |= DR6_RTM;
886 	return fixed;
887 }
888 
889 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
890 {
891 	switch (dr) {
892 	case 0 ... 3:
893 		vcpu->arch.db[dr] = val;
894 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 			vcpu->arch.eff_db[dr] = val;
896 		break;
897 	case 4:
898 		/* fall through */
899 	case 6:
900 		if (val & 0xffffffff00000000ULL)
901 			return -1; /* #GP */
902 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
903 		kvm_update_dr6(vcpu);
904 		break;
905 	case 5:
906 		/* fall through */
907 	default: /* 7 */
908 		if (val & 0xffffffff00000000ULL)
909 			return -1; /* #GP */
910 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
911 		kvm_update_dr7(vcpu);
912 		break;
913 	}
914 
915 	return 0;
916 }
917 
918 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
919 {
920 	if (__kvm_set_dr(vcpu, dr, val)) {
921 		kvm_inject_gp(vcpu, 0);
922 		return 1;
923 	}
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_set_dr);
927 
928 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
929 {
930 	switch (dr) {
931 	case 0 ... 3:
932 		*val = vcpu->arch.db[dr];
933 		break;
934 	case 4:
935 		/* fall through */
936 	case 6:
937 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
938 			*val = vcpu->arch.dr6;
939 		else
940 			*val = kvm_x86_ops->get_dr6(vcpu);
941 		break;
942 	case 5:
943 		/* fall through */
944 	default: /* 7 */
945 		*val = vcpu->arch.dr7;
946 		break;
947 	}
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_get_dr);
951 
952 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
953 {
954 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
955 	u64 data;
956 	int err;
957 
958 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
959 	if (err)
960 		return err;
961 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
962 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
963 	return err;
964 }
965 EXPORT_SYMBOL_GPL(kvm_rdpmc);
966 
967 /*
968  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
969  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
970  *
971  * This list is modified at module load time to reflect the
972  * capabilities of the host cpu. This capabilities test skips MSRs that are
973  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
974  * may depend on host virtualization features rather than host cpu features.
975  */
976 
977 static u32 msrs_to_save[] = {
978 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
979 	MSR_STAR,
980 #ifdef CONFIG_X86_64
981 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
982 #endif
983 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
984 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
985 };
986 
987 static unsigned num_msrs_to_save;
988 
989 static u32 emulated_msrs[] = {
990 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
991 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
992 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
993 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
994 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
995 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
996 	HV_X64_MSR_RESET,
997 	HV_X64_MSR_VP_INDEX,
998 	HV_X64_MSR_VP_RUNTIME,
999 	HV_X64_MSR_SCONTROL,
1000 	HV_X64_MSR_STIMER0_CONFIG,
1001 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1002 	MSR_KVM_PV_EOI_EN,
1003 
1004 	MSR_IA32_TSC_ADJUST,
1005 	MSR_IA32_TSCDEADLINE,
1006 	MSR_IA32_MISC_ENABLE,
1007 	MSR_IA32_MCG_STATUS,
1008 	MSR_IA32_MCG_CTL,
1009 	MSR_IA32_MCG_EXT_CTL,
1010 	MSR_IA32_SMBASE,
1011 };
1012 
1013 static unsigned num_emulated_msrs;
1014 
1015 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 	if (efer & efer_reserved_bits)
1018 		return false;
1019 
1020 	if (efer & EFER_FFXSR) {
1021 		struct kvm_cpuid_entry2 *feat;
1022 
1023 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1024 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1025 			return false;
1026 	}
1027 
1028 	if (efer & EFER_SVME) {
1029 		struct kvm_cpuid_entry2 *feat;
1030 
1031 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1032 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1033 			return false;
1034 	}
1035 
1036 	return true;
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1039 
1040 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1041 {
1042 	u64 old_efer = vcpu->arch.efer;
1043 
1044 	if (!kvm_valid_efer(vcpu, efer))
1045 		return 1;
1046 
1047 	if (is_paging(vcpu)
1048 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1049 		return 1;
1050 
1051 	efer &= ~EFER_LMA;
1052 	efer |= vcpu->arch.efer & EFER_LMA;
1053 
1054 	kvm_x86_ops->set_efer(vcpu, efer);
1055 
1056 	/* Update reserved bits */
1057 	if ((efer ^ old_efer) & EFER_NX)
1058 		kvm_mmu_reset_context(vcpu);
1059 
1060 	return 0;
1061 }
1062 
1063 void kvm_enable_efer_bits(u64 mask)
1064 {
1065        efer_reserved_bits &= ~mask;
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1068 
1069 /*
1070  * Writes msr value into into the appropriate "register".
1071  * Returns 0 on success, non-0 otherwise.
1072  * Assumes vcpu_load() was already called.
1073  */
1074 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1075 {
1076 	switch (msr->index) {
1077 	case MSR_FS_BASE:
1078 	case MSR_GS_BASE:
1079 	case MSR_KERNEL_GS_BASE:
1080 	case MSR_CSTAR:
1081 	case MSR_LSTAR:
1082 		if (is_noncanonical_address(msr->data))
1083 			return 1;
1084 		break;
1085 	case MSR_IA32_SYSENTER_EIP:
1086 	case MSR_IA32_SYSENTER_ESP:
1087 		/*
1088 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1089 		 * non-canonical address is written on Intel but not on
1090 		 * AMD (which ignores the top 32-bits, because it does
1091 		 * not implement 64-bit SYSENTER).
1092 		 *
1093 		 * 64-bit code should hence be able to write a non-canonical
1094 		 * value on AMD.  Making the address canonical ensures that
1095 		 * vmentry does not fail on Intel after writing a non-canonical
1096 		 * value, and that something deterministic happens if the guest
1097 		 * invokes 64-bit SYSENTER.
1098 		 */
1099 		msr->data = get_canonical(msr->data);
1100 	}
1101 	return kvm_x86_ops->set_msr(vcpu, msr);
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_set_msr);
1104 
1105 /*
1106  * Adapt set_msr() to msr_io()'s calling convention
1107  */
1108 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1109 {
1110 	struct msr_data msr;
1111 	int r;
1112 
1113 	msr.index = index;
1114 	msr.host_initiated = true;
1115 	r = kvm_get_msr(vcpu, &msr);
1116 	if (r)
1117 		return r;
1118 
1119 	*data = msr.data;
1120 	return 0;
1121 }
1122 
1123 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1124 {
1125 	struct msr_data msr;
1126 
1127 	msr.data = *data;
1128 	msr.index = index;
1129 	msr.host_initiated = true;
1130 	return kvm_set_msr(vcpu, &msr);
1131 }
1132 
1133 #ifdef CONFIG_X86_64
1134 struct pvclock_gtod_data {
1135 	seqcount_t	seq;
1136 
1137 	struct { /* extract of a clocksource struct */
1138 		int vclock_mode;
1139 		u64	cycle_last;
1140 		u64	mask;
1141 		u32	mult;
1142 		u32	shift;
1143 	} clock;
1144 
1145 	u64		boot_ns;
1146 	u64		nsec_base;
1147 	u64		wall_time_sec;
1148 };
1149 
1150 static struct pvclock_gtod_data pvclock_gtod_data;
1151 
1152 static void update_pvclock_gtod(struct timekeeper *tk)
1153 {
1154 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1155 	u64 boot_ns;
1156 
1157 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1158 
1159 	write_seqcount_begin(&vdata->seq);
1160 
1161 	/* copy pvclock gtod data */
1162 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1163 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1164 	vdata->clock.mask		= tk->tkr_mono.mask;
1165 	vdata->clock.mult		= tk->tkr_mono.mult;
1166 	vdata->clock.shift		= tk->tkr_mono.shift;
1167 
1168 	vdata->boot_ns			= boot_ns;
1169 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1170 
1171 	vdata->wall_time_sec            = tk->xtime_sec;
1172 
1173 	write_seqcount_end(&vdata->seq);
1174 }
1175 #endif
1176 
1177 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1178 {
1179 	/*
1180 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1181 	 * vcpu_enter_guest.  This function is only called from
1182 	 * the physical CPU that is running vcpu.
1183 	 */
1184 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1185 }
1186 
1187 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1188 {
1189 	int version;
1190 	int r;
1191 	struct pvclock_wall_clock wc;
1192 	struct timespec64 boot;
1193 
1194 	if (!wall_clock)
1195 		return;
1196 
1197 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1198 	if (r)
1199 		return;
1200 
1201 	if (version & 1)
1202 		++version;  /* first time write, random junk */
1203 
1204 	++version;
1205 
1206 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1207 		return;
1208 
1209 	/*
1210 	 * The guest calculates current wall clock time by adding
1211 	 * system time (updated by kvm_guest_time_update below) to the
1212 	 * wall clock specified here.  guest system time equals host
1213 	 * system time for us, thus we must fill in host boot time here.
1214 	 */
1215 	getboottime64(&boot);
1216 
1217 	if (kvm->arch.kvmclock_offset) {
1218 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1219 		boot = timespec64_sub(boot, ts);
1220 	}
1221 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1222 	wc.nsec = boot.tv_nsec;
1223 	wc.version = version;
1224 
1225 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1226 
1227 	version++;
1228 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1229 }
1230 
1231 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1232 {
1233 	do_shl32_div32(dividend, divisor);
1234 	return dividend;
1235 }
1236 
1237 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1238 			       s8 *pshift, u32 *pmultiplier)
1239 {
1240 	uint64_t scaled64;
1241 	int32_t  shift = 0;
1242 	uint64_t tps64;
1243 	uint32_t tps32;
1244 
1245 	tps64 = base_hz;
1246 	scaled64 = scaled_hz;
1247 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1248 		tps64 >>= 1;
1249 		shift--;
1250 	}
1251 
1252 	tps32 = (uint32_t)tps64;
1253 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1254 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1255 			scaled64 >>= 1;
1256 		else
1257 			tps32 <<= 1;
1258 		shift++;
1259 	}
1260 
1261 	*pshift = shift;
1262 	*pmultiplier = div_frac(scaled64, tps32);
1263 
1264 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1265 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1266 }
1267 
1268 #ifdef CONFIG_X86_64
1269 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1270 #endif
1271 
1272 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1273 static unsigned long max_tsc_khz;
1274 
1275 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1276 {
1277 	u64 v = (u64)khz * (1000000 + ppm);
1278 	do_div(v, 1000000);
1279 	return v;
1280 }
1281 
1282 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1283 {
1284 	u64 ratio;
1285 
1286 	/* Guest TSC same frequency as host TSC? */
1287 	if (!scale) {
1288 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1289 		return 0;
1290 	}
1291 
1292 	/* TSC scaling supported? */
1293 	if (!kvm_has_tsc_control) {
1294 		if (user_tsc_khz > tsc_khz) {
1295 			vcpu->arch.tsc_catchup = 1;
1296 			vcpu->arch.tsc_always_catchup = 1;
1297 			return 0;
1298 		} else {
1299 			WARN(1, "user requested TSC rate below hardware speed\n");
1300 			return -1;
1301 		}
1302 	}
1303 
1304 	/* TSC scaling required  - calculate ratio */
1305 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1306 				user_tsc_khz, tsc_khz);
1307 
1308 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1309 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1310 			  user_tsc_khz);
1311 		return -1;
1312 	}
1313 
1314 	vcpu->arch.tsc_scaling_ratio = ratio;
1315 	return 0;
1316 }
1317 
1318 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1319 {
1320 	u32 thresh_lo, thresh_hi;
1321 	int use_scaling = 0;
1322 
1323 	/* tsc_khz can be zero if TSC calibration fails */
1324 	if (user_tsc_khz == 0) {
1325 		/* set tsc_scaling_ratio to a safe value */
1326 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1327 		return -1;
1328 	}
1329 
1330 	/* Compute a scale to convert nanoseconds in TSC cycles */
1331 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1332 			   &vcpu->arch.virtual_tsc_shift,
1333 			   &vcpu->arch.virtual_tsc_mult);
1334 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1335 
1336 	/*
1337 	 * Compute the variation in TSC rate which is acceptable
1338 	 * within the range of tolerance and decide if the
1339 	 * rate being applied is within that bounds of the hardware
1340 	 * rate.  If so, no scaling or compensation need be done.
1341 	 */
1342 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1343 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1344 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1345 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1346 		use_scaling = 1;
1347 	}
1348 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1349 }
1350 
1351 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1352 {
1353 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1354 				      vcpu->arch.virtual_tsc_mult,
1355 				      vcpu->arch.virtual_tsc_shift);
1356 	tsc += vcpu->arch.this_tsc_write;
1357 	return tsc;
1358 }
1359 
1360 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1361 {
1362 #ifdef CONFIG_X86_64
1363 	bool vcpus_matched;
1364 	struct kvm_arch *ka = &vcpu->kvm->arch;
1365 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1366 
1367 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1368 			 atomic_read(&vcpu->kvm->online_vcpus));
1369 
1370 	/*
1371 	 * Once the masterclock is enabled, always perform request in
1372 	 * order to update it.
1373 	 *
1374 	 * In order to enable masterclock, the host clocksource must be TSC
1375 	 * and the vcpus need to have matched TSCs.  When that happens,
1376 	 * perform request to enable masterclock.
1377 	 */
1378 	if (ka->use_master_clock ||
1379 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1380 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1381 
1382 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1383 			    atomic_read(&vcpu->kvm->online_vcpus),
1384 		            ka->use_master_clock, gtod->clock.vclock_mode);
1385 #endif
1386 }
1387 
1388 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1389 {
1390 	u64 curr_offset = vcpu->arch.tsc_offset;
1391 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1392 }
1393 
1394 /*
1395  * Multiply tsc by a fixed point number represented by ratio.
1396  *
1397  * The most significant 64-N bits (mult) of ratio represent the
1398  * integral part of the fixed point number; the remaining N bits
1399  * (frac) represent the fractional part, ie. ratio represents a fixed
1400  * point number (mult + frac * 2^(-N)).
1401  *
1402  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1403  */
1404 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1405 {
1406 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1407 }
1408 
1409 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1410 {
1411 	u64 _tsc = tsc;
1412 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1413 
1414 	if (ratio != kvm_default_tsc_scaling_ratio)
1415 		_tsc = __scale_tsc(ratio, tsc);
1416 
1417 	return _tsc;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1420 
1421 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1422 {
1423 	u64 tsc;
1424 
1425 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1426 
1427 	return target_tsc - tsc;
1428 }
1429 
1430 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1431 {
1432 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1435 
1436 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1437 {
1438 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1439 	vcpu->arch.tsc_offset = offset;
1440 }
1441 
1442 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1443 {
1444 	struct kvm *kvm = vcpu->kvm;
1445 	u64 offset, ns, elapsed;
1446 	unsigned long flags;
1447 	s64 usdiff;
1448 	bool matched;
1449 	bool already_matched;
1450 	u64 data = msr->data;
1451 
1452 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1453 	offset = kvm_compute_tsc_offset(vcpu, data);
1454 	ns = ktime_get_boot_ns();
1455 	elapsed = ns - kvm->arch.last_tsc_nsec;
1456 
1457 	if (vcpu->arch.virtual_tsc_khz) {
1458 		int faulted = 0;
1459 
1460 		/* n.b - signed multiplication and division required */
1461 		usdiff = data - kvm->arch.last_tsc_write;
1462 #ifdef CONFIG_X86_64
1463 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1464 #else
1465 		/* do_div() only does unsigned */
1466 		asm("1: idivl %[divisor]\n"
1467 		    "2: xor %%edx, %%edx\n"
1468 		    "   movl $0, %[faulted]\n"
1469 		    "3:\n"
1470 		    ".section .fixup,\"ax\"\n"
1471 		    "4: movl $1, %[faulted]\n"
1472 		    "   jmp  3b\n"
1473 		    ".previous\n"
1474 
1475 		_ASM_EXTABLE(1b, 4b)
1476 
1477 		: "=A"(usdiff), [faulted] "=r" (faulted)
1478 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1479 
1480 #endif
1481 		do_div(elapsed, 1000);
1482 		usdiff -= elapsed;
1483 		if (usdiff < 0)
1484 			usdiff = -usdiff;
1485 
1486 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1487 		if (faulted)
1488 			usdiff = USEC_PER_SEC;
1489 	} else
1490 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1491 
1492 	/*
1493 	 * Special case: TSC write with a small delta (1 second) of virtual
1494 	 * cycle time against real time is interpreted as an attempt to
1495 	 * synchronize the CPU.
1496          *
1497 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1498 	 * TSC, we add elapsed time in this computation.  We could let the
1499 	 * compensation code attempt to catch up if we fall behind, but
1500 	 * it's better to try to match offsets from the beginning.
1501          */
1502 	if (usdiff < USEC_PER_SEC &&
1503 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504 		if (!check_tsc_unstable()) {
1505 			offset = kvm->arch.cur_tsc_offset;
1506 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1507 		} else {
1508 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1509 			data += delta;
1510 			offset = kvm_compute_tsc_offset(vcpu, data);
1511 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512 		}
1513 		matched = true;
1514 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515 	} else {
1516 		/*
1517 		 * We split periods of matched TSC writes into generations.
1518 		 * For each generation, we track the original measured
1519 		 * nanosecond time, offset, and write, so if TSCs are in
1520 		 * sync, we can match exact offset, and if not, we can match
1521 		 * exact software computation in compute_guest_tsc()
1522 		 *
1523 		 * These values are tracked in kvm->arch.cur_xxx variables.
1524 		 */
1525 		kvm->arch.cur_tsc_generation++;
1526 		kvm->arch.cur_tsc_nsec = ns;
1527 		kvm->arch.cur_tsc_write = data;
1528 		kvm->arch.cur_tsc_offset = offset;
1529 		matched = false;
1530 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531 			 kvm->arch.cur_tsc_generation, data);
1532 	}
1533 
1534 	/*
1535 	 * We also track th most recent recorded KHZ, write and time to
1536 	 * allow the matching interval to be extended at each write.
1537 	 */
1538 	kvm->arch.last_tsc_nsec = ns;
1539 	kvm->arch.last_tsc_write = data;
1540 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541 
1542 	vcpu->arch.last_guest_tsc = data;
1543 
1544 	/* Keep track of which generation this VCPU has synchronized to */
1545 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548 
1549 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1550 		update_ia32_tsc_adjust_msr(vcpu, offset);
1551 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1552 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1553 
1554 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1555 	if (!matched) {
1556 		kvm->arch.nr_vcpus_matched_tsc = 0;
1557 	} else if (!already_matched) {
1558 		kvm->arch.nr_vcpus_matched_tsc++;
1559 	}
1560 
1561 	kvm_track_tsc_matching(vcpu);
1562 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1563 }
1564 
1565 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1566 
1567 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1568 					   s64 adjustment)
1569 {
1570 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1571 }
1572 
1573 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1574 {
1575 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1576 		WARN_ON(adjustment < 0);
1577 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1578 	adjust_tsc_offset_guest(vcpu, adjustment);
1579 }
1580 
1581 #ifdef CONFIG_X86_64
1582 
1583 static u64 read_tsc(void)
1584 {
1585 	u64 ret = (u64)rdtsc_ordered();
1586 	u64 last = pvclock_gtod_data.clock.cycle_last;
1587 
1588 	if (likely(ret >= last))
1589 		return ret;
1590 
1591 	/*
1592 	 * GCC likes to generate cmov here, but this branch is extremely
1593 	 * predictable (it's just a function of time and the likely is
1594 	 * very likely) and there's a data dependence, so force GCC
1595 	 * to generate a branch instead.  I don't barrier() because
1596 	 * we don't actually need a barrier, and if this function
1597 	 * ever gets inlined it will generate worse code.
1598 	 */
1599 	asm volatile ("");
1600 	return last;
1601 }
1602 
1603 static inline u64 vgettsc(u64 *cycle_now)
1604 {
1605 	long v;
1606 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1607 
1608 	*cycle_now = read_tsc();
1609 
1610 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1611 	return v * gtod->clock.mult;
1612 }
1613 
1614 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1615 {
1616 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1617 	unsigned long seq;
1618 	int mode;
1619 	u64 ns;
1620 
1621 	do {
1622 		seq = read_seqcount_begin(&gtod->seq);
1623 		mode = gtod->clock.vclock_mode;
1624 		ns = gtod->nsec_base;
1625 		ns += vgettsc(cycle_now);
1626 		ns >>= gtod->clock.shift;
1627 		ns += gtod->boot_ns;
1628 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1629 	*t = ns;
1630 
1631 	return mode;
1632 }
1633 
1634 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1635 {
1636 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1637 	unsigned long seq;
1638 	int mode;
1639 	u64 ns;
1640 
1641 	do {
1642 		seq = read_seqcount_begin(&gtod->seq);
1643 		mode = gtod->clock.vclock_mode;
1644 		ts->tv_sec = gtod->wall_time_sec;
1645 		ns = gtod->nsec_base;
1646 		ns += vgettsc(cycle_now);
1647 		ns >>= gtod->clock.shift;
1648 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1649 
1650 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1651 	ts->tv_nsec = ns;
1652 
1653 	return mode;
1654 }
1655 
1656 /* returns true if host is using tsc clocksource */
1657 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1658 {
1659 	/* checked again under seqlock below */
1660 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1661 		return false;
1662 
1663 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1664 }
1665 
1666 /* returns true if host is using tsc clocksource */
1667 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1668 					   u64 *cycle_now)
1669 {
1670 	/* checked again under seqlock below */
1671 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1672 		return false;
1673 
1674 	return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1675 }
1676 #endif
1677 
1678 /*
1679  *
1680  * Assuming a stable TSC across physical CPUS, and a stable TSC
1681  * across virtual CPUs, the following condition is possible.
1682  * Each numbered line represents an event visible to both
1683  * CPUs at the next numbered event.
1684  *
1685  * "timespecX" represents host monotonic time. "tscX" represents
1686  * RDTSC value.
1687  *
1688  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1689  *
1690  * 1.  read timespec0,tsc0
1691  * 2.					| timespec1 = timespec0 + N
1692  * 					| tsc1 = tsc0 + M
1693  * 3. transition to guest		| transition to guest
1694  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1695  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1696  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1697  *
1698  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1699  *
1700  * 	- ret0 < ret1
1701  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1702  *		...
1703  *	- 0 < N - M => M < N
1704  *
1705  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1706  * always the case (the difference between two distinct xtime instances
1707  * might be smaller then the difference between corresponding TSC reads,
1708  * when updating guest vcpus pvclock areas).
1709  *
1710  * To avoid that problem, do not allow visibility of distinct
1711  * system_timestamp/tsc_timestamp values simultaneously: use a master
1712  * copy of host monotonic time values. Update that master copy
1713  * in lockstep.
1714  *
1715  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1716  *
1717  */
1718 
1719 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1720 {
1721 #ifdef CONFIG_X86_64
1722 	struct kvm_arch *ka = &kvm->arch;
1723 	int vclock_mode;
1724 	bool host_tsc_clocksource, vcpus_matched;
1725 
1726 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1727 			atomic_read(&kvm->online_vcpus));
1728 
1729 	/*
1730 	 * If the host uses TSC clock, then passthrough TSC as stable
1731 	 * to the guest.
1732 	 */
1733 	host_tsc_clocksource = kvm_get_time_and_clockread(
1734 					&ka->master_kernel_ns,
1735 					&ka->master_cycle_now);
1736 
1737 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1738 				&& !backwards_tsc_observed
1739 				&& !ka->boot_vcpu_runs_old_kvmclock;
1740 
1741 	if (ka->use_master_clock)
1742 		atomic_set(&kvm_guest_has_master_clock, 1);
1743 
1744 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1745 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1746 					vcpus_matched);
1747 #endif
1748 }
1749 
1750 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1751 {
1752 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1753 }
1754 
1755 static void kvm_gen_update_masterclock(struct kvm *kvm)
1756 {
1757 #ifdef CONFIG_X86_64
1758 	int i;
1759 	struct kvm_vcpu *vcpu;
1760 	struct kvm_arch *ka = &kvm->arch;
1761 
1762 	spin_lock(&ka->pvclock_gtod_sync_lock);
1763 	kvm_make_mclock_inprogress_request(kvm);
1764 	/* no guest entries from this point */
1765 	pvclock_update_vm_gtod_copy(kvm);
1766 
1767 	kvm_for_each_vcpu(i, vcpu, kvm)
1768 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1769 
1770 	/* guest entries allowed */
1771 	kvm_for_each_vcpu(i, vcpu, kvm)
1772 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1773 
1774 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1775 #endif
1776 }
1777 
1778 static u64 __get_kvmclock_ns(struct kvm *kvm)
1779 {
1780 	struct kvm_arch *ka = &kvm->arch;
1781 	struct pvclock_vcpu_time_info hv_clock;
1782 
1783 	spin_lock(&ka->pvclock_gtod_sync_lock);
1784 	if (!ka->use_master_clock) {
1785 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1786 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1787 	}
1788 
1789 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1790 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1791 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1792 
1793 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1794 			   &hv_clock.tsc_shift,
1795 			   &hv_clock.tsc_to_system_mul);
1796 	return __pvclock_read_cycles(&hv_clock, rdtsc());
1797 }
1798 
1799 u64 get_kvmclock_ns(struct kvm *kvm)
1800 {
1801 	unsigned long flags;
1802 	s64 ns;
1803 
1804 	local_irq_save(flags);
1805 	ns = __get_kvmclock_ns(kvm);
1806 	local_irq_restore(flags);
1807 
1808 	return ns;
1809 }
1810 
1811 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1812 {
1813 	struct kvm_vcpu_arch *vcpu = &v->arch;
1814 	struct pvclock_vcpu_time_info guest_hv_clock;
1815 
1816 	if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1817 		&guest_hv_clock, sizeof(guest_hv_clock))))
1818 		return;
1819 
1820 	/* This VCPU is paused, but it's legal for a guest to read another
1821 	 * VCPU's kvmclock, so we really have to follow the specification where
1822 	 * it says that version is odd if data is being modified, and even after
1823 	 * it is consistent.
1824 	 *
1825 	 * Version field updates must be kept separate.  This is because
1826 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1827 	 * writes within a string instruction are weakly ordered.  So there
1828 	 * are three writes overall.
1829 	 *
1830 	 * As a small optimization, only write the version field in the first
1831 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1832 	 * version field is the first in the struct.
1833 	 */
1834 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1835 
1836 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1837 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1838 				    &vcpu->hv_clock,
1839 				    sizeof(vcpu->hv_clock.version));
1840 
1841 	smp_wmb();
1842 
1843 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1844 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1845 
1846 	if (vcpu->pvclock_set_guest_stopped_request) {
1847 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1848 		vcpu->pvclock_set_guest_stopped_request = false;
1849 	}
1850 
1851 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1852 
1853 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1854 				    &vcpu->hv_clock,
1855 				    sizeof(vcpu->hv_clock));
1856 
1857 	smp_wmb();
1858 
1859 	vcpu->hv_clock.version++;
1860 	kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1861 				    &vcpu->hv_clock,
1862 				    sizeof(vcpu->hv_clock.version));
1863 }
1864 
1865 static int kvm_guest_time_update(struct kvm_vcpu *v)
1866 {
1867 	unsigned long flags, tgt_tsc_khz;
1868 	struct kvm_vcpu_arch *vcpu = &v->arch;
1869 	struct kvm_arch *ka = &v->kvm->arch;
1870 	s64 kernel_ns;
1871 	u64 tsc_timestamp, host_tsc;
1872 	u8 pvclock_flags;
1873 	bool use_master_clock;
1874 
1875 	kernel_ns = 0;
1876 	host_tsc = 0;
1877 
1878 	/*
1879 	 * If the host uses TSC clock, then passthrough TSC as stable
1880 	 * to the guest.
