xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 4bce6fce)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114 
115 static bool backwards_tsc_observed = false;
116 
117 #define KVM_NR_SHARED_MSRS 16
118 
119 struct kvm_shared_msrs_global {
120 	int nr;
121 	u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123 
124 struct kvm_shared_msrs {
125 	struct user_return_notifier urn;
126 	bool registered;
127 	struct kvm_shared_msr_values {
128 		u64 host;
129 		u64 curr;
130 	} values[KVM_NR_SHARED_MSRS];
131 };
132 
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135 
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
138 	{ "pf_guest", VCPU_STAT(pf_guest) },
139 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
140 	{ "invlpg", VCPU_STAT(invlpg) },
141 	{ "exits", VCPU_STAT(exits) },
142 	{ "io_exits", VCPU_STAT(io_exits) },
143 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
144 	{ "signal_exits", VCPU_STAT(signal_exits) },
145 	{ "irq_window", VCPU_STAT(irq_window_exits) },
146 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
147 	{ "halt_exits", VCPU_STAT(halt_exits) },
148 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 	{ "hypercalls", VCPU_STAT(hypercalls) },
151 	{ "request_irq", VCPU_STAT(request_irq_exits) },
152 	{ "irq_exits", VCPU_STAT(irq_exits) },
153 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
154 	{ "efer_reload", VCPU_STAT(efer_reload) },
155 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
156 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
157 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 	{ "irq_injections", VCPU_STAT(irq_injections) },
159 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
160 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
165 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
166 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
168 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 	{ "largepages", VM_STAT(lpages) },
170 	{ NULL }
171 };
172 
173 u64 __read_mostly host_xcr0;
174 
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176 
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 	int i;
180 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 		vcpu->arch.apf.gfns[i] = ~0;
182 }
183 
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 	unsigned slot;
187 	struct kvm_shared_msrs *locals
188 		= container_of(urn, struct kvm_shared_msrs, urn);
189 	struct kvm_shared_msr_values *values;
190 
191 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 		values = &locals->values[slot];
193 		if (values->host != values->curr) {
194 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 			values->curr = values->host;
196 		}
197 	}
198 	locals->registered = false;
199 	user_return_notifier_unregister(urn);
200 }
201 
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 	u64 value;
205 	unsigned int cpu = smp_processor_id();
206 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207 
208 	/* only read, and nobody should modify it at this time,
209 	 * so don't need lock */
210 	if (slot >= shared_msrs_global.nr) {
211 		printk(KERN_ERR "kvm: invalid MSR slot!");
212 		return;
213 	}
214 	rdmsrl_safe(msr, &value);
215 	smsr->values[slot].host = value;
216 	smsr->values[slot].curr = value;
217 }
218 
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 	if (slot >= shared_msrs_global.nr)
223 		shared_msrs_global.nr = slot + 1;
224 	shared_msrs_global.msrs[slot] = msr;
225 	/* we need ensured the shared_msr_global have been updated */
226 	smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229 
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 	unsigned i;
233 
234 	for (i = 0; i < shared_msrs_global.nr; ++i)
235 		shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237 
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 	int err;
243 
244 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 		return 0;
246 	smsr->values[slot].curr = value;
247 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 	if (err)
249 		return 1;
250 
251 	if (!smsr->registered) {
252 		smsr->urn.on_user_return = kvm_on_user_return;
253 		user_return_notifier_register(&smsr->urn);
254 		smsr->registered = true;
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259 
260 static void drop_user_return_notifiers(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264 
265 	if (smsr->registered)
266 		kvm_on_user_return(&smsr->urn);
267 }
268 
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 	return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274 
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 	u64 old_state = vcpu->arch.apic_base &
278 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 	u64 new_state = msr_info->data &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283 
284 	if (!msr_info->host_initiated &&
285 	    ((msr_info->data & reserved_bits) != 0 ||
286 	     new_state == X2APIC_ENABLE ||
287 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
288 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 	      old_state == 0)))
291 		return 1;
292 
293 	kvm_lapic_set_base(vcpu, msr_info->data);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297 
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 	/* Fault while not rebooting.  We want the trace. */
301 	BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304 
305 #define EXCPT_BENIGN		0
306 #define EXCPT_CONTRIBUTORY	1
307 #define EXCPT_PF		2
308 
309 static int exception_class(int vector)
310 {
311 	switch (vector) {
312 	case PF_VECTOR:
313 		return EXCPT_PF;
314 	case DE_VECTOR:
315 	case TS_VECTOR:
316 	case NP_VECTOR:
317 	case SS_VECTOR:
318 	case GP_VECTOR:
319 		return EXCPT_CONTRIBUTORY;
320 	default:
321 		break;
322 	}
323 	return EXCPT_BENIGN;
324 }
325 
326 #define EXCPT_FAULT		0
327 #define EXCPT_TRAP		1
328 #define EXCPT_ABORT		2
329 #define EXCPT_INTERRUPT		3
330 
331 static int exception_type(int vector)
332 {
333 	unsigned int mask;
334 
335 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 		return EXCPT_INTERRUPT;
337 
338 	mask = 1 << vector;
339 
340 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
341 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 		return EXCPT_TRAP;
343 
344 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 		return EXCPT_ABORT;
346 
347 	/* Reserved exceptions will result in fault */
348 	return EXCPT_FAULT;
349 }
350 
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 		unsigned nr, bool has_error, u32 error_code,
353 		bool reinject)
354 {
355 	u32 prev_nr;
356 	int class1, class2;
357 
358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
359 
360 	if (!vcpu->arch.exception.pending) {
361 	queue:
362 		if (has_error && !is_protmode(vcpu))
363 			has_error = false;
364 		vcpu->arch.exception.pending = true;
365 		vcpu->arch.exception.has_error_code = has_error;
366 		vcpu->arch.exception.nr = nr;
367 		vcpu->arch.exception.error_code = error_code;
368 		vcpu->arch.exception.reinject = reinject;
369 		return;
370 	}
371 
372 	/* to check exception */
373 	prev_nr = vcpu->arch.exception.nr;
374 	if (prev_nr == DF_VECTOR) {
375 		/* triple fault -> shutdown */
376 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 		return;
378 	}
379 	class1 = exception_class(prev_nr);
380 	class2 = exception_class(nr);
381 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 		/* generate double fault per SDM Table 5-5 */
384 		vcpu->arch.exception.pending = true;
385 		vcpu->arch.exception.has_error_code = true;
386 		vcpu->arch.exception.nr = DF_VECTOR;
387 		vcpu->arch.exception.error_code = 0;
388 	} else
389 		/* replace previous exception with a new one in a hope
390 		   that instruction re-execution will regenerate lost
391 		   exception */
392 		goto queue;
393 }
394 
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 	kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400 
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 	kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406 
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 	if (err)
410 		kvm_inject_gp(vcpu, 0);
411 	else
412 		kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415 
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	++vcpu->stat.pf_guest;
419 	vcpu->arch.cr2 = fault->address;
420 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423 
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 	else
429 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430 
431 	return fault->nested_page_fault;
432 }
433 
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 	atomic_inc(&vcpu->arch.nmi_queued);
437 	kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440 
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446 
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452 
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 		return true;
461 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 	return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465 
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 		return true;
470 
471 	kvm_queue_exception(vcpu, UD_VECTOR);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475 
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 			    gfn_t ngfn, void *data, int offset, int len,
483 			    u32 access)
484 {
485 	struct x86_exception exception;
486 	gfn_t real_gfn;
487 	gpa_t ngpa;
488 
489 	ngpa     = gfn_to_gpa(ngfn);
490 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 	if (real_gfn == UNMAPPED_GVA)
492 		return -EFAULT;
493 
494 	real_gfn = gpa_to_gfn(real_gfn);
495 
496 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499 
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 			       void *data, int offset, int len, u32 access)
502 {
503 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 				       data, offset, len, access);
505 }
506 
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 	int i;
515 	int ret;
516 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517 
518 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 				      offset * sizeof(u64), sizeof(pdpte),
520 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
521 	if (ret < 0) {
522 		ret = 0;
523 		goto out;
524 	}
525 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 		if (is_present_gpte(pdpte[i]) &&
527 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 			ret = 0;
529 			goto out;
530 		}
531 	}
532 	ret = 1;
533 
534 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 	__set_bit(VCPU_EXREG_PDPTR,
536 		  (unsigned long *)&vcpu->arch.regs_avail);
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544 
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 	bool changed = true;
549 	int offset;
550 	gfn_t gfn;
551 	int r;
552 
553 	if (is_long_mode(vcpu) || !is_pae(vcpu))
554 		return false;
555 
556 	if (!test_bit(VCPU_EXREG_PDPTR,
557 		      (unsigned long *)&vcpu->arch.regs_avail))
558 		return true;
559 
560 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
564 	if (r < 0)
565 		goto out;
566 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568 
569 	return changed;
570 }
571 
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 				    X86_CR0_CD | X86_CR0_NW;
577 
578 	cr0 |= X86_CR0_ET;
579 
580 #ifdef CONFIG_X86_64
581 	if (cr0 & 0xffffffff00000000UL)
582 		return 1;
583 #endif
584 
585 	cr0 &= ~CR0_RESERVED_BITS;
586 
587 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 		return 1;
589 
590 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 		return 1;
592 
593 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 		if ((vcpu->arch.efer & EFER_LME)) {
596 			int cs_db, cs_l;
597 
598 			if (!is_pae(vcpu))
599 				return 1;
600 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 			if (cs_l)
602 				return 1;
603 		} else
604 #endif
605 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 						 kvm_read_cr3(vcpu)))
607 			return 1;
608 	}
609 
610 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 		return 1;
612 
613 	kvm_x86_ops->set_cr0(vcpu, cr0);
614 
615 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 		kvm_clear_async_pf_completion_queue(vcpu);
617 		kvm_async_pf_hash_reset(vcpu);
618 	}
619 
620 	if ((cr0 ^ old_cr0) & update_bits)
621 		kvm_mmu_reset_context(vcpu);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625 
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631 
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 			!vcpu->guest_xcr0_loaded) {
636 		/* kvm_set_xcr() also depends on this */
637 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 		vcpu->guest_xcr0_loaded = 1;
639 	}
640 }
641 
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 	if (vcpu->guest_xcr0_loaded) {
645 		if (vcpu->arch.xcr0 != host_xcr0)
646 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 		vcpu->guest_xcr0_loaded = 0;
648 	}
649 }
650 
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 	u64 xcr0 = xcr;
654 	u64 old_xcr0 = vcpu->arch.xcr0;
655 	u64 valid_bits;
656 
657 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658 	if (index != XCR_XFEATURE_ENABLED_MASK)
659 		return 1;
660 	if (!(xcr0 & XSTATE_FP))
661 		return 1;
662 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 		return 1;
664 
665 	/*
666 	 * Do not allow the guest to set bits that we do not support
667 	 * saving.  However, xcr0 bit 0 is always set, even if the
668 	 * emulated CPU does not support XSAVE (see fx_init).
669 	 */
670 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 	if (xcr0 & ~valid_bits)
672 		return 1;
673 
674 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 		return 1;
676 
677 	if (xcr0 & XSTATE_AVX512) {
678 		if (!(xcr0 & XSTATE_YMM))
679 			return 1;
680 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 			return 1;
682 	}
683 	kvm_put_guest_xcr0(vcpu);
684 	vcpu->arch.xcr0 = xcr0;
685 
686 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 		kvm_update_cpuid(vcpu);
688 	return 0;
689 }
690 
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 	    __kvm_set_xcr(vcpu, index, xcr)) {
695 		kvm_inject_gp(vcpu, 0);
696 		return 1;
697 	}
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701 
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706 				   X86_CR4_PAE | X86_CR4_SMEP;
707 	if (cr4 & CR4_RESERVED_BITS)
708 		return 1;
709 
710 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 		return 1;
712 
713 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 		return 1;
715 
716 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 		return 1;
718 
719 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 		return 1;
721 
722 	if (is_long_mode(vcpu)) {
723 		if (!(cr4 & X86_CR4_PAE))
724 			return 1;
725 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 		   && ((cr4 ^ old_cr4) & pdptr_bits)
727 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 				   kvm_read_cr3(vcpu)))
729 		return 1;
730 
731 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 		if (!guest_cpuid_has_pcid(vcpu))
733 			return 1;
734 
735 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 			return 1;
738 	}
739 
740 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 		return 1;
742 
743 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 		kvm_mmu_reset_context(vcpu);
746 
747 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749 
750 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 		kvm_update_cpuid(vcpu);
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756 
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760 	cr3 &= ~CR3_PCID_INVD;
761 #endif
762 
763 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 		kvm_mmu_sync_roots(vcpu);
765 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 		return 0;
767 	}
768 
769 	if (is_long_mode(vcpu)) {
770 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 			return 1;
772 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
773 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 		return 1;
775 
776 	vcpu->arch.cr3 = cr3;
777 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 	kvm_mmu_new_cr3(vcpu);
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782 
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785 	if (cr8 & CR8_RESERVED_BITS)
786 		return 1;
787 	if (irqchip_in_kernel(vcpu->kvm))
788 		kvm_lapic_set_tpr(vcpu, cr8);
789 	else
790 		vcpu->arch.cr8 = cr8;
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794 
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797 	if (irqchip_in_kernel(vcpu->kvm))
798 		return kvm_lapic_get_cr8(vcpu);
799 	else
800 		return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803 
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806 	int i;
807 
808 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809 		for (i = 0; i < KVM_NR_DB_REGS; i++)
810 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812 	}
813 }
814 
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820 
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823 	unsigned long dr7;
824 
825 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826 		dr7 = vcpu->arch.guest_debug_dr7;
827 	else
828 		dr7 = vcpu->arch.dr7;
829 	kvm_x86_ops->set_dr7(vcpu, dr7);
830 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831 	if (dr7 & DR7_BP_EN_MASK)
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834 
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837 	u64 fixed = DR6_FIXED_1;
838 
839 	if (!guest_cpuid_has_rtm(vcpu))
840 		fixed |= DR6_RTM;
841 	return fixed;
842 }
843 
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846 	switch (dr) {
847 	case 0 ... 3:
848 		vcpu->arch.db[dr] = val;
849 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850 			vcpu->arch.eff_db[dr] = val;
851 		break;
852 	case 4:
853 		/* fall through */
854 	case 6:
855 		if (val & 0xffffffff00000000ULL)
856 			return -1; /* #GP */
857 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858 		kvm_update_dr6(vcpu);
859 		break;
860 	case 5:
861 		/* fall through */
862 	default: /* 7 */
863 		if (val & 0xffffffff00000000ULL)
864 			return -1; /* #GP */
865 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866 		kvm_update_dr7(vcpu);
867 		break;
868 	}
869 
870 	return 0;
871 }
872 
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875 	if (__kvm_set_dr(vcpu, dr, val)) {
876 		kvm_inject_gp(vcpu, 0);
877 		return 1;
878 	}
879 	return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882 
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885 	switch (dr) {
886 	case 0 ... 3:
887 		*val = vcpu->arch.db[dr];
888 		break;
889 	case 4:
890 		/* fall through */
891 	case 6:
892 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893 			*val = vcpu->arch.dr6;
894 		else
895 			*val = kvm_x86_ops->get_dr6(vcpu);
896 		break;
897 	case 5:
898 		/* fall through */
899 	default: /* 7 */
900 		*val = vcpu->arch.dr7;
901 		break;
902 	}
903 	return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906 
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910 	u64 data;
911 	int err;
912 
913 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914 	if (err)
915 		return err;
916 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918 	return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921 
922 /*
923  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925  *
926  * This list is modified at module load time to reflect the
927  * capabilities of the host cpu. This capabilities test skips MSRs that are
928  * kvm-specific. Those are put in the beginning of the list.
929  */
930 
931 #define KVM_SAVE_MSRS_BEGIN	12
932 static u32 msrs_to_save[] = {
933 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938 	MSR_KVM_PV_EOI_EN,
939 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940 	MSR_STAR,
941 #ifdef CONFIG_X86_64
942 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947 
948 static unsigned num_msrs_to_save;
949 
950 static const u32 emulated_msrs[] = {
951 	MSR_IA32_TSC_ADJUST,
952 	MSR_IA32_TSCDEADLINE,
953 	MSR_IA32_MISC_ENABLE,
954 	MSR_IA32_MCG_STATUS,
955 	MSR_IA32_MCG_CTL,
956 };
957 
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960 	if (efer & efer_reserved_bits)
961 		return false;
962 
963 	if (efer & EFER_FFXSR) {
964 		struct kvm_cpuid_entry2 *feat;
965 
966 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968 			return false;
969 	}
970 
971 	if (efer & EFER_SVME) {
972 		struct kvm_cpuid_entry2 *feat;
973 
974 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976 			return false;
977 	}
978 
979 	return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982 
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985 	u64 old_efer = vcpu->arch.efer;
986 
987 	if (!kvm_valid_efer(vcpu, efer))
988 		return 1;
989 
990 	if (is_paging(vcpu)
991 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992 		return 1;
993 
994 	efer &= ~EFER_LMA;
995 	efer |= vcpu->arch.efer & EFER_LMA;
996 
997 	kvm_x86_ops->set_efer(vcpu, efer);
998 
999 	/* Update reserved bits */
1000 	if ((efer ^ old_efer) & EFER_NX)
1001 		kvm_mmu_reset_context(vcpu);
1002 
1003 	return 0;
1004 }
1005 
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008        efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011 
1012 /*
1013  * Writes msr value into into the appropriate "register".
1014  * Returns 0 on success, non-0 otherwise.
1015  * Assumes vcpu_load() was already called.
1016  */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019 	switch (msr->index) {
1020 	case MSR_FS_BASE:
1021 	case MSR_GS_BASE:
1022 	case MSR_KERNEL_GS_BASE:
1023 	case MSR_CSTAR:
1024 	case MSR_LSTAR:
1025 		if (is_noncanonical_address(msr->data))
1026 			return 1;
1027 		break;
1028 	case MSR_IA32_SYSENTER_EIP:
1029 	case MSR_IA32_SYSENTER_ESP:
1030 		/*
1031 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032 		 * non-canonical address is written on Intel but not on
1033 		 * AMD (which ignores the top 32-bits, because it does
1034 		 * not implement 64-bit SYSENTER).
1035 		 *
1036 		 * 64-bit code should hence be able to write a non-canonical
1037 		 * value on AMD.  Making the address canonical ensures that
1038 		 * vmentry does not fail on Intel after writing a non-canonical
1039 		 * value, and that something deterministic happens if the guest
1040 		 * invokes 64-bit SYSENTER.
1041 		 */
1042 		msr->data = get_canonical(msr->data);
1043 	}
1044 	return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047 
1048 /*
1049  * Adapt set_msr() to msr_io()'s calling convention
1050  */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053 	struct msr_data msr;
1054 
1055 	msr.data = *data;
1056 	msr.index = index;
1057 	msr.host_initiated = true;
1058 	return kvm_set_msr(vcpu, &msr);
1059 }
1060 
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063 	seqcount_t	seq;
1064 
1065 	struct { /* extract of a clocksource struct */
1066 		int vclock_mode;
1067 		cycle_t	cycle_last;
1068 		cycle_t	mask;
1069 		u32	mult;
1070 		u32	shift;
1071 	} clock;
1072 
1073 	u64		boot_ns;
1074 	u64		nsec_base;
1075 };
1076 
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078 
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082 	u64 boot_ns;
1083 
1084 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085 
1086 	write_seqcount_begin(&vdata->seq);
1087 
1088 	/* copy pvclock gtod data */
1089 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1090 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1091 	vdata->clock.mask		= tk->tkr_mono.mask;
1092 	vdata->clock.mult		= tk->tkr_mono.mult;
1093 	vdata->clock.shift		= tk->tkr_mono.shift;
1094 
1095 	vdata->boot_ns			= boot_ns;
1096 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1097 
1098 	write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101 
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104 	/*
1105 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106 	 * vcpu_enter_guest.  This function is only called from
1107 	 * the physical CPU that is running vcpu.
1108 	 */
1109 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111 
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114 	int version;
1115 	int r;
1116 	struct pvclock_wall_clock wc;
1117 	struct timespec boot;
1118 
1119 	if (!wall_clock)
1120 		return;
1121 
1122 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123 	if (r)
1124 		return;
1125 
1126 	if (version & 1)
1127 		++version;  /* first time write, random junk */
1128 
1129 	++version;
1130 
1131 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132 
1133 	/*
1134 	 * The guest calculates current wall clock time by adding
1135 	 * system time (updated by kvm_guest_time_update below) to the
1136 	 * wall clock specified here.  guest system time equals host
1137 	 * system time for us, thus we must fill in host boot time here.
1138 	 */
1139 	getboottime(&boot);
1140 
1141 	if (kvm->arch.kvmclock_offset) {
1142 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143 		boot = timespec_sub(boot, ts);
1144 	}
1145 	wc.sec = boot.tv_sec;
1146 	wc.nsec = boot.tv_nsec;
1147 	wc.version = version;
1148 
1149 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150 
1151 	version++;
1152 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154 
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157 	uint32_t quotient, remainder;
1158 
1159 	/* Don't try to replace with do_div(), this one calculates
1160 	 * "(dividend << 32) / divisor" */
1161 	__asm__ ( "divl %4"
1162 		  : "=a" (quotient), "=d" (remainder)
1163 		  : "0" (0), "1" (dividend), "r" (divisor) );
1164 	return quotient;
1165 }
1166 
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168 			       s8 *pshift, u32 *pmultiplier)
1169 {
1170 	uint64_t scaled64;
1171 	int32_t  shift = 0;
1172 	uint64_t tps64;
1173 	uint32_t tps32;
1174 
1175 	tps64 = base_khz * 1000LL;
1176 	scaled64 = scaled_khz * 1000LL;
1177 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178 		tps64 >>= 1;
1179 		shift--;
1180 	}
1181 
1182 	tps32 = (uint32_t)tps64;
1183 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185 			scaled64 >>= 1;
1186 		else
1187 			tps32 <<= 1;
1188 		shift++;
1189 	}
1190 
1191 	*pshift = shift;
1192 	*pmultiplier = div_frac(scaled64, tps32);
1193 
1194 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197 
1198 static inline u64 get_kernel_ns(void)
1199 {
1200 	return ktime_get_boot_ns();
1201 }
1202 
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206 
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209 
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213 				   vcpu->arch.virtual_tsc_shift);
1214 }
1215 
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218 	u64 v = (u64)khz * (1000000 + ppm);
1219 	do_div(v, 1000000);
1220 	return v;
1221 }
1222 
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225 	u32 thresh_lo, thresh_hi;
1226 	int use_scaling = 0;
1227 
1228 	/* tsc_khz can be zero if TSC calibration fails */
1229 	if (this_tsc_khz == 0)
1230 		return;
1231 
1232 	/* Compute a scale to convert nanoseconds in TSC cycles */
1233 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234 			   &vcpu->arch.virtual_tsc_shift,
1235 			   &vcpu->arch.virtual_tsc_mult);
1236 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237 
1238 	/*
1239 	 * Compute the variation in TSC rate which is acceptable
1240 	 * within the range of tolerance and decide if the
1241 	 * rate being applied is within that bounds of the hardware
1242 	 * rate.  If so, no scaling or compensation need be done.
1243 	 */
1244 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248 		use_scaling = 1;
1249 	}
1250 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252 
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256 				      vcpu->arch.virtual_tsc_mult,
1257 				      vcpu->arch.virtual_tsc_shift);
1258 	tsc += vcpu->arch.this_tsc_write;
1259 	return tsc;
1260 }
1261 
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265 	bool vcpus_matched;
1266 	struct kvm_arch *ka = &vcpu->kvm->arch;
1267 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268 
1269 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270 			 atomic_read(&vcpu->kvm->online_vcpus));
1271 
1272 	/*
1273 	 * Once the masterclock is enabled, always perform request in
1274 	 * order to update it.
1275 	 *
1276 	 * In order to enable masterclock, the host clocksource must be TSC
1277 	 * and the vcpus need to have matched TSCs.  When that happens,
1278 	 * perform request to enable masterclock.
1279 	 */
1280 	if (ka->use_master_clock ||
1281 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283 
1284 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285 			    atomic_read(&vcpu->kvm->online_vcpus),
1286 		            ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289 
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295 
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298 	struct kvm *kvm = vcpu->kvm;
1299 	u64 offset, ns, elapsed;
1300 	unsigned long flags;
1301 	s64 usdiff;
1302 	bool matched;
1303 	bool already_matched;
1304 	u64 data = msr->data;
1305 
1306 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308 	ns = get_kernel_ns();
1309 	elapsed = ns - kvm->arch.last_tsc_nsec;
1310 
1311 	if (vcpu->arch.virtual_tsc_khz) {
1312 		int faulted = 0;
1313 
1314 		/* n.b - signed multiplication and division required */
1315 		usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319 		/* do_div() only does unsigned */
1320 		asm("1: idivl %[divisor]\n"
1321 		    "2: xor %%edx, %%edx\n"
1322 		    "   movl $0, %[faulted]\n"
1323 		    "3:\n"
1324 		    ".section .fixup,\"ax\"\n"
1325 		    "4: movl $1, %[faulted]\n"
1326 		    "   jmp  3b\n"
1327 		    ".previous\n"
1328 
1329 		_ASM_EXTABLE(1b, 4b)
1330 
1331 		: "=A"(usdiff), [faulted] "=r" (faulted)
1332 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333 
1334 #endif
1335 		do_div(elapsed, 1000);
1336 		usdiff -= elapsed;
1337 		if (usdiff < 0)
1338 			usdiff = -usdiff;
1339 
1340 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1341 		if (faulted)
1342 			usdiff = USEC_PER_SEC;
1343 	} else
1344 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345 
1346 	/*
1347 	 * Special case: TSC write with a small delta (1 second) of virtual
1348 	 * cycle time against real time is interpreted as an attempt to
1349 	 * synchronize the CPU.
1350          *
1351 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1352 	 * TSC, we add elapsed time in this computation.  We could let the
1353 	 * compensation code attempt to catch up if we fall behind, but
1354 	 * it's better to try to match offsets from the beginning.
1355          */
1356 	if (usdiff < USEC_PER_SEC &&
1357 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358 		if (!check_tsc_unstable()) {
1359 			offset = kvm->arch.cur_tsc_offset;
1360 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1361 		} else {
1362 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1363 			data += delta;
1364 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366 		}
1367 		matched = true;
1368 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369 	} else {
1370 		/*
1371 		 * We split periods of matched TSC writes into generations.
