1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 #include <linux/smp.h> 64 65 #include <trace/events/ipi.h> 66 #include <trace/events/kvm.h> 67 68 #include <asm/debugreg.h> 69 #include <asm/msr.h> 70 #include <asm/desc.h> 71 #include <asm/mce.h> 72 #include <asm/pkru.h> 73 #include <linux/kernel_stat.h> 74 #include <asm/fpu/api.h> 75 #include <asm/fpu/xcr.h> 76 #include <asm/fpu/xstate.h> 77 #include <asm/pvclock.h> 78 #include <asm/div64.h> 79 #include <asm/irq_remapping.h> 80 #include <asm/mshyperv.h> 81 #include <asm/hypervisor.h> 82 #include <asm/tlbflush.h> 83 #include <asm/intel_pt.h> 84 #include <asm/emulate_prefix.h> 85 #include <asm/sgx.h> 86 #include <clocksource/hyperv_timer.h> 87 88 #define CREATE_TRACE_POINTS 89 #include "trace.h" 90 91 #define MAX_IO_MSRS 256 92 #define KVM_MAX_MCE_BANKS 32 93 94 struct kvm_caps kvm_caps __read_mostly = { 95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 96 }; 97 EXPORT_SYMBOL_GPL(kvm_caps); 98 99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 100 101 #define emul_to_vcpu(ctxt) \ 102 ((struct kvm_vcpu *)(ctxt)->vcpu) 103 104 /* EFER defaults: 105 * - enable syscall per default because its emulated by KVM 106 * - enable LME and LMA per default on 64 bit KVM 107 */ 108 #ifdef CONFIG_X86_64 109 static 110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 111 #else 112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 113 #endif 114 115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 116 117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 118 119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 120 121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 123 124 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 125 static void process_nmi(struct kvm_vcpu *vcpu); 126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127 static void store_regs(struct kvm_vcpu *vcpu); 128 static int sync_regs(struct kvm_vcpu *vcpu); 129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134 static DEFINE_MUTEX(vendor_module_lock); 135 struct kvm_x86_ops kvm_x86_ops __read_mostly; 136 137 #define KVM_X86_OP(func) \ 138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 139 *(((struct kvm_x86_ops *)0)->func)); 140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 142 #include <asm/kvm-x86-ops.h> 143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 145 146 static bool __read_mostly ignore_msrs = 0; 147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 148 149 bool __read_mostly report_ignored_msrs = true; 150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 151 EXPORT_SYMBOL_GPL(report_ignored_msrs); 152 153 unsigned int min_timer_period_us = 200; 154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 155 156 static bool __read_mostly kvmclock_periodic_sync = true; 157 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 158 159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 160 static u32 __read_mostly tsc_tolerance_ppm = 250; 161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 162 163 /* 164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables 166 * advancement entirely. Any other value is used as-is and disables adaptive 167 * tuning, i.e. allows privileged userspace to set an exact advancement time. 168 */ 169 static int __read_mostly lapic_timer_advance_ns = -1; 170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 171 172 static bool __read_mostly vector_hashing = true; 173 module_param(vector_hashing, bool, S_IRUGO); 174 175 bool __read_mostly enable_vmware_backdoor = false; 176 module_param(enable_vmware_backdoor, bool, S_IRUGO); 177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 178 179 /* 180 * Flags to manipulate forced emulation behavior (any non-zero value will 181 * enable forced emulation). 182 */ 183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 184 static int __read_mostly force_emulation_prefix; 185 module_param(force_emulation_prefix, int, 0644); 186 187 int __read_mostly pi_inject_timer = -1; 188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 189 190 /* Enable/disable PMU virtualization */ 191 bool __read_mostly enable_pmu = true; 192 EXPORT_SYMBOL_GPL(enable_pmu); 193 module_param(enable_pmu, bool, 0444); 194 195 bool __read_mostly eager_page_split = true; 196 module_param(eager_page_split, bool, 0644); 197 198 /* Enable/disable SMT_RSB bug mitigation */ 199 static bool __read_mostly mitigate_smt_rsb; 200 module_param(mitigate_smt_rsb, bool, 0444); 201 202 /* 203 * Restoring the host value for MSRs that are only consumed when running in 204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 205 * returns to userspace, i.e. the kernel can run with the guest's value. 206 */ 207 #define KVM_MAX_NR_USER_RETURN_MSRS 16 208 209 struct kvm_user_return_msrs { 210 struct user_return_notifier urn; 211 bool registered; 212 struct kvm_user_return_msr_values { 213 u64 host; 214 u64 curr; 215 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 216 }; 217 218 u32 __read_mostly kvm_nr_uret_msrs; 219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 221 static struct kvm_user_return_msrs __percpu *user_return_msrs; 222 223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 227 228 u64 __read_mostly host_efer; 229 EXPORT_SYMBOL_GPL(host_efer); 230 231 bool __read_mostly allow_smaller_maxphyaddr = 0; 232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 233 234 bool __read_mostly enable_apicv = true; 235 EXPORT_SYMBOL_GPL(enable_apicv); 236 237 u64 __read_mostly host_xss; 238 EXPORT_SYMBOL_GPL(host_xss); 239 240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 241 KVM_GENERIC_VM_STATS(), 242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 243 STATS_DESC_COUNTER(VM, mmu_pte_write), 244 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 245 STATS_DESC_COUNTER(VM, mmu_flooded), 246 STATS_DESC_COUNTER(VM, mmu_recycled), 247 STATS_DESC_COUNTER(VM, mmu_cache_miss), 248 STATS_DESC_ICOUNTER(VM, mmu_unsync), 249 STATS_DESC_ICOUNTER(VM, pages_4k), 250 STATS_DESC_ICOUNTER(VM, pages_2m), 251 STATS_DESC_ICOUNTER(VM, pages_1g), 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 255 }; 256 257 const struct kvm_stats_header kvm_vm_stats_header = { 258 .name_size = KVM_STATS_NAME_SIZE, 259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 260 .id_offset = sizeof(struct kvm_stats_header), 261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 263 sizeof(kvm_vm_stats_desc), 264 }; 265 266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 267 KVM_GENERIC_VCPU_STATS(), 268 STATS_DESC_COUNTER(VCPU, pf_taken), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_emulate), 271 STATS_DESC_COUNTER(VCPU, pf_spurious), 272 STATS_DESC_COUNTER(VCPU, pf_fast), 273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 274 STATS_DESC_COUNTER(VCPU, pf_guest), 275 STATS_DESC_COUNTER(VCPU, tlb_flush), 276 STATS_DESC_COUNTER(VCPU, invlpg), 277 STATS_DESC_COUNTER(VCPU, exits), 278 STATS_DESC_COUNTER(VCPU, io_exits), 279 STATS_DESC_COUNTER(VCPU, mmio_exits), 280 STATS_DESC_COUNTER(VCPU, signal_exits), 281 STATS_DESC_COUNTER(VCPU, irq_window_exits), 282 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 283 STATS_DESC_COUNTER(VCPU, l1d_flush), 284 STATS_DESC_COUNTER(VCPU, halt_exits), 285 STATS_DESC_COUNTER(VCPU, request_irq_exits), 286 STATS_DESC_COUNTER(VCPU, irq_exits), 287 STATS_DESC_COUNTER(VCPU, host_state_reload), 288 STATS_DESC_COUNTER(VCPU, fpu_reload), 289 STATS_DESC_COUNTER(VCPU, insn_emulation), 290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 291 STATS_DESC_COUNTER(VCPU, hypercalls), 292 STATS_DESC_COUNTER(VCPU, irq_injections), 293 STATS_DESC_COUNTER(VCPU, nmi_injections), 294 STATS_DESC_COUNTER(VCPU, req_event), 295 STATS_DESC_COUNTER(VCPU, nested_run), 296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 297 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 298 STATS_DESC_COUNTER(VCPU, preemption_reported), 299 STATS_DESC_COUNTER(VCPU, preemption_other), 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 301 STATS_DESC_COUNTER(VCPU, notify_window_exits), 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 extern bool gds_ucode_mitigated(void); 318 319 /* 320 * When called, it means the previous get/set msr reached an invalid msr. 321 * Return true if we want to ignore/silent this failed msr access. 322 */ 323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 324 { 325 const char *op = write ? "wrmsr" : "rdmsr"; 326 327 if (ignore_msrs) { 328 if (report_ignored_msrs) 329 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 330 op, msr, data); 331 /* Mask the error */ 332 return true; 333 } else { 334 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 335 op, msr, data); 336 return false; 337 } 338 } 339 340 static struct kmem_cache *kvm_alloc_emulator_cache(void) 341 { 342 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 343 unsigned int size = sizeof(struct x86_emulate_ctxt); 344 345 return kmem_cache_create_usercopy("x86_emulator", size, 346 __alignof__(struct x86_emulate_ctxt), 347 SLAB_ACCOUNT, useroffset, 348 size - useroffset, NULL); 349 } 350 351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 352 353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 354 { 355 int i; 356 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 357 vcpu->arch.apf.gfns[i] = ~0; 358 } 359 360 static void kvm_on_user_return(struct user_return_notifier *urn) 361 { 362 unsigned slot; 363 struct kvm_user_return_msrs *msrs 364 = container_of(urn, struct kvm_user_return_msrs, urn); 365 struct kvm_user_return_msr_values *values; 366 unsigned long flags; 367 368 /* 369 * Disabling irqs at this point since the following code could be 370 * interrupted and executed through kvm_arch_hardware_disable() 371 */ 372 local_irq_save(flags); 373 if (msrs->registered) { 374 msrs->registered = false; 375 user_return_notifier_unregister(urn); 376 } 377 local_irq_restore(flags); 378 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 379 values = &msrs->values[slot]; 380 if (values->host != values->curr) { 381 wrmsrl(kvm_uret_msrs_list[slot], values->host); 382 values->curr = values->host; 383 } 384 } 385 } 386 387 static int kvm_probe_user_return_msr(u32 msr) 388 { 389 u64 val; 390 int ret; 391 392 preempt_disable(); 393 ret = rdmsrl_safe(msr, &val); 394 if (ret) 395 goto out; 396 ret = wrmsrl_safe(msr, val); 397 out: 398 preempt_enable(); 399 return ret; 400 } 401 402 int kvm_add_user_return_msr(u32 msr) 403 { 404 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 405 406 if (kvm_probe_user_return_msr(msr)) 407 return -1; 408 409 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 410 return kvm_nr_uret_msrs++; 411 } 412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 413 414 int kvm_find_user_return_msr(u32 msr) 415 { 416 int i; 417 418 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 419 if (kvm_uret_msrs_list[i] == msr) 420 return i; 421 } 422 return -1; 423 } 424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 425 426 static void kvm_user_return_msr_cpu_online(void) 427 { 428 unsigned int cpu = smp_processor_id(); 429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 430 u64 value; 431 int i; 432 433 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 434 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 435 msrs->values[i].host = value; 436 msrs->values[i].curr = value; 437 } 438 } 439 440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 441 { 442 unsigned int cpu = smp_processor_id(); 443 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 444 int err; 445 446 value = (value & mask) | (msrs->values[slot].host & ~mask); 447 if (value == msrs->values[slot].curr) 448 return 0; 449 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 450 if (err) 451 return 1; 452 453 msrs->values[slot].curr = value; 454 if (!msrs->registered) { 455 msrs->urn.on_user_return = kvm_on_user_return; 456 user_return_notifier_register(&msrs->urn); 457 msrs->registered = true; 458 } 459 return 0; 460 } 461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 462 463 static void drop_user_return_notifiers(void) 464 { 465 unsigned int cpu = smp_processor_id(); 466 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 467 468 if (msrs->registered) 469 kvm_on_user_return(&msrs->urn); 470 } 471 472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 473 { 474 return vcpu->arch.apic_base; 475 } 476 477 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 478 { 479 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 480 } 481 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 482 483 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 484 { 485 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 486 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 487 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 488 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 489 490 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 491 return 1; 492 if (!msr_info->host_initiated) { 493 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 494 return 1; 495 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 496 return 1; 497 } 498 499 kvm_lapic_set_base(vcpu, msr_info->data); 500 kvm_recalculate_apic_map(vcpu->kvm); 501 return 0; 502 } 503 504 /* 505 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 506 * 507 * Hardware virtualization extension instructions may fault if a reboot turns 508 * off virtualization while processes are running. Usually after catching the 509 * fault we just panic; during reboot instead the instruction is ignored. 510 */ 511 noinstr void kvm_spurious_fault(void) 512 { 513 /* Fault while not rebooting. We want the trace. */ 514 BUG_ON(!kvm_rebooting); 515 } 516 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 517 518 #define EXCPT_BENIGN 0 519 #define EXCPT_CONTRIBUTORY 1 520 #define EXCPT_PF 2 521 522 static int exception_class(int vector) 523 { 524 switch (vector) { 525 case PF_VECTOR: 526 return EXCPT_PF; 527 case DE_VECTOR: 528 case TS_VECTOR: 529 case NP_VECTOR: 530 case SS_VECTOR: 531 case GP_VECTOR: 532 return EXCPT_CONTRIBUTORY; 533 default: 534 break; 535 } 536 return EXCPT_BENIGN; 537 } 538 539 #define EXCPT_FAULT 0 540 #define EXCPT_TRAP 1 541 #define EXCPT_ABORT 2 542 #define EXCPT_INTERRUPT 3 543 #define EXCPT_DB 4 544 545 static int exception_type(int vector) 546 { 547 unsigned int mask; 548 549 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 550 return EXCPT_INTERRUPT; 551 552 mask = 1 << vector; 553 554 /* 555 * #DBs can be trap-like or fault-like, the caller must check other CPU 556 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 557 */ 558 if (mask & (1 << DB_VECTOR)) 559 return EXCPT_DB; 560 561 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 562 return EXCPT_TRAP; 563 564 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 565 return EXCPT_ABORT; 566 567 /* Reserved exceptions will result in fault */ 568 return EXCPT_FAULT; 569 } 570 571 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 572 struct kvm_queued_exception *ex) 573 { 574 if (!ex->has_payload) 575 return; 576 577 switch (ex->vector) { 578 case DB_VECTOR: 579 /* 580 * "Certain debug exceptions may clear bit 0-3. The 581 * remaining contents of the DR6 register are never 582 * cleared by the processor". 583 */ 584 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 585 /* 586 * In order to reflect the #DB exception payload in guest 587 * dr6, three components need to be considered: active low 588 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 589 * DR6_BS and DR6_BT) 590 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 591 * In the target guest dr6: 592 * FIXED_1 bits should always be set. 593 * Active low bits should be cleared if 1-setting in payload. 594 * Active high bits should be set if 1-setting in payload. 595 * 596 * Note, the payload is compatible with the pending debug 597 * exceptions/exit qualification under VMX, that active_low bits 598 * are active high in payload. 599 * So they need to be flipped for DR6. 600 */ 601 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 602 vcpu->arch.dr6 |= ex->payload; 603 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 604 605 /* 606 * The #DB payload is defined as compatible with the 'pending 607 * debug exceptions' field under VMX, not DR6. While bit 12 is 608 * defined in the 'pending debug exceptions' field (enabled 609 * breakpoint), it is reserved and must be zero in DR6. 610 */ 611 vcpu->arch.dr6 &= ~BIT(12); 612 break; 613 case PF_VECTOR: 614 vcpu->arch.cr2 = ex->payload; 615 break; 616 } 617 618 ex->has_payload = false; 619 ex->payload = 0; 620 } 621 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 622 623 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 624 bool has_error_code, u32 error_code, 625 bool has_payload, unsigned long payload) 626 { 627 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 628 629 ex->vector = vector; 630 ex->injected = false; 631 ex->pending = true; 632 ex->has_error_code = has_error_code; 633 ex->error_code = error_code; 634 ex->has_payload = has_payload; 635 ex->payload = payload; 636 } 637 638 /* Forcibly leave the nested mode in cases like a vCPU reset */ 639 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 640 { 641 kvm_x86_ops.nested_ops->leave_nested(vcpu); 642 } 643 644 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 645 unsigned nr, bool has_error, u32 error_code, 646 bool has_payload, unsigned long payload, bool reinject) 647 { 648 u32 prev_nr; 649 int class1, class2; 650 651 kvm_make_request(KVM_REQ_EVENT, vcpu); 652 653 /* 654 * If the exception is destined for L2 and isn't being reinjected, 655 * morph it to a VM-Exit if L1 wants to intercept the exception. A 656 * previously injected exception is not checked because it was checked 657 * when it was original queued, and re-checking is incorrect if _L1_ 658 * injected the exception, in which case it's exempt from interception. 659 */ 660 if (!reinject && is_guest_mode(vcpu) && 661 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 662 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 663 has_payload, payload); 664 return; 665 } 666 667 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 668 queue: 669 if (reinject) { 670 /* 671 * On VM-Entry, an exception can be pending if and only 672 * if event injection was blocked by nested_run_pending. 673 * In that case, however, vcpu_enter_guest() requests an 674 * immediate exit, and the guest shouldn't proceed far 675 * enough to need reinjection. 676 */ 677 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 678 vcpu->arch.exception.injected = true; 679 if (WARN_ON_ONCE(has_payload)) { 680 /* 681 * A reinjected event has already 682 * delivered its payload. 683 */ 684 has_payload = false; 685 payload = 0; 686 } 687 } else { 688 vcpu->arch.exception.pending = true; 689 vcpu->arch.exception.injected = false; 690 } 691 vcpu->arch.exception.has_error_code = has_error; 692 vcpu->arch.exception.vector = nr; 693 vcpu->arch.exception.error_code = error_code; 694 vcpu->arch.exception.has_payload = has_payload; 695 vcpu->arch.exception.payload = payload; 696 if (!is_guest_mode(vcpu)) 697 kvm_deliver_exception_payload(vcpu, 698 &vcpu->arch.exception); 699 return; 700 } 701 702 /* to check exception */ 703 prev_nr = vcpu->arch.exception.vector; 704 if (prev_nr == DF_VECTOR) { 705 /* triple fault -> shutdown */ 706 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 707 return; 708 } 709 class1 = exception_class(prev_nr); 710 class2 = exception_class(nr); 711 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 712 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 713 /* 714 * Synthesize #DF. Clear the previously injected or pending 715 * exception so as not to incorrectly trigger shutdown. 716 */ 717 vcpu->arch.exception.injected = false; 718 vcpu->arch.exception.pending = false; 719 720 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 721 } else { 722 /* replace previous exception with a new one in a hope 723 that instruction re-execution will regenerate lost 724 exception */ 725 goto queue; 726 } 727 } 728 729 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 732 } 733 EXPORT_SYMBOL_GPL(kvm_queue_exception); 734 735 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 736 { 737 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 738 } 739 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 740 741 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 742 unsigned long payload) 743 { 744 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 745 } 746 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 747 748 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 749 u32 error_code, unsigned long payload) 750 { 751 kvm_multiple_exception(vcpu, nr, true, error_code, 752 true, payload, false); 753 } 754 755 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 756 { 757 if (err) 758 kvm_inject_gp(vcpu, 0); 759 else 760 return kvm_skip_emulated_instruction(vcpu); 761 762 return 1; 763 } 764 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 765 766 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 767 { 768 if (err) { 769 kvm_inject_gp(vcpu, 0); 770 return 1; 771 } 772 773 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 774 EMULTYPE_COMPLETE_USER_EXIT); 775 } 776 777 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 778 { 779 ++vcpu->stat.pf_guest; 780 781 /* 782 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 783 * whether or not L1 wants to intercept "regular" #PF. 784 */ 785 if (is_guest_mode(vcpu) && fault->async_page_fault) 786 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 787 true, fault->error_code, 788 true, fault->address); 789 else 790 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 791 fault->address); 792 } 793 794 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 795 struct x86_exception *fault) 796 { 797 struct kvm_mmu *fault_mmu; 798 WARN_ON_ONCE(fault->vector != PF_VECTOR); 799 800 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 801 vcpu->arch.walk_mmu; 802 803 /* 804 * Invalidate the TLB entry for the faulting address, if it exists, 805 * else the access will fault indefinitely (and to emulate hardware). 806 */ 807 if ((fault->error_code & PFERR_PRESENT_MASK) && 808 !(fault->error_code & PFERR_RSVD_MASK)) 809 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 810 KVM_MMU_ROOT_CURRENT); 811 812 fault_mmu->inject_page_fault(vcpu, fault); 813 } 814 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 815 816 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 817 { 818 atomic_inc(&vcpu->arch.nmi_queued); 819 kvm_make_request(KVM_REQ_NMI, vcpu); 820 } 821 822 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 823 { 824 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 825 } 826 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 827 828 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 829 { 830 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 831 } 832 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 833 834 /* 835 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 836 * a #GP and return false. 837 */ 838 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 839 { 840 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 841 return true; 842 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 843 return false; 844 } 845 846 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 847 { 848 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 849 return true; 850 851 kvm_queue_exception(vcpu, UD_VECTOR); 852 return false; 853 } 854 EXPORT_SYMBOL_GPL(kvm_require_dr); 855 856 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 857 { 858 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 859 } 860 861 /* 862 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 863 */ 864 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 865 { 866 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 867 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 868 gpa_t real_gpa; 869 int i; 870 int ret; 871 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 872 873 /* 874 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 875 * to an L1 GPA. 876 */ 877 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 878 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 879 if (real_gpa == INVALID_GPA) 880 return 0; 881 882 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 883 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 884 cr3 & GENMASK(11, 5), sizeof(pdpte)); 885 if (ret < 0) 886 return 0; 887 888 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 889 if ((pdpte[i] & PT_PRESENT_MASK) && 890 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 891 return 0; 892 } 893 } 894 895 /* 896 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 897 * Shadow page roots need to be reconstructed instead. 898 */ 899 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 900 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 901 902 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 903 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 904 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 905 vcpu->arch.pdptrs_from_userspace = false; 906 907 return 1; 908 } 909 EXPORT_SYMBOL_GPL(load_pdptrs); 910 911 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 912 { 913 #ifdef CONFIG_X86_64 914 if (cr0 & 0xffffffff00000000UL) 915 return false; 916 #endif 917 918 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 919 return false; 920 921 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 922 return false; 923 924 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 925 } 926 927 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 928 { 929 /* 930 * CR0.WP is incorporated into the MMU role, but only for non-nested, 931 * indirect shadow MMUs. If paging is disabled, no updates are needed 932 * as there are no permission bits to emulate. If TDP is enabled, the 933 * MMU's metadata needs to be updated, e.g. so that emulating guest 934 * translations does the right thing, but there's no need to unload the 935 * root as CR0.WP doesn't affect SPTEs. 936 */ 937 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 938 if (!(cr0 & X86_CR0_PG)) 939 return; 940 941 if (tdp_enabled) { 942 kvm_init_mmu(vcpu); 943 return; 944 } 945 } 946 947 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 948 kvm_clear_async_pf_completion_queue(vcpu); 949 kvm_async_pf_hash_reset(vcpu); 950 951 /* 952 * Clearing CR0.PG is defined to flush the TLB from the guest's 953 * perspective. 954 */ 955 if (!(cr0 & X86_CR0_PG)) 956 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 957 } 958 959 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 960 kvm_mmu_reset_context(vcpu); 961 962 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 963 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 964 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 965 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 966 } 967 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 968 969 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 970 { 971 unsigned long old_cr0 = kvm_read_cr0(vcpu); 972 973 if (!kvm_is_valid_cr0(vcpu, cr0)) 974 return 1; 975 976 cr0 |= X86_CR0_ET; 977 978 /* Write to CR0 reserved bits are ignored, even on Intel. */ 979 cr0 &= ~CR0_RESERVED_BITS; 980 981 #ifdef CONFIG_X86_64 982 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 983 (cr0 & X86_CR0_PG)) { 984 int cs_db, cs_l; 985 986 if (!is_pae(vcpu)) 987 return 1; 988 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 989 if (cs_l) 990 return 1; 991 } 992 #endif 993 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 994 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 995 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 996 return 1; 997 998 if (!(cr0 & X86_CR0_PG) && 999 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1000 return 1; 1001 1002 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1003 1004 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1005 1006 return 0; 1007 } 1008 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1009 1010 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1011 { 1012 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1013 } 1014 EXPORT_SYMBOL_GPL(kvm_lmsw); 1015 1016 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1017 { 1018 if (vcpu->arch.guest_state_protected) 1019 return; 1020 1021 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1022 1023 if (vcpu->arch.xcr0 != host_xcr0) 1024 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1025 1026 if (vcpu->arch.xsaves_enabled && 1027 vcpu->arch.ia32_xss != host_xss) 1028 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1029 } 1030 1031 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1032 vcpu->arch.pkru != vcpu->arch.host_pkru && 1033 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1034 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1035 write_pkru(vcpu->arch.pkru); 1036 } 1037 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1038 1039 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1040 { 1041 if (vcpu->arch.guest_state_protected) 1042 return; 1043 1044 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1045 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1046 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1047 vcpu->arch.pkru = rdpkru(); 1048 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1049 write_pkru(vcpu->arch.host_pkru); 1050 } 1051 1052 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1053 1054 if (vcpu->arch.xcr0 != host_xcr0) 1055 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1056 1057 if (vcpu->arch.xsaves_enabled && 1058 vcpu->arch.ia32_xss != host_xss) 1059 wrmsrl(MSR_IA32_XSS, host_xss); 1060 } 1061 1062 } 1063 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1064 1065 #ifdef CONFIG_X86_64 1066 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1067 { 1068 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1069 } 1070 #endif 1071 1072 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1073 { 1074 u64 xcr0 = xcr; 1075 u64 old_xcr0 = vcpu->arch.xcr0; 1076 u64 valid_bits; 1077 1078 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1079 if (index != XCR_XFEATURE_ENABLED_MASK) 1080 return 1; 1081 if (!(xcr0 & XFEATURE_MASK_FP)) 1082 return 1; 1083 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1084 return 1; 1085 1086 /* 1087 * Do not allow the guest to set bits that we do not support 1088 * saving. However, xcr0 bit 0 is always set, even if the 1089 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1090 */ 1091 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1092 if (xcr0 & ~valid_bits) 1093 return 1; 1094 1095 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1096 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1097 return 1; 1098 1099 if (xcr0 & XFEATURE_MASK_AVX512) { 1100 if (!(xcr0 & XFEATURE_MASK_YMM)) 1101 return 1; 1102 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1103 return 1; 1104 } 1105 1106 if ((xcr0 & XFEATURE_MASK_XTILE) && 1107 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1108 return 1; 1109 1110 vcpu->arch.xcr0 = xcr0; 1111 1112 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1113 kvm_update_cpuid_runtime(vcpu); 1114 return 0; 1115 } 1116 1117 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1118 { 1119 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1120 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1121 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1122 kvm_inject_gp(vcpu, 0); 1123 return 1; 1124 } 1125 1126 return kvm_skip_emulated_instruction(vcpu); 1127 } 1128 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1129 1130 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1131 { 1132 if (cr4 & cr4_reserved_bits) 1133 return false; 1134 1135 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1136 return false; 1137 1138 return true; 1139 } 1140 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1141 1142 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1143 { 1144 return __kvm_is_valid_cr4(vcpu, cr4) && 1145 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1146 } 1147 1148 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1149 { 1150 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1151 kvm_mmu_reset_context(vcpu); 1152 1153 /* 1154 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1155 * according to the SDM; however, stale prev_roots could be reused 1156 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1157 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1158 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1159 * so fall through. 1160 */ 1161 if (!tdp_enabled && 1162 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1163 kvm_mmu_unload(vcpu); 1164 1165 /* 1166 * The TLB has to be flushed for all PCIDs if any of the following 1167 * (architecturally required) changes happen: 1168 * - CR4.PCIDE is changed from 1 to 0 1169 * - CR4.PGE is toggled 1170 * 1171 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1172 */ 1173 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1174 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1175 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1176 1177 /* 1178 * The TLB has to be flushed for the current PCID if any of the 1179 * following (architecturally required) changes happen: 1180 * - CR4.SMEP is changed from 0 to 1 1181 * - CR4.PAE is toggled 1182 */ 1183 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1184 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1185 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1186 1187 } 1188 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1189 1190 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1191 { 1192 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1193 1194 if (!kvm_is_valid_cr4(vcpu, cr4)) 1195 return 1; 1196 1197 if (is_long_mode(vcpu)) { 1198 if (!(cr4 & X86_CR4_PAE)) 1199 return 1; 1200 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1201 return 1; 1202 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1203 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1204 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1205 return 1; 1206 1207 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1208 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1209 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1210 return 1; 1211 } 1212 1213 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1214 1215 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1216 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1220 1221 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1222 { 1223 struct kvm_mmu *mmu = vcpu->arch.mmu; 1224 unsigned long roots_to_free = 0; 1225 int i; 1226 1227 /* 1228 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1229 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1230 * also via the emulator. KVM's TDP page tables are not in the scope of 1231 * the invalidation, but the guest's TLB entries need to be flushed as 1232 * the CPU may have cached entries in its TLB for the target PCID. 1233 */ 1234 if (unlikely(tdp_enabled)) { 1235 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1236 return; 1237 } 1238 1239 /* 1240 * If neither the current CR3 nor any of the prev_roots use the given 1241 * PCID, then nothing needs to be done here because a resync will 1242 * happen anyway before switching to any other CR3. 1243 */ 1244 if (kvm_get_active_pcid(vcpu) == pcid) { 1245 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1246 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1247 } 1248 1249 /* 1250 * If PCID is disabled, there is no need to free prev_roots even if the 1251 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1252 * with PCIDE=0. 1253 */ 1254 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1255 return; 1256 1257 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1258 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1259 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1260 1261 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1262 } 1263 1264 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1265 { 1266 bool skip_tlb_flush = false; 1267 unsigned long pcid = 0; 1268 #ifdef CONFIG_X86_64 1269 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1270 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1271 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1272 pcid = cr3 & X86_CR3_PCID_MASK; 1273 } 1274 #endif 1275 1276 /* PDPTRs are always reloaded for PAE paging. */ 1277 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1278 goto handle_tlb_flush; 1279 1280 /* 1281 * Do not condition the GPA check on long mode, this helper is used to 1282 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1283 * the current vCPU mode is accurate. 1284 */ 1285 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1286 return 1; 1287 1288 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1289 return 1; 1290 1291 if (cr3 != kvm_read_cr3(vcpu)) 1292 kvm_mmu_new_pgd(vcpu, cr3); 1293 1294 vcpu->arch.cr3 = cr3; 1295 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1296 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1297 1298 handle_tlb_flush: 1299 /* 1300 * A load of CR3 that flushes the TLB flushes only the current PCID, 1301 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1302 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1303 * and it's impossible to use a non-zero PCID when PCID is disabled, 1304 * i.e. only PCID=0 can be relevant. 1305 */ 1306 if (!skip_tlb_flush) 1307 kvm_invalidate_pcid(vcpu, pcid); 1308 1309 return 0; 1310 } 1311 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1312 1313 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1314 { 1315 if (cr8 & CR8_RESERVED_BITS) 1316 return 1; 1317 if (lapic_in_kernel(vcpu)) 1318 kvm_lapic_set_tpr(vcpu, cr8); 1319 else 1320 vcpu->arch.cr8 = cr8; 1321 return 0; 1322 } 1323 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1324 1325 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1326 { 1327 if (lapic_in_kernel(vcpu)) 1328 return kvm_lapic_get_cr8(vcpu); 1329 else 1330 return vcpu->arch.cr8; 1331 } 1332 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1333 1334 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1335 { 1336 int i; 1337 1338 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1339 for (i = 0; i < KVM_NR_DB_REGS; i++) 1340 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1341 } 1342 } 1343 1344 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1345 { 1346 unsigned long dr7; 1347 1348 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1349 dr7 = vcpu->arch.guest_debug_dr7; 1350 else 1351 dr7 = vcpu->arch.dr7; 1352 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1353 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1354 if (dr7 & DR7_BP_EN_MASK) 1355 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1356 } 1357 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1358 1359 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1360 { 1361 u64 fixed = DR6_FIXED_1; 1362 1363 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1364 fixed |= DR6_RTM; 1365 1366 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1367 fixed |= DR6_BUS_LOCK; 1368 return fixed; 1369 } 1370 1371 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1372 { 1373 size_t size = ARRAY_SIZE(vcpu->arch.db); 1374 1375 switch (dr) { 1376 case 0 ... 3: 1377 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1378 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1379 vcpu->arch.eff_db[dr] = val; 1380 break; 1381 case 4: 1382 case 6: 1383 if (!kvm_dr6_valid(val)) 1384 return 1; /* #GP */ 1385 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1386 break; 1387 case 5: 1388 default: /* 7 */ 1389 if (!kvm_dr7_valid(val)) 1390 return 1; /* #GP */ 1391 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1392 kvm_update_dr7(vcpu); 1393 break; 1394 } 1395 1396 return 0; 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_set_dr); 1399 1400 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1401 { 1402 size_t size = ARRAY_SIZE(vcpu->arch.db); 1403 1404 switch (dr) { 1405 case 0 ... 3: 1406 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1407 break; 1408 case 4: 1409 case 6: 1410 *val = vcpu->arch.dr6; 1411 break; 1412 case 5: 1413 default: /* 7 */ 1414 *val = vcpu->arch.dr7; 1415 break; 1416 } 1417 } 1418 EXPORT_SYMBOL_GPL(kvm_get_dr); 1419 1420 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1421 { 1422 u32 ecx = kvm_rcx_read(vcpu); 1423 u64 data; 1424 1425 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1426 kvm_inject_gp(vcpu, 0); 1427 return 1; 1428 } 1429 1430 kvm_rax_write(vcpu, (u32)data); 1431 kvm_rdx_write(vcpu, data >> 32); 1432 return kvm_skip_emulated_instruction(vcpu); 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1435 1436 /* 1437 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1438 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1439 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1440 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1441 * MSRs that KVM emulates without strictly requiring host support. 1442 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1443 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1444 * msrs_to_save and emulated_msrs. 1445 */ 1446 1447 static const u32 msrs_to_save_base[] = { 1448 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1449 MSR_STAR, 1450 #ifdef CONFIG_X86_64 1451 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1452 #endif 1453 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1454 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1455 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1456 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1457 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1458 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1459 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1460 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1461 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1462 MSR_IA32_UMWAIT_CONTROL, 1463 1464 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1465 }; 1466 1467 static const u32 msrs_to_save_pmu[] = { 1468 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1469 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1470 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1471 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1472 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1473 1474 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1475 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1476 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1477 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1479 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1480 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1481 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1483 1484 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1485 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1486 1487 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1488 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1489 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1490 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1491 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1492 1493 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1494 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1495 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1496 }; 1497 1498 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1499 ARRAY_SIZE(msrs_to_save_pmu)]; 1500 static unsigned num_msrs_to_save; 1501 1502 static const u32 emulated_msrs_all[] = { 1503 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1504 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1505 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1506 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1507 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1508 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1509 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1510 HV_X64_MSR_RESET, 1511 HV_X64_MSR_VP_INDEX, 1512 HV_X64_MSR_VP_RUNTIME, 1513 HV_X64_MSR_SCONTROL, 1514 HV_X64_MSR_STIMER0_CONFIG, 1515 HV_X64_MSR_VP_ASSIST_PAGE, 1516 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1517 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1518 HV_X64_MSR_SYNDBG_OPTIONS, 1519 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1520 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1521 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1522 1523 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1524 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1525 1526 MSR_IA32_TSC_ADJUST, 1527 MSR_IA32_TSC_DEADLINE, 1528 MSR_IA32_ARCH_CAPABILITIES, 1529 MSR_IA32_PERF_CAPABILITIES, 1530 MSR_IA32_MISC_ENABLE, 1531 MSR_IA32_MCG_STATUS, 1532 MSR_IA32_MCG_CTL, 1533 MSR_IA32_MCG_EXT_CTL, 1534 MSR_IA32_SMBASE, 1535 MSR_SMI_COUNT, 1536 MSR_PLATFORM_INFO, 1537 MSR_MISC_FEATURES_ENABLES, 1538 MSR_AMD64_VIRT_SPEC_CTRL, 1539 MSR_AMD64_TSC_RATIO, 1540 MSR_IA32_POWER_CTL, 1541 MSR_IA32_UCODE_REV, 1542 1543 /* 1544 * KVM always supports the "true" VMX control MSRs, even if the host 1545 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1546 * doesn't strictly require them to exist in the host (ignoring that 1547 * KVM would refuse to load in the first place if the core set of MSRs 1548 * aren't supported). 1549 */ 1550 MSR_IA32_VMX_BASIC, 1551 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1552 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1553 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1554 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR4_FIXED0, 1558 MSR_IA32_VMX_VMCS_ENUM, 1559 MSR_IA32_VMX_PROCBASED_CTLS2, 1560 MSR_IA32_VMX_EPT_VPID_CAP, 1561 MSR_IA32_VMX_VMFUNC, 1562 1563 MSR_K7_HWCR, 1564 MSR_KVM_POLL_CONTROL, 1565 }; 1566 1567 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1568 static unsigned num_emulated_msrs; 1569 1570 /* 1571 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1572 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1573 * feature MSRs, but are handled separately to allow expedited lookups. 1574 */ 1575 static const u32 msr_based_features_all_except_vmx[] = { 1576 MSR_AMD64_DE_CFG, 1577 MSR_IA32_UCODE_REV, 1578 MSR_IA32_ARCH_CAPABILITIES, 1579 MSR_IA32_PERF_CAPABILITIES, 1580 }; 1581 1582 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1583 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1584 static unsigned int num_msr_based_features; 1585 1586 /* 1587 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1588 * patch, are immutable once the vCPU model is defined. 1589 */ 1590 static bool kvm_is_immutable_feature_msr(u32 msr) 1591 { 1592 int i; 1593 1594 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1595 return true; 1596 1597 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1598 if (msr == msr_based_features_all_except_vmx[i]) 1599 return msr != MSR_IA32_UCODE_REV; 1600 } 1601 1602 return false; 1603 } 1604 1605 /* 1606 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1607 * does not yet virtualize. These include: 1608 * 10 - MISC_PACKAGE_CTRLS 1609 * 11 - ENERGY_FILTERING_CTL 1610 * 12 - DOITM 1611 * 18 - FB_CLEAR_CTRL 1612 * 21 - XAPIC_DISABLE_STATUS 1613 * 23 - OVERCLOCKING_STATUS 1614 */ 1615 1616 #define KVM_SUPPORTED_ARCH_CAP \ 1617 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1618 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1619 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1620 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1621 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1622 1623 static u64 kvm_get_arch_capabilities(void) 1624 { 1625 u64 data = 0; 1626 1627 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1628 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1629 data &= KVM_SUPPORTED_ARCH_CAP; 1630 } 1631 1632 /* 1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1634 * the nested hypervisor runs with NX huge pages. If it is not, 1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1636 * L1 guests, so it need not worry about its own (L2) guests. 1637 */ 1638 data |= ARCH_CAP_PSCHANGE_MC_NO; 1639 1640 /* 1641 * If we're doing cache flushes (either "always" or "cond") 1642 * we will do one whenever the guest does a vmlaunch/vmresume. 1643 * If an outer hypervisor is doing the cache flush for us 1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1645 * capability to the guest too, and if EPT is disabled we're not 1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1647 * require a nested hypervisor to do a flush of its own. 1648 */ 1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1651 1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1653 data |= ARCH_CAP_RDCL_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1655 data |= ARCH_CAP_SSB_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1657 data |= ARCH_CAP_MDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 msr.index = index; 1708 r = kvm_get_msr_feature(&msr); 1709 1710 if (r == KVM_MSR_RET_INVALID) { 1711 /* Unconditionally clear the output for simplicity */ 1712 *data = 0; 1713 if (kvm_msr_ignored_check(index, 0, false)) 1714 r = 0; 1715 } 1716 1717 if (r) 1718 return r; 1719 1720 *data = msr.data; 1721 1722 return 0; 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 return 0; 1786 } 1787 1788 void kvm_enable_efer_bits(u64 mask) 1789 { 1790 efer_reserved_bits &= ~mask; 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1793 1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1795 { 1796 struct kvm_x86_msr_filter *msr_filter; 1797 struct msr_bitmap_range *ranges; 1798 struct kvm *kvm = vcpu->kvm; 1799 bool allowed; 1800 int idx; 1801 u32 i; 1802 1803 /* x2APIC MSRs do not support filtering. */ 1804 if (index >= 0x800 && index <= 0x8ff) 1805 return true; 1806 1807 idx = srcu_read_lock(&kvm->srcu); 1808 1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1810 if (!msr_filter) { 1811 allowed = true; 1812 goto out; 1813 } 1814 1815 allowed = msr_filter->default_allow; 1816 ranges = msr_filter->ranges; 1817 1818 for (i = 0; i < msr_filter->count; i++) { 1819 u32 start = ranges[i].base; 1820 u32 end = start + ranges[i].nmsrs; 1821 u32 flags = ranges[i].flags; 1822 unsigned long *bitmap = ranges[i].bitmap; 1823 1824 if ((index >= start) && (index < end) && (flags & type)) { 1825 allowed = test_bit(index - start, bitmap); 1826 break; 1827 } 1828 } 1829 1830 out: 1831 srcu_read_unlock(&kvm->srcu, idx); 1832 1833 return allowed; 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1836 1837 /* 1838 * Write @data into the MSR specified by @index. Select MSR specific fault 1839 * checks are bypassed if @host_initiated is %true. 1840 * Returns 0 on success, non-0 otherwise. 