1881 	 */
1882 	spin_lock(&ka->pvclock_gtod_sync_lock);
1883 	use_master_clock = ka->use_master_clock;
1884 	if (use_master_clock) {
1885 		host_tsc = ka->master_cycle_now;
1886 		kernel_ns = ka->master_kernel_ns;
1887 	}
1888 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1889 
1890 	/* Keep irq disabled to prevent changes to the clock */
1891 	local_irq_save(flags);
1892 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1893 	if (unlikely(tgt_tsc_khz == 0)) {
1894 		local_irq_restore(flags);
1895 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1896 		return 1;
1897 	}
1898 	if (!use_master_clock) {
1899 		host_tsc = rdtsc();
1900 		kernel_ns = ktime_get_boot_ns();
1901 	}
1902 
1903 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1904 
1905 	/*
1906 	 * We may have to catch up the TSC to match elapsed wall clock
1907 	 * time for two reasons, even if kvmclock is used.
1908 	 *   1) CPU could have been running below the maximum TSC rate
1909 	 *   2) Broken TSC compensation resets the base at each VCPU
1910 	 *      entry to avoid unknown leaps of TSC even when running
1911 	 *      again on the same CPU.  This may cause apparent elapsed
1912 	 *      time to disappear, and the guest to stand still or run
1913 	 *	very slowly.
1914 	 */
1915 	if (vcpu->tsc_catchup) {
1916 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1917 		if (tsc > tsc_timestamp) {
1918 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1919 			tsc_timestamp = tsc;
1920 		}
1921 	}
1922 
1923 	local_irq_restore(flags);
1924 
1925 	/* With all the info we got, fill in the values */
1926 
1927 	if (kvm_has_tsc_control)
1928 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1929 
1930 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1931 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1932 				   &vcpu->hv_clock.tsc_shift,
1933 				   &vcpu->hv_clock.tsc_to_system_mul);
1934 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1935 	}
1936 
1937 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1938 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1939 	vcpu->last_guest_tsc = tsc_timestamp;
1940 
1941 	/* If the host uses TSC clocksource, then it is stable */
1942 	pvclock_flags = 0;
1943 	if (use_master_clock)
1944 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1945 
1946 	vcpu->hv_clock.flags = pvclock_flags;
1947 
1948 	if (vcpu->pv_time_enabled)
1949 		kvm_setup_pvclock_page(v);
1950 	if (v == kvm_get_vcpu(v->kvm, 0))
1951 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1952 	return 0;
1953 }
1954 
1955 /*
1956  * kvmclock updates which are isolated to a given vcpu, such as
1957  * vcpu->cpu migration, should not allow system_timestamp from
1958  * the rest of the vcpus to remain static. Otherwise ntp frequency
1959  * correction applies to one vcpu's system_timestamp but not
1960  * the others.
1961  *
1962  * So in those cases, request a kvmclock update for all vcpus.
1963  * We need to rate-limit these requests though, as they can
1964  * considerably slow guests that have a large number of vcpus.
1965  * The time for a remote vcpu to update its kvmclock is bound
1966  * by the delay we use to rate-limit the updates.
1967  */
1968 
1969 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1970 
1971 static void kvmclock_update_fn(struct work_struct *work)
1972 {
1973 	int i;
1974 	struct delayed_work *dwork = to_delayed_work(work);
1975 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1976 					   kvmclock_update_work);
1977 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1978 	struct kvm_vcpu *vcpu;
1979 
1980 	kvm_for_each_vcpu(i, vcpu, kvm) {
1981 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1982 		kvm_vcpu_kick(vcpu);
1983 	}
1984 }
1985 
1986 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1987 {
1988 	struct kvm *kvm = v->kvm;
1989 
1990 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1991 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1992 					KVMCLOCK_UPDATE_DELAY);
1993 }
1994 
1995 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1996 
1997 static void kvmclock_sync_fn(struct work_struct *work)
1998 {
1999 	struct delayed_work *dwork = to_delayed_work(work);
2000 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2001 					   kvmclock_sync_work);
2002 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2003 
2004 	if (!kvmclock_periodic_sync)
2005 		return;
2006 
2007 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2008 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2009 					KVMCLOCK_SYNC_PERIOD);
2010 }
2011 
2012 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2013 {
2014 	u64 mcg_cap = vcpu->arch.mcg_cap;
2015 	unsigned bank_num = mcg_cap & 0xff;
2016 
2017 	switch (msr) {
2018 	case MSR_IA32_MCG_STATUS:
2019 		vcpu->arch.mcg_status = data;
2020 		break;
2021 	case MSR_IA32_MCG_CTL:
2022 		if (!(mcg_cap & MCG_CTL_P))
2023 			return 1;
2024 		if (data != 0 && data != ~(u64)0)
2025 			return -1;
2026 		vcpu->arch.mcg_ctl = data;
2027 		break;
2028 	default:
2029 		if (msr >= MSR_IA32_MC0_CTL &&
2030 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2031 			u32 offset = msr - MSR_IA32_MC0_CTL;
2032 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2033 			 * some Linux kernels though clear bit 10 in bank 4 to
2034 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2035 			 * this to avoid an uncatched #GP in the guest
2036 			 */
2037 			if ((offset & 0x3) == 0 &&
2038 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2039 				return -1;
2040 			vcpu->arch.mce_banks[offset] = data;
2041 			break;
2042 		}
2043 		return 1;
2044 	}
2045 	return 0;
2046 }
2047 
2048 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2049 {
2050 	struct kvm *kvm = vcpu->kvm;
2051 	int lm = is_long_mode(vcpu);
2052 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2053 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2054 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2055 		: kvm->arch.xen_hvm_config.blob_size_32;
2056 	u32 page_num = data & ~PAGE_MASK;
2057 	u64 page_addr = data & PAGE_MASK;
2058 	u8 *page;
2059 	int r;
2060 
2061 	r = -E2BIG;
2062 	if (page_num >= blob_size)
2063 		goto out;
2064 	r = -ENOMEM;
2065 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2066 	if (IS_ERR(page)) {
2067 		r = PTR_ERR(page);
2068 		goto out;
2069 	}
2070 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2071 		goto out_free;
2072 	r = 0;
2073 out_free:
2074 	kfree(page);
2075 out:
2076 	return r;
2077 }
2078 
2079 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2080 {
2081 	gpa_t gpa = data & ~0x3f;
2082 
2083 	/* Bits 2:5 are reserved, Should be zero */
2084 	if (data & 0x3c)
2085 		return 1;
2086 
2087 	vcpu->arch.apf.msr_val = data;
2088 
2089 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2090 		kvm_clear_async_pf_completion_queue(vcpu);
2091 		kvm_async_pf_hash_reset(vcpu);
2092 		return 0;
2093 	}
2094 
2095 	if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2096 					sizeof(u32)))
2097 		return 1;
2098 
2099 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2100 	kvm_async_pf_wakeup_all(vcpu);
2101 	return 0;
2102 }
2103 
2104 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2105 {
2106 	vcpu->arch.pv_time_enabled = false;
2107 }
2108 
2109 static void record_steal_time(struct kvm_vcpu *vcpu)
2110 {
2111 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2112 		return;
2113 
2114 	if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2115 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2116 		return;
2117 
2118 	vcpu->arch.st.steal.preempted = 0;
2119 
2120 	if (vcpu->arch.st.steal.version & 1)
2121 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2122 
2123 	vcpu->arch.st.steal.version += 1;
2124 
2125 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2126 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 
2128 	smp_wmb();
2129 
2130 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2131 		vcpu->arch.st.last_steal;
2132 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2133 
2134 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2135 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2136 
2137 	smp_wmb();
2138 
2139 	vcpu->arch.st.steal.version += 1;
2140 
2141 	kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2142 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2143 }
2144 
2145 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2146 {
2147 	bool pr = false;
2148 	u32 msr = msr_info->index;
2149 	u64 data = msr_info->data;
2150 
2151 	switch (msr) {
2152 	case MSR_AMD64_NB_CFG:
2153 	case MSR_IA32_UCODE_REV:
2154 	case MSR_IA32_UCODE_WRITE:
2155 	case MSR_VM_HSAVE_PA:
2156 	case MSR_AMD64_PATCH_LOADER:
2157 	case MSR_AMD64_BU_CFG2:
2158 		break;
2159 
2160 	case MSR_EFER:
2161 		return set_efer(vcpu, data);
2162 	case MSR_K7_HWCR:
2163 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2164 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2165 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2166 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2167 		if (data != 0) {
2168 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2169 				    data);
2170 			return 1;
2171 		}
2172 		break;
2173 	case MSR_FAM10H_MMIO_CONF_BASE:
2174 		if (data != 0) {
2175 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2176 				    "0x%llx\n", data);
2177 			return 1;
2178 		}
2179 		break;
2180 	case MSR_IA32_DEBUGCTLMSR:
2181 		if (!data) {
2182 			/* We support the non-activated case already */
2183 			break;
2184 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2185 			/* Values other than LBR and BTF are vendor-specific,
2186 			   thus reserved and should throw a #GP */
2187 			return 1;
2188 		}
2189 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2190 			    __func__, data);
2191 		break;
2192 	case 0x200 ... 0x2ff:
2193 		return kvm_mtrr_set_msr(vcpu, msr, data);
2194 	case MSR_IA32_APICBASE:
2195 		return kvm_set_apic_base(vcpu, msr_info);
2196 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2197 		return kvm_x2apic_msr_write(vcpu, msr, data);
2198 	case MSR_IA32_TSCDEADLINE:
2199 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2200 		break;
2201 	case MSR_IA32_TSC_ADJUST:
2202 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2203 			if (!msr_info->host_initiated) {
2204 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2205 				adjust_tsc_offset_guest(vcpu, adj);
2206 			}
2207 			vcpu->arch.ia32_tsc_adjust_msr = data;
2208 		}
2209 		break;
2210 	case MSR_IA32_MISC_ENABLE:
2211 		vcpu->arch.ia32_misc_enable_msr = data;
2212 		break;
2213 	case MSR_IA32_SMBASE:
2214 		if (!msr_info->host_initiated)
2215 			return 1;
2216 		vcpu->arch.smbase = data;
2217 		break;
2218 	case MSR_KVM_WALL_CLOCK_NEW:
2219 	case MSR_KVM_WALL_CLOCK:
2220 		vcpu->kvm->arch.wall_clock = data;
2221 		kvm_write_wall_clock(vcpu->kvm, data);
2222 		break;
2223 	case MSR_KVM_SYSTEM_TIME_NEW:
2224 	case MSR_KVM_SYSTEM_TIME: {
2225 		struct kvm_arch *ka = &vcpu->kvm->arch;
2226 
2227 		kvmclock_reset(vcpu);
2228 
2229 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2230 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2231 
2232 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2233 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2234 					&vcpu->requests);
2235 
2236 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2237 		}
2238 
2239 		vcpu->arch.time = data;
2240 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2241 
2242 		/* we verify if the enable bit is set... */
2243 		if (!(data & 1))
2244 			break;
2245 
2246 		if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2247 		     &vcpu->arch.pv_time, data & ~1ULL,
2248 		     sizeof(struct pvclock_vcpu_time_info)))
2249 			vcpu->arch.pv_time_enabled = false;
2250 		else
2251 			vcpu->arch.pv_time_enabled = true;
2252 
2253 		break;
2254 	}
2255 	case MSR_KVM_ASYNC_PF_EN:
2256 		if (kvm_pv_enable_async_pf(vcpu, data))
2257 			return 1;
2258 		break;
2259 	case MSR_KVM_STEAL_TIME:
2260 
2261 		if (unlikely(!sched_info_on()))
2262 			return 1;
2263 
2264 		if (data & KVM_STEAL_RESERVED_MASK)
2265 			return 1;
2266 
2267 		if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2268 						data & KVM_STEAL_VALID_BITS,
2269 						sizeof(struct kvm_steal_time)))
2270 			return 1;
2271 
2272 		vcpu->arch.st.msr_val = data;
2273 
2274 		if (!(data & KVM_MSR_ENABLED))
2275 			break;
2276 
2277 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2278 
2279 		break;
2280 	case MSR_KVM_PV_EOI_EN:
2281 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2282 			return 1;
2283 		break;
2284 
2285 	case MSR_IA32_MCG_CTL:
2286 	case MSR_IA32_MCG_STATUS:
2287 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2288 		return set_msr_mce(vcpu, msr, data);
2289 
2290 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2291 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2292 		pr = true; /* fall through */
2293 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2294 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2295 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2296 			return kvm_pmu_set_msr(vcpu, msr_info);
2297 
2298 		if (pr || data != 0)
2299 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2300 				    "0x%x data 0x%llx\n", msr, data);
2301 		break;
2302 	case MSR_K7_CLK_CTL:
2303 		/*
2304 		 * Ignore all writes to this no longer documented MSR.
2305 		 * Writes are only relevant for old K7 processors,
2306 		 * all pre-dating SVM, but a recommended workaround from
2307 		 * AMD for these chips. It is possible to specify the
2308 		 * affected processor models on the command line, hence
2309 		 * the need to ignore the workaround.
2310 		 */
2311 		break;
2312 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2313 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2314 	case HV_X64_MSR_CRASH_CTL:
2315 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2316 		return kvm_hv_set_msr_common(vcpu, msr, data,
2317 					     msr_info->host_initiated);
2318 	case MSR_IA32_BBL_CR_CTL3:
2319 		/* Drop writes to this legacy MSR -- see rdmsr
2320 		 * counterpart for further detail.
2321 		 */
2322 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2323 		break;
2324 	case MSR_AMD64_OSVW_ID_LENGTH:
2325 		if (!guest_cpuid_has_osvw(vcpu))
2326 			return 1;
2327 		vcpu->arch.osvw.length = data;
2328 		break;
2329 	case MSR_AMD64_OSVW_STATUS:
2330 		if (!guest_cpuid_has_osvw(vcpu))
2331 			return 1;
2332 		vcpu->arch.osvw.status = data;
2333 		break;
2334 	default:
2335 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2336 			return xen_hvm_config(vcpu, data);
2337 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2338 			return kvm_pmu_set_msr(vcpu, msr_info);
2339 		if (!ignore_msrs) {
2340 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2341 				    msr, data);
2342 			return 1;
2343 		} else {
2344 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2345 				    msr, data);
2346 			break;
2347 		}
2348 	}
2349 	return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2352 
2353 
2354 /*
2355  * Reads an msr value (of 'msr_index') into 'pdata'.
2356  * Returns 0 on success, non-0 otherwise.
2357  * Assumes vcpu_load() was already called.
2358  */
2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2360 {
2361 	return kvm_x86_ops->get_msr(vcpu, msr);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_get_msr);
2364 
2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 {
2367 	u64 data;
2368 	u64 mcg_cap = vcpu->arch.mcg_cap;
2369 	unsigned bank_num = mcg_cap & 0xff;
2370 
2371 	switch (msr) {
2372 	case MSR_IA32_P5_MC_ADDR:
2373 	case MSR_IA32_P5_MC_TYPE:
2374 		data = 0;
2375 		break;
2376 	case MSR_IA32_MCG_CAP:
2377 		data = vcpu->arch.mcg_cap;
2378 		break;
2379 	case MSR_IA32_MCG_CTL:
2380 		if (!(mcg_cap & MCG_CTL_P))
2381 			return 1;
2382 		data = vcpu->arch.mcg_ctl;
2383 		break;
2384 	case MSR_IA32_MCG_STATUS:
2385 		data = vcpu->arch.mcg_status;
2386 		break;
2387 	default:
2388 		if (msr >= MSR_IA32_MC0_CTL &&
2389 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2390 			u32 offset = msr - MSR_IA32_MC0_CTL;
2391 			data = vcpu->arch.mce_banks[offset];
2392 			break;
2393 		}
2394 		return 1;
2395 	}
2396 	*pdata = data;
2397 	return 0;
2398 }
2399 
2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402 	switch (msr_info->index) {
2403 	case MSR_IA32_PLATFORM_ID:
2404 	case MSR_IA32_EBL_CR_POWERON:
2405 	case MSR_IA32_DEBUGCTLMSR:
2406 	case MSR_IA32_LASTBRANCHFROMIP:
2407 	case MSR_IA32_LASTBRANCHTOIP:
2408 	case MSR_IA32_LASTINTFROMIP:
2409 	case MSR_IA32_LASTINTTOIP:
2410 	case MSR_K8_SYSCFG:
2411 	case MSR_K8_TSEG_ADDR:
2412 	case MSR_K8_TSEG_MASK:
2413 	case MSR_K7_HWCR:
2414 	case MSR_VM_HSAVE_PA:
2415 	case MSR_K8_INT_PENDING_MSG:
2416 	case MSR_AMD64_NB_CFG:
2417 	case MSR_FAM10H_MMIO_CONF_BASE:
2418 	case MSR_AMD64_BU_CFG2:
2419 	case MSR_IA32_PERF_CTL:
2420 		msr_info->data = 0;
2421 		break;
2422 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428 		msr_info->data = 0;
2429 		break;
2430 	case MSR_IA32_UCODE_REV:
2431 		msr_info->data = 0x100000000ULL;
2432 		break;
2433 	case MSR_MTRRcap:
2434 	case 0x200 ... 0x2ff:
2435 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436 	case 0xcd: /* fsb frequency */
2437 		msr_info->data = 3;
2438 		break;
2439 		/*
2440 		 * MSR_EBC_FREQUENCY_ID
2441 		 * Conservative value valid for even the basic CPU models.
2442 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444 		 * and 266MHz for model 3, or 4. Set Core Clock
2445 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2446 		 * 31:24) even though these are only valid for CPU
2447 		 * models > 2, however guests may end up dividing or
2448 		 * multiplying by zero otherwise.
2449 		 */
2450 	case MSR_EBC_FREQUENCY_ID:
2451 		msr_info->data = 1 << 24;
2452 		break;
2453 	case MSR_IA32_APICBASE:
2454 		msr_info->data = kvm_get_apic_base(vcpu);
2455 		break;
2456 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458 		break;
2459 	case MSR_IA32_TSCDEADLINE:
2460 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461 		break;
2462 	case MSR_IA32_TSC_ADJUST:
2463 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464 		break;
2465 	case MSR_IA32_MISC_ENABLE:
2466 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467 		break;
2468 	case MSR_IA32_SMBASE:
2469 		if (!msr_info->host_initiated)
2470 			return 1;
2471 		msr_info->data = vcpu->arch.smbase;
2472 		break;
2473 	case MSR_IA32_PERF_STATUS:
2474 		/* TSC increment by tick */
2475 		msr_info->data = 1000ULL;
2476 		/* CPU multiplier */
2477 		msr_info->data |= (((uint64_t)4ULL) << 40);
2478 		break;
2479 	case MSR_EFER:
2480 		msr_info->data = vcpu->arch.efer;
2481 		break;
2482 	case MSR_KVM_WALL_CLOCK:
2483 	case MSR_KVM_WALL_CLOCK_NEW:
2484 		msr_info->data = vcpu->kvm->arch.wall_clock;
2485 		break;
2486 	case MSR_KVM_SYSTEM_TIME:
2487 	case MSR_KVM_SYSTEM_TIME_NEW:
2488 		msr_info->data = vcpu->arch.time;
2489 		break;
2490 	case MSR_KVM_ASYNC_PF_EN:
2491 		msr_info->data = vcpu->arch.apf.msr_val;
2492 		break;
2493 	case MSR_KVM_STEAL_TIME:
2494 		msr_info->data = vcpu->arch.st.msr_val;
2495 		break;
2496 	case MSR_KVM_PV_EOI_EN:
2497 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498 		break;
2499 	case MSR_IA32_P5_MC_ADDR:
2500 	case MSR_IA32_P5_MC_TYPE:
2501 	case MSR_IA32_MCG_CAP:
2502 	case MSR_IA32_MCG_CTL:
2503 	case MSR_IA32_MCG_STATUS:
2504 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506 	case MSR_K7_CLK_CTL:
2507 		/*
2508 		 * Provide expected ramp-up count for K7. All other
2509 		 * are set to zero, indicating minimum divisors for
2510 		 * every field.
2511 		 *
2512 		 * This prevents guest kernels on AMD host with CPU
2513 		 * type 6, model 8 and higher from exploding due to
2514 		 * the rdmsr failing.
2515 		 */
2516 		msr_info->data = 0x20000000;
2517 		break;
2518 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520 	case HV_X64_MSR_CRASH_CTL:
2521 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522 		return kvm_hv_get_msr_common(vcpu,
2523 					     msr_info->index, &msr_info->data);
2524 		break;
2525 	case MSR_IA32_BBL_CR_CTL3:
2526 		/* This legacy MSR exists but isn't fully documented in current
2527 		 * silicon.  It is however accessed by winxp in very narrow
2528 		 * scenarios where it sets bit #19, itself documented as
2529 		 * a "reserved" bit.  Best effort attempt to source coherent
2530 		 * read data here should the balance of the register be
2531 		 * interpreted by the guest:
2532 		 *
2533 		 * L2 cache control register 3: 64GB range, 256KB size,
2534 		 * enabled, latency 0x1, configured
2535 		 */
2536 		msr_info->data = 0xbe702111;
2537 		break;
2538 	case MSR_AMD64_OSVW_ID_LENGTH:
2539 		if (!guest_cpuid_has_osvw(vcpu))
2540 			return 1;
2541 		msr_info->data = vcpu->arch.osvw.length;
2542 		break;
2543 	case MSR_AMD64_OSVW_STATUS:
2544 		if (!guest_cpuid_has_osvw(vcpu))
2545 			return 1;
2546 		msr_info->data = vcpu->arch.osvw.status;
2547 		break;
2548 	default:
2549 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2550 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2551 		if (!ignore_msrs) {
2552 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2553 					       msr_info->index);
2554 			return 1;
2555 		} else {
2556 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2557 			msr_info->data = 0;
2558 		}
2559 		break;
2560 	}
2561 	return 0;
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2564 
2565 /*
2566  * Read or write a bunch of msrs. All parameters are kernel addresses.
2567  *
2568  * @return number of msrs set successfully.
2569  */
2570 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2571 		    struct kvm_msr_entry *entries,
2572 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2573 				  unsigned index, u64 *data))
2574 {
2575 	int i, idx;
2576 
2577 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2578 	for (i = 0; i < msrs->nmsrs; ++i)
2579 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2580 			break;
2581 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2582 
2583 	return i;
2584 }
2585 
2586 /*
2587  * Read or write a bunch of msrs. Parameters are user addresses.
2588  *
2589  * @return number of msrs set successfully.
2590  */
2591 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2592 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2593 				unsigned index, u64 *data),
2594 		  int writeback)
2595 {
2596 	struct kvm_msrs msrs;
2597 	struct kvm_msr_entry *entries;
2598 	int r, n;
2599 	unsigned size;
2600 
2601 	r = -EFAULT;
2602 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2603 		goto out;
2604 
2605 	r = -E2BIG;
2606 	if (msrs.nmsrs >= MAX_IO_MSRS)
2607 		goto out;
2608 
2609 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2610 	entries = memdup_user(user_msrs->entries, size);
2611 	if (IS_ERR(entries)) {
2612 		r = PTR_ERR(entries);
2613 		goto out;
2614 	}
2615 
2616 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2617 	if (r < 0)
2618 		goto out_free;
2619 
2620 	r = -EFAULT;
2621 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2622 		goto out_free;
2623 
2624 	r = n;
2625 
2626 out_free:
2627 	kfree(entries);
2628 out:
2629 	return r;
2630 }
2631 
2632 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2633 {
2634 	int r;
2635 
2636 	switch (ext) {
2637 	case KVM_CAP_IRQCHIP:
2638 	case KVM_CAP_HLT:
2639 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2640 	case KVM_CAP_SET_TSS_ADDR:
2641 	case KVM_CAP_EXT_CPUID:
2642 	case KVM_CAP_EXT_EMUL_CPUID:
2643 	case KVM_CAP_CLOCKSOURCE:
2644 	case KVM_CAP_PIT:
2645 	case KVM_CAP_NOP_IO_DELAY:
2646 	case KVM_CAP_MP_STATE:
2647 	case KVM_CAP_SYNC_MMU:
2648 	case KVM_CAP_USER_NMI:
2649 	case KVM_CAP_REINJECT_CONTROL:
2650 	case KVM_CAP_IRQ_INJECT_STATUS:
2651 	case KVM_CAP_IOEVENTFD:
2652 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2653 	case KVM_CAP_PIT2:
2654 	case KVM_CAP_PIT_STATE2:
2655 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2656 	case KVM_CAP_XEN_HVM:
2657 	case KVM_CAP_VCPU_EVENTS:
2658 	case KVM_CAP_HYPERV:
2659 	case KVM_CAP_HYPERV_VAPIC:
2660 	case KVM_CAP_HYPERV_SPIN:
2661 	case KVM_CAP_HYPERV_SYNIC:
2662 	case KVM_CAP_PCI_SEGMENT:
2663 	case KVM_CAP_DEBUGREGS:
2664 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2665 	case KVM_CAP_XSAVE:
2666 	case KVM_CAP_ASYNC_PF:
2667 	case KVM_CAP_GET_TSC_KHZ:
2668 	case KVM_CAP_KVMCLOCK_CTRL:
2669 	case KVM_CAP_READONLY_MEM:
2670 	case KVM_CAP_HYPERV_TIME:
2671 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2672 	case KVM_CAP_TSC_DEADLINE_TIMER:
2673 	case KVM_CAP_ENABLE_CAP_VM:
2674 	case KVM_CAP_DISABLE_QUIRKS:
2675 	case KVM_CAP_SET_BOOT_CPU_ID:
2676  	case KVM_CAP_SPLIT_IRQCHIP:
2677 	case KVM_CAP_IMMEDIATE_EXIT:
2678 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2679 	case KVM_CAP_ASSIGN_DEV_IRQ:
2680 	case KVM_CAP_PCI_2_3:
2681 #endif
2682 		r = 1;
2683 		break;
2684 	case KVM_CAP_ADJUST_CLOCK:
2685 		r = KVM_CLOCK_TSC_STABLE;
2686 		break;
2687 	case KVM_CAP_X86_SMM:
2688 		/* SMBASE is usually relocated above 1M on modern chipsets,
2689 		 * and SMM handlers might indeed rely on 4G segment limits,
2690 		 * so do not report SMM to be available if real mode is
2691 		 * emulated via vm86 mode.  Still, do not go to great lengths
2692 		 * to avoid userspace's usage of the feature, because it is a
2693 		 * fringe case that is not enabled except via specific settings
2694 		 * of the module parameters.