1372 		 * For each generation, we track the original measured
1373 		 * nanosecond time, offset, and write, so if TSCs are in
1374 		 * sync, we can match exact offset, and if not, we can match
1375 		 * exact software computation in compute_guest_tsc()
1376 		 *
1377 		 * These values are tracked in kvm->arch.cur_xxx variables.
1378 		 */
1379 		kvm->arch.cur_tsc_generation++;
1380 		kvm->arch.cur_tsc_nsec = ns;
1381 		kvm->arch.cur_tsc_write = data;
1382 		kvm->arch.cur_tsc_offset = offset;
1383 		matched = false;
1384 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385 			 kvm->arch.cur_tsc_generation, data);
1386 	}
1387 
1388 	/*
1389 	 * We also track th most recent recorded KHZ, write and time to
1390 	 * allow the matching interval to be extended at each write.
1391 	 */
1392 	kvm->arch.last_tsc_nsec = ns;
1393 	kvm->arch.last_tsc_write = data;
1394 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395 
1396 	vcpu->arch.last_guest_tsc = data;
1397 
1398 	/* Keep track of which generation this VCPU has synchronized to */
1399 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402 
1403 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404 		update_ia32_tsc_adjust_msr(vcpu, offset);
1405 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407 
1408 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409 	if (!matched) {
1410 		kvm->arch.nr_vcpus_matched_tsc = 0;
1411 	} else if (!already_matched) {
1412 		kvm->arch.nr_vcpus_matched_tsc++;
1413 	}
1414 
1415 	kvm_track_tsc_matching(vcpu);
1416 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418 
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420 
1421 #ifdef CONFIG_X86_64
1422 
1423 static cycle_t read_tsc(void)
1424 {
1425 	cycle_t ret;
1426 	u64 last;
1427 
1428 	/*
1429 	 * Empirically, a fence (of type that depends on the CPU)
1430 	 * before rdtsc is enough to ensure that rdtsc is ordered
1431 	 * with respect to loads.  The various CPU manuals are unclear
1432 	 * as to whether rdtsc can be reordered with later loads,
1433 	 * but no one has ever seen it happen.
1434 	 */
1435 	rdtsc_barrier();
1436 	ret = (cycle_t)vget_cycles();
1437 
1438 	last = pvclock_gtod_data.clock.cycle_last;
1439 
1440 	if (likely(ret >= last))
1441 		return ret;
1442 
1443 	/*
1444 	 * GCC likes to generate cmov here, but this branch is extremely
1445 	 * predictable (it's just a funciton of time and the likely is
1446 	 * very likely) and there's a data dependence, so force GCC
1447 	 * to generate a branch instead.  I don't barrier() because
1448 	 * we don't actually need a barrier, and if this function
1449 	 * ever gets inlined it will generate worse code.
1450 	 */
1451 	asm volatile ("");
1452 	return last;
1453 }
1454 
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457 	long v;
1458 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459 
1460 	*cycle_now = read_tsc();
1461 
1462 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463 	return v * gtod->clock.mult;
1464 }
1465 
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469 	unsigned long seq;
1470 	int mode;
1471 	u64 ns;
1472 
1473 	do {
1474 		seq = read_seqcount_begin(&gtod->seq);
1475 		mode = gtod->clock.vclock_mode;
1476 		ns = gtod->nsec_base;
1477 		ns += vgettsc(cycle_now);
1478 		ns >>= gtod->clock.shift;
1479 		ns += gtod->boot_ns;
1480 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481 	*t = ns;
1482 
1483 	return mode;
1484 }
1485 
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489 	/* checked again under seqlock below */
1490 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491 		return false;
1492 
1493 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496 
1497 /*
1498  *
1499  * Assuming a stable TSC across physical CPUS, and a stable TSC
1500  * across virtual CPUs, the following condition is possible.
1501  * Each numbered line represents an event visible to both
1502  * CPUs at the next numbered event.
1503  *
1504  * "timespecX" represents host monotonic time. "tscX" represents
1505  * RDTSC value.
1506  *
1507  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1508  *
1509  * 1.  read timespec0,tsc0
1510  * 2.					| timespec1 = timespec0 + N
1511  * 					| tsc1 = tsc0 + M
1512  * 3. transition to guest		| transition to guest
1513  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1515  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516  *
1517  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518  *
1519  * 	- ret0 < ret1
1520  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521  *		...
1522  *	- 0 < N - M => M < N
1523  *
1524  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525  * always the case (the difference between two distinct xtime instances
1526  * might be smaller then the difference between corresponding TSC reads,
1527  * when updating guest vcpus pvclock areas).
1528  *
1529  * To avoid that problem, do not allow visibility of distinct
1530  * system_timestamp/tsc_timestamp values simultaneously: use a master
1531  * copy of host monotonic time values. Update that master copy
1532  * in lockstep.
1533  *
1534  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535  *
1536  */
1537 
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541 	struct kvm_arch *ka = &kvm->arch;
1542 	int vclock_mode;
1543 	bool host_tsc_clocksource, vcpus_matched;
1544 
1545 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546 			atomic_read(&kvm->online_vcpus));
1547 
1548 	/*
1549 	 * If the host uses TSC clock, then passthrough TSC as stable
1550 	 * to the guest.
1551 	 */
1552 	host_tsc_clocksource = kvm_get_time_and_clockread(
1553 					&ka->master_kernel_ns,
1554 					&ka->master_cycle_now);
1555 
1556 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557 				&& !backwards_tsc_observed
1558 				&& !ka->boot_vcpu_runs_old_kvmclock;
1559 
1560 	if (ka->use_master_clock)
1561 		atomic_set(&kvm_guest_has_master_clock, 1);
1562 
1563 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565 					vcpus_matched);
1566 #endif
1567 }
1568 
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572 	int i;
1573 	struct kvm_vcpu *vcpu;
1574 	struct kvm_arch *ka = &kvm->arch;
1575 
1576 	spin_lock(&ka->pvclock_gtod_sync_lock);
1577 	kvm_make_mclock_inprogress_request(kvm);
1578 	/* no guest entries from this point */
1579 	pvclock_update_vm_gtod_copy(kvm);
1580 
1581 	kvm_for_each_vcpu(i, vcpu, kvm)
1582 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583 
1584 	/* guest entries allowed */
1585 	kvm_for_each_vcpu(i, vcpu, kvm)
1586 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587 
1588 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591 
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594 	unsigned long flags, this_tsc_khz;
1595 	struct kvm_vcpu_arch *vcpu = &v->arch;
1596 	struct kvm_arch *ka = &v->kvm->arch;
1597 	s64 kernel_ns;
1598 	u64 tsc_timestamp, host_tsc;
1599 	struct pvclock_vcpu_time_info guest_hv_clock;
1600 	u8 pvclock_flags;
1601 	bool use_master_clock;
1602 
1603 	kernel_ns = 0;
1604 	host_tsc = 0;
1605 
1606 	/*
1607 	 * If the host uses TSC clock, then passthrough TSC as stable
1608 	 * to the guest.
1609 	 */
1610 	spin_lock(&ka->pvclock_gtod_sync_lock);
1611 	use_master_clock = ka->use_master_clock;
1612 	if (use_master_clock) {
1613 		host_tsc = ka->master_cycle_now;
1614 		kernel_ns = ka->master_kernel_ns;
1615 	}
1616 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1617 
1618 	/* Keep irq disabled to prevent changes to the clock */
1619 	local_irq_save(flags);
1620 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621 	if (unlikely(this_tsc_khz == 0)) {
1622 		local_irq_restore(flags);
1623 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624 		return 1;
1625 	}
1626 	if (!use_master_clock) {
1627 		host_tsc = native_read_tsc();
1628 		kernel_ns = get_kernel_ns();
1629 	}
1630 
1631 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632 
1633 	/*
1634 	 * We may have to catch up the TSC to match elapsed wall clock
1635 	 * time for two reasons, even if kvmclock is used.
1636 	 *   1) CPU could have been running below the maximum TSC rate
1637 	 *   2) Broken TSC compensation resets the base at each VCPU
1638 	 *      entry to avoid unknown leaps of TSC even when running
1639 	 *      again on the same CPU.  This may cause apparent elapsed
1640 	 *      time to disappear, and the guest to stand still or run
1641 	 *	very slowly.
1642 	 */
1643 	if (vcpu->tsc_catchup) {
1644 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1645 		if (tsc > tsc_timestamp) {
1646 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647 			tsc_timestamp = tsc;
1648 		}
1649 	}
1650 
1651 	local_irq_restore(flags);
1652 
1653 	if (!vcpu->pv_time_enabled)
1654 		return 0;
1655 
1656 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658 				   &vcpu->hv_clock.tsc_shift,
1659 				   &vcpu->hv_clock.tsc_to_system_mul);
1660 		vcpu->hw_tsc_khz = this_tsc_khz;
1661 	}
1662 
1663 	/* With all the info we got, fill in the values */
1664 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666 	vcpu->last_guest_tsc = tsc_timestamp;
1667 
1668 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669 		&guest_hv_clock, sizeof(guest_hv_clock))))
1670 		return 0;
1671 
1672 	/*
1673 	 * The interface expects us to write an even number signaling that the
1674 	 * update is finished. Since the guest won't see the intermediate
1675 	 * state, we just increase by 2 at the end.
1676 	 */
1677 	vcpu->hv_clock.version = guest_hv_clock.version + 2;
1678 
1679 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1680 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1681 
1682 	if (vcpu->pvclock_set_guest_stopped_request) {
1683 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1684 		vcpu->pvclock_set_guest_stopped_request = false;
1685 	}
1686 
1687 	/* If the host uses TSC clocksource, then it is stable */
1688 	if (use_master_clock)
1689 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1690 
1691 	vcpu->hv_clock.flags = pvclock_flags;
1692 
1693 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1694 
1695 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1696 				&vcpu->hv_clock,
1697 				sizeof(vcpu->hv_clock));
1698 	return 0;
1699 }
1700 
1701 /*
1702  * kvmclock updates which are isolated to a given vcpu, such as
1703  * vcpu->cpu migration, should not allow system_timestamp from
1704  * the rest of the vcpus to remain static. Otherwise ntp frequency
1705  * correction applies to one vcpu's system_timestamp but not
1706  * the others.
1707  *
1708  * So in those cases, request a kvmclock update for all vcpus.
1709  * We need to rate-limit these requests though, as they can
1710  * considerably slow guests that have a large number of vcpus.
1711  * The time for a remote vcpu to update its kvmclock is bound
1712  * by the delay we use to rate-limit the updates.
1713  */
1714 
1715 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1716 
1717 static void kvmclock_update_fn(struct work_struct *work)
1718 {
1719 	int i;
1720 	struct delayed_work *dwork = to_delayed_work(work);
1721 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1722 					   kvmclock_update_work);
1723 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1724 	struct kvm_vcpu *vcpu;
1725 
1726 	kvm_for_each_vcpu(i, vcpu, kvm) {
1727 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728 		kvm_vcpu_kick(vcpu);
1729 	}
1730 }
1731 
1732 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1733 {
1734 	struct kvm *kvm = v->kvm;
1735 
1736 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1737 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1738 					KVMCLOCK_UPDATE_DELAY);
1739 }
1740 
1741 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1742 
1743 static void kvmclock_sync_fn(struct work_struct *work)
1744 {
1745 	struct delayed_work *dwork = to_delayed_work(work);
1746 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1747 					   kvmclock_sync_work);
1748 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1749 
1750 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1751 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1752 					KVMCLOCK_SYNC_PERIOD);
1753 }
1754 
1755 static bool msr_mtrr_valid(unsigned msr)
1756 {
1757 	switch (msr) {
1758 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1759 	case MSR_MTRRfix64K_00000:
1760 	case MSR_MTRRfix16K_80000:
1761 	case MSR_MTRRfix16K_A0000:
1762 	case MSR_MTRRfix4K_C0000:
1763 	case MSR_MTRRfix4K_C8000:
1764 	case MSR_MTRRfix4K_D0000:
1765 	case MSR_MTRRfix4K_D8000:
1766 	case MSR_MTRRfix4K_E0000:
1767 	case MSR_MTRRfix4K_E8000:
1768 	case MSR_MTRRfix4K_F0000:
1769 	case MSR_MTRRfix4K_F8000:
1770 	case MSR_MTRRdefType:
1771 	case MSR_IA32_CR_PAT:
1772 		return true;
1773 	case 0x2f8:
1774 		return true;
1775 	}
1776 	return false;
1777 }
1778 
1779 static bool valid_pat_type(unsigned t)
1780 {
1781 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1782 }
1783 
1784 static bool valid_mtrr_type(unsigned t)
1785 {
1786 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1787 }
1788 
1789 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1790 {
1791 	int i;
1792 	u64 mask;
1793 
1794 	if (!msr_mtrr_valid(msr))
1795 		return false;
1796 
1797 	if (msr == MSR_IA32_CR_PAT) {
1798 		for (i = 0; i < 8; i++)
1799 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1800 				return false;
1801 		return true;
1802 	} else if (msr == MSR_MTRRdefType) {
1803 		if (data & ~0xcff)
1804 			return false;
1805 		return valid_mtrr_type(data & 0xff);
1806 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1807 		for (i = 0; i < 8 ; i++)
1808 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1809 				return false;
1810 		return true;
1811 	}
1812 
1813 	/* variable MTRRs */
1814 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1815 
1816 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1817 	if ((msr & 1) == 0) {
1818 		/* MTRR base */
1819 		if (!valid_mtrr_type(data & 0xff))
1820 			return false;
1821 		mask |= 0xf00;
1822 	} else
1823 		/* MTRR mask */
1824 		mask |= 0x7ff;
1825 	if (data & mask) {
1826 		kvm_inject_gp(vcpu, 0);
1827 		return false;
1828 	}
1829 
1830 	return true;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1833 
1834 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1835 {
1836 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1837 
1838 	if (!kvm_mtrr_valid(vcpu, msr, data))
1839 		return 1;
1840 
1841 	if (msr == MSR_MTRRdefType) {
1842 		vcpu->arch.mtrr_state.def_type = data;
1843 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1844 	} else if (msr == MSR_MTRRfix64K_00000)
1845 		p[0] = data;
1846 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1847 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1848 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1849 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1850 	else if (msr == MSR_IA32_CR_PAT)
1851 		vcpu->arch.pat = data;
1852 	else {	/* Variable MTRRs */
1853 		int idx, is_mtrr_mask;
1854 		u64 *pt;
1855 
1856 		idx = (msr - 0x200) / 2;
1857 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1858 		if (!is_mtrr_mask)
1859 			pt =
1860 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1861 		else
1862 			pt =
1863 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1864 		*pt = data;
1865 	}
1866 
1867 	kvm_mmu_reset_context(vcpu);
1868 	return 0;
1869 }
1870 
1871 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1872 {
1873 	u64 mcg_cap = vcpu->arch.mcg_cap;
1874 	unsigned bank_num = mcg_cap & 0xff;
1875 
1876 	switch (msr) {
1877 	case MSR_IA32_MCG_STATUS:
1878 		vcpu->arch.mcg_status = data;
1879 		break;
1880 	case MSR_IA32_MCG_CTL:
1881 		if (!(mcg_cap & MCG_CTL_P))
1882 			return 1;
1883 		if (data != 0 && data != ~(u64)0)
1884 			return -1;
1885 		vcpu->arch.mcg_ctl = data;
1886 		break;
1887 	default:
1888 		if (msr >= MSR_IA32_MC0_CTL &&
1889 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1890 			u32 offset = msr - MSR_IA32_MC0_CTL;
1891 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1892 			 * some Linux kernels though clear bit 10 in bank 4 to
1893 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1894 			 * this to avoid an uncatched #GP in the guest
1895 			 */
1896 			if ((offset & 0x3) == 0 &&
1897 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1898 				return -1;
1899 			vcpu->arch.mce_banks[offset] = data;
1900 			break;
1901 		}
1902 		return 1;
1903 	}
1904 	return 0;
1905 }
1906 
1907 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1908 {
1909 	struct kvm *kvm = vcpu->kvm;
1910 	int lm = is_long_mode(vcpu);
1911 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1912 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1913 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1914 		: kvm->arch.xen_hvm_config.blob_size_32;
1915 	u32 page_num = data & ~PAGE_MASK;
1916 	u64 page_addr = data & PAGE_MASK;
1917 	u8 *page;
1918 	int r;
1919 
1920 	r = -E2BIG;
1921 	if (page_num >= blob_size)
1922 		goto out;
1923 	r = -ENOMEM;
1924 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1925 	if (IS_ERR(page)) {
1926 		r = PTR_ERR(page);
1927 		goto out;
1928 	}
1929 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1930 		goto out_free;
1931 	r = 0;
1932 out_free:
1933 	kfree(page);
1934 out:
1935 	return r;
1936 }
1937 
1938 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1939 {
1940 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1941 }
1942 
1943 static bool kvm_hv_msr_partition_wide(u32 msr)
1944 {
1945 	bool r = false;
1946 	switch (msr) {
1947 	case HV_X64_MSR_GUEST_OS_ID:
1948 	case HV_X64_MSR_HYPERCALL:
1949 	case HV_X64_MSR_REFERENCE_TSC:
1950 	case HV_X64_MSR_TIME_REF_COUNT:
1951 		r = true;
1952 		break;
1953 	}
1954 
1955 	return r;
1956 }
1957 
1958 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1959 {
1960 	struct kvm *kvm = vcpu->kvm;
1961 
1962 	switch (msr) {
1963 	case HV_X64_MSR_GUEST_OS_ID:
1964 		kvm->arch.hv_guest_os_id = data;
1965 		/* setting guest os id to zero disables hypercall page */
1966 		if (!kvm->arch.hv_guest_os_id)
1967 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1968 		break;
1969 	case HV_X64_MSR_HYPERCALL: {
1970 		u64 gfn;
1971 		unsigned long addr;
1972 		u8 instructions[4];
1973 
1974 		/* if guest os id is not set hypercall should remain disabled */
1975 		if (!kvm->arch.hv_guest_os_id)
1976 			break;
1977 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1978 			kvm->arch.hv_hypercall = data;
1979 			break;
1980 		}
1981 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1982 		addr = gfn_to_hva(kvm, gfn);
1983 		if (kvm_is_error_hva(addr))
1984 			return 1;
1985 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1986 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1987 		if (__copy_to_user((void __user *)addr, instructions, 4))
1988 			return 1;
1989 		kvm->arch.hv_hypercall = data;
1990 		mark_page_dirty(kvm, gfn);
1991 		break;
1992 	}
1993 	case HV_X64_MSR_REFERENCE_TSC: {
1994 		u64 gfn;
1995 		HV_REFERENCE_TSC_PAGE tsc_ref;
1996 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1997 		kvm->arch.hv_tsc_page = data;
1998 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1999 			break;
2000 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2001 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2002 			&tsc_ref, sizeof(tsc_ref)))
2003 			return 1;
2004 		mark_page_dirty(kvm, gfn);
2005 		break;
2006 	}
2007 	default:
2008 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2009 			    "data 0x%llx\n", msr, data);
2010 		return 1;
2011 	}
2012 	return 0;
2013 }
2014 
2015 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2016 {
2017 	switch (msr) {
2018 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
2019 		u64 gfn;
2020 		unsigned long addr;
2021 
2022 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2023 			vcpu->arch.hv_vapic = data;
2024 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2025 				return 1;
2026 			break;
2027 		}
2028 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2029 		addr = gfn_to_hva(vcpu->kvm, gfn);
2030 		if (kvm_is_error_hva(addr))
2031 			return 1;
2032 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2033 			return 1;
2034 		vcpu->arch.hv_vapic = data;
2035 		mark_page_dirty(vcpu->kvm, gfn);
2036 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2037 			return 1;
2038 		break;
2039 	}
2040 	case HV_X64_MSR_EOI:
2041 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2042 	case HV_X64_MSR_ICR:
2043 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2044 	case HV_X64_MSR_TPR:
2045 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2046 	default:
2047 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2048 			    "data 0x%llx\n", msr, data);
2049 		return 1;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2056 {
2057 	gpa_t gpa = data & ~0x3f;
2058 
2059 	/* Bits 2:5 are reserved, Should be zero */
2060 	if (data & 0x3c)
2061 		return 1;
2062 
2063 	vcpu->arch.apf.msr_val = data;
2064 
2065 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2066 		kvm_clear_async_pf_completion_queue(vcpu);
2067 		kvm_async_pf_hash_reset(vcpu);
2068 		return 0;
2069 	}
2070 
2071 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2072 					sizeof(u32)))
2073 		return 1;
2074 
2075 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2076 	kvm_async_pf_wakeup_all(vcpu);
2077 	return 0;
2078 }
2079 
2080 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2081 {
2082 	vcpu->arch.pv_time_enabled = false;
2083 }
2084 
2085 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2086 {
2087 	u64 delta;
2088 
2089 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2090 		return;
2091 
2092 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2093 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2094 	vcpu->arch.st.accum_steal = delta;
2095 }
2096 
2097 static void record_steal_time(struct kvm_vcpu *vcpu)
2098 {
2099 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2100 		return;
2101 
2102 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2103 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2104 		return;
2105 
2106 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2107 	vcpu->arch.st.steal.version += 2;
2108 	vcpu->arch.st.accum_steal = 0;
2109 
2110 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2111 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2112 }
2113 
2114 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2115 {
2116 	bool pr = false;
2117 	u32 msr = msr_info->index;
2118 	u64 data = msr_info->data;
2119 
2120 	switch (msr) {
2121 	case MSR_AMD64_NB_CFG:
2122 	case MSR_IA32_UCODE_REV:
2123 	case MSR_IA32_UCODE_WRITE:
2124 	case MSR_VM_HSAVE_PA:
2125 	case MSR_AMD64_PATCH_LOADER:
2126 	case MSR_AMD64_BU_CFG2:
2127 		break;
2128 
2129 	case MSR_EFER:
2130 		return set_efer(vcpu, data);
2131 	case MSR_K7_HWCR:
2132 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2133 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2134 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2135 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2136 		if (data != 0) {
2137 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2138 				    data);
2139 			return 1;
2140 		}
2141 		break;
2142 	case MSR_FAM10H_MMIO_CONF_BASE:
2143 		if (data != 0) {
2144 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2145 				    "0x%llx\n", data);
2146 			return 1;
2147 		}
2148 		break;
2149 	case MSR_IA32_DEBUGCTLMSR:
2150 		if (!data) {
2151 			/* We support the non-activated case already */
2152 			break;
2153 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2154 			/* Values other than LBR and BTF are vendor-specific,
2155 			   thus reserved and should throw a #GP */
2156 			return 1;
2157 		}
2158 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2159 			    __func__, data);
2160 		break;
2161 	case 0x200 ... 0x2ff:
2162 		return set_msr_mtrr(vcpu, msr, data);
2163 	case MSR_IA32_APICBASE:
2164 		return kvm_set_apic_base(vcpu, msr_info);
2165 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2166 		return kvm_x2apic_msr_write(vcpu, msr, data);
2167 	case MSR_IA32_TSCDEADLINE:
2168 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169 		break;
2170 	case MSR_IA32_TSC_ADJUST:
2171 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2172 			if (!msr_info->host_initiated) {
2173 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2174 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2175 			}
2176 			vcpu->arch.ia32_tsc_adjust_msr = data;
2177 		}
2178 		break;
2179 	case MSR_IA32_MISC_ENABLE:
2180 		vcpu->arch.ia32_misc_enable_msr = data;
2181 		break;
2182 	case MSR_KVM_WALL_CLOCK_NEW:
2183 	case MSR_KVM_WALL_CLOCK:
2184 		vcpu->kvm->arch.wall_clock = data;
2185 		kvm_write_wall_clock(vcpu->kvm, data);
2186 		break;
2187 	case MSR_KVM_SYSTEM_TIME_NEW:
2188 	case MSR_KVM_SYSTEM_TIME: {
2189 		u64 gpa_offset;
2190 		struct kvm_arch *ka = &vcpu->kvm->arch;
2191 
2192 		kvmclock_reset(vcpu);
2193 
2194 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2195 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2196 
2197 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2198 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2199 					&vcpu->requests);
2200 
2201 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2202 		}
2203 
2204 		vcpu->arch.time = data;
2205 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2206 
2207 		/* we verify if the enable bit is set... */
2208 		if (!(data & 1))
2209 			break;
2210 
2211 		gpa_offset = data & ~(PAGE_MASK | 1);
2212 
2213 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2214 		     &vcpu->arch.pv_time, data & ~1ULL,
2215 		     sizeof(struct pvclock_vcpu_time_info)))
2216 			vcpu->arch.pv_time_enabled = false;
2217 		else
2218 			vcpu->arch.pv_time_enabled = true;
2219 
2220 		break;
2221 	}
2222 	case MSR_KVM_ASYNC_PF_EN:
2223 		if (kvm_pv_enable_async_pf(vcpu, data))
2224 			return 1;
2225 		break;
2226 	case MSR_KVM_STEAL_TIME:
2227 
2228 		if (unlikely(!sched_info_on()))
2229 			return 1;
2230 
2231 		if (data & KVM_STEAL_RESERVED_MASK)
2232 			return 1;
2233 
2234 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2235 						data & KVM_STEAL_VALID_BITS,
2236 						sizeof(struct kvm_steal_time)))
2237 			return 1;
2238 
2239 		vcpu->arch.st.msr_val = data;
2240 
2241 		if (!(data & KVM_MSR_ENABLED))
2242 			break;
2243 
2244 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2245 
2246 		preempt_disable();
2247 		accumulate_steal_time(vcpu);
2248 		preempt_enable();
2249 
2250 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2251 
2252 		break;
2253 	case MSR_KVM_PV_EOI_EN:
2254 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2255 			return 1;
2256 		break;
2257 
2258 	case MSR_IA32_MCG_CTL:
2259 	case MSR_IA32_MCG_STATUS:
2260 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2261 		return set_msr_mce(vcpu, msr, data);
2262 
2263 	/* Performance counters are not protected by a CPUID bit,
2264 	 * so we should check all of them in the generic path for the sake of
2265 	 * cross vendor migration.
2266 	 * Writing a zero into the event select MSRs disables them,
2267 	 * which we perfectly emulate ;-). Any other value should be at least
2268 	 * reported, some guests depend on them.
2269 	 */
2270 	case MSR_K7_EVNTSEL0:
2271 	case MSR_K7_EVNTSEL1:
2272 	case MSR_K7_EVNTSEL2:
2273 	case MSR_K7_EVNTSEL3:
2274 		if (data != 0)
2275 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2276 				    "0x%x data 0x%llx\n", msr, data);
2277 		break;
2278 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2279 	 * so we ignore writes to make it happy.