1841 * Assumes vcpu_load() was already called. 1842 */ 1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1844 bool host_initiated) 1845 { 1846 struct msr_data msr; 1847 1848 switch (index) { 1849 case MSR_FS_BASE: 1850 case MSR_GS_BASE: 1851 case MSR_KERNEL_GS_BASE: 1852 case MSR_CSTAR: 1853 case MSR_LSTAR: 1854 if (is_noncanonical_address(data, vcpu)) 1855 return 1; 1856 break; 1857 case MSR_IA32_SYSENTER_EIP: 1858 case MSR_IA32_SYSENTER_ESP: 1859 /* 1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1861 * non-canonical address is written on Intel but not on 1862 * AMD (which ignores the top 32-bits, because it does 1863 * not implement 64-bit SYSENTER). 1864 * 1865 * 64-bit code should hence be able to write a non-canonical 1866 * value on AMD. Making the address canonical ensures that 1867 * vmentry does not fail on Intel after writing a non-canonical 1868 * value, and that something deterministic happens if the guest 1869 * invokes 64-bit SYSENTER. 1870 */ 1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1872 break; 1873 case MSR_TSC_AUX: 1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1875 return 1; 1876 1877 if (!host_initiated && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1880 return 1; 1881 1882 /* 1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1884 * incomplete and conflicting architectural behavior. Current 1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1886 * reserved and always read as zeros. Enforce Intel's reserved 1887 * bits check if and only if the guest CPU is Intel, and clear 1888 * the bits in all other cases. This ensures cross-vendor 1889 * migration will provide consistent behavior for the guest. 1890 */ 1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1892 return 1; 1893 1894 data = (u32)data; 1895 break; 1896 } 1897 1898 msr.data = data; 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1903 } 1904 1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1906 u32 index, u64 data, bool host_initiated) 1907 { 1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1909 1910 if (ret == KVM_MSR_RET_INVALID) 1911 if (kvm_msr_ignored_check(index, data, true)) 1912 ret = 0; 1913 1914 return ret; 1915 } 1916 1917 /* 1918 * Read the MSR specified by @index into @data. Select MSR specific fault 1919 * checks are bypassed if @host_initiated is %true. 1920 * Returns 0 on success, non-0 otherwise. 1921 * Assumes vcpu_load() was already called. 1922 */ 1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1924 bool host_initiated) 1925 { 1926 struct msr_data msr; 1927 int ret; 1928 1929 switch (index) { 1930 case MSR_TSC_AUX: 1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1932 return 1; 1933 1934 if (!host_initiated && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1937 return 1; 1938 break; 1939 } 1940 1941 msr.index = index; 1942 msr.host_initiated = host_initiated; 1943 1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1945 if (!ret) 1946 *data = msr.data; 1947 return ret; 1948 } 1949 1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1951 u32 index, u64 *data, bool host_initiated) 1952 { 1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1954 1955 if (ret == KVM_MSR_RET_INVALID) { 1956 /* Unconditionally clear *data for simplicity */ 1957 *data = 0; 1958 if (kvm_msr_ignored_check(index, 0, false)) 1959 ret = 0; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1966 { 1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1968 return KVM_MSR_RET_FILTERED; 1969 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1970 } 1971 1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1975 return KVM_MSR_RET_FILTERED; 1976 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1977 } 1978 1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1980 { 1981 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_get_msr); 1984 1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1986 { 1987 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_set_msr); 1990 1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 if (!vcpu->run->msr.error) { 1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1996 } 1997 } 1998 1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2000 { 2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2002 } 2003 2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2005 { 2006 complete_userspace_rdmsr(vcpu); 2007 return complete_emulated_msr_access(vcpu); 2008 } 2009 2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2011 { 2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2013 } 2014 2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 complete_userspace_rdmsr(vcpu); 2018 return complete_fast_msr_access(vcpu); 2019 } 2020 2021 static u64 kvm_msr_reason(int r) 2022 { 2023 switch (r) { 2024 case KVM_MSR_RET_INVALID: 2025 return KVM_MSR_EXIT_REASON_UNKNOWN; 2026 case KVM_MSR_RET_FILTERED: 2027 return KVM_MSR_EXIT_REASON_FILTER; 2028 default: 2029 return KVM_MSR_EXIT_REASON_INVAL; 2030 } 2031 } 2032 2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2034 u32 exit_reason, u64 data, 2035 int (*completion)(struct kvm_vcpu *vcpu), 2036 int r) 2037 { 2038 u64 msr_reason = kvm_msr_reason(r); 2039 2040 /* Check if the user wanted to know about this MSR fault */ 2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2042 return 0; 2043 2044 vcpu->run->exit_reason = exit_reason; 2045 vcpu->run->msr.error = 0; 2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2047 vcpu->run->msr.reason = msr_reason; 2048 vcpu->run->msr.index = index; 2049 vcpu->run->msr.data = data; 2050 vcpu->arch.complete_userspace_io = completion; 2051 2052 return 1; 2053 } 2054 2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2056 { 2057 u32 ecx = kvm_rcx_read(vcpu); 2058 u64 data; 2059 int r; 2060 2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2062 2063 if (!r) { 2064 trace_kvm_msr_read(ecx, data); 2065 2066 kvm_rax_write(vcpu, data & -1u); 2067 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2068 } else { 2069 /* MSR read failed? See if we should ask user space */ 2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2071 complete_fast_rdmsr, r)) 2072 return 0; 2073 trace_kvm_msr_read_ex(ecx); 2074 } 2075 2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2079 2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2081 { 2082 u32 ecx = kvm_rcx_read(vcpu); 2083 u64 data = kvm_read_edx_eax(vcpu); 2084 int r; 2085 2086 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2087 2088 if (!r) { 2089 trace_kvm_msr_write(ecx, data); 2090 } else { 2091 /* MSR write failed? See if we should ask user space */ 2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2093 complete_fast_msr_access, r)) 2094 return 0; 2095 /* Signal all other negative errors to userspace */ 2096 if (r < 0) 2097 return r; 2098 trace_kvm_msr_write_ex(ecx, data); 2099 } 2100 2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2102 } 2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2104 2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2106 { 2107 return kvm_skip_emulated_instruction(vcpu); 2108 } 2109 2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2111 { 2112 /* Treat an INVD instruction as a NOP and just skip it. */ 2113 return kvm_emulate_as_nop(vcpu); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2116 2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2118 { 2119 kvm_queue_exception(vcpu, UD_VECTOR); 2120 return 1; 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2123 2124 2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2126 { 2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2129 return kvm_handle_invalid_op(vcpu); 2130 2131 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2132 return kvm_emulate_as_nop(vcpu); 2133 } 2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2135 { 2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2137 } 2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2139 2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2141 { 2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2143 } 2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2145 2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2147 { 2148 xfer_to_guest_mode_prepare(); 2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2150 xfer_to_guest_mode_work_pending(); 2151 } 2152 2153 /* 2154 * The fast path for frequent and performance sensitive wrmsr emulation, 2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2158 * other cases which must be called after interrupts are enabled on the host. 2159 */ 2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2161 { 2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2163 return 1; 2164 2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2168 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2170 2171 return 1; 2172 } 2173 2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2175 { 2176 if (!kvm_can_use_hv_timer(vcpu)) 2177 return 1; 2178 2179 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2180 return 0; 2181 } 2182 2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2184 { 2185 u32 msr = kvm_rcx_read(vcpu); 2186 u64 data; 2187 fastpath_t ret = EXIT_FASTPATH_NONE; 2188 2189 kvm_vcpu_srcu_read_lock(vcpu); 2190 2191 switch (msr) { 2192 case APIC_BASE_MSR + (APIC_ICR >> 4): 2193 data = kvm_read_edx_eax(vcpu); 2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2195 kvm_skip_emulated_instruction(vcpu); 2196 ret = EXIT_FASTPATH_EXIT_HANDLED; 2197 } 2198 break; 2199 case MSR_IA32_TSC_DEADLINE: 2200 data = kvm_read_edx_eax(vcpu); 2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2202 kvm_skip_emulated_instruction(vcpu); 2203 ret = EXIT_FASTPATH_REENTER_GUEST; 2204 } 2205 break; 2206 default: 2207 break; 2208 } 2209 2210 if (ret != EXIT_FASTPATH_NONE) 2211 trace_kvm_msr_write(msr, data); 2212 2213 kvm_vcpu_srcu_read_unlock(vcpu); 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2218 2219 /* 2220 * Adapt set_msr() to msr_io()'s calling convention 2221 */ 2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2223 { 2224 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2225 } 2226 2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2228 { 2229 u64 val; 2230 2231 /* 2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2233 * not support modifying the guest vCPU model on the fly, e.g. changing 2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2235 * writes of the same value, e.g. to allow userspace to blindly stuff 2236 * all MSRs when emulating RESET. 2237 */ 2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2239 if (do_get_msr(vcpu, index, &val) || *data != val) 2240 return -EINVAL; 2241 2242 return 0; 2243 } 2244 2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2246 } 2247 2248 #ifdef CONFIG_X86_64 2249 struct pvclock_clock { 2250 int vclock_mode; 2251 u64 cycle_last; 2252 u64 mask; 2253 u32 mult; 2254 u32 shift; 2255 u64 base_cycles; 2256 u64 offset; 2257 }; 2258 2259 struct pvclock_gtod_data { 2260 seqcount_t seq; 2261 2262 struct pvclock_clock clock; /* extract of a clocksource struct */ 2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2264 2265 ktime_t offs_boot; 2266 u64 wall_time_sec; 2267 }; 2268 2269 static struct pvclock_gtod_data pvclock_gtod_data; 2270 2271 static void update_pvclock_gtod(struct timekeeper *tk) 2272 { 2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2274 2275 write_seqcount_begin(&vdata->seq); 2276 2277 /* copy pvclock gtod data */ 2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2280 vdata->clock.mask = tk->tkr_mono.mask; 2281 vdata->clock.mult = tk->tkr_mono.mult; 2282 vdata->clock.shift = tk->tkr_mono.shift; 2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2284 vdata->clock.offset = tk->tkr_mono.base; 2285 2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2288 vdata->raw_clock.mask = tk->tkr_raw.mask; 2289 vdata->raw_clock.mult = tk->tkr_raw.mult; 2290 vdata->raw_clock.shift = tk->tkr_raw.shift; 2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2292 vdata->raw_clock.offset = tk->tkr_raw.base; 2293 2294 vdata->wall_time_sec = tk->xtime_sec; 2295 2296 vdata->offs_boot = tk->offs_boot; 2297 2298 write_seqcount_end(&vdata->seq); 2299 } 2300 2301 static s64 get_kvmclock_base_ns(void) 2302 { 2303 /* Count up from boot time, but with the frequency of the raw clock. */ 2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2305 } 2306 #else 2307 static s64 get_kvmclock_base_ns(void) 2308 { 2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2310 return ktime_get_boottime_ns(); 2311 } 2312 #endif 2313 2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2315 { 2316 int version; 2317 int r; 2318 struct pvclock_wall_clock wc; 2319 u32 wc_sec_hi; 2320 u64 wall_nsec; 2321 2322 if (!wall_clock) 2323 return; 2324 2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2326 if (r) 2327 return; 2328 2329 if (version & 1) 2330 ++version; /* first time write, random junk */ 2331 2332 ++version; 2333 2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2335 return; 2336 2337 /* 2338 * The guest calculates current wall clock time by adding 2339 * system time (updated by kvm_guest_time_update below) to the 2340 * wall clock specified here. We do the reverse here. 2341 */ 2342 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2343 2344 wc.nsec = do_div(wall_nsec, 1000000000); 2345 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2346 wc.version = version; 2347 2348 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2349 2350 if (sec_hi_ofs) { 2351 wc_sec_hi = wall_nsec >> 32; 2352 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2353 &wc_sec_hi, sizeof(wc_sec_hi)); 2354 } 2355 2356 version++; 2357 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2358 } 2359 2360 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2361 bool old_msr, bool host_initiated) 2362 { 2363 struct kvm_arch *ka = &vcpu->kvm->arch; 2364 2365 if (vcpu->vcpu_id == 0 && !host_initiated) { 2366 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2367 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2368 2369 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2370 } 2371 2372 vcpu->arch.time = system_time; 2373 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2374 2375 /* we verify if the enable bit is set... */ 2376 if (system_time & 1) 2377 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2378 sizeof(struct pvclock_vcpu_time_info)); 2379 else 2380 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2381 2382 return; 2383 } 2384 2385 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2386 { 2387 do_shl32_div32(dividend, divisor); 2388 return dividend; 2389 } 2390 2391 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2392 s8 *pshift, u32 *pmultiplier) 2393 { 2394 uint64_t scaled64; 2395 int32_t shift = 0; 2396 uint64_t tps64; 2397 uint32_t tps32; 2398 2399 tps64 = base_hz; 2400 scaled64 = scaled_hz; 2401 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2402 tps64 >>= 1; 2403 shift--; 2404 } 2405 2406 tps32 = (uint32_t)tps64; 2407 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2408 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2409 scaled64 >>= 1; 2410 else 2411 tps32 <<= 1; 2412 shift++; 2413 } 2414 2415 *pshift = shift; 2416 *pmultiplier = div_frac(scaled64, tps32); 2417 } 2418 2419 #ifdef CONFIG_X86_64 2420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2421 #endif 2422 2423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2424 static unsigned long max_tsc_khz; 2425 2426 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2427 { 2428 u64 v = (u64)khz * (1000000 + ppm); 2429 do_div(v, 1000000); 2430 return v; 2431 } 2432 2433 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2434 2435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2436 { 2437 u64 ratio; 2438 2439 /* Guest TSC same frequency as host TSC? */ 2440 if (!scale) { 2441 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2442 return 0; 2443 } 2444 2445 /* TSC scaling supported? */ 2446 if (!kvm_caps.has_tsc_control) { 2447 if (user_tsc_khz > tsc_khz) { 2448 vcpu->arch.tsc_catchup = 1; 2449 vcpu->arch.tsc_always_catchup = 1; 2450 return 0; 2451 } else { 2452 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2453 return -1; 2454 } 2455 } 2456 2457 /* TSC scaling required - calculate ratio */ 2458 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2459 user_tsc_khz, tsc_khz); 2460 2461 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2462 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2463 user_tsc_khz); 2464 return -1; 2465 } 2466 2467 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2468 return 0; 2469 } 2470 2471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2472 { 2473 u32 thresh_lo, thresh_hi; 2474 int use_scaling = 0; 2475 2476 /* tsc_khz can be zero if TSC calibration fails */ 2477 if (user_tsc_khz == 0) { 2478 /* set tsc_scaling_ratio to a safe value */ 2479 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2480 return -1; 2481 } 2482 2483 /* Compute a scale to convert nanoseconds in TSC cycles */ 2484 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2485 &vcpu->arch.virtual_tsc_shift, 2486 &vcpu->arch.virtual_tsc_mult); 2487 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2488 2489 /* 2490 * Compute the variation in TSC rate which is acceptable 2491 * within the range of tolerance and decide if the 2492 * rate being applied is within that bounds of the hardware 2493 * rate. If so, no scaling or compensation need be done. 2494 */ 2495 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2496 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2497 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2498 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2499 user_tsc_khz, thresh_lo, thresh_hi); 2500 use_scaling = 1; 2501 } 2502 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2503 } 2504 2505 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2506 { 2507 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2508 vcpu->arch.virtual_tsc_mult, 2509 vcpu->arch.virtual_tsc_shift); 2510 tsc += vcpu->arch.this_tsc_write; 2511 return tsc; 2512 } 2513 2514 #ifdef CONFIG_X86_64 2515 static inline int gtod_is_based_on_tsc(int mode) 2516 { 2517 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2518 } 2519 #endif 2520 2521 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2522 { 2523 #ifdef CONFIG_X86_64 2524 bool vcpus_matched; 2525 struct kvm_arch *ka = &vcpu->kvm->arch; 2526 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2527 2528 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2529 atomic_read(&vcpu->kvm->online_vcpus)); 2530 2531 /* 2532 * Once the masterclock is enabled, always perform request in 2533 * order to update it. 2534 * 2535 * In order to enable masterclock, the host clocksource must be TSC 2536 * and the vcpus need to have matched TSCs. When that happens, 2537 * perform request to enable masterclock. 2538 */ 2539 if (ka->use_master_clock || 2540 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2542 2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2544 atomic_read(&vcpu->kvm->online_vcpus), 2545 ka->use_master_clock, gtod->clock.vclock_mode); 2546 #endif 2547 } 2548 2549 /* 2550 * Multiply tsc by a fixed point number represented by ratio. 2551 * 2552 * The most significant 64-N bits (mult) of ratio represent the 2553 * integral part of the fixed point number; the remaining N bits 2554 * (frac) represent the fractional part, ie. ratio represents a fixed 2555 * point number (mult + frac * 2^(-N)). 2556 * 2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2558 */ 2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2560 { 2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2562 } 2563 2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2565 { 2566 u64 _tsc = tsc; 2567 2568 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2569 _tsc = __scale_tsc(ratio, tsc); 2570 2571 return _tsc; 2572 } 2573 2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2575 { 2576 u64 tsc; 2577 2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2579 2580 return target_tsc - tsc; 2581 } 2582 2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2584 { 2585 return vcpu->arch.l1_tsc_offset + 2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2587 } 2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2589 2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2591 { 2592 u64 nested_offset; 2593 2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2595 nested_offset = l1_offset; 2596 else 2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2598 kvm_caps.tsc_scaling_ratio_frac_bits); 2599 2600 nested_offset += l2_offset; 2601 return nested_offset; 2602 } 2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2604 2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2606 { 2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2609 kvm_caps.tsc_scaling_ratio_frac_bits); 2610 2611 return l1_multiplier; 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2614 2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2616 { 2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2618 vcpu->arch.l1_tsc_offset, 2619 l1_offset); 2620 2621 vcpu->arch.l1_tsc_offset = l1_offset; 2622 2623 /* 2624 * If we are here because L1 chose not to trap WRMSR to TSC then 2625 * according to the spec this should set L1's TSC (as opposed to 2626 * setting L1's offset for L2). 2627 */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2630 l1_offset, 2631 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2632 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2633 else 2634 vcpu->arch.tsc_offset = l1_offset; 2635 2636 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2637 } 2638 2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2640 { 2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2642 2643 /* Userspace is changing the multiplier while L2 is active */ 2644 if (is_guest_mode(vcpu)) 2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2646 l1_multiplier, 2647 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2648 else 2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2650 2651 if (kvm_caps.has_tsc_control) 2652 static_call(kvm_x86_write_tsc_multiplier)( 2653 vcpu, vcpu->arch.tsc_scaling_ratio); 2654 } 2655 2656 static inline bool kvm_check_tsc_unstable(void) 2657 { 2658 #ifdef CONFIG_X86_64 2659 /* 2660 * TSC is marked unstable when we're running on Hyper-V, 2661 * 'TSC page' clocksource is good. 2662 */ 2663 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2664 return false; 2665 #endif 2666 return check_tsc_unstable(); 2667 } 2668 2669 /* 2670 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2671 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2672 * participates in. 2673 */ 2674 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2675 u64 ns, bool matched) 2676 { 2677 struct kvm *kvm = vcpu->kvm; 2678 2679 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2680 2681 /* 2682 * We also track th most recent recorded KHZ, write and time to 2683 * allow the matching interval to be extended at each write. 2684 */ 2685 kvm->arch.last_tsc_nsec = ns; 2686 kvm->arch.last_tsc_write = tsc; 2687 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2688 kvm->arch.last_tsc_offset = offset; 2689 2690 vcpu->arch.last_guest_tsc = tsc; 2691 2692 kvm_vcpu_write_tsc_offset(vcpu, offset); 2693 2694 if (!matched) { 2695 /* 2696 * We split periods of matched TSC writes into generations. 2697 * For each generation, we track the original measured 2698 * nanosecond time, offset, and write, so if TSCs are in 2699 * sync, we can match exact offset, and if not, we can match 2700 * exact software computation in compute_guest_tsc() 2701 * 2702 * These values are tracked in kvm->arch.cur_xxx variables. 2703 */ 2704 kvm->arch.cur_tsc_generation++; 2705 kvm->arch.cur_tsc_nsec = ns; 2706 kvm->arch.cur_tsc_write = tsc; 2707 kvm->arch.cur_tsc_offset = offset; 2708 kvm->arch.nr_vcpus_matched_tsc = 0; 2709 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2710 kvm->arch.nr_vcpus_matched_tsc++; 2711 } 2712 2713 /* Keep track of which generation this VCPU has synchronized to */ 2714 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2715 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2716 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2717 2718 kvm_track_tsc_matching(vcpu); 2719 } 2720 2721 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2722 { 2723 struct kvm *kvm = vcpu->kvm; 2724 u64 offset, ns, elapsed; 2725 unsigned long flags; 2726 bool matched = false; 2727 bool synchronizing = false; 2728 2729 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2730 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2731 ns = get_kvmclock_base_ns(); 2732 elapsed = ns - kvm->arch.last_tsc_nsec; 2733 2734 if (vcpu->arch.virtual_tsc_khz) { 2735 if (data == 0) { 2736 /* 2737 * detection of vcpu initialization -- need to sync 2738 * with other vCPUs. This particularly helps to keep 2739 * kvm_clock stable after CPU hotplug 2740 */ 2741 synchronizing = true; 2742 } else { 2743 u64 tsc_exp = kvm->arch.last_tsc_write + 2744 nsec_to_cycles(vcpu, elapsed); 2745 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2746 /* 2747 * Special case: TSC write with a small delta (1 second) 2748 * of virtual cycle time against real time is 2749 * interpreted as an attempt to synchronize the CPU. 2750 */ 2751 synchronizing = data < tsc_exp + tsc_hz && 2752 data + tsc_hz > tsc_exp; 2753 } 2754 } 2755 2756 /* 2757 * For a reliable TSC, we can match TSC offsets, and for an unstable 2758 * TSC, we add elapsed time in this computation. We could let the 2759 * compensation code attempt to catch up if we fall behind, but 2760 * it's better to try to match offsets from the beginning. 2761 */ 2762 if (synchronizing && 2763 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2764 if (!kvm_check_tsc_unstable()) { 2765 offset = kvm->arch.cur_tsc_offset; 2766 } else { 2767 u64 delta = nsec_to_cycles(vcpu, elapsed); 2768 data += delta; 2769 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2770 } 2771 matched = true; 2772 } 2773 2774 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2775 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2776 } 2777 2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2779 s64 adjustment) 2780 { 2781 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2782 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2783 } 2784 2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2786 { 2787 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2788 WARN_ON(adjustment < 0); 2789 adjustment = kvm_scale_tsc((u64) adjustment, 2790 vcpu->arch.l1_tsc_scaling_ratio); 2791 adjust_tsc_offset_guest(vcpu, adjustment); 2792 } 2793 2794 #ifdef CONFIG_X86_64 2795 2796 static u64 read_tsc(void) 2797 { 2798 u64 ret = (u64)rdtsc_ordered(); 2799 u64 last = pvclock_gtod_data.clock.cycle_last; 2800 2801 if (likely(ret >= last)) 2802 return ret; 2803 2804 /* 2805 * GCC likes to generate cmov here, but this branch is extremely 2806 * predictable (it's just a function of time and the likely is 2807 * very likely) and there's a data dependence, so force GCC 2808 * to generate a branch instead. I don't barrier() because 2809 * we don't actually need a barrier, and if this function 2810 * ever gets inlined it will generate worse code. 2811 */ 2812 asm volatile (""); 2813 return last; 2814 } 2815 2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2817 int *mode) 2818 { 2819 u64 tsc_pg_val; 2820 long v; 2821 2822 switch (clock->vclock_mode) { 2823 case VDSO_CLOCKMODE_HVCLOCK: 2824 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2825 tsc_timestamp, &tsc_pg_val)) { 2826 /* TSC page valid */ 2827 *mode = VDSO_CLOCKMODE_HVCLOCK; 2828 v = (tsc_pg_val - clock->cycle_last) & 2829 clock->mask; 2830 } else { 2831 /* TSC page invalid */ 2832 *mode = VDSO_CLOCKMODE_NONE; 2833 } 2834 break; 2835 case VDSO_CLOCKMODE_TSC: 2836 *mode = VDSO_CLOCKMODE_TSC; 2837 *tsc_timestamp = read_tsc(); 2838 v = (*tsc_timestamp - clock->cycle_last) & 2839 clock->mask; 2840 break; 2841 default: 2842 *mode = VDSO_CLOCKMODE_NONE; 2843 } 2844 2845 if (*mode == VDSO_CLOCKMODE_NONE) 2846 *tsc_timestamp = v = 0; 2847 2848 return v * clock->mult; 2849 } 2850 2851 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2852 { 2853 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2854 unsigned long seq; 2855 int mode; 2856 u64 ns; 2857 2858 do { 2859 seq = read_seqcount_begin(>od->seq); 2860 ns = gtod->raw_clock.base_cycles; 2861 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2862 ns >>= gtod->raw_clock.shift; 2863 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2864 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2865 *t = ns; 2866 2867 return mode; 2868 } 2869 2870 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2871 { 2872 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2873 unsigned long seq; 2874 int mode; 2875 u64 ns; 2876 2877 do { 2878 seq = read_seqcount_begin(>od->seq); 2879 ts->tv_sec = gtod->wall_time_sec; 2880 ns = gtod->clock.base_cycles; 2881 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2882 ns >>= gtod->clock.shift; 2883 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2884 2885 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2886 ts->tv_nsec = ns; 2887 2888 return mode; 2889 } 2890 2891 /* returns true if host is using TSC based clocksource */ 2892 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2893 { 2894 /* checked again under seqlock below */ 2895 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2896 return false; 2897 2898 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2899 tsc_timestamp)); 2900 } 2901 2902 /* returns true if host is using TSC based clocksource */ 2903 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2904 u64 *tsc_timestamp) 2905 { 2906 /* checked again under seqlock below */ 2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2908 return false; 2909 2910 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2911 } 2912 #endif 2913 2914 /* 2915 * 2916 * Assuming a stable TSC across physical CPUS, and a stable TSC 2917 * across virtual CPUs, the following condition is possible. 2918 * Each numbered line represents an event visible to both 2919 * CPUs at the next numbered event. 2920 * 2921 * "timespecX" represents host monotonic time. "tscX" represents 2922 * RDTSC value. 2923 * 2924 * VCPU0 on CPU0 | VCPU1 on CPU1 2925 * 2926 * 1. read timespec0,tsc0 2927 * 2. | timespec1 = timespec0 + N 2928 * | tsc1 = tsc0 + M 2929 * 3. transition to guest | transition to guest 2930 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2931 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2932 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2933 * 2934 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2935 * 2936 * - ret0 < ret1 2937 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2938 * ... 2939 * - 0 < N - M => M < N 2940 * 2941 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2942 * always the case (the difference between two distinct xtime instances 2943 * might be smaller then the difference between corresponding TSC reads, 2944 * when updating guest vcpus pvclock areas). 2945 * 2946 * To avoid that problem, do not allow visibility of distinct 2947 * system_timestamp/tsc_timestamp values simultaneously: use a master 2948 * copy of host monotonic time values. Update that master copy 2949 * in lockstep. 2950 * 2951 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2952 * 2953 */ 2954 2955 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2956 { 2957 #ifdef CONFIG_X86_64 2958 struct kvm_arch *ka = &kvm->arch; 2959 int vclock_mode; 2960 bool host_tsc_clocksource, vcpus_matched; 2961 2962 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2963 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2964 atomic_read(&kvm->online_vcpus)); 2965 2966 /* 2967 * If the host uses TSC clock, then passthrough TSC as stable 2968 * to the guest. 2969 */ 2970 host_tsc_clocksource = kvm_get_time_and_clockread( 2971 &ka->master_kernel_ns, 2972 &ka->master_cycle_now); 2973 2974 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2975 && !ka->backwards_tsc_observed 2976 && !ka->boot_vcpu_runs_old_kvmclock; 2977 2978 if (ka->use_master_clock) 2979 atomic_set(&kvm_guest_has_master_clock, 1); 2980 2981 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2982 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2983 vcpus_matched); 2984 #endif 2985 } 2986 2987 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2988 { 2989 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2990 } 2991 2992 static void __kvm_start_pvclock_update(struct kvm *kvm) 2993 { 2994 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2995 write_seqcount_begin(&kvm->arch.pvclock_sc); 2996 } 2997 2998 static void kvm_start_pvclock_update(struct kvm *kvm) 2999 { 3000 kvm_make_mclock_inprogress_request(kvm); 3001 3002 /* no guest entries from this point */ 3003 __kvm_start_pvclock_update(kvm); 3004 } 3005 3006 static void kvm_end_pvclock_update(struct kvm *kvm) 3007 { 3008 struct kvm_arch *ka = &kvm->arch; 3009 struct kvm_vcpu *vcpu; 3010 unsigned long i; 3011 3012 write_seqcount_end(&ka->pvclock_sc); 3013 raw_spin_unlock_irq(&ka->tsc_write_lock); 3014 kvm_for_each_vcpu(i, vcpu, kvm) 3015 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3016 3017 /* guest entries allowed */ 3018 kvm_for_each_vcpu(i, vcpu, kvm) 3019 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3020 } 3021 3022 static void kvm_update_masterclock(struct kvm *kvm) 3023 { 3024 kvm_hv_request_tsc_page_update(kvm); 3025 kvm_start_pvclock_update(kvm); 3026 pvclock_update_vm_gtod_copy(kvm); 3027 kvm_end_pvclock_update(kvm); 3028 } 3029 3030 /* 3031 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3032 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3033 * can change during boot even if the TSC is constant, as it's possible for KVM 3034 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3035 * notification when calibration completes, but practically speaking calibration 3036 * will complete before userspace is alive enough to create VMs. 3037 */ 3038 static unsigned long get_cpu_tsc_khz(void) 3039 { 3040 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3041 return tsc_khz; 3042 else 3043 return __this_cpu_read(cpu_tsc_khz); 3044 } 3045 3046 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3047 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3048 { 3049 struct kvm_arch *ka = &kvm->arch; 3050 struct pvclock_vcpu_time_info hv_clock; 3051 3052 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3053 get_cpu(); 3054 3055 data->flags = 0; 3056 if (ka->use_master_clock && 3057 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3058 #ifdef CONFIG_X86_64 3059 struct timespec64 ts; 3060 3061 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3062 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3063 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3064 } else 3065 #endif 3066 data->host_tsc = rdtsc(); 3067 3068 data->flags |= KVM_CLOCK_TSC_STABLE; 3069 hv_clock.tsc_timestamp = ka->master_cycle_now; 3070 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3071 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3072 &hv_clock.tsc_shift, 3073 &hv_clock.tsc_to_system_mul); 3074 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3075 } else { 3076 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3077 } 3078 3079 put_cpu(); 3080 } 3081 3082 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3083 { 3084 struct kvm_arch *ka = &kvm->arch; 3085 unsigned seq; 3086 3087 do { 3088 seq = read_seqcount_begin(&ka->pvclock_sc); 3089 __get_kvmclock(kvm, data); 3090 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3091 } 3092 3093 u64 get_kvmclock_ns(struct kvm *kvm) 3094 { 3095 struct kvm_clock_data data; 3096 3097 get_kvmclock(kvm, &data); 3098 return data.clock; 3099 } 3100 3101 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3102 struct gfn_to_pfn_cache *gpc, 3103 unsigned int offset) 3104 { 3105 struct kvm_vcpu_arch *vcpu = &v->arch; 3106 struct pvclock_vcpu_time_info *guest_hv_clock; 3107 unsigned long flags; 3108 3109 read_lock_irqsave(&gpc->lock, flags); 3110 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3111 read_unlock_irqrestore(&gpc->lock, flags); 3112 3113 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3114 return; 3115 3116 read_lock_irqsave(&gpc->lock, flags); 3117 } 3118 3119 guest_hv_clock = (void *)(gpc->khva + offset); 3120 3121 /* 3122 * This VCPU is paused, but it's legal for a guest to read another 3123 * VCPU's kvmclock, so we really have to follow the specification where 3124 * it says that version is odd if data is being modified, and even after 3125 * it is consistent. 3126 */ 3127 3128 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3129 smp_wmb(); 3130 3131 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3132 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3133 3134 if (vcpu->pvclock_set_guest_stopped_request) { 3135 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3136 vcpu->pvclock_set_guest_stopped_request = false; 3137 } 3138 3139 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3140 smp_wmb(); 3141 3142 guest_hv_clock->version = ++vcpu->hv_clock.version; 3143 3144 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3145 read_unlock_irqrestore(&gpc->lock, flags); 3146 3147 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3148 } 3149 3150 static int kvm_guest_time_update(struct kvm_vcpu *v) 3151 { 3152 unsigned long flags, tgt_tsc_khz; 3153 unsigned seq; 3154 struct kvm_vcpu_arch *vcpu = &v->arch; 3155 struct kvm_arch *ka = &v->kvm->arch; 3156 s64 kernel_ns; 3157 u64 tsc_timestamp, host_tsc; 3158 u8 pvclock_flags; 3159 bool use_master_clock; 3160 3161 kernel_ns = 0; 3162 host_tsc = 0; 3163 3164 /* 3165 * If the host uses TSC clock, then passthrough TSC as stable 3166 * to the guest. 3167 */ 3168 do { 3169 seq = read_seqcount_begin(&ka->pvclock_sc); 3170 use_master_clock = ka->use_master_clock; 3171 if (use_master_clock) { 3172 host_tsc = ka->master_cycle_now; 3173 kernel_ns = ka->master_kernel_ns; 3174 } 3175 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3176 3177 /* Keep irq disabled to prevent changes to the clock */ 3178 local_irq_save(flags); 3179 tgt_tsc_khz = get_cpu_tsc_khz(); 3180 if (unlikely(tgt_tsc_khz == 0)) { 3181 local_irq_restore(flags); 3182 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3183 return 1; 3184 } 3185 if (!use_master_clock) { 3186 host_tsc = rdtsc(); 3187 kernel_ns = get_kvmclock_base_ns(); 3188 } 3189 3190 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3191 3192 /* 3193 * We may have to catch up the TSC to match elapsed wall clock 3194 * time for two reasons, even if kvmclock is used. 3195 * 1) CPU could have been running below the maximum TSC rate 3196 * 2) Broken TSC compensation resets the base at each VCPU 3197 * entry to avoid unknown leaps of TSC even when running 3198 * again on the same CPU. This may cause apparent elapsed 3199 * time to disappear, and the guest to stand still or run 3200 * very slowly. 3201 */ 3202 if (vcpu->tsc_catchup) { 3203 u64 tsc = compute_guest_tsc(v, kernel_ns); 3204 if (tsc > tsc_timestamp) { 3205 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3206 tsc_timestamp = tsc; 3207 } 3208 } 3209 3210 local_irq_restore(flags); 3211 3212 /* With all the info we got, fill in the values */ 3213 3214 if (kvm_caps.has_tsc_control) 3215 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3216 v->arch.l1_tsc_scaling_ratio); 3217 3218 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3219 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3220 &vcpu->hv_clock.tsc_shift, 3221 &vcpu->hv_clock.tsc_to_system_mul); 3222 vcpu->hw_tsc_khz = tgt_tsc_khz; 3223 kvm_xen_update_tsc_info(v); 3224 } 3225 3226 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3227 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3228 vcpu->last_guest_tsc = tsc_timestamp; 3229 3230 /* If the host uses TSC clocksource, then it is stable */ 3231 pvclock_flags = 0; 3232 if (use_master_clock) 3233 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3234 3235 vcpu->hv_clock.flags = pvclock_flags; 3236 3237 if (vcpu->pv_time.active) 3238 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3239 if (vcpu->xen.vcpu_info_cache.active) 3240 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3241 offsetof(struct compat_vcpu_info, time)); 3242 if (vcpu->xen.vcpu_time_info_cache.active) 3243 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3244 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3245 return 0; 3246 } 3247 3248 /* 3249 * kvmclock updates which are isolated to a given vcpu, such as 3250 * vcpu->cpu migration, should not allow system_timestamp from 3251 * the rest of the vcpus to remain static. Otherwise ntp frequency 3252 * correction applies to one vcpu's system_timestamp but not 3253 * the others. 3254 * 3255 * So in those cases, request a kvmclock update for all vcpus. 3256 * We need to rate-limit these requests though, as they can 3257 * considerably slow guests that have a large number of vcpus. 3258 * The time for a remote vcpu to update its kvmclock is bound 3259 * by the delay we use to rate-limit the updates. 3260 */ 3261 3262 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3263 3264 static void kvmclock_update_fn(struct work_struct *work) 3265 { 3266 unsigned long i; 3267 struct delayed_work *dwork = to_delayed_work(work); 3268 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3269 kvmclock_update_work); 3270 struct kvm *kvm = container_of(ka, struct kvm, arch); 3271 struct kvm_vcpu *vcpu; 3272 3273 kvm_for_each_vcpu(i, vcpu, kvm) { 3274 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3275 kvm_vcpu_kick(vcpu); 3276 } 3277 } 3278 3279 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3280 { 3281 struct kvm *kvm = v->kvm; 3282 3283 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3284 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3285 KVMCLOCK_UPDATE_DELAY); 3286 } 3287 3288 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3289 3290 static void kvmclock_sync_fn(struct work_struct *work) 3291 { 3292 struct delayed_work *dwork = to_delayed_work(work); 3293 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3294 kvmclock_sync_work); 3295 struct kvm *kvm = container_of(ka, struct kvm, arch); 3296 3297 if (!kvmclock_periodic_sync) 3298 return; 3299 3300 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3301 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3302 KVMCLOCK_SYNC_PERIOD); 3303 } 3304 3305 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3306 static bool is_mci_control_msr(u32 msr) 3307 { 3308 return (msr & 3) == 0; 3309 } 3310 static bool is_mci_status_msr(u32 msr) 3311 { 3312 return (msr & 3) == 1; 3313 } 3314 3315 /* 3316 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3317 */ 3318 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3319 { 3320 /* McStatusWrEn enabled? */ 3321 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3322 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3323 3324 return false; 3325 } 3326 3327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3328 { 3329 u64 mcg_cap = vcpu->arch.mcg_cap; 3330 unsigned bank_num = mcg_cap & 0xff; 3331 u32 msr = msr_info->index; 3332 u64 data = msr_info->data; 3333 u32 offset, last_msr; 3334 3335 switch (msr) { 3336 case MSR_IA32_MCG_STATUS: 3337 vcpu->arch.mcg_status = data; 3338 break; 3339 case MSR_IA32_MCG_CTL: 3340 if (!(mcg_cap & MCG_CTL_P) && 3341 (data || !msr_info->host_initiated)) 3342 return 1; 3343 if (data != 0 && data != ~(u64)0) 3344 return 1; 3345 vcpu->arch.mcg_ctl = data; 3346 break; 3347 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3348 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3349 if (msr > last_msr) 3350 return 1; 3351 3352 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3353 return 1; 3354 /* An attempt to write a 1 to a reserved bit raises #GP */ 3355 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3356 return 1; 3357 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3358 last_msr + 1 - MSR_IA32_MC0_CTL2); 3359 vcpu->arch.mci_ctl2_banks[offset] = data; 3360 break; 3361 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3362 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3363 if (msr > last_msr) 3364 return 1; 3365 3366 /* 3367 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3368 * values are architecturally undefined. But, some Linux 3369 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3370 * issue on AMD K8s, allow bit 10 to be clear when setting all 3371 * other bits in order to avoid an uncaught #GP in the guest. 3372 * 3373 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3374 * single-bit ECC data errors. 3375 */ 3376 if (is_mci_control_msr(msr) && 3377 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3378 return 1; 3379 3380 /* 3381 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3382 * AMD-based CPUs allow non-zero values, but if and only if 3383 * HWCR[McStatusWrEn] is set. 3384 */ 3385 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3386 data != 0 && !can_set_mci_status(vcpu)) 3387 return 1; 3388 3389 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3390 last_msr + 1 - MSR_IA32_MC0_CTL); 3391 vcpu->arch.mce_banks[offset] = data; 3392 break; 3393 default: 3394 return 1; 3395 } 3396 return 0; 3397 } 3398 3399 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3400 { 3401 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3402 3403 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3404 } 3405 3406 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3407 { 3408 gpa_t gpa = data & ~0x3f; 3409 3410 /* Bits 4:5 are reserved, Should be zero */ 3411 if (data & 0x30) 3412 return 1; 3413 3414 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3415 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3416 return 1; 3417 3418 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3419 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3420 return 1; 3421 3422 if (!lapic_in_kernel(vcpu)) 3423 return data ? 1 : 0; 3424 3425 vcpu->arch.apf.msr_en_val = data; 3426 3427 if (!kvm_pv_async_pf_enabled(vcpu)) { 3428 kvm_clear_async_pf_completion_queue(vcpu); 3429 kvm_async_pf_hash_reset(vcpu); 3430 return 0; 3431 } 3432 3433 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3434 sizeof(u64))) 3435 return 1; 3436 3437 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3438 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3439 3440 kvm_async_pf_wakeup_all(vcpu); 3441 3442 return 0; 3443 } 3444 3445 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3446 { 3447 /* Bits 8-63 are reserved */ 3448 if (data >> 8) 3449 return 1; 3450 3451 if (!lapic_in_kernel(vcpu)) 3452 return 1; 3453 3454 vcpu->arch.apf.msr_int_val = data; 3455 3456 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3457 3458 return 0; 3459 } 3460 3461 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3462 { 3463 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3464 vcpu->arch.time = 0; 3465 } 3466 3467 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3468 { 3469 ++vcpu->stat.tlb_flush; 3470 static_call(kvm_x86_flush_tlb_all)(vcpu); 3471 3472 /* Flushing all ASIDs flushes the current ASID... */ 3473 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3474 } 3475 3476 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3477 { 3478 ++vcpu->stat.tlb_flush; 3479 3480 if (!tdp_enabled) { 3481 /* 3482 * A TLB flush on behalf of the guest is equivalent to 3483 * INVPCID(all), toggling CR4.PGE, etc., which requires 3484 * a forced sync of the shadow page tables. Ensure all the 3485 * roots are synced and the guest TLB in hardware is clean. 3486 */ 3487 kvm_mmu_sync_roots(vcpu); 3488 kvm_mmu_sync_prev_roots(vcpu); 3489 } 3490 3491 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3492 3493 /* 3494 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3495 * grained flushing. 