xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 4a65896f94fa82370041823837cd75aac1186b54)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
165 	{ "hypercalls", VCPU_STAT(hypercalls) },
166 	{ "request_irq", VCPU_STAT(request_irq_exits) },
167 	{ "irq_exits", VCPU_STAT(irq_exits) },
168 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
169 	{ "efer_reload", VCPU_STAT(efer_reload) },
170 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
171 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
172 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173 	{ "irq_injections", VCPU_STAT(irq_injections) },
174 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
175 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
177 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
180 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
181 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
183 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184 	{ "largepages", VM_STAT(lpages) },
185 	{ NULL }
186 };
187 
188 u64 __read_mostly host_xcr0;
189 
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191 
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194 	int i;
195 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196 		vcpu->arch.apf.gfns[i] = ~0;
197 }
198 
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201 	unsigned slot;
202 	struct kvm_shared_msrs *locals
203 		= container_of(urn, struct kvm_shared_msrs, urn);
204 	struct kvm_shared_msr_values *values;
205 
206 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207 		values = &locals->values[slot];
208 		if (values->host != values->curr) {
209 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
210 			values->curr = values->host;
211 		}
212 	}
213 	locals->registered = false;
214 	user_return_notifier_unregister(urn);
215 }
216 
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219 	u64 value;
220 	unsigned int cpu = smp_processor_id();
221 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222 
223 	/* only read, and nobody should modify it at this time,
224 	 * so don't need lock */
225 	if (slot >= shared_msrs_global.nr) {
226 		printk(KERN_ERR "kvm: invalid MSR slot!");
227 		return;
228 	}
229 	rdmsrl_safe(msr, &value);
230 	smsr->values[slot].host = value;
231 	smsr->values[slot].curr = value;
232 }
233 
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237 	shared_msrs_global.msrs[slot] = msr;
238 	if (slot >= shared_msrs_global.nr)
239 		shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242 
243 static void kvm_shared_msr_cpu_online(void)
244 {
245 	unsigned i;
246 
247 	for (i = 0; i < shared_msrs_global.nr; ++i)
248 		shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250 
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253 	unsigned int cpu = smp_processor_id();
254 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 	int err;
256 
257 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
258 		return 0;
259 	smsr->values[slot].curr = value;
260 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261 	if (err)
262 		return 1;
263 
264 	if (!smsr->registered) {
265 		smsr->urn.on_user_return = kvm_on_user_return;
266 		user_return_notifier_register(&smsr->urn);
267 		smsr->registered = true;
268 	}
269 	return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272 
273 static void drop_user_return_notifiers(void)
274 {
275 	unsigned int cpu = smp_processor_id();
276 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 
278 	if (smsr->registered)
279 		kvm_on_user_return(&smsr->urn);
280 }
281 
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287 
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290 	u64 old_state = vcpu->arch.apic_base &
291 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292 	u64 new_state = msr_info->data &
293 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296 
297 	if (!msr_info->host_initiated &&
298 	    ((msr_info->data & reserved_bits) != 0 ||
299 	     new_state == X2APIC_ENABLE ||
300 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
301 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303 	      old_state == 0)))
304 		return 1;
305 
306 	kvm_lapic_set_base(vcpu, msr_info->data);
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310 
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313 	/* Fault while not rebooting.  We want the trace. */
314 	BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317 
318 #define EXCPT_BENIGN		0
319 #define EXCPT_CONTRIBUTORY	1
320 #define EXCPT_PF		2
321 
322 static int exception_class(int vector)
323 {
324 	switch (vector) {
325 	case PF_VECTOR:
326 		return EXCPT_PF;
327 	case DE_VECTOR:
328 	case TS_VECTOR:
329 	case NP_VECTOR:
330 	case SS_VECTOR:
331 	case GP_VECTOR:
332 		return EXCPT_CONTRIBUTORY;
333 	default:
334 		break;
335 	}
336 	return EXCPT_BENIGN;
337 }
338 
339 #define EXCPT_FAULT		0
340 #define EXCPT_TRAP		1
341 #define EXCPT_ABORT		2
342 #define EXCPT_INTERRUPT		3
343 
344 static int exception_type(int vector)
345 {
346 	unsigned int mask;
347 
348 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349 		return EXCPT_INTERRUPT;
350 
351 	mask = 1 << vector;
352 
353 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
354 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355 		return EXCPT_TRAP;
356 
357 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358 		return EXCPT_ABORT;
359 
360 	/* Reserved exceptions will result in fault */
361 	return EXCPT_FAULT;
362 }
363 
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365 		unsigned nr, bool has_error, u32 error_code,
366 		bool reinject)
367 {
368 	u32 prev_nr;
369 	int class1, class2;
370 
371 	kvm_make_request(KVM_REQ_EVENT, vcpu);
372 
373 	if (!vcpu->arch.exception.pending) {
374 	queue:
375 		if (has_error && !is_protmode(vcpu))
376 			has_error = false;
377 		vcpu->arch.exception.pending = true;
378 		vcpu->arch.exception.has_error_code = has_error;
379 		vcpu->arch.exception.nr = nr;
380 		vcpu->arch.exception.error_code = error_code;
381 		vcpu->arch.exception.reinject = reinject;
382 		return;
383 	}
384 
385 	/* to check exception */
386 	prev_nr = vcpu->arch.exception.nr;
387 	if (prev_nr == DF_VECTOR) {
388 		/* triple fault -> shutdown */
389 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390 		return;
391 	}
392 	class1 = exception_class(prev_nr);
393 	class2 = exception_class(nr);
394 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396 		/* generate double fault per SDM Table 5-5 */
397 		vcpu->arch.exception.pending = true;
398 		vcpu->arch.exception.has_error_code = true;
399 		vcpu->arch.exception.nr = DF_VECTOR;
400 		vcpu->arch.exception.error_code = 0;
401 	} else
402 		/* replace previous exception with a new one in a hope
403 		   that instruction re-execution will regenerate lost
404 		   exception */
405 		goto queue;
406 }
407 
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410 	kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413 
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416 	kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419 
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422 	if (err)
423 		kvm_inject_gp(vcpu, 0);
424 	else
425 		kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428 
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431 	++vcpu->stat.pf_guest;
432 	vcpu->arch.cr2 = fault->address;
433 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436 
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441 	else
442 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443 
444 	return fault->nested_page_fault;
445 }
446 
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449 	atomic_inc(&vcpu->arch.nmi_queued);
450 	kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453 
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459 
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465 
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473 		return true;
474 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475 	return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478 
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482 		return true;
483 
484 	kvm_queue_exception(vcpu, UD_VECTOR);
485 	return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488 
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495 			    gfn_t ngfn, void *data, int offset, int len,
496 			    u32 access)
497 {
498 	struct x86_exception exception;
499 	gfn_t real_gfn;
500 	gpa_t ngpa;
501 
502 	ngpa     = gfn_to_gpa(ngfn);
503 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504 	if (real_gfn == UNMAPPED_GVA)
505 		return -EFAULT;
506 
507 	real_gfn = gpa_to_gfn(real_gfn);
508 
509 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512 
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514 			       void *data, int offset, int len, u32 access)
515 {
516 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517 				       data, offset, len, access);
518 }
519 
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527 	int i;
528 	int ret;
529 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530 
531 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532 				      offset * sizeof(u64), sizeof(pdpte),
533 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
534 	if (ret < 0) {
535 		ret = 0;
536 		goto out;
537 	}
538 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539 		if (is_present_gpte(pdpte[i]) &&
540 		    (pdpte[i] &
541 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542 			ret = 0;
543 			goto out;
544 		}
545 	}
546 	ret = 1;
547 
548 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549 	__set_bit(VCPU_EXREG_PDPTR,
550 		  (unsigned long *)&vcpu->arch.regs_avail);
551 	__set_bit(VCPU_EXREG_PDPTR,
552 		  (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554 
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558 
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562 	bool changed = true;
563 	int offset;
564 	gfn_t gfn;
565 	int r;
566 
567 	if (is_long_mode(vcpu) || !is_pae(vcpu))
568 		return false;
569 
570 	if (!test_bit(VCPU_EXREG_PDPTR,
571 		      (unsigned long *)&vcpu->arch.regs_avail))
572 		return true;
573 
574 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
578 	if (r < 0)
579 		goto out;
580 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582 
583 	return changed;
584 }
585 
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
589 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590 
591 	cr0 |= X86_CR0_ET;
592 
593 #ifdef CONFIG_X86_64
594 	if (cr0 & 0xffffffff00000000UL)
595 		return 1;
596 #endif
597 
598 	cr0 &= ~CR0_RESERVED_BITS;
599 
600 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601 		return 1;
602 
603 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604 		return 1;
605 
606 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608 		if ((vcpu->arch.efer & EFER_LME)) {
609 			int cs_db, cs_l;
610 
611 			if (!is_pae(vcpu))
612 				return 1;
613 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614 			if (cs_l)
615 				return 1;
616 		} else
617 #endif
618 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619 						 kvm_read_cr3(vcpu)))
620 			return 1;
621 	}
622 
623 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624 		return 1;
625 
626 	kvm_x86_ops->set_cr0(vcpu, cr0);
627 
628 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629 		kvm_clear_async_pf_completion_queue(vcpu);
630 		kvm_async_pf_hash_reset(vcpu);
631 	}
632 
633 	if ((cr0 ^ old_cr0) & update_bits)
634 		kvm_mmu_reset_context(vcpu);
635 
636 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644 
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650 
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654 			!vcpu->guest_xcr0_loaded) {
655 		/* kvm_set_xcr() also depends on this */
656 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657 		vcpu->guest_xcr0_loaded = 1;
658 	}
659 }
660 
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663 	if (vcpu->guest_xcr0_loaded) {
664 		if (vcpu->arch.xcr0 != host_xcr0)
665 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666 		vcpu->guest_xcr0_loaded = 0;
667 	}
668 }
669 
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672 	u64 xcr0 = xcr;
673 	u64 old_xcr0 = vcpu->arch.xcr0;
674 	u64 valid_bits;
675 
676 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677 	if (index != XCR_XFEATURE_ENABLED_MASK)
678 		return 1;
679 	if (!(xcr0 & XFEATURE_MASK_FP))
680 		return 1;
681 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682 		return 1;
683 
684 	/*
685 	 * Do not allow the guest to set bits that we do not support
686 	 * saving.  However, xcr0 bit 0 is always set, even if the
687 	 * emulated CPU does not support XSAVE (see fx_init).
688 	 */
689 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690 	if (xcr0 & ~valid_bits)
691 		return 1;
692 
693 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695 		return 1;
696 
697 	if (xcr0 & XFEATURE_MASK_AVX512) {
698 		if (!(xcr0 & XFEATURE_MASK_YMM))
699 			return 1;
700 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701 			return 1;
702 	}
703 	vcpu->arch.xcr0 = xcr0;
704 
705 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
706 		kvm_update_cpuid(vcpu);
707 	return 0;
708 }
709 
710 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
711 {
712 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
713 	    __kvm_set_xcr(vcpu, index, xcr)) {
714 		kvm_inject_gp(vcpu, 0);
715 		return 1;
716 	}
717 	return 0;
718 }
719 EXPORT_SYMBOL_GPL(kvm_set_xcr);
720 
721 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
722 {
723 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
724 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
725 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
726 
727 	if (cr4 & CR4_RESERVED_BITS)
728 		return 1;
729 
730 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
731 		return 1;
732 
733 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
734 		return 1;
735 
736 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
737 		return 1;
738 
739 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
740 		return 1;
741 
742 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
743 		return 1;
744 
745 	if (is_long_mode(vcpu)) {
746 		if (!(cr4 & X86_CR4_PAE))
747 			return 1;
748 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
749 		   && ((cr4 ^ old_cr4) & pdptr_bits)
750 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
751 				   kvm_read_cr3(vcpu)))
752 		return 1;
753 
754 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
755 		if (!guest_cpuid_has_pcid(vcpu))
756 			return 1;
757 
758 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
759 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
760 			return 1;
761 	}
762 
763 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
764 		return 1;
765 
766 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
767 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
768 		kvm_mmu_reset_context(vcpu);
769 
770 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
771 		kvm_update_cpuid(vcpu);
772 
773 	return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_set_cr4);
776 
777 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
778 {
779 #ifdef CONFIG_X86_64
780 	cr3 &= ~CR3_PCID_INVD;
781 #endif
782 
783 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
784 		kvm_mmu_sync_roots(vcpu);
785 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
786 		return 0;
787 	}
788 
789 	if (is_long_mode(vcpu)) {
790 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
791 			return 1;
792 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
793 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
794 		return 1;
795 
796 	vcpu->arch.cr3 = cr3;
797 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
798 	kvm_mmu_new_cr3(vcpu);
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr3);
802 
803 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
804 {
805 	if (cr8 & CR8_RESERVED_BITS)
806 		return 1;
807 	if (lapic_in_kernel(vcpu))
808 		kvm_lapic_set_tpr(vcpu, cr8);
809 	else
810 		vcpu->arch.cr8 = cr8;
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_set_cr8);
814 
815 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
816 {
817 	if (lapic_in_kernel(vcpu))
818 		return kvm_lapic_get_cr8(vcpu);
819 	else
820 		return vcpu->arch.cr8;
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_cr8);
823 
824 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
825 {
826 	int i;
827 
828 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
829 		for (i = 0; i < KVM_NR_DB_REGS; i++)
830 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
831 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
832 	}
833 }
834 
835 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
836 {
837 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
838 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
839 }
840 
841 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
842 {
843 	unsigned long dr7;
844 
845 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
846 		dr7 = vcpu->arch.guest_debug_dr7;
847 	else
848 		dr7 = vcpu->arch.dr7;
849 	kvm_x86_ops->set_dr7(vcpu, dr7);
850 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
851 	if (dr7 & DR7_BP_EN_MASK)
852 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
853 }
854 
855 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
856 {
857 	u64 fixed = DR6_FIXED_1;
858 
859 	if (!guest_cpuid_has_rtm(vcpu))
860 		fixed |= DR6_RTM;
861 	return fixed;
862 }
863 
864 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
865 {
866 	switch (dr) {
867 	case 0 ... 3:
868 		vcpu->arch.db[dr] = val;
869 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
870 			vcpu->arch.eff_db[dr] = val;
871 		break;
872 	case 4:
873 		/* fall through */
874 	case 6:
875 		if (val & 0xffffffff00000000ULL)
876 			return -1; /* #GP */
877 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
878 		kvm_update_dr6(vcpu);
879 		break;
880 	case 5:
881 		/* fall through */
882 	default: /* 7 */
883 		if (val & 0xffffffff00000000ULL)
884 			return -1; /* #GP */
885 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
886 		kvm_update_dr7(vcpu);
887 		break;
888 	}
889 
890 	return 0;
891 }
892 
893 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
894 {
895 	if (__kvm_set_dr(vcpu, dr, val)) {
896 		kvm_inject_gp(vcpu, 0);
897 		return 1;
898 	}
899 	return 0;
900 }
901 EXPORT_SYMBOL_GPL(kvm_set_dr);
902 
903 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
904 {
905 	switch (dr) {
906 	case 0 ... 3:
907 		*val = vcpu->arch.db[dr];
908 		break;
909 	case 4:
910 		/* fall through */
911 	case 6:
912 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
913 			*val = vcpu->arch.dr6;
914 		else
915 			*val = kvm_x86_ops->get_dr6(vcpu);
916 		break;
917 	case 5:
918 		/* fall through */
919 	default: /* 7 */
920 		*val = vcpu->arch.dr7;
921 		break;
922 	}
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_get_dr);
926 
927 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
928 {
929 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
930 	u64 data;
931 	int err;
932 
933 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
934 	if (err)
935 		return err;
936 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
937 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
938 	return err;
939 }
940 EXPORT_SYMBOL_GPL(kvm_rdpmc);
941 
942 /*
943  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
944  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
945  *
946  * This list is modified at module load time to reflect the
947  * capabilities of the host cpu. This capabilities test skips MSRs that are
948  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
949  * may depend on host virtualization features rather than host cpu features.
950  */
951 
952 static u32 msrs_to_save[] = {
953 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
954 	MSR_STAR,
955 #ifdef CONFIG_X86_64
956 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
957 #endif
958 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
959 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
960 };
961 
962 static unsigned num_msrs_to_save;
963 
964 static u32 emulated_msrs[] = {
965 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
966 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
967 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
968 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
969 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
970 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
971 	HV_X64_MSR_RESET,
972 	HV_X64_MSR_VP_INDEX,
973 	HV_X64_MSR_VP_RUNTIME,
974 	HV_X64_MSR_SCONTROL,
975 	HV_X64_MSR_STIMER0_CONFIG,
976 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
977 	MSR_KVM_PV_EOI_EN,
978 
979 	MSR_IA32_TSC_ADJUST,
980 	MSR_IA32_TSCDEADLINE,
981 	MSR_IA32_MISC_ENABLE,
982 	MSR_IA32_MCG_STATUS,
983 	MSR_IA32_MCG_CTL,
984 	MSR_IA32_SMBASE,
985 };
986 
987 static unsigned num_emulated_msrs;
988 
989 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
990 {
991 	if (efer & efer_reserved_bits)
992 		return false;
993 
994 	if (efer & EFER_FFXSR) {
995 		struct kvm_cpuid_entry2 *feat;
996 
997 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
999 			return false;
1000 	}
1001 
1002 	if (efer & EFER_SVME) {
1003 		struct kvm_cpuid_entry2 *feat;
1004 
1005 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1006 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1007 			return false;
1008 	}
1009 
1010 	return true;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1013 
1014 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 {
1016 	u64 old_efer = vcpu->arch.efer;
1017 
1018 	if (!kvm_valid_efer(vcpu, efer))
1019 		return 1;
1020 
1021 	if (is_paging(vcpu)
1022 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1023 		return 1;
1024 
1025 	efer &= ~EFER_LMA;
1026 	efer |= vcpu->arch.efer & EFER_LMA;
1027 
1028 	kvm_x86_ops->set_efer(vcpu, efer);
1029 
1030 	/* Update reserved bits */
1031 	if ((efer ^ old_efer) & EFER_NX)
1032 		kvm_mmu_reset_context(vcpu);
1033 
1034 	return 0;
1035 }
1036 
1037 void kvm_enable_efer_bits(u64 mask)
1038 {
1039        efer_reserved_bits &= ~mask;
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1042 
1043 /*
1044  * Writes msr value into into the appropriate "register".
1045  * Returns 0 on success, non-0 otherwise.
1046  * Assumes vcpu_load() was already called.
1047  */
1048 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1049 {
1050 	switch (msr->index) {
1051 	case MSR_FS_BASE:
1052 	case MSR_GS_BASE:
1053 	case MSR_KERNEL_GS_BASE:
1054 	case MSR_CSTAR:
1055 	case MSR_LSTAR:
1056 		if (is_noncanonical_address(msr->data))
1057 			return 1;
1058 		break;
1059 	case MSR_IA32_SYSENTER_EIP:
1060 	case MSR_IA32_SYSENTER_ESP:
1061 		/*
1062 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1063 		 * non-canonical address is written on Intel but not on
1064 		 * AMD (which ignores the top 32-bits, because it does
1065 		 * not implement 64-bit SYSENTER).
1066 		 *
1067 		 * 64-bit code should hence be able to write a non-canonical
1068 		 * value on AMD.  Making the address canonical ensures that
1069 		 * vmentry does not fail on Intel after writing a non-canonical
1070 		 * value, and that something deterministic happens if the guest
1071 		 * invokes 64-bit SYSENTER.
1072 		 */
1073 		msr->data = get_canonical(msr->data);
1074 	}
1075 	return kvm_x86_ops->set_msr(vcpu, msr);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_msr);
1078 
1079 /*
1080  * Adapt set_msr() to msr_io()'s calling convention
1081  */
1082 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1083 {
1084 	struct msr_data msr;
1085 	int r;
1086 
1087 	msr.index = index;
1088 	msr.host_initiated = true;
1089 	r = kvm_get_msr(vcpu, &msr);
1090 	if (r)
1091 		return r;
1092 
1093 	*data = msr.data;
1094 	return 0;
1095 }
1096 
1097 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1098 {
1099 	struct msr_data msr;
1100 
1101 	msr.data = *data;
1102 	msr.index = index;
1103 	msr.host_initiated = true;
1104 	return kvm_set_msr(vcpu, &msr);
1105 }
1106 
1107 #ifdef CONFIG_X86_64
1108 struct pvclock_gtod_data {
1109 	seqcount_t	seq;
1110 
1111 	struct { /* extract of a clocksource struct */
1112 		int vclock_mode;
1113 		cycle_t	cycle_last;
1114 		cycle_t	mask;
1115 		u32	mult;
1116 		u32	shift;
1117 	} clock;
1118 
1119 	u64		boot_ns;
1120 	u64		nsec_base;
1121 };
1122 
1123 static struct pvclock_gtod_data pvclock_gtod_data;
1124 
1125 static void update_pvclock_gtod(struct timekeeper *tk)
1126 {
1127 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1128 	u64 boot_ns;
1129 
1130 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1131 
1132 	write_seqcount_begin(&vdata->seq);
1133 
1134 	/* copy pvclock gtod data */
1135 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1136 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1137 	vdata->clock.mask		= tk->tkr_mono.mask;
1138 	vdata->clock.mult		= tk->tkr_mono.mult;
1139 	vdata->clock.shift		= tk->tkr_mono.shift;
1140 
1141 	vdata->boot_ns			= boot_ns;
1142 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1143 
1144 	write_seqcount_end(&vdata->seq);
1145 }
1146 #endif
1147 
1148 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1149 {
1150 	/*
1151 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1152 	 * vcpu_enter_guest.  This function is only called from
1153 	 * the physical CPU that is running vcpu.
1154 	 */
1155 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1156 }
1157 
1158 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1159 {
1160 	int version;
1161 	int r;
1162 	struct pvclock_wall_clock wc;
1163 	struct timespec boot;
1164 
1165 	if (!wall_clock)
1166 		return;
1167 
1168 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1169 	if (r)
1170 		return;
1171 
1172 	if (version & 1)
1173 		++version;  /* first time write, random junk */
1174 
1175 	++version;
1176 
1177 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1178 		return;
1179 
1180 	/*
1181 	 * The guest calculates current wall clock time by adding
1182 	 * system time (updated by kvm_guest_time_update below) to the
1183 	 * wall clock specified here.  guest system time equals host
1184 	 * system time for us, thus we must fill in host boot time here.
1185 	 */
1186 	getboottime(&boot);
1187 
1188 	if (kvm->arch.kvmclock_offset) {
1189 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1190 		boot = timespec_sub(boot, ts);
1191 	}
1192 	wc.sec = boot.tv_sec;
1193 	wc.nsec = boot.tv_nsec;
1194 	wc.version = version;
1195 
1196 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1197 
1198 	version++;
1199 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1200 }
1201 
1202 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1203 {
1204 	do_shl32_div32(dividend, divisor);
1205 	return dividend;
1206 }
1207 
1208 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1209 			       s8 *pshift, u32 *pmultiplier)
1210 {
1211 	uint64_t scaled64;
1212 	int32_t  shift = 0;
1213 	uint64_t tps64;
1214 	uint32_t tps32;
1215 
1216 	tps64 = base_hz;
1217 	scaled64 = scaled_hz;
1218 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1219 		tps64 >>= 1;
1220 		shift--;
1221 	}
1222 
1223 	tps32 = (uint32_t)tps64;
1224 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1225 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1226 			scaled64 >>= 1;
1227 		else
1228 			tps32 <<= 1;
1229 		shift++;
1230 	}
1231 
1232 	*pshift = shift;
1233 	*pmultiplier = div_frac(scaled64, tps32);
1234 
1235 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1236 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1237 }
1238 
1239 #ifdef CONFIG_X86_64
1240 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1241 #endif
1242 
1243 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1244 static unsigned long max_tsc_khz;
1245 
1246 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1247 {
1248 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1249 				   vcpu->arch.virtual_tsc_shift);
1250 }
1251 
1252 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1253 {
1254 	u64 v = (u64)khz * (1000000 + ppm);
1255 	do_div(v, 1000000);
1256 	return v;
1257 }
1258 
1259 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1260 {
1261 	u64 ratio;
1262 
1263 	/* Guest TSC same frequency as host TSC? */
1264 	if (!scale) {
1265 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1266 		return 0;
1267 	}
1268 
1269 	/* TSC scaling supported? */
1270 	if (!kvm_has_tsc_control) {
1271 		if (user_tsc_khz > tsc_khz) {
1272 			vcpu->arch.tsc_catchup = 1;
1273 			vcpu->arch.tsc_always_catchup = 1;
1274 			return 0;
1275 		} else {
1276 			WARN(1, "user requested TSC rate below hardware speed\n");
1277 			return -1;
1278 		}
1279 	}
1280 
1281 	/* TSC scaling required  - calculate ratio */
1282 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1283 				user_tsc_khz, tsc_khz);
1284 
1285 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1286 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1287 			  user_tsc_khz);
1288 		return -1;
1289 	}
1290 
1291 	vcpu->arch.tsc_scaling_ratio = ratio;
1292 	return 0;
1293 }
1294 
1295 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1296 {
1297 	u32 thresh_lo, thresh_hi;
1298 	int use_scaling = 0;
1299 
1300 	/* tsc_khz can be zero if TSC calibration fails */
1301 	if (user_tsc_khz == 0) {
1302 		/* set tsc_scaling_ratio to a safe value */
1303 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1304 		return -1;
1305 	}
1306 
1307 	/* Compute a scale to convert nanoseconds in TSC cycles */
1308 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1309 			   &vcpu->arch.virtual_tsc_shift,
1310 			   &vcpu->arch.virtual_tsc_mult);
1311 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1312 
1313 	/*
1314 	 * Compute the variation in TSC rate which is acceptable
1315 	 * within the range of tolerance and decide if the
1316 	 * rate being applied is within that bounds of the hardware
1317 	 * rate.  If so, no scaling or compensation need be done.
1318 	 */
1319 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1320 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1321 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1322 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1323 		use_scaling = 1;
1324 	}
1325 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1326 }
1327 
1328 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1329 {
1330 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1331 				      vcpu->arch.virtual_tsc_mult,
1332 				      vcpu->arch.virtual_tsc_shift);
1333 	tsc += vcpu->arch.this_tsc_write;
1334 	return tsc;
1335 }
1336 
1337 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1338 {
1339 #ifdef CONFIG_X86_64
1340 	bool vcpus_matched;
1341 	struct kvm_arch *ka = &vcpu->kvm->arch;
1342 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343 
1344 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1345 			 atomic_read(&vcpu->kvm->online_vcpus));
1346 
1347 	/*
1348 	 * Once the masterclock is enabled, always perform request in
1349 	 * order to update it.
1350 	 *
1351 	 * In order to enable masterclock, the host clocksource must be TSC
1352 	 * and the vcpus need to have matched TSCs.  When that happens,
1353 	 * perform request to enable masterclock.
1354 	 */
1355 	if (ka->use_master_clock ||
1356 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1357 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1358 
1359 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1360 			    atomic_read(&vcpu->kvm->online_vcpus),
1361 		            ka->use_master_clock, gtod->clock.vclock_mode);
1362 #endif
1363 }
1364 
1365 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1366 {
1367 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1368 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1369 }
1370 
1371 /*
1372  * Multiply tsc by a fixed point number represented by ratio.
1373  *
1374  * The most significant 64-N bits (mult) of ratio represent the
1375  * integral part of the fixed point number; the remaining N bits
1376  * (frac) represent the fractional part, ie. ratio represents a fixed
1377  * point number (mult + frac * 2^(-N)).
