xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 4f3db074)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114 
115 static bool backwards_tsc_observed = false;
116 
117 #define KVM_NR_SHARED_MSRS 16
118 
119 struct kvm_shared_msrs_global {
120 	int nr;
121 	u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123 
124 struct kvm_shared_msrs {
125 	struct user_return_notifier urn;
126 	bool registered;
127 	struct kvm_shared_msr_values {
128 		u64 host;
129 		u64 curr;
130 	} values[KVM_NR_SHARED_MSRS];
131 };
132 
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135 
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
138 	{ "pf_guest", VCPU_STAT(pf_guest) },
139 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
140 	{ "invlpg", VCPU_STAT(invlpg) },
141 	{ "exits", VCPU_STAT(exits) },
142 	{ "io_exits", VCPU_STAT(io_exits) },
143 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
144 	{ "signal_exits", VCPU_STAT(signal_exits) },
145 	{ "irq_window", VCPU_STAT(irq_window_exits) },
146 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
147 	{ "halt_exits", VCPU_STAT(halt_exits) },
148 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 	{ "hypercalls", VCPU_STAT(hypercalls) },
151 	{ "request_irq", VCPU_STAT(request_irq_exits) },
152 	{ "irq_exits", VCPU_STAT(irq_exits) },
153 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
154 	{ "efer_reload", VCPU_STAT(efer_reload) },
155 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
156 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
157 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 	{ "irq_injections", VCPU_STAT(irq_injections) },
159 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
160 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
165 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
166 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
168 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 	{ "largepages", VM_STAT(lpages) },
170 	{ NULL }
171 };
172 
173 u64 __read_mostly host_xcr0;
174 
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176 
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 	int i;
180 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 		vcpu->arch.apf.gfns[i] = ~0;
182 }
183 
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 	unsigned slot;
187 	struct kvm_shared_msrs *locals
188 		= container_of(urn, struct kvm_shared_msrs, urn);
189 	struct kvm_shared_msr_values *values;
190 
191 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 		values = &locals->values[slot];
193 		if (values->host != values->curr) {
194 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 			values->curr = values->host;
196 		}
197 	}
198 	locals->registered = false;
199 	user_return_notifier_unregister(urn);
200 }
201 
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 	u64 value;
205 	unsigned int cpu = smp_processor_id();
206 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207 
208 	/* only read, and nobody should modify it at this time,
209 	 * so don't need lock */
210 	if (slot >= shared_msrs_global.nr) {
211 		printk(KERN_ERR "kvm: invalid MSR slot!");
212 		return;
213 	}
214 	rdmsrl_safe(msr, &value);
215 	smsr->values[slot].host = value;
216 	smsr->values[slot].curr = value;
217 }
218 
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 	if (slot >= shared_msrs_global.nr)
223 		shared_msrs_global.nr = slot + 1;
224 	shared_msrs_global.msrs[slot] = msr;
225 	/* we need ensured the shared_msr_global have been updated */
226 	smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229 
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 	unsigned i;
233 
234 	for (i = 0; i < shared_msrs_global.nr; ++i)
235 		shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237 
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 	int err;
243 
244 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 		return 0;
246 	smsr->values[slot].curr = value;
247 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 	if (err)
249 		return 1;
250 
251 	if (!smsr->registered) {
252 		smsr->urn.on_user_return = kvm_on_user_return;
253 		user_return_notifier_register(&smsr->urn);
254 		smsr->registered = true;
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259 
260 static void drop_user_return_notifiers(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264 
265 	if (smsr->registered)
266 		kvm_on_user_return(&smsr->urn);
267 }
268 
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 	return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274 
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 	u64 old_state = vcpu->arch.apic_base &
278 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 	u64 new_state = msr_info->data &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283 
284 	if (!msr_info->host_initiated &&
285 	    ((msr_info->data & reserved_bits) != 0 ||
286 	     new_state == X2APIC_ENABLE ||
287 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
288 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 	      old_state == 0)))
291 		return 1;
292 
293 	kvm_lapic_set_base(vcpu, msr_info->data);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297 
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 	/* Fault while not rebooting.  We want the trace. */
301 	BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304 
305 #define EXCPT_BENIGN		0
306 #define EXCPT_CONTRIBUTORY	1
307 #define EXCPT_PF		2
308 
309 static int exception_class(int vector)
310 {
311 	switch (vector) {
312 	case PF_VECTOR:
313 		return EXCPT_PF;
314 	case DE_VECTOR:
315 	case TS_VECTOR:
316 	case NP_VECTOR:
317 	case SS_VECTOR:
318 	case GP_VECTOR:
319 		return EXCPT_CONTRIBUTORY;
320 	default:
321 		break;
322 	}
323 	return EXCPT_BENIGN;
324 }
325 
326 #define EXCPT_FAULT		0
327 #define EXCPT_TRAP		1
328 #define EXCPT_ABORT		2
329 #define EXCPT_INTERRUPT		3
330 
331 static int exception_type(int vector)
332 {
333 	unsigned int mask;
334 
335 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 		return EXCPT_INTERRUPT;
337 
338 	mask = 1 << vector;
339 
340 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
341 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 		return EXCPT_TRAP;
343 
344 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 		return EXCPT_ABORT;
346 
347 	/* Reserved exceptions will result in fault */
348 	return EXCPT_FAULT;
349 }
350 
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 		unsigned nr, bool has_error, u32 error_code,
353 		bool reinject)
354 {
355 	u32 prev_nr;
356 	int class1, class2;
357 
358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
359 
360 	if (!vcpu->arch.exception.pending) {
361 	queue:
362 		if (has_error && !is_protmode(vcpu))
363 			has_error = false;
364 		vcpu->arch.exception.pending = true;
365 		vcpu->arch.exception.has_error_code = has_error;
366 		vcpu->arch.exception.nr = nr;
367 		vcpu->arch.exception.error_code = error_code;
368 		vcpu->arch.exception.reinject = reinject;
369 		return;
370 	}
371 
372 	/* to check exception */
373 	prev_nr = vcpu->arch.exception.nr;
374 	if (prev_nr == DF_VECTOR) {
375 		/* triple fault -> shutdown */
376 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 		return;
378 	}
379 	class1 = exception_class(prev_nr);
380 	class2 = exception_class(nr);
381 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 		/* generate double fault per SDM Table 5-5 */
384 		vcpu->arch.exception.pending = true;
385 		vcpu->arch.exception.has_error_code = true;
386 		vcpu->arch.exception.nr = DF_VECTOR;
387 		vcpu->arch.exception.error_code = 0;
388 	} else
389 		/* replace previous exception with a new one in a hope
390 		   that instruction re-execution will regenerate lost
391 		   exception */
392 		goto queue;
393 }
394 
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 	kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400 
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 	kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406 
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 	if (err)
410 		kvm_inject_gp(vcpu, 0);
411 	else
412 		kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415 
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	++vcpu->stat.pf_guest;
419 	vcpu->arch.cr2 = fault->address;
420 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423 
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 	else
429 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430 
431 	return fault->nested_page_fault;
432 }
433 
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 	atomic_inc(&vcpu->arch.nmi_queued);
437 	kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440 
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446 
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452 
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 		return true;
461 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 	return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465 
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 		return true;
470 
471 	kvm_queue_exception(vcpu, UD_VECTOR);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475 
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 			    gfn_t ngfn, void *data, int offset, int len,
483 			    u32 access)
484 {
485 	struct x86_exception exception;
486 	gfn_t real_gfn;
487 	gpa_t ngpa;
488 
489 	ngpa     = gfn_to_gpa(ngfn);
490 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 	if (real_gfn == UNMAPPED_GVA)
492 		return -EFAULT;
493 
494 	real_gfn = gpa_to_gfn(real_gfn);
495 
496 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499 
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 			       void *data, int offset, int len, u32 access)
502 {
503 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 				       data, offset, len, access);
505 }
506 
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 	int i;
515 	int ret;
516 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517 
518 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 				      offset * sizeof(u64), sizeof(pdpte),
520 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
521 	if (ret < 0) {
522 		ret = 0;
523 		goto out;
524 	}
525 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 		if (is_present_gpte(pdpte[i]) &&
527 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 			ret = 0;
529 			goto out;
530 		}
531 	}
532 	ret = 1;
533 
534 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 	__set_bit(VCPU_EXREG_PDPTR,
536 		  (unsigned long *)&vcpu->arch.regs_avail);
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544 
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 	bool changed = true;
549 	int offset;
550 	gfn_t gfn;
551 	int r;
552 
553 	if (is_long_mode(vcpu) || !is_pae(vcpu))
554 		return false;
555 
556 	if (!test_bit(VCPU_EXREG_PDPTR,
557 		      (unsigned long *)&vcpu->arch.regs_avail))
558 		return true;
559 
560 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
564 	if (r < 0)
565 		goto out;
566 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568 
569 	return changed;
570 }
571 
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 				    X86_CR0_CD | X86_CR0_NW;
577 
578 	cr0 |= X86_CR0_ET;
579 
580 #ifdef CONFIG_X86_64
581 	if (cr0 & 0xffffffff00000000UL)
582 		return 1;
583 #endif
584 
585 	cr0 &= ~CR0_RESERVED_BITS;
586 
587 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 		return 1;
589 
590 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 		return 1;
592 
593 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 		if ((vcpu->arch.efer & EFER_LME)) {
596 			int cs_db, cs_l;
597 
598 			if (!is_pae(vcpu))
599 				return 1;
600 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 			if (cs_l)
602 				return 1;
603 		} else
604 #endif
605 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 						 kvm_read_cr3(vcpu)))
607 			return 1;
608 	}
609 
610 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 		return 1;
612 
613 	kvm_x86_ops->set_cr0(vcpu, cr0);
614 
615 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 		kvm_clear_async_pf_completion_queue(vcpu);
617 		kvm_async_pf_hash_reset(vcpu);
618 	}
619 
620 	if ((cr0 ^ old_cr0) & update_bits)
621 		kvm_mmu_reset_context(vcpu);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625 
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631 
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 			!vcpu->guest_xcr0_loaded) {
636 		/* kvm_set_xcr() also depends on this */
637 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 		vcpu->guest_xcr0_loaded = 1;
639 	}
640 }
641 
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 	if (vcpu->guest_xcr0_loaded) {
645 		if (vcpu->arch.xcr0 != host_xcr0)
646 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 		vcpu->guest_xcr0_loaded = 0;
648 	}
649 }
650 
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 	u64 xcr0 = xcr;
654 	u64 old_xcr0 = vcpu->arch.xcr0;
655 	u64 valid_bits;
656 
657 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658 	if (index != XCR_XFEATURE_ENABLED_MASK)
659 		return 1;
660 	if (!(xcr0 & XSTATE_FP))
661 		return 1;
662 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 		return 1;
664 
665 	/*
666 	 * Do not allow the guest to set bits that we do not support
667 	 * saving.  However, xcr0 bit 0 is always set, even if the
668 	 * emulated CPU does not support XSAVE (see fx_init).
669 	 */
670 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 	if (xcr0 & ~valid_bits)
672 		return 1;
673 
674 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 		return 1;
676 
677 	if (xcr0 & XSTATE_AVX512) {
678 		if (!(xcr0 & XSTATE_YMM))
679 			return 1;
680 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 			return 1;
682 	}
683 	kvm_put_guest_xcr0(vcpu);
684 	vcpu->arch.xcr0 = xcr0;
685 
686 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 		kvm_update_cpuid(vcpu);
688 	return 0;
689 }
690 
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 	    __kvm_set_xcr(vcpu, index, xcr)) {
695 		kvm_inject_gp(vcpu, 0);
696 		return 1;
697 	}
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701 
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706 				   X86_CR4_PAE | X86_CR4_SMEP;
707 	if (cr4 & CR4_RESERVED_BITS)
708 		return 1;
709 
710 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 		return 1;
712 
713 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 		return 1;
715 
716 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 		return 1;
718 
719 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 		return 1;
721 
722 	if (is_long_mode(vcpu)) {
723 		if (!(cr4 & X86_CR4_PAE))
724 			return 1;
725 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 		   && ((cr4 ^ old_cr4) & pdptr_bits)
727 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 				   kvm_read_cr3(vcpu)))
729 		return 1;
730 
731 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 		if (!guest_cpuid_has_pcid(vcpu))
733 			return 1;
734 
735 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 			return 1;
738 	}
739 
740 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 		return 1;
742 
743 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 		kvm_mmu_reset_context(vcpu);
746 
747 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749 
750 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 		kvm_update_cpuid(vcpu);
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756 
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760 	cr3 &= ~CR3_PCID_INVD;
761 #endif
762 
763 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 		kvm_mmu_sync_roots(vcpu);
765 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 		return 0;
767 	}
768 
769 	if (is_long_mode(vcpu)) {
770 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 			return 1;
772 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
773 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 		return 1;
775 
776 	vcpu->arch.cr3 = cr3;
777 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 	kvm_mmu_new_cr3(vcpu);
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782 
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785 	if (cr8 & CR8_RESERVED_BITS)
786 		return 1;
787 	if (irqchip_in_kernel(vcpu->kvm))
788 		kvm_lapic_set_tpr(vcpu, cr8);
789 	else
790 		vcpu->arch.cr8 = cr8;
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794 
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797 	if (irqchip_in_kernel(vcpu->kvm))
798 		return kvm_lapic_get_cr8(vcpu);
799 	else
800 		return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803 
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806 	int i;
807 
808 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809 		for (i = 0; i < KVM_NR_DB_REGS; i++)
810 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812 	}
813 }
814 
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820 
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823 	unsigned long dr7;
824 
825 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826 		dr7 = vcpu->arch.guest_debug_dr7;
827 	else
828 		dr7 = vcpu->arch.dr7;
829 	kvm_x86_ops->set_dr7(vcpu, dr7);
830 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831 	if (dr7 & DR7_BP_EN_MASK)
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834 
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837 	u64 fixed = DR6_FIXED_1;
838 
839 	if (!guest_cpuid_has_rtm(vcpu))
840 		fixed |= DR6_RTM;
841 	return fixed;
842 }
843 
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846 	switch (dr) {
847 	case 0 ... 3:
848 		vcpu->arch.db[dr] = val;
849 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850 			vcpu->arch.eff_db[dr] = val;
851 		break;
852 	case 4:
853 		/* fall through */
854 	case 6:
855 		if (val & 0xffffffff00000000ULL)
856 			return -1; /* #GP */
857 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858 		kvm_update_dr6(vcpu);
859 		break;
860 	case 5:
861 		/* fall through */
862 	default: /* 7 */
863 		if (val & 0xffffffff00000000ULL)
864 			return -1; /* #GP */
865 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866 		kvm_update_dr7(vcpu);
867 		break;
868 	}
869 
870 	return 0;
871 }
872 
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875 	if (__kvm_set_dr(vcpu, dr, val)) {
876 		kvm_inject_gp(vcpu, 0);
877 		return 1;
878 	}
879 	return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882 
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885 	switch (dr) {
886 	case 0 ... 3:
887 		*val = vcpu->arch.db[dr];
888 		break;
889 	case 4:
890 		/* fall through */
891 	case 6:
892 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893 			*val = vcpu->arch.dr6;
894 		else
895 			*val = kvm_x86_ops->get_dr6(vcpu);
896 		break;
897 	case 5:
898 		/* fall through */
899 	default: /* 7 */
900 		*val = vcpu->arch.dr7;
901 		break;
902 	}
903 	return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906 
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910 	u64 data;
911 	int err;
912 
913 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914 	if (err)
915 		return err;
916 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918 	return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921 
922 /*
923  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925  *
926  * This list is modified at module load time to reflect the
927  * capabilities of the host cpu. This capabilities test skips MSRs that are
928  * kvm-specific. Those are put in the beginning of the list.
929  */
930 
931 #define KVM_SAVE_MSRS_BEGIN	12
932 static u32 msrs_to_save[] = {
933 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938 	MSR_KVM_PV_EOI_EN,
939 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940 	MSR_STAR,
941 #ifdef CONFIG_X86_64
942 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947 
948 static unsigned num_msrs_to_save;
949 
950 static const u32 emulated_msrs[] = {
951 	MSR_IA32_TSC_ADJUST,
952 	MSR_IA32_TSCDEADLINE,
953 	MSR_IA32_MISC_ENABLE,
954 	MSR_IA32_MCG_STATUS,
955 	MSR_IA32_MCG_CTL,
956 };
957 
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960 	if (efer & efer_reserved_bits)
961 		return false;
962 
963 	if (efer & EFER_FFXSR) {
964 		struct kvm_cpuid_entry2 *feat;
965 
966 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968 			return false;
969 	}
970 
971 	if (efer & EFER_SVME) {
972 		struct kvm_cpuid_entry2 *feat;
973 
974 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976 			return false;
977 	}
978 
979 	return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982 
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985 	u64 old_efer = vcpu->arch.efer;
986 
987 	if (!kvm_valid_efer(vcpu, efer))
988 		return 1;
989 
990 	if (is_paging(vcpu)
991 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992 		return 1;
993 
994 	efer &= ~EFER_LMA;
995 	efer |= vcpu->arch.efer & EFER_LMA;
996 
997 	kvm_x86_ops->set_efer(vcpu, efer);
998 
999 	/* Update reserved bits */
1000 	if ((efer ^ old_efer) & EFER_NX)
1001 		kvm_mmu_reset_context(vcpu);
1002 
1003 	return 0;
1004 }
1005 
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008        efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011 
1012 /*
1013  * Writes msr value into into the appropriate "register".
1014  * Returns 0 on success, non-0 otherwise.
1015  * Assumes vcpu_load() was already called.
1016  */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019 	switch (msr->index) {
1020 	case MSR_FS_BASE:
1021 	case MSR_GS_BASE:
1022 	case MSR_KERNEL_GS_BASE:
1023 	case MSR_CSTAR:
1024 	case MSR_LSTAR:
1025 		if (is_noncanonical_address(msr->data))
1026 			return 1;
1027 		break;
1028 	case MSR_IA32_SYSENTER_EIP:
1029 	case MSR_IA32_SYSENTER_ESP:
1030 		/*
1031 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032 		 * non-canonical address is written on Intel but not on
1033 		 * AMD (which ignores the top 32-bits, because it does
1034 		 * not implement 64-bit SYSENTER).
1035 		 *
1036 		 * 64-bit code should hence be able to write a non-canonical
1037 		 * value on AMD.  Making the address canonical ensures that
1038 		 * vmentry does not fail on Intel after writing a non-canonical
1039 		 * value, and that something deterministic happens if the guest
1040 		 * invokes 64-bit SYSENTER.
1041 		 */
1042 		msr->data = get_canonical(msr->data);
1043 	}
1044 	return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047 
1048 /*
1049  * Adapt set_msr() to msr_io()'s calling convention
1050  */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053 	struct msr_data msr;
1054 
1055 	msr.data = *data;
1056 	msr.index = index;
1057 	msr.host_initiated = true;
1058 	return kvm_set_msr(vcpu, &msr);
1059 }
1060 
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063 	seqcount_t	seq;
1064 
1065 	struct { /* extract of a clocksource struct */
1066 		int vclock_mode;
1067 		cycle_t	cycle_last;
1068 		cycle_t	mask;
1069 		u32	mult;
1070 		u32	shift;
1071 	} clock;
1072 
1073 	u64		boot_ns;
1074 	u64		nsec_base;
1075 };
1076 
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078 
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082 	u64 boot_ns;
1083 
1084 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085 
1086 	write_seqcount_begin(&vdata->seq);
1087 
1088 	/* copy pvclock gtod data */
1089 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1090 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1091 	vdata->clock.mask		= tk->tkr_mono.mask;
1092 	vdata->clock.mult		= tk->tkr_mono.mult;
1093 	vdata->clock.shift		= tk->tkr_mono.shift;
1094 
1095 	vdata->boot_ns			= boot_ns;
1096 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1097 
1098 	write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101 
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104 	/*
1105 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106 	 * vcpu_enter_guest.  This function is only called from
1107 	 * the physical CPU that is running vcpu.
1108 	 */
1109 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111 
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114 	int version;
1115 	int r;
1116 	struct pvclock_wall_clock wc;
1117 	struct timespec boot;
1118 
1119 	if (!wall_clock)
1120 		return;
1121 
1122 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123 	if (r)
1124 		return;
1125 
1126 	if (version & 1)
1127 		++version;  /* first time write, random junk */
1128 
1129 	++version;
1130 
1131 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132 
1133 	/*
1134 	 * The guest calculates current wall clock time by adding
1135 	 * system time (updated by kvm_guest_time_update below) to the
1136 	 * wall clock specified here.  guest system time equals host
1137 	 * system time for us, thus we must fill in host boot time here.
1138 	 */
1139 	getboottime(&boot);
1140 
1141 	if (kvm->arch.kvmclock_offset) {
1142 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143 		boot = timespec_sub(boot, ts);
1144 	}
1145 	wc.sec = boot.tv_sec;
1146 	wc.nsec = boot.tv_nsec;
1147 	wc.version = version;
1148 
1149 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150 
1151 	version++;
1152 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154 
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157 	uint32_t quotient, remainder;
1158 
1159 	/* Don't try to replace with do_div(), this one calculates
1160 	 * "(dividend << 32) / divisor" */
1161 	__asm__ ( "divl %4"
1162 		  : "=a" (quotient), "=d" (remainder)
1163 		  : "0" (0), "1" (dividend), "r" (divisor) );
1164 	return quotient;
1165 }
1166 
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168 			       s8 *pshift, u32 *pmultiplier)
1169 {
1170 	uint64_t scaled64;
1171 	int32_t  shift = 0;
1172 	uint64_t tps64;
1173 	uint32_t tps32;
1174 
1175 	tps64 = base_khz * 1000LL;
1176 	scaled64 = scaled_khz * 1000LL;
1177 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178 		tps64 >>= 1;
1179 		shift--;
1180 	}
1181 
1182 	tps32 = (uint32_t)tps64;
1183 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185 			scaled64 >>= 1;
1186 		else
1187 			tps32 <<= 1;
1188 		shift++;
1189 	}
1190 
1191 	*pshift = shift;
1192 	*pmultiplier = div_frac(scaled64, tps32);
1193 
1194 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197 
1198 static inline u64 get_kernel_ns(void)
1199 {
1200 	return ktime_get_boot_ns();
1201 }
1202 
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206 
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209 
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213 				   vcpu->arch.virtual_tsc_shift);
1214 }
1215 
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218 	u64 v = (u64)khz * (1000000 + ppm);
1219 	do_div(v, 1000000);
1220 	return v;
1221 }
1222 
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225 	u32 thresh_lo, thresh_hi;
1226 	int use_scaling = 0;
1227 
1228 	/* tsc_khz can be zero if TSC calibration fails */
1229 	if (this_tsc_khz == 0)
1230 		return;
1231 
1232 	/* Compute a scale to convert nanoseconds in TSC cycles */
1233 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234 			   &vcpu->arch.virtual_tsc_shift,
1235 			   &vcpu->arch.virtual_tsc_mult);
1236 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237 
1238 	/*
1239 	 * Compute the variation in TSC rate which is acceptable
1240 	 * within the range of tolerance and decide if the
1241 	 * rate being applied is within that bounds of the hardware
1242 	 * rate.  If so, no scaling or compensation need be done.
1243 	 */
1244 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248 		use_scaling = 1;
1249 	}
1250 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252 
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256 				      vcpu->arch.virtual_tsc_mult,
1257 				      vcpu->arch.virtual_tsc_shift);
1258 	tsc += vcpu->arch.this_tsc_write;
1259 	return tsc;
1260 }
1261 
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265 	bool vcpus_matched;
1266 	struct kvm_arch *ka = &vcpu->kvm->arch;
1267 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268 
1269 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270 			 atomic_read(&vcpu->kvm->online_vcpus));
1271 
1272 	/*
1273 	 * Once the masterclock is enabled, always perform request in
1274 	 * order to update it.
1275 	 *
1276 	 * In order to enable masterclock, the host clocksource must be TSC
1277 	 * and the vcpus need to have matched TSCs.  When that happens,
1278 	 * perform request to enable masterclock.
1279 	 */
1280 	if (ka->use_master_clock ||
1281 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283 
1284 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285 			    atomic_read(&vcpu->kvm->online_vcpus),
1286 		            ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289 
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295 
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298 	struct kvm *kvm = vcpu->kvm;
1299 	u64 offset, ns, elapsed;
1300 	unsigned long flags;
1301 	s64 usdiff;
1302 	bool matched;
1303 	bool already_matched;
1304 	u64 data = msr->data;
1305 
1306 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308 	ns = get_kernel_ns();
1309 	elapsed = ns - kvm->arch.last_tsc_nsec;
1310 
1311 	if (vcpu->arch.virtual_tsc_khz) {
1312 		int faulted = 0;
1313 
1314 		/* n.b - signed multiplication and division required */
1315 		usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319 		/* do_div() only does unsigned */
1320 		asm("1: idivl %[divisor]\n"
1321 		    "2: xor %%edx, %%edx\n"
1322 		    "   movl $0, %[faulted]\n"
1323 		    "3:\n"
1324 		    ".section .fixup,\"ax\"\n"
1325 		    "4: movl $1, %[faulted]\n"
1326 		    "   jmp  3b\n"
1327 		    ".previous\n"
1328 
1329 		_ASM_EXTABLE(1b, 4b)
1330 
1331 		: "=A"(usdiff), [faulted] "=r" (faulted)
1332 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333 
1334 #endif
1335 		do_div(elapsed, 1000);
1336 		usdiff -= elapsed;
1337 		if (usdiff < 0)
1338 			usdiff = -usdiff;
1339 
1340 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1341 		if (faulted)
1342 			usdiff = USEC_PER_SEC;
1343 	} else
1344 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345 
1346 	/*
1347 	 * Special case: TSC write with a small delta (1 second) of virtual
1348 	 * cycle time against real time is interpreted as an attempt to
1349 	 * synchronize the CPU.
1350          *
1351 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1352 	 * TSC, we add elapsed time in this computation.  We could let the
1353 	 * compensation code attempt to catch up if we fall behind, but
1354 	 * it's better to try to match offsets from the beginning.
1355          */
1356 	if (usdiff < USEC_PER_SEC &&
1357 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358 		if (!check_tsc_unstable()) {
1359 			offset = kvm->arch.cur_tsc_offset;
1360 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1361 		} else {
1362 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1363 			data += delta;
1364 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366 		}
1367 		matched = true;
1368 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369 	} else {
1370 		/*
1371 		 * We split periods of matched TSC writes into generations.
