1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "assigned-dev.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/module.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <trace/events/kvm.h> 57 58 #define CREATE_TRACE_POINTS 59 #include "trace.h" 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 71 #define MAX_IO_MSRS 256 72 #define KVM_MAX_MCE_BANKS 32 73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 74 75 #define emul_to_vcpu(ctxt) \ 76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 77 78 /* EFER defaults: 79 * - enable syscall per default because its emulated by KVM 80 * - enable LME and LMA per default on 64 bit KVM 81 */ 82 #ifdef CONFIG_X86_64 83 static 84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 85 #else 86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 87 #endif 88 89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 91 92 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 93 static void process_nmi(struct kvm_vcpu *vcpu); 94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 95 96 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 97 EXPORT_SYMBOL_GPL(kvm_x86_ops); 98 99 static bool __read_mostly ignore_msrs = 0; 100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 101 102 unsigned int min_timer_period_us = 500; 103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 104 105 static bool __read_mostly kvmclock_periodic_sync = true; 106 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 107 108 bool __read_mostly kvm_has_tsc_control; 109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 110 u32 __read_mostly kvm_max_guest_tsc_khz; 111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 114 u64 __read_mostly kvm_max_tsc_scaling_ratio; 115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 116 static u64 __read_mostly kvm_default_tsc_scaling_ratio; 117 118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 119 static u32 __read_mostly tsc_tolerance_ppm = 250; 120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 121 122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 123 unsigned int __read_mostly lapic_timer_advance_ns = 0; 124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 125 126 static bool __read_mostly vector_hashing = true; 127 module_param(vector_hashing, bool, S_IRUGO); 128 129 static bool __read_mostly backwards_tsc_observed = false; 130 131 #define KVM_NR_SHARED_MSRS 16 132 133 struct kvm_shared_msrs_global { 134 int nr; 135 u32 msrs[KVM_NR_SHARED_MSRS]; 136 }; 137 138 struct kvm_shared_msrs { 139 struct user_return_notifier urn; 140 bool registered; 141 struct kvm_shared_msr_values { 142 u64 host; 143 u64 curr; 144 } values[KVM_NR_SHARED_MSRS]; 145 }; 146 147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 148 static struct kvm_shared_msrs __percpu *shared_msrs; 149 150 struct kvm_stats_debugfs_item debugfs_entries[] = { 151 { "pf_fixed", VCPU_STAT(pf_fixed) }, 152 { "pf_guest", VCPU_STAT(pf_guest) }, 153 { "tlb_flush", VCPU_STAT(tlb_flush) }, 154 { "invlpg", VCPU_STAT(invlpg) }, 155 { "exits", VCPU_STAT(exits) }, 156 { "io_exits", VCPU_STAT(io_exits) }, 157 { "mmio_exits", VCPU_STAT(mmio_exits) }, 158 { "signal_exits", VCPU_STAT(signal_exits) }, 159 { "irq_window", VCPU_STAT(irq_window_exits) }, 160 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 161 { "halt_exits", VCPU_STAT(halt_exits) }, 162 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 163 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 164 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 165 { "hypercalls", VCPU_STAT(hypercalls) }, 166 { "request_irq", VCPU_STAT(request_irq_exits) }, 167 { "irq_exits", VCPU_STAT(irq_exits) }, 168 { "host_state_reload", VCPU_STAT(host_state_reload) }, 169 { "efer_reload", VCPU_STAT(efer_reload) }, 170 { "fpu_reload", VCPU_STAT(fpu_reload) }, 171 { "insn_emulation", VCPU_STAT(insn_emulation) }, 172 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 173 { "irq_injections", VCPU_STAT(irq_injections) }, 174 { "nmi_injections", VCPU_STAT(nmi_injections) }, 175 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 176 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 177 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 178 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 179 { "mmu_flooded", VM_STAT(mmu_flooded) }, 180 { "mmu_recycled", VM_STAT(mmu_recycled) }, 181 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 182 { "mmu_unsync", VM_STAT(mmu_unsync) }, 183 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 184 { "largepages", VM_STAT(lpages) }, 185 { NULL } 186 }; 187 188 u64 __read_mostly host_xcr0; 189 190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 191 192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 193 { 194 int i; 195 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 196 vcpu->arch.apf.gfns[i] = ~0; 197 } 198 199 static void kvm_on_user_return(struct user_return_notifier *urn) 200 { 201 unsigned slot; 202 struct kvm_shared_msrs *locals 203 = container_of(urn, struct kvm_shared_msrs, urn); 204 struct kvm_shared_msr_values *values; 205 206 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 207 values = &locals->values[slot]; 208 if (values->host != values->curr) { 209 wrmsrl(shared_msrs_global.msrs[slot], values->host); 210 values->curr = values->host; 211 } 212 } 213 locals->registered = false; 214 user_return_notifier_unregister(urn); 215 } 216 217 static void shared_msr_update(unsigned slot, u32 msr) 218 { 219 