1378  *
1379  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1380  */
1381 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1382 {
1383 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1384 }
1385 
1386 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1387 {
1388 	u64 _tsc = tsc;
1389 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1390 
1391 	if (ratio != kvm_default_tsc_scaling_ratio)
1392 		_tsc = __scale_tsc(ratio, tsc);
1393 
1394 	return _tsc;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1397 
1398 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1399 {
1400 	u64 tsc;
1401 
1402 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1403 
1404 	return target_tsc - tsc;
1405 }
1406 
1407 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1408 {
1409 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1412 
1413 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1414 {
1415 	struct kvm *kvm = vcpu->kvm;
1416 	u64 offset, ns, elapsed;
1417 	unsigned long flags;
1418 	s64 usdiff;
1419 	bool matched;
1420 	bool already_matched;
1421 	u64 data = msr->data;
1422 
1423 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1424 	offset = kvm_compute_tsc_offset(vcpu, data);
1425 	ns = get_kernel_ns();
1426 	elapsed = ns - kvm->arch.last_tsc_nsec;
1427 
1428 	if (vcpu->arch.virtual_tsc_khz) {
1429 		int faulted = 0;
1430 
1431 		/* n.b - signed multiplication and division required */
1432 		usdiff = data - kvm->arch.last_tsc_write;
1433 #ifdef CONFIG_X86_64
1434 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1435 #else
1436 		/* do_div() only does unsigned */
1437 		asm("1: idivl %[divisor]\n"
1438 		    "2: xor %%edx, %%edx\n"
1439 		    "   movl $0, %[faulted]\n"
1440 		    "3:\n"
1441 		    ".section .fixup,\"ax\"\n"
1442 		    "4: movl $1, %[faulted]\n"
1443 		    "   jmp  3b\n"
1444 		    ".previous\n"
1445 
1446 		_ASM_EXTABLE(1b, 4b)
1447 
1448 		: "=A"(usdiff), [faulted] "=r" (faulted)
1449 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1450 
1451 #endif
1452 		do_div(elapsed, 1000);
1453 		usdiff -= elapsed;
1454 		if (usdiff < 0)
1455 			usdiff = -usdiff;
1456 
1457 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1458 		if (faulted)
1459 			usdiff = USEC_PER_SEC;
1460 	} else
1461 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1462 
1463 	/*
1464 	 * Special case: TSC write with a small delta (1 second) of virtual
1465 	 * cycle time against real time is interpreted as an attempt to
1466 	 * synchronize the CPU.
1467          *
1468 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1469 	 * TSC, we add elapsed time in this computation.  We could let the
1470 	 * compensation code attempt to catch up if we fall behind, but
1471 	 * it's better to try to match offsets from the beginning.
1472          */
1473 	if (usdiff < USEC_PER_SEC &&
1474 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1475 		if (!check_tsc_unstable()) {
1476 			offset = kvm->arch.cur_tsc_offset;
1477 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1478 		} else {
1479 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1480 			data += delta;
1481 			offset = kvm_compute_tsc_offset(vcpu, data);
1482 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1483 		}
1484 		matched = true;
1485 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1486 	} else {
1487 		/*
1488 		 * We split periods of matched TSC writes into generations.
1489 		 * For each generation, we track the original measured
1490 		 * nanosecond time, offset, and write, so if TSCs are in
1491 		 * sync, we can match exact offset, and if not, we can match
1492 		 * exact software computation in compute_guest_tsc()
1493 		 *
1494 		 * These values are tracked in kvm->arch.cur_xxx variables.
1495 		 */
1496 		kvm->arch.cur_tsc_generation++;
1497 		kvm->arch.cur_tsc_nsec = ns;
1498 		kvm->arch.cur_tsc_write = data;
1499 		kvm->arch.cur_tsc_offset = offset;
1500 		matched = false;
1501 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1502 			 kvm->arch.cur_tsc_generation, data);
1503 	}
1504 
1505 	/*
1506 	 * We also track th most recent recorded KHZ, write and time to
1507 	 * allow the matching interval to be extended at each write.
1508 	 */
1509 	kvm->arch.last_tsc_nsec = ns;
1510 	kvm->arch.last_tsc_write = data;
1511 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1512 
1513 	vcpu->arch.last_guest_tsc = data;
1514 
1515 	/* Keep track of which generation this VCPU has synchronized to */
1516 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1517 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1518 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1519 
1520 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1521 		update_ia32_tsc_adjust_msr(vcpu, offset);
1522 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1523 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1524 
1525 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1526 	if (!matched) {
1527 		kvm->arch.nr_vcpus_matched_tsc = 0;
1528 	} else if (!already_matched) {
1529 		kvm->arch.nr_vcpus_matched_tsc++;
1530 	}
1531 
1532 	kvm_track_tsc_matching(vcpu);
1533 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1534 }
1535 
1536 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1537 
1538 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1539 					   s64 adjustment)
1540 {
1541 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1542 }
1543 
1544 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1545 {
1546 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1547 		WARN_ON(adjustment < 0);
1548 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1549 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1550 }
1551 
1552 #ifdef CONFIG_X86_64
1553 
1554 static cycle_t read_tsc(void)
1555 {
1556 	cycle_t ret = (cycle_t)rdtsc_ordered();
1557 	u64 last = pvclock_gtod_data.clock.cycle_last;
1558 
1559 	if (likely(ret >= last))
1560 		return ret;
1561 
1562 	/*
1563 	 * GCC likes to generate cmov here, but this branch is extremely
1564 	 * predictable (it's just a function of time and the likely is
1565 	 * very likely) and there's a data dependence, so force GCC
1566 	 * to generate a branch instead.  I don't barrier() because
1567 	 * we don't actually need a barrier, and if this function
1568 	 * ever gets inlined it will generate worse code.
1569 	 */
1570 	asm volatile ("");
1571 	return last;
1572 }
1573 
1574 static inline u64 vgettsc(cycle_t *cycle_now)
1575 {
1576 	long v;
1577 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1578 
1579 	*cycle_now = read_tsc();
1580 
1581 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1582 	return v * gtod->clock.mult;
1583 }
1584 
1585 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1586 {
1587 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1588 	unsigned long seq;
1589 	int mode;
1590 	u64 ns;
1591 
1592 	do {
1593 		seq = read_seqcount_begin(&gtod->seq);
1594 		mode = gtod->clock.vclock_mode;
1595 		ns = gtod->nsec_base;
1596 		ns += vgettsc(cycle_now);
1597 		ns >>= gtod->clock.shift;
1598 		ns += gtod->boot_ns;
1599 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1600 	*t = ns;
1601 
1602 	return mode;
1603 }
1604 
1605 /* returns true if host is using tsc clocksource */
1606 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1607 {
1608 	/* checked again under seqlock below */
1609 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1610 		return false;
1611 
1612 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1613 }
1614 #endif
1615 
1616 /*
1617  *
1618  * Assuming a stable TSC across physical CPUS, and a stable TSC
1619  * across virtual CPUs, the following condition is possible.
1620  * Each numbered line represents an event visible to both
1621  * CPUs at the next numbered event.
1622  *
1623  * "timespecX" represents host monotonic time. "tscX" represents
1624  * RDTSC value.
1625  *
1626  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1627  *
1628  * 1.  read timespec0,tsc0
1629  * 2.					| timespec1 = timespec0 + N
1630  * 					| tsc1 = tsc0 + M
1631  * 3. transition to guest		| transition to guest
1632  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1633  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1634  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1635  *
1636  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1637  *
1638  * 	- ret0 < ret1
1639  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1640  *		...
1641  *	- 0 < N - M => M < N
1642  *
1643  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1644  * always the case (the difference between two distinct xtime instances
1645  * might be smaller then the difference between corresponding TSC reads,
1646  * when updating guest vcpus pvclock areas).
1647  *
1648  * To avoid that problem, do not allow visibility of distinct
1649  * system_timestamp/tsc_timestamp values simultaneously: use a master
1650  * copy of host monotonic time values. Update that master copy
1651  * in lockstep.
1652  *
1653  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1654  *
1655  */
1656 
1657 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1658 {
1659 #ifdef CONFIG_X86_64
1660 	struct kvm_arch *ka = &kvm->arch;
1661 	int vclock_mode;
1662 	bool host_tsc_clocksource, vcpus_matched;
1663 
1664 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1665 			atomic_read(&kvm->online_vcpus));
1666 
1667 	/*
1668 	 * If the host uses TSC clock, then passthrough TSC as stable
1669 	 * to the guest.
1670 	 */
1671 	host_tsc_clocksource = kvm_get_time_and_clockread(
1672 					&ka->master_kernel_ns,
1673 					&ka->master_cycle_now);
1674 
1675 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1676 				&& !backwards_tsc_observed
1677 				&& !ka->boot_vcpu_runs_old_kvmclock;
1678 
1679 	if (ka->use_master_clock)
1680 		atomic_set(&kvm_guest_has_master_clock, 1);
1681 
1682 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1683 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1684 					vcpus_matched);
1685 #endif
1686 }
1687 
1688 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1689 {
1690 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1691 }
1692 
1693 static void kvm_gen_update_masterclock(struct kvm *kvm)
1694 {
1695 #ifdef CONFIG_X86_64
1696 	int i;
1697 	struct kvm_vcpu *vcpu;
1698 	struct kvm_arch *ka = &kvm->arch;
1699 
1700 	spin_lock(&ka->pvclock_gtod_sync_lock);
1701 	kvm_make_mclock_inprogress_request(kvm);
1702 	/* no guest entries from this point */
1703 	pvclock_update_vm_gtod_copy(kvm);
1704 
1705 	kvm_for_each_vcpu(i, vcpu, kvm)
1706 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1707 
1708 	/* guest entries allowed */
1709 	kvm_for_each_vcpu(i, vcpu, kvm)
1710 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1711 
1712 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1713 #endif
1714 }
1715 
1716 static int kvm_guest_time_update(struct kvm_vcpu *v)
1717 {
1718 	unsigned long flags, tgt_tsc_khz;
1719 	struct kvm_vcpu_arch *vcpu = &v->arch;
1720 	struct kvm_arch *ka = &v->kvm->arch;
1721 	s64 kernel_ns;
1722 	u64 tsc_timestamp, host_tsc;
1723 	struct pvclock_vcpu_time_info guest_hv_clock;
1724 	u8 pvclock_flags;
1725 	bool use_master_clock;
1726 
1727 	kernel_ns = 0;
1728 	host_tsc = 0;
1729 
1730 	/*
1731 	 * If the host uses TSC clock, then passthrough TSC as stable
1732 	 * to the guest.
1733 	 */
1734 	spin_lock(&ka->pvclock_gtod_sync_lock);
1735 	use_master_clock = ka->use_master_clock;
1736 	if (use_master_clock) {
1737 		host_tsc = ka->master_cycle_now;
1738 		kernel_ns = ka->master_kernel_ns;
1739 	}
1740 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1741 
1742 	/* Keep irq disabled to prevent changes to the clock */
1743 	local_irq_save(flags);
1744 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1745 	if (unlikely(tgt_tsc_khz == 0)) {
1746 		local_irq_restore(flags);
1747 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1748 		return 1;
1749 	}
1750 	if (!use_master_clock) {
1751 		host_tsc = rdtsc();
1752 		kernel_ns = get_kernel_ns();
1753 	}
1754 
1755 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1756 
1757 	/*
1758 	 * We may have to catch up the TSC to match elapsed wall clock
1759 	 * time for two reasons, even if kvmclock is used.
1760 	 *   1) CPU could have been running below the maximum TSC rate
1761 	 *   2) Broken TSC compensation resets the base at each VCPU
1762 	 *      entry to avoid unknown leaps of TSC even when running
1763 	 *      again on the same CPU.  This may cause apparent elapsed
1764 	 *      time to disappear, and the guest to stand still or run
1765 	 *	very slowly.
1766 	 */
1767 	if (vcpu->tsc_catchup) {
1768 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1769 		if (tsc > tsc_timestamp) {
1770 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1771 			tsc_timestamp = tsc;
1772 		}
1773 	}
1774 
1775 	local_irq_restore(flags);
1776 
1777 	if (!vcpu->pv_time_enabled)
1778 		return 0;
1779 
1780 	if (kvm_has_tsc_control)
1781 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1782 
1783 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1784 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1785 				   &vcpu->hv_clock.tsc_shift,
1786 				   &vcpu->hv_clock.tsc_to_system_mul);
1787 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1788 	}
1789 
1790 	/* With all the info we got, fill in the values */
1791 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1792 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1793 	vcpu->last_guest_tsc = tsc_timestamp;
1794 
1795 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1796 		&guest_hv_clock, sizeof(guest_hv_clock))))
1797 		return 0;
1798 
1799 	/* This VCPU is paused, but it's legal for a guest to read another
1800 	 * VCPU's kvmclock, so we really have to follow the specification where
1801 	 * it says that version is odd if data is being modified, and even after
1802 	 * it is consistent.
1803 	 *
1804 	 * Version field updates must be kept separate.  This is because
1805 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1806 	 * writes within a string instruction are weakly ordered.  So there
1807 	 * are three writes overall.
1808 	 *
1809 	 * As a small optimization, only write the version field in the first
1810 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1811 	 * version field is the first in the struct.
1812 	 */
1813 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1814 
1815 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1816 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1817 				&vcpu->hv_clock,
1818 				sizeof(vcpu->hv_clock.version));
1819 
1820 	smp_wmb();
1821 
1822 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1823 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1824 
1825 	if (vcpu->pvclock_set_guest_stopped_request) {
1826 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1827 		vcpu->pvclock_set_guest_stopped_request = false;
1828 	}
1829 
1830 	/* If the host uses TSC clocksource, then it is stable */
1831 	if (use_master_clock)
1832 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1833 
1834 	vcpu->hv_clock.flags = pvclock_flags;
1835 
1836 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1837 
1838 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1839 				&vcpu->hv_clock,
1840 				sizeof(vcpu->hv_clock));
1841 
1842 	smp_wmb();
1843 
1844 	vcpu->hv_clock.version++;
1845 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1846 				&vcpu->hv_clock,
1847 				sizeof(vcpu->hv_clock.version));
1848 	return 0;
1849 }
1850 
1851 /*
1852  * kvmclock updates which are isolated to a given vcpu, such as
1853  * vcpu->cpu migration, should not allow system_timestamp from
1854  * the rest of the vcpus to remain static. Otherwise ntp frequency
1855  * correction applies to one vcpu's system_timestamp but not
1856  * the others.
1857  *
1858  * So in those cases, request a kvmclock update for all vcpus.
1859  * We need to rate-limit these requests though, as they can
1860  * considerably slow guests that have a large number of vcpus.
1861  * The time for a remote vcpu to update its kvmclock is bound
1862  * by the delay we use to rate-limit the updates.
1863  */
1864 
1865 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1866 
1867 static void kvmclock_update_fn(struct work_struct *work)
1868 {
1869 	int i;
1870 	struct delayed_work *dwork = to_delayed_work(work);
1871 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1872 					   kvmclock_update_work);
1873 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1874 	struct kvm_vcpu *vcpu;
1875 
1876 	kvm_for_each_vcpu(i, vcpu, kvm) {
1877 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1878 		kvm_vcpu_kick(vcpu);
1879 	}
1880 }
1881 
1882 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1883 {
1884 	struct kvm *kvm = v->kvm;
1885 
1886 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1887 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1888 					KVMCLOCK_UPDATE_DELAY);
1889 }
1890 
1891 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1892 
1893 static void kvmclock_sync_fn(struct work_struct *work)
1894 {
1895 	struct delayed_work *dwork = to_delayed_work(work);
1896 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1897 					   kvmclock_sync_work);
1898 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1899 
1900 	if (!kvmclock_periodic_sync)
1901 		return;
1902 
1903 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1904 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1905 					KVMCLOCK_SYNC_PERIOD);
1906 }
1907 
1908 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1909 {
1910 	u64 mcg_cap = vcpu->arch.mcg_cap;
1911 	unsigned bank_num = mcg_cap & 0xff;
1912 
1913 	switch (msr) {
1914 	case MSR_IA32_MCG_STATUS:
1915 		vcpu->arch.mcg_status = data;
1916 		break;
1917 	case MSR_IA32_MCG_CTL:
1918 		if (!(mcg_cap & MCG_CTL_P))
1919 			return 1;
1920 		if (data != 0 && data != ~(u64)0)
1921 			return -1;
1922 		vcpu->arch.mcg_ctl = data;
1923 		break;
1924 	default:
1925 		if (msr >= MSR_IA32_MC0_CTL &&
1926 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1927 			u32 offset = msr - MSR_IA32_MC0_CTL;
1928 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1929 			 * some Linux kernels though clear bit 10 in bank 4 to
1930 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1931 			 * this to avoid an uncatched #GP in the guest
1932 			 */
1933 			if ((offset & 0x3) == 0 &&
1934 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1935 				return -1;
1936 			vcpu->arch.mce_banks[offset] = data;
1937 			break;
1938 		}
1939 		return 1;
1940 	}
1941 	return 0;
1942 }
1943 
1944 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1945 {
1946 	struct kvm *kvm = vcpu->kvm;
1947 	int lm = is_long_mode(vcpu);
1948 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1949 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1950 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1951 		: kvm->arch.xen_hvm_config.blob_size_32;
1952 	u32 page_num = data & ~PAGE_MASK;
1953 	u64 page_addr = data & PAGE_MASK;
1954 	u8 *page;
1955 	int r;
1956 
1957 	r = -E2BIG;
1958 	if (page_num >= blob_size)
1959 		goto out;
1960 	r = -ENOMEM;
1961 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1962 	if (IS_ERR(page)) {
1963 		r = PTR_ERR(page);
1964 		goto out;
1965 	}
1966 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1967 		goto out_free;
1968 	r = 0;
1969 out_free:
1970 	kfree(page);
1971 out:
1972 	return r;
1973 }
1974 
1975 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1976 {
1977 	gpa_t gpa = data & ~0x3f;
1978 
1979 	/* Bits 2:5 are reserved, Should be zero */
1980 	if (data & 0x3c)
1981 		return 1;
1982 
1983 	vcpu->arch.apf.msr_val = data;
1984 
1985 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1986 		kvm_clear_async_pf_completion_queue(vcpu);
1987 		kvm_async_pf_hash_reset(vcpu);
1988 		return 0;
1989 	}
1990 
1991 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1992 					sizeof(u32)))
1993 		return 1;
1994 
1995 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1996 	kvm_async_pf_wakeup_all(vcpu);
1997 	return 0;
1998 }
1999 
2000 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2001 {
2002 	vcpu->arch.pv_time_enabled = false;
2003 }
2004 
2005 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2006 {
2007 	u64 delta;
2008 
2009 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010 		return;
2011 
2012 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2013 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2014 	vcpu->arch.st.accum_steal = delta;
2015 }
2016 
2017 static void record_steal_time(struct kvm_vcpu *vcpu)
2018 {
2019 	accumulate_steal_time(vcpu);
2020 
2021 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2022 		return;
2023 
2024 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2026 		return;
2027 
2028 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2029 	vcpu->arch.st.steal.version += 2;
2030 	vcpu->arch.st.accum_steal = 0;
2031 
2032 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2033 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2034 }
2035 
2036 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2037 {
2038 	bool pr = false;
2039 	u32 msr = msr_info->index;
2040 	u64 data = msr_info->data;
2041 
2042 	switch (msr) {
2043 	case MSR_AMD64_NB_CFG:
2044 	case MSR_IA32_UCODE_REV:
2045 	case MSR_IA32_UCODE_WRITE:
2046 	case MSR_VM_HSAVE_PA:
2047 	case MSR_AMD64_PATCH_LOADER:
2048 	case MSR_AMD64_BU_CFG2:
2049 		break;
2050 
2051 	case MSR_EFER:
2052 		return set_efer(vcpu, data);
2053 	case MSR_K7_HWCR:
2054 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2055 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2056 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2057 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2058 		if (data != 0) {
2059 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2060 				    data);
2061 			return 1;
2062 		}
2063 		break;
2064 	case MSR_FAM10H_MMIO_CONF_BASE:
2065 		if (data != 0) {
2066 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2067 				    "0x%llx\n", data);
2068 			return 1;
2069 		}
2070 		break;
2071 	case MSR_IA32_DEBUGCTLMSR:
2072 		if (!data) {
2073 			/* We support the non-activated case already */
2074 			break;
2075 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2076 			/* Values other than LBR and BTF are vendor-specific,
2077 			   thus reserved and should throw a #GP */
2078 			return 1;
2079 		}
2080 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2081 			    __func__, data);
2082 		break;
2083 	case 0x200 ... 0x2ff:
2084 		return kvm_mtrr_set_msr(vcpu, msr, data);
2085 	case MSR_IA32_APICBASE:
2086 		return kvm_set_apic_base(vcpu, msr_info);
2087 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2088 		return kvm_x2apic_msr_write(vcpu, msr, data);
2089 	case MSR_IA32_TSCDEADLINE:
2090 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2091 		break;
2092 	case MSR_IA32_TSC_ADJUST:
2093 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2094 			if (!msr_info->host_initiated) {
2095 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2096 				adjust_tsc_offset_guest(vcpu, adj);
2097 			}
2098 			vcpu->arch.ia32_tsc_adjust_msr = data;
2099 		}
2100 		break;
2101 	case MSR_IA32_MISC_ENABLE:
2102 		vcpu->arch.ia32_misc_enable_msr = data;
2103 		break;
2104 	case MSR_IA32_SMBASE:
2105 		if (!msr_info->host_initiated)
2106 			return 1;
2107 		vcpu->arch.smbase = data;
2108 		break;
2109 	case MSR_KVM_WALL_CLOCK_NEW:
2110 	case MSR_KVM_WALL_CLOCK:
2111 		vcpu->kvm->arch.wall_clock = data;
2112 		kvm_write_wall_clock(vcpu->kvm, data);
2113 		break;
2114 	case MSR_KVM_SYSTEM_TIME_NEW:
2115 	case MSR_KVM_SYSTEM_TIME: {
2116 		u64 gpa_offset;
2117 		struct kvm_arch *ka = &vcpu->kvm->arch;
2118 
2119 		kvmclock_reset(vcpu);
2120 
2121 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2122 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2123 
2124 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2125 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2126 					&vcpu->requests);
2127 
2128 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2129 		}
2130 
2131 		vcpu->arch.time = data;
2132 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2133 
2134 		/* we verify if the enable bit is set... */
2135 		if (!(data & 1))
2136 			break;
2137 
2138 		gpa_offset = data & ~(PAGE_MASK | 1);
2139 
2140 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2141 		     &vcpu->arch.pv_time, data & ~1ULL,
2142 		     sizeof(struct pvclock_vcpu_time_info)))
2143 			vcpu->arch.pv_time_enabled = false;
2144 		else
2145 			vcpu->arch.pv_time_enabled = true;
2146 
2147 		break;
2148 	}
2149 	case MSR_KVM_ASYNC_PF_EN:
2150 		if (kvm_pv_enable_async_pf(vcpu, data))
2151 			return 1;
2152 		break;
2153 	case MSR_KVM_STEAL_TIME:
2154 
2155 		if (unlikely(!sched_info_on()))
2156 			return 1;
2157 
2158 		if (data & KVM_STEAL_RESERVED_MASK)
2159 			return 1;
2160 
2161 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2162 						data & KVM_STEAL_VALID_BITS,
2163 						sizeof(struct kvm_steal_time)))
2164 			return 1;
2165 
2166 		vcpu->arch.st.msr_val = data;
2167 
2168 		if (!(data & KVM_MSR_ENABLED))
2169 			break;
2170 
2171 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2172 
2173 		break;
2174 	case MSR_KVM_PV_EOI_EN:
2175 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2176 			return 1;
2177 		break;
2178 
2179 	case MSR_IA32_MCG_CTL:
2180 	case MSR_IA32_MCG_STATUS:
2181 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2182 		return set_msr_mce(vcpu, msr, data);
2183 
2184 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2185 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2186 		pr = true; /* fall through */
2187 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2188 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2189 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2190 			return kvm_pmu_set_msr(vcpu, msr_info);
2191 
2192 		if (pr || data != 0)
2193 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2194 				    "0x%x data 0x%llx\n", msr, data);
2195 		break;
2196 	case MSR_K7_CLK_CTL:
2197 		/*
2198 		 * Ignore all writes to this no longer documented MSR.
2199 		 * Writes are only relevant for old K7 processors,
2200 		 * all pre-dating SVM, but a recommended workaround from
2201 		 * AMD for these chips. It is possible to specify the
2202 		 * affected processor models on the command line, hence
2203 		 * the need to ignore the workaround.
2204 		 */
2205 		break;
2206 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2207 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2208 	case HV_X64_MSR_CRASH_CTL:
2209 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2210 		return kvm_hv_set_msr_common(vcpu, msr, data,
2211 					     msr_info->host_initiated);
2212 	case MSR_IA32_BBL_CR_CTL3:
2213 		/* Drop writes to this legacy MSR -- see rdmsr
2214 		 * counterpart for further detail.
2215 		 */
2216 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2217 		break;
2218 	case MSR_AMD64_OSVW_ID_LENGTH:
2219 		if (!guest_cpuid_has_osvw(vcpu))
2220 			return 1;
2221 		vcpu->arch.osvw.length = data;
2222 		break;
2223 	case MSR_AMD64_OSVW_STATUS:
2224 		if (!guest_cpuid_has_osvw(vcpu))
2225 			return 1;
2226 		vcpu->arch.osvw.status = data;
2227 		break;
2228 	default:
2229 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2230 			return xen_hvm_config(vcpu, data);
2231 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2232 			return kvm_pmu_set_msr(vcpu, msr_info);
2233 		if (!ignore_msrs) {
2234 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2235 				    msr, data);
2236 			return 1;
2237 		} else {
2238 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2239 				    msr, data);
2240 			break;
2241 		}
2242 	}
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2246 
2247 
2248 /*
2249  * Reads an msr value (of 'msr_index') into 'pdata'.
2250  * Returns 0 on success, non-0 otherwise.
2251  * Assumes vcpu_load() was already called.
2252  */
2253 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2254 {
2255 	return kvm_x86_ops->get_msr(vcpu, msr);
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_get_msr);
2258 
2259 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2260 {
2261 	u64 data;
2262 	u64 mcg_cap = vcpu->arch.mcg_cap;
2263 	unsigned bank_num = mcg_cap & 0xff;
2264 
2265 	switch (msr) {
2266 	case MSR_IA32_P5_MC_ADDR:
2267 	case MSR_IA32_P5_MC_TYPE:
2268 		data = 0;
2269 		break;
2270 	case MSR_IA32_MCG_CAP:
2271 		data = vcpu->arch.mcg_cap;
2272 		break;
2273 	case MSR_IA32_MCG_CTL:
2274 		if (!(mcg_cap & MCG_CTL_P))
2275 			return 1;
2276 		data = vcpu->arch.mcg_ctl;
2277 		break;
2278 	case MSR_IA32_MCG_STATUS:
2279 		data = vcpu->arch.mcg_status;
2280 		break;
2281 	default:
2282 		if (msr >= MSR_IA32_MC0_CTL &&
2283 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2284 			u32 offset = msr - MSR_IA32_MC0_CTL;
2285 			data = vcpu->arch.mce_banks[offset];
2286 			break;
2287 		}
2288 		return 1;
2289 	}
2290 	*pdata = data;
2291 	return 0;
2292 }
2293 
2294 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2295 {
2296 	switch (msr_info->index) {
2297 	case MSR_IA32_PLATFORM_ID:
2298 	case MSR_IA32_EBL_CR_POWERON:
2299 	case MSR_IA32_DEBUGCTLMSR:
2300 	case MSR_IA32_LASTBRANCHFROMIP:
2301 	case MSR_IA32_LASTBRANCHTOIP:
2302 	case MSR_IA32_LASTINTFROMIP:
2303 	case MSR_IA32_LASTINTTOIP:
2304 	case MSR_K8_SYSCFG:
2305 	case MSR_K8_TSEG_ADDR:
2306 	case MSR_K8_TSEG_MASK:
2307 	case MSR_K7_HWCR:
2308 	case MSR_VM_HSAVE_PA:
2309 	case MSR_K8_INT_PENDING_MSG:
2310 	case MSR_AMD64_NB_CFG:
2311 	case MSR_FAM10H_MMIO_CONF_BASE:
2312 	case MSR_AMD64_BU_CFG2:
2313 		msr_info->data = 0;
2314 		break;
2315 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321 		msr_info->data = 0;
2322 		break;
2323 	case MSR_IA32_UCODE_REV:
2324 		msr_info->data = 0x100000000ULL;
2325 		break;
2326 	case MSR_MTRRcap:
2327 	case 0x200 ... 0x2ff:
2328 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329 	case 0xcd: /* fsb frequency */
2330 		msr_info->data = 3;
2331 		break;
2332 		/*
2333 		 * MSR_EBC_FREQUENCY_ID
2334 		 * Conservative value valid for even the basic CPU models.