1372 		 * For each generation, we track the original measured
1373 		 * nanosecond time, offset, and write, so if TSCs are in
1374 		 * sync, we can match exact offset, and if not, we can match
1375 		 * exact software computation in compute_guest_tsc()
1376 		 *
1377 		 * These values are tracked in kvm->arch.cur_xxx variables.
1378 		 */
1379 		kvm->arch.cur_tsc_generation++;
1380 		kvm->arch.cur_tsc_nsec = ns;
1381 		kvm->arch.cur_tsc_write = data;
1382 		kvm->arch.cur_tsc_offset = offset;
1383 		matched = false;
1384 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385 			 kvm->arch.cur_tsc_generation, data);
1386 	}
1387 
1388 	/*
1389 	 * We also track th most recent recorded KHZ, write and time to
1390 	 * allow the matching interval to be extended at each write.
1391 	 */
1392 	kvm->arch.last_tsc_nsec = ns;
1393 	kvm->arch.last_tsc_write = data;
1394 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395 
1396 	vcpu->arch.last_guest_tsc = data;
1397 
1398 	/* Keep track of which generation this VCPU has synchronized to */
1399 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402 
1403 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404 		update_ia32_tsc_adjust_msr(vcpu, offset);
1405 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407 
1408 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409 	if (!matched) {
1410 		kvm->arch.nr_vcpus_matched_tsc = 0;
1411 	} else if (!already_matched) {
1412 		kvm->arch.nr_vcpus_matched_tsc++;
1413 	}
1414 
1415 	kvm_track_tsc_matching(vcpu);
1416 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418 
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420 
1421 #ifdef CONFIG_X86_64
1422 
1423 static cycle_t read_tsc(void)
1424 {
1425 	cycle_t ret;
1426 	u64 last;
1427 
1428 	/*
1429 	 * Empirically, a fence (of type that depends on the CPU)
1430 	 * before rdtsc is enough to ensure that rdtsc is ordered
1431 	 * with respect to loads.  The various CPU manuals are unclear
1432 	 * as to whether rdtsc can be reordered with later loads,
1433 	 * but no one has ever seen it happen.
1434 	 */
1435 	rdtsc_barrier();
1436 	ret = (cycle_t)vget_cycles();
1437 
1438 	last = pvclock_gtod_data.clock.cycle_last;
1439 
1440 	if (likely(ret >= last))
1441 		return ret;
1442 
1443 	/*
1444 	 * GCC likes to generate cmov here, but this branch is extremely
1445 	 * predictable (it's just a funciton of time and the likely is
1446 	 * very likely) and there's a data dependence, so force GCC
1447 	 * to generate a branch instead.  I don't barrier() because
1448 	 * we don't actually need a barrier, and if this function
1449 	 * ever gets inlined it will generate worse code.
1450 	 */
1451 	asm volatile ("");
1452 	return last;
1453 }
1454 
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457 	long v;
1458 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459 
1460 	*cycle_now = read_tsc();
1461 
1462 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463 	return v * gtod->clock.mult;
1464 }
1465 
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469 	unsigned long seq;
1470 	int mode;
1471 	u64 ns;
1472 
1473 	do {
1474 		seq = read_seqcount_begin(&gtod->seq);
1475 		mode = gtod->clock.vclock_mode;
1476 		ns = gtod->nsec_base;
1477 		ns += vgettsc(cycle_now);
1478 		ns >>= gtod->clock.shift;
1479 		ns += gtod->boot_ns;
1480 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481 	*t = ns;
1482 
1483 	return mode;
1484 }
1485 
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489 	/* checked again under seqlock below */
1490 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491 		return false;
1492 
1493 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496 
1497 /*
1498  *
1499  * Assuming a stable TSC across physical CPUS, and a stable TSC
1500  * across virtual CPUs, the following condition is possible.
1501  * Each numbered line represents an event visible to both
1502  * CPUs at the next numbered event.
1503  *
1504  * "timespecX" represents host monotonic time. "tscX" represents
1505  * RDTSC value.
1506  *
1507  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1508  *
1509  * 1.  read timespec0,tsc0
1510  * 2.					| timespec1 = timespec0 + N
1511  * 					| tsc1 = tsc0 + M
1512  * 3. transition to guest		| transition to guest
1513  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1515  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516  *
1517  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518  *
1519  * 	- ret0 < ret1
1520  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521  *		...
1522  *	- 0 < N - M => M < N
1523  *
1524  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525  * always the case (the difference between two distinct xtime instances
1526  * might be smaller then the difference between corresponding TSC reads,
1527  * when updating guest vcpus pvclock areas).
1528  *
1529  * To avoid that problem, do not allow visibility of distinct
1530  * system_timestamp/tsc_timestamp values simultaneously: use a master
1531  * copy of host monotonic time values. Update that master copy
1532  * in lockstep.
1533  *
1534  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535  *
1536  */
1537 
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541 	struct kvm_arch *ka = &kvm->arch;
1542 	int vclock_mode;
1543 	bool host_tsc_clocksource, vcpus_matched;
1544 
1545 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546 			atomic_read(&kvm->online_vcpus));
1547 
1548 	/*
1549 	 * If the host uses TSC clock, then passthrough TSC as stable
1550 	 * to the guest.
1551 	 */
1552 	host_tsc_clocksource = kvm_get_time_and_clockread(
1553 					&ka->master_kernel_ns,
1554 					&ka->master_cycle_now);
1555 
1556 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557 				&& !backwards_tsc_observed
1558 				&& !ka->boot_vcpu_runs_old_kvmclock;
1559 
1560 	if (ka->use_master_clock)
1561 		atomic_set(&kvm_guest_has_master_clock, 1);
1562 
1563 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565 					vcpus_matched);
1566 #endif
1567 }
1568 
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572 	int i;
1573 	struct kvm_vcpu *vcpu;
1574 	struct kvm_arch *ka = &kvm->arch;
1575 
1576 	spin_lock(&ka->pvclock_gtod_sync_lock);
1577 	kvm_make_mclock_inprogress_request(kvm);
1578 	/* no guest entries from this point */
1579 	pvclock_update_vm_gtod_copy(kvm);
1580 
1581 	kvm_for_each_vcpu(i, vcpu, kvm)
1582 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583 
1584 	/* guest entries allowed */
1585 	kvm_for_each_vcpu(i, vcpu, kvm)
1586 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587 
1588 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591 
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594 	unsigned long flags, this_tsc_khz;
1595 	struct kvm_vcpu_arch *vcpu = &v->arch;
1596 	struct kvm_arch *ka = &v->kvm->arch;
1597 	s64 kernel_ns;
1598 	u64 tsc_timestamp, host_tsc;
1599 	struct pvclock_vcpu_time_info guest_hv_clock;
1600 	u8 pvclock_flags;
1601 	bool use_master_clock;
1602 
1603 	kernel_ns = 0;
1604 	host_tsc = 0;
1605 
1606 	/*
1607 	 * If the host uses TSC clock, then passthrough TSC as stable
1608 	 * to the guest.
1609 	 */
1610 	spin_lock(&ka->pvclock_gtod_sync_lock);
1611 	use_master_clock = ka->use_master_clock;
1612 	if (use_master_clock) {
1613 		host_tsc = ka->master_cycle_now;
1614 		kernel_ns = ka->master_kernel_ns;
1615 	}
1616 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1617 
1618 	/* Keep irq disabled to prevent changes to the clock */
1619 	local_irq_save(flags);
1620 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621 	if (unlikely(this_tsc_khz == 0)) {
1622 		local_irq_restore(flags);
1623 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624 		return 1;
1625 	}
1626 	if (!use_master_clock) {
1627 		host_tsc = native_read_tsc();
1628 		kernel_ns = get_kernel_ns();
1629 	}
1630 
1631 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632 
1633 	/*
1634 	 * We may have to catch up the TSC to match elapsed wall clock
1635 	 * time for two reasons, even if kvmclock is used.
1636 	 *   1) CPU could have been running below the maximum TSC rate
1637 	 *   2) Broken TSC compensation resets the base at each VCPU
1638 	 *      entry to avoid unknown leaps of TSC even when running
1639 	 *      again on the same CPU.  This may cause apparent elapsed
1640 	 *      time to disappear, and the guest to stand still or run
1641 	 *	very slowly.
1642 	 */
1643 	if (vcpu->tsc_catchup) {
1644 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1645 		if (tsc > tsc_timestamp) {
1646 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647 			tsc_timestamp = tsc;
1648 		}
1649 	}
1650 
1651 	local_irq_restore(flags);
1652 
1653 	if (!vcpu->pv_time_enabled)
1654 		return 0;
1655 
1656 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658 				   &vcpu->hv_clock.tsc_shift,
1659 				   &vcpu->hv_clock.tsc_to_system_mul);
1660 		vcpu->hw_tsc_khz = this_tsc_khz;
1661 	}
1662 
1663 	/* With all the info we got, fill in the values */
1664 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666 	vcpu->last_guest_tsc = tsc_timestamp;
1667 
1668 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669 		&guest_hv_clock, sizeof(guest_hv_clock))))
1670 		return 0;
1671 
1672 	/* This VCPU is paused, but it's legal for a guest to read another
1673 	 * VCPU's kvmclock, so we really have to follow the specification where
1674 	 * it says that version is odd if data is being modified, and even after
1675 	 * it is consistent.
1676 	 *
1677 	 * Version field updates must be kept separate.  This is because
1678 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1679 	 * writes within a string instruction are weakly ordered.  So there
1680 	 * are three writes overall.
1681 	 *
1682 	 * As a small optimization, only write the version field in the first
1683 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1684 	 * version field is the first in the struct.
1685 	 */
1686 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1687 
1688 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1689 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1690 				&vcpu->hv_clock,
1691 				sizeof(vcpu->hv_clock.version));
1692 
1693 	smp_wmb();
1694 
1695 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1696 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1697 
1698 	if (vcpu->pvclock_set_guest_stopped_request) {
1699 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1700 		vcpu->pvclock_set_guest_stopped_request = false;
1701 	}
1702 
1703 	/* If the host uses TSC clocksource, then it is stable */
1704 	if (use_master_clock)
1705 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1706 
1707 	vcpu->hv_clock.flags = pvclock_flags;
1708 
1709 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1710 
1711 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712 				&vcpu->hv_clock,
1713 				sizeof(vcpu->hv_clock));
1714 
1715 	smp_wmb();
1716 
1717 	vcpu->hv_clock.version++;
1718 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1719 				&vcpu->hv_clock,
1720 				sizeof(vcpu->hv_clock.version));
1721 	return 0;
1722 }
1723 
1724 /*
1725  * kvmclock updates which are isolated to a given vcpu, such as
1726  * vcpu->cpu migration, should not allow system_timestamp from
1727  * the rest of the vcpus to remain static. Otherwise ntp frequency
1728  * correction applies to one vcpu's system_timestamp but not
1729  * the others.
1730  *
1731  * So in those cases, request a kvmclock update for all vcpus.
1732  * We need to rate-limit these requests though, as they can
1733  * considerably slow guests that have a large number of vcpus.
1734  * The time for a remote vcpu to update its kvmclock is bound
1735  * by the delay we use to rate-limit the updates.
1736  */
1737 
1738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1739 
1740 static void kvmclock_update_fn(struct work_struct *work)
1741 {
1742 	int i;
1743 	struct delayed_work *dwork = to_delayed_work(work);
1744 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1745 					   kvmclock_update_work);
1746 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1747 	struct kvm_vcpu *vcpu;
1748 
1749 	kvm_for_each_vcpu(i, vcpu, kvm) {
1750 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1751 		kvm_vcpu_kick(vcpu);
1752 	}
1753 }
1754 
1755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1756 {
1757 	struct kvm *kvm = v->kvm;
1758 
1759 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1760 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1761 					KVMCLOCK_UPDATE_DELAY);
1762 }
1763 
1764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1765 
1766 static void kvmclock_sync_fn(struct work_struct *work)
1767 {
1768 	struct delayed_work *dwork = to_delayed_work(work);
1769 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1770 					   kvmclock_sync_work);
1771 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1772 
1773 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1774 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1775 					KVMCLOCK_SYNC_PERIOD);
1776 }
1777 
1778 static bool msr_mtrr_valid(unsigned msr)
1779 {
1780 	switch (msr) {
1781 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1782 	case MSR_MTRRfix64K_00000:
1783 	case MSR_MTRRfix16K_80000:
1784 	case MSR_MTRRfix16K_A0000:
1785 	case MSR_MTRRfix4K_C0000:
1786 	case MSR_MTRRfix4K_C8000:
1787 	case MSR_MTRRfix4K_D0000:
1788 	case MSR_MTRRfix4K_D8000:
1789 	case MSR_MTRRfix4K_E0000:
1790 	case MSR_MTRRfix4K_E8000:
1791 	case MSR_MTRRfix4K_F0000:
1792 	case MSR_MTRRfix4K_F8000:
1793 	case MSR_MTRRdefType:
1794 	case MSR_IA32_CR_PAT:
1795 		return true;
1796 	case 0x2f8:
1797 		return true;
1798 	}
1799 	return false;
1800 }
1801 
1802 static bool valid_pat_type(unsigned t)
1803 {
1804 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1805 }
1806 
1807 static bool valid_mtrr_type(unsigned t)
1808 {
1809 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1810 }
1811 
1812 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1813 {
1814 	int i;
1815 	u64 mask;
1816 
1817 	if (!msr_mtrr_valid(msr))
1818 		return false;
1819 
1820 	if (msr == MSR_IA32_CR_PAT) {
1821 		for (i = 0; i < 8; i++)
1822 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1823 				return false;
1824 		return true;
1825 	} else if (msr == MSR_MTRRdefType) {
1826 		if (data & ~0xcff)
1827 			return false;
1828 		return valid_mtrr_type(data & 0xff);
1829 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1830 		for (i = 0; i < 8 ; i++)
1831 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1832 				return false;
1833 		return true;
1834 	}
1835 
1836 	/* variable MTRRs */
1837 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1838 
1839 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1840 	if ((msr & 1) == 0) {
1841 		/* MTRR base */
1842 		if (!valid_mtrr_type(data & 0xff))
1843 			return false;
1844 		mask |= 0xf00;
1845 	} else
1846 		/* MTRR mask */
1847 		mask |= 0x7ff;
1848 	if (data & mask) {
1849 		kvm_inject_gp(vcpu, 0);
1850 		return false;
1851 	}
1852 
1853 	return true;
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1856 
1857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1858 {
1859 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1860 
1861 	if (!kvm_mtrr_valid(vcpu, msr, data))
1862 		return 1;
1863 
1864 	if (msr == MSR_MTRRdefType) {
1865 		vcpu->arch.mtrr_state.def_type = data;
1866 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1867 	} else if (msr == MSR_MTRRfix64K_00000)
1868 		p[0] = data;
1869 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1870 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1871 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1872 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1873 	else if (msr == MSR_IA32_CR_PAT)
1874 		vcpu->arch.pat = data;
1875 	else {	/* Variable MTRRs */
1876 		int idx, is_mtrr_mask;
1877 		u64 *pt;
1878 
1879 		idx = (msr - 0x200) / 2;
1880 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1881 		if (!is_mtrr_mask)
1882 			pt =
1883 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1884 		else
1885 			pt =
1886 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1887 		*pt = data;
1888 	}
1889 
1890 	kvm_mmu_reset_context(vcpu);
1891 	return 0;
1892 }
1893 
1894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1895 {
1896 	u64 mcg_cap = vcpu->arch.mcg_cap;
1897 	unsigned bank_num = mcg_cap & 0xff;
1898 
1899 	switch (msr) {
1900 	case MSR_IA32_MCG_STATUS:
1901 		vcpu->arch.mcg_status = data;
1902 		break;
1903 	case MSR_IA32_MCG_CTL:
1904 		if (!(mcg_cap & MCG_CTL_P))
1905 			return 1;
1906 		if (data != 0 && data != ~(u64)0)
1907 			return -1;
1908 		vcpu->arch.mcg_ctl = data;
1909 		break;
1910 	default:
1911 		if (msr >= MSR_IA32_MC0_CTL &&
1912 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1913 			u32 offset = msr - MSR_IA32_MC0_CTL;
1914 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1915 			 * some Linux kernels though clear bit 10 in bank 4 to
1916 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1917 			 * this to avoid an uncatched #GP in the guest
1918 			 */
1919 			if ((offset & 0x3) == 0 &&
1920 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1921 				return -1;
1922 			vcpu->arch.mce_banks[offset] = data;
1923 			break;
1924 		}
1925 		return 1;
1926 	}
1927 	return 0;
1928 }
1929 
1930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1931 {
1932 	struct kvm *kvm = vcpu->kvm;
1933 	int lm = is_long_mode(vcpu);
1934 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1935 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1936 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1937 		: kvm->arch.xen_hvm_config.blob_size_32;
1938 	u32 page_num = data & ~PAGE_MASK;
1939 	u64 page_addr = data & PAGE_MASK;
1940 	u8 *page;
1941 	int r;
1942 
1943 	r = -E2BIG;
1944 	if (page_num >= blob_size)
1945 		goto out;
1946 	r = -ENOMEM;
1947 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1948 	if (IS_ERR(page)) {
1949 		r = PTR_ERR(page);
1950 		goto out;
1951 	}
1952 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1953 		goto out_free;
1954 	r = 0;
1955 out_free:
1956 	kfree(page);
1957 out:
1958 	return r;
1959 }
1960 
1961 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1962 {
1963 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1964 }
1965 
1966 static bool kvm_hv_msr_partition_wide(u32 msr)
1967 {
1968 	bool r = false;
1969 	switch (msr) {
1970 	case HV_X64_MSR_GUEST_OS_ID:
1971 	case HV_X64_MSR_HYPERCALL:
1972 	case HV_X64_MSR_REFERENCE_TSC:
1973 	case HV_X64_MSR_TIME_REF_COUNT:
1974 		r = true;
1975 		break;
1976 	}
1977 
1978 	return r;
1979 }
1980 
1981 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1982 {
1983 	struct kvm *kvm = vcpu->kvm;
1984 
1985 	switch (msr) {
1986 	case HV_X64_MSR_GUEST_OS_ID:
1987 		kvm->arch.hv_guest_os_id = data;
1988 		/* setting guest os id to zero disables hypercall page */
1989 		if (!kvm->arch.hv_guest_os_id)
1990 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1991 		break;
1992 	case HV_X64_MSR_HYPERCALL: {
1993 		u64 gfn;
1994 		unsigned long addr;
1995 		u8 instructions[4];
1996 
1997 		/* if guest os id is not set hypercall should remain disabled */
1998 		if (!kvm->arch.hv_guest_os_id)
1999 			break;
2000 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2001 			kvm->arch.hv_hypercall = data;
2002 			break;
2003 		}
2004 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2005 		addr = gfn_to_hva(kvm, gfn);
2006 		if (kvm_is_error_hva(addr))
2007 			return 1;
2008 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
2009 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
2010 		if (__copy_to_user((void __user *)addr, instructions, 4))
2011 			return 1;
2012 		kvm->arch.hv_hypercall = data;
2013 		mark_page_dirty(kvm, gfn);
2014 		break;
2015 	}
2016 	case HV_X64_MSR_REFERENCE_TSC: {
2017 		u64 gfn;
2018 		HV_REFERENCE_TSC_PAGE tsc_ref;
2019 		memset(&tsc_ref, 0, sizeof(tsc_ref));
2020 		kvm->arch.hv_tsc_page = data;
2021 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2022 			break;
2023 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2024 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2025 			&tsc_ref, sizeof(tsc_ref)))
2026 			return 1;
2027 		mark_page_dirty(kvm, gfn);
2028 		break;
2029 	}
2030 	default:
2031 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2032 			    "data 0x%llx\n", msr, data);
2033 		return 1;
2034 	}
2035 	return 0;
2036 }
2037 
2038 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2039 {
2040 	switch (msr) {
2041 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
2042 		u64 gfn;
2043 		unsigned long addr;
2044 
2045 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2046 			vcpu->arch.hv_vapic = data;
2047 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2048 				return 1;
2049 			break;
2050 		}
2051 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2052 		addr = gfn_to_hva(vcpu->kvm, gfn);
2053 		if (kvm_is_error_hva(addr))
2054 			return 1;
2055 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2056 			return 1;
2057 		vcpu->arch.hv_vapic = data;
2058 		mark_page_dirty(vcpu->kvm, gfn);
2059 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2060 			return 1;
2061 		break;
2062 	}
2063 	case HV_X64_MSR_EOI:
2064 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2065 	case HV_X64_MSR_ICR:
2066 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2067 	case HV_X64_MSR_TPR:
2068 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2069 	default:
2070 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2071 			    "data 0x%llx\n", msr, data);
2072 		return 1;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 {
2080 	gpa_t gpa = data & ~0x3f;
2081 
2082 	/* Bits 2:5 are reserved, Should be zero */
2083 	if (data & 0x3c)
2084 		return 1;
2085 
2086 	vcpu->arch.apf.msr_val = data;
2087 
2088 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2089 		kvm_clear_async_pf_completion_queue(vcpu);
2090 		kvm_async_pf_hash_reset(vcpu);
2091 		return 0;
2092 	}
2093 
2094 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2095 					sizeof(u32)))
2096 		return 1;
2097 
2098 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2099 	kvm_async_pf_wakeup_all(vcpu);
2100 	return 0;
2101 }
2102 
2103 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 {
2105 	vcpu->arch.pv_time_enabled = false;
2106 }
2107 
2108 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2109 {
2110 	u64 delta;
2111 
2112 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2113 		return;
2114 
2115 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2116 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117 	vcpu->arch.st.accum_steal = delta;
2118 }
2119 
2120 static void record_steal_time(struct kvm_vcpu *vcpu)
2121 {
2122 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2123 		return;
2124 
2125 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2127 		return;
2128 
2129 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2130 	vcpu->arch.st.steal.version += 2;
2131 	vcpu->arch.st.accum_steal = 0;
2132 
2133 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2134 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2135 }
2136 
2137 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2138 {
2139 	bool pr = false;
2140 	u32 msr = msr_info->index;
2141 	u64 data = msr_info->data;
2142 
2143 	switch (msr) {
2144 	case MSR_AMD64_NB_CFG:
2145 	case MSR_IA32_UCODE_REV:
2146 	case MSR_IA32_UCODE_WRITE:
2147 	case MSR_VM_HSAVE_PA:
2148 	case MSR_AMD64_PATCH_LOADER:
2149 	case MSR_AMD64_BU_CFG2:
2150 		break;
2151 
2152 	case MSR_EFER:
2153 		return set_efer(vcpu, data);
2154 	case MSR_K7_HWCR:
2155 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2156 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2157 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2158 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2159 		if (data != 0) {
2160 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2161 				    data);
2162 			return 1;
2163 		}
2164 		break;
2165 	case MSR_FAM10H_MMIO_CONF_BASE:
2166 		if (data != 0) {
2167 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2168 				    "0x%llx\n", data);
2169 			return 1;
2170 		}
2171 		break;
2172 	case MSR_IA32_DEBUGCTLMSR:
2173 		if (!data) {
2174 			/* We support the non-activated case already */
2175 			break;
2176 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2177 			/* Values other than LBR and BTF are vendor-specific,
2178 			   thus reserved and should throw a #GP */
2179 			return 1;
2180 		}
2181 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2182 			    __func__, data);
2183 		break;
2184 	case 0x200 ... 0x2ff:
2185 		return set_msr_mtrr(vcpu, msr, data);
2186 	case MSR_IA32_APICBASE:
2187 		return kvm_set_apic_base(vcpu, msr_info);
2188 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2189 		return kvm_x2apic_msr_write(vcpu, msr, data);
2190 	case MSR_IA32_TSCDEADLINE:
2191 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2192 		break;
2193 	case MSR_IA32_TSC_ADJUST:
2194 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2195 			if (!msr_info->host_initiated) {
2196 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2197 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2198 			}
2199 			vcpu->arch.ia32_tsc_adjust_msr = data;
2200 		}
2201 		break;
2202 	case MSR_IA32_MISC_ENABLE:
2203 		vcpu->arch.ia32_misc_enable_msr = data;
2204 		break;
2205 	case MSR_KVM_WALL_CLOCK_NEW:
2206 	case MSR_KVM_WALL_CLOCK:
2207 		vcpu->kvm->arch.wall_clock = data;
2208 		kvm_write_wall_clock(vcpu->kvm, data);
2209 		break;
2210 	case MSR_KVM_SYSTEM_TIME_NEW:
2211 	case MSR_KVM_SYSTEM_TIME: {
2212 		u64 gpa_offset;
2213 		struct kvm_arch *ka = &vcpu->kvm->arch;
2214 
2215 		kvmclock_reset(vcpu);
2216 
2217 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2218 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2219 
2220 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2221 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2222 					&vcpu->requests);
2223 
2224 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2225 		}
2226 
2227 		vcpu->arch.time = data;
2228 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2229 
2230 		/* we verify if the enable bit is set... */
2231 		if (!(data & 1))
2232 			break;
2233 
2234 		gpa_offset = data & ~(PAGE_MASK | 1);
2235 
2236 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2237 		     &vcpu->arch.pv_time, data & ~1ULL,
2238 		     sizeof(struct pvclock_vcpu_time_info)))
2239 			vcpu->arch.pv_time_enabled = false;
2240 		else
2241 			vcpu->arch.pv_time_enabled = true;
2242 
2243 		break;
2244 	}
2245 	case MSR_KVM_ASYNC_PF_EN:
2246 		if (kvm_pv_enable_async_pf(vcpu, data))
2247 			return 1;
2248 		break;
2249 	case MSR_KVM_STEAL_TIME:
2250 
2251 		if (unlikely(!sched_info_on()))
2252 			return 1;
2253 
2254 		if (data & KVM_STEAL_RESERVED_MASK)
2255 			return 1;
2256 
2257 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2258 						data & KVM_STEAL_VALID_BITS,
2259 						sizeof(struct kvm_steal_time)))
2260 			return 1;
2261 
2262 		vcpu->arch.st.msr_val = data;
2263 
2264 		if (!(data & KVM_MSR_ENABLED))
2265 			break;
2266 
2267 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2268 
2269 		preempt_disable();
2270 		accumulate_steal_time(vcpu);
2271 		preempt_enable();
2272 
2273 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2274 
2275 		break;
2276 	case MSR_KVM_PV_EOI_EN:
2277 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2278 			return 1;
2279 		break;
2280 
2281 	case MSR_IA32_MCG_CTL:
2282 	case MSR_IA32_MCG_STATUS:
2283 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2284 		return set_msr_mce(vcpu, msr, data);
2285 
2286 	/* Performance counters are not protected by a CPUID bit,
2287 	 * so we should check all of them in the generic path for the sake of
2288 	 * cross vendor migration.