2280 	 */
2281 	case MSR_K7_PERFCTR0:
2282 	case MSR_K7_PERFCTR1:
2283 	case MSR_K7_PERFCTR2:
2284 	case MSR_K7_PERFCTR3:
2285 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2286 			    "0x%x data 0x%llx\n", msr, data);
2287 		break;
2288 	case MSR_P6_PERFCTR0:
2289 	case MSR_P6_PERFCTR1:
2290 		pr = true;
2291 	case MSR_P6_EVNTSEL0:
2292 	case MSR_P6_EVNTSEL1:
2293 		if (kvm_pmu_msr(vcpu, msr))
2294 			return kvm_pmu_set_msr(vcpu, msr_info);
2295 
2296 		if (pr || data != 0)
2297 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298 				    "0x%x data 0x%llx\n", msr, data);
2299 		break;
2300 	case MSR_K7_CLK_CTL:
2301 		/*
2302 		 * Ignore all writes to this no longer documented MSR.
2303 		 * Writes are only relevant for old K7 processors,
2304 		 * all pre-dating SVM, but a recommended workaround from
2305 		 * AMD for these chips. It is possible to specify the
2306 		 * affected processor models on the command line, hence
2307 		 * the need to ignore the workaround.
2308 		 */
2309 		break;
2310 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311 		if (kvm_hv_msr_partition_wide(msr)) {
2312 			int r;
2313 			mutex_lock(&vcpu->kvm->lock);
2314 			r = set_msr_hyperv_pw(vcpu, msr, data);
2315 			mutex_unlock(&vcpu->kvm->lock);
2316 			return r;
2317 		} else
2318 			return set_msr_hyperv(vcpu, msr, data);
2319 		break;
2320 	case MSR_IA32_BBL_CR_CTL3:
2321 		/* Drop writes to this legacy MSR -- see rdmsr
2322 		 * counterpart for further detail.
2323 		 */
2324 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2325 		break;
2326 	case MSR_AMD64_OSVW_ID_LENGTH:
2327 		if (!guest_cpuid_has_osvw(vcpu))
2328 			return 1;
2329 		vcpu->arch.osvw.length = data;
2330 		break;
2331 	case MSR_AMD64_OSVW_STATUS:
2332 		if (!guest_cpuid_has_osvw(vcpu))
2333 			return 1;
2334 		vcpu->arch.osvw.status = data;
2335 		break;
2336 	default:
2337 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2338 			return xen_hvm_config(vcpu, data);
2339 		if (kvm_pmu_msr(vcpu, msr))
2340 			return kvm_pmu_set_msr(vcpu, msr_info);
2341 		if (!ignore_msrs) {
2342 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2343 				    msr, data);
2344 			return 1;
2345 		} else {
2346 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2347 				    msr, data);
2348 			break;
2349 		}
2350 	}
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2354 
2355 
2356 /*
2357  * Reads an msr value (of 'msr_index') into 'pdata'.
2358  * Returns 0 on success, non-0 otherwise.
2359  * Assumes vcpu_load() was already called.
2360  */
2361 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2362 {
2363 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2364 }
2365 EXPORT_SYMBOL_GPL(kvm_get_msr);
2366 
2367 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2368 {
2369 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2370 
2371 	if (!msr_mtrr_valid(msr))
2372 		return 1;
2373 
2374 	if (msr == MSR_MTRRdefType)
2375 		*pdata = vcpu->arch.mtrr_state.def_type +
2376 			 (vcpu->arch.mtrr_state.enabled << 10);
2377 	else if (msr == MSR_MTRRfix64K_00000)
2378 		*pdata = p[0];
2379 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2380 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2381 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2382 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2383 	else if (msr == MSR_IA32_CR_PAT)
2384 		*pdata = vcpu->arch.pat;
2385 	else {	/* Variable MTRRs */
2386 		int idx, is_mtrr_mask;
2387 		u64 *pt;
2388 
2389 		idx = (msr - 0x200) / 2;
2390 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2391 		if (!is_mtrr_mask)
2392 			pt =
2393 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2394 		else
2395 			pt =
2396 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2397 		*pdata = *pt;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2404 {
2405 	u64 data;
2406 	u64 mcg_cap = vcpu->arch.mcg_cap;
2407 	unsigned bank_num = mcg_cap & 0xff;
2408 
2409 	switch (msr) {
2410 	case MSR_IA32_P5_MC_ADDR:
2411 	case MSR_IA32_P5_MC_TYPE:
2412 		data = 0;
2413 		break;
2414 	case MSR_IA32_MCG_CAP:
2415 		data = vcpu->arch.mcg_cap;
2416 		break;
2417 	case MSR_IA32_MCG_CTL:
2418 		if (!(mcg_cap & MCG_CTL_P))
2419 			return 1;
2420 		data = vcpu->arch.mcg_ctl;
2421 		break;
2422 	case MSR_IA32_MCG_STATUS:
2423 		data = vcpu->arch.mcg_status;
2424 		break;
2425 	default:
2426 		if (msr >= MSR_IA32_MC0_CTL &&
2427 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2428 			u32 offset = msr - MSR_IA32_MC0_CTL;
2429 			data = vcpu->arch.mce_banks[offset];
2430 			break;
2431 		}
2432 		return 1;
2433 	}
2434 	*pdata = data;
2435 	return 0;
2436 }
2437 
2438 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2439 {
2440 	u64 data = 0;
2441 	struct kvm *kvm = vcpu->kvm;
2442 
2443 	switch (msr) {
2444 	case HV_X64_MSR_GUEST_OS_ID:
2445 		data = kvm->arch.hv_guest_os_id;
2446 		break;
2447 	case HV_X64_MSR_HYPERCALL:
2448 		data = kvm->arch.hv_hypercall;
2449 		break;
2450 	case HV_X64_MSR_TIME_REF_COUNT: {
2451 		data =
2452 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2453 		break;
2454 	}
2455 	case HV_X64_MSR_REFERENCE_TSC:
2456 		data = kvm->arch.hv_tsc_page;
2457 		break;
2458 	default:
2459 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2460 		return 1;
2461 	}
2462 
2463 	*pdata = data;
2464 	return 0;
2465 }
2466 
2467 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2468 {
2469 	u64 data = 0;
2470 
2471 	switch (msr) {
2472 	case HV_X64_MSR_VP_INDEX: {
2473 		int r;
2474 		struct kvm_vcpu *v;
2475 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2476 			if (v == vcpu) {
2477 				data = r;
2478 				break;
2479 			}
2480 		}
2481 		break;
2482 	}
2483 	case HV_X64_MSR_EOI:
2484 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2485 	case HV_X64_MSR_ICR:
2486 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2487 	case HV_X64_MSR_TPR:
2488 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2489 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2490 		data = vcpu->arch.hv_vapic;
2491 		break;
2492 	default:
2493 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2494 		return 1;
2495 	}
2496 	*pdata = data;
2497 	return 0;
2498 }
2499 
2500 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2501 {
2502 	u64 data;
2503 
2504 	switch (msr) {
2505 	case MSR_IA32_PLATFORM_ID:
2506 	case MSR_IA32_EBL_CR_POWERON:
2507 	case MSR_IA32_DEBUGCTLMSR:
2508 	case MSR_IA32_LASTBRANCHFROMIP:
2509 	case MSR_IA32_LASTBRANCHTOIP:
2510 	case MSR_IA32_LASTINTFROMIP:
2511 	case MSR_IA32_LASTINTTOIP:
2512 	case MSR_K8_SYSCFG:
2513 	case MSR_K7_HWCR:
2514 	case MSR_VM_HSAVE_PA:
2515 	case MSR_K7_EVNTSEL0:
2516 	case MSR_K7_EVNTSEL1:
2517 	case MSR_K7_EVNTSEL2:
2518 	case MSR_K7_EVNTSEL3:
2519 	case MSR_K7_PERFCTR0:
2520 	case MSR_K7_PERFCTR1:
2521 	case MSR_K7_PERFCTR2:
2522 	case MSR_K7_PERFCTR3:
2523 	case MSR_K8_INT_PENDING_MSG:
2524 	case MSR_AMD64_NB_CFG:
2525 	case MSR_FAM10H_MMIO_CONF_BASE:
2526 	case MSR_AMD64_BU_CFG2:
2527 		data = 0;
2528 		break;
2529 	case MSR_P6_PERFCTR0:
2530 	case MSR_P6_PERFCTR1:
2531 	case MSR_P6_EVNTSEL0:
2532 	case MSR_P6_EVNTSEL1:
2533 		if (kvm_pmu_msr(vcpu, msr))
2534 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2535 		data = 0;
2536 		break;
2537 	case MSR_IA32_UCODE_REV:
2538 		data = 0x100000000ULL;
2539 		break;
2540 	case MSR_MTRRcap:
2541 		data = 0x500 | KVM_NR_VAR_MTRR;
2542 		break;
2543 	case 0x200 ... 0x2ff:
2544 		return get_msr_mtrr(vcpu, msr, pdata);
2545 	case 0xcd: /* fsb frequency */
2546 		data = 3;
2547 		break;
2548 		/*
2549 		 * MSR_EBC_FREQUENCY_ID
2550 		 * Conservative value valid for even the basic CPU models.
2551 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2552 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2553 		 * and 266MHz for model 3, or 4. Set Core Clock
2554 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2555 		 * 31:24) even though these are only valid for CPU
2556 		 * models > 2, however guests may end up dividing or
2557 		 * multiplying by zero otherwise.
2558 		 */
2559 	case MSR_EBC_FREQUENCY_ID:
2560 		data = 1 << 24;
2561 		break;
2562 	case MSR_IA32_APICBASE:
2563 		data = kvm_get_apic_base(vcpu);
2564 		break;
2565 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2566 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2567 		break;
2568 	case MSR_IA32_TSCDEADLINE:
2569 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2570 		break;
2571 	case MSR_IA32_TSC_ADJUST:
2572 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2573 		break;
2574 	case MSR_IA32_MISC_ENABLE:
2575 		data = vcpu->arch.ia32_misc_enable_msr;
2576 		break;
2577 	case MSR_IA32_PERF_STATUS:
2578 		/* TSC increment by tick */
2579 		data = 1000ULL;
2580 		/* CPU multiplier */
2581 		data |= (((uint64_t)4ULL) << 40);
2582 		break;
2583 	case MSR_EFER:
2584 		data = vcpu->arch.efer;
2585 		break;
2586 	case MSR_KVM_WALL_CLOCK:
2587 	case MSR_KVM_WALL_CLOCK_NEW:
2588 		data = vcpu->kvm->arch.wall_clock;
2589 		break;
2590 	case MSR_KVM_SYSTEM_TIME:
2591 	case MSR_KVM_SYSTEM_TIME_NEW:
2592 		data = vcpu->arch.time;
2593 		break;
2594 	case MSR_KVM_ASYNC_PF_EN:
2595 		data = vcpu->arch.apf.msr_val;
2596 		break;
2597 	case MSR_KVM_STEAL_TIME:
2598 		data = vcpu->arch.st.msr_val;
2599 		break;
2600 	case MSR_KVM_PV_EOI_EN:
2601 		data = vcpu->arch.pv_eoi.msr_val;
2602 		break;
2603 	case MSR_IA32_P5_MC_ADDR:
2604 	case MSR_IA32_P5_MC_TYPE:
2605 	case MSR_IA32_MCG_CAP:
2606 	case MSR_IA32_MCG_CTL:
2607 	case MSR_IA32_MCG_STATUS:
2608 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2609 		return get_msr_mce(vcpu, msr, pdata);
2610 	case MSR_K7_CLK_CTL:
2611 		/*
2612 		 * Provide expected ramp-up count for K7. All other
2613 		 * are set to zero, indicating minimum divisors for
2614 		 * every field.
2615 		 *
2616 		 * This prevents guest kernels on AMD host with CPU
2617 		 * type 6, model 8 and higher from exploding due to
2618 		 * the rdmsr failing.
2619 		 */
2620 		data = 0x20000000;
2621 		break;
2622 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2623 		if (kvm_hv_msr_partition_wide(msr)) {
2624 			int r;
2625 			mutex_lock(&vcpu->kvm->lock);
2626 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2627 			mutex_unlock(&vcpu->kvm->lock);
2628 			return r;
2629 		} else
2630 			return get_msr_hyperv(vcpu, msr, pdata);
2631 		break;
2632 	case MSR_IA32_BBL_CR_CTL3:
2633 		/* This legacy MSR exists but isn't fully documented in current
2634 		 * silicon.  It is however accessed by winxp in very narrow
2635 		 * scenarios where it sets bit #19, itself documented as
2636 		 * a "reserved" bit.  Best effort attempt to source coherent
2637 		 * read data here should the balance of the register be
2638 		 * interpreted by the guest:
2639 		 *
2640 		 * L2 cache control register 3: 64GB range, 256KB size,
2641 		 * enabled, latency 0x1, configured
2642 		 */
2643 		data = 0xbe702111;
2644 		break;
2645 	case MSR_AMD64_OSVW_ID_LENGTH:
2646 		if (!guest_cpuid_has_osvw(vcpu))
2647 			return 1;
2648 		data = vcpu->arch.osvw.length;
2649 		break;
2650 	case MSR_AMD64_OSVW_STATUS:
2651 		if (!guest_cpuid_has_osvw(vcpu))
2652 			return 1;
2653 		data = vcpu->arch.osvw.status;
2654 		break;
2655 	default:
2656 		if (kvm_pmu_msr(vcpu, msr))
2657 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2658 		if (!ignore_msrs) {
2659 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2660 			return 1;
2661 		} else {
2662 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2663 			data = 0;
2664 		}
2665 		break;
2666 	}
2667 	*pdata = data;
2668 	return 0;
2669 }
2670 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2671 
2672 /*
2673  * Read or write a bunch of msrs. All parameters are kernel addresses.
2674  *
2675  * @return number of msrs set successfully.
2676  */
2677 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2678 		    struct kvm_msr_entry *entries,
2679 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2680 				  unsigned index, u64 *data))
2681 {
2682 	int i, idx;
2683 
2684 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2685 	for (i = 0; i < msrs->nmsrs; ++i)
2686 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2687 			break;
2688 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2689 
2690 	return i;
2691 }
2692 
2693 /*
2694  * Read or write a bunch of msrs. Parameters are user addresses.
2695  *
2696  * @return number of msrs set successfully.
2697  */
2698 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2699 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2700 				unsigned index, u64 *data),
2701 		  int writeback)
2702 {
2703 	struct kvm_msrs msrs;
2704 	struct kvm_msr_entry *entries;
2705 	int r, n;
2706 	unsigned size;
2707 
2708 	r = -EFAULT;
2709 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2710 		goto out;
2711 
2712 	r = -E2BIG;
2713 	if (msrs.nmsrs >= MAX_IO_MSRS)
2714 		goto out;
2715 
2716 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2717 	entries = memdup_user(user_msrs->entries, size);
2718 	if (IS_ERR(entries)) {
2719 		r = PTR_ERR(entries);
2720 		goto out;
2721 	}
2722 
2723 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2724 	if (r < 0)
2725 		goto out_free;
2726 
2727 	r = -EFAULT;
2728 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2729 		goto out_free;
2730 
2731 	r = n;
2732 
2733 out_free:
2734 	kfree(entries);
2735 out:
2736 	return r;
2737 }
2738 
2739 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2740 {
2741 	int r;
2742 
2743 	switch (ext) {
2744 	case KVM_CAP_IRQCHIP:
2745 	case KVM_CAP_HLT:
2746 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2747 	case KVM_CAP_SET_TSS_ADDR:
2748 	case KVM_CAP_EXT_CPUID:
2749 	case KVM_CAP_EXT_EMUL_CPUID:
2750 	case KVM_CAP_CLOCKSOURCE:
2751 	case KVM_CAP_PIT:
2752 	case KVM_CAP_NOP_IO_DELAY:
2753 	case KVM_CAP_MP_STATE:
2754 	case KVM_CAP_SYNC_MMU:
2755 	case KVM_CAP_USER_NMI:
2756 	case KVM_CAP_REINJECT_CONTROL:
2757 	case KVM_CAP_IRQ_INJECT_STATUS:
2758 	case KVM_CAP_IOEVENTFD:
2759 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2760 	case KVM_CAP_PIT2:
2761 	case KVM_CAP_PIT_STATE2:
2762 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2763 	case KVM_CAP_XEN_HVM:
2764 	case KVM_CAP_ADJUST_CLOCK:
2765 	case KVM_CAP_VCPU_EVENTS:
2766 	case KVM_CAP_HYPERV:
2767 	case KVM_CAP_HYPERV_VAPIC:
2768 	case KVM_CAP_HYPERV_SPIN:
2769 	case KVM_CAP_PCI_SEGMENT:
2770 	case KVM_CAP_DEBUGREGS:
2771 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2772 	case KVM_CAP_XSAVE:
2773 	case KVM_CAP_ASYNC_PF:
2774 	case KVM_CAP_GET_TSC_KHZ:
2775 	case KVM_CAP_KVMCLOCK_CTRL:
2776 	case KVM_CAP_READONLY_MEM:
2777 	case KVM_CAP_HYPERV_TIME:
2778 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2779 	case KVM_CAP_TSC_DEADLINE_TIMER:
2780 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2781 	case KVM_CAP_ASSIGN_DEV_IRQ:
2782 	case KVM_CAP_PCI_2_3:
2783 #endif
2784 		r = 1;
2785 		break;
2786 	case KVM_CAP_COALESCED_MMIO:
2787 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2788 		break;
2789 	case KVM_CAP_VAPIC:
2790 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2791 		break;
2792 	case KVM_CAP_NR_VCPUS:
2793 		r = KVM_SOFT_MAX_VCPUS;
2794 		break;
2795 	case KVM_CAP_MAX_VCPUS:
2796 		r = KVM_MAX_VCPUS;
2797 		break;
2798 	case KVM_CAP_NR_MEMSLOTS:
2799 		r = KVM_USER_MEM_SLOTS;
2800 		break;
2801 	case KVM_CAP_PV_MMU:	/* obsolete */
2802 		r = 0;
2803 		break;
2804 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2805 	case KVM_CAP_IOMMU:
2806 		r = iommu_present(&pci_bus_type);
2807 		break;
2808 #endif
2809 	case KVM_CAP_MCE:
2810 		r = KVM_MAX_MCE_BANKS;
2811 		break;
2812 	case KVM_CAP_XCRS:
2813 		r = cpu_has_xsave;
2814 		break;
2815 	case KVM_CAP_TSC_CONTROL:
2816 		r = kvm_has_tsc_control;
2817 		break;
2818 	default:
2819 		r = 0;
2820 		break;
2821 	}
2822 	return r;
2823 
2824 }
2825 
2826 long kvm_arch_dev_ioctl(struct file *filp,
2827 			unsigned int ioctl, unsigned long arg)
2828 {
2829 	void __user *argp = (void __user *)arg;
2830 	long r;
2831 
2832 	switch (ioctl) {
2833 	case KVM_GET_MSR_INDEX_LIST: {
2834 		struct kvm_msr_list __user *user_msr_list = argp;
2835 		struct kvm_msr_list msr_list;
2836 		unsigned n;
2837 
2838 		r = -EFAULT;
2839 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2840 			goto out;
2841 		n = msr_list.nmsrs;
2842 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2843 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2844 			goto out;
2845 		r = -E2BIG;
2846 		if (n < msr_list.nmsrs)
2847 			goto out;
2848 		r = -EFAULT;
2849 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2850 				 num_msrs_to_save * sizeof(u32)))
2851 			goto out;
2852 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2853 				 &emulated_msrs,
2854 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2855 			goto out;
2856 		r = 0;
2857 		break;
2858 	}
2859 	case KVM_GET_SUPPORTED_CPUID:
2860 	case KVM_GET_EMULATED_CPUID: {
2861 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2862 		struct kvm_cpuid2 cpuid;
2863 
2864 		r = -EFAULT;
2865 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2866 			goto out;
2867 
2868 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2869 					    ioctl);
2870 		if (r)
2871 			goto out;
2872 
2873 		r = -EFAULT;
2874 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2875 			goto out;
2876 		r = 0;
2877 		break;
2878 	}
2879 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2880 		u64 mce_cap;
2881 
2882 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2883 		r = -EFAULT;
2884 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2885 			goto out;
2886 		r = 0;
2887 		break;
2888 	}
2889 	default:
2890 		r = -EINVAL;
2891 	}
2892 out:
2893 	return r;
2894 }
2895 
2896 static void wbinvd_ipi(void *garbage)
2897 {
2898 	wbinvd();
2899 }
2900 
2901 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2902 {
2903 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2904 }
2905 
2906 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2907 {
2908 	/* Address WBINVD may be executed by guest */
2909 	if (need_emulate_wbinvd(vcpu)) {
2910 		if (kvm_x86_ops->has_wbinvd_exit())
2911 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2912 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2913 			smp_call_function_single(vcpu->cpu,
2914 					wbinvd_ipi, NULL, 1);
2915 	}
2916 
2917 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2918 
2919 	/* Apply any externally detected TSC adjustments (due to suspend) */
2920 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2921 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2922 		vcpu->arch.tsc_offset_adjustment = 0;
2923 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2924 	}
2925 
2926 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2927 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2928 				native_read_tsc() - vcpu->arch.last_host_tsc;
2929 		if (tsc_delta < 0)
2930 			mark_tsc_unstable("KVM discovered backwards TSC");
2931 		if (check_tsc_unstable()) {
2932 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2933 						vcpu->arch.last_guest_tsc);
2934 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2935 			vcpu->arch.tsc_catchup = 1;
2936 		}
2937 		/*
2938 		 * On a host with synchronized TSC, there is no need to update
2939 		 * kvmclock on vcpu->cpu migration
2940 		 */
2941 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2942 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2943 		if (vcpu->cpu != cpu)
2944 			kvm_migrate_timers(vcpu);
2945 		vcpu->cpu = cpu;
2946 	}
2947 
2948 	accumulate_steal_time(vcpu);
2949 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2950 }
2951 
2952 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2953 {
2954 	kvm_x86_ops->vcpu_put(vcpu);
2955 	kvm_put_guest_fpu(vcpu);
2956 	vcpu->arch.last_host_tsc = native_read_tsc();
2957 }
2958 
2959 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2960 				    struct kvm_lapic_state *s)
2961 {
2962 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2963 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2964 
2965 	return 0;
2966 }
2967 
2968 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2969 				    struct kvm_lapic_state *s)
2970 {
2971 	kvm_apic_post_state_restore(vcpu, s);
2972 	update_cr8_intercept(vcpu);
2973 
2974 	return 0;
2975 }
2976 
2977 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2978 				    struct kvm_interrupt *irq)
2979 {
2980 	if (irq->irq >= KVM_NR_INTERRUPTS)
2981 		return -EINVAL;
2982 	if (irqchip_in_kernel(vcpu->kvm))
2983 		return -ENXIO;
2984 
2985 	kvm_queue_interrupt(vcpu, irq->irq, false);
2986 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2987 
2988 	return 0;
2989 }
2990 
2991 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2992 {
2993 	kvm_inject_nmi(vcpu);
2994 
2995 	return 0;
2996 }
2997 
2998 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2999 					   struct kvm_tpr_access_ctl *tac)
3000 {
3001 	if (tac->flags)
3002 		return -EINVAL;
3003 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3004 	return 0;
3005 }
3006 
3007 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3008 					u64 mcg_cap)
3009 {
3010 	int r;
3011 	unsigned bank_num = mcg_cap & 0xff, bank;
3012 
3013 	r = -EINVAL;
3014 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3015 		goto out;
3016 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3017 		goto out;
3018 	r = 0;
3019 	vcpu->arch.mcg_cap = mcg_cap;
3020 	/* Init IA32_MCG_CTL to all 1s */
3021 	if (mcg_cap & MCG_CTL_P)
3022 		vcpu->arch.mcg_ctl = ~(u64)0;
3023 	/* Init IA32_MCi_CTL to all 1s */
3024 	for (bank = 0; bank < bank_num; bank++)
3025 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3026 out:
3027 	return r;
3028 }
3029 
3030 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3031 				      struct kvm_x86_mce *mce)
3032 {
3033 	u64 mcg_cap = vcpu->arch.mcg_cap;
3034 	unsigned bank_num = mcg_cap & 0xff;
3035 	u64 *banks = vcpu->arch.mce_banks;
3036 
3037 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3038 		return -EINVAL;
3039 	/*
3040 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3041 	 * reporting is disabled
3042 	 */
3043 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3044 	    vcpu->arch.mcg_ctl != ~(u64)0)
3045 		return 0;
3046 	banks += 4 * mce->bank;
3047 	/*
3048 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3049 	 * reporting is disabled for the bank
3050 	 */
3051 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3052 		return 0;
3053 	if (mce->status & MCI_STATUS_UC) {
3054 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3055 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3056 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3057 			return 0;
3058 		}
3059 		if (banks[1] & MCI_STATUS_VAL)
3060 			mce->status |= MCI_STATUS_OVER;
3061 		banks[2] = mce->addr;
3062 		banks[3] = mce->misc;
3063 		vcpu->arch.mcg_status = mce->mcg_status;
3064 		banks[1] = mce->status;
3065 		kvm_queue_exception(vcpu, MC_VECTOR);
3066 	} else if (!(banks[1] & MCI_STATUS_VAL)
3067 		   || !(banks[1] & MCI_STATUS_UC)) {
3068 		if (banks[1] & MCI_STATUS_VAL)
3069 			mce->status |= MCI_STATUS_OVER;
3070 		banks[2] = mce->addr;
3071 		banks[3] = mce->misc;
3072 		banks[1] = mce->status;
3073 	} else
3074 		banks[1] |= MCI_STATUS_OVER;
3075 	return 0;
3076 }
3077 
3078 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3079 					       struct kvm_vcpu_events *events)
3080 {
3081 	process_nmi(vcpu);
3082 	events->exception.injected =
3083 		vcpu->arch.exception.pending &&
3084 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3085 	events->exception.nr = vcpu->arch.exception.nr;
3086 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3087 	events->exception.pad = 0;
3088 	events->exception.error_code = vcpu->arch.exception.error_code;
3089 
3090 	events->interrupt.injected =
3091 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3092 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3093 	events->interrupt.soft = 0;
3094 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3095 
3096 	events->nmi.injected = vcpu->arch.nmi_injected;
3097 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3098 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3099 	events->nmi.pad = 0;
3100 
3101 	events->sipi_vector = 0; /* never valid when reporting to user space */
3102 
3103 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104 			 | KVM_VCPUEVENT_VALID_SHADOW);
3105 	memset(&events->reserved, 0, sizeof(events->reserved));
3106 }
3107 
3108 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3109 					      struct kvm_vcpu_events *events)
3110 {
3111 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3112 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3113 			      | KVM_VCPUEVENT_VALID_SHADOW))
3114 		return -EINVAL;
3115 
3116 	process_nmi(vcpu);
3117 	vcpu->arch.exception.pending = events->exception.injected;
3118 	vcpu->arch.exception.nr = events->exception.nr;
3119 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3120 	vcpu->arch.exception.error_code = events->exception.error_code;
3121 
3122 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3123 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3124 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3125 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3126 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3127 						  events->interrupt.shadow);
3128 
3129 	vcpu->arch.nmi_injected = events->nmi.injected;
3130 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3131 		vcpu->arch.nmi_pending = events->nmi.pending;
3132 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3133 
3134 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3135 	    kvm_vcpu_has_lapic(vcpu))
3136 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3137 
3138 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3139 
3140 	return 0;
3141 }
3142 
3143 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3144 					     struct kvm_debugregs *dbgregs)
3145 {
3146 	unsigned long val;
3147 
3148 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3149 	kvm_get_dr(vcpu, 6, &val);
3150 	dbgregs->dr6 = val;
3151 	dbgregs->dr7 = vcpu->arch.dr7;
3152 	dbgregs->flags = 0;
3153 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3154 }
3155 
3156 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3157 					    struct kvm_debugregs *dbgregs)
3158 {
3159 	if (dbgregs->flags)
3160 		return -EINVAL;
3161 
3162 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3163 	kvm_update_dr0123(vcpu);
3164 	vcpu->arch.dr6 = dbgregs->dr6;
3165 	kvm_update_dr6(vcpu);
3166 	vcpu->arch.dr7 = dbgregs->dr7;
3167 	kvm_update_dr7(vcpu);
3168 
3169 	return 0;
3170 }
3171 
3172 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3173 
3174 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3175 {
3176 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3177 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3178 	u64 valid;
3179 
3180 	/*
3181 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3182 	 * leaves 0 and 1 in the loop below.