2335 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337 		 * and 266MHz for model 3, or 4. Set Core Clock
2338 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2339 		 * 31:24) even though these are only valid for CPU
2340 		 * models > 2, however guests may end up dividing or
2341 		 * multiplying by zero otherwise.
2342 		 */
2343 	case MSR_EBC_FREQUENCY_ID:
2344 		msr_info->data = 1 << 24;
2345 		break;
2346 	case MSR_IA32_APICBASE:
2347 		msr_info->data = kvm_get_apic_base(vcpu);
2348 		break;
2349 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351 		break;
2352 	case MSR_IA32_TSCDEADLINE:
2353 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354 		break;
2355 	case MSR_IA32_TSC_ADJUST:
2356 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357 		break;
2358 	case MSR_IA32_MISC_ENABLE:
2359 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360 		break;
2361 	case MSR_IA32_SMBASE:
2362 		if (!msr_info->host_initiated)
2363 			return 1;
2364 		msr_info->data = vcpu->arch.smbase;
2365 		break;
2366 	case MSR_IA32_PERF_STATUS:
2367 		/* TSC increment by tick */
2368 		msr_info->data = 1000ULL;
2369 		/* CPU multiplier */
2370 		msr_info->data |= (((uint64_t)4ULL) << 40);
2371 		break;
2372 	case MSR_EFER:
2373 		msr_info->data = vcpu->arch.efer;
2374 		break;
2375 	case MSR_KVM_WALL_CLOCK:
2376 	case MSR_KVM_WALL_CLOCK_NEW:
2377 		msr_info->data = vcpu->kvm->arch.wall_clock;
2378 		break;
2379 	case MSR_KVM_SYSTEM_TIME:
2380 	case MSR_KVM_SYSTEM_TIME_NEW:
2381 		msr_info->data = vcpu->arch.time;
2382 		break;
2383 	case MSR_KVM_ASYNC_PF_EN:
2384 		msr_info->data = vcpu->arch.apf.msr_val;
2385 		break;
2386 	case MSR_KVM_STEAL_TIME:
2387 		msr_info->data = vcpu->arch.st.msr_val;
2388 		break;
2389 	case MSR_KVM_PV_EOI_EN:
2390 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391 		break;
2392 	case MSR_IA32_P5_MC_ADDR:
2393 	case MSR_IA32_P5_MC_TYPE:
2394 	case MSR_IA32_MCG_CAP:
2395 	case MSR_IA32_MCG_CTL:
2396 	case MSR_IA32_MCG_STATUS:
2397 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399 	case MSR_K7_CLK_CTL:
2400 		/*
2401 		 * Provide expected ramp-up count for K7. All other
2402 		 * are set to zero, indicating minimum divisors for
2403 		 * every field.
2404 		 *
2405 		 * This prevents guest kernels on AMD host with CPU
2406 		 * type 6, model 8 and higher from exploding due to
2407 		 * the rdmsr failing.
2408 		 */
2409 		msr_info->data = 0x20000000;
2410 		break;
2411 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413 	case HV_X64_MSR_CRASH_CTL:
2414 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415 		return kvm_hv_get_msr_common(vcpu,
2416 					     msr_info->index, &msr_info->data);
2417 		break;
2418 	case MSR_IA32_BBL_CR_CTL3:
2419 		/* This legacy MSR exists but isn't fully documented in current
2420 		 * silicon.  It is however accessed by winxp in very narrow
2421 		 * scenarios where it sets bit #19, itself documented as
2422 		 * a "reserved" bit.  Best effort attempt to source coherent
2423 		 * read data here should the balance of the register be
2424 		 * interpreted by the guest:
2425 		 *
2426 		 * L2 cache control register 3: 64GB range, 256KB size,
2427 		 * enabled, latency 0x1, configured
2428 		 */
2429 		msr_info->data = 0xbe702111;
2430 		break;
2431 	case MSR_AMD64_OSVW_ID_LENGTH:
2432 		if (!guest_cpuid_has_osvw(vcpu))
2433 			return 1;
2434 		msr_info->data = vcpu->arch.osvw.length;
2435 		break;
2436 	case MSR_AMD64_OSVW_STATUS:
2437 		if (!guest_cpuid_has_osvw(vcpu))
2438 			return 1;
2439 		msr_info->data = vcpu->arch.osvw.status;
2440 		break;
2441 	default:
2442 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444 		if (!ignore_msrs) {
2445 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446 			return 1;
2447 		} else {
2448 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449 			msr_info->data = 0;
2450 		}
2451 		break;
2452 	}
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456 
2457 /*
2458  * Read or write a bunch of msrs. All parameters are kernel addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463 		    struct kvm_msr_entry *entries,
2464 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2465 				  unsigned index, u64 *data))
2466 {
2467 	int i, idx;
2468 
2469 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2470 	for (i = 0; i < msrs->nmsrs; ++i)
2471 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472 			break;
2473 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474 
2475 	return i;
2476 }
2477 
2478 /*
2479  * Read or write a bunch of msrs. Parameters are user addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2485 				unsigned index, u64 *data),
2486 		  int writeback)
2487 {
2488 	struct kvm_msrs msrs;
2489 	struct kvm_msr_entry *entries;
2490 	int r, n;
2491 	unsigned size;
2492 
2493 	r = -EFAULT;
2494 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495 		goto out;
2496 
2497 	r = -E2BIG;
2498 	if (msrs.nmsrs >= MAX_IO_MSRS)
2499 		goto out;
2500 
2501 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502 	entries = memdup_user(user_msrs->entries, size);
2503 	if (IS_ERR(entries)) {
2504 		r = PTR_ERR(entries);
2505 		goto out;
2506 	}
2507 
2508 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509 	if (r < 0)
2510 		goto out_free;
2511 
2512 	r = -EFAULT;
2513 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514 		goto out_free;
2515 
2516 	r = n;
2517 
2518 out_free:
2519 	kfree(entries);
2520 out:
2521 	return r;
2522 }
2523 
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526 	int r;
2527 
2528 	switch (ext) {
2529 	case KVM_CAP_IRQCHIP:
2530 	case KVM_CAP_HLT:
2531 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532 	case KVM_CAP_SET_TSS_ADDR:
2533 	case KVM_CAP_EXT_CPUID:
2534 	case KVM_CAP_EXT_EMUL_CPUID:
2535 	case KVM_CAP_CLOCKSOURCE:
2536 	case KVM_CAP_PIT:
2537 	case KVM_CAP_NOP_IO_DELAY:
2538 	case KVM_CAP_MP_STATE:
2539 	case KVM_CAP_SYNC_MMU:
2540 	case KVM_CAP_USER_NMI:
2541 	case KVM_CAP_REINJECT_CONTROL:
2542 	case KVM_CAP_IRQ_INJECT_STATUS:
2543 	case KVM_CAP_IOEVENTFD:
2544 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545 	case KVM_CAP_PIT2:
2546 	case KVM_CAP_PIT_STATE2:
2547 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548 	case KVM_CAP_XEN_HVM:
2549 	case KVM_CAP_ADJUST_CLOCK:
2550 	case KVM_CAP_VCPU_EVENTS:
2551 	case KVM_CAP_HYPERV:
2552 	case KVM_CAP_HYPERV_VAPIC:
2553 	case KVM_CAP_HYPERV_SPIN:
2554 	case KVM_CAP_HYPERV_SYNIC:
2555 	case KVM_CAP_PCI_SEGMENT:
2556 	case KVM_CAP_DEBUGREGS:
2557 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558 	case KVM_CAP_XSAVE:
2559 	case KVM_CAP_ASYNC_PF:
2560 	case KVM_CAP_GET_TSC_KHZ:
2561 	case KVM_CAP_KVMCLOCK_CTRL:
2562 	case KVM_CAP_READONLY_MEM:
2563 	case KVM_CAP_HYPERV_TIME:
2564 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565 	case KVM_CAP_TSC_DEADLINE_TIMER:
2566 	case KVM_CAP_ENABLE_CAP_VM:
2567 	case KVM_CAP_DISABLE_QUIRKS:
2568 	case KVM_CAP_SET_BOOT_CPU_ID:
2569  	case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571 	case KVM_CAP_ASSIGN_DEV_IRQ:
2572 	case KVM_CAP_PCI_2_3:
2573 #endif
2574 		r = 1;
2575 		break;
2576 	case KVM_CAP_X86_SMM:
2577 		/* SMBASE is usually relocated above 1M on modern chipsets,
2578 		 * and SMM handlers might indeed rely on 4G segment limits,
2579 		 * so do not report SMM to be available if real mode is
2580 		 * emulated via vm86 mode.  Still, do not go to great lengths
2581 		 * to avoid userspace's usage of the feature, because it is a
2582 		 * fringe case that is not enabled except via specific settings
2583 		 * of the module parameters.
2584 		 */
2585 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586 		break;
2587 	case KVM_CAP_COALESCED_MMIO:
2588 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589 		break;
2590 	case KVM_CAP_VAPIC:
2591 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592 		break;
2593 	case KVM_CAP_NR_VCPUS:
2594 		r = KVM_SOFT_MAX_VCPUS;
2595 		break;
2596 	case KVM_CAP_MAX_VCPUS:
2597 		r = KVM_MAX_VCPUS;
2598 		break;
2599 	case KVM_CAP_NR_MEMSLOTS:
2600 		r = KVM_USER_MEM_SLOTS;
2601 		break;
2602 	case KVM_CAP_PV_MMU:	/* obsolete */
2603 		r = 0;
2604 		break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606 	case KVM_CAP_IOMMU:
2607 		r = iommu_present(&pci_bus_type);
2608 		break;
2609 #endif
2610 	case KVM_CAP_MCE:
2611 		r = KVM_MAX_MCE_BANKS;
2612 		break;
2613 	case KVM_CAP_XCRS:
2614 		r = cpu_has_xsave;
2615 		break;
2616 	case KVM_CAP_TSC_CONTROL:
2617 		r = kvm_has_tsc_control;
2618 		break;
2619 	default:
2620 		r = 0;
2621 		break;
2622 	}
2623 	return r;
2624 
2625 }
2626 
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628 			unsigned int ioctl, unsigned long arg)
2629 {
2630 	void __user *argp = (void __user *)arg;
2631 	long r;
2632 
2633 	switch (ioctl) {
2634 	case KVM_GET_MSR_INDEX_LIST: {
2635 		struct kvm_msr_list __user *user_msr_list = argp;
2636 		struct kvm_msr_list msr_list;
2637 		unsigned n;
2638 
2639 		r = -EFAULT;
2640 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641 			goto out;
2642 		n = msr_list.nmsrs;
2643 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645 			goto out;
2646 		r = -E2BIG;
2647 		if (n < msr_list.nmsrs)
2648 			goto out;
2649 		r = -EFAULT;
2650 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651 				 num_msrs_to_save * sizeof(u32)))
2652 			goto out;
2653 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654 				 &emulated_msrs,
2655 				 num_emulated_msrs * sizeof(u32)))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	}
2660 	case KVM_GET_SUPPORTED_CPUID:
2661 	case KVM_GET_EMULATED_CPUID: {
2662 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2663 		struct kvm_cpuid2 cpuid;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667 			goto out;
2668 
2669 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670 					    ioctl);
2671 		if (r)
2672 			goto out;
2673 
2674 		r = -EFAULT;
2675 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676 			goto out;
2677 		r = 0;
2678 		break;
2679 	}
2680 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681 		u64 mce_cap;
2682 
2683 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2684 		r = -EFAULT;
2685 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686 			goto out;
2687 		r = 0;
2688 		break;
2689 	}
2690 	default:
2691 		r = -EINVAL;
2692 	}
2693 out:
2694 	return r;
2695 }
2696 
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699 	wbinvd();
2700 }
2701 
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706 
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711 
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714 	/* Address WBINVD may be executed by guest */
2715 	if (need_emulate_wbinvd(vcpu)) {
2716 		if (kvm_x86_ops->has_wbinvd_exit())
2717 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719 			smp_call_function_single(vcpu->cpu,
2720 					wbinvd_ipi, NULL, 1);
2721 	}
2722 
2723 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2724 
2725 	/* Apply any externally detected TSC adjustments (due to suspend) */
2726 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728 		vcpu->arch.tsc_offset_adjustment = 0;
2729 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730 	}
2731 
2732 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734 				rdtsc() - vcpu->arch.last_host_tsc;
2735 		if (tsc_delta < 0)
2736 			mark_tsc_unstable("KVM discovered backwards TSC");
2737 		if (check_tsc_unstable()) {
2738 			u64 offset = kvm_compute_tsc_offset(vcpu,
2739 						vcpu->arch.last_guest_tsc);
2740 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741 			vcpu->arch.tsc_catchup = 1;
2742 		}
2743 		/*
2744 		 * On a host with synchronized TSC, there is no need to update
2745 		 * kvmclock on vcpu->cpu migration
2746 		 */
2747 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749 		if (vcpu->cpu != cpu)
2750 			kvm_migrate_timers(vcpu);
2751 		vcpu->cpu = cpu;
2752 	}
2753 
2754 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756 
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759 	kvm_x86_ops->vcpu_put(vcpu);
2760 	kvm_put_guest_fpu(vcpu);
2761 	vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763 
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765 				    struct kvm_lapic_state *s)
2766 {
2767 	if (vcpu->arch.apicv_active)
2768 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2769 
2770 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771 
2772 	return 0;
2773 }
2774 
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776 				    struct kvm_lapic_state *s)
2777 {
2778 	kvm_apic_post_state_restore(vcpu, s);
2779 	update_cr8_intercept(vcpu);
2780 
2781 	return 0;
2782 }
2783 
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786 	return (!lapic_in_kernel(vcpu) ||
2787 		kvm_apic_accept_pic_intr(vcpu));
2788 }
2789 
2790 /*
2791  * if userspace requested an interrupt window, check that the
2792  * interrupt window is open.
2793  *
2794  * No need to exit to userspace if we already have an interrupt queued.
2795  */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798 	return kvm_arch_interrupt_allowed(vcpu) &&
2799 		!kvm_cpu_has_interrupt(vcpu) &&
2800 		!kvm_event_needs_reinjection(vcpu) &&
2801 		kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803 
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805 				    struct kvm_interrupt *irq)
2806 {
2807 	if (irq->irq >= KVM_NR_INTERRUPTS)
2808 		return -EINVAL;
2809 
2810 	if (!irqchip_in_kernel(vcpu->kvm)) {
2811 		kvm_queue_interrupt(vcpu, irq->irq, false);
2812 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2813 		return 0;
2814 	}
2815 
2816 	/*
2817 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818 	 * fail for in-kernel 8259.
2819 	 */
2820 	if (pic_in_kernel(vcpu->kvm))
2821 		return -ENXIO;
2822 
2823 	if (vcpu->arch.pending_external_vector != -1)
2824 		return -EEXIST;
2825 
2826 	vcpu->arch.pending_external_vector = irq->irq;
2827 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2828 	return 0;
2829 }
2830 
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833 	kvm_inject_nmi(vcpu);
2834 
2835 	return 0;
2836 }
2837 
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840 	kvm_make_request(KVM_REQ_SMI, vcpu);
2841 
2842 	return 0;
2843 }
2844 
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846 					   struct kvm_tpr_access_ctl *tac)
2847 {
2848 	if (tac->flags)
2849 		return -EINVAL;
2850 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851 	return 0;
2852 }
2853 
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855 					u64 mcg_cap)
2856 {
2857 	int r;
2858 	unsigned bank_num = mcg_cap & 0xff, bank;
2859 
2860 	r = -EINVAL;
2861 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862 		goto out;
2863 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864 		goto out;
2865 	r = 0;
2866 	vcpu->arch.mcg_cap = mcg_cap;
2867 	/* Init IA32_MCG_CTL to all 1s */
2868 	if (mcg_cap & MCG_CTL_P)
2869 		vcpu->arch.mcg_ctl = ~(u64)0;
2870 	/* Init IA32_MCi_CTL to all 1s */
2871 	for (bank = 0; bank < bank_num; bank++)
2872 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874 	return r;
2875 }
2876 
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878 				      struct kvm_x86_mce *mce)
2879 {
2880 	u64 mcg_cap = vcpu->arch.mcg_cap;
2881 	unsigned bank_num = mcg_cap & 0xff;
2882 	u64 *banks = vcpu->arch.mce_banks;
2883 
2884 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885 		return -EINVAL;
2886 	/*
2887 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888 	 * reporting is disabled
2889 	 */
2890 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891 	    vcpu->arch.mcg_ctl != ~(u64)0)
2892 		return 0;
2893 	banks += 4 * mce->bank;
2894 	/*
2895 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896 	 * reporting is disabled for the bank
2897 	 */
2898 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899 		return 0;
2900 	if (mce->status & MCI_STATUS_UC) {
2901 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904 			return 0;
2905 		}
2906 		if (banks[1] & MCI_STATUS_VAL)
2907 			mce->status |= MCI_STATUS_OVER;
2908 		banks[2] = mce->addr;
2909 		banks[3] = mce->misc;
2910 		vcpu->arch.mcg_status = mce->mcg_status;
2911 		banks[1] = mce->status;
2912 		kvm_queue_exception(vcpu, MC_VECTOR);
2913 	} else if (!(banks[1] & MCI_STATUS_VAL)
2914 		   || !(banks[1] & MCI_STATUS_UC)) {
2915 		if (banks[1] & MCI_STATUS_VAL)
2916 			mce->status |= MCI_STATUS_OVER;
2917 		banks[2] = mce->addr;
2918 		banks[3] = mce->misc;
2919 		banks[1] = mce->status;
2920 	} else
2921 		banks[1] |= MCI_STATUS_OVER;
2922 	return 0;
2923 }
2924 
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926 					       struct kvm_vcpu_events *events)
2927 {
2928 	process_nmi(vcpu);
2929 	events->exception.injected =
2930 		vcpu->arch.exception.pending &&
2931 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2932 	events->exception.nr = vcpu->arch.exception.nr;
2933 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934 	events->exception.pad = 0;
2935 	events->exception.error_code = vcpu->arch.exception.error_code;
2936 
2937 	events->interrupt.injected =
2938 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2940 	events->interrupt.soft = 0;
2941 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942 
2943 	events->nmi.injected = vcpu->arch.nmi_injected;
2944 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946 	events->nmi.pad = 0;
2947 
2948 	events->sipi_vector = 0; /* never valid when reporting to user space */
2949 
2950 	events->smi.smm = is_smm(vcpu);
2951 	events->smi.pending = vcpu->arch.smi_pending;
2952 	events->smi.smm_inside_nmi =
2953 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955 
2956 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 			 | KVM_VCPUEVENT_VALID_SHADOW
2958 			 | KVM_VCPUEVENT_VALID_SMM);
2959 	memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961 
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963 					      struct kvm_vcpu_events *events)
2964 {
2965 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967 			      | KVM_VCPUEVENT_VALID_SHADOW
2968 			      | KVM_VCPUEVENT_VALID_SMM))
2969 		return -EINVAL;
2970 
2971 	process_nmi(vcpu);
2972 	vcpu->arch.exception.pending = events->exception.injected;
2973 	vcpu->arch.exception.nr = events->exception.nr;
2974 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2975 	vcpu->arch.exception.error_code = events->exception.error_code;
2976 
2977 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2978 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2979 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2980 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2981 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2982 						  events->interrupt.shadow);
2983 
2984 	vcpu->arch.nmi_injected = events->nmi.injected;
2985 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2986 		vcpu->arch.nmi_pending = events->nmi.pending;
2987 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2988 
2989 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2990 	    lapic_in_kernel(vcpu))
2991 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2992 
2993 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2994 		if (events->smi.smm)
2995 			vcpu->arch.hflags |= HF_SMM_MASK;
2996 		else
2997 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2998 		vcpu->arch.smi_pending = events->smi.pending;
2999 		if (events->smi.smm_inside_nmi)
3000 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3001 		else
3002 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3003 		if (lapic_in_kernel(vcpu)) {
3004 			if (events->smi.latched_init)
3005 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3006 			else
3007 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3008 		}
3009 	}
3010 
3011 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3012 
3013 	return 0;
3014 }
3015 
3016 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3017 					     struct kvm_debugregs *dbgregs)
3018 {
3019 	unsigned long val;
3020 
3021 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3022 	kvm_get_dr(vcpu, 6, &val);
3023 	dbgregs->dr6 = val;
3024 	dbgregs->dr7 = vcpu->arch.dr7;
3025 	dbgregs->flags = 0;
3026 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3027 }
3028 
3029 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3030 					    struct kvm_debugregs *dbgregs)
3031 {
3032 	if (dbgregs->flags)
3033 		return -EINVAL;
3034 
3035 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3036 	kvm_update_dr0123(vcpu);
3037 	vcpu->arch.dr6 = dbgregs->dr6;
3038 	kvm_update_dr6(vcpu);
3039 	vcpu->arch.dr7 = dbgregs->dr7;
3040 	kvm_update_dr7(vcpu);
3041 
3042 	return 0;
3043 }
3044 
3045 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3046 
3047 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3048 {
3049 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3050 	u64 xstate_bv = xsave->header.xfeatures;
3051 	u64 valid;
3052 
3053 	/*
3054 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3055 	 * leaves 0 and 1 in the loop below.
3056 	 */
3057 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3058 
3059 	/* Set XSTATE_BV */
3060 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3061 
3062 	/*
3063 	 * Copy each region from the possibly compacted offset to the
3064 	 * non-compacted offset.
3065 	 */
3066 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3067 	while (valid) {
3068 		u64 feature = valid & -valid;
3069 		int index = fls64(feature) - 1;
3070 		void *src = get_xsave_addr(xsave, feature);
3071 
3072 		if (src) {
3073 			u32 size, offset, ecx, edx;
3074 			cpuid_count(XSTATE_CPUID, index,
3075 				    &size, &offset, &ecx, &edx);
3076 			memcpy(dest + offset, src, size);
3077 		}
3078 
3079 		valid -= feature;
3080 	}
3081 }
3082 
3083 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3084 {
3085 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3086 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3087 	u64 valid;
3088 
3089 	/*
3090 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3091 	 * leaves 0 and 1 in the loop below.
3092 	 */
3093 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3094 
3095 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3096 	xsave->header.xfeatures = xstate_bv;
3097 	if (cpu_has_xsaves)
3098 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3099 
3100 	/*
3101 	 * Copy each region from the non-compacted offset to the
3102 	 * possibly compacted offset.
3103 	 */
3104 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3105 	while (valid) {
3106 		u64 feature = valid & -valid;
3107 		int index = fls64(feature) - 1;
3108 		void *dest = get_xsave_addr(xsave, feature);
3109 
3110 		if (dest) {
3111 			u32 size, offset, ecx, edx;
3112 			cpuid_count(XSTATE_CPUID, index,
3113 				    &size, &offset, &ecx, &edx);
3114 			memcpy(dest, src + offset, size);
3115 		}
3116 
3117 		valid -= feature;
3118 	}
3119 }
3120 
3121 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3122 					 struct kvm_xsave *guest_xsave)
3123 {
3124 	if (cpu_has_xsave) {
3125 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3126 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3127 	} else {
3128 		memcpy(guest_xsave->region,
3129 			&vcpu->arch.guest_fpu.state.fxsave,
3130 			sizeof(struct fxregs_state));
3131 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3132 			XFEATURE_MASK_FPSSE;
3133 	}
3134 }
3135 
3136 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3137 					struct kvm_xsave *guest_xsave)
3138 {
3139 	u64 xstate_bv =
3140 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3141 
3142 	if (cpu_has_xsave) {
3143 		/*
3144 		 * Here we allow setting states that are not present in
3145 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3146 		 * with old userspace.
3147 		 */
3148 		if (xstate_bv & ~kvm_supported_xcr0())
3149 			return -EINVAL;
3150 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3151 	} else {
3152 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3153 			return -EINVAL;
3154 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3155 			guest_xsave->region, sizeof(struct fxregs_state));
3156 	}
3157 	return 0;
3158 }
3159 
3160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3161 					struct kvm_xcrs *guest_xcrs)
3162 {
3163 	if (!cpu_has_xsave) {
3164 		guest_xcrs->nr_xcrs = 0;
3165 		return;
3166 	}
3167 
3168 	guest_xcrs->nr_xcrs = 1;
3169 	guest_xcrs->flags = 0;
3170 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3171 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3172 }
3173 
3174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3175 				       struct kvm_xcrs *guest_xcrs)
3176 {
3177 	int i, r = 0;
3178 
3179 	if (!cpu_has_xsave)
3180 		return -EINVAL;
3181 
3182 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3183 		return -EINVAL;
3184 
3185 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3186 		/* Only support XCR0 currently */
3187 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3188 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3189 				guest_xcrs->xcrs[i].value);
3190 			break;
3191 		}
3192 	if (r)
3193 		r = -EINVAL;
3194 	return r;
3195 }
3196 
3197 /*
3198  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3199  * stopped by the hypervisor.  This function will be called from the host only.
3200  * EINVAL is returned when the host attempts to set the flag for a guest that
3201  * does not support pv clocks.