2289 	 * Writing a zero into the event select MSRs disables them,
2290 	 * which we perfectly emulate ;-). Any other value should be at least
2291 	 * reported, some guests depend on them.
2292 	 */
2293 	case MSR_K7_EVNTSEL0:
2294 	case MSR_K7_EVNTSEL1:
2295 	case MSR_K7_EVNTSEL2:
2296 	case MSR_K7_EVNTSEL3:
2297 		if (data != 0)
2298 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2299 				    "0x%x data 0x%llx\n", msr, data);
2300 		break;
2301 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2302 	 * so we ignore writes to make it happy.
2303 	 */
2304 	case MSR_K7_PERFCTR0:
2305 	case MSR_K7_PERFCTR1:
2306 	case MSR_K7_PERFCTR2:
2307 	case MSR_K7_PERFCTR3:
2308 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2309 			    "0x%x data 0x%llx\n", msr, data);
2310 		break;
2311 	case MSR_P6_PERFCTR0:
2312 	case MSR_P6_PERFCTR1:
2313 		pr = true;
2314 	case MSR_P6_EVNTSEL0:
2315 	case MSR_P6_EVNTSEL1:
2316 		if (kvm_pmu_msr(vcpu, msr))
2317 			return kvm_pmu_set_msr(vcpu, msr_info);
2318 
2319 		if (pr || data != 0)
2320 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2321 				    "0x%x data 0x%llx\n", msr, data);
2322 		break;
2323 	case MSR_K7_CLK_CTL:
2324 		/*
2325 		 * Ignore all writes to this no longer documented MSR.
2326 		 * Writes are only relevant for old K7 processors,
2327 		 * all pre-dating SVM, but a recommended workaround from
2328 		 * AMD for these chips. It is possible to specify the
2329 		 * affected processor models on the command line, hence
2330 		 * the need to ignore the workaround.
2331 		 */
2332 		break;
2333 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2334 		if (kvm_hv_msr_partition_wide(msr)) {
2335 			int r;
2336 			mutex_lock(&vcpu->kvm->lock);
2337 			r = set_msr_hyperv_pw(vcpu, msr, data);
2338 			mutex_unlock(&vcpu->kvm->lock);
2339 			return r;
2340 		} else
2341 			return set_msr_hyperv(vcpu, msr, data);
2342 		break;
2343 	case MSR_IA32_BBL_CR_CTL3:
2344 		/* Drop writes to this legacy MSR -- see rdmsr
2345 		 * counterpart for further detail.
2346 		 */
2347 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2348 		break;
2349 	case MSR_AMD64_OSVW_ID_LENGTH:
2350 		if (!guest_cpuid_has_osvw(vcpu))
2351 			return 1;
2352 		vcpu->arch.osvw.length = data;
2353 		break;
2354 	case MSR_AMD64_OSVW_STATUS:
2355 		if (!guest_cpuid_has_osvw(vcpu))
2356 			return 1;
2357 		vcpu->arch.osvw.status = data;
2358 		break;
2359 	default:
2360 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2361 			return xen_hvm_config(vcpu, data);
2362 		if (kvm_pmu_msr(vcpu, msr))
2363 			return kvm_pmu_set_msr(vcpu, msr_info);
2364 		if (!ignore_msrs) {
2365 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2366 				    msr, data);
2367 			return 1;
2368 		} else {
2369 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2370 				    msr, data);
2371 			break;
2372 		}
2373 	}
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2377 
2378 
2379 /*
2380  * Reads an msr value (of 'msr_index') into 'pdata'.
2381  * Returns 0 on success, non-0 otherwise.
2382  * Assumes vcpu_load() was already called.
2383  */
2384 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2385 {
2386 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_msr);
2389 
2390 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2391 {
2392 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2393 
2394 	if (!msr_mtrr_valid(msr))
2395 		return 1;
2396 
2397 	if (msr == MSR_MTRRdefType)
2398 		*pdata = vcpu->arch.mtrr_state.def_type +
2399 			 (vcpu->arch.mtrr_state.enabled << 10);
2400 	else if (msr == MSR_MTRRfix64K_00000)
2401 		*pdata = p[0];
2402 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2403 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2404 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2405 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2406 	else if (msr == MSR_IA32_CR_PAT)
2407 		*pdata = vcpu->arch.pat;
2408 	else {	/* Variable MTRRs */
2409 		int idx, is_mtrr_mask;
2410 		u64 *pt;
2411 
2412 		idx = (msr - 0x200) / 2;
2413 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2414 		if (!is_mtrr_mask)
2415 			pt =
2416 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2417 		else
2418 			pt =
2419 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2420 		*pdata = *pt;
2421 	}
2422 
2423 	return 0;
2424 }
2425 
2426 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2427 {
2428 	u64 data;
2429 	u64 mcg_cap = vcpu->arch.mcg_cap;
2430 	unsigned bank_num = mcg_cap & 0xff;
2431 
2432 	switch (msr) {
2433 	case MSR_IA32_P5_MC_ADDR:
2434 	case MSR_IA32_P5_MC_TYPE:
2435 		data = 0;
2436 		break;
2437 	case MSR_IA32_MCG_CAP:
2438 		data = vcpu->arch.mcg_cap;
2439 		break;
2440 	case MSR_IA32_MCG_CTL:
2441 		if (!(mcg_cap & MCG_CTL_P))
2442 			return 1;
2443 		data = vcpu->arch.mcg_ctl;
2444 		break;
2445 	case MSR_IA32_MCG_STATUS:
2446 		data = vcpu->arch.mcg_status;
2447 		break;
2448 	default:
2449 		if (msr >= MSR_IA32_MC0_CTL &&
2450 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2451 			u32 offset = msr - MSR_IA32_MC0_CTL;
2452 			data = vcpu->arch.mce_banks[offset];
2453 			break;
2454 		}
2455 		return 1;
2456 	}
2457 	*pdata = data;
2458 	return 0;
2459 }
2460 
2461 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463 	u64 data = 0;
2464 	struct kvm *kvm = vcpu->kvm;
2465 
2466 	switch (msr) {
2467 	case HV_X64_MSR_GUEST_OS_ID:
2468 		data = kvm->arch.hv_guest_os_id;
2469 		break;
2470 	case HV_X64_MSR_HYPERCALL:
2471 		data = kvm->arch.hv_hypercall;
2472 		break;
2473 	case HV_X64_MSR_TIME_REF_COUNT: {
2474 		data =
2475 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2476 		break;
2477 	}
2478 	case HV_X64_MSR_REFERENCE_TSC:
2479 		data = kvm->arch.hv_tsc_page;
2480 		break;
2481 	default:
2482 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483 		return 1;
2484 	}
2485 
2486 	*pdata = data;
2487 	return 0;
2488 }
2489 
2490 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2491 {
2492 	u64 data = 0;
2493 
2494 	switch (msr) {
2495 	case HV_X64_MSR_VP_INDEX: {
2496 		int r;
2497 		struct kvm_vcpu *v;
2498 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2499 			if (v == vcpu) {
2500 				data = r;
2501 				break;
2502 			}
2503 		}
2504 		break;
2505 	}
2506 	case HV_X64_MSR_EOI:
2507 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2508 	case HV_X64_MSR_ICR:
2509 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2510 	case HV_X64_MSR_TPR:
2511 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2512 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2513 		data = vcpu->arch.hv_vapic;
2514 		break;
2515 	default:
2516 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2517 		return 1;
2518 	}
2519 	*pdata = data;
2520 	return 0;
2521 }
2522 
2523 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2524 {
2525 	u64 data;
2526 
2527 	switch (msr) {
2528 	case MSR_IA32_PLATFORM_ID:
2529 	case MSR_IA32_EBL_CR_POWERON:
2530 	case MSR_IA32_DEBUGCTLMSR:
2531 	case MSR_IA32_LASTBRANCHFROMIP:
2532 	case MSR_IA32_LASTBRANCHTOIP:
2533 	case MSR_IA32_LASTINTFROMIP:
2534 	case MSR_IA32_LASTINTTOIP:
2535 	case MSR_K8_SYSCFG:
2536 	case MSR_K7_HWCR:
2537 	case MSR_VM_HSAVE_PA:
2538 	case MSR_K7_EVNTSEL0:
2539 	case MSR_K7_EVNTSEL1:
2540 	case MSR_K7_EVNTSEL2:
2541 	case MSR_K7_EVNTSEL3:
2542 	case MSR_K7_PERFCTR0:
2543 	case MSR_K7_PERFCTR1:
2544 	case MSR_K7_PERFCTR2:
2545 	case MSR_K7_PERFCTR3:
2546 	case MSR_K8_INT_PENDING_MSG:
2547 	case MSR_AMD64_NB_CFG:
2548 	case MSR_FAM10H_MMIO_CONF_BASE:
2549 	case MSR_AMD64_BU_CFG2:
2550 		data = 0;
2551 		break;
2552 	case MSR_P6_PERFCTR0:
2553 	case MSR_P6_PERFCTR1:
2554 	case MSR_P6_EVNTSEL0:
2555 	case MSR_P6_EVNTSEL1:
2556 		if (kvm_pmu_msr(vcpu, msr))
2557 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2558 		data = 0;
2559 		break;
2560 	case MSR_IA32_UCODE_REV:
2561 		data = 0x100000000ULL;
2562 		break;
2563 	case MSR_MTRRcap:
2564 		data = 0x500 | KVM_NR_VAR_MTRR;
2565 		break;
2566 	case 0x200 ... 0x2ff:
2567 		return get_msr_mtrr(vcpu, msr, pdata);
2568 	case 0xcd: /* fsb frequency */
2569 		data = 3;
2570 		break;
2571 		/*
2572 		 * MSR_EBC_FREQUENCY_ID
2573 		 * Conservative value valid for even the basic CPU models.
2574 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2575 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2576 		 * and 266MHz for model 3, or 4. Set Core Clock
2577 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2578 		 * 31:24) even though these are only valid for CPU
2579 		 * models > 2, however guests may end up dividing or
2580 		 * multiplying by zero otherwise.
2581 		 */
2582 	case MSR_EBC_FREQUENCY_ID:
2583 		data = 1 << 24;
2584 		break;
2585 	case MSR_IA32_APICBASE:
2586 		data = kvm_get_apic_base(vcpu);
2587 		break;
2588 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2589 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2590 		break;
2591 	case MSR_IA32_TSCDEADLINE:
2592 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2593 		break;
2594 	case MSR_IA32_TSC_ADJUST:
2595 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2596 		break;
2597 	case MSR_IA32_MISC_ENABLE:
2598 		data = vcpu->arch.ia32_misc_enable_msr;
2599 		break;
2600 	case MSR_IA32_PERF_STATUS:
2601 		/* TSC increment by tick */
2602 		data = 1000ULL;
2603 		/* CPU multiplier */
2604 		data |= (((uint64_t)4ULL) << 40);
2605 		break;
2606 	case MSR_EFER:
2607 		data = vcpu->arch.efer;
2608 		break;
2609 	case MSR_KVM_WALL_CLOCK:
2610 	case MSR_KVM_WALL_CLOCK_NEW:
2611 		data = vcpu->kvm->arch.wall_clock;
2612 		break;
2613 	case MSR_KVM_SYSTEM_TIME:
2614 	case MSR_KVM_SYSTEM_TIME_NEW:
2615 		data = vcpu->arch.time;
2616 		break;
2617 	case MSR_KVM_ASYNC_PF_EN:
2618 		data = vcpu->arch.apf.msr_val;
2619 		break;
2620 	case MSR_KVM_STEAL_TIME:
2621 		data = vcpu->arch.st.msr_val;
2622 		break;
2623 	case MSR_KVM_PV_EOI_EN:
2624 		data = vcpu->arch.pv_eoi.msr_val;
2625 		break;
2626 	case MSR_IA32_P5_MC_ADDR:
2627 	case MSR_IA32_P5_MC_TYPE:
2628 	case MSR_IA32_MCG_CAP:
2629 	case MSR_IA32_MCG_CTL:
2630 	case MSR_IA32_MCG_STATUS:
2631 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2632 		return get_msr_mce(vcpu, msr, pdata);
2633 	case MSR_K7_CLK_CTL:
2634 		/*
2635 		 * Provide expected ramp-up count for K7. All other
2636 		 * are set to zero, indicating minimum divisors for
2637 		 * every field.
2638 		 *
2639 		 * This prevents guest kernels on AMD host with CPU
2640 		 * type 6, model 8 and higher from exploding due to
2641 		 * the rdmsr failing.
2642 		 */
2643 		data = 0x20000000;
2644 		break;
2645 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2646 		if (kvm_hv_msr_partition_wide(msr)) {
2647 			int r;
2648 			mutex_lock(&vcpu->kvm->lock);
2649 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2650 			mutex_unlock(&vcpu->kvm->lock);
2651 			return r;
2652 		} else
2653 			return get_msr_hyperv(vcpu, msr, pdata);
2654 		break;
2655 	case MSR_IA32_BBL_CR_CTL3:
2656 		/* This legacy MSR exists but isn't fully documented in current
2657 		 * silicon.  It is however accessed by winxp in very narrow
2658 		 * scenarios where it sets bit #19, itself documented as
2659 		 * a "reserved" bit.  Best effort attempt to source coherent
2660 		 * read data here should the balance of the register be
2661 		 * interpreted by the guest:
2662 		 *
2663 		 * L2 cache control register 3: 64GB range, 256KB size,
2664 		 * enabled, latency 0x1, configured
2665 		 */
2666 		data = 0xbe702111;
2667 		break;
2668 	case MSR_AMD64_OSVW_ID_LENGTH:
2669 		if (!guest_cpuid_has_osvw(vcpu))
2670 			return 1;
2671 		data = vcpu->arch.osvw.length;
2672 		break;
2673 	case MSR_AMD64_OSVW_STATUS:
2674 		if (!guest_cpuid_has_osvw(vcpu))
2675 			return 1;
2676 		data = vcpu->arch.osvw.status;
2677 		break;
2678 	default:
2679 		if (kvm_pmu_msr(vcpu, msr))
2680 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2681 		if (!ignore_msrs) {
2682 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2683 			return 1;
2684 		} else {
2685 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2686 			data = 0;
2687 		}
2688 		break;
2689 	}
2690 	*pdata = data;
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2694 
2695 /*
2696  * Read or write a bunch of msrs. All parameters are kernel addresses.
2697  *
2698  * @return number of msrs set successfully.
2699  */
2700 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2701 		    struct kvm_msr_entry *entries,
2702 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2703 				  unsigned index, u64 *data))
2704 {
2705 	int i, idx;
2706 
2707 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2708 	for (i = 0; i < msrs->nmsrs; ++i)
2709 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2710 			break;
2711 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712 
2713 	return i;
2714 }
2715 
2716 /*
2717  * Read or write a bunch of msrs. Parameters are user addresses.
2718  *
2719  * @return number of msrs set successfully.
2720  */
2721 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2722 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2723 				unsigned index, u64 *data),
2724 		  int writeback)
2725 {
2726 	struct kvm_msrs msrs;
2727 	struct kvm_msr_entry *entries;
2728 	int r, n;
2729 	unsigned size;
2730 
2731 	r = -EFAULT;
2732 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2733 		goto out;
2734 
2735 	r = -E2BIG;
2736 	if (msrs.nmsrs >= MAX_IO_MSRS)
2737 		goto out;
2738 
2739 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2740 	entries = memdup_user(user_msrs->entries, size);
2741 	if (IS_ERR(entries)) {
2742 		r = PTR_ERR(entries);
2743 		goto out;
2744 	}
2745 
2746 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2747 	if (r < 0)
2748 		goto out_free;
2749 
2750 	r = -EFAULT;
2751 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2752 		goto out_free;
2753 
2754 	r = n;
2755 
2756 out_free:
2757 	kfree(entries);
2758 out:
2759 	return r;
2760 }
2761 
2762 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2763 {
2764 	int r;
2765 
2766 	switch (ext) {
2767 	case KVM_CAP_IRQCHIP:
2768 	case KVM_CAP_HLT:
2769 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2770 	case KVM_CAP_SET_TSS_ADDR:
2771 	case KVM_CAP_EXT_CPUID:
2772 	case KVM_CAP_EXT_EMUL_CPUID:
2773 	case KVM_CAP_CLOCKSOURCE:
2774 	case KVM_CAP_PIT:
2775 	case KVM_CAP_NOP_IO_DELAY:
2776 	case KVM_CAP_MP_STATE:
2777 	case KVM_CAP_SYNC_MMU:
2778 	case KVM_CAP_USER_NMI:
2779 	case KVM_CAP_REINJECT_CONTROL:
2780 	case KVM_CAP_IRQ_INJECT_STATUS:
2781 	case KVM_CAP_IOEVENTFD:
2782 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2783 	case KVM_CAP_PIT2:
2784 	case KVM_CAP_PIT_STATE2:
2785 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2786 	case KVM_CAP_XEN_HVM:
2787 	case KVM_CAP_ADJUST_CLOCK:
2788 	case KVM_CAP_VCPU_EVENTS:
2789 	case KVM_CAP_HYPERV:
2790 	case KVM_CAP_HYPERV_VAPIC:
2791 	case KVM_CAP_HYPERV_SPIN:
2792 	case KVM_CAP_PCI_SEGMENT:
2793 	case KVM_CAP_DEBUGREGS:
2794 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2795 	case KVM_CAP_XSAVE:
2796 	case KVM_CAP_ASYNC_PF:
2797 	case KVM_CAP_GET_TSC_KHZ:
2798 	case KVM_CAP_KVMCLOCK_CTRL:
2799 	case KVM_CAP_READONLY_MEM:
2800 	case KVM_CAP_HYPERV_TIME:
2801 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2802 	case KVM_CAP_TSC_DEADLINE_TIMER:
2803 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2804 	case KVM_CAP_ASSIGN_DEV_IRQ:
2805 	case KVM_CAP_PCI_2_3:
2806 #endif
2807 		r = 1;
2808 		break;
2809 	case KVM_CAP_COALESCED_MMIO:
2810 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2811 		break;
2812 	case KVM_CAP_VAPIC:
2813 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2814 		break;
2815 	case KVM_CAP_NR_VCPUS:
2816 		r = KVM_SOFT_MAX_VCPUS;
2817 		break;
2818 	case KVM_CAP_MAX_VCPUS:
2819 		r = KVM_MAX_VCPUS;
2820 		break;
2821 	case KVM_CAP_NR_MEMSLOTS:
2822 		r = KVM_USER_MEM_SLOTS;
2823 		break;
2824 	case KVM_CAP_PV_MMU:	/* obsolete */
2825 		r = 0;
2826 		break;
2827 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2828 	case KVM_CAP_IOMMU:
2829 		r = iommu_present(&pci_bus_type);
2830 		break;
2831 #endif
2832 	case KVM_CAP_MCE:
2833 		r = KVM_MAX_MCE_BANKS;
2834 		break;
2835 	case KVM_CAP_XCRS:
2836 		r = cpu_has_xsave;
2837 		break;
2838 	case KVM_CAP_TSC_CONTROL:
2839 		r = kvm_has_tsc_control;
2840 		break;
2841 	default:
2842 		r = 0;
2843 		break;
2844 	}
2845 	return r;
2846 
2847 }
2848 
2849 long kvm_arch_dev_ioctl(struct file *filp,
2850 			unsigned int ioctl, unsigned long arg)
2851 {
2852 	void __user *argp = (void __user *)arg;
2853 	long r;
2854 
2855 	switch (ioctl) {
2856 	case KVM_GET_MSR_INDEX_LIST: {
2857 		struct kvm_msr_list __user *user_msr_list = argp;
2858 		struct kvm_msr_list msr_list;
2859 		unsigned n;
2860 
2861 		r = -EFAULT;
2862 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2863 			goto out;
2864 		n = msr_list.nmsrs;
2865 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2866 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2867 			goto out;
2868 		r = -E2BIG;
2869 		if (n < msr_list.nmsrs)
2870 			goto out;
2871 		r = -EFAULT;
2872 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2873 				 num_msrs_to_save * sizeof(u32)))
2874 			goto out;
2875 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2876 				 &emulated_msrs,
2877 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2878 			goto out;
2879 		r = 0;
2880 		break;
2881 	}
2882 	case KVM_GET_SUPPORTED_CPUID:
2883 	case KVM_GET_EMULATED_CPUID: {
2884 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2885 		struct kvm_cpuid2 cpuid;
2886 
2887 		r = -EFAULT;
2888 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2889 			goto out;
2890 
2891 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2892 					    ioctl);
2893 		if (r)
2894 			goto out;
2895 
2896 		r = -EFAULT;
2897 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2898 			goto out;
2899 		r = 0;
2900 		break;
2901 	}
2902 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2903 		u64 mce_cap;
2904 
2905 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2906 		r = -EFAULT;
2907 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2908 			goto out;
2909 		r = 0;
2910 		break;
2911 	}
2912 	default:
2913 		r = -EINVAL;
2914 	}
2915 out:
2916 	return r;
2917 }
2918 
2919 static void wbinvd_ipi(void *garbage)
2920 {
2921 	wbinvd();
2922 }
2923 
2924 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2925 {
2926 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2927 }
2928 
2929 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2930 {
2931 	/* Address WBINVD may be executed by guest */
2932 	if (need_emulate_wbinvd(vcpu)) {
2933 		if (kvm_x86_ops->has_wbinvd_exit())
2934 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2935 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2936 			smp_call_function_single(vcpu->cpu,
2937 					wbinvd_ipi, NULL, 1);
2938 	}
2939 
2940 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2941 
2942 	/* Apply any externally detected TSC adjustments (due to suspend) */
2943 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2944 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2945 		vcpu->arch.tsc_offset_adjustment = 0;
2946 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2947 	}
2948 
2949 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2950 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2951 				native_read_tsc() - vcpu->arch.last_host_tsc;
2952 		if (tsc_delta < 0)
2953 			mark_tsc_unstable("KVM discovered backwards TSC");
2954 		if (check_tsc_unstable()) {
2955 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2956 						vcpu->arch.last_guest_tsc);
2957 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2958 			vcpu->arch.tsc_catchup = 1;
2959 		}
2960 		/*
2961 		 * On a host with synchronized TSC, there is no need to update
2962 		 * kvmclock on vcpu->cpu migration
2963 		 */
2964 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2965 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2966 		if (vcpu->cpu != cpu)
2967 			kvm_migrate_timers(vcpu);
2968 		vcpu->cpu = cpu;
2969 	}
2970 
2971 	accumulate_steal_time(vcpu);
2972 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2973 }
2974 
2975 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2976 {
2977 	kvm_x86_ops->vcpu_put(vcpu);
2978 	kvm_put_guest_fpu(vcpu);
2979 	vcpu->arch.last_host_tsc = native_read_tsc();
2980 }
2981 
2982 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2983 				    struct kvm_lapic_state *s)
2984 {
2985 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2986 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2987 
2988 	return 0;
2989 }
2990 
2991 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2992 				    struct kvm_lapic_state *s)
2993 {
2994 	kvm_apic_post_state_restore(vcpu, s);
2995 	update_cr8_intercept(vcpu);
2996 
2997 	return 0;
2998 }
2999 
3000 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3001 				    struct kvm_interrupt *irq)
3002 {
3003 	if (irq->irq >= KVM_NR_INTERRUPTS)
3004 		return -EINVAL;
3005 	if (irqchip_in_kernel(vcpu->kvm))
3006 		return -ENXIO;
3007 
3008 	kvm_queue_interrupt(vcpu, irq->irq, false);
3009 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3010 
3011 	return 0;
3012 }
3013 
3014 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3015 {
3016 	kvm_inject_nmi(vcpu);
3017 
3018 	return 0;
3019 }
3020 
3021 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3022 					   struct kvm_tpr_access_ctl *tac)
3023 {
3024 	if (tac->flags)
3025 		return -EINVAL;
3026 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3027 	return 0;
3028 }
3029 
3030 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3031 					u64 mcg_cap)
3032 {
3033 	int r;
3034 	unsigned bank_num = mcg_cap & 0xff, bank;
3035 
3036 	r = -EINVAL;
3037 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3038 		goto out;
3039 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3040 		goto out;
3041 	r = 0;
3042 	vcpu->arch.mcg_cap = mcg_cap;
3043 	/* Init IA32_MCG_CTL to all 1s */
3044 	if (mcg_cap & MCG_CTL_P)
3045 		vcpu->arch.mcg_ctl = ~(u64)0;
3046 	/* Init IA32_MCi_CTL to all 1s */
3047 	for (bank = 0; bank < bank_num; bank++)
3048 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3049 out:
3050 	return r;
3051 }
3052 
3053 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3054 				      struct kvm_x86_mce *mce)
3055 {
3056 	u64 mcg_cap = vcpu->arch.mcg_cap;
3057 	unsigned bank_num = mcg_cap & 0xff;
3058 	u64 *banks = vcpu->arch.mce_banks;
3059 
3060 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3061 		return -EINVAL;
3062 	/*
3063 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3064 	 * reporting is disabled
3065 	 */
3066 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3067 	    vcpu->arch.mcg_ctl != ~(u64)0)
3068 		return 0;
3069 	banks += 4 * mce->bank;
3070 	/*
3071 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3072 	 * reporting is disabled for the bank
3073 	 */
3074 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3075 		return 0;
3076 	if (mce->status & MCI_STATUS_UC) {
3077 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3078 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3079 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3080 			return 0;
3081 		}
3082 		if (banks[1] & MCI_STATUS_VAL)
3083 			mce->status |= MCI_STATUS_OVER;
3084 		banks[2] = mce->addr;
3085 		banks[3] = mce->misc;
3086 		vcpu->arch.mcg_status = mce->mcg_status;
3087 		banks[1] = mce->status;
3088 		kvm_queue_exception(vcpu, MC_VECTOR);
3089 	} else if (!(banks[1] & MCI_STATUS_VAL)
3090 		   || !(banks[1] & MCI_STATUS_UC)) {
3091 		if (banks[1] & MCI_STATUS_VAL)
3092 			mce->status |= MCI_STATUS_OVER;
3093 		banks[2] = mce->addr;
3094 		banks[3] = mce->misc;
3095 		banks[1] = mce->status;
3096 	} else
3097 		banks[1] |= MCI_STATUS_OVER;
3098 	return 0;
3099 }
3100 
3101 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3102 					       struct kvm_vcpu_events *events)
3103 {
3104 	process_nmi(vcpu);
3105 	events->exception.injected =
3106 		vcpu->arch.exception.pending &&
3107 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3108 	events->exception.nr = vcpu->arch.exception.nr;
3109 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3110 	events->exception.pad = 0;
3111 	events->exception.error_code = vcpu->arch.exception.error_code;
3112 
3113 	events->interrupt.injected =
3114 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3115 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3116 	events->interrupt.soft = 0;
3117 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3118 
3119 	events->nmi.injected = vcpu->arch.nmi_injected;
3120 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3121 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3122 	events->nmi.pad = 0;
3123 
3124 	events->sipi_vector = 0; /* never valid when reporting to user space */
3125 
3126 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3127 			 | KVM_VCPUEVENT_VALID_SHADOW);
3128 	memset(&events->reserved, 0, sizeof(events->reserved));
3129 }
3130 
3131 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3132 					      struct kvm_vcpu_events *events)
3133 {
3134 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3135 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3136 			      | KVM_VCPUEVENT_VALID_SHADOW))
3137 		return -EINVAL;
3138 
3139 	process_nmi(vcpu);
3140 	vcpu->arch.exception.pending = events->exception.injected;
3141 	vcpu->arch.exception.nr = events->exception.nr;
3142 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3143 	vcpu->arch.exception.error_code = events->exception.error_code;
3144 
3145 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3146 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3147 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3148 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3149 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3150 						  events->interrupt.shadow);
3151 
3152 	vcpu->arch.nmi_injected = events->nmi.injected;
3153 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3154 		vcpu->arch.nmi_pending = events->nmi.pending;
3155 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3156 
3157 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3158 	    kvm_vcpu_has_lapic(vcpu))
3159 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3160 
3161 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3162 
3163 	return 0;
3164 }
3165 
3166 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3167 					     struct kvm_debugregs *dbgregs)
3168 {
3169 	unsigned long val;
3170 
3171 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3172 	kvm_get_dr(vcpu, 6, &val);
3173 	dbgregs->dr6 = val;
3174 	dbgregs->dr7 = vcpu->arch.dr7;
3175 	dbgregs->flags = 0;
3176 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3177 }
3178 
3179 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3180 					    struct kvm_debugregs *dbgregs)
3181 {
3182 	if (dbgregs->flags)
3183 		return -EINVAL;
3184 
3185 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3186 	kvm_update_dr0123(vcpu);
3187 	vcpu->arch.dr6 = dbgregs->dr6;
3188 	kvm_update_dr6(vcpu);
3189 	vcpu->arch.dr7 = dbgregs->dr7;
3190 	kvm_update_dr7(vcpu);
3191 
3192 	return 0;
3193 }
3194 
3195 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3196 
3197 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3198 {
3199 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3200 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3201 	u64 valid;
3202 
3203 	/*
3204 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3205 	 * leaves 0 and 1 in the loop below.