u64 value; 220 unsigned int cpu = smp_processor_id(); 221 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 222 223 /* only read, and nobody should modify it at this time, 224 * so don't need lock */ 225 if (slot >= shared_msrs_global.nr) { 226 printk(KERN_ERR "kvm: invalid MSR slot!"); 227 return; 228 } 229 rdmsrl_safe(msr, &value); 230 smsr->values[slot].host = value; 231 smsr->values[slot].curr = value; 232 } 233 234 void kvm_define_shared_msr(unsigned slot, u32 msr) 235 { 236 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 237 shared_msrs_global.msrs[slot] = msr; 238 if (slot >= shared_msrs_global.nr) 239 shared_msrs_global.nr = slot + 1; 240 } 241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 242 243 static void kvm_shared_msr_cpu_online(void) 244 { 245 unsigned i; 246 247 for (i = 0; i < shared_msrs_global.nr; ++i) 248 shared_msr_update(i, shared_msrs_global.msrs[i]); 249 } 250 251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 252 { 253 unsigned int cpu = smp_processor_id(); 254 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 255 int err; 256 257 if (((value ^ smsr->values[slot].curr) & mask) == 0) 258 return 0; 259 smsr->values[slot].curr = value; 260 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 261 if (err) 262 return 1; 263 264 if (!smsr->registered) { 265 smsr->urn.on_user_return = kvm_on_user_return; 266 user_return_notifier_register(&smsr->urn); 267 smsr->registered = true; 268 } 269 return 0; 270 } 271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 272 273 static void drop_user_return_notifiers(void) 274 { 275 unsigned int cpu = smp_processor_id(); 276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 277 278 if (smsr->registered) 279 kvm_on_user_return(&smsr->urn); 280 } 281 282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 283 { 284 return vcpu->arch.apic_base; 285 } 286 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 287 288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 289 { 290 u64 old_state = vcpu->arch.apic_base & 291 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 292 u64 new_state = msr_info->data & 293 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 294 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 295 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 296 297 if (!msr_info->host_initiated && 298 ((msr_info->data & reserved_bits) != 0 || 299 new_state == X2APIC_ENABLE || 300 (new_state == MSR_IA32_APICBASE_ENABLE && 301 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 302 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 303 old_state == 0))) 304 return 1; 305 306 kvm_lapic_set_base(vcpu, msr_info->data); 307 return 0; 308 } 309 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 310 311 asmlinkage __visible void kvm_spurious_fault(void) 312 { 313 /* Fault while not rebooting. We want the trace. */ 314 BUG(); 315 } 316 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 317 318 #define EXCPT_BENIGN 0 319 #define EXCPT_CONTRIBUTORY 1 320 #define EXCPT_PF 2 321 322 static int exception_class(int vector) 323 { 324 switch (vector) { 325 case PF_VECTOR: 326 return EXCPT_PF; 327 case DE_VECTOR: 328 case TS_VECTOR: 329 case NP_VECTOR: 330 case SS_VECTOR: 331 case GP_VECTOR: 332 return EXCPT_CONTRIBUTORY; 333 default: 334 break; 335 } 336 return EXCPT_BENIGN; 337 } 338 339 #define EXCPT_FAULT 0 340 #define EXCPT_TRAP 1 341 #define EXCPT_ABORT 2 342 #define EXCPT_INTERRUPT 3 343 344 static int exception_type(int vector) 345 { 346 unsigned int mask; 347 348 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 349 return EXCPT_INTERRUPT; 350 351 mask = 1 << vector; 352 353 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 354 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 355 return EXCPT_TRAP; 356 357 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 358 return EXCPT_ABORT; 359 360 /* Reserved exceptions will result in fault */ 361 return EXCPT_FAULT; 362 } 363 364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 365 unsigned nr, bool has_error, u32 error_code, 366 bool reinject) 367 { 368 u32 prev_nr; 369 int class1, class2; 370 371 kvm_make_request(KVM_REQ_EVENT, vcpu); 372 373 if (!vcpu->arch.exception.pending) { 374 queue: 375 if (has_error && !is_protmode(vcpu)) 376 has_error = false; 377 vcpu->arch.exception.pending = true; 378 vcpu->arch.exception.has_error_code = has_error; 379 vcpu->arch.exception.nr = nr; 380 vcpu->arch.exception.error_code = error_code; 381 vcpu->arch.exception.reinject = reinject; 382 return; 383 } 384 385 /* to check exception */ 386 prev_nr = vcpu->arch.exception.nr; 387 if (prev_nr == DF_VECTOR) { 388 /* triple fault -> shutdown */ 389 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 390 return; 391 } 392 class1 = exception_class(prev_nr); 393 class2 = exception_class(nr); 394 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 395 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 396 /* generate double fault per SDM Table 5-5 */ 397 vcpu->arch.exception.pending = true; 398 vcpu->arch.exception.has_error_code = true; 399 vcpu->arch.exception.nr = DF_VECTOR; 400 vcpu->arch.exception.error_code = 0; 401 } else 402 /* replace previous exception with a new one in a hope 403 that instruction re-execution will regenerate lost 404 exception */ 405 goto queue; 406 } 407 408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 409 { 410 kvm_multiple_exception(vcpu, nr, false, 0, false); 411 } 412 