3496 */ 3497 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3498 } 3499 3500 3501 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3502 { 3503 ++vcpu->stat.tlb_flush; 3504 static_call(kvm_x86_flush_tlb_current)(vcpu); 3505 } 3506 3507 /* 3508 * Service "local" TLB flush requests, which are specific to the current MMU 3509 * context. In addition to the generic event handling in vcpu_enter_guest(), 3510 * TLB flushes that are targeted at an MMU context also need to be serviced 3511 * prior before nested VM-Enter/VM-Exit. 3512 */ 3513 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3514 { 3515 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3516 kvm_vcpu_flush_tlb_current(vcpu); 3517 3518 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3519 kvm_vcpu_flush_tlb_guest(vcpu); 3520 } 3521 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3522 3523 static void record_steal_time(struct kvm_vcpu *vcpu) 3524 { 3525 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3526 struct kvm_steal_time __user *st; 3527 struct kvm_memslots *slots; 3528 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3529 u64 steal; 3530 u32 version; 3531 3532 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3533 kvm_xen_runstate_set_running(vcpu); 3534 return; 3535 } 3536 3537 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3538 return; 3539 3540 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3541 return; 3542 3543 slots = kvm_memslots(vcpu->kvm); 3544 3545 if (unlikely(slots->generation != ghc->generation || 3546 gpa != ghc->gpa || 3547 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3548 /* We rely on the fact that it fits in a single page. */ 3549 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3550 3551 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3552 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3553 return; 3554 } 3555 3556 st = (struct kvm_steal_time __user *)ghc->hva; 3557 /* 3558 * Doing a TLB flush here, on the guest's behalf, can avoid 3559 * expensive IPIs. 3560 */ 3561 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3562 u8 st_preempted = 0; 3563 int err = -EFAULT; 3564 3565 if (!user_access_begin(st, sizeof(*st))) 3566 return; 3567 3568 asm volatile("1: xchgb %0, %2\n" 3569 "xor %1, %1\n" 3570 "2:\n" 3571 _ASM_EXTABLE_UA(1b, 2b) 3572 : "+q" (st_preempted), 3573 "+&r" (err), 3574 "+m" (st->preempted)); 3575 if (err) 3576 goto out; 3577 3578 user_access_end(); 3579 3580 vcpu->arch.st.preempted = 0; 3581 3582 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3583 st_preempted & KVM_VCPU_FLUSH_TLB); 3584 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3585 kvm_vcpu_flush_tlb_guest(vcpu); 3586 3587 if (!user_access_begin(st, sizeof(*st))) 3588 goto dirty; 3589 } else { 3590 if (!user_access_begin(st, sizeof(*st))) 3591 return; 3592 3593 unsafe_put_user(0, &st->preempted, out); 3594 vcpu->arch.st.preempted = 0; 3595 } 3596 3597 unsafe_get_user(version, &st->version, out); 3598 if (version & 1) 3599 version += 1; /* first time write, random junk */ 3600 3601 version += 1; 3602 unsafe_put_user(version, &st->version, out); 3603 3604 smp_wmb(); 3605 3606 unsafe_get_user(steal, &st->steal, out); 3607 steal += current->sched_info.run_delay - 3608 vcpu->arch.st.last_steal; 3609 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3610 unsafe_put_user(steal, &st->steal, out); 3611 3612 version += 1; 3613 unsafe_put_user(version, &st->version, out); 3614 3615 out: 3616 user_access_end(); 3617 dirty: 3618 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3619 } 3620 3621 static bool kvm_is_msr_to_save(u32 msr_index) 3622 { 3623 unsigned int i; 3624 3625 for (i = 0; i < num_msrs_to_save; i++) { 3626 if (msrs_to_save[i] == msr_index) 3627 return true; 3628 } 3629 3630 return false; 3631 } 3632 3633 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3634 { 3635 u32 msr = msr_info->index; 3636 u64 data = msr_info->data; 3637 3638 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3639 return kvm_xen_write_hypercall_page(vcpu, data); 3640 3641 switch (msr) { 3642 case MSR_AMD64_NB_CFG: 3643 case MSR_IA32_UCODE_WRITE: 3644 case MSR_VM_HSAVE_PA: 3645 case MSR_AMD64_PATCH_LOADER: 3646 case MSR_AMD64_BU_CFG2: 3647 case MSR_AMD64_DC_CFG: 3648 case MSR_F15H_EX_CFG: 3649 break; 3650 3651 case MSR_IA32_UCODE_REV: 3652 if (msr_info->host_initiated) 3653 vcpu->arch.microcode_version = data; 3654 break; 3655 case MSR_IA32_ARCH_CAPABILITIES: 3656 if (!msr_info->host_initiated) 3657 return 1; 3658 vcpu->arch.arch_capabilities = data; 3659 break; 3660 case MSR_IA32_PERF_CAPABILITIES: 3661 if (!msr_info->host_initiated) 3662 return 1; 3663 if (data & ~kvm_caps.supported_perf_cap) 3664 return 1; 3665 3666 /* 3667 * Note, this is not just a performance optimization! KVM 3668 * disallows changing feature MSRs after the vCPU has run; PMU 3669 * refresh will bug the VM if called after the vCPU has run. 3670 */ 3671 if (vcpu->arch.perf_capabilities == data) 3672 break; 3673 3674 vcpu->arch.perf_capabilities = data; 3675 kvm_pmu_refresh(vcpu); 3676 break; 3677 case MSR_IA32_PRED_CMD: 3678 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3679 return 1; 3680 3681 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3682 return 1; 3683 if (!data) 3684 break; 3685 3686 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3687 break; 3688 case MSR_IA32_FLUSH_CMD: 3689 if (!msr_info->host_initiated && 3690 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3691 return 1; 3692 3693 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3694 return 1; 3695 if (!data) 3696 break; 3697 3698 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3699 break; 3700 case MSR_EFER: 3701 return set_efer(vcpu, msr_info); 3702 case MSR_K7_HWCR: 3703 data &= ~(u64)0x40; /* ignore flush filter disable */ 3704 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3705 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3706 3707 /* Handle McStatusWrEn */ 3708 if (data == BIT_ULL(18)) { 3709 vcpu->arch.msr_hwcr = data; 3710 } else if (data != 0) { 3711 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3712 return 1; 3713 } 3714 break; 3715 case MSR_FAM10H_MMIO_CONF_BASE: 3716 if (data != 0) { 3717 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3718 return 1; 3719 } 3720 break; 3721 case MSR_IA32_CR_PAT: 3722 if (!kvm_pat_valid(data)) 3723 return 1; 3724 3725 vcpu->arch.pat = data; 3726 break; 3727 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3728 case MSR_MTRRdefType: 3729 return kvm_mtrr_set_msr(vcpu, msr, data); 3730 case MSR_IA32_APICBASE: 3731 return kvm_set_apic_base(vcpu, msr_info); 3732 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3733 return kvm_x2apic_msr_write(vcpu, msr, data); 3734 case MSR_IA32_TSC_DEADLINE: 3735 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3736 break; 3737 case MSR_IA32_TSC_ADJUST: 3738 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3739 if (!msr_info->host_initiated) { 3740 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3741 adjust_tsc_offset_guest(vcpu, adj); 3742 /* Before back to guest, tsc_timestamp must be adjusted 3743 * as well, otherwise guest's percpu pvclock time could jump. 3744 */ 3745 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3746 } 3747 vcpu->arch.ia32_tsc_adjust_msr = data; 3748 } 3749 break; 3750 case MSR_IA32_MISC_ENABLE: { 3751 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3752 3753 if (!msr_info->host_initiated) { 3754 /* RO bits */ 3755 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3756 return 1; 3757 3758 /* R bits, i.e. writes are ignored, but don't fault. */ 3759 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3760 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3761 } 3762 3763 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3764 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3765 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3766 return 1; 3767 vcpu->arch.ia32_misc_enable_msr = data; 3768 kvm_update_cpuid_runtime(vcpu); 3769 } else { 3770 vcpu->arch.ia32_misc_enable_msr = data; 3771 } 3772 break; 3773 } 3774 case MSR_IA32_SMBASE: 3775 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3776 return 1; 3777 vcpu->arch.smbase = data; 3778 break; 3779 case MSR_IA32_POWER_CTL: 3780 vcpu->arch.msr_ia32_power_ctl = data; 3781 break; 3782 case MSR_IA32_TSC: 3783 if (msr_info->host_initiated) { 3784 kvm_synchronize_tsc(vcpu, data); 3785 } else { 3786 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3787 adjust_tsc_offset_guest(vcpu, adj); 3788 vcpu->arch.ia32_tsc_adjust_msr += adj; 3789 } 3790 break; 3791 case MSR_IA32_XSS: 3792 if (!msr_info->host_initiated && 3793 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3794 return 1; 3795 /* 3796 * KVM supports exposing PT to the guest, but does not support 3797 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3798 * XSAVES/XRSTORS to save/restore PT MSRs. 3799 */ 3800 if (data & ~kvm_caps.supported_xss) 3801 return 1; 3802 vcpu->arch.ia32_xss = data; 3803 kvm_update_cpuid_runtime(vcpu); 3804 break; 3805 case MSR_SMI_COUNT: 3806 if (!msr_info->host_initiated) 3807 return 1; 3808 vcpu->arch.smi_count = data; 3809 break; 3810 case MSR_KVM_WALL_CLOCK_NEW: 3811 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3812 return 1; 3813 3814 vcpu->kvm->arch.wall_clock = data; 3815 kvm_write_wall_clock(vcpu->kvm, data, 0); 3816 break; 3817 case MSR_KVM_WALL_CLOCK: 3818 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3819 return 1; 3820 3821 vcpu->kvm->arch.wall_clock = data; 3822 kvm_write_wall_clock(vcpu->kvm, data, 0); 3823 break; 3824 case MSR_KVM_SYSTEM_TIME_NEW: 3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3826 return 1; 3827 3828 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3829 break; 3830 case MSR_KVM_SYSTEM_TIME: 3831 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3832 return 1; 3833 3834 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3835 break; 3836 case MSR_KVM_ASYNC_PF_EN: 3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3838 return 1; 3839 3840 if (kvm_pv_enable_async_pf(vcpu, data)) 3841 return 1; 3842 break; 3843 case MSR_KVM_ASYNC_PF_INT: 3844 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3845 return 1; 3846 3847 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3848 return 1; 3849 break; 3850 case MSR_KVM_ASYNC_PF_ACK: 3851 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3852 return 1; 3853 if (data & 0x1) { 3854 vcpu->arch.apf.pageready_pending = false; 3855 kvm_check_async_pf_completion(vcpu); 3856 } 3857 break; 3858 case MSR_KVM_STEAL_TIME: 3859 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3860 return 1; 3861 3862 if (unlikely(!sched_info_on())) 3863 return 1; 3864 3865 if (data & KVM_STEAL_RESERVED_MASK) 3866 return 1; 3867 3868 vcpu->arch.st.msr_val = data; 3869 3870 if (!(data & KVM_MSR_ENABLED)) 3871 break; 3872 3873 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3874 3875 break; 3876 case MSR_KVM_PV_EOI_EN: 3877 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3878 return 1; 3879 3880 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3881 return 1; 3882 break; 3883 3884 case MSR_KVM_POLL_CONTROL: 3885 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3886 return 1; 3887 3888 /* only enable bit supported */ 3889 if (data & (-1ULL << 1)) 3890 return 1; 3891 3892 vcpu->arch.msr_kvm_poll_control = data; 3893 break; 3894 3895 case MSR_IA32_MCG_CTL: 3896 case MSR_IA32_MCG_STATUS: 3897 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3898 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3899 return set_msr_mce(vcpu, msr_info); 3900 3901 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3902 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3903 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3904 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3905 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3906 return kvm_pmu_set_msr(vcpu, msr_info); 3907 3908 if (data) 3909 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3910 break; 3911 case MSR_K7_CLK_CTL: 3912 /* 3913 * Ignore all writes to this no longer documented MSR. 3914 * Writes are only relevant for old K7 processors, 3915 * all pre-dating SVM, but a recommended workaround from 3916 * AMD for these chips. It is possible to specify the 3917 * affected processor models on the command line, hence 3918 * the need to ignore the workaround. 3919 */ 3920 break; 3921 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3922 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3923 case HV_X64_MSR_SYNDBG_OPTIONS: 3924 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3925 case HV_X64_MSR_CRASH_CTL: 3926 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3927 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3928 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3929 case HV_X64_MSR_TSC_EMULATION_STATUS: 3930 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3931 return kvm_hv_set_msr_common(vcpu, msr, data, 3932 msr_info->host_initiated); 3933 case MSR_IA32_BBL_CR_CTL3: 3934 /* Drop writes to this legacy MSR -- see rdmsr 3935 * counterpart for further detail. 3936 */ 3937 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3938 break; 3939 case MSR_AMD64_OSVW_ID_LENGTH: 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3941 return 1; 3942 vcpu->arch.osvw.length = data; 3943 break; 3944 case MSR_AMD64_OSVW_STATUS: 3945 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3946 return 1; 3947 vcpu->arch.osvw.status = data; 3948 break; 3949 case MSR_PLATFORM_INFO: 3950 if (!msr_info->host_initiated || 3951 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3952 cpuid_fault_enabled(vcpu))) 3953 return 1; 3954 vcpu->arch.msr_platform_info = data; 3955 break; 3956 case MSR_MISC_FEATURES_ENABLES: 3957 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3958 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3959 !supports_cpuid_fault(vcpu))) 3960 return 1; 3961 vcpu->arch.msr_misc_features_enables = data; 3962 break; 3963 #ifdef CONFIG_X86_64 3964 case MSR_IA32_XFD: 3965 if (!msr_info->host_initiated && 3966 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3967 return 1; 3968 3969 if (data & ~kvm_guest_supported_xfd(vcpu)) 3970 return 1; 3971 3972 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3973 break; 3974 case MSR_IA32_XFD_ERR: 3975 if (!msr_info->host_initiated && 3976 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3977 return 1; 3978 3979 if (data & ~kvm_guest_supported_xfd(vcpu)) 3980 return 1; 3981 3982 vcpu->arch.guest_fpu.xfd_err = data; 3983 break; 3984 #endif 3985 default: 3986 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3987 return kvm_pmu_set_msr(vcpu, msr_info); 3988 3989 /* 3990 * Userspace is allowed to write '0' to MSRs that KVM reports 3991 * as to-be-saved, even if an MSRs isn't fully supported. 3992 */ 3993 if (msr_info->host_initiated && !data && 3994 kvm_is_msr_to_save(msr)) 3995 break; 3996 3997 return KVM_MSR_RET_INVALID; 3998 } 3999 return 0; 4000 } 4001 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4002 4003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4004 { 4005 u64 data; 4006 u64 mcg_cap = vcpu->arch.mcg_cap; 4007 unsigned bank_num = mcg_cap & 0xff; 4008 u32 offset, last_msr; 4009 4010 switch (msr) { 4011 case MSR_IA32_P5_MC_ADDR: 4012 case MSR_IA32_P5_MC_TYPE: 4013 data = 0; 4014 break; 4015 case MSR_IA32_MCG_CAP: 4016 data = vcpu->arch.mcg_cap; 4017 break; 4018 case MSR_IA32_MCG_CTL: 4019 if (!(mcg_cap & MCG_CTL_P) && !host) 4020 return 1; 4021 data = vcpu->arch.mcg_ctl; 4022 break; 4023 case MSR_IA32_MCG_STATUS: 4024 data = vcpu->arch.mcg_status; 4025 break; 4026 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4027 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4028 if (msr > last_msr) 4029 return 1; 4030 4031 if (!(mcg_cap & MCG_CMCI_P) && !host) 4032 return 1; 4033 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4034 last_msr + 1 - MSR_IA32_MC0_CTL2); 4035 data = vcpu->arch.mci_ctl2_banks[offset]; 4036 break; 4037 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4038 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4039 if (msr > last_msr) 4040 return 1; 4041 4042 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4043 last_msr + 1 - MSR_IA32_MC0_CTL); 4044 data = vcpu->arch.mce_banks[offset]; 4045 break; 4046 default: 4047 return 1; 4048 } 4049 *pdata = data; 4050 return 0; 4051 } 4052 4053 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4054 { 4055 switch (msr_info->index) { 4056 case MSR_IA32_PLATFORM_ID: 4057 case MSR_IA32_EBL_CR_POWERON: 4058 case MSR_IA32_LASTBRANCHFROMIP: 4059 case MSR_IA32_LASTBRANCHTOIP: 4060 case MSR_IA32_LASTINTFROMIP: 4061 case MSR_IA32_LASTINTTOIP: 4062 case MSR_AMD64_SYSCFG: 4063 case MSR_K8_TSEG_ADDR: 4064 case MSR_K8_TSEG_MASK: 4065 case MSR_VM_HSAVE_PA: 4066 case MSR_K8_INT_PENDING_MSG: 4067 case MSR_AMD64_NB_CFG: 4068 case MSR_FAM10H_MMIO_CONF_BASE: 4069 case MSR_AMD64_BU_CFG2: 4070 case MSR_IA32_PERF_CTL: 4071 case MSR_AMD64_DC_CFG: 4072 case MSR_F15H_EX_CFG: 4073 /* 4074 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4075 * limit) MSRs. Just return 0, as we do not want to expose the host 4076 * data here. Do not conditionalize this on CPUID, as KVM does not do 4077 * so for existing CPU-specific MSRs. 4078 */ 4079 case MSR_RAPL_POWER_UNIT: 4080 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4081 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4082 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4083 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4084 msr_info->data = 0; 4085 break; 4086 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4087 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4088 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4089 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4090 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4091 return kvm_pmu_get_msr(vcpu, msr_info); 4092 msr_info->data = 0; 4093 break; 4094 case MSR_IA32_UCODE_REV: 4095 msr_info->data = vcpu->arch.microcode_version; 4096 break; 4097 case MSR_IA32_ARCH_CAPABILITIES: 4098 if (!msr_info->host_initiated && 4099 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4100 return 1; 4101 msr_info->data = vcpu->arch.arch_capabilities; 4102 break; 4103 case MSR_IA32_PERF_CAPABILITIES: 4104 if (!msr_info->host_initiated && 4105 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4106 return 1; 4107 msr_info->data = vcpu->arch.perf_capabilities; 4108 break; 4109 case MSR_IA32_POWER_CTL: 4110 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4111 break; 4112 case MSR_IA32_TSC: { 4113 /* 4114 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4115 * even when not intercepted. AMD manual doesn't explicitly 4116 * state this but appears to behave the same. 4117 * 4118 * On userspace reads and writes, however, we unconditionally 4119 * return L1's TSC value to ensure backwards-compatible 4120 * behavior for migration. 4121 */ 4122 u64 offset, ratio; 4123 4124 if (msr_info->host_initiated) { 4125 offset = vcpu->arch.l1_tsc_offset; 4126 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4127 } else { 4128 offset = vcpu->arch.tsc_offset; 4129 ratio = vcpu->arch.tsc_scaling_ratio; 4130 } 4131 4132 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4133 break; 4134 } 4135 case MSR_IA32_CR_PAT: 4136 msr_info->data = vcpu->arch.pat; 4137 break; 4138 case MSR_MTRRcap: 4139 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4140 case MSR_MTRRdefType: 4141 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4142 case 0xcd: /* fsb frequency */ 4143 msr_info->data = 3; 4144 break; 4145 /* 4146 * MSR_EBC_FREQUENCY_ID 4147 * Conservative value valid for even the basic CPU models. 4148 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4149 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4150 * and 266MHz for model 3, or 4. Set Core Clock 4151 * Frequency to System Bus Frequency Ratio to 1 (bits 4152 * 31:24) even though these are only valid for CPU 4153 * models > 2, however guests may end up dividing or 4154 * multiplying by zero otherwise. 4155 */ 4156 case MSR_EBC_FREQUENCY_ID: 4157 msr_info->data = 1 << 24; 4158 break; 4159 case MSR_IA32_APICBASE: 4160 msr_info->data = kvm_get_apic_base(vcpu); 4161 break; 4162 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4163 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4164 case MSR_IA32_TSC_DEADLINE: 4165 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4166 break; 4167 case MSR_IA32_TSC_ADJUST: 4168 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4169 break; 4170 case MSR_IA32_MISC_ENABLE: 4171 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4172 break; 4173 case MSR_IA32_SMBASE: 4174 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4175 return 1; 4176 msr_info->data = vcpu->arch.smbase; 4177 break; 4178 case MSR_SMI_COUNT: 4179 msr_info->data = vcpu->arch.smi_count; 4180 break; 4181 case MSR_IA32_PERF_STATUS: 4182 /* TSC increment by tick */ 4183 msr_info->data = 1000ULL; 4184 /* CPU multiplier */ 4185 msr_info->data |= (((uint64_t)4ULL) << 40); 4186 break; 4187 case MSR_EFER: 4188 msr_info->data = vcpu->arch.efer; 4189 break; 4190 case MSR_KVM_WALL_CLOCK: 4191 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4192 return 1; 4193 4194 msr_info->data = vcpu->kvm->arch.wall_clock; 4195 break; 4196 case MSR_KVM_WALL_CLOCK_NEW: 4197 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4198 return 1; 4199 4200 msr_info->data = vcpu->kvm->arch.wall_clock; 4201 break; 4202 case MSR_KVM_SYSTEM_TIME: 4203 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4204 return 1; 4205 4206 msr_info->data = vcpu->arch.time; 4207 break; 4208 case MSR_KVM_SYSTEM_TIME_NEW: 4209 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4210 return 1; 4211 4212 msr_info->data = vcpu->arch.time; 4213 break; 4214 case MSR_KVM_ASYNC_PF_EN: 4215 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4216 return 1; 4217 4218 msr_info->data = vcpu->arch.apf.msr_en_val; 4219 break; 4220 case MSR_KVM_ASYNC_PF_INT: 4221 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4222 return 1; 4223 4224 msr_info->data = vcpu->arch.apf.msr_int_val; 4225 break; 4226 case MSR_KVM_ASYNC_PF_ACK: 4227 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4228 return 1; 4229 4230 msr_info->data = 0; 4231 break; 4232 case MSR_KVM_STEAL_TIME: 4233 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4234 return 1; 4235 4236 msr_info->data = vcpu->arch.st.msr_val; 4237 break; 4238 case MSR_KVM_PV_EOI_EN: 4239 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4243 break; 4244 case MSR_KVM_POLL_CONTROL: 4245 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4246 return 1; 4247 4248 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4249 break; 4250 case MSR_IA32_P5_MC_ADDR: 4251 case MSR_IA32_P5_MC_TYPE: 4252 case MSR_IA32_MCG_CAP: 4253 case MSR_IA32_MCG_CTL: 4254 case MSR_IA32_MCG_STATUS: 4255 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4256 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4257 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4258 msr_info->host_initiated); 4259 case MSR_IA32_XSS: 4260 if (!msr_info->host_initiated && 4261 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4262 return 1; 4263 msr_info->data = vcpu->arch.ia32_xss; 4264 break; 4265 case MSR_K7_CLK_CTL: 4266 /* 4267 * Provide expected ramp-up count for K7. All other 4268 * are set to zero, indicating minimum divisors for 4269 * every field. 4270 * 4271 * This prevents guest kernels on AMD host with CPU 4272 * type 6, model 8 and higher from exploding due to 4273 * the rdmsr failing. 4274 */ 4275 msr_info->data = 0x20000000; 4276 break; 4277 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4278 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4279 case HV_X64_MSR_SYNDBG_OPTIONS: 4280 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4281 case HV_X64_MSR_CRASH_CTL: 4282 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4283 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4284 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4285 case HV_X64_MSR_TSC_EMULATION_STATUS: 4286 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4287 return kvm_hv_get_msr_common(vcpu, 4288 msr_info->index, &msr_info->data, 4289 msr_info->host_initiated); 4290 case MSR_IA32_BBL_CR_CTL3: 4291 /* This legacy MSR exists but isn't fully documented in current 4292 * silicon. It is however accessed by winxp in very narrow 4293 * scenarios where it sets bit #19, itself documented as 4294 * a "reserved" bit. Best effort attempt to source coherent 4295 * read data here should the balance of the register be 4296 * interpreted by the guest: 4297 * 4298 * L2 cache control register 3: 64GB range, 256KB size, 4299 * enabled, latency 0x1, configured 4300 */ 4301 msr_info->data = 0xbe702111; 4302 break; 4303 case MSR_AMD64_OSVW_ID_LENGTH: 4304 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4305 return 1; 4306 msr_info->data = vcpu->arch.osvw.length; 4307 break; 4308 case MSR_AMD64_OSVW_STATUS: 4309 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4310 return 1; 4311 msr_info->data = vcpu->arch.osvw.status; 4312 break; 4313 case MSR_PLATFORM_INFO: 4314 if (!msr_info->host_initiated && 4315 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4316 return 1; 4317 msr_info->data = vcpu->arch.msr_platform_info; 4318 break; 4319 case MSR_MISC_FEATURES_ENABLES: 4320 msr_info->data = vcpu->arch.msr_misc_features_enables; 4321 break; 4322 case MSR_K7_HWCR: 4323 msr_info->data = vcpu->arch.msr_hwcr; 4324 break; 4325 #ifdef CONFIG_X86_64 4326 case MSR_IA32_XFD: 4327 if (!msr_info->host_initiated && 4328 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4329 return 1; 4330 4331 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4332 break; 4333 case MSR_IA32_XFD_ERR: 4334 if (!msr_info->host_initiated && 4335 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4336 return 1; 4337 4338 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4339 break; 4340 #endif 4341 default: 4342 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4343 return kvm_pmu_get_msr(vcpu, msr_info); 4344 4345 /* 4346 * Userspace is allowed to read MSRs that KVM reports as 4347 * to-be-saved, even if an MSR isn't fully supported. 4348 */ 4349 if (msr_info->host_initiated && 4350 kvm_is_msr_to_save(msr_info->index)) { 4351 msr_info->data = 0; 4352 break; 4353 } 4354 4355 return KVM_MSR_RET_INVALID; 4356 } 4357 return 0; 4358 } 4359 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4360 4361 /* 4362 * Read or write a bunch of msrs. All parameters are kernel addresses. 4363 * 4364 * @return number of msrs set successfully. 4365 */ 4366 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4367 struct kvm_msr_entry *entries, 4368 int (*do_msr)(struct kvm_vcpu *vcpu, 4369 unsigned index, u64 *data)) 4370 { 4371 int i; 4372 4373 for (i = 0; i < msrs->nmsrs; ++i) 4374 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4375 break; 4376 4377 return i; 4378 } 4379 4380 /* 4381 * Read or write a bunch of msrs. Parameters are user addresses. 4382 * 4383 * @return number of msrs set successfully. 4384 */ 4385 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4386 int (*do_msr)(struct kvm_vcpu *vcpu, 4387 unsigned index, u64 *data), 4388 int writeback) 4389 { 4390 struct kvm_msrs msrs; 4391 struct kvm_msr_entry *entries; 4392 unsigned size; 4393 int r; 4394 4395 r = -EFAULT; 4396 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4397 goto out; 4398 4399 r = -E2BIG; 4400 if (msrs.nmsrs >= MAX_IO_MSRS) 4401 goto out; 4402 4403 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4404 entries = memdup_user(user_msrs->entries, size); 4405 if (IS_ERR(entries)) { 4406 r = PTR_ERR(entries); 4407 goto out; 4408 } 4409 4410 r = __msr_io(vcpu, &msrs, entries, do_msr); 4411 4412 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4413 r = -EFAULT; 4414 4415 kfree(entries); 4416 out: 4417 return r; 4418 } 4419 4420 static inline bool kvm_can_mwait_in_guest(void) 4421 { 4422 return boot_cpu_has(X86_FEATURE_MWAIT) && 4423 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4424 boot_cpu_has(X86_FEATURE_ARAT); 4425 } 4426 4427 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4428 struct kvm_cpuid2 __user *cpuid_arg) 4429 { 4430 struct kvm_cpuid2 cpuid; 4431 int r; 4432 4433 r = -EFAULT; 4434 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4435 return r; 4436 4437 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4438 if (r) 4439 return r; 4440 4441 r = -EFAULT; 4442 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4443 return r; 4444 4445 return 0; 4446 } 4447 4448 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4449 { 4450 int r = 0; 4451 4452 switch (ext) { 4453 case KVM_CAP_IRQCHIP: 4454 case KVM_CAP_HLT: 4455 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4456 case KVM_CAP_SET_TSS_ADDR: 4457 case KVM_CAP_EXT_CPUID: 4458 case KVM_CAP_EXT_EMUL_CPUID: 4459 case KVM_CAP_CLOCKSOURCE: 4460 case KVM_CAP_PIT: 4461 case KVM_CAP_NOP_IO_DELAY: 4462 case KVM_CAP_MP_STATE: 4463 case KVM_CAP_SYNC_MMU: 4464 case KVM_CAP_USER_NMI: 4465 case KVM_CAP_REINJECT_CONTROL: 4466 case KVM_CAP_IRQ_INJECT_STATUS: 4467 case KVM_CAP_IOEVENTFD: 4468 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4469 case KVM_CAP_PIT2: 4470 case KVM_CAP_PIT_STATE2: 4471 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4472 case KVM_CAP_VCPU_EVENTS: 4473 case KVM_CAP_HYPERV: 4474 case KVM_CAP_HYPERV_VAPIC: 4475 case KVM_CAP_HYPERV_SPIN: 4476 case KVM_CAP_HYPERV_SYNIC: 4477 case KVM_CAP_HYPERV_SYNIC2: 4478 case KVM_CAP_HYPERV_VP_INDEX: 4479 case KVM_CAP_HYPERV_EVENTFD: 4480 case KVM_CAP_HYPERV_TLBFLUSH: 4481 case KVM_CAP_HYPERV_SEND_IPI: 4482 case KVM_CAP_HYPERV_CPUID: 4483 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4484 case KVM_CAP_SYS_HYPERV_CPUID: 4485 case KVM_CAP_PCI_SEGMENT: 4486 case KVM_CAP_DEBUGREGS: 4487 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4488 case KVM_CAP_XSAVE: 4489 case KVM_CAP_ASYNC_PF: 4490 case KVM_CAP_ASYNC_PF_INT: 4491 case KVM_CAP_GET_TSC_KHZ: 4492 case KVM_CAP_KVMCLOCK_CTRL: 4493 case KVM_CAP_READONLY_MEM: 4494 case KVM_CAP_HYPERV_TIME: 4495 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4496 case KVM_CAP_TSC_DEADLINE_TIMER: 4497 case KVM_CAP_DISABLE_QUIRKS: 4498 case KVM_CAP_SET_BOOT_CPU_ID: 4499 case KVM_CAP_SPLIT_IRQCHIP: 4500 case KVM_CAP_IMMEDIATE_EXIT: 4501 case KVM_CAP_PMU_EVENT_FILTER: 4502 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4503 case KVM_CAP_GET_MSR_FEATURES: 4504 case KVM_CAP_MSR_PLATFORM_INFO: 4505 case KVM_CAP_EXCEPTION_PAYLOAD: 4506 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4507 case KVM_CAP_SET_GUEST_DEBUG: 4508 case KVM_CAP_LAST_CPU: 4509 case KVM_CAP_X86_USER_SPACE_MSR: 4510 case KVM_CAP_X86_MSR_FILTER: 4511 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4512 #ifdef CONFIG_X86_SGX_KVM 4513 case KVM_CAP_SGX_ATTRIBUTE: 4514 #endif 4515 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4516 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4517 case KVM_CAP_SREGS2: 4518 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4519 case KVM_CAP_VCPU_ATTRIBUTES: 4520 case KVM_CAP_SYS_ATTRIBUTES: 4521 case KVM_CAP_VAPIC: 4522 case KVM_CAP_ENABLE_CAP: 4523 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4524 case KVM_CAP_IRQFD_RESAMPLE: 4525 r = 1; 4526 break; 4527 case KVM_CAP_EXIT_HYPERCALL: 4528 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4529 break; 4530 case KVM_CAP_SET_GUEST_DEBUG2: 4531 return KVM_GUESTDBG_VALID_MASK; 4532 #ifdef CONFIG_KVM_XEN 4533 case KVM_CAP_XEN_HVM: 4534 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4535 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4536 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4537 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4538 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4539 if (sched_info_on()) 4540 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4541 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4542 break; 4543 #endif 4544 case KVM_CAP_SYNC_REGS: 4545 r = KVM_SYNC_X86_VALID_FIELDS; 4546 break; 4547 case KVM_CAP_ADJUST_CLOCK: 4548 r = KVM_CLOCK_VALID_FLAGS; 4549 break; 4550 case KVM_CAP_X86_DISABLE_EXITS: 4551 r = KVM_X86_DISABLE_EXITS_PAUSE; 4552 4553 if (!mitigate_smt_rsb) { 4554 r |= KVM_X86_DISABLE_EXITS_HLT | 4555 KVM_X86_DISABLE_EXITS_CSTATE; 4556 4557 if (kvm_can_mwait_in_guest()) 4558 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4559 } 4560 break; 4561 case KVM_CAP_X86_SMM: 4562 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4563 break; 4564 4565 /* SMBASE is usually relocated above 1M on modern chipsets, 4566 * and SMM handlers might indeed rely on 4G segment limits, 4567 * so do not report SMM to be available if real mode is 4568 * emulated via vm86 mode. Still, do not go to great lengths 4569 * to avoid userspace's usage of the feature, because it is a 4570 * fringe case that is not enabled except via specific settings 4571 * of the module parameters. 4572 */ 4573 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4574 break; 4575 case KVM_CAP_NR_VCPUS: 4576 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4577 break; 4578 case KVM_CAP_MAX_VCPUS: 4579 r = KVM_MAX_VCPUS; 4580 break; 4581 case KVM_CAP_MAX_VCPU_ID: 4582 r = KVM_MAX_VCPU_IDS; 4583 break; 4584 case KVM_CAP_PV_MMU: /* obsolete */ 4585 r = 0; 4586 break; 4587 case KVM_CAP_MCE: 4588 r = KVM_MAX_MCE_BANKS; 4589 break; 4590 case KVM_CAP_XCRS: 4591 r = boot_cpu_has(X86_FEATURE_XSAVE); 4592 break; 4593 case KVM_CAP_TSC_CONTROL: 4594 case KVM_CAP_VM_TSC_CONTROL: 4595 r = kvm_caps.has_tsc_control; 4596 break; 4597 case KVM_CAP_X2APIC_API: 4598 r = KVM_X2APIC_API_VALID_FLAGS; 4599 break; 4600 case KVM_CAP_NESTED_STATE: 4601 r = kvm_x86_ops.nested_ops->get_state ? 4602 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4603 break; 4604 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4605 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4606 break; 4607 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4608 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4609 break; 4610 case KVM_CAP_SMALLER_MAXPHYADDR: 4611 r = (int) allow_smaller_maxphyaddr; 4612 break; 4613 case KVM_CAP_STEAL_TIME: 4614 r = sched_info_on(); 4615 break; 4616 case KVM_CAP_X86_BUS_LOCK_EXIT: 4617 if (kvm_caps.has_bus_lock_exit) 4618 r = KVM_BUS_LOCK_DETECTION_OFF | 4619 KVM_BUS_LOCK_DETECTION_EXIT; 4620 else 4621 r = 0; 4622 break; 4623 case KVM_CAP_XSAVE2: { 4624 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4625 if (r < sizeof(struct kvm_xsave)) 4626 r = sizeof(struct kvm_xsave); 4627 break; 4628 } 4629 case KVM_CAP_PMU_CAPABILITY: 4630 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4631 break; 4632 case KVM_CAP_DISABLE_QUIRKS2: 4633 r = KVM_X86_VALID_QUIRKS; 4634 break; 4635 case KVM_CAP_X86_NOTIFY_VMEXIT: 4636 r = kvm_caps.has_notify_vmexit; 4637 break; 4638 default: 4639 break; 4640 } 4641 return r; 4642 } 4643 4644 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4645 { 4646 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4647 4648 if ((u64)(unsigned long)uaddr != attr->addr) 4649 return ERR_PTR_USR(-EFAULT); 4650 return uaddr; 4651 } 4652 4653 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4654 { 4655 u64 __user *uaddr = kvm_get_attr_addr(attr); 4656 4657 if (attr->group) 4658 return -ENXIO; 4659 4660 if (IS_ERR(uaddr)) 4661 return PTR_ERR(uaddr); 4662 4663 switch (attr->attr) { 4664 case KVM_X86_XCOMP_GUEST_SUPP: 4665 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4666 return -EFAULT; 4667 return 0; 4668 default: 4669 return -ENXIO; 4670 break; 4671 } 4672 } 4673 4674 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4675 { 4676 if (attr->group) 4677 return -ENXIO; 4678 4679 switch (attr->attr) { 4680 case KVM_X86_XCOMP_GUEST_SUPP: 4681 return 0; 4682 default: 4683 return -ENXIO; 4684 } 4685 } 4686 4687 long kvm_arch_dev_ioctl(struct file *filp, 4688 unsigned int ioctl, unsigned long arg) 4689 { 4690 void __user *argp = (void __user *)arg; 4691 long r; 4692 4693 switch (ioctl) { 4694 case KVM_GET_MSR_INDEX_LIST: { 4695 struct kvm_msr_list __user *user_msr_list = argp; 4696 struct kvm_msr_list msr_list; 4697 unsigned n; 4698 4699 r = -EFAULT; 4700 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4701 goto out; 4702 n = msr_list.nmsrs; 4703 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4704 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4705 goto out; 4706 r = -E2BIG; 4707 if (n < msr_list.nmsrs) 4708 goto out; 4709 r = -EFAULT; 4710 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4711 num_msrs_to_save * sizeof(u32))) 4712 goto out; 4713 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4714 &emulated_msrs, 4715 num_emulated_msrs * sizeof(u32))) 4716 goto out; 4717 r = 0; 4718 break; 4719 } 4720 case KVM_GET_SUPPORTED_CPUID: 4721 case KVM_GET_EMULATED_CPUID: { 4722 struct kvm_cpuid2 __user *cpuid_arg = argp; 4723 struct kvm_cpuid2 cpuid; 4724 4725 r = -EFAULT; 4726 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4727 goto out; 4728 4729 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4730 ioctl); 4731 if (r) 4732 goto out; 4733 4734 r = -EFAULT; 4735 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4736 goto out; 4737 r = 0; 4738 break; 4739 } 4740 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4741 r = -EFAULT; 4742 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4743 sizeof(kvm_caps.supported_mce_cap))) 4744 goto out; 4745 r = 0; 4746 break; 4747 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4748 struct kvm_msr_list __user *user_msr_list = argp; 4749 struct kvm_msr_list msr_list; 4750 unsigned int n; 4751 4752 r = -EFAULT; 4753 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4754 goto out; 4755 n = msr_list.nmsrs; 4756 msr_list.nmsrs = num_msr_based_features; 4757 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4758 goto out; 4759 r = -E2BIG; 4760 if (n < msr_list.nmsrs) 4761 goto out; 4762 r = -EFAULT; 4763 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4764 num_msr_based_features * sizeof(u32))) 4765 goto out; 4766 r = 0; 4767 break; 4768 } 4769 case KVM_GET_MSRS: 4770 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4771 break; 4772 case KVM_GET_SUPPORTED_HV_CPUID: 4773 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4774 break; 4775 case KVM_GET_DEVICE_ATTR: { 4776 struct kvm_device_attr attr; 4777 r = -EFAULT; 4778 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4779 break; 4780 r = kvm_x86_dev_get_attr(&attr); 4781 break; 4782 } 4783 case KVM_HAS_DEVICE_ATTR: { 4784 struct kvm_device_attr attr; 4785 r = -EFAULT; 4786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4787 break; 4788 r = kvm_x86_dev_has_attr(&attr); 4789 break; 4790 } 4791 default: 4792 r = -EINVAL; 4793 break; 4794 } 4795 out: 4796 return r; 4797 } 4798 4799 static void wbinvd_ipi(void *garbage) 4800 { 4801 wbinvd(); 4802 } 4803 4804 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4805 { 4806 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4807 } 4808 4809 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4810 { 4811 /* Address WBINVD may be executed by guest */ 4812 if (need_emulate_wbinvd(vcpu)) { 4813 if (static_call(kvm_x86_has_wbinvd_exit)()) 4814 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4815 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4816 smp_call_function_single(vcpu->cpu, 4817 wbinvd_ipi, NULL, 1); 4818 } 4819 4820 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4821 4822 /* Save host pkru register if supported */ 4823 vcpu->arch.host_pkru = read_pkru(); 4824 4825 /* Apply any externally detected TSC adjustments (due to suspend) */ 4826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4828 vcpu->arch.tsc_offset_adjustment = 0; 4829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4830 } 4831 4832 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4834 rdtsc() - vcpu->arch.last_host_tsc; 4835 if (tsc_delta < 0) 4836 mark_tsc_unstable("KVM discovered backwards TSC"); 4837 4838 if (kvm_check_tsc_unstable()) { 4839 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4840 vcpu->arch.last_guest_tsc); 4841 kvm_vcpu_write_tsc_offset(vcpu, offset); 4842 vcpu->arch.tsc_catchup = 1; 4843 } 4844 4845 if (kvm_lapic_hv_timer_in_use(vcpu)) 4846 kvm_lapic_restart_hv_timer(vcpu); 4847 4848 /* 4849 * On a host with synchronized TSC, there is no need to update 4850 * kvmclock on vcpu->cpu migration 4851 */ 4852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4854 if (vcpu->cpu != cpu) 4855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4856 vcpu->cpu = cpu; 4857 } 4858 4859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4860 } 4861 4862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4863 { 4864 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4865 struct kvm_steal_time __user *st; 4866 struct kvm_memslots *slots; 4867 static const u8 preempted = KVM_VCPU_PREEMPTED; 4868 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4869 4870 /* 4871 * The vCPU can be marked preempted if and only if the VM-Exit was on 4872 * an instruction boundary and will not trigger guest emulation of any 4873 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4874 * when this is true, for example allowing the vCPU to be marked 4875 * preempted if and only if the VM-Exit was due to a host interrupt. 4876 */ 4877 if (!vcpu->arch.at_instruction_boundary) { 4878 vcpu->stat.preemption_other++; 4879 return; 4880 } 4881 4882 vcpu->stat.preemption_reported++; 4883 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4884 return; 4885 4886 if (vcpu->arch.st.preempted) 4887 return; 4888 4889 /* This happens on process exit */ 4890 if (unlikely(current->mm != vcpu->kvm->mm)) 4891 return; 4892 4893 slots = kvm_memslots(vcpu->kvm); 4894 4895 if (unlikely(slots->generation != ghc->generation || 4896 gpa != ghc->gpa || 4897 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4898 return; 4899 4900 st = (struct kvm_steal_time __user *)ghc->hva; 4901 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4902 4903 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4904 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4905 4906 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4907 } 4908 4909 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4910 { 4911 int idx; 4912 4913 if (vcpu->preempted) { 4914 if (!vcpu->arch.guest_state_protected) 4915 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4916 4917 /* 4918 * Take the srcu lock as memslots will be accessed to check the gfn 4919 * cache generation against the memslots generation. 4920 */ 4921 idx = srcu_read_lock(&vcpu->kvm->srcu); 4922 if (kvm_xen_msr_enabled(vcpu->kvm)) 4923 kvm_xen_runstate_set_preempted(vcpu); 4924 else 4925 kvm_steal_time_set_preempted(vcpu); 4926 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4927 } 4928 4929 static_call(kvm_x86_vcpu_put)(vcpu); 4930 vcpu->arch.last_host_tsc = rdtsc(); 4931 } 4932 4933 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4934 struct kvm_lapic_state *s) 4935 { 4936 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4937 4938 return kvm_apic_get_state(vcpu, s); 4939 } 4940 4941 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4942 struct kvm_lapic_state *s) 4943 { 4944 int r; 4945 4946 r = kvm_apic_set_state(vcpu, s); 4947 if (r) 4948 return r; 4949 update_cr8_intercept(vcpu); 4950 4951 return 0; 4952 } 4953 4954 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4955 { 4956 /* 4957 * We can accept userspace's request for interrupt injection 4958 * as long as we have a place to store the interrupt number. 4959 * The actual injection will happen when the CPU is able to 4960 * deliver the interrupt. 4961 */ 4962 if (kvm_cpu_has_extint(vcpu)) 4963 return false; 4964 4965 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4966 return (!lapic_in_kernel(vcpu) || 4967 kvm_apic_accept_pic_intr(vcpu)); 4968 } 4969 4970 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4971 { 4972 /* 4973 * Do not cause an interrupt window exit if an exception 4974 * is pending or an event needs reinjection; userspace 4975 * might want to inject the interrupt manually using KVM_SET_REGS 4976 * or KVM_SET_SREGS. For that to work, we must be at an 4977 * instruction boundary and with no events half-injected. 4978 */ 4979 return (kvm_arch_interrupt_allowed(vcpu) && 4980 kvm_cpu_accept_dm_intr(vcpu) && 4981 !kvm_event_needs_reinjection(vcpu) && 4982 !kvm_is_exception_pending(vcpu)); 4983 } 4984 4985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4986 struct kvm_interrupt *irq) 4987 { 4988 if (irq->irq >= KVM_NR_INTERRUPTS) 4989 return -EINVAL; 4990 4991 if (!irqchip_in_kernel(vcpu->kvm)) { 4992 kvm_queue_interrupt(vcpu, irq->irq, false); 4993 kvm_make_request(KVM_REQ_EVENT, vcpu); 4994 return 0; 4995 } 4996 4997 /* 4998 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4999 * fail for in-kernel 8259. 5000 */ 5001 if (pic_in_kernel(vcpu->kvm)) 5002 return -ENXIO; 5003 5004 if (vcpu->arch.pending_external_vector != -1) 5005 return -EEXIST; 5006 5007 vcpu->arch.pending_external_vector = irq->irq; 5008 kvm_make_request(KVM_REQ_EVENT, vcpu); 5009 return 0; 5010 } 5011 5012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5013 { 5014 kvm_inject_nmi(vcpu); 5015 5016 return 0; 5017 } 5018 5019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5020 struct kvm_tpr_access_ctl *tac) 5021 { 5022 if (tac->flags) 5023 return -EINVAL; 5024 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5025 return 0; 5026 } 5027 5028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5029 u64 mcg_cap) 5030 { 5031 int r; 5032 unsigned bank_num = mcg_cap & 0xff, bank; 5033 5034 r = -EINVAL; 5035 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5036 goto out; 5037 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5038 goto out; 5039 r = 0; 5040 vcpu->arch.mcg_cap = mcg_cap; 5041 /* Init IA32_MCG_CTL to all 1s */ 5042 if (mcg_cap & MCG_CTL_P) 5043 vcpu->arch.mcg_ctl = ~(u64)0; 5044 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5045 for (bank = 0; bank < bank_num; bank++) { 5046 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5047 if (mcg_cap & MCG_CMCI_P) 5048 vcpu->arch.mci_ctl2_banks[bank] = 0; 5049 } 5050 5051 kvm_apic_after_set_mcg_cap(vcpu); 5052 5053 static_call(kvm_x86_setup_mce)(vcpu); 5054 out: 5055 return r; 5056 } 5057 5058 /* 5059 * Validate this is an UCNA (uncorrectable no action) error by checking the 5060 * MCG_STATUS and MCi_STATUS registers: 5061 * - none of the bits for Machine Check Exceptions are set 5062 * - both the VAL (valid) and UC (uncorrectable) bits are set 5063 * MCI_STATUS_PCC - Processor Context Corrupted 5064 * MCI_STATUS_S - Signaled as a Machine Check Exception 5065 * MCI_STATUS_AR - Software recoverable Action Required 5066 */ 5067 static bool is_ucna(struct kvm_x86_mce *mce) 5068 { 5069 return !mce->mcg_status && 5070 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5071 (mce->status & MCI_STATUS_VAL) && 5072 (mce->status & MCI_STATUS_UC); 5073 } 5074 5075 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5076 { 5077 u64 mcg_cap = vcpu->arch.mcg_cap; 5078 5079 banks[1] = mce->status; 5080 banks[2] = mce->addr; 5081 banks[3] = mce->misc; 5082 vcpu->arch.mcg_status = mce->mcg_status; 5083 5084 if (!(mcg_cap & MCG_CMCI_P) || 5085 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5086 return 0; 5087 5088 if (lapic_in_kernel(vcpu)) 5089 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5090 5091 return 0; 5092 } 5093 5094 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5095 struct kvm_x86_mce *mce) 5096 { 5097 u64 mcg_cap = vcpu->arch.mcg_cap; 5098 unsigned bank_num = mcg_cap & 0xff; 5099 u64 *banks = vcpu->arch.mce_banks; 5100 5101 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5102 return -EINVAL; 5103 5104 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5105 5106 if (is_ucna(mce)) 5107 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5108 5109 /* 5110 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5111 * reporting is disabled 5112 */ 5113 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5114 vcpu->arch.mcg_ctl != ~(u64)0) 5115 return 0; 5116 /* 5117 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5118 * reporting is disabled for the bank 5119 */ 5120 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5121 return 0; 5122 if (mce->status & MCI_STATUS_UC) { 5123 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5124 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5125 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5126 return 0; 5127 } 5128 if (banks[1] & MCI_STATUS_VAL) 5129 mce->status |= MCI_STATUS_OVER; 5130 banks[2] = mce->addr; 5131 banks[3] = mce->misc; 5132 vcpu->arch.mcg_status = mce->mcg_status; 5133 banks[1] = mce->status; 5134 kvm_queue_exception(vcpu, MC_VECTOR); 5135 } else if (!(banks[1] & MCI_STATUS_VAL) 5136 || !(banks[1] & MCI_STATUS_UC)) { 5137 if (banks[1] & MCI_STATUS_VAL) 5138 mce->status |= MCI_STATUS_OVER; 5139 banks[2] = mce->addr; 5140 banks[3] = mce->misc; 5141 banks[1] = mce->status; 5142 } else 5143 banks[1] |= MCI_STATUS_OVER; 5144 return 0; 5145 } 5146 5147 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5148 struct kvm_vcpu_events *events) 5149 { 5150 struct kvm_queued_exception *ex; 5151 5152 process_nmi(vcpu); 5153 5154 #ifdef CONFIG_KVM_SMM 5155 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5156 process_smi(vcpu); 5157 #endif 5158 5159 /* 5160 * KVM's ABI only allows for one exception to be migrated. Luckily, 5161 * the only time there can be two queued exceptions is if there's a 5162 * non-exiting _injected_ exception, and a pending exiting exception. 5163 * In that case, ignore the VM-Exiting exception as it's an extension 5164 * of the injected exception. 5165 */ 5166 if (vcpu->arch.exception_vmexit.pending && 5167 !vcpu->arch.exception.pending && 5168 !vcpu->arch.exception.injected) 5169 ex = &vcpu->arch.exception_vmexit; 5170 else 5171 ex = &vcpu->arch.exception; 5172 5173 /* 5174 * In guest mode, payload delivery should be deferred if the exception 5175 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5176 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5177 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5178 * propagate the payload and so it cannot be safely deferred. Deliver 5179 * the payload if the capability hasn't been requested. 5180 */ 5181 if (!vcpu->kvm->arch.exception_payload_enabled && 5182 ex->pending && ex->has_payload) 5183 kvm_deliver_exception_payload(vcpu, ex); 5184 5185 memset(events, 0, sizeof(*events)); 5186 5187 /* 5188 * The API doesn't provide the instruction length for software 5189 * exceptions, so don't report them. As long as the guest RIP 5190 * isn't advanced, we should expect to encounter the exception 5191 * again. 