2695 		 */
2696 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2697 		break;
2698 	case KVM_CAP_COALESCED_MMIO:
2699 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2700 		break;
2701 	case KVM_CAP_VAPIC:
2702 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2703 		break;
2704 	case KVM_CAP_NR_VCPUS:
2705 		r = KVM_SOFT_MAX_VCPUS;
2706 		break;
2707 	case KVM_CAP_MAX_VCPUS:
2708 		r = KVM_MAX_VCPUS;
2709 		break;
2710 	case KVM_CAP_NR_MEMSLOTS:
2711 		r = KVM_USER_MEM_SLOTS;
2712 		break;
2713 	case KVM_CAP_PV_MMU:	/* obsolete */
2714 		r = 0;
2715 		break;
2716 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2717 	case KVM_CAP_IOMMU:
2718 		r = iommu_present(&pci_bus_type);
2719 		break;
2720 #endif
2721 	case KVM_CAP_MCE:
2722 		r = KVM_MAX_MCE_BANKS;
2723 		break;
2724 	case KVM_CAP_XCRS:
2725 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2726 		break;
2727 	case KVM_CAP_TSC_CONTROL:
2728 		r = kvm_has_tsc_control;
2729 		break;
2730 	case KVM_CAP_X2APIC_API:
2731 		r = KVM_X2APIC_API_VALID_FLAGS;
2732 		break;
2733 	default:
2734 		r = 0;
2735 		break;
2736 	}
2737 	return r;
2738 
2739 }
2740 
2741 long kvm_arch_dev_ioctl(struct file *filp,
2742 			unsigned int ioctl, unsigned long arg)
2743 {
2744 	void __user *argp = (void __user *)arg;
2745 	long r;
2746 
2747 	switch (ioctl) {
2748 	case KVM_GET_MSR_INDEX_LIST: {
2749 		struct kvm_msr_list __user *user_msr_list = argp;
2750 		struct kvm_msr_list msr_list;
2751 		unsigned n;
2752 
2753 		r = -EFAULT;
2754 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2755 			goto out;
2756 		n = msr_list.nmsrs;
2757 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2758 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2759 			goto out;
2760 		r = -E2BIG;
2761 		if (n < msr_list.nmsrs)
2762 			goto out;
2763 		r = -EFAULT;
2764 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2765 				 num_msrs_to_save * sizeof(u32)))
2766 			goto out;
2767 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2768 				 &emulated_msrs,
2769 				 num_emulated_msrs * sizeof(u32)))
2770 			goto out;
2771 		r = 0;
2772 		break;
2773 	}
2774 	case KVM_GET_SUPPORTED_CPUID:
2775 	case KVM_GET_EMULATED_CPUID: {
2776 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2777 		struct kvm_cpuid2 cpuid;
2778 
2779 		r = -EFAULT;
2780 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2781 			goto out;
2782 
2783 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2784 					    ioctl);
2785 		if (r)
2786 			goto out;
2787 
2788 		r = -EFAULT;
2789 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2790 			goto out;
2791 		r = 0;
2792 		break;
2793 	}
2794 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2795 		r = -EFAULT;
2796 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2797 				 sizeof(kvm_mce_cap_supported)))
2798 			goto out;
2799 		r = 0;
2800 		break;
2801 	}
2802 	default:
2803 		r = -EINVAL;
2804 	}
2805 out:
2806 	return r;
2807 }
2808 
2809 static void wbinvd_ipi(void *garbage)
2810 {
2811 	wbinvd();
2812 }
2813 
2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2815 {
2816 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2817 }
2818 
2819 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2820 {
2821 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2822 }
2823 
2824 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2825 {
2826 	/* Address WBINVD may be executed by guest */
2827 	if (need_emulate_wbinvd(vcpu)) {
2828 		if (kvm_x86_ops->has_wbinvd_exit())
2829 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2830 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2831 			smp_call_function_single(vcpu->cpu,
2832 					wbinvd_ipi, NULL, 1);
2833 	}
2834 
2835 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2836 
2837 	/* Apply any externally detected TSC adjustments (due to suspend) */
2838 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2839 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2840 		vcpu->arch.tsc_offset_adjustment = 0;
2841 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2842 	}
2843 
2844 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2845 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2846 				rdtsc() - vcpu->arch.last_host_tsc;
2847 		if (tsc_delta < 0)
2848 			mark_tsc_unstable("KVM discovered backwards TSC");
2849 
2850 		if (check_tsc_unstable()) {
2851 			u64 offset = kvm_compute_tsc_offset(vcpu,
2852 						vcpu->arch.last_guest_tsc);
2853 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2854 			vcpu->arch.tsc_catchup = 1;
2855 		}
2856 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2857 				kvm_x86_ops->set_hv_timer(vcpu,
2858 					kvm_get_lapic_target_expiration_tsc(vcpu)))
2859 			kvm_lapic_switch_to_sw_timer(vcpu);
2860 		/*
2861 		 * On a host with synchronized TSC, there is no need to update
2862 		 * kvmclock on vcpu->cpu migration
2863 		 */
2864 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2865 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2866 		if (vcpu->cpu != cpu)
2867 			kvm_migrate_timers(vcpu);
2868 		vcpu->cpu = cpu;
2869 	}
2870 
2871 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2872 }
2873 
2874 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2875 {
2876 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2877 		return;
2878 
2879 	vcpu->arch.st.steal.preempted = 1;
2880 
2881 	kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2882 			&vcpu->arch.st.steal.preempted,
2883 			offsetof(struct kvm_steal_time, preempted),
2884 			sizeof(vcpu->arch.st.steal.preempted));
2885 }
2886 
2887 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2888 {
2889 	int idx;
2890 	/*
2891 	 * Disable page faults because we're in atomic context here.
2892 	 * kvm_write_guest_offset_cached() would call might_fault()
2893 	 * that relies on pagefault_disable() to tell if there's a
2894 	 * bug. NOTE: the write to guest memory may not go through if
2895 	 * during postcopy live migration or if there's heavy guest
2896 	 * paging.
2897 	 */
2898 	pagefault_disable();
2899 	/*
2900 	 * kvm_memslots() will be called by
2901 	 * kvm_write_guest_offset_cached() so take the srcu lock.
2902 	 */
2903 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2904 	kvm_steal_time_set_preempted(vcpu);
2905 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2906 	pagefault_enable();
2907 	kvm_x86_ops->vcpu_put(vcpu);
2908 	kvm_put_guest_fpu(vcpu);
2909 	vcpu->arch.last_host_tsc = rdtsc();
2910 }
2911 
2912 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2913 				    struct kvm_lapic_state *s)
2914 {
2915 	if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2916 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2917 
2918 	return kvm_apic_get_state(vcpu, s);
2919 }
2920 
2921 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2922 				    struct kvm_lapic_state *s)
2923 {
2924 	int r;
2925 
2926 	r = kvm_apic_set_state(vcpu, s);
2927 	if (r)
2928 		return r;
2929 	update_cr8_intercept(vcpu);
2930 
2931 	return 0;
2932 }
2933 
2934 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2935 {
2936 	return (!lapic_in_kernel(vcpu) ||
2937 		kvm_apic_accept_pic_intr(vcpu));
2938 }
2939 
2940 /*
2941  * if userspace requested an interrupt window, check that the
2942  * interrupt window is open.
2943  *
2944  * No need to exit to userspace if we already have an interrupt queued.
2945  */
2946 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2947 {
2948 	return kvm_arch_interrupt_allowed(vcpu) &&
2949 		!kvm_cpu_has_interrupt(vcpu) &&
2950 		!kvm_event_needs_reinjection(vcpu) &&
2951 		kvm_cpu_accept_dm_intr(vcpu);
2952 }
2953 
2954 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2955 				    struct kvm_interrupt *irq)
2956 {
2957 	if (irq->irq >= KVM_NR_INTERRUPTS)
2958 		return -EINVAL;
2959 
2960 	if (!irqchip_in_kernel(vcpu->kvm)) {
2961 		kvm_queue_interrupt(vcpu, irq->irq, false);
2962 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2963 		return 0;
2964 	}
2965 
2966 	/*
2967 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2968 	 * fail for in-kernel 8259.
2969 	 */
2970 	if (pic_in_kernel(vcpu->kvm))
2971 		return -ENXIO;
2972 
2973 	if (vcpu->arch.pending_external_vector != -1)
2974 		return -EEXIST;
2975 
2976 	vcpu->arch.pending_external_vector = irq->irq;
2977 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2978 	return 0;
2979 }
2980 
2981 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2982 {
2983 	kvm_inject_nmi(vcpu);
2984 
2985 	return 0;
2986 }
2987 
2988 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2989 {
2990 	kvm_make_request(KVM_REQ_SMI, vcpu);
2991 
2992 	return 0;
2993 }
2994 
2995 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2996 					   struct kvm_tpr_access_ctl *tac)
2997 {
2998 	if (tac->flags)
2999 		return -EINVAL;
3000 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3001 	return 0;
3002 }
3003 
3004 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3005 					u64 mcg_cap)
3006 {
3007 	int r;
3008 	unsigned bank_num = mcg_cap & 0xff, bank;
3009 
3010 	r = -EINVAL;
3011 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3012 		goto out;
3013 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3014 		goto out;
3015 	r = 0;
3016 	vcpu->arch.mcg_cap = mcg_cap;
3017 	/* Init IA32_MCG_CTL to all 1s */
3018 	if (mcg_cap & MCG_CTL_P)
3019 		vcpu->arch.mcg_ctl = ~(u64)0;
3020 	/* Init IA32_MCi_CTL to all 1s */
3021 	for (bank = 0; bank < bank_num; bank++)
3022 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3023 
3024 	if (kvm_x86_ops->setup_mce)
3025 		kvm_x86_ops->setup_mce(vcpu);
3026 out:
3027 	return r;
3028 }
3029 
3030 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3031 				      struct kvm_x86_mce *mce)
3032 {
3033 	u64 mcg_cap = vcpu->arch.mcg_cap;
3034 	unsigned bank_num = mcg_cap & 0xff;
3035 	u64 *banks = vcpu->arch.mce_banks;
3036 
3037 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3038 		return -EINVAL;
3039 	/*
3040 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3041 	 * reporting is disabled
3042 	 */
3043 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3044 	    vcpu->arch.mcg_ctl != ~(u64)0)
3045 		return 0;
3046 	banks += 4 * mce->bank;
3047 	/*
3048 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3049 	 * reporting is disabled for the bank
3050 	 */
3051 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3052 		return 0;
3053 	if (mce->status & MCI_STATUS_UC) {
3054 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3055 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3056 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3057 			return 0;
3058 		}
3059 		if (banks[1] & MCI_STATUS_VAL)
3060 			mce->status |= MCI_STATUS_OVER;
3061 		banks[2] = mce->addr;
3062 		banks[3] = mce->misc;
3063 		vcpu->arch.mcg_status = mce->mcg_status;
3064 		banks[1] = mce->status;
3065 		kvm_queue_exception(vcpu, MC_VECTOR);
3066 	} else if (!(banks[1] & MCI_STATUS_VAL)
3067 		   || !(banks[1] & MCI_STATUS_UC)) {
3068 		if (banks[1] & MCI_STATUS_VAL)
3069 			mce->status |= MCI_STATUS_OVER;
3070 		banks[2] = mce->addr;
3071 		banks[3] = mce->misc;
3072 		banks[1] = mce->status;
3073 	} else
3074 		banks[1] |= MCI_STATUS_OVER;
3075 	return 0;
3076 }
3077 
3078 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3079 					       struct kvm_vcpu_events *events)
3080 {
3081 	process_nmi(vcpu);
3082 	events->exception.injected =
3083 		vcpu->arch.exception.pending &&
3084 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3085 	events->exception.nr = vcpu->arch.exception.nr;
3086 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3087 	events->exception.pad = 0;
3088 	events->exception.error_code = vcpu->arch.exception.error_code;
3089 
3090 	events->interrupt.injected =
3091 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3092 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3093 	events->interrupt.soft = 0;
3094 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3095 
3096 	events->nmi.injected = vcpu->arch.nmi_injected;
3097 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3098 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3099 	events->nmi.pad = 0;
3100 
3101 	events->sipi_vector = 0; /* never valid when reporting to user space */
3102 
3103 	events->smi.smm = is_smm(vcpu);
3104 	events->smi.pending = vcpu->arch.smi_pending;
3105 	events->smi.smm_inside_nmi =
3106 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3107 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3108 
3109 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3110 			 | KVM_VCPUEVENT_VALID_SHADOW
3111 			 | KVM_VCPUEVENT_VALID_SMM);
3112 	memset(&events->reserved, 0, sizeof(events->reserved));
3113 }
3114 
3115 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3116 
3117 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3118 					      struct kvm_vcpu_events *events)
3119 {
3120 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3121 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3122 			      | KVM_VCPUEVENT_VALID_SHADOW
3123 			      | KVM_VCPUEVENT_VALID_SMM))
3124 		return -EINVAL;
3125 
3126 	if (events->exception.injected &&
3127 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3128 		return -EINVAL;
3129 
3130 	process_nmi(vcpu);
3131 	vcpu->arch.exception.pending = events->exception.injected;
3132 	vcpu->arch.exception.nr = events->exception.nr;
3133 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3134 	vcpu->arch.exception.error_code = events->exception.error_code;
3135 
3136 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3137 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3138 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3139 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3140 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3141 						  events->interrupt.shadow);
3142 
3143 	vcpu->arch.nmi_injected = events->nmi.injected;
3144 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3145 		vcpu->arch.nmi_pending = events->nmi.pending;
3146 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3147 
3148 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3149 	    lapic_in_kernel(vcpu))
3150 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3151 
3152 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3153 		u32 hflags = vcpu->arch.hflags;
3154 		if (events->smi.smm)
3155 			hflags |= HF_SMM_MASK;
3156 		else
3157 			hflags &= ~HF_SMM_MASK;
3158 		kvm_set_hflags(vcpu, hflags);
3159 
3160 		vcpu->arch.smi_pending = events->smi.pending;
3161 		if (events->smi.smm_inside_nmi)
3162 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3163 		else
3164 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3165 		if (lapic_in_kernel(vcpu)) {
3166 			if (events->smi.latched_init)
3167 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3168 			else
3169 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3170 		}
3171 	}
3172 
3173 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3174 
3175 	return 0;
3176 }
3177 
3178 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3179 					     struct kvm_debugregs *dbgregs)
3180 {
3181 	unsigned long val;
3182 
3183 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3184 	kvm_get_dr(vcpu, 6, &val);
3185 	dbgregs->dr6 = val;
3186 	dbgregs->dr7 = vcpu->arch.dr7;
3187 	dbgregs->flags = 0;
3188 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3189 }
3190 
3191 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3192 					    struct kvm_debugregs *dbgregs)
3193 {
3194 	if (dbgregs->flags)
3195 		return -EINVAL;
3196 
3197 	if (dbgregs->dr6 & ~0xffffffffull)
3198 		return -EINVAL;
3199 	if (dbgregs->dr7 & ~0xffffffffull)
3200 		return -EINVAL;
3201 
3202 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3203 	kvm_update_dr0123(vcpu);
3204 	vcpu->arch.dr6 = dbgregs->dr6;
3205 	kvm_update_dr6(vcpu);
3206 	vcpu->arch.dr7 = dbgregs->dr7;
3207 	kvm_update_dr7(vcpu);
3208 
3209 	return 0;
3210 }
3211 
3212 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3213 
3214 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3215 {
3216 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3217 	u64 xstate_bv = xsave->header.xfeatures;
3218 	u64 valid;
3219 
3220 	/*
3221 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3222 	 * leaves 0 and 1 in the loop below.
3223 	 */
3224 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3225 
3226 	/* Set XSTATE_BV */
3227 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3228 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3229 
3230 	/*
3231 	 * Copy each region from the possibly compacted offset to the
3232 	 * non-compacted offset.
3233 	 */
3234 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3235 	while (valid) {
3236 		u64 feature = valid & -valid;
3237 		int index = fls64(feature) - 1;
3238 		void *src = get_xsave_addr(xsave, feature);
3239 
3240 		if (src) {
3241 			u32 size, offset, ecx, edx;
3242 			cpuid_count(XSTATE_CPUID, index,
3243 				    &size, &offset, &ecx, &edx);
3244 			memcpy(dest + offset, src, size);
3245 		}
3246 
3247 		valid -= feature;
3248 	}
3249 }
3250 
3251 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3252 {
3253 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3254 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3255 	u64 valid;
3256 
3257 	/*
3258 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3259 	 * leaves 0 and 1 in the loop below.
3260 	 */
3261 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3262 
3263 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3264 	xsave->header.xfeatures = xstate_bv;
3265 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3266 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3267 
3268 	/*
3269 	 * Copy each region from the non-compacted offset to the
3270 	 * possibly compacted offset.
3271 	 */
3272 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3273 	while (valid) {
3274 		u64 feature = valid & -valid;
3275 		int index = fls64(feature) - 1;
3276 		void *dest = get_xsave_addr(xsave, feature);
3277 
3278 		if (dest) {
3279 			u32 size, offset, ecx, edx;
3280 			cpuid_count(XSTATE_CPUID, index,
3281 				    &size, &offset, &ecx, &edx);
3282 			memcpy(dest, src + offset, size);
3283 		}
3284 
3285 		valid -= feature;
3286 	}
3287 }
3288 
3289 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3290 					 struct kvm_xsave *guest_xsave)
3291 {
3292 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3293 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3294 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3295 	} else {
3296 		memcpy(guest_xsave->region,
3297 			&vcpu->arch.guest_fpu.state.fxsave,
3298 			sizeof(struct fxregs_state));
3299 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3300 			XFEATURE_MASK_FPSSE;
3301 	}
3302 }
3303 
3304 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3305 					struct kvm_xsave *guest_xsave)
3306 {
3307 	u64 xstate_bv =
3308 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3309 
3310 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3311 		/*
3312 		 * Here we allow setting states that are not present in
3313 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3314 		 * with old userspace.
3315 		 */
3316 		if (xstate_bv & ~kvm_supported_xcr0())
3317 			return -EINVAL;
3318 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3319 	} else {
3320 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3321 			return -EINVAL;
3322 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323 			guest_xsave->region, sizeof(struct fxregs_state));
3324 	}
3325 	return 0;
3326 }
3327 
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329 					struct kvm_xcrs *guest_xcrs)
3330 {
3331 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332 		guest_xcrs->nr_xcrs = 0;
3333 		return;
3334 	}
3335 
3336 	guest_xcrs->nr_xcrs = 1;
3337 	guest_xcrs->flags = 0;
3338 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3340 }
3341 
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343 				       struct kvm_xcrs *guest_xcrs)
3344 {
3345 	int i, r = 0;
3346 
3347 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3348 		return -EINVAL;
3349 
3350 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3351 		return -EINVAL;
3352 
3353 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354 		/* Only support XCR0 currently */
3355 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357 				guest_xcrs->xcrs[i].value);
3358 			break;
3359 		}
3360 	if (r)
3361 		r = -EINVAL;
3362 	return r;
3363 }
3364 
3365 /*
3366  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367  * stopped by the hypervisor.  This function will be called from the host only.
3368  * EINVAL is returned when the host attempts to set the flag for a guest that
3369  * does not support pv clocks.
3370  */
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3372 {
3373 	if (!vcpu->arch.pv_time_enabled)
3374 		return -EINVAL;
3375 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3376 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377 	return 0;
3378 }
3379 
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381 				     struct kvm_enable_cap *cap)
3382 {
3383 	if (cap->flags)
3384 		return -EINVAL;
3385 
3386 	switch (cap->cap) {
3387 	case KVM_CAP_HYPERV_SYNIC:
3388 		if (!irqchip_in_kernel(vcpu->kvm))
3389 			return -EINVAL;
3390 		return kvm_hv_activate_synic(vcpu);
3391 	default:
3392 		return -EINVAL;
3393 	}
3394 }
3395 
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397 			 unsigned int ioctl, unsigned long arg)
3398 {
3399 	struct kvm_vcpu *vcpu = filp->private_data;
3400 	void __user *argp = (void __user *)arg;
3401 	int r;
3402 	union {
3403 		struct kvm_lapic_state *lapic;
3404 		struct kvm_xsave *xsave;
3405 		struct kvm_xcrs *xcrs;
3406 		void *buffer;
3407 	} u;
3408 
3409 	u.buffer = NULL;
3410 	switch (ioctl) {
3411 	case KVM_GET_LAPIC: {
3412 		r = -EINVAL;
3413 		if (!lapic_in_kernel(vcpu))
3414 			goto out;
3415 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416 
3417 		r = -ENOMEM;
3418 		if (!u.lapic)
3419 			goto out;
3420 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3421 		if (r)
3422 			goto out;
3423 		r = -EFAULT;
3424 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425 			goto out;
3426 		r = 0;
3427 		break;
3428 	}
3429 	case KVM_SET_LAPIC: {
3430 		r = -EINVAL;
3431 		if (!lapic_in_kernel(vcpu))
3432 			goto out;
3433 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434 		if (IS_ERR(u.lapic))
3435 			return PTR_ERR(u.lapic);
3436 
3437 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3438 		break;
3439 	}
3440 	case KVM_INTERRUPT: {
3441 		struct kvm_interrupt irq;
3442 
3443 		r = -EFAULT;
3444 		if (copy_from_user(&irq, argp, sizeof irq))
3445 			goto out;
3446 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3447 		break;
3448 	}
3449 	case KVM_NMI: {
3450 		r = kvm_vcpu_ioctl_nmi(vcpu);
3451 		break;
3452 	}
3453 	case KVM_SMI: {
3454 		r = kvm_vcpu_ioctl_smi(vcpu);
3455 		break;
3456 	}
3457 	case KVM_SET_CPUID: {
3458 		struct kvm_cpuid __user *cpuid_arg = argp;
3459 		struct kvm_cpuid cpuid;
3460 
3461 		r = -EFAULT;
3462 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463 			goto out;
3464 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3465 		break;
3466 	}
3467 	case KVM_SET_CPUID2: {
3468 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3469 		struct kvm_cpuid2 cpuid;
3470 
3471 		r = -EFAULT;
3472 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473 			goto out;
3474 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475 					      cpuid_arg->entries);
3476 		break;
3477 	}
3478 	case KVM_GET_CPUID2: {
3479 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3480 		struct kvm_cpuid2 cpuid;
3481 
3482 		r = -EFAULT;
3483 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3484 			goto out;
3485 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486 					      cpuid_arg->entries);
3487 		if (r)
3488 			goto out;
3489 		r = -EFAULT;
3490 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3491 			goto out;
3492 		r = 0;
3493 		break;
3494 	}
3495 	case KVM_GET_MSRS:
3496 		r = msr_io(vcpu, argp, do_get_msr, 1);
3497 		break;
3498 	case KVM_SET_MSRS:
3499 		r = msr_io(vcpu, argp, do_set_msr, 0);
3500 		break;
3501 	case KVM_TPR_ACCESS_REPORTING: {
3502 		struct kvm_tpr_access_ctl tac;
3503 
3504 		r = -EFAULT;
3505 		if (copy_from_user(&tac, argp, sizeof tac))
3506 			goto out;
3507 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3508 		if (r)
3509 			goto out;
3510 		r = -EFAULT;
3511 		if (copy_to_user(argp, &tac, sizeof tac))
3512 			goto out;
3513 		r = 0;
3514 		break;
3515 	};
3516 	case KVM_SET_VAPIC_ADDR: {
3517 		struct kvm_vapic_addr va;
3518 		int idx;
3519 
3520 		r = -EINVAL;
3521 		if (!lapic_in_kernel(vcpu))
3522 			goto out;
3523 		r = -EFAULT;
3524 		if (copy_from_user(&va, argp, sizeof va))
3525 			goto out;
3526 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3527 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3529 		break;
3530 	}
3531 	case KVM_X86_SETUP_MCE: {
3532 		u64 mcg_cap;
3533 
3534 		r = -EFAULT;
3535 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3536 			goto out;
3537 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3538 		break;
3539 	}
3540 	case KVM_X86_SET_MCE: {
3541 		struct kvm_x86_mce mce;
3542 
3543 		r = -EFAULT;
3544 		if (copy_from_user(&mce, argp, sizeof mce))
3545 			goto out;
3546 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3547 		break;
3548 	}
3549 	case KVM_GET_VCPU_EVENTS: {
3550 		struct kvm_vcpu_events events;
3551 
3552 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3553 
3554 		r = -EFAULT;
3555 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556 			break;
3557 		r = 0;
3558 		break;
3559 	}
3560 	case KVM_SET_VCPU_EVENTS: {
3561 		struct kvm_vcpu_events events;
3562 
3563 		r = -EFAULT;
3564 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3565 			break;
3566 
3567 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3568 		break;
3569 	}
3570 	case KVM_GET_DEBUGREGS: {
3571 		struct kvm_debugregs dbgregs;
3572 
3573 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3574 
3575 		r = -EFAULT;
3576 		if (copy_to_user(argp, &dbgregs,
3577 				 sizeof(struct kvm_debugregs)))
3578 			break;
3579 		r = 0;
3580 		break;
3581 	}
3582 	case KVM_SET_DEBUGREGS: {
3583 		struct kvm_debugregs dbgregs;
3584 
3585 		r = -EFAULT;
3586 		if (copy_from_user(&dbgregs, argp,
3587 				   sizeof(struct kvm_debugregs)))
3588 			break;
3589 
3590 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3591 		break;
3592 	}
3593 	case KVM_GET_XSAVE: {
3594 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595 		r = -ENOMEM;
3596 		if (!u.xsave)
3597 			break;
3598 
3599 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3600 
3601 		r = -EFAULT;
3602 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603 			break;
3604 		r = 0;
3605 		break;
3606 	}
3607 	case KVM_SET_XSAVE: {
3608 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609 		if (IS_ERR(u.xsave))
3610 			return PTR_ERR(u.xsave);
3611 
3612 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3613 		break;
3614 	}
3615 	case KVM_GET_XCRS: {
3616 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617 		r = -ENOMEM;
3618 		if (!u.xcrs)
3619 			break;
3620 
3621 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3622 
3623 		r = -EFAULT;
3624 		if (copy_to_user(argp, u.xcrs,
3625 				 sizeof(struct kvm_xcrs)))
3626 			break;
3627 		r = 0;
3628 		break;
3629 	}
3630 	case KVM_SET_XCRS: {
3631 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3632 		if (IS_ERR(u.xcrs))
3633 			return PTR_ERR(u.xcrs);
3634 
3635 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3636 		break;
3637 	}
3638 	case KVM_SET_TSC_KHZ: {
3639 		u32 user_tsc_khz;
3640 
3641 		r = -EINVAL;
3642 		user_tsc_khz = (u32)arg;
3643 
3644 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3645 			goto out;
3646 
3647 		if (user_tsc_khz == 0)
3648 			user_tsc_khz = tsc_khz;
3649 
3650 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651 			r = 0;
3652 
3653 		goto out;
3654 	}
3655 	case KVM_GET_TSC_KHZ: {
3656 		r = vcpu->arch.virtual_tsc_khz;
3657 		goto out;
3658 	}
3659 	case KVM_KVMCLOCK_CTRL: {
3660 		r = kvm_set_guest_paused(vcpu);
3661 		goto out;
3662 	}
3663 	case KVM_ENABLE_CAP: {
3664 		struct kvm_enable_cap cap;
3665 
3666 		r = -EFAULT;
3667 		if (copy_from_user(&cap, argp, sizeof(cap)))
3668 			goto out;
3669 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3670 		break;
3671 	}
3672 	default:
3673 		r = -EINVAL;
3674 	}
3675 out:
3676 	kfree(u.buffer);
3677 	return r;
3678 }
3679 
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3681 {
3682 	return VM_FAULT_SIGBUS;
3683 }
3684 
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3686 {
3687 	int ret;
3688 
3689 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3690 		return -EINVAL;
3691 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3692 	return ret;
3693 }
3694 
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3696 					      u64 ident_addr)
3697 {
3698 	kvm->arch.ept_identity_map_addr = ident_addr;
3699 	return 0;
3700 }
3701 
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703 					  u32 kvm_nr_mmu_pages)
3704 {
3705 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3706 		return -EINVAL;
3707 
3708 	mutex_lock(&kvm->slots_lock);
3709 
3710 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3712 
3713 	mutex_unlock(&kvm->slots_lock);
3714 	return 0;
3715 }
3716 
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3718 {
3719 	return kvm->arch.n_max_mmu_pages;
3720 }
3721 
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 {
3724 	int r;
3725 
3726 	r = 0;
3727 	switch (chip->chip_id) {
3728 	case KVM_IRQCHIP_PIC_MASTER:
3729 		memcpy(&chip->chip.pic,
3730 			&pic_irqchip(kvm)->pics[0],
3731 			sizeof(struct kvm_pic_state));
3732 		break;
3733 	case KVM_IRQCHIP_PIC_SLAVE:
3734 		memcpy(&chip->chip.pic,
3735 			&pic_irqchip(kvm)->pics[1],
3736 			sizeof(struct kvm_pic_state));
3737 		break;
3738 	case KVM_IRQCHIP_IOAPIC:
3739 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3740 		break;
3741 	default:
3742 		r = -EINVAL;
3743 		break;
3744 	}
3745 	return r;
3746 }
3747 
3748 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3749 {
3750 	int r;
3751 
3752 	r = 0;
3753 	switch (chip->chip_id) {
3754 	case KVM_IRQCHIP_PIC_MASTER:
3755 		spin_lock(&pic_irqchip(kvm)->lock);
3756 		memcpy(&pic_irqchip(kvm)->pics[0],
3757 			&chip->chip.pic,
3758 			sizeof(struct kvm_pic_state));
3759 		spin_unlock(&pic_irqchip(kvm)->lock);
3760 		break;
3761 	case KVM_IRQCHIP_PIC_SLAVE:
3762 		spin_lock(&pic_irqchip(kvm)->lock);
3763 		memcpy(&pic_irqchip(kvm)->pics[1],
3764 			&chip->chip.pic,
3765 			sizeof(struct kvm_pic_state));
3766 		spin_unlock(&pic_irqchip(kvm)->lock);
3767 		break;
3768 	case KVM_IRQCHIP_IOAPIC:
3769 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3770 		break;
3771 	default:
3772 		r = -EINVAL;
3773 		break;
3774 	}
3775 	kvm_pic_update_irq(pic_irqchip(kvm));
3776 	return r;
3777 }
3778 
3779 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3780 {
3781 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3782 
3783 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3784 
3785 	mutex_lock(&kps->lock);
3786 	memcpy(ps, &kps->channels, sizeof(*ps));
3787 	mutex_unlock(&kps->lock);
3788 	return 0;
3789 }
3790 
3791 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3792 {
3793 	int i;
3794 	struct kvm_pit *pit = kvm->arch.vpit;
3795 
3796 	mutex_lock(&pit->pit_state.lock);
3797 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3798 	for (i = 0; i < 3; i++)
3799 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3800 	mutex_unlock(&pit->pit_state.lock);
3801 	return 0;
3802 }
3803 
3804 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3805 {
3806 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3807 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3808 		sizeof(ps->channels));
3809 	ps->flags = kvm->arch.vpit->pit_state.flags;
3810 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3811 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3812 	return 0;
3813 }
3814 
3815 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3816 {
3817 	int start = 0;
3818 	int i;
3819 	u32 prev_legacy, cur_legacy;
3820 	struct kvm_pit *pit = kvm->arch.vpit;
3821 
3822 	mutex_lock(&pit->pit_state.lock);
3823 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3824 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3825 	if (!prev_legacy && cur_legacy)
3826 		start = 1;
3827 	memcpy(&pit->pit_state.channels, &ps->channels,
3828 	       sizeof(pit->pit_state.channels));
3829 	pit->pit_state.flags = ps->flags;
3830 	for (i = 0; i < 3; i++)
3831 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3832 				   start && i == 0);
3833 	mutex_unlock(&pit->pit_state.lock);
3834 	return 0;
3835 }
3836 
3837 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3838 				 struct kvm_reinject_control *control)
3839 {
3840 	struct kvm_pit *pit = kvm->arch.vpit;
3841 
3842 	if (!pit)
3843 		return -ENXIO;
3844 
3845 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3846 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3847 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3848 	 */
3849 	mutex_lock(&pit->pit_state.lock);
3850 	kvm_pit_set_reinject(pit, control->pit_reinject);
3851 	mutex_unlock(&pit->pit_state.lock);
3852 
3853 	return 0;
3854 }
3855 
3856 /**
3857  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3858  * @kvm: kvm instance
3859  * @log: slot id and address to which we copy the log
3860  *
3861  * Steps 1-4 below provide general overview of dirty page logging. See
3862  * kvm_get_dirty_log_protect() function description for additional details.