3206 	 */
3207 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3208 
3209 	/* Set XSTATE_BV */
3210 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3211 
3212 	/*
3213 	 * Copy each region from the possibly compacted offset to the
3214 	 * non-compacted offset.
3215 	 */
3216 	valid = xstate_bv & ~XSTATE_FPSSE;
3217 	while (valid) {
3218 		u64 feature = valid & -valid;
3219 		int index = fls64(feature) - 1;
3220 		void *src = get_xsave_addr(xsave, feature);
3221 
3222 		if (src) {
3223 			u32 size, offset, ecx, edx;
3224 			cpuid_count(XSTATE_CPUID, index,
3225 				    &size, &offset, &ecx, &edx);
3226 			memcpy(dest + offset, src, size);
3227 		}
3228 
3229 		valid -= feature;
3230 	}
3231 }
3232 
3233 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3234 {
3235 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3236 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3237 	u64 valid;
3238 
3239 	/*
3240 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3241 	 * leaves 0 and 1 in the loop below.
3242 	 */
3243 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3244 
3245 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3246 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3247 	if (cpu_has_xsaves)
3248 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3249 
3250 	/*
3251 	 * Copy each region from the non-compacted offset to the
3252 	 * possibly compacted offset.
3253 	 */
3254 	valid = xstate_bv & ~XSTATE_FPSSE;
3255 	while (valid) {
3256 		u64 feature = valid & -valid;
3257 		int index = fls64(feature) - 1;
3258 		void *dest = get_xsave_addr(xsave, feature);
3259 
3260 		if (dest) {
3261 			u32 size, offset, ecx, edx;
3262 			cpuid_count(XSTATE_CPUID, index,
3263 				    &size, &offset, &ecx, &edx);
3264 			memcpy(dest, src + offset, size);
3265 		} else
3266 			WARN_ON_ONCE(1);
3267 
3268 		valid -= feature;
3269 	}
3270 }
3271 
3272 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3273 					 struct kvm_xsave *guest_xsave)
3274 {
3275 	if (cpu_has_xsave) {
3276 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3277 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3278 	} else {
3279 		memcpy(guest_xsave->region,
3280 			&vcpu->arch.guest_fpu.state->fxsave,
3281 			sizeof(struct i387_fxsave_struct));
3282 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3283 			XSTATE_FPSSE;
3284 	}
3285 }
3286 
3287 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3288 					struct kvm_xsave *guest_xsave)
3289 {
3290 	u64 xstate_bv =
3291 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3292 
3293 	if (cpu_has_xsave) {
3294 		/*
3295 		 * Here we allow setting states that are not present in
3296 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3297 		 * with old userspace.
3298 		 */
3299 		if (xstate_bv & ~kvm_supported_xcr0())
3300 			return -EINVAL;
3301 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3302 	} else {
3303 		if (xstate_bv & ~XSTATE_FPSSE)
3304 			return -EINVAL;
3305 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3306 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3307 	}
3308 	return 0;
3309 }
3310 
3311 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3312 					struct kvm_xcrs *guest_xcrs)
3313 {
3314 	if (!cpu_has_xsave) {
3315 		guest_xcrs->nr_xcrs = 0;
3316 		return;
3317 	}
3318 
3319 	guest_xcrs->nr_xcrs = 1;
3320 	guest_xcrs->flags = 0;
3321 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3322 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3323 }
3324 
3325 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3326 				       struct kvm_xcrs *guest_xcrs)
3327 {
3328 	int i, r = 0;
3329 
3330 	if (!cpu_has_xsave)
3331 		return -EINVAL;
3332 
3333 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3334 		return -EINVAL;
3335 
3336 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3337 		/* Only support XCR0 currently */
3338 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3339 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3340 				guest_xcrs->xcrs[i].value);
3341 			break;
3342 		}
3343 	if (r)
3344 		r = -EINVAL;
3345 	return r;
3346 }
3347 
3348 /*
3349  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3350  * stopped by the hypervisor.  This function will be called from the host only.
3351  * EINVAL is returned when the host attempts to set the flag for a guest that
3352  * does not support pv clocks.
3353  */
3354 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3355 {
3356 	if (!vcpu->arch.pv_time_enabled)
3357 		return -EINVAL;
3358 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3359 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3360 	return 0;
3361 }
3362 
3363 long kvm_arch_vcpu_ioctl(struct file *filp,
3364 			 unsigned int ioctl, unsigned long arg)
3365 {
3366 	struct kvm_vcpu *vcpu = filp->private_data;
3367 	void __user *argp = (void __user *)arg;
3368 	int r;
3369 	union {
3370 		struct kvm_lapic_state *lapic;
3371 		struct kvm_xsave *xsave;
3372 		struct kvm_xcrs *xcrs;
3373 		void *buffer;
3374 	} u;
3375 
3376 	u.buffer = NULL;
3377 	switch (ioctl) {
3378 	case KVM_GET_LAPIC: {
3379 		r = -EINVAL;
3380 		if (!vcpu->arch.apic)
3381 			goto out;
3382 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3383 
3384 		r = -ENOMEM;
3385 		if (!u.lapic)
3386 			goto out;
3387 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3388 		if (r)
3389 			goto out;
3390 		r = -EFAULT;
3391 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3392 			goto out;
3393 		r = 0;
3394 		break;
3395 	}
3396 	case KVM_SET_LAPIC: {
3397 		r = -EINVAL;
3398 		if (!vcpu->arch.apic)
3399 			goto out;
3400 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3401 		if (IS_ERR(u.lapic))
3402 			return PTR_ERR(u.lapic);
3403 
3404 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3405 		break;
3406 	}
3407 	case KVM_INTERRUPT: {
3408 		struct kvm_interrupt irq;
3409 
3410 		r = -EFAULT;
3411 		if (copy_from_user(&irq, argp, sizeof irq))
3412 			goto out;
3413 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3414 		break;
3415 	}
3416 	case KVM_NMI: {
3417 		r = kvm_vcpu_ioctl_nmi(vcpu);
3418 		break;
3419 	}
3420 	case KVM_SET_CPUID: {
3421 		struct kvm_cpuid __user *cpuid_arg = argp;
3422 		struct kvm_cpuid cpuid;
3423 
3424 		r = -EFAULT;
3425 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3426 			goto out;
3427 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3428 		break;
3429 	}
3430 	case KVM_SET_CPUID2: {
3431 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3432 		struct kvm_cpuid2 cpuid;
3433 
3434 		r = -EFAULT;
3435 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3436 			goto out;
3437 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3438 					      cpuid_arg->entries);
3439 		break;
3440 	}
3441 	case KVM_GET_CPUID2: {
3442 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3443 		struct kvm_cpuid2 cpuid;
3444 
3445 		r = -EFAULT;
3446 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3447 			goto out;
3448 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3449 					      cpuid_arg->entries);
3450 		if (r)
3451 			goto out;
3452 		r = -EFAULT;
3453 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3454 			goto out;
3455 		r = 0;
3456 		break;
3457 	}
3458 	case KVM_GET_MSRS:
3459 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3460 		break;
3461 	case KVM_SET_MSRS:
3462 		r = msr_io(vcpu, argp, do_set_msr, 0);
3463 		break;
3464 	case KVM_TPR_ACCESS_REPORTING: {
3465 		struct kvm_tpr_access_ctl tac;
3466 
3467 		r = -EFAULT;
3468 		if (copy_from_user(&tac, argp, sizeof tac))
3469 			goto out;
3470 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3471 		if (r)
3472 			goto out;
3473 		r = -EFAULT;
3474 		if (copy_to_user(argp, &tac, sizeof tac))
3475 			goto out;
3476 		r = 0;
3477 		break;
3478 	};
3479 	case KVM_SET_VAPIC_ADDR: {
3480 		struct kvm_vapic_addr va;
3481 
3482 		r = -EINVAL;
3483 		if (!irqchip_in_kernel(vcpu->kvm))
3484 			goto out;
3485 		r = -EFAULT;
3486 		if (copy_from_user(&va, argp, sizeof va))
3487 			goto out;
3488 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3489 		break;
3490 	}
3491 	case KVM_X86_SETUP_MCE: {
3492 		u64 mcg_cap;
3493 
3494 		r = -EFAULT;
3495 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3496 			goto out;
3497 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3498 		break;
3499 	}
3500 	case KVM_X86_SET_MCE: {
3501 		struct kvm_x86_mce mce;
3502 
3503 		r = -EFAULT;
3504 		if (copy_from_user(&mce, argp, sizeof mce))
3505 			goto out;
3506 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3507 		break;
3508 	}
3509 	case KVM_GET_VCPU_EVENTS: {
3510 		struct kvm_vcpu_events events;
3511 
3512 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3513 
3514 		r = -EFAULT;
3515 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3516 			break;
3517 		r = 0;
3518 		break;
3519 	}
3520 	case KVM_SET_VCPU_EVENTS: {
3521 		struct kvm_vcpu_events events;
3522 
3523 		r = -EFAULT;
3524 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3525 			break;
3526 
3527 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3528 		break;
3529 	}
3530 	case KVM_GET_DEBUGREGS: {
3531 		struct kvm_debugregs dbgregs;
3532 
3533 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3534 
3535 		r = -EFAULT;
3536 		if (copy_to_user(argp, &dbgregs,
3537 				 sizeof(struct kvm_debugregs)))
3538 			break;
3539 		r = 0;
3540 		break;
3541 	}
3542 	case KVM_SET_DEBUGREGS: {
3543 		struct kvm_debugregs dbgregs;
3544 
3545 		r = -EFAULT;
3546 		if (copy_from_user(&dbgregs, argp,
3547 				   sizeof(struct kvm_debugregs)))
3548 			break;
3549 
3550 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3551 		break;
3552 	}
3553 	case KVM_GET_XSAVE: {
3554 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3555 		r = -ENOMEM;
3556 		if (!u.xsave)
3557 			break;
3558 
3559 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3560 
3561 		r = -EFAULT;
3562 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3563 			break;
3564 		r = 0;
3565 		break;
3566 	}
3567 	case KVM_SET_XSAVE: {
3568 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3569 		if (IS_ERR(u.xsave))
3570 			return PTR_ERR(u.xsave);
3571 
3572 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3573 		break;
3574 	}
3575 	case KVM_GET_XCRS: {
3576 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3577 		r = -ENOMEM;
3578 		if (!u.xcrs)
3579 			break;
3580 
3581 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3582 
3583 		r = -EFAULT;
3584 		if (copy_to_user(argp, u.xcrs,
3585 				 sizeof(struct kvm_xcrs)))
3586 			break;
3587 		r = 0;
3588 		break;
3589 	}
3590 	case KVM_SET_XCRS: {
3591 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3592 		if (IS_ERR(u.xcrs))
3593 			return PTR_ERR(u.xcrs);
3594 
3595 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3596 		break;
3597 	}
3598 	case KVM_SET_TSC_KHZ: {
3599 		u32 user_tsc_khz;
3600 
3601 		r = -EINVAL;
3602 		user_tsc_khz = (u32)arg;
3603 
3604 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3605 			goto out;
3606 
3607 		if (user_tsc_khz == 0)
3608 			user_tsc_khz = tsc_khz;
3609 
3610 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3611 
3612 		r = 0;
3613 		goto out;
3614 	}
3615 	case KVM_GET_TSC_KHZ: {
3616 		r = vcpu->arch.virtual_tsc_khz;
3617 		goto out;
3618 	}
3619 	case KVM_KVMCLOCK_CTRL: {
3620 		r = kvm_set_guest_paused(vcpu);
3621 		goto out;
3622 	}
3623 	default:
3624 		r = -EINVAL;
3625 	}
3626 out:
3627 	kfree(u.buffer);
3628 	return r;
3629 }
3630 
3631 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3632 {
3633 	return VM_FAULT_SIGBUS;
3634 }
3635 
3636 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3637 {
3638 	int ret;
3639 
3640 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3641 		return -EINVAL;
3642 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3643 	return ret;
3644 }
3645 
3646 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3647 					      u64 ident_addr)
3648 {
3649 	kvm->arch.ept_identity_map_addr = ident_addr;
3650 	return 0;
3651 }
3652 
3653 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3654 					  u32 kvm_nr_mmu_pages)
3655 {
3656 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3657 		return -EINVAL;
3658 
3659 	mutex_lock(&kvm->slots_lock);
3660 
3661 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3662 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3663 
3664 	mutex_unlock(&kvm->slots_lock);
3665 	return 0;
3666 }
3667 
3668 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3669 {
3670 	return kvm->arch.n_max_mmu_pages;
3671 }
3672 
3673 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3674 {
3675 	int r;
3676 
3677 	r = 0;
3678 	switch (chip->chip_id) {
3679 	case KVM_IRQCHIP_PIC_MASTER:
3680 		memcpy(&chip->chip.pic,
3681 			&pic_irqchip(kvm)->pics[0],
3682 			sizeof(struct kvm_pic_state));
3683 		break;
3684 	case KVM_IRQCHIP_PIC_SLAVE:
3685 		memcpy(&chip->chip.pic,
3686 			&pic_irqchip(kvm)->pics[1],
3687 			sizeof(struct kvm_pic_state));
3688 		break;
3689 	case KVM_IRQCHIP_IOAPIC:
3690 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3691 		break;
3692 	default:
3693 		r = -EINVAL;
3694 		break;
3695 	}
3696 	return r;
3697 }
3698 
3699 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3700 {
3701 	int r;
3702 
3703 	r = 0;
3704 	switch (chip->chip_id) {
3705 	case KVM_IRQCHIP_PIC_MASTER:
3706 		spin_lock(&pic_irqchip(kvm)->lock);
3707 		memcpy(&pic_irqchip(kvm)->pics[0],
3708 			&chip->chip.pic,
3709 			sizeof(struct kvm_pic_state));
3710 		spin_unlock(&pic_irqchip(kvm)->lock);
3711 		break;
3712 	case KVM_IRQCHIP_PIC_SLAVE:
3713 		spin_lock(&pic_irqchip(kvm)->lock);
3714 		memcpy(&pic_irqchip(kvm)->pics[1],
3715 			&chip->chip.pic,
3716 			sizeof(struct kvm_pic_state));
3717 		spin_unlock(&pic_irqchip(kvm)->lock);
3718 		break;
3719 	case KVM_IRQCHIP_IOAPIC:
3720 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3721 		break;
3722 	default:
3723 		r = -EINVAL;
3724 		break;
3725 	}
3726 	kvm_pic_update_irq(pic_irqchip(kvm));
3727 	return r;
3728 }
3729 
3730 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3731 {
3732 	int r = 0;
3733 
3734 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3736 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3737 	return r;
3738 }
3739 
3740 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3741 {
3742 	int r = 0;
3743 
3744 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3745 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3746 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3747 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3748 	return r;
3749 }
3750 
3751 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3752 {
3753 	int r = 0;
3754 
3755 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3756 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3757 		sizeof(ps->channels));
3758 	ps->flags = kvm->arch.vpit->pit_state.flags;
3759 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3760 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3761 	return r;
3762 }
3763 
3764 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3765 {
3766 	int r = 0, start = 0;
3767 	u32 prev_legacy, cur_legacy;
3768 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3769 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3770 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3771 	if (!prev_legacy && cur_legacy)
3772 		start = 1;
3773 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3774 	       sizeof(kvm->arch.vpit->pit_state.channels));
3775 	kvm->arch.vpit->pit_state.flags = ps->flags;
3776 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3777 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3778 	return r;
3779 }
3780 
3781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3782 				 struct kvm_reinject_control *control)
3783 {
3784 	if (!kvm->arch.vpit)
3785 		return -ENXIO;
3786 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3787 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3788 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3789 	return 0;
3790 }
3791 
3792 /**
3793  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3794  * @kvm: kvm instance
3795  * @log: slot id and address to which we copy the log
3796  *
3797  * Steps 1-4 below provide general overview of dirty page logging. See
3798  * kvm_get_dirty_log_protect() function description for additional details.
3799  *
3800  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3801  * always flush the TLB (step 4) even if previous step failed  and the dirty
3802  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3803  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3804  * writes will be marked dirty for next log read.
3805  *
3806  *   1. Take a snapshot of the bit and clear it if needed.
3807  *   2. Write protect the corresponding page.
3808  *   3. Copy the snapshot to the userspace.
3809  *   4. Flush TLB's if needed.
3810  */
3811 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3812 {
3813 	bool is_dirty = false;
3814 	int r;
3815 
3816 	mutex_lock(&kvm->slots_lock);
3817 
3818 	/*
3819 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3820 	 */
3821 	if (kvm_x86_ops->flush_log_dirty)
3822 		kvm_x86_ops->flush_log_dirty(kvm);
3823 
3824 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3825 
3826 	/*
3827 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3828 	 * kvm_mmu_slot_remove_write_access().
3829 	 */
3830 	lockdep_assert_held(&kvm->slots_lock);
3831 	if (is_dirty)
3832 		kvm_flush_remote_tlbs(kvm);
3833 
3834 	mutex_unlock(&kvm->slots_lock);
3835 	return r;
3836 }
3837 
3838 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3839 			bool line_status)
3840 {
3841 	if (!irqchip_in_kernel(kvm))
3842 		return -ENXIO;
3843 
3844 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3845 					irq_event->irq, irq_event->level,
3846 					line_status);
3847 	return 0;
3848 }
3849 
3850 long kvm_arch_vm_ioctl(struct file *filp,
3851 		       unsigned int ioctl, unsigned long arg)
3852 {
3853 	struct kvm *kvm = filp->private_data;
3854 	void __user *argp = (void __user *)arg;
3855 	int r = -ENOTTY;
3856 	/*
3857 	 * This union makes it completely explicit to gcc-3.x
3858 	 * that these two variables' stack usage should be
3859 	 * combined, not added together.
3860 	 */
3861 	union {
3862 		struct kvm_pit_state ps;
3863 		struct kvm_pit_state2 ps2;
3864 		struct kvm_pit_config pit_config;
3865 	} u;
3866 
3867 	switch (ioctl) {
3868 	case KVM_SET_TSS_ADDR:
3869 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3870 		break;
3871 	case KVM_SET_IDENTITY_MAP_ADDR: {
3872 		u64 ident_addr;
3873 
3874 		r = -EFAULT;
3875 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3876 			goto out;
3877 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3878 		break;
3879 	}
3880 	case KVM_SET_NR_MMU_PAGES:
3881 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3882 		break;
3883 	case KVM_GET_NR_MMU_PAGES:
3884 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3885 		break;
3886 	case KVM_CREATE_IRQCHIP: {
3887 		struct kvm_pic *vpic;
3888 
3889 		mutex_lock(&kvm->lock);
3890 		r = -EEXIST;
3891 		if (kvm->arch.vpic)
3892 			goto create_irqchip_unlock;
3893 		r = -EINVAL;
3894 		if (atomic_read(&kvm->online_vcpus))
3895 			goto create_irqchip_unlock;
3896 		r = -ENOMEM;
3897 		vpic = kvm_create_pic(kvm);
3898 		if (vpic) {
3899 			r = kvm_ioapic_init(kvm);
3900 			if (r) {
3901 				mutex_lock(&kvm->slots_lock);
3902 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3903 							  &vpic->dev_master);
3904 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3905 							  &vpic->dev_slave);
3906 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3907 							  &vpic->dev_eclr);
3908 				mutex_unlock(&kvm->slots_lock);
3909 				kfree(vpic);
3910 				goto create_irqchip_unlock;
3911 			}
3912 		} else
3913 			goto create_irqchip_unlock;
3914 		smp_wmb();
3915 		kvm->arch.vpic = vpic;
3916 		smp_wmb();
3917 		r = kvm_setup_default_irq_routing(kvm);
3918 		if (r) {
3919 			mutex_lock(&kvm->slots_lock);
3920 			mutex_lock(&kvm->irq_lock);
3921 			kvm_ioapic_destroy(kvm);
3922 			kvm_destroy_pic(kvm);
3923 			mutex_unlock(&kvm->irq_lock);
3924 			mutex_unlock(&kvm->slots_lock);
3925 		}
3926 	create_irqchip_unlock:
3927 		mutex_unlock(&kvm->lock);
3928 		break;
3929 	}
3930 	case KVM_CREATE_PIT:
3931 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3932 		goto create_pit;
3933 	case KVM_CREATE_PIT2:
3934 		r = -EFAULT;
3935 		if (copy_from_user(&u.pit_config, argp,
3936 				   sizeof(struct kvm_pit_config)))
3937 			goto out;
3938 	create_pit:
3939 		mutex_lock(&kvm->slots_lock);
3940 		r = -EEXIST;
3941 		if (kvm->arch.vpit)
3942 			goto create_pit_unlock;
3943 		r = -ENOMEM;
3944 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3945 		if (kvm->arch.vpit)
3946 			r = 0;
3947 	create_pit_unlock:
3948 		mutex_unlock(&kvm->slots_lock);
3949 		break;
3950 	case KVM_GET_IRQCHIP: {
3951 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3952 		struct kvm_irqchip *chip;
3953 
3954 		chip = memdup_user(argp, sizeof(*chip));
3955 		if (IS_ERR(chip)) {
3956 			r = PTR_ERR(chip);
3957 			goto out;
3958 		}
3959 
3960 		r = -ENXIO;
3961 		if (!irqchip_in_kernel(kvm))
3962 			goto get_irqchip_out;
3963 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3964 		if (r)
3965 			goto get_irqchip_out;
3966 		r = -EFAULT;
3967 		if (copy_to_user(argp, chip, sizeof *chip))
3968 			goto get_irqchip_out;
3969 		r = 0;
3970 	get_irqchip_out:
3971 		kfree(chip);
3972 		break;
3973 	}
3974 	case KVM_SET_IRQCHIP: {
3975 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3976 		struct kvm_irqchip *chip;
3977 
3978 		chip = memdup_user(argp, sizeof(*chip));
3979 		if (IS_ERR(chip)) {
3980 			r = PTR_ERR(chip);
3981 			goto out;
3982 		}
3983 
3984 		r = -ENXIO;
3985 		if (!irqchip_in_kernel(kvm))
3986 			goto set_irqchip_out;
3987 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3988 		if (r)
3989 			goto set_irqchip_out;
3990 		r = 0;
3991 	set_irqchip_out:
3992 		kfree(chip);
3993 		break;
3994 	}
3995 	case KVM_GET_PIT: {
3996 		r = -EFAULT;
3997 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3998 			goto out;
3999 		r = -ENXIO;
4000 		if (!kvm->arch.vpit)
4001 			goto out;
4002 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4003 		if (r)
4004 			goto out;
4005 		r = -EFAULT;
4006 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4007 			goto out;
4008 		r = 0;
4009 		break;
4010 	}
4011 	case KVM_SET_PIT: {
4012 		r = -EFAULT;
4013 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4014 			goto out;
4015 		r = -ENXIO;
4016 		if (!kvm->arch.vpit)
4017 			goto out;
4018 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4019 		break;
4020 	}
4021 	case KVM_GET_PIT2: {
4022 		r = -ENXIO;
4023 		if (!kvm->arch.vpit)
4024 			goto out;
4025 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4026 		if (r)
4027 			goto out;
4028 		r = -EFAULT;
4029 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4030 			goto out;
4031 		r = 0;
4032 		break;
4033 	}
4034 	case KVM_SET_PIT2: {
4035 		r = -EFAULT;
4036 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4037 			goto out;
4038 		r = -ENXIO;
4039 		if (!kvm->arch.vpit)
4040 			goto out;
4041 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4042 		break;
4043 	}
4044 	case KVM_REINJECT_CONTROL: {
4045 		struct kvm_reinject_control control;
4046 		r =  -EFAULT;
4047 		if (copy_from_user(&control, argp, sizeof(control)))
4048 			goto out;
4049 		r = kvm_vm_ioctl_reinject(kvm, &control);
4050 		break;
4051 	}
4052 	case KVM_XEN_HVM_CONFIG: {
4053 		r = -EFAULT;
4054 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4055 				   sizeof(struct kvm_xen_hvm_config)))
4056 			goto out;
4057 		r = -EINVAL;
4058 		if (kvm->arch.xen_hvm_config.flags)
4059 			goto out;
4060 		r = 0;
4061 		break;
4062 	}
4063 	case KVM_SET_CLOCK: {
4064 		struct kvm_clock_data user_ns;
4065 		u64 now_ns;
4066 		s64 delta;
4067 
4068 		r = -EFAULT;
4069 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4070 			goto out;
4071 
4072 		r = -EINVAL;
4073 		if (user_ns.flags)
4074 			goto out;
4075 
4076 		r = 0;
4077 		local_irq_disable();
4078 		now_ns = get_kernel_ns();
4079 		delta = user_ns.clock - now_ns;
4080 		local_irq_enable();
4081 		kvm->arch.kvmclock_offset = delta;
4082 		kvm_gen_update_masterclock(kvm);
4083 		break;
4084 	}
4085 	case KVM_GET_CLOCK: {
4086 		struct kvm_clock_data user_ns;
4087 		u64 now_ns;
4088 
4089 		local_irq_disable();
4090 		now_ns = get_kernel_ns();
4091 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4092 		local_irq_enable();
4093 		user_ns.flags = 0;
4094 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4095 
4096 		r = -EFAULT;
4097 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4098 			goto out;
4099 		r = 0;
4100 		break;
4101 	}
4102 
4103 	default:
4104 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4105 	}
4106 out:
4107 	return r;
4108 }
4109 
4110 static void kvm_init_msr_list(void)
4111 {
4112 	u32 dummy[2];
4113 	unsigned i, j;
4114 
4115 	/* skip the first msrs in the list. KVM-specific */
4116 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4117 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4118 			continue;
4119 
4120 		/*
4121 		 * Even MSRs that are valid in the host may not be exposed
4122 		 * to the guests in some cases.  We could work around this
4123 		 * in VMX with the generic MSR save/load machinery, but it
4124 		 * is not really worthwhile since it will really only
4125 		 * happen with nested virtualization.