3202  */
3203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3204 {
3205 	if (!vcpu->arch.pv_time_enabled)
3206 		return -EINVAL;
3207 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3208 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3209 	return 0;
3210 }
3211 
3212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3213 				     struct kvm_enable_cap *cap)
3214 {
3215 	if (cap->flags)
3216 		return -EINVAL;
3217 
3218 	switch (cap->cap) {
3219 	case KVM_CAP_HYPERV_SYNIC:
3220 		return kvm_hv_activate_synic(vcpu);
3221 	default:
3222 		return -EINVAL;
3223 	}
3224 }
3225 
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227 			 unsigned int ioctl, unsigned long arg)
3228 {
3229 	struct kvm_vcpu *vcpu = filp->private_data;
3230 	void __user *argp = (void __user *)arg;
3231 	int r;
3232 	union {
3233 		struct kvm_lapic_state *lapic;
3234 		struct kvm_xsave *xsave;
3235 		struct kvm_xcrs *xcrs;
3236 		void *buffer;
3237 	} u;
3238 
3239 	u.buffer = NULL;
3240 	switch (ioctl) {
3241 	case KVM_GET_LAPIC: {
3242 		r = -EINVAL;
3243 		if (!lapic_in_kernel(vcpu))
3244 			goto out;
3245 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246 
3247 		r = -ENOMEM;
3248 		if (!u.lapic)
3249 			goto out;
3250 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251 		if (r)
3252 			goto out;
3253 		r = -EFAULT;
3254 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255 			goto out;
3256 		r = 0;
3257 		break;
3258 	}
3259 	case KVM_SET_LAPIC: {
3260 		r = -EINVAL;
3261 		if (!lapic_in_kernel(vcpu))
3262 			goto out;
3263 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264 		if (IS_ERR(u.lapic))
3265 			return PTR_ERR(u.lapic);
3266 
3267 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268 		break;
3269 	}
3270 	case KVM_INTERRUPT: {
3271 		struct kvm_interrupt irq;
3272 
3273 		r = -EFAULT;
3274 		if (copy_from_user(&irq, argp, sizeof irq))
3275 			goto out;
3276 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277 		break;
3278 	}
3279 	case KVM_NMI: {
3280 		r = kvm_vcpu_ioctl_nmi(vcpu);
3281 		break;
3282 	}
3283 	case KVM_SMI: {
3284 		r = kvm_vcpu_ioctl_smi(vcpu);
3285 		break;
3286 	}
3287 	case KVM_SET_CPUID: {
3288 		struct kvm_cpuid __user *cpuid_arg = argp;
3289 		struct kvm_cpuid cpuid;
3290 
3291 		r = -EFAULT;
3292 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3293 			goto out;
3294 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3295 		break;
3296 	}
3297 	case KVM_SET_CPUID2: {
3298 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3299 		struct kvm_cpuid2 cpuid;
3300 
3301 		r = -EFAULT;
3302 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3303 			goto out;
3304 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3305 					      cpuid_arg->entries);
3306 		break;
3307 	}
3308 	case KVM_GET_CPUID2: {
3309 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3310 		struct kvm_cpuid2 cpuid;
3311 
3312 		r = -EFAULT;
3313 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3314 			goto out;
3315 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3316 					      cpuid_arg->entries);
3317 		if (r)
3318 			goto out;
3319 		r = -EFAULT;
3320 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3321 			goto out;
3322 		r = 0;
3323 		break;
3324 	}
3325 	case KVM_GET_MSRS:
3326 		r = msr_io(vcpu, argp, do_get_msr, 1);
3327 		break;
3328 	case KVM_SET_MSRS:
3329 		r = msr_io(vcpu, argp, do_set_msr, 0);
3330 		break;
3331 	case KVM_TPR_ACCESS_REPORTING: {
3332 		struct kvm_tpr_access_ctl tac;
3333 
3334 		r = -EFAULT;
3335 		if (copy_from_user(&tac, argp, sizeof tac))
3336 			goto out;
3337 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3338 		if (r)
3339 			goto out;
3340 		r = -EFAULT;
3341 		if (copy_to_user(argp, &tac, sizeof tac))
3342 			goto out;
3343 		r = 0;
3344 		break;
3345 	};
3346 	case KVM_SET_VAPIC_ADDR: {
3347 		struct kvm_vapic_addr va;
3348 
3349 		r = -EINVAL;
3350 		if (!lapic_in_kernel(vcpu))
3351 			goto out;
3352 		r = -EFAULT;
3353 		if (copy_from_user(&va, argp, sizeof va))
3354 			goto out;
3355 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3356 		break;
3357 	}
3358 	case KVM_X86_SETUP_MCE: {
3359 		u64 mcg_cap;
3360 
3361 		r = -EFAULT;
3362 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3363 			goto out;
3364 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3365 		break;
3366 	}
3367 	case KVM_X86_SET_MCE: {
3368 		struct kvm_x86_mce mce;
3369 
3370 		r = -EFAULT;
3371 		if (copy_from_user(&mce, argp, sizeof mce))
3372 			goto out;
3373 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3374 		break;
3375 	}
3376 	case KVM_GET_VCPU_EVENTS: {
3377 		struct kvm_vcpu_events events;
3378 
3379 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3380 
3381 		r = -EFAULT;
3382 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3383 			break;
3384 		r = 0;
3385 		break;
3386 	}
3387 	case KVM_SET_VCPU_EVENTS: {
3388 		struct kvm_vcpu_events events;
3389 
3390 		r = -EFAULT;
3391 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3392 			break;
3393 
3394 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3395 		break;
3396 	}
3397 	case KVM_GET_DEBUGREGS: {
3398 		struct kvm_debugregs dbgregs;
3399 
3400 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3401 
3402 		r = -EFAULT;
3403 		if (copy_to_user(argp, &dbgregs,
3404 				 sizeof(struct kvm_debugregs)))
3405 			break;
3406 		r = 0;
3407 		break;
3408 	}
3409 	case KVM_SET_DEBUGREGS: {
3410 		struct kvm_debugregs dbgregs;
3411 
3412 		r = -EFAULT;
3413 		if (copy_from_user(&dbgregs, argp,
3414 				   sizeof(struct kvm_debugregs)))
3415 			break;
3416 
3417 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3418 		break;
3419 	}
3420 	case KVM_GET_XSAVE: {
3421 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3422 		r = -ENOMEM;
3423 		if (!u.xsave)
3424 			break;
3425 
3426 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3427 
3428 		r = -EFAULT;
3429 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3430 			break;
3431 		r = 0;
3432 		break;
3433 	}
3434 	case KVM_SET_XSAVE: {
3435 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3436 		if (IS_ERR(u.xsave))
3437 			return PTR_ERR(u.xsave);
3438 
3439 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3440 		break;
3441 	}
3442 	case KVM_GET_XCRS: {
3443 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3444 		r = -ENOMEM;
3445 		if (!u.xcrs)
3446 			break;
3447 
3448 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3449 
3450 		r = -EFAULT;
3451 		if (copy_to_user(argp, u.xcrs,
3452 				 sizeof(struct kvm_xcrs)))
3453 			break;
3454 		r = 0;
3455 		break;
3456 	}
3457 	case KVM_SET_XCRS: {
3458 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3459 		if (IS_ERR(u.xcrs))
3460 			return PTR_ERR(u.xcrs);
3461 
3462 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3463 		break;
3464 	}
3465 	case KVM_SET_TSC_KHZ: {
3466 		u32 user_tsc_khz;
3467 
3468 		r = -EINVAL;
3469 		user_tsc_khz = (u32)arg;
3470 
3471 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3472 			goto out;
3473 
3474 		if (user_tsc_khz == 0)
3475 			user_tsc_khz = tsc_khz;
3476 
3477 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3478 			r = 0;
3479 
3480 		goto out;
3481 	}
3482 	case KVM_GET_TSC_KHZ: {
3483 		r = vcpu->arch.virtual_tsc_khz;
3484 		goto out;
3485 	}
3486 	case KVM_KVMCLOCK_CTRL: {
3487 		r = kvm_set_guest_paused(vcpu);
3488 		goto out;
3489 	}
3490 	case KVM_ENABLE_CAP: {
3491 		struct kvm_enable_cap cap;
3492 
3493 		r = -EFAULT;
3494 		if (copy_from_user(&cap, argp, sizeof(cap)))
3495 			goto out;
3496 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3497 		break;
3498 	}
3499 	default:
3500 		r = -EINVAL;
3501 	}
3502 out:
3503 	kfree(u.buffer);
3504 	return r;
3505 }
3506 
3507 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3508 {
3509 	return VM_FAULT_SIGBUS;
3510 }
3511 
3512 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3513 {
3514 	int ret;
3515 
3516 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3517 		return -EINVAL;
3518 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3519 	return ret;
3520 }
3521 
3522 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3523 					      u64 ident_addr)
3524 {
3525 	kvm->arch.ept_identity_map_addr = ident_addr;
3526 	return 0;
3527 }
3528 
3529 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3530 					  u32 kvm_nr_mmu_pages)
3531 {
3532 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3533 		return -EINVAL;
3534 
3535 	mutex_lock(&kvm->slots_lock);
3536 
3537 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3538 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3539 
3540 	mutex_unlock(&kvm->slots_lock);
3541 	return 0;
3542 }
3543 
3544 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3545 {
3546 	return kvm->arch.n_max_mmu_pages;
3547 }
3548 
3549 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3550 {
3551 	int r;
3552 
3553 	r = 0;
3554 	switch (chip->chip_id) {
3555 	case KVM_IRQCHIP_PIC_MASTER:
3556 		memcpy(&chip->chip.pic,
3557 			&pic_irqchip(kvm)->pics[0],
3558 			sizeof(struct kvm_pic_state));
3559 		break;
3560 	case KVM_IRQCHIP_PIC_SLAVE:
3561 		memcpy(&chip->chip.pic,
3562 			&pic_irqchip(kvm)->pics[1],
3563 			sizeof(struct kvm_pic_state));
3564 		break;
3565 	case KVM_IRQCHIP_IOAPIC:
3566 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3567 		break;
3568 	default:
3569 		r = -EINVAL;
3570 		break;
3571 	}
3572 	return r;
3573 }
3574 
3575 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3576 {
3577 	int r;
3578 
3579 	r = 0;
3580 	switch (chip->chip_id) {
3581 	case KVM_IRQCHIP_PIC_MASTER:
3582 		spin_lock(&pic_irqchip(kvm)->lock);
3583 		memcpy(&pic_irqchip(kvm)->pics[0],
3584 			&chip->chip.pic,
3585 			sizeof(struct kvm_pic_state));
3586 		spin_unlock(&pic_irqchip(kvm)->lock);
3587 		break;
3588 	case KVM_IRQCHIP_PIC_SLAVE:
3589 		spin_lock(&pic_irqchip(kvm)->lock);
3590 		memcpy(&pic_irqchip(kvm)->pics[1],
3591 			&chip->chip.pic,
3592 			sizeof(struct kvm_pic_state));
3593 		spin_unlock(&pic_irqchip(kvm)->lock);
3594 		break;
3595 	case KVM_IRQCHIP_IOAPIC:
3596 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3597 		break;
3598 	default:
3599 		r = -EINVAL;
3600 		break;
3601 	}
3602 	kvm_pic_update_irq(pic_irqchip(kvm));
3603 	return r;
3604 }
3605 
3606 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3607 {
3608 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3609 
3610 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3611 
3612 	mutex_lock(&kps->lock);
3613 	memcpy(ps, &kps->channels, sizeof(*ps));
3614 	mutex_unlock(&kps->lock);
3615 	return 0;
3616 }
3617 
3618 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3619 {
3620 	int i;
3621 	struct kvm_pit *pit = kvm->arch.vpit;
3622 
3623 	mutex_lock(&pit->pit_state.lock);
3624 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3625 	for (i = 0; i < 3; i++)
3626 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3627 	mutex_unlock(&pit->pit_state.lock);
3628 	return 0;
3629 }
3630 
3631 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3632 {
3633 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3635 		sizeof(ps->channels));
3636 	ps->flags = kvm->arch.vpit->pit_state.flags;
3637 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3638 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3639 	return 0;
3640 }
3641 
3642 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3643 {
3644 	int start = 0;
3645 	int i;
3646 	u32 prev_legacy, cur_legacy;
3647 	struct kvm_pit *pit = kvm->arch.vpit;
3648 
3649 	mutex_lock(&pit->pit_state.lock);
3650 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3651 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3652 	if (!prev_legacy && cur_legacy)
3653 		start = 1;
3654 	memcpy(&pit->pit_state.channels, &ps->channels,
3655 	       sizeof(pit->pit_state.channels));
3656 	pit->pit_state.flags = ps->flags;
3657 	for (i = 0; i < 3; i++)
3658 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3659 				   start && i == 0);
3660 	mutex_unlock(&pit->pit_state.lock);
3661 	return 0;
3662 }
3663 
3664 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3665 				 struct kvm_reinject_control *control)
3666 {
3667 	struct kvm_pit *pit = kvm->arch.vpit;
3668 
3669 	if (!pit)
3670 		return -ENXIO;
3671 
3672 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3673 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3674 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3675 	 */
3676 	mutex_lock(&pit->pit_state.lock);
3677 	kvm_pit_set_reinject(pit, control->pit_reinject);
3678 	mutex_unlock(&pit->pit_state.lock);
3679 
3680 	return 0;
3681 }
3682 
3683 /**
3684  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3685  * @kvm: kvm instance
3686  * @log: slot id and address to which we copy the log
3687  *
3688  * Steps 1-4 below provide general overview of dirty page logging. See
3689  * kvm_get_dirty_log_protect() function description for additional details.
3690  *
3691  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3692  * always flush the TLB (step 4) even if previous step failed  and the dirty
3693  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3694  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3695  * writes will be marked dirty for next log read.
3696  *
3697  *   1. Take a snapshot of the bit and clear it if needed.
3698  *   2. Write protect the corresponding page.
3699  *   3. Copy the snapshot to the userspace.
3700  *   4. Flush TLB's if needed.
3701  */
3702 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3703 {
3704 	bool is_dirty = false;
3705 	int r;
3706 
3707 	mutex_lock(&kvm->slots_lock);
3708 
3709 	/*
3710 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3711 	 */
3712 	if (kvm_x86_ops->flush_log_dirty)
3713 		kvm_x86_ops->flush_log_dirty(kvm);
3714 
3715 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3716 
3717 	/*
3718 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3719 	 * kvm_mmu_slot_remove_write_access().
3720 	 */
3721 	lockdep_assert_held(&kvm->slots_lock);
3722 	if (is_dirty)
3723 		kvm_flush_remote_tlbs(kvm);
3724 
3725 	mutex_unlock(&kvm->slots_lock);
3726 	return r;
3727 }
3728 
3729 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3730 			bool line_status)
3731 {
3732 	if (!irqchip_in_kernel(kvm))
3733 		return -ENXIO;
3734 
3735 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3736 					irq_event->irq, irq_event->level,
3737 					line_status);
3738 	return 0;
3739 }
3740 
3741 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3742 				   struct kvm_enable_cap *cap)
3743 {
3744 	int r;
3745 
3746 	if (cap->flags)
3747 		return -EINVAL;
3748 
3749 	switch (cap->cap) {
3750 	case KVM_CAP_DISABLE_QUIRKS:
3751 		kvm->arch.disabled_quirks = cap->args[0];
3752 		r = 0;
3753 		break;
3754 	case KVM_CAP_SPLIT_IRQCHIP: {
3755 		mutex_lock(&kvm->lock);
3756 		r = -EINVAL;
3757 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3758 			goto split_irqchip_unlock;
3759 		r = -EEXIST;
3760 		if (irqchip_in_kernel(kvm))
3761 			goto split_irqchip_unlock;
3762 		if (atomic_read(&kvm->online_vcpus))
3763 			goto split_irqchip_unlock;
3764 		r = kvm_setup_empty_irq_routing(kvm);
3765 		if (r)
3766 			goto split_irqchip_unlock;
3767 		/* Pairs with irqchip_in_kernel. */
3768 		smp_wmb();
3769 		kvm->arch.irqchip_split = true;
3770 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3771 		r = 0;
3772 split_irqchip_unlock:
3773 		mutex_unlock(&kvm->lock);
3774 		break;
3775 	}
3776 	default:
3777 		r = -EINVAL;
3778 		break;
3779 	}
3780 	return r;
3781 }
3782 
3783 long kvm_arch_vm_ioctl(struct file *filp,
3784 		       unsigned int ioctl, unsigned long arg)
3785 {
3786 	struct kvm *kvm = filp->private_data;
3787 	void __user *argp = (void __user *)arg;
3788 	int r = -ENOTTY;
3789 	/*
3790 	 * This union makes it completely explicit to gcc-3.x
3791 	 * that these two variables' stack usage should be
3792 	 * combined, not added together.
3793 	 */
3794 	union {
3795 		struct kvm_pit_state ps;
3796 		struct kvm_pit_state2 ps2;
3797 		struct kvm_pit_config pit_config;
3798 	} u;
3799 
3800 	switch (ioctl) {
3801 	case KVM_SET_TSS_ADDR:
3802 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3803 		break;
3804 	case KVM_SET_IDENTITY_MAP_ADDR: {
3805 		u64 ident_addr;
3806 
3807 		r = -EFAULT;
3808 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3809 			goto out;
3810 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3811 		break;
3812 	}
3813 	case KVM_SET_NR_MMU_PAGES:
3814 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3815 		break;
3816 	case KVM_GET_NR_MMU_PAGES:
3817 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3818 		break;
3819 	case KVM_CREATE_IRQCHIP: {
3820 		struct kvm_pic *vpic;
3821 
3822 		mutex_lock(&kvm->lock);
3823 		r = -EEXIST;
3824 		if (kvm->arch.vpic)
3825 			goto create_irqchip_unlock;
3826 		r = -EINVAL;
3827 		if (atomic_read(&kvm->online_vcpus))
3828 			goto create_irqchip_unlock;
3829 		r = -ENOMEM;
3830 		vpic = kvm_create_pic(kvm);
3831 		if (vpic) {
3832 			r = kvm_ioapic_init(kvm);
3833 			if (r) {
3834 				mutex_lock(&kvm->slots_lock);
3835 				kvm_destroy_pic(vpic);
3836 				mutex_unlock(&kvm->slots_lock);
3837 				goto create_irqchip_unlock;
3838 			}
3839 		} else
3840 			goto create_irqchip_unlock;
3841 		r = kvm_setup_default_irq_routing(kvm);
3842 		if (r) {
3843 			mutex_lock(&kvm->slots_lock);
3844 			mutex_lock(&kvm->irq_lock);
3845 			kvm_ioapic_destroy(kvm);
3846 			kvm_destroy_pic(vpic);
3847 			mutex_unlock(&kvm->irq_lock);
3848 			mutex_unlock(&kvm->slots_lock);
3849 			goto create_irqchip_unlock;
3850 		}
3851 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3852 		smp_wmb();
3853 		kvm->arch.vpic = vpic;
3854 	create_irqchip_unlock:
3855 		mutex_unlock(&kvm->lock);
3856 		break;
3857 	}
3858 	case KVM_CREATE_PIT:
3859 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3860 		goto create_pit;
3861 	case KVM_CREATE_PIT2:
3862 		r = -EFAULT;
3863 		if (copy_from_user(&u.pit_config, argp,
3864 				   sizeof(struct kvm_pit_config)))
3865 			goto out;
3866 	create_pit:
3867 		mutex_lock(&kvm->slots_lock);
3868 		r = -EEXIST;
3869 		if (kvm->arch.vpit)
3870 			goto create_pit_unlock;
3871 		r = -ENOMEM;
3872 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3873 		if (kvm->arch.vpit)
3874 			r = 0;
3875 	create_pit_unlock:
3876 		mutex_unlock(&kvm->slots_lock);
3877 		break;
3878 	case KVM_GET_IRQCHIP: {
3879 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3880 		struct kvm_irqchip *chip;
3881 
3882 		chip = memdup_user(argp, sizeof(*chip));
3883 		if (IS_ERR(chip)) {
3884 			r = PTR_ERR(chip);
3885 			goto out;
3886 		}
3887 
3888 		r = -ENXIO;
3889 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3890 			goto get_irqchip_out;
3891 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3892 		if (r)
3893 			goto get_irqchip_out;
3894 		r = -EFAULT;
3895 		if (copy_to_user(argp, chip, sizeof *chip))
3896 			goto get_irqchip_out;
3897 		r = 0;
3898 	get_irqchip_out:
3899 		kfree(chip);
3900 		break;
3901 	}
3902 	case KVM_SET_IRQCHIP: {
3903 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3904 		struct kvm_irqchip *chip;
3905 
3906 		chip = memdup_user(argp, sizeof(*chip));
3907 		if (IS_ERR(chip)) {
3908 			r = PTR_ERR(chip);
3909 			goto out;
3910 		}
3911 
3912 		r = -ENXIO;
3913 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3914 			goto set_irqchip_out;
3915 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3916 		if (r)
3917 			goto set_irqchip_out;
3918 		r = 0;
3919 	set_irqchip_out:
3920 		kfree(chip);
3921 		break;
3922 	}
3923 	case KVM_GET_PIT: {
3924 		r = -EFAULT;
3925 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3926 			goto out;
3927 		r = -ENXIO;
3928 		if (!kvm->arch.vpit)
3929 			goto out;
3930 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3931 		if (r)
3932 			goto out;
3933 		r = -EFAULT;
3934 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3935 			goto out;
3936 		r = 0;
3937 		break;
3938 	}
3939 	case KVM_SET_PIT: {
3940 		r = -EFAULT;
3941 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3942 			goto out;
3943 		r = -ENXIO;
3944 		if (!kvm->arch.vpit)
3945 			goto out;
3946 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3947 		break;
3948 	}
3949 	case KVM_GET_PIT2: {
3950 		r = -ENXIO;
3951 		if (!kvm->arch.vpit)
3952 			goto out;
3953 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3954 		if (r)
3955 			goto out;
3956 		r = -EFAULT;
3957 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3958 			goto out;
3959 		r = 0;
3960 		break;
3961 	}
3962 	case KVM_SET_PIT2: {
3963 		r = -EFAULT;
3964 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3965 			goto out;
3966 		r = -ENXIO;
3967 		if (!kvm->arch.vpit)
3968 			goto out;
3969 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3970 		break;
3971 	}
3972 	case KVM_REINJECT_CONTROL: {
3973 		struct kvm_reinject_control control;
3974 		r =  -EFAULT;
3975 		if (copy_from_user(&control, argp, sizeof(control)))
3976 			goto out;
3977 		r = kvm_vm_ioctl_reinject(kvm, &control);
3978 		break;
3979 	}
3980 	case KVM_SET_BOOT_CPU_ID:
3981 		r = 0;
3982 		mutex_lock(&kvm->lock);
3983 		if (atomic_read(&kvm->online_vcpus) != 0)
3984 			r = -EBUSY;
3985 		else
3986 			kvm->arch.bsp_vcpu_id = arg;
3987 		mutex_unlock(&kvm->lock);
3988 		break;
3989 	case KVM_XEN_HVM_CONFIG: {
3990 		r = -EFAULT;
3991 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3992 				   sizeof(struct kvm_xen_hvm_config)))
3993 			goto out;
3994 		r = -EINVAL;
3995 		if (kvm->arch.xen_hvm_config.flags)
3996 			goto out;
3997 		r = 0;
3998 		break;
3999 	}
4000 	case KVM_SET_CLOCK: {
4001 		struct kvm_clock_data user_ns;
4002 		u64 now_ns;
4003 		s64 delta;
4004 
4005 		r = -EFAULT;
4006 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4007 			goto out;
4008 
4009 		r = -EINVAL;
4010 		if (user_ns.flags)
4011 			goto out;
4012 
4013 		r = 0;
4014 		local_irq_disable();
4015 		now_ns = get_kernel_ns();
4016 		delta = user_ns.clock - now_ns;
4017 		local_irq_enable();
4018 		kvm->arch.kvmclock_offset = delta;
4019 		kvm_gen_update_masterclock(kvm);
4020 		break;
4021 	}
4022 	case KVM_GET_CLOCK: {
4023 		struct kvm_clock_data user_ns;
4024 		u64 now_ns;
4025 
4026 		local_irq_disable();
4027 		now_ns = get_kernel_ns();
4028 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4029 		local_irq_enable();
4030 		user_ns.flags = 0;
4031 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4032 
4033 		r = -EFAULT;
4034 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4035 			goto out;
4036 		r = 0;
4037 		break;
4038 	}
4039 	case KVM_ENABLE_CAP: {
4040 		struct kvm_enable_cap cap;
4041 
4042 		r = -EFAULT;
4043 		if (copy_from_user(&cap, argp, sizeof(cap)))
4044 			goto out;
4045 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4046 		break;
4047 	}
4048 	default:
4049 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4050 	}
4051 out:
4052 	return r;
4053 }
4054 
4055 static void kvm_init_msr_list(void)
4056 {
4057 	u32 dummy[2];
4058 	unsigned i, j;
4059 
4060 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4061 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4062 			continue;
4063 
4064 		/*
4065 		 * Even MSRs that are valid in the host may not be exposed
4066 		 * to the guests in some cases.
4067 		 */
4068 		switch (msrs_to_save[i]) {
4069 		case MSR_IA32_BNDCFGS:
4070 			if (!kvm_x86_ops->mpx_supported())
4071 				continue;
4072 			break;
4073 		case MSR_TSC_AUX:
4074 			if (!kvm_x86_ops->rdtscp_supported())
4075 				continue;
4076 			break;
4077 		default:
4078 			break;
4079 		}
4080 
4081 		if (j < i)
4082 			msrs_to_save[j] = msrs_to_save[i];
4083 		j++;
4084 	}
4085 	num_msrs_to_save = j;
4086 
4087 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4088 		switch (emulated_msrs[i]) {
4089 		case MSR_IA32_SMBASE:
4090 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4091 				continue;
4092 			break;
4093 		default:
4094 			break;
4095 		}
4096 
4097 		if (j < i)
4098 			emulated_msrs[j] = emulated_msrs[i];
4099 		j++;
4100 	}
4101 	num_emulated_msrs = j;
4102 }
4103 
4104 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4105 			   const void *v)
4106 {
4107 	int handled = 0;
4108 	int n;
4109 
4110 	do {
4111 		n = min(len, 8);
4112 		if (!(lapic_in_kernel(vcpu) &&
4113 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4114 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4115 			break;
4116 		handled += n;
4117 		addr += n;
4118 		len -= n;
4119 		v += n;
4120 	} while (len);
4121 
4122 	return handled;
4123 }
4124 
4125 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4126 {
4127 	int handled = 0;
4128 	int n;
4129 
4130 	do {
4131 		n = min(len, 8);
4132 		if (!(lapic_in_kernel(vcpu) &&
4133 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4134 					 addr, n, v))
4135 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4136 			break;
4137 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4138 		handled += n;
4139 		addr += n;
4140 		len -= n;
4141 		v += n;
4142 	} while (len);
4143 
4144 	return handled;
4145 }
4146 
4147 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4148 			struct kvm_segment *var, int seg)
4149 {
4150 	kvm_x86_ops->set_segment(vcpu, var, seg);
4151 }
4152 
4153 void kvm_get_segment(struct kvm_vcpu *vcpu,
4154 		     struct kvm_segment *var, int seg)
4155 {
4156 	kvm_x86_ops->get_segment(vcpu, var, seg);
4157 }
4158 
4159 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4160 			   struct x86_exception *exception)
4161 {
4162 	gpa_t t_gpa;
4163 
4164 	BUG_ON(!mmu_is_nested(vcpu));
4165 
4166 	/* NPT walks are always user-walks */
4167 	access |= PFERR_USER_MASK;
4168 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4169 
4170 	return t_gpa;
4171 }
4172 
4173 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4174 			      struct x86_exception *exception)
4175 {
4176 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4177 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4178 }
4179 
4180  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4181 				struct x86_exception *exception)
4182 {
4183 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4184 	access |= PFERR_FETCH_MASK;
4185 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4186 }
4187 
4188 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4189 			       struct x86_exception *exception)
4190 {
4191 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192 	access |= PFERR_WRITE_MASK;
4193 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195 
4196 /* uses this to access any guest's mapped memory without checking CPL */
4197 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4198 				struct x86_exception *exception)
4199 {
4200 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4201 }
4202 
4203 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4204 				      struct kvm_vcpu *vcpu, u32 access,
4205 				      struct x86_exception *exception)
4206 {
4207 	void *data = val;
4208 	int r = X86EMUL_CONTINUE;
4209 
4210 	while (bytes) {
4211 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4212 							    exception);
4213 		unsigned offset = addr & (PAGE_SIZE-1);
4214 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4215 		int ret;
4216 
4217 		if (gpa == UNMAPPED_GVA)
4218 			return X86EMUL_PROPAGATE_FAULT;
4219 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4220 					       offset, toread);
4221 		if (ret < 0) {
4222 			r = X86EMUL_IO_NEEDED;
4223 			goto out;
4224 		}
4225 
4226 		bytes -= toread;
4227 		data += toread;
4228 		addr += toread;
4229 	}
4230 out:
4231 	return r;
4232 }
4233 
4234 /* used for instruction fetching */
4235 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4236 				gva_t addr, void *val, unsigned int bytes,
4237 				struct x86_exception *exception)
4238 {
4239 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4240 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4241 	unsigned offset;
4242 	int ret;
4243 
4244 	/* Inline kvm_read_guest_virt_helper for speed.  */
4245 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4246 						    exception);
4247 	if (unlikely(gpa == UNMAPPED_GVA))
4248 		return X86EMUL_PROPAGATE_FAULT;
4249 
4250 	offset = addr & (PAGE_SIZE-1);
4251 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4252 		bytes = (unsigned)PAGE_SIZE - offset;
4253 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4254 				       offset, bytes);
4255 	if (unlikely(ret < 0))
4256 		return X86EMUL_IO_NEEDED;
4257 
4258 	return X86EMUL_CONTINUE;
4259 }
4260 
4261 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4262 			       gva_t addr, void *val, unsigned int bytes,
4263 			       struct x86_exception *exception)
4264 {
4265 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4266 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4267 
4268 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4269 					  exception);
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4272 
4273 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4274 				      gva_t addr, void *val, unsigned int bytes,
4275 				      struct x86_exception *exception)
4276 {
4277 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4278 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4279 }
4280 
4281 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4282 		unsigned long addr, void *val, unsigned int bytes)
4283 {
4284 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4285 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4286 
4287 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4288 }
4289 
4290 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4291 				       gva_t addr, void *val,
4292 				       unsigned int bytes,
4293 				       struct x86_exception *exception)
4294 {
4295 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296 	void *data = val;
4297 	int r = X86EMUL_CONTINUE;
4298 
4299 	while (bytes) {
4300 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4301 							     PFERR_WRITE_MASK,
4302 							     exception);
4303 		unsigned offset = addr & (PAGE_SIZE-1);
4304 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4305 		int ret;
4306 
4307 		if (gpa == UNMAPPED_GVA)
4308 			return X86EMUL_PROPAGATE_FAULT;
4309 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4310 		if (ret < 0) {
4311 			r = X86EMUL_IO_NEEDED;
4312 			goto out;
4313 		}
4314 
4315 		bytes -= towrite;
4316 		data += towrite;
4317 		addr += towrite;
4318 	}
4319 out:
4320 	return r;
4321 }
4322 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4323 
4324 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4325 				gpa_t *gpa, struct x86_exception *exception,
4326 				bool write)
4327 {
4328 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4329 		| (write ? PFERR_WRITE_MASK : 0);
4330 
4331 	/*
4332 	 * currently PKRU is only applied to ept enabled guest so
4333 	 * there is no pkey in EPT page table for L1 guest or EPT
4334 	 * shadow page table for L2 guest.