3863  *
3864  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3865  * always flush the TLB (step 4) even if previous step failed  and the dirty
3866  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3867  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3868  * writes will be marked dirty for next log read.
3869  *
3870  *   1. Take a snapshot of the bit and clear it if needed.
3871  *   2. Write protect the corresponding page.
3872  *   3. Copy the snapshot to the userspace.
3873  *   4. Flush TLB's if needed.
3874  */
3875 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3876 {
3877 	bool is_dirty = false;
3878 	int r;
3879 
3880 	mutex_lock(&kvm->slots_lock);
3881 
3882 	/*
3883 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3884 	 */
3885 	if (kvm_x86_ops->flush_log_dirty)
3886 		kvm_x86_ops->flush_log_dirty(kvm);
3887 
3888 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3889 
3890 	/*
3891 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3892 	 * kvm_mmu_slot_remove_write_access().
3893 	 */
3894 	lockdep_assert_held(&kvm->slots_lock);
3895 	if (is_dirty)
3896 		kvm_flush_remote_tlbs(kvm);
3897 
3898 	mutex_unlock(&kvm->slots_lock);
3899 	return r;
3900 }
3901 
3902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3903 			bool line_status)
3904 {
3905 	if (!irqchip_in_kernel(kvm))
3906 		return -ENXIO;
3907 
3908 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3909 					irq_event->irq, irq_event->level,
3910 					line_status);
3911 	return 0;
3912 }
3913 
3914 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3915 				   struct kvm_enable_cap *cap)
3916 {
3917 	int r;
3918 
3919 	if (cap->flags)
3920 		return -EINVAL;
3921 
3922 	switch (cap->cap) {
3923 	case KVM_CAP_DISABLE_QUIRKS:
3924 		kvm->arch.disabled_quirks = cap->args[0];
3925 		r = 0;
3926 		break;
3927 	case KVM_CAP_SPLIT_IRQCHIP: {
3928 		mutex_lock(&kvm->lock);
3929 		r = -EINVAL;
3930 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3931 			goto split_irqchip_unlock;
3932 		r = -EEXIST;
3933 		if (irqchip_in_kernel(kvm))
3934 			goto split_irqchip_unlock;
3935 		if (kvm->created_vcpus)
3936 			goto split_irqchip_unlock;
3937 		r = kvm_setup_empty_irq_routing(kvm);
3938 		if (r)
3939 			goto split_irqchip_unlock;
3940 		/* Pairs with irqchip_in_kernel. */
3941 		smp_wmb();
3942 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3943 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3944 		r = 0;
3945 split_irqchip_unlock:
3946 		mutex_unlock(&kvm->lock);
3947 		break;
3948 	}
3949 	case KVM_CAP_X2APIC_API:
3950 		r = -EINVAL;
3951 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3952 			break;
3953 
3954 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3955 			kvm->arch.x2apic_format = true;
3956 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3957 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3958 
3959 		r = 0;
3960 		break;
3961 	default:
3962 		r = -EINVAL;
3963 		break;
3964 	}
3965 	return r;
3966 }
3967 
3968 long kvm_arch_vm_ioctl(struct file *filp,
3969 		       unsigned int ioctl, unsigned long arg)
3970 {
3971 	struct kvm *kvm = filp->private_data;
3972 	void __user *argp = (void __user *)arg;
3973 	int r = -ENOTTY;
3974 	/*
3975 	 * This union makes it completely explicit to gcc-3.x
3976 	 * that these two variables' stack usage should be
3977 	 * combined, not added together.
3978 	 */
3979 	union {
3980 		struct kvm_pit_state ps;
3981 		struct kvm_pit_state2 ps2;
3982 		struct kvm_pit_config pit_config;
3983 	} u;
3984 
3985 	switch (ioctl) {
3986 	case KVM_SET_TSS_ADDR:
3987 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3988 		break;
3989 	case KVM_SET_IDENTITY_MAP_ADDR: {
3990 		u64 ident_addr;
3991 
3992 		r = -EFAULT;
3993 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3994 			goto out;
3995 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3996 		break;
3997 	}
3998 	case KVM_SET_NR_MMU_PAGES:
3999 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4000 		break;
4001 	case KVM_GET_NR_MMU_PAGES:
4002 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4003 		break;
4004 	case KVM_CREATE_IRQCHIP: {
4005 		mutex_lock(&kvm->lock);
4006 
4007 		r = -EEXIST;
4008 		if (irqchip_in_kernel(kvm))
4009 			goto create_irqchip_unlock;
4010 
4011 		r = -EINVAL;
4012 		if (kvm->created_vcpus)
4013 			goto create_irqchip_unlock;
4014 
4015 		r = kvm_pic_init(kvm);
4016 		if (r)
4017 			goto create_irqchip_unlock;
4018 
4019 		r = kvm_ioapic_init(kvm);
4020 		if (r) {
4021 			mutex_lock(&kvm->slots_lock);
4022 			kvm_pic_destroy(kvm);
4023 			mutex_unlock(&kvm->slots_lock);
4024 			goto create_irqchip_unlock;
4025 		}
4026 
4027 		r = kvm_setup_default_irq_routing(kvm);
4028 		if (r) {
4029 			mutex_lock(&kvm->slots_lock);
4030 			mutex_lock(&kvm->irq_lock);
4031 			kvm_ioapic_destroy(kvm);
4032 			kvm_pic_destroy(kvm);
4033 			mutex_unlock(&kvm->irq_lock);
4034 			mutex_unlock(&kvm->slots_lock);
4035 			goto create_irqchip_unlock;
4036 		}
4037 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4038 		smp_wmb();
4039 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4040 	create_irqchip_unlock:
4041 		mutex_unlock(&kvm->lock);
4042 		break;
4043 	}
4044 	case KVM_CREATE_PIT:
4045 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4046 		goto create_pit;
4047 	case KVM_CREATE_PIT2:
4048 		r = -EFAULT;
4049 		if (copy_from_user(&u.pit_config, argp,
4050 				   sizeof(struct kvm_pit_config)))
4051 			goto out;
4052 	create_pit:
4053 		mutex_lock(&kvm->lock);
4054 		r = -EEXIST;
4055 		if (kvm->arch.vpit)
4056 			goto create_pit_unlock;
4057 		r = -ENOMEM;
4058 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4059 		if (kvm->arch.vpit)
4060 			r = 0;
4061 	create_pit_unlock:
4062 		mutex_unlock(&kvm->lock);
4063 		break;
4064 	case KVM_GET_IRQCHIP: {
4065 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4066 		struct kvm_irqchip *chip;
4067 
4068 		chip = memdup_user(argp, sizeof(*chip));
4069 		if (IS_ERR(chip)) {
4070 			r = PTR_ERR(chip);
4071 			goto out;
4072 		}
4073 
4074 		r = -ENXIO;
4075 		if (!irqchip_kernel(kvm))
4076 			goto get_irqchip_out;
4077 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4078 		if (r)
4079 			goto get_irqchip_out;
4080 		r = -EFAULT;
4081 		if (copy_to_user(argp, chip, sizeof *chip))
4082 			goto get_irqchip_out;
4083 		r = 0;
4084 	get_irqchip_out:
4085 		kfree(chip);
4086 		break;
4087 	}
4088 	case KVM_SET_IRQCHIP: {
4089 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4090 		struct kvm_irqchip *chip;
4091 
4092 		chip = memdup_user(argp, sizeof(*chip));
4093 		if (IS_ERR(chip)) {
4094 			r = PTR_ERR(chip);
4095 			goto out;
4096 		}
4097 
4098 		r = -ENXIO;
4099 		if (!irqchip_kernel(kvm))
4100 			goto set_irqchip_out;
4101 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4102 		if (r)
4103 			goto set_irqchip_out;
4104 		r = 0;
4105 	set_irqchip_out:
4106 		kfree(chip);
4107 		break;
4108 	}
4109 	case KVM_GET_PIT: {
4110 		r = -EFAULT;
4111 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4112 			goto out;
4113 		r = -ENXIO;
4114 		if (!kvm->arch.vpit)
4115 			goto out;
4116 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4117 		if (r)
4118 			goto out;
4119 		r = -EFAULT;
4120 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4121 			goto out;
4122 		r = 0;
4123 		break;
4124 	}
4125 	case KVM_SET_PIT: {
4126 		r = -EFAULT;
4127 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4128 			goto out;
4129 		r = -ENXIO;
4130 		if (!kvm->arch.vpit)
4131 			goto out;
4132 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4133 		break;
4134 	}
4135 	case KVM_GET_PIT2: {
4136 		r = -ENXIO;
4137 		if (!kvm->arch.vpit)
4138 			goto out;
4139 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4140 		if (r)
4141 			goto out;
4142 		r = -EFAULT;
4143 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4144 			goto out;
4145 		r = 0;
4146 		break;
4147 	}
4148 	case KVM_SET_PIT2: {
4149 		r = -EFAULT;
4150 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4151 			goto out;
4152 		r = -ENXIO;
4153 		if (!kvm->arch.vpit)
4154 			goto out;
4155 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4156 		break;
4157 	}
4158 	case KVM_REINJECT_CONTROL: {
4159 		struct kvm_reinject_control control;
4160 		r =  -EFAULT;
4161 		if (copy_from_user(&control, argp, sizeof(control)))
4162 			goto out;
4163 		r = kvm_vm_ioctl_reinject(kvm, &control);
4164 		break;
4165 	}
4166 	case KVM_SET_BOOT_CPU_ID:
4167 		r = 0;
4168 		mutex_lock(&kvm->lock);
4169 		if (kvm->created_vcpus)
4170 			r = -EBUSY;
4171 		else
4172 			kvm->arch.bsp_vcpu_id = arg;
4173 		mutex_unlock(&kvm->lock);
4174 		break;
4175 	case KVM_XEN_HVM_CONFIG: {
4176 		r = -EFAULT;
4177 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4178 				   sizeof(struct kvm_xen_hvm_config)))
4179 			goto out;
4180 		r = -EINVAL;
4181 		if (kvm->arch.xen_hvm_config.flags)
4182 			goto out;
4183 		r = 0;
4184 		break;
4185 	}
4186 	case KVM_SET_CLOCK: {
4187 		struct kvm_clock_data user_ns;
4188 		u64 now_ns;
4189 
4190 		r = -EFAULT;
4191 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4192 			goto out;
4193 
4194 		r = -EINVAL;
4195 		if (user_ns.flags)
4196 			goto out;
4197 
4198 		r = 0;
4199 		local_irq_disable();
4200 		now_ns = __get_kvmclock_ns(kvm);
4201 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4202 		local_irq_enable();
4203 		kvm_gen_update_masterclock(kvm);
4204 		break;
4205 	}
4206 	case KVM_GET_CLOCK: {
4207 		struct kvm_clock_data user_ns;
4208 		u64 now_ns;
4209 
4210 		local_irq_disable();
4211 		now_ns = __get_kvmclock_ns(kvm);
4212 		user_ns.clock = now_ns;
4213 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4214 		local_irq_enable();
4215 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4216 
4217 		r = -EFAULT;
4218 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4219 			goto out;
4220 		r = 0;
4221 		break;
4222 	}
4223 	case KVM_ENABLE_CAP: {
4224 		struct kvm_enable_cap cap;
4225 
4226 		r = -EFAULT;
4227 		if (copy_from_user(&cap, argp, sizeof(cap)))
4228 			goto out;
4229 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4230 		break;
4231 	}
4232 	default:
4233 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4234 	}
4235 out:
4236 	return r;
4237 }
4238 
4239 static void kvm_init_msr_list(void)
4240 {
4241 	u32 dummy[2];
4242 	unsigned i, j;
4243 
4244 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4245 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4246 			continue;
4247 
4248 		/*
4249 		 * Even MSRs that are valid in the host may not be exposed
4250 		 * to the guests in some cases.
4251 		 */
4252 		switch (msrs_to_save[i]) {
4253 		case MSR_IA32_BNDCFGS:
4254 			if (!kvm_x86_ops->mpx_supported())
4255 				continue;
4256 			break;
4257 		case MSR_TSC_AUX:
4258 			if (!kvm_x86_ops->rdtscp_supported())
4259 				continue;
4260 			break;
4261 		default:
4262 			break;
4263 		}
4264 
4265 		if (j < i)
4266 			msrs_to_save[j] = msrs_to_save[i];
4267 		j++;
4268 	}
4269 	num_msrs_to_save = j;
4270 
4271 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4272 		switch (emulated_msrs[i]) {
4273 		case MSR_IA32_SMBASE:
4274 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4275 				continue;
4276 			break;
4277 		default:
4278 			break;
4279 		}
4280 
4281 		if (j < i)
4282 			emulated_msrs[j] = emulated_msrs[i];
4283 		j++;
4284 	}
4285 	num_emulated_msrs = j;
4286 }
4287 
4288 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4289 			   const void *v)
4290 {
4291 	int handled = 0;
4292 	int n;
4293 
4294 	do {
4295 		n = min(len, 8);
4296 		if (!(lapic_in_kernel(vcpu) &&
4297 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4298 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4299 			break;
4300 		handled += n;
4301 		addr += n;
4302 		len -= n;
4303 		v += n;
4304 	} while (len);
4305 
4306 	return handled;
4307 }
4308 
4309 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4310 {
4311 	int handled = 0;
4312 	int n;
4313 
4314 	do {
4315 		n = min(len, 8);
4316 		if (!(lapic_in_kernel(vcpu) &&
4317 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4318 					 addr, n, v))
4319 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4320 			break;
4321 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4322 		handled += n;
4323 		addr += n;
4324 		len -= n;
4325 		v += n;
4326 	} while (len);
4327 
4328 	return handled;
4329 }
4330 
4331 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4332 			struct kvm_segment *var, int seg)
4333 {
4334 	kvm_x86_ops->set_segment(vcpu, var, seg);
4335 }
4336 
4337 void kvm_get_segment(struct kvm_vcpu *vcpu,
4338 		     struct kvm_segment *var, int seg)
4339 {
4340 	kvm_x86_ops->get_segment(vcpu, var, seg);
4341 }
4342 
4343 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4344 			   struct x86_exception *exception)
4345 {
4346 	gpa_t t_gpa;
4347 
4348 	BUG_ON(!mmu_is_nested(vcpu));
4349 
4350 	/* NPT walks are always user-walks */
4351 	access |= PFERR_USER_MASK;
4352 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4353 
4354 	return t_gpa;
4355 }
4356 
4357 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4358 			      struct x86_exception *exception)
4359 {
4360 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4361 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4362 }
4363 
4364  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4365 				struct x86_exception *exception)
4366 {
4367 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4368 	access |= PFERR_FETCH_MASK;
4369 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4370 }
4371 
4372 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4373 			       struct x86_exception *exception)
4374 {
4375 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4376 	access |= PFERR_WRITE_MASK;
4377 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4378 }
4379 
4380 /* uses this to access any guest's mapped memory without checking CPL */
4381 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4382 				struct x86_exception *exception)
4383 {
4384 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4385 }
4386 
4387 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4388 				      struct kvm_vcpu *vcpu, u32 access,
4389 				      struct x86_exception *exception)
4390 {
4391 	void *data = val;
4392 	int r = X86EMUL_CONTINUE;
4393 
4394 	while (bytes) {
4395 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4396 							    exception);
4397 		unsigned offset = addr & (PAGE_SIZE-1);
4398 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4399 		int ret;
4400 
4401 		if (gpa == UNMAPPED_GVA)
4402 			return X86EMUL_PROPAGATE_FAULT;
4403 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4404 					       offset, toread);
4405 		if (ret < 0) {
4406 			r = X86EMUL_IO_NEEDED;
4407 			goto out;
4408 		}
4409 
4410 		bytes -= toread;
4411 		data += toread;
4412 		addr += toread;
4413 	}
4414 out:
4415 	return r;
4416 }
4417 
4418 /* used for instruction fetching */
4419 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4420 				gva_t addr, void *val, unsigned int bytes,
4421 				struct x86_exception *exception)
4422 {
4423 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4424 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4425 	unsigned offset;
4426 	int ret;
4427 
4428 	/* Inline kvm_read_guest_virt_helper for speed.  */
4429 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4430 						    exception);
4431 	if (unlikely(gpa == UNMAPPED_GVA))
4432 		return X86EMUL_PROPAGATE_FAULT;
4433 
4434 	offset = addr & (PAGE_SIZE-1);
4435 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4436 		bytes = (unsigned)PAGE_SIZE - offset;
4437 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4438 				       offset, bytes);
4439 	if (unlikely(ret < 0))
4440 		return X86EMUL_IO_NEEDED;
4441 
4442 	return X86EMUL_CONTINUE;
4443 }
4444 
4445 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4446 			       gva_t addr, void *val, unsigned int bytes,
4447 			       struct x86_exception *exception)
4448 {
4449 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4451 
4452 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4453 					  exception);
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4456 
4457 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4458 				      gva_t addr, void *val, unsigned int bytes,
4459 				      struct x86_exception *exception)
4460 {
4461 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4462 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4463 }
4464 
4465 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4466 		unsigned long addr, void *val, unsigned int bytes)
4467 {
4468 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4470 
4471 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4472 }
4473 
4474 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4475 				       gva_t addr, void *val,
4476 				       unsigned int bytes,
4477 				       struct x86_exception *exception)
4478 {
4479 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4480 	void *data = val;
4481 	int r = X86EMUL_CONTINUE;
4482 
4483 	while (bytes) {
4484 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4485 							     PFERR_WRITE_MASK,
4486 							     exception);
4487 		unsigned offset = addr & (PAGE_SIZE-1);
4488 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4489 		int ret;
4490 
4491 		if (gpa == UNMAPPED_GVA)
4492 			return X86EMUL_PROPAGATE_FAULT;
4493 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4494 		if (ret < 0) {
4495 			r = X86EMUL_IO_NEEDED;
4496 			goto out;
4497 		}
4498 
4499 		bytes -= towrite;
4500 		data += towrite;
4501 		addr += towrite;
4502 	}
4503 out:
4504 	return r;
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4507 
4508 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4509 			    gpa_t gpa, bool write)
4510 {
4511 	/* For APIC access vmexit */
4512 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4513 		return 1;
4514 
4515 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4516 		trace_vcpu_match_mmio(gva, gpa, write, true);
4517 		return 1;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4524 				gpa_t *gpa, struct x86_exception *exception,
4525 				bool write)
4526 {
4527 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4528 		| (write ? PFERR_WRITE_MASK : 0);
4529 
4530 	/*
4531 	 * currently PKRU is only applied to ept enabled guest so
4532 	 * there is no pkey in EPT page table for L1 guest or EPT
4533 	 * shadow page table for L2 guest.
4534 	 */
4535 	if (vcpu_match_mmio_gva(vcpu, gva)
4536 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4537 				 vcpu->arch.access, 0, access)) {
4538 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4539 					(gva & (PAGE_SIZE - 1));
4540 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4541 		return 1;
4542 	}
4543 
4544 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4545 
4546 	if (*gpa == UNMAPPED_GVA)
4547 		return -1;
4548 
4549 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4550 }
4551 
4552 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4553 			const void *val, int bytes)
4554 {
4555 	int ret;
4556 
4557 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4558 	if (ret < 0)
4559 		return 0;
4560 	kvm_page_track_write(vcpu, gpa, val, bytes);
4561 	return 1;
4562 }
4563 
4564 struct read_write_emulator_ops {
4565 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4566 				  int bytes);
4567 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4568 				  void *val, int bytes);
4569 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4570 			       int bytes, void *val);
4571 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4572 				    void *val, int bytes);
4573 	bool write;
4574 };
4575 
4576 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4577 {
4578 	if (vcpu->mmio_read_completed) {
4579 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4580 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4581 		vcpu->mmio_read_completed = 0;
4582 		return 1;
4583 	}
4584 
4585 	return 0;
4586 }
4587 
4588 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 			void *val, int bytes)
4590 {
4591 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4592 }
4593 
4594 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4595 			 void *val, int bytes)
4596 {
4597 	return emulator_write_phys(vcpu, gpa, val, bytes);
4598 }
4599 
4600 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4601 {
4602 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4603 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4604 }
4605 
4606 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4607 			  void *val, int bytes)
4608 {
4609 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4610 	return X86EMUL_IO_NEEDED;
4611 }
4612 
4613 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4614 			   void *val, int bytes)
4615 {
4616 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4617 
4618 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4619 	return X86EMUL_CONTINUE;
4620 }
4621 
4622 static const struct read_write_emulator_ops read_emultor = {
4623 	.read_write_prepare = read_prepare,
4624 	.read_write_emulate = read_emulate,
4625 	.read_write_mmio = vcpu_mmio_read,
4626 	.read_write_exit_mmio = read_exit_mmio,
4627 };
4628 
4629 static const struct read_write_emulator_ops write_emultor = {
4630 	.read_write_emulate = write_emulate,
4631 	.read_write_mmio = write_mmio,
4632 	.read_write_exit_mmio = write_exit_mmio,
4633 	.write = true,
4634 };
4635 
4636 static int emulator_read_write_onepage(unsigned long addr, void *val,
4637 				       unsigned int bytes,
4638 				       struct x86_exception *exception,
4639 				       struct kvm_vcpu *vcpu,
4640 				       const struct read_write_emulator_ops *ops)
4641 {
4642 	gpa_t gpa;
4643 	int handled, ret;
4644 	bool write = ops->write;
4645 	struct kvm_mmio_fragment *frag;
4646 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4647 
4648 	/*
4649 	 * If the exit was due to a NPF we may already have a GPA.
4650 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4651 	 * Note, this cannot be used on string operations since string
4652 	 * operation using rep will only have the initial GPA from the NPF
4653 	 * occurred.
4654 	 */
4655 	if (vcpu->arch.gpa_available &&
4656 	    emulator_can_use_gpa(ctxt) &&
4657 	    vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4658 	    (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4659 		gpa = exception->address;
4660 		goto mmio;
4661 	}
4662 
4663 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4664 
4665 	if (ret < 0)
4666 		return X86EMUL_PROPAGATE_FAULT;
4667 
4668 	/* For APIC access vmexit */
4669 	if (ret)
4670 		goto mmio;
4671 
4672 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4673 		return X86EMUL_CONTINUE;
4674 
4675 mmio:
4676 	/*
4677 	 * Is this MMIO handled locally?