5192 */ 5193 if (!kvm_exception_is_soft(ex->vector)) { 5194 events->exception.injected = ex->injected; 5195 events->exception.pending = ex->pending; 5196 /* 5197 * For ABI compatibility, deliberately conflate 5198 * pending and injected exceptions when 5199 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5200 */ 5201 if (!vcpu->kvm->arch.exception_payload_enabled) 5202 events->exception.injected |= ex->pending; 5203 } 5204 events->exception.nr = ex->vector; 5205 events->exception.has_error_code = ex->has_error_code; 5206 events->exception.error_code = ex->error_code; 5207 events->exception_has_payload = ex->has_payload; 5208 events->exception_payload = ex->payload; 5209 5210 events->interrupt.injected = 5211 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5212 events->interrupt.nr = vcpu->arch.interrupt.nr; 5213 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5214 5215 events->nmi.injected = vcpu->arch.nmi_injected; 5216 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5217 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5218 5219 /* events->sipi_vector is never valid when reporting to user space */ 5220 5221 #ifdef CONFIG_KVM_SMM 5222 events->smi.smm = is_smm(vcpu); 5223 events->smi.pending = vcpu->arch.smi_pending; 5224 events->smi.smm_inside_nmi = 5225 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5226 #endif 5227 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5228 5229 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5230 | KVM_VCPUEVENT_VALID_SHADOW 5231 | KVM_VCPUEVENT_VALID_SMM); 5232 if (vcpu->kvm->arch.exception_payload_enabled) 5233 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5234 if (vcpu->kvm->arch.triple_fault_event) { 5235 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5236 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5237 } 5238 } 5239 5240 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5241 struct kvm_vcpu_events *events) 5242 { 5243 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5244 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5245 | KVM_VCPUEVENT_VALID_SHADOW 5246 | KVM_VCPUEVENT_VALID_SMM 5247 | KVM_VCPUEVENT_VALID_PAYLOAD 5248 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5249 return -EINVAL; 5250 5251 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5252 if (!vcpu->kvm->arch.exception_payload_enabled) 5253 return -EINVAL; 5254 if (events->exception.pending) 5255 events->exception.injected = 0; 5256 else 5257 events->exception_has_payload = 0; 5258 } else { 5259 events->exception.pending = 0; 5260 events->exception_has_payload = 0; 5261 } 5262 5263 if ((events->exception.injected || events->exception.pending) && 5264 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5265 return -EINVAL; 5266 5267 /* INITs are latched while in SMM */ 5268 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5269 (events->smi.smm || events->smi.pending) && 5270 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5271 return -EINVAL; 5272 5273 process_nmi(vcpu); 5274 5275 /* 5276 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5277 * morph the exception to a VM-Exit if appropriate. Do this only for 5278 * pending exceptions, already-injected exceptions are not subject to 5279 * intercpetion. Note, userspace that conflates pending and injected 5280 * is hosed, and will incorrectly convert an injected exception into a 5281 * pending exception, which in turn may cause a spurious VM-Exit. 5282 */ 5283 vcpu->arch.exception_from_userspace = events->exception.pending; 5284 5285 vcpu->arch.exception_vmexit.pending = false; 5286 5287 vcpu->arch.exception.injected = events->exception.injected; 5288 vcpu->arch.exception.pending = events->exception.pending; 5289 vcpu->arch.exception.vector = events->exception.nr; 5290 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5291 vcpu->arch.exception.error_code = events->exception.error_code; 5292 vcpu->arch.exception.has_payload = events->exception_has_payload; 5293 vcpu->arch.exception.payload = events->exception_payload; 5294 5295 vcpu->arch.interrupt.injected = events->interrupt.injected; 5296 vcpu->arch.interrupt.nr = events->interrupt.nr; 5297 vcpu->arch.interrupt.soft = events->interrupt.soft; 5298 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5299 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5300 events->interrupt.shadow); 5301 5302 vcpu->arch.nmi_injected = events->nmi.injected; 5303 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5304 vcpu->arch.nmi_pending = 0; 5305 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5306 kvm_make_request(KVM_REQ_NMI, vcpu); 5307 } 5308 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5309 5310 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5311 lapic_in_kernel(vcpu)) 5312 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5313 5314 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5315 #ifdef CONFIG_KVM_SMM 5316 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5317 kvm_leave_nested(vcpu); 5318 kvm_smm_changed(vcpu, events->smi.smm); 5319 } 5320 5321 vcpu->arch.smi_pending = events->smi.pending; 5322 5323 if (events->smi.smm) { 5324 if (events->smi.smm_inside_nmi) 5325 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5326 else 5327 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5328 } 5329 5330 #else 5331 if (events->smi.smm || events->smi.pending || 5332 events->smi.smm_inside_nmi) 5333 return -EINVAL; 5334 #endif 5335 5336 if (lapic_in_kernel(vcpu)) { 5337 if (events->smi.latched_init) 5338 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5339 else 5340 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5341 } 5342 } 5343 5344 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5345 if (!vcpu->kvm->arch.triple_fault_event) 5346 return -EINVAL; 5347 if (events->triple_fault.pending) 5348 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5349 else 5350 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5351 } 5352 5353 kvm_make_request(KVM_REQ_EVENT, vcpu); 5354 5355 return 0; 5356 } 5357 5358 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5359 struct kvm_debugregs *dbgregs) 5360 { 5361 unsigned long val; 5362 5363 memset(dbgregs, 0, sizeof(*dbgregs)); 5364 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5365 kvm_get_dr(vcpu, 6, &val); 5366 dbgregs->dr6 = val; 5367 dbgregs->dr7 = vcpu->arch.dr7; 5368 } 5369 5370 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5371 struct kvm_debugregs *dbgregs) 5372 { 5373 if (dbgregs->flags) 5374 return -EINVAL; 5375 5376 if (!kvm_dr6_valid(dbgregs->dr6)) 5377 return -EINVAL; 5378 if (!kvm_dr7_valid(dbgregs->dr7)) 5379 return -EINVAL; 5380 5381 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5382 kvm_update_dr0123(vcpu); 5383 vcpu->arch.dr6 = dbgregs->dr6; 5384 vcpu->arch.dr7 = dbgregs->dr7; 5385 kvm_update_dr7(vcpu); 5386 5387 return 0; 5388 } 5389 5390 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5391 struct kvm_xsave *guest_xsave) 5392 { 5393 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5394 return; 5395 5396 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5397 guest_xsave->region, 5398 sizeof(guest_xsave->region), 5399 vcpu->arch.pkru); 5400 } 5401 5402 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5403 u8 *state, unsigned int size) 5404 { 5405 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5406 return; 5407 5408 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5409 state, size, vcpu->arch.pkru); 5410 } 5411 5412 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5413 struct kvm_xsave *guest_xsave) 5414 { 5415 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5416 return 0; 5417 5418 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5419 guest_xsave->region, 5420 kvm_caps.supported_xcr0, 5421 &vcpu->arch.pkru); 5422 } 5423 5424 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5425 struct kvm_xcrs *guest_xcrs) 5426 { 5427 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5428 guest_xcrs->nr_xcrs = 0; 5429 return; 5430 } 5431 5432 guest_xcrs->nr_xcrs = 1; 5433 guest_xcrs->flags = 0; 5434 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5435 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5436 } 5437 5438 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5439 struct kvm_xcrs *guest_xcrs) 5440 { 5441 int i, r = 0; 5442 5443 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5444 return -EINVAL; 5445 5446 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5447 return -EINVAL; 5448 5449 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5450 /* Only support XCR0 currently */ 5451 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5452 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5453 guest_xcrs->xcrs[i].value); 5454 break; 5455 } 5456 if (r) 5457 r = -EINVAL; 5458 return r; 5459 } 5460 5461 /* 5462 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5463 * stopped by the hypervisor. This function will be called from the host only. 5464 * EINVAL is returned when the host attempts to set the flag for a guest that 5465 * does not support pv clocks. 5466 */ 5467 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5468 { 5469 if (!vcpu->arch.pv_time.active) 5470 return -EINVAL; 5471 vcpu->arch.pvclock_set_guest_stopped_request = true; 5472 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5473 return 0; 5474 } 5475 5476 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5477 struct kvm_device_attr *attr) 5478 { 5479 int r; 5480 5481 switch (attr->attr) { 5482 case KVM_VCPU_TSC_OFFSET: 5483 r = 0; 5484 break; 5485 default: 5486 r = -ENXIO; 5487 } 5488 5489 return r; 5490 } 5491 5492 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5493 struct kvm_device_attr *attr) 5494 { 5495 u64 __user *uaddr = kvm_get_attr_addr(attr); 5496 int r; 5497 5498 if (IS_ERR(uaddr)) 5499 return PTR_ERR(uaddr); 5500 5501 switch (attr->attr) { 5502 case KVM_VCPU_TSC_OFFSET: 5503 r = -EFAULT; 5504 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5505 break; 5506 r = 0; 5507 break; 5508 default: 5509 r = -ENXIO; 5510 } 5511 5512 return r; 5513 } 5514 5515 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5516 struct kvm_device_attr *attr) 5517 { 5518 u64 __user *uaddr = kvm_get_attr_addr(attr); 5519 struct kvm *kvm = vcpu->kvm; 5520 int r; 5521 5522 if (IS_ERR(uaddr)) 5523 return PTR_ERR(uaddr); 5524 5525 switch (attr->attr) { 5526 case KVM_VCPU_TSC_OFFSET: { 5527 u64 offset, tsc, ns; 5528 unsigned long flags; 5529 bool matched; 5530 5531 r = -EFAULT; 5532 if (get_user(offset, uaddr)) 5533 break; 5534 5535 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5536 5537 matched = (vcpu->arch.virtual_tsc_khz && 5538 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5539 kvm->arch.last_tsc_offset == offset); 5540 5541 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5542 ns = get_kvmclock_base_ns(); 5543 5544 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5545 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5546 5547 r = 0; 5548 break; 5549 } 5550 default: 5551 r = -ENXIO; 5552 } 5553 5554 return r; 5555 } 5556 5557 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5558 unsigned int ioctl, 5559 void __user *argp) 5560 { 5561 struct kvm_device_attr attr; 5562 int r; 5563 5564 if (copy_from_user(&attr, argp, sizeof(attr))) 5565 return -EFAULT; 5566 5567 if (attr.group != KVM_VCPU_TSC_CTRL) 5568 return -ENXIO; 5569 5570 switch (ioctl) { 5571 case KVM_HAS_DEVICE_ATTR: 5572 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5573 break; 5574 case KVM_GET_DEVICE_ATTR: 5575 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5576 break; 5577 case KVM_SET_DEVICE_ATTR: 5578 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5579 break; 5580 } 5581 5582 return r; 5583 } 5584 5585 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5586 struct kvm_enable_cap *cap) 5587 { 5588 int r; 5589 uint16_t vmcs_version; 5590 void __user *user_ptr; 5591 5592 if (cap->flags) 5593 return -EINVAL; 5594 5595 switch (cap->cap) { 5596 case KVM_CAP_HYPERV_SYNIC2: 5597 if (cap->args[0]) 5598 return -EINVAL; 5599 fallthrough; 5600 5601 case KVM_CAP_HYPERV_SYNIC: 5602 if (!irqchip_in_kernel(vcpu->kvm)) 5603 return -EINVAL; 5604 return kvm_hv_activate_synic(vcpu, cap->cap == 5605 KVM_CAP_HYPERV_SYNIC2); 5606 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5607 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5608 return -ENOTTY; 5609 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5610 if (!r) { 5611 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5612 if (copy_to_user(user_ptr, &vmcs_version, 5613 sizeof(vmcs_version))) 5614 r = -EFAULT; 5615 } 5616 return r; 5617 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5618 if (!kvm_x86_ops.enable_l2_tlb_flush) 5619 return -ENOTTY; 5620 5621 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5622 5623 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5624 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5625 5626 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5627 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5628 if (vcpu->arch.pv_cpuid.enforce) 5629 kvm_update_pv_runtime(vcpu); 5630 5631 return 0; 5632 default: 5633 return -EINVAL; 5634 } 5635 } 5636 5637 long kvm_arch_vcpu_ioctl(struct file *filp, 5638 unsigned int ioctl, unsigned long arg) 5639 { 5640 struct kvm_vcpu *vcpu = filp->private_data; 5641 void __user *argp = (void __user *)arg; 5642 int r; 5643 union { 5644 struct kvm_sregs2 *sregs2; 5645 struct kvm_lapic_state *lapic; 5646 struct kvm_xsave *xsave; 5647 struct kvm_xcrs *xcrs; 5648 void *buffer; 5649 } u; 5650 5651 vcpu_load(vcpu); 5652 5653 u.buffer = NULL; 5654 switch (ioctl) { 5655 case KVM_GET_LAPIC: { 5656 r = -EINVAL; 5657 if (!lapic_in_kernel(vcpu)) 5658 goto out; 5659 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5660 GFP_KERNEL_ACCOUNT); 5661 5662 r = -ENOMEM; 5663 if (!u.lapic) 5664 goto out; 5665 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5666 if (r) 5667 goto out; 5668 r = -EFAULT; 5669 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5670 goto out; 5671 r = 0; 5672 break; 5673 } 5674 case KVM_SET_LAPIC: { 5675 r = -EINVAL; 5676 if (!lapic_in_kernel(vcpu)) 5677 goto out; 5678 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5679 if (IS_ERR(u.lapic)) { 5680 r = PTR_ERR(u.lapic); 5681 goto out_nofree; 5682 } 5683 5684 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5685 break; 5686 } 5687 case KVM_INTERRUPT: { 5688 struct kvm_interrupt irq; 5689 5690 r = -EFAULT; 5691 if (copy_from_user(&irq, argp, sizeof(irq))) 5692 goto out; 5693 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5694 break; 5695 } 5696 case KVM_NMI: { 5697 r = kvm_vcpu_ioctl_nmi(vcpu); 5698 break; 5699 } 5700 case KVM_SMI: { 5701 r = kvm_inject_smi(vcpu); 5702 break; 5703 } 5704 case KVM_SET_CPUID: { 5705 struct kvm_cpuid __user *cpuid_arg = argp; 5706 struct kvm_cpuid cpuid; 5707 5708 r = -EFAULT; 5709 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5710 goto out; 5711 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5712 break; 5713 } 5714 case KVM_SET_CPUID2: { 5715 struct kvm_cpuid2 __user *cpuid_arg = argp; 5716 struct kvm_cpuid2 cpuid; 5717 5718 r = -EFAULT; 5719 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5720 goto out; 5721 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5722 cpuid_arg->entries); 5723 break; 5724 } 5725 case KVM_GET_CPUID2: { 5726 struct kvm_cpuid2 __user *cpuid_arg = argp; 5727 struct kvm_cpuid2 cpuid; 5728 5729 r = -EFAULT; 5730 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5731 goto out; 5732 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5733 cpuid_arg->entries); 5734 if (r) 5735 goto out; 5736 r = -EFAULT; 5737 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5738 goto out; 5739 r = 0; 5740 break; 5741 } 5742 case KVM_GET_MSRS: { 5743 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5744 r = msr_io(vcpu, argp, do_get_msr, 1); 5745 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5746 break; 5747 } 5748 case KVM_SET_MSRS: { 5749 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5750 r = msr_io(vcpu, argp, do_set_msr, 0); 5751 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5752 break; 5753 } 5754 case KVM_TPR_ACCESS_REPORTING: { 5755 struct kvm_tpr_access_ctl tac; 5756 5757 r = -EFAULT; 5758 if (copy_from_user(&tac, argp, sizeof(tac))) 5759 goto out; 5760 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5761 if (r) 5762 goto out; 5763 r = -EFAULT; 5764 if (copy_to_user(argp, &tac, sizeof(tac))) 5765 goto out; 5766 r = 0; 5767 break; 5768 }; 5769 case KVM_SET_VAPIC_ADDR: { 5770 struct kvm_vapic_addr va; 5771 int idx; 5772 5773 r = -EINVAL; 5774 if (!lapic_in_kernel(vcpu)) 5775 goto out; 5776 r = -EFAULT; 5777 if (copy_from_user(&va, argp, sizeof(va))) 5778 goto out; 5779 idx = srcu_read_lock(&vcpu->kvm->srcu); 5780 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5781 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5782 break; 5783 } 5784 case KVM_X86_SETUP_MCE: { 5785 u64 mcg_cap; 5786 5787 r = -EFAULT; 5788 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5789 goto out; 5790 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5791 break; 5792 } 5793 case KVM_X86_SET_MCE: { 5794 struct kvm_x86_mce mce; 5795 5796 r = -EFAULT; 5797 if (copy_from_user(&mce, argp, sizeof(mce))) 5798 goto out; 5799 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5800 break; 5801 } 5802 case KVM_GET_VCPU_EVENTS: { 5803 struct kvm_vcpu_events events; 5804 5805 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5806 5807 r = -EFAULT; 5808 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5809 break; 5810 r = 0; 5811 break; 5812 } 5813 case KVM_SET_VCPU_EVENTS: { 5814 struct kvm_vcpu_events events; 5815 5816 r = -EFAULT; 5817 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5818 break; 5819 5820 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5821 break; 5822 } 5823 case KVM_GET_DEBUGREGS: { 5824 struct kvm_debugregs dbgregs; 5825 5826 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5827 5828 r = -EFAULT; 5829 if (copy_to_user(argp, &dbgregs, 5830 sizeof(struct kvm_debugregs))) 5831 break; 5832 r = 0; 5833 break; 5834 } 5835 case KVM_SET_DEBUGREGS: { 5836 struct kvm_debugregs dbgregs; 5837 5838 r = -EFAULT; 5839 if (copy_from_user(&dbgregs, argp, 5840 sizeof(struct kvm_debugregs))) 5841 break; 5842 5843 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5844 break; 5845 } 5846 case KVM_GET_XSAVE: { 5847 r = -EINVAL; 5848 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5849 break; 5850 5851 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5852 r = -ENOMEM; 5853 if (!u.xsave) 5854 break; 5855 5856 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5857 5858 r = -EFAULT; 5859 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5860 break; 5861 r = 0; 5862 break; 5863 } 5864 case KVM_SET_XSAVE: { 5865 int size = vcpu->arch.guest_fpu.uabi_size; 5866 5867 u.xsave = memdup_user(argp, size); 5868 if (IS_ERR(u.xsave)) { 5869 r = PTR_ERR(u.xsave); 5870 goto out_nofree; 5871 } 5872 5873 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5874 break; 5875 } 5876 5877 case KVM_GET_XSAVE2: { 5878 int size = vcpu->arch.guest_fpu.uabi_size; 5879 5880 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5881 r = -ENOMEM; 5882 if (!u.xsave) 5883 break; 5884 5885 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5886 5887 r = -EFAULT; 5888 if (copy_to_user(argp, u.xsave, size)) 5889 break; 5890 5891 r = 0; 5892 break; 5893 } 5894 5895 case KVM_GET_XCRS: { 5896 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5897 r = -ENOMEM; 5898 if (!u.xcrs) 5899 break; 5900 5901 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5902 5903 r = -EFAULT; 5904 if (copy_to_user(argp, u.xcrs, 5905 sizeof(struct kvm_xcrs))) 5906 break; 5907 r = 0; 5908 break; 5909 } 5910 case KVM_SET_XCRS: { 5911 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5912 if (IS_ERR(u.xcrs)) { 5913 r = PTR_ERR(u.xcrs); 5914 goto out_nofree; 5915 } 5916 5917 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5918 break; 5919 } 5920 case KVM_SET_TSC_KHZ: { 5921 u32 user_tsc_khz; 5922 5923 r = -EINVAL; 5924 user_tsc_khz = (u32)arg; 5925 5926 if (kvm_caps.has_tsc_control && 5927 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5928 goto out; 5929 5930 if (user_tsc_khz == 0) 5931 user_tsc_khz = tsc_khz; 5932 5933 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5934 r = 0; 5935 5936 goto out; 5937 } 5938 case KVM_GET_TSC_KHZ: { 5939 r = vcpu->arch.virtual_tsc_khz; 5940 goto out; 5941 } 5942 case KVM_KVMCLOCK_CTRL: { 5943 r = kvm_set_guest_paused(vcpu); 5944 goto out; 5945 } 5946 case KVM_ENABLE_CAP: { 5947 struct kvm_enable_cap cap; 5948 5949 r = -EFAULT; 5950 if (copy_from_user(&cap, argp, sizeof(cap))) 5951 goto out; 5952 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5953 break; 5954 } 5955 case KVM_GET_NESTED_STATE: { 5956 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5957 u32 user_data_size; 5958 5959 r = -EINVAL; 5960 if (!kvm_x86_ops.nested_ops->get_state) 5961 break; 5962 5963 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5964 r = -EFAULT; 5965 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5966 break; 5967 5968 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5969 user_data_size); 5970 if (r < 0) 5971 break; 5972 5973 if (r > user_data_size) { 5974 if (put_user(r, &user_kvm_nested_state->size)) 5975 r = -EFAULT; 5976 else 5977 r = -E2BIG; 5978 break; 5979 } 5980 5981 r = 0; 5982 break; 5983 } 5984 case KVM_SET_NESTED_STATE: { 5985 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5986 struct kvm_nested_state kvm_state; 5987 int idx; 5988 5989 r = -EINVAL; 5990 if (!kvm_x86_ops.nested_ops->set_state) 5991 break; 5992 5993 r = -EFAULT; 5994 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5995 break; 5996 5997 r = -EINVAL; 5998 if (kvm_state.size < sizeof(kvm_state)) 5999 break; 6000 6001 if (kvm_state.flags & 6002 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6003 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6004 | KVM_STATE_NESTED_GIF_SET)) 6005 break; 6006 6007 /* nested_run_pending implies guest_mode. */ 6008 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6009 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6010 break; 6011 6012 idx = srcu_read_lock(&vcpu->kvm->srcu); 6013 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6014 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6015 break; 6016 } 6017 case KVM_GET_SUPPORTED_HV_CPUID: 6018 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6019 break; 6020 #ifdef CONFIG_KVM_XEN 6021 case KVM_XEN_VCPU_GET_ATTR: { 6022 struct kvm_xen_vcpu_attr xva; 6023 6024 r = -EFAULT; 6025 if (copy_from_user(&xva, argp, sizeof(xva))) 6026 goto out; 6027 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6028 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6029 r = -EFAULT; 6030 break; 6031 } 6032 case KVM_XEN_VCPU_SET_ATTR: { 6033 struct kvm_xen_vcpu_attr xva; 6034 6035 r = -EFAULT; 6036 if (copy_from_user(&xva, argp, sizeof(xva))) 6037 goto out; 6038 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6039 break; 6040 } 6041 #endif 6042 case KVM_GET_SREGS2: { 6043 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6044 r = -ENOMEM; 6045 if (!u.sregs2) 6046 goto out; 6047 __get_sregs2(vcpu, u.sregs2); 6048 r = -EFAULT; 6049 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6050 goto out; 6051 r = 0; 6052 break; 6053 } 6054 case KVM_SET_SREGS2: { 6055 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6056 if (IS_ERR(u.sregs2)) { 6057 r = PTR_ERR(u.sregs2); 6058 u.sregs2 = NULL; 6059 goto out; 6060 } 6061 r = __set_sregs2(vcpu, u.sregs2); 6062 break; 6063 } 6064 case KVM_HAS_DEVICE_ATTR: 6065 case KVM_GET_DEVICE_ATTR: 6066 case KVM_SET_DEVICE_ATTR: 6067 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6068 break; 6069 default: 6070 r = -EINVAL; 6071 } 6072 out: 6073 kfree(u.buffer); 6074 out_nofree: 6075 vcpu_put(vcpu); 6076 return r; 6077 } 6078 6079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6080 { 6081 return VM_FAULT_SIGBUS; 6082 } 6083 6084 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6085 { 6086 int ret; 6087 6088 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6089 return -EINVAL; 6090 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6091 return ret; 6092 } 6093 6094 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6095 u64 ident_addr) 6096 { 6097 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6098 } 6099 6100 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6101 unsigned long kvm_nr_mmu_pages) 6102 { 6103 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6104 return -EINVAL; 6105 6106 mutex_lock(&kvm->slots_lock); 6107 6108 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6109 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6110 6111 mutex_unlock(&kvm->slots_lock); 6112 return 0; 6113 } 6114 6115 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6116 { 6117 struct kvm_pic *pic = kvm->arch.vpic; 6118 int r; 6119 6120 r = 0; 6121 switch (chip->chip_id) { 6122 case KVM_IRQCHIP_PIC_MASTER: 6123 memcpy(&chip->chip.pic, &pic->pics[0], 6124 sizeof(struct kvm_pic_state)); 6125 break; 6126 case KVM_IRQCHIP_PIC_SLAVE: 6127 memcpy(&chip->chip.pic, &pic->pics[1], 6128 sizeof(struct kvm_pic_state)); 6129 break; 6130 case KVM_IRQCHIP_IOAPIC: 6131 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6132 break; 6133 default: 6134 r = -EINVAL; 6135 break; 6136 } 6137 return r; 6138 } 6139 6140 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6141 { 6142 struct kvm_pic *pic = kvm->arch.vpic; 6143 int r; 6144 6145 r = 0; 6146 switch (chip->chip_id) { 6147 case KVM_IRQCHIP_PIC_MASTER: 6148 spin_lock(&pic->lock); 6149 memcpy(&pic->pics[0], &chip->chip.pic, 6150 sizeof(struct kvm_pic_state)); 6151 spin_unlock(&pic->lock); 6152 break; 6153 case KVM_IRQCHIP_PIC_SLAVE: 6154 spin_lock(&pic->lock); 6155 memcpy(&pic->pics[1], &chip->chip.pic, 6156 sizeof(struct kvm_pic_state)); 6157 spin_unlock(&pic->lock); 6158 break; 6159 case KVM_IRQCHIP_IOAPIC: 6160 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6161 break; 6162 default: 6163 r = -EINVAL; 6164 break; 6165 } 6166 kvm_pic_update_irq(pic); 6167 return r; 6168 } 6169 6170 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6171 { 6172 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6173 6174 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6175 6176 mutex_lock(&kps->lock); 6177 memcpy(ps, &kps->channels, sizeof(*ps)); 6178 mutex_unlock(&kps->lock); 6179 return 0; 6180 } 6181 6182 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6183 { 6184 int i; 6185 struct kvm_pit *pit = kvm->arch.vpit; 6186 6187 mutex_lock(&pit->pit_state.lock); 6188 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6189 for (i = 0; i < 3; i++) 6190 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6191 mutex_unlock(&pit->pit_state.lock); 6192 return 0; 6193 } 6194 6195 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6196 { 6197 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6198 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6199 sizeof(ps->channels)); 6200 ps->flags = kvm->arch.vpit->pit_state.flags; 6201 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6202 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6203 return 0; 6204 } 6205 6206 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6207 { 6208 int start = 0; 6209 int i; 6210 u32 prev_legacy, cur_legacy; 6211 struct kvm_pit *pit = kvm->arch.vpit; 6212 6213 mutex_lock(&pit->pit_state.lock); 6214 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6215 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6216 if (!prev_legacy && cur_legacy) 6217 start = 1; 6218 memcpy(&pit->pit_state.channels, &ps->channels, 6219 sizeof(pit->pit_state.channels)); 6220 pit->pit_state.flags = ps->flags; 6221 for (i = 0; i < 3; i++) 6222 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6223 start && i == 0); 6224 mutex_unlock(&pit->pit_state.lock); 6225 return 0; 6226 } 6227 6228 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6229 struct kvm_reinject_control *control) 6230 { 6231 struct kvm_pit *pit = kvm->arch.vpit; 6232 6233 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6234 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6235 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6236 */ 6237 mutex_lock(&pit->pit_state.lock); 6238 kvm_pit_set_reinject(pit, control->pit_reinject); 6239 mutex_unlock(&pit->pit_state.lock); 6240 6241 return 0; 6242 } 6243 6244 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6245 { 6246 6247 /* 6248 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6249 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6250 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6251 * VM-Exit. 6252 */ 6253 struct kvm_vcpu *vcpu; 6254 unsigned long i; 6255 6256 kvm_for_each_vcpu(i, vcpu, kvm) 6257 kvm_vcpu_kick(vcpu); 6258 } 6259 6260 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6261 bool line_status) 6262 { 6263 if (!irqchip_in_kernel(kvm)) 6264 return -ENXIO; 6265 6266 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6267 irq_event->irq, irq_event->level, 6268 line_status); 6269 return 0; 6270 } 6271 6272 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6273 struct kvm_enable_cap *cap) 6274 { 6275 int r; 6276 6277 if (cap->flags) 6278 return -EINVAL; 6279 6280 switch (cap->cap) { 6281 case KVM_CAP_DISABLE_QUIRKS2: 6282 r = -EINVAL; 6283 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6284 break; 6285 fallthrough; 6286 case KVM_CAP_DISABLE_QUIRKS: 6287 kvm->arch.disabled_quirks = cap->args[0]; 6288 r = 0; 6289 break; 6290 case KVM_CAP_SPLIT_IRQCHIP: { 6291 mutex_lock(&kvm->lock); 6292 r = -EINVAL; 6293 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6294 goto split_irqchip_unlock; 6295 r = -EEXIST; 6296 if (irqchip_in_kernel(kvm)) 6297 goto split_irqchip_unlock; 6298 if (kvm->created_vcpus) 6299 goto split_irqchip_unlock; 6300 r = kvm_setup_empty_irq_routing(kvm); 6301 if (r) 6302 goto split_irqchip_unlock; 6303 /* Pairs with irqchip_in_kernel. */ 6304 smp_wmb(); 6305 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6306 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6307 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6308 r = 0; 6309 split_irqchip_unlock: 6310 mutex_unlock(&kvm->lock); 6311 break; 6312 } 6313 case KVM_CAP_X2APIC_API: 6314 r = -EINVAL; 6315 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6316 break; 6317 6318 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6319 kvm->arch.x2apic_format = true; 6320 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6321 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6322 6323 r = 0; 6324 break; 6325 case KVM_CAP_X86_DISABLE_EXITS: 6326 r = -EINVAL; 6327 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6328 break; 6329 6330 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6331 kvm->arch.pause_in_guest = true; 6332 6333 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6334 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6335 6336 if (!mitigate_smt_rsb) { 6337 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6338 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6339 pr_warn_once(SMT_RSB_MSG); 6340 6341 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6342 kvm_can_mwait_in_guest()) 6343 kvm->arch.mwait_in_guest = true; 6344 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6345 kvm->arch.hlt_in_guest = true; 6346 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6347 kvm->arch.cstate_in_guest = true; 6348 } 6349 6350 r = 0; 6351 break; 6352 case KVM_CAP_MSR_PLATFORM_INFO: 6353 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6354 r = 0; 6355 break; 6356 case KVM_CAP_EXCEPTION_PAYLOAD: 6357 kvm->arch.exception_payload_enabled = cap->args[0]; 6358 r = 0; 6359 break; 6360 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6361 kvm->arch.triple_fault_event = cap->args[0]; 6362 r = 0; 6363 break; 6364 case KVM_CAP_X86_USER_SPACE_MSR: 6365 r = -EINVAL; 6366 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6367 break; 6368 kvm->arch.user_space_msr_mask = cap->args[0]; 6369 r = 0; 6370 break; 6371 case KVM_CAP_X86_BUS_LOCK_EXIT: 6372 r = -EINVAL; 6373 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6374 break; 6375 6376 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6377 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6378 break; 6379 6380 if (kvm_caps.has_bus_lock_exit && 6381 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6382 kvm->arch.bus_lock_detection_enabled = true; 6383 r = 0; 6384 break; 6385 #ifdef CONFIG_X86_SGX_KVM 6386 case KVM_CAP_SGX_ATTRIBUTE: { 6387 unsigned long allowed_attributes = 0; 6388 6389 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6390 if (r) 6391 break; 6392 6393 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6394 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6395 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6396 kvm->arch.sgx_provisioning_allowed = true; 6397 else 6398 r = -EINVAL; 6399 break; 6400 } 6401 #endif 6402 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6403 r = -EINVAL; 6404 if (!kvm_x86_ops.vm_copy_enc_context_from) 6405 break; 6406 6407 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6408 break; 6409 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6410 r = -EINVAL; 6411 if (!kvm_x86_ops.vm_move_enc_context_from) 6412 break; 6413 6414 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6415 break; 6416 case KVM_CAP_EXIT_HYPERCALL: 6417 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6418 r = -EINVAL; 6419 break; 6420 } 6421 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6422 r = 0; 6423 break; 6424 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6425 r = -EINVAL; 6426 if (cap->args[0] & ~1) 6427 break; 6428 kvm->arch.exit_on_emulation_error = cap->args[0]; 6429 r = 0; 6430 break; 6431 case KVM_CAP_PMU_CAPABILITY: 6432 r = -EINVAL; 6433 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6434 break; 6435 6436 mutex_lock(&kvm->lock); 6437 if (!kvm->created_vcpus) { 6438 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6439 r = 0; 6440 } 6441 mutex_unlock(&kvm->lock); 6442 break; 6443 case KVM_CAP_MAX_VCPU_ID: 6444 r = -EINVAL; 6445 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6446 break; 6447 6448 mutex_lock(&kvm->lock); 6449 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6450 r = 0; 6451 } else if (!kvm->arch.max_vcpu_ids) { 6452 kvm->arch.max_vcpu_ids = cap->args[0]; 6453 r = 0; 6454 } 6455 mutex_unlock(&kvm->lock); 6456 break; 6457 case KVM_CAP_X86_NOTIFY_VMEXIT: 6458 r = -EINVAL; 6459 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6460 break; 6461 if (!kvm_caps.has_notify_vmexit) 6462 break; 6463 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6464 break; 6465 mutex_lock(&kvm->lock); 6466 if (!kvm->created_vcpus) { 6467 kvm->arch.notify_window = cap->args[0] >> 32; 6468 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6469 r = 0; 6470 } 6471 mutex_unlock(&kvm->lock); 6472 break; 6473 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6474 r = -EINVAL; 6475 6476 /* 6477 * Since the risk of disabling NX hugepages is a guest crashing 6478 * the system, ensure the userspace process has permission to 6479 * reboot the system. 6480 * 6481 * Note that unlike the reboot() syscall, the process must have 6482 * this capability in the root namespace because exposing 6483 * /dev/kvm into a container does not limit the scope of the 6484 * iTLB multihit bug to that container. In other words, 6485 * this must use capable(), not ns_capable(). 6486 */ 6487 if (!capable(CAP_SYS_BOOT)) { 6488 r = -EPERM; 6489 break; 6490 } 6491 6492 if (cap->args[0]) 6493 break; 6494 6495 mutex_lock(&kvm->lock); 6496 if (!kvm->created_vcpus) { 6497 kvm->arch.disable_nx_huge_pages = true; 6498 r = 0; 6499 } 6500 mutex_unlock(&kvm->lock); 6501 break; 6502 default: 6503 r = -EINVAL; 6504 break; 6505 } 6506 return r; 6507 } 6508 6509 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6510 { 6511 struct kvm_x86_msr_filter *msr_filter; 6512 6513 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6514 if (!msr_filter) 6515 return NULL; 6516 6517 msr_filter->default_allow = default_allow; 6518 return msr_filter; 6519 } 6520 6521 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6522 { 6523 u32 i; 6524 6525 if (!msr_filter) 6526 return; 6527 6528 for (i = 0; i < msr_filter->count; i++) 6529 kfree(msr_filter->ranges[i].bitmap); 6530 6531 kfree(msr_filter); 6532 } 6533 6534 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6535 struct kvm_msr_filter_range *user_range) 6536 { 6537 unsigned long *bitmap = NULL; 6538 size_t bitmap_size; 6539 6540 if (!user_range->nmsrs) 6541 return 0; 6542 6543 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6544 return -EINVAL; 6545 6546 if (!user_range->flags) 6547 return -EINVAL; 6548 6549 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6550 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6551 return -EINVAL; 6552 6553 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6554 if (IS_ERR(bitmap)) 6555 return PTR_ERR(bitmap); 6556 6557 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6558 .flags = user_range->flags, 6559 .base = user_range->base, 6560 .nmsrs = user_range->nmsrs, 6561 .bitmap = bitmap, 6562 }; 6563 6564 msr_filter->count++; 6565 return 0; 6566 } 6567 6568 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6569 struct kvm_msr_filter *filter) 6570 { 6571 struct kvm_x86_msr_filter *new_filter, *old_filter; 6572 bool default_allow; 6573 bool empty = true; 6574 int r; 6575 u32 i; 6576 6577 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6578 return -EINVAL; 6579 6580 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6581 empty &= !filter->ranges[i].nmsrs; 6582 6583 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6584 if (empty && !default_allow) 6585 return -EINVAL; 6586 6587 new_filter = kvm_alloc_msr_filter(default_allow); 6588 if (!new_filter) 6589 return -ENOMEM; 6590 6591 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6592 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6593 if (r) { 6594 kvm_free_msr_filter(new_filter); 6595 return r; 6596 } 6597 } 6598 6599 mutex_lock(&kvm->lock); 6600 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6601 mutex_is_locked(&kvm->lock)); 6602 mutex_unlock(&kvm->lock); 6603 synchronize_srcu(&kvm->srcu); 6604 6605 kvm_free_msr_filter(old_filter); 6606 6607 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6608 6609 return 0; 6610 } 6611 6612 #ifdef CONFIG_KVM_COMPAT 6613 /* for KVM_X86_SET_MSR_FILTER */ 6614 struct kvm_msr_filter_range_compat { 6615 __u32 flags; 6616 __u32 nmsrs; 6617 __u32 base; 6618 __u32 bitmap; 6619 }; 6620 6621 struct kvm_msr_filter_compat { 6622 __u32 flags; 6623 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6624 }; 6625 6626 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6627 6628 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6629 unsigned long arg) 6630 { 6631 void __user *argp = (void __user *)arg; 6632 struct kvm *kvm = filp->private_data; 6633 long r = -ENOTTY; 6634 6635 switch (ioctl) { 6636 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6637 struct kvm_msr_filter __user *user_msr_filter = argp; 6638 struct kvm_msr_filter_compat filter_compat; 6639 struct kvm_msr_filter filter; 6640 int i; 6641 6642 if (copy_from_user(&filter_compat, user_msr_filter, 6643 sizeof(filter_compat))) 6644 return -EFAULT; 6645 6646 filter.flags = filter_compat.flags; 6647 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6648 struct kvm_msr_filter_range_compat *cr; 6649 6650 cr = &filter_compat.ranges[i]; 6651 filter.ranges[i] = (struct kvm_msr_filter_range) { 6652 .flags = cr->flags, 6653 .nmsrs = cr->nmsrs, 6654 .base = cr->base, 6655 .bitmap = (__u8 *)(ulong)cr->bitmap, 6656 }; 6657 } 6658 6659 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6660 break; 6661 } 6662 } 6663 6664 return r; 6665 } 6666 #endif 6667 6668 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6669 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6670 { 6671 struct kvm_vcpu *vcpu; 6672 unsigned long i; 6673 int ret = 0; 6674 6675 mutex_lock(&kvm->lock); 6676 kvm_for_each_vcpu(i, vcpu, kvm) { 6677 if (!vcpu->arch.pv_time.active) 6678 continue; 6679 6680 ret = kvm_set_guest_paused(vcpu); 6681 if (ret) { 6682 kvm_err("Failed to pause guest VCPU%d: %d\n", 6683 vcpu->vcpu_id, ret); 6684 break; 6685 } 6686 } 6687 mutex_unlock(&kvm->lock); 6688 6689 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6690 } 6691 6692 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6693 { 6694 switch (state) { 6695 case PM_HIBERNATION_PREPARE: 6696 case PM_SUSPEND_PREPARE: 6697 return kvm_arch_suspend_notifier(kvm); 6698 } 6699 6700 return NOTIFY_DONE; 6701 } 6702 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6703 6704 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6705 { 6706 struct kvm_clock_data data = { 0 }; 6707 6708 get_kvmclock(kvm, &data); 6709 if (copy_to_user(argp, &data, sizeof(data))) 6710 return -EFAULT; 6711 6712 return 0; 6713 } 6714 6715 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6716 { 6717 struct kvm_arch *ka = &kvm->arch; 6718 struct kvm_clock_data data; 6719 u64 now_raw_ns; 6720 6721 if (copy_from_user(&data, argp, sizeof(data))) 6722 return -EFAULT; 6723 6724 /* 6725 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6726 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6727 */ 6728 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6729 return -EINVAL; 6730 6731 kvm_hv_request_tsc_page_update(kvm); 6732 kvm_start_pvclock_update(kvm); 6733 pvclock_update_vm_gtod_copy(kvm); 6734 6735 /* 6736 * This pairs with kvm_guest_time_update(): when masterclock is 6737 * in use, we use master_kernel_ns + kvmclock_offset to set 6738 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6739 * is slightly ahead) here we risk going negative on unsigned 6740 * 'system_time' when 'data.clock' is very small. 6741 */ 6742 if (data.flags & KVM_CLOCK_REALTIME) { 6743 u64 now_real_ns = ktime_get_real_ns(); 6744 6745 /* 6746 * Avoid stepping the kvmclock backwards. 6747 */ 6748 if (now_real_ns > data.realtime) 6749 data.clock += now_real_ns - data.realtime; 6750 } 6751 6752 if (ka->use_master_clock) 6753 now_raw_ns = ka->master_kernel_ns; 6754 else 6755 now_raw_ns = get_kvmclock_base_ns(); 6756 ka->kvmclock_offset = data.clock - now_raw_ns; 6757 kvm_end_pvclock_update(kvm); 6758 return 0; 6759 } 6760 6761 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6762 { 6763 struct kvm *kvm = filp->private_data; 6764 void __user *argp = (void __user *)arg; 6765 int r = -ENOTTY; 6766 /* 6767 * This union makes it completely explicit to gcc-3.x 6768 * that these two variables' stack usage should be 6769 * combined, not added together. 6770 */ 6771 union { 6772 struct kvm_pit_state ps; 6773 struct kvm_pit_state2 ps2; 6774 struct kvm_pit_config pit_config; 6775 } u; 6776 6777 switch (ioctl) { 6778 case KVM_SET_TSS_ADDR: 6779 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6780 break; 6781 case KVM_SET_IDENTITY_MAP_ADDR: { 6782 u64 ident_addr; 6783 6784 mutex_lock(&kvm->lock); 6785 r = -EINVAL; 6786 if (kvm->created_vcpus) 6787 goto set_identity_unlock; 6788 r = -EFAULT; 6789 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6790 goto set_identity_unlock; 6791 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6792 set_identity_unlock: 6793 mutex_unlock(&kvm->lock); 6794 break; 6795 } 6796 case KVM_SET_NR_MMU_PAGES: 6797 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6798 break; 6799 case KVM_CREATE_IRQCHIP: { 6800 mutex_lock(&kvm->lock); 6801 6802 r = -EEXIST; 6803 if (irqchip_in_kernel(kvm)) 6804 goto create_irqchip_unlock; 6805 6806 r = -EINVAL; 6807 if (kvm->created_vcpus) 6808 goto create_irqchip_unlock; 6809 6810 r = kvm_pic_init(kvm); 6811 if (r) 6812 goto create_irqchip_unlock; 6813 6814 r = kvm_ioapic_init(kvm); 6815 if (r) { 6816 kvm_pic_destroy(kvm); 6817 goto create_irqchip_unlock; 6818 } 6819 6820 r = kvm_setup_default_irq_routing(kvm); 6821 if (r) { 6822 kvm_ioapic_destroy(kvm); 6823 kvm_pic_destroy(kvm); 6824 goto create_irqchip_unlock; 6825 } 6826 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6827 smp_wmb(); 6828 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6829 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6830 create_irqchip_unlock: 6831 mutex_unlock(&kvm->lock); 6832 break; 6833 } 6834 case KVM_CREATE_PIT: 6835 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6836 goto create_pit; 6837 case KVM_CREATE_PIT2: 6838 r = -EFAULT; 6839 if (copy_from_user(&u.pit_config, argp, 6840 sizeof(struct kvm_pit_config))) 6841 goto out; 6842 create_pit: 6843 mutex_lock(&kvm->lock); 6844 r = -EEXIST; 6845 if (kvm->arch.vpit) 6846 goto create_pit_unlock; 6847 r = -ENOMEM; 6848 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6849 if (kvm->arch.vpit) 6850 r = 0; 6851 create_pit_unlock: 6852 mutex_unlock(&kvm->lock); 6853 break; 6854 case KVM_GET_IRQCHIP: { 6855 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6856 struct kvm_irqchip *chip; 6857 6858 chip = memdup_user(argp, sizeof(*chip)); 6859 if (IS_ERR(chip)) { 6860 r = PTR_ERR(chip); 6861 goto out; 6862 } 6863 6864 r = -ENXIO; 6865 if (!irqchip_kernel(kvm)) 6866 goto get_irqchip_out; 6867 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6868 if (r) 6869 goto get_irqchip_out; 6870 r = -EFAULT; 6871 if (copy_to_user(argp, chip, sizeof(*chip))) 6872 goto get_irqchip_out; 6873 r = 0; 6874 get_irqchip_out: 6875 kfree(chip); 6876 break; 6877 } 6878 case KVM_SET_IRQCHIP: { 6879 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6880 struct kvm_irqchip *chip; 6881 6882 chip = memdup_user(argp, sizeof(*chip)); 6883 if (IS_ERR(chip)) { 6884 r = PTR_ERR(chip); 6885 goto out; 6886 } 6887 6888 r = -ENXIO; 6889 if (!irqchip_kernel(kvm)) 6890 goto set_irqchip_out; 6891 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6892 set_irqchip_out: 6893 kfree(chip); 6894 break; 6895 } 6896 case KVM_GET_PIT: { 6897 r = -EFAULT; 6898 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6899 goto out; 6900 r = -ENXIO; 6901 if (!kvm->arch.vpit) 6902 goto out; 6903 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6904 if (r) 6905 goto out; 6906 r = -EFAULT; 6907 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6908 goto out; 6909 r = 0; 6910 break; 6911 } 6912 case KVM_SET_PIT: { 6913 r = -EFAULT; 6914 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6915 goto out; 6916 mutex_lock(&kvm->lock); 6917 r = -ENXIO; 6918 if (!kvm->arch.vpit) 6919 goto set_pit_out; 6920 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6921 set_pit_out: 6922 mutex_unlock(&kvm->lock); 6923 break; 6924 } 6925 case KVM_GET_PIT2: { 6926 r = -ENXIO; 6927 if (!kvm->arch.vpit) 6928 goto out; 6929 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6930 if (r) 6931 goto out; 6932 r = -EFAULT; 6933 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6934 goto out; 6935 r = 0; 6936 break; 6937 } 6938 case KVM_SET_PIT2: { 6939 r = -EFAULT; 6940 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6941 goto out; 6942 mutex_lock(&kvm->lock); 6943 r = -ENXIO; 6944 if (!kvm->arch.vpit) 6945 goto set_pit2_out; 6946 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6947 set_pit2_out: 6948 mutex_unlock(&kvm->lock); 6949 break; 6950 } 6951 case KVM_REINJECT_CONTROL: { 6952 struct kvm_reinject_control control; 6953 r = -EFAULT; 6954 if (copy_from_user(&control, argp, sizeof(control))) 6955 goto out; 6956 r = -ENXIO; 6957 if (!kvm->arch.vpit) 6958 goto out; 6959 r = kvm_vm_ioctl_reinject(kvm, &control); 6960 break; 6961 } 6962 case KVM_SET_BOOT_CPU_ID: 6963 r = 0; 6964 mutex_lock(&kvm->lock); 6965 if (kvm->created_vcpus) 6966 r = -EBUSY; 6967 else 6968 kvm->arch.bsp_vcpu_id = arg; 6969 mutex_unlock(&kvm->lock); 6970 break; 6971 #ifdef CONFIG_KVM_XEN 6972 case KVM_XEN_HVM_CONFIG: { 6973 struct kvm_xen_hvm_config xhc; 6974 r = -EFAULT; 6975 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6976 goto out; 6977 r = kvm_xen_hvm_config(kvm, &xhc); 6978 break; 6979 } 6980 case KVM_XEN_HVM_GET_ATTR: { 6981 struct kvm_xen_hvm_attr xha; 6982 6983 r = -EFAULT; 6984 if (copy_from_user(&xha, argp, sizeof(xha))) 6985 goto out; 6986 r = kvm_xen_hvm_get_attr(kvm, &xha); 6987 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6988 r = -EFAULT; 6989 break; 6990 } 6991 case KVM_XEN_HVM_SET_ATTR: { 6992 struct kvm_xen_hvm_attr xha; 6993 6994 r = -EFAULT; 6995 if (copy_from_user(&xha, argp, sizeof(xha))) 6996 goto out; 6997 r = kvm_xen_hvm_set_attr(kvm, &xha); 6998 break; 6999 } 7000 case KVM_XEN_HVM_EVTCHN_SEND: { 7001 struct kvm_irq_routing_xen_evtchn uxe; 7002 7003 r = -EFAULT; 7004 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7005 goto out; 7006 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7007 break; 7008 } 7009 #endif 7010 case KVM_SET_CLOCK: 7011 r = kvm_vm_ioctl_set_clock(kvm, argp); 7012 break; 7013 case KVM_GET_CLOCK: 7014 r = kvm_vm_ioctl_get_clock(kvm, argp); 7015 break; 7016 case KVM_SET_TSC_KHZ: { 7017 u32 user_tsc_khz; 7018 7019 r = -EINVAL; 7020 user_tsc_khz = (u32)arg; 7021 7022 if (kvm_caps.has_tsc_control && 7023 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7024 goto out; 7025 7026 if (user_tsc_khz == 0) 7027 user_tsc_khz = tsc_khz; 7028 7029 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7030 r = 0; 7031 7032 goto out; 7033 } 7034 case KVM_GET_TSC_KHZ: { 7035 r = READ_ONCE(kvm->arch.default_tsc_khz); 7036 goto out; 7037 } 7038 case KVM_MEMORY_ENCRYPT_OP: { 7039 r = -ENOTTY; 7040 if (!kvm_x86_ops.mem_enc_ioctl) 7041 goto out; 7042 7043 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7044 break; 7045 } 7046 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7047 struct kvm_enc_region region; 7048 7049 r = -EFAULT; 7050 if (copy_from_user(®ion, argp, sizeof(region))) 7051 goto out; 7052 7053 r = -ENOTTY; 7054 if (!kvm_x86_ops.mem_enc_register_region) 7055 goto out; 7056 7057 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7058 break; 7059 } 7060 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7061 struct kvm_enc_region region; 7062 7063 r = -EFAULT; 7064 if (copy_from_user(®ion, argp, sizeof(region))) 7065 goto out; 7066 7067 r = -ENOTTY; 7068 if (!kvm_x86_ops.mem_enc_unregister_region) 7069 goto out; 7070 7071 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7072 break; 7073 } 7074 case KVM_HYPERV_EVENTFD: { 7075 struct kvm_hyperv_eventfd hvevfd; 7076 7077 r = -EFAULT; 7078 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7079 goto out; 7080 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7081 break; 7082 } 7083 case KVM_SET_PMU_EVENT_FILTER: 7084 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7085 break; 7086 case KVM_X86_SET_MSR_FILTER: { 7087 struct kvm_msr_filter __user *user_msr_filter = argp; 7088 struct kvm_msr_filter filter; 7089 7090 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7091 return -EFAULT; 7092 7093 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7094 break; 7095 } 7096 default: 7097 r = -ENOTTY; 7098 } 7099 out: 7100 return r; 7101 } 7102 7103 static void kvm_probe_feature_msr(u32 msr_index) 7104 { 7105 struct kvm_msr_entry msr = { 7106 .index = msr_index, 7107 }; 7108 7109 if (kvm_get_msr_feature(&msr)) 7110 return; 7111 7112 msr_based_features[num_msr_based_features++] = msr_index; 7113 } 7114 7115 static void kvm_probe_msr_to_save(u32 msr_index) 7116 { 7117 u32 dummy[2]; 7118 7119 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7120 return; 7121 7122 /* 7123 * Even MSRs that are valid in the host may not be exposed to guests in 7124 * some cases. 