4335 	 */
4336 	if (vcpu_match_mmio_gva(vcpu, gva)
4337 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4338 				 vcpu->arch.access, 0, access)) {
4339 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4340 					(gva & (PAGE_SIZE - 1));
4341 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4342 		return 1;
4343 	}
4344 
4345 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4346 
4347 	if (*gpa == UNMAPPED_GVA)
4348 		return -1;
4349 
4350 	/* For APIC access vmexit */
4351 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4352 		return 1;
4353 
4354 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4355 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4356 		return 1;
4357 	}
4358 
4359 	return 0;
4360 }
4361 
4362 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4363 			const void *val, int bytes)
4364 {
4365 	int ret;
4366 
4367 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4368 	if (ret < 0)
4369 		return 0;
4370 	kvm_page_track_write(vcpu, gpa, val, bytes);
4371 	return 1;
4372 }
4373 
4374 struct read_write_emulator_ops {
4375 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4376 				  int bytes);
4377 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4378 				  void *val, int bytes);
4379 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380 			       int bytes, void *val);
4381 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 				    void *val, int bytes);
4383 	bool write;
4384 };
4385 
4386 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4387 {
4388 	if (vcpu->mmio_read_completed) {
4389 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4390 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4391 		vcpu->mmio_read_completed = 0;
4392 		return 1;
4393 	}
4394 
4395 	return 0;
4396 }
4397 
4398 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4399 			void *val, int bytes)
4400 {
4401 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4402 }
4403 
4404 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 			 void *val, int bytes)
4406 {
4407 	return emulator_write_phys(vcpu, gpa, val, bytes);
4408 }
4409 
4410 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4411 {
4412 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4413 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4414 }
4415 
4416 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4417 			  void *val, int bytes)
4418 {
4419 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4420 	return X86EMUL_IO_NEEDED;
4421 }
4422 
4423 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4424 			   void *val, int bytes)
4425 {
4426 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4427 
4428 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4429 	return X86EMUL_CONTINUE;
4430 }
4431 
4432 static const struct read_write_emulator_ops read_emultor = {
4433 	.read_write_prepare = read_prepare,
4434 	.read_write_emulate = read_emulate,
4435 	.read_write_mmio = vcpu_mmio_read,
4436 	.read_write_exit_mmio = read_exit_mmio,
4437 };
4438 
4439 static const struct read_write_emulator_ops write_emultor = {
4440 	.read_write_emulate = write_emulate,
4441 	.read_write_mmio = write_mmio,
4442 	.read_write_exit_mmio = write_exit_mmio,
4443 	.write = true,
4444 };
4445 
4446 static int emulator_read_write_onepage(unsigned long addr, void *val,
4447 				       unsigned int bytes,
4448 				       struct x86_exception *exception,
4449 				       struct kvm_vcpu *vcpu,
4450 				       const struct read_write_emulator_ops *ops)
4451 {
4452 	gpa_t gpa;
4453 	int handled, ret;
4454 	bool write = ops->write;
4455 	struct kvm_mmio_fragment *frag;
4456 
4457 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4458 
4459 	if (ret < 0)
4460 		return X86EMUL_PROPAGATE_FAULT;
4461 
4462 	/* For APIC access vmexit */
4463 	if (ret)
4464 		goto mmio;
4465 
4466 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4467 		return X86EMUL_CONTINUE;
4468 
4469 mmio:
4470 	/*
4471 	 * Is this MMIO handled locally?
4472 	 */
4473 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4474 	if (handled == bytes)
4475 		return X86EMUL_CONTINUE;
4476 
4477 	gpa += handled;
4478 	bytes -= handled;
4479 	val += handled;
4480 
4481 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4482 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4483 	frag->gpa = gpa;
4484 	frag->data = val;
4485 	frag->len = bytes;
4486 	return X86EMUL_CONTINUE;
4487 }
4488 
4489 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4490 			unsigned long addr,
4491 			void *val, unsigned int bytes,
4492 			struct x86_exception *exception,
4493 			const struct read_write_emulator_ops *ops)
4494 {
4495 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4496 	gpa_t gpa;
4497 	int rc;
4498 
4499 	if (ops->read_write_prepare &&
4500 		  ops->read_write_prepare(vcpu, val, bytes))
4501 		return X86EMUL_CONTINUE;
4502 
4503 	vcpu->mmio_nr_fragments = 0;
4504 
4505 	/* Crossing a page boundary? */
4506 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4507 		int now;
4508 
4509 		now = -addr & ~PAGE_MASK;
4510 		rc = emulator_read_write_onepage(addr, val, now, exception,
4511 						 vcpu, ops);
4512 
4513 		if (rc != X86EMUL_CONTINUE)
4514 			return rc;
4515 		addr += now;
4516 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4517 			addr = (u32)addr;
4518 		val += now;
4519 		bytes -= now;
4520 	}
4521 
4522 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4523 					 vcpu, ops);
4524 	if (rc != X86EMUL_CONTINUE)
4525 		return rc;
4526 
4527 	if (!vcpu->mmio_nr_fragments)
4528 		return rc;
4529 
4530 	gpa = vcpu->mmio_fragments[0].gpa;
4531 
4532 	vcpu->mmio_needed = 1;
4533 	vcpu->mmio_cur_fragment = 0;
4534 
4535 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4536 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4537 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4538 	vcpu->run->mmio.phys_addr = gpa;
4539 
4540 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4541 }
4542 
4543 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4544 				  unsigned long addr,
4545 				  void *val,
4546 				  unsigned int bytes,
4547 				  struct x86_exception *exception)
4548 {
4549 	return emulator_read_write(ctxt, addr, val, bytes,
4550 				   exception, &read_emultor);
4551 }
4552 
4553 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4554 			    unsigned long addr,
4555 			    const void *val,
4556 			    unsigned int bytes,
4557 			    struct x86_exception *exception)
4558 {
4559 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4560 				   exception, &write_emultor);
4561 }
4562 
4563 #define CMPXCHG_TYPE(t, ptr, old, new) \
4564 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4565 
4566 #ifdef CONFIG_X86_64
4567 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4568 #else
4569 #  define CMPXCHG64(ptr, old, new) \
4570 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4571 #endif
4572 
4573 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4574 				     unsigned long addr,
4575 				     const void *old,
4576 				     const void *new,
4577 				     unsigned int bytes,
4578 				     struct x86_exception *exception)
4579 {
4580 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4581 	gpa_t gpa;
4582 	struct page *page;
4583 	char *kaddr;
4584 	bool exchanged;
4585 
4586 	/* guests cmpxchg8b have to be emulated atomically */
4587 	if (bytes > 8 || (bytes & (bytes - 1)))
4588 		goto emul_write;
4589 
4590 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4591 
4592 	if (gpa == UNMAPPED_GVA ||
4593 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4594 		goto emul_write;
4595 
4596 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4597 		goto emul_write;
4598 
4599 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4600 	if (is_error_page(page))
4601 		goto emul_write;
4602 
4603 	kaddr = kmap_atomic(page);
4604 	kaddr += offset_in_page(gpa);
4605 	switch (bytes) {
4606 	case 1:
4607 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4608 		break;
4609 	case 2:
4610 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4611 		break;
4612 	case 4:
4613 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4614 		break;
4615 	case 8:
4616 		exchanged = CMPXCHG64(kaddr, old, new);
4617 		break;
4618 	default:
4619 		BUG();
4620 	}
4621 	kunmap_atomic(kaddr);
4622 	kvm_release_page_dirty(page);
4623 
4624 	if (!exchanged)
4625 		return X86EMUL_CMPXCHG_FAILED;
4626 
4627 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4628 	kvm_page_track_write(vcpu, gpa, new, bytes);
4629 
4630 	return X86EMUL_CONTINUE;
4631 
4632 emul_write:
4633 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4634 
4635 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4636 }
4637 
4638 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4639 {
4640 	/* TODO: String I/O for in kernel device */
4641 	int r;
4642 
4643 	if (vcpu->arch.pio.in)
4644 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4645 				    vcpu->arch.pio.size, pd);
4646 	else
4647 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4648 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4649 				     pd);
4650 	return r;
4651 }
4652 
4653 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4654 			       unsigned short port, void *val,
4655 			       unsigned int count, bool in)
4656 {
4657 	vcpu->arch.pio.port = port;
4658 	vcpu->arch.pio.in = in;
4659 	vcpu->arch.pio.count  = count;
4660 	vcpu->arch.pio.size = size;
4661 
4662 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4663 		vcpu->arch.pio.count = 0;
4664 		return 1;
4665 	}
4666 
4667 	vcpu->run->exit_reason = KVM_EXIT_IO;
4668 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4669 	vcpu->run->io.size = size;
4670 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4671 	vcpu->run->io.count = count;
4672 	vcpu->run->io.port = port;
4673 
4674 	return 0;
4675 }
4676 
4677 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4678 				    int size, unsigned short port, void *val,
4679 				    unsigned int count)
4680 {
4681 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4682 	int ret;
4683 
4684 	if (vcpu->arch.pio.count)
4685 		goto data_avail;
4686 
4687 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4688 	if (ret) {
4689 data_avail:
4690 		memcpy(val, vcpu->arch.pio_data, size * count);
4691 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4692 		vcpu->arch.pio.count = 0;
4693 		return 1;
4694 	}
4695 
4696 	return 0;
4697 }
4698 
4699 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4700 				     int size, unsigned short port,
4701 				     const void *val, unsigned int count)
4702 {
4703 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4704 
4705 	memcpy(vcpu->arch.pio_data, val, size * count);
4706 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4707 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4708 }
4709 
4710 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4711 {
4712 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4713 }
4714 
4715 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4716 {
4717 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4718 }
4719 
4720 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4721 {
4722 	if (!need_emulate_wbinvd(vcpu))
4723 		return X86EMUL_CONTINUE;
4724 
4725 	if (kvm_x86_ops->has_wbinvd_exit()) {
4726 		int cpu = get_cpu();
4727 
4728 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4729 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4730 				wbinvd_ipi, NULL, 1);
4731 		put_cpu();
4732 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4733 	} else
4734 		wbinvd();
4735 	return X86EMUL_CONTINUE;
4736 }
4737 
4738 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4739 {
4740 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4741 	return kvm_emulate_wbinvd_noskip(vcpu);
4742 }
4743 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4744 
4745 
4746 
4747 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4748 {
4749 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4750 }
4751 
4752 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4753 			   unsigned long *dest)
4754 {
4755 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4756 }
4757 
4758 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4759 			   unsigned long value)
4760 {
4761 
4762 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4763 }
4764 
4765 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4766 {
4767 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4768 }
4769 
4770 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4771 {
4772 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4773 	unsigned long value;
4774 
4775 	switch (cr) {
4776 	case 0:
4777 		value = kvm_read_cr0(vcpu);
4778 		break;
4779 	case 2:
4780 		value = vcpu->arch.cr2;
4781 		break;
4782 	case 3:
4783 		value = kvm_read_cr3(vcpu);
4784 		break;
4785 	case 4:
4786 		value = kvm_read_cr4(vcpu);
4787 		break;
4788 	case 8:
4789 		value = kvm_get_cr8(vcpu);
4790 		break;
4791 	default:
4792 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4793 		return 0;
4794 	}
4795 
4796 	return value;
4797 }
4798 
4799 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4800 {
4801 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4802 	int res = 0;
4803 
4804 	switch (cr) {
4805 	case 0:
4806 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4807 		break;
4808 	case 2:
4809 		vcpu->arch.cr2 = val;
4810 		break;
4811 	case 3:
4812 		res = kvm_set_cr3(vcpu, val);
4813 		break;
4814 	case 4:
4815 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4816 		break;
4817 	case 8:
4818 		res = kvm_set_cr8(vcpu, val);
4819 		break;
4820 	default:
4821 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4822 		res = -1;
4823 	}
4824 
4825 	return res;
4826 }
4827 
4828 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4829 {
4830 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4831 }
4832 
4833 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4834 {
4835 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4836 }
4837 
4838 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4839 {
4840 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4841 }
4842 
4843 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4844 {
4845 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4846 }
4847 
4848 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4849 {
4850 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4851 }
4852 
4853 static unsigned long emulator_get_cached_segment_base(
4854 	struct x86_emulate_ctxt *ctxt, int seg)
4855 {
4856 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4857 }
4858 
4859 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4860 				 struct desc_struct *desc, u32 *base3,
4861 				 int seg)
4862 {
4863 	struct kvm_segment var;
4864 
4865 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4866 	*selector = var.selector;
4867 
4868 	if (var.unusable) {
4869 		memset(desc, 0, sizeof(*desc));
4870 		return false;
4871 	}
4872 
4873 	if (var.g)
4874 		var.limit >>= 12;
4875 	set_desc_limit(desc, var.limit);
4876 	set_desc_base(desc, (unsigned long)var.base);
4877 #ifdef CONFIG_X86_64
4878 	if (base3)
4879 		*base3 = var.base >> 32;
4880 #endif
4881 	desc->type = var.type;
4882 	desc->s = var.s;
4883 	desc->dpl = var.dpl;
4884 	desc->p = var.present;
4885 	desc->avl = var.avl;
4886 	desc->l = var.l;
4887 	desc->d = var.db;
4888 	desc->g = var.g;
4889 
4890 	return true;
4891 }
4892 
4893 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4894 				 struct desc_struct *desc, u32 base3,
4895 				 int seg)
4896 {
4897 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4898 	struct kvm_segment var;
4899 
4900 	var.selector = selector;
4901 	var.base = get_desc_base(desc);
4902 #ifdef CONFIG_X86_64
4903 	var.base |= ((u64)base3) << 32;
4904 #endif
4905 	var.limit = get_desc_limit(desc);
4906 	if (desc->g)
4907 		var.limit = (var.limit << 12) | 0xfff;
4908 	var.type = desc->type;
4909 	var.dpl = desc->dpl;
4910 	var.db = desc->d;
4911 	var.s = desc->s;
4912 	var.l = desc->l;
4913 	var.g = desc->g;
4914 	var.avl = desc->avl;
4915 	var.present = desc->p;
4916 	var.unusable = !var.present;
4917 	var.padding = 0;
4918 
4919 	kvm_set_segment(vcpu, &var, seg);
4920 	return;
4921 }
4922 
4923 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4924 			    u32 msr_index, u64 *pdata)
4925 {
4926 	struct msr_data msr;
4927 	int r;
4928 
4929 	msr.index = msr_index;
4930 	msr.host_initiated = false;
4931 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4932 	if (r)
4933 		return r;
4934 
4935 	*pdata = msr.data;
4936 	return 0;
4937 }
4938 
4939 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4940 			    u32 msr_index, u64 data)
4941 {
4942 	struct msr_data msr;
4943 
4944 	msr.data = data;
4945 	msr.index = msr_index;
4946 	msr.host_initiated = false;
4947 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4948 }
4949 
4950 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4951 {
4952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953 
4954 	return vcpu->arch.smbase;
4955 }
4956 
4957 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4958 {
4959 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4960 
4961 	vcpu->arch.smbase = smbase;
4962 }
4963 
4964 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4965 			      u32 pmc)
4966 {
4967 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4968 }
4969 
4970 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4971 			     u32 pmc, u64 *pdata)
4972 {
4973 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4974 }
4975 
4976 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4977 {
4978 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4979 }
4980 
4981 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4982 {
4983 	preempt_disable();
4984 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4985 	/*
4986 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4987 	 * so it may be clear at this point.
4988 	 */
4989 	clts();
4990 }
4991 
4992 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4993 {
4994 	preempt_enable();
4995 }
4996 
4997 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4998 			      struct x86_instruction_info *info,
4999 			      enum x86_intercept_stage stage)
5000 {
5001 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5002 }
5003 
5004 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5005 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5006 {
5007 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5008 }
5009 
5010 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5011 {
5012 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5013 }
5014 
5015 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5016 {
5017 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5018 }
5019 
5020 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5021 {
5022 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5023 }
5024 
5025 static const struct x86_emulate_ops emulate_ops = {
5026 	.read_gpr            = emulator_read_gpr,
5027 	.write_gpr           = emulator_write_gpr,
5028 	.read_std            = kvm_read_guest_virt_system,
5029 	.write_std           = kvm_write_guest_virt_system,
5030 	.read_phys           = kvm_read_guest_phys_system,
5031 	.fetch               = kvm_fetch_guest_virt,
5032 	.read_emulated       = emulator_read_emulated,
5033 	.write_emulated      = emulator_write_emulated,
5034 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5035 	.invlpg              = emulator_invlpg,
5036 	.pio_in_emulated     = emulator_pio_in_emulated,
5037 	.pio_out_emulated    = emulator_pio_out_emulated,
5038 	.get_segment         = emulator_get_segment,
5039 	.set_segment         = emulator_set_segment,
5040 	.get_cached_segment_base = emulator_get_cached_segment_base,
5041 	.get_gdt             = emulator_get_gdt,
5042 	.get_idt	     = emulator_get_idt,
5043 	.set_gdt             = emulator_set_gdt,
5044 	.set_idt	     = emulator_set_idt,
5045 	.get_cr              = emulator_get_cr,
5046 	.set_cr              = emulator_set_cr,
5047 	.cpl                 = emulator_get_cpl,
5048 	.get_dr              = emulator_get_dr,
5049 	.set_dr              = emulator_set_dr,
5050 	.get_smbase          = emulator_get_smbase,
5051 	.set_smbase          = emulator_set_smbase,
5052 	.set_msr             = emulator_set_msr,
5053 	.get_msr             = emulator_get_msr,
5054 	.check_pmc	     = emulator_check_pmc,
5055 	.read_pmc            = emulator_read_pmc,
5056 	.halt                = emulator_halt,
5057 	.wbinvd              = emulator_wbinvd,
5058 	.fix_hypercall       = emulator_fix_hypercall,
5059 	.get_fpu             = emulator_get_fpu,
5060 	.put_fpu             = emulator_put_fpu,
5061 	.intercept           = emulator_intercept,
5062 	.get_cpuid           = emulator_get_cpuid,
5063 	.set_nmi_mask        = emulator_set_nmi_mask,
5064 };
5065 
5066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5067 {
5068 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5069 	/*
5070 	 * an sti; sti; sequence only disable interrupts for the first
5071 	 * instruction. So, if the last instruction, be it emulated or
5072 	 * not, left the system with the INT_STI flag enabled, it
5073 	 * means that the last instruction is an sti. We should not
5074 	 * leave the flag on in this case. The same goes for mov ss
5075 	 */
5076 	if (int_shadow & mask)
5077 		mask = 0;
5078 	if (unlikely(int_shadow || mask)) {
5079 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5080 		if (!mask)
5081 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5082 	}
5083 }
5084 
5085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5086 {
5087 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5088 	if (ctxt->exception.vector == PF_VECTOR)
5089 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5090 
5091 	if (ctxt->exception.error_code_valid)
5092 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5093 				      ctxt->exception.error_code);
5094 	else
5095 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5096 	return false;
5097 }
5098 
5099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5100 {
5101 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5102 	int cs_db, cs_l;
5103 
5104 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5105 
5106 	ctxt->eflags = kvm_get_rflags(vcpu);
5107 	ctxt->eip = kvm_rip_read(vcpu);
5108 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5109 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5110 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5111 		     cs_db				? X86EMUL_MODE_PROT32 :
5112 							  X86EMUL_MODE_PROT16;
5113 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5114 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5115 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5116 	ctxt->emul_flags = vcpu->arch.hflags;
5117 
5118 	init_decode_cache(ctxt);
5119 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5120 }
5121 
5122 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5123 {
5124 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5125 	int ret;
5126 
5127 	init_emulate_ctxt(vcpu);
5128 
5129 	ctxt->op_bytes = 2;
5130 	ctxt->ad_bytes = 2;
5131 	ctxt->_eip = ctxt->eip + inc_eip;
5132 	ret = emulate_int_real(ctxt, irq);
5133 
5134 	if (ret != X86EMUL_CONTINUE)
5135 		return EMULATE_FAIL;
5136 
5137 	ctxt->eip = ctxt->_eip;
5138 	kvm_rip_write(vcpu, ctxt->eip);
5139 	kvm_set_rflags(vcpu, ctxt->eflags);
5140 
5141 	if (irq == NMI_VECTOR)
5142 		vcpu->arch.nmi_pending = 0;
5143 	else
5144 		vcpu->arch.interrupt.pending = false;
5145 
5146 	return EMULATE_DONE;
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5149 
5150 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5151 {
5152 	int r = EMULATE_DONE;
5153 
5154 	++vcpu->stat.insn_emulation_fail;
5155 	trace_kvm_emulate_insn_failed(vcpu);
5156 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5157 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5158 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5159 		vcpu->run->internal.ndata = 0;
5160 		r = EMULATE_FAIL;
5161 	}
5162 	kvm_queue_exception(vcpu, UD_VECTOR);
5163 
5164 	return r;
5165 }
5166 
5167 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5168 				  bool write_fault_to_shadow_pgtable,
5169 				  int emulation_type)
5170 {
5171 	gpa_t gpa = cr2;
5172 	kvm_pfn_t pfn;
5173 
5174 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5175 		return false;
5176 
5177 	if (!vcpu->arch.mmu.direct_map) {
5178 		/*
5179 		 * Write permission should be allowed since only
5180 		 * write access need to be emulated.
5181 		 */
5182 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5183 
5184 		/*
5185 		 * If the mapping is invalid in guest, let cpu retry
5186 		 * it to generate fault.
5187 		 */
5188 		if (gpa == UNMAPPED_GVA)
5189 			return true;
5190 	}
5191 
5192 	/*
5193 	 * Do not retry the unhandleable instruction if it faults on the
5194 	 * readonly host memory, otherwise it will goto a infinite loop:
5195 	 * retry instruction -> write #PF -> emulation fail -> retry
5196 	 * instruction -> ...
5197 	 */
5198 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5199 
5200 	/*
5201 	 * If the instruction failed on the error pfn, it can not be fixed,
5202 	 * report the error to userspace.
5203 	 */
5204 	if (is_error_noslot_pfn(pfn))
5205 		return false;
5206 
5207 	kvm_release_pfn_clean(pfn);
5208 
5209 	/* The instructions are well-emulated on direct mmu. */
5210 	if (vcpu->arch.mmu.direct_map) {
5211 		unsigned int indirect_shadow_pages;
5212 
5213 		spin_lock(&vcpu->kvm->mmu_lock);
5214 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5215 		spin_unlock(&vcpu->kvm->mmu_lock);
5216 
5217 		if (indirect_shadow_pages)
5218 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5219 
5220 		return true;
5221 	}
5222 
5223 	/*
5224 	 * if emulation was due to access to shadowed page table
5225 	 * and it failed try to unshadow page and re-enter the
5226 	 * guest to let CPU execute the instruction.
5227 	 */
5228 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5229 
5230 	/*
5231 	 * If the access faults on its page table, it can not
5232 	 * be fixed by unprotecting shadow page and it should
5233 	 * be reported to userspace.
5234 	 */
5235 	return !write_fault_to_shadow_pgtable;
5236 }
5237 
5238 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5239 			      unsigned long cr2,  int emulation_type)
5240 {
5241 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5242 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5243 
5244 	last_retry_eip = vcpu->arch.last_retry_eip;
5245 	last_retry_addr = vcpu->arch.last_retry_addr;
5246 
5247 	/*
5248 	 * If the emulation is caused by #PF and it is non-page_table
5249 	 * writing instruction, it means the VM-EXIT is caused by shadow
5250 	 * page protected, we can zap the shadow page and retry this
5251 	 * instruction directly.
5252 	 *
5253 	 * Note: if the guest uses a non-page-table modifying instruction
5254 	 * on the PDE that points to the instruction, then we will unmap
5255 	 * the instruction and go to an infinite loop. So, we cache the
5256 	 * last retried eip and the last fault address, if we meet the eip
5257 	 * and the address again, we can break out of the potential infinite
5258 	 * loop.
5259 	 */
5260 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5261 
5262 	if (!(emulation_type & EMULTYPE_RETRY))
5263 		return false;
5264 
5265 	if (x86_page_table_writing_insn(ctxt))
5266 		return false;
5267 
5268 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5269 		return false;
5270 
5271 	vcpu->arch.last_retry_eip = ctxt->eip;
5272 	vcpu->arch.last_retry_addr = cr2;
5273 
5274 	if (!vcpu->arch.mmu.direct_map)
5275 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5276 
5277 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5278 
5279 	return true;
5280 }
5281 
5282 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5283 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5284 
5285 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5286 {
5287 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5288 		/* This is a good place to trace that we are exiting SMM.  */
5289 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5290 
5291 		if (unlikely(vcpu->arch.smi_pending)) {
5292 			kvm_make_request(KVM_REQ_SMI, vcpu);
5293 			vcpu->arch.smi_pending = 0;
5294 		} else {
5295 			/* Process a latched INIT, if any.  */
5296 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5297 		}
5298 	}
5299 
5300 	kvm_mmu_reset_context(vcpu);
5301 }
5302 
5303 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5304 {
5305 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5306 
5307 	vcpu->arch.hflags = emul_flags;
5308 
5309 	if (changed & HF_SMM_MASK)
5310 		kvm_smm_changed(vcpu);
5311 }
5312 
5313 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5314 				unsigned long *db)
5315 {
5316 	u32 dr6 = 0;
5317 	int i;
5318 	u32 enable, rwlen;
5319 
5320 	enable = dr7;
5321 	rwlen = dr7 >> 16;
5322 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5323 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5324 			dr6 |= (1 << i);
5325 	return dr6;
5326 }
5327 
5328 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5329 {
5330 	struct kvm_run *kvm_run = vcpu->run;
5331 
5332 	/*
5333 	 * rflags is the old, "raw" value of the flags.  The new value has
5334 	 * not been saved yet.
5335 	 *
5336 	 * This is correct even for TF set by the guest, because "the
5337 	 * processor will not generate this exception after the instruction
5338 	 * that sets the TF flag".
5339 	 */
5340 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5341 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5342 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5343 						  DR6_RTM;
5344 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5345 			kvm_run->debug.arch.exception = DB_VECTOR;
5346 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5347 			*r = EMULATE_USER_EXIT;
5348 		} else {
5349 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5350 			/*
5351 			 * "Certain debug exceptions may clear bit 0-3.  The
5352 			 * remaining contents of the DR6 register are never
5353 			 * cleared by the processor".
5354 			 */
5355 			vcpu->arch.dr6 &= ~15;
5356 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5357 			kvm_queue_exception(vcpu, DB_VECTOR);
5358 		}
5359 	}
5360 }
5361 
5362 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5363 {
5364 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5365 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5366 		struct kvm_run *kvm_run = vcpu->run;
5367 		unsigned long eip = kvm_get_linear_rip(vcpu);
5368 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5369 					   vcpu->arch.guest_debug_dr7,
5370 					   vcpu->arch.eff_db);
5371 
5372 		if (dr6 != 0) {
5373 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5374 			kvm_run->debug.arch.pc = eip;
5375 			kvm_run->debug.arch.exception = DB_VECTOR;
5376 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5377 			*r = EMULATE_USER_EXIT;
5378 			return true;
5379 		}
5380 	}
5381 
5382 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5383 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5384 		unsigned long eip = kvm_get_linear_rip(vcpu);
5385 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5386 					   vcpu->arch.dr7,
5387 					   vcpu->arch.db);
5388 
5389 		if (dr6 != 0) {
5390 			vcpu->arch.dr6 &= ~15;
5391 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5392 			kvm_queue_exception(vcpu, DB_VECTOR);
5393 			*r = EMULATE_DONE;
5394 			return true;
5395 		}
5396 	}
5397 
5398 	return false;
5399 }
5400 
5401 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5402 			    unsigned long cr2,
5403 			    int emulation_type,
5404 			    void *insn,
5405 			    int insn_len)
5406 {
5407 	int r;
5408 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5409 	bool writeback = true;
5410 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5411 
5412 	/*
5413 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5414 	 * never reused.