EXPORT_SYMBOL_GPL(kvm_queue_exception); 413 414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 415 { 416 kvm_multiple_exception(vcpu, nr, false, 0, true); 417 } 418 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 419 420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 421 { 422 if (err) 423 kvm_inject_gp(vcpu, 0); 424 else 425 kvm_x86_ops->skip_emulated_instruction(vcpu); 426 } 427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 428 429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 430 { 431 ++vcpu->stat.pf_guest; 432 vcpu->arch.cr2 = fault->address; 433 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 434 } 435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 436 437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 438 { 439 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 440 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 441 else 442 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 443 444 return fault->nested_page_fault; 445 } 446 447 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 448 { 449 atomic_inc(&vcpu->arch.nmi_queued); 450 kvm_make_request(KVM_REQ_NMI, vcpu); 451 } 452 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 453 454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 455 { 456 kvm_multiple_exception(vcpu, nr, true, error_code, false); 457 } 458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 459 460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 461 { 462 kvm_multiple_exception(vcpu, nr, true, error_code, true); 463 } 464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 465 466 /* 467 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 468 * a #GP and return false. 469 */ 470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 471 { 472 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 473 return true; 474 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 475 return false; 476 } 477 EXPORT_SYMBOL_GPL(kvm_require_cpl); 478 479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 480 { 481 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 482 return true; 483 484 kvm_queue_exception(vcpu, UD_VECTOR); 485 return false; 486 } 487 EXPORT_SYMBOL_GPL(kvm_require_dr); 488 489 /* 490 * This function will be used to read from the physical memory of the currently 491 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 492 * can read from guest physical or from the guest's guest physical memory. 493 */ 494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 495 gfn_t ngfn, void *data, int offset, int len, 496 u32 access) 497 { 498 struct x86_exception exception; 499 gfn_t real_gfn; 500 gpa_t ngpa; 501 502 ngpa = gfn_to_gpa(ngfn); 503 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 504 if (real_gfn == UNMAPPED_GVA) 505 return -EFAULT; 506 507 real_gfn = gpa_to_gfn(real_gfn); 508 509 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 510 } 511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 512 513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 514 void *data, int offset, int len, u32 access) 515 { 516 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 517 data, offset, len, access); 518 } 519 520 /* 521 * Load the pae pdptrs. Return true is they are all valid. 522 */ 523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 524 { 525 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 526 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 527 int i; 528 int ret; 529 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 530 531 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 532 offset * sizeof(u64), sizeof(pdpte), 533 PFERR_USER_MASK|PFERR_WRITE_MASK); 534 if (ret < 0) { 535 ret = 0; 536 goto out; 537 } 538 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 539 if (is_present_gpte(pdpte[i]) && 540 (pdpte[i] & 541 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 542 ret = 0; 543 goto out; 544 } 545 } 546 ret = 1; 547 548 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 549 __set_bit(VCPU_EXREG_PDPTR, 550 (unsigned long *)&vcpu->arch.regs_avail); 551 __set_bit(VCPU_EXREG_PDPTR, 552 (unsigned long *)&vcpu->arch.regs_dirty); 553 out: 554 555 return ret; 556 } 557 EXPORT_SYMBOL_GPL(load_pdptrs); 558 559 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 560 { 561 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 562 bool changed = true; 563 int offset; 564 gfn_t gfn; 565 int r; 566 567 if (is_long_mode(vcpu) || !is_pae(vcpu)) 568 return false; 569 570 if (!test_bit(VCPU_EXREG_PDPTR, 571 (unsigned long *)&vcpu->arch.regs_avail)) 572 return true; 573 574 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 575 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 576 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 577 PFERR_USER_MASK | PFERR_WRITE_MASK); 578 if (r < 0) 579 goto out; 580 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 581 out: 582 583 return changed; 584 } 585 586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 587 { 588 unsigned long old_cr0 = kvm_read_cr0(vcpu); 589 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 590 591 cr0 |= X86_CR0_ET; 592 593 #ifdef CONFIG_X86_64 594 if (cr0 & 0xffffffff00000000UL) 595 return 1; 596 #endif 597 598 cr0 &= ~CR0_RESERVED_BITS; 599 600 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 601 return 1; 602 603 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 604 return 1; 605 606 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 607 #ifdef CONFIG_X86_64 608 if ((vcpu->arch.efer & EFER_LME)) { 609 int cs_db, cs_l; 610 611 if (!is_pae(vcpu)) 612 return 1; 613 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 614 if (cs_l) 615 return 1; 616 } else 617 #endif 618 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 619 kvm_read_cr3(vcpu))) 620 return 1; 621 } 622 623 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 624 return 1; 625 626 kvm_x86_ops->set_cr0(vcpu, cr0); 627 628 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 629 kvm_clear_async_pf_completion_queue(vcpu); 630 kvm_async_pf_hash_reset(vcpu); 631 } 632 633 if ((cr0 ^ old_cr0) & update_bits) 634 kvm_mmu_reset_context(vcpu); 635 636 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 637 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 638 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 639 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 640 641 return 0; 642 } 643 EXPORT_SYMBOL_GPL(kvm_set_cr0); 644 645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 646 { 647 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 648 } 649 EXPORT_SYMBOL_GPL(kvm_lmsw); 650 651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 652 { 653 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 654 !vcpu->guest_xcr0_loaded) { 655 /* kvm_set_xcr() also depends on this */ 656 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 657 vcpu->guest_xcr0_loaded = 1; 658 } 659 } 660 661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 662 { 663 if (vcpu->guest_xcr0_loaded) { 664 if (vcpu->arch.xcr0 != host_xcr0) 665 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 666 vcpu->guest_xcr0_loaded = 0; 667 } 668 } 669 670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 671 { 672 u64 xcr0 = xcr; 673 u64 old_xcr0 = vcpu->arch.xcr0; 674 u64 valid_bits; 675 676 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 677 if (index != XCR_XFEATURE_ENABLED_MASK) 678 return 1; 679 if (!(xcr0 & XFEATURE_MASK_FP)) 680 return 1; 681 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 682 return 1; 683 684 /* 685 * Do not allow the guest to set bits that we do not support 686 * saving. However, xcr0 bit 0 is always set, even if the 687 * emulated CPU does not support XSAVE (see fx_init). 688 */ 689 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 690 if (xcr0 & ~valid_bits) 691 return 1; 692 693 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 694 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 695 return 1; 696 697 if (xcr0 & XFEATURE_MASK_AVX512) { 698 if (!(xcr0 & XFEATURE_MASK_YMM)) 699 return 1; 700 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 701 return 1; 702 } 703 kvm_put_guest_xcr0(vcpu); 704 vcpu->arch.xcr0 = xcr0; 705 706 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 707 kvm_update_cpuid(vcpu); 708 return 0; 709 } 710 711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 712 { 713 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 714 __kvm_set_xcr(vcpu, index, xcr)) { 715 kvm_inject_gp(vcpu, 0); 716 return 1; 717 } 718 return 0; 719 } 720 EXPORT_SYMBOL_GPL(kvm_set_xcr); 721 722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 723 { 724 unsigned long old_cr4 = kvm_read_cr4(vcpu); 725 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 726 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 727 728 if (cr4 & CR4_RESERVED_BITS) 729 return 1; 730 731 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 732 return 1; 733 734 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 735 return 1; 736 737 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 738 return 1; 739 740 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 741 return 1; 742 743 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 744 return 1; 745 746 if (is_long_mode(vcpu)) { 747 if (!(cr4 & X86_CR4_PAE)) 748 return 1; 749 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 750 && ((cr4 ^ old_cr4) & pdptr_bits) 751 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 752 kvm_read_cr3(vcpu))) 753 return 1; 754 755 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 756 if (!guest_cpuid_has_pcid(vcpu)) 757 return 1; 758 759 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 760 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 761 return 1; 762 } 763 764 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 765 return 1; 766 767 if (((cr4 ^ old_cr4) & pdptr_bits) || 768 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 769 kvm_mmu_reset_context(vcpu); 770 771 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 772 kvm_update_cpuid(vcpu); 773 774 return 0; 775 } 776 EXPORT_SYMBOL_GPL(kvm_set_cr4); 777 778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 779 { 780 #ifdef CONFIG_X86_64 781 cr3 &= ~CR3_PCID_INVD; 782 #endif 783 784 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 785 kvm_mmu_sync_roots(vcpu); 786 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 787 return 0; 788 } 789 790 if (is_long_mode(vcpu)) { 791 if (cr3 & CR3_L_MODE_RESERVED_BITS) 792 return 1; 793 } else if (is_pae(vcpu) && is_paging(vcpu) && 794 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 795 return 1; 796 797 vcpu->arch.cr3 = cr3; 798 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 799 kvm_mmu_new_cr3(vcpu); 800 return 0; 801 } 802 EXPORT_SYMBOL_GPL(kvm_set_cr3); 803 804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 805 { 806 if (cr8 & CR8_RESERVED_BITS) 807 return 1; 808 if (lapic_in_kernel(vcpu)) 809 kvm_lapic_set_tpr(vcpu, cr8); 