7125 */ 7126 switch (msr_index) { 7127 case MSR_IA32_BNDCFGS: 7128 if (!kvm_mpx_supported()) 7129 return; 7130 break; 7131 case MSR_TSC_AUX: 7132 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7133 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7134 return; 7135 break; 7136 case MSR_IA32_UMWAIT_CONTROL: 7137 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7138 return; 7139 break; 7140 case MSR_IA32_RTIT_CTL: 7141 case MSR_IA32_RTIT_STATUS: 7142 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7143 return; 7144 break; 7145 case MSR_IA32_RTIT_CR3_MATCH: 7146 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7147 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7148 return; 7149 break; 7150 case MSR_IA32_RTIT_OUTPUT_BASE: 7151 case MSR_IA32_RTIT_OUTPUT_MASK: 7152 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7153 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7154 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7155 return; 7156 break; 7157 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7158 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7159 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7160 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7161 return; 7162 break; 7163 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7164 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7165 kvm_pmu_cap.num_counters_gp) 7166 return; 7167 break; 7168 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7169 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7170 kvm_pmu_cap.num_counters_gp) 7171 return; 7172 break; 7173 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7174 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7175 kvm_pmu_cap.num_counters_fixed) 7176 return; 7177 break; 7178 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7179 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7180 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7181 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7182 return; 7183 break; 7184 case MSR_IA32_XFD: 7185 case MSR_IA32_XFD_ERR: 7186 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7187 return; 7188 break; 7189 case MSR_IA32_TSX_CTRL: 7190 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7191 return; 7192 break; 7193 default: 7194 break; 7195 } 7196 7197 msrs_to_save[num_msrs_to_save++] = msr_index; 7198 } 7199 7200 static void kvm_init_msr_lists(void) 7201 { 7202 unsigned i; 7203 7204 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7205 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7206 7207 num_msrs_to_save = 0; 7208 num_emulated_msrs = 0; 7209 num_msr_based_features = 0; 7210 7211 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7212 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7213 7214 if (enable_pmu) { 7215 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7216 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7217 } 7218 7219 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7220 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7221 continue; 7222 7223 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7224 } 7225 7226 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7227 kvm_probe_feature_msr(i); 7228 7229 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7230 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7231 } 7232 7233 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7234 const void *v) 7235 { 7236 int handled = 0; 7237 int n; 7238 7239 do { 7240 n = min(len, 8); 7241 if (!(lapic_in_kernel(vcpu) && 7242 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7243 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7244 break; 7245 handled += n; 7246 addr += n; 7247 len -= n; 7248 v += n; 7249 } while (len); 7250 7251 return handled; 7252 } 7253 7254 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7255 { 7256 int handled = 0; 7257 int n; 7258 7259 do { 7260 n = min(len, 8); 7261 if (!(lapic_in_kernel(vcpu) && 7262 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7263 addr, n, v)) 7264 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7265 break; 7266 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7267 handled += n; 7268 addr += n; 7269 len -= n; 7270 v += n; 7271 } while (len); 7272 7273 return handled; 7274 } 7275 7276 void kvm_set_segment(struct kvm_vcpu *vcpu, 7277 struct kvm_segment *var, int seg) 7278 { 7279 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7280 } 7281 7282 void kvm_get_segment(struct kvm_vcpu *vcpu, 7283 struct kvm_segment *var, int seg) 7284 { 7285 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7286 } 7287 7288 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7289 struct x86_exception *exception) 7290 { 7291 struct kvm_mmu *mmu = vcpu->arch.mmu; 7292 gpa_t t_gpa; 7293 7294 BUG_ON(!mmu_is_nested(vcpu)); 7295 7296 /* NPT walks are always user-walks */ 7297 access |= PFERR_USER_MASK; 7298 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7299 7300 return t_gpa; 7301 } 7302 7303 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7304 struct x86_exception *exception) 7305 { 7306 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7307 7308 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7309 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7310 } 7311 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7312 7313 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7314 struct x86_exception *exception) 7315 { 7316 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7317 7318 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7319 access |= PFERR_WRITE_MASK; 7320 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7321 } 7322 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7323 7324 /* uses this to access any guest's mapped memory without checking CPL */ 7325 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7326 struct x86_exception *exception) 7327 { 7328 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7329 7330 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7331 } 7332 7333 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7334 struct kvm_vcpu *vcpu, u64 access, 7335 struct x86_exception *exception) 7336 { 7337 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7338 void *data = val; 7339 int r = X86EMUL_CONTINUE; 7340 7341 while (bytes) { 7342 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7343 unsigned offset = addr & (PAGE_SIZE-1); 7344 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7345 int ret; 7346 7347 if (gpa == INVALID_GPA) 7348 return X86EMUL_PROPAGATE_FAULT; 7349 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7350 offset, toread); 7351 if (ret < 0) { 7352 r = X86EMUL_IO_NEEDED; 7353 goto out; 7354 } 7355 7356 bytes -= toread; 7357 data += toread; 7358 addr += toread; 7359 } 7360 out: 7361 return r; 7362 } 7363 7364 /* used for instruction fetching */ 7365 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7366 gva_t addr, void *val, unsigned int bytes, 7367 struct x86_exception *exception) 7368 { 7369 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7370 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7371 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7372 unsigned offset; 7373 int ret; 7374 7375 /* Inline kvm_read_guest_virt_helper for speed. */ 7376 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7377 exception); 7378 if (unlikely(gpa == INVALID_GPA)) 7379 return X86EMUL_PROPAGATE_FAULT; 7380 7381 offset = addr & (PAGE_SIZE-1); 7382 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7383 bytes = (unsigned)PAGE_SIZE - offset; 7384 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7385 offset, bytes); 7386 if (unlikely(ret < 0)) 7387 return X86EMUL_IO_NEEDED; 7388 7389 return X86EMUL_CONTINUE; 7390 } 7391 7392 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7393 gva_t addr, void *val, unsigned int bytes, 7394 struct x86_exception *exception) 7395 { 7396 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7397 7398 /* 7399 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7400 * is returned, but our callers are not ready for that and they blindly 7401 * call kvm_inject_page_fault. Ensure that they at least do not leak 7402 * uninitialized kernel stack memory into cr2 and error code. 7403 */ 7404 memset(exception, 0, sizeof(*exception)); 7405 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7406 exception); 7407 } 7408 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7409 7410 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7411 gva_t addr, void *val, unsigned int bytes, 7412 struct x86_exception *exception, bool system) 7413 { 7414 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7415 u64 access = 0; 7416 7417 if (system) 7418 access |= PFERR_IMPLICIT_ACCESS; 7419 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7420 access |= PFERR_USER_MASK; 7421 7422 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7423 } 7424 7425 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7426 struct kvm_vcpu *vcpu, u64 access, 7427 struct x86_exception *exception) 7428 { 7429 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7430 void *data = val; 7431 int r = X86EMUL_CONTINUE; 7432 7433 while (bytes) { 7434 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7435 unsigned offset = addr & (PAGE_SIZE-1); 7436 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7437 int ret; 7438 7439 if (gpa == INVALID_GPA) 7440 return X86EMUL_PROPAGATE_FAULT; 7441 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7442 if (ret < 0) { 7443 r = X86EMUL_IO_NEEDED; 7444 goto out; 7445 } 7446 7447 bytes -= towrite; 7448 data += towrite; 7449 addr += towrite; 7450 } 7451 out: 7452 return r; 7453 } 7454 7455 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7456 unsigned int bytes, struct x86_exception *exception, 7457 bool system) 7458 { 7459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7460 u64 access = PFERR_WRITE_MASK; 7461 7462 if (system) 7463 access |= PFERR_IMPLICIT_ACCESS; 7464 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7465 access |= PFERR_USER_MASK; 7466 7467 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7468 access, exception); 7469 } 7470 7471 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7472 unsigned int bytes, struct x86_exception *exception) 7473 { 7474 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7475 vcpu->arch.l1tf_flush_l1d = true; 7476 7477 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7478 PFERR_WRITE_MASK, exception); 7479 } 7480 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7481 7482 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7483 void *insn, int insn_len) 7484 { 7485 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7486 insn, insn_len); 7487 } 7488 7489 int handle_ud(struct kvm_vcpu *vcpu) 7490 { 7491 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7492 int fep_flags = READ_ONCE(force_emulation_prefix); 7493 int emul_type = EMULTYPE_TRAP_UD; 7494 char sig[5]; /* ud2; .ascii "kvm" */ 7495 struct x86_exception e; 7496 7497 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7498 return 1; 7499 7500 if (fep_flags && 7501 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7502 sig, sizeof(sig), &e) == 0 && 7503 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7504 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7505 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7506 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7507 emul_type = EMULTYPE_TRAP_UD_FORCED; 7508 } 7509 7510 return kvm_emulate_instruction(vcpu, emul_type); 7511 } 7512 EXPORT_SYMBOL_GPL(handle_ud); 7513 7514 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7515 gpa_t gpa, bool write) 7516 { 7517 /* For APIC access vmexit */ 7518 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7519 return 1; 7520 7521 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7522 trace_vcpu_match_mmio(gva, gpa, write, true); 7523 return 1; 7524 } 7525 7526 return 0; 7527 } 7528 7529 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7530 gpa_t *gpa, struct x86_exception *exception, 7531 bool write) 7532 { 7533 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7534 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7535 | (write ? PFERR_WRITE_MASK : 0); 7536 7537 /* 7538 * currently PKRU is only applied to ept enabled guest so 7539 * there is no pkey in EPT page table for L1 guest or EPT 7540 * shadow page table for L2 guest. 7541 */ 7542 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7543 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7544 vcpu->arch.mmio_access, 0, access))) { 7545 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7546 (gva & (PAGE_SIZE - 1)); 7547 trace_vcpu_match_mmio(gva, *gpa, write, false); 7548 return 1; 7549 } 7550 7551 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7552 7553 if (*gpa == INVALID_GPA) 7554 return -1; 7555 7556 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7557 } 7558 7559 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7560 const void *val, int bytes) 7561 { 7562 int ret; 7563 7564 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7565 if (ret < 0) 7566 return 0; 7567 kvm_page_track_write(vcpu, gpa, val, bytes); 7568 return 1; 7569 } 7570 7571 struct read_write_emulator_ops { 7572 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7573 int bytes); 7574 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7575 void *val, int bytes); 7576 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7577 int bytes, void *val); 7578 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7579 void *val, int bytes); 7580 bool write; 7581 }; 7582 7583 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7584 { 7585 if (vcpu->mmio_read_completed) { 7586 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7587 vcpu->mmio_fragments[0].gpa, val); 7588 vcpu->mmio_read_completed = 0; 7589 return 1; 7590 } 7591 7592 return 0; 7593 } 7594 7595 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7596 void *val, int bytes) 7597 { 7598 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7599 } 7600 7601 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7602 void *val, int bytes) 7603 { 7604 return emulator_write_phys(vcpu, gpa, val, bytes); 7605 } 7606 7607 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7608 { 7609 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7610 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7611 } 7612 7613 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7614 void *val, int bytes) 7615 { 7616 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7617 return X86EMUL_IO_NEEDED; 7618 } 7619 7620 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7621 void *val, int bytes) 7622 { 7623 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7624 7625 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7626 return X86EMUL_CONTINUE; 7627 } 7628 7629 static const struct read_write_emulator_ops read_emultor = { 7630 .read_write_prepare = read_prepare, 7631 .read_write_emulate = read_emulate, 7632 .read_write_mmio = vcpu_mmio_read, 7633 .read_write_exit_mmio = read_exit_mmio, 7634 }; 7635 7636 static const struct read_write_emulator_ops write_emultor = { 7637 .read_write_emulate = write_emulate, 7638 .read_write_mmio = write_mmio, 7639 .read_write_exit_mmio = write_exit_mmio, 7640 .write = true, 7641 }; 7642 7643 static int emulator_read_write_onepage(unsigned long addr, void *val, 7644 unsigned int bytes, 7645 struct x86_exception *exception, 7646 struct kvm_vcpu *vcpu, 7647 const struct read_write_emulator_ops *ops) 7648 { 7649 gpa_t gpa; 7650 int handled, ret; 7651 bool write = ops->write; 7652 struct kvm_mmio_fragment *frag; 7653 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7654 7655 /* 7656 * If the exit was due to a NPF we may already have a GPA. 7657 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7658 * Note, this cannot be used on string operations since string 7659 * operation using rep will only have the initial GPA from the NPF 7660 * occurred. 7661 */ 7662 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7663 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7664 gpa = ctxt->gpa_val; 7665 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7666 } else { 7667 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7668 if (ret < 0) 7669 return X86EMUL_PROPAGATE_FAULT; 7670 } 7671 7672 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7673 return X86EMUL_CONTINUE; 7674 7675 /* 7676 * Is this MMIO handled locally? 7677 */ 7678 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7679 if (handled == bytes) 7680 return X86EMUL_CONTINUE; 7681 7682 gpa += handled; 7683 bytes -= handled; 7684 val += handled; 7685 7686 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7687 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7688 frag->gpa = gpa; 7689 frag->data = val; 7690 frag->len = bytes; 7691 return X86EMUL_CONTINUE; 7692 } 7693 7694 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7695 unsigned long addr, 7696 void *val, unsigned int bytes, 7697 struct x86_exception *exception, 7698 const struct read_write_emulator_ops *ops) 7699 { 7700 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7701 gpa_t gpa; 7702 int rc; 7703 7704 if (ops->read_write_prepare && 7705 ops->read_write_prepare(vcpu, val, bytes)) 7706 return X86EMUL_CONTINUE; 7707 7708 vcpu->mmio_nr_fragments = 0; 7709 7710 /* Crossing a page boundary? */ 7711 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7712 int now; 7713 7714 now = -addr & ~PAGE_MASK; 7715 rc = emulator_read_write_onepage(addr, val, now, exception, 7716 vcpu, ops); 7717 7718 if (rc != X86EMUL_CONTINUE) 7719 return rc; 7720 addr += now; 7721 if (ctxt->mode != X86EMUL_MODE_PROT64) 7722 addr = (u32)addr; 7723 val += now; 7724 bytes -= now; 7725 } 7726 7727 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7728 vcpu, ops); 7729 if (rc != X86EMUL_CONTINUE) 7730 return rc; 7731 7732 if (!vcpu->mmio_nr_fragments) 7733 return rc; 7734 7735 gpa = vcpu->mmio_fragments[0].gpa; 7736 7737 vcpu->mmio_needed = 1; 7738 vcpu->mmio_cur_fragment = 0; 7739 7740 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7741 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7742 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7743 vcpu->run->mmio.phys_addr = gpa; 7744 7745 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7746 } 7747 7748 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7749 unsigned long addr, 7750 void *val, 7751 unsigned int bytes, 7752 struct x86_exception *exception) 7753 { 7754 return emulator_read_write(ctxt, addr, val, bytes, 7755 exception, &read_emultor); 7756 } 7757 7758 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7759 unsigned long addr, 7760 const void *val, 7761 unsigned int bytes, 7762 struct x86_exception *exception) 7763 { 7764 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7765 exception, &write_emultor); 7766 } 7767 7768 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7769 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7770 7771 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7772 unsigned long addr, 7773 const void *old, 7774 const void *new, 7775 unsigned int bytes, 7776 struct x86_exception *exception) 7777 { 7778 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7779 u64 page_line_mask; 7780 unsigned long hva; 7781 gpa_t gpa; 7782 int r; 7783 7784 /* guests cmpxchg8b have to be emulated atomically */ 7785 if (bytes > 8 || (bytes & (bytes - 1))) 7786 goto emul_write; 7787 7788 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7789 7790 if (gpa == INVALID_GPA || 7791 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7792 goto emul_write; 7793 7794 /* 7795 * Emulate the atomic as a straight write to avoid #AC if SLD is 7796 * enabled in the host and the access splits a cache line. 7797 */ 7798 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7799 page_line_mask = ~(cache_line_size() - 1); 7800 else 7801 page_line_mask = PAGE_MASK; 7802 7803 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7804 goto emul_write; 7805 7806 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7807 if (kvm_is_error_hva(hva)) 7808 goto emul_write; 7809 7810 hva += offset_in_page(gpa); 7811 7812 switch (bytes) { 7813 case 1: 7814 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7815 break; 7816 case 2: 7817 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7818 break; 7819 case 4: 7820 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7821 break; 7822 case 8: 7823 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7824 break; 7825 default: 7826 BUG(); 7827 } 7828 7829 if (r < 0) 7830 return X86EMUL_UNHANDLEABLE; 7831 if (r) 7832 return X86EMUL_CMPXCHG_FAILED; 7833 7834 kvm_page_track_write(vcpu, gpa, new, bytes); 7835 7836 return X86EMUL_CONTINUE; 7837 7838 emul_write: 7839 pr_warn_once("emulating exchange as write\n"); 7840 7841 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7842 } 7843 7844 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7845 unsigned short port, void *data, 7846 unsigned int count, bool in) 7847 { 7848 unsigned i; 7849 int r; 7850 7851 WARN_ON_ONCE(vcpu->arch.pio.count); 7852 for (i = 0; i < count; i++) { 7853 if (in) 7854 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7855 else 7856 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7857 7858 if (r) { 7859 if (i == 0) 7860 goto userspace_io; 7861 7862 /* 7863 * Userspace must have unregistered the device while PIO 7864 * was running. Drop writes / read as 0. 7865 */ 7866 if (in) 7867 memset(data, 0, size * (count - i)); 7868 break; 7869 } 7870 7871 data += size; 7872 } 7873 return 1; 7874 7875 userspace_io: 7876 vcpu->arch.pio.port = port; 7877 vcpu->arch.pio.in = in; 7878 vcpu->arch.pio.count = count; 7879 vcpu->arch.pio.size = size; 7880 7881 if (in) 7882 memset(vcpu->arch.pio_data, 0, size * count); 7883 else 7884 memcpy(vcpu->arch.pio_data, data, size * count); 7885 7886 vcpu->run->exit_reason = KVM_EXIT_IO; 7887 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7888 vcpu->run->io.size = size; 7889 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7890 vcpu->run->io.count = count; 7891 vcpu->run->io.port = port; 7892 return 0; 7893 } 7894 7895 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7896 unsigned short port, void *val, unsigned int count) 7897 { 7898 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7899 if (r) 7900 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7901 7902 return r; 7903 } 7904 7905 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7906 { 7907 int size = vcpu->arch.pio.size; 7908 unsigned int count = vcpu->arch.pio.count; 7909 memcpy(val, vcpu->arch.pio_data, size * count); 7910 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7911 vcpu->arch.pio.count = 0; 7912 } 7913 7914 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7915 int size, unsigned short port, void *val, 7916 unsigned int count) 7917 { 7918 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7919 if (vcpu->arch.pio.count) { 7920 /* 7921 * Complete a previous iteration that required userspace I/O. 7922 * Note, @count isn't guaranteed to match pio.count as userspace 7923 * can modify ECX before rerunning the vCPU. Ignore any such 7924 * shenanigans as KVM doesn't support modifying the rep count, 7925 * and the emulator ensures @count doesn't overflow the buffer. 7926 */ 7927 complete_emulator_pio_in(vcpu, val); 7928 return 1; 7929 } 7930 7931 return emulator_pio_in(vcpu, size, port, val, count); 7932 } 7933 7934 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7935 unsigned short port, const void *val, 7936 unsigned int count) 7937 { 7938 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7939 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7940 } 7941 7942 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7943 int size, unsigned short port, 7944 const void *val, unsigned int count) 7945 { 7946 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7947 } 7948 7949 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7950 { 7951 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7952 } 7953 7954 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7955 { 7956 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7957 } 7958 7959 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7960 { 7961 if (!need_emulate_wbinvd(vcpu)) 7962 return X86EMUL_CONTINUE; 7963 7964 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7965 int cpu = get_cpu(); 7966 7967 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7968 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7969 wbinvd_ipi, NULL, 1); 7970 put_cpu(); 7971 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7972 } else 7973 wbinvd(); 7974 return X86EMUL_CONTINUE; 7975 } 7976 7977 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7978 { 7979 kvm_emulate_wbinvd_noskip(vcpu); 7980 return kvm_skip_emulated_instruction(vcpu); 7981 } 7982 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7983 7984 7985 7986 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7987 { 7988 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7989 } 7990 7991 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7992 unsigned long *dest) 7993 { 7994 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7995 } 7996 7997 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7998 unsigned long value) 7999 { 8000 8001 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8002 } 8003 8004 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8005 { 8006 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8007 } 8008 8009 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8010 { 8011 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8012 unsigned long value; 8013 8014 switch (cr) { 8015 case 0: 8016 value = kvm_read_cr0(vcpu); 8017 break; 8018 case 2: 8019 value = vcpu->arch.cr2; 8020 break; 8021 case 3: 8022 value = kvm_read_cr3(vcpu); 8023 break; 8024 case 4: 8025 value = kvm_read_cr4(vcpu); 8026 break; 8027 case 8: 8028 value = kvm_get_cr8(vcpu); 8029 break; 8030 default: 8031 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8032 return 0; 8033 } 8034 8035 return value; 8036 } 8037 8038 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8039 { 8040 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8041 int res = 0; 8042 8043 switch (cr) { 8044 case 0: 8045 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8046 break; 8047 case 2: 8048 vcpu->arch.cr2 = val; 8049 break; 8050 case 3: 8051 res = kvm_set_cr3(vcpu, val); 8052 break; 8053 case 4: 8054 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8055 break; 8056 case 8: 8057 res = kvm_set_cr8(vcpu, val); 8058 break; 8059 default: 8060 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8061 res = -1; 8062 } 8063 8064 return res; 8065 } 8066 8067 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8068 { 8069 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8070 } 8071 8072 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8073 { 8074 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8075 } 8076 8077 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8078 { 8079 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8080 } 8081 8082 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8083 { 8084 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8085 } 8086 8087 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8088 { 8089 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8090 } 8091 8092 static unsigned long emulator_get_cached_segment_base( 8093 struct x86_emulate_ctxt *ctxt, int seg) 8094 { 8095 return get_segment_base(emul_to_vcpu(ctxt), seg); 8096 } 8097 8098 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8099 struct desc_struct *desc, u32 *base3, 8100 int seg) 8101 { 8102 struct kvm_segment var; 8103 8104 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8105 *selector = var.selector; 8106 8107 if (var.unusable) { 8108 memset(desc, 0, sizeof(*desc)); 8109 if (base3) 8110 *base3 = 0; 8111 return false; 8112 } 8113 8114 if (var.g) 8115 var.limit >>= 12; 8116 set_desc_limit(desc, var.limit); 8117 set_desc_base(desc, (unsigned long)var.base); 8118 #ifdef CONFIG_X86_64 8119 if (base3) 8120 *base3 = var.base >> 32; 8121 #endif 8122 desc->type = var.type; 8123 desc->s = var.s; 8124 desc->dpl = var.dpl; 8125 desc->p = var.present; 8126 desc->avl = var.avl; 8127 desc->l = var.l; 8128 desc->d = var.db; 8129 desc->g = var.g; 8130 8131 return true; 8132 } 8133 8134 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8135 struct desc_struct *desc, u32 base3, 8136 int seg) 8137 { 8138 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8139 struct kvm_segment var; 8140 8141 var.selector = selector; 8142 var.base = get_desc_base(desc); 8143 #ifdef CONFIG_X86_64 8144 var.base |= ((u64)base3) << 32; 8145 #endif 8146 var.limit = get_desc_limit(desc); 8147 if (desc->g) 8148 var.limit = (var.limit << 12) | 0xfff; 8149 var.type = desc->type; 8150 var.dpl = desc->dpl; 8151 var.db = desc->d; 8152 var.s = desc->s; 8153 var.l = desc->l; 8154 var.g = desc->g; 8155 var.avl = desc->avl; 8156 var.present = desc->p; 8157 var.unusable = !var.present; 8158 var.padding = 0; 8159 8160 kvm_set_segment(vcpu, &var, seg); 8161 return; 8162 } 8163 8164 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8165 u32 msr_index, u64 *pdata) 8166 { 8167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8168 int r; 8169 8170 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8171 if (r < 0) 8172 return X86EMUL_UNHANDLEABLE; 8173 8174 if (r) { 8175 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8176 complete_emulated_rdmsr, r)) 8177 return X86EMUL_IO_NEEDED; 8178 8179 trace_kvm_msr_read_ex(msr_index); 8180 return X86EMUL_PROPAGATE_FAULT; 8181 } 8182 8183 trace_kvm_msr_read(msr_index, *pdata); 8184 return X86EMUL_CONTINUE; 8185 } 8186 8187 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8188 u32 msr_index, u64 data) 8189 { 8190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8191 int r; 8192 8193 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8194 if (r < 0) 8195 return X86EMUL_UNHANDLEABLE; 8196 8197 if (r) { 8198 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8199 complete_emulated_msr_access, r)) 8200 return X86EMUL_IO_NEEDED; 8201 8202 trace_kvm_msr_write_ex(msr_index, data); 8203 return X86EMUL_PROPAGATE_FAULT; 8204 } 8205 8206 trace_kvm_msr_write(msr_index, data); 8207 return X86EMUL_CONTINUE; 8208 } 8209 8210 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8211 u32 msr_index, u64 *pdata) 8212 { 8213 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8214 } 8215 8216 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8217 u32 pmc) 8218 { 8219 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8220 return 0; 8221 return -EINVAL; 8222 } 8223 8224 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8225 u32 pmc, u64 *pdata) 8226 { 8227 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8228 } 8229 8230 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8231 { 8232 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8233 } 8234 8235 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8236 struct x86_instruction_info *info, 8237 enum x86_intercept_stage stage) 8238 { 8239 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8240 &ctxt->exception); 8241 } 8242 8243 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8244 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8245 bool exact_only) 8246 { 8247 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8248 } 8249 8250 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8251 { 8252 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8253 } 8254 8255 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8256 { 8257 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8258 } 8259 8260 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8261 { 8262 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8263 } 8264 8265 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8266 { 8267 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8268 } 8269 8270 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8271 { 8272 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8273 } 8274 8275 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8276 { 8277 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8278 } 8279 8280 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8281 { 8282 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8283 } 8284 8285 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8286 { 8287 return is_smm(emul_to_vcpu(ctxt)); 8288 } 8289 8290 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8291 { 8292 return is_guest_mode(emul_to_vcpu(ctxt)); 8293 } 8294 8295 #ifndef CONFIG_KVM_SMM 8296 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8297 { 8298 WARN_ON_ONCE(1); 8299 return X86EMUL_UNHANDLEABLE; 8300 } 8301 #endif 8302 8303 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8304 { 8305 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8306 } 8307 8308 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8309 { 8310 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8311 } 8312 8313 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8314 { 8315 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8316 8317 if (!kvm->vm_bugged) 8318 kvm_vm_bugged(kvm); 8319 } 8320 8321 static const struct x86_emulate_ops emulate_ops = { 8322 .vm_bugged = emulator_vm_bugged, 8323 .read_gpr = emulator_read_gpr, 8324 .write_gpr = emulator_write_gpr, 8325 .read_std = emulator_read_std, 8326 .write_std = emulator_write_std, 8327 .fetch = kvm_fetch_guest_virt, 8328 .read_emulated = emulator_read_emulated, 8329 .write_emulated = emulator_write_emulated, 8330 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8331 .invlpg = emulator_invlpg, 8332 .pio_in_emulated = emulator_pio_in_emulated, 8333 .pio_out_emulated = emulator_pio_out_emulated, 8334 .get_segment = emulator_get_segment, 8335 .set_segment = emulator_set_segment, 8336 .get_cached_segment_base = emulator_get_cached_segment_base, 8337 .get_gdt = emulator_get_gdt, 8338 .get_idt = emulator_get_idt, 8339 .set_gdt = emulator_set_gdt, 8340 .set_idt = emulator_set_idt, 8341 .get_cr = emulator_get_cr, 8342 .set_cr = emulator_set_cr, 8343 .cpl = emulator_get_cpl, 8344 .get_dr = emulator_get_dr, 8345 .set_dr = emulator_set_dr, 8346 .set_msr_with_filter = emulator_set_msr_with_filter, 8347 .get_msr_with_filter = emulator_get_msr_with_filter, 8348 .get_msr = emulator_get_msr, 8349 .check_pmc = emulator_check_pmc, 8350 .read_pmc = emulator_read_pmc, 8351 .halt = emulator_halt, 8352 .wbinvd = emulator_wbinvd, 8353 .fix_hypercall = emulator_fix_hypercall, 8354 .intercept = emulator_intercept, 8355 .get_cpuid = emulator_get_cpuid, 8356 .guest_has_long_mode = emulator_guest_has_long_mode, 8357 .guest_has_movbe = emulator_guest_has_movbe, 8358 .guest_has_fxsr = emulator_guest_has_fxsr, 8359 .guest_has_rdpid = emulator_guest_has_rdpid, 8360 .set_nmi_mask = emulator_set_nmi_mask, 8361 .is_smm = emulator_is_smm, 8362 .is_guest_mode = emulator_is_guest_mode, 8363 .leave_smm = emulator_leave_smm, 8364 .triple_fault = emulator_triple_fault, 8365 .set_xcr = emulator_set_xcr, 8366 }; 8367 8368 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8369 { 8370 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8371 /* 8372 * an sti; sti; sequence only disable interrupts for the first 8373 * instruction. So, if the last instruction, be it emulated or 8374 * not, left the system with the INT_STI flag enabled, it 8375 * means that the last instruction is an sti. We should not 8376 * leave the flag on in this case. The same goes for mov ss 8377 */ 8378 if (int_shadow & mask) 8379 mask = 0; 8380 if (unlikely(int_shadow || mask)) { 8381 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8382 if (!mask) 8383 kvm_make_request(KVM_REQ_EVENT, vcpu); 8384 } 8385 } 8386 8387 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8388 { 8389 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8390 8391 if (ctxt->exception.vector == PF_VECTOR) 8392 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8393 else if (ctxt->exception.error_code_valid) 8394 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8395 ctxt->exception.error_code); 8396 else 8397 kvm_queue_exception(vcpu, ctxt->exception.vector); 8398 } 8399 8400 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8401 { 8402 struct x86_emulate_ctxt *ctxt; 8403 8404 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8405 if (!ctxt) { 8406 pr_err("failed to allocate vcpu's emulator\n"); 8407 return NULL; 8408 } 8409 8410 ctxt->vcpu = vcpu; 8411 ctxt->ops = &emulate_ops; 8412 vcpu->arch.emulate_ctxt = ctxt; 8413 8414 return ctxt; 8415 } 8416 8417 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8418 { 8419 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8420 int cs_db, cs_l; 8421 8422 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8423 8424 ctxt->gpa_available = false; 8425 ctxt->eflags = kvm_get_rflags(vcpu); 8426 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8427 8428 ctxt->eip = kvm_rip_read(vcpu); 8429 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8430 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8431 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8432 cs_db ? X86EMUL_MODE_PROT32 : 8433 X86EMUL_MODE_PROT16; 8434 ctxt->interruptibility = 0; 8435 ctxt->have_exception = false; 8436 ctxt->exception.vector = -1; 8437 ctxt->perm_ok = false; 8438 8439 init_decode_cache(ctxt); 8440 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8441 } 8442 8443 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8444 { 8445 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8446 int ret; 8447 8448 init_emulate_ctxt(vcpu); 8449 8450 ctxt->op_bytes = 2; 8451 ctxt->ad_bytes = 2; 8452 ctxt->_eip = ctxt->eip + inc_eip; 8453 ret = emulate_int_real(ctxt, irq); 8454 8455 if (ret != X86EMUL_CONTINUE) { 8456 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8457 } else { 8458 ctxt->eip = ctxt->_eip; 8459 kvm_rip_write(vcpu, ctxt->eip); 8460 kvm_set_rflags(vcpu, ctxt->eflags); 8461 } 8462 } 8463 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8464 8465 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8466 u8 ndata, u8 *insn_bytes, u8 insn_size) 8467 { 8468 struct kvm_run *run = vcpu->run; 8469 u64 info[5]; 8470 u8 info_start; 8471 8472 /* 8473 * Zero the whole array used to retrieve the exit info, as casting to 8474 * u32 for select entries will leave some chunks uninitialized. 8475 */ 8476 memset(&info, 0, sizeof(info)); 8477 8478 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8479 &info[2], (u32 *)&info[3], 8480 (u32 *)&info[4]); 8481 8482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8483 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8484 8485 /* 8486 * There's currently space for 13 entries, but 5 are used for the exit 8487 * reason and info. Restrict to 4 to reduce the maintenance burden 8488 * when expanding kvm_run.emulation_failure in the future. 8489 */ 8490 if (WARN_ON_ONCE(ndata > 4)) 8491 ndata = 4; 8492 8493 /* Always include the flags as a 'data' entry. */ 8494 info_start = 1; 8495 run->emulation_failure.flags = 0; 8496 8497 if (insn_size) { 8498 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8499 sizeof(run->emulation_failure.insn_bytes) != 16)); 8500 info_start += 2; 8501 run->emulation_failure.flags |= 8502 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8503 run->emulation_failure.insn_size = insn_size; 8504 memset(run->emulation_failure.insn_bytes, 0x90, 8505 sizeof(run->emulation_failure.insn_bytes)); 8506 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8507 } 8508 8509 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8510 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8511 ndata * sizeof(data[0])); 8512 8513 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8514 } 8515 8516 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8517 { 8518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8519 8520 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8521 ctxt->fetch.end - ctxt->fetch.data); 8522 } 8523 8524 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8525 u8 ndata) 8526 { 8527 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8528 } 8529 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8530 8531 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8532 { 8533 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8534 } 8535 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8536 8537 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8538 { 8539 struct kvm *kvm = vcpu->kvm; 8540 8541 ++vcpu->stat.insn_emulation_fail; 8542 trace_kvm_emulate_insn_failed(vcpu); 8543 8544 if (emulation_type & EMULTYPE_VMWARE_GP) { 8545 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8546 return 1; 8547 } 8548 8549 if (kvm->arch.exit_on_emulation_error || 8550 (emulation_type & EMULTYPE_SKIP)) { 8551 prepare_emulation_ctxt_failure_exit(vcpu); 8552 return 0; 8553 } 8554 8555 kvm_queue_exception(vcpu, UD_VECTOR); 8556 8557 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8558 prepare_emulation_ctxt_failure_exit(vcpu); 8559 return 0; 8560 } 8561 8562 return 1; 8563 } 8564 8565 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8566 int emulation_type) 8567 { 8568 gpa_t gpa = cr2_or_gpa; 8569 kvm_pfn_t pfn; 8570 8571 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8572 return false; 8573 8574 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8575 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8576 return false; 8577 8578 if (!vcpu->arch.mmu->root_role.direct) { 8579 /* 8580 * Write permission should be allowed since only 8581 * write access need to be emulated. 8582 */ 8583 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8584 8585 /* 8586 * If the mapping is invalid in guest, let cpu retry 8587 * it to generate fault. 8588 */ 8589 if (gpa == INVALID_GPA) 8590 return true; 8591 } 8592 8593 /* 8594 * Do not retry the unhandleable instruction if it faults on the 8595 * readonly host memory, otherwise it will goto a infinite loop: 8596 * retry instruction -> write #PF -> emulation fail -> retry 8597 * instruction -> ... 8598 */ 8599 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8600 8601 /* 8602 * If the instruction failed on the error pfn, it can not be fixed, 8603 * report the error to userspace. 8604 */ 8605 if (is_error_noslot_pfn(pfn)) 8606 return false; 8607 8608 kvm_release_pfn_clean(pfn); 8609 8610 /* The instructions are well-emulated on direct mmu. */ 8611 if (vcpu->arch.mmu->root_role.direct) { 8612 unsigned int indirect_shadow_pages; 8613 8614 write_lock(&vcpu->kvm->mmu_lock); 8615 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8616 write_unlock(&vcpu->kvm->mmu_lock); 8617 8618 if (indirect_shadow_pages) 8619 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8620 8621 return true; 8622 } 8623 8624 /* 8625 * if emulation was due to access to shadowed page table 8626 * and it failed try to unshadow page and re-enter the 8627 * guest to let CPU execute the instruction. 8628 */ 8629 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8630 8631 /* 8632 * If the access faults on its page table, it can not 8633 * be fixed by unprotecting shadow page and it should 8634 * be reported to userspace. 8635 */ 8636 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8637 } 8638 8639 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8640 gpa_t cr2_or_gpa, int emulation_type) 8641 { 8642 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8643 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8644 8645 last_retry_eip = vcpu->arch.last_retry_eip; 8646 last_retry_addr = vcpu->arch.last_retry_addr; 8647 8648 /* 8649 * If the emulation is caused by #PF and it is non-page_table 8650 * writing instruction, it means the VM-EXIT is caused by shadow 8651 * page protected, we can zap the shadow page and retry this 8652 * instruction directly. 8653 * 8654 * Note: if the guest uses a non-page-table modifying instruction 8655 * on the PDE that points to the instruction, then we will unmap 8656 * the instruction and go to an infinite loop. So, we cache the 8657 * last retried eip and the last fault address, if we meet the eip 8658 * and the address again, we can break out of the potential infinite 8659 * loop. 8660 */ 8661 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8662 8663 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8664 return false; 8665 8666 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8667 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8668 return false; 8669 8670 if (x86_page_table_writing_insn(ctxt)) 8671 return false; 8672 8673 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8674 return false; 8675 8676 vcpu->arch.last_retry_eip = ctxt->eip; 8677 vcpu->arch.last_retry_addr = cr2_or_gpa; 8678 8679 if (!vcpu->arch.mmu->root_role.direct) 8680 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8681 8682 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8683 8684 return true; 8685 } 8686 8687 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8688 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8689 8690 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8691 unsigned long *db) 8692 { 8693 u32 dr6 = 0; 8694 int i; 8695 u32 enable, rwlen; 8696 8697 enable = dr7; 8698 rwlen = dr7 >> 16; 8699 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8700 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8701 dr6 |= (1 << i); 8702 return dr6; 8703 } 8704 8705 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8706 { 8707 struct kvm_run *kvm_run = vcpu->run; 8708 8709 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8710 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8711 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8712 kvm_run->debug.arch.exception = DB_VECTOR; 8713 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8714 return 0; 8715 } 8716 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8717 return 1; 8718 } 8719 8720 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8721 { 8722 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8723 int r; 8724 8725 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8726 if (unlikely(!r)) 8727 return 0; 8728 8729 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8730 8731 /* 8732 * rflags is the old, "raw" value of the flags. The new value has 8733 * not been saved yet. 8734 * 8735 * This is correct even for TF set by the guest, because "the 8736 * processor will not generate this exception after the instruction 8737 * that sets the TF flag". 8738 */ 8739 if (unlikely(rflags & X86_EFLAGS_TF)) 8740 r = kvm_vcpu_do_singlestep(vcpu); 8741 return r; 8742 } 8743 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8744 8745 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8746 { 8747 u32 shadow; 8748 8749 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8750 return true; 8751 8752 /* 8753 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8754 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8755 * to avoid the relatively expensive CPUID lookup. 8756 */ 8757 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8758 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8759 guest_cpuid_is_intel(vcpu); 8760 } 8761 8762 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8763 int emulation_type, int *r) 8764 { 8765 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8766 8767 /* 8768 * Do not check for code breakpoints if hardware has already done the 8769 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8770 * the instruction has passed all exception checks, and all intercepted 8771 * exceptions that trigger emulation have lower priority than code 8772 * breakpoints, i.e. the fact that the intercepted exception occurred 8773 * means any code breakpoints have already been serviced. 8774 * 8775 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8776 * hardware has checked the RIP of the magic prefix, but not the RIP of 8777 * the instruction being emulated. The intent of forced emulation is 8778 * to behave as if KVM intercepted the instruction without an exception 8779 * and without a prefix. 8780 */ 8781 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8782 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8783 return false; 8784 8785 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8786 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8787 struct kvm_run *kvm_run = vcpu->run; 8788 unsigned long eip = kvm_get_linear_rip(vcpu); 8789 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8790 vcpu->arch.guest_debug_dr7, 8791 vcpu->arch.eff_db); 8792 8793 if (dr6 != 0) { 8794 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8795 kvm_run->debug.arch.pc = eip; 8796 kvm_run->debug.arch.exception = DB_VECTOR; 8797 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8798 *r = 0; 8799 return true; 8800 } 8801 } 8802 8803 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8804 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8805 unsigned long eip = kvm_get_linear_rip(vcpu); 8806 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8807 vcpu->arch.dr7, 8808 vcpu->arch.db); 8809 8810 if (dr6 != 0) { 8811 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8812 *r = 1; 8813 return true; 8814 } 8815 } 8816 8817 return false; 8818 } 8819 8820 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8821 { 8822 switch (ctxt->opcode_len) { 8823 case 1: 8824 switch (ctxt->b) { 8825 case 0xe4: /* IN */ 8826 case 0xe5: 8827 case 0xec: 8828 case 0xed: 8829 case 0xe6: /* OUT */ 8830 case 0xe7: 8831 case 0xee: 8832 case 0xef: 8833 case 0x6c: /* INS */ 8834 case 0x6d: 8835 case 0x6e: /* OUTS */ 8836 case 0x6f: 8837 return true; 8838 } 8839 break; 8840 case 2: 8841 switch (ctxt->b) { 8842 case 0x33: /* RDPMC */ 8843 return true; 8844 } 8845 break; 8846 } 8847 8848 return false; 8849 } 8850 8851 /* 8852 * Decode an instruction for emulation. The caller is responsible for handling 8853 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8854 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8855 * code breakpoints have higher priority and thus have already been done by 8856 * hardware. 