5415 	 */
5416 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5417 	kvm_clear_exception_queue(vcpu);
5418 
5419 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5420 		init_emulate_ctxt(vcpu);
5421 
5422 		/*
5423 		 * We will reenter on the same instruction since
5424 		 * we do not set complete_userspace_io.  This does not
5425 		 * handle watchpoints yet, those would be handled in
5426 		 * the emulate_ops.
5427 		 */
5428 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5429 			return r;
5430 
5431 		ctxt->interruptibility = 0;
5432 		ctxt->have_exception = false;
5433 		ctxt->exception.vector = -1;
5434 		ctxt->perm_ok = false;
5435 
5436 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5437 
5438 		r = x86_decode_insn(ctxt, insn, insn_len);
5439 
5440 		trace_kvm_emulate_insn_start(vcpu);
5441 		++vcpu->stat.insn_emulation;
5442 		if (r != EMULATION_OK)  {
5443 			if (emulation_type & EMULTYPE_TRAP_UD)
5444 				return EMULATE_FAIL;
5445 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446 						emulation_type))
5447 				return EMULATE_DONE;
5448 			if (emulation_type & EMULTYPE_SKIP)
5449 				return EMULATE_FAIL;
5450 			return handle_emulation_failure(vcpu);
5451 		}
5452 	}
5453 
5454 	if (emulation_type & EMULTYPE_SKIP) {
5455 		kvm_rip_write(vcpu, ctxt->_eip);
5456 		if (ctxt->eflags & X86_EFLAGS_RF)
5457 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5458 		return EMULATE_DONE;
5459 	}
5460 
5461 	if (retry_instruction(ctxt, cr2, emulation_type))
5462 		return EMULATE_DONE;
5463 
5464 	/* this is needed for vmware backdoor interface to work since it
5465 	   changes registers values  during IO operation */
5466 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5467 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5468 		emulator_invalidate_register_cache(ctxt);
5469 	}
5470 
5471 restart:
5472 	r = x86_emulate_insn(ctxt);
5473 
5474 	if (r == EMULATION_INTERCEPTED)
5475 		return EMULATE_DONE;
5476 
5477 	if (r == EMULATION_FAILED) {
5478 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5479 					emulation_type))
5480 			return EMULATE_DONE;
5481 
5482 		return handle_emulation_failure(vcpu);
5483 	}
5484 
5485 	if (ctxt->have_exception) {
5486 		r = EMULATE_DONE;
5487 		if (inject_emulated_exception(vcpu))
5488 			return r;
5489 	} else if (vcpu->arch.pio.count) {
5490 		if (!vcpu->arch.pio.in) {
5491 			/* FIXME: return into emulator if single-stepping.  */
5492 			vcpu->arch.pio.count = 0;
5493 		} else {
5494 			writeback = false;
5495 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5496 		}
5497 		r = EMULATE_USER_EXIT;
5498 	} else if (vcpu->mmio_needed) {
5499 		if (!vcpu->mmio_is_write)
5500 			writeback = false;
5501 		r = EMULATE_USER_EXIT;
5502 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5503 	} else if (r == EMULATION_RESTART)
5504 		goto restart;
5505 	else
5506 		r = EMULATE_DONE;
5507 
5508 	if (writeback) {
5509 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5510 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5511 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5512 		if (vcpu->arch.hflags != ctxt->emul_flags)
5513 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5514 		kvm_rip_write(vcpu, ctxt->eip);
5515 		if (r == EMULATE_DONE)
5516 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5517 		if (!ctxt->have_exception ||
5518 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5519 			__kvm_set_rflags(vcpu, ctxt->eflags);
5520 
5521 		/*
5522 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5523 		 * do nothing, and it will be requested again as soon as
5524 		 * the shadow expires.  But we still need to check here,
5525 		 * because POPF has no interrupt shadow.
5526 		 */
5527 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5528 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5529 	} else
5530 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5531 
5532 	return r;
5533 }
5534 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5535 
5536 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5537 {
5538 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5539 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5540 					    size, port, &val, 1);
5541 	/* do not return to emulator after return from userspace */
5542 	vcpu->arch.pio.count = 0;
5543 	return ret;
5544 }
5545 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5546 
5547 static void tsc_bad(void *info)
5548 {
5549 	__this_cpu_write(cpu_tsc_khz, 0);
5550 }
5551 
5552 static void tsc_khz_changed(void *data)
5553 {
5554 	struct cpufreq_freqs *freq = data;
5555 	unsigned long khz = 0;
5556 
5557 	if (data)
5558 		khz = freq->new;
5559 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5560 		khz = cpufreq_quick_get(raw_smp_processor_id());
5561 	if (!khz)
5562 		khz = tsc_khz;
5563 	__this_cpu_write(cpu_tsc_khz, khz);
5564 }
5565 
5566 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5567 				     void *data)
5568 {
5569 	struct cpufreq_freqs *freq = data;
5570 	struct kvm *kvm;
5571 	struct kvm_vcpu *vcpu;
5572 	int i, send_ipi = 0;
5573 
5574 	/*
5575 	 * We allow guests to temporarily run on slowing clocks,
5576 	 * provided we notify them after, or to run on accelerating
5577 	 * clocks, provided we notify them before.  Thus time never
5578 	 * goes backwards.
5579 	 *
5580 	 * However, we have a problem.  We can't atomically update
5581 	 * the frequency of a given CPU from this function; it is
5582 	 * merely a notifier, which can be called from any CPU.
5583 	 * Changing the TSC frequency at arbitrary points in time
5584 	 * requires a recomputation of local variables related to
5585 	 * the TSC for each VCPU.  We must flag these local variables
5586 	 * to be updated and be sure the update takes place with the
5587 	 * new frequency before any guests proceed.
5588 	 *
5589 	 * Unfortunately, the combination of hotplug CPU and frequency
5590 	 * change creates an intractable locking scenario; the order
5591 	 * of when these callouts happen is undefined with respect to
5592 	 * CPU hotplug, and they can race with each other.  As such,
5593 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5594 	 * undefined; you can actually have a CPU frequency change take
5595 	 * place in between the computation of X and the setting of the
5596 	 * variable.  To protect against this problem, all updates of
5597 	 * the per_cpu tsc_khz variable are done in an interrupt
5598 	 * protected IPI, and all callers wishing to update the value
5599 	 * must wait for a synchronous IPI to complete (which is trivial
5600 	 * if the caller is on the CPU already).  This establishes the
5601 	 * necessary total order on variable updates.
5602 	 *
5603 	 * Note that because a guest time update may take place
5604 	 * anytime after the setting of the VCPU's request bit, the
5605 	 * correct TSC value must be set before the request.  However,
5606 	 * to ensure the update actually makes it to any guest which
5607 	 * starts running in hardware virtualization between the set
5608 	 * and the acquisition of the spinlock, we must also ping the
5609 	 * CPU after setting the request bit.
5610 	 *
5611 	 */
5612 
5613 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5614 		return 0;
5615 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5616 		return 0;
5617 
5618 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5619 
5620 	spin_lock(&kvm_lock);
5621 	list_for_each_entry(kvm, &vm_list, vm_list) {
5622 		kvm_for_each_vcpu(i, vcpu, kvm) {
5623 			if (vcpu->cpu != freq->cpu)
5624 				continue;
5625 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5626 			if (vcpu->cpu != smp_processor_id())
5627 				send_ipi = 1;
5628 		}
5629 	}
5630 	spin_unlock(&kvm_lock);
5631 
5632 	if (freq->old < freq->new && send_ipi) {
5633 		/*
5634 		 * We upscale the frequency.  Must make the guest
5635 		 * doesn't see old kvmclock values while running with
5636 		 * the new frequency, otherwise we risk the guest sees
5637 		 * time go backwards.
5638 		 *
5639 		 * In case we update the frequency for another cpu
5640 		 * (which might be in guest context) send an interrupt
5641 		 * to kick the cpu out of guest context.  Next time
5642 		 * guest context is entered kvmclock will be updated,
5643 		 * so the guest will not see stale values.
5644 		 */
5645 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5646 	}
5647 	return 0;
5648 }
5649 
5650 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5651 	.notifier_call  = kvmclock_cpufreq_notifier
5652 };
5653 
5654 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5655 					unsigned long action, void *hcpu)
5656 {
5657 	unsigned int cpu = (unsigned long)hcpu;
5658 
5659 	switch (action) {
5660 		case CPU_ONLINE:
5661 		case CPU_DOWN_FAILED:
5662 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5663 			break;
5664 		case CPU_DOWN_PREPARE:
5665 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5666 			break;
5667 	}
5668 	return NOTIFY_OK;
5669 }
5670 
5671 static struct notifier_block kvmclock_cpu_notifier_block = {
5672 	.notifier_call  = kvmclock_cpu_notifier,
5673 	.priority = -INT_MAX
5674 };
5675 
5676 static void kvm_timer_init(void)
5677 {
5678 	int cpu;
5679 
5680 	max_tsc_khz = tsc_khz;
5681 
5682 	cpu_notifier_register_begin();
5683 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5684 #ifdef CONFIG_CPU_FREQ
5685 		struct cpufreq_policy policy;
5686 		memset(&policy, 0, sizeof(policy));
5687 		cpu = get_cpu();
5688 		cpufreq_get_policy(&policy, cpu);
5689 		if (policy.cpuinfo.max_freq)
5690 			max_tsc_khz = policy.cpuinfo.max_freq;
5691 		put_cpu();
5692 #endif
5693 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5694 					  CPUFREQ_TRANSITION_NOTIFIER);
5695 	}
5696 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5697 	for_each_online_cpu(cpu)
5698 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5699 
5700 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5701 	cpu_notifier_register_done();
5702 
5703 }
5704 
5705 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5706 
5707 int kvm_is_in_guest(void)
5708 {
5709 	return __this_cpu_read(current_vcpu) != NULL;
5710 }
5711 
5712 static int kvm_is_user_mode(void)
5713 {
5714 	int user_mode = 3;
5715 
5716 	if (__this_cpu_read(current_vcpu))
5717 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5718 
5719 	return user_mode != 0;
5720 }
5721 
5722 static unsigned long kvm_get_guest_ip(void)
5723 {
5724 	unsigned long ip = 0;
5725 
5726 	if (__this_cpu_read(current_vcpu))
5727 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5728 
5729 	return ip;
5730 }
5731 
5732 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5733 	.is_in_guest		= kvm_is_in_guest,
5734 	.is_user_mode		= kvm_is_user_mode,
5735 	.get_guest_ip		= kvm_get_guest_ip,
5736 };
5737 
5738 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5739 {
5740 	__this_cpu_write(current_vcpu, vcpu);
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5743 
5744 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5745 {
5746 	__this_cpu_write(current_vcpu, NULL);
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5749 
5750 static void kvm_set_mmio_spte_mask(void)
5751 {
5752 	u64 mask;
5753 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5754 
5755 	/*
5756 	 * Set the reserved bits and the present bit of an paging-structure
5757 	 * entry to generate page fault with PFER.RSV = 1.
5758 	 */
5759 	 /* Mask the reserved physical address bits. */
5760 	mask = rsvd_bits(maxphyaddr, 51);
5761 
5762 	/* Bit 62 is always reserved for 32bit host. */
5763 	mask |= 0x3ull << 62;
5764 
5765 	/* Set the present bit. */
5766 	mask |= 1ull;
5767 
5768 #ifdef CONFIG_X86_64
5769 	/*
5770 	 * If reserved bit is not supported, clear the present bit to disable
5771 	 * mmio page fault.
5772 	 */
5773 	if (maxphyaddr == 52)
5774 		mask &= ~1ull;
5775 #endif
5776 
5777 	kvm_mmu_set_mmio_spte_mask(mask);
5778 }
5779 
5780 #ifdef CONFIG_X86_64
5781 static void pvclock_gtod_update_fn(struct work_struct *work)
5782 {
5783 	struct kvm *kvm;
5784 
5785 	struct kvm_vcpu *vcpu;
5786 	int i;
5787 
5788 	spin_lock(&kvm_lock);
5789 	list_for_each_entry(kvm, &vm_list, vm_list)
5790 		kvm_for_each_vcpu(i, vcpu, kvm)
5791 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5792 	atomic_set(&kvm_guest_has_master_clock, 0);
5793 	spin_unlock(&kvm_lock);
5794 }
5795 
5796 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5797 
5798 /*
5799  * Notification about pvclock gtod data update.
5800  */
5801 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5802 			       void *priv)
5803 {
5804 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5805 	struct timekeeper *tk = priv;
5806 
5807 	update_pvclock_gtod(tk);
5808 
5809 	/* disable master clock if host does not trust, or does not
5810 	 * use, TSC clocksource
5811 	 */
5812 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5813 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5814 		queue_work(system_long_wq, &pvclock_gtod_work);
5815 
5816 	return 0;
5817 }
5818 
5819 static struct notifier_block pvclock_gtod_notifier = {
5820 	.notifier_call = pvclock_gtod_notify,
5821 };
5822 #endif
5823 
5824 int kvm_arch_init(void *opaque)
5825 {
5826 	int r;
5827 	struct kvm_x86_ops *ops = opaque;
5828 
5829 	if (kvm_x86_ops) {
5830 		printk(KERN_ERR "kvm: already loaded the other module\n");
5831 		r = -EEXIST;
5832 		goto out;
5833 	}
5834 
5835 	if (!ops->cpu_has_kvm_support()) {
5836 		printk(KERN_ERR "kvm: no hardware support\n");
5837 		r = -EOPNOTSUPP;
5838 		goto out;
5839 	}
5840 	if (ops->disabled_by_bios()) {
5841 		printk(KERN_ERR "kvm: disabled by bios\n");
5842 		r = -EOPNOTSUPP;
5843 		goto out;
5844 	}
5845 
5846 	r = -ENOMEM;
5847 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5848 	if (!shared_msrs) {
5849 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5850 		goto out;
5851 	}
5852 
5853 	r = kvm_mmu_module_init();
5854 	if (r)
5855 		goto out_free_percpu;
5856 
5857 	kvm_set_mmio_spte_mask();
5858 
5859 	kvm_x86_ops = ops;
5860 
5861 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5862 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5863 
5864 	kvm_timer_init();
5865 
5866 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5867 
5868 	if (cpu_has_xsave)
5869 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5870 
5871 	kvm_lapic_init();
5872 #ifdef CONFIG_X86_64
5873 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5874 #endif
5875 
5876 	return 0;
5877 
5878 out_free_percpu:
5879 	free_percpu(shared_msrs);
5880 out:
5881 	return r;
5882 }
5883 
5884 void kvm_arch_exit(void)
5885 {
5886 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5887 
5888 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5889 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5890 					    CPUFREQ_TRANSITION_NOTIFIER);
5891 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5892 #ifdef CONFIG_X86_64
5893 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5894 #endif
5895 	kvm_x86_ops = NULL;
5896 	kvm_mmu_module_exit();
5897 	free_percpu(shared_msrs);
5898 }
5899 
5900 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5901 {
5902 	++vcpu->stat.halt_exits;
5903 	if (lapic_in_kernel(vcpu)) {
5904 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5905 		return 1;
5906 	} else {
5907 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5908 		return 0;
5909 	}
5910 }
5911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5912 
5913 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5914 {
5915 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5916 	return kvm_vcpu_halt(vcpu);
5917 }
5918 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5919 
5920 /*
5921  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5922  *
5923  * @apicid - apicid of vcpu to be kicked.
5924  */
5925 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5926 {
5927 	struct kvm_lapic_irq lapic_irq;
5928 
5929 	lapic_irq.shorthand = 0;
5930 	lapic_irq.dest_mode = 0;
5931 	lapic_irq.dest_id = apicid;
5932 	lapic_irq.msi_redir_hint = false;
5933 
5934 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5935 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5936 }
5937 
5938 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5939 {
5940 	vcpu->arch.apicv_active = false;
5941 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5942 }
5943 
5944 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5945 {
5946 	unsigned long nr, a0, a1, a2, a3, ret;
5947 	int op_64_bit, r = 1;
5948 
5949 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5950 
5951 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5952 		return kvm_hv_hypercall(vcpu);
5953 
5954 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5955 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5956 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5957 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5958 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5959 
5960 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5961 
5962 	op_64_bit = is_64_bit_mode(vcpu);
5963 	if (!op_64_bit) {
5964 		nr &= 0xFFFFFFFF;
5965 		a0 &= 0xFFFFFFFF;
5966 		a1 &= 0xFFFFFFFF;
5967 		a2 &= 0xFFFFFFFF;
5968 		a3 &= 0xFFFFFFFF;
5969 	}
5970 
5971 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5972 		ret = -KVM_EPERM;
5973 		goto out;
5974 	}
5975 
5976 	switch (nr) {
5977 	case KVM_HC_VAPIC_POLL_IRQ:
5978 		ret = 0;
5979 		break;
5980 	case KVM_HC_KICK_CPU:
5981 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5982 		ret = 0;
5983 		break;
5984 	default:
5985 		ret = -KVM_ENOSYS;
5986 		break;
5987 	}
5988 out:
5989 	if (!op_64_bit)
5990 		ret = (u32)ret;
5991 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5992 	++vcpu->stat.hypercalls;
5993 	return r;
5994 }
5995 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5996 
5997 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5998 {
5999 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6000 	char instruction[3];
6001 	unsigned long rip = kvm_rip_read(vcpu);
6002 
6003 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6004 
6005 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6006 }
6007 
6008 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6009 {
6010 	return vcpu->run->request_interrupt_window &&
6011 		likely(!pic_in_kernel(vcpu->kvm));
6012 }
6013 
6014 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6015 {
6016 	struct kvm_run *kvm_run = vcpu->run;
6017 
6018 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6019 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6020 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6021 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6022 	kvm_run->ready_for_interrupt_injection =
6023 		pic_in_kernel(vcpu->kvm) ||
6024 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6025 }
6026 
6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6028 {
6029 	int max_irr, tpr;
6030 
6031 	if (!kvm_x86_ops->update_cr8_intercept)
6032 		return;
6033 
6034 	if (!lapic_in_kernel(vcpu))
6035 		return;
6036 
6037 	if (vcpu->arch.apicv_active)
6038 		return;
6039 
6040 	if (!vcpu->arch.apic->vapic_addr)
6041 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6042 	else
6043 		max_irr = -1;
6044 
6045 	if (max_irr != -1)
6046 		max_irr >>= 4;
6047 
6048 	tpr = kvm_lapic_get_cr8(vcpu);
6049 
6050 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6051 }
6052 
6053 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6054 {
6055 	int r;
6056 
6057 	/* try to reinject previous events if any */
6058 	if (vcpu->arch.exception.pending) {
6059 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6060 					vcpu->arch.exception.has_error_code,
6061 					vcpu->arch.exception.error_code);
6062 
6063 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6064 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6065 					     X86_EFLAGS_RF);
6066 
6067 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6068 		    (vcpu->arch.dr7 & DR7_GD)) {
6069 			vcpu->arch.dr7 &= ~DR7_GD;
6070 			kvm_update_dr7(vcpu);
6071 		}
6072 
6073 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6074 					  vcpu->arch.exception.has_error_code,
6075 					  vcpu->arch.exception.error_code,
6076 					  vcpu->arch.exception.reinject);
6077 		return 0;
6078 	}
6079 
6080 	if (vcpu->arch.nmi_injected) {
6081 		kvm_x86_ops->set_nmi(vcpu);
6082 		return 0;
6083 	}
6084 
6085 	if (vcpu->arch.interrupt.pending) {
6086 		kvm_x86_ops->set_irq(vcpu);
6087 		return 0;
6088 	}
6089 
6090 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6091 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6092 		if (r != 0)
6093 			return r;
6094 	}
6095 
6096 	/* try to inject new event if pending */
6097 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6098 		--vcpu->arch.nmi_pending;
6099 		vcpu->arch.nmi_injected = true;
6100 		kvm_x86_ops->set_nmi(vcpu);
6101 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6102 		/*
6103 		 * Because interrupts can be injected asynchronously, we are
6104 		 * calling check_nested_events again here to avoid a race condition.
6105 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6106 		 * proposal and current concerns.  Perhaps we should be setting
6107 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6108 		 */
6109 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6110 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6111 			if (r != 0)
6112 				return r;
6113 		}
6114 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6115 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6116 					    false);
6117 			kvm_x86_ops->set_irq(vcpu);
6118 		}
6119 	}
6120 	return 0;
6121 }
6122 
6123 static void process_nmi(struct kvm_vcpu *vcpu)
6124 {
6125 	unsigned limit = 2;
6126 
6127 	/*
6128 	 * x86 is limited to one NMI running, and one NMI pending after it.
6129 	 * If an NMI is already in progress, limit further NMIs to just one.
6130 	 * Otherwise, allow two (and we'll inject the first one immediately).
6131 	 */
6132 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6133 		limit = 1;
6134 
6135 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6136 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6137 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6138 }
6139 
6140 #define put_smstate(type, buf, offset, val)			  \
6141 	*(type *)((buf) + (offset) - 0x7e00) = val
6142 
6143 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6144 {
6145 	u32 flags = 0;
6146 	flags |= seg->g       << 23;
6147 	flags |= seg->db      << 22;
6148 	flags |= seg->l       << 21;
6149 	flags |= seg->avl     << 20;
6150 	flags |= seg->present << 15;
6151 	flags |= seg->dpl     << 13;
6152 	flags |= seg->s       << 12;
6153 	flags |= seg->type    << 8;
6154 	return flags;
6155 }
6156 
6157 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6158 {
6159 	struct kvm_segment seg;
6160 	int offset;
6161 
6162 	kvm_get_segment(vcpu, &seg, n);
6163 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6164 
6165 	if (n < 3)
6166 		offset = 0x7f84 + n * 12;
6167 	else
6168 		offset = 0x7f2c + (n - 3) * 12;
6169 
6170 	put_smstate(u32, buf, offset + 8, seg.base);
6171 	put_smstate(u32, buf, offset + 4, seg.limit);
6172 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6173 }
6174 
6175 #ifdef CONFIG_X86_64
6176 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6177 {
6178 	struct kvm_segment seg;
6179 	int offset;
6180 	u16 flags;
6181 
6182 	kvm_get_segment(vcpu, &seg, n);
6183 	offset = 0x7e00 + n * 16;
6184 
6185 	flags = process_smi_get_segment_flags(&seg) >> 8;
6186 	put_smstate(u16, buf, offset, seg.selector);
6187 	put_smstate(u16, buf, offset + 2, flags);
6188 	put_smstate(u32, buf, offset + 4, seg.limit);
6189 	put_smstate(u64, buf, offset + 8, seg.base);
6190 }
6191 #endif
6192 
6193 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6194 {
6195 	struct desc_ptr dt;
6196 	struct kvm_segment seg;
6197 	unsigned long val;
6198 	int i;
6199 
6200 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6201 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6202 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6203 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6204 
6205 	for (i = 0; i < 8; i++)
6206 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6207 
6208 	kvm_get_dr(vcpu, 6, &val);
6209 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6210 	kvm_get_dr(vcpu, 7, &val);
6211 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6212 
6213 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6214 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6215 	put_smstate(u32, buf, 0x7f64, seg.base);
6216 	put_smstate(u32, buf, 0x7f60, seg.limit);
6217 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6218 
6219 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6220 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6221 	put_smstate(u32, buf, 0x7f80, seg.base);
6222 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6223 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6224 
6225 	kvm_x86_ops->get_gdt(vcpu, &dt);
6226 	put_smstate(u32, buf, 0x7f74, dt.address);
6227 	put_smstate(u32, buf, 0x7f70, dt.size);
6228 
6229 	kvm_x86_ops->get_idt(vcpu, &dt);
6230 	put_smstate(u32, buf, 0x7f58, dt.address);
6231 	put_smstate(u32, buf, 0x7f54, dt.size);
6232 
6233 	for (i = 0; i < 6; i++)
6234 		process_smi_save_seg_32(vcpu, buf, i);
6235 
6236 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6237 
6238 	/* revision id */
6239 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6240 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6241 }
6242 
6243 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6244 {
6245 #ifdef CONFIG_X86_64
6246 	struct desc_ptr dt;
6247 	struct kvm_segment seg;
6248 	unsigned long val;
6249 	int i;
6250 
6251 	for (i = 0; i < 16; i++)
6252 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6253 
6254 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6255 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6256 
6257 	kvm_get_dr(vcpu, 6, &val);
6258 	put_smstate(u64, buf, 0x7f68, val);
6259 	kvm_get_dr(vcpu, 7, &val);
6260 	put_smstate(u64, buf, 0x7f60, val);
6261 
6262 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6263 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6264 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6265 
6266 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6267 
6268 	/* revision id */
6269 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6270 
6271 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6272 
6273 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6274 	put_smstate(u16, buf, 0x7e90, seg.selector);
6275 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6276 	put_smstate(u32, buf, 0x7e94, seg.limit);
6277 	put_smstate(u64, buf, 0x7e98, seg.base);
6278 
6279 	kvm_x86_ops->get_idt(vcpu, &dt);
6280 	put_smstate(u32, buf, 0x7e84, dt.size);
6281 	put_smstate(u64, buf, 0x7e88, dt.address);
6282 
6283 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6284 	put_smstate(u16, buf, 0x7e70, seg.selector);
6285 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6286 	put_smstate(u32, buf, 0x7e74, seg.limit);
6287 	put_smstate(u64, buf, 0x7e78, seg.base);
6288 
6289 	kvm_x86_ops->get_gdt(vcpu, &dt);
6290 	put_smstate(u32, buf, 0x7e64, dt.size);
6291 	put_smstate(u64, buf, 0x7e68, dt.address);
6292 
6293 	for (i = 0; i < 6; i++)
6294 		process_smi_save_seg_64(vcpu, buf, i);
6295 #else
6296 	WARN_ON_ONCE(1);
6297 #endif
6298 }
6299 
6300 static void process_smi(struct kvm_vcpu *vcpu)
6301 {
6302 	struct kvm_segment cs, ds;
6303 	struct desc_ptr dt;
6304 	char buf[512];
6305 	u32 cr0;
6306 
6307 	if (is_smm(vcpu)) {
6308 		vcpu->arch.smi_pending = true;
6309 		return;
6310 	}
6311 
6312 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6313 	vcpu->arch.hflags |= HF_SMM_MASK;
6314 	memset(buf, 0, 512);
6315 	if (guest_cpuid_has_longmode(vcpu))
6316 		process_smi_save_state_64(vcpu, buf);
6317 	else
6318 		process_smi_save_state_32(vcpu, buf);
6319 
6320 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6321 
6322 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6323 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6324 	else
6325 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6326 
6327 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6328 	kvm_rip_write(vcpu, 0x8000);
6329 
6330 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6331 	kvm_x86_ops->set_cr0(vcpu, cr0);
6332 	vcpu->arch.cr0 = cr0;
6333 
6334 	kvm_x86_ops->set_cr4(vcpu, 0);
6335 
6336 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6337 	dt.address = dt.size = 0;
6338 	kvm_x86_ops->set_idt(vcpu, &dt);
6339 
6340 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6341 
6342 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6343 	cs.base = vcpu->arch.smbase;
6344 
6345 	ds.selector = 0;
6346 	ds.base = 0;
6347 
6348 	cs.limit    = ds.limit = 0xffffffff;
6349 	cs.type     = ds.type = 0x3;
6350 	cs.dpl      = ds.dpl = 0;
6351 	cs.db       = ds.db = 0;
6352 	cs.s        = ds.s = 1;
6353 	cs.l        = ds.l = 0;
6354 	cs.g        = ds.g = 1;
6355 	cs.avl      = ds.avl = 0;
6356 	cs.present  = ds.present = 1;
6357 	cs.unusable = ds.unusable = 0;
6358 	cs.padding  = ds.padding = 0;
6359 
6360 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6361 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6362 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6363 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6364 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6365 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6366 
6367 	if (guest_cpuid_has_longmode(vcpu))
6368 		kvm_x86_ops->set_efer(vcpu, 0);
6369 
6370 	kvm_update_cpuid(vcpu);
6371 	kvm_mmu_reset_context(vcpu);
6372 }
6373 
6374 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6375 {
6376 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6377 }
6378 
6379 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6380 {
6381 	u64 eoi_exit_bitmap[4];
6382 
6383 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6384 		return;
6385 
6386 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6387 
6388 	if (irqchip_split(vcpu->kvm))
6389 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6390 	else {
6391 		if (vcpu->arch.apicv_active)
6392 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6393 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6394 	}
6395 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6396 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6397 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6398 }
6399 
6400 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6401 {
6402 	++vcpu->stat.tlb_flush;
6403 	kvm_x86_ops->tlb_flush(vcpu);
6404 }
6405 
6406 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6407 {
6408 	struct page *page = NULL;
6409 
6410 	if (!lapic_in_kernel(vcpu))
6411 		return;
6412 
6413 	if (!kvm_x86_ops->set_apic_access_page_addr)
6414 		return;
6415 
6416 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6417 	if (is_error_page(page))
6418 		return;
6419 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6420 
6421 	/*
6422 	 * Do not pin apic access page in memory, the MMU notifier
6423 	 * will call us again if it is migrated or swapped out.