4678 	 */
4679 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4680 	if (handled == bytes)
4681 		return X86EMUL_CONTINUE;
4682 
4683 	gpa += handled;
4684 	bytes -= handled;
4685 	val += handled;
4686 
4687 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4688 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4689 	frag->gpa = gpa;
4690 	frag->data = val;
4691 	frag->len = bytes;
4692 	return X86EMUL_CONTINUE;
4693 }
4694 
4695 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4696 			unsigned long addr,
4697 			void *val, unsigned int bytes,
4698 			struct x86_exception *exception,
4699 			const struct read_write_emulator_ops *ops)
4700 {
4701 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4702 	gpa_t gpa;
4703 	int rc;
4704 
4705 	if (ops->read_write_prepare &&
4706 		  ops->read_write_prepare(vcpu, val, bytes))
4707 		return X86EMUL_CONTINUE;
4708 
4709 	vcpu->mmio_nr_fragments = 0;
4710 
4711 	/* Crossing a page boundary? */
4712 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4713 		int now;
4714 
4715 		now = -addr & ~PAGE_MASK;
4716 		rc = emulator_read_write_onepage(addr, val, now, exception,
4717 						 vcpu, ops);
4718 
4719 		if (rc != X86EMUL_CONTINUE)
4720 			return rc;
4721 		addr += now;
4722 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4723 			addr = (u32)addr;
4724 		val += now;
4725 		bytes -= now;
4726 	}
4727 
4728 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4729 					 vcpu, ops);
4730 	if (rc != X86EMUL_CONTINUE)
4731 		return rc;
4732 
4733 	if (!vcpu->mmio_nr_fragments)
4734 		return rc;
4735 
4736 	gpa = vcpu->mmio_fragments[0].gpa;
4737 
4738 	vcpu->mmio_needed = 1;
4739 	vcpu->mmio_cur_fragment = 0;
4740 
4741 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4742 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4743 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4744 	vcpu->run->mmio.phys_addr = gpa;
4745 
4746 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4747 }
4748 
4749 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4750 				  unsigned long addr,
4751 				  void *val,
4752 				  unsigned int bytes,
4753 				  struct x86_exception *exception)
4754 {
4755 	return emulator_read_write(ctxt, addr, val, bytes,
4756 				   exception, &read_emultor);
4757 }
4758 
4759 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4760 			    unsigned long addr,
4761 			    const void *val,
4762 			    unsigned int bytes,
4763 			    struct x86_exception *exception)
4764 {
4765 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4766 				   exception, &write_emultor);
4767 }
4768 
4769 #define CMPXCHG_TYPE(t, ptr, old, new) \
4770 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4771 
4772 #ifdef CONFIG_X86_64
4773 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4774 #else
4775 #  define CMPXCHG64(ptr, old, new) \
4776 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4777 #endif
4778 
4779 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4780 				     unsigned long addr,
4781 				     const void *old,
4782 				     const void *new,
4783 				     unsigned int bytes,
4784 				     struct x86_exception *exception)
4785 {
4786 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4787 	gpa_t gpa;
4788 	struct page *page;
4789 	char *kaddr;
4790 	bool exchanged;
4791 
4792 	/* guests cmpxchg8b have to be emulated atomically */
4793 	if (bytes > 8 || (bytes & (bytes - 1)))
4794 		goto emul_write;
4795 
4796 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4797 
4798 	if (gpa == UNMAPPED_GVA ||
4799 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4800 		goto emul_write;
4801 
4802 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4803 		goto emul_write;
4804 
4805 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4806 	if (is_error_page(page))
4807 		goto emul_write;
4808 
4809 	kaddr = kmap_atomic(page);
4810 	kaddr += offset_in_page(gpa);
4811 	switch (bytes) {
4812 	case 1:
4813 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4814 		break;
4815 	case 2:
4816 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4817 		break;
4818 	case 4:
4819 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4820 		break;
4821 	case 8:
4822 		exchanged = CMPXCHG64(kaddr, old, new);
4823 		break;
4824 	default:
4825 		BUG();
4826 	}
4827 	kunmap_atomic(kaddr);
4828 	kvm_release_page_dirty(page);
4829 
4830 	if (!exchanged)
4831 		return X86EMUL_CMPXCHG_FAILED;
4832 
4833 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4834 	kvm_page_track_write(vcpu, gpa, new, bytes);
4835 
4836 	return X86EMUL_CONTINUE;
4837 
4838 emul_write:
4839 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4840 
4841 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4842 }
4843 
4844 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4845 {
4846 	/* TODO: String I/O for in kernel device */
4847 	int r;
4848 
4849 	if (vcpu->arch.pio.in)
4850 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4851 				    vcpu->arch.pio.size, pd);
4852 	else
4853 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4854 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4855 				     pd);
4856 	return r;
4857 }
4858 
4859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4860 			       unsigned short port, void *val,
4861 			       unsigned int count, bool in)
4862 {
4863 	vcpu->arch.pio.port = port;
4864 	vcpu->arch.pio.in = in;
4865 	vcpu->arch.pio.count  = count;
4866 	vcpu->arch.pio.size = size;
4867 
4868 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4869 		vcpu->arch.pio.count = 0;
4870 		return 1;
4871 	}
4872 
4873 	vcpu->run->exit_reason = KVM_EXIT_IO;
4874 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4875 	vcpu->run->io.size = size;
4876 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4877 	vcpu->run->io.count = count;
4878 	vcpu->run->io.port = port;
4879 
4880 	return 0;
4881 }
4882 
4883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4884 				    int size, unsigned short port, void *val,
4885 				    unsigned int count)
4886 {
4887 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4888 	int ret;
4889 
4890 	if (vcpu->arch.pio.count)
4891 		goto data_avail;
4892 
4893 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4894 	if (ret) {
4895 data_avail:
4896 		memcpy(val, vcpu->arch.pio_data, size * count);
4897 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4898 		vcpu->arch.pio.count = 0;
4899 		return 1;
4900 	}
4901 
4902 	return 0;
4903 }
4904 
4905 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4906 				     int size, unsigned short port,
4907 				     const void *val, unsigned int count)
4908 {
4909 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4910 
4911 	memcpy(vcpu->arch.pio_data, val, size * count);
4912 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4913 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4914 }
4915 
4916 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4917 {
4918 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4919 }
4920 
4921 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4922 {
4923 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4924 }
4925 
4926 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4927 {
4928 	if (!need_emulate_wbinvd(vcpu))
4929 		return X86EMUL_CONTINUE;
4930 
4931 	if (kvm_x86_ops->has_wbinvd_exit()) {
4932 		int cpu = get_cpu();
4933 
4934 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4935 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4936 				wbinvd_ipi, NULL, 1);
4937 		put_cpu();
4938 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4939 	} else
4940 		wbinvd();
4941 	return X86EMUL_CONTINUE;
4942 }
4943 
4944 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4945 {
4946 	kvm_emulate_wbinvd_noskip(vcpu);
4947 	return kvm_skip_emulated_instruction(vcpu);
4948 }
4949 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4950 
4951 
4952 
4953 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4954 {
4955 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4956 }
4957 
4958 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959 			   unsigned long *dest)
4960 {
4961 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4962 }
4963 
4964 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4965 			   unsigned long value)
4966 {
4967 
4968 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4969 }
4970 
4971 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4972 {
4973 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4974 }
4975 
4976 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4977 {
4978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4979 	unsigned long value;
4980 
4981 	switch (cr) {
4982 	case 0:
4983 		value = kvm_read_cr0(vcpu);
4984 		break;
4985 	case 2:
4986 		value = vcpu->arch.cr2;
4987 		break;
4988 	case 3:
4989 		value = kvm_read_cr3(vcpu);
4990 		break;
4991 	case 4:
4992 		value = kvm_read_cr4(vcpu);
4993 		break;
4994 	case 8:
4995 		value = kvm_get_cr8(vcpu);
4996 		break;
4997 	default:
4998 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4999 		return 0;
5000 	}
5001 
5002 	return value;
5003 }
5004 
5005 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5006 {
5007 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5008 	int res = 0;
5009 
5010 	switch (cr) {
5011 	case 0:
5012 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5013 		break;
5014 	case 2:
5015 		vcpu->arch.cr2 = val;
5016 		break;
5017 	case 3:
5018 		res = kvm_set_cr3(vcpu, val);
5019 		break;
5020 	case 4:
5021 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5022 		break;
5023 	case 8:
5024 		res = kvm_set_cr8(vcpu, val);
5025 		break;
5026 	default:
5027 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5028 		res = -1;
5029 	}
5030 
5031 	return res;
5032 }
5033 
5034 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5035 {
5036 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5037 }
5038 
5039 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5040 {
5041 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5042 }
5043 
5044 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5045 {
5046 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5047 }
5048 
5049 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5050 {
5051 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5052 }
5053 
5054 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5055 {
5056 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5057 }
5058 
5059 static unsigned long emulator_get_cached_segment_base(
5060 	struct x86_emulate_ctxt *ctxt, int seg)
5061 {
5062 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5063 }
5064 
5065 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5066 				 struct desc_struct *desc, u32 *base3,
5067 				 int seg)
5068 {
5069 	struct kvm_segment var;
5070 
5071 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5072 	*selector = var.selector;
5073 
5074 	if (var.unusable) {
5075 		memset(desc, 0, sizeof(*desc));
5076 		return false;
5077 	}
5078 
5079 	if (var.g)
5080 		var.limit >>= 12;
5081 	set_desc_limit(desc, var.limit);
5082 	set_desc_base(desc, (unsigned long)var.base);
5083 #ifdef CONFIG_X86_64
5084 	if (base3)
5085 		*base3 = var.base >> 32;
5086 #endif
5087 	desc->type = var.type;
5088 	desc->s = var.s;
5089 	desc->dpl = var.dpl;
5090 	desc->p = var.present;
5091 	desc->avl = var.avl;
5092 	desc->l = var.l;
5093 	desc->d = var.db;
5094 	desc->g = var.g;
5095 
5096 	return true;
5097 }
5098 
5099 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5100 				 struct desc_struct *desc, u32 base3,
5101 				 int seg)
5102 {
5103 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5104 	struct kvm_segment var;
5105 
5106 	var.selector = selector;
5107 	var.base = get_desc_base(desc);
5108 #ifdef CONFIG_X86_64
5109 	var.base |= ((u64)base3) << 32;
5110 #endif
5111 	var.limit = get_desc_limit(desc);
5112 	if (desc->g)
5113 		var.limit = (var.limit << 12) | 0xfff;
5114 	var.type = desc->type;
5115 	var.dpl = desc->dpl;
5116 	var.db = desc->d;
5117 	var.s = desc->s;
5118 	var.l = desc->l;
5119 	var.g = desc->g;
5120 	var.avl = desc->avl;
5121 	var.present = desc->p;
5122 	var.unusable = !var.present;
5123 	var.padding = 0;
5124 
5125 	kvm_set_segment(vcpu, &var, seg);
5126 	return;
5127 }
5128 
5129 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5130 			    u32 msr_index, u64 *pdata)
5131 {
5132 	struct msr_data msr;
5133 	int r;
5134 
5135 	msr.index = msr_index;
5136 	msr.host_initiated = false;
5137 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5138 	if (r)
5139 		return r;
5140 
5141 	*pdata = msr.data;
5142 	return 0;
5143 }
5144 
5145 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5146 			    u32 msr_index, u64 data)
5147 {
5148 	struct msr_data msr;
5149 
5150 	msr.data = data;
5151 	msr.index = msr_index;
5152 	msr.host_initiated = false;
5153 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5154 }
5155 
5156 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5157 {
5158 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5159 
5160 	return vcpu->arch.smbase;
5161 }
5162 
5163 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5164 {
5165 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5166 
5167 	vcpu->arch.smbase = smbase;
5168 }
5169 
5170 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5171 			      u32 pmc)
5172 {
5173 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5174 }
5175 
5176 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5177 			     u32 pmc, u64 *pdata)
5178 {
5179 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5180 }
5181 
5182 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5183 {
5184 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5185 }
5186 
5187 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5188 {
5189 	preempt_disable();
5190 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5191 }
5192 
5193 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5194 {
5195 	preempt_enable();
5196 }
5197 
5198 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5199 			      struct x86_instruction_info *info,
5200 			      enum x86_intercept_stage stage)
5201 {
5202 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5203 }
5204 
5205 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5206 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5207 {
5208 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5209 }
5210 
5211 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5212 {
5213 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5214 }
5215 
5216 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5217 {
5218 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5219 }
5220 
5221 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5222 {
5223 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5224 }
5225 
5226 static const struct x86_emulate_ops emulate_ops = {
5227 	.read_gpr            = emulator_read_gpr,
5228 	.write_gpr           = emulator_write_gpr,
5229 	.read_std            = kvm_read_guest_virt_system,
5230 	.write_std           = kvm_write_guest_virt_system,
5231 	.read_phys           = kvm_read_guest_phys_system,
5232 	.fetch               = kvm_fetch_guest_virt,
5233 	.read_emulated       = emulator_read_emulated,
5234 	.write_emulated      = emulator_write_emulated,
5235 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5236 	.invlpg              = emulator_invlpg,
5237 	.pio_in_emulated     = emulator_pio_in_emulated,
5238 	.pio_out_emulated    = emulator_pio_out_emulated,
5239 	.get_segment         = emulator_get_segment,
5240 	.set_segment         = emulator_set_segment,
5241 	.get_cached_segment_base = emulator_get_cached_segment_base,
5242 	.get_gdt             = emulator_get_gdt,
5243 	.get_idt	     = emulator_get_idt,
5244 	.set_gdt             = emulator_set_gdt,
5245 	.set_idt	     = emulator_set_idt,
5246 	.get_cr              = emulator_get_cr,
5247 	.set_cr              = emulator_set_cr,
5248 	.cpl                 = emulator_get_cpl,
5249 	.get_dr              = emulator_get_dr,
5250 	.set_dr              = emulator_set_dr,
5251 	.get_smbase          = emulator_get_smbase,
5252 	.set_smbase          = emulator_set_smbase,
5253 	.set_msr             = emulator_set_msr,
5254 	.get_msr             = emulator_get_msr,
5255 	.check_pmc	     = emulator_check_pmc,
5256 	.read_pmc            = emulator_read_pmc,
5257 	.halt                = emulator_halt,
5258 	.wbinvd              = emulator_wbinvd,
5259 	.fix_hypercall       = emulator_fix_hypercall,
5260 	.get_fpu             = emulator_get_fpu,
5261 	.put_fpu             = emulator_put_fpu,
5262 	.intercept           = emulator_intercept,
5263 	.get_cpuid           = emulator_get_cpuid,
5264 	.set_nmi_mask        = emulator_set_nmi_mask,
5265 };
5266 
5267 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5268 {
5269 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5270 	/*
5271 	 * an sti; sti; sequence only disable interrupts for the first
5272 	 * instruction. So, if the last instruction, be it emulated or
5273 	 * not, left the system with the INT_STI flag enabled, it
5274 	 * means that the last instruction is an sti. We should not
5275 	 * leave the flag on in this case. The same goes for mov ss
5276 	 */
5277 	if (int_shadow & mask)
5278 		mask = 0;
5279 	if (unlikely(int_shadow || mask)) {
5280 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5281 		if (!mask)
5282 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5283 	}
5284 }
5285 
5286 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5287 {
5288 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5289 	if (ctxt->exception.vector == PF_VECTOR)
5290 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5291 
5292 	if (ctxt->exception.error_code_valid)
5293 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5294 				      ctxt->exception.error_code);
5295 	else
5296 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5297 	return false;
5298 }
5299 
5300 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5301 {
5302 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5303 	int cs_db, cs_l;
5304 
5305 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5306 
5307 	ctxt->eflags = kvm_get_rflags(vcpu);
5308 	ctxt->eip = kvm_rip_read(vcpu);
5309 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5310 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5311 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5312 		     cs_db				? X86EMUL_MODE_PROT32 :
5313 							  X86EMUL_MODE_PROT16;
5314 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5315 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5316 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5317 	ctxt->emul_flags = vcpu->arch.hflags;
5318 
5319 	init_decode_cache(ctxt);
5320 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5321 }
5322 
5323 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5324 {
5325 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5326 	int ret;
5327 
5328 	init_emulate_ctxt(vcpu);
5329 
5330 	ctxt->op_bytes = 2;
5331 	ctxt->ad_bytes = 2;
5332 	ctxt->_eip = ctxt->eip + inc_eip;
5333 	ret = emulate_int_real(ctxt, irq);
5334 
5335 	if (ret != X86EMUL_CONTINUE)
5336 		return EMULATE_FAIL;
5337 
5338 	ctxt->eip = ctxt->_eip;
5339 	kvm_rip_write(vcpu, ctxt->eip);
5340 	kvm_set_rflags(vcpu, ctxt->eflags);
5341 
5342 	if (irq == NMI_VECTOR)
5343 		vcpu->arch.nmi_pending = 0;
5344 	else
5345 		vcpu->arch.interrupt.pending = false;
5346 
5347 	return EMULATE_DONE;
5348 }
5349 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5350 
5351 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5352 {
5353 	int r = EMULATE_DONE;
5354 
5355 	++vcpu->stat.insn_emulation_fail;
5356 	trace_kvm_emulate_insn_failed(vcpu);
5357 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5358 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5359 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5360 		vcpu->run->internal.ndata = 0;
5361 		r = EMULATE_FAIL;
5362 	}
5363 	kvm_queue_exception(vcpu, UD_VECTOR);
5364 
5365 	return r;
5366 }
5367 
5368 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5369 				  bool write_fault_to_shadow_pgtable,
5370 				  int emulation_type)
5371 {
5372 	gpa_t gpa = cr2;
5373 	kvm_pfn_t pfn;
5374 
5375 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5376 		return false;
5377 
5378 	if (!vcpu->arch.mmu.direct_map) {
5379 		/*
5380 		 * Write permission should be allowed since only
5381 		 * write access need to be emulated.
5382 		 */
5383 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5384 
5385 		/*
5386 		 * If the mapping is invalid in guest, let cpu retry
5387 		 * it to generate fault.
5388 		 */
5389 		if (gpa == UNMAPPED_GVA)
5390 			return true;
5391 	}
5392 
5393 	/*
5394 	 * Do not retry the unhandleable instruction if it faults on the
5395 	 * readonly host memory, otherwise it will goto a infinite loop:
5396 	 * retry instruction -> write #PF -> emulation fail -> retry
5397 	 * instruction -> ...
5398 	 */
5399 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5400 
5401 	/*
5402 	 * If the instruction failed on the error pfn, it can not be fixed,
5403 	 * report the error to userspace.
5404 	 */
5405 	if (is_error_noslot_pfn(pfn))
5406 		return false;
5407 
5408 	kvm_release_pfn_clean(pfn);
5409 
5410 	/* The instructions are well-emulated on direct mmu. */
5411 	if (vcpu->arch.mmu.direct_map) {
5412 		unsigned int indirect_shadow_pages;
5413 
5414 		spin_lock(&vcpu->kvm->mmu_lock);
5415 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5416 		spin_unlock(&vcpu->kvm->mmu_lock);
5417 
5418 		if (indirect_shadow_pages)
5419 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5420 
5421 		return true;
5422 	}
5423 
5424 	/*
5425 	 * if emulation was due to access to shadowed page table
5426 	 * and it failed try to unshadow page and re-enter the
5427 	 * guest to let CPU execute the instruction.
5428 	 */
5429 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5430 
5431 	/*
5432 	 * If the access faults on its page table, it can not
5433 	 * be fixed by unprotecting shadow page and it should
5434 	 * be reported to userspace.
5435 	 */
5436 	return !write_fault_to_shadow_pgtable;
5437 }
5438 
5439 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5440 			      unsigned long cr2,  int emulation_type)
5441 {
5442 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5443 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5444 
5445 	last_retry_eip = vcpu->arch.last_retry_eip;
5446 	last_retry_addr = vcpu->arch.last_retry_addr;
5447 
5448 	/*
5449 	 * If the emulation is caused by #PF and it is non-page_table
5450 	 * writing instruction, it means the VM-EXIT is caused by shadow
5451 	 * page protected, we can zap the shadow page and retry this
5452 	 * instruction directly.
5453 	 *
5454 	 * Note: if the guest uses a non-page-table modifying instruction
5455 	 * on the PDE that points to the instruction, then we will unmap
5456 	 * the instruction and go to an infinite loop. So, we cache the
5457 	 * last retried eip and the last fault address, if we meet the eip
5458 	 * and the address again, we can break out of the potential infinite
5459 	 * loop.
5460 	 */
5461 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5462 
5463 	if (!(emulation_type & EMULTYPE_RETRY))
5464 		return false;
5465 
5466 	if (x86_page_table_writing_insn(ctxt))
5467 		return false;
5468 
5469 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5470 		return false;
5471 
5472 	vcpu->arch.last_retry_eip = ctxt->eip;
5473 	vcpu->arch.last_retry_addr = cr2;
5474 
5475 	if (!vcpu->arch.mmu.direct_map)
5476 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5477 
5478 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5479 
5480 	return true;
5481 }
5482 
5483 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5484 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5485 
5486 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5487 {
5488 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5489 		/* This is a good place to trace that we are exiting SMM.  */
5490 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5491 
5492 		/* Process a latched INIT or SMI, if any.  */
5493 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5494 	}
5495 
5496 	kvm_mmu_reset_context(vcpu);
5497 }
5498 
5499 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5500 {
5501 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5502 
5503 	vcpu->arch.hflags = emul_flags;
5504 
5505 	if (changed & HF_SMM_MASK)
5506 		kvm_smm_changed(vcpu);
5507 }
5508 
5509 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5510 				unsigned long *db)
5511 {
5512 	u32 dr6 = 0;
5513 	int i;
5514 	u32 enable, rwlen;
5515 
5516 	enable = dr7;
5517 	rwlen = dr7 >> 16;
5518 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5519 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5520 			dr6 |= (1 << i);
5521 	return dr6;
5522 }
5523 
5524 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5525 {
5526 	struct kvm_run *kvm_run = vcpu->run;
5527 
5528 	/*
5529 	 * rflags is the old, "raw" value of the flags.  The new value has
5530 	 * not been saved yet.
5531 	 *
5532 	 * This is correct even for TF set by the guest, because "the
5533 	 * processor will not generate this exception after the instruction
5534 	 * that sets the TF flag".
5535 	 */
5536 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5537 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5538 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5539 						  DR6_RTM;
5540 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5541 			kvm_run->debug.arch.exception = DB_VECTOR;
5542 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5543 			*r = EMULATE_USER_EXIT;
5544 		} else {
5545 			/*
5546 			 * "Certain debug exceptions may clear bit 0-3.  The
5547 			 * remaining contents of the DR6 register are never
5548 			 * cleared by the processor".
5549 			 */
5550 			vcpu->arch.dr6 &= ~15;
5551 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5552 			kvm_queue_exception(vcpu, DB_VECTOR);
5553 		}
5554 	}
5555 }
5556 
5557 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5558 {
5559 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5560 	int r = EMULATE_DONE;
5561 
5562 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5563 	kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5564 	return r == EMULATE_DONE;
5565 }
5566 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5567 
5568 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5569 {
5570 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5571 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5572 		struct kvm_run *kvm_run = vcpu->run;
5573 		unsigned long eip = kvm_get_linear_rip(vcpu);
5574 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5575 					   vcpu->arch.guest_debug_dr7,
5576 					   vcpu->arch.eff_db);
5577 
5578 		if (dr6 != 0) {
5579 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5580 			kvm_run->debug.arch.pc = eip;
5581 			kvm_run->debug.arch.exception = DB_VECTOR;
5582 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5583 			*r = EMULATE_USER_EXIT;
5584 			return true;
5585 		}
5586 	}
5587 
5588 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5589 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5590 		unsigned long eip = kvm_get_linear_rip(vcpu);
5591 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5592 					   vcpu->arch.dr7,
5593 					   vcpu->arch.db);
5594 
5595 		if (dr6 != 0) {
5596 			vcpu->arch.dr6 &= ~15;
5597 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5598 			kvm_queue_exception(vcpu, DB_VECTOR);
5599 			*r = EMULATE_DONE;
5600 			return true;
5601 		}
5602 	}
5603 
5604 	return false;
5605 }
5606 
5607 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5608 			    unsigned long cr2,
5609 			    int emulation_type,
5610 			    void *insn,
5611 			    int insn_len)
5612 {
5613 	int r;
5614 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5615 	bool writeback = true;
5616 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5617 
5618 	/*
5619 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5620 	 * never reused.
5621 	 */
5622 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5623 	kvm_clear_exception_queue(vcpu);
5624 
5625 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5626 		init_emulate_ctxt(vcpu);
5627 
5628 		/*
5629 		 * We will reenter on the same instruction since
5630 		 * we do not set complete_userspace_io.  This does not
5631 		 * handle watchpoints yet, those would be handled in
5632 		 * the emulate_ops.
5633 		 */
5634 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5635 			return r;
5636 
5637 		ctxt->interruptibility = 0;
5638 		ctxt->have_exception = false;
5639 		ctxt->exception.vector = -1;
5640 		ctxt->perm_ok = false;
5641 
5642 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5643 
5644 		r = x86_decode_insn(ctxt, insn, insn_len);
5645 
5646 		trace_kvm_emulate_insn_start(vcpu);
5647 		++vcpu->stat.insn_emulation;
5648 		if (r != EMULATION_OK)  {
5649 			if (emulation_type & EMULTYPE_TRAP_UD)
5650 				return EMULATE_FAIL;
5651 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5652 						emulation_type))
5653 				return EMULATE_DONE;
5654 			if (emulation_type & EMULTYPE_SKIP)
5655 				return EMULATE_FAIL;
5656 			return handle_emulation_failure(vcpu);
5657 		}
5658 	}
5659 
5660 	if (emulation_type & EMULTYPE_SKIP) {
5661 		kvm_rip_write(vcpu, ctxt->_eip);
5662 		if (ctxt->eflags & X86_EFLAGS_RF)
5663 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5664 		return EMULATE_DONE;
5665 	}
5666 
5667 	if (retry_instruction(ctxt, cr2, emulation_type))
5668 		return EMULATE_DONE;
5669 
5670 	/* this is needed for vmware backdoor interface to work since it
5671 	   changes registers values  during IO operation */
5672 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5673 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5674 		emulator_invalidate_register_cache(ctxt);
5675 	}
5676 
5677 restart:
5678 	/* Save the faulting GPA (cr2) in the address field */
5679 	ctxt->exception.address = cr2;
5680 
5681 	r = x86_emulate_insn(ctxt);
5682 
5683 	if (r == EMULATION_INTERCEPTED)
5684 		return EMULATE_DONE;
5685 
5686 	if (r == EMULATION_FAILED) {
5687 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5688 					emulation_type))
5689 			return EMULATE_DONE;
5690 
5691 		return handle_emulation_failure(vcpu);
5692 	}
5693 
5694 	if (ctxt->have_exception) {
5695 		r = EMULATE_DONE;
5696 		if (inject_emulated_exception(vcpu))
5697 			return r;
5698 	} else if (vcpu->arch.pio.count) {
5699 		if (!vcpu->arch.pio.in) {
5700 			/* FIXME: return into emulator if single-stepping.  */
5701 			vcpu->arch.pio.count = 0;
5702 		} else {
5703 			writeback = false;
5704 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5705 		}
5706 		r = EMULATE_USER_EXIT;
5707 	} else if (vcpu->mmio_needed) {
5708 		if (!vcpu->mmio_is_write)
5709 			writeback = false;
5710 		r = EMULATE_USER_EXIT;
5711 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5712 	} else if (r == EMULATION_RESTART)
5713 		goto restart;
5714 	else
5715 		r = EMULATE_DONE;
5716 
5717 	if (writeback) {
5718 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5719 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5720 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5721 		if (vcpu->arch.hflags != ctxt->emul_flags)
5722 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5723 		kvm_rip_write(vcpu, ctxt->eip);
5724 		if (r == EMULATE_DONE)
5725 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5726 		if (!ctxt->have_exception ||
5727 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5728 			__kvm_set_rflags(vcpu, ctxt->eflags);
5729 
5730 		/*
5731 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5732 		 * do nothing, and it will be requested again as soon as
5733 		 * the shadow expires.  But we still need to check here,
5734 		 * because POPF has no interrupt shadow.