3183 	 */
3184 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3185 
3186 	/* Set XSTATE_BV */
3187 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3188 
3189 	/*
3190 	 * Copy each region from the possibly compacted offset to the
3191 	 * non-compacted offset.
3192 	 */
3193 	valid = xstate_bv & ~XSTATE_FPSSE;
3194 	while (valid) {
3195 		u64 feature = valid & -valid;
3196 		int index = fls64(feature) - 1;
3197 		void *src = get_xsave_addr(xsave, feature);
3198 
3199 		if (src) {
3200 			u32 size, offset, ecx, edx;
3201 			cpuid_count(XSTATE_CPUID, index,
3202 				    &size, &offset, &ecx, &edx);
3203 			memcpy(dest + offset, src, size);
3204 		}
3205 
3206 		valid -= feature;
3207 	}
3208 }
3209 
3210 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3211 {
3212 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3213 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3214 	u64 valid;
3215 
3216 	/*
3217 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3218 	 * leaves 0 and 1 in the loop below.
3219 	 */
3220 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3221 
3222 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3223 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3224 	if (cpu_has_xsaves)
3225 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3226 
3227 	/*
3228 	 * Copy each region from the non-compacted offset to the
3229 	 * possibly compacted offset.
3230 	 */
3231 	valid = xstate_bv & ~XSTATE_FPSSE;
3232 	while (valid) {
3233 		u64 feature = valid & -valid;
3234 		int index = fls64(feature) - 1;
3235 		void *dest = get_xsave_addr(xsave, feature);
3236 
3237 		if (dest) {
3238 			u32 size, offset, ecx, edx;
3239 			cpuid_count(XSTATE_CPUID, index,
3240 				    &size, &offset, &ecx, &edx);
3241 			memcpy(dest, src + offset, size);
3242 		} else
3243 			WARN_ON_ONCE(1);
3244 
3245 		valid -= feature;
3246 	}
3247 }
3248 
3249 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3250 					 struct kvm_xsave *guest_xsave)
3251 {
3252 	if (cpu_has_xsave) {
3253 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3254 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3255 	} else {
3256 		memcpy(guest_xsave->region,
3257 			&vcpu->arch.guest_fpu.state->fxsave,
3258 			sizeof(struct i387_fxsave_struct));
3259 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3260 			XSTATE_FPSSE;
3261 	}
3262 }
3263 
3264 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3265 					struct kvm_xsave *guest_xsave)
3266 {
3267 	u64 xstate_bv =
3268 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3269 
3270 	if (cpu_has_xsave) {
3271 		/*
3272 		 * Here we allow setting states that are not present in
3273 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3274 		 * with old userspace.
3275 		 */
3276 		if (xstate_bv & ~kvm_supported_xcr0())
3277 			return -EINVAL;
3278 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3279 	} else {
3280 		if (xstate_bv & ~XSTATE_FPSSE)
3281 			return -EINVAL;
3282 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3283 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3284 	}
3285 	return 0;
3286 }
3287 
3288 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3289 					struct kvm_xcrs *guest_xcrs)
3290 {
3291 	if (!cpu_has_xsave) {
3292 		guest_xcrs->nr_xcrs = 0;
3293 		return;
3294 	}
3295 
3296 	guest_xcrs->nr_xcrs = 1;
3297 	guest_xcrs->flags = 0;
3298 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3299 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3300 }
3301 
3302 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3303 				       struct kvm_xcrs *guest_xcrs)
3304 {
3305 	int i, r = 0;
3306 
3307 	if (!cpu_has_xsave)
3308 		return -EINVAL;
3309 
3310 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3311 		return -EINVAL;
3312 
3313 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3314 		/* Only support XCR0 currently */
3315 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3316 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3317 				guest_xcrs->xcrs[i].value);
3318 			break;
3319 		}
3320 	if (r)
3321 		r = -EINVAL;
3322 	return r;
3323 }
3324 
3325 /*
3326  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3327  * stopped by the hypervisor.  This function will be called from the host only.
3328  * EINVAL is returned when the host attempts to set the flag for a guest that
3329  * does not support pv clocks.
3330  */
3331 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3332 {
3333 	if (!vcpu->arch.pv_time_enabled)
3334 		return -EINVAL;
3335 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3336 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3337 	return 0;
3338 }
3339 
3340 long kvm_arch_vcpu_ioctl(struct file *filp,
3341 			 unsigned int ioctl, unsigned long arg)
3342 {
3343 	struct kvm_vcpu *vcpu = filp->private_data;
3344 	void __user *argp = (void __user *)arg;
3345 	int r;
3346 	union {
3347 		struct kvm_lapic_state *lapic;
3348 		struct kvm_xsave *xsave;
3349 		struct kvm_xcrs *xcrs;
3350 		void *buffer;
3351 	} u;
3352 
3353 	u.buffer = NULL;
3354 	switch (ioctl) {
3355 	case KVM_GET_LAPIC: {
3356 		r = -EINVAL;
3357 		if (!vcpu->arch.apic)
3358 			goto out;
3359 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3360 
3361 		r = -ENOMEM;
3362 		if (!u.lapic)
3363 			goto out;
3364 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3365 		if (r)
3366 			goto out;
3367 		r = -EFAULT;
3368 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3369 			goto out;
3370 		r = 0;
3371 		break;
3372 	}
3373 	case KVM_SET_LAPIC: {
3374 		r = -EINVAL;
3375 		if (!vcpu->arch.apic)
3376 			goto out;
3377 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3378 		if (IS_ERR(u.lapic))
3379 			return PTR_ERR(u.lapic);
3380 
3381 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3382 		break;
3383 	}
3384 	case KVM_INTERRUPT: {
3385 		struct kvm_interrupt irq;
3386 
3387 		r = -EFAULT;
3388 		if (copy_from_user(&irq, argp, sizeof irq))
3389 			goto out;
3390 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3391 		break;
3392 	}
3393 	case KVM_NMI: {
3394 		r = kvm_vcpu_ioctl_nmi(vcpu);
3395 		break;
3396 	}
3397 	case KVM_SET_CPUID: {
3398 		struct kvm_cpuid __user *cpuid_arg = argp;
3399 		struct kvm_cpuid cpuid;
3400 
3401 		r = -EFAULT;
3402 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3403 			goto out;
3404 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3405 		break;
3406 	}
3407 	case KVM_SET_CPUID2: {
3408 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3409 		struct kvm_cpuid2 cpuid;
3410 
3411 		r = -EFAULT;
3412 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413 			goto out;
3414 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3415 					      cpuid_arg->entries);
3416 		break;
3417 	}
3418 	case KVM_GET_CPUID2: {
3419 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3420 		struct kvm_cpuid2 cpuid;
3421 
3422 		r = -EFAULT;
3423 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3424 			goto out;
3425 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3426 					      cpuid_arg->entries);
3427 		if (r)
3428 			goto out;
3429 		r = -EFAULT;
3430 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3431 			goto out;
3432 		r = 0;
3433 		break;
3434 	}
3435 	case KVM_GET_MSRS:
3436 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3437 		break;
3438 	case KVM_SET_MSRS:
3439 		r = msr_io(vcpu, argp, do_set_msr, 0);
3440 		break;
3441 	case KVM_TPR_ACCESS_REPORTING: {
3442 		struct kvm_tpr_access_ctl tac;
3443 
3444 		r = -EFAULT;
3445 		if (copy_from_user(&tac, argp, sizeof tac))
3446 			goto out;
3447 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3448 		if (r)
3449 			goto out;
3450 		r = -EFAULT;
3451 		if (copy_to_user(argp, &tac, sizeof tac))
3452 			goto out;
3453 		r = 0;
3454 		break;
3455 	};
3456 	case KVM_SET_VAPIC_ADDR: {
3457 		struct kvm_vapic_addr va;
3458 
3459 		r = -EINVAL;
3460 		if (!irqchip_in_kernel(vcpu->kvm))
3461 			goto out;
3462 		r = -EFAULT;
3463 		if (copy_from_user(&va, argp, sizeof va))
3464 			goto out;
3465 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3466 		break;
3467 	}
3468 	case KVM_X86_SETUP_MCE: {
3469 		u64 mcg_cap;
3470 
3471 		r = -EFAULT;
3472 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3473 			goto out;
3474 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3475 		break;
3476 	}
3477 	case KVM_X86_SET_MCE: {
3478 		struct kvm_x86_mce mce;
3479 
3480 		r = -EFAULT;
3481 		if (copy_from_user(&mce, argp, sizeof mce))
3482 			goto out;
3483 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3484 		break;
3485 	}
3486 	case KVM_GET_VCPU_EVENTS: {
3487 		struct kvm_vcpu_events events;
3488 
3489 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3490 
3491 		r = -EFAULT;
3492 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3493 			break;
3494 		r = 0;
3495 		break;
3496 	}
3497 	case KVM_SET_VCPU_EVENTS: {
3498 		struct kvm_vcpu_events events;
3499 
3500 		r = -EFAULT;
3501 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3502 			break;
3503 
3504 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3505 		break;
3506 	}
3507 	case KVM_GET_DEBUGREGS: {
3508 		struct kvm_debugregs dbgregs;
3509 
3510 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3511 
3512 		r = -EFAULT;
3513 		if (copy_to_user(argp, &dbgregs,
3514 				 sizeof(struct kvm_debugregs)))
3515 			break;
3516 		r = 0;
3517 		break;
3518 	}
3519 	case KVM_SET_DEBUGREGS: {
3520 		struct kvm_debugregs dbgregs;
3521 
3522 		r = -EFAULT;
3523 		if (copy_from_user(&dbgregs, argp,
3524 				   sizeof(struct kvm_debugregs)))
3525 			break;
3526 
3527 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3528 		break;
3529 	}
3530 	case KVM_GET_XSAVE: {
3531 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3532 		r = -ENOMEM;
3533 		if (!u.xsave)
3534 			break;
3535 
3536 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3537 
3538 		r = -EFAULT;
3539 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3540 			break;
3541 		r = 0;
3542 		break;
3543 	}
3544 	case KVM_SET_XSAVE: {
3545 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3546 		if (IS_ERR(u.xsave))
3547 			return PTR_ERR(u.xsave);
3548 
3549 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3550 		break;
3551 	}
3552 	case KVM_GET_XCRS: {
3553 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3554 		r = -ENOMEM;
3555 		if (!u.xcrs)
3556 			break;
3557 
3558 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3559 
3560 		r = -EFAULT;
3561 		if (copy_to_user(argp, u.xcrs,
3562 				 sizeof(struct kvm_xcrs)))
3563 			break;
3564 		r = 0;
3565 		break;
3566 	}
3567 	case KVM_SET_XCRS: {
3568 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3569 		if (IS_ERR(u.xcrs))
3570 			return PTR_ERR(u.xcrs);
3571 
3572 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3573 		break;
3574 	}
3575 	case KVM_SET_TSC_KHZ: {
3576 		u32 user_tsc_khz;
3577 
3578 		r = -EINVAL;
3579 		user_tsc_khz = (u32)arg;
3580 
3581 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3582 			goto out;
3583 
3584 		if (user_tsc_khz == 0)
3585 			user_tsc_khz = tsc_khz;
3586 
3587 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3588 
3589 		r = 0;
3590 		goto out;
3591 	}
3592 	case KVM_GET_TSC_KHZ: {
3593 		r = vcpu->arch.virtual_tsc_khz;
3594 		goto out;
3595 	}
3596 	case KVM_KVMCLOCK_CTRL: {
3597 		r = kvm_set_guest_paused(vcpu);
3598 		goto out;
3599 	}
3600 	default:
3601 		r = -EINVAL;
3602 	}
3603 out:
3604 	kfree(u.buffer);
3605 	return r;
3606 }
3607 
3608 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3609 {
3610 	return VM_FAULT_SIGBUS;
3611 }
3612 
3613 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3614 {
3615 	int ret;
3616 
3617 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3618 		return -EINVAL;
3619 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3620 	return ret;
3621 }
3622 
3623 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3624 					      u64 ident_addr)
3625 {
3626 	kvm->arch.ept_identity_map_addr = ident_addr;
3627 	return 0;
3628 }
3629 
3630 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3631 					  u32 kvm_nr_mmu_pages)
3632 {
3633 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3634 		return -EINVAL;
3635 
3636 	mutex_lock(&kvm->slots_lock);
3637 
3638 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3639 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3640 
3641 	mutex_unlock(&kvm->slots_lock);
3642 	return 0;
3643 }
3644 
3645 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3646 {
3647 	return kvm->arch.n_max_mmu_pages;
3648 }
3649 
3650 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3651 {
3652 	int r;
3653 
3654 	r = 0;
3655 	switch (chip->chip_id) {
3656 	case KVM_IRQCHIP_PIC_MASTER:
3657 		memcpy(&chip->chip.pic,
3658 			&pic_irqchip(kvm)->pics[0],
3659 			sizeof(struct kvm_pic_state));
3660 		break;
3661 	case KVM_IRQCHIP_PIC_SLAVE:
3662 		memcpy(&chip->chip.pic,
3663 			&pic_irqchip(kvm)->pics[1],
3664 			sizeof(struct kvm_pic_state));
3665 		break;
3666 	case KVM_IRQCHIP_IOAPIC:
3667 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3668 		break;
3669 	default:
3670 		r = -EINVAL;
3671 		break;
3672 	}
3673 	return r;
3674 }
3675 
3676 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3677 {
3678 	int r;
3679 
3680 	r = 0;
3681 	switch (chip->chip_id) {
3682 	case KVM_IRQCHIP_PIC_MASTER:
3683 		spin_lock(&pic_irqchip(kvm)->lock);
3684 		memcpy(&pic_irqchip(kvm)->pics[0],
3685 			&chip->chip.pic,
3686 			sizeof(struct kvm_pic_state));
3687 		spin_unlock(&pic_irqchip(kvm)->lock);
3688 		break;
3689 	case KVM_IRQCHIP_PIC_SLAVE:
3690 		spin_lock(&pic_irqchip(kvm)->lock);
3691 		memcpy(&pic_irqchip(kvm)->pics[1],
3692 			&chip->chip.pic,
3693 			sizeof(struct kvm_pic_state));
3694 		spin_unlock(&pic_irqchip(kvm)->lock);
3695 		break;
3696 	case KVM_IRQCHIP_IOAPIC:
3697 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3698 		break;
3699 	default:
3700 		r = -EINVAL;
3701 		break;
3702 	}
3703 	kvm_pic_update_irq(pic_irqchip(kvm));
3704 	return r;
3705 }
3706 
3707 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3708 {
3709 	int r = 0;
3710 
3711 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3712 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3713 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3714 	return r;
3715 }
3716 
3717 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3718 {
3719 	int r = 0;
3720 
3721 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3722 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3723 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3724 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725 	return r;
3726 }
3727 
3728 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3729 {
3730 	int r = 0;
3731 
3732 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3733 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3734 		sizeof(ps->channels));
3735 	ps->flags = kvm->arch.vpit->pit_state.flags;
3736 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3737 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3738 	return r;
3739 }
3740 
3741 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3742 {
3743 	int r = 0, start = 0;
3744 	u32 prev_legacy, cur_legacy;
3745 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3746 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3747 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3748 	if (!prev_legacy && cur_legacy)
3749 		start = 1;
3750 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3751 	       sizeof(kvm->arch.vpit->pit_state.channels));
3752 	kvm->arch.vpit->pit_state.flags = ps->flags;
3753 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3754 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3755 	return r;
3756 }
3757 
3758 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3759 				 struct kvm_reinject_control *control)
3760 {
3761 	if (!kvm->arch.vpit)
3762 		return -ENXIO;
3763 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3764 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3765 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3766 	return 0;
3767 }
3768 
3769 /**
3770  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3771  * @kvm: kvm instance
3772  * @log: slot id and address to which we copy the log
3773  *
3774  * Steps 1-4 below provide general overview of dirty page logging. See
3775  * kvm_get_dirty_log_protect() function description for additional details.
3776  *
3777  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3778  * always flush the TLB (step 4) even if previous step failed  and the dirty
3779  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3780  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3781  * writes will be marked dirty for next log read.
3782  *
3783  *   1. Take a snapshot of the bit and clear it if needed.
3784  *   2. Write protect the corresponding page.
3785  *   3. Copy the snapshot to the userspace.
3786  *   4. Flush TLB's if needed.
3787  */
3788 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3789 {
3790 	bool is_dirty = false;
3791 	int r;
3792 
3793 	mutex_lock(&kvm->slots_lock);
3794 
3795 	/*
3796 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3797 	 */
3798 	if (kvm_x86_ops->flush_log_dirty)
3799 		kvm_x86_ops->flush_log_dirty(kvm);
3800 
3801 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3802 
3803 	/*
3804 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3805 	 * kvm_mmu_slot_remove_write_access().
3806 	 */
3807 	lockdep_assert_held(&kvm->slots_lock);
3808 	if (is_dirty)
3809 		kvm_flush_remote_tlbs(kvm);
3810 
3811 	mutex_unlock(&kvm->slots_lock);
3812 	return r;
3813 }
3814 
3815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3816 			bool line_status)
3817 {
3818 	if (!irqchip_in_kernel(kvm))
3819 		return -ENXIO;
3820 
3821 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3822 					irq_event->irq, irq_event->level,
3823 					line_status);
3824 	return 0;
3825 }
3826 
3827 long kvm_arch_vm_ioctl(struct file *filp,
3828 		       unsigned int ioctl, unsigned long arg)
3829 {
3830 	struct kvm *kvm = filp->private_data;
3831 	void __user *argp = (void __user *)arg;
3832 	int r = -ENOTTY;
3833 	/*
3834 	 * This union makes it completely explicit to gcc-3.x
3835 	 * that these two variables' stack usage should be
3836 	 * combined, not added together.
3837 	 */
3838 	union {
3839 		struct kvm_pit_state ps;
3840 		struct kvm_pit_state2 ps2;
3841 		struct kvm_pit_config pit_config;
3842 	} u;
3843 
3844 	switch (ioctl) {
3845 	case KVM_SET_TSS_ADDR:
3846 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3847 		break;
3848 	case KVM_SET_IDENTITY_MAP_ADDR: {
3849 		u64 ident_addr;
3850 
3851 		r = -EFAULT;
3852 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3853 			goto out;
3854 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3855 		break;
3856 	}
3857 	case KVM_SET_NR_MMU_PAGES:
3858 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3859 		break;
3860 	case KVM_GET_NR_MMU_PAGES:
3861 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3862 		break;
3863 	case KVM_CREATE_IRQCHIP: {
3864 		struct kvm_pic *vpic;
3865 
3866 		mutex_lock(&kvm->lock);
3867 		r = -EEXIST;
3868 		if (kvm->arch.vpic)
3869 			goto create_irqchip_unlock;
3870 		r = -EINVAL;
3871 		if (atomic_read(&kvm->online_vcpus))
3872 			goto create_irqchip_unlock;
3873 		r = -ENOMEM;
3874 		vpic = kvm_create_pic(kvm);
3875 		if (vpic) {
3876 			r = kvm_ioapic_init(kvm);
3877 			if (r) {
3878 				mutex_lock(&kvm->slots_lock);
3879 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3880 							  &vpic->dev_master);
3881 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3882 							  &vpic->dev_slave);
3883 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3884 							  &vpic->dev_eclr);
3885 				mutex_unlock(&kvm->slots_lock);
3886 				kfree(vpic);
3887 				goto create_irqchip_unlock;
3888 			}
3889 		} else
3890 			goto create_irqchip_unlock;
3891 		smp_wmb();
3892 		kvm->arch.vpic = vpic;
3893 		smp_wmb();
3894 		r = kvm_setup_default_irq_routing(kvm);
3895 		if (r) {
3896 			mutex_lock(&kvm->slots_lock);
3897 			mutex_lock(&kvm->irq_lock);
3898 			kvm_ioapic_destroy(kvm);
3899 			kvm_destroy_pic(kvm);
3900 			mutex_unlock(&kvm->irq_lock);
3901 			mutex_unlock(&kvm->slots_lock);
3902 		}
3903 	create_irqchip_unlock:
3904 		mutex_unlock(&kvm->lock);
3905 		break;
3906 	}
3907 	case KVM_CREATE_PIT:
3908 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3909 		goto create_pit;
3910 	case KVM_CREATE_PIT2:
3911 		r = -EFAULT;
3912 		if (copy_from_user(&u.pit_config, argp,
3913 				   sizeof(struct kvm_pit_config)))
3914 			goto out;
3915 	create_pit:
3916 		mutex_lock(&kvm->slots_lock);
3917 		r = -EEXIST;
3918 		if (kvm->arch.vpit)
3919 			goto create_pit_unlock;
3920 		r = -ENOMEM;
3921 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3922 		if (kvm->arch.vpit)
3923 			r = 0;
3924 	create_pit_unlock:
3925 		mutex_unlock(&kvm->slots_lock);
3926 		break;
3927 	case KVM_GET_IRQCHIP: {
3928 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3929 		struct kvm_irqchip *chip;
3930 
3931 		chip = memdup_user(argp, sizeof(*chip));
3932 		if (IS_ERR(chip)) {
3933 			r = PTR_ERR(chip);
3934 			goto out;
3935 		}
3936 
3937 		r = -ENXIO;
3938 		if (!irqchip_in_kernel(kvm))
3939 			goto get_irqchip_out;
3940 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3941 		if (r)
3942 			goto get_irqchip_out;
3943 		r = -EFAULT;
3944 		if (copy_to_user(argp, chip, sizeof *chip))
3945 			goto get_irqchip_out;
3946 		r = 0;
3947 	get_irqchip_out:
3948 		kfree(chip);
3949 		break;
3950 	}
3951 	case KVM_SET_IRQCHIP: {
3952 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3953 		struct kvm_irqchip *chip;
3954 
3955 		chip = memdup_user(argp, sizeof(*chip));
3956 		if (IS_ERR(chip)) {
3957 			r = PTR_ERR(chip);
3958 			goto out;
3959 		}
3960 
3961 		r = -ENXIO;
3962 		if (!irqchip_in_kernel(kvm))
3963 			goto set_irqchip_out;
3964 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3965 		if (r)
3966 			goto set_irqchip_out;
3967 		r = 0;
3968 	set_irqchip_out:
3969 		kfree(chip);
3970 		break;
3971 	}
3972 	case KVM_GET_PIT: {
3973 		r = -EFAULT;
3974 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3975 			goto out;
3976 		r = -ENXIO;
3977 		if (!kvm->arch.vpit)
3978 			goto out;
3979 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3980 		if (r)
3981 			goto out;
3982 		r = -EFAULT;
3983 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3984 			goto out;
3985 		r = 0;
3986 		break;
3987 	}
3988 	case KVM_SET_PIT: {
3989 		r = -EFAULT;
3990 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3991 			goto out;
3992 		r = -ENXIO;
3993 		if (!kvm->arch.vpit)
3994 			goto out;
3995 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3996 		break;
3997 	}
3998 	case KVM_GET_PIT2: {
3999 		r = -ENXIO;
4000 		if (!kvm->arch.vpit)
4001 			goto out;
4002 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4003 		if (r)
4004 			goto out;
4005 		r = -EFAULT;
4006 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4007 			goto out;
4008 		r = 0;
4009 		break;
4010 	}
4011 	case KVM_SET_PIT2: {
4012 		r = -EFAULT;
4013 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4014 			goto out;
4015 		r = -ENXIO;
4016 		if (!kvm->arch.vpit)
4017 			goto out;
4018 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4019 		break;
4020 	}
4021 	case KVM_REINJECT_CONTROL: {
4022 		struct kvm_reinject_control control;
4023 		r =  -EFAULT;
4024 		if (copy_from_user(&control, argp, sizeof(control)))
4025 			goto out;
4026 		r = kvm_vm_ioctl_reinject(kvm, &control);
4027 		break;
4028 	}
4029 	case KVM_XEN_HVM_CONFIG: {
4030 		r = -EFAULT;
4031 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4032 				   sizeof(struct kvm_xen_hvm_config)))
4033 			goto out;
4034 		r = -EINVAL;
4035 		if (kvm->arch.xen_hvm_config.flags)
4036 			goto out;
4037 		r = 0;
4038 		break;
4039 	}
4040 	case KVM_SET_CLOCK: {
4041 		struct kvm_clock_data user_ns;
4042 		u64 now_ns;
4043 		s64 delta;
4044 
4045 		r = -EFAULT;
4046 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4047 			goto out;
4048 
4049 		r = -EINVAL;
4050 		if (user_ns.flags)
4051 			goto out;
4052 
4053 		r = 0;
4054 		local_irq_disable();
4055 		now_ns = get_kernel_ns();
4056 		delta = user_ns.clock - now_ns;
4057 		local_irq_enable();
4058 		kvm->arch.kvmclock_offset = delta;
4059 		kvm_gen_update_masterclock(kvm);
4060 		break;
4061 	}
4062 	case KVM_GET_CLOCK: {
4063 		struct kvm_clock_data user_ns;
4064 		u64 now_ns;
4065 
4066 		local_irq_disable();
4067 		now_ns = get_kernel_ns();
4068 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4069 		local_irq_enable();
4070 		user_ns.flags = 0;
4071 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4072 
4073 		r = -EFAULT;
4074 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4075 			goto out;
4076 		r = 0;
4077 		break;
4078 	}
4079 
4080 	default:
4081 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4082 	}
4083 out:
4084 	return r;
4085 }
4086 
4087 static void kvm_init_msr_list(void)
4088 {
4089 	u32 dummy[2];
4090 	unsigned i, j;
4091 
4092 	/* skip the first msrs in the list. KVM-specific */
4093 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4094 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4095 			continue;
4096 
4097 		/*
4098 		 * Even MSRs that are valid in the host may not be exposed
4099 		 * to the guests in some cases.  We could work around this
4100 		 * in VMX with the generic MSR save/load machinery, but it
4101 		 * is not really worthwhile since it will really only
4102 		 * happen with nested virtualization.