8857 * 8858 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8859 * response to a machine check. 8860 */ 8861 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8862 void *insn, int insn_len) 8863 { 8864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8865 int r; 8866 8867 init_emulate_ctxt(vcpu); 8868 8869 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8870 8871 trace_kvm_emulate_insn_start(vcpu); 8872 ++vcpu->stat.insn_emulation; 8873 8874 return r; 8875 } 8876 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8877 8878 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8879 int emulation_type, void *insn, int insn_len) 8880 { 8881 int r; 8882 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8883 bool writeback = true; 8884 8885 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8886 return 1; 8887 8888 vcpu->arch.l1tf_flush_l1d = true; 8889 8890 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8891 kvm_clear_exception_queue(vcpu); 8892 8893 /* 8894 * Return immediately if RIP hits a code breakpoint, such #DBs 8895 * are fault-like and are higher priority than any faults on 8896 * the code fetch itself. 8897 */ 8898 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8899 return r; 8900 8901 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8902 insn, insn_len); 8903 if (r != EMULATION_OK) { 8904 if ((emulation_type & EMULTYPE_TRAP_UD) || 8905 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8906 kvm_queue_exception(vcpu, UD_VECTOR); 8907 return 1; 8908 } 8909 if (reexecute_instruction(vcpu, cr2_or_gpa, 8910 emulation_type)) 8911 return 1; 8912 8913 if (ctxt->have_exception && 8914 !(emulation_type & EMULTYPE_SKIP)) { 8915 /* 8916 * #UD should result in just EMULATION_FAILED, and trap-like 8917 * exception should not be encountered during decode. 8918 */ 8919 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8920 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8921 inject_emulated_exception(vcpu); 8922 return 1; 8923 } 8924 return handle_emulation_failure(vcpu, emulation_type); 8925 } 8926 } 8927 8928 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8929 !is_vmware_backdoor_opcode(ctxt)) { 8930 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8931 return 1; 8932 } 8933 8934 /* 8935 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8936 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8937 * The caller is responsible for updating interruptibility state and 8938 * injecting single-step #DBs. 8939 */ 8940 if (emulation_type & EMULTYPE_SKIP) { 8941 if (ctxt->mode != X86EMUL_MODE_PROT64) 8942 ctxt->eip = (u32)ctxt->_eip; 8943 else 8944 ctxt->eip = ctxt->_eip; 8945 8946 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8947 r = 1; 8948 goto writeback; 8949 } 8950 8951 kvm_rip_write(vcpu, ctxt->eip); 8952 if (ctxt->eflags & X86_EFLAGS_RF) 8953 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8954 return 1; 8955 } 8956 8957 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8958 return 1; 8959 8960 /* this is needed for vmware backdoor interface to work since it 8961 changes registers values during IO operation */ 8962 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8963 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8964 emulator_invalidate_register_cache(ctxt); 8965 } 8966 8967 restart: 8968 if (emulation_type & EMULTYPE_PF) { 8969 /* Save the faulting GPA (cr2) in the address field */ 8970 ctxt->exception.address = cr2_or_gpa; 8971 8972 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8973 if (vcpu->arch.mmu->root_role.direct) { 8974 ctxt->gpa_available = true; 8975 ctxt->gpa_val = cr2_or_gpa; 8976 } 8977 } else { 8978 /* Sanitize the address out of an abundance of paranoia. */ 8979 ctxt->exception.address = 0; 8980 } 8981 8982 r = x86_emulate_insn(ctxt); 8983 8984 if (r == EMULATION_INTERCEPTED) 8985 return 1; 8986 8987 if (r == EMULATION_FAILED) { 8988 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8989 return 1; 8990 8991 return handle_emulation_failure(vcpu, emulation_type); 8992 } 8993 8994 if (ctxt->have_exception) { 8995 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8996 vcpu->mmio_needed = false; 8997 r = 1; 8998 inject_emulated_exception(vcpu); 8999 } else if (vcpu->arch.pio.count) { 9000 if (!vcpu->arch.pio.in) { 9001 /* FIXME: return into emulator if single-stepping. */ 9002 vcpu->arch.pio.count = 0; 9003 } else { 9004 writeback = false; 9005 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9006 } 9007 r = 0; 9008 } else if (vcpu->mmio_needed) { 9009 ++vcpu->stat.mmio_exits; 9010 9011 if (!vcpu->mmio_is_write) 9012 writeback = false; 9013 r = 0; 9014 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9015 } else if (vcpu->arch.complete_userspace_io) { 9016 writeback = false; 9017 r = 0; 9018 } else if (r == EMULATION_RESTART) 9019 goto restart; 9020 else 9021 r = 1; 9022 9023 writeback: 9024 if (writeback) { 9025 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9026 toggle_interruptibility(vcpu, ctxt->interruptibility); 9027 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9028 9029 /* 9030 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9031 * only supports code breakpoints and general detect #DB, both 9032 * of which are fault-like. 9033 */ 9034 if (!ctxt->have_exception || 9035 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9036 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9037 if (ctxt->is_branch) 9038 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9039 kvm_rip_write(vcpu, ctxt->eip); 9040 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9041 r = kvm_vcpu_do_singlestep(vcpu); 9042 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9043 __kvm_set_rflags(vcpu, ctxt->eflags); 9044 } 9045 9046 /* 9047 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9048 * do nothing, and it will be requested again as soon as 9049 * the shadow expires. But we still need to check here, 9050 * because POPF has no interrupt shadow. 9051 */ 9052 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9053 kvm_make_request(KVM_REQ_EVENT, vcpu); 9054 } else 9055 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9056 9057 return r; 9058 } 9059 9060 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9061 { 9062 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9063 } 9064 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9065 9066 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9067 void *insn, int insn_len) 9068 { 9069 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9070 } 9071 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9072 9073 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9074 { 9075 vcpu->arch.pio.count = 0; 9076 return 1; 9077 } 9078 9079 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9080 { 9081 vcpu->arch.pio.count = 0; 9082 9083 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9084 return 1; 9085 9086 return kvm_skip_emulated_instruction(vcpu); 9087 } 9088 9089 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9090 unsigned short port) 9091 { 9092 unsigned long val = kvm_rax_read(vcpu); 9093 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9094 9095 if (ret) 9096 return ret; 9097 9098 /* 9099 * Workaround userspace that relies on old KVM behavior of %rip being 9100 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9101 */ 9102 if (port == 0x7e && 9103 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9104 vcpu->arch.complete_userspace_io = 9105 complete_fast_pio_out_port_0x7e; 9106 kvm_skip_emulated_instruction(vcpu); 9107 } else { 9108 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9109 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9110 } 9111 return 0; 9112 } 9113 9114 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9115 { 9116 unsigned long val; 9117 9118 /* We should only ever be called with arch.pio.count equal to 1 */ 9119 BUG_ON(vcpu->arch.pio.count != 1); 9120 9121 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9122 vcpu->arch.pio.count = 0; 9123 return 1; 9124 } 9125 9126 /* For size less than 4 we merge, else we zero extend */ 9127 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9128 9129 complete_emulator_pio_in(vcpu, &val); 9130 kvm_rax_write(vcpu, val); 9131 9132 return kvm_skip_emulated_instruction(vcpu); 9133 } 9134 9135 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9136 unsigned short port) 9137 { 9138 unsigned long val; 9139 int ret; 9140 9141 /* For size less than 4 we merge, else we zero extend */ 9142 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9143 9144 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9145 if (ret) { 9146 kvm_rax_write(vcpu, val); 9147 return ret; 9148 } 9149 9150 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9151 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9152 9153 return 0; 9154 } 9155 9156 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9157 { 9158 int ret; 9159 9160 if (in) 9161 ret = kvm_fast_pio_in(vcpu, size, port); 9162 else 9163 ret = kvm_fast_pio_out(vcpu, size, port); 9164 return ret && kvm_skip_emulated_instruction(vcpu); 9165 } 9166 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9167 9168 static int kvmclock_cpu_down_prep(unsigned int cpu) 9169 { 9170 __this_cpu_write(cpu_tsc_khz, 0); 9171 return 0; 9172 } 9173 9174 static void tsc_khz_changed(void *data) 9175 { 9176 struct cpufreq_freqs *freq = data; 9177 unsigned long khz = 0; 9178 9179 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9180 9181 if (data) 9182 khz = freq->new; 9183 else 9184 khz = cpufreq_quick_get(raw_smp_processor_id()); 9185 if (!khz) 9186 khz = tsc_khz; 9187 __this_cpu_write(cpu_tsc_khz, khz); 9188 } 9189 9190 #ifdef CONFIG_X86_64 9191 static void kvm_hyperv_tsc_notifier(void) 9192 { 9193 struct kvm *kvm; 9194 int cpu; 9195 9196 mutex_lock(&kvm_lock); 9197 list_for_each_entry(kvm, &vm_list, vm_list) 9198 kvm_make_mclock_inprogress_request(kvm); 9199 9200 /* no guest entries from this point */ 9201 hyperv_stop_tsc_emulation(); 9202 9203 /* TSC frequency always matches when on Hyper-V */ 9204 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9205 for_each_present_cpu(cpu) 9206 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9207 } 9208 kvm_caps.max_guest_tsc_khz = tsc_khz; 9209 9210 list_for_each_entry(kvm, &vm_list, vm_list) { 9211 __kvm_start_pvclock_update(kvm); 9212 pvclock_update_vm_gtod_copy(kvm); 9213 kvm_end_pvclock_update(kvm); 9214 } 9215 9216 mutex_unlock(&kvm_lock); 9217 } 9218 #endif 9219 9220 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9221 { 9222 struct kvm *kvm; 9223 struct kvm_vcpu *vcpu; 9224 int send_ipi = 0; 9225 unsigned long i; 9226 9227 /* 9228 * We allow guests to temporarily run on slowing clocks, 9229 * provided we notify them after, or to run on accelerating 9230 * clocks, provided we notify them before. Thus time never 9231 * goes backwards. 9232 * 9233 * However, we have a problem. We can't atomically update 9234 * the frequency of a given CPU from this function; it is 9235 * merely a notifier, which can be called from any CPU. 9236 * Changing the TSC frequency at arbitrary points in time 9237 * requires a recomputation of local variables related to 9238 * the TSC for each VCPU. We must flag these local variables 9239 * to be updated and be sure the update takes place with the 9240 * new frequency before any guests proceed. 9241 * 9242 * Unfortunately, the combination of hotplug CPU and frequency 9243 * change creates an intractable locking scenario; the order 9244 * of when these callouts happen is undefined with respect to 9245 * CPU hotplug, and they can race with each other. As such, 9246 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9247 * undefined; you can actually have a CPU frequency change take 9248 * place in between the computation of X and the setting of the 9249 * variable. To protect against this problem, all updates of 9250 * the per_cpu tsc_khz variable are done in an interrupt 9251 * protected IPI, and all callers wishing to update the value 9252 * must wait for a synchronous IPI to complete (which is trivial 9253 * if the caller is on the CPU already). This establishes the 9254 * necessary total order on variable updates. 9255 * 9256 * Note that because a guest time update may take place 9257 * anytime after the setting of the VCPU's request bit, the 9258 * correct TSC value must be set before the request. However, 9259 * to ensure the update actually makes it to any guest which 9260 * starts running in hardware virtualization between the set 9261 * and the acquisition of the spinlock, we must also ping the 9262 * CPU after setting the request bit. 9263 * 9264 */ 9265 9266 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9267 9268 mutex_lock(&kvm_lock); 9269 list_for_each_entry(kvm, &vm_list, vm_list) { 9270 kvm_for_each_vcpu(i, vcpu, kvm) { 9271 if (vcpu->cpu != cpu) 9272 continue; 9273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9274 if (vcpu->cpu != raw_smp_processor_id()) 9275 send_ipi = 1; 9276 } 9277 } 9278 mutex_unlock(&kvm_lock); 9279 9280 if (freq->old < freq->new && send_ipi) { 9281 /* 9282 * We upscale the frequency. Must make the guest 9283 * doesn't see old kvmclock values while running with 9284 * the new frequency, otherwise we risk the guest sees 9285 * time go backwards. 9286 * 9287 * In case we update the frequency for another cpu 9288 * (which might be in guest context) send an interrupt 9289 * to kick the cpu out of guest context. Next time 9290 * guest context is entered kvmclock will be updated, 9291 * so the guest will not see stale values. 9292 */ 9293 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9294 } 9295 } 9296 9297 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9298 void *data) 9299 { 9300 struct cpufreq_freqs *freq = data; 9301 int cpu; 9302 9303 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9304 return 0; 9305 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9306 return 0; 9307 9308 for_each_cpu(cpu, freq->policy->cpus) 9309 __kvmclock_cpufreq_notifier(freq, cpu); 9310 9311 return 0; 9312 } 9313 9314 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9315 .notifier_call = kvmclock_cpufreq_notifier 9316 }; 9317 9318 static int kvmclock_cpu_online(unsigned int cpu) 9319 { 9320 tsc_khz_changed(NULL); 9321 return 0; 9322 } 9323 9324 static void kvm_timer_init(void) 9325 { 9326 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9327 max_tsc_khz = tsc_khz; 9328 9329 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9330 struct cpufreq_policy *policy; 9331 int cpu; 9332 9333 cpu = get_cpu(); 9334 policy = cpufreq_cpu_get(cpu); 9335 if (policy) { 9336 if (policy->cpuinfo.max_freq) 9337 max_tsc_khz = policy->cpuinfo.max_freq; 9338 cpufreq_cpu_put(policy); 9339 } 9340 put_cpu(); 9341 } 9342 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9343 CPUFREQ_TRANSITION_NOTIFIER); 9344 9345 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9346 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9347 } 9348 } 9349 9350 #ifdef CONFIG_X86_64 9351 static void pvclock_gtod_update_fn(struct work_struct *work) 9352 { 9353 struct kvm *kvm; 9354 struct kvm_vcpu *vcpu; 9355 unsigned long i; 9356 9357 mutex_lock(&kvm_lock); 9358 list_for_each_entry(kvm, &vm_list, vm_list) 9359 kvm_for_each_vcpu(i, vcpu, kvm) 9360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9361 atomic_set(&kvm_guest_has_master_clock, 0); 9362 mutex_unlock(&kvm_lock); 9363 } 9364 9365 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9366 9367 /* 9368 * Indirection to move queue_work() out of the tk_core.seq write held 9369 * region to prevent possible deadlocks against time accessors which 9370 * are invoked with work related locks held. 9371 */ 9372 static void pvclock_irq_work_fn(struct irq_work *w) 9373 { 9374 queue_work(system_long_wq, &pvclock_gtod_work); 9375 } 9376 9377 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9378 9379 /* 9380 * Notification about pvclock gtod data update. 9381 */ 9382 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9383 void *priv) 9384 { 9385 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9386 struct timekeeper *tk = priv; 9387 9388 update_pvclock_gtod(tk); 9389 9390 /* 9391 * Disable master clock if host does not trust, or does not use, 9392 * TSC based clocksource. Delegate queue_work() to irq_work as 9393 * this is invoked with tk_core.seq write held. 9394 */ 9395 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9396 atomic_read(&kvm_guest_has_master_clock) != 0) 9397 irq_work_queue(&pvclock_irq_work); 9398 return 0; 9399 } 9400 9401 static struct notifier_block pvclock_gtod_notifier = { 9402 .notifier_call = pvclock_gtod_notify, 9403 }; 9404 #endif 9405 9406 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9407 { 9408 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9409 9410 #define __KVM_X86_OP(func) \ 9411 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9412 #define KVM_X86_OP(func) \ 9413 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9414 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9415 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9416 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9417 (void *)__static_call_return0); 9418 #include <asm/kvm-x86-ops.h> 9419 #undef __KVM_X86_OP 9420 9421 kvm_pmu_ops_update(ops->pmu_ops); 9422 } 9423 9424 static int kvm_x86_check_processor_compatibility(void) 9425 { 9426 int cpu = smp_processor_id(); 9427 struct cpuinfo_x86 *c = &cpu_data(cpu); 9428 9429 /* 9430 * Compatibility checks are done when loading KVM and when enabling 9431 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9432 * compatible, i.e. KVM should never perform a compatibility check on 9433 * an offline CPU. 9434 */ 9435 WARN_ON(!cpu_online(cpu)); 9436 9437 if (__cr4_reserved_bits(cpu_has, c) != 9438 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9439 return -EIO; 9440 9441 return static_call(kvm_x86_check_processor_compatibility)(); 9442 } 9443 9444 static void kvm_x86_check_cpu_compat(void *ret) 9445 { 9446 *(int *)ret = kvm_x86_check_processor_compatibility(); 9447 } 9448 9449 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9450 { 9451 u64 host_pat; 9452 int r, cpu; 9453 9454 if (kvm_x86_ops.hardware_enable) { 9455 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9456 return -EEXIST; 9457 } 9458 9459 /* 9460 * KVM explicitly assumes that the guest has an FPU and 9461 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9462 * vCPU's FPU state as a fxregs_state struct. 9463 */ 9464 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9465 pr_err("inadequate fpu\n"); 9466 return -EOPNOTSUPP; 9467 } 9468 9469 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9470 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9471 return -EOPNOTSUPP; 9472 } 9473 9474 /* 9475 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9476 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9477 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9478 * with an exception. PAT[0] is set to WB on RESET and also by the 9479 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9480 */ 9481 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9482 (host_pat & GENMASK(2, 0)) != 6) { 9483 pr_err("host PAT[0] is not WB\n"); 9484 return -EIO; 9485 } 9486 9487 x86_emulator_cache = kvm_alloc_emulator_cache(); 9488 if (!x86_emulator_cache) { 9489 pr_err("failed to allocate cache for x86 emulator\n"); 9490 return -ENOMEM; 9491 } 9492 9493 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9494 if (!user_return_msrs) { 9495 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9496 r = -ENOMEM; 9497 goto out_free_x86_emulator_cache; 9498 } 9499 kvm_nr_uret_msrs = 0; 9500 9501 r = kvm_mmu_vendor_module_init(); 9502 if (r) 9503 goto out_free_percpu; 9504 9505 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9506 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9507 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9508 } 9509 9510 rdmsrl_safe(MSR_EFER, &host_efer); 9511 9512 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9513 rdmsrl(MSR_IA32_XSS, host_xss); 9514 9515 kvm_init_pmu_capability(ops->pmu_ops); 9516 9517 r = ops->hardware_setup(); 9518 if (r != 0) 9519 goto out_mmu_exit; 9520 9521 kvm_ops_update(ops); 9522 9523 for_each_online_cpu(cpu) { 9524 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9525 if (r < 0) 9526 goto out_unwind_ops; 9527 } 9528 9529 /* 9530 * Point of no return! DO NOT add error paths below this point unless 9531 * absolutely necessary, as most operations from this point forward 9532 * require unwinding. 9533 */ 9534 kvm_timer_init(); 9535 9536 if (pi_inject_timer == -1) 9537 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9538 #ifdef CONFIG_X86_64 9539 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9540 9541 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9542 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9543 #endif 9544 9545 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9546 9547 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9548 kvm_caps.supported_xss = 0; 9549 9550 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9551 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9552 #undef __kvm_cpu_cap_has 9553 9554 if (kvm_caps.has_tsc_control) { 9555 /* 9556 * Make sure the user can only configure tsc_khz values that 9557 * fit into a signed integer. 9558 * A min value is not calculated because it will always 9559 * be 1 on all machines. 9560 */ 9561 u64 max = min(0x7fffffffULL, 9562 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9563 kvm_caps.max_guest_tsc_khz = max; 9564 } 9565 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9566 kvm_init_msr_lists(); 9567 return 0; 9568 9569 out_unwind_ops: 9570 kvm_x86_ops.hardware_enable = NULL; 9571 static_call(kvm_x86_hardware_unsetup)(); 9572 out_mmu_exit: 9573 kvm_mmu_vendor_module_exit(); 9574 out_free_percpu: 9575 free_percpu(user_return_msrs); 9576 out_free_x86_emulator_cache: 9577 kmem_cache_destroy(x86_emulator_cache); 9578 return r; 9579 } 9580 9581 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9582 { 9583 int r; 9584 9585 mutex_lock(&vendor_module_lock); 9586 r = __kvm_x86_vendor_init(ops); 9587 mutex_unlock(&vendor_module_lock); 9588 9589 return r; 9590 } 9591 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9592 9593 void kvm_x86_vendor_exit(void) 9594 { 9595 kvm_unregister_perf_callbacks(); 9596 9597 #ifdef CONFIG_X86_64 9598 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9599 clear_hv_tscchange_cb(); 9600 #endif 9601 kvm_lapic_exit(); 9602 9603 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9604 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9605 CPUFREQ_TRANSITION_NOTIFIER); 9606 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9607 } 9608 #ifdef CONFIG_X86_64 9609 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9610 irq_work_sync(&pvclock_irq_work); 9611 cancel_work_sync(&pvclock_gtod_work); 9612 #endif 9613 static_call(kvm_x86_hardware_unsetup)(); 9614 kvm_mmu_vendor_module_exit(); 9615 free_percpu(user_return_msrs); 9616 kmem_cache_destroy(x86_emulator_cache); 9617 #ifdef CONFIG_KVM_XEN 9618 static_key_deferred_flush(&kvm_xen_enabled); 9619 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9620 #endif 9621 mutex_lock(&vendor_module_lock); 9622 kvm_x86_ops.hardware_enable = NULL; 9623 mutex_unlock(&vendor_module_lock); 9624 } 9625 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9626 9627 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9628 { 9629 /* 9630 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9631 * local APIC is in-kernel, the run loop will detect the non-runnable 9632 * state and halt the vCPU. Exit to userspace if the local APIC is 9633 * managed by userspace, in which case userspace is responsible for 9634 * handling wake events. 9635 */ 9636 ++vcpu->stat.halt_exits; 9637 if (lapic_in_kernel(vcpu)) { 9638 vcpu->arch.mp_state = state; 9639 return 1; 9640 } else { 9641 vcpu->run->exit_reason = reason; 9642 return 0; 9643 } 9644 } 9645 9646 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9647 { 9648 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9649 } 9650 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9651 9652 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9653 { 9654 int ret = kvm_skip_emulated_instruction(vcpu); 9655 /* 9656 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9657 * KVM_EXIT_DEBUG here. 9658 */ 9659 return kvm_emulate_halt_noskip(vcpu) && ret; 9660 } 9661 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9662 9663 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9664 { 9665 int ret = kvm_skip_emulated_instruction(vcpu); 9666 9667 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9668 KVM_EXIT_AP_RESET_HOLD) && ret; 9669 } 9670 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9671 9672 #ifdef CONFIG_X86_64 9673 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9674 unsigned long clock_type) 9675 { 9676 struct kvm_clock_pairing clock_pairing; 9677 struct timespec64 ts; 9678 u64 cycle; 9679 int ret; 9680 9681 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9682 return -KVM_EOPNOTSUPP; 9683 9684 /* 9685 * When tsc is in permanent catchup mode guests won't be able to use 9686 * pvclock_read_retry loop to get consistent view of pvclock 9687 */ 9688 if (vcpu->arch.tsc_always_catchup) 9689 return -KVM_EOPNOTSUPP; 9690 9691 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9692 return -KVM_EOPNOTSUPP; 9693 9694 clock_pairing.sec = ts.tv_sec; 9695 clock_pairing.nsec = ts.tv_nsec; 9696 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9697 clock_pairing.flags = 0; 9698 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9699 9700 ret = 0; 9701 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9702 sizeof(struct kvm_clock_pairing))) 9703 ret = -KVM_EFAULT; 9704 9705 return ret; 9706 } 9707 #endif 9708 9709 /* 9710 * kvm_pv_kick_cpu_op: Kick a vcpu. 9711 * 9712 * @apicid - apicid of vcpu to be kicked. 9713 */ 9714 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9715 { 9716 /* 9717 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9718 * common code, e.g. for tracing. Defer initialization to the compiler. 9719 */ 9720 struct kvm_lapic_irq lapic_irq = { 9721 .delivery_mode = APIC_DM_REMRD, 9722 .dest_mode = APIC_DEST_PHYSICAL, 9723 .shorthand = APIC_DEST_NOSHORT, 9724 .dest_id = apicid, 9725 }; 9726 9727 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9728 } 9729 9730 bool kvm_apicv_activated(struct kvm *kvm) 9731 { 9732 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9733 } 9734 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9735 9736 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9737 { 9738 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9739 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9740 9741 return (vm_reasons | vcpu_reasons) == 0; 9742 } 9743 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9744 9745 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9746 enum kvm_apicv_inhibit reason, bool set) 9747 { 9748 if (set) 9749 __set_bit(reason, inhibits); 9750 else 9751 __clear_bit(reason, inhibits); 9752 9753 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9754 } 9755 9756 static void kvm_apicv_init(struct kvm *kvm) 9757 { 9758 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9759 9760 init_rwsem(&kvm->arch.apicv_update_lock); 9761 9762 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9763 9764 if (!enable_apicv) 9765 set_or_clear_apicv_inhibit(inhibits, 9766 APICV_INHIBIT_REASON_DISABLE, true); 9767 } 9768 9769 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9770 { 9771 struct kvm_vcpu *target = NULL; 9772 struct kvm_apic_map *map; 9773 9774 vcpu->stat.directed_yield_attempted++; 9775 9776 if (single_task_running()) 9777 goto no_yield; 9778 9779 rcu_read_lock(); 9780 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9781 9782 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9783 target = map->phys_map[dest_id]->vcpu; 9784 9785 rcu_read_unlock(); 9786 9787 if (!target || !READ_ONCE(target->ready)) 9788 goto no_yield; 9789 9790 /* Ignore requests to yield to self */ 9791 if (vcpu == target) 9792 goto no_yield; 9793 9794 if (kvm_vcpu_yield_to(target) <= 0) 9795 goto no_yield; 9796 9797 vcpu->stat.directed_yield_successful++; 9798 9799 no_yield: 9800 return; 9801 } 9802 9803 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9804 { 9805 u64 ret = vcpu->run->hypercall.ret; 9806 9807 if (!is_64_bit_mode(vcpu)) 9808 ret = (u32)ret; 9809 kvm_rax_write(vcpu, ret); 9810 ++vcpu->stat.hypercalls; 9811 return kvm_skip_emulated_instruction(vcpu); 9812 } 9813 9814 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9815 { 9816 unsigned long nr, a0, a1, a2, a3, ret; 9817 int op_64_bit; 9818 9819 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9820 return kvm_xen_hypercall(vcpu); 9821 9822 if (kvm_hv_hypercall_enabled(vcpu)) 9823 return kvm_hv_hypercall(vcpu); 9824 9825 nr = kvm_rax_read(vcpu); 9826 a0 = kvm_rbx_read(vcpu); 9827 a1 = kvm_rcx_read(vcpu); 9828 a2 = kvm_rdx_read(vcpu); 9829 a3 = kvm_rsi_read(vcpu); 9830 9831 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9832 9833 op_64_bit = is_64_bit_hypercall(vcpu); 9834 if (!op_64_bit) { 9835 nr &= 0xFFFFFFFF; 9836 a0 &= 0xFFFFFFFF; 9837 a1 &= 0xFFFFFFFF; 9838 a2 &= 0xFFFFFFFF; 9839 a3 &= 0xFFFFFFFF; 9840 } 9841 9842 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9843 ret = -KVM_EPERM; 9844 goto out; 9845 } 9846 9847 ret = -KVM_ENOSYS; 9848 9849 switch (nr) { 9850 case KVM_HC_VAPIC_POLL_IRQ: 9851 ret = 0; 9852 break; 9853 case KVM_HC_KICK_CPU: 9854 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9855 break; 9856 9857 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9858 kvm_sched_yield(vcpu, a1); 9859 ret = 0; 9860 break; 9861 #ifdef CONFIG_X86_64 9862 case KVM_HC_CLOCK_PAIRING: 9863 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9864 break; 9865 #endif 9866 case KVM_HC_SEND_IPI: 9867 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9868 break; 9869 9870 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9871 break; 9872 case KVM_HC_SCHED_YIELD: 9873 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9874 break; 9875 9876 kvm_sched_yield(vcpu, a0); 9877 ret = 0; 9878 break; 9879 case KVM_HC_MAP_GPA_RANGE: { 9880 u64 gpa = a0, npages = a1, attrs = a2; 9881 9882 ret = -KVM_ENOSYS; 9883 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9884 break; 9885 9886 if (!PAGE_ALIGNED(gpa) || !npages || 9887 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9888 ret = -KVM_EINVAL; 9889 break; 9890 } 9891 9892 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9893 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9894 vcpu->run->hypercall.args[0] = gpa; 9895 vcpu->run->hypercall.args[1] = npages; 9896 vcpu->run->hypercall.args[2] = attrs; 9897 vcpu->run->hypercall.flags = 0; 9898 if (op_64_bit) 9899 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9900 9901 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9902 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9903 return 0; 9904 } 9905 default: 9906 ret = -KVM_ENOSYS; 9907 break; 9908 } 9909 out: 9910 if (!op_64_bit) 9911 ret = (u32)ret; 9912 kvm_rax_write(vcpu, ret); 9913 9914 ++vcpu->stat.hypercalls; 9915 return kvm_skip_emulated_instruction(vcpu); 9916 } 9917 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9918 9919 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9920 { 9921 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9922 char instruction[3]; 9923 unsigned long rip = kvm_rip_read(vcpu); 9924 9925 /* 9926 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9927 * the pieces. 9928 */ 9929 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9930 ctxt->exception.error_code_valid = false; 9931 ctxt->exception.vector = UD_VECTOR; 9932 ctxt->have_exception = true; 9933 return X86EMUL_PROPAGATE_FAULT; 9934 } 9935 9936 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9937 9938 return emulator_write_emulated(ctxt, rip, instruction, 3, 9939 &ctxt->exception); 9940 } 9941 9942 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9943 { 9944 return vcpu->run->request_interrupt_window && 9945 likely(!pic_in_kernel(vcpu->kvm)); 9946 } 9947 9948 /* Called within kvm->srcu read side. */ 9949 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9950 { 9951 struct kvm_run *kvm_run = vcpu->run; 9952 9953 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9954 kvm_run->cr8 = kvm_get_cr8(vcpu); 9955 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9956 9957 kvm_run->ready_for_interrupt_injection = 9958 pic_in_kernel(vcpu->kvm) || 9959 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9960 9961 if (is_smm(vcpu)) 9962 kvm_run->flags |= KVM_RUN_X86_SMM; 9963 } 9964 9965 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9966 { 9967 int max_irr, tpr; 9968 9969 if (!kvm_x86_ops.update_cr8_intercept) 9970 return; 9971 9972 if (!lapic_in_kernel(vcpu)) 9973 return; 9974 9975 if (vcpu->arch.apic->apicv_active) 9976 return; 9977 9978 if (!vcpu->arch.apic->vapic_addr) 9979 max_irr = kvm_lapic_find_highest_irr(vcpu); 9980 else 9981 max_irr = -1; 9982 9983 if (max_irr != -1) 9984 max_irr >>= 4; 9985 9986 tpr = kvm_lapic_get_cr8(vcpu); 9987 9988 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9989 } 9990 9991 9992 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9993 { 9994 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9995 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9996 return 1; 9997 } 9998 9999 return kvm_x86_ops.nested_ops->check_events(vcpu); 10000 } 10001 10002 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10003 { 10004 /* 10005 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10006 * exceptions don't report error codes. The presence of an error code 10007 * is carried with the exception and only stripped when the exception 10008 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10009 * report an error code despite the CPU being in Real Mode. 10010 */ 10011 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10012 10013 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10014 vcpu->arch.exception.has_error_code, 10015 vcpu->arch.exception.error_code, 10016 vcpu->arch.exception.injected); 10017 10018 static_call(kvm_x86_inject_exception)(vcpu); 10019 } 10020 10021 /* 10022 * Check for any event (interrupt or exception) that is ready to be injected, 10023 * and if there is at least one event, inject the event with the highest 10024 * priority. This handles both "pending" events, i.e. events that have never 10025 * been injected into the guest, and "injected" events, i.e. events that were 10026 * injected as part of a previous VM-Enter, but weren't successfully delivered 10027 * and need to be re-injected. 10028 * 10029 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10030 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10031 * be able to inject exceptions in the "middle" of an instruction, and so must 10032 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10033 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10034 * boundaries is necessary and correct. 10035 * 10036 * For simplicity, KVM uses a single path to inject all events (except events 10037 * that are injected directly from L1 to L2) and doesn't explicitly track 10038 * instruction boundaries for asynchronous events. However, because VM-Exits 10039 * that can occur during instruction execution typically result in KVM skipping 10040 * the instruction or injecting an exception, e.g. instruction and exception 10041 * intercepts, and because pending exceptions have higher priority than pending 10042 * interrupts, KVM still honors instruction boundaries in most scenarios. 10043 * 10044 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10045 * the instruction or inject an exception, then KVM can incorrecty inject a new 10046 * asynchrounous event if the event became pending after the CPU fetched the 10047 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10048 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10049 * injected on the restarted instruction instead of being deferred until the 10050 * instruction completes. 10051 * 10052 * In practice, this virtualization hole is unlikely to be observed by the 10053 * guest, and even less likely to cause functional problems. To detect the 10054 * hole, the guest would have to trigger an event on a side effect of an early 10055 * phase of instruction execution, e.g. on the instruction fetch from memory. 10056 * And for it to be a functional problem, the guest would need to depend on the 10057 * ordering between that side effect, the instruction completing, _and_ the 10058 * delivery of the asynchronous event. 10059 */ 10060 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10061 bool *req_immediate_exit) 10062 { 10063 bool can_inject; 10064 int r; 10065 10066 /* 10067 * Process nested events first, as nested VM-Exit supercedes event 10068 * re-injection. If there's an event queued for re-injection, it will 10069 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10070 */ 10071 if (is_guest_mode(vcpu)) 10072 r = kvm_check_nested_events(vcpu); 10073 else 10074 r = 0; 10075 10076 /* 10077 * Re-inject exceptions and events *especially* if immediate entry+exit 10078 * to/from L2 is needed, as any event that has already been injected 10079 * into L2 needs to complete its lifecycle before injecting a new event. 10080 * 10081 * Don't re-inject an NMI or interrupt if there is a pending exception. 10082 * This collision arises if an exception occurred while vectoring the 10083 * injected event, KVM intercepted said exception, and KVM ultimately 10084 * determined the fault belongs to the guest and queues the exception 10085 * for injection back into the guest. 10086 * 10087 * "Injected" interrupts can also collide with pending exceptions if 10088 * userspace ignores the "ready for injection" flag and blindly queues 10089 * an interrupt. In that case, prioritizing the exception is correct, 10090 * as the exception "occurred" before the exit to userspace. Trap-like 10091 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10092 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10093 * priority, they're only generated (pended) during instruction 10094 * execution, and interrupts are recognized at instruction boundaries. 10095 * Thus a pending fault-like exception means the fault occurred on the 10096 * *previous* instruction and must be serviced prior to recognizing any 10097 * new events in order to fully complete the previous instruction. 10098 */ 10099 if (vcpu->arch.exception.injected) 10100 kvm_inject_exception(vcpu); 10101 else if (kvm_is_exception_pending(vcpu)) 10102 ; /* see above */ 10103 else if (vcpu->arch.nmi_injected) 10104 static_call(kvm_x86_inject_nmi)(vcpu); 10105 else if (vcpu->arch.interrupt.injected) 10106 static_call(kvm_x86_inject_irq)(vcpu, true); 10107 10108 /* 10109 * Exceptions that morph to VM-Exits are handled above, and pending 10110 * exceptions on top of injected exceptions that do not VM-Exit should 10111 * either morph to #DF or, sadly, override the injected exception. 10112 */ 10113 WARN_ON_ONCE(vcpu->arch.exception.injected && 10114 vcpu->arch.exception.pending); 10115 10116 /* 10117 * Bail if immediate entry+exit to/from the guest is needed to complete 10118 * nested VM-Enter or event re-injection so that a different pending 10119 * event can be serviced (or if KVM needs to exit to userspace). 10120 * 10121 * Otherwise, continue processing events even if VM-Exit occurred. The 10122 * VM-Exit will have cleared exceptions that were meant for L2, but 10123 * there may now be events that can be injected into L1. 10124 */ 10125 if (r < 0) 10126 goto out; 10127 10128 /* 10129 * A pending exception VM-Exit should either result in nested VM-Exit 10130 * or force an immediate re-entry and exit to/from L2, and exception 10131 * VM-Exits cannot be injected (flag should _never_ be set). 10132 */ 10133 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10134 vcpu->arch.exception_vmexit.pending); 10135 10136 /* 10137 * New events, other than exceptions, cannot be injected if KVM needs 10138 * to re-inject a previous event. See above comments on re-injecting 10139 * for why pending exceptions get priority. 10140 */ 10141 can_inject = !kvm_event_needs_reinjection(vcpu); 10142 10143 if (vcpu->arch.exception.pending) { 10144 /* 10145 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10146 * value pushed on the stack. Trap-like exception and all #DBs 10147 * leave RF as-is (KVM follows Intel's behavior in this regard; 10148 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10149 * 10150 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10151 * describe the behavior of General Detect #DBs, which are 10152 * fault-like. They do _not_ set RF, a la code breakpoints. 10153 */ 10154 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10155 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10156 X86_EFLAGS_RF); 10157 10158 if (vcpu->arch.exception.vector == DB_VECTOR) { 10159 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10160 if (vcpu->arch.dr7 & DR7_GD) { 10161 vcpu->arch.dr7 &= ~DR7_GD; 10162 kvm_update_dr7(vcpu); 10163 } 10164 } 10165 10166 kvm_inject_exception(vcpu); 10167 10168 vcpu->arch.exception.pending = false; 10169 vcpu->arch.exception.injected = true; 10170 10171 can_inject = false; 10172 } 10173 10174 /* Don't inject interrupts if the user asked to avoid doing so */ 10175 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10176 return 0; 10177 10178 /* 10179 * Finally, inject interrupt events. If an event cannot be injected 10180 * due to architectural conditions (e.g. IF=0) a window-open exit 10181 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10182 * and can architecturally be injected, but we cannot do it right now: 10183 * an interrupt could have arrived just now and we have to inject it 10184 * as a vmexit, or there could already an event in the queue, which is 10185 * indicated by can_inject. In that case we request an immediate exit 10186 * in order to make progress and get back here for another iteration. 10187 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10188 */ 10189 #ifdef CONFIG_KVM_SMM 10190 if (vcpu->arch.smi_pending) { 10191 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10192 if (r < 0) 10193 goto out; 10194 if (r) { 10195 vcpu->arch.smi_pending = false; 10196 ++vcpu->arch.smi_count; 10197 enter_smm(vcpu); 10198 can_inject = false; 10199 } else 10200 static_call(kvm_x86_enable_smi_window)(vcpu); 10201 } 10202 #endif 10203 10204 if (vcpu->arch.nmi_pending) { 10205 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10206 if (r < 0) 10207 goto out; 10208 if (r) { 10209 --vcpu->arch.nmi_pending; 10210 vcpu->arch.nmi_injected = true; 10211 static_call(kvm_x86_inject_nmi)(vcpu); 10212 can_inject = false; 10213 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10214 } 10215 if (vcpu->arch.nmi_pending) 10216 static_call(kvm_x86_enable_nmi_window)(vcpu); 10217 } 10218 10219 if (kvm_cpu_has_injectable_intr(vcpu)) { 10220 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10221 if (r < 0) 10222 goto out; 10223 if (r) { 10224 int irq = kvm_cpu_get_interrupt(vcpu); 10225 10226 if (!WARN_ON_ONCE(irq == -1)) { 10227 kvm_queue_interrupt(vcpu, irq, false); 10228 static_call(kvm_x86_inject_irq)(vcpu, false); 10229 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10230 } 10231 } 10232 if (kvm_cpu_has_injectable_intr(vcpu)) 10233 static_call(kvm_x86_enable_irq_window)(vcpu); 10234 } 10235 10236 if (is_guest_mode(vcpu) && 10237 kvm_x86_ops.nested_ops->has_events && 10238 kvm_x86_ops.nested_ops->has_events(vcpu)) 10239 *req_immediate_exit = true; 10240 10241 /* 10242 * KVM must never queue a new exception while injecting an event; KVM 10243 * is done emulating and should only propagate the to-be-injected event 10244 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10245 * infinite loop as KVM will bail from VM-Enter to inject the pending 10246 * exception and start the cycle all over. 10247 * 10248 * Exempt triple faults as they have special handling and won't put the 10249 * vCPU into an infinite loop. Triple fault can be queued when running 10250 * VMX without unrestricted guest, as that requires KVM to emulate Real 10251 * Mode events (see kvm_inject_realmode_interrupt()). 10252 */ 10253 WARN_ON_ONCE(vcpu->arch.exception.pending || 10254 vcpu->arch.exception_vmexit.pending); 10255 return 0; 10256 10257 out: 10258 if (r == -EBUSY) { 10259 *req_immediate_exit = true; 10260 r = 0; 10261 } 10262 return r; 10263 } 10264 10265 static void process_nmi(struct kvm_vcpu *vcpu) 10266 { 10267 unsigned int limit; 10268 10269 /* 10270 * x86 is limited to one NMI pending, but because KVM can't react to 10271 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10272 * scheduled out, KVM needs to play nice with two queued NMIs showing 10273 * up at the same time. To handle this scenario, allow two NMIs to be 10274 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10275 * waiting for a previous NMI injection to complete (which effectively 10276 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10277 * will request an NMI window to handle the second NMI. 10278 */ 10279 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10280 limit = 1; 10281 else 10282 limit = 2; 10283 10284 /* 10285 * Adjust the limit to account for pending virtual NMIs, which aren't 10286 * tracked in vcpu->arch.nmi_pending. 10287 */ 10288 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10289 limit--; 10290 10291 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10292 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10293 10294 if (vcpu->arch.nmi_pending && 10295 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10296 vcpu->arch.nmi_pending--; 10297 10298 if (vcpu->arch.nmi_pending) 10299 kvm_make_request(KVM_REQ_EVENT, vcpu); 10300 } 10301 10302 /* Return total number of NMIs pending injection to the VM */ 10303 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10304 { 10305 return vcpu->arch.nmi_pending + 10306 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10307 } 10308 10309 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10310 unsigned long *vcpu_bitmap) 10311 { 10312 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10313 } 10314 10315 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10316 { 10317 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10318 } 10319 10320 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10321 { 10322 struct kvm_lapic *apic = vcpu->arch.apic; 10323 bool activate; 10324 10325 if (!lapic_in_kernel(vcpu)) 10326 return; 10327 10328 down_read(&vcpu->kvm->arch.apicv_update_lock); 10329 preempt_disable(); 10330 10331 /* Do not activate APICV when APIC is disabled */ 10332 activate = kvm_vcpu_apicv_activated(vcpu) && 10333 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10334 10335 if (apic->apicv_active == activate) 10336 goto out; 10337 10338 apic->apicv_active = activate; 10339 kvm_apic_update_apicv(vcpu); 10340 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10341 10342 /* 10343 * When APICv gets disabled, we may still have injected interrupts 10344 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10345 * still active when the interrupt got accepted. Make sure 10346 * kvm_check_and_inject_events() is called to check for that. 10347 */ 10348 if (!apic->apicv_active) 10349 kvm_make_request(KVM_REQ_EVENT, vcpu); 10350 10351 out: 10352 preempt_enable(); 10353 up_read(&vcpu->kvm->arch.apicv_update_lock); 10354 } 10355 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10356 10357 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10358 { 10359 if (!lapic_in_kernel(vcpu)) 10360 return; 10361 10362 /* 10363 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10364 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10365 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10366 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10367 * this case so that KVM can the AVIC doorbell to inject interrupts to 10368 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10369 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10370 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10371 * access page is sticky. 10372 */ 10373 if (apic_x2apic_mode(vcpu->arch.apic) && 10374 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10375 kvm_inhibit_apic_access_page(vcpu); 10376 10377 __kvm_vcpu_update_apicv(vcpu); 10378 } 10379 10380 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10381 enum kvm_apicv_inhibit reason, bool set) 10382 { 10383 unsigned long old, new; 10384 10385 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10386 10387 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10388 return; 10389 10390 old = new = kvm->arch.apicv_inhibit_reasons; 10391 10392 set_or_clear_apicv_inhibit(&new, reason, set); 10393 10394 if (!!old != !!new) { 10395 /* 10396 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10397 * false positives in the sanity check WARN in svm_vcpu_run(). 10398 * This task will wait for all vCPUs to ack the kick IRQ before 10399 * updating apicv_inhibit_reasons, and all other vCPUs will 10400 * block on acquiring apicv_update_lock so that vCPUs can't 10401 * redo svm_vcpu_run() without seeing the new inhibit state. 10402 * 10403 * Note, holding apicv_update_lock and taking it in the read 10404 * side (handling the request) also prevents other vCPUs from 10405 * servicing the request with a stale apicv_inhibit_reasons. 