5735 		 */
5736 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5737 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5738 	} else
5739 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5740 
5741 	return r;
5742 }
5743 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5744 
5745 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5746 {
5747 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5748 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5749 					    size, port, &val, 1);
5750 	/* do not return to emulator after return from userspace */
5751 	vcpu->arch.pio.count = 0;
5752 	return ret;
5753 }
5754 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5755 
5756 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5757 {
5758 	unsigned long val;
5759 
5760 	/* We should only ever be called with arch.pio.count equal to 1 */
5761 	BUG_ON(vcpu->arch.pio.count != 1);
5762 
5763 	/* For size less than 4 we merge, else we zero extend */
5764 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5765 					: 0;
5766 
5767 	/*
5768 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5769 	 * the copy and tracing
5770 	 */
5771 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5772 				 vcpu->arch.pio.port, &val, 1);
5773 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5774 
5775 	return 1;
5776 }
5777 
5778 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5779 {
5780 	unsigned long val;
5781 	int ret;
5782 
5783 	/* For size less than 4 we merge, else we zero extend */
5784 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5785 
5786 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5787 				       &val, 1);
5788 	if (ret) {
5789 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5790 		return ret;
5791 	}
5792 
5793 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5794 
5795 	return 0;
5796 }
5797 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5798 
5799 static int kvmclock_cpu_down_prep(unsigned int cpu)
5800 {
5801 	__this_cpu_write(cpu_tsc_khz, 0);
5802 	return 0;
5803 }
5804 
5805 static void tsc_khz_changed(void *data)
5806 {
5807 	struct cpufreq_freqs *freq = data;
5808 	unsigned long khz = 0;
5809 
5810 	if (data)
5811 		khz = freq->new;
5812 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5813 		khz = cpufreq_quick_get(raw_smp_processor_id());
5814 	if (!khz)
5815 		khz = tsc_khz;
5816 	__this_cpu_write(cpu_tsc_khz, khz);
5817 }
5818 
5819 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5820 				     void *data)
5821 {
5822 	struct cpufreq_freqs *freq = data;
5823 	struct kvm *kvm;
5824 	struct kvm_vcpu *vcpu;
5825 	int i, send_ipi = 0;
5826 
5827 	/*
5828 	 * We allow guests to temporarily run on slowing clocks,
5829 	 * provided we notify them after, or to run on accelerating
5830 	 * clocks, provided we notify them before.  Thus time never
5831 	 * goes backwards.
5832 	 *
5833 	 * However, we have a problem.  We can't atomically update
5834 	 * the frequency of a given CPU from this function; it is
5835 	 * merely a notifier, which can be called from any CPU.
5836 	 * Changing the TSC frequency at arbitrary points in time
5837 	 * requires a recomputation of local variables related to
5838 	 * the TSC for each VCPU.  We must flag these local variables
5839 	 * to be updated and be sure the update takes place with the
5840 	 * new frequency before any guests proceed.
5841 	 *
5842 	 * Unfortunately, the combination of hotplug CPU and frequency
5843 	 * change creates an intractable locking scenario; the order
5844 	 * of when these callouts happen is undefined with respect to
5845 	 * CPU hotplug, and they can race with each other.  As such,
5846 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5847 	 * undefined; you can actually have a CPU frequency change take
5848 	 * place in between the computation of X and the setting of the
5849 	 * variable.  To protect against this problem, all updates of
5850 	 * the per_cpu tsc_khz variable are done in an interrupt
5851 	 * protected IPI, and all callers wishing to update the value
5852 	 * must wait for a synchronous IPI to complete (which is trivial
5853 	 * if the caller is on the CPU already).  This establishes the
5854 	 * necessary total order on variable updates.
5855 	 *
5856 	 * Note that because a guest time update may take place
5857 	 * anytime after the setting of the VCPU's request bit, the
5858 	 * correct TSC value must be set before the request.  However,
5859 	 * to ensure the update actually makes it to any guest which
5860 	 * starts running in hardware virtualization between the set
5861 	 * and the acquisition of the spinlock, we must also ping the
5862 	 * CPU after setting the request bit.
5863 	 *
5864 	 */
5865 
5866 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5867 		return 0;
5868 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5869 		return 0;
5870 
5871 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5872 
5873 	spin_lock(&kvm_lock);
5874 	list_for_each_entry(kvm, &vm_list, vm_list) {
5875 		kvm_for_each_vcpu(i, vcpu, kvm) {
5876 			if (vcpu->cpu != freq->cpu)
5877 				continue;
5878 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5879 			if (vcpu->cpu != smp_processor_id())
5880 				send_ipi = 1;
5881 		}
5882 	}
5883 	spin_unlock(&kvm_lock);
5884 
5885 	if (freq->old < freq->new && send_ipi) {
5886 		/*
5887 		 * We upscale the frequency.  Must make the guest
5888 		 * doesn't see old kvmclock values while running with
5889 		 * the new frequency, otherwise we risk the guest sees
5890 		 * time go backwards.
5891 		 *
5892 		 * In case we update the frequency for another cpu
5893 		 * (which might be in guest context) send an interrupt
5894 		 * to kick the cpu out of guest context.  Next time
5895 		 * guest context is entered kvmclock will be updated,
5896 		 * so the guest will not see stale values.
5897 		 */
5898 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5899 	}
5900 	return 0;
5901 }
5902 
5903 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5904 	.notifier_call  = kvmclock_cpufreq_notifier
5905 };
5906 
5907 static int kvmclock_cpu_online(unsigned int cpu)
5908 {
5909 	tsc_khz_changed(NULL);
5910 	return 0;
5911 }
5912 
5913 static void kvm_timer_init(void)
5914 {
5915 	max_tsc_khz = tsc_khz;
5916 
5917 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5918 #ifdef CONFIG_CPU_FREQ
5919 		struct cpufreq_policy policy;
5920 		int cpu;
5921 
5922 		memset(&policy, 0, sizeof(policy));
5923 		cpu = get_cpu();
5924 		cpufreq_get_policy(&policy, cpu);
5925 		if (policy.cpuinfo.max_freq)
5926 			max_tsc_khz = policy.cpuinfo.max_freq;
5927 		put_cpu();
5928 #endif
5929 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5930 					  CPUFREQ_TRANSITION_NOTIFIER);
5931 	}
5932 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5933 
5934 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5935 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5936 }
5937 
5938 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5939 
5940 int kvm_is_in_guest(void)
5941 {
5942 	return __this_cpu_read(current_vcpu) != NULL;
5943 }
5944 
5945 static int kvm_is_user_mode(void)
5946 {
5947 	int user_mode = 3;
5948 
5949 	if (__this_cpu_read(current_vcpu))
5950 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5951 
5952 	return user_mode != 0;
5953 }
5954 
5955 static unsigned long kvm_get_guest_ip(void)
5956 {
5957 	unsigned long ip = 0;
5958 
5959 	if (__this_cpu_read(current_vcpu))
5960 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5961 
5962 	return ip;
5963 }
5964 
5965 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5966 	.is_in_guest		= kvm_is_in_guest,
5967 	.is_user_mode		= kvm_is_user_mode,
5968 	.get_guest_ip		= kvm_get_guest_ip,
5969 };
5970 
5971 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5972 {
5973 	__this_cpu_write(current_vcpu, vcpu);
5974 }
5975 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5976 
5977 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5978 {
5979 	__this_cpu_write(current_vcpu, NULL);
5980 }
5981 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5982 
5983 static void kvm_set_mmio_spte_mask(void)
5984 {
5985 	u64 mask;
5986 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5987 
5988 	/*
5989 	 * Set the reserved bits and the present bit of an paging-structure
5990 	 * entry to generate page fault with PFER.RSV = 1.
5991 	 */
5992 	 /* Mask the reserved physical address bits. */
5993 	mask = rsvd_bits(maxphyaddr, 51);
5994 
5995 	/* Set the present bit. */
5996 	mask |= 1ull;
5997 
5998 #ifdef CONFIG_X86_64
5999 	/*
6000 	 * If reserved bit is not supported, clear the present bit to disable
6001 	 * mmio page fault.
6002 	 */
6003 	if (maxphyaddr == 52)
6004 		mask &= ~1ull;
6005 #endif
6006 
6007 	kvm_mmu_set_mmio_spte_mask(mask);
6008 }
6009 
6010 #ifdef CONFIG_X86_64
6011 static void pvclock_gtod_update_fn(struct work_struct *work)
6012 {
6013 	struct kvm *kvm;
6014 
6015 	struct kvm_vcpu *vcpu;
6016 	int i;
6017 
6018 	spin_lock(&kvm_lock);
6019 	list_for_each_entry(kvm, &vm_list, vm_list)
6020 		kvm_for_each_vcpu(i, vcpu, kvm)
6021 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6022 	atomic_set(&kvm_guest_has_master_clock, 0);
6023 	spin_unlock(&kvm_lock);
6024 }
6025 
6026 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6027 
6028 /*
6029  * Notification about pvclock gtod data update.
6030  */
6031 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6032 			       void *priv)
6033 {
6034 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6035 	struct timekeeper *tk = priv;
6036 
6037 	update_pvclock_gtod(tk);
6038 
6039 	/* disable master clock if host does not trust, or does not
6040 	 * use, TSC clocksource
6041 	 */
6042 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6043 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6044 		queue_work(system_long_wq, &pvclock_gtod_work);
6045 
6046 	return 0;
6047 }
6048 
6049 static struct notifier_block pvclock_gtod_notifier = {
6050 	.notifier_call = pvclock_gtod_notify,
6051 };
6052 #endif
6053 
6054 int kvm_arch_init(void *opaque)
6055 {
6056 	int r;
6057 	struct kvm_x86_ops *ops = opaque;
6058 
6059 	if (kvm_x86_ops) {
6060 		printk(KERN_ERR "kvm: already loaded the other module\n");
6061 		r = -EEXIST;
6062 		goto out;
6063 	}
6064 
6065 	if (!ops->cpu_has_kvm_support()) {
6066 		printk(KERN_ERR "kvm: no hardware support\n");
6067 		r = -EOPNOTSUPP;
6068 		goto out;
6069 	}
6070 	if (ops->disabled_by_bios()) {
6071 		printk(KERN_ERR "kvm: disabled by bios\n");
6072 		r = -EOPNOTSUPP;
6073 		goto out;
6074 	}
6075 
6076 	r = -ENOMEM;
6077 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6078 	if (!shared_msrs) {
6079 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6080 		goto out;
6081 	}
6082 
6083 	r = kvm_mmu_module_init();
6084 	if (r)
6085 		goto out_free_percpu;
6086 
6087 	kvm_set_mmio_spte_mask();
6088 
6089 	kvm_x86_ops = ops;
6090 
6091 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6092 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6093 			PT_PRESENT_MASK, 0);
6094 	kvm_timer_init();
6095 
6096 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6097 
6098 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6099 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6100 
6101 	kvm_lapic_init();
6102 #ifdef CONFIG_X86_64
6103 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6104 #endif
6105 
6106 	return 0;
6107 
6108 out_free_percpu:
6109 	free_percpu(shared_msrs);
6110 out:
6111 	return r;
6112 }
6113 
6114 void kvm_arch_exit(void)
6115 {
6116 	kvm_lapic_exit();
6117 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6118 
6119 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6120 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6121 					    CPUFREQ_TRANSITION_NOTIFIER);
6122 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6123 #ifdef CONFIG_X86_64
6124 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6125 #endif
6126 	kvm_x86_ops = NULL;
6127 	kvm_mmu_module_exit();
6128 	free_percpu(shared_msrs);
6129 }
6130 
6131 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6132 {
6133 	++vcpu->stat.halt_exits;
6134 	if (lapic_in_kernel(vcpu)) {
6135 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6136 		return 1;
6137 	} else {
6138 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6139 		return 0;
6140 	}
6141 }
6142 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6143 
6144 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6145 {
6146 	int ret = kvm_skip_emulated_instruction(vcpu);
6147 	/*
6148 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6149 	 * KVM_EXIT_DEBUG here.
6150 	 */
6151 	return kvm_vcpu_halt(vcpu) && ret;
6152 }
6153 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6154 
6155 #ifdef CONFIG_X86_64
6156 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6157 			        unsigned long clock_type)
6158 {
6159 	struct kvm_clock_pairing clock_pairing;
6160 	struct timespec ts;
6161 	u64 cycle;
6162 	int ret;
6163 
6164 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6165 		return -KVM_EOPNOTSUPP;
6166 
6167 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6168 		return -KVM_EOPNOTSUPP;
6169 
6170 	clock_pairing.sec = ts.tv_sec;
6171 	clock_pairing.nsec = ts.tv_nsec;
6172 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6173 	clock_pairing.flags = 0;
6174 
6175 	ret = 0;
6176 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6177 			    sizeof(struct kvm_clock_pairing)))
6178 		ret = -KVM_EFAULT;
6179 
6180 	return ret;
6181 }
6182 #endif
6183 
6184 /*
6185  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6186  *
6187  * @apicid - apicid of vcpu to be kicked.
6188  */
6189 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6190 {
6191 	struct kvm_lapic_irq lapic_irq;
6192 
6193 	lapic_irq.shorthand = 0;
6194 	lapic_irq.dest_mode = 0;
6195 	lapic_irq.dest_id = apicid;
6196 	lapic_irq.msi_redir_hint = false;
6197 
6198 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6199 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6200 }
6201 
6202 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6203 {
6204 	vcpu->arch.apicv_active = false;
6205 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6206 }
6207 
6208 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6209 {
6210 	unsigned long nr, a0, a1, a2, a3, ret;
6211 	int op_64_bit, r;
6212 
6213 	r = kvm_skip_emulated_instruction(vcpu);
6214 
6215 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6216 		return kvm_hv_hypercall(vcpu);
6217 
6218 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6219 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6220 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6221 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6222 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6223 
6224 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6225 
6226 	op_64_bit = is_64_bit_mode(vcpu);
6227 	if (!op_64_bit) {
6228 		nr &= 0xFFFFFFFF;
6229 		a0 &= 0xFFFFFFFF;
6230 		a1 &= 0xFFFFFFFF;
6231 		a2 &= 0xFFFFFFFF;
6232 		a3 &= 0xFFFFFFFF;
6233 	}
6234 
6235 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6236 		ret = -KVM_EPERM;
6237 		goto out;
6238 	}
6239 
6240 	switch (nr) {
6241 	case KVM_HC_VAPIC_POLL_IRQ:
6242 		ret = 0;
6243 		break;
6244 	case KVM_HC_KICK_CPU:
6245 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6246 		ret = 0;
6247 		break;
6248 #ifdef CONFIG_X86_64
6249 	case KVM_HC_CLOCK_PAIRING:
6250 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6251 		break;
6252 #endif
6253 	default:
6254 		ret = -KVM_ENOSYS;
6255 		break;
6256 	}
6257 out:
6258 	if (!op_64_bit)
6259 		ret = (u32)ret;
6260 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6261 	++vcpu->stat.hypercalls;
6262 	return r;
6263 }
6264 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6265 
6266 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6267 {
6268 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6269 	char instruction[3];
6270 	unsigned long rip = kvm_rip_read(vcpu);
6271 
6272 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6273 
6274 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6275 		&ctxt->exception);
6276 }
6277 
6278 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6279 {
6280 	return vcpu->run->request_interrupt_window &&
6281 		likely(!pic_in_kernel(vcpu->kvm));
6282 }
6283 
6284 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6285 {
6286 	struct kvm_run *kvm_run = vcpu->run;
6287 
6288 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6289 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6290 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6291 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6292 	kvm_run->ready_for_interrupt_injection =
6293 		pic_in_kernel(vcpu->kvm) ||
6294 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6295 }
6296 
6297 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6298 {
6299 	int max_irr, tpr;
6300 
6301 	if (!kvm_x86_ops->update_cr8_intercept)
6302 		return;
6303 
6304 	if (!lapic_in_kernel(vcpu))
6305 		return;
6306 
6307 	if (vcpu->arch.apicv_active)
6308 		return;
6309 
6310 	if (!vcpu->arch.apic->vapic_addr)
6311 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6312 	else
6313 		max_irr = -1;
6314 
6315 	if (max_irr != -1)
6316 		max_irr >>= 4;
6317 
6318 	tpr = kvm_lapic_get_cr8(vcpu);
6319 
6320 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6321 }
6322 
6323 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6324 {
6325 	int r;
6326 
6327 	/* try to reinject previous events if any */
6328 	if (vcpu->arch.exception.pending) {
6329 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6330 					vcpu->arch.exception.has_error_code,
6331 					vcpu->arch.exception.error_code);
6332 
6333 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6334 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6335 					     X86_EFLAGS_RF);
6336 
6337 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6338 		    (vcpu->arch.dr7 & DR7_GD)) {
6339 			vcpu->arch.dr7 &= ~DR7_GD;
6340 			kvm_update_dr7(vcpu);
6341 		}
6342 
6343 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6344 					  vcpu->arch.exception.has_error_code,
6345 					  vcpu->arch.exception.error_code,
6346 					  vcpu->arch.exception.reinject);
6347 		return 0;
6348 	}
6349 
6350 	if (vcpu->arch.nmi_injected) {
6351 		kvm_x86_ops->set_nmi(vcpu);
6352 		return 0;
6353 	}
6354 
6355 	if (vcpu->arch.interrupt.pending) {
6356 		kvm_x86_ops->set_irq(vcpu);
6357 		return 0;
6358 	}
6359 
6360 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6361 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6362 		if (r != 0)
6363 			return r;
6364 	}
6365 
6366 	/* try to inject new event if pending */
6367 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6368 		vcpu->arch.smi_pending = false;
6369 		enter_smm(vcpu);
6370 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6371 		--vcpu->arch.nmi_pending;
6372 		vcpu->arch.nmi_injected = true;
6373 		kvm_x86_ops->set_nmi(vcpu);
6374 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6375 		/*
6376 		 * Because interrupts can be injected asynchronously, we are
6377 		 * calling check_nested_events again here to avoid a race condition.
6378 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6379 		 * proposal and current concerns.  Perhaps we should be setting
6380 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6381 		 */
6382 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6383 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6384 			if (r != 0)
6385 				return r;
6386 		}
6387 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6388 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6389 					    false);
6390 			kvm_x86_ops->set_irq(vcpu);
6391 		}
6392 	}
6393 
6394 	return 0;
6395 }
6396 
6397 static void process_nmi(struct kvm_vcpu *vcpu)
6398 {
6399 	unsigned limit = 2;
6400 
6401 	/*
6402 	 * x86 is limited to one NMI running, and one NMI pending after it.
6403 	 * If an NMI is already in progress, limit further NMIs to just one.
6404 	 * Otherwise, allow two (and we'll inject the first one immediately).
6405 	 */
6406 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6407 		limit = 1;
6408 
6409 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6410 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6412 }
6413 
6414 #define put_smstate(type, buf, offset, val)			  \
6415 	*(type *)((buf) + (offset) - 0x7e00) = val
6416 
6417 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6418 {
6419 	u32 flags = 0;
6420 	flags |= seg->g       << 23;
6421 	flags |= seg->db      << 22;
6422 	flags |= seg->l       << 21;
6423 	flags |= seg->avl     << 20;
6424 	flags |= seg->present << 15;
6425 	flags |= seg->dpl     << 13;
6426 	flags |= seg->s       << 12;
6427 	flags |= seg->type    << 8;
6428 	return flags;
6429 }
6430 
6431 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6432 {
6433 	struct kvm_segment seg;
6434 	int offset;
6435 
6436 	kvm_get_segment(vcpu, &seg, n);
6437 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6438 
6439 	if (n < 3)
6440 		offset = 0x7f84 + n * 12;
6441 	else
6442 		offset = 0x7f2c + (n - 3) * 12;
6443 
6444 	put_smstate(u32, buf, offset + 8, seg.base);
6445 	put_smstate(u32, buf, offset + 4, seg.limit);
6446 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6447 }
6448 
6449 #ifdef CONFIG_X86_64
6450 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6451 {
6452 	struct kvm_segment seg;
6453 	int offset;
6454 	u16 flags;
6455 
6456 	kvm_get_segment(vcpu, &seg, n);
6457 	offset = 0x7e00 + n * 16;
6458 
6459 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6460 	put_smstate(u16, buf, offset, seg.selector);
6461 	put_smstate(u16, buf, offset + 2, flags);
6462 	put_smstate(u32, buf, offset + 4, seg.limit);
6463 	put_smstate(u64, buf, offset + 8, seg.base);
6464 }
6465 #endif
6466 
6467 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6468 {
6469 	struct desc_ptr dt;
6470 	struct kvm_segment seg;
6471 	unsigned long val;
6472 	int i;
6473 
6474 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6475 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6476 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6477 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6478 
6479 	for (i = 0; i < 8; i++)
6480 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6481 
6482 	kvm_get_dr(vcpu, 6, &val);
6483 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6484 	kvm_get_dr(vcpu, 7, &val);
6485 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6486 
6487 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6488 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6489 	put_smstate(u32, buf, 0x7f64, seg.base);
6490 	put_smstate(u32, buf, 0x7f60, seg.limit);
6491 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6492 
6493 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6494 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6495 	put_smstate(u32, buf, 0x7f80, seg.base);
6496 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6497 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6498 
6499 	kvm_x86_ops->get_gdt(vcpu, &dt);
6500 	put_smstate(u32, buf, 0x7f74, dt.address);
6501 	put_smstate(u32, buf, 0x7f70, dt.size);
6502 
6503 	kvm_x86_ops->get_idt(vcpu, &dt);
6504 	put_smstate(u32, buf, 0x7f58, dt.address);
6505 	put_smstate(u32, buf, 0x7f54, dt.size);
6506 
6507 	for (i = 0; i < 6; i++)
6508 		enter_smm_save_seg_32(vcpu, buf, i);
6509 
6510 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6511 
6512 	/* revision id */
6513 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6514 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6515 }
6516 
6517 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6518 {
6519 #ifdef CONFIG_X86_64
6520 	struct desc_ptr dt;
6521 	struct kvm_segment seg;
6522 	unsigned long val;
6523 	int i;
6524 
6525 	for (i = 0; i < 16; i++)
6526 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6527 
6528 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6529 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6530 
6531 	kvm_get_dr(vcpu, 6, &val);
6532 	put_smstate(u64, buf, 0x7f68, val);
6533 	kvm_get_dr(vcpu, 7, &val);
6534 	put_smstate(u64, buf, 0x7f60, val);
6535 
6536 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6537 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6538 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6539 
6540 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6541 
6542 	/* revision id */
6543 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6544 
6545 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6546 
6547 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6548 	put_smstate(u16, buf, 0x7e90, seg.selector);
6549 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6550 	put_smstate(u32, buf, 0x7e94, seg.limit);
6551 	put_smstate(u64, buf, 0x7e98, seg.base);
6552 
6553 	kvm_x86_ops->get_idt(vcpu, &dt);
6554 	put_smstate(u32, buf, 0x7e84, dt.size);
6555 	put_smstate(u64, buf, 0x7e88, dt.address);
6556 
6557 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6558 	put_smstate(u16, buf, 0x7e70, seg.selector);
6559 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6560 	put_smstate(u32, buf, 0x7e74, seg.limit);
6561 	put_smstate(u64, buf, 0x7e78, seg.base);
6562 
6563 	kvm_x86_ops->get_gdt(vcpu, &dt);
6564 	put_smstate(u32, buf, 0x7e64, dt.size);
6565 	put_smstate(u64, buf, 0x7e68, dt.address);
6566 
6567 	for (i = 0; i < 6; i++)
6568 		enter_smm_save_seg_64(vcpu, buf, i);
6569 #else
6570 	WARN_ON_ONCE(1);
6571 #endif
6572 }
6573 
6574 static void enter_smm(struct kvm_vcpu *vcpu)
6575 {
6576 	struct kvm_segment cs, ds;
6577 	struct desc_ptr dt;
6578 	char buf[512];
6579 	u32 cr0;
6580 
6581 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6582 	vcpu->arch.hflags |= HF_SMM_MASK;
6583 	memset(buf, 0, 512);
6584 	if (guest_cpuid_has_longmode(vcpu))
6585 		enter_smm_save_state_64(vcpu, buf);
6586 	else
6587 		enter_smm_save_state_32(vcpu, buf);
6588 
6589 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6590 
6591 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6592 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6593 	else
6594 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6595 
6596 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6597 	kvm_rip_write(vcpu, 0x8000);
6598 
6599 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6600 	kvm_x86_ops->set_cr0(vcpu, cr0);
6601 	vcpu->arch.cr0 = cr0;
6602 
6603 	kvm_x86_ops->set_cr4(vcpu, 0);
6604 
6605 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6606 	dt.address = dt.size = 0;
6607 	kvm_x86_ops->set_idt(vcpu, &dt);
6608 
6609 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6610 
6611 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6612 	cs.base = vcpu->arch.smbase;
6613 
6614 	ds.selector = 0;
6615 	ds.base = 0;
6616 
6617 	cs.limit    = ds.limit = 0xffffffff;
6618 	cs.type     = ds.type = 0x3;
6619 	cs.dpl      = ds.dpl = 0;
6620 	cs.db       = ds.db = 0;
6621 	cs.s        = ds.s = 1;
6622 	cs.l        = ds.l = 0;
6623 	cs.g        = ds.g = 1;
6624 	cs.avl      = ds.avl = 0;
6625 	cs.present  = ds.present = 1;
6626 	cs.unusable = ds.unusable = 0;
6627 	cs.padding  = ds.padding = 0;
6628 
6629 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6630 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6631 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6632 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6633 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6634 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6635 
6636 	if (guest_cpuid_has_longmode(vcpu))
6637 		kvm_x86_ops->set_efer(vcpu, 0);
6638 
6639 	kvm_update_cpuid(vcpu);
6640 	kvm_mmu_reset_context(vcpu);
6641 }
6642 
6643 static void process_smi(struct kvm_vcpu *vcpu)
6644 {
6645 	vcpu->arch.smi_pending = true;
6646 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6647 }
6648 
6649 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6650 {
6651 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6652 }
6653 
6654 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6655 {
6656 	u64 eoi_exit_bitmap[4];
6657 
6658 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6659 		return;
6660 
6661 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6662 
6663 	if (irqchip_split(vcpu->kvm))
6664 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6665 	else {
6666 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6667 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6668 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6669 	}
6670 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6671 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6672 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6673 }
6674 
6675 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6676 {
6677 	++vcpu->stat.tlb_flush;
6678 	kvm_x86_ops->tlb_flush(vcpu);
6679 }
6680 
6681 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6682 {
6683 	struct page *page = NULL;
6684 
6685 	if (!lapic_in_kernel(vcpu))
6686 		return;
6687 
6688 	if (!kvm_x86_ops->set_apic_access_page_addr)
6689 		return;
6690 
6691 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6692 	if (is_error_page(page))
6693 		return;
6694 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6695 
6696 	/*
6697 	 * Do not pin apic access page in memory, the MMU notifier
6698 	 * will call us again if it is migrated or swapped out.
6699 	 */
6700 	put_page(page);
6701 }
6702 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6703 
6704 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6705 					   unsigned long address)
6706 {
6707 	/*
6708 	 * The physical address of apic access page is stored in the VMCS.
6709 	 * Update it when it becomes invalid.
6710 	 */
6711 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6712 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6713 }
6714 
6715 /*
6716  * Returns 1 to let vcpu_run() continue the guest execution loop without
6717  * exiting to the userspace.  Otherwise, the value will be returned to the
6718  * userspace.