4103 		 */
4104 		switch (msrs_to_save[i]) {
4105 		case MSR_IA32_BNDCFGS:
4106 			if (!kvm_x86_ops->mpx_supported())
4107 				continue;
4108 			break;
4109 		default:
4110 			break;
4111 		}
4112 
4113 		if (j < i)
4114 			msrs_to_save[j] = msrs_to_save[i];
4115 		j++;
4116 	}
4117 	num_msrs_to_save = j;
4118 }
4119 
4120 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4121 			   const void *v)
4122 {
4123 	int handled = 0;
4124 	int n;
4125 
4126 	do {
4127 		n = min(len, 8);
4128 		if (!(vcpu->arch.apic &&
4129 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4130 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4131 			break;
4132 		handled += n;
4133 		addr += n;
4134 		len -= n;
4135 		v += n;
4136 	} while (len);
4137 
4138 	return handled;
4139 }
4140 
4141 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4142 {
4143 	int handled = 0;
4144 	int n;
4145 
4146 	do {
4147 		n = min(len, 8);
4148 		if (!(vcpu->arch.apic &&
4149 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4150 					 addr, n, v))
4151 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4152 			break;
4153 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4154 		handled += n;
4155 		addr += n;
4156 		len -= n;
4157 		v += n;
4158 	} while (len);
4159 
4160 	return handled;
4161 }
4162 
4163 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4164 			struct kvm_segment *var, int seg)
4165 {
4166 	kvm_x86_ops->set_segment(vcpu, var, seg);
4167 }
4168 
4169 void kvm_get_segment(struct kvm_vcpu *vcpu,
4170 		     struct kvm_segment *var, int seg)
4171 {
4172 	kvm_x86_ops->get_segment(vcpu, var, seg);
4173 }
4174 
4175 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4176 			   struct x86_exception *exception)
4177 {
4178 	gpa_t t_gpa;
4179 
4180 	BUG_ON(!mmu_is_nested(vcpu));
4181 
4182 	/* NPT walks are always user-walks */
4183 	access |= PFERR_USER_MASK;
4184 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4185 
4186 	return t_gpa;
4187 }
4188 
4189 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4190 			      struct x86_exception *exception)
4191 {
4192 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195 
4196  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4197 				struct x86_exception *exception)
4198 {
4199 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4200 	access |= PFERR_FETCH_MASK;
4201 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4202 }
4203 
4204 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4205 			       struct x86_exception *exception)
4206 {
4207 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208 	access |= PFERR_WRITE_MASK;
4209 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4210 }
4211 
4212 /* uses this to access any guest's mapped memory without checking CPL */
4213 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4214 				struct x86_exception *exception)
4215 {
4216 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4217 }
4218 
4219 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4220 				      struct kvm_vcpu *vcpu, u32 access,
4221 				      struct x86_exception *exception)
4222 {
4223 	void *data = val;
4224 	int r = X86EMUL_CONTINUE;
4225 
4226 	while (bytes) {
4227 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4228 							    exception);
4229 		unsigned offset = addr & (PAGE_SIZE-1);
4230 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4231 		int ret;
4232 
4233 		if (gpa == UNMAPPED_GVA)
4234 			return X86EMUL_PROPAGATE_FAULT;
4235 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4236 					  offset, toread);
4237 		if (ret < 0) {
4238 			r = X86EMUL_IO_NEEDED;
4239 			goto out;
4240 		}
4241 
4242 		bytes -= toread;
4243 		data += toread;
4244 		addr += toread;
4245 	}
4246 out:
4247 	return r;
4248 }
4249 
4250 /* used for instruction fetching */
4251 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4252 				gva_t addr, void *val, unsigned int bytes,
4253 				struct x86_exception *exception)
4254 {
4255 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4256 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4257 	unsigned offset;
4258 	int ret;
4259 
4260 	/* Inline kvm_read_guest_virt_helper for speed.  */
4261 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4262 						    exception);
4263 	if (unlikely(gpa == UNMAPPED_GVA))
4264 		return X86EMUL_PROPAGATE_FAULT;
4265 
4266 	offset = addr & (PAGE_SIZE-1);
4267 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4268 		bytes = (unsigned)PAGE_SIZE - offset;
4269 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4270 				  offset, bytes);
4271 	if (unlikely(ret < 0))
4272 		return X86EMUL_IO_NEEDED;
4273 
4274 	return X86EMUL_CONTINUE;
4275 }
4276 
4277 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4278 			       gva_t addr, void *val, unsigned int bytes,
4279 			       struct x86_exception *exception)
4280 {
4281 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4283 
4284 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4285 					  exception);
4286 }
4287 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4288 
4289 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4290 				      gva_t addr, void *val, unsigned int bytes,
4291 				      struct x86_exception *exception)
4292 {
4293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4295 }
4296 
4297 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4298 				       gva_t addr, void *val,
4299 				       unsigned int bytes,
4300 				       struct x86_exception *exception)
4301 {
4302 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4303 	void *data = val;
4304 	int r = X86EMUL_CONTINUE;
4305 
4306 	while (bytes) {
4307 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4308 							     PFERR_WRITE_MASK,
4309 							     exception);
4310 		unsigned offset = addr & (PAGE_SIZE-1);
4311 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4312 		int ret;
4313 
4314 		if (gpa == UNMAPPED_GVA)
4315 			return X86EMUL_PROPAGATE_FAULT;
4316 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4317 		if (ret < 0) {
4318 			r = X86EMUL_IO_NEEDED;
4319 			goto out;
4320 		}
4321 
4322 		bytes -= towrite;
4323 		data += towrite;
4324 		addr += towrite;
4325 	}
4326 out:
4327 	return r;
4328 }
4329 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4330 
4331 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4332 				gpa_t *gpa, struct x86_exception *exception,
4333 				bool write)
4334 {
4335 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4336 		| (write ? PFERR_WRITE_MASK : 0);
4337 
4338 	if (vcpu_match_mmio_gva(vcpu, gva)
4339 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4340 				 vcpu->arch.access, access)) {
4341 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4342 					(gva & (PAGE_SIZE - 1));
4343 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4344 		return 1;
4345 	}
4346 
4347 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4348 
4349 	if (*gpa == UNMAPPED_GVA)
4350 		return -1;
4351 
4352 	/* For APIC access vmexit */
4353 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4354 		return 1;
4355 
4356 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4357 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4358 		return 1;
4359 	}
4360 
4361 	return 0;
4362 }
4363 
4364 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4365 			const void *val, int bytes)
4366 {
4367 	int ret;
4368 
4369 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4370 	if (ret < 0)
4371 		return 0;
4372 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4373 	return 1;
4374 }
4375 
4376 struct read_write_emulator_ops {
4377 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4378 				  int bytes);
4379 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380 				  void *val, int bytes);
4381 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 			       int bytes, void *val);
4383 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 				    void *val, int bytes);
4385 	bool write;
4386 };
4387 
4388 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4389 {
4390 	if (vcpu->mmio_read_completed) {
4391 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4392 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4393 		vcpu->mmio_read_completed = 0;
4394 		return 1;
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4401 			void *val, int bytes)
4402 {
4403 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4404 }
4405 
4406 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 			 void *val, int bytes)
4408 {
4409 	return emulator_write_phys(vcpu, gpa, val, bytes);
4410 }
4411 
4412 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4413 {
4414 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4415 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4416 }
4417 
4418 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4419 			  void *val, int bytes)
4420 {
4421 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4422 	return X86EMUL_IO_NEEDED;
4423 }
4424 
4425 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426 			   void *val, int bytes)
4427 {
4428 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4429 
4430 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4431 	return X86EMUL_CONTINUE;
4432 }
4433 
4434 static const struct read_write_emulator_ops read_emultor = {
4435 	.read_write_prepare = read_prepare,
4436 	.read_write_emulate = read_emulate,
4437 	.read_write_mmio = vcpu_mmio_read,
4438 	.read_write_exit_mmio = read_exit_mmio,
4439 };
4440 
4441 static const struct read_write_emulator_ops write_emultor = {
4442 	.read_write_emulate = write_emulate,
4443 	.read_write_mmio = write_mmio,
4444 	.read_write_exit_mmio = write_exit_mmio,
4445 	.write = true,
4446 };
4447 
4448 static int emulator_read_write_onepage(unsigned long addr, void *val,
4449 				       unsigned int bytes,
4450 				       struct x86_exception *exception,
4451 				       struct kvm_vcpu *vcpu,
4452 				       const struct read_write_emulator_ops *ops)
4453 {
4454 	gpa_t gpa;
4455 	int handled, ret;
4456 	bool write = ops->write;
4457 	struct kvm_mmio_fragment *frag;
4458 
4459 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4460 
4461 	if (ret < 0)
4462 		return X86EMUL_PROPAGATE_FAULT;
4463 
4464 	/* For APIC access vmexit */
4465 	if (ret)
4466 		goto mmio;
4467 
4468 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4469 		return X86EMUL_CONTINUE;
4470 
4471 mmio:
4472 	/*
4473 	 * Is this MMIO handled locally?
4474 	 */
4475 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4476 	if (handled == bytes)
4477 		return X86EMUL_CONTINUE;
4478 
4479 	gpa += handled;
4480 	bytes -= handled;
4481 	val += handled;
4482 
4483 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4484 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4485 	frag->gpa = gpa;
4486 	frag->data = val;
4487 	frag->len = bytes;
4488 	return X86EMUL_CONTINUE;
4489 }
4490 
4491 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4492 			unsigned long addr,
4493 			void *val, unsigned int bytes,
4494 			struct x86_exception *exception,
4495 			const struct read_write_emulator_ops *ops)
4496 {
4497 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4498 	gpa_t gpa;
4499 	int rc;
4500 
4501 	if (ops->read_write_prepare &&
4502 		  ops->read_write_prepare(vcpu, val, bytes))
4503 		return X86EMUL_CONTINUE;
4504 
4505 	vcpu->mmio_nr_fragments = 0;
4506 
4507 	/* Crossing a page boundary? */
4508 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4509 		int now;
4510 
4511 		now = -addr & ~PAGE_MASK;
4512 		rc = emulator_read_write_onepage(addr, val, now, exception,
4513 						 vcpu, ops);
4514 
4515 		if (rc != X86EMUL_CONTINUE)
4516 			return rc;
4517 		addr += now;
4518 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4519 			addr = (u32)addr;
4520 		val += now;
4521 		bytes -= now;
4522 	}
4523 
4524 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4525 					 vcpu, ops);
4526 	if (rc != X86EMUL_CONTINUE)
4527 		return rc;
4528 
4529 	if (!vcpu->mmio_nr_fragments)
4530 		return rc;
4531 
4532 	gpa = vcpu->mmio_fragments[0].gpa;
4533 
4534 	vcpu->mmio_needed = 1;
4535 	vcpu->mmio_cur_fragment = 0;
4536 
4537 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4538 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4539 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4540 	vcpu->run->mmio.phys_addr = gpa;
4541 
4542 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4543 }
4544 
4545 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4546 				  unsigned long addr,
4547 				  void *val,
4548 				  unsigned int bytes,
4549 				  struct x86_exception *exception)
4550 {
4551 	return emulator_read_write(ctxt, addr, val, bytes,
4552 				   exception, &read_emultor);
4553 }
4554 
4555 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4556 			    unsigned long addr,
4557 			    const void *val,
4558 			    unsigned int bytes,
4559 			    struct x86_exception *exception)
4560 {
4561 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4562 				   exception, &write_emultor);
4563 }
4564 
4565 #define CMPXCHG_TYPE(t, ptr, old, new) \
4566 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4567 
4568 #ifdef CONFIG_X86_64
4569 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4570 #else
4571 #  define CMPXCHG64(ptr, old, new) \
4572 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4573 #endif
4574 
4575 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4576 				     unsigned long addr,
4577 				     const void *old,
4578 				     const void *new,
4579 				     unsigned int bytes,
4580 				     struct x86_exception *exception)
4581 {
4582 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4583 	gpa_t gpa;
4584 	struct page *page;
4585 	char *kaddr;
4586 	bool exchanged;
4587 
4588 	/* guests cmpxchg8b have to be emulated atomically */
4589 	if (bytes > 8 || (bytes & (bytes - 1)))
4590 		goto emul_write;
4591 
4592 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4593 
4594 	if (gpa == UNMAPPED_GVA ||
4595 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4596 		goto emul_write;
4597 
4598 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4599 		goto emul_write;
4600 
4601 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4602 	if (is_error_page(page))
4603 		goto emul_write;
4604 
4605 	kaddr = kmap_atomic(page);
4606 	kaddr += offset_in_page(gpa);
4607 	switch (bytes) {
4608 	case 1:
4609 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4610 		break;
4611 	case 2:
4612 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4613 		break;
4614 	case 4:
4615 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4616 		break;
4617 	case 8:
4618 		exchanged = CMPXCHG64(kaddr, old, new);
4619 		break;
4620 	default:
4621 		BUG();
4622 	}
4623 	kunmap_atomic(kaddr);
4624 	kvm_release_page_dirty(page);
4625 
4626 	if (!exchanged)
4627 		return X86EMUL_CMPXCHG_FAILED;
4628 
4629 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4630 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4631 
4632 	return X86EMUL_CONTINUE;
4633 
4634 emul_write:
4635 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4636 
4637 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4638 }
4639 
4640 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4641 {
4642 	/* TODO: String I/O for in kernel device */
4643 	int r;
4644 
4645 	if (vcpu->arch.pio.in)
4646 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4647 				    vcpu->arch.pio.size, pd);
4648 	else
4649 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4650 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4651 				     pd);
4652 	return r;
4653 }
4654 
4655 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4656 			       unsigned short port, void *val,
4657 			       unsigned int count, bool in)
4658 {
4659 	vcpu->arch.pio.port = port;
4660 	vcpu->arch.pio.in = in;
4661 	vcpu->arch.pio.count  = count;
4662 	vcpu->arch.pio.size = size;
4663 
4664 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4665 		vcpu->arch.pio.count = 0;
4666 		return 1;
4667 	}
4668 
4669 	vcpu->run->exit_reason = KVM_EXIT_IO;
4670 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4671 	vcpu->run->io.size = size;
4672 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4673 	vcpu->run->io.count = count;
4674 	vcpu->run->io.port = port;
4675 
4676 	return 0;
4677 }
4678 
4679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4680 				    int size, unsigned short port, void *val,
4681 				    unsigned int count)
4682 {
4683 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4684 	int ret;
4685 
4686 	if (vcpu->arch.pio.count)
4687 		goto data_avail;
4688 
4689 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4690 	if (ret) {
4691 data_avail:
4692 		memcpy(val, vcpu->arch.pio_data, size * count);
4693 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4694 		vcpu->arch.pio.count = 0;
4695 		return 1;
4696 	}
4697 
4698 	return 0;
4699 }
4700 
4701 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4702 				     int size, unsigned short port,
4703 				     const void *val, unsigned int count)
4704 {
4705 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4706 
4707 	memcpy(vcpu->arch.pio_data, val, size * count);
4708 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4709 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4710 }
4711 
4712 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4713 {
4714 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4715 }
4716 
4717 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4718 {
4719 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4720 }
4721 
4722 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4723 {
4724 	if (!need_emulate_wbinvd(vcpu))
4725 		return X86EMUL_CONTINUE;
4726 
4727 	if (kvm_x86_ops->has_wbinvd_exit()) {
4728 		int cpu = get_cpu();
4729 
4730 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4731 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4732 				wbinvd_ipi, NULL, 1);
4733 		put_cpu();
4734 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4735 	} else
4736 		wbinvd();
4737 	return X86EMUL_CONTINUE;
4738 }
4739 
4740 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4741 {
4742 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4743 	return kvm_emulate_wbinvd_noskip(vcpu);
4744 }
4745 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4746 
4747 
4748 
4749 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4750 {
4751 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4752 }
4753 
4754 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4755 			   unsigned long *dest)
4756 {
4757 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4758 }
4759 
4760 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4761 			   unsigned long value)
4762 {
4763 
4764 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4765 }
4766 
4767 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4768 {
4769 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4770 }
4771 
4772 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4773 {
4774 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775 	unsigned long value;
4776 
4777 	switch (cr) {
4778 	case 0:
4779 		value = kvm_read_cr0(vcpu);
4780 		break;
4781 	case 2:
4782 		value = vcpu->arch.cr2;
4783 		break;
4784 	case 3:
4785 		value = kvm_read_cr3(vcpu);
4786 		break;
4787 	case 4:
4788 		value = kvm_read_cr4(vcpu);
4789 		break;
4790 	case 8:
4791 		value = kvm_get_cr8(vcpu);
4792 		break;
4793 	default:
4794 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4795 		return 0;
4796 	}
4797 
4798 	return value;
4799 }
4800 
4801 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4802 {
4803 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4804 	int res = 0;
4805 
4806 	switch (cr) {
4807 	case 0:
4808 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4809 		break;
4810 	case 2:
4811 		vcpu->arch.cr2 = val;
4812 		break;
4813 	case 3:
4814 		res = kvm_set_cr3(vcpu, val);
4815 		break;
4816 	case 4:
4817 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4818 		break;
4819 	case 8:
4820 		res = kvm_set_cr8(vcpu, val);
4821 		break;
4822 	default:
4823 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4824 		res = -1;
4825 	}
4826 
4827 	return res;
4828 }
4829 
4830 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4831 {
4832 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4833 }
4834 
4835 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4836 {
4837 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4838 }
4839 
4840 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4841 {
4842 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4843 }
4844 
4845 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4846 {
4847 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4848 }
4849 
4850 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4851 {
4852 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4853 }
4854 
4855 static unsigned long emulator_get_cached_segment_base(
4856 	struct x86_emulate_ctxt *ctxt, int seg)
4857 {
4858 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4859 }
4860 
4861 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4862 				 struct desc_struct *desc, u32 *base3,
4863 				 int seg)
4864 {
4865 	struct kvm_segment var;
4866 
4867 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4868 	*selector = var.selector;
4869 
4870 	if (var.unusable) {
4871 		memset(desc, 0, sizeof(*desc));
4872 		return false;
4873 	}
4874 
4875 	if (var.g)
4876 		var.limit >>= 12;
4877 	set_desc_limit(desc, var.limit);
4878 	set_desc_base(desc, (unsigned long)var.base);
4879 #ifdef CONFIG_X86_64
4880 	if (base3)
4881 		*base3 = var.base >> 32;
4882 #endif
4883 	desc->type = var.type;
4884 	desc->s = var.s;
4885 	desc->dpl = var.dpl;
4886 	desc->p = var.present;
4887 	desc->avl = var.avl;
4888 	desc->l = var.l;
4889 	desc->d = var.db;
4890 	desc->g = var.g;
4891 
4892 	return true;
4893 }
4894 
4895 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4896 				 struct desc_struct *desc, u32 base3,
4897 				 int seg)
4898 {
4899 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4900 	struct kvm_segment var;
4901 
4902 	var.selector = selector;
4903 	var.base = get_desc_base(desc);
4904 #ifdef CONFIG_X86_64
4905 	var.base |= ((u64)base3) << 32;
4906 #endif
4907 	var.limit = get_desc_limit(desc);
4908 	if (desc->g)
4909 		var.limit = (var.limit << 12) | 0xfff;
4910 	var.type = desc->type;
4911 	var.dpl = desc->dpl;
4912 	var.db = desc->d;
4913 	var.s = desc->s;
4914 	var.l = desc->l;
4915 	var.g = desc->g;
4916 	var.avl = desc->avl;
4917 	var.present = desc->p;
4918 	var.unusable = !var.present;
4919 	var.padding = 0;
4920 
4921 	kvm_set_segment(vcpu, &var, seg);
4922 	return;
4923 }
4924 
4925 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4926 			    u32 msr_index, u64 *pdata)
4927 {
4928 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4929 }
4930 
4931 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4932 			    u32 msr_index, u64 data)
4933 {
4934 	struct msr_data msr;
4935 
4936 	msr.data = data;
4937 	msr.index = msr_index;
4938 	msr.host_initiated = false;
4939 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4940 }
4941 
4942 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4943 			      u32 pmc)
4944 {
4945 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4946 }
4947 
4948 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4949 			     u32 pmc, u64 *pdata)
4950 {
4951 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4952 }
4953 
4954 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4955 {
4956 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4957 }
4958 
4959 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961 	preempt_disable();
4962 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4963 	/*
4964 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4965 	 * so it may be clear at this point.
4966 	 */
4967 	clts();
4968 }
4969 
4970 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4971 {
4972 	preempt_enable();
4973 }
4974 
4975 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4976 			      struct x86_instruction_info *info,
4977 			      enum x86_intercept_stage stage)
4978 {
4979 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4980 }
4981 
4982 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4983 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4984 {
4985 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4986 }
4987 
4988 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4989 {
4990 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4991 }
4992 
4993 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4994 {
4995 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4996 }
4997 
4998 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4999 {
5000 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5001 }
5002 
5003 static const struct x86_emulate_ops emulate_ops = {
5004 	.read_gpr            = emulator_read_gpr,
5005 	.write_gpr           = emulator_write_gpr,
5006 	.read_std            = kvm_read_guest_virt_system,
5007 	.write_std           = kvm_write_guest_virt_system,
5008 	.fetch               = kvm_fetch_guest_virt,
5009 	.read_emulated       = emulator_read_emulated,
5010 	.write_emulated      = emulator_write_emulated,
5011 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5012 	.invlpg              = emulator_invlpg,
5013 	.pio_in_emulated     = emulator_pio_in_emulated,
5014 	.pio_out_emulated    = emulator_pio_out_emulated,
5015 	.get_segment         = emulator_get_segment,
5016 	.set_segment         = emulator_set_segment,
5017 	.get_cached_segment_base = emulator_get_cached_segment_base,
5018 	.get_gdt             = emulator_get_gdt,
5019 	.get_idt	     = emulator_get_idt,
5020 	.set_gdt             = emulator_set_gdt,
5021 	.set_idt	     = emulator_set_idt,
5022 	.get_cr              = emulator_get_cr,
5023 	.set_cr              = emulator_set_cr,
5024 	.cpl                 = emulator_get_cpl,
5025 	.get_dr              = emulator_get_dr,
5026 	.set_dr              = emulator_set_dr,
5027 	.set_msr             = emulator_set_msr,
5028 	.get_msr             = emulator_get_msr,
5029 	.check_pmc	     = emulator_check_pmc,
5030 	.read_pmc            = emulator_read_pmc,
5031 	.halt                = emulator_halt,
5032 	.wbinvd              = emulator_wbinvd,
5033 	.fix_hypercall       = emulator_fix_hypercall,
5034 	.get_fpu             = emulator_get_fpu,
5035 	.put_fpu             = emulator_put_fpu,
5036 	.intercept           = emulator_intercept,
5037 	.get_cpuid           = emulator_get_cpuid,
5038 	.set_nmi_mask        = emulator_set_nmi_mask,
5039 };
5040 
5041 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5042 {
5043 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5044 	/*
5045 	 * an sti; sti; sequence only disable interrupts for the first
5046 	 * instruction. So, if the last instruction, be it emulated or
5047 	 * not, left the system with the INT_STI flag enabled, it
5048 	 * means that the last instruction is an sti. We should not
5049 	 * leave the flag on in this case. The same goes for mov ss
5050 	 */
5051 	if (int_shadow & mask)
5052 		mask = 0;
5053 	if (unlikely(int_shadow || mask)) {
5054 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5055 		if (!mask)
5056 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5057 	}
5058 }
5059 
5060 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5061 {
5062 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5063 	if (ctxt->exception.vector == PF_VECTOR)
5064 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5065 
5066 	if (ctxt->exception.error_code_valid)
5067 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5068 				      ctxt->exception.error_code);
5069 	else
5070 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5071 	return false;
5072 }
5073 
5074 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5075 {
5076 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5077 	int cs_db, cs_l;
5078 
5079 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5080 
5081 	ctxt->eflags = kvm_get_rflags(vcpu);
5082 	ctxt->eip = kvm_rip_read(vcpu);
5083 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5084 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5085 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5086 		     cs_db				? X86EMUL_MODE_PROT32 :
5087 							  X86EMUL_MODE_PROT16;
5088 	ctxt->guest_mode = is_guest_mode(vcpu);
5089 
5090 	init_decode_cache(ctxt);
5091 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5092 }
5093 
5094 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5095 {
5096 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097 	int ret;
5098 
5099 	init_emulate_ctxt(vcpu);
5100 
5101 	ctxt->op_bytes = 2;
5102 	ctxt->ad_bytes = 2;
5103 	ctxt->_eip = ctxt->eip + inc_eip;
5104 	ret = emulate_int_real(ctxt, irq);
5105 
5106 	if (ret != X86EMUL_CONTINUE)
5107 		return EMULATE_FAIL;
5108 
5109 	ctxt->eip = ctxt->_eip;
5110 	kvm_rip_write(vcpu, ctxt->eip);
5111 	kvm_set_rflags(vcpu, ctxt->eflags);
5112 
5113 	if (irq == NMI_VECTOR)
5114 		vcpu->arch.nmi_pending = 0;
5115 	else
5116 		vcpu->arch.interrupt.pending = false;
5117 
5118 	return EMULATE_DONE;
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5121 
5122 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5123 {
5124 	int r = EMULATE_DONE;
5125 
5126 	++vcpu->stat.insn_emulation_fail;
5127 	trace_kvm_emulate_insn_failed(vcpu);
5128 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5129 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5130 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5131 		vcpu->run->internal.ndata = 0;
5132 		r = EMULATE_FAIL;
5133 	}
5134 	kvm_queue_exception(vcpu, UD_VECTOR);
5135 
5136 	return r;
5137 }
5138 
5139 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5140 				  bool write_fault_to_shadow_pgtable,
5141 				  int emulation_type)
5142 {
5143 	gpa_t gpa = cr2;
5144 	pfn_t pfn;
5145 
5146 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5147 		return false;
5148 
5149 	if (!vcpu->arch.mmu.direct_map) {
5150 		/*
5151 		 * Write permission should be allowed since only
5152 		 * write access need to be emulated.