810 else 811 vcpu->arch.cr8 = cr8; 812 return 0; 813 } 814 EXPORT_SYMBOL_GPL(kvm_set_cr8); 815 816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 817 { 818 if (lapic_in_kernel(vcpu)) 819 return kvm_lapic_get_cr8(vcpu); 820 else 821 return vcpu->arch.cr8; 822 } 823 EXPORT_SYMBOL_GPL(kvm_get_cr8); 824 825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 826 { 827 int i; 828 829 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 830 for (i = 0; i < KVM_NR_DB_REGS; i++) 831 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 832 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 833 } 834 } 835 836 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 837 { 838 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 839 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 840 } 841 842 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 843 { 844 unsigned long dr7; 845 846 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 847 dr7 = vcpu->arch.guest_debug_dr7; 848 else 849 dr7 = vcpu->arch.dr7; 850 kvm_x86_ops->set_dr7(vcpu, dr7); 851 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 852 if (dr7 & DR7_BP_EN_MASK) 853 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 854 } 855 856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 857 { 858 u64 fixed = DR6_FIXED_1; 859 860 if (!guest_cpuid_has_rtm(vcpu)) 861 fixed |= DR6_RTM; 862 return fixed; 863 } 864 865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 866 { 867 switch (dr) { 868 case 0 ... 3: 869 vcpu->arch.db[dr] = val; 870 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 871 vcpu->arch.eff_db[dr] = val; 872 break; 873 case 4: 874 /* fall through */ 875 case 6: 876 if (val & 0xffffffff00000000ULL) 877 return -1; /* #GP */ 878 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 879 kvm_update_dr6(vcpu); 880 break; 881 case 5: 882 /* fall through */ 883 default: /* 7 */ 884 if (val & 0xffffffff00000000ULL) 885 return -1; /* #GP */ 886 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 887 kvm_update_dr7(vcpu); 888 break; 889 } 890 891 return 0; 892 } 893 894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 895 { 896 if (__kvm_set_dr(vcpu, dr, val)) { 897 kvm_inject_gp(vcpu, 0); 898 return 1; 899 } 900 return 0; 901 } 902 EXPORT_SYMBOL_GPL(kvm_set_dr); 903 904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 905 { 906 switch (dr) { 907 case 0 ... 3: 908 *val = vcpu->arch.db[dr]; 909 break; 910 case 4: 911 /* fall through */ 912 case 6: 913 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 914 *val = vcpu->arch.dr6; 915 else 916 *val = kvm_x86_ops->get_dr6(vcpu); 917 break; 918 case 5: 919 /* fall through */ 920 default: /* 7 */ 921 *val = vcpu->arch.dr7; 922 break; 923 } 924 return 0; 925 } 926 EXPORT_SYMBOL_GPL(kvm_get_dr); 927 928 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 929 { 930 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 931 u64 data; 932 int err; 933 934 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 935 if (err) 936 return err; 937 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 938 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 939 return err; 940 } 941 EXPORT_SYMBOL_GPL(kvm_rdpmc); 942 943 /* 944 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 945 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 946 * 947 * This list is modified at module load time to reflect the 948 * capabilities of the host cpu. This capabilities test skips MSRs that are 949 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 950 * may depend on host virtualization features rather than host cpu features. 951 */ 952 953 static u32 msrs_to_save[] = { 954 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 955 MSR_STAR, 956 #ifdef CONFIG_X86_64 957 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 958 #endif 959 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 960 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 961 }; 962 963 static unsigned num_msrs_to_save; 964 965 static u32 emulated_msrs[] = { 966 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 967 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 968 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 969 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 970 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 971 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 972 HV_X64_MSR_RESET, 973 HV_X64_MSR_VP_INDEX, 974 HV_X64_MSR_VP_RUNTIME, 975 HV_X64_MSR_SCONTROL, 976 HV_X64_MSR_STIMER0_CONFIG, 977 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 978 MSR_KVM_PV_EOI_EN, 979 980 MSR_IA32_TSC_ADJUST, 981 MSR_IA32_TSCDEADLINE, 982 MSR_IA32_MISC_ENABLE, 983 MSR_IA32_MCG_STATUS, 984 MSR_IA32_MCG_CTL, 985 MSR_IA32_SMBASE, 986 }; 987 988 static unsigned num_emulated_msrs; 989 990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 991 { 992 if (efer & efer_reserved_bits) 993 return false; 994 995 if (efer & EFER_FFXSR) { 996 struct kvm_cpuid_entry2 *feat; 997 998 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 999 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1000 return false; 1001 } 1002 1003 if (efer & EFER_SVME) { 1004 struct kvm_cpuid_entry2 *feat; 1005 1006 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1007 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1008 return false; 1009 } 1010 1011 return true; 1012 } 1013 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1014 1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1016 { 1017 u64 old_efer = vcpu->arch.efer; 1018 1019 if (!kvm_valid_efer(vcpu, efer)) 1020 return 1; 1021 1022 if (is_paging(vcpu) 1023 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1024 return 1; 1025 1026 efer &= ~EFER_LMA; 1027 efer |= vcpu->arch.efer & EFER_LMA; 1028 1029 kvm_x86_ops->set_efer(vcpu, efer); 1030 1031 /* Update reserved bits */ 1032 if ((efer ^ old_efer) & EFER_NX) 1033 kvm_mmu_reset_context(vcpu); 1034 1035 return 0; 1036 } 1037 1038 void kvm_enable_efer_bits(u64 mask) 1039 { 1040 efer_reserved_bits &= ~mask; 1041 } 1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1043 1044 /* 1045 * Writes msr value into into the appropriate "register". 