6719  */
6720 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6721 {
6722 	int r;
6723 	bool req_int_win =
6724 		dm_request_for_irq_injection(vcpu) &&
6725 		kvm_cpu_accept_dm_intr(vcpu);
6726 
6727 	bool req_immediate_exit = false;
6728 
6729 	if (vcpu->requests) {
6730 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6731 			kvm_mmu_unload(vcpu);
6732 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6733 			__kvm_migrate_timers(vcpu);
6734 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6735 			kvm_gen_update_masterclock(vcpu->kvm);
6736 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6737 			kvm_gen_kvmclock_update(vcpu);
6738 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6739 			r = kvm_guest_time_update(vcpu);
6740 			if (unlikely(r))
6741 				goto out;
6742 		}
6743 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6744 			kvm_mmu_sync_roots(vcpu);
6745 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6746 			kvm_vcpu_flush_tlb(vcpu);
6747 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6748 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6749 			r = 0;
6750 			goto out;
6751 		}
6752 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6753 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6754 			r = 0;
6755 			goto out;
6756 		}
6757 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6758 			/* Page is swapped out. Do synthetic halt */
6759 			vcpu->arch.apf.halted = true;
6760 			r = 1;
6761 			goto out;
6762 		}
6763 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6764 			record_steal_time(vcpu);
6765 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6766 			process_smi(vcpu);
6767 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6768 			process_nmi(vcpu);
6769 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6770 			kvm_pmu_handle_event(vcpu);
6771 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6772 			kvm_pmu_deliver_pmi(vcpu);
6773 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6774 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6775 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6776 				     vcpu->arch.ioapic_handled_vectors)) {
6777 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6778 				vcpu->run->eoi.vector =
6779 						vcpu->arch.pending_ioapic_eoi;
6780 				r = 0;
6781 				goto out;
6782 			}
6783 		}
6784 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6785 			vcpu_scan_ioapic(vcpu);
6786 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6787 			kvm_vcpu_reload_apic_access_page(vcpu);
6788 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6789 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6790 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6791 			r = 0;
6792 			goto out;
6793 		}
6794 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6795 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6796 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6797 			r = 0;
6798 			goto out;
6799 		}
6800 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6801 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6802 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6803 			r = 0;
6804 			goto out;
6805 		}
6806 
6807 		/*
6808 		 * KVM_REQ_HV_STIMER has to be processed after
6809 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6810 		 * depend on the guest clock being up-to-date
6811 		 */
6812 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6813 			kvm_hv_process_stimers(vcpu);
6814 	}
6815 
6816 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6817 		++vcpu->stat.req_event;
6818 		kvm_apic_accept_events(vcpu);
6819 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6820 			r = 1;
6821 			goto out;
6822 		}
6823 
6824 		if (inject_pending_event(vcpu, req_int_win) != 0)
6825 			req_immediate_exit = true;
6826 		else {
6827 			/* Enable NMI/IRQ window open exits if needed.
6828 			 *
6829 			 * SMIs have two cases: 1) they can be nested, and
6830 			 * then there is nothing to do here because RSM will
6831 			 * cause a vmexit anyway; 2) or the SMI can be pending
6832 			 * because inject_pending_event has completed the
6833 			 * injection of an IRQ or NMI from the previous vmexit,
6834 			 * and then we request an immediate exit to inject the SMI.
6835 			 */
6836 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6837 				req_immediate_exit = true;
6838 			if (vcpu->arch.nmi_pending)
6839 				kvm_x86_ops->enable_nmi_window(vcpu);
6840 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6841 				kvm_x86_ops->enable_irq_window(vcpu);
6842 		}
6843 
6844 		if (kvm_lapic_enabled(vcpu)) {
6845 			update_cr8_intercept(vcpu);
6846 			kvm_lapic_sync_to_vapic(vcpu);
6847 		}
6848 	}
6849 
6850 	r = kvm_mmu_reload(vcpu);
6851 	if (unlikely(r)) {
6852 		goto cancel_injection;
6853 	}
6854 
6855 	preempt_disable();
6856 
6857 	kvm_x86_ops->prepare_guest_switch(vcpu);
6858 	kvm_load_guest_fpu(vcpu);
6859 
6860 	/*
6861 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6862 	 * IPI are then delayed after guest entry, which ensures that they
6863 	 * result in virtual interrupt delivery.
6864 	 */
6865 	local_irq_disable();
6866 	vcpu->mode = IN_GUEST_MODE;
6867 
6868 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6869 
6870 	/*
6871 	 * 1) We should set ->mode before checking ->requests.  Please see
6872 	 * the comment in kvm_make_all_cpus_request.
6873 	 *
6874 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6875 	 * pairs with the memory barrier implicit in pi_test_and_set_on
6876 	 * (see vmx_deliver_posted_interrupt).
6877 	 *
6878 	 * 3) This also orders the write to mode from any reads to the page
6879 	 * tables done while the VCPU is running.  Please see the comment
6880 	 * in kvm_flush_remote_tlbs.
6881 	 */
6882 	smp_mb__after_srcu_read_unlock();
6883 
6884 	/*
6885 	 * This handles the case where a posted interrupt was
6886 	 * notified with kvm_vcpu_kick.
6887 	 */
6888 	if (kvm_lapic_enabled(vcpu)) {
6889 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6890 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6891 	}
6892 
6893 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6894 	    || need_resched() || signal_pending(current)) {
6895 		vcpu->mode = OUTSIDE_GUEST_MODE;
6896 		smp_wmb();
6897 		local_irq_enable();
6898 		preempt_enable();
6899 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6900 		r = 1;
6901 		goto cancel_injection;
6902 	}
6903 
6904 	kvm_load_guest_xcr0(vcpu);
6905 
6906 	if (req_immediate_exit) {
6907 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6908 		smp_send_reschedule(vcpu->cpu);
6909 	}
6910 
6911 	trace_kvm_entry(vcpu->vcpu_id);
6912 	wait_lapic_expire(vcpu);
6913 	guest_enter_irqoff();
6914 
6915 	if (unlikely(vcpu->arch.switch_db_regs)) {
6916 		set_debugreg(0, 7);
6917 		set_debugreg(vcpu->arch.eff_db[0], 0);
6918 		set_debugreg(vcpu->arch.eff_db[1], 1);
6919 		set_debugreg(vcpu->arch.eff_db[2], 2);
6920 		set_debugreg(vcpu->arch.eff_db[3], 3);
6921 		set_debugreg(vcpu->arch.dr6, 6);
6922 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6923 	}
6924 
6925 	kvm_x86_ops->run(vcpu);
6926 
6927 	/*
6928 	 * Do this here before restoring debug registers on the host.  And
6929 	 * since we do this before handling the vmexit, a DR access vmexit
6930 	 * can (a) read the correct value of the debug registers, (b) set
6931 	 * KVM_DEBUGREG_WONT_EXIT again.
6932 	 */
6933 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6934 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6935 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6936 		kvm_update_dr0123(vcpu);
6937 		kvm_update_dr6(vcpu);
6938 		kvm_update_dr7(vcpu);
6939 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6940 	}
6941 
6942 	/*
6943 	 * If the guest has used debug registers, at least dr7
6944 	 * will be disabled while returning to the host.
6945 	 * If we don't have active breakpoints in the host, we don't
6946 	 * care about the messed up debug address registers. But if
6947 	 * we have some of them active, restore the old state.
6948 	 */
6949 	if (hw_breakpoint_active())
6950 		hw_breakpoint_restore();
6951 
6952 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6953 
6954 	vcpu->mode = OUTSIDE_GUEST_MODE;
6955 	smp_wmb();
6956 
6957 	kvm_put_guest_xcr0(vcpu);
6958 
6959 	kvm_x86_ops->handle_external_intr(vcpu);
6960 
6961 	++vcpu->stat.exits;
6962 
6963 	guest_exit_irqoff();
6964 
6965 	local_irq_enable();
6966 	preempt_enable();
6967 
6968 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6969 
6970 	/*
6971 	 * Profile KVM exit RIPs:
6972 	 */
6973 	if (unlikely(prof_on == KVM_PROFILING)) {
6974 		unsigned long rip = kvm_rip_read(vcpu);
6975 		profile_hit(KVM_PROFILING, (void *)rip);
6976 	}
6977 
6978 	if (unlikely(vcpu->arch.tsc_always_catchup))
6979 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6980 
6981 	if (vcpu->arch.apic_attention)
6982 		kvm_lapic_sync_from_vapic(vcpu);
6983 
6984 	r = kvm_x86_ops->handle_exit(vcpu);
6985 	return r;
6986 
6987 cancel_injection:
6988 	kvm_x86_ops->cancel_injection(vcpu);
6989 	if (unlikely(vcpu->arch.apic_attention))
6990 		kvm_lapic_sync_from_vapic(vcpu);
6991 out:
6992 	return r;
6993 }
6994 
6995 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6996 {
6997 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6998 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6999 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7000 		kvm_vcpu_block(vcpu);
7001 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7002 
7003 		if (kvm_x86_ops->post_block)
7004 			kvm_x86_ops->post_block(vcpu);
7005 
7006 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7007 			return 1;
7008 	}
7009 
7010 	kvm_apic_accept_events(vcpu);
7011 	switch(vcpu->arch.mp_state) {
7012 	case KVM_MP_STATE_HALTED:
7013 		vcpu->arch.pv.pv_unhalted = false;
7014 		vcpu->arch.mp_state =
7015 			KVM_MP_STATE_RUNNABLE;
7016 	case KVM_MP_STATE_RUNNABLE:
7017 		vcpu->arch.apf.halted = false;
7018 		break;
7019 	case KVM_MP_STATE_INIT_RECEIVED:
7020 		break;
7021 	default:
7022 		return -EINTR;
7023 		break;
7024 	}
7025 	return 1;
7026 }
7027 
7028 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7029 {
7030 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7031 		kvm_x86_ops->check_nested_events(vcpu, false);
7032 
7033 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7034 		!vcpu->arch.apf.halted);
7035 }
7036 
7037 static int vcpu_run(struct kvm_vcpu *vcpu)
7038 {
7039 	int r;
7040 	struct kvm *kvm = vcpu->kvm;
7041 
7042 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7043 
7044 	for (;;) {
7045 		if (kvm_vcpu_running(vcpu)) {
7046 			r = vcpu_enter_guest(vcpu);
7047 		} else {
7048 			r = vcpu_block(kvm, vcpu);
7049 		}
7050 
7051 		if (r <= 0)
7052 			break;
7053 
7054 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7055 		if (kvm_cpu_has_pending_timer(vcpu))
7056 			kvm_inject_pending_timer_irqs(vcpu);
7057 
7058 		if (dm_request_for_irq_injection(vcpu) &&
7059 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7060 			r = 0;
7061 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7062 			++vcpu->stat.request_irq_exits;
7063 			break;
7064 		}
7065 
7066 		kvm_check_async_pf_completion(vcpu);
7067 
7068 		if (signal_pending(current)) {
7069 			r = -EINTR;
7070 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7071 			++vcpu->stat.signal_exits;
7072 			break;
7073 		}
7074 		if (need_resched()) {
7075 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7076 			cond_resched();
7077 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7078 		}
7079 	}
7080 
7081 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7082 
7083 	return r;
7084 }
7085 
7086 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7087 {
7088 	int r;
7089 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7090 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7091 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7092 	if (r != EMULATE_DONE)
7093 		return 0;
7094 	return 1;
7095 }
7096 
7097 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7098 {
7099 	BUG_ON(!vcpu->arch.pio.count);
7100 
7101 	return complete_emulated_io(vcpu);
7102 }
7103 
7104 /*
7105  * Implements the following, as a state machine:
7106  *
7107  * read:
7108  *   for each fragment
7109  *     for each mmio piece in the fragment
7110  *       write gpa, len
7111  *       exit
7112  *       copy data
7113  *   execute insn
7114  *
7115  * write:
7116  *   for each fragment
7117  *     for each mmio piece in the fragment
7118  *       write gpa, len
7119  *       copy data
7120  *       exit
7121  */
7122 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7123 {
7124 	struct kvm_run *run = vcpu->run;
7125 	struct kvm_mmio_fragment *frag;
7126 	unsigned len;
7127 
7128 	BUG_ON(!vcpu->mmio_needed);
7129 
7130 	/* Complete previous fragment */
7131 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7132 	len = min(8u, frag->len);
7133 	if (!vcpu->mmio_is_write)
7134 		memcpy(frag->data, run->mmio.data, len);
7135 
7136 	if (frag->len <= 8) {
7137 		/* Switch to the next fragment. */
7138 		frag++;
7139 		vcpu->mmio_cur_fragment++;
7140 	} else {
7141 		/* Go forward to the next mmio piece. */
7142 		frag->data += len;
7143 		frag->gpa += len;
7144 		frag->len -= len;
7145 	}
7146 
7147 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7148 		vcpu->mmio_needed = 0;
7149 
7150 		/* FIXME: return into emulator if single-stepping.  */
7151 		if (vcpu->mmio_is_write)
7152 			return 1;
7153 		vcpu->mmio_read_completed = 1;
7154 		return complete_emulated_io(vcpu);
7155 	}
7156 
7157 	run->exit_reason = KVM_EXIT_MMIO;
7158 	run->mmio.phys_addr = frag->gpa;
7159 	if (vcpu->mmio_is_write)
7160 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7161 	run->mmio.len = min(8u, frag->len);
7162 	run->mmio.is_write = vcpu->mmio_is_write;
7163 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7164 	return 0;
7165 }
7166 
7167 
7168 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7169 {
7170 	struct fpu *fpu = &current->thread.fpu;
7171 	int r;
7172 	sigset_t sigsaved;
7173 
7174 	fpu__activate_curr(fpu);
7175 
7176 	if (vcpu->sigset_active)
7177 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7178 
7179 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7180 		kvm_vcpu_block(vcpu);
7181 		kvm_apic_accept_events(vcpu);
7182 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7183 		r = -EAGAIN;
7184 		goto out;
7185 	}
7186 
7187 	/* re-sync apic's tpr */
7188 	if (!lapic_in_kernel(vcpu)) {
7189 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7190 			r = -EINVAL;
7191 			goto out;
7192 		}
7193 	}
7194 
7195 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7196 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7197 		vcpu->arch.complete_userspace_io = NULL;
7198 		r = cui(vcpu);
7199 		if (r <= 0)
7200 			goto out;
7201 	} else
7202 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7203 
7204 	if (kvm_run->immediate_exit)
7205 		r = -EINTR;
7206 	else
7207 		r = vcpu_run(vcpu);
7208 
7209 out:
7210 	post_kvm_run_save(vcpu);
7211 	if (vcpu->sigset_active)
7212 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7213 
7214 	return r;
7215 }
7216 
7217 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7218 {
7219 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7220 		/*
7221 		 * We are here if userspace calls get_regs() in the middle of
7222 		 * instruction emulation. Registers state needs to be copied
7223 		 * back from emulation context to vcpu. Userspace shouldn't do
7224 		 * that usually, but some bad designed PV devices (vmware
7225 		 * backdoor interface) need this to work
7226 		 */
7227 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7228 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7229 	}
7230 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7231 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7232 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7233 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7234 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7235 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7236 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7237 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7238 #ifdef CONFIG_X86_64
7239 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7240 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7241 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7242 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7243 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7244 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7245 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7246 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7247 #endif
7248 
7249 	regs->rip = kvm_rip_read(vcpu);
7250 	regs->rflags = kvm_get_rflags(vcpu);
7251 
7252 	return 0;
7253 }
7254 
7255 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7256 {
7257 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7258 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7259 
7260 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7261 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7262 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7263 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7264 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7265 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7266 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7267 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7268 #ifdef CONFIG_X86_64
7269 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7270 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7271 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7272 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7273 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7274 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7275 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7276 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7277 #endif
7278 
7279 	kvm_rip_write(vcpu, regs->rip);
7280 	kvm_set_rflags(vcpu, regs->rflags);
7281 
7282 	vcpu->arch.exception.pending = false;
7283 
7284 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7285 
7286 	return 0;
7287 }
7288 
7289 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7290 {
7291 	struct kvm_segment cs;
7292 
7293 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7294 	*db = cs.db;
7295 	*l = cs.l;
7296 }
7297 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7298 
7299 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7300 				  struct kvm_sregs *sregs)
7301 {
7302 	struct desc_ptr dt;
7303 
7304 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7305 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7306 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7307 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7308 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7309 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7310 
7311 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7312 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7313 
7314 	kvm_x86_ops->get_idt(vcpu, &dt);
7315 	sregs->idt.limit = dt.size;
7316 	sregs->idt.base = dt.address;
7317 	kvm_x86_ops->get_gdt(vcpu, &dt);
7318 	sregs->gdt.limit = dt.size;
7319 	sregs->gdt.base = dt.address;
7320 
7321 	sregs->cr0 = kvm_read_cr0(vcpu);
7322 	sregs->cr2 = vcpu->arch.cr2;
7323 	sregs->cr3 = kvm_read_cr3(vcpu);
7324 	sregs->cr4 = kvm_read_cr4(vcpu);
7325 	sregs->cr8 = kvm_get_cr8(vcpu);
7326 	sregs->efer = vcpu->arch.efer;
7327 	sregs->apic_base = kvm_get_apic_base(vcpu);
7328 
7329 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7330 
7331 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7332 		set_bit(vcpu->arch.interrupt.nr,
7333 			(unsigned long *)sregs->interrupt_bitmap);
7334 
7335 	return 0;
7336 }
7337 
7338 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7339 				    struct kvm_mp_state *mp_state)
7340 {
7341 	kvm_apic_accept_events(vcpu);
7342 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7343 					vcpu->arch.pv.pv_unhalted)
7344 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7345 	else
7346 		mp_state->mp_state = vcpu->arch.mp_state;
7347 
7348 	return 0;
7349 }
7350 
7351 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7352 				    struct kvm_mp_state *mp_state)
7353 {
7354 	if (!lapic_in_kernel(vcpu) &&
7355 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7356 		return -EINVAL;
7357 
7358 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7359 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7360 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7361 	} else
7362 		vcpu->arch.mp_state = mp_state->mp_state;
7363 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7364 	return 0;
7365 }
7366 
7367 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7368 		    int reason, bool has_error_code, u32 error_code)
7369 {
7370 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7371 	int ret;
7372 
7373 	init_emulate_ctxt(vcpu);
7374 
7375 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7376 				   has_error_code, error_code);
7377 
7378 	if (ret)
7379 		return EMULATE_FAIL;
7380 
7381 	kvm_rip_write(vcpu, ctxt->eip);
7382 	kvm_set_rflags(vcpu, ctxt->eflags);
7383 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7384 	return EMULATE_DONE;
7385 }
7386 EXPORT_SYMBOL_GPL(kvm_task_switch);
7387 
7388 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7389 				  struct kvm_sregs *sregs)
7390 {
7391 	struct msr_data apic_base_msr;
7392 	int mmu_reset_needed = 0;
7393 	int pending_vec, max_bits, idx;
7394 	struct desc_ptr dt;
7395 
7396 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7397 		return -EINVAL;
7398 
7399 	dt.size = sregs->idt.limit;
7400 	dt.address = sregs->idt.base;
7401 	kvm_x86_ops->set_idt(vcpu, &dt);
7402 	dt.size = sregs->gdt.limit;
7403 	dt.address = sregs->gdt.base;
7404 	kvm_x86_ops->set_gdt(vcpu, &dt);
7405 
7406 	vcpu->arch.cr2 = sregs->cr2;
7407 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7408 	vcpu->arch.cr3 = sregs->cr3;
7409 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7410 
7411 	kvm_set_cr8(vcpu, sregs->cr8);
7412 
7413 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7414 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7415 	apic_base_msr.data = sregs->apic_base;
7416 	apic_base_msr.host_initiated = true;
7417 	kvm_set_apic_base(vcpu, &apic_base_msr);
7418 
7419 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7420 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7421 	vcpu->arch.cr0 = sregs->cr0;
7422 
7423 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7424 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7425 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7426 		kvm_update_cpuid(vcpu);
7427 
7428 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7429 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7430 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7431 		mmu_reset_needed = 1;
7432 	}
7433 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7434 
7435 	if (mmu_reset_needed)
7436 		kvm_mmu_reset_context(vcpu);
7437 
7438 	max_bits = KVM_NR_INTERRUPTS;
7439 	pending_vec = find_first_bit(
7440 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7441 	if (pending_vec < max_bits) {
7442 		kvm_queue_interrupt(vcpu, pending_vec, false);
7443 		pr_debug("Set back pending irq %d\n", pending_vec);
7444 	}
7445 
7446 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7447 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7448 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7449 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7450 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7451 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7452 
7453 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7454 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7455 
7456 	update_cr8_intercept(vcpu);
7457 
7458 	/* Older userspace won't unhalt the vcpu on reset. */
7459 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7460 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7461 	    !is_protmode(vcpu))
7462 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7463 
7464 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7465 
7466 	return 0;
7467 }
7468 
7469 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7470 					struct kvm_guest_debug *dbg)
7471 {
7472 	unsigned long rflags;
7473 	int i, r;
7474 
7475 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7476 		r = -EBUSY;
7477 		if (vcpu->arch.exception.pending)
7478 			goto out;
7479 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7480 			kvm_queue_exception(vcpu, DB_VECTOR);
7481 		else
7482 			kvm_queue_exception(vcpu, BP_VECTOR);
7483 	}
7484 
7485 	/*
7486 	 * Read rflags as long as potentially injected trace flags are still
7487 	 * filtered out.
7488 	 */
7489 	rflags = kvm_get_rflags(vcpu);
7490 
7491 	vcpu->guest_debug = dbg->control;
7492 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7493 		vcpu->guest_debug = 0;
7494 
7495 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7496 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7497 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7498 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7499 	} else {
7500 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7501 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7502 	}
7503 	kvm_update_dr7(vcpu);
7504 
7505 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7506 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7507 			get_segment_base(vcpu, VCPU_SREG_CS);
7508 
7509 	/*
7510 	 * Trigger an rflags update that will inject or remove the trace
7511 	 * flags.
7512 	 */
7513 	kvm_set_rflags(vcpu, rflags);
7514 
7515 	kvm_x86_ops->update_bp_intercept(vcpu);
7516 
7517 	r = 0;
7518 
7519 out:
7520 
7521 	return r;
7522 }
7523 
7524 /*
7525  * Translate a guest virtual address to a guest physical address.
7526  */
7527 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7528 				    struct kvm_translation *tr)
7529 {
7530 	unsigned long vaddr = tr->linear_address;
7531 	gpa_t gpa;
7532 	int idx;
7533 
7534 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7535 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7536 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7537 	tr->physical_address = gpa;
7538 	tr->valid = gpa != UNMAPPED_GVA;
7539 	tr->writeable = 1;
7540 	tr->usermode = 0;
7541 
7542 	return 0;
7543 }
7544 
7545 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7546 {
7547 	struct fxregs_state *fxsave =
7548 			&vcpu->arch.guest_fpu.state.fxsave;
7549 
7550 	memcpy(fpu->fpr, fxsave->st_space, 128);
7551 	fpu->fcw = fxsave->cwd;
7552 	fpu->fsw = fxsave->swd;
7553 	fpu->ftwx = fxsave->twd;
7554 	fpu->last_opcode = fxsave->fop;
7555 	fpu->last_ip = fxsave->rip;
7556 	fpu->last_dp = fxsave->rdp;
7557 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7558 
7559 	return 0;
7560 }
7561 
7562 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7563 {
7564 	struct fxregs_state *fxsave =
7565 			&vcpu->arch.guest_fpu.state.fxsave;
7566 
7567 	memcpy(fxsave->st_space, fpu->fpr, 128);
7568 	fxsave->cwd = fpu->fcw;
7569 	fxsave->swd = fpu->fsw;
7570 	fxsave->twd = fpu->ftwx;
7571 	fxsave->fop = fpu->last_opcode;
7572 	fxsave->rip = fpu->last_ip;
7573 	fxsave->rdp = fpu->last_dp;
7574 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7575 
7576 	return 0;
7577 }
7578 
7579 static void fx_init(struct kvm_vcpu *vcpu)
7580 {
7581 	fpstate_init(&vcpu->arch.guest_fpu.state);
7582 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7583 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7584 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7585 
7586 	/*
7587 	 * Ensure guest xcr0 is valid for loading
7588 	 */
7589 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7590 
7591 	vcpu->arch.cr0 |= X86_CR0_ET;
7592 }
7593 
7594 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7595 {
7596 	if (vcpu->guest_fpu_loaded)
7597 		return;
7598 
7599 	/*
7600 	 * Restore all possible states in the guest,
7601 	 * and assume host would use all available bits.
7602 	 * Guest xcr0 would be loaded later.