5153 		 */
5154 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5155 
5156 		/*
5157 		 * If the mapping is invalid in guest, let cpu retry
5158 		 * it to generate fault.
5159 		 */
5160 		if (gpa == UNMAPPED_GVA)
5161 			return true;
5162 	}
5163 
5164 	/*
5165 	 * Do not retry the unhandleable instruction if it faults on the
5166 	 * readonly host memory, otherwise it will goto a infinite loop:
5167 	 * retry instruction -> write #PF -> emulation fail -> retry
5168 	 * instruction -> ...
5169 	 */
5170 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5171 
5172 	/*
5173 	 * If the instruction failed on the error pfn, it can not be fixed,
5174 	 * report the error to userspace.
5175 	 */
5176 	if (is_error_noslot_pfn(pfn))
5177 		return false;
5178 
5179 	kvm_release_pfn_clean(pfn);
5180 
5181 	/* The instructions are well-emulated on direct mmu. */
5182 	if (vcpu->arch.mmu.direct_map) {
5183 		unsigned int indirect_shadow_pages;
5184 
5185 		spin_lock(&vcpu->kvm->mmu_lock);
5186 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5187 		spin_unlock(&vcpu->kvm->mmu_lock);
5188 
5189 		if (indirect_shadow_pages)
5190 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5191 
5192 		return true;
5193 	}
5194 
5195 	/*
5196 	 * if emulation was due to access to shadowed page table
5197 	 * and it failed try to unshadow page and re-enter the
5198 	 * guest to let CPU execute the instruction.
5199 	 */
5200 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5201 
5202 	/*
5203 	 * If the access faults on its page table, it can not
5204 	 * be fixed by unprotecting shadow page and it should
5205 	 * be reported to userspace.
5206 	 */
5207 	return !write_fault_to_shadow_pgtable;
5208 }
5209 
5210 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5211 			      unsigned long cr2,  int emulation_type)
5212 {
5213 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5214 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5215 
5216 	last_retry_eip = vcpu->arch.last_retry_eip;
5217 	last_retry_addr = vcpu->arch.last_retry_addr;
5218 
5219 	/*
5220 	 * If the emulation is caused by #PF and it is non-page_table
5221 	 * writing instruction, it means the VM-EXIT is caused by shadow
5222 	 * page protected, we can zap the shadow page and retry this
5223 	 * instruction directly.
5224 	 *
5225 	 * Note: if the guest uses a non-page-table modifying instruction
5226 	 * on the PDE that points to the instruction, then we will unmap
5227 	 * the instruction and go to an infinite loop. So, we cache the
5228 	 * last retried eip and the last fault address, if we meet the eip
5229 	 * and the address again, we can break out of the potential infinite
5230 	 * loop.
5231 	 */
5232 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5233 
5234 	if (!(emulation_type & EMULTYPE_RETRY))
5235 		return false;
5236 
5237 	if (x86_page_table_writing_insn(ctxt))
5238 		return false;
5239 
5240 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5241 		return false;
5242 
5243 	vcpu->arch.last_retry_eip = ctxt->eip;
5244 	vcpu->arch.last_retry_addr = cr2;
5245 
5246 	if (!vcpu->arch.mmu.direct_map)
5247 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5248 
5249 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5250 
5251 	return true;
5252 }
5253 
5254 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5255 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5256 
5257 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5258 				unsigned long *db)
5259 {
5260 	u32 dr6 = 0;
5261 	int i;
5262 	u32 enable, rwlen;
5263 
5264 	enable = dr7;
5265 	rwlen = dr7 >> 16;
5266 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5267 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5268 			dr6 |= (1 << i);
5269 	return dr6;
5270 }
5271 
5272 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5273 {
5274 	struct kvm_run *kvm_run = vcpu->run;
5275 
5276 	/*
5277 	 * rflags is the old, "raw" value of the flags.  The new value has
5278 	 * not been saved yet.
5279 	 *
5280 	 * This is correct even for TF set by the guest, because "the
5281 	 * processor will not generate this exception after the instruction
5282 	 * that sets the TF flag".
5283 	 */
5284 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5285 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5286 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5287 						  DR6_RTM;
5288 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5289 			kvm_run->debug.arch.exception = DB_VECTOR;
5290 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5291 			*r = EMULATE_USER_EXIT;
5292 		} else {
5293 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5294 			/*
5295 			 * "Certain debug exceptions may clear bit 0-3.  The
5296 			 * remaining contents of the DR6 register are never
5297 			 * cleared by the processor".
5298 			 */
5299 			vcpu->arch.dr6 &= ~15;
5300 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5301 			kvm_queue_exception(vcpu, DB_VECTOR);
5302 		}
5303 	}
5304 }
5305 
5306 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5307 {
5308 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5309 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5310 		struct kvm_run *kvm_run = vcpu->run;
5311 		unsigned long eip = kvm_get_linear_rip(vcpu);
5312 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313 					   vcpu->arch.guest_debug_dr7,
5314 					   vcpu->arch.eff_db);
5315 
5316 		if (dr6 != 0) {
5317 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5318 			kvm_run->debug.arch.pc = eip;
5319 			kvm_run->debug.arch.exception = DB_VECTOR;
5320 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5321 			*r = EMULATE_USER_EXIT;
5322 			return true;
5323 		}
5324 	}
5325 
5326 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5327 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5328 		unsigned long eip = kvm_get_linear_rip(vcpu);
5329 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5330 					   vcpu->arch.dr7,
5331 					   vcpu->arch.db);
5332 
5333 		if (dr6 != 0) {
5334 			vcpu->arch.dr6 &= ~15;
5335 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5336 			kvm_queue_exception(vcpu, DB_VECTOR);
5337 			*r = EMULATE_DONE;
5338 			return true;
5339 		}
5340 	}
5341 
5342 	return false;
5343 }
5344 
5345 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5346 			    unsigned long cr2,
5347 			    int emulation_type,
5348 			    void *insn,
5349 			    int insn_len)
5350 {
5351 	int r;
5352 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5353 	bool writeback = true;
5354 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5355 
5356 	/*
5357 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5358 	 * never reused.
5359 	 */
5360 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5361 	kvm_clear_exception_queue(vcpu);
5362 
5363 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5364 		init_emulate_ctxt(vcpu);
5365 
5366 		/*
5367 		 * We will reenter on the same instruction since
5368 		 * we do not set complete_userspace_io.  This does not
5369 		 * handle watchpoints yet, those would be handled in
5370 		 * the emulate_ops.
5371 		 */
5372 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5373 			return r;
5374 
5375 		ctxt->interruptibility = 0;
5376 		ctxt->have_exception = false;
5377 		ctxt->exception.vector = -1;
5378 		ctxt->perm_ok = false;
5379 
5380 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5381 
5382 		r = x86_decode_insn(ctxt, insn, insn_len);
5383 
5384 		trace_kvm_emulate_insn_start(vcpu);
5385 		++vcpu->stat.insn_emulation;
5386 		if (r != EMULATION_OK)  {
5387 			if (emulation_type & EMULTYPE_TRAP_UD)
5388 				return EMULATE_FAIL;
5389 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5390 						emulation_type))
5391 				return EMULATE_DONE;
5392 			if (emulation_type & EMULTYPE_SKIP)
5393 				return EMULATE_FAIL;
5394 			return handle_emulation_failure(vcpu);
5395 		}
5396 	}
5397 
5398 	if (emulation_type & EMULTYPE_SKIP) {
5399 		kvm_rip_write(vcpu, ctxt->_eip);
5400 		if (ctxt->eflags & X86_EFLAGS_RF)
5401 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5402 		return EMULATE_DONE;
5403 	}
5404 
5405 	if (retry_instruction(ctxt, cr2, emulation_type))
5406 		return EMULATE_DONE;
5407 
5408 	/* this is needed for vmware backdoor interface to work since it
5409 	   changes registers values  during IO operation */
5410 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5411 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5412 		emulator_invalidate_register_cache(ctxt);
5413 	}
5414 
5415 restart:
5416 	r = x86_emulate_insn(ctxt);
5417 
5418 	if (r == EMULATION_INTERCEPTED)
5419 		return EMULATE_DONE;
5420 
5421 	if (r == EMULATION_FAILED) {
5422 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5423 					emulation_type))
5424 			return EMULATE_DONE;
5425 
5426 		return handle_emulation_failure(vcpu);
5427 	}
5428 
5429 	if (ctxt->have_exception) {
5430 		r = EMULATE_DONE;
5431 		if (inject_emulated_exception(vcpu))
5432 			return r;
5433 	} else if (vcpu->arch.pio.count) {
5434 		if (!vcpu->arch.pio.in) {
5435 			/* FIXME: return into emulator if single-stepping.  */
5436 			vcpu->arch.pio.count = 0;
5437 		} else {
5438 			writeback = false;
5439 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5440 		}
5441 		r = EMULATE_USER_EXIT;
5442 	} else if (vcpu->mmio_needed) {
5443 		if (!vcpu->mmio_is_write)
5444 			writeback = false;
5445 		r = EMULATE_USER_EXIT;
5446 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5447 	} else if (r == EMULATION_RESTART)
5448 		goto restart;
5449 	else
5450 		r = EMULATE_DONE;
5451 
5452 	if (writeback) {
5453 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5454 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5455 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5456 		kvm_rip_write(vcpu, ctxt->eip);
5457 		if (r == EMULATE_DONE)
5458 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5459 		if (!ctxt->have_exception ||
5460 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5461 			__kvm_set_rflags(vcpu, ctxt->eflags);
5462 
5463 		/*
5464 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5465 		 * do nothing, and it will be requested again as soon as
5466 		 * the shadow expires.  But we still need to check here,
5467 		 * because POPF has no interrupt shadow.
5468 		 */
5469 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5470 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5471 	} else
5472 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5473 
5474 	return r;
5475 }
5476 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5477 
5478 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5479 {
5480 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5481 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5482 					    size, port, &val, 1);
5483 	/* do not return to emulator after return from userspace */
5484 	vcpu->arch.pio.count = 0;
5485 	return ret;
5486 }
5487 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5488 
5489 static void tsc_bad(void *info)
5490 {
5491 	__this_cpu_write(cpu_tsc_khz, 0);
5492 }
5493 
5494 static void tsc_khz_changed(void *data)
5495 {
5496 	struct cpufreq_freqs *freq = data;
5497 	unsigned long khz = 0;
5498 
5499 	if (data)
5500 		khz = freq->new;
5501 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5502 		khz = cpufreq_quick_get(raw_smp_processor_id());
5503 	if (!khz)
5504 		khz = tsc_khz;
5505 	__this_cpu_write(cpu_tsc_khz, khz);
5506 }
5507 
5508 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5509 				     void *data)
5510 {
5511 	struct cpufreq_freqs *freq = data;
5512 	struct kvm *kvm;
5513 	struct kvm_vcpu *vcpu;
5514 	int i, send_ipi = 0;
5515 
5516 	/*
5517 	 * We allow guests to temporarily run on slowing clocks,
5518 	 * provided we notify them after, or to run on accelerating
5519 	 * clocks, provided we notify them before.  Thus time never
5520 	 * goes backwards.
5521 	 *
5522 	 * However, we have a problem.  We can't atomically update
5523 	 * the frequency of a given CPU from this function; it is
5524 	 * merely a notifier, which can be called from any CPU.
5525 	 * Changing the TSC frequency at arbitrary points in time
5526 	 * requires a recomputation of local variables related to
5527 	 * the TSC for each VCPU.  We must flag these local variables
5528 	 * to be updated and be sure the update takes place with the
5529 	 * new frequency before any guests proceed.
5530 	 *
5531 	 * Unfortunately, the combination of hotplug CPU and frequency
5532 	 * change creates an intractable locking scenario; the order
5533 	 * of when these callouts happen is undefined with respect to
5534 	 * CPU hotplug, and they can race with each other.  As such,
5535 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5536 	 * undefined; you can actually have a CPU frequency change take
5537 	 * place in between the computation of X and the setting of the
5538 	 * variable.  To protect against this problem, all updates of
5539 	 * the per_cpu tsc_khz variable are done in an interrupt
5540 	 * protected IPI, and all callers wishing to update the value
5541 	 * must wait for a synchronous IPI to complete (which is trivial
5542 	 * if the caller is on the CPU already).  This establishes the
5543 	 * necessary total order on variable updates.
5544 	 *
5545 	 * Note that because a guest time update may take place
5546 	 * anytime after the setting of the VCPU's request bit, the
5547 	 * correct TSC value must be set before the request.  However,
5548 	 * to ensure the update actually makes it to any guest which
5549 	 * starts running in hardware virtualization between the set
5550 	 * and the acquisition of the spinlock, we must also ping the
5551 	 * CPU after setting the request bit.
5552 	 *
5553 	 */
5554 
5555 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5556 		return 0;
5557 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5558 		return 0;
5559 
5560 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5561 
5562 	spin_lock(&kvm_lock);
5563 	list_for_each_entry(kvm, &vm_list, vm_list) {
5564 		kvm_for_each_vcpu(i, vcpu, kvm) {
5565 			if (vcpu->cpu != freq->cpu)
5566 				continue;
5567 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5568 			if (vcpu->cpu != smp_processor_id())
5569 				send_ipi = 1;
5570 		}
5571 	}
5572 	spin_unlock(&kvm_lock);
5573 
5574 	if (freq->old < freq->new && send_ipi) {
5575 		/*
5576 		 * We upscale the frequency.  Must make the guest
5577 		 * doesn't see old kvmclock values while running with
5578 		 * the new frequency, otherwise we risk the guest sees
5579 		 * time go backwards.
5580 		 *
5581 		 * In case we update the frequency for another cpu
5582 		 * (which might be in guest context) send an interrupt
5583 		 * to kick the cpu out of guest context.  Next time
5584 		 * guest context is entered kvmclock will be updated,
5585 		 * so the guest will not see stale values.
5586 		 */
5587 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5588 	}
5589 	return 0;
5590 }
5591 
5592 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5593 	.notifier_call  = kvmclock_cpufreq_notifier
5594 };
5595 
5596 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5597 					unsigned long action, void *hcpu)
5598 {
5599 	unsigned int cpu = (unsigned long)hcpu;
5600 
5601 	switch (action) {
5602 		case CPU_ONLINE:
5603 		case CPU_DOWN_FAILED:
5604 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5605 			break;
5606 		case CPU_DOWN_PREPARE:
5607 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5608 			break;
5609 	}
5610 	return NOTIFY_OK;
5611 }
5612 
5613 static struct notifier_block kvmclock_cpu_notifier_block = {
5614 	.notifier_call  = kvmclock_cpu_notifier,
5615 	.priority = -INT_MAX
5616 };
5617 
5618 static void kvm_timer_init(void)
5619 {
5620 	int cpu;
5621 
5622 	max_tsc_khz = tsc_khz;
5623 
5624 	cpu_notifier_register_begin();
5625 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5626 #ifdef CONFIG_CPU_FREQ
5627 		struct cpufreq_policy policy;
5628 		memset(&policy, 0, sizeof(policy));
5629 		cpu = get_cpu();
5630 		cpufreq_get_policy(&policy, cpu);
5631 		if (policy.cpuinfo.max_freq)
5632 			max_tsc_khz = policy.cpuinfo.max_freq;
5633 		put_cpu();
5634 #endif
5635 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5636 					  CPUFREQ_TRANSITION_NOTIFIER);
5637 	}
5638 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5639 	for_each_online_cpu(cpu)
5640 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5641 
5642 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5643 	cpu_notifier_register_done();
5644 
5645 }
5646 
5647 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5648 
5649 int kvm_is_in_guest(void)
5650 {
5651 	return __this_cpu_read(current_vcpu) != NULL;
5652 }
5653 
5654 static int kvm_is_user_mode(void)
5655 {
5656 	int user_mode = 3;
5657 
5658 	if (__this_cpu_read(current_vcpu))
5659 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5660 
5661 	return user_mode != 0;
5662 }
5663 
5664 static unsigned long kvm_get_guest_ip(void)
5665 {
5666 	unsigned long ip = 0;
5667 
5668 	if (__this_cpu_read(current_vcpu))
5669 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5670 
5671 	return ip;
5672 }
5673 
5674 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5675 	.is_in_guest		= kvm_is_in_guest,
5676 	.is_user_mode		= kvm_is_user_mode,
5677 	.get_guest_ip		= kvm_get_guest_ip,
5678 };
5679 
5680 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5681 {
5682 	__this_cpu_write(current_vcpu, vcpu);
5683 }
5684 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5685 
5686 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5687 {
5688 	__this_cpu_write(current_vcpu, NULL);
5689 }
5690 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5691 
5692 static void kvm_set_mmio_spte_mask(void)
5693 {
5694 	u64 mask;
5695 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5696 
5697 	/*
5698 	 * Set the reserved bits and the present bit of an paging-structure
5699 	 * entry to generate page fault with PFER.RSV = 1.
5700 	 */
5701 	 /* Mask the reserved physical address bits. */
5702 	mask = rsvd_bits(maxphyaddr, 51);
5703 
5704 	/* Bit 62 is always reserved for 32bit host. */
5705 	mask |= 0x3ull << 62;
5706 
5707 	/* Set the present bit. */
5708 	mask |= 1ull;
5709 
5710 #ifdef CONFIG_X86_64
5711 	/*
5712 	 * If reserved bit is not supported, clear the present bit to disable
5713 	 * mmio page fault.
5714 	 */
5715 	if (maxphyaddr == 52)
5716 		mask &= ~1ull;
5717 #endif
5718 
5719 	kvm_mmu_set_mmio_spte_mask(mask);
5720 }
5721 
5722 #ifdef CONFIG_X86_64
5723 static void pvclock_gtod_update_fn(struct work_struct *work)
5724 {
5725 	struct kvm *kvm;
5726 
5727 	struct kvm_vcpu *vcpu;
5728 	int i;
5729 
5730 	spin_lock(&kvm_lock);
5731 	list_for_each_entry(kvm, &vm_list, vm_list)
5732 		kvm_for_each_vcpu(i, vcpu, kvm)
5733 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5734 	atomic_set(&kvm_guest_has_master_clock, 0);
5735 	spin_unlock(&kvm_lock);
5736 }
5737 
5738 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5739 
5740 /*
5741  * Notification about pvclock gtod data update.
5742  */
5743 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5744 			       void *priv)
5745 {
5746 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5747 	struct timekeeper *tk = priv;
5748 
5749 	update_pvclock_gtod(tk);
5750 
5751 	/* disable master clock if host does not trust, or does not
5752 	 * use, TSC clocksource
5753 	 */
5754 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5755 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5756 		queue_work(system_long_wq, &pvclock_gtod_work);
5757 
5758 	return 0;
5759 }
5760 
5761 static struct notifier_block pvclock_gtod_notifier = {
5762 	.notifier_call = pvclock_gtod_notify,
5763 };
5764 #endif
5765 
5766 int kvm_arch_init(void *opaque)
5767 {
5768 	int r;
5769 	struct kvm_x86_ops *ops = opaque;
5770 
5771 	if (kvm_x86_ops) {
5772 		printk(KERN_ERR "kvm: already loaded the other module\n");
5773 		r = -EEXIST;
5774 		goto out;
5775 	}
5776 
5777 	if (!ops->cpu_has_kvm_support()) {
5778 		printk(KERN_ERR "kvm: no hardware support\n");
5779 		r = -EOPNOTSUPP;
5780 		goto out;
5781 	}
5782 	if (ops->disabled_by_bios()) {
5783 		printk(KERN_ERR "kvm: disabled by bios\n");
5784 		r = -EOPNOTSUPP;
5785 		goto out;
5786 	}
5787 
5788 	r = -ENOMEM;
5789 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5790 	if (!shared_msrs) {
5791 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5792 		goto out;
5793 	}
5794 
5795 	r = kvm_mmu_module_init();
5796 	if (r)
5797 		goto out_free_percpu;
5798 
5799 	kvm_set_mmio_spte_mask();
5800 
5801 	kvm_x86_ops = ops;
5802 
5803 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5804 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5805 
5806 	kvm_timer_init();
5807 
5808 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5809 
5810 	if (cpu_has_xsave)
5811 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5812 
5813 	kvm_lapic_init();
5814 #ifdef CONFIG_X86_64
5815 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5816 #endif
5817 
5818 	return 0;
5819 
5820 out_free_percpu:
5821 	free_percpu(shared_msrs);
5822 out:
5823 	return r;
5824 }
5825 
5826 void kvm_arch_exit(void)
5827 {
5828 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5829 
5830 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5831 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5832 					    CPUFREQ_TRANSITION_NOTIFIER);
5833 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5834 #ifdef CONFIG_X86_64
5835 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5836 #endif
5837 	kvm_x86_ops = NULL;
5838 	kvm_mmu_module_exit();
5839 	free_percpu(shared_msrs);
5840 }
5841 
5842 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5843 {
5844 	++vcpu->stat.halt_exits;
5845 	if (irqchip_in_kernel(vcpu->kvm)) {
5846 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5847 		return 1;
5848 	} else {
5849 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5850 		return 0;
5851 	}
5852 }
5853 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5854 
5855 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5856 {
5857 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5858 	return kvm_vcpu_halt(vcpu);
5859 }
5860 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5861 
5862 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5863 {
5864 	u64 param, ingpa, outgpa, ret;
5865 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5866 	bool fast, longmode;
5867 
5868 	/*
5869 	 * hypercall generates UD from non zero cpl and real mode
5870 	 * per HYPER-V spec
5871 	 */
5872 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5873 		kvm_queue_exception(vcpu, UD_VECTOR);
5874 		return 0;
5875 	}
5876 
5877 	longmode = is_64_bit_mode(vcpu);
5878 
5879 	if (!longmode) {
5880 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5881 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5882 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5883 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5884 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5885 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5886 	}
5887 #ifdef CONFIG_X86_64
5888 	else {
5889 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5890 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5891 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5892 	}
5893 #endif
5894 
5895 	code = param & 0xffff;
5896 	fast = (param >> 16) & 0x1;
5897 	rep_cnt = (param >> 32) & 0xfff;
5898 	rep_idx = (param >> 48) & 0xfff;
5899 
5900 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5901 
5902 	switch (code) {
5903 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5904 		kvm_vcpu_on_spin(vcpu);
5905 		break;
5906 	default:
5907 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5908 		break;
5909 	}
5910 
5911 	ret = res | (((u64)rep_done & 0xfff) << 32);
5912 	if (longmode) {
5913 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5914 	} else {
5915 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5916 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5917 	}
5918 
5919 	return 1;
5920 }
5921 
5922 /*
5923  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5924  *
5925  * @apicid - apicid of vcpu to be kicked.
5926  */
5927 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5928 {
5929 	struct kvm_lapic_irq lapic_irq;
5930 
5931 	lapic_irq.shorthand = 0;
5932 	lapic_irq.dest_mode = 0;
5933 	lapic_irq.dest_id = apicid;
5934 
5935 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5936 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5937 }
5938 
5939 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5940 {
5941 	unsigned long nr, a0, a1, a2, a3, ret;
5942 	int op_64_bit, r = 1;
5943 
5944 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5945 
5946 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5947 		return kvm_hv_hypercall(vcpu);
5948 
5949 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5950 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5951 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5952 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5953 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5954 
5955 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5956 
5957 	op_64_bit = is_64_bit_mode(vcpu);
5958 	if (!op_64_bit) {
5959 		nr &= 0xFFFFFFFF;
5960 		a0 &= 0xFFFFFFFF;
5961 		a1 &= 0xFFFFFFFF;
5962 		a2 &= 0xFFFFFFFF;
5963 		a3 &= 0xFFFFFFFF;
5964 	}
5965 
5966 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5967 		ret = -KVM_EPERM;
5968 		goto out;
5969 	}
5970 
5971 	switch (nr) {
5972 	case KVM_HC_VAPIC_POLL_IRQ:
5973 		ret = 0;
5974 		break;
5975 	case KVM_HC_KICK_CPU:
5976 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5977 		ret = 0;
5978 		break;
5979 	default:
5980 		ret = -KVM_ENOSYS;
5981 		break;
5982 	}
5983 out:
5984 	if (!op_64_bit)
5985 		ret = (u32)ret;
5986 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5987 	++vcpu->stat.hypercalls;
5988 	return r;
5989 }
5990 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5991 
5992 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5993 {
5994 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5995 	char instruction[3];
5996 	unsigned long rip = kvm_rip_read(vcpu);
5997 
5998 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5999 
6000 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6001 }
6002 
6003 /*
6004  * Check if userspace requested an interrupt window, and that the
6005  * interrupt window is open.
6006  *
6007  * No need to exit to userspace if we already have an interrupt queued.
6008  */
6009 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6010 {
6011 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6012 		vcpu->run->request_interrupt_window &&
6013 		kvm_arch_interrupt_allowed(vcpu));
6014 }
6015 
6016 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6017 {
6018 	struct kvm_run *kvm_run = vcpu->run;
6019 
6020 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6021 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6022 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6023 	if (irqchip_in_kernel(vcpu->kvm))
6024 		kvm_run->ready_for_interrupt_injection = 1;
6025 	else
6026 		kvm_run->ready_for_interrupt_injection =
6027 			kvm_arch_interrupt_allowed(vcpu) &&
6028 			!kvm_cpu_has_interrupt(vcpu) &&
6029 			!kvm_event_needs_reinjection(vcpu);
6030 }
6031 
6032 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6033 {
6034 	int max_irr, tpr;
6035 
6036 	if (!kvm_x86_ops->update_cr8_intercept)
6037 		return;
6038 
6039 	if (!vcpu->arch.apic)
6040 		return;
6041 
6042 	if (!vcpu->arch.apic->vapic_addr)
6043 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6044 	else
6045 		max_irr = -1;
6046 
6047 	if (max_irr != -1)
6048 		max_irr >>= 4;
6049 
6050 	tpr = kvm_lapic_get_cr8(vcpu);
6051 
6052 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6053 }
6054 
6055 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6056 {
6057 	int r;
6058 
6059 	/* try to reinject previous events if any */
6060 	if (vcpu->arch.exception.pending) {
6061 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6062 					vcpu->arch.exception.has_error_code,
6063 					vcpu->arch.exception.error_code);
6064 
6065 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6066 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6067 					     X86_EFLAGS_RF);
6068 
6069 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6070 		    (vcpu->arch.dr7 & DR7_GD)) {
6071 			vcpu->arch.dr7 &= ~DR7_GD;
6072 			kvm_update_dr7(vcpu);
6073 		}
6074 
6075 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6076 					  vcpu->arch.exception.has_error_code,
6077 					  vcpu->arch.exception.error_code,
6078 					  vcpu->arch.exception.reinject);
6079 		return 0;
6080 	}
6081 
6082 	if (vcpu->arch.nmi_injected) {
6083 		kvm_x86_ops->set_nmi(vcpu);
6084 		return 0;
6085 	}
6086 
6087 	if (vcpu->arch.interrupt.pending) {
6088 		kvm_x86_ops->set_irq(vcpu);
6089 		return 0;
6090 	}
6091 
6092 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6093 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6094 		if (r != 0)
6095 			return r;
6096 	}
6097 
6098 	/* try to inject new event if pending */
6099 	if (vcpu->arch.nmi_pending) {
6100 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6101 			--vcpu->arch.nmi_pending;
6102 			vcpu->arch.nmi_injected = true;
6103 			kvm_x86_ops->set_nmi(vcpu);
6104 		}
6105 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6106 		/*
6107 		 * Because interrupts can be injected asynchronously, we are
6108 		 * calling check_nested_events again here to avoid a race condition.