1046 * Returns 0 on success, non-0 otherwise. 1047 * Assumes vcpu_load() was already called. 1048 */ 1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1050 { 1051 switch (msr->index) { 1052 case MSR_FS_BASE: 1053 case MSR_GS_BASE: 1054 case MSR_KERNEL_GS_BASE: 1055 case MSR_CSTAR: 1056 case MSR_LSTAR: 1057 if (is_noncanonical_address(msr->data)) 1058 return 1; 1059 break; 1060 case MSR_IA32_SYSENTER_EIP: 1061 case MSR_IA32_SYSENTER_ESP: 1062 /* 1063 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1064 * non-canonical address is written on Intel but not on 1065 * AMD (which ignores the top 32-bits, because it does 1066 * not implement 64-bit SYSENTER). 1067 * 1068 * 64-bit code should hence be able to write a non-canonical 1069 * value on AMD. Making the address canonical ensures that 1070 * vmentry does not fail on Intel after writing a non-canonical 1071 * value, and that something deterministic happens if the guest 1072 * invokes 64-bit SYSENTER. 1073 */ 1074 msr->data = get_canonical(msr->data); 1075 } 1076 return kvm_x86_ops->set_msr(vcpu, msr); 1077 } 1078 EXPORT_SYMBOL_GPL(kvm_set_msr); 1079 1080 /* 1081 * Adapt set_msr() to msr_io()'s calling convention 1082 */ 1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1084 { 1085 struct msr_data msr; 1086 int r; 1087 1088 msr.index = index; 1089 msr.host_initiated = true; 1090 r = kvm_get_msr(vcpu, &msr); 1091 if (r) 1092 return r; 1093 1094 *data = msr.data; 1095 return 0; 1096 } 1097 1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1099 { 1100 struct msr_data msr; 1101 1102 msr.data = *data; 1103 msr.index = index; 1104 msr.host_initiated = true; 1105 return kvm_set_msr(vcpu, &msr); 1106 } 1107 1108 #ifdef CONFIG_X86_64 1109 struct pvclock_gtod_data { 1110 seqcount_t seq; 1111 1112 struct { /* extract of a clocksource struct */ 1113 int vclock_mode; 1114 cycle_t cycle_last; 1115 cycle_t mask; 1116 u32 mult; 1117 u32 shift; 1118 } clock; 1119 1120 u64 boot_ns; 1121 u64 nsec_base; 1122 }; 1123 1124 static struct pvclock_gtod_data pvclock_gtod_data; 1125 1126 static void update_pvclock_gtod(struct timekeeper *tk) 1127 { 1128 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1129 u64 boot_ns; 1130 1131 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1132 1133 write_seqcount_begin(&vdata->seq); 1134 1135 /* copy pvclock gtod data */ 1136 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1137 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1138 vdata->clock.mask = tk->tkr_mono.mask; 1139 vdata->clock.mult = tk->tkr_mono.mult; 1140 vdata->clock.shift = tk->tkr_mono.shift; 1141 1142 vdata->boot_ns = boot_ns; 1143 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1144 1145 write_seqcount_end(&vdata->seq); 1146 } 1147 #endif 1148 1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1150 { 1151 /* 1152 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1153 * vcpu_enter_guest. This function is only called from 1154 * the physical CPU that is running vcpu. 1155 */ 1156 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1157 } 1158 1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1160 { 1161 int version; 1162 int r; 1163 struct pvclock_wall_clock wc; 1164 struct timespec boot; 1165 1166 if (!wall_clock) 1167 return; 1168 1169 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1170 if (r) 1171 return; 1172 1173 if (version & 1) 1174 ++version; /* first time write, random junk */ 1175 1176 ++version; 1177 1178 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1179 return; 1180 1181 /* 1182 * The guest calculates current wall clock time by adding 1183 * system time (updated by kvm_guest_time_update below) to the 1184 * wall clock specified here. guest system time equals host 1185 * system time for us, thus we must fill in host boot time here. 1186 */ 1187 getboottime(&boot); 1188 1189 if (kvm->arch.kvmclock_offset) { 1190 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1191 boot = timespec_sub(boot, ts); 1192 } 1193 wc.sec = boot.tv_sec; 1194 wc.nsec = boot.tv_nsec; 1195 wc.version = version; 1196 1197 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1198 1199 version++; 1200 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1201 } 1202 1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1204 { 1205 do_shl32_div32(dividend, divisor); 1206 return dividend; 1207 } 1208 1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1210 s8 *pshift, u32 *pmultiplier) 1211 { 1212 uint64_t scaled64; 1213 int32_t shift = 0; 1214 uint64_t tps64; 1215 uint32_t tps32; 1216 1217 tps64 = base_hz; 1218 scaled64 = scaled_hz; 1219 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1220 tps64 >>= 1; 1221 shift--; 1222 } 1223 1224 tps32 = (uint32_t)tps64; 1225 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1226 