6424 	 */
6425 	put_page(page);
6426 }
6427 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6428 
6429 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6430 					   unsigned long address)
6431 {
6432 	/*
6433 	 * The physical address of apic access page is stored in the VMCS.
6434 	 * Update it when it becomes invalid.
6435 	 */
6436 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6437 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6438 }
6439 
6440 /*
6441  * Returns 1 to let vcpu_run() continue the guest execution loop without
6442  * exiting to the userspace.  Otherwise, the value will be returned to the
6443  * userspace.
6444  */
6445 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6446 {
6447 	int r;
6448 	bool req_int_win =
6449 		dm_request_for_irq_injection(vcpu) &&
6450 		kvm_cpu_accept_dm_intr(vcpu);
6451 
6452 	bool req_immediate_exit = false;
6453 
6454 	if (vcpu->requests) {
6455 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6456 			kvm_mmu_unload(vcpu);
6457 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6458 			__kvm_migrate_timers(vcpu);
6459 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6460 			kvm_gen_update_masterclock(vcpu->kvm);
6461 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6462 			kvm_gen_kvmclock_update(vcpu);
6463 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6464 			r = kvm_guest_time_update(vcpu);
6465 			if (unlikely(r))
6466 				goto out;
6467 		}
6468 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6469 			kvm_mmu_sync_roots(vcpu);
6470 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6471 			kvm_vcpu_flush_tlb(vcpu);
6472 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6473 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6474 			r = 0;
6475 			goto out;
6476 		}
6477 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6478 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6479 			r = 0;
6480 			goto out;
6481 		}
6482 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6483 			vcpu->fpu_active = 0;
6484 			kvm_x86_ops->fpu_deactivate(vcpu);
6485 		}
6486 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6487 			/* Page is swapped out. Do synthetic halt */
6488 			vcpu->arch.apf.halted = true;
6489 			r = 1;
6490 			goto out;
6491 		}
6492 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6493 			record_steal_time(vcpu);
6494 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6495 			process_smi(vcpu);
6496 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6497 			process_nmi(vcpu);
6498 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6499 			kvm_pmu_handle_event(vcpu);
6500 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6501 			kvm_pmu_deliver_pmi(vcpu);
6502 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6503 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6504 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6505 				     vcpu->arch.ioapic_handled_vectors)) {
6506 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6507 				vcpu->run->eoi.vector =
6508 						vcpu->arch.pending_ioapic_eoi;
6509 				r = 0;
6510 				goto out;
6511 			}
6512 		}
6513 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514 			vcpu_scan_ioapic(vcpu);
6515 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516 			kvm_vcpu_reload_apic_access_page(vcpu);
6517 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6518 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6519 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6520 			r = 0;
6521 			goto out;
6522 		}
6523 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6524 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6525 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6526 			r = 0;
6527 			goto out;
6528 		}
6529 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6530 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6531 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6532 			r = 0;
6533 			goto out;
6534 		}
6535 
6536 		/*
6537 		 * KVM_REQ_HV_STIMER has to be processed after
6538 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6539 		 * depend on the guest clock being up-to-date
6540 		 */
6541 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6542 			kvm_hv_process_stimers(vcpu);
6543 	}
6544 
6545 	/*
6546 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6547 	 * VT-d hardware, so we have to update RVI unconditionally.
6548 	 */
6549 	if (kvm_lapic_enabled(vcpu)) {
6550 		/*
6551 		 * Update architecture specific hints for APIC
6552 		 * virtual interrupt delivery.
6553 		 */
6554 		if (vcpu->arch.apicv_active)
6555 			kvm_x86_ops->hwapic_irr_update(vcpu,
6556 				kvm_lapic_find_highest_irr(vcpu));
6557 	}
6558 
6559 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6560 		kvm_apic_accept_events(vcpu);
6561 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6562 			r = 1;
6563 			goto out;
6564 		}
6565 
6566 		if (inject_pending_event(vcpu, req_int_win) != 0)
6567 			req_immediate_exit = true;
6568 		/* enable NMI/IRQ window open exits if needed */
6569 		else {
6570 			if (vcpu->arch.nmi_pending)
6571 				kvm_x86_ops->enable_nmi_window(vcpu);
6572 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6573 				kvm_x86_ops->enable_irq_window(vcpu);
6574 		}
6575 
6576 		if (kvm_lapic_enabled(vcpu)) {
6577 			update_cr8_intercept(vcpu);
6578 			kvm_lapic_sync_to_vapic(vcpu);
6579 		}
6580 	}
6581 
6582 	r = kvm_mmu_reload(vcpu);
6583 	if (unlikely(r)) {
6584 		goto cancel_injection;
6585 	}
6586 
6587 	preempt_disable();
6588 
6589 	kvm_x86_ops->prepare_guest_switch(vcpu);
6590 	if (vcpu->fpu_active)
6591 		kvm_load_guest_fpu(vcpu);
6592 	vcpu->mode = IN_GUEST_MODE;
6593 
6594 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6595 
6596 	/*
6597 	 * We should set ->mode before check ->requests,
6598 	 * Please see the comment in kvm_make_all_cpus_request.
6599 	 * This also orders the write to mode from any reads
6600 	 * to the page tables done while the VCPU is running.
6601 	 * Please see the comment in kvm_flush_remote_tlbs.
6602 	 */
6603 	smp_mb__after_srcu_read_unlock();
6604 
6605 	local_irq_disable();
6606 
6607 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6608 	    || need_resched() || signal_pending(current)) {
6609 		vcpu->mode = OUTSIDE_GUEST_MODE;
6610 		smp_wmb();
6611 		local_irq_enable();
6612 		preempt_enable();
6613 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6614 		r = 1;
6615 		goto cancel_injection;
6616 	}
6617 
6618 	kvm_load_guest_xcr0(vcpu);
6619 
6620 	if (req_immediate_exit)
6621 		smp_send_reschedule(vcpu->cpu);
6622 
6623 	trace_kvm_entry(vcpu->vcpu_id);
6624 	wait_lapic_expire(vcpu);
6625 	__kvm_guest_enter();
6626 
6627 	if (unlikely(vcpu->arch.switch_db_regs)) {
6628 		set_debugreg(0, 7);
6629 		set_debugreg(vcpu->arch.eff_db[0], 0);
6630 		set_debugreg(vcpu->arch.eff_db[1], 1);
6631 		set_debugreg(vcpu->arch.eff_db[2], 2);
6632 		set_debugreg(vcpu->arch.eff_db[3], 3);
6633 		set_debugreg(vcpu->arch.dr6, 6);
6634 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6635 	}
6636 
6637 	kvm_x86_ops->run(vcpu);
6638 
6639 	/*
6640 	 * Do this here before restoring debug registers on the host.  And
6641 	 * since we do this before handling the vmexit, a DR access vmexit
6642 	 * can (a) read the correct value of the debug registers, (b) set
6643 	 * KVM_DEBUGREG_WONT_EXIT again.
6644 	 */
6645 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6646 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6647 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6648 		kvm_update_dr0123(vcpu);
6649 		kvm_update_dr6(vcpu);
6650 		kvm_update_dr7(vcpu);
6651 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6652 	}
6653 
6654 	/*
6655 	 * If the guest has used debug registers, at least dr7
6656 	 * will be disabled while returning to the host.
6657 	 * If we don't have active breakpoints in the host, we don't
6658 	 * care about the messed up debug address registers. But if
6659 	 * we have some of them active, restore the old state.
6660 	 */
6661 	if (hw_breakpoint_active())
6662 		hw_breakpoint_restore();
6663 
6664 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6665 
6666 	vcpu->mode = OUTSIDE_GUEST_MODE;
6667 	smp_wmb();
6668 
6669 	kvm_put_guest_xcr0(vcpu);
6670 
6671 	/* Interrupt is enabled by handle_external_intr() */
6672 	kvm_x86_ops->handle_external_intr(vcpu);
6673 
6674 	++vcpu->stat.exits;
6675 
6676 	/*
6677 	 * We must have an instruction between local_irq_enable() and
6678 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6679 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6680 	 * But we need to prevent reordering, hence this barrier():
6681 	 */
6682 	barrier();
6683 
6684 	kvm_guest_exit();
6685 
6686 	preempt_enable();
6687 
6688 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6689 
6690 	/*
6691 	 * Profile KVM exit RIPs:
6692 	 */
6693 	if (unlikely(prof_on == KVM_PROFILING)) {
6694 		unsigned long rip = kvm_rip_read(vcpu);
6695 		profile_hit(KVM_PROFILING, (void *)rip);
6696 	}
6697 
6698 	if (unlikely(vcpu->arch.tsc_always_catchup))
6699 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6700 
6701 	if (vcpu->arch.apic_attention)
6702 		kvm_lapic_sync_from_vapic(vcpu);
6703 
6704 	r = kvm_x86_ops->handle_exit(vcpu);
6705 	return r;
6706 
6707 cancel_injection:
6708 	kvm_x86_ops->cancel_injection(vcpu);
6709 	if (unlikely(vcpu->arch.apic_attention))
6710 		kvm_lapic_sync_from_vapic(vcpu);
6711 out:
6712 	return r;
6713 }
6714 
6715 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6716 {
6717 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6718 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6719 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6720 		kvm_vcpu_block(vcpu);
6721 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6722 
6723 		if (kvm_x86_ops->post_block)
6724 			kvm_x86_ops->post_block(vcpu);
6725 
6726 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6727 			return 1;
6728 	}
6729 
6730 	kvm_apic_accept_events(vcpu);
6731 	switch(vcpu->arch.mp_state) {
6732 	case KVM_MP_STATE_HALTED:
6733 		vcpu->arch.pv.pv_unhalted = false;
6734 		vcpu->arch.mp_state =
6735 			KVM_MP_STATE_RUNNABLE;
6736 	case KVM_MP_STATE_RUNNABLE:
6737 		vcpu->arch.apf.halted = false;
6738 		break;
6739 	case KVM_MP_STATE_INIT_RECEIVED:
6740 		break;
6741 	default:
6742 		return -EINTR;
6743 		break;
6744 	}
6745 	return 1;
6746 }
6747 
6748 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6749 {
6750 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6751 		!vcpu->arch.apf.halted);
6752 }
6753 
6754 static int vcpu_run(struct kvm_vcpu *vcpu)
6755 {
6756 	int r;
6757 	struct kvm *kvm = vcpu->kvm;
6758 
6759 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6760 
6761 	for (;;) {
6762 		if (kvm_vcpu_running(vcpu)) {
6763 			r = vcpu_enter_guest(vcpu);
6764 		} else {
6765 			r = vcpu_block(kvm, vcpu);
6766 		}
6767 
6768 		if (r <= 0)
6769 			break;
6770 
6771 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6772 		if (kvm_cpu_has_pending_timer(vcpu))
6773 			kvm_inject_pending_timer_irqs(vcpu);
6774 
6775 		if (dm_request_for_irq_injection(vcpu) &&
6776 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6777 			r = 0;
6778 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6779 			++vcpu->stat.request_irq_exits;
6780 			break;
6781 		}
6782 
6783 		kvm_check_async_pf_completion(vcpu);
6784 
6785 		if (signal_pending(current)) {
6786 			r = -EINTR;
6787 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6788 			++vcpu->stat.signal_exits;
6789 			break;
6790 		}
6791 		if (need_resched()) {
6792 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6793 			cond_resched();
6794 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6795 		}
6796 	}
6797 
6798 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6799 
6800 	return r;
6801 }
6802 
6803 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6804 {
6805 	int r;
6806 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6807 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6808 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6809 	if (r != EMULATE_DONE)
6810 		return 0;
6811 	return 1;
6812 }
6813 
6814 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6815 {
6816 	BUG_ON(!vcpu->arch.pio.count);
6817 
6818 	return complete_emulated_io(vcpu);
6819 }
6820 
6821 /*
6822  * Implements the following, as a state machine:
6823  *
6824  * read:
6825  *   for each fragment
6826  *     for each mmio piece in the fragment
6827  *       write gpa, len
6828  *       exit
6829  *       copy data
6830  *   execute insn
6831  *
6832  * write:
6833  *   for each fragment
6834  *     for each mmio piece in the fragment
6835  *       write gpa, len
6836  *       copy data
6837  *       exit
6838  */
6839 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6840 {
6841 	struct kvm_run *run = vcpu->run;
6842 	struct kvm_mmio_fragment *frag;
6843 	unsigned len;
6844 
6845 	BUG_ON(!vcpu->mmio_needed);
6846 
6847 	/* Complete previous fragment */
6848 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6849 	len = min(8u, frag->len);
6850 	if (!vcpu->mmio_is_write)
6851 		memcpy(frag->data, run->mmio.data, len);
6852 
6853 	if (frag->len <= 8) {
6854 		/* Switch to the next fragment. */
6855 		frag++;
6856 		vcpu->mmio_cur_fragment++;
6857 	} else {
6858 		/* Go forward to the next mmio piece. */
6859 		frag->data += len;
6860 		frag->gpa += len;
6861 		frag->len -= len;
6862 	}
6863 
6864 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6865 		vcpu->mmio_needed = 0;
6866 
6867 		/* FIXME: return into emulator if single-stepping.  */
6868 		if (vcpu->mmio_is_write)
6869 			return 1;
6870 		vcpu->mmio_read_completed = 1;
6871 		return complete_emulated_io(vcpu);
6872 	}
6873 
6874 	run->exit_reason = KVM_EXIT_MMIO;
6875 	run->mmio.phys_addr = frag->gpa;
6876 	if (vcpu->mmio_is_write)
6877 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6878 	run->mmio.len = min(8u, frag->len);
6879 	run->mmio.is_write = vcpu->mmio_is_write;
6880 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6881 	return 0;
6882 }
6883 
6884 
6885 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6886 {
6887 	struct fpu *fpu = &current->thread.fpu;
6888 	int r;
6889 	sigset_t sigsaved;
6890 
6891 	fpu__activate_curr(fpu);
6892 
6893 	if (vcpu->sigset_active)
6894 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6895 
6896 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6897 		kvm_vcpu_block(vcpu);
6898 		kvm_apic_accept_events(vcpu);
6899 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6900 		r = -EAGAIN;
6901 		goto out;
6902 	}
6903 
6904 	/* re-sync apic's tpr */
6905 	if (!lapic_in_kernel(vcpu)) {
6906 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6907 			r = -EINVAL;
6908 			goto out;
6909 		}
6910 	}
6911 
6912 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6913 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6914 		vcpu->arch.complete_userspace_io = NULL;
6915 		r = cui(vcpu);
6916 		if (r <= 0)
6917 			goto out;
6918 	} else
6919 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6920 
6921 	r = vcpu_run(vcpu);
6922 
6923 out:
6924 	post_kvm_run_save(vcpu);
6925 	if (vcpu->sigset_active)
6926 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6927 
6928 	return r;
6929 }
6930 
6931 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6932 {
6933 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6934 		/*
6935 		 * We are here if userspace calls get_regs() in the middle of
6936 		 * instruction emulation. Registers state needs to be copied
6937 		 * back from emulation context to vcpu. Userspace shouldn't do
6938 		 * that usually, but some bad designed PV devices (vmware
6939 		 * backdoor interface) need this to work
6940 		 */
6941 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6942 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6943 	}
6944 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6945 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6946 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6947 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6948 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6949 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6950 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6951 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6952 #ifdef CONFIG_X86_64
6953 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6954 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6955 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6956 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6957 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6958 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6959 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6960 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6961 #endif
6962 
6963 	regs->rip = kvm_rip_read(vcpu);
6964 	regs->rflags = kvm_get_rflags(vcpu);
6965 
6966 	return 0;
6967 }
6968 
6969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6970 {
6971 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6972 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6973 
6974 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6975 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6976 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6977 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6978 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6979 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6980 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6981 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6982 #ifdef CONFIG_X86_64
6983 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6984 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6985 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6986 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6987 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6988 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6989 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6990 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6991 #endif
6992 
6993 	kvm_rip_write(vcpu, regs->rip);
6994 	kvm_set_rflags(vcpu, regs->rflags);
6995 
6996 	vcpu->arch.exception.pending = false;
6997 
6998 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6999 
7000 	return 0;
7001 }
7002 
7003 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7004 {
7005 	struct kvm_segment cs;
7006 
7007 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7008 	*db = cs.db;
7009 	*l = cs.l;
7010 }
7011 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7012 
7013 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7014 				  struct kvm_sregs *sregs)
7015 {
7016 	struct desc_ptr dt;
7017 
7018 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7019 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7020 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7021 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7022 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7023 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7024 
7025 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7026 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7027 
7028 	kvm_x86_ops->get_idt(vcpu, &dt);
7029 	sregs->idt.limit = dt.size;
7030 	sregs->idt.base = dt.address;
7031 	kvm_x86_ops->get_gdt(vcpu, &dt);
7032 	sregs->gdt.limit = dt.size;
7033 	sregs->gdt.base = dt.address;
7034 
7035 	sregs->cr0 = kvm_read_cr0(vcpu);
7036 	sregs->cr2 = vcpu->arch.cr2;
7037 	sregs->cr3 = kvm_read_cr3(vcpu);
7038 	sregs->cr4 = kvm_read_cr4(vcpu);
7039 	sregs->cr8 = kvm_get_cr8(vcpu);
7040 	sregs->efer = vcpu->arch.efer;
7041 	sregs->apic_base = kvm_get_apic_base(vcpu);
7042 
7043 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7044 
7045 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7046 		set_bit(vcpu->arch.interrupt.nr,
7047 			(unsigned long *)sregs->interrupt_bitmap);
7048 
7049 	return 0;
7050 }
7051 
7052 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7053 				    struct kvm_mp_state *mp_state)
7054 {
7055 	kvm_apic_accept_events(vcpu);
7056 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7057 					vcpu->arch.pv.pv_unhalted)
7058 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7059 	else
7060 		mp_state->mp_state = vcpu->arch.mp_state;
7061 
7062 	return 0;
7063 }
7064 
7065 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7066 				    struct kvm_mp_state *mp_state)
7067 {
7068 	if (!lapic_in_kernel(vcpu) &&
7069 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7070 		return -EINVAL;
7071 
7072 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7073 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7074 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7075 	} else
7076 		vcpu->arch.mp_state = mp_state->mp_state;
7077 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7078 	return 0;
7079 }
7080 
7081 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7082 		    int reason, bool has_error_code, u32 error_code)
7083 {
7084 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7085 	int ret;
7086 
7087 	init_emulate_ctxt(vcpu);
7088 
7089 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7090 				   has_error_code, error_code);
7091 
7092 	if (ret)
7093 		return EMULATE_FAIL;
7094 
7095 	kvm_rip_write(vcpu, ctxt->eip);
7096 	kvm_set_rflags(vcpu, ctxt->eflags);
7097 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7098 	return EMULATE_DONE;
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_task_switch);
7101 
7102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7103 				  struct kvm_sregs *sregs)
7104 {
7105 	struct msr_data apic_base_msr;
7106 	int mmu_reset_needed = 0;
7107 	int pending_vec, max_bits, idx;
7108 	struct desc_ptr dt;
7109 
7110 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7111 		return -EINVAL;
7112 
7113 	dt.size = sregs->idt.limit;
7114 	dt.address = sregs->idt.base;
7115 	kvm_x86_ops->set_idt(vcpu, &dt);
7116 	dt.size = sregs->gdt.limit;
7117 	dt.address = sregs->gdt.base;
7118 	kvm_x86_ops->set_gdt(vcpu, &dt);
7119 
7120 	vcpu->arch.cr2 = sregs->cr2;
7121 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7122 	vcpu->arch.cr3 = sregs->cr3;
7123 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7124 
7125 	kvm_set_cr8(vcpu, sregs->cr8);
7126 
7127 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7128 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7129 	apic_base_msr.data = sregs->apic_base;
7130 	apic_base_msr.host_initiated = true;
7131 	kvm_set_apic_base(vcpu, &apic_base_msr);
7132 
7133 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7134 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7135 	vcpu->arch.cr0 = sregs->cr0;
7136 
7137 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7138 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7139 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7140 		kvm_update_cpuid(vcpu);
7141 
7142 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7143 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7144 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7145 		mmu_reset_needed = 1;
7146 	}
7147 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7148 
7149 	if (mmu_reset_needed)
7150 		kvm_mmu_reset_context(vcpu);
7151 
7152 	max_bits = KVM_NR_INTERRUPTS;
7153 	pending_vec = find_first_bit(
7154 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7155 	if (pending_vec < max_bits) {
7156 		kvm_queue_interrupt(vcpu, pending_vec, false);
7157 		pr_debug("Set back pending irq %d\n", pending_vec);
7158 	}
7159 
7160 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7161 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7162 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7163 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7164 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7165 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7166 
7167 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7168 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7169 
7170 	update_cr8_intercept(vcpu);
7171 
7172 	/* Older userspace won't unhalt the vcpu on reset. */
7173 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7174 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7175 	    !is_protmode(vcpu))
7176 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7177 
7178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7179 
7180 	return 0;
7181 }
7182 
7183 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7184 					struct kvm_guest_debug *dbg)
7185 {
7186 	unsigned long rflags;
7187 	int i, r;
7188 
7189 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7190 		r = -EBUSY;
7191 		if (vcpu->arch.exception.pending)
7192 			goto out;
7193 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7194 			kvm_queue_exception(vcpu, DB_VECTOR);
7195 		else
7196 			kvm_queue_exception(vcpu, BP_VECTOR);
7197 	}
7198 
7199 	/*
7200 	 * Read rflags as long as potentially injected trace flags are still
7201 	 * filtered out.
7202 	 */
7203 	rflags = kvm_get_rflags(vcpu);
7204 
7205 	vcpu->guest_debug = dbg->control;
7206 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7207 		vcpu->guest_debug = 0;
7208 
7209 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7210 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7211 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7212 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7213 	} else {
7214 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7215 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7216 	}
7217 	kvm_update_dr7(vcpu);
7218 
7219 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7220 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7221 			get_segment_base(vcpu, VCPU_SREG_CS);
7222 
7223 	/*
7224 	 * Trigger an rflags update that will inject or remove the trace
7225 	 * flags.
7226 	 */
7227 	kvm_set_rflags(vcpu, rflags);
7228 
7229 	kvm_x86_ops->update_bp_intercept(vcpu);
7230 
7231 	r = 0;
7232 
7233 out:
7234 
7235 	return r;
7236 }
7237 
7238 /*
7239  * Translate a guest virtual address to a guest physical address.
7240  */
7241 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7242 				    struct kvm_translation *tr)
7243 {
7244 	unsigned long vaddr = tr->linear_address;
7245 	gpa_t gpa;
7246 	int idx;
7247 
7248 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7249 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7250 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7251 	tr->physical_address = gpa;
7252 	tr->valid = gpa != UNMAPPED_GVA;
7253 	tr->writeable = 1;
7254 	tr->usermode = 0;
7255 
7256 	return 0;
7257 }
7258 
7259 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7260 {
7261 	struct fxregs_state *fxsave =
7262 			&vcpu->arch.guest_fpu.state.fxsave;
7263 
7264 	memcpy(fpu->fpr, fxsave->st_space, 128);
7265 	fpu->fcw = fxsave->cwd;
7266 	fpu->fsw = fxsave->swd;
7267 	fpu->ftwx = fxsave->twd;
7268 	fpu->last_opcode = fxsave->fop;
7269 	fpu->last_ip = fxsave->rip;
7270 	fpu->last_dp = fxsave->rdp;
7271 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7272 
7273 	return 0;
7274 }
7275 
7276 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7277 {
7278 	struct fxregs_state *fxsave =
7279 			&vcpu->arch.guest_fpu.state.fxsave;
7280 
7281 	memcpy(fxsave->st_space, fpu->fpr, 128);
7282 	fxsave->cwd = fpu->fcw;
7283 	fxsave->swd = fpu->fsw;
7284 	fxsave->twd = fpu->ftwx;
7285 	fxsave->fop = fpu->last_opcode;
7286 	fxsave->rip = fpu->last_ip;
7287 	fxsave->rdp = fpu->last_dp;
7288 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7289 
7290 	return 0;
7291 }
7292 
7293 static void fx_init(struct kvm_vcpu *vcpu)
7294 {
7295 	fpstate_init(&vcpu->arch.guest_fpu.state);
7296 	if (cpu_has_xsaves)
7297 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7298 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7299 
7300 	/*
7301 	 * Ensure guest xcr0 is valid for loading
7302 	 */
7303 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7304 
7305 	vcpu->arch.cr0 |= X86_CR0_ET;
7306 }
7307 
7308 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7309 {
7310 	if (vcpu->guest_fpu_loaded)
7311 		return;
7312 
7313 	/*
7314 	 * Restore all possible states in the guest,
7315 	 * and assume host would use all available bits.
7316 	 * Guest xcr0 would be loaded later.
7317 	 */
7318 	vcpu->guest_fpu_loaded = 1;
7319 	__kernel_fpu_begin();
7320 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7321 	trace_kvm_fpu(1);
7322 }
7323 
7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7325 {
7326 	if (!vcpu->guest_fpu_loaded) {
7327 		vcpu->fpu_counter = 0;
7328 		return;
7329 	}
7330 
7331 	vcpu->guest_fpu_loaded = 0;
7332 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7333 	__kernel_fpu_end();
7334 	++vcpu->stat.fpu_reload;
7335 	/*
7336 	 * If using eager FPU mode, or if the guest is a frequent user
7337 	 * of the FPU, just leave the FPU active for next time.
7338 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7339 	 * the FPU in bursts will revert to loading it on demand.