6109 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6110 		 * proposal and current concerns.  Perhaps we should be setting
6111 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6112 		 */
6113 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6114 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6115 			if (r != 0)
6116 				return r;
6117 		}
6118 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6119 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6120 					    false);
6121 			kvm_x86_ops->set_irq(vcpu);
6122 		}
6123 	}
6124 	return 0;
6125 }
6126 
6127 static void process_nmi(struct kvm_vcpu *vcpu)
6128 {
6129 	unsigned limit = 2;
6130 
6131 	/*
6132 	 * x86 is limited to one NMI running, and one NMI pending after it.
6133 	 * If an NMI is already in progress, limit further NMIs to just one.
6134 	 * Otherwise, allow two (and we'll inject the first one immediately).
6135 	 */
6136 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6137 		limit = 1;
6138 
6139 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6140 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6141 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6142 }
6143 
6144 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6145 {
6146 	u64 eoi_exit_bitmap[4];
6147 	u32 tmr[8];
6148 
6149 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6150 		return;
6151 
6152 	memset(eoi_exit_bitmap, 0, 32);
6153 	memset(tmr, 0, 32);
6154 
6155 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6156 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6157 	kvm_apic_update_tmr(vcpu, tmr);
6158 }
6159 
6160 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6161 {
6162 	++vcpu->stat.tlb_flush;
6163 	kvm_x86_ops->tlb_flush(vcpu);
6164 }
6165 
6166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6167 {
6168 	struct page *page = NULL;
6169 
6170 	if (!irqchip_in_kernel(vcpu->kvm))
6171 		return;
6172 
6173 	if (!kvm_x86_ops->set_apic_access_page_addr)
6174 		return;
6175 
6176 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6177 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6178 
6179 	/*
6180 	 * Do not pin apic access page in memory, the MMU notifier
6181 	 * will call us again if it is migrated or swapped out.
6182 	 */
6183 	put_page(page);
6184 }
6185 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6186 
6187 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6188 					   unsigned long address)
6189 {
6190 	/*
6191 	 * The physical address of apic access page is stored in the VMCS.
6192 	 * Update it when it becomes invalid.
6193 	 */
6194 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6195 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6196 }
6197 
6198 /*
6199  * Returns 1 to let vcpu_run() continue the guest execution loop without
6200  * exiting to the userspace.  Otherwise, the value will be returned to the
6201  * userspace.
6202  */
6203 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6204 {
6205 	int r;
6206 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6207 		vcpu->run->request_interrupt_window;
6208 	bool req_immediate_exit = false;
6209 
6210 	if (vcpu->requests) {
6211 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6212 			kvm_mmu_unload(vcpu);
6213 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6214 			__kvm_migrate_timers(vcpu);
6215 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6216 			kvm_gen_update_masterclock(vcpu->kvm);
6217 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6218 			kvm_gen_kvmclock_update(vcpu);
6219 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6220 			r = kvm_guest_time_update(vcpu);
6221 			if (unlikely(r))
6222 				goto out;
6223 		}
6224 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6225 			kvm_mmu_sync_roots(vcpu);
6226 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6227 			kvm_vcpu_flush_tlb(vcpu);
6228 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6229 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6230 			r = 0;
6231 			goto out;
6232 		}
6233 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6234 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6235 			r = 0;
6236 			goto out;
6237 		}
6238 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6239 			vcpu->fpu_active = 0;
6240 			kvm_x86_ops->fpu_deactivate(vcpu);
6241 		}
6242 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6243 			/* Page is swapped out. Do synthetic halt */
6244 			vcpu->arch.apf.halted = true;
6245 			r = 1;
6246 			goto out;
6247 		}
6248 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6249 			record_steal_time(vcpu);
6250 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6251 			process_nmi(vcpu);
6252 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6253 			kvm_handle_pmu_event(vcpu);
6254 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6255 			kvm_deliver_pmi(vcpu);
6256 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6257 			vcpu_scan_ioapic(vcpu);
6258 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6259 			kvm_vcpu_reload_apic_access_page(vcpu);
6260 	}
6261 
6262 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6263 		kvm_apic_accept_events(vcpu);
6264 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6265 			r = 1;
6266 			goto out;
6267 		}
6268 
6269 		if (inject_pending_event(vcpu, req_int_win) != 0)
6270 			req_immediate_exit = true;
6271 		/* enable NMI/IRQ window open exits if needed */
6272 		else if (vcpu->arch.nmi_pending)
6273 			kvm_x86_ops->enable_nmi_window(vcpu);
6274 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6275 			kvm_x86_ops->enable_irq_window(vcpu);
6276 
6277 		if (kvm_lapic_enabled(vcpu)) {
6278 			/*
6279 			 * Update architecture specific hints for APIC
6280 			 * virtual interrupt delivery.
6281 			 */
6282 			if (kvm_x86_ops->hwapic_irr_update)
6283 				kvm_x86_ops->hwapic_irr_update(vcpu,
6284 					kvm_lapic_find_highest_irr(vcpu));
6285 			update_cr8_intercept(vcpu);
6286 			kvm_lapic_sync_to_vapic(vcpu);
6287 		}
6288 	}
6289 
6290 	r = kvm_mmu_reload(vcpu);
6291 	if (unlikely(r)) {
6292 		goto cancel_injection;
6293 	}
6294 
6295 	preempt_disable();
6296 
6297 	kvm_x86_ops->prepare_guest_switch(vcpu);
6298 	if (vcpu->fpu_active)
6299 		kvm_load_guest_fpu(vcpu);
6300 	kvm_load_guest_xcr0(vcpu);
6301 
6302 	vcpu->mode = IN_GUEST_MODE;
6303 
6304 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6305 
6306 	/* We should set ->mode before check ->requests,
6307 	 * see the comment in make_all_cpus_request.
6308 	 */
6309 	smp_mb__after_srcu_read_unlock();
6310 
6311 	local_irq_disable();
6312 
6313 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6314 	    || need_resched() || signal_pending(current)) {
6315 		vcpu->mode = OUTSIDE_GUEST_MODE;
6316 		smp_wmb();
6317 		local_irq_enable();
6318 		preempt_enable();
6319 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6320 		r = 1;
6321 		goto cancel_injection;
6322 	}
6323 
6324 	if (req_immediate_exit)
6325 		smp_send_reschedule(vcpu->cpu);
6326 
6327 	kvm_guest_enter();
6328 
6329 	if (unlikely(vcpu->arch.switch_db_regs)) {
6330 		set_debugreg(0, 7);
6331 		set_debugreg(vcpu->arch.eff_db[0], 0);
6332 		set_debugreg(vcpu->arch.eff_db[1], 1);
6333 		set_debugreg(vcpu->arch.eff_db[2], 2);
6334 		set_debugreg(vcpu->arch.eff_db[3], 3);
6335 		set_debugreg(vcpu->arch.dr6, 6);
6336 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6337 	}
6338 
6339 	trace_kvm_entry(vcpu->vcpu_id);
6340 	wait_lapic_expire(vcpu);
6341 	kvm_x86_ops->run(vcpu);
6342 
6343 	/*
6344 	 * Do this here before restoring debug registers on the host.  And
6345 	 * since we do this before handling the vmexit, a DR access vmexit
6346 	 * can (a) read the correct value of the debug registers, (b) set
6347 	 * KVM_DEBUGREG_WONT_EXIT again.
6348 	 */
6349 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6350 		int i;
6351 
6352 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6353 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6354 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6355 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6356 	}
6357 
6358 	/*
6359 	 * If the guest has used debug registers, at least dr7
6360 	 * will be disabled while returning to the host.
6361 	 * If we don't have active breakpoints in the host, we don't
6362 	 * care about the messed up debug address registers. But if
6363 	 * we have some of them active, restore the old state.
6364 	 */
6365 	if (hw_breakpoint_active())
6366 		hw_breakpoint_restore();
6367 
6368 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6369 							   native_read_tsc());
6370 
6371 	vcpu->mode = OUTSIDE_GUEST_MODE;
6372 	smp_wmb();
6373 
6374 	/* Interrupt is enabled by handle_external_intr() */
6375 	kvm_x86_ops->handle_external_intr(vcpu);
6376 
6377 	++vcpu->stat.exits;
6378 
6379 	/*
6380 	 * We must have an instruction between local_irq_enable() and
6381 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6382 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6383 	 * But we need to prevent reordering, hence this barrier():
6384 	 */
6385 	barrier();
6386 
6387 	kvm_guest_exit();
6388 
6389 	preempt_enable();
6390 
6391 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6392 
6393 	/*
6394 	 * Profile KVM exit RIPs:
6395 	 */
6396 	if (unlikely(prof_on == KVM_PROFILING)) {
6397 		unsigned long rip = kvm_rip_read(vcpu);
6398 		profile_hit(KVM_PROFILING, (void *)rip);
6399 	}
6400 
6401 	if (unlikely(vcpu->arch.tsc_always_catchup))
6402 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6403 
6404 	if (vcpu->arch.apic_attention)
6405 		kvm_lapic_sync_from_vapic(vcpu);
6406 
6407 	r = kvm_x86_ops->handle_exit(vcpu);
6408 	return r;
6409 
6410 cancel_injection:
6411 	kvm_x86_ops->cancel_injection(vcpu);
6412 	if (unlikely(vcpu->arch.apic_attention))
6413 		kvm_lapic_sync_from_vapic(vcpu);
6414 out:
6415 	return r;
6416 }
6417 
6418 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6419 {
6420 	if (!kvm_arch_vcpu_runnable(vcpu)) {
6421 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6422 		kvm_vcpu_block(vcpu);
6423 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6424 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6425 			return 1;
6426 	}
6427 
6428 	kvm_apic_accept_events(vcpu);
6429 	switch(vcpu->arch.mp_state) {
6430 	case KVM_MP_STATE_HALTED:
6431 		vcpu->arch.pv.pv_unhalted = false;
6432 		vcpu->arch.mp_state =
6433 			KVM_MP_STATE_RUNNABLE;
6434 	case KVM_MP_STATE_RUNNABLE:
6435 		vcpu->arch.apf.halted = false;
6436 		break;
6437 	case KVM_MP_STATE_INIT_RECEIVED:
6438 		break;
6439 	default:
6440 		return -EINTR;
6441 		break;
6442 	}
6443 	return 1;
6444 }
6445 
6446 static int vcpu_run(struct kvm_vcpu *vcpu)
6447 {
6448 	int r;
6449 	struct kvm *kvm = vcpu->kvm;
6450 
6451 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6452 
6453 	for (;;) {
6454 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6455 		    !vcpu->arch.apf.halted)
6456 			r = vcpu_enter_guest(vcpu);
6457 		else
6458 			r = vcpu_block(kvm, vcpu);
6459 		if (r <= 0)
6460 			break;
6461 
6462 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6463 		if (kvm_cpu_has_pending_timer(vcpu))
6464 			kvm_inject_pending_timer_irqs(vcpu);
6465 
6466 		if (dm_request_for_irq_injection(vcpu)) {
6467 			r = -EINTR;
6468 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6469 			++vcpu->stat.request_irq_exits;
6470 			break;
6471 		}
6472 
6473 		kvm_check_async_pf_completion(vcpu);
6474 
6475 		if (signal_pending(current)) {
6476 			r = -EINTR;
6477 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6478 			++vcpu->stat.signal_exits;
6479 			break;
6480 		}
6481 		if (need_resched()) {
6482 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6483 			cond_resched();
6484 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6485 		}
6486 	}
6487 
6488 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6489 
6490 	return r;
6491 }
6492 
6493 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6494 {
6495 	int r;
6496 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6497 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6498 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6499 	if (r != EMULATE_DONE)
6500 		return 0;
6501 	return 1;
6502 }
6503 
6504 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6505 {
6506 	BUG_ON(!vcpu->arch.pio.count);
6507 
6508 	return complete_emulated_io(vcpu);
6509 }
6510 
6511 /*
6512  * Implements the following, as a state machine:
6513  *
6514  * read:
6515  *   for each fragment
6516  *     for each mmio piece in the fragment
6517  *       write gpa, len
6518  *       exit
6519  *       copy data
6520  *   execute insn
6521  *
6522  * write:
6523  *   for each fragment
6524  *     for each mmio piece in the fragment
6525  *       write gpa, len
6526  *       copy data
6527  *       exit
6528  */
6529 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6530 {
6531 	struct kvm_run *run = vcpu->run;
6532 	struct kvm_mmio_fragment *frag;
6533 	unsigned len;
6534 
6535 	BUG_ON(!vcpu->mmio_needed);
6536 
6537 	/* Complete previous fragment */
6538 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6539 	len = min(8u, frag->len);
6540 	if (!vcpu->mmio_is_write)
6541 		memcpy(frag->data, run->mmio.data, len);
6542 
6543 	if (frag->len <= 8) {
6544 		/* Switch to the next fragment. */
6545 		frag++;
6546 		vcpu->mmio_cur_fragment++;
6547 	} else {
6548 		/* Go forward to the next mmio piece. */
6549 		frag->data += len;
6550 		frag->gpa += len;
6551 		frag->len -= len;
6552 	}
6553 
6554 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6555 		vcpu->mmio_needed = 0;
6556 
6557 		/* FIXME: return into emulator if single-stepping.  */
6558 		if (vcpu->mmio_is_write)
6559 			return 1;
6560 		vcpu->mmio_read_completed = 1;
6561 		return complete_emulated_io(vcpu);
6562 	}
6563 
6564 	run->exit_reason = KVM_EXIT_MMIO;
6565 	run->mmio.phys_addr = frag->gpa;
6566 	if (vcpu->mmio_is_write)
6567 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6568 	run->mmio.len = min(8u, frag->len);
6569 	run->mmio.is_write = vcpu->mmio_is_write;
6570 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6571 	return 0;
6572 }
6573 
6574 
6575 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6576 {
6577 	int r;
6578 	sigset_t sigsaved;
6579 
6580 	if (!tsk_used_math(current) && init_fpu(current))
6581 		return -ENOMEM;
6582 
6583 	if (vcpu->sigset_active)
6584 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6585 
6586 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6587 		kvm_vcpu_block(vcpu);
6588 		kvm_apic_accept_events(vcpu);
6589 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6590 		r = -EAGAIN;
6591 		goto out;
6592 	}
6593 
6594 	/* re-sync apic's tpr */
6595 	if (!irqchip_in_kernel(vcpu->kvm)) {
6596 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6597 			r = -EINVAL;
6598 			goto out;
6599 		}
6600 	}
6601 
6602 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6603 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6604 		vcpu->arch.complete_userspace_io = NULL;
6605 		r = cui(vcpu);
6606 		if (r <= 0)
6607 			goto out;
6608 	} else
6609 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6610 
6611 	r = vcpu_run(vcpu);
6612 
6613 out:
6614 	post_kvm_run_save(vcpu);
6615 	if (vcpu->sigset_active)
6616 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6617 
6618 	return r;
6619 }
6620 
6621 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6622 {
6623 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6624 		/*
6625 		 * We are here if userspace calls get_regs() in the middle of
6626 		 * instruction emulation. Registers state needs to be copied
6627 		 * back from emulation context to vcpu. Userspace shouldn't do
6628 		 * that usually, but some bad designed PV devices (vmware
6629 		 * backdoor interface) need this to work
6630 		 */
6631 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6632 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6633 	}
6634 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6635 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6636 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6637 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6638 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6639 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6640 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6641 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6642 #ifdef CONFIG_X86_64
6643 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6644 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6645 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6646 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6647 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6648 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6649 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6650 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6651 #endif
6652 
6653 	regs->rip = kvm_rip_read(vcpu);
6654 	regs->rflags = kvm_get_rflags(vcpu);
6655 
6656 	return 0;
6657 }
6658 
6659 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6660 {
6661 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6662 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6663 
6664 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6665 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6666 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6667 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6668 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6669 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6670 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6671 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6672 #ifdef CONFIG_X86_64
6673 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6674 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6675 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6676 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6677 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6678 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6679 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6680 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6681 #endif
6682 
6683 	kvm_rip_write(vcpu, regs->rip);
6684 	kvm_set_rflags(vcpu, regs->rflags);
6685 
6686 	vcpu->arch.exception.pending = false;
6687 
6688 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6689 
6690 	return 0;
6691 }
6692 
6693 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6694 {
6695 	struct kvm_segment cs;
6696 
6697 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6698 	*db = cs.db;
6699 	*l = cs.l;
6700 }
6701 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6702 
6703 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6704 				  struct kvm_sregs *sregs)
6705 {
6706 	struct desc_ptr dt;
6707 
6708 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6709 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6710 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6711 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6712 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6713 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6714 
6715 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6716 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6717 
6718 	kvm_x86_ops->get_idt(vcpu, &dt);
6719 	sregs->idt.limit = dt.size;
6720 	sregs->idt.base = dt.address;
6721 	kvm_x86_ops->get_gdt(vcpu, &dt);
6722 	sregs->gdt.limit = dt.size;
6723 	sregs->gdt.base = dt.address;
6724 
6725 	sregs->cr0 = kvm_read_cr0(vcpu);
6726 	sregs->cr2 = vcpu->arch.cr2;
6727 	sregs->cr3 = kvm_read_cr3(vcpu);
6728 	sregs->cr4 = kvm_read_cr4(vcpu);
6729 	sregs->cr8 = kvm_get_cr8(vcpu);
6730 	sregs->efer = vcpu->arch.efer;
6731 	sregs->apic_base = kvm_get_apic_base(vcpu);
6732 
6733 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6734 
6735 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6736 		set_bit(vcpu->arch.interrupt.nr,
6737 			(unsigned long *)sregs->interrupt_bitmap);
6738 
6739 	return 0;
6740 }
6741 
6742 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6743 				    struct kvm_mp_state *mp_state)
6744 {
6745 	kvm_apic_accept_events(vcpu);
6746 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6747 					vcpu->arch.pv.pv_unhalted)
6748 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6749 	else
6750 		mp_state->mp_state = vcpu->arch.mp_state;
6751 
6752 	return 0;
6753 }
6754 
6755 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6756 				    struct kvm_mp_state *mp_state)
6757 {
6758 	if (!kvm_vcpu_has_lapic(vcpu) &&
6759 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6760 		return -EINVAL;
6761 
6762 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6763 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6764 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6765 	} else
6766 		vcpu->arch.mp_state = mp_state->mp_state;
6767 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6768 	return 0;
6769 }
6770 
6771 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6772 		    int reason, bool has_error_code, u32 error_code)
6773 {
6774 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6775 	int ret;
6776 
6777 	init_emulate_ctxt(vcpu);
6778 
6779 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6780 				   has_error_code, error_code);
6781 
6782 	if (ret)
6783 		return EMULATE_FAIL;
6784 
6785 	kvm_rip_write(vcpu, ctxt->eip);
6786 	kvm_set_rflags(vcpu, ctxt->eflags);
6787 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6788 	return EMULATE_DONE;
6789 }
6790 EXPORT_SYMBOL_GPL(kvm_task_switch);
6791 
6792 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6793 				  struct kvm_sregs *sregs)
6794 {
6795 	struct msr_data apic_base_msr;
6796 	int mmu_reset_needed = 0;
6797 	int pending_vec, max_bits, idx;
6798 	struct desc_ptr dt;
6799 
6800 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6801 		return -EINVAL;
6802 
6803 	dt.size = sregs->idt.limit;
6804 	dt.address = sregs->idt.base;
6805 	kvm_x86_ops->set_idt(vcpu, &dt);
6806 	dt.size = sregs->gdt.limit;
6807 	dt.address = sregs->gdt.base;
6808 	kvm_x86_ops->set_gdt(vcpu, &dt);
6809 
6810 	vcpu->arch.cr2 = sregs->cr2;
6811 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6812 	vcpu->arch.cr3 = sregs->cr3;
6813 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6814 
6815 	kvm_set_cr8(vcpu, sregs->cr8);
6816 
6817 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6818 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6819 	apic_base_msr.data = sregs->apic_base;
6820 	apic_base_msr.host_initiated = true;
6821 	kvm_set_apic_base(vcpu, &apic_base_msr);
6822 
6823 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6824 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6825 	vcpu->arch.cr0 = sregs->cr0;
6826 
6827 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6828 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6829 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6830 		kvm_update_cpuid(vcpu);
6831 
6832 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6833 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6834 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6835 		mmu_reset_needed = 1;
6836 	}
6837 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6838 
6839 	if (mmu_reset_needed)
6840 		kvm_mmu_reset_context(vcpu);
6841 
6842 	max_bits = KVM_NR_INTERRUPTS;
6843 	pending_vec = find_first_bit(
6844 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6845 	if (pending_vec < max_bits) {
6846 		kvm_queue_interrupt(vcpu, pending_vec, false);
6847 		pr_debug("Set back pending irq %d\n", pending_vec);
6848 	}
6849 
6850 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6851 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6852 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6853 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6854 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6855 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6856 
6857 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6858 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6859 
6860 	update_cr8_intercept(vcpu);
6861 
6862 	/* Older userspace won't unhalt the vcpu on reset. */
6863 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6864 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6865 	    !is_protmode(vcpu))
6866 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6867 
6868 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6869 
6870 	return 0;
6871 }
6872 
6873 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6874 					struct kvm_guest_debug *dbg)
6875 {
6876 	unsigned long rflags;
6877 	int i, r;
6878 
6879 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6880 		r = -EBUSY;
6881 		if (vcpu->arch.exception.pending)
6882 			goto out;
6883 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6884 			kvm_queue_exception(vcpu, DB_VECTOR);
6885 		else
6886 			kvm_queue_exception(vcpu, BP_VECTOR);
6887 	}
6888 
6889 	/*
6890 	 * Read rflags as long as potentially injected trace flags are still
6891 	 * filtered out.
6892 	 */
6893 	rflags = kvm_get_rflags(vcpu);
6894 
6895 	vcpu->guest_debug = dbg->control;
6896 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6897 		vcpu->guest_debug = 0;
6898 
6899 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6900 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6901 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6902 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6903 	} else {
6904 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6905 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6906 	}
6907 	kvm_update_dr7(vcpu);
6908 
6909 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6910 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6911 			get_segment_base(vcpu, VCPU_SREG_CS);
6912 
6913 	/*
6914 	 * Trigger an rflags update that will inject or remove the trace
6915 	 * flags.
6916 	 */
6917 	kvm_set_rflags(vcpu, rflags);
6918 
6919 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6920 
6921 	r = 0;
6922 
6923 out:
6924 
6925 	return r;
6926 }
6927 
6928 /*
6929  * Translate a guest virtual address to a guest physical address.
6930  */
6931 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6932 				    struct kvm_translation *tr)
6933 {
6934 	unsigned long vaddr = tr->linear_address;
6935 	gpa_t gpa;
6936 	int idx;
6937 
6938 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6939 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6940 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6941 	tr->physical_address = gpa;
6942 	tr->valid = gpa != UNMAPPED_GVA;
6943 	tr->writeable = 1;
6944 	tr->usermode = 0;
6945 
6946 	return 0;
6947 }
6948 
6949 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6950 {
6951 	struct i387_fxsave_struct *fxsave =
6952 			&vcpu->arch.guest_fpu.state->fxsave;
6953 
6954 	memcpy(fpu->fpr, fxsave->st_space, 128);
6955 	fpu->fcw = fxsave->cwd;
6956 	fpu->fsw = fxsave->swd;
6957 	fpu->ftwx = fxsave->twd;
6958 	fpu->last_opcode = fxsave->fop;
6959 	fpu->last_ip = fxsave->rip;
6960 	fpu->last_dp = fxsave->rdp;
6961 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6962 
6963 	return 0;
6964 }
6965 
6966 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6967 {
6968 	struct i387_fxsave_struct *fxsave =
6969 			&vcpu->arch.guest_fpu.state->fxsave;
6970 
6971 	memcpy(fxsave->st_space, fpu->fpr, 128);
6972 	fxsave->cwd = fpu->fcw;
6973 	fxsave->swd = fpu->fsw;
6974 	fxsave->twd = fpu->ftwx;
6975 	fxsave->fop = fpu->last_opcode;
6976 	fxsave->rip = fpu->last_ip;
6977 	fxsave->rdp = fpu->last_dp;
6978 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6979 
6980 	return 0;
6981 }
6982 
6983 int fx_init(struct kvm_vcpu *vcpu)
6984 {
6985 	int err;
6986 
6987 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6988 	if (err)
6989 		return err;
6990 
6991 	fpu_finit(&vcpu->arch.guest_fpu);
6992 	if (cpu_has_xsaves)
6993 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6994 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
6995 
6996 	/*
6997 	 * Ensure guest xcr0 is valid for loading
6998 	 */
6999 	vcpu->arch.xcr0 = XSTATE_FP;
7000 
7001 	vcpu->arch.cr0 |= X86_CR0_ET;
7002 
7003 	return 0;
7004 }
7005 EXPORT_SYMBOL_GPL(fx_init);
7006 
7007 static void fx_free(struct kvm_vcpu *vcpu)
7008 {
7009 	fpu_free(&vcpu->arch.guest_fpu);
7010 }
7011 
7012 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7013 {
7014 	if (vcpu->guest_fpu_loaded)
7015 		return;
7016 
7017 	/*
7018 	 * Restore all possible states in the guest,
7019 	 * and assume host would use all available bits.