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1227 scaled64 >>= 1; 1228 else 1229 tps32 <<= 1; 1230 shift++; 1231 } 1232 1233 *pshift = shift; 1234 *pmultiplier = div_frac(scaled64, tps32); 1235 1236 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1237 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1238 } 1239 1240 #ifdef CONFIG_X86_64 1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1242 #endif 1243 1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1245 static unsigned long max_tsc_khz; 1246 1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1248 { 1249 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1250 vcpu->arch.virtual_tsc_shift); 1251 } 1252 1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1254 { 1255 u64 v = (u64)khz * (1000000 + ppm); 1256 do_div(v, 1000000); 1257 return v; 1258 } 1259 1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1261 { 1262 u64 ratio; 1263 1264 /* Guest TSC same frequency as host TSC? */ 1265 if (!scale) { 1266 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1267 return 0; 1268 } 1269 1270 /* TSC scaling supported? */ 1271 if (!kvm_has_tsc_control) { 1272 if (user_tsc_khz > tsc_khz) { 1273 vcpu->arch.tsc_catchup = 1; 1274 vcpu->arch.tsc_always_catchup = 1; 1275 return 0; 1276 } else { 1277 WARN(1, "user requested TSC rate below hardware speed\n"); 1278 return -1; 1279 } 1280 } 1281 1282 /* TSC scaling required - calculate ratio */ 1283 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1284 user_tsc_khz, tsc_khz); 1285 1286 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1287 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1288 user_tsc_khz); 1289 return -1; 1290 } 1291 1292 vcpu->arch.tsc_scaling_ratio = ratio; 1293 return 0; 1294 } 1295 1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1297 { 1298 u32 thresh_lo, thresh_hi; 1299 int use_scaling = 0; 1300 1301 /* tsc_khz can be zero if TSC calibration fails */ 1302 if (user_tsc_khz == 0) { 1303 /* set tsc_scaling_ratio to a safe value */ 1304 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1305 return -1; 1306 } 1307 1308 /* Compute a scale to convert nanoseconds in TSC cycles */ 1309 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1310 &vcpu->arch.virtual_tsc_shift, 1311 &vcpu->arch.virtual_tsc_mult); 1312 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1313 1314 /* 1315 * Compute the variation in TSC rate which is acceptable 1316 * within the range of tolerance and decide if the 1317 * rate being applied is within that bounds of the hardware 1318 * rate. If so, no scaling or compensation need be done. 1319 */ 1320 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1321 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1322 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1323 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1324 use_scaling = 1; 1325 } 1326 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1327 } 1328 1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1330 { 1331 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1332 vcpu->arch.virtual_tsc_mult, 1333 vcpu->arch.virtual_tsc_shift); 1334 tsc += vcpu->arch.this_tsc_write; 1335 return tsc; 1336 } 1337 1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1339 { 1340 #ifdef CONFIG_X86_64 1341 bool vcpus_matched; 1342 struct kvm_arch *ka = &vcpu->kvm->arch; 1343 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1344 1345 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1346 atomic_read(&vcpu->kvm->online_vcpus)); 1347 1348 /* 1349 * Once the masterclock is enabled, always perform request in 1350 * order to update it. 1351 * 1352 * In order to enable masterclock, the host clocksource must be TSC 1353 * and the vcpus need to have matched TSCs. When that happens, 1354 * perform request to enable masterclock. 1355 */ 1356 if (ka->use_master_clock || 1357 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1358 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1359 1360 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1361 atomic_read(&vcpu->kvm->online_vcpus), 1362 ka->use_master_clock, gtod->clock.vclock_mode); 1363 #endif 1364 } 1365 1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1367 { 1368 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1369 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1370 } 1371 1372 /* 1373 * Multiply tsc by a fixed point number represented by ratio. 1374 * 1375 * The most significant 64-N bits (mult) of ratio represent the 1376 * integral part of the fixed point number; the remaining N bits 1377 * (frac) represent the fractional part, ie. ratio represents a fixed 1378 * point number (mult + frac * 2^(-N)). 