7603 	 */
7604 	vcpu->guest_fpu_loaded = 1;
7605 	__kernel_fpu_begin();
7606 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7607 	trace_kvm_fpu(1);
7608 }
7609 
7610 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7611 {
7612 	if (!vcpu->guest_fpu_loaded)
7613 		return;
7614 
7615 	vcpu->guest_fpu_loaded = 0;
7616 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7617 	__kernel_fpu_end();
7618 	++vcpu->stat.fpu_reload;
7619 	trace_kvm_fpu(0);
7620 }
7621 
7622 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7623 {
7624 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7625 
7626 	kvmclock_reset(vcpu);
7627 
7628 	kvm_x86_ops->vcpu_free(vcpu);
7629 	free_cpumask_var(wbinvd_dirty_mask);
7630 }
7631 
7632 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7633 						unsigned int id)
7634 {
7635 	struct kvm_vcpu *vcpu;
7636 
7637 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7638 		printk_once(KERN_WARNING
7639 		"kvm: SMP vm created on host with unstable TSC; "
7640 		"guest TSC will not be reliable\n");
7641 
7642 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7643 
7644 	return vcpu;
7645 }
7646 
7647 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7648 {
7649 	int r;
7650 
7651 	kvm_vcpu_mtrr_init(vcpu);
7652 	r = vcpu_load(vcpu);
7653 	if (r)
7654 		return r;
7655 	kvm_vcpu_reset(vcpu, false);
7656 	kvm_mmu_setup(vcpu);
7657 	vcpu_put(vcpu);
7658 	return r;
7659 }
7660 
7661 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7662 {
7663 	struct msr_data msr;
7664 	struct kvm *kvm = vcpu->kvm;
7665 
7666 	if (vcpu_load(vcpu))
7667 		return;
7668 	msr.data = 0x0;
7669 	msr.index = MSR_IA32_TSC;
7670 	msr.host_initiated = true;
7671 	kvm_write_tsc(vcpu, &msr);
7672 	vcpu_put(vcpu);
7673 
7674 	if (!kvmclock_periodic_sync)
7675 		return;
7676 
7677 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7678 					KVMCLOCK_SYNC_PERIOD);
7679 }
7680 
7681 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7682 {
7683 	int r;
7684 	vcpu->arch.apf.msr_val = 0;
7685 
7686 	r = vcpu_load(vcpu);
7687 	BUG_ON(r);
7688 	kvm_mmu_unload(vcpu);
7689 	vcpu_put(vcpu);
7690 
7691 	kvm_x86_ops->vcpu_free(vcpu);
7692 }
7693 
7694 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7695 {
7696 	vcpu->arch.hflags = 0;
7697 
7698 	vcpu->arch.smi_pending = 0;
7699 	atomic_set(&vcpu->arch.nmi_queued, 0);
7700 	vcpu->arch.nmi_pending = 0;
7701 	vcpu->arch.nmi_injected = false;
7702 	kvm_clear_interrupt_queue(vcpu);
7703 	kvm_clear_exception_queue(vcpu);
7704 
7705 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7706 	kvm_update_dr0123(vcpu);
7707 	vcpu->arch.dr6 = DR6_INIT;
7708 	kvm_update_dr6(vcpu);
7709 	vcpu->arch.dr7 = DR7_FIXED_1;
7710 	kvm_update_dr7(vcpu);
7711 
7712 	vcpu->arch.cr2 = 0;
7713 
7714 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7715 	vcpu->arch.apf.msr_val = 0;
7716 	vcpu->arch.st.msr_val = 0;
7717 
7718 	kvmclock_reset(vcpu);
7719 
7720 	kvm_clear_async_pf_completion_queue(vcpu);
7721 	kvm_async_pf_hash_reset(vcpu);
7722 	vcpu->arch.apf.halted = false;
7723 
7724 	if (!init_event) {
7725 		kvm_pmu_reset(vcpu);
7726 		vcpu->arch.smbase = 0x30000;
7727 	}
7728 
7729 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7730 	vcpu->arch.regs_avail = ~0;
7731 	vcpu->arch.regs_dirty = ~0;
7732 
7733 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7734 }
7735 
7736 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7737 {
7738 	struct kvm_segment cs;
7739 
7740 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7741 	cs.selector = vector << 8;
7742 	cs.base = vector << 12;
7743 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7744 	kvm_rip_write(vcpu, 0);
7745 }
7746 
7747 int kvm_arch_hardware_enable(void)
7748 {
7749 	struct kvm *kvm;
7750 	struct kvm_vcpu *vcpu;
7751 	int i;
7752 	int ret;
7753 	u64 local_tsc;
7754 	u64 max_tsc = 0;
7755 	bool stable, backwards_tsc = false;
7756 
7757 	kvm_shared_msr_cpu_online();
7758 	ret = kvm_x86_ops->hardware_enable();
7759 	if (ret != 0)
7760 		return ret;
7761 
7762 	local_tsc = rdtsc();
7763 	stable = !check_tsc_unstable();
7764 	list_for_each_entry(kvm, &vm_list, vm_list) {
7765 		kvm_for_each_vcpu(i, vcpu, kvm) {
7766 			if (!stable && vcpu->cpu == smp_processor_id())
7767 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7768 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7769 				backwards_tsc = true;
7770 				if (vcpu->arch.last_host_tsc > max_tsc)
7771 					max_tsc = vcpu->arch.last_host_tsc;
7772 			}
7773 		}
7774 	}
7775 
7776 	/*
7777 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7778 	 * platforms that reset TSC during suspend or hibernate actions, but
7779 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7780 	 * detect that condition here, which happens early in CPU bringup,
7781 	 * before any KVM threads can be running.  Unfortunately, we can't
7782 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7783 	 * enough into CPU bringup that we know how much real time has actually
7784 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7785 	 * variables that haven't been updated yet.
7786 	 *
7787 	 * So we simply find the maximum observed TSC above, then record the
7788 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7789 	 * the adjustment will be applied.  Note that we accumulate
7790 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7791 	 * gets a chance to run again.  In the event that no KVM threads get a
7792 	 * chance to run, we will miss the entire elapsed period, as we'll have
7793 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7794 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7795 	 * uniform across all VCPUs (not to mention the scenario is extremely
7796 	 * unlikely). It is possible that a second hibernate recovery happens
7797 	 * much faster than a first, causing the observed TSC here to be
7798 	 * smaller; this would require additional padding adjustment, which is
7799 	 * why we set last_host_tsc to the local tsc observed here.
7800 	 *
7801 	 * N.B. - this code below runs only on platforms with reliable TSC,
7802 	 * as that is the only way backwards_tsc is set above.  Also note
7803 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7804 	 * have the same delta_cyc adjustment applied if backwards_tsc
7805 	 * is detected.  Note further, this adjustment is only done once,
7806 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7807 	 * called multiple times (one for each physical CPU bringup).
7808 	 *
7809 	 * Platforms with unreliable TSCs don't have to deal with this, they
7810 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7811 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7812 	 * guarantee that they stay in perfect synchronization.
7813 	 */
7814 	if (backwards_tsc) {
7815 		u64 delta_cyc = max_tsc - local_tsc;
7816 		backwards_tsc_observed = true;
7817 		list_for_each_entry(kvm, &vm_list, vm_list) {
7818 			kvm_for_each_vcpu(i, vcpu, kvm) {
7819 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7820 				vcpu->arch.last_host_tsc = local_tsc;
7821 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7822 			}
7823 
7824 			/*
7825 			 * We have to disable TSC offset matching.. if you were
7826 			 * booting a VM while issuing an S4 host suspend....
7827 			 * you may have some problem.  Solving this issue is
7828 			 * left as an exercise to the reader.
7829 			 */
7830 			kvm->arch.last_tsc_nsec = 0;
7831 			kvm->arch.last_tsc_write = 0;
7832 		}
7833 
7834 	}
7835 	return 0;
7836 }
7837 
7838 void kvm_arch_hardware_disable(void)
7839 {
7840 	kvm_x86_ops->hardware_disable();
7841 	drop_user_return_notifiers();
7842 }
7843 
7844 int kvm_arch_hardware_setup(void)
7845 {
7846 	int r;
7847 
7848 	r = kvm_x86_ops->hardware_setup();
7849 	if (r != 0)
7850 		return r;
7851 
7852 	if (kvm_has_tsc_control) {
7853 		/*
7854 		 * Make sure the user can only configure tsc_khz values that
7855 		 * fit into a signed integer.
7856 		 * A min value is not calculated needed because it will always
7857 		 * be 1 on all machines.
7858 		 */
7859 		u64 max = min(0x7fffffffULL,
7860 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7861 		kvm_max_guest_tsc_khz = max;
7862 
7863 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7864 	}
7865 
7866 	kvm_init_msr_list();
7867 	return 0;
7868 }
7869 
7870 void kvm_arch_hardware_unsetup(void)
7871 {
7872 	kvm_x86_ops->hardware_unsetup();
7873 }
7874 
7875 void kvm_arch_check_processor_compat(void *rtn)
7876 {
7877 	kvm_x86_ops->check_processor_compatibility(rtn);
7878 }
7879 
7880 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7881 {
7882 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7883 }
7884 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7885 
7886 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7887 {
7888 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7889 }
7890 
7891 struct static_key kvm_no_apic_vcpu __read_mostly;
7892 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7893 
7894 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7895 {
7896 	struct page *page;
7897 	struct kvm *kvm;
7898 	int r;
7899 
7900 	BUG_ON(vcpu->kvm == NULL);
7901 	kvm = vcpu->kvm;
7902 
7903 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7904 	vcpu->arch.pv.pv_unhalted = false;
7905 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7906 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7907 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7908 	else
7909 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7910 
7911 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7912 	if (!page) {
7913 		r = -ENOMEM;
7914 		goto fail;
7915 	}
7916 	vcpu->arch.pio_data = page_address(page);
7917 
7918 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7919 
7920 	r = kvm_mmu_create(vcpu);
7921 	if (r < 0)
7922 		goto fail_free_pio_data;
7923 
7924 	if (irqchip_in_kernel(kvm)) {
7925 		r = kvm_create_lapic(vcpu);
7926 		if (r < 0)
7927 			goto fail_mmu_destroy;
7928 	} else
7929 		static_key_slow_inc(&kvm_no_apic_vcpu);
7930 
7931 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7932 				       GFP_KERNEL);
7933 	if (!vcpu->arch.mce_banks) {
7934 		r = -ENOMEM;
7935 		goto fail_free_lapic;
7936 	}
7937 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7938 
7939 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7940 		r = -ENOMEM;
7941 		goto fail_free_mce_banks;
7942 	}
7943 
7944 	fx_init(vcpu);
7945 
7946 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7947 	vcpu->arch.pv_time_enabled = false;
7948 
7949 	vcpu->arch.guest_supported_xcr0 = 0;
7950 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7951 
7952 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7953 
7954 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7955 
7956 	kvm_async_pf_hash_reset(vcpu);
7957 	kvm_pmu_init(vcpu);
7958 
7959 	vcpu->arch.pending_external_vector = -1;
7960 
7961 	kvm_hv_vcpu_init(vcpu);
7962 
7963 	return 0;
7964 
7965 fail_free_mce_banks:
7966 	kfree(vcpu->arch.mce_banks);
7967 fail_free_lapic:
7968 	kvm_free_lapic(vcpu);
7969 fail_mmu_destroy:
7970 	kvm_mmu_destroy(vcpu);
7971 fail_free_pio_data:
7972 	free_page((unsigned long)vcpu->arch.pio_data);
7973 fail:
7974 	return r;
7975 }
7976 
7977 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7978 {
7979 	int idx;
7980 
7981 	kvm_hv_vcpu_uninit(vcpu);
7982 	kvm_pmu_destroy(vcpu);
7983 	kfree(vcpu->arch.mce_banks);
7984 	kvm_free_lapic(vcpu);
7985 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7986 	kvm_mmu_destroy(vcpu);
7987 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7988 	free_page((unsigned long)vcpu->arch.pio_data);
7989 	if (!lapic_in_kernel(vcpu))
7990 		static_key_slow_dec(&kvm_no_apic_vcpu);
7991 }
7992 
7993 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7994 {
7995 	kvm_x86_ops->sched_in(vcpu, cpu);
7996 }
7997 
7998 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7999 {
8000 	if (type)
8001 		return -EINVAL;
8002 
8003 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8004 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8005 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8006 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8007 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8008 
8009 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8010 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8011 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8012 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8013 		&kvm->arch.irq_sources_bitmap);
8014 
8015 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8016 	mutex_init(&kvm->arch.apic_map_lock);
8017 	mutex_init(&kvm->arch.hyperv.hv_lock);
8018 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8019 
8020 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8021 	pvclock_update_vm_gtod_copy(kvm);
8022 
8023 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8024 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8025 
8026 	kvm_page_track_init(kvm);
8027 	kvm_mmu_init_vm(kvm);
8028 
8029 	if (kvm_x86_ops->vm_init)
8030 		return kvm_x86_ops->vm_init(kvm);
8031 
8032 	return 0;
8033 }
8034 
8035 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8036 {
8037 	int r;
8038 	r = vcpu_load(vcpu);
8039 	BUG_ON(r);
8040 	kvm_mmu_unload(vcpu);
8041 	vcpu_put(vcpu);
8042 }
8043 
8044 static void kvm_free_vcpus(struct kvm *kvm)
8045 {
8046 	unsigned int i;
8047 	struct kvm_vcpu *vcpu;
8048 
8049 	/*
8050 	 * Unpin any mmu pages first.
8051 	 */
8052 	kvm_for_each_vcpu(i, vcpu, kvm) {
8053 		kvm_clear_async_pf_completion_queue(vcpu);
8054 		kvm_unload_vcpu_mmu(vcpu);
8055 	}
8056 	kvm_for_each_vcpu(i, vcpu, kvm)
8057 		kvm_arch_vcpu_free(vcpu);
8058 
8059 	mutex_lock(&kvm->lock);
8060 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8061 		kvm->vcpus[i] = NULL;
8062 
8063 	atomic_set(&kvm->online_vcpus, 0);
8064 	mutex_unlock(&kvm->lock);
8065 }
8066 
8067 void kvm_arch_sync_events(struct kvm *kvm)
8068 {
8069 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8070 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8071 	kvm_free_all_assigned_devices(kvm);
8072 	kvm_free_pit(kvm);
8073 }
8074 
8075 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8076 {
8077 	int i, r;
8078 	unsigned long hva;
8079 	struct kvm_memslots *slots = kvm_memslots(kvm);
8080 	struct kvm_memory_slot *slot, old;
8081 
8082 	/* Called with kvm->slots_lock held.  */
8083 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8084 		return -EINVAL;
8085 
8086 	slot = id_to_memslot(slots, id);
8087 	if (size) {
8088 		if (slot->npages)
8089 			return -EEXIST;
8090 
8091 		/*
8092 		 * MAP_SHARED to prevent internal slot pages from being moved
8093 		 * by fork()/COW.
8094 		 */
8095 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8096 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8097 		if (IS_ERR((void *)hva))
8098 			return PTR_ERR((void *)hva);
8099 	} else {
8100 		if (!slot->npages)
8101 			return 0;
8102 
8103 		hva = 0;
8104 	}
8105 
8106 	old = *slot;
8107 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8108 		struct kvm_userspace_memory_region m;
8109 
8110 		m.slot = id | (i << 16);
8111 		m.flags = 0;
8112 		m.guest_phys_addr = gpa;
8113 		m.userspace_addr = hva;
8114 		m.memory_size = size;
8115 		r = __kvm_set_memory_region(kvm, &m);
8116 		if (r < 0)
8117 			return r;
8118 	}
8119 
8120 	if (!size) {
8121 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8122 		WARN_ON(r < 0);
8123 	}
8124 
8125 	return 0;
8126 }
8127 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8128 
8129 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8130 {
8131 	int r;
8132 
8133 	mutex_lock(&kvm->slots_lock);
8134 	r = __x86_set_memory_region(kvm, id, gpa, size);
8135 	mutex_unlock(&kvm->slots_lock);
8136 
8137 	return r;
8138 }
8139 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8140 
8141 void kvm_arch_destroy_vm(struct kvm *kvm)
8142 {
8143 	if (current->mm == kvm->mm) {
8144 		/*
8145 		 * Free memory regions allocated on behalf of userspace,
8146 		 * unless the the memory map has changed due to process exit
8147 		 * or fd copying.
8148 		 */
8149 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8150 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8151 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8152 	}
8153 	if (kvm_x86_ops->vm_destroy)
8154 		kvm_x86_ops->vm_destroy(kvm);
8155 	kvm_iommu_unmap_guest(kvm);
8156 	kfree(kvm->arch.vpic);
8157 	kfree(kvm->arch.vioapic);
8158 	kvm_free_vcpus(kvm);
8159 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8160 	kvm_mmu_uninit_vm(kvm);
8161 }
8162 
8163 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8164 			   struct kvm_memory_slot *dont)
8165 {
8166 	int i;
8167 
8168 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8169 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8170 			kvfree(free->arch.rmap[i]);
8171 			free->arch.rmap[i] = NULL;
8172 		}
8173 		if (i == 0)
8174 			continue;
8175 
8176 		if (!dont || free->arch.lpage_info[i - 1] !=
8177 			     dont->arch.lpage_info[i - 1]) {
8178 			kvfree(free->arch.lpage_info[i - 1]);
8179 			free->arch.lpage_info[i - 1] = NULL;
8180 		}
8181 	}
8182 
8183 	kvm_page_track_free_memslot(free, dont);
8184 }
8185 
8186 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8187 			    unsigned long npages)
8188 {
8189 	int i;
8190 
8191 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8192 		struct kvm_lpage_info *linfo;
8193 		unsigned long ugfn;
8194 		int lpages;
8195 		int level = i + 1;
8196 
8197 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8198 				      slot->base_gfn, level) + 1;
8199 
8200 		slot->arch.rmap[i] =
8201 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8202 		if (!slot->arch.rmap[i])
8203 			goto out_free;
8204 		if (i == 0)
8205 			continue;
8206 
8207 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8208 		if (!linfo)
8209 			goto out_free;
8210 
8211 		slot->arch.lpage_info[i - 1] = linfo;
8212 
8213 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8214 			linfo[0].disallow_lpage = 1;
8215 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8216 			linfo[lpages - 1].disallow_lpage = 1;
8217 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8218 		/*
8219 		 * If the gfn and userspace address are not aligned wrt each
8220 		 * other, or if explicitly asked to, disable large page
8221 		 * support for this slot
8222 		 */
8223 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8224 		    !kvm_largepages_enabled()) {
8225 			unsigned long j;
8226 
8227 			for (j = 0; j < lpages; ++j)
8228 				linfo[j].disallow_lpage = 1;
8229 		}
8230 	}
8231 
8232 	if (kvm_page_track_create_memslot(slot, npages))
8233 		goto out_free;
8234 
8235 	return 0;
8236 
8237 out_free:
8238 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8239 		kvfree(slot->arch.rmap[i]);
8240 		slot->arch.rmap[i] = NULL;
8241 		if (i == 0)
8242 			continue;
8243 
8244 		kvfree(slot->arch.lpage_info[i - 1]);
8245 		slot->arch.lpage_info[i - 1] = NULL;
8246 	}
8247 	return -ENOMEM;
8248 }
8249 
8250 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8251 {
8252 	/*
8253 	 * memslots->generation has been incremented.
8254 	 * mmio generation may have reached its maximum value.
8255 	 */
8256 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8257 }
8258 
8259 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8260 				struct kvm_memory_slot *memslot,
8261 				const struct kvm_userspace_memory_region *mem,
8262 				enum kvm_mr_change change)
8263 {
8264 	return 0;
8265 }
8266 
8267 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8268 				     struct kvm_memory_slot *new)
8269 {
8270 	/* Still write protect RO slot */
8271 	if (new->flags & KVM_MEM_READONLY) {
8272 		kvm_mmu_slot_remove_write_access(kvm, new);
8273 		return;
8274 	}
8275 
8276 	/*
8277 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8278 	 *
8279 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8280 	 *
8281 	 *  - KVM_MR_CREATE with dirty logging is disabled
8282 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8283 	 *
8284 	 * The reason is, in case of PML, we need to set D-bit for any slots
8285 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8286 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8287 	 * guarantees leaving PML enabled during guest's lifetime won't have
8288 	 * any additonal overhead from PML when guest is running with dirty
8289 	 * logging disabled for memory slots.
8290 	 *
8291 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8292 	 * to dirty logging mode.
8293 	 *
8294 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8295 	 *
8296 	 * In case of write protect:
8297 	 *
8298 	 * Write protect all pages for dirty logging.
8299 	 *
8300 	 * All the sptes including the large sptes which point to this
8301 	 * slot are set to readonly. We can not create any new large
8302 	 * spte on this slot until the end of the logging.
8303 	 *
8304 	 * See the comments in fast_page_fault().
8305 	 */
8306 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8307 		if (kvm_x86_ops->slot_enable_log_dirty)
8308 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8309 		else
8310 			kvm_mmu_slot_remove_write_access(kvm, new);
8311 	} else {
8312 		if (kvm_x86_ops->slot_disable_log_dirty)
8313 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8314 	}
8315 }
8316 
8317 void kvm_arch_commit_memory_region(struct kvm *kvm,
8318 				const struct kvm_userspace_memory_region *mem,
8319 				const struct kvm_memory_slot *old,
8320 				const struct kvm_memory_slot *new,
8321 				enum kvm_mr_change change)
8322 {
8323 	int nr_mmu_pages = 0;
8324 
8325 	if (!kvm->arch.n_requested_mmu_pages)
8326 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8327 
8328 	if (nr_mmu_pages)
8329 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8330 
8331 	/*
8332 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8333 	 * sptes have to be split.  If live migration is successful, the guest
8334 	 * in the source machine will be destroyed and large sptes will be
8335 	 * created in the destination. However, if the guest continues to run
8336 	 * in the source machine (for example if live migration fails), small
8337 	 * sptes will remain around and cause bad performance.
8338 	 *
8339 	 * Scan sptes if dirty logging has been stopped, dropping those
8340 	 * which can be collapsed into a single large-page spte.  Later
8341 	 * page faults will create the large-page sptes.
8342 	 */
8343 	if ((change != KVM_MR_DELETE) &&
8344 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8345 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8346 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8347 
8348 	/*
8349 	 * Set up write protection and/or dirty logging for the new slot.
8350 	 *
8351 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8352 	 * been zapped so no dirty logging staff is needed for old slot. For
8353 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8354 	 * new and it's also covered when dealing with the new slot.
8355 	 *
8356 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8357 	 */
8358 	if (change != KVM_MR_DELETE)
8359 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8360 }
8361 
8362 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8363 {
8364 	kvm_mmu_invalidate_zap_all_pages(kvm);
8365 }
8366 
8367 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8368 				   struct kvm_memory_slot *slot)
8369 {
8370 	kvm_page_track_flush_slot(kvm, slot);
8371 }
8372 
8373 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8374 {
8375 	if (!list_empty_careful(&vcpu->async_pf.done))
8376 		return true;
8377 
8378 	if (kvm_apic_has_events(vcpu))
8379 		return true;
8380 
8381 	if (vcpu->arch.pv.pv_unhalted)
8382 		return true;
8383 
8384 	if (atomic_read(&vcpu->arch.nmi_queued))
8385 		return true;
8386 
8387 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8388 		return true;
8389 
8390 	if (kvm_arch_interrupt_allowed(vcpu) &&
8391 	    kvm_cpu_has_interrupt(vcpu))
8392 		return true;
8393 
8394 	if (kvm_hv_has_stimer_pending(vcpu))
8395 		return true;
8396 
8397 	return false;
8398 }
8399 
8400 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8401 {
8402 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8403 }
8404 
8405 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8406 {
8407 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8408 }
8409 
8410 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8411 {
8412 	return kvm_x86_ops->interrupt_allowed(vcpu);
8413 }
8414 
8415 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8416 {
8417 	if (is_64_bit_mode(vcpu))
8418 		return kvm_rip_read(vcpu);
8419 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8420 		     kvm_rip_read(vcpu));
8421 }
8422 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8423 
8424 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8425 {
8426 	return kvm_get_linear_rip(vcpu) == linear_rip;
8427 }
8428 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8429 
8430 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8431 {
8432 	unsigned long rflags;
8433 
8434 	rflags = kvm_x86_ops->get_rflags(vcpu);
8435 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8436 		rflags &= ~X86_EFLAGS_TF;
8437 	return rflags;
8438 }
8439 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8440 
8441 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8442 {
8443 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8444 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8445 		rflags |= X86_EFLAGS_TF;
8446 	kvm_x86_ops->set_rflags(vcpu, rflags);
8447 }
8448 
8449 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8450 {
8451 	__kvm_set_rflags(vcpu, rflags);
8452 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8453 }
8454 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8455 
8456 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8457 {
8458 	int r;
8459 
8460 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8461 	      work->wakeup_all)
8462 		return;
8463 
8464 	r = kvm_mmu_reload(vcpu);
8465 	if (unlikely(r))
8466 		return;
8467 
8468 	if (!vcpu->arch.mmu.direct_map &&
8469 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8470 		return;
8471 
8472 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8473 }
8474 
8475 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8476 {
8477 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8478 }
8479 
8480 static inline u32 kvm_async_pf_next_probe(u32 key)
8481 {
8482 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8483 }
8484 
8485 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8486 {
8487 	u32 key = kvm_async_pf_hash_fn(gfn);
8488 
8489 	while (vcpu->arch.apf.gfns[key] != ~0)
8490 		key = kvm_async_pf_next_probe(key);
8491 
8492 	vcpu->arch.apf.gfns[key] = gfn;
8493 }
8494 
8495 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8496 {
8497 	int i;
8498 	u32 key = kvm_async_pf_hash_fn(gfn);
8499 
8500 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8501 		     (vcpu->arch.apf.gfns[key] != gfn &&
8502 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8503 		key = kvm_async_pf_next_probe(key);
8504 
8505 	return key;
8506 }
8507 
8508 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8509 {
8510 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8511 }
8512 
8513 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8514 {
8515 	u32 i, j, k;
8516 
8517 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8518 	while (true) {
8519 		vcpu->arch.apf.gfns[i] = ~0;
8520 		do {
8521 			j = kvm_async_pf_next_probe(j);
8522 			if (vcpu->arch.apf.gfns[j] == ~0)
8523 				return;
8524 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8525 			/*
8526 			 * k lies cyclically in ]i,j]
8527 			 * |    i.k.j |
8528 			 * |....j i.k.| or  |.k..j i...|
8529 			 */
8530 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8531 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8532 		i = j;
8533 	}
8534 }
8535 
8536 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8537 {
8538 	return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8539 					   sizeof(val));
8540 }
8541 
8542 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8543 				     struct kvm_async_pf *work)
8544 {
8545 	struct x86_exception fault;
8546 
8547 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8548 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8549 
8550 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8551 	    (vcpu->arch.apf.send_user_only &&
8552 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8553 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8554 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8555 		fault.vector = PF_VECTOR;
8556 		fault.error_code_valid = true;
8557 		fault.error_code = 0;
8558 		fault.nested_page_fault = false;
8559 		fault.address = work->arch.token;
8560 		kvm_inject_page_fault(vcpu, &fault);
8561 	}
8562 }
8563 
8564 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8565 				 struct kvm_async_pf *work)
8566 {
8567 	struct x86_exception fault;
8568 
8569 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8570 	if (work->wakeup_all)
8571 		work->arch.token = ~0; /* broadcast wakeup */
8572 	else
8573 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8574 
8575 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8576 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8577 		fault.vector = PF_VECTOR;
8578 		fault.error_code_valid = true;
8579 		fault.error_code = 0;
8580 		fault.nested_page_fault = false;
8581 		fault.address = work->arch.token;
8582 		kvm_inject_page_fault(vcpu, &fault);
8583 	}
8584 	vcpu->arch.apf.halted = false;
8585 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8586 }
8587 
8588 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8589 {
8590 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8591 		return true;
8592 	else
8593 		return !kvm_event_needs_reinjection(vcpu) &&
8594 			kvm_x86_ops->interrupt_allowed(vcpu);
8595 }
8596 
8597 void kvm_arch_start_assignment(struct kvm *kvm)
8598 {
8599 	atomic_inc(&kvm->arch.assigned_device_count);
8600 }
8601 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8602 
8603 void kvm_arch_end_assignment(struct kvm *kvm)
8604 {
8605 	atomic_dec(&kvm->arch.assigned_device_count);
8606 }
8607 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8608 
8609 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8610 {
8611 	return atomic_read(&kvm->arch.assigned_device_count);
8612 }
8613 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8614 
8615 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8616 {
8617 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8620 
8621 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8622 {
8623 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8624 }
8625 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8626 
8627 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8628 {
8629 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8632 
8633 bool kvm_arch_has_irq_bypass(void)
8634 {
8635 	return kvm_x86_ops->update_pi_irte != NULL;
8636 }
8637 
8638 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8639 				      struct irq_bypass_producer *prod)
8640 {
8641 	struct kvm_kernel_irqfd *irqfd =
8642 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8643 
8644 	irqfd->producer = prod;
8645 
8646 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8647 					   prod->irq, irqfd->gsi, 1);
8648 }
8649 
8650 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8651 				      struct irq_bypass_producer *prod)
8652 {
8653 	int ret;
8654 	struct kvm_kernel_irqfd *irqfd =
8655 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8656 
8657 	WARN_ON(irqfd->producer != prod);
8658 	irqfd->producer = NULL;
8659 
8660 	/*
8661 	 * When producer of consumer is unregistered, we change back to
8662 	 * remapped mode, so we can re-use the current implementation
8663 	 * when the irq is masked/disabled or the consumer side (KVM
8664 	 * int this case doesn't want to receive the interrupts.
8665 	*/
8666 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8667 	if (ret)
8668 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8669 		       " fails: %d\n", irqfd->consumer.token, ret);
8670 }
8671 
8672 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8673 				   uint32_t guest_irq, bool set)
8674 {
8675 	if (!kvm_x86_ops->update_pi_irte)
8676 		return -EINVAL;
8677 
8678 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8679 }
8680 
8681 bool kvm_vector_hashing_enabled(void)
8682 {
8683 	return vector_hashing;
8684 }
8685 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8686 
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8706