4126 		 */
4127 		switch (msrs_to_save[i]) {
4128 		case MSR_IA32_BNDCFGS:
4129 			if (!kvm_x86_ops->mpx_supported())
4130 				continue;
4131 			break;
4132 		default:
4133 			break;
4134 		}
4135 
4136 		if (j < i)
4137 			msrs_to_save[j] = msrs_to_save[i];
4138 		j++;
4139 	}
4140 	num_msrs_to_save = j;
4141 }
4142 
4143 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144 			   const void *v)
4145 {
4146 	int handled = 0;
4147 	int n;
4148 
4149 	do {
4150 		n = min(len, 8);
4151 		if (!(vcpu->arch.apic &&
4152 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154 			break;
4155 		handled += n;
4156 		addr += n;
4157 		len -= n;
4158 		v += n;
4159 	} while (len);
4160 
4161 	return handled;
4162 }
4163 
4164 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165 {
4166 	int handled = 0;
4167 	int n;
4168 
4169 	do {
4170 		n = min(len, 8);
4171 		if (!(vcpu->arch.apic &&
4172 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173 					 addr, n, v))
4174 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175 			break;
4176 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177 		handled += n;
4178 		addr += n;
4179 		len -= n;
4180 		v += n;
4181 	} while (len);
4182 
4183 	return handled;
4184 }
4185 
4186 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187 			struct kvm_segment *var, int seg)
4188 {
4189 	kvm_x86_ops->set_segment(vcpu, var, seg);
4190 }
4191 
4192 void kvm_get_segment(struct kvm_vcpu *vcpu,
4193 		     struct kvm_segment *var, int seg)
4194 {
4195 	kvm_x86_ops->get_segment(vcpu, var, seg);
4196 }
4197 
4198 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199 			   struct x86_exception *exception)
4200 {
4201 	gpa_t t_gpa;
4202 
4203 	BUG_ON(!mmu_is_nested(vcpu));
4204 
4205 	/* NPT walks are always user-walks */
4206 	access |= PFERR_USER_MASK;
4207 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208 
4209 	return t_gpa;
4210 }
4211 
4212 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213 			      struct x86_exception *exception)
4214 {
4215 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217 }
4218 
4219  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220 				struct x86_exception *exception)
4221 {
4222 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223 	access |= PFERR_FETCH_MASK;
4224 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225 }
4226 
4227 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228 			       struct x86_exception *exception)
4229 {
4230 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231 	access |= PFERR_WRITE_MASK;
4232 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233 }
4234 
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237 				struct x86_exception *exception)
4238 {
4239 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240 }
4241 
4242 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243 				      struct kvm_vcpu *vcpu, u32 access,
4244 				      struct x86_exception *exception)
4245 {
4246 	void *data = val;
4247 	int r = X86EMUL_CONTINUE;
4248 
4249 	while (bytes) {
4250 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251 							    exception);
4252 		unsigned offset = addr & (PAGE_SIZE-1);
4253 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254 		int ret;
4255 
4256 		if (gpa == UNMAPPED_GVA)
4257 			return X86EMUL_PROPAGATE_FAULT;
4258 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4259 					  offset, toread);
4260 		if (ret < 0) {
4261 			r = X86EMUL_IO_NEEDED;
4262 			goto out;
4263 		}
4264 
4265 		bytes -= toread;
4266 		data += toread;
4267 		addr += toread;
4268 	}
4269 out:
4270 	return r;
4271 }
4272 
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275 				gva_t addr, void *val, unsigned int bytes,
4276 				struct x86_exception *exception)
4277 {
4278 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280 	unsigned offset;
4281 	int ret;
4282 
4283 	/* Inline kvm_read_guest_virt_helper for speed.  */
4284 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285 						    exception);
4286 	if (unlikely(gpa == UNMAPPED_GVA))
4287 		return X86EMUL_PROPAGATE_FAULT;
4288 
4289 	offset = addr & (PAGE_SIZE-1);
4290 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4291 		bytes = (unsigned)PAGE_SIZE - offset;
4292 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4293 				  offset, bytes);
4294 	if (unlikely(ret < 0))
4295 		return X86EMUL_IO_NEEDED;
4296 
4297 	return X86EMUL_CONTINUE;
4298 }
4299 
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301 			       gva_t addr, void *val, unsigned int bytes,
4302 			       struct x86_exception *exception)
4303 {
4304 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306 
4307 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308 					  exception);
4309 }
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311 
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313 				      gva_t addr, void *val, unsigned int bytes,
4314 				      struct x86_exception *exception)
4315 {
4316 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318 }
4319 
4320 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4321 				       gva_t addr, void *val,
4322 				       unsigned int bytes,
4323 				       struct x86_exception *exception)
4324 {
4325 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4326 	void *data = val;
4327 	int r = X86EMUL_CONTINUE;
4328 
4329 	while (bytes) {
4330 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4331 							     PFERR_WRITE_MASK,
4332 							     exception);
4333 		unsigned offset = addr & (PAGE_SIZE-1);
4334 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4335 		int ret;
4336 
4337 		if (gpa == UNMAPPED_GVA)
4338 			return X86EMUL_PROPAGATE_FAULT;
4339 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4340 		if (ret < 0) {
4341 			r = X86EMUL_IO_NEEDED;
4342 			goto out;
4343 		}
4344 
4345 		bytes -= towrite;
4346 		data += towrite;
4347 		addr += towrite;
4348 	}
4349 out:
4350 	return r;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4353 
4354 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4355 				gpa_t *gpa, struct x86_exception *exception,
4356 				bool write)
4357 {
4358 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4359 		| (write ? PFERR_WRITE_MASK : 0);
4360 
4361 	if (vcpu_match_mmio_gva(vcpu, gva)
4362 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4363 				 vcpu->arch.access, access)) {
4364 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4365 					(gva & (PAGE_SIZE - 1));
4366 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4367 		return 1;
4368 	}
4369 
4370 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4371 
4372 	if (*gpa == UNMAPPED_GVA)
4373 		return -1;
4374 
4375 	/* For APIC access vmexit */
4376 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4377 		return 1;
4378 
4379 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4380 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4381 		return 1;
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4388 			const void *val, int bytes)
4389 {
4390 	int ret;
4391 
4392 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4393 	if (ret < 0)
4394 		return 0;
4395 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4396 	return 1;
4397 }
4398 
4399 struct read_write_emulator_ops {
4400 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4401 				  int bytes);
4402 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 				  void *val, int bytes);
4404 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 			       int bytes, void *val);
4406 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 				    void *val, int bytes);
4408 	bool write;
4409 };
4410 
4411 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4412 {
4413 	if (vcpu->mmio_read_completed) {
4414 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4415 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4416 		vcpu->mmio_read_completed = 0;
4417 		return 1;
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4424 			void *val, int bytes)
4425 {
4426 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4427 }
4428 
4429 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4430 			 void *val, int bytes)
4431 {
4432 	return emulator_write_phys(vcpu, gpa, val, bytes);
4433 }
4434 
4435 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4436 {
4437 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4438 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4439 }
4440 
4441 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4442 			  void *val, int bytes)
4443 {
4444 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4445 	return X86EMUL_IO_NEEDED;
4446 }
4447 
4448 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4449 			   void *val, int bytes)
4450 {
4451 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4452 
4453 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4454 	return X86EMUL_CONTINUE;
4455 }
4456 
4457 static const struct read_write_emulator_ops read_emultor = {
4458 	.read_write_prepare = read_prepare,
4459 	.read_write_emulate = read_emulate,
4460 	.read_write_mmio = vcpu_mmio_read,
4461 	.read_write_exit_mmio = read_exit_mmio,
4462 };
4463 
4464 static const struct read_write_emulator_ops write_emultor = {
4465 	.read_write_emulate = write_emulate,
4466 	.read_write_mmio = write_mmio,
4467 	.read_write_exit_mmio = write_exit_mmio,
4468 	.write = true,
4469 };
4470 
4471 static int emulator_read_write_onepage(unsigned long addr, void *val,
4472 				       unsigned int bytes,
4473 				       struct x86_exception *exception,
4474 				       struct kvm_vcpu *vcpu,
4475 				       const struct read_write_emulator_ops *ops)
4476 {
4477 	gpa_t gpa;
4478 	int handled, ret;
4479 	bool write = ops->write;
4480 	struct kvm_mmio_fragment *frag;
4481 
4482 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4483 
4484 	if (ret < 0)
4485 		return X86EMUL_PROPAGATE_FAULT;
4486 
4487 	/* For APIC access vmexit */
4488 	if (ret)
4489 		goto mmio;
4490 
4491 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4492 		return X86EMUL_CONTINUE;
4493 
4494 mmio:
4495 	/*
4496 	 * Is this MMIO handled locally?
4497 	 */
4498 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4499 	if (handled == bytes)
4500 		return X86EMUL_CONTINUE;
4501 
4502 	gpa += handled;
4503 	bytes -= handled;
4504 	val += handled;
4505 
4506 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4507 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4508 	frag->gpa = gpa;
4509 	frag->data = val;
4510 	frag->len = bytes;
4511 	return X86EMUL_CONTINUE;
4512 }
4513 
4514 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4515 			unsigned long addr,
4516 			void *val, unsigned int bytes,
4517 			struct x86_exception *exception,
4518 			const struct read_write_emulator_ops *ops)
4519 {
4520 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521 	gpa_t gpa;
4522 	int rc;
4523 
4524 	if (ops->read_write_prepare &&
4525 		  ops->read_write_prepare(vcpu, val, bytes))
4526 		return X86EMUL_CONTINUE;
4527 
4528 	vcpu->mmio_nr_fragments = 0;
4529 
4530 	/* Crossing a page boundary? */
4531 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4532 		int now;
4533 
4534 		now = -addr & ~PAGE_MASK;
4535 		rc = emulator_read_write_onepage(addr, val, now, exception,
4536 						 vcpu, ops);
4537 
4538 		if (rc != X86EMUL_CONTINUE)
4539 			return rc;
4540 		addr += now;
4541 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4542 			addr = (u32)addr;
4543 		val += now;
4544 		bytes -= now;
4545 	}
4546 
4547 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4548 					 vcpu, ops);
4549 	if (rc != X86EMUL_CONTINUE)
4550 		return rc;
4551 
4552 	if (!vcpu->mmio_nr_fragments)
4553 		return rc;
4554 
4555 	gpa = vcpu->mmio_fragments[0].gpa;
4556 
4557 	vcpu->mmio_needed = 1;
4558 	vcpu->mmio_cur_fragment = 0;
4559 
4560 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4561 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4562 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4563 	vcpu->run->mmio.phys_addr = gpa;
4564 
4565 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4566 }
4567 
4568 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4569 				  unsigned long addr,
4570 				  void *val,
4571 				  unsigned int bytes,
4572 				  struct x86_exception *exception)
4573 {
4574 	return emulator_read_write(ctxt, addr, val, bytes,
4575 				   exception, &read_emultor);
4576 }
4577 
4578 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4579 			    unsigned long addr,
4580 			    const void *val,
4581 			    unsigned int bytes,
4582 			    struct x86_exception *exception)
4583 {
4584 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4585 				   exception, &write_emultor);
4586 }
4587 
4588 #define CMPXCHG_TYPE(t, ptr, old, new) \
4589 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4590 
4591 #ifdef CONFIG_X86_64
4592 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4593 #else
4594 #  define CMPXCHG64(ptr, old, new) \
4595 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4596 #endif
4597 
4598 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4599 				     unsigned long addr,
4600 				     const void *old,
4601 				     const void *new,
4602 				     unsigned int bytes,
4603 				     struct x86_exception *exception)
4604 {
4605 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 	gpa_t gpa;
4607 	struct page *page;
4608 	char *kaddr;
4609 	bool exchanged;
4610 
4611 	/* guests cmpxchg8b have to be emulated atomically */
4612 	if (bytes > 8 || (bytes & (bytes - 1)))
4613 		goto emul_write;
4614 
4615 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4616 
4617 	if (gpa == UNMAPPED_GVA ||
4618 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4619 		goto emul_write;
4620 
4621 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4622 		goto emul_write;
4623 
4624 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4625 	if (is_error_page(page))
4626 		goto emul_write;
4627 
4628 	kaddr = kmap_atomic(page);
4629 	kaddr += offset_in_page(gpa);
4630 	switch (bytes) {
4631 	case 1:
4632 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4633 		break;
4634 	case 2:
4635 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4636 		break;
4637 	case 4:
4638 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4639 		break;
4640 	case 8:
4641 		exchanged = CMPXCHG64(kaddr, old, new);
4642 		break;
4643 	default:
4644 		BUG();
4645 	}
4646 	kunmap_atomic(kaddr);
4647 	kvm_release_page_dirty(page);
4648 
4649 	if (!exchanged)
4650 		return X86EMUL_CMPXCHG_FAILED;
4651 
4652 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4653 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4654 
4655 	return X86EMUL_CONTINUE;
4656 
4657 emul_write:
4658 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4659 
4660 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4661 }
4662 
4663 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4664 {
4665 	/* TODO: String I/O for in kernel device */
4666 	int r;
4667 
4668 	if (vcpu->arch.pio.in)
4669 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4670 				    vcpu->arch.pio.size, pd);
4671 	else
4672 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4673 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4674 				     pd);
4675 	return r;
4676 }
4677 
4678 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4679 			       unsigned short port, void *val,
4680 			       unsigned int count, bool in)
4681 {
4682 	vcpu->arch.pio.port = port;
4683 	vcpu->arch.pio.in = in;
4684 	vcpu->arch.pio.count  = count;
4685 	vcpu->arch.pio.size = size;
4686 
4687 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4688 		vcpu->arch.pio.count = 0;
4689 		return 1;
4690 	}
4691 
4692 	vcpu->run->exit_reason = KVM_EXIT_IO;
4693 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4694 	vcpu->run->io.size = size;
4695 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4696 	vcpu->run->io.count = count;
4697 	vcpu->run->io.port = port;
4698 
4699 	return 0;
4700 }
4701 
4702 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4703 				    int size, unsigned short port, void *val,
4704 				    unsigned int count)
4705 {
4706 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4707 	int ret;
4708 
4709 	if (vcpu->arch.pio.count)
4710 		goto data_avail;
4711 
4712 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4713 	if (ret) {
4714 data_avail:
4715 		memcpy(val, vcpu->arch.pio_data, size * count);
4716 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4717 		vcpu->arch.pio.count = 0;
4718 		return 1;
4719 	}
4720 
4721 	return 0;
4722 }
4723 
4724 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4725 				     int size, unsigned short port,
4726 				     const void *val, unsigned int count)
4727 {
4728 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729 
4730 	memcpy(vcpu->arch.pio_data, val, size * count);
4731 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4732 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4733 }
4734 
4735 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4736 {
4737 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4738 }
4739 
4740 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4741 {
4742 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4743 }
4744 
4745 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4746 {
4747 	if (!need_emulate_wbinvd(vcpu))
4748 		return X86EMUL_CONTINUE;
4749 
4750 	if (kvm_x86_ops->has_wbinvd_exit()) {
4751 		int cpu = get_cpu();
4752 
4753 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4754 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4755 				wbinvd_ipi, NULL, 1);
4756 		put_cpu();
4757 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4758 	} else
4759 		wbinvd();
4760 	return X86EMUL_CONTINUE;
4761 }
4762 
4763 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4764 {
4765 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4766 	return kvm_emulate_wbinvd_noskip(vcpu);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4769 
4770 
4771 
4772 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4773 {
4774 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4775 }
4776 
4777 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4778 			   unsigned long *dest)
4779 {
4780 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4781 }
4782 
4783 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4784 			   unsigned long value)
4785 {
4786 
4787 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4788 }
4789 
4790 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4791 {
4792 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4793 }
4794 
4795 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4796 {
4797 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 	unsigned long value;
4799 
4800 	switch (cr) {
4801 	case 0:
4802 		value = kvm_read_cr0(vcpu);
4803 		break;
4804 	case 2:
4805 		value = vcpu->arch.cr2;
4806 		break;
4807 	case 3:
4808 		value = kvm_read_cr3(vcpu);
4809 		break;
4810 	case 4:
4811 		value = kvm_read_cr4(vcpu);
4812 		break;
4813 	case 8:
4814 		value = kvm_get_cr8(vcpu);
4815 		break;
4816 	default:
4817 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4818 		return 0;
4819 	}
4820 
4821 	return value;
4822 }
4823 
4824 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4825 {
4826 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827 	int res = 0;
4828 
4829 	switch (cr) {
4830 	case 0:
4831 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4832 		break;
4833 	case 2:
4834 		vcpu->arch.cr2 = val;
4835 		break;
4836 	case 3:
4837 		res = kvm_set_cr3(vcpu, val);
4838 		break;
4839 	case 4:
4840 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4841 		break;
4842 	case 8:
4843 		res = kvm_set_cr8(vcpu, val);
4844 		break;
4845 	default:
4846 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4847 		res = -1;
4848 	}
4849 
4850 	return res;
4851 }
4852 
4853 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4854 {
4855 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4856 }
4857 
4858 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4859 {
4860 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4861 }
4862 
4863 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4864 {
4865 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4866 }
4867 
4868 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4869 {
4870 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4871 }
4872 
4873 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4874 {
4875 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4876 }
4877 
4878 static unsigned long emulator_get_cached_segment_base(
4879 	struct x86_emulate_ctxt *ctxt, int seg)
4880 {
4881 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4882 }
4883 
4884 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4885 				 struct desc_struct *desc, u32 *base3,
4886 				 int seg)
4887 {
4888 	struct kvm_segment var;
4889 
4890 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4891 	*selector = var.selector;
4892 
4893 	if (var.unusable) {
4894 		memset(desc, 0, sizeof(*desc));
4895 		return false;
4896 	}
4897 
4898 	if (var.g)
4899 		var.limit >>= 12;
4900 	set_desc_limit(desc, var.limit);
4901 	set_desc_base(desc, (unsigned long)var.base);
4902 #ifdef CONFIG_X86_64
4903 	if (base3)
4904 		*base3 = var.base >> 32;
4905 #endif
4906 	desc->type = var.type;
4907 	desc->s = var.s;
4908 	desc->dpl = var.dpl;
4909 	desc->p = var.present;
4910 	desc->avl = var.avl;
4911 	desc->l = var.l;
4912 	desc->d = var.db;
4913 	desc->g = var.g;
4914 
4915 	return true;
4916 }
4917 
4918 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4919 				 struct desc_struct *desc, u32 base3,
4920 				 int seg)
4921 {
4922 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923 	struct kvm_segment var;
4924 
4925 	var.selector = selector;
4926 	var.base = get_desc_base(desc);
4927 #ifdef CONFIG_X86_64
4928 	var.base |= ((u64)base3) << 32;
4929 #endif
4930 	var.limit = get_desc_limit(desc);
4931 	if (desc->g)
4932 		var.limit = (var.limit << 12) | 0xfff;
4933 	var.type = desc->type;
4934 	var.dpl = desc->dpl;
4935 	var.db = desc->d;
4936 	var.s = desc->s;
4937 	var.l = desc->l;
4938 	var.g = desc->g;
4939 	var.avl = desc->avl;
4940 	var.present = desc->p;
4941 	var.unusable = !var.present;
4942 	var.padding = 0;
4943 
4944 	kvm_set_segment(vcpu, &var, seg);
4945 	return;
4946 }
4947 
4948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4949 			    u32 msr_index, u64 *pdata)
4950 {
4951 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4952 }
4953 
4954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4955 			    u32 msr_index, u64 data)
4956 {
4957 	struct msr_data msr;
4958 
4959 	msr.data = data;
4960 	msr.index = msr_index;
4961 	msr.host_initiated = false;
4962 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4963 }
4964 
4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966 			      u32 pmc)
4967 {
4968 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4969 }
4970 
4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972 			     u32 pmc, u64 *pdata)
4973 {
4974 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976 
4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981 
4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984 	preempt_disable();
4985 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986 	/*
4987 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4988 	 * so it may be clear at this point.
4989 	 */
4990 	clts();
4991 }
4992 
4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995 	preempt_enable();
4996 }
4997 
4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999 			      struct x86_instruction_info *info,
5000 			      enum x86_intercept_stage stage)
5001 {
5002 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004 
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010 
5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015 
5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020 
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025 
5026 static const struct x86_emulate_ops emulate_ops = {
5027 	.read_gpr            = emulator_read_gpr,
5028 	.write_gpr           = emulator_write_gpr,
5029 	.read_std            = kvm_read_guest_virt_system,
5030 	.write_std           = kvm_write_guest_virt_system,
5031 	.fetch               = kvm_fetch_guest_virt,
5032 	.read_emulated       = emulator_read_emulated,
5033 	.write_emulated      = emulator_write_emulated,
5034 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5035 	.invlpg              = emulator_invlpg,
5036 	.pio_in_emulated     = emulator_pio_in_emulated,
5037 	.pio_out_emulated    = emulator_pio_out_emulated,
5038 	.get_segment         = emulator_get_segment,
5039 	.set_segment         = emulator_set_segment,
5040 	.get_cached_segment_base = emulator_get_cached_segment_base,
5041 	.get_gdt             = emulator_get_gdt,
5042 	.get_idt	     = emulator_get_idt,
5043 	.set_gdt             = emulator_set_gdt,
5044 	.set_idt	     = emulator_set_idt,
5045 	.get_cr              = emulator_get_cr,
5046 	.set_cr              = emulator_set_cr,
5047 	.cpl                 = emulator_get_cpl,
5048 	.get_dr              = emulator_get_dr,
5049 	.set_dr              = emulator_set_dr,
5050 	.set_msr             = emulator_set_msr,
5051 	.get_msr             = emulator_get_msr,
5052 	.check_pmc	     = emulator_check_pmc,
5053 	.read_pmc            = emulator_read_pmc,
5054 	.halt                = emulator_halt,
5055 	.wbinvd              = emulator_wbinvd,
5056 	.fix_hypercall       = emulator_fix_hypercall,
5057 	.get_fpu             = emulator_get_fpu,
5058 	.put_fpu             = emulator_put_fpu,
5059 	.intercept           = emulator_intercept,
5060 	.get_cpuid           = emulator_get_cpuid,
5061 	.set_nmi_mask        = emulator_set_nmi_mask,
5062 };
5063 
5064 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5065 {
5066 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5067 	/*
5068 	 * an sti; sti; sequence only disable interrupts for the first
5069 	 * instruction. So, if the last instruction, be it emulated or
5070 	 * not, left the system with the INT_STI flag enabled, it
5071 	 * means that the last instruction is an sti. We should not
5072 	 * leave the flag on in this case. The same goes for mov ss
5073 	 */
5074 	if (int_shadow & mask)
5075 		mask = 0;
5076 	if (unlikely(int_shadow || mask)) {
5077 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5078 		if (!mask)
5079 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5080 	}
5081 }
5082 
5083 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5084 {
5085 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5086 	if (ctxt->exception.vector == PF_VECTOR)
5087 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5088 
5089 	if (ctxt->exception.error_code_valid)
5090 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5091 				      ctxt->exception.error_code);
5092 	else
5093 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5094 	return false;
5095 }
5096 
5097 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5098 {
5099 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5100 	int cs_db, cs_l;
5101 
5102 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5103 
5104 	ctxt->eflags = kvm_get_rflags(vcpu);
5105 	ctxt->eip = kvm_rip_read(vcpu);
5106 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5107 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5108 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5109 		     cs_db				? X86EMUL_MODE_PROT32 :
5110 							  X86EMUL_MODE_PROT16;
5111 	ctxt->guest_mode = is_guest_mode(vcpu);
5112 
5113 	init_decode_cache(ctxt);
5114 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5115 }
5116 
5117 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5118 {
5119 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5120 	int ret;
5121 
5122 	init_emulate_ctxt(vcpu);
5123 
5124 	ctxt->op_bytes = 2;
5125 	ctxt->ad_bytes = 2;
5126 	ctxt->_eip = ctxt->eip + inc_eip;
5127 	ret = emulate_int_real(ctxt, irq);
5128 
5129 	if (ret != X86EMUL_CONTINUE)
5130 		return EMULATE_FAIL;
5131 
5132 	ctxt->eip = ctxt->_eip;
5133 	kvm_rip_write(vcpu, ctxt->eip);
5134 	kvm_set_rflags(vcpu, ctxt->eflags);
5135 
5136 	if (irq == NMI_VECTOR)
5137 		vcpu->arch.nmi_pending = 0;
5138 	else
5139 		vcpu->arch.interrupt.pending = false;
5140 
5141 	return EMULATE_DONE;
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5144 
5145 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5146 {
5147 	int r = EMULATE_DONE;
5148 
5149 	++vcpu->stat.insn_emulation_fail;
5150 	trace_kvm_emulate_insn_failed(vcpu);
5151 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5152 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5153 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5154 		vcpu->run->internal.ndata = 0;
5155 		r = EMULATE_FAIL;
5156 	}
5157 	kvm_queue_exception(vcpu, UD_VECTOR);
5158 
5159 	return r;
5160 }
5161 
5162 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5163 				  bool write_fault_to_shadow_pgtable,
5164 				  int emulation_type)
5165 {
5166 	gpa_t gpa = cr2;
5167 	pfn_t pfn;
5168 
5169 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5170 		return false;
5171 
5172 	if (!vcpu->arch.mmu.direct_map) {
5173 		/*
5174 		 * Write permission should be allowed since only
5175 		 * write access need to be emulated.