7340 	 */
7341 	if (!use_eager_fpu()) {
7342 		if (++vcpu->fpu_counter < 5)
7343 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7344 	}
7345 	trace_kvm_fpu(0);
7346 }
7347 
7348 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7349 {
7350 	kvmclock_reset(vcpu);
7351 
7352 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7353 	kvm_x86_ops->vcpu_free(vcpu);
7354 }
7355 
7356 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7357 						unsigned int id)
7358 {
7359 	struct kvm_vcpu *vcpu;
7360 
7361 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7362 		printk_once(KERN_WARNING
7363 		"kvm: SMP vm created on host with unstable TSC; "
7364 		"guest TSC will not be reliable\n");
7365 
7366 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7367 
7368 	return vcpu;
7369 }
7370 
7371 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7372 {
7373 	int r;
7374 
7375 	kvm_vcpu_mtrr_init(vcpu);
7376 	r = vcpu_load(vcpu);
7377 	if (r)
7378 		return r;
7379 	kvm_vcpu_reset(vcpu, false);
7380 	kvm_mmu_setup(vcpu);
7381 	vcpu_put(vcpu);
7382 	return r;
7383 }
7384 
7385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7386 {
7387 	struct msr_data msr;
7388 	struct kvm *kvm = vcpu->kvm;
7389 
7390 	if (vcpu_load(vcpu))
7391 		return;
7392 	msr.data = 0x0;
7393 	msr.index = MSR_IA32_TSC;
7394 	msr.host_initiated = true;
7395 	kvm_write_tsc(vcpu, &msr);
7396 	vcpu_put(vcpu);
7397 
7398 	if (!kvmclock_periodic_sync)
7399 		return;
7400 
7401 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7402 					KVMCLOCK_SYNC_PERIOD);
7403 }
7404 
7405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7406 {
7407 	int r;
7408 	vcpu->arch.apf.msr_val = 0;
7409 
7410 	r = vcpu_load(vcpu);
7411 	BUG_ON(r);
7412 	kvm_mmu_unload(vcpu);
7413 	vcpu_put(vcpu);
7414 
7415 	kvm_x86_ops->vcpu_free(vcpu);
7416 }
7417 
7418 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7419 {
7420 	vcpu->arch.hflags = 0;
7421 
7422 	atomic_set(&vcpu->arch.nmi_queued, 0);
7423 	vcpu->arch.nmi_pending = 0;
7424 	vcpu->arch.nmi_injected = false;
7425 	kvm_clear_interrupt_queue(vcpu);
7426 	kvm_clear_exception_queue(vcpu);
7427 
7428 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7429 	kvm_update_dr0123(vcpu);
7430 	vcpu->arch.dr6 = DR6_INIT;
7431 	kvm_update_dr6(vcpu);
7432 	vcpu->arch.dr7 = DR7_FIXED_1;
7433 	kvm_update_dr7(vcpu);
7434 
7435 	vcpu->arch.cr2 = 0;
7436 
7437 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7438 	vcpu->arch.apf.msr_val = 0;
7439 	vcpu->arch.st.msr_val = 0;
7440 
7441 	kvmclock_reset(vcpu);
7442 
7443 	kvm_clear_async_pf_completion_queue(vcpu);
7444 	kvm_async_pf_hash_reset(vcpu);
7445 	vcpu->arch.apf.halted = false;
7446 
7447 	if (!init_event) {
7448 		kvm_pmu_reset(vcpu);
7449 		vcpu->arch.smbase = 0x30000;
7450 	}
7451 
7452 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7453 	vcpu->arch.regs_avail = ~0;
7454 	vcpu->arch.regs_dirty = ~0;
7455 
7456 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7457 }
7458 
7459 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7460 {
7461 	struct kvm_segment cs;
7462 
7463 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7464 	cs.selector = vector << 8;
7465 	cs.base = vector << 12;
7466 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7467 	kvm_rip_write(vcpu, 0);
7468 }
7469 
7470 int kvm_arch_hardware_enable(void)
7471 {
7472 	struct kvm *kvm;
7473 	struct kvm_vcpu *vcpu;
7474 	int i;
7475 	int ret;
7476 	u64 local_tsc;
7477 	u64 max_tsc = 0;
7478 	bool stable, backwards_tsc = false;
7479 
7480 	kvm_shared_msr_cpu_online();
7481 	ret = kvm_x86_ops->hardware_enable();
7482 	if (ret != 0)
7483 		return ret;
7484 
7485 	local_tsc = rdtsc();
7486 	stable = !check_tsc_unstable();
7487 	list_for_each_entry(kvm, &vm_list, vm_list) {
7488 		kvm_for_each_vcpu(i, vcpu, kvm) {
7489 			if (!stable && vcpu->cpu == smp_processor_id())
7490 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7491 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7492 				backwards_tsc = true;
7493 				if (vcpu->arch.last_host_tsc > max_tsc)
7494 					max_tsc = vcpu->arch.last_host_tsc;
7495 			}
7496 		}
7497 	}
7498 
7499 	/*
7500 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7501 	 * platforms that reset TSC during suspend or hibernate actions, but
7502 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7503 	 * detect that condition here, which happens early in CPU bringup,
7504 	 * before any KVM threads can be running.  Unfortunately, we can't
7505 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7506 	 * enough into CPU bringup that we know how much real time has actually
7507 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7508 	 * variables that haven't been updated yet.
7509 	 *
7510 	 * So we simply find the maximum observed TSC above, then record the
7511 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7512 	 * the adjustment will be applied.  Note that we accumulate
7513 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7514 	 * gets a chance to run again.  In the event that no KVM threads get a
7515 	 * chance to run, we will miss the entire elapsed period, as we'll have
7516 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7517 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7518 	 * uniform across all VCPUs (not to mention the scenario is extremely
7519 	 * unlikely). It is possible that a second hibernate recovery happens
7520 	 * much faster than a first, causing the observed TSC here to be
7521 	 * smaller; this would require additional padding adjustment, which is
7522 	 * why we set last_host_tsc to the local tsc observed here.
7523 	 *
7524 	 * N.B. - this code below runs only on platforms with reliable TSC,
7525 	 * as that is the only way backwards_tsc is set above.  Also note
7526 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7527 	 * have the same delta_cyc adjustment applied if backwards_tsc
7528 	 * is detected.  Note further, this adjustment is only done once,
7529 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7530 	 * called multiple times (one for each physical CPU bringup).
7531 	 *
7532 	 * Platforms with unreliable TSCs don't have to deal with this, they
7533 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7534 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7535 	 * guarantee that they stay in perfect synchronization.
7536 	 */
7537 	if (backwards_tsc) {
7538 		u64 delta_cyc = max_tsc - local_tsc;
7539 		backwards_tsc_observed = true;
7540 		list_for_each_entry(kvm, &vm_list, vm_list) {
7541 			kvm_for_each_vcpu(i, vcpu, kvm) {
7542 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7543 				vcpu->arch.last_host_tsc = local_tsc;
7544 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7545 			}
7546 
7547 			/*
7548 			 * We have to disable TSC offset matching.. if you were
7549 			 * booting a VM while issuing an S4 host suspend....
7550 			 * you may have some problem.  Solving this issue is
7551 			 * left as an exercise to the reader.
7552 			 */
7553 			kvm->arch.last_tsc_nsec = 0;
7554 			kvm->arch.last_tsc_write = 0;
7555 		}
7556 
7557 	}
7558 	return 0;
7559 }
7560 
7561 void kvm_arch_hardware_disable(void)
7562 {
7563 	kvm_x86_ops->hardware_disable();
7564 	drop_user_return_notifiers();
7565 }
7566 
7567 int kvm_arch_hardware_setup(void)
7568 {
7569 	int r;
7570 
7571 	r = kvm_x86_ops->hardware_setup();
7572 	if (r != 0)
7573 		return r;
7574 
7575 	if (kvm_has_tsc_control) {
7576 		/*
7577 		 * Make sure the user can only configure tsc_khz values that
7578 		 * fit into a signed integer.
7579 		 * A min value is not calculated needed because it will always
7580 		 * be 1 on all machines.
7581 		 */
7582 		u64 max = min(0x7fffffffULL,
7583 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7584 		kvm_max_guest_tsc_khz = max;
7585 
7586 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7587 	}
7588 
7589 	kvm_init_msr_list();
7590 	return 0;
7591 }
7592 
7593 void kvm_arch_hardware_unsetup(void)
7594 {
7595 	kvm_x86_ops->hardware_unsetup();
7596 }
7597 
7598 void kvm_arch_check_processor_compat(void *rtn)
7599 {
7600 	kvm_x86_ops->check_processor_compatibility(rtn);
7601 }
7602 
7603 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7604 {
7605 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7606 }
7607 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7608 
7609 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7610 {
7611 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7612 }
7613 
7614 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7615 {
7616 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7617 }
7618 
7619 struct static_key kvm_no_apic_vcpu __read_mostly;
7620 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7621 
7622 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7623 {
7624 	struct page *page;
7625 	struct kvm *kvm;
7626 	int r;
7627 
7628 	BUG_ON(vcpu->kvm == NULL);
7629 	kvm = vcpu->kvm;
7630 
7631 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7632 	vcpu->arch.pv.pv_unhalted = false;
7633 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7634 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7635 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7636 	else
7637 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7638 
7639 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7640 	if (!page) {
7641 		r = -ENOMEM;
7642 		goto fail;
7643 	}
7644 	vcpu->arch.pio_data = page_address(page);
7645 
7646 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7647 
7648 	r = kvm_mmu_create(vcpu);
7649 	if (r < 0)
7650 		goto fail_free_pio_data;
7651 
7652 	if (irqchip_in_kernel(kvm)) {
7653 		r = kvm_create_lapic(vcpu);
7654 		if (r < 0)
7655 			goto fail_mmu_destroy;
7656 	} else
7657 		static_key_slow_inc(&kvm_no_apic_vcpu);
7658 
7659 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7660 				       GFP_KERNEL);
7661 	if (!vcpu->arch.mce_banks) {
7662 		r = -ENOMEM;
7663 		goto fail_free_lapic;
7664 	}
7665 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7666 
7667 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7668 		r = -ENOMEM;
7669 		goto fail_free_mce_banks;
7670 	}
7671 
7672 	fx_init(vcpu);
7673 
7674 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7675 	vcpu->arch.pv_time_enabled = false;
7676 
7677 	vcpu->arch.guest_supported_xcr0 = 0;
7678 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7679 
7680 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7681 
7682 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7683 
7684 	kvm_async_pf_hash_reset(vcpu);
7685 	kvm_pmu_init(vcpu);
7686 
7687 	vcpu->arch.pending_external_vector = -1;
7688 
7689 	kvm_hv_vcpu_init(vcpu);
7690 
7691 	return 0;
7692 
7693 fail_free_mce_banks:
7694 	kfree(vcpu->arch.mce_banks);
7695 fail_free_lapic:
7696 	kvm_free_lapic(vcpu);
7697 fail_mmu_destroy:
7698 	kvm_mmu_destroy(vcpu);
7699 fail_free_pio_data:
7700 	free_page((unsigned long)vcpu->arch.pio_data);
7701 fail:
7702 	return r;
7703 }
7704 
7705 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7706 {
7707 	int idx;
7708 
7709 	kvm_hv_vcpu_uninit(vcpu);
7710 	kvm_pmu_destroy(vcpu);
7711 	kfree(vcpu->arch.mce_banks);
7712 	kvm_free_lapic(vcpu);
7713 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7714 	kvm_mmu_destroy(vcpu);
7715 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7716 	free_page((unsigned long)vcpu->arch.pio_data);
7717 	if (!lapic_in_kernel(vcpu))
7718 		static_key_slow_dec(&kvm_no_apic_vcpu);
7719 }
7720 
7721 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7722 {
7723 	kvm_x86_ops->sched_in(vcpu, cpu);
7724 }
7725 
7726 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7727 {
7728 	if (type)
7729 		return -EINVAL;
7730 
7731 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7732 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7733 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7734 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7735 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7736 
7737 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7738 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7739 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7740 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7741 		&kvm->arch.irq_sources_bitmap);
7742 
7743 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7744 	mutex_init(&kvm->arch.apic_map_lock);
7745 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7746 
7747 	pvclock_update_vm_gtod_copy(kvm);
7748 
7749 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7750 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7751 
7752 	kvm_page_track_init(kvm);
7753 	kvm_mmu_init_vm(kvm);
7754 
7755 	return 0;
7756 }
7757 
7758 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7759 {
7760 	int r;
7761 	r = vcpu_load(vcpu);
7762 	BUG_ON(r);
7763 	kvm_mmu_unload(vcpu);
7764 	vcpu_put(vcpu);
7765 }
7766 
7767 static void kvm_free_vcpus(struct kvm *kvm)
7768 {
7769 	unsigned int i;
7770 	struct kvm_vcpu *vcpu;
7771 
7772 	/*
7773 	 * Unpin any mmu pages first.
7774 	 */
7775 	kvm_for_each_vcpu(i, vcpu, kvm) {
7776 		kvm_clear_async_pf_completion_queue(vcpu);
7777 		kvm_unload_vcpu_mmu(vcpu);
7778 	}
7779 	kvm_for_each_vcpu(i, vcpu, kvm)
7780 		kvm_arch_vcpu_free(vcpu);
7781 
7782 	mutex_lock(&kvm->lock);
7783 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7784 		kvm->vcpus[i] = NULL;
7785 
7786 	atomic_set(&kvm->online_vcpus, 0);
7787 	mutex_unlock(&kvm->lock);
7788 }
7789 
7790 void kvm_arch_sync_events(struct kvm *kvm)
7791 {
7792 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7793 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7794 	kvm_free_all_assigned_devices(kvm);
7795 	kvm_free_pit(kvm);
7796 }
7797 
7798 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7799 {
7800 	int i, r;
7801 	unsigned long hva;
7802 	struct kvm_memslots *slots = kvm_memslots(kvm);
7803 	struct kvm_memory_slot *slot, old;
7804 
7805 	/* Called with kvm->slots_lock held.  */
7806 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7807 		return -EINVAL;
7808 
7809 	slot = id_to_memslot(slots, id);
7810 	if (size) {
7811 		if (WARN_ON(slot->npages))
7812 			return -EEXIST;
7813 
7814 		/*
7815 		 * MAP_SHARED to prevent internal slot pages from being moved
7816 		 * by fork()/COW.
7817 		 */
7818 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7819 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7820 		if (IS_ERR((void *)hva))
7821 			return PTR_ERR((void *)hva);
7822 	} else {
7823 		if (!slot->npages)
7824 			return 0;
7825 
7826 		hva = 0;
7827 	}
7828 
7829 	old = *slot;
7830 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7831 		struct kvm_userspace_memory_region m;
7832 
7833 		m.slot = id | (i << 16);
7834 		m.flags = 0;
7835 		m.guest_phys_addr = gpa;
7836 		m.userspace_addr = hva;
7837 		m.memory_size = size;
7838 		r = __kvm_set_memory_region(kvm, &m);
7839 		if (r < 0)
7840 			return r;
7841 	}
7842 
7843 	if (!size) {
7844 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7845 		WARN_ON(r < 0);
7846 	}
7847 
7848 	return 0;
7849 }
7850 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7851 
7852 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7853 {
7854 	int r;
7855 
7856 	mutex_lock(&kvm->slots_lock);
7857 	r = __x86_set_memory_region(kvm, id, gpa, size);
7858 	mutex_unlock(&kvm->slots_lock);
7859 
7860 	return r;
7861 }
7862 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7863 
7864 void kvm_arch_destroy_vm(struct kvm *kvm)
7865 {
7866 	if (current->mm == kvm->mm) {
7867 		/*
7868 		 * Free memory regions allocated on behalf of userspace,
7869 		 * unless the the memory map has changed due to process exit
7870 		 * or fd copying.
7871 		 */
7872 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7873 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7874 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7875 	}
7876 	kvm_iommu_unmap_guest(kvm);
7877 	kfree(kvm->arch.vpic);
7878 	kfree(kvm->arch.vioapic);
7879 	kvm_free_vcpus(kvm);
7880 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7881 	kvm_mmu_uninit_vm(kvm);
7882 }
7883 
7884 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7885 			   struct kvm_memory_slot *dont)
7886 {
7887 	int i;
7888 
7889 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7890 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7891 			kvfree(free->arch.rmap[i]);
7892 			free->arch.rmap[i] = NULL;
7893 		}
7894 		if (i == 0)
7895 			continue;
7896 
7897 		if (!dont || free->arch.lpage_info[i - 1] !=
7898 			     dont->arch.lpage_info[i - 1]) {
7899 			kvfree(free->arch.lpage_info[i - 1]);
7900 			free->arch.lpage_info[i - 1] = NULL;
7901 		}
7902 	}
7903 
7904 	kvm_page_track_free_memslot(free, dont);
7905 }
7906 
7907 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7908 			    unsigned long npages)
7909 {
7910 	int i;
7911 
7912 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7913 		struct kvm_lpage_info *linfo;
7914 		unsigned long ugfn;
7915 		int lpages;
7916 		int level = i + 1;
7917 
7918 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7919 				      slot->base_gfn, level) + 1;
7920 
7921 		slot->arch.rmap[i] =
7922 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7923 		if (!slot->arch.rmap[i])
7924 			goto out_free;
7925 		if (i == 0)
7926 			continue;
7927 
7928 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7929 		if (!linfo)
7930 			goto out_free;
7931 
7932 		slot->arch.lpage_info[i - 1] = linfo;
7933 
7934 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7935 			linfo[0].disallow_lpage = 1;
7936 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7937 			linfo[lpages - 1].disallow_lpage = 1;
7938 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7939 		/*
7940 		 * If the gfn and userspace address are not aligned wrt each
7941 		 * other, or if explicitly asked to, disable large page
7942 		 * support for this slot
7943 		 */
7944 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7945 		    !kvm_largepages_enabled()) {
7946 			unsigned long j;
7947 
7948 			for (j = 0; j < lpages; ++j)
7949 				linfo[j].disallow_lpage = 1;
7950 		}
7951 	}
7952 
7953 	if (kvm_page_track_create_memslot(slot, npages))
7954 		goto out_free;
7955 
7956 	return 0;
7957 
7958 out_free:
7959 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7960 		kvfree(slot->arch.rmap[i]);
7961 		slot->arch.rmap[i] = NULL;
7962 		if (i == 0)
7963 			continue;
7964 
7965 		kvfree(slot->arch.lpage_info[i - 1]);
7966 		slot->arch.lpage_info[i - 1] = NULL;
7967 	}
7968 	return -ENOMEM;
7969 }
7970 
7971 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7972 {
7973 	/*
7974 	 * memslots->generation has been incremented.
7975 	 * mmio generation may have reached its maximum value.
7976 	 */
7977 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7978 }
7979 
7980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7981 				struct kvm_memory_slot *memslot,
7982 				const struct kvm_userspace_memory_region *mem,
7983 				enum kvm_mr_change change)
7984 {
7985 	return 0;
7986 }
7987 
7988 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7989 				     struct kvm_memory_slot *new)
7990 {
7991 	/* Still write protect RO slot */
7992 	if (new->flags & KVM_MEM_READONLY) {
7993 		kvm_mmu_slot_remove_write_access(kvm, new);
7994 		return;
7995 	}
7996 
7997 	/*
7998 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7999 	 *
8000 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8001 	 *
8002 	 *  - KVM_MR_CREATE with dirty logging is disabled
8003 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8004 	 *
8005 	 * The reason is, in case of PML, we need to set D-bit for any slots
8006 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8007 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8008 	 * guarantees leaving PML enabled during guest's lifetime won't have
8009 	 * any additonal overhead from PML when guest is running with dirty
8010 	 * logging disabled for memory slots.
8011 	 *
8012 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8013 	 * to dirty logging mode.
8014 	 *
8015 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8016 	 *
8017 	 * In case of write protect:
8018 	 *
8019 	 * Write protect all pages for dirty logging.
8020 	 *
8021 	 * All the sptes including the large sptes which point to this
8022 	 * slot are set to readonly. We can not create any new large
8023 	 * spte on this slot until the end of the logging.
8024 	 *
8025 	 * See the comments in fast_page_fault().
8026 	 */
8027 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8028 		if (kvm_x86_ops->slot_enable_log_dirty)
8029 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8030 		else
8031 			kvm_mmu_slot_remove_write_access(kvm, new);
8032 	} else {
8033 		if (kvm_x86_ops->slot_disable_log_dirty)
8034 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8035 	}
8036 }
8037 
8038 void kvm_arch_commit_memory_region(struct kvm *kvm,
8039 				const struct kvm_userspace_memory_region *mem,
8040 				const struct kvm_memory_slot *old,
8041 				const struct kvm_memory_slot *new,
8042 				enum kvm_mr_change change)
8043 {
8044 	int nr_mmu_pages = 0;
8045 
8046 	if (!kvm->arch.n_requested_mmu_pages)
8047 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8048 
8049 	if (nr_mmu_pages)
8050 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8051 
8052 	/*
8053 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8054 	 * sptes have to be split.  If live migration is successful, the guest
8055 	 * in the source machine will be destroyed and large sptes will be
8056 	 * created in the destination. However, if the guest continues to run
8057 	 * in the source machine (for example if live migration fails), small
8058 	 * sptes will remain around and cause bad performance.
8059 	 *
8060 	 * Scan sptes if dirty logging has been stopped, dropping those
8061 	 * which can be collapsed into a single large-page spte.  Later
8062 	 * page faults will create the large-page sptes.
8063 	 */
8064 	if ((change != KVM_MR_DELETE) &&
8065 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8066 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8067 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8068 
8069 	/*
8070 	 * Set up write protection and/or dirty logging for the new slot.
8071 	 *
8072 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8073 	 * been zapped so no dirty logging staff is needed for old slot. For
8074 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8075 	 * new and it's also covered when dealing with the new slot.
8076 	 *
8077 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8078 	 */
8079 	if (change != KVM_MR_DELETE)
8080 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8081 }
8082 
8083 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8084 {
8085 	kvm_mmu_invalidate_zap_all_pages(kvm);
8086 }
8087 
8088 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8089 				   struct kvm_memory_slot *slot)
8090 {
8091 	kvm_mmu_invalidate_zap_all_pages(kvm);
8092 }
8093 
8094 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8095 {
8096 	if (!list_empty_careful(&vcpu->async_pf.done))
8097 		return true;
8098 
8099 	if (kvm_apic_has_events(vcpu))
8100 		return true;
8101 
8102 	if (vcpu->arch.pv.pv_unhalted)
8103 		return true;
8104 
8105 	if (atomic_read(&vcpu->arch.nmi_queued))
8106 		return true;
8107 
8108 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8109 		return true;
8110 
8111 	if (kvm_arch_interrupt_allowed(vcpu) &&
8112 	    kvm_cpu_has_interrupt(vcpu))
8113 		return true;
8114 
8115 	if (kvm_hv_has_stimer_pending(vcpu))
8116 		return true;
8117 
8118 	return false;
8119 }
8120 
8121 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8122 {
8123 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8124 		kvm_x86_ops->check_nested_events(vcpu, false);
8125 
8126 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8127 }
8128 
8129 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8130 {
8131 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8132 }
8133 
8134 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8135 {
8136 	return kvm_x86_ops->interrupt_allowed(vcpu);
8137 }
8138 
8139 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8140 {
8141 	if (is_64_bit_mode(vcpu))
8142 		return kvm_rip_read(vcpu);
8143 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8144 		     kvm_rip_read(vcpu));
8145 }
8146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8147 
8148 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8149 {
8150 	return kvm_get_linear_rip(vcpu) == linear_rip;
8151 }
8152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8153 
8154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8155 {
8156 	unsigned long rflags;
8157 
8158 	rflags = kvm_x86_ops->get_rflags(vcpu);
8159 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8160 		rflags &= ~X86_EFLAGS_TF;
8161 	return rflags;
8162 }
8163 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8164 
8165 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8166 {
8167 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8168 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8169 		rflags |= X86_EFLAGS_TF;
8170 	kvm_x86_ops->set_rflags(vcpu, rflags);
8171 }
8172 
8173 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8174 {
8175 	__kvm_set_rflags(vcpu, rflags);
8176 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8177 }
8178 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8179 
8180 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8181 {
8182 	int r;
8183 
8184 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8185 	      work->wakeup_all)
8186 		return;
8187 
8188 	r = kvm_mmu_reload(vcpu);
8189 	if (unlikely(r))
8190 		return;
8191 
8192 	if (!vcpu->arch.mmu.direct_map &&
8193 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8194 		return;
8195 
8196 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8197 }
8198 
8199 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8200 {
8201 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8202 }
8203 
8204 static inline u32 kvm_async_pf_next_probe(u32 key)
8205 {
8206 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8207 }
8208 
8209 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8210 {
8211 	u32 key = kvm_async_pf_hash_fn(gfn);
8212 
8213 	while (vcpu->arch.apf.gfns[key] != ~0)
8214 		key = kvm_async_pf_next_probe(key);
8215 
8216 	vcpu->arch.apf.gfns[key] = gfn;
8217 }
8218 
8219 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8220 {
8221 	int i;
8222 	u32 key = kvm_async_pf_hash_fn(gfn);
8223 
8224 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8225 		     (vcpu->arch.apf.gfns[key] != gfn &&
8226 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8227 		key = kvm_async_pf_next_probe(key);
8228 
8229 	return key;
8230 }
8231 
8232 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8233 {
8234 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8235 }
8236 
8237 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8238 {
8239 	u32 i, j, k;
8240 
8241 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8242 	while (true) {
8243 		vcpu->arch.apf.gfns[i] = ~0;
8244 		do {
8245 			j = kvm_async_pf_next_probe(j);
8246 			if (vcpu->arch.apf.gfns[j] == ~0)
8247 				return;
8248 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8249 			/*
8250 			 * k lies cyclically in ]i,j]
8251 			 * |    i.k.j |
8252 			 * |....j i.k.| or  |.k..j i...|
8253 			 */
8254 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8255 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8256 		i = j;
8257 	}
8258 }
8259 
8260 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8261 {
8262 
8263 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8264 				      sizeof(val));
8265 }
8266 
8267 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8268 				     struct kvm_async_pf *work)
8269 {
8270 	struct x86_exception fault;
8271 
8272 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8273 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8274 
8275 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8276 	    (vcpu->arch.apf.send_user_only &&
8277 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8278 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8279 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8280 		fault.vector = PF_VECTOR;
8281 		fault.error_code_valid = true;
8282 		fault.error_code = 0;
8283 		fault.nested_page_fault = false;
8284 		fault.address = work->arch.token;
8285 		kvm_inject_page_fault(vcpu, &fault);
8286 	}
8287 }
8288 
8289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8290 				 struct kvm_async_pf *work)
8291 {
8292 	struct x86_exception fault;
8293 
8294 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8295 	if (work->wakeup_all)
8296 		work->arch.token = ~0; /* broadcast wakeup */
8297 	else
8298 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8299 
8300 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8301 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8302 		fault.vector = PF_VECTOR;
8303 		fault.error_code_valid = true;
8304 		fault.error_code = 0;
8305 		fault.nested_page_fault = false;
8306 		fault.address = work->arch.token;
8307 		kvm_inject_page_fault(vcpu, &fault);
8308 	}
8309 	vcpu->arch.apf.halted = false;
8310 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8311 }
8312 
8313 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8314 {
8315 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8316 		return true;
8317 	else
8318 		return !kvm_event_needs_reinjection(vcpu) &&
8319 			kvm_x86_ops->interrupt_allowed(vcpu);
8320 }
8321 
8322 void kvm_arch_start_assignment(struct kvm *kvm)
8323 {
8324 	atomic_inc(&kvm->arch.assigned_device_count);
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8327 
8328 void kvm_arch_end_assignment(struct kvm *kvm)
8329 {
8330 	atomic_dec(&kvm->arch.assigned_device_count);
8331 }
8332 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8333 
8334 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8335 {
8336 	return atomic_read(&kvm->arch.assigned_device_count);
8337 }
8338 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8339 
8340 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8341 {
8342 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8343 }
8344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8345 
8346 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8347 {
8348 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8351 
8352 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8353 {
8354 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8355 }
8356 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8357 
8358 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8359 				      struct irq_bypass_producer *prod)
8360 {
8361 	struct kvm_kernel_irqfd *irqfd =
8362 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8363 
8364 	if (kvm_x86_ops->update_pi_irte) {
8365 		irqfd->producer = prod;
8366 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8367 				prod->irq, irqfd->gsi, 1);
8368 	}
8369 
8370 	return -EINVAL;
8371 }
8372 
8373 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8374 				      struct irq_bypass_producer *prod)
8375 {
8376 	int ret;
8377 	struct kvm_kernel_irqfd *irqfd =
8378 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8379 
8380 	if (!kvm_x86_ops->update_pi_irte) {
8381 		WARN_ON(irqfd->producer != NULL);
8382 		return;
8383 	}
8384 
8385 	WARN_ON(irqfd->producer != prod);
8386 	irqfd->producer = NULL;
8387 
8388 	/*
8389 	 * When producer of consumer is unregistered, we change back to
8390 	 * remapped mode, so we can re-use the current implementation
8391 	 * when the irq is masked/disabed or the consumer side (KVM
8392 	 * int this case doesn't want to receive the interrupts.
8393 	*/
8394 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8395 	if (ret)
8396 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8397 		       " fails: %d\n", irqfd->consumer.token, ret);
8398 }
8399 
8400 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8401 				   uint32_t guest_irq, bool set)
8402 {
8403 	if (!kvm_x86_ops->update_pi_irte)
8404 		return -EINVAL;
8405 
8406 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8407 }
8408 
8409 bool kvm_vector_hashing_enabled(void)
8410 {
8411 	return vector_hashing;
8412 }
8413 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8414 
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8432