7020 	 * Guest xcr0 would be loaded later.
7021 	 */
7022 	kvm_put_guest_xcr0(vcpu);
7023 	vcpu->guest_fpu_loaded = 1;
7024 	__kernel_fpu_begin();
7025 	fpu_restore_checking(&vcpu->arch.guest_fpu);
7026 	trace_kvm_fpu(1);
7027 }
7028 
7029 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7030 {
7031 	kvm_put_guest_xcr0(vcpu);
7032 
7033 	if (!vcpu->guest_fpu_loaded)
7034 		return;
7035 
7036 	vcpu->guest_fpu_loaded = 0;
7037 	fpu_save_init(&vcpu->arch.guest_fpu);
7038 	__kernel_fpu_end();
7039 	++vcpu->stat.fpu_reload;
7040 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7041 	trace_kvm_fpu(0);
7042 }
7043 
7044 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7045 {
7046 	kvmclock_reset(vcpu);
7047 
7048 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7049 	fx_free(vcpu);
7050 	kvm_x86_ops->vcpu_free(vcpu);
7051 }
7052 
7053 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7054 						unsigned int id)
7055 {
7056 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7057 		printk_once(KERN_WARNING
7058 		"kvm: SMP vm created on host with unstable TSC; "
7059 		"guest TSC will not be reliable\n");
7060 	return kvm_x86_ops->vcpu_create(kvm, id);
7061 }
7062 
7063 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7064 {
7065 	int r;
7066 
7067 	vcpu->arch.mtrr_state.have_fixed = 1;
7068 	r = vcpu_load(vcpu);
7069 	if (r)
7070 		return r;
7071 	kvm_vcpu_reset(vcpu);
7072 	kvm_mmu_setup(vcpu);
7073 	vcpu_put(vcpu);
7074 
7075 	return r;
7076 }
7077 
7078 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7079 {
7080 	struct msr_data msr;
7081 	struct kvm *kvm = vcpu->kvm;
7082 
7083 	if (vcpu_load(vcpu))
7084 		return;
7085 	msr.data = 0x0;
7086 	msr.index = MSR_IA32_TSC;
7087 	msr.host_initiated = true;
7088 	kvm_write_tsc(vcpu, &msr);
7089 	vcpu_put(vcpu);
7090 
7091 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7092 					KVMCLOCK_SYNC_PERIOD);
7093 }
7094 
7095 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7096 {
7097 	int r;
7098 	vcpu->arch.apf.msr_val = 0;
7099 
7100 	r = vcpu_load(vcpu);
7101 	BUG_ON(r);
7102 	kvm_mmu_unload(vcpu);
7103 	vcpu_put(vcpu);
7104 
7105 	fx_free(vcpu);
7106 	kvm_x86_ops->vcpu_free(vcpu);
7107 }
7108 
7109 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7110 {
7111 	atomic_set(&vcpu->arch.nmi_queued, 0);
7112 	vcpu->arch.nmi_pending = 0;
7113 	vcpu->arch.nmi_injected = false;
7114 	kvm_clear_interrupt_queue(vcpu);
7115 	kvm_clear_exception_queue(vcpu);
7116 
7117 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7118 	kvm_update_dr0123(vcpu);
7119 	vcpu->arch.dr6 = DR6_INIT;
7120 	kvm_update_dr6(vcpu);
7121 	vcpu->arch.dr7 = DR7_FIXED_1;
7122 	kvm_update_dr7(vcpu);
7123 
7124 	vcpu->arch.cr2 = 0;
7125 
7126 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7127 	vcpu->arch.apf.msr_val = 0;
7128 	vcpu->arch.st.msr_val = 0;
7129 
7130 	kvmclock_reset(vcpu);
7131 
7132 	kvm_clear_async_pf_completion_queue(vcpu);
7133 	kvm_async_pf_hash_reset(vcpu);
7134 	vcpu->arch.apf.halted = false;
7135 
7136 	kvm_pmu_reset(vcpu);
7137 
7138 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7139 	vcpu->arch.regs_avail = ~0;
7140 	vcpu->arch.regs_dirty = ~0;
7141 
7142 	kvm_x86_ops->vcpu_reset(vcpu);
7143 }
7144 
7145 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7146 {
7147 	struct kvm_segment cs;
7148 
7149 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7150 	cs.selector = vector << 8;
7151 	cs.base = vector << 12;
7152 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7153 	kvm_rip_write(vcpu, 0);
7154 }
7155 
7156 int kvm_arch_hardware_enable(void)
7157 {
7158 	struct kvm *kvm;
7159 	struct kvm_vcpu *vcpu;
7160 	int i;
7161 	int ret;
7162 	u64 local_tsc;
7163 	u64 max_tsc = 0;
7164 	bool stable, backwards_tsc = false;
7165 
7166 	kvm_shared_msr_cpu_online();
7167 	ret = kvm_x86_ops->hardware_enable();
7168 	if (ret != 0)
7169 		return ret;
7170 
7171 	local_tsc = native_read_tsc();
7172 	stable = !check_tsc_unstable();
7173 	list_for_each_entry(kvm, &vm_list, vm_list) {
7174 		kvm_for_each_vcpu(i, vcpu, kvm) {
7175 			if (!stable && vcpu->cpu == smp_processor_id())
7176 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7177 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7178 				backwards_tsc = true;
7179 				if (vcpu->arch.last_host_tsc > max_tsc)
7180 					max_tsc = vcpu->arch.last_host_tsc;
7181 			}
7182 		}
7183 	}
7184 
7185 	/*
7186 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7187 	 * platforms that reset TSC during suspend or hibernate actions, but
7188 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7189 	 * detect that condition here, which happens early in CPU bringup,
7190 	 * before any KVM threads can be running.  Unfortunately, we can't
7191 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7192 	 * enough into CPU bringup that we know how much real time has actually
7193 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7194 	 * variables that haven't been updated yet.
7195 	 *
7196 	 * So we simply find the maximum observed TSC above, then record the
7197 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7198 	 * the adjustment will be applied.  Note that we accumulate
7199 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7200 	 * gets a chance to run again.  In the event that no KVM threads get a
7201 	 * chance to run, we will miss the entire elapsed period, as we'll have
7202 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7203 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7204 	 * uniform across all VCPUs (not to mention the scenario is extremely
7205 	 * unlikely). It is possible that a second hibernate recovery happens
7206 	 * much faster than a first, causing the observed TSC here to be
7207 	 * smaller; this would require additional padding adjustment, which is
7208 	 * why we set last_host_tsc to the local tsc observed here.
7209 	 *
7210 	 * N.B. - this code below runs only on platforms with reliable TSC,
7211 	 * as that is the only way backwards_tsc is set above.  Also note
7212 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7213 	 * have the same delta_cyc adjustment applied if backwards_tsc
7214 	 * is detected.  Note further, this adjustment is only done once,
7215 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7216 	 * called multiple times (one for each physical CPU bringup).
7217 	 *
7218 	 * Platforms with unreliable TSCs don't have to deal with this, they
7219 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7220 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7221 	 * guarantee that they stay in perfect synchronization.
7222 	 */
7223 	if (backwards_tsc) {
7224 		u64 delta_cyc = max_tsc - local_tsc;
7225 		backwards_tsc_observed = true;
7226 		list_for_each_entry(kvm, &vm_list, vm_list) {
7227 			kvm_for_each_vcpu(i, vcpu, kvm) {
7228 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7229 				vcpu->arch.last_host_tsc = local_tsc;
7230 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7231 			}
7232 
7233 			/*
7234 			 * We have to disable TSC offset matching.. if you were
7235 			 * booting a VM while issuing an S4 host suspend....
7236 			 * you may have some problem.  Solving this issue is
7237 			 * left as an exercise to the reader.
7238 			 */
7239 			kvm->arch.last_tsc_nsec = 0;
7240 			kvm->arch.last_tsc_write = 0;
7241 		}
7242 
7243 	}
7244 	return 0;
7245 }
7246 
7247 void kvm_arch_hardware_disable(void)
7248 {
7249 	kvm_x86_ops->hardware_disable();
7250 	drop_user_return_notifiers();
7251 }
7252 
7253 int kvm_arch_hardware_setup(void)
7254 {
7255 	int r;
7256 
7257 	r = kvm_x86_ops->hardware_setup();
7258 	if (r != 0)
7259 		return r;
7260 
7261 	kvm_init_msr_list();
7262 	return 0;
7263 }
7264 
7265 void kvm_arch_hardware_unsetup(void)
7266 {
7267 	kvm_x86_ops->hardware_unsetup();
7268 }
7269 
7270 void kvm_arch_check_processor_compat(void *rtn)
7271 {
7272 	kvm_x86_ops->check_processor_compatibility(rtn);
7273 }
7274 
7275 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7276 {
7277 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7278 }
7279 
7280 struct static_key kvm_no_apic_vcpu __read_mostly;
7281 
7282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7283 {
7284 	struct page *page;
7285 	struct kvm *kvm;
7286 	int r;
7287 
7288 	BUG_ON(vcpu->kvm == NULL);
7289 	kvm = vcpu->kvm;
7290 
7291 	vcpu->arch.pv.pv_unhalted = false;
7292 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7293 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7294 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7295 	else
7296 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7297 
7298 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7299 	if (!page) {
7300 		r = -ENOMEM;
7301 		goto fail;
7302 	}
7303 	vcpu->arch.pio_data = page_address(page);
7304 
7305 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7306 
7307 	r = kvm_mmu_create(vcpu);
7308 	if (r < 0)
7309 		goto fail_free_pio_data;
7310 
7311 	if (irqchip_in_kernel(kvm)) {
7312 		r = kvm_create_lapic(vcpu);
7313 		if (r < 0)
7314 			goto fail_mmu_destroy;
7315 	} else
7316 		static_key_slow_inc(&kvm_no_apic_vcpu);
7317 
7318 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7319 				       GFP_KERNEL);
7320 	if (!vcpu->arch.mce_banks) {
7321 		r = -ENOMEM;
7322 		goto fail_free_lapic;
7323 	}
7324 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7325 
7326 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7327 		r = -ENOMEM;
7328 		goto fail_free_mce_banks;
7329 	}
7330 
7331 	r = fx_init(vcpu);
7332 	if (r)
7333 		goto fail_free_wbinvd_dirty_mask;
7334 
7335 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7336 	vcpu->arch.pv_time_enabled = false;
7337 
7338 	vcpu->arch.guest_supported_xcr0 = 0;
7339 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7340 
7341 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7342 
7343 	kvm_async_pf_hash_reset(vcpu);
7344 	kvm_pmu_init(vcpu);
7345 
7346 	return 0;
7347 fail_free_wbinvd_dirty_mask:
7348 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7349 fail_free_mce_banks:
7350 	kfree(vcpu->arch.mce_banks);
7351 fail_free_lapic:
7352 	kvm_free_lapic(vcpu);
7353 fail_mmu_destroy:
7354 	kvm_mmu_destroy(vcpu);
7355 fail_free_pio_data:
7356 	free_page((unsigned long)vcpu->arch.pio_data);
7357 fail:
7358 	return r;
7359 }
7360 
7361 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7362 {
7363 	int idx;
7364 
7365 	kvm_pmu_destroy(vcpu);
7366 	kfree(vcpu->arch.mce_banks);
7367 	kvm_free_lapic(vcpu);
7368 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7369 	kvm_mmu_destroy(vcpu);
7370 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7371 	free_page((unsigned long)vcpu->arch.pio_data);
7372 	if (!irqchip_in_kernel(vcpu->kvm))
7373 		static_key_slow_dec(&kvm_no_apic_vcpu);
7374 }
7375 
7376 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7377 {
7378 	kvm_x86_ops->sched_in(vcpu, cpu);
7379 }
7380 
7381 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7382 {
7383 	if (type)
7384 		return -EINVAL;
7385 
7386 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7387 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7388 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7389 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7390 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7391 
7392 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7393 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7394 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7395 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7396 		&kvm->arch.irq_sources_bitmap);
7397 
7398 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7399 	mutex_init(&kvm->arch.apic_map_lock);
7400 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7401 
7402 	pvclock_update_vm_gtod_copy(kvm);
7403 
7404 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7405 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7406 
7407 	return 0;
7408 }
7409 
7410 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7411 {
7412 	int r;
7413 	r = vcpu_load(vcpu);
7414 	BUG_ON(r);
7415 	kvm_mmu_unload(vcpu);
7416 	vcpu_put(vcpu);
7417 }
7418 
7419 static void kvm_free_vcpus(struct kvm *kvm)
7420 {
7421 	unsigned int i;
7422 	struct kvm_vcpu *vcpu;
7423 
7424 	/*
7425 	 * Unpin any mmu pages first.
7426 	 */
7427 	kvm_for_each_vcpu(i, vcpu, kvm) {
7428 		kvm_clear_async_pf_completion_queue(vcpu);
7429 		kvm_unload_vcpu_mmu(vcpu);
7430 	}
7431 	kvm_for_each_vcpu(i, vcpu, kvm)
7432 		kvm_arch_vcpu_free(vcpu);
7433 
7434 	mutex_lock(&kvm->lock);
7435 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7436 		kvm->vcpus[i] = NULL;
7437 
7438 	atomic_set(&kvm->online_vcpus, 0);
7439 	mutex_unlock(&kvm->lock);
7440 }
7441 
7442 void kvm_arch_sync_events(struct kvm *kvm)
7443 {
7444 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7445 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7446 	kvm_free_all_assigned_devices(kvm);
7447 	kvm_free_pit(kvm);
7448 }
7449 
7450 void kvm_arch_destroy_vm(struct kvm *kvm)
7451 {
7452 	if (current->mm == kvm->mm) {
7453 		/*
7454 		 * Free memory regions allocated on behalf of userspace,
7455 		 * unless the the memory map has changed due to process exit
7456 		 * or fd copying.
7457 		 */
7458 		struct kvm_userspace_memory_region mem;
7459 		memset(&mem, 0, sizeof(mem));
7460 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7461 		kvm_set_memory_region(kvm, &mem);
7462 
7463 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7464 		kvm_set_memory_region(kvm, &mem);
7465 
7466 		mem.slot = TSS_PRIVATE_MEMSLOT;
7467 		kvm_set_memory_region(kvm, &mem);
7468 	}
7469 	kvm_iommu_unmap_guest(kvm);
7470 	kfree(kvm->arch.vpic);
7471 	kfree(kvm->arch.vioapic);
7472 	kvm_free_vcpus(kvm);
7473 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7474 }
7475 
7476 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7477 			   struct kvm_memory_slot *dont)
7478 {
7479 	int i;
7480 
7481 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7482 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7483 			kvfree(free->arch.rmap[i]);
7484 			free->arch.rmap[i] = NULL;
7485 		}
7486 		if (i == 0)
7487 			continue;
7488 
7489 		if (!dont || free->arch.lpage_info[i - 1] !=
7490 			     dont->arch.lpage_info[i - 1]) {
7491 			kvfree(free->arch.lpage_info[i - 1]);
7492 			free->arch.lpage_info[i - 1] = NULL;
7493 		}
7494 	}
7495 }
7496 
7497 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7498 			    unsigned long npages)
7499 {
7500 	int i;
7501 
7502 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7503 		unsigned long ugfn;
7504 		int lpages;
7505 		int level = i + 1;
7506 
7507 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7508 				      slot->base_gfn, level) + 1;
7509 
7510 		slot->arch.rmap[i] =
7511 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7512 		if (!slot->arch.rmap[i])
7513 			goto out_free;
7514 		if (i == 0)
7515 			continue;
7516 
7517 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7518 					sizeof(*slot->arch.lpage_info[i - 1]));
7519 		if (!slot->arch.lpage_info[i - 1])
7520 			goto out_free;
7521 
7522 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7523 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7524 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7525 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7526 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7527 		/*
7528 		 * If the gfn and userspace address are not aligned wrt each
7529 		 * other, or if explicitly asked to, disable large page
7530 		 * support for this slot
7531 		 */
7532 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7533 		    !kvm_largepages_enabled()) {
7534 			unsigned long j;
7535 
7536 			for (j = 0; j < lpages; ++j)
7537 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7538 		}
7539 	}
7540 
7541 	return 0;
7542 
7543 out_free:
7544 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7545 		kvfree(slot->arch.rmap[i]);
7546 		slot->arch.rmap[i] = NULL;
7547 		if (i == 0)
7548 			continue;
7549 
7550 		kvfree(slot->arch.lpage_info[i - 1]);
7551 		slot->arch.lpage_info[i - 1] = NULL;
7552 	}
7553 	return -ENOMEM;
7554 }
7555 
7556 void kvm_arch_memslots_updated(struct kvm *kvm)
7557 {
7558 	/*
7559 	 * memslots->generation has been incremented.
7560 	 * mmio generation may have reached its maximum value.
7561 	 */
7562 	kvm_mmu_invalidate_mmio_sptes(kvm);
7563 }
7564 
7565 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7566 				struct kvm_memory_slot *memslot,
7567 				struct kvm_userspace_memory_region *mem,
7568 				enum kvm_mr_change change)
7569 {
7570 	/*
7571 	 * Only private memory slots need to be mapped here since
7572 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7573 	 */
7574 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7575 		unsigned long userspace_addr;
7576 
7577 		/*
7578 		 * MAP_SHARED to prevent internal slot pages from being moved
7579 		 * by fork()/COW.
7580 		 */
7581 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7582 					 PROT_READ | PROT_WRITE,
7583 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7584 
7585 		if (IS_ERR((void *)userspace_addr))
7586 			return PTR_ERR((void *)userspace_addr);
7587 
7588 		memslot->userspace_addr = userspace_addr;
7589 	}
7590 
7591 	return 0;
7592 }
7593 
7594 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7595 				     struct kvm_memory_slot *new)
7596 {
7597 	/* Still write protect RO slot */
7598 	if (new->flags & KVM_MEM_READONLY) {
7599 		kvm_mmu_slot_remove_write_access(kvm, new);
7600 		return;
7601 	}
7602 
7603 	/*
7604 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7605 	 *
7606 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7607 	 *
7608 	 *  - KVM_MR_CREATE with dirty logging is disabled
7609 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7610 	 *
7611 	 * The reason is, in case of PML, we need to set D-bit for any slots
7612 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7613 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7614 	 * guarantees leaving PML enabled during guest's lifetime won't have
7615 	 * any additonal overhead from PML when guest is running with dirty
7616 	 * logging disabled for memory slots.
7617 	 *
7618 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7619 	 * to dirty logging mode.
7620 	 *
7621 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7622 	 *
7623 	 * In case of write protect:
7624 	 *
7625 	 * Write protect all pages for dirty logging.
7626 	 *
7627 	 * All the sptes including the large sptes which point to this
7628 	 * slot are set to readonly. We can not create any new large
7629 	 * spte on this slot until the end of the logging.
7630 	 *
7631 	 * See the comments in fast_page_fault().
7632 	 */
7633 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7634 		if (kvm_x86_ops->slot_enable_log_dirty)
7635 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7636 		else
7637 			kvm_mmu_slot_remove_write_access(kvm, new);
7638 	} else {
7639 		if (kvm_x86_ops->slot_disable_log_dirty)
7640 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7641 	}
7642 }
7643 
7644 void kvm_arch_commit_memory_region(struct kvm *kvm,
7645 				struct kvm_userspace_memory_region *mem,
7646 				const struct kvm_memory_slot *old,
7647 				enum kvm_mr_change change)
7648 {
7649 	struct kvm_memory_slot *new;
7650 	int nr_mmu_pages = 0;
7651 
7652 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7653 		int ret;
7654 
7655 		ret = vm_munmap(old->userspace_addr,
7656 				old->npages * PAGE_SIZE);
7657 		if (ret < 0)
7658 			printk(KERN_WARNING
7659 			       "kvm_vm_ioctl_set_memory_region: "
7660 			       "failed to munmap memory\n");
7661 	}
7662 
7663 	if (!kvm->arch.n_requested_mmu_pages)
7664 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7665 
7666 	if (nr_mmu_pages)
7667 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7668 
7669 	/* It's OK to get 'new' slot here as it has already been installed */
7670 	new = id_to_memslot(kvm->memslots, mem->slot);
7671 
7672 	/*
7673 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7674 	 * sptes have to be split.  If live migration is successful, the guest
7675 	 * in the source machine will be destroyed and large sptes will be
7676 	 * created in the destination. However, if the guest continues to run
7677 	 * in the source machine (for example if live migration fails), small
7678 	 * sptes will remain around and cause bad performance.
7679 	 *
7680 	 * Scan sptes if dirty logging has been stopped, dropping those
7681 	 * which can be collapsed into a single large-page spte.  Later
7682 	 * page faults will create the large-page sptes.
7683 	 */
7684 	if ((change != KVM_MR_DELETE) &&
7685 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7686 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7687 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7688 
7689 	/*
7690 	 * Set up write protection and/or dirty logging for the new slot.
7691 	 *
7692 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7693 	 * been zapped so no dirty logging staff is needed for old slot. For
7694 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7695 	 * new and it's also covered when dealing with the new slot.
7696 	 */
7697 	if (change != KVM_MR_DELETE)
7698 		kvm_mmu_slot_apply_flags(kvm, new);
7699 }
7700 
7701 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7702 {
7703 	kvm_mmu_invalidate_zap_all_pages(kvm);
7704 }
7705 
7706 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7707 				   struct kvm_memory_slot *slot)
7708 {
7709 	kvm_mmu_invalidate_zap_all_pages(kvm);
7710 }
7711 
7712 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7713 {
7714 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7715 		kvm_x86_ops->check_nested_events(vcpu, false);
7716 
7717 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7718 		!vcpu->arch.apf.halted)
7719 		|| !list_empty_careful(&vcpu->async_pf.done)
7720 		|| kvm_apic_has_events(vcpu)
7721 		|| vcpu->arch.pv.pv_unhalted
7722 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7723 		(kvm_arch_interrupt_allowed(vcpu) &&
7724 		 kvm_cpu_has_interrupt(vcpu));
7725 }
7726 
7727 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7728 {
7729 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7730 }
7731 
7732 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7733 {
7734 	return kvm_x86_ops->interrupt_allowed(vcpu);
7735 }
7736 
7737 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7738 {
7739 	if (is_64_bit_mode(vcpu))
7740 		return kvm_rip_read(vcpu);
7741 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7742 		     kvm_rip_read(vcpu));
7743 }
7744 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7745 
7746 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7747 {
7748 	return kvm_get_linear_rip(vcpu) == linear_rip;
7749 }
7750 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7751 
7752 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7753 {
7754 	unsigned long rflags;
7755 
7756 	rflags = kvm_x86_ops->get_rflags(vcpu);
7757 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7758 		rflags &= ~X86_EFLAGS_TF;
7759 	return rflags;
7760 }
7761 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7762 
7763 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7764 {
7765 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7766 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7767 		rflags |= X86_EFLAGS_TF;
7768 	kvm_x86_ops->set_rflags(vcpu, rflags);
7769 }
7770 
7771 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7772 {
7773 	__kvm_set_rflags(vcpu, rflags);
7774 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7775 }
7776 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7777 
7778 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7779 {
7780 	int r;
7781 
7782 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7783 	      work->wakeup_all)
7784 		return;
7785 
7786 	r = kvm_mmu_reload(vcpu);
7787 	if (unlikely(r))
7788 		return;
7789 
7790 	if (!vcpu->arch.mmu.direct_map &&
7791 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7792 		return;
7793 
7794 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7795 }
7796 
7797 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7798 {
7799 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7800 }
7801 
7802 static inline u32 kvm_async_pf_next_probe(u32 key)
7803 {
7804 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7805 }
7806 
7807 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7808 {
7809 	u32 key = kvm_async_pf_hash_fn(gfn);
7810 
7811 	while (vcpu->arch.apf.gfns[key] != ~0)
7812 		key = kvm_async_pf_next_probe(key);
7813 
7814 	vcpu->arch.apf.gfns[key] = gfn;
7815 }
7816 
7817 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7818 {
7819 	int i;
7820 	u32 key = kvm_async_pf_hash_fn(gfn);
7821 
7822 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7823 		     (vcpu->arch.apf.gfns[key] != gfn &&
7824 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7825 		key = kvm_async_pf_next_probe(key);
7826 
7827 	return key;
7828 }
7829 
7830 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7831 {
7832 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7833 }
7834 
7835 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7836 {
7837 	u32 i, j, k;
7838 
7839 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7840 	while (true) {
7841 		vcpu->arch.apf.gfns[i] = ~0;
7842 		do {
7843 			j = kvm_async_pf_next_probe(j);
7844 			if (vcpu->arch.apf.gfns[j] == ~0)
7845 				return;
7846 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7847 			/*
7848 			 * k lies cyclically in ]i,j]
7849 			 * |    i.k.j |
7850 			 * |....j i.k.| or  |.k..j i...|
7851 			 */
7852 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7853 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7854 		i = j;
7855 	}
7856 }
7857 
7858 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7859 {
7860 
7861 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7862 				      sizeof(val));
7863 }
7864 
7865 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7866 				     struct kvm_async_pf *work)
7867 {
7868 	struct x86_exception fault;
7869 
7870 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7871 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7872 
7873 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7874 	    (vcpu->arch.apf.send_user_only &&
7875 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7876 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7877 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7878 		fault.vector = PF_VECTOR;
7879 		fault.error_code_valid = true;
7880 		fault.error_code = 0;
7881 		fault.nested_page_fault = false;
7882 		fault.address = work->arch.token;
7883 		kvm_inject_page_fault(vcpu, &fault);
7884 	}
7885 }
7886 
7887 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7888 				 struct kvm_async_pf *work)
7889 {
7890 	struct x86_exception fault;
7891 
7892 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7893 	if (work->wakeup_all)
7894 		work->arch.token = ~0; /* broadcast wakeup */
7895 	else
7896 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7897 
7898 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7899 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7900 		fault.vector = PF_VECTOR;
7901 		fault.error_code_valid = true;
7902 		fault.error_code = 0;
7903 		fault.nested_page_fault = false;
7904 		fault.address = work->arch.token;
7905 		kvm_inject_page_fault(vcpu, &fault);
7906 	}
7907 	vcpu->arch.apf.halted = false;
7908 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7909 }
7910 
7911 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7912 {
7913 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7914 		return true;
7915 	else
7916 		return !kvm_event_needs_reinjection(vcpu) &&
7917 			kvm_x86_ops->interrupt_allowed(vcpu);
7918 }
7919 
7920 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7921 {
7922 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7923 }
7924 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7925 
7926 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7927 {
7928 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7929 }
7930 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7931 
7932 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7933 {
7934 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7935 }
7936 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7937 
7938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7942 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7943 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7944 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7945 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7946 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
7953