5176 		 */
5177 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5178 
5179 		/*
5180 		 * If the mapping is invalid in guest, let cpu retry
5181 		 * it to generate fault.
5182 		 */
5183 		if (gpa == UNMAPPED_GVA)
5184 			return true;
5185 	}
5186 
5187 	/*
5188 	 * Do not retry the unhandleable instruction if it faults on the
5189 	 * readonly host memory, otherwise it will goto a infinite loop:
5190 	 * retry instruction -> write #PF -> emulation fail -> retry
5191 	 * instruction -> ...
5192 	 */
5193 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5194 
5195 	/*
5196 	 * If the instruction failed on the error pfn, it can not be fixed,
5197 	 * report the error to userspace.
5198 	 */
5199 	if (is_error_noslot_pfn(pfn))
5200 		return false;
5201 
5202 	kvm_release_pfn_clean(pfn);
5203 
5204 	/* The instructions are well-emulated on direct mmu. */
5205 	if (vcpu->arch.mmu.direct_map) {
5206 		unsigned int indirect_shadow_pages;
5207 
5208 		spin_lock(&vcpu->kvm->mmu_lock);
5209 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5210 		spin_unlock(&vcpu->kvm->mmu_lock);
5211 
5212 		if (indirect_shadow_pages)
5213 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5214 
5215 		return true;
5216 	}
5217 
5218 	/*
5219 	 * if emulation was due to access to shadowed page table
5220 	 * and it failed try to unshadow page and re-enter the
5221 	 * guest to let CPU execute the instruction.
5222 	 */
5223 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5224 
5225 	/*
5226 	 * If the access faults on its page table, it can not
5227 	 * be fixed by unprotecting shadow page and it should
5228 	 * be reported to userspace.
5229 	 */
5230 	return !write_fault_to_shadow_pgtable;
5231 }
5232 
5233 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5234 			      unsigned long cr2,  int emulation_type)
5235 {
5236 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5237 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5238 
5239 	last_retry_eip = vcpu->arch.last_retry_eip;
5240 	last_retry_addr = vcpu->arch.last_retry_addr;
5241 
5242 	/*
5243 	 * If the emulation is caused by #PF and it is non-page_table
5244 	 * writing instruction, it means the VM-EXIT is caused by shadow
5245 	 * page protected, we can zap the shadow page and retry this
5246 	 * instruction directly.
5247 	 *
5248 	 * Note: if the guest uses a non-page-table modifying instruction
5249 	 * on the PDE that points to the instruction, then we will unmap
5250 	 * the instruction and go to an infinite loop. So, we cache the
5251 	 * last retried eip and the last fault address, if we meet the eip
5252 	 * and the address again, we can break out of the potential infinite
5253 	 * loop.
5254 	 */
5255 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5256 
5257 	if (!(emulation_type & EMULTYPE_RETRY))
5258 		return false;
5259 
5260 	if (x86_page_table_writing_insn(ctxt))
5261 		return false;
5262 
5263 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5264 		return false;
5265 
5266 	vcpu->arch.last_retry_eip = ctxt->eip;
5267 	vcpu->arch.last_retry_addr = cr2;
5268 
5269 	if (!vcpu->arch.mmu.direct_map)
5270 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5271 
5272 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5273 
5274 	return true;
5275 }
5276 
5277 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5278 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5279 
5280 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5281 				unsigned long *db)
5282 {
5283 	u32 dr6 = 0;
5284 	int i;
5285 	u32 enable, rwlen;
5286 
5287 	enable = dr7;
5288 	rwlen = dr7 >> 16;
5289 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5290 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5291 			dr6 |= (1 << i);
5292 	return dr6;
5293 }
5294 
5295 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5296 {
5297 	struct kvm_run *kvm_run = vcpu->run;
5298 
5299 	/*
5300 	 * rflags is the old, "raw" value of the flags.  The new value has
5301 	 * not been saved yet.
5302 	 *
5303 	 * This is correct even for TF set by the guest, because "the
5304 	 * processor will not generate this exception after the instruction
5305 	 * that sets the TF flag".
5306 	 */
5307 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5308 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5309 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5310 						  DR6_RTM;
5311 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5312 			kvm_run->debug.arch.exception = DB_VECTOR;
5313 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314 			*r = EMULATE_USER_EXIT;
5315 		} else {
5316 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5317 			/*
5318 			 * "Certain debug exceptions may clear bit 0-3.  The
5319 			 * remaining contents of the DR6 register are never
5320 			 * cleared by the processor".
5321 			 */
5322 			vcpu->arch.dr6 &= ~15;
5323 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5324 			kvm_queue_exception(vcpu, DB_VECTOR);
5325 		}
5326 	}
5327 }
5328 
5329 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5330 {
5331 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5332 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5333 		struct kvm_run *kvm_run = vcpu->run;
5334 		unsigned long eip = kvm_get_linear_rip(vcpu);
5335 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5336 					   vcpu->arch.guest_debug_dr7,
5337 					   vcpu->arch.eff_db);
5338 
5339 		if (dr6 != 0) {
5340 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5341 			kvm_run->debug.arch.pc = eip;
5342 			kvm_run->debug.arch.exception = DB_VECTOR;
5343 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5344 			*r = EMULATE_USER_EXIT;
5345 			return true;
5346 		}
5347 	}
5348 
5349 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5350 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5351 		unsigned long eip = kvm_get_linear_rip(vcpu);
5352 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5353 					   vcpu->arch.dr7,
5354 					   vcpu->arch.db);
5355 
5356 		if (dr6 != 0) {
5357 			vcpu->arch.dr6 &= ~15;
5358 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5359 			kvm_queue_exception(vcpu, DB_VECTOR);
5360 			*r = EMULATE_DONE;
5361 			return true;
5362 		}
5363 	}
5364 
5365 	return false;
5366 }
5367 
5368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5369 			    unsigned long cr2,
5370 			    int emulation_type,
5371 			    void *insn,
5372 			    int insn_len)
5373 {
5374 	int r;
5375 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5376 	bool writeback = true;
5377 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5378 
5379 	/*
5380 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5381 	 * never reused.
5382 	 */
5383 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5384 	kvm_clear_exception_queue(vcpu);
5385 
5386 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5387 		init_emulate_ctxt(vcpu);
5388 
5389 		/*
5390 		 * We will reenter on the same instruction since
5391 		 * we do not set complete_userspace_io.  This does not
5392 		 * handle watchpoints yet, those would be handled in
5393 		 * the emulate_ops.
5394 		 */
5395 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5396 			return r;
5397 
5398 		ctxt->interruptibility = 0;
5399 		ctxt->have_exception = false;
5400 		ctxt->exception.vector = -1;
5401 		ctxt->perm_ok = false;
5402 
5403 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5404 
5405 		r = x86_decode_insn(ctxt, insn, insn_len);
5406 
5407 		trace_kvm_emulate_insn_start(vcpu);
5408 		++vcpu->stat.insn_emulation;
5409 		if (r != EMULATION_OK)  {
5410 			if (emulation_type & EMULTYPE_TRAP_UD)
5411 				return EMULATE_FAIL;
5412 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5413 						emulation_type))
5414 				return EMULATE_DONE;
5415 			if (emulation_type & EMULTYPE_SKIP)
5416 				return EMULATE_FAIL;
5417 			return handle_emulation_failure(vcpu);
5418 		}
5419 	}
5420 
5421 	if (emulation_type & EMULTYPE_SKIP) {
5422 		kvm_rip_write(vcpu, ctxt->_eip);
5423 		if (ctxt->eflags & X86_EFLAGS_RF)
5424 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5425 		return EMULATE_DONE;
5426 	}
5427 
5428 	if (retry_instruction(ctxt, cr2, emulation_type))
5429 		return EMULATE_DONE;
5430 
5431 	/* this is needed for vmware backdoor interface to work since it
5432 	   changes registers values  during IO operation */
5433 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5434 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5435 		emulator_invalidate_register_cache(ctxt);
5436 	}
5437 
5438 restart:
5439 	r = x86_emulate_insn(ctxt);
5440 
5441 	if (r == EMULATION_INTERCEPTED)
5442 		return EMULATE_DONE;
5443 
5444 	if (r == EMULATION_FAILED) {
5445 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446 					emulation_type))
5447 			return EMULATE_DONE;
5448 
5449 		return handle_emulation_failure(vcpu);
5450 	}
5451 
5452 	if (ctxt->have_exception) {
5453 		r = EMULATE_DONE;
5454 		if (inject_emulated_exception(vcpu))
5455 			return r;
5456 	} else if (vcpu->arch.pio.count) {
5457 		if (!vcpu->arch.pio.in) {
5458 			/* FIXME: return into emulator if single-stepping.  */
5459 			vcpu->arch.pio.count = 0;
5460 		} else {
5461 			writeback = false;
5462 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5463 		}
5464 		r = EMULATE_USER_EXIT;
5465 	} else if (vcpu->mmio_needed) {
5466 		if (!vcpu->mmio_is_write)
5467 			writeback = false;
5468 		r = EMULATE_USER_EXIT;
5469 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5470 	} else if (r == EMULATION_RESTART)
5471 		goto restart;
5472 	else
5473 		r = EMULATE_DONE;
5474 
5475 	if (writeback) {
5476 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5477 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5478 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5479 		kvm_rip_write(vcpu, ctxt->eip);
5480 		if (r == EMULATE_DONE)
5481 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5482 		if (!ctxt->have_exception ||
5483 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5484 			__kvm_set_rflags(vcpu, ctxt->eflags);
5485 
5486 		/*
5487 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488 		 * do nothing, and it will be requested again as soon as
5489 		 * the shadow expires.  But we still need to check here,
5490 		 * because POPF has no interrupt shadow.
5491 		 */
5492 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5493 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5494 	} else
5495 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5496 
5497 	return r;
5498 }
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5500 
5501 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5502 {
5503 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5504 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5505 					    size, port, &val, 1);
5506 	/* do not return to emulator after return from userspace */
5507 	vcpu->arch.pio.count = 0;
5508 	return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5511 
5512 static void tsc_bad(void *info)
5513 {
5514 	__this_cpu_write(cpu_tsc_khz, 0);
5515 }
5516 
5517 static void tsc_khz_changed(void *data)
5518 {
5519 	struct cpufreq_freqs *freq = data;
5520 	unsigned long khz = 0;
5521 
5522 	if (data)
5523 		khz = freq->new;
5524 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5525 		khz = cpufreq_quick_get(raw_smp_processor_id());
5526 	if (!khz)
5527 		khz = tsc_khz;
5528 	__this_cpu_write(cpu_tsc_khz, khz);
5529 }
5530 
5531 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5532 				     void *data)
5533 {
5534 	struct cpufreq_freqs *freq = data;
5535 	struct kvm *kvm;
5536 	struct kvm_vcpu *vcpu;
5537 	int i, send_ipi = 0;
5538 
5539 	/*
5540 	 * We allow guests to temporarily run on slowing clocks,
5541 	 * provided we notify them after, or to run on accelerating
5542 	 * clocks, provided we notify them before.  Thus time never
5543 	 * goes backwards.
5544 	 *
5545 	 * However, we have a problem.  We can't atomically update
5546 	 * the frequency of a given CPU from this function; it is
5547 	 * merely a notifier, which can be called from any CPU.
5548 	 * Changing the TSC frequency at arbitrary points in time
5549 	 * requires a recomputation of local variables related to
5550 	 * the TSC for each VCPU.  We must flag these local variables
5551 	 * to be updated and be sure the update takes place with the
5552 	 * new frequency before any guests proceed.
5553 	 *
5554 	 * Unfortunately, the combination of hotplug CPU and frequency
5555 	 * change creates an intractable locking scenario; the order
5556 	 * of when these callouts happen is undefined with respect to
5557 	 * CPU hotplug, and they can race with each other.  As such,
5558 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559 	 * undefined; you can actually have a CPU frequency change take
5560 	 * place in between the computation of X and the setting of the
5561 	 * variable.  To protect against this problem, all updates of
5562 	 * the per_cpu tsc_khz variable are done in an interrupt
5563 	 * protected IPI, and all callers wishing to update the value
5564 	 * must wait for a synchronous IPI to complete (which is trivial
5565 	 * if the caller is on the CPU already).  This establishes the
5566 	 * necessary total order on variable updates.
5567 	 *
5568 	 * Note that because a guest time update may take place
5569 	 * anytime after the setting of the VCPU's request bit, the
5570 	 * correct TSC value must be set before the request.  However,
5571 	 * to ensure the update actually makes it to any guest which
5572 	 * starts running in hardware virtualization between the set
5573 	 * and the acquisition of the spinlock, we must also ping the
5574 	 * CPU after setting the request bit.
5575 	 *
5576 	 */
5577 
5578 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5579 		return 0;
5580 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5581 		return 0;
5582 
5583 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5584 
5585 	spin_lock(&kvm_lock);
5586 	list_for_each_entry(kvm, &vm_list, vm_list) {
5587 		kvm_for_each_vcpu(i, vcpu, kvm) {
5588 			if (vcpu->cpu != freq->cpu)
5589 				continue;
5590 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5591 			if (vcpu->cpu != smp_processor_id())
5592 				send_ipi = 1;
5593 		}
5594 	}
5595 	spin_unlock(&kvm_lock);
5596 
5597 	if (freq->old < freq->new && send_ipi) {
5598 		/*
5599 		 * We upscale the frequency.  Must make the guest
5600 		 * doesn't see old kvmclock values while running with
5601 		 * the new frequency, otherwise we risk the guest sees
5602 		 * time go backwards.
5603 		 *
5604 		 * In case we update the frequency for another cpu
5605 		 * (which might be in guest context) send an interrupt
5606 		 * to kick the cpu out of guest context.  Next time
5607 		 * guest context is entered kvmclock will be updated,
5608 		 * so the guest will not see stale values.
5609 		 */
5610 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5611 	}
5612 	return 0;
5613 }
5614 
5615 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5616 	.notifier_call  = kvmclock_cpufreq_notifier
5617 };
5618 
5619 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5620 					unsigned long action, void *hcpu)
5621 {
5622 	unsigned int cpu = (unsigned long)hcpu;
5623 
5624 	switch (action) {
5625 		case CPU_ONLINE:
5626 		case CPU_DOWN_FAILED:
5627 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5628 			break;
5629 		case CPU_DOWN_PREPARE:
5630 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5631 			break;
5632 	}
5633 	return NOTIFY_OK;
5634 }
5635 
5636 static struct notifier_block kvmclock_cpu_notifier_block = {
5637 	.notifier_call  = kvmclock_cpu_notifier,
5638 	.priority = -INT_MAX
5639 };
5640 
5641 static void kvm_timer_init(void)
5642 {
5643 	int cpu;
5644 
5645 	max_tsc_khz = tsc_khz;
5646 
5647 	cpu_notifier_register_begin();
5648 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5649 #ifdef CONFIG_CPU_FREQ
5650 		struct cpufreq_policy policy;
5651 		memset(&policy, 0, sizeof(policy));
5652 		cpu = get_cpu();
5653 		cpufreq_get_policy(&policy, cpu);
5654 		if (policy.cpuinfo.max_freq)
5655 			max_tsc_khz = policy.cpuinfo.max_freq;
5656 		put_cpu();
5657 #endif
5658 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5659 					  CPUFREQ_TRANSITION_NOTIFIER);
5660 	}
5661 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5662 	for_each_online_cpu(cpu)
5663 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664 
5665 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5666 	cpu_notifier_register_done();
5667 
5668 }
5669 
5670 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5671 
5672 int kvm_is_in_guest(void)
5673 {
5674 	return __this_cpu_read(current_vcpu) != NULL;
5675 }
5676 
5677 static int kvm_is_user_mode(void)
5678 {
5679 	int user_mode = 3;
5680 
5681 	if (__this_cpu_read(current_vcpu))
5682 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5683 
5684 	return user_mode != 0;
5685 }
5686 
5687 static unsigned long kvm_get_guest_ip(void)
5688 {
5689 	unsigned long ip = 0;
5690 
5691 	if (__this_cpu_read(current_vcpu))
5692 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5693 
5694 	return ip;
5695 }
5696 
5697 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5698 	.is_in_guest		= kvm_is_in_guest,
5699 	.is_user_mode		= kvm_is_user_mode,
5700 	.get_guest_ip		= kvm_get_guest_ip,
5701 };
5702 
5703 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5704 {
5705 	__this_cpu_write(current_vcpu, vcpu);
5706 }
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5708 
5709 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5710 {
5711 	__this_cpu_write(current_vcpu, NULL);
5712 }
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5714 
5715 static void kvm_set_mmio_spte_mask(void)
5716 {
5717 	u64 mask;
5718 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5719 
5720 	/*
5721 	 * Set the reserved bits and the present bit of an paging-structure
5722 	 * entry to generate page fault with PFER.RSV = 1.
5723 	 */
5724 	 /* Mask the reserved physical address bits. */
5725 	mask = rsvd_bits(maxphyaddr, 51);
5726 
5727 	/* Bit 62 is always reserved for 32bit host. */
5728 	mask |= 0x3ull << 62;
5729 
5730 	/* Set the present bit. */
5731 	mask |= 1ull;
5732 
5733 #ifdef CONFIG_X86_64
5734 	/*
5735 	 * If reserved bit is not supported, clear the present bit to disable
5736 	 * mmio page fault.
5737 	 */
5738 	if (maxphyaddr == 52)
5739 		mask &= ~1ull;
5740 #endif
5741 
5742 	kvm_mmu_set_mmio_spte_mask(mask);
5743 }
5744 
5745 #ifdef CONFIG_X86_64
5746 static void pvclock_gtod_update_fn(struct work_struct *work)
5747 {
5748 	struct kvm *kvm;
5749 
5750 	struct kvm_vcpu *vcpu;
5751 	int i;
5752 
5753 	spin_lock(&kvm_lock);
5754 	list_for_each_entry(kvm, &vm_list, vm_list)
5755 		kvm_for_each_vcpu(i, vcpu, kvm)
5756 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5757 	atomic_set(&kvm_guest_has_master_clock, 0);
5758 	spin_unlock(&kvm_lock);
5759 }
5760 
5761 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5762 
5763 /*
5764  * Notification about pvclock gtod data update.
5765  */
5766 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5767 			       void *priv)
5768 {
5769 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5770 	struct timekeeper *tk = priv;
5771 
5772 	update_pvclock_gtod(tk);
5773 
5774 	/* disable master clock if host does not trust, or does not
5775 	 * use, TSC clocksource
5776 	 */
5777 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5778 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5779 		queue_work(system_long_wq, &pvclock_gtod_work);
5780 
5781 	return 0;
5782 }
5783 
5784 static struct notifier_block pvclock_gtod_notifier = {
5785 	.notifier_call = pvclock_gtod_notify,
5786 };
5787 #endif
5788 
5789 int kvm_arch_init(void *opaque)
5790 {
5791 	int r;
5792 	struct kvm_x86_ops *ops = opaque;
5793 
5794 	if (kvm_x86_ops) {
5795 		printk(KERN_ERR "kvm: already loaded the other module\n");
5796 		r = -EEXIST;
5797 		goto out;
5798 	}
5799 
5800 	if (!ops->cpu_has_kvm_support()) {
5801 		printk(KERN_ERR "kvm: no hardware support\n");
5802 		r = -EOPNOTSUPP;
5803 		goto out;
5804 	}
5805 	if (ops->disabled_by_bios()) {
5806 		printk(KERN_ERR "kvm: disabled by bios\n");
5807 		r = -EOPNOTSUPP;
5808 		goto out;
5809 	}
5810 
5811 	r = -ENOMEM;
5812 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5813 	if (!shared_msrs) {
5814 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5815 		goto out;
5816 	}
5817 
5818 	r = kvm_mmu_module_init();
5819 	if (r)
5820 		goto out_free_percpu;
5821 
5822 	kvm_set_mmio_spte_mask();
5823 
5824 	kvm_x86_ops = ops;
5825 
5826 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5827 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5828 
5829 	kvm_timer_init();
5830 
5831 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5832 
5833 	if (cpu_has_xsave)
5834 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5835 
5836 	kvm_lapic_init();
5837 #ifdef CONFIG_X86_64
5838 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5839 #endif
5840 
5841 	return 0;
5842 
5843 out_free_percpu:
5844 	free_percpu(shared_msrs);
5845 out:
5846 	return r;
5847 }
5848 
5849 void kvm_arch_exit(void)
5850 {
5851 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5852 
5853 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5854 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5855 					    CPUFREQ_TRANSITION_NOTIFIER);
5856 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5857 #ifdef CONFIG_X86_64
5858 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5859 #endif
5860 	kvm_x86_ops = NULL;
5861 	kvm_mmu_module_exit();
5862 	free_percpu(shared_msrs);
5863 }
5864 
5865 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5866 {
5867 	++vcpu->stat.halt_exits;
5868 	if (irqchip_in_kernel(vcpu->kvm)) {
5869 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5870 		return 1;
5871 	} else {
5872 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5873 		return 0;
5874 	}
5875 }
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5877 
5878 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5879 {
5880 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5881 	return kvm_vcpu_halt(vcpu);
5882 }
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5884 
5885 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5886 {
5887 	u64 param, ingpa, outgpa, ret;
5888 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5889 	bool fast, longmode;
5890 
5891 	/*
5892 	 * hypercall generates UD from non zero cpl and real mode
5893 	 * per HYPER-V spec
5894 	 */
5895 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5896 		kvm_queue_exception(vcpu, UD_VECTOR);
5897 		return 0;
5898 	}
5899 
5900 	longmode = is_64_bit_mode(vcpu);
5901 
5902 	if (!longmode) {
5903 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5904 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5905 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5906 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5907 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5908 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5909 	}
5910 #ifdef CONFIG_X86_64
5911 	else {
5912 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5913 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5914 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5915 	}
5916 #endif
5917 
5918 	code = param & 0xffff;
5919 	fast = (param >> 16) & 0x1;
5920 	rep_cnt = (param >> 32) & 0xfff;
5921 	rep_idx = (param >> 48) & 0xfff;
5922 
5923 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5924 
5925 	switch (code) {
5926 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5927 		kvm_vcpu_on_spin(vcpu);
5928 		break;
5929 	default:
5930 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5931 		break;
5932 	}
5933 
5934 	ret = res | (((u64)rep_done & 0xfff) << 32);
5935 	if (longmode) {
5936 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5937 	} else {
5938 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5939 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5940 	}
5941 
5942 	return 1;
5943 }
5944 
5945 /*
5946  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5947  *
5948  * @apicid - apicid of vcpu to be kicked.
5949  */
5950 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5951 {
5952 	struct kvm_lapic_irq lapic_irq;
5953 
5954 	lapic_irq.shorthand = 0;
5955 	lapic_irq.dest_mode = 0;
5956 	lapic_irq.dest_id = apicid;
5957 
5958 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5959 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5960 }
5961 
5962 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5963 {
5964 	unsigned long nr, a0, a1, a2, a3, ret;
5965 	int op_64_bit, r = 1;
5966 
5967 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5968 
5969 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5970 		return kvm_hv_hypercall(vcpu);
5971 
5972 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5973 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5974 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5975 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5976 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5977 
5978 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5979 
5980 	op_64_bit = is_64_bit_mode(vcpu);
5981 	if (!op_64_bit) {
5982 		nr &= 0xFFFFFFFF;
5983 		a0 &= 0xFFFFFFFF;
5984 		a1 &= 0xFFFFFFFF;
5985 		a2 &= 0xFFFFFFFF;
5986 		a3 &= 0xFFFFFFFF;
5987 	}
5988 
5989 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5990 		ret = -KVM_EPERM;
5991 		goto out;
5992 	}
5993 
5994 	switch (nr) {
5995 	case KVM_HC_VAPIC_POLL_IRQ:
5996 		ret = 0;
5997 		break;
5998 	case KVM_HC_KICK_CPU:
5999 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6000 		ret = 0;
6001 		break;
6002 	default:
6003 		ret = -KVM_ENOSYS;
6004 		break;
6005 	}
6006 out:
6007 	if (!op_64_bit)
6008 		ret = (u32)ret;
6009 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6010 	++vcpu->stat.hypercalls;
6011 	return r;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6014 
6015 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6016 {
6017 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6018 	char instruction[3];
6019 	unsigned long rip = kvm_rip_read(vcpu);
6020 
6021 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6022 
6023 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6024 }
6025 
6026 /*
6027  * Check if userspace requested an interrupt window, and that the
6028  * interrupt window is open.
6029  *
6030  * No need to exit to userspace if we already have an interrupt queued.
6031  */
6032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6033 {
6034 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6035 		vcpu->run->request_interrupt_window &&
6036 		kvm_arch_interrupt_allowed(vcpu));
6037 }
6038 
6039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6040 {
6041 	struct kvm_run *kvm_run = vcpu->run;
6042 
6043 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6044 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6045 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6046 	if (irqchip_in_kernel(vcpu->kvm))
6047 		kvm_run->ready_for_interrupt_injection = 1;
6048 	else
6049 		kvm_run->ready_for_interrupt_injection =
6050 			kvm_arch_interrupt_allowed(vcpu) &&
6051 			!kvm_cpu_has_interrupt(vcpu) &&
6052 			!kvm_event_needs_reinjection(vcpu);
6053 }
6054 
6055 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6056 {
6057 	int max_irr, tpr;
6058 
6059 	if (!kvm_x86_ops->update_cr8_intercept)
6060 		return;
6061 
6062 	if (!vcpu->arch.apic)
6063 		return;
6064 
6065 	if (!vcpu->arch.apic->vapic_addr)
6066 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6067 	else
6068 		max_irr = -1;
6069 
6070 	if (max_irr != -1)
6071 		max_irr >>= 4;
6072 
6073 	tpr = kvm_lapic_get_cr8(vcpu);
6074 
6075 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6076 }
6077 
6078 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6079 {
6080 	int r;
6081 
6082 	/* try to reinject previous events if any */
6083 	if (vcpu->arch.exception.pending) {
6084 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6085 					vcpu->arch.exception.has_error_code,
6086 					vcpu->arch.exception.error_code);
6087 
6088 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6089 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6090 					     X86_EFLAGS_RF);
6091 
6092 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6093 		    (vcpu->arch.dr7 & DR7_GD)) {
6094 			vcpu->arch.dr7 &= ~DR7_GD;
6095 			kvm_update_dr7(vcpu);
6096 		}
6097 
6098 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6099 					  vcpu->arch.exception.has_error_code,
6100 					  vcpu->arch.exception.error_code,
6101 					  vcpu->arch.exception.reinject);
6102 		return 0;
6103 	}
6104 
6105 	if (vcpu->arch.nmi_injected) {
6106 		kvm_x86_ops->set_nmi(vcpu);
6107 		return 0;
6108 	}
6109 
6110 	if (vcpu->arch.interrupt.pending) {
6111 		kvm_x86_ops->set_irq(vcpu);
6112 		return 0;
6113 	}
6114 
6115 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6116 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6117 		if (r != 0)
6118 			return r;
6119 	}
6120 
6121 	/* try to inject new event if pending */
6122 	if (vcpu->arch.nmi_pending) {
6123 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6124 			--vcpu->arch.nmi_pending;
6125 			vcpu->arch.nmi_injected = true;
6126 			kvm_x86_ops->set_nmi(vcpu);
6127 		}
6128 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6129 		/*
6130 		 * Because interrupts can be injected asynchronously, we are
6131 		 * calling check_nested_events again here to avoid a race condition.