10406 */ 10407 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10408 kvm->arch.apicv_inhibit_reasons = new; 10409 if (new) { 10410 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10411 int idx = srcu_read_lock(&kvm->srcu); 10412 10413 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10414 srcu_read_unlock(&kvm->srcu, idx); 10415 } 10416 } else { 10417 kvm->arch.apicv_inhibit_reasons = new; 10418 } 10419 } 10420 10421 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10422 enum kvm_apicv_inhibit reason, bool set) 10423 { 10424 if (!enable_apicv) 10425 return; 10426 10427 down_write(&kvm->arch.apicv_update_lock); 10428 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10429 up_write(&kvm->arch.apicv_update_lock); 10430 } 10431 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10432 10433 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10434 { 10435 if (!kvm_apic_present(vcpu)) 10436 return; 10437 10438 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10439 10440 if (irqchip_split(vcpu->kvm)) 10441 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10442 else { 10443 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10444 if (ioapic_in_kernel(vcpu->kvm)) 10445 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10446 } 10447 10448 if (is_guest_mode(vcpu)) 10449 vcpu->arch.load_eoi_exitmap_pending = true; 10450 else 10451 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10452 } 10453 10454 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10455 { 10456 u64 eoi_exit_bitmap[4]; 10457 10458 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10459 return; 10460 10461 if (to_hv_vcpu(vcpu)) { 10462 bitmap_or((ulong *)eoi_exit_bitmap, 10463 vcpu->arch.ioapic_handled_vectors, 10464 to_hv_synic(vcpu)->vec_bitmap, 256); 10465 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10466 return; 10467 } 10468 10469 static_call_cond(kvm_x86_load_eoi_exitmap)( 10470 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10471 } 10472 10473 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10474 { 10475 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10476 } 10477 10478 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10479 { 10480 if (!lapic_in_kernel(vcpu)) 10481 return; 10482 10483 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10484 } 10485 10486 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10487 { 10488 smp_send_reschedule(vcpu->cpu); 10489 } 10490 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10491 10492 /* 10493 * Called within kvm->srcu read side. 10494 * Returns 1 to let vcpu_run() continue the guest execution loop without 10495 * exiting to the userspace. Otherwise, the value will be returned to the 10496 * userspace. 10497 */ 10498 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10499 { 10500 int r; 10501 bool req_int_win = 10502 dm_request_for_irq_injection(vcpu) && 10503 kvm_cpu_accept_dm_intr(vcpu); 10504 fastpath_t exit_fastpath; 10505 10506 bool req_immediate_exit = false; 10507 10508 if (kvm_request_pending(vcpu)) { 10509 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10510 r = -EIO; 10511 goto out; 10512 } 10513 10514 if (kvm_dirty_ring_check_request(vcpu)) { 10515 r = 0; 10516 goto out; 10517 } 10518 10519 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10520 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10521 r = 0; 10522 goto out; 10523 } 10524 } 10525 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10526 kvm_mmu_free_obsolete_roots(vcpu); 10527 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10528 __kvm_migrate_timers(vcpu); 10529 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10530 kvm_update_masterclock(vcpu->kvm); 10531 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10532 kvm_gen_kvmclock_update(vcpu); 10533 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10534 r = kvm_guest_time_update(vcpu); 10535 if (unlikely(r)) 10536 goto out; 10537 } 10538 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10539 kvm_mmu_sync_roots(vcpu); 10540 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10541 kvm_mmu_load_pgd(vcpu); 10542 10543 /* 10544 * Note, the order matters here, as flushing "all" TLB entries 10545 * also flushes the "current" TLB entries, i.e. servicing the 10546 * flush "all" will clear any request to flush "current". 10547 */ 10548 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10549 kvm_vcpu_flush_tlb_all(vcpu); 10550 10551 kvm_service_local_tlb_flush_requests(vcpu); 10552 10553 /* 10554 * Fall back to a "full" guest flush if Hyper-V's precise 10555 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10556 * the flushes are considered "remote" and not "local" because 10557 * the requests can be initiated from other vCPUs. 10558 */ 10559 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10560 kvm_hv_vcpu_flush_tlb(vcpu)) 10561 kvm_vcpu_flush_tlb_guest(vcpu); 10562 10563 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10564 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10565 r = 0; 10566 goto out; 10567 } 10568 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10569 if (is_guest_mode(vcpu)) 10570 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10571 10572 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10573 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10574 vcpu->mmio_needed = 0; 10575 r = 0; 10576 goto out; 10577 } 10578 } 10579 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10580 /* Page is swapped out. Do synthetic halt */ 10581 vcpu->arch.apf.halted = true; 10582 r = 1; 10583 goto out; 10584 } 10585 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10586 record_steal_time(vcpu); 10587 #ifdef CONFIG_KVM_SMM 10588 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10589 process_smi(vcpu); 10590 #endif 10591 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10592 process_nmi(vcpu); 10593 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10594 kvm_pmu_handle_event(vcpu); 10595 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10596 kvm_pmu_deliver_pmi(vcpu); 10597 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10598 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10599 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10600 vcpu->arch.ioapic_handled_vectors)) { 10601 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10602 vcpu->run->eoi.vector = 10603 vcpu->arch.pending_ioapic_eoi; 10604 r = 0; 10605 goto out; 10606 } 10607 } 10608 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10609 vcpu_scan_ioapic(vcpu); 10610 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10611 vcpu_load_eoi_exitmap(vcpu); 10612 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10613 kvm_vcpu_reload_apic_access_page(vcpu); 10614 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10615 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10616 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10617 vcpu->run->system_event.ndata = 0; 10618 r = 0; 10619 goto out; 10620 } 10621 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10622 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10623 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10624 vcpu->run->system_event.ndata = 0; 10625 r = 0; 10626 goto out; 10627 } 10628 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10629 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10630 10631 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10632 vcpu->run->hyperv = hv_vcpu->exit; 10633 r = 0; 10634 goto out; 10635 } 10636 10637 /* 10638 * KVM_REQ_HV_STIMER has to be processed after 10639 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10640 * depend on the guest clock being up-to-date 10641 */ 10642 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10643 kvm_hv_process_stimers(vcpu); 10644 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10645 kvm_vcpu_update_apicv(vcpu); 10646 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10647 kvm_check_async_pf_completion(vcpu); 10648 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10649 static_call(kvm_x86_msr_filter_changed)(vcpu); 10650 10651 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10652 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10653 } 10654 10655 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10656 kvm_xen_has_interrupt(vcpu)) { 10657 ++vcpu->stat.req_event; 10658 r = kvm_apic_accept_events(vcpu); 10659 if (r < 0) { 10660 r = 0; 10661 goto out; 10662 } 10663 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10664 r = 1; 10665 goto out; 10666 } 10667 10668 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10669 if (r < 0) { 10670 r = 0; 10671 goto out; 10672 } 10673 if (req_int_win) 10674 static_call(kvm_x86_enable_irq_window)(vcpu); 10675 10676 if (kvm_lapic_enabled(vcpu)) { 10677 update_cr8_intercept(vcpu); 10678 kvm_lapic_sync_to_vapic(vcpu); 10679 } 10680 } 10681 10682 r = kvm_mmu_reload(vcpu); 10683 if (unlikely(r)) { 10684 goto cancel_injection; 10685 } 10686 10687 preempt_disable(); 10688 10689 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10690 10691 /* 10692 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10693 * IPI are then delayed after guest entry, which ensures that they 10694 * result in virtual interrupt delivery. 10695 */ 10696 local_irq_disable(); 10697 10698 /* Store vcpu->apicv_active before vcpu->mode. */ 10699 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10700 10701 kvm_vcpu_srcu_read_unlock(vcpu); 10702 10703 /* 10704 * 1) We should set ->mode before checking ->requests. Please see 10705 * the comment in kvm_vcpu_exiting_guest_mode(). 10706 * 10707 * 2) For APICv, we should set ->mode before checking PID.ON. This 10708 * pairs with the memory barrier implicit in pi_test_and_set_on 10709 * (see vmx_deliver_posted_interrupt). 10710 * 10711 * 3) This also orders the write to mode from any reads to the page 10712 * tables done while the VCPU is running. Please see the comment 10713 * in kvm_flush_remote_tlbs. 10714 */ 10715 smp_mb__after_srcu_read_unlock(); 10716 10717 /* 10718 * Process pending posted interrupts to handle the case where the 10719 * notification IRQ arrived in the host, or was never sent (because the 10720 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10721 * status, KVM doesn't update assigned devices when APICv is inhibited, 10722 * i.e. they can post interrupts even if APICv is temporarily disabled. 10723 */ 10724 if (kvm_lapic_enabled(vcpu)) 10725 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10726 10727 if (kvm_vcpu_exit_request(vcpu)) { 10728 vcpu->mode = OUTSIDE_GUEST_MODE; 10729 smp_wmb(); 10730 local_irq_enable(); 10731 preempt_enable(); 10732 kvm_vcpu_srcu_read_lock(vcpu); 10733 r = 1; 10734 goto cancel_injection; 10735 } 10736 10737 if (req_immediate_exit) { 10738 kvm_make_request(KVM_REQ_EVENT, vcpu); 10739 static_call(kvm_x86_request_immediate_exit)(vcpu); 10740 } 10741 10742 fpregs_assert_state_consistent(); 10743 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10744 switch_fpu_return(); 10745 10746 if (vcpu->arch.guest_fpu.xfd_err) 10747 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10748 10749 if (unlikely(vcpu->arch.switch_db_regs)) { 10750 set_debugreg(0, 7); 10751 set_debugreg(vcpu->arch.eff_db[0], 0); 10752 set_debugreg(vcpu->arch.eff_db[1], 1); 10753 set_debugreg(vcpu->arch.eff_db[2], 2); 10754 set_debugreg(vcpu->arch.eff_db[3], 3); 10755 } else if (unlikely(hw_breakpoint_active())) { 10756 set_debugreg(0, 7); 10757 } 10758 10759 guest_timing_enter_irqoff(); 10760 10761 for (;;) { 10762 /* 10763 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10764 * update must kick and wait for all vCPUs before toggling the 10765 * per-VM state, and responsing vCPUs must wait for the update 10766 * to complete before servicing KVM_REQ_APICV_UPDATE. 10767 */ 10768 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10769 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10770 10771 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10772 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10773 break; 10774 10775 if (kvm_lapic_enabled(vcpu)) 10776 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10777 10778 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10779 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10780 break; 10781 } 10782 10783 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10784 ++vcpu->stat.exits; 10785 } 10786 10787 /* 10788 * Do this here before restoring debug registers on the host. And 10789 * since we do this before handling the vmexit, a DR access vmexit 10790 * can (a) read the correct value of the debug registers, (b) set 10791 * KVM_DEBUGREG_WONT_EXIT again. 10792 */ 10793 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10794 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10795 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10796 kvm_update_dr0123(vcpu); 10797 kvm_update_dr7(vcpu); 10798 } 10799 10800 /* 10801 * If the guest has used debug registers, at least dr7 10802 * will be disabled while returning to the host. 10803 * If we don't have active breakpoints in the host, we don't 10804 * care about the messed up debug address registers. But if 10805 * we have some of them active, restore the old state. 10806 */ 10807 if (hw_breakpoint_active()) 10808 hw_breakpoint_restore(); 10809 10810 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10811 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10812 10813 vcpu->mode = OUTSIDE_GUEST_MODE; 10814 smp_wmb(); 10815 10816 /* 10817 * Sync xfd before calling handle_exit_irqoff() which may 10818 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10819 * in #NM irqoff handler). 10820 */ 10821 if (vcpu->arch.xfd_no_write_intercept) 10822 fpu_sync_guest_vmexit_xfd_state(); 10823 10824 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10825 10826 if (vcpu->arch.guest_fpu.xfd_err) 10827 wrmsrl(MSR_IA32_XFD_ERR, 0); 10828 10829 /* 10830 * Consume any pending interrupts, including the possible source of 10831 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10832 * An instruction is required after local_irq_enable() to fully unblock 10833 * interrupts on processors that implement an interrupt shadow, the 10834 * stat.exits increment will do nicely. 10835 */ 10836 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10837 local_irq_enable(); 10838 ++vcpu->stat.exits; 10839 local_irq_disable(); 10840 kvm_after_interrupt(vcpu); 10841 10842 /* 10843 * Wait until after servicing IRQs to account guest time so that any 10844 * ticks that occurred while running the guest are properly accounted 10845 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10846 * of accounting via context tracking, but the loss of accuracy is 10847 * acceptable for all known use cases. 10848 */ 10849 guest_timing_exit_irqoff(); 10850 10851 local_irq_enable(); 10852 preempt_enable(); 10853 10854 kvm_vcpu_srcu_read_lock(vcpu); 10855 10856 /* 10857 * Profile KVM exit RIPs: 10858 */ 10859 if (unlikely(prof_on == KVM_PROFILING)) { 10860 unsigned long rip = kvm_rip_read(vcpu); 10861 profile_hit(KVM_PROFILING, (void *)rip); 10862 } 10863 10864 if (unlikely(vcpu->arch.tsc_always_catchup)) 10865 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10866 10867 if (vcpu->arch.apic_attention) 10868 kvm_lapic_sync_from_vapic(vcpu); 10869 10870 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10871 return r; 10872 10873 cancel_injection: 10874 if (req_immediate_exit) 10875 kvm_make_request(KVM_REQ_EVENT, vcpu); 10876 static_call(kvm_x86_cancel_injection)(vcpu); 10877 if (unlikely(vcpu->arch.apic_attention)) 10878 kvm_lapic_sync_from_vapic(vcpu); 10879 out: 10880 return r; 10881 } 10882 10883 /* Called within kvm->srcu read side. */ 10884 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10885 { 10886 bool hv_timer; 10887 10888 if (!kvm_arch_vcpu_runnable(vcpu)) { 10889 /* 10890 * Switch to the software timer before halt-polling/blocking as 10891 * the guest's timer may be a break event for the vCPU, and the 10892 * hypervisor timer runs only when the CPU is in guest mode. 10893 * Switch before halt-polling so that KVM recognizes an expired 10894 * timer before blocking. 10895 */ 10896 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10897 if (hv_timer) 10898 kvm_lapic_switch_to_sw_timer(vcpu); 10899 10900 kvm_vcpu_srcu_read_unlock(vcpu); 10901 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10902 kvm_vcpu_halt(vcpu); 10903 else 10904 kvm_vcpu_block(vcpu); 10905 kvm_vcpu_srcu_read_lock(vcpu); 10906 10907 if (hv_timer) 10908 kvm_lapic_switch_to_hv_timer(vcpu); 10909 10910 /* 10911 * If the vCPU is not runnable, a signal or another host event 10912 * of some kind is pending; service it without changing the 10913 * vCPU's activity state. 10914 */ 10915 if (!kvm_arch_vcpu_runnable(vcpu)) 10916 return 1; 10917 } 10918 10919 /* 10920 * Evaluate nested events before exiting the halted state. This allows 10921 * the halt state to be recorded properly in the VMCS12's activity 10922 * state field (AMD does not have a similar field and a VM-Exit always 10923 * causes a spurious wakeup from HLT). 10924 */ 10925 if (is_guest_mode(vcpu)) { 10926 if (kvm_check_nested_events(vcpu) < 0) 10927 return 0; 10928 } 10929 10930 if (kvm_apic_accept_events(vcpu) < 0) 10931 return 0; 10932 switch(vcpu->arch.mp_state) { 10933 case KVM_MP_STATE_HALTED: 10934 case KVM_MP_STATE_AP_RESET_HOLD: 10935 vcpu->arch.pv.pv_unhalted = false; 10936 vcpu->arch.mp_state = 10937 KVM_MP_STATE_RUNNABLE; 10938 fallthrough; 10939 case KVM_MP_STATE_RUNNABLE: 10940 vcpu->arch.apf.halted = false; 10941 break; 10942 case KVM_MP_STATE_INIT_RECEIVED: 10943 break; 10944 default: 10945 WARN_ON_ONCE(1); 10946 break; 10947 } 10948 return 1; 10949 } 10950 10951 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10952 { 10953 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10954 !vcpu->arch.apf.halted); 10955 } 10956 10957 /* Called within kvm->srcu read side. */ 10958 static int vcpu_run(struct kvm_vcpu *vcpu) 10959 { 10960 int r; 10961 10962 vcpu->arch.l1tf_flush_l1d = true; 10963 10964 for (;;) { 10965 /* 10966 * If another guest vCPU requests a PV TLB flush in the middle 10967 * of instruction emulation, the rest of the emulation could 10968 * use a stale page translation. Assume that any code after 10969 * this point can start executing an instruction. 10970 */ 10971 vcpu->arch.at_instruction_boundary = false; 10972 if (kvm_vcpu_running(vcpu)) { 10973 r = vcpu_enter_guest(vcpu); 10974 } else { 10975 r = vcpu_block(vcpu); 10976 } 10977 10978 if (r <= 0) 10979 break; 10980 10981 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10982 if (kvm_xen_has_pending_events(vcpu)) 10983 kvm_xen_inject_pending_events(vcpu); 10984 10985 if (kvm_cpu_has_pending_timer(vcpu)) 10986 kvm_inject_pending_timer_irqs(vcpu); 10987 10988 if (dm_request_for_irq_injection(vcpu) && 10989 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10990 r = 0; 10991 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10992 ++vcpu->stat.request_irq_exits; 10993 break; 10994 } 10995 10996 if (__xfer_to_guest_mode_work_pending()) { 10997 kvm_vcpu_srcu_read_unlock(vcpu); 10998 r = xfer_to_guest_mode_handle_work(vcpu); 10999 kvm_vcpu_srcu_read_lock(vcpu); 11000 if (r) 11001 return r; 11002 } 11003 } 11004 11005 return r; 11006 } 11007 11008 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11009 { 11010 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11011 } 11012 11013 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11014 { 11015 BUG_ON(!vcpu->arch.pio.count); 11016 11017 return complete_emulated_io(vcpu); 11018 } 11019 11020 /* 11021 * Implements the following, as a state machine: 11022 * 11023 * read: 11024 * for each fragment 11025 * for each mmio piece in the fragment 11026 * write gpa, len 11027 * exit 11028 * copy data 11029 * execute insn 11030 * 11031 * write: 11032 * for each fragment 11033 * for each mmio piece in the fragment 11034 * write gpa, len 11035 * copy data 11036 * exit 11037 */ 11038 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11039 { 11040 struct kvm_run *run = vcpu->run; 11041 struct kvm_mmio_fragment *frag; 11042 unsigned len; 11043 11044 BUG_ON(!vcpu->mmio_needed); 11045 11046 /* Complete previous fragment */ 11047 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11048 len = min(8u, frag->len); 11049 if (!vcpu->mmio_is_write) 11050 memcpy(frag->data, run->mmio.data, len); 11051 11052 if (frag->len <= 8) { 11053 /* Switch to the next fragment. */ 11054 frag++; 11055 vcpu->mmio_cur_fragment++; 11056 } else { 11057 /* Go forward to the next mmio piece. */ 11058 frag->data += len; 11059 frag->gpa += len; 11060 frag->len -= len; 11061 } 11062 11063 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11064 vcpu->mmio_needed = 0; 11065 11066 /* FIXME: return into emulator if single-stepping. */ 11067 if (vcpu->mmio_is_write) 11068 return 1; 11069 vcpu->mmio_read_completed = 1; 11070 return complete_emulated_io(vcpu); 11071 } 11072 11073 run->exit_reason = KVM_EXIT_MMIO; 11074 run->mmio.phys_addr = frag->gpa; 11075 if (vcpu->mmio_is_write) 11076 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11077 run->mmio.len = min(8u, frag->len); 11078 run->mmio.is_write = vcpu->mmio_is_write; 11079 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11080 return 0; 11081 } 11082 11083 /* Swap (qemu) user FPU context for the guest FPU context. */ 11084 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11085 { 11086 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11087 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11088 trace_kvm_fpu(1); 11089 } 11090 11091 /* When vcpu_run ends, restore user space FPU context. */ 11092 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11093 { 11094 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11095 ++vcpu->stat.fpu_reload; 11096 trace_kvm_fpu(0); 11097 } 11098 11099 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11100 { 11101 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11102 struct kvm_run *kvm_run = vcpu->run; 11103 int r; 11104 11105 vcpu_load(vcpu); 11106 kvm_sigset_activate(vcpu); 11107 kvm_run->flags = 0; 11108 kvm_load_guest_fpu(vcpu); 11109 11110 kvm_vcpu_srcu_read_lock(vcpu); 11111 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11112 if (kvm_run->immediate_exit) { 11113 r = -EINTR; 11114 goto out; 11115 } 11116 /* 11117 * It should be impossible for the hypervisor timer to be in 11118 * use before KVM has ever run the vCPU. 11119 */ 11120 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11121 11122 kvm_vcpu_srcu_read_unlock(vcpu); 11123 kvm_vcpu_block(vcpu); 11124 kvm_vcpu_srcu_read_lock(vcpu); 11125 11126 if (kvm_apic_accept_events(vcpu) < 0) { 11127 r = 0; 11128 goto out; 11129 } 11130 r = -EAGAIN; 11131 if (signal_pending(current)) { 11132 r = -EINTR; 11133 kvm_run->exit_reason = KVM_EXIT_INTR; 11134 ++vcpu->stat.signal_exits; 11135 } 11136 goto out; 11137 } 11138 11139 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11140 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11141 r = -EINVAL; 11142 goto out; 11143 } 11144 11145 if (kvm_run->kvm_dirty_regs) { 11146 r = sync_regs(vcpu); 11147 if (r != 0) 11148 goto out; 11149 } 11150 11151 /* re-sync apic's tpr */ 11152 if (!lapic_in_kernel(vcpu)) { 11153 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11154 r = -EINVAL; 11155 goto out; 11156 } 11157 } 11158 11159 /* 11160 * If userspace set a pending exception and L2 is active, convert it to 11161 * a pending VM-Exit if L1 wants to intercept the exception. 11162 */ 11163 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11164 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11165 ex->error_code)) { 11166 kvm_queue_exception_vmexit(vcpu, ex->vector, 11167 ex->has_error_code, ex->error_code, 11168 ex->has_payload, ex->payload); 11169 ex->injected = false; 11170 ex->pending = false; 11171 } 11172 vcpu->arch.exception_from_userspace = false; 11173 11174 if (unlikely(vcpu->arch.complete_userspace_io)) { 11175 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11176 vcpu->arch.complete_userspace_io = NULL; 11177 r = cui(vcpu); 11178 if (r <= 0) 11179 goto out; 11180 } else { 11181 WARN_ON_ONCE(vcpu->arch.pio.count); 11182 WARN_ON_ONCE(vcpu->mmio_needed); 11183 } 11184 11185 if (kvm_run->immediate_exit) { 11186 r = -EINTR; 11187 goto out; 11188 } 11189 11190 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11191 if (r <= 0) 11192 goto out; 11193 11194 r = vcpu_run(vcpu); 11195 11196 out: 11197 kvm_put_guest_fpu(vcpu); 11198 if (kvm_run->kvm_valid_regs) 11199 store_regs(vcpu); 11200 post_kvm_run_save(vcpu); 11201 kvm_vcpu_srcu_read_unlock(vcpu); 11202 11203 kvm_sigset_deactivate(vcpu); 11204 vcpu_put(vcpu); 11205 return r; 11206 } 11207 11208 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11209 { 11210 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11211 /* 11212 * We are here if userspace calls get_regs() in the middle of 11213 * instruction emulation. Registers state needs to be copied 11214 * back from emulation context to vcpu. Userspace shouldn't do 11215 * that usually, but some bad designed PV devices (vmware 11216 * backdoor interface) need this to work 11217 */ 11218 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11219 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11220 } 11221 regs->rax = kvm_rax_read(vcpu); 11222 regs->rbx = kvm_rbx_read(vcpu); 11223 regs->rcx = kvm_rcx_read(vcpu); 11224 regs->rdx = kvm_rdx_read(vcpu); 11225 regs->rsi = kvm_rsi_read(vcpu); 11226 regs->rdi = kvm_rdi_read(vcpu); 11227 regs->rsp = kvm_rsp_read(vcpu); 11228 regs->rbp = kvm_rbp_read(vcpu); 11229 #ifdef CONFIG_X86_64 11230 regs->r8 = kvm_r8_read(vcpu); 11231 regs->r9 = kvm_r9_read(vcpu); 11232 regs->r10 = kvm_r10_read(vcpu); 11233 regs->r11 = kvm_r11_read(vcpu); 11234 regs->r12 = kvm_r12_read(vcpu); 11235 regs->r13 = kvm_r13_read(vcpu); 11236 regs->r14 = kvm_r14_read(vcpu); 11237 regs->r15 = kvm_r15_read(vcpu); 11238 #endif 11239 11240 regs->rip = kvm_rip_read(vcpu); 11241 regs->rflags = kvm_get_rflags(vcpu); 11242 } 11243 11244 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11245 { 11246 vcpu_load(vcpu); 11247 __get_regs(vcpu, regs); 11248 vcpu_put(vcpu); 11249 return 0; 11250 } 11251 11252 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11253 { 11254 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11255 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11256 11257 kvm_rax_write(vcpu, regs->rax); 11258 kvm_rbx_write(vcpu, regs->rbx); 11259 kvm_rcx_write(vcpu, regs->rcx); 11260 kvm_rdx_write(vcpu, regs->rdx); 11261 kvm_rsi_write(vcpu, regs->rsi); 11262 kvm_rdi_write(vcpu, regs->rdi); 11263 kvm_rsp_write(vcpu, regs->rsp); 11264 kvm_rbp_write(vcpu, regs->rbp); 11265 #ifdef CONFIG_X86_64 11266 kvm_r8_write(vcpu, regs->r8); 11267 kvm_r9_write(vcpu, regs->r9); 11268 kvm_r10_write(vcpu, regs->r10); 11269 kvm_r11_write(vcpu, regs->r11); 11270 kvm_r12_write(vcpu, regs->r12); 11271 kvm_r13_write(vcpu, regs->r13); 11272 kvm_r14_write(vcpu, regs->r14); 11273 kvm_r15_write(vcpu, regs->r15); 11274 #endif 11275 11276 kvm_rip_write(vcpu, regs->rip); 11277 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11278 11279 vcpu->arch.exception.pending = false; 11280 vcpu->arch.exception_vmexit.pending = false; 11281 11282 kvm_make_request(KVM_REQ_EVENT, vcpu); 11283 } 11284 11285 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11286 { 11287 vcpu_load(vcpu); 11288 __set_regs(vcpu, regs); 11289 vcpu_put(vcpu); 11290 return 0; 11291 } 11292 11293 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11294 { 11295 struct desc_ptr dt; 11296 11297 if (vcpu->arch.guest_state_protected) 11298 goto skip_protected_regs; 11299 11300 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11301 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11302 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11303 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11304 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11305 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11306 11307 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11308 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11309 11310 static_call(kvm_x86_get_idt)(vcpu, &dt); 11311 sregs->idt.limit = dt.size; 11312 sregs->idt.base = dt.address; 11313 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11314 sregs->gdt.limit = dt.size; 11315 sregs->gdt.base = dt.address; 11316 11317 sregs->cr2 = vcpu->arch.cr2; 11318 sregs->cr3 = kvm_read_cr3(vcpu); 11319 11320 skip_protected_regs: 11321 sregs->cr0 = kvm_read_cr0(vcpu); 11322 sregs->cr4 = kvm_read_cr4(vcpu); 11323 sregs->cr8 = kvm_get_cr8(vcpu); 11324 sregs->efer = vcpu->arch.efer; 11325 sregs->apic_base = kvm_get_apic_base(vcpu); 11326 } 11327 11328 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11329 { 11330 __get_sregs_common(vcpu, sregs); 11331 11332 if (vcpu->arch.guest_state_protected) 11333 return; 11334 11335 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11336 set_bit(vcpu->arch.interrupt.nr, 11337 (unsigned long *)sregs->interrupt_bitmap); 11338 } 11339 11340 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11341 { 11342 int i; 11343 11344 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11345 11346 if (vcpu->arch.guest_state_protected) 11347 return; 11348 11349 if (is_pae_paging(vcpu)) { 11350 for (i = 0 ; i < 4 ; i++) 11351 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11352 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11353 } 11354 } 11355 11356 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11357 struct kvm_sregs *sregs) 11358 { 11359 vcpu_load(vcpu); 11360 __get_sregs(vcpu, sregs); 11361 vcpu_put(vcpu); 11362 return 0; 11363 } 11364 11365 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11366 struct kvm_mp_state *mp_state) 11367 { 11368 int r; 11369 11370 vcpu_load(vcpu); 11371 if (kvm_mpx_supported()) 11372 kvm_load_guest_fpu(vcpu); 11373 11374 r = kvm_apic_accept_events(vcpu); 11375 if (r < 0) 11376 goto out; 11377 r = 0; 11378 11379 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11380 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11381 vcpu->arch.pv.pv_unhalted) 11382 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11383 else 11384 mp_state->mp_state = vcpu->arch.mp_state; 11385 11386 out: 11387 if (kvm_mpx_supported()) 11388 kvm_put_guest_fpu(vcpu); 11389 vcpu_put(vcpu); 11390 return r; 11391 } 11392 11393 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11394 struct kvm_mp_state *mp_state) 11395 { 11396 int ret = -EINVAL; 11397 11398 vcpu_load(vcpu); 11399 11400 switch (mp_state->mp_state) { 11401 case KVM_MP_STATE_UNINITIALIZED: 11402 case KVM_MP_STATE_HALTED: 11403 case KVM_MP_STATE_AP_RESET_HOLD: 11404 case KVM_MP_STATE_INIT_RECEIVED: 11405 case KVM_MP_STATE_SIPI_RECEIVED: 11406 if (!lapic_in_kernel(vcpu)) 11407 goto out; 11408 break; 11409 11410 case KVM_MP_STATE_RUNNABLE: 11411 break; 11412 11413 default: 11414 goto out; 11415 } 11416 11417 /* 11418 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11419 * forcing the guest into INIT/SIPI if those events are supposed to be 11420 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11421 * if an SMI is pending as well. 11422 */ 11423 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11424 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11425 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11426 goto out; 11427 11428 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11429 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11430 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11431 } else 11432 vcpu->arch.mp_state = mp_state->mp_state; 11433 kvm_make_request(KVM_REQ_EVENT, vcpu); 11434 11435 ret = 0; 11436 out: 11437 vcpu_put(vcpu); 11438 return ret; 11439 } 11440 11441 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11442 int reason, bool has_error_code, u32 error_code) 11443 { 11444 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11445 int ret; 11446 11447 init_emulate_ctxt(vcpu); 11448 11449 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11450 has_error_code, error_code); 11451 if (ret) { 11452 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11453 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11454 vcpu->run->internal.ndata = 0; 11455 return 0; 11456 } 11457 11458 kvm_rip_write(vcpu, ctxt->eip); 11459 kvm_set_rflags(vcpu, ctxt->eflags); 11460 return 1; 11461 } 11462 EXPORT_SYMBOL_GPL(kvm_task_switch); 11463 11464 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11465 { 11466 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11467 /* 11468 * When EFER.LME and CR0.PG are set, the processor is in 11469 * 64-bit mode (though maybe in a 32-bit code segment). 11470 * CR4.PAE and EFER.LMA must be set. 11471 */ 11472 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11473 return false; 11474 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11475 return false; 11476 } else { 11477 /* 11478 * Not in 64-bit mode: EFER.LMA is clear and the code 11479 * segment cannot be 64-bit. 11480 */ 11481 if (sregs->efer & EFER_LMA || sregs->cs.l) 11482 return false; 11483 } 11484 11485 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11486 kvm_is_valid_cr0(vcpu, sregs->cr0); 11487 } 11488 11489 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11490 int *mmu_reset_needed, bool update_pdptrs) 11491 { 11492 struct msr_data apic_base_msr; 11493 int idx; 11494 struct desc_ptr dt; 11495 11496 if (!kvm_is_valid_sregs(vcpu, sregs)) 11497 return -EINVAL; 11498 11499 apic_base_msr.data = sregs->apic_base; 11500 apic_base_msr.host_initiated = true; 11501 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11502 return -EINVAL; 11503 11504 if (vcpu->arch.guest_state_protected) 11505 return 0; 11506 11507 dt.size = sregs->idt.limit; 11508 dt.address = sregs->idt.base; 11509 static_call(kvm_x86_set_idt)(vcpu, &dt); 11510 dt.size = sregs->gdt.limit; 11511 dt.address = sregs->gdt.base; 11512 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11513 11514 vcpu->arch.cr2 = sregs->cr2; 11515 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11516 vcpu->arch.cr3 = sregs->cr3; 11517 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11518 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11519 11520 kvm_set_cr8(vcpu, sregs->cr8); 11521 11522 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11523 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11524 11525 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11526 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11527 vcpu->arch.cr0 = sregs->cr0; 11528 11529 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11530 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11531 11532 if (update_pdptrs) { 11533 idx = srcu_read_lock(&vcpu->kvm->srcu); 11534 if (is_pae_paging(vcpu)) { 11535 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11536 *mmu_reset_needed = 1; 11537 } 11538 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11539 } 11540 11541 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11542 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11543 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11544 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11545 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11546 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11547 11548 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11549 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11550 11551 update_cr8_intercept(vcpu); 11552 11553 /* Older userspace won't unhalt the vcpu on reset. */ 11554 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11555 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11556 !is_protmode(vcpu)) 11557 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11558 11559 return 0; 11560 } 11561 11562 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11563 { 11564 int pending_vec, max_bits; 11565 int mmu_reset_needed = 0; 11566 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11567 11568 if (ret) 11569 return ret; 11570 11571 if (mmu_reset_needed) 11572 kvm_mmu_reset_context(vcpu); 11573 11574 max_bits = KVM_NR_INTERRUPTS; 11575 pending_vec = find_first_bit( 11576 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11577 11578 if (pending_vec < max_bits) { 11579 kvm_queue_interrupt(vcpu, pending_vec, false); 11580 pr_debug("Set back pending irq %d\n", pending_vec); 11581 kvm_make_request(KVM_REQ_EVENT, vcpu); 11582 } 11583 return 0; 11584 } 11585 11586 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11587 { 11588 int mmu_reset_needed = 0; 11589 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11590 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11591 !(sregs2->efer & EFER_LMA); 11592 int i, ret; 11593 11594 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11595 return -EINVAL; 11596 11597 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11598 return -EINVAL; 11599 11600 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11601 &mmu_reset_needed, !valid_pdptrs); 11602 if (ret) 11603 return ret; 11604 11605 if (valid_pdptrs) { 11606 for (i = 0; i < 4 ; i++) 11607 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11608 11609 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11610 mmu_reset_needed = 1; 11611 vcpu->arch.pdptrs_from_userspace = true; 11612 } 11613 if (mmu_reset_needed) 11614 kvm_mmu_reset_context(vcpu); 11615 return 0; 11616 } 11617 11618 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11619 struct kvm_sregs *sregs) 11620 { 11621 int ret; 11622 11623 vcpu_load(vcpu); 11624 ret = __set_sregs(vcpu, sregs); 11625 vcpu_put(vcpu); 11626 return ret; 11627 } 11628 11629 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11630 { 11631 bool set = false; 11632 struct kvm_vcpu *vcpu; 11633 unsigned long i; 11634 11635 if (!enable_apicv) 11636 return; 11637 11638 down_write(&kvm->arch.apicv_update_lock); 11639 11640 kvm_for_each_vcpu(i, vcpu, kvm) { 11641 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11642 set = true; 11643 break; 11644 } 11645 } 11646 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11647 up_write(&kvm->arch.apicv_update_lock); 11648 } 11649 11650 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11651 struct kvm_guest_debug *dbg) 11652 { 11653 unsigned long rflags; 11654 int i, r; 11655 11656 if (vcpu->arch.guest_state_protected) 11657 return -EINVAL; 11658 11659 vcpu_load(vcpu); 11660 11661 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11662 r = -EBUSY; 11663 if (kvm_is_exception_pending(vcpu)) 11664 goto out; 11665 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11666 kvm_queue_exception(vcpu, DB_VECTOR); 11667 else 11668 kvm_queue_exception(vcpu, BP_VECTOR); 11669 } 11670 11671 /* 11672 * Read rflags as long as potentially injected trace flags are still 11673 * filtered out. 11674 */ 11675 rflags = kvm_get_rflags(vcpu); 11676 11677 vcpu->guest_debug = dbg->control; 11678 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11679 vcpu->guest_debug = 0; 11680 11681 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11682 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11683 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11684 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11685 } else { 11686 for (i = 0; i < KVM_NR_DB_REGS; i++) 11687 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11688 } 11689 kvm_update_dr7(vcpu); 11690 11691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11692 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11693 11694 /* 11695 * Trigger an rflags update that will inject or remove the trace 11696 * flags. 11697 */ 11698 kvm_set_rflags(vcpu, rflags); 11699 11700 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11701 11702 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11703 11704 r = 0; 11705 11706 out: 11707 vcpu_put(vcpu); 11708 return r; 11709 } 11710 11711 /* 11712 * Translate a guest virtual address to a guest physical address. 11713 */ 11714 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11715 struct kvm_translation *tr) 11716 { 11717 unsigned long vaddr = tr->linear_address; 11718 gpa_t gpa; 11719 int idx; 11720 11721 vcpu_load(vcpu); 11722 11723 idx = srcu_read_lock(&vcpu->kvm->srcu); 11724 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11725 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11726 tr->physical_address = gpa; 11727 tr->valid = gpa != INVALID_GPA; 11728 tr->writeable = 1; 11729 tr->usermode = 0; 11730 11731 vcpu_put(vcpu); 11732 return 0; 11733 } 11734 11735 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11736 { 11737 struct fxregs_state *fxsave; 11738 11739 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11740 return 0; 11741 11742 vcpu_load(vcpu); 11743 11744 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11745 memcpy(fpu->fpr, fxsave->st_space, 128); 11746 fpu->fcw = fxsave->cwd; 11747 fpu->fsw = fxsave->swd; 11748 fpu->ftwx = fxsave->twd; 11749 fpu->last_opcode = fxsave->fop; 11750 fpu->last_ip = fxsave->rip; 11751 fpu->last_dp = fxsave->rdp; 11752 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11753 11754 vcpu_put(vcpu); 11755 return 0; 11756 } 11757 11758 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11759 { 11760 struct fxregs_state *fxsave; 11761 11762 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11763 return 0; 11764 11765 vcpu_load(vcpu); 11766 11767 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11768 11769 memcpy(fxsave->st_space, fpu->fpr, 128); 11770 fxsave->cwd = fpu->fcw; 11771 fxsave->swd = fpu->fsw; 11772 fxsave->twd = fpu->ftwx; 11773 fxsave->fop = fpu->last_opcode; 11774 fxsave->rip = fpu->last_ip; 11775 fxsave->rdp = fpu->last_dp; 11776 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11777 11778 vcpu_put(vcpu); 11779 return 0; 11780 } 11781 11782 static void store_regs(struct kvm_vcpu *vcpu) 11783 { 11784 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11785 11786 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11787 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11788 11789 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11790 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11791 11792 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11793 kvm_vcpu_ioctl_x86_get_vcpu_events( 11794 vcpu, &vcpu->run->s.regs.events); 11795 } 11796 11797 static int sync_regs(struct kvm_vcpu *vcpu) 11798 { 11799 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11800 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11801 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11802 } 11803 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11804 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11805 return -EINVAL; 11806 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11807 } 11808 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11809 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11810 vcpu, &vcpu->run->s.regs.events)) 11811 return -EINVAL; 11812 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11813 } 11814 11815 return 0; 11816 } 11817 11818 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11819 { 11820 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11821 pr_warn_once("SMP vm created on host with unstable TSC; " 11822 "guest TSC will not be reliable\n"); 11823 11824 if (!kvm->arch.max_vcpu_ids) 11825 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11826 11827 if (id >= kvm->arch.max_vcpu_ids) 11828 return -EINVAL; 11829 11830 return static_call(kvm_x86_vcpu_precreate)(kvm); 11831 } 11832 11833 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11834 { 11835 struct page *page; 11836 int r; 11837 11838 vcpu->arch.last_vmentry_cpu = -1; 11839 vcpu->arch.regs_avail = ~0; 11840 vcpu->arch.regs_dirty = ~0; 11841 11842 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11843 11844 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11845 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11846 else 11847 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11848 11849 r = kvm_mmu_create(vcpu); 11850 if (r < 0) 11851 return r; 11852 11853 if (irqchip_in_kernel(vcpu->kvm)) { 11854 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11855 if (r < 0) 11856 goto fail_mmu_destroy; 11857 11858 /* 11859 * Defer evaluating inhibits until the vCPU is first run, as 11860 * this vCPU will not get notified of any changes until this 11861 * vCPU is visible to other vCPUs (marked online and added to 11862 * the set of vCPUs). Opportunistically mark APICv active as 11863 * VMX in particularly is highly unlikely to have inhibits. 11864 * Ignore the current per-VM APICv state so that vCPU creation 11865 * is guaranteed to run with a deterministic value, the request 11866 * will ensure the vCPU gets the correct state before VM-Entry. 11867 */ 11868 if (enable_apicv) { 11869 vcpu->arch.apic->apicv_active = true; 11870 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11871 } 11872 } else 11873 static_branch_inc(&kvm_has_noapic_vcpu); 11874 11875 r = -ENOMEM; 11876 11877 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11878 if (!page) 11879 goto fail_free_lapic; 11880 vcpu->arch.pio_data = page_address(page); 11881 11882 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11883 GFP_KERNEL_ACCOUNT); 11884 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11885 GFP_KERNEL_ACCOUNT); 11886 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11887 goto fail_free_mce_banks; 11888 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11889 11890 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11891 GFP_KERNEL_ACCOUNT)) 11892 goto fail_free_mce_banks; 11893 11894 if (!alloc_emulate_ctxt(vcpu)) 11895 goto free_wbinvd_dirty_mask; 11896 11897 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11898 pr_err("failed to allocate vcpu's fpu\n"); 11899 goto free_emulate_ctxt; 11900 } 11901 11902 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11903 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11904 11905 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11906 11907 kvm_async_pf_hash_reset(vcpu); 11908 11909 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11910 kvm_pmu_init(vcpu); 11911 11912 vcpu->arch.pending_external_vector = -1; 11913 vcpu->arch.preempted_in_kernel = false; 11914 11915 #if IS_ENABLED(CONFIG_HYPERV) 11916 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11917 #endif 11918 11919 r = static_call(kvm_x86_vcpu_create)(vcpu); 11920 if (r) 11921 goto free_guest_fpu; 11922 11923 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11924 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11925 kvm_xen_init_vcpu(vcpu); 11926 kvm_vcpu_mtrr_init(vcpu); 11927 vcpu_load(vcpu); 11928 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11929 kvm_vcpu_reset(vcpu, false); 11930 kvm_init_mmu(vcpu); 11931 vcpu_put(vcpu); 11932 return 0; 11933 11934 free_guest_fpu: 11935 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11936 free_emulate_ctxt: 11937 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11938 free_wbinvd_dirty_mask: 11939 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11940 fail_free_mce_banks: 11941 kfree(vcpu->arch.mce_banks); 11942 kfree(vcpu->arch.mci_ctl2_banks); 11943 free_page((unsigned long)vcpu->arch.pio_data); 11944 fail_free_lapic: 11945 kvm_free_lapic(vcpu); 11946 fail_mmu_destroy: 11947 kvm_mmu_destroy(vcpu); 11948 return r; 11949 } 11950 11951 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11952 { 11953 struct kvm *kvm = vcpu->kvm; 11954 11955 if (mutex_lock_killable(&vcpu->mutex)) 11956 return; 11957 vcpu_load(vcpu); 11958 kvm_synchronize_tsc(vcpu, 0); 11959 vcpu_put(vcpu); 11960 11961 /* poll control enabled by default */ 11962 vcpu->arch.msr_kvm_poll_control = 1; 11963 11964 mutex_unlock(&vcpu->mutex); 11965 11966 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11967 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11968 KVMCLOCK_SYNC_PERIOD); 11969 } 11970 11971 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11972 { 11973 int idx; 11974 11975 kvmclock_reset(vcpu); 11976 11977 static_call(kvm_x86_vcpu_free)(vcpu); 11978 11979 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11980 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11981 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11982 11983 kvm_xen_destroy_vcpu(vcpu); 11984 kvm_hv_vcpu_uninit(vcpu); 11985 kvm_pmu_destroy(vcpu); 11986 kfree(vcpu->arch.mce_banks); 11987 kfree(vcpu->arch.mci_ctl2_banks); 11988 kvm_free_lapic(vcpu); 11989 idx = srcu_read_lock(&vcpu->kvm->srcu); 11990 kvm_mmu_destroy(vcpu); 11991 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11992 free_page((unsigned long)vcpu->arch.pio_data); 11993 kvfree(vcpu->arch.cpuid_entries); 11994 if (!lapic_in_kernel(vcpu)) 11995 static_branch_dec(&kvm_has_noapic_vcpu); 11996 } 11997 11998 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11999 { 12000 struct kvm_cpuid_entry2 *cpuid_0x1; 12001 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12002 unsigned long new_cr0; 12003 12004 /* 12005 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12006 * to handle side effects. RESET emulation hits those flows and relies 12007 * on emulated/virtualized registers, including those that are loaded 12008 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12009 * to detect improper or missing initialization. 12010 */ 12011 WARN_ON_ONCE(!init_event && 12012 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12013 12014 /* 12015 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12016 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12017 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12018 * bits), i.e. virtualization is disabled. 12019 */ 12020 if (is_guest_mode(vcpu)) 12021 kvm_leave_nested(vcpu); 12022 12023 kvm_lapic_reset(vcpu, init_event); 12024 12025 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12026 vcpu->arch.hflags = 0; 12027 12028 vcpu->arch.smi_pending = 0; 12029 vcpu->arch.smi_count = 0; 12030 atomic_set(&vcpu->arch.nmi_queued, 0); 12031 vcpu->arch.nmi_pending = 0; 12032 vcpu->arch.nmi_injected = false; 12033 kvm_clear_interrupt_queue(vcpu); 12034 kvm_clear_exception_queue(vcpu); 12035 12036 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12037 kvm_update_dr0123(vcpu); 12038 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12039 vcpu->arch.dr7 = DR7_FIXED_1; 12040 kvm_update_dr7(vcpu); 12041 12042 vcpu->arch.cr2 = 0; 12043 12044 kvm_make_request(KVM_REQ_EVENT, vcpu); 12045 vcpu->arch.apf.msr_en_val = 0; 12046 vcpu->arch.apf.msr_int_val = 0; 12047 vcpu->arch.st.msr_val = 0; 12048 12049 kvmclock_reset(vcpu); 12050 12051 kvm_clear_async_pf_completion_queue(vcpu); 12052 kvm_async_pf_hash_reset(vcpu); 12053 vcpu->arch.apf.halted = false; 12054 12055 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12056 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12057 12058 /* 12059 * All paths that lead to INIT are required to load the guest's 12060 * FPU state (because most paths are buried in KVM_RUN). 