6132 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6133 		 * proposal and current concerns.  Perhaps we should be setting
6134 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6135 		 */
6136 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6137 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6138 			if (r != 0)
6139 				return r;
6140 		}
6141 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6142 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6143 					    false);
6144 			kvm_x86_ops->set_irq(vcpu);
6145 		}
6146 	}
6147 	return 0;
6148 }
6149 
6150 static void process_nmi(struct kvm_vcpu *vcpu)
6151 {
6152 	unsigned limit = 2;
6153 
6154 	/*
6155 	 * x86 is limited to one NMI running, and one NMI pending after it.
6156 	 * If an NMI is already in progress, limit further NMIs to just one.
6157 	 * Otherwise, allow two (and we'll inject the first one immediately).
6158 	 */
6159 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6160 		limit = 1;
6161 
6162 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6163 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6164 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6165 }
6166 
6167 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6168 {
6169 	u64 eoi_exit_bitmap[4];
6170 	u32 tmr[8];
6171 
6172 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6173 		return;
6174 
6175 	memset(eoi_exit_bitmap, 0, 32);
6176 	memset(tmr, 0, 32);
6177 
6178 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6179 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6180 	kvm_apic_update_tmr(vcpu, tmr);
6181 }
6182 
6183 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6184 {
6185 	++vcpu->stat.tlb_flush;
6186 	kvm_x86_ops->tlb_flush(vcpu);
6187 }
6188 
6189 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6190 {
6191 	struct page *page = NULL;
6192 
6193 	if (!irqchip_in_kernel(vcpu->kvm))
6194 		return;
6195 
6196 	if (!kvm_x86_ops->set_apic_access_page_addr)
6197 		return;
6198 
6199 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6200 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6201 
6202 	/*
6203 	 * Do not pin apic access page in memory, the MMU notifier
6204 	 * will call us again if it is migrated or swapped out.
6205 	 */
6206 	put_page(page);
6207 }
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6209 
6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6211 					   unsigned long address)
6212 {
6213 	/*
6214 	 * The physical address of apic access page is stored in the VMCS.
6215 	 * Update it when it becomes invalid.
6216 	 */
6217 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6218 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6219 }
6220 
6221 /*
6222  * Returns 1 to let vcpu_run() continue the guest execution loop without
6223  * exiting to the userspace.  Otherwise, the value will be returned to the
6224  * userspace.
6225  */
6226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6227 {
6228 	int r;
6229 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6230 		vcpu->run->request_interrupt_window;
6231 	bool req_immediate_exit = false;
6232 
6233 	if (vcpu->requests) {
6234 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6235 			kvm_mmu_unload(vcpu);
6236 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6237 			__kvm_migrate_timers(vcpu);
6238 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6239 			kvm_gen_update_masterclock(vcpu->kvm);
6240 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6241 			kvm_gen_kvmclock_update(vcpu);
6242 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6243 			r = kvm_guest_time_update(vcpu);
6244 			if (unlikely(r))
6245 				goto out;
6246 		}
6247 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6248 			kvm_mmu_sync_roots(vcpu);
6249 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6250 			kvm_vcpu_flush_tlb(vcpu);
6251 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6252 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6253 			r = 0;
6254 			goto out;
6255 		}
6256 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6257 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6258 			r = 0;
6259 			goto out;
6260 		}
6261 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6262 			vcpu->fpu_active = 0;
6263 			kvm_x86_ops->fpu_deactivate(vcpu);
6264 		}
6265 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6266 			/* Page is swapped out. Do synthetic halt */
6267 			vcpu->arch.apf.halted = true;
6268 			r = 1;
6269 			goto out;
6270 		}
6271 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6272 			record_steal_time(vcpu);
6273 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6274 			process_nmi(vcpu);
6275 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6276 			kvm_handle_pmu_event(vcpu);
6277 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6278 			kvm_deliver_pmi(vcpu);
6279 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6280 			vcpu_scan_ioapic(vcpu);
6281 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6282 			kvm_vcpu_reload_apic_access_page(vcpu);
6283 	}
6284 
6285 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6286 		kvm_apic_accept_events(vcpu);
6287 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6288 			r = 1;
6289 			goto out;
6290 		}
6291 
6292 		if (inject_pending_event(vcpu, req_int_win) != 0)
6293 			req_immediate_exit = true;
6294 		/* enable NMI/IRQ window open exits if needed */
6295 		else if (vcpu->arch.nmi_pending)
6296 			kvm_x86_ops->enable_nmi_window(vcpu);
6297 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6298 			kvm_x86_ops->enable_irq_window(vcpu);
6299 
6300 		if (kvm_lapic_enabled(vcpu)) {
6301 			/*
6302 			 * Update architecture specific hints for APIC
6303 			 * virtual interrupt delivery.
6304 			 */
6305 			if (kvm_x86_ops->hwapic_irr_update)
6306 				kvm_x86_ops->hwapic_irr_update(vcpu,
6307 					kvm_lapic_find_highest_irr(vcpu));
6308 			update_cr8_intercept(vcpu);
6309 			kvm_lapic_sync_to_vapic(vcpu);
6310 		}
6311 	}
6312 
6313 	r = kvm_mmu_reload(vcpu);
6314 	if (unlikely(r)) {
6315 		goto cancel_injection;
6316 	}
6317 
6318 	preempt_disable();
6319 
6320 	kvm_x86_ops->prepare_guest_switch(vcpu);
6321 	if (vcpu->fpu_active)
6322 		kvm_load_guest_fpu(vcpu);
6323 	kvm_load_guest_xcr0(vcpu);
6324 
6325 	vcpu->mode = IN_GUEST_MODE;
6326 
6327 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6328 
6329 	/* We should set ->mode before check ->requests,
6330 	 * see the comment in make_all_cpus_request.
6331 	 */
6332 	smp_mb__after_srcu_read_unlock();
6333 
6334 	local_irq_disable();
6335 
6336 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6337 	    || need_resched() || signal_pending(current)) {
6338 		vcpu->mode = OUTSIDE_GUEST_MODE;
6339 		smp_wmb();
6340 		local_irq_enable();
6341 		preempt_enable();
6342 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6343 		r = 1;
6344 		goto cancel_injection;
6345 	}
6346 
6347 	if (req_immediate_exit)
6348 		smp_send_reschedule(vcpu->cpu);
6349 
6350 	kvm_guest_enter();
6351 
6352 	if (unlikely(vcpu->arch.switch_db_regs)) {
6353 		set_debugreg(0, 7);
6354 		set_debugreg(vcpu->arch.eff_db[0], 0);
6355 		set_debugreg(vcpu->arch.eff_db[1], 1);
6356 		set_debugreg(vcpu->arch.eff_db[2], 2);
6357 		set_debugreg(vcpu->arch.eff_db[3], 3);
6358 		set_debugreg(vcpu->arch.dr6, 6);
6359 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6360 	}
6361 
6362 	trace_kvm_entry(vcpu->vcpu_id);
6363 	wait_lapic_expire(vcpu);
6364 	kvm_x86_ops->run(vcpu);
6365 
6366 	/*
6367 	 * Do this here before restoring debug registers on the host.  And
6368 	 * since we do this before handling the vmexit, a DR access vmexit
6369 	 * can (a) read the correct value of the debug registers, (b) set
6370 	 * KVM_DEBUGREG_WONT_EXIT again.
6371 	 */
6372 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6373 		int i;
6374 
6375 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6376 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6377 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6378 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6379 	}
6380 
6381 	/*
6382 	 * If the guest has used debug registers, at least dr7
6383 	 * will be disabled while returning to the host.
6384 	 * If we don't have active breakpoints in the host, we don't
6385 	 * care about the messed up debug address registers. But if
6386 	 * we have some of them active, restore the old state.
6387 	 */
6388 	if (hw_breakpoint_active())
6389 		hw_breakpoint_restore();
6390 
6391 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6392 							   native_read_tsc());
6393 
6394 	vcpu->mode = OUTSIDE_GUEST_MODE;
6395 	smp_wmb();
6396 
6397 	/* Interrupt is enabled by handle_external_intr() */
6398 	kvm_x86_ops->handle_external_intr(vcpu);
6399 
6400 	++vcpu->stat.exits;
6401 
6402 	/*
6403 	 * We must have an instruction between local_irq_enable() and
6404 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6405 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6406 	 * But we need to prevent reordering, hence this barrier():
6407 	 */
6408 	barrier();
6409 
6410 	kvm_guest_exit();
6411 
6412 	preempt_enable();
6413 
6414 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6415 
6416 	/*
6417 	 * Profile KVM exit RIPs:
6418 	 */
6419 	if (unlikely(prof_on == KVM_PROFILING)) {
6420 		unsigned long rip = kvm_rip_read(vcpu);
6421 		profile_hit(KVM_PROFILING, (void *)rip);
6422 	}
6423 
6424 	if (unlikely(vcpu->arch.tsc_always_catchup))
6425 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6426 
6427 	if (vcpu->arch.apic_attention)
6428 		kvm_lapic_sync_from_vapic(vcpu);
6429 
6430 	r = kvm_x86_ops->handle_exit(vcpu);
6431 	return r;
6432 
6433 cancel_injection:
6434 	kvm_x86_ops->cancel_injection(vcpu);
6435 	if (unlikely(vcpu->arch.apic_attention))
6436 		kvm_lapic_sync_from_vapic(vcpu);
6437 out:
6438 	return r;
6439 }
6440 
6441 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6442 {
6443 	if (!kvm_arch_vcpu_runnable(vcpu)) {
6444 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6445 		kvm_vcpu_block(vcpu);
6446 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6447 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6448 			return 1;
6449 	}
6450 
6451 	kvm_apic_accept_events(vcpu);
6452 	switch(vcpu->arch.mp_state) {
6453 	case KVM_MP_STATE_HALTED:
6454 		vcpu->arch.pv.pv_unhalted = false;
6455 		vcpu->arch.mp_state =
6456 			KVM_MP_STATE_RUNNABLE;
6457 	case KVM_MP_STATE_RUNNABLE:
6458 		vcpu->arch.apf.halted = false;
6459 		break;
6460 	case KVM_MP_STATE_INIT_RECEIVED:
6461 		break;
6462 	default:
6463 		return -EINTR;
6464 		break;
6465 	}
6466 	return 1;
6467 }
6468 
6469 static int vcpu_run(struct kvm_vcpu *vcpu)
6470 {
6471 	int r;
6472 	struct kvm *kvm = vcpu->kvm;
6473 
6474 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6475 
6476 	for (;;) {
6477 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6478 		    !vcpu->arch.apf.halted)
6479 			r = vcpu_enter_guest(vcpu);
6480 		else
6481 			r = vcpu_block(kvm, vcpu);
6482 		if (r <= 0)
6483 			break;
6484 
6485 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6486 		if (kvm_cpu_has_pending_timer(vcpu))
6487 			kvm_inject_pending_timer_irqs(vcpu);
6488 
6489 		if (dm_request_for_irq_injection(vcpu)) {
6490 			r = -EINTR;
6491 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6492 			++vcpu->stat.request_irq_exits;
6493 			break;
6494 		}
6495 
6496 		kvm_check_async_pf_completion(vcpu);
6497 
6498 		if (signal_pending(current)) {
6499 			r = -EINTR;
6500 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6501 			++vcpu->stat.signal_exits;
6502 			break;
6503 		}
6504 		if (need_resched()) {
6505 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6506 			cond_resched();
6507 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6508 		}
6509 	}
6510 
6511 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6512 
6513 	return r;
6514 }
6515 
6516 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6517 {
6518 	int r;
6519 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6521 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6522 	if (r != EMULATE_DONE)
6523 		return 0;
6524 	return 1;
6525 }
6526 
6527 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6528 {
6529 	BUG_ON(!vcpu->arch.pio.count);
6530 
6531 	return complete_emulated_io(vcpu);
6532 }
6533 
6534 /*
6535  * Implements the following, as a state machine:
6536  *
6537  * read:
6538  *   for each fragment
6539  *     for each mmio piece in the fragment
6540  *       write gpa, len
6541  *       exit
6542  *       copy data
6543  *   execute insn
6544  *
6545  * write:
6546  *   for each fragment
6547  *     for each mmio piece in the fragment
6548  *       write gpa, len
6549  *       copy data
6550  *       exit
6551  */
6552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6553 {
6554 	struct kvm_run *run = vcpu->run;
6555 	struct kvm_mmio_fragment *frag;
6556 	unsigned len;
6557 
6558 	BUG_ON(!vcpu->mmio_needed);
6559 
6560 	/* Complete previous fragment */
6561 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6562 	len = min(8u, frag->len);
6563 	if (!vcpu->mmio_is_write)
6564 		memcpy(frag->data, run->mmio.data, len);
6565 
6566 	if (frag->len <= 8) {
6567 		/* Switch to the next fragment. */
6568 		frag++;
6569 		vcpu->mmio_cur_fragment++;
6570 	} else {
6571 		/* Go forward to the next mmio piece. */
6572 		frag->data += len;
6573 		frag->gpa += len;
6574 		frag->len -= len;
6575 	}
6576 
6577 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6578 		vcpu->mmio_needed = 0;
6579 
6580 		/* FIXME: return into emulator if single-stepping.  */
6581 		if (vcpu->mmio_is_write)
6582 			return 1;
6583 		vcpu->mmio_read_completed = 1;
6584 		return complete_emulated_io(vcpu);
6585 	}
6586 
6587 	run->exit_reason = KVM_EXIT_MMIO;
6588 	run->mmio.phys_addr = frag->gpa;
6589 	if (vcpu->mmio_is_write)
6590 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6591 	run->mmio.len = min(8u, frag->len);
6592 	run->mmio.is_write = vcpu->mmio_is_write;
6593 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6594 	return 0;
6595 }
6596 
6597 
6598 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6599 {
6600 	int r;
6601 	sigset_t sigsaved;
6602 
6603 	if (!tsk_used_math(current) && init_fpu(current))
6604 		return -ENOMEM;
6605 
6606 	if (vcpu->sigset_active)
6607 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6608 
6609 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6610 		kvm_vcpu_block(vcpu);
6611 		kvm_apic_accept_events(vcpu);
6612 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6613 		r = -EAGAIN;
6614 		goto out;
6615 	}
6616 
6617 	/* re-sync apic's tpr */
6618 	if (!irqchip_in_kernel(vcpu->kvm)) {
6619 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6620 			r = -EINVAL;
6621 			goto out;
6622 		}
6623 	}
6624 
6625 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6626 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6627 		vcpu->arch.complete_userspace_io = NULL;
6628 		r = cui(vcpu);
6629 		if (r <= 0)
6630 			goto out;
6631 	} else
6632 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6633 
6634 	r = vcpu_run(vcpu);
6635 
6636 out:
6637 	post_kvm_run_save(vcpu);
6638 	if (vcpu->sigset_active)
6639 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6640 
6641 	return r;
6642 }
6643 
6644 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6645 {
6646 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6647 		/*
6648 		 * We are here if userspace calls get_regs() in the middle of
6649 		 * instruction emulation. Registers state needs to be copied
6650 		 * back from emulation context to vcpu. Userspace shouldn't do
6651 		 * that usually, but some bad designed PV devices (vmware
6652 		 * backdoor interface) need this to work
6653 		 */
6654 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6655 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6656 	}
6657 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6658 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6659 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6660 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6661 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6662 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6663 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6664 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6665 #ifdef CONFIG_X86_64
6666 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6667 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6668 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6669 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6670 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6671 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6672 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6673 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6674 #endif
6675 
6676 	regs->rip = kvm_rip_read(vcpu);
6677 	regs->rflags = kvm_get_rflags(vcpu);
6678 
6679 	return 0;
6680 }
6681 
6682 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6683 {
6684 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6685 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6686 
6687 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6688 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6689 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6690 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6691 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6692 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6693 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6694 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6695 #ifdef CONFIG_X86_64
6696 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6697 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6698 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6699 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6700 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6701 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6702 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6703 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6704 #endif
6705 
6706 	kvm_rip_write(vcpu, regs->rip);
6707 	kvm_set_rflags(vcpu, regs->rflags);
6708 
6709 	vcpu->arch.exception.pending = false;
6710 
6711 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6712 
6713 	return 0;
6714 }
6715 
6716 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6717 {
6718 	struct kvm_segment cs;
6719 
6720 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6721 	*db = cs.db;
6722 	*l = cs.l;
6723 }
6724 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6725 
6726 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6727 				  struct kvm_sregs *sregs)
6728 {
6729 	struct desc_ptr dt;
6730 
6731 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6732 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6733 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6734 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6735 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6736 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6737 
6738 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6739 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6740 
6741 	kvm_x86_ops->get_idt(vcpu, &dt);
6742 	sregs->idt.limit = dt.size;
6743 	sregs->idt.base = dt.address;
6744 	kvm_x86_ops->get_gdt(vcpu, &dt);
6745 	sregs->gdt.limit = dt.size;
6746 	sregs->gdt.base = dt.address;
6747 
6748 	sregs->cr0 = kvm_read_cr0(vcpu);
6749 	sregs->cr2 = vcpu->arch.cr2;
6750 	sregs->cr3 = kvm_read_cr3(vcpu);
6751 	sregs->cr4 = kvm_read_cr4(vcpu);
6752 	sregs->cr8 = kvm_get_cr8(vcpu);
6753 	sregs->efer = vcpu->arch.efer;
6754 	sregs->apic_base = kvm_get_apic_base(vcpu);
6755 
6756 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6757 
6758 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6759 		set_bit(vcpu->arch.interrupt.nr,
6760 			(unsigned long *)sregs->interrupt_bitmap);
6761 
6762 	return 0;
6763 }
6764 
6765 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6766 				    struct kvm_mp_state *mp_state)
6767 {
6768 	kvm_apic_accept_events(vcpu);
6769 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6770 					vcpu->arch.pv.pv_unhalted)
6771 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6772 	else
6773 		mp_state->mp_state = vcpu->arch.mp_state;
6774 
6775 	return 0;
6776 }
6777 
6778 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6779 				    struct kvm_mp_state *mp_state)
6780 {
6781 	if (!kvm_vcpu_has_lapic(vcpu) &&
6782 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6783 		return -EINVAL;
6784 
6785 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6786 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6787 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6788 	} else
6789 		vcpu->arch.mp_state = mp_state->mp_state;
6790 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6791 	return 0;
6792 }
6793 
6794 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6795 		    int reason, bool has_error_code, u32 error_code)
6796 {
6797 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6798 	int ret;
6799 
6800 	init_emulate_ctxt(vcpu);
6801 
6802 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6803 				   has_error_code, error_code);
6804 
6805 	if (ret)
6806 		return EMULATE_FAIL;
6807 
6808 	kvm_rip_write(vcpu, ctxt->eip);
6809 	kvm_set_rflags(vcpu, ctxt->eflags);
6810 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6811 	return EMULATE_DONE;
6812 }
6813 EXPORT_SYMBOL_GPL(kvm_task_switch);
6814 
6815 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6816 				  struct kvm_sregs *sregs)
6817 {
6818 	struct msr_data apic_base_msr;
6819 	int mmu_reset_needed = 0;
6820 	int pending_vec, max_bits, idx;
6821 	struct desc_ptr dt;
6822 
6823 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6824 		return -EINVAL;
6825 
6826 	dt.size = sregs->idt.limit;
6827 	dt.address = sregs->idt.base;
6828 	kvm_x86_ops->set_idt(vcpu, &dt);
6829 	dt.size = sregs->gdt.limit;
6830 	dt.address = sregs->gdt.base;
6831 	kvm_x86_ops->set_gdt(vcpu, &dt);
6832 
6833 	vcpu->arch.cr2 = sregs->cr2;
6834 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6835 	vcpu->arch.cr3 = sregs->cr3;
6836 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6837 
6838 	kvm_set_cr8(vcpu, sregs->cr8);
6839 
6840 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6841 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6842 	apic_base_msr.data = sregs->apic_base;
6843 	apic_base_msr.host_initiated = true;
6844 	kvm_set_apic_base(vcpu, &apic_base_msr);
6845 
6846 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6847 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6848 	vcpu->arch.cr0 = sregs->cr0;
6849 
6850 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6851 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6852 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6853 		kvm_update_cpuid(vcpu);
6854 
6855 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6856 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6857 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6858 		mmu_reset_needed = 1;
6859 	}
6860 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6861 
6862 	if (mmu_reset_needed)
6863 		kvm_mmu_reset_context(vcpu);
6864 
6865 	max_bits = KVM_NR_INTERRUPTS;
6866 	pending_vec = find_first_bit(
6867 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6868 	if (pending_vec < max_bits) {
6869 		kvm_queue_interrupt(vcpu, pending_vec, false);
6870 		pr_debug("Set back pending irq %d\n", pending_vec);
6871 	}
6872 
6873 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6874 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6875 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6876 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6877 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6878 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6879 
6880 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6881 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6882 
6883 	update_cr8_intercept(vcpu);
6884 
6885 	/* Older userspace won't unhalt the vcpu on reset. */
6886 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6887 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6888 	    !is_protmode(vcpu))
6889 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6890 
6891 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6892 
6893 	return 0;
6894 }
6895 
6896 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6897 					struct kvm_guest_debug *dbg)
6898 {
6899 	unsigned long rflags;
6900 	int i, r;
6901 
6902 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6903 		r = -EBUSY;
6904 		if (vcpu->arch.exception.pending)
6905 			goto out;
6906 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6907 			kvm_queue_exception(vcpu, DB_VECTOR);
6908 		else
6909 			kvm_queue_exception(vcpu, BP_VECTOR);
6910 	}
6911 
6912 	/*
6913 	 * Read rflags as long as potentially injected trace flags are still
6914 	 * filtered out.
6915 	 */
6916 	rflags = kvm_get_rflags(vcpu);
6917 
6918 	vcpu->guest_debug = dbg->control;
6919 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6920 		vcpu->guest_debug = 0;
6921 
6922 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6923 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6924 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6925 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6926 	} else {
6927 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6928 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6929 	}
6930 	kvm_update_dr7(vcpu);
6931 
6932 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6933 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6934 			get_segment_base(vcpu, VCPU_SREG_CS);
6935 
6936 	/*
6937 	 * Trigger an rflags update that will inject or remove the trace
6938 	 * flags.
6939 	 */
6940 	kvm_set_rflags(vcpu, rflags);
6941 
6942 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6943 
6944 	r = 0;
6945 
6946 out:
6947 
6948 	return r;
6949 }
6950 
6951 /*
6952  * Translate a guest virtual address to a guest physical address.
6953  */
6954 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6955 				    struct kvm_translation *tr)
6956 {
6957 	unsigned long vaddr = tr->linear_address;
6958 	gpa_t gpa;
6959 	int idx;
6960 
6961 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6962 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6963 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6964 	tr->physical_address = gpa;
6965 	tr->valid = gpa != UNMAPPED_GVA;
6966 	tr->writeable = 1;
6967 	tr->usermode = 0;
6968 
6969 	return 0;
6970 }
6971 
6972 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6973 {
6974 	struct i387_fxsave_struct *fxsave =
6975 			&vcpu->arch.guest_fpu.state->fxsave;
6976 
6977 	memcpy(fpu->fpr, fxsave->st_space, 128);
6978 	fpu->fcw = fxsave->cwd;
6979 	fpu->fsw = fxsave->swd;
6980 	fpu->ftwx = fxsave->twd;
6981 	fpu->last_opcode = fxsave->fop;
6982 	fpu->last_ip = fxsave->rip;
6983 	fpu->last_dp = fxsave->rdp;
6984 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6985 
6986 	return 0;
6987 }
6988 
6989 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6990 {
6991 	struct i387_fxsave_struct *fxsave =
6992 			&vcpu->arch.guest_fpu.state->fxsave;
6993 
6994 	memcpy(fxsave->st_space, fpu->fpr, 128);
6995 	fxsave->cwd = fpu->fcw;
6996 	fxsave->swd = fpu->fsw;
6997 	fxsave->twd = fpu->ftwx;
6998 	fxsave->fop = fpu->last_opcode;
6999 	fxsave->rip = fpu->last_ip;
7000 	fxsave->rdp = fpu->last_dp;
7001 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7002 
7003 	return 0;
7004 }
7005 
7006 int fx_init(struct kvm_vcpu *vcpu)
7007 {
7008 	int err;
7009 
7010 	err = fpu_alloc(&vcpu->arch.guest_fpu);
7011 	if (err)
7012 		return err;
7013 
7014 	fpu_finit(&vcpu->arch.guest_fpu);
7015 	if (cpu_has_xsaves)
7016 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7017 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7018 
7019 	/*
7020 	 * Ensure guest xcr0 is valid for loading
7021 	 */
7022 	vcpu->arch.xcr0 = XSTATE_FP;
7023 
7024 	vcpu->arch.cr0 |= X86_CR0_ET;
7025 
7026 	return 0;
7027 }
7028 EXPORT_SYMBOL_GPL(fx_init);
7029 
7030 static void fx_free(struct kvm_vcpu *vcpu)
7031 {
7032 	fpu_free(&vcpu->arch.guest_fpu);
7033 }
7034 
7035 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7036 {
7037 	if (vcpu->guest_fpu_loaded)
7038 		return;
7039 
7040 	/*
7041 	 * Restore all possible states in the guest,
7042 	 * and assume host would use all available bits.
7043 	 * Guest xcr0 would be loaded later.
7044 	 */
7045 	kvm_put_guest_xcr0(vcpu);
7046 	vcpu->guest_fpu_loaded = 1;
7047 	__kernel_fpu_begin();
7048 	fpu_restore_checking(&vcpu->arch.guest_fpu);
7049 	trace_kvm_fpu(1);
7050 }
7051 
7052 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7053 {
7054 	kvm_put_guest_xcr0(vcpu);
7055 
7056 	if (!vcpu->guest_fpu_loaded)
7057 		return;
7058 
7059 	vcpu->guest_fpu_loaded = 0;
7060 	fpu_save_init(&vcpu->arch.guest_fpu);
7061 	__kernel_fpu_end();
7062 	++vcpu->stat.fpu_reload;
7063 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7064 	trace_kvm_fpu(0);
7065 }
7066 
7067 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7068 {
7069 	kvmclock_reset(vcpu);
7070 
7071 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7072 	fx_free(vcpu);
7073 	kvm_x86_ops->vcpu_free(vcpu);
7074 }
7075 
7076 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7077 						unsigned int id)
7078 {
7079 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7080 		printk_once(KERN_WARNING
7081 		"kvm: SMP vm created on host with unstable TSC; "
7082 		"guest TSC will not be reliable\n");
7083 	return kvm_x86_ops->vcpu_create(kvm, id);
7084 }
7085 
7086 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7087 {
7088 	int r;
7089 
7090 	vcpu->arch.mtrr_state.have_fixed = 1;
7091 	r = vcpu_load(vcpu);
7092 	if (r)
7093 		return r;
7094 	kvm_vcpu_reset(vcpu);
7095 	kvm_mmu_setup(vcpu);
7096 	vcpu_put(vcpu);
7097 
7098 	return r;
7099 }
7100 
7101 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7102 {
7103 	struct msr_data msr;
7104 	struct kvm *kvm = vcpu->kvm;
7105 
7106 	if (vcpu_load(vcpu))
7107 		return;
7108 	msr.data = 0x0;
7109 	msr.index = MSR_IA32_TSC;
7110 	msr.host_initiated = true;
7111 	kvm_write_tsc(vcpu, &msr);
7112 	vcpu_put(vcpu);
7113 
7114 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7115 					KVMCLOCK_SYNC_PERIOD);
7116 }
7117 
7118 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7119 {
7120 	int r;
7121 	vcpu->arch.apf.msr_val = 0;
7122 
7123 	r = vcpu_load(vcpu);
7124 	BUG_ON(r);
7125 	kvm_mmu_unload(vcpu);
7126 	vcpu_put(vcpu);
7127 
7128 	fx_free(vcpu);
7129 	kvm_x86_ops->vcpu_free(vcpu);
7130 }
7131 
7132 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7133 {
7134 	atomic_set(&vcpu->arch.nmi_queued, 0);
7135 	vcpu->arch.nmi_pending = 0;
7136 	vcpu->arch.nmi_injected = false;
7137 	kvm_clear_interrupt_queue(vcpu);
7138 	kvm_clear_exception_queue(vcpu);
7139 
7140 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7141 	kvm_update_dr0123(vcpu);
7142 	vcpu->arch.dr6 = DR6_INIT;
7143 	kvm_update_dr6(vcpu);
7144 	vcpu->arch.dr7 = DR7_FIXED_1;
7145 	kvm_update_dr7(vcpu);
7146 
7147 	vcpu->arch.cr2 = 0;
7148 
7149 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7150 	vcpu->arch.apf.msr_val = 0;
7151 	vcpu->arch.st.msr_val = 0;
7152 
7153 	kvmclock_reset(vcpu);
7154 
7155 	kvm_clear_async_pf_completion_queue(vcpu);
7156 	kvm_async_pf_hash_reset(vcpu);
7157 	vcpu->arch.apf.halted = false;
7158 
7159 	kvm_pmu_reset(vcpu);
7160 
7161 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7162 	vcpu->arch.regs_avail = ~0;
7163 	vcpu->arch.regs_dirty = ~0;
7164 
7165 	kvm_x86_ops->vcpu_reset(vcpu);
7166 }
7167 
7168 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7169 {
7170 	struct kvm_segment cs;
7171 
7172 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7173 	cs.selector = vector << 8;
7174 	cs.base = vector << 12;
7175 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7176 	kvm_rip_write(vcpu, 0);
7177 }
7178 
7179 int kvm_arch_hardware_enable(void)
7180 {
7181 	struct kvm *kvm;
7182 	struct kvm_vcpu *vcpu;
7183 	int i;
7184 	int ret;
7185 	u64 local_tsc;
7186 	u64 max_tsc = 0;
7187 	bool stable, backwards_tsc = false;
7188 
7189 	kvm_shared_msr_cpu_online();
7190 	ret = kvm_x86_ops->hardware_enable();
7191 	if (ret != 0)
7192 		return ret;
7193 
7194 	local_tsc = native_read_tsc();
7195 	stable = !check_tsc_unstable();
7196 	list_for_each_entry(kvm, &vm_list, vm_list) {
7197 		kvm_for_each_vcpu(i, vcpu, kvm) {
7198 			if (!stable && vcpu->cpu == smp_processor_id())
7199 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7200 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7201 				backwards_tsc = true;
7202 				if (vcpu->arch.last_host_tsc > max_tsc)
7203 					max_tsc = vcpu->arch.last_host_tsc;
7204 			}
7205 		}
7206 	}
7207 
7208 	/*
7209 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7210 	 * platforms that reset TSC during suspend or hibernate actions, but
7211 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7212 	 * detect that condition here, which happens early in CPU bringup,
7213 	 * before any KVM threads can be running.  Unfortunately, we can't
7214 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7215 	 * enough into CPU bringup that we know how much real time has actually
7216 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7217 	 * variables that haven't been updated yet.
7218 	 *
7219 	 * So we simply find the maximum observed TSC above, then record the
7220 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7221 	 * the adjustment will be applied.  Note that we accumulate
7222 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7223 	 * gets a chance to run again.  In the event that no KVM threads get a
7224 	 * chance to run, we will miss the entire elapsed period, as we'll have
7225 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7226 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7227 	 * uniform across all VCPUs (not to mention the scenario is extremely
7228 	 * unlikely). It is possible that a second hibernate recovery happens
7229 	 * much faster than a first, causing the observed TSC here to be
7230 	 * smaller; this would require additional padding adjustment, which is
7231 	 * why we set last_host_tsc to the local tsc observed here.
7232 	 *
7233 	 * N.B. - this code below runs only on platforms with reliable TSC,
7234 	 * as that is the only way backwards_tsc is set above.  Also note
7235 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7236 	 * have the same delta_cyc adjustment applied if backwards_tsc
7237 	 * is detected.  Note further, this adjustment is only done once,
7238 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7239 	 * called multiple times (one for each physical CPU bringup).
7240 	 *
7241 	 * Platforms with unreliable TSCs don't have to deal with this, they
7242 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7243 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7244 	 * guarantee that they stay in perfect synchronization.
7245 	 */
7246 	if (backwards_tsc) {
7247 		u64 delta_cyc = max_tsc - local_tsc;
7248 		backwards_tsc_observed = true;
7249 		list_for_each_entry(kvm, &vm_list, vm_list) {
7250 			kvm_for_each_vcpu(i, vcpu, kvm) {
7251 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7252 				vcpu->arch.last_host_tsc = local_tsc;
7253 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7254 			}
7255 
7256 			/*
7257 			 * We have to disable TSC offset matching.. if you were
7258 			 * booting a VM while issuing an S4 host suspend....
7259 			 * you may have some problem.  Solving this issue is
7260 			 * left as an exercise to the reader.
7261 			 */
7262 			kvm->arch.last_tsc_nsec = 0;
7263 			kvm->arch.last_tsc_write = 0;
7264 		}
7265 
7266 	}
7267 	return 0;
7268 }
7269 
7270 void kvm_arch_hardware_disable(void)
7271 {
7272 	kvm_x86_ops->hardware_disable();
7273 	drop_user_return_notifiers();
7274 }
7275 
7276 int kvm_arch_hardware_setup(void)
7277 {
7278 	int r;
7279 
7280 	r = kvm_x86_ops->hardware_setup();
7281 	if (r != 0)
7282 		return r;
7283 
7284 	kvm_init_msr_list();
7285 	return 0;
7286 }
7287 
7288 void kvm_arch_hardware_unsetup(void)
7289 {
7290 	kvm_x86_ops->hardware_unsetup();
7291 }
7292 
7293 void kvm_arch_check_processor_compat(void *rtn)
7294 {
7295 	kvm_x86_ops->check_processor_compatibility(rtn);
7296 }
7297 
7298 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7299 {
7300 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7301 }
7302 
7303 struct static_key kvm_no_apic_vcpu __read_mostly;
7304 
7305 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7306 {
7307 	struct page *page;
7308 	struct kvm *kvm;
7309 	int r;
7310 
7311 	BUG_ON(vcpu->kvm == NULL);
7312 	kvm = vcpu->kvm;
7313 
7314 	vcpu->arch.pv.pv_unhalted = false;
7315 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7316 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7317 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7318 	else
7319 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7320 
7321 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7322 	if (!page) {
7323 		r = -ENOMEM;
7324 		goto fail;
7325 	}
7326 	vcpu->arch.pio_data = page_address(page);
7327 
7328 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7329 
7330 	r = kvm_mmu_create(vcpu);
7331 	if (r < 0)
7332 		goto fail_free_pio_data;
7333 
7334 	if (irqchip_in_kernel(kvm)) {
7335 		r = kvm_create_lapic(vcpu);
7336 		if (r < 0)
7337 			goto fail_mmu_destroy;
7338 	} else
7339 		static_key_slow_inc(&kvm_no_apic_vcpu);
7340 
7341 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7342 				       GFP_KERNEL);
7343 	if (!vcpu->arch.mce_banks) {
7344 		r = -ENOMEM;
7345 		goto fail_free_lapic;
7346 	}
7347 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7348 
7349 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7350 		r = -ENOMEM;
7351 		goto fail_free_mce_banks;
7352 	}
7353 
7354 	r = fx_init(vcpu);
7355 	if (r)
7356 		goto fail_free_wbinvd_dirty_mask;
7357 
7358 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7359 	vcpu->arch.pv_time_enabled = false;
7360 
7361 	vcpu->arch.guest_supported_xcr0 = 0;
7362 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7363 
7364 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7365 
7366 	kvm_async_pf_hash_reset(vcpu);
7367 	kvm_pmu_init(vcpu);
7368 
7369 	return 0;
7370 fail_free_wbinvd_dirty_mask:
7371 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7372 fail_free_mce_banks:
7373 	kfree(vcpu->arch.mce_banks);
7374 fail_free_lapic:
7375 	kvm_free_lapic(vcpu);
7376 fail_mmu_destroy:
7377 	kvm_mmu_destroy(vcpu);
7378 fail_free_pio_data:
7379 	free_page((unsigned long)vcpu->arch.pio_data);
7380 fail:
7381 	return r;
7382 }
7383 
7384 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7385 {
7386 	int idx;
7387 
7388 	kvm_pmu_destroy(vcpu);
7389 	kfree(vcpu->arch.mce_banks);
7390 	kvm_free_lapic(vcpu);
7391 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7392 	kvm_mmu_destroy(vcpu);
7393 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7394 	free_page((unsigned long)vcpu->arch.pio_data);
7395 	if (!irqchip_in_kernel(vcpu->kvm))
7396 		static_key_slow_dec(&kvm_no_apic_vcpu);
7397 }
7398 
7399 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7400 {
7401 	kvm_x86_ops->sched_in(vcpu, cpu);
7402 }
7403 
7404 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7405 {
7406 	if (type)
7407 		return -EINVAL;
7408 
7409 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7410 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7411 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7412 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7413 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7414 
7415 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7416 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7417 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7418 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7419 		&kvm->arch.irq_sources_bitmap);
7420 
7421 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7422 	mutex_init(&kvm->arch.apic_map_lock);
7423 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7424 
7425 	pvclock_update_vm_gtod_copy(kvm);
7426 
7427 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7428 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7429 
7430 	return 0;
7431 }
7432 
7433 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7434 {
7435 	int r;
7436 	r = vcpu_load(vcpu);
7437 	BUG_ON(r);
7438 	kvm_mmu_unload(vcpu);
7439 	vcpu_put(vcpu);
7440 }
7441 
7442 static void kvm_free_vcpus(struct kvm *kvm)
7443 {
7444 	unsigned int i;
7445 	struct kvm_vcpu *vcpu;
7446 
7447 	/*
7448 	 * Unpin any mmu pages first.
7449 	 */
7450 	kvm_for_each_vcpu(i, vcpu, kvm) {
7451 		kvm_clear_async_pf_completion_queue(vcpu);
7452 		kvm_unload_vcpu_mmu(vcpu);
7453 	}
7454 	kvm_for_each_vcpu(i, vcpu, kvm)
7455 		kvm_arch_vcpu_free(vcpu);
7456 
7457 	mutex_lock(&kvm->lock);
7458 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7459 		kvm->vcpus[i] = NULL;
7460 
7461 	atomic_set(&kvm->online_vcpus, 0);
7462 	mutex_unlock(&kvm->lock);
7463 }
7464 
7465 void kvm_arch_sync_events(struct kvm *kvm)
7466 {
7467 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7468 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7469 	kvm_free_all_assigned_devices(kvm);
7470 	kvm_free_pit(kvm);
7471 }
7472 
7473 void kvm_arch_destroy_vm(struct kvm *kvm)
7474 {
7475 	if (current->mm == kvm->mm) {
7476 		/*
7477 		 * Free memory regions allocated on behalf of userspace,
7478 		 * unless the the memory map has changed due to process exit
7479 		 * or fd copying.
7480 		 */
7481 		struct kvm_userspace_memory_region mem;
7482 		memset(&mem, 0, sizeof(mem));
7483 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7484 		kvm_set_memory_region(kvm, &mem);
7485 
7486 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7487 		kvm_set_memory_region(kvm, &mem);
7488 
7489 		mem.slot = TSS_PRIVATE_MEMSLOT;
7490 		kvm_set_memory_region(kvm, &mem);
7491 	}
7492 	kvm_iommu_unmap_guest(kvm);
7493 	kfree(kvm->arch.vpic);
7494 	kfree(kvm->arch.vioapic);
7495 	kvm_free_vcpus(kvm);
7496 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7497 }
7498 
7499 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7500 			   struct kvm_memory_slot *dont)
7501 {
7502 	int i;
7503 
7504 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7505 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7506 			kvfree(free->arch.rmap[i]);
7507 			free->arch.rmap[i] = NULL;
7508 		}
7509 		if (i == 0)
7510 			continue;
7511 
7512 		if (!dont || free->arch.lpage_info[i - 1] !=
7513 			     dont->arch.lpage_info[i - 1]) {
7514 			kvfree(free->arch.lpage_info[i - 1]);
7515 			free->arch.lpage_info[i - 1] = NULL;
7516 		}
7517 	}
7518 }
7519 
7520 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7521 			    unsigned long npages)
7522 {
7523 	int i;
7524 
7525 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7526 		unsigned long ugfn;
7527 		int lpages;
7528 		int level = i + 1;
7529 
7530 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7531 				      slot->base_gfn, level) + 1;
7532 
7533 		slot->arch.rmap[i] =
7534 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7535 		if (!slot->arch.rmap[i])
7536 			goto out_free;
7537 		if (i == 0)
7538 			continue;
7539 
7540 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7541 					sizeof(*slot->arch.lpage_info[i - 1]));
7542 		if (!slot->arch.lpage_info[i - 1])
7543 			goto out_free;
7544 
7545 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7546 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7547 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7548 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7549 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7550 		/*
7551 		 * If the gfn and userspace address are not aligned wrt each
7552 		 * other, or if explicitly asked to, disable large page
7553 		 * support for this slot
7554 		 */
7555 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7556 		    !kvm_largepages_enabled()) {
7557 			unsigned long j;
7558 
7559 			for (j = 0; j < lpages; ++j)
7560 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7561 		}
7562 	}
7563 
7564 	return 0;
7565 
7566 out_free:
7567 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7568 		kvfree(slot->arch.rmap[i]);
7569 		slot->arch.rmap[i] = NULL;
7570 		if (i == 0)
7571 			continue;
7572 
7573 		kvfree(slot->arch.lpage_info[i - 1]);
7574 		slot->arch.lpage_info[i - 1] = NULL;
7575 	}
7576 	return -ENOMEM;
7577 }
7578 
7579 void kvm_arch_memslots_updated(struct kvm *kvm)
7580 {
7581 	/*
7582 	 * memslots->generation has been incremented.
7583 	 * mmio generation may have reached its maximum value.
7584 	 */
7585 	kvm_mmu_invalidate_mmio_sptes(kvm);
7586 }
7587 
7588 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7589 				struct kvm_memory_slot *memslot,
7590 				struct kvm_userspace_memory_region *mem,
7591 				enum kvm_mr_change change)
7592 {
7593 	/*
7594 	 * Only private memory slots need to be mapped here since
7595 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7596 	 */
7597 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7598 		unsigned long userspace_addr;
7599 
7600 		/*
7601 		 * MAP_SHARED to prevent internal slot pages from being moved
7602 		 * by fork()/COW.
7603 		 */
7604 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7605 					 PROT_READ | PROT_WRITE,
7606 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7607 
7608 		if (IS_ERR((void *)userspace_addr))
7609 			return PTR_ERR((void *)userspace_addr);
7610 
7611 		memslot->userspace_addr = userspace_addr;
7612 	}
7613 
7614 	return 0;
7615 }
7616 
7617 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7618 				     struct kvm_memory_slot *new)
7619 {
7620 	/* Still write protect RO slot */
7621 	if (new->flags & KVM_MEM_READONLY) {
7622 		kvm_mmu_slot_remove_write_access(kvm, new);
7623 		return;
7624 	}
7625 
7626 	/*
7627 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7628 	 *
7629 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7630 	 *
7631 	 *  - KVM_MR_CREATE with dirty logging is disabled
7632 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7633 	 *
7634 	 * The reason is, in case of PML, we need to set D-bit for any slots
7635 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7636 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7637 	 * guarantees leaving PML enabled during guest's lifetime won't have
7638 	 * any additonal overhead from PML when guest is running with dirty
7639 	 * logging disabled for memory slots.
7640 	 *
7641 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7642 	 * to dirty logging mode.
7643 	 *
7644 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7645 	 *
7646 	 * In case of write protect:
7647 	 *
7648 	 * Write protect all pages for dirty logging.
7649 	 *
7650 	 * All the sptes including the large sptes which point to this
7651 	 * slot are set to readonly. We can not create any new large
7652 	 * spte on this slot until the end of the logging.
7653 	 *
7654 	 * See the comments in fast_page_fault().
7655 	 */
7656 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7657 		if (kvm_x86_ops->slot_enable_log_dirty)
7658 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7659 		else
7660 			kvm_mmu_slot_remove_write_access(kvm, new);
7661 	} else {
7662 		if (kvm_x86_ops->slot_disable_log_dirty)
7663 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7664 	}
7665 }
7666 
7667 void kvm_arch_commit_memory_region(struct kvm *kvm,
7668 				struct kvm_userspace_memory_region *mem,
7669 				const struct kvm_memory_slot *old,
7670 				enum kvm_mr_change change)
7671 {
7672 	struct kvm_memory_slot *new;
7673 	int nr_mmu_pages = 0;
7674 
7675 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7676 		int ret;
7677 
7678 		ret = vm_munmap(old->userspace_addr,
7679 				old->npages * PAGE_SIZE);
7680 		if (ret < 0)
7681 			printk(KERN_WARNING
7682 			       "kvm_vm_ioctl_set_memory_region: "
7683 			       "failed to munmap memory\n");
7684 	}
7685 
7686 	if (!kvm->arch.n_requested_mmu_pages)
7687 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7688 
7689 	if (nr_mmu_pages)
7690 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7691 
7692 	/* It's OK to get 'new' slot here as it has already been installed */
7693 	new = id_to_memslot(kvm->memslots, mem->slot);
7694 
7695 	/*
7696 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7697 	 * sptes have to be split.  If live migration is successful, the guest
7698 	 * in the source machine will be destroyed and large sptes will be
7699 	 * created in the destination. However, if the guest continues to run
7700 	 * in the source machine (for example if live migration fails), small
7701 	 * sptes will remain around and cause bad performance.
7702 	 *
7703 	 * Scan sptes if dirty logging has been stopped, dropping those
7704 	 * which can be collapsed into a single large-page spte.  Later
7705 	 * page faults will create the large-page sptes.
7706 	 */
7707 	if ((change != KVM_MR_DELETE) &&
7708 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7709 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7710 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7711 
7712 	/*
7713 	 * Set up write protection and/or dirty logging for the new slot.
7714 	 *
7715 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7716 	 * been zapped so no dirty logging staff is needed for old slot. For
7717 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7718 	 * new and it's also covered when dealing with the new slot.
7719 	 */
7720 	if (change != KVM_MR_DELETE)
7721 		kvm_mmu_slot_apply_flags(kvm, new);
7722 }
7723 
7724 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7725 {
7726 	kvm_mmu_invalidate_zap_all_pages(kvm);
7727 }
7728 
7729 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7730 				   struct kvm_memory_slot *slot)
7731 {
7732 	kvm_mmu_invalidate_zap_all_pages(kvm);
7733 }
7734 
7735 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7736 {
7737 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7738 		kvm_x86_ops->check_nested_events(vcpu, false);
7739 
7740 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7741 		!vcpu->arch.apf.halted)
7742 		|| !list_empty_careful(&vcpu->async_pf.done)
7743 		|| kvm_apic_has_events(vcpu)
7744 		|| vcpu->arch.pv.pv_unhalted
7745 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7746 		(kvm_arch_interrupt_allowed(vcpu) &&
7747 		 kvm_cpu_has_interrupt(vcpu));
7748 }
7749 
7750 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7751 {
7752 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7753 }
7754 
7755 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7756 {
7757 	return kvm_x86_ops->interrupt_allowed(vcpu);
7758 }
7759 
7760 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7761 {
7762 	if (is_64_bit_mode(vcpu))
7763 		return kvm_rip_read(vcpu);
7764 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7765 		     kvm_rip_read(vcpu));
7766 }
7767 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7768 
7769 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7770 {
7771 	return kvm_get_linear_rip(vcpu) == linear_rip;
7772 }
7773 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7774 
7775 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7776 {
7777 	unsigned long rflags;
7778 
7779 	rflags = kvm_x86_ops->get_rflags(vcpu);
7780 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7781 		rflags &= ~X86_EFLAGS_TF;
7782 	return rflags;
7783 }
7784 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7785 
7786 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7787 {
7788 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7789 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7790 		rflags |= X86_EFLAGS_TF;
7791 	kvm_x86_ops->set_rflags(vcpu, rflags);
7792 }
7793 
7794 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7795 {
7796 	__kvm_set_rflags(vcpu, rflags);
7797 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7798 }
7799 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7800 
7801 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7802 {
7803 	int r;
7804 
7805 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7806 	      work->wakeup_all)
7807 		return;
7808 
7809 	r = kvm_mmu_reload(vcpu);
7810 	if (unlikely(r))
7811 		return;
7812 
7813 	if (!vcpu->arch.mmu.direct_map &&
7814 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7815 		return;
7816 
7817 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7818 }
7819 
7820 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7821 {
7822 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7823 }
7824 
7825 static inline u32 kvm_async_pf_next_probe(u32 key)
7826 {
7827 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7828 }
7829 
7830 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7831 {
7832 	u32 key = kvm_async_pf_hash_fn(gfn);
7833 
7834 	while (vcpu->arch.apf.gfns[key] != ~0)
7835 		key = kvm_async_pf_next_probe(key);
7836 
7837 	vcpu->arch.apf.gfns[key] = gfn;
7838 }
7839 
7840 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7841 {
7842 	int i;
7843 	u32 key = kvm_async_pf_hash_fn(gfn);
7844 
7845 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7846 		     (vcpu->arch.apf.gfns[key] != gfn &&
7847 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7848 		key = kvm_async_pf_next_probe(key);
7849 
7850 	return key;
7851 }
7852 
7853 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7854 {
7855 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7856 }
7857 
7858 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7859 {
7860 	u32 i, j, k;
7861 
7862 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7863 	while (true) {
7864 		vcpu->arch.apf.gfns[i] = ~0;
7865 		do {
7866 			j = kvm_async_pf_next_probe(j);
7867 			if (vcpu->arch.apf.gfns[j] == ~0)
7868 				return;
7869 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7870 			/*
7871 			 * k lies cyclically in ]i,j]
7872 			 * |    i.k.j |
7873 			 * |....j i.k.| or  |.k..j i...|
7874 			 */
7875 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7876 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7877 		i = j;
7878 	}
7879 }
7880 
7881 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7882 {
7883 
7884 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7885 				      sizeof(val));
7886 }
7887 
7888 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7889 				     struct kvm_async_pf *work)
7890 {
7891 	struct x86_exception fault;
7892 
7893 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7894 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7895 
7896 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7897 	    (vcpu->arch.apf.send_user_only &&
7898 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7899 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7900 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7901 		fault.vector = PF_VECTOR;
7902 		fault.error_code_valid = true;
7903 		fault.error_code = 0;
7904 		fault.nested_page_fault = false;
7905 		fault.address = work->arch.token;
7906 		kvm_inject_page_fault(vcpu, &fault);
7907 	}
7908 }
7909 
7910 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7911 				 struct kvm_async_pf *work)
7912 {
7913 	struct x86_exception fault;
7914 
7915 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7916 	if (work->wakeup_all)
7917 		work->arch.token = ~0; /* broadcast wakeup */
7918 	else
7919 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7920 
7921 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7922 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7923 		fault.vector = PF_VECTOR;
7924 		fault.error_code_valid = true;
7925 		fault.error_code = 0;
7926 		fault.nested_page_fault = false;
7927 		fault.address = work->arch.token;
7928 		kvm_inject_page_fault(vcpu, &fault);
7929 	}
7930 	vcpu->arch.apf.halted = false;
7931 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7932 }
7933 
7934 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7935 {
7936 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7937 		return true;
7938 	else
7939 		return !kvm_event_needs_reinjection(vcpu) &&
7940 			kvm_x86_ops->interrupt_allowed(vcpu);
7941 }
7942 
7943 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7944 {
7945 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7946 }
7947 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7948 
7949 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7950 {
7951 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7952 }
7953 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7954 
7955 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7956 {
7957 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7958 }
7959 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7960 
7961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
7976