12061 */ 12062 if (init_event) 12063 kvm_put_guest_fpu(vcpu); 12064 12065 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12066 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12067 12068 if (init_event) 12069 kvm_load_guest_fpu(vcpu); 12070 } 12071 12072 if (!init_event) { 12073 kvm_pmu_reset(vcpu); 12074 vcpu->arch.smbase = 0x30000; 12075 12076 vcpu->arch.msr_misc_features_enables = 0; 12077 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12078 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12079 12080 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12081 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12082 } 12083 12084 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12085 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12086 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12087 12088 /* 12089 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12090 * if no CPUID match is found. Note, it's impossible to get a match at 12091 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12092 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12093 * on RESET. But, go through the motions in case that's ever remedied. 12094 */ 12095 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12096 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12097 12098 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12099 12100 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12101 kvm_rip_write(vcpu, 0xfff0); 12102 12103 vcpu->arch.cr3 = 0; 12104 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12105 12106 /* 12107 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12108 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12109 * (or qualify) that with a footnote stating that CD/NW are preserved. 12110 */ 12111 new_cr0 = X86_CR0_ET; 12112 if (init_event) 12113 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12114 else 12115 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12116 12117 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12118 static_call(kvm_x86_set_cr4)(vcpu, 0); 12119 static_call(kvm_x86_set_efer)(vcpu, 0); 12120 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12121 12122 /* 12123 * On the standard CR0/CR4/EFER modification paths, there are several 12124 * complex conditions determining whether the MMU has to be reset and/or 12125 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12126 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12127 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12128 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12129 */ 12130 if (old_cr0 & X86_CR0_PG) { 12131 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12132 kvm_mmu_reset_context(vcpu); 12133 } 12134 12135 /* 12136 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12137 * APM states the TLBs are untouched by INIT, but it also states that 12138 * the TLBs are flushed on "External initialization of the processor." 12139 * Flush the guest TLB regardless of vendor, there is no meaningful 12140 * benefit in relying on the guest to flush the TLB immediately after 12141 * INIT. A spurious TLB flush is benign and likely negligible from a 12142 * performance perspective. 12143 */ 12144 if (init_event) 12145 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12146 } 12147 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12148 12149 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12150 { 12151 struct kvm_segment cs; 12152 12153 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12154 cs.selector = vector << 8; 12155 cs.base = vector << 12; 12156 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12157 kvm_rip_write(vcpu, 0); 12158 } 12159 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12160 12161 int kvm_arch_hardware_enable(void) 12162 { 12163 struct kvm *kvm; 12164 struct kvm_vcpu *vcpu; 12165 unsigned long i; 12166 int ret; 12167 u64 local_tsc; 12168 u64 max_tsc = 0; 12169 bool stable, backwards_tsc = false; 12170 12171 kvm_user_return_msr_cpu_online(); 12172 12173 ret = kvm_x86_check_processor_compatibility(); 12174 if (ret) 12175 return ret; 12176 12177 ret = static_call(kvm_x86_hardware_enable)(); 12178 if (ret != 0) 12179 return ret; 12180 12181 local_tsc = rdtsc(); 12182 stable = !kvm_check_tsc_unstable(); 12183 list_for_each_entry(kvm, &vm_list, vm_list) { 12184 kvm_for_each_vcpu(i, vcpu, kvm) { 12185 if (!stable && vcpu->cpu == smp_processor_id()) 12186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12187 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12188 backwards_tsc = true; 12189 if (vcpu->arch.last_host_tsc > max_tsc) 12190 max_tsc = vcpu->arch.last_host_tsc; 12191 } 12192 } 12193 } 12194 12195 /* 12196 * Sometimes, even reliable TSCs go backwards. This happens on 12197 * platforms that reset TSC during suspend or hibernate actions, but 12198 * maintain synchronization. We must compensate. Fortunately, we can 12199 * detect that condition here, which happens early in CPU bringup, 12200 * before any KVM threads can be running. Unfortunately, we can't 12201 * bring the TSCs fully up to date with real time, as we aren't yet far 12202 * enough into CPU bringup that we know how much real time has actually 12203 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12204 * variables that haven't been updated yet. 12205 * 12206 * So we simply find the maximum observed TSC above, then record the 12207 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12208 * the adjustment will be applied. Note that we accumulate 12209 * adjustments, in case multiple suspend cycles happen before some VCPU 12210 * gets a chance to run again. In the event that no KVM threads get a 12211 * chance to run, we will miss the entire elapsed period, as we'll have 12212 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12213 * loose cycle time. This isn't too big a deal, since the loss will be 12214 * uniform across all VCPUs (not to mention the scenario is extremely 12215 * unlikely). It is possible that a second hibernate recovery happens 12216 * much faster than a first, causing the observed TSC here to be 12217 * smaller; this would require additional padding adjustment, which is 12218 * why we set last_host_tsc to the local tsc observed here. 12219 * 12220 * N.B. - this code below runs only on platforms with reliable TSC, 12221 * as that is the only way backwards_tsc is set above. Also note 12222 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12223 * have the same delta_cyc adjustment applied if backwards_tsc 12224 * is detected. Note further, this adjustment is only done once, 12225 * as we reset last_host_tsc on all VCPUs to stop this from being 12226 * called multiple times (one for each physical CPU bringup). 12227 * 12228 * Platforms with unreliable TSCs don't have to deal with this, they 12229 * will be compensated by the logic in vcpu_load, which sets the TSC to 12230 * catchup mode. This will catchup all VCPUs to real time, but cannot 12231 * guarantee that they stay in perfect synchronization. 12232 */ 12233 if (backwards_tsc) { 12234 u64 delta_cyc = max_tsc - local_tsc; 12235 list_for_each_entry(kvm, &vm_list, vm_list) { 12236 kvm->arch.backwards_tsc_observed = true; 12237 kvm_for_each_vcpu(i, vcpu, kvm) { 12238 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12239 vcpu->arch.last_host_tsc = local_tsc; 12240 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12241 } 12242 12243 /* 12244 * We have to disable TSC offset matching.. if you were 12245 * booting a VM while issuing an S4 host suspend.... 12246 * you may have some problem. Solving this issue is 12247 * left as an exercise to the reader. 12248 */ 12249 kvm->arch.last_tsc_nsec = 0; 12250 kvm->arch.last_tsc_write = 0; 12251 } 12252 12253 } 12254 return 0; 12255 } 12256 12257 void kvm_arch_hardware_disable(void) 12258 { 12259 static_call(kvm_x86_hardware_disable)(); 12260 drop_user_return_notifiers(); 12261 } 12262 12263 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12264 { 12265 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12266 } 12267 12268 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12269 { 12270 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12271 } 12272 12273 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12274 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12275 12276 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12277 { 12278 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12279 12280 vcpu->arch.l1tf_flush_l1d = true; 12281 if (pmu->version && unlikely(pmu->event_count)) { 12282 pmu->need_cleanup = true; 12283 kvm_make_request(KVM_REQ_PMU, vcpu); 12284 } 12285 static_call(kvm_x86_sched_in)(vcpu, cpu); 12286 } 12287 12288 void kvm_arch_free_vm(struct kvm *kvm) 12289 { 12290 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12291 __kvm_arch_free_vm(kvm); 12292 } 12293 12294 12295 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12296 { 12297 int ret; 12298 unsigned long flags; 12299 12300 if (type) 12301 return -EINVAL; 12302 12303 ret = kvm_page_track_init(kvm); 12304 if (ret) 12305 goto out; 12306 12307 ret = kvm_mmu_init_vm(kvm); 12308 if (ret) 12309 goto out_page_track; 12310 12311 ret = static_call(kvm_x86_vm_init)(kvm); 12312 if (ret) 12313 goto out_uninit_mmu; 12314 12315 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12316 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12317 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12318 12319 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12320 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12321 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12322 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12323 &kvm->arch.irq_sources_bitmap); 12324 12325 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12326 mutex_init(&kvm->arch.apic_map_lock); 12327 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12328 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12329 12330 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12331 pvclock_update_vm_gtod_copy(kvm); 12332 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12333 12334 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12335 kvm->arch.guest_can_read_msr_platform_info = true; 12336 kvm->arch.enable_pmu = enable_pmu; 12337 12338 #if IS_ENABLED(CONFIG_HYPERV) 12339 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12340 kvm->arch.hv_root_tdp = INVALID_PAGE; 12341 #endif 12342 12343 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12344 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12345 12346 kvm_apicv_init(kvm); 12347 kvm_hv_init_vm(kvm); 12348 kvm_xen_init_vm(kvm); 12349 12350 return 0; 12351 12352 out_uninit_mmu: 12353 kvm_mmu_uninit_vm(kvm); 12354 out_page_track: 12355 kvm_page_track_cleanup(kvm); 12356 out: 12357 return ret; 12358 } 12359 12360 int kvm_arch_post_init_vm(struct kvm *kvm) 12361 { 12362 return kvm_mmu_post_init_vm(kvm); 12363 } 12364 12365 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12366 { 12367 vcpu_load(vcpu); 12368 kvm_mmu_unload(vcpu); 12369 vcpu_put(vcpu); 12370 } 12371 12372 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12373 { 12374 unsigned long i; 12375 struct kvm_vcpu *vcpu; 12376 12377 kvm_for_each_vcpu(i, vcpu, kvm) { 12378 kvm_clear_async_pf_completion_queue(vcpu); 12379 kvm_unload_vcpu_mmu(vcpu); 12380 } 12381 } 12382 12383 void kvm_arch_sync_events(struct kvm *kvm) 12384 { 12385 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12386 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12387 kvm_free_pit(kvm); 12388 } 12389 12390 /** 12391 * __x86_set_memory_region: Setup KVM internal memory slot 12392 * 12393 * @kvm: the kvm pointer to the VM. 12394 * @id: the slot ID to setup. 12395 * @gpa: the GPA to install the slot (unused when @size == 0). 12396 * @size: the size of the slot. Set to zero to uninstall a slot. 12397 * 12398 * This function helps to setup a KVM internal memory slot. Specify 12399 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12400 * slot. The return code can be one of the following: 12401 * 12402 * HVA: on success (uninstall will return a bogus HVA) 12403 * -errno: on error 12404 * 12405 * The caller should always use IS_ERR() to check the return value 12406 * before use. Note, the KVM internal memory slots are guaranteed to 12407 * remain valid and unchanged until the VM is destroyed, i.e., the 12408 * GPA->HVA translation will not change. However, the HVA is a user 12409 * address, i.e. its accessibility is not guaranteed, and must be 12410 * accessed via __copy_{to,from}_user(). 12411 */ 12412 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12413 u32 size) 12414 { 12415 int i, r; 12416 unsigned long hva, old_npages; 12417 struct kvm_memslots *slots = kvm_memslots(kvm); 12418 struct kvm_memory_slot *slot; 12419 12420 /* Called with kvm->slots_lock held. */ 12421 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12422 return ERR_PTR_USR(-EINVAL); 12423 12424 slot = id_to_memslot(slots, id); 12425 if (size) { 12426 if (slot && slot->npages) 12427 return ERR_PTR_USR(-EEXIST); 12428 12429 /* 12430 * MAP_SHARED to prevent internal slot pages from being moved 12431 * by fork()/COW. 12432 */ 12433 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12434 MAP_SHARED | MAP_ANONYMOUS, 0); 12435 if (IS_ERR_VALUE(hva)) 12436 return (void __user *)hva; 12437 } else { 12438 if (!slot || !slot->npages) 12439 return NULL; 12440 12441 old_npages = slot->npages; 12442 hva = slot->userspace_addr; 12443 } 12444 12445 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12446 struct kvm_userspace_memory_region m; 12447 12448 m.slot = id | (i << 16); 12449 m.flags = 0; 12450 m.guest_phys_addr = gpa; 12451 m.userspace_addr = hva; 12452 m.memory_size = size; 12453 r = __kvm_set_memory_region(kvm, &m); 12454 if (r < 0) 12455 return ERR_PTR_USR(r); 12456 } 12457 12458 if (!size) 12459 vm_munmap(hva, old_npages * PAGE_SIZE); 12460 12461 return (void __user *)hva; 12462 } 12463 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12464 12465 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12466 { 12467 kvm_mmu_pre_destroy_vm(kvm); 12468 } 12469 12470 void kvm_arch_destroy_vm(struct kvm *kvm) 12471 { 12472 if (current->mm == kvm->mm) { 12473 /* 12474 * Free memory regions allocated on behalf of userspace, 12475 * unless the memory map has changed due to process exit 12476 * or fd copying. 12477 */ 12478 mutex_lock(&kvm->slots_lock); 12479 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12480 0, 0); 12481 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12482 0, 0); 12483 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12484 mutex_unlock(&kvm->slots_lock); 12485 } 12486 kvm_unload_vcpu_mmus(kvm); 12487 static_call_cond(kvm_x86_vm_destroy)(kvm); 12488 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12489 kvm_pic_destroy(kvm); 12490 kvm_ioapic_destroy(kvm); 12491 kvm_destroy_vcpus(kvm); 12492 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12493 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12494 kvm_mmu_uninit_vm(kvm); 12495 kvm_page_track_cleanup(kvm); 12496 kvm_xen_destroy_vm(kvm); 12497 kvm_hv_destroy_vm(kvm); 12498 } 12499 12500 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12501 { 12502 int i; 12503 12504 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12505 kvfree(slot->arch.rmap[i]); 12506 slot->arch.rmap[i] = NULL; 12507 } 12508 } 12509 12510 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12511 { 12512 int i; 12513 12514 memslot_rmap_free(slot); 12515 12516 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12517 kvfree(slot->arch.lpage_info[i - 1]); 12518 slot->arch.lpage_info[i - 1] = NULL; 12519 } 12520 12521 kvm_page_track_free_memslot(slot); 12522 } 12523 12524 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12525 { 12526 const int sz = sizeof(*slot->arch.rmap[0]); 12527 int i; 12528 12529 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12530 int level = i + 1; 12531 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12532 12533 if (slot->arch.rmap[i]) 12534 continue; 12535 12536 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12537 if (!slot->arch.rmap[i]) { 12538 memslot_rmap_free(slot); 12539 return -ENOMEM; 12540 } 12541 } 12542 12543 return 0; 12544 } 12545 12546 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12547 struct kvm_memory_slot *slot) 12548 { 12549 unsigned long npages = slot->npages; 12550 int i, r; 12551 12552 /* 12553 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12554 * old arrays will be freed by __kvm_set_memory_region() if installing 12555 * the new memslot is successful. 12556 */ 12557 memset(&slot->arch, 0, sizeof(slot->arch)); 12558 12559 if (kvm_memslots_have_rmaps(kvm)) { 12560 r = memslot_rmap_alloc(slot, npages); 12561 if (r) 12562 return r; 12563 } 12564 12565 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12566 struct kvm_lpage_info *linfo; 12567 unsigned long ugfn; 12568 int lpages; 12569 int level = i + 1; 12570 12571 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12572 12573 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12574 if (!linfo) 12575 goto out_free; 12576 12577 slot->arch.lpage_info[i - 1] = linfo; 12578 12579 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12580 linfo[0].disallow_lpage = 1; 12581 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12582 linfo[lpages - 1].disallow_lpage = 1; 12583 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12584 /* 12585 * If the gfn and userspace address are not aligned wrt each 12586 * other, disable large page support for this slot. 12587 */ 12588 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12589 unsigned long j; 12590 12591 for (j = 0; j < lpages; ++j) 12592 linfo[j].disallow_lpage = 1; 12593 } 12594 } 12595 12596 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12597 goto out_free; 12598 12599 return 0; 12600 12601 out_free: 12602 memslot_rmap_free(slot); 12603 12604 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12605 kvfree(slot->arch.lpage_info[i - 1]); 12606 slot->arch.lpage_info[i - 1] = NULL; 12607 } 12608 return -ENOMEM; 12609 } 12610 12611 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12612 { 12613 struct kvm_vcpu *vcpu; 12614 unsigned long i; 12615 12616 /* 12617 * memslots->generation has been incremented. 12618 * mmio generation may have reached its maximum value. 12619 */ 12620 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12621 12622 /* Force re-initialization of steal_time cache */ 12623 kvm_for_each_vcpu(i, vcpu, kvm) 12624 kvm_vcpu_kick(vcpu); 12625 } 12626 12627 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12628 const struct kvm_memory_slot *old, 12629 struct kvm_memory_slot *new, 12630 enum kvm_mr_change change) 12631 { 12632 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12633 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12634 return -EINVAL; 12635 12636 return kvm_alloc_memslot_metadata(kvm, new); 12637 } 12638 12639 if (change == KVM_MR_FLAGS_ONLY) 12640 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12641 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12642 return -EIO; 12643 12644 return 0; 12645 } 12646 12647 12648 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12649 { 12650 int nr_slots; 12651 12652 if (!kvm_x86_ops.cpu_dirty_log_size) 12653 return; 12654 12655 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12656 if ((enable && nr_slots == 1) || !nr_slots) 12657 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12658 } 12659 12660 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12661 struct kvm_memory_slot *old, 12662 const struct kvm_memory_slot *new, 12663 enum kvm_mr_change change) 12664 { 12665 u32 old_flags = old ? old->flags : 0; 12666 u32 new_flags = new ? new->flags : 0; 12667 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12668 12669 /* 12670 * Update CPU dirty logging if dirty logging is being toggled. This 12671 * applies to all operations. 12672 */ 12673 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12674 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12675 12676 /* 12677 * Nothing more to do for RO slots (which can't be dirtied and can't be 12678 * made writable) or CREATE/MOVE/DELETE of a slot. 12679 * 12680 * For a memslot with dirty logging disabled: 12681 * CREATE: No dirty mappings will already exist. 12682 * MOVE/DELETE: The old mappings will already have been cleaned up by 12683 * kvm_arch_flush_shadow_memslot() 12684 * 12685 * For a memslot with dirty logging enabled: 12686 * CREATE: No shadow pages exist, thus nothing to write-protect 12687 * and no dirty bits to clear. 12688 * MOVE/DELETE: The old mappings will already have been cleaned up by 12689 * kvm_arch_flush_shadow_memslot(). 12690 */ 12691 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12692 return; 12693 12694 /* 12695 * READONLY and non-flags changes were filtered out above, and the only 12696 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12697 * logging isn't being toggled on or off. 12698 */ 12699 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12700 return; 12701 12702 if (!log_dirty_pages) { 12703 /* 12704 * Dirty logging tracks sptes in 4k granularity, meaning that 12705 * large sptes have to be split. If live migration succeeds, 12706 * the guest in the source machine will be destroyed and large 12707 * sptes will be created in the destination. However, if the 12708 * guest continues to run in the source machine (for example if 12709 * live migration fails), small sptes will remain around and 12710 * cause bad performance. 12711 * 12712 * Scan sptes if dirty logging has been stopped, dropping those 12713 * which can be collapsed into a single large-page spte. Later 12714 * page faults will create the large-page sptes. 12715 */ 12716 kvm_mmu_zap_collapsible_sptes(kvm, new); 12717 } else { 12718 /* 12719 * Initially-all-set does not require write protecting any page, 12720 * because they're all assumed to be dirty. 12721 */ 12722 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12723 return; 12724 12725 if (READ_ONCE(eager_page_split)) 12726 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12727 12728 if (kvm_x86_ops.cpu_dirty_log_size) { 12729 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12730 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12731 } else { 12732 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12733 } 12734 12735 /* 12736 * Unconditionally flush the TLBs after enabling dirty logging. 12737 * A flush is almost always going to be necessary (see below), 12738 * and unconditionally flushing allows the helpers to omit 12739 * the subtly complex checks when removing write access. 12740 * 12741 * Do the flush outside of mmu_lock to reduce the amount of 12742 * time mmu_lock is held. Flushing after dropping mmu_lock is 12743 * safe as KVM only needs to guarantee the slot is fully 12744 * write-protected before returning to userspace, i.e. before 12745 * userspace can consume the dirty status. 12746 * 12747 * Flushing outside of mmu_lock requires KVM to be careful when 12748 * making decisions based on writable status of an SPTE, e.g. a 12749 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12750 * 12751 * Specifically, KVM also write-protects guest page tables to 12752 * monitor changes when using shadow paging, and must guarantee 12753 * no CPUs can write to those page before mmu_lock is dropped. 12754 * Because CPUs may have stale TLB entries at this point, a 12755 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12756 * 12757 * KVM also allows making SPTES writable outside of mmu_lock, 12758 * e.g. to allow dirty logging without taking mmu_lock. 12759 * 12760 * To handle these scenarios, KVM uses a separate software-only 12761 * bit (MMU-writable) to track if a SPTE is !writable due to 12762 * a guest page table being write-protected (KVM clears the 12763 * MMU-writable flag when write-protecting for shadow paging). 12764 * 12765 * The use of MMU-writable is also the primary motivation for 12766 * the unconditional flush. Because KVM must guarantee that a 12767 * CPU doesn't contain stale, writable TLB entries for a 12768 * !MMU-writable SPTE, KVM must flush if it encounters any 12769 * MMU-writable SPTE regardless of whether the actual hardware 12770 * writable bit was set. I.e. KVM is almost guaranteed to need 12771 * to flush, while unconditionally flushing allows the "remove 12772 * write access" helpers to ignore MMU-writable entirely. 12773 * 12774 * See is_writable_pte() for more details (the case involving 12775 * access-tracked SPTEs is particularly relevant). 12776 */ 12777 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12778 } 12779 } 12780 12781 void kvm_arch_commit_memory_region(struct kvm *kvm, 12782 struct kvm_memory_slot *old, 12783 const struct kvm_memory_slot *new, 12784 enum kvm_mr_change change) 12785 { 12786 if (!kvm->arch.n_requested_mmu_pages && 12787 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12788 unsigned long nr_mmu_pages; 12789 12790 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12791 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12792 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12793 } 12794 12795 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12796 12797 /* Free the arrays associated with the old memslot. */ 12798 if (change == KVM_MR_MOVE) 12799 kvm_arch_free_memslot(kvm, old); 12800 } 12801 12802 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12803 { 12804 kvm_mmu_zap_all(kvm); 12805 } 12806 12807 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12808 struct kvm_memory_slot *slot) 12809 { 12810 kvm_page_track_flush_slot(kvm, slot); 12811 } 12812 12813 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12814 { 12815 return (is_guest_mode(vcpu) && 12816 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12817 } 12818 12819 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12820 { 12821 if (!list_empty_careful(&vcpu->async_pf.done)) 12822 return true; 12823 12824 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12825 kvm_apic_init_sipi_allowed(vcpu)) 12826 return true; 12827 12828 if (vcpu->arch.pv.pv_unhalted) 12829 return true; 12830 12831 if (kvm_is_exception_pending(vcpu)) 12832 return true; 12833 12834 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12835 (vcpu->arch.nmi_pending && 12836 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12837 return true; 12838 12839 #ifdef CONFIG_KVM_SMM 12840 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12841 (vcpu->arch.smi_pending && 12842 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12843 return true; 12844 #endif 12845 12846 if (kvm_arch_interrupt_allowed(vcpu) && 12847 (kvm_cpu_has_interrupt(vcpu) || 12848 kvm_guest_apic_has_interrupt(vcpu))) 12849 return true; 12850 12851 if (kvm_hv_has_stimer_pending(vcpu)) 12852 return true; 12853 12854 if (is_guest_mode(vcpu) && 12855 kvm_x86_ops.nested_ops->has_events && 12856 kvm_x86_ops.nested_ops->has_events(vcpu)) 12857 return true; 12858 12859 if (kvm_xen_has_pending_events(vcpu)) 12860 return true; 12861 12862 return false; 12863 } 12864 12865 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12866 { 12867 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12868 } 12869 12870 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12871 { 12872 if (kvm_vcpu_apicv_active(vcpu) && 12873 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12874 return true; 12875 12876 return false; 12877 } 12878 12879 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12880 { 12881 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12882 return true; 12883 12884 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12885 #ifdef CONFIG_KVM_SMM 12886 kvm_test_request(KVM_REQ_SMI, vcpu) || 12887 #endif 12888 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12889 return true; 12890 12891 return kvm_arch_dy_has_pending_interrupt(vcpu); 12892 } 12893 12894 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12895 { 12896 if (vcpu->arch.guest_state_protected) 12897 return true; 12898 12899 return vcpu->arch.preempted_in_kernel; 12900 } 12901 12902 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12903 { 12904 return kvm_rip_read(vcpu); 12905 } 12906 12907 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12908 { 12909 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12910 } 12911 12912 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12913 { 12914 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12915 } 12916 12917 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12918 { 12919 /* Can't read the RIP when guest state is protected, just return 0 */ 12920 if (vcpu->arch.guest_state_protected) 12921 return 0; 12922 12923 if (is_64_bit_mode(vcpu)) 12924 return kvm_rip_read(vcpu); 12925 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12926 kvm_rip_read(vcpu)); 12927 } 12928 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12929 12930 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12931 { 12932 return kvm_get_linear_rip(vcpu) == linear_rip; 12933 } 12934 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12935 12936 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12937 { 12938 unsigned long rflags; 12939 12940 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12941 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12942 rflags &= ~X86_EFLAGS_TF; 12943 return rflags; 12944 } 12945 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12946 12947 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12948 { 12949 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12950 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12951 rflags |= X86_EFLAGS_TF; 12952 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12953 } 12954 12955 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12956 { 12957 __kvm_set_rflags(vcpu, rflags); 12958 kvm_make_request(KVM_REQ_EVENT, vcpu); 12959 } 12960 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12961 12962 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12963 { 12964 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12965 12966 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12967 } 12968 12969 static inline u32 kvm_async_pf_next_probe(u32 key) 12970 { 12971 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12972 } 12973 12974 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12975 { 12976 u32 key = kvm_async_pf_hash_fn(gfn); 12977 12978 while (vcpu->arch.apf.gfns[key] != ~0) 12979 key = kvm_async_pf_next_probe(key); 12980 12981 vcpu->arch.apf.gfns[key] = gfn; 12982 } 12983 12984 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12985 { 12986 int i; 12987 u32 key = kvm_async_pf_hash_fn(gfn); 12988 12989 for (i = 0; i < ASYNC_PF_PER_VCPU && 12990 (vcpu->arch.apf.gfns[key] != gfn && 12991 vcpu->arch.apf.gfns[key] != ~0); i++) 12992 key = kvm_async_pf_next_probe(key); 12993 12994 return key; 12995 } 12996 12997 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12998 { 12999 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13000 } 13001 13002 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13003 { 13004 u32 i, j, k; 13005 13006 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13007 13008 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13009 return; 13010 13011 while (true) { 13012 vcpu->arch.apf.gfns[i] = ~0; 13013 do { 13014 j = kvm_async_pf_next_probe(j); 13015 if (vcpu->arch.apf.gfns[j] == ~0) 13016 return; 13017 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13018 /* 13019 * k lies cyclically in ]i,j] 13020 * | i.k.j | 13021 * |....j i.k.| or |.k..j i...| 13022 */ 13023 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13024 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13025 i = j; 13026 } 13027 } 13028 13029 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13030 { 13031 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13032 13033 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13034 sizeof(reason)); 13035 } 13036 13037 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13038 { 13039 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13040 13041 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13042 &token, offset, sizeof(token)); 13043 } 13044 13045 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13046 { 13047 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13048 u32 val; 13049 13050 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13051 &val, offset, sizeof(val))) 13052 return false; 13053 13054 return !val; 13055 } 13056 13057 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13058 { 13059 13060 if (!kvm_pv_async_pf_enabled(vcpu)) 13061 return false; 13062 13063 if (vcpu->arch.apf.send_user_only && 13064 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13065 return false; 13066 13067 if (is_guest_mode(vcpu)) { 13068 /* 13069 * L1 needs to opt into the special #PF vmexits that are 13070 * used to deliver async page faults. 13071 */ 13072 return vcpu->arch.apf.delivery_as_pf_vmexit; 13073 } else { 13074 /* 13075 * Play it safe in case the guest temporarily disables paging. 13076 * The real mode IDT in particular is unlikely to have a #PF 13077 * exception setup. 13078 */ 13079 return is_paging(vcpu); 13080 } 13081 } 13082 13083 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13084 { 13085 if (unlikely(!lapic_in_kernel(vcpu) || 13086 kvm_event_needs_reinjection(vcpu) || 13087 kvm_is_exception_pending(vcpu))) 13088 return false; 13089 13090 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13091 return false; 13092 13093 /* 13094 * If interrupts are off we cannot even use an artificial 13095 * halt state. 13096 */ 13097 return kvm_arch_interrupt_allowed(vcpu); 13098 } 13099 13100 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13101 struct kvm_async_pf *work) 13102 { 13103 struct x86_exception fault; 13104 13105 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13106 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13107 13108 if (kvm_can_deliver_async_pf(vcpu) && 13109 !apf_put_user_notpresent(vcpu)) { 13110 fault.vector = PF_VECTOR; 13111 fault.error_code_valid = true; 13112 fault.error_code = 0; 13113 fault.nested_page_fault = false; 13114 fault.address = work->arch.token; 13115 fault.async_page_fault = true; 13116 kvm_inject_page_fault(vcpu, &fault); 13117 return true; 13118 } else { 13119 /* 13120 * It is not possible to deliver a paravirtualized asynchronous 13121 * page fault, but putting the guest in an artificial halt state 13122 * can be beneficial nevertheless: if an interrupt arrives, we 13123 * can deliver it timely and perhaps the guest will schedule 13124 * another process. When the instruction that triggered a page 13125 * fault is retried, hopefully the page will be ready in the host. 13126 */ 13127 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13128 return false; 13129 } 13130 } 13131 13132 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13133 struct kvm_async_pf *work) 13134 { 13135 struct kvm_lapic_irq irq = { 13136 .delivery_mode = APIC_DM_FIXED, 13137 .vector = vcpu->arch.apf.vec 13138 }; 13139 13140 if (work->wakeup_all) 13141 work->arch.token = ~0; /* broadcast wakeup */ 13142 else 13143 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13144 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13145 13146 if ((work->wakeup_all || work->notpresent_injected) && 13147 kvm_pv_async_pf_enabled(vcpu) && 13148 !apf_put_user_ready(vcpu, work->arch.token)) { 13149 vcpu->arch.apf.pageready_pending = true; 13150 kvm_apic_set_irq(vcpu, &irq, NULL); 13151 } 13152 13153 vcpu->arch.apf.halted = false; 13154 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13155 } 13156 13157 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13158 { 13159 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13160 if (!vcpu->arch.apf.pageready_pending) 13161 kvm_vcpu_kick(vcpu); 13162 } 13163 13164 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13165 { 13166 if (!kvm_pv_async_pf_enabled(vcpu)) 13167 return true; 13168 else 13169 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13170 } 13171 13172 void kvm_arch_start_assignment(struct kvm *kvm) 13173 { 13174 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13175 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13176 } 13177 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13178 13179 void kvm_arch_end_assignment(struct kvm *kvm) 13180 { 13181 atomic_dec(&kvm->arch.assigned_device_count); 13182 } 13183 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13184 13185 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13186 { 13187 return raw_atomic_read(&kvm->arch.assigned_device_count); 13188 } 13189 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13190 13191 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13192 { 13193 atomic_inc(&kvm->arch.noncoherent_dma_count); 13194 } 13195 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13196 13197 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13198 { 13199 atomic_dec(&kvm->arch.noncoherent_dma_count); 13200 } 13201 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13202 13203 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13204 { 13205 return atomic_read(&kvm->arch.noncoherent_dma_count); 13206 } 13207 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13208 13209 bool kvm_arch_has_irq_bypass(void) 13210 { 13211 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13212 } 13213 13214 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13215 struct irq_bypass_producer *prod) 13216 { 13217 struct kvm_kernel_irqfd *irqfd = 13218 container_of(cons, struct kvm_kernel_irqfd, consumer); 13219 int ret; 13220 13221 irqfd->producer = prod; 13222 kvm_arch_start_assignment(irqfd->kvm); 13223 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13224 prod->irq, irqfd->gsi, 1); 13225 13226 if (ret) 13227 kvm_arch_end_assignment(irqfd->kvm); 13228 13229 return ret; 13230 } 13231 13232 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13233 struct irq_bypass_producer *prod) 13234 { 13235 int ret; 13236 struct kvm_kernel_irqfd *irqfd = 13237 container_of(cons, struct kvm_kernel_irqfd, consumer); 13238 13239 WARN_ON(irqfd->producer != prod); 13240 irqfd->producer = NULL; 13241 13242 /* 13243 * When producer of consumer is unregistered, we change back to 13244 * remapped mode, so we can re-use the current implementation 13245 * when the irq is masked/disabled or the consumer side (KVM 13246 * int this case doesn't want to receive the interrupts. 13247 */ 13248 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13249 if (ret) 13250 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13251 " fails: %d\n", irqfd->consumer.token, ret); 13252 13253 kvm_arch_end_assignment(irqfd->kvm); 13254 } 13255 13256 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13257 uint32_t guest_irq, bool set) 13258 { 13259 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13260 } 13261 13262 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13263 struct kvm_kernel_irq_routing_entry *new) 13264 { 13265 if (new->type != KVM_IRQ_ROUTING_MSI) 13266 return true; 13267 13268 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13269 } 13270 13271 bool kvm_vector_hashing_enabled(void) 13272 { 13273 return vector_hashing; 13274 } 13275 13276 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13277 { 13278 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13279 } 13280 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13281 13282 13283 int kvm_spec_ctrl_test_value(u64 value) 13284 { 13285 /* 13286 * test that setting IA32_SPEC_CTRL to given value 13287 * is allowed by the host processor 13288 */ 13289 13290 u64 saved_value; 13291 unsigned long flags; 13292 int ret = 0; 13293 13294 local_irq_save(flags); 13295 13296 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13297 ret = 1; 13298 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13299 ret = 1; 13300 else 13301 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13302 13303 local_irq_restore(flags); 13304 13305 return ret; 13306 } 13307 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13308 13309 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13310 { 13311 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13312 struct x86_exception fault; 13313 u64 access = error_code & 13314 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13315 13316 if (!(error_code & PFERR_PRESENT_MASK) || 13317 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13318 /* 13319 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13320 * tables probably do not match the TLB. Just proceed 13321 * with the error code that the processor gave. 13322 */ 13323 fault.vector = PF_VECTOR; 13324 fault.error_code_valid = true; 13325 fault.error_code = error_code; 13326 fault.nested_page_fault = false; 13327 fault.address = gva; 13328 fault.async_page_fault = false; 13329 } 13330 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13331 } 13332 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13333 13334 /* 13335 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13336 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13337 * indicates whether exit to userspace is needed. 13338 */ 13339 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13340 struct x86_exception *e) 13341 { 13342 if (r == X86EMUL_PROPAGATE_FAULT) { 13343 if (KVM_BUG_ON(!e, vcpu->kvm)) 13344 return -EIO; 13345 13346 kvm_inject_emulated_page_fault(vcpu, e); 13347 return 1; 13348 } 13349 13350 /* 13351 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13352 * while handling a VMX instruction KVM could've handled the request 13353 * correctly by exiting to userspace and performing I/O but there 13354 * doesn't seem to be a real use-case behind such requests, just return 13355 * KVM_EXIT_INTERNAL_ERROR for now. 13356 */ 13357 kvm_prepare_emulation_failure_exit(vcpu); 13358 13359 return 0; 13360 } 13361 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13362 13363 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13364 { 13365 bool pcid_enabled; 13366 struct x86_exception e; 13367 struct { 13368 u64 pcid; 13369 u64 gla; 13370 } operand; 13371 int r; 13372 13373 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13374 if (r != X86EMUL_CONTINUE) 13375 return kvm_handle_memory_failure(vcpu, r, &e); 13376 13377 if (operand.pcid >> 12 != 0) { 13378 kvm_inject_gp(vcpu, 0); 13379 return 1; 13380 } 13381 13382 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13383 13384 switch (type) { 13385 case INVPCID_TYPE_INDIV_ADDR: 13386 if ((!pcid_enabled && (operand.pcid != 0)) || 13387 is_noncanonical_address(operand.gla, vcpu)) { 13388 kvm_inject_gp(vcpu, 0); 13389 return 1; 13390 } 13391 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13392 return kvm_skip_emulated_instruction(vcpu); 13393 13394 case INVPCID_TYPE_SINGLE_CTXT: 13395 if (!pcid_enabled && (operand.pcid != 0)) { 13396 kvm_inject_gp(vcpu, 0); 13397 return 1; 13398 } 13399 13400 kvm_invalidate_pcid(vcpu, operand.pcid); 13401 return kvm_skip_emulated_instruction(vcpu); 13402 13403 case INVPCID_TYPE_ALL_NON_GLOBAL: 13404 /* 13405 * Currently, KVM doesn't mark global entries in the shadow 13406 * page tables, so a non-global flush just degenerates to a 13407 * global flush. If needed, we could optimize this later by 13408 * keeping track of global entries in shadow page tables. 13409 */ 13410 13411 fallthrough; 13412 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13413 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13414 return kvm_skip_emulated_instruction(vcpu); 13415 13416 default: 13417 kvm_inject_gp(vcpu, 0); 13418 return 1; 13419 } 13420 } 13421 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13422 13423 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13424 { 13425 struct kvm_run *run = vcpu->run; 13426 struct kvm_mmio_fragment *frag; 13427 unsigned int len; 13428 13429 BUG_ON(!vcpu->mmio_needed); 13430 13431 /* Complete previous fragment */ 13432 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13433 len = min(8u, frag->len); 13434 if (!vcpu->mmio_is_write) 13435 memcpy(frag->data, run->mmio.data, len); 13436 13437 if (frag->len <= 8) { 13438 /* Switch to the next fragment. */ 13439 frag++; 13440 vcpu->mmio_cur_fragment++; 13441 } else { 13442 /* Go forward to the next mmio piece. */ 13443 frag->data += len; 13444 frag->gpa += len; 13445 frag->len -= len; 13446 } 13447 13448 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13449 vcpu->mmio_needed = 0; 13450 13451 // VMG change, at this point, we're always done 13452 // RIP has already been advanced 13453 return 1; 13454 } 13455 13456 // More MMIO is needed 13457 run->mmio.phys_addr = frag->gpa; 13458 run->mmio.len = min(8u, frag->len); 13459 run->mmio.is_write = vcpu->mmio_is_write; 13460 if (run->mmio.is_write) 13461 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13462 run->exit_reason = KVM_EXIT_MMIO; 13463 13464 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13465 13466 return 0; 13467 } 13468 13469 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13470 void *data) 13471 { 13472 int handled; 13473 struct kvm_mmio_fragment *frag; 13474 13475 if (!data) 13476 return -EINVAL; 13477 13478 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13479 if (handled == bytes) 13480 return 1; 13481 13482 bytes -= handled; 13483 gpa += handled; 13484 data += handled; 13485 13486 /*TODO: Check if need to increment number of frags */ 13487 frag = vcpu->mmio_fragments; 13488 vcpu->mmio_nr_fragments = 1; 13489 frag->len = bytes; 13490 frag->gpa = gpa; 13491 frag->data = data; 13492 13493 vcpu->mmio_needed = 1; 13494 vcpu->mmio_cur_fragment = 0; 13495 13496 vcpu->run->mmio.phys_addr = gpa; 13497 vcpu->run->mmio.len = min(8u, frag->len); 13498 vcpu->run->mmio.is_write = 1; 13499 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13500 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13501 13502 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13503 13504 return 0; 13505 } 13506 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13507 13508 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13509 void *data) 13510 { 13511 int handled; 13512 struct kvm_mmio_fragment *frag; 13513 13514 if (!data) 13515 return -EINVAL; 13516 13517 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13518 if (handled == bytes) 13519 return 1; 13520 13521 bytes -= handled; 13522 gpa += handled; 13523 data += handled; 13524 13525 /*TODO: Check if need to increment number of frags */ 13526 frag = vcpu->mmio_fragments; 13527 vcpu->mmio_nr_fragments = 1; 13528 frag->len = bytes; 13529 frag->gpa = gpa; 13530 frag->data = data; 13531 13532 vcpu->mmio_needed = 1; 13533 vcpu->mmio_cur_fragment = 0; 13534 13535 vcpu->run->mmio.phys_addr = gpa; 13536 vcpu->run->mmio.len = min(8u, frag->len); 13537 vcpu->run->mmio.is_write = 0; 13538 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13539 13540 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13541 13542 return 0; 13543 } 13544 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13545 13546 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13547 { 13548 vcpu->arch.sev_pio_count -= count; 13549 vcpu->arch.sev_pio_data += count * size; 13550 } 13551 13552 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13553 unsigned int port); 13554 13555 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13556 { 13557 int size = vcpu->arch.pio.size; 13558 int port = vcpu->arch.pio.port; 13559 13560 vcpu->arch.pio.count = 0; 13561 if (vcpu->arch.sev_pio_count) 13562 return kvm_sev_es_outs(vcpu, size, port); 13563 return 1; 13564 } 13565 13566 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13567 unsigned int port) 13568 { 13569 for (;;) { 13570 unsigned int count = 13571 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13572 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13573 13574 /* memcpy done already by emulator_pio_out. */ 13575 advance_sev_es_emulated_pio(vcpu, count, size); 13576 if (!ret) 13577 break; 13578 13579 /* Emulation done by the kernel. */ 13580 if (!vcpu->arch.sev_pio_count) 13581 return 1; 13582 } 13583 13584 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13585 return 0; 13586 } 13587 13588 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13589 unsigned int port); 13590 13591 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13592 { 13593 unsigned count = vcpu->arch.pio.count; 13594 int size = vcpu->arch.pio.size; 13595 int port = vcpu->arch.pio.port; 13596 13597 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13598 advance_sev_es_emulated_pio(vcpu, count, size); 13599 if (vcpu->arch.sev_pio_count) 13600 return kvm_sev_es_ins(vcpu, size, port); 13601 return 1; 13602 } 13603 13604 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13605 unsigned int port) 13606 { 13607 for (;;) { 13608 unsigned int count = 13609 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13610 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13611 break; 13612 13613 /* Emulation done by the kernel. */ 13614 advance_sev_es_emulated_pio(vcpu, count, size); 13615 if (!vcpu->arch.sev_pio_count) 13616 return 1; 13617 } 13618 13619 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13620 return 0; 13621 } 13622 13623 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13624 unsigned int port, void *data, unsigned int count, 13625 int in) 13626 { 13627 vcpu->arch.sev_pio_data = data; 13628 vcpu->arch.sev_pio_count = count; 13629 return in ? kvm_sev_es_ins(vcpu, size, port) 13630 : kvm_sev_es_outs(vcpu, size, port); 13631 } 13632 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13633 13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13663 13664 static int __init kvm_x86_init(void) 13665 { 13666 kvm_mmu_x86_module_init(); 13667 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13668 return 0; 13669 } 13670 module_init(kvm_x86_init); 13671 13672 static void __exit kvm_x86_exit(void) 13673 { 13674 /* 13675 * If module_init() is implemented, module_exit() must also be 13676 * implemented to allow module unload. 13677 */ 13678 } 13679 module_exit(kvm_x86_exit); 13680