1379 * 1380 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1381 */ 1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1383 { 1384 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1385 } 1386 1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1388 { 1389 u64 _tsc = tsc; 1390 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1391 1392 if (ratio != kvm_default_tsc_scaling_ratio) 1393 _tsc = __scale_tsc(ratio, tsc); 1394 1395 return _tsc; 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1398 1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1400 { 1401 u64 tsc; 1402 1403 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1404 1405 return target_tsc - tsc; 1406 } 1407 1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1409 { 1410 return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc)); 1411 } 1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1413 1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1415 { 1416 struct kvm *kvm = vcpu->kvm; 1417 u64 offset, ns, elapsed; 1418 unsigned long flags; 1419 s64 usdiff; 1420 bool matched; 1421 bool already_matched; 1422 u64 data = msr->data; 1423 1424 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1425 offset = kvm_compute_tsc_offset(vcpu, data); 1426 ns = get_kernel_ns(); 1427 elapsed = ns - kvm->arch.last_tsc_nsec; 1428 1429 if (vcpu->arch.virtual_tsc_khz) { 1430 int faulted = 0; 1431 1432 /* n.b - signed multiplication and division required */ 1433 usdiff = data - kvm->arch.last_tsc_write; 1434 #ifdef CONFIG_X86_64 1435 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1436 #else 1437 /* do_div() only does unsigned */ 1438 asm("1: idivl %[divisor]\n" 1439 "2: xor %%edx, %%edx\n" 1440 " movl $0, %[faulted]\n" 1441 "3:\n" 1442 ".section .fixup,\"ax\"\n" 1443 "4: movl $1, %[faulted]\n" 1444 " jmp 3b\n" 1445 ".previous\n" 1446 1447 _ASM_EXTABLE(1b, 4b) 1448 1449 : "=A"(usdiff), [faulted] "=r" (faulted) 1450 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1451 1452 #endif 1453 do_div(elapsed, 1000); 1454 usdiff -= elapsed; 1455 if (usdiff < 0) 1456 usdiff = -usdiff; 1457 1458 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1459 if (faulted) 1460 usdiff = USEC_PER_SEC; 1461 } else 1462 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1463 1464 /* 1465 * Special case: TSC write with a small delta (1 second) of virtual 1466 * cycle time against real time is interpreted as an attempt to 1467 * synchronize the CPU. 1468 * 1469 * For a reliable TSC, we can match TSC offsets, and for an unstable 1470 * TSC, we add elapsed time in this computation. We could let the 1471 * compensation code attempt to catch up if we fall behind, but 1472 * it's better to try to match offsets from the beginning. 1473 */ 1474 if (usdiff < USEC_PER_SEC && 1475 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1476 if (!check_tsc_unstable()) { 1477 offset = kvm->arch.cur_tsc_offset; 1478 pr_debug("kvm: matched tsc offset for %llu\n", data); 1479 } else { 1480 u64 delta = nsec_to_cycles(vcpu, elapsed); 1481 data += delta; 1482 offset = kvm_compute_tsc_offset(vcpu, data); 1483 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1484 } 1485 matched = true; 1486 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1487 } else { 1488 /* 1489 * We split periods of matched TSC writes into generations. 1490 * For each generation, we track the original measured 1491 * nanosecond time, offset, and write, so if TSCs are in 1492 * sync, we can match exact offset, and if not, we can match 1493 * exact software computation in compute_guest_tsc() 1494 * 1495 * These values are tracked in kvm->arch.cur_xxx variables. 1496 */ 1497 kvm->arch.cur_tsc_generation++; 1498 kvm->arch.cur_tsc_nsec = ns; 1499 kvm->arch.cur_tsc_write = data; 1500 kvm->arch.cur_tsc_offset = offset; 1501 matched = false; 1502 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1503 kvm->arch.cur_tsc_generation, data); 1504 } 1505 1506 /* 1507 * We also track th most recent recorded KHZ, write and time to 1508 * allow the matching interval to be extended at each write. 1509 */ 1510 kvm->arch.last_tsc_nsec = ns; 1511 kvm->arch.last_tsc_write = data; 1512 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1513 1514 vcpu->arch.last_guest_tsc = data; 1515 1516 /* Keep track of which generation this VCPU has synchronized to */ 1517 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1518 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1519 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1520 1521 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1522 update_ia32_tsc_adjust_msr(vcpu, offset); 1523 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1524 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1525 1526 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1527 if (!matched) { 1528 kvm->arch.nr_vcpus_matched_tsc = 0; 1529 } else if (!already_matched) { 1530 kvm->arch.nr_vcpus_matched_tsc++; 1531 } 1532 1533 kvm_track_tsc_matching(vcpu); 1534 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1535 } 1536 1537 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1538 1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1540 s64 adjustment) 1541 { 1542 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment); 1543 } 1544 1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1546 { 1547 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1548 WARN_ON(adjustment < 0); 1549 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1550 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment); 1551 } 1552 1553 #ifdef CONFIG_X86_64 1554 1555 static cycle_t read_tsc(void) 1556 { 1557 cycle_t ret = (cycle_t)rdtsc_ordered(); 1558 u64 last = pvclock_gtod_data.clock.cycle_last; 1559 1560 if (likely(ret >= last)) 1561 return ret; 1562 1563 /* 1564 * GCC likes to generate cmov here, but this branch is extremely 1565 * predictable (it's just a function of time and the likely is 1566 * very likely) and there's a data dependence, so force GCC 1567 * to generate a branch instead. I don't barrier() because 1568 * we don't actually need a barrier, and if this function 1569 * ever gets inlined it will generate worse code. 1570 */ 1571 asm volatile (""); 1572 return last; 1573 } 1574 1575 static inline u64 vgettsc(cycle_t *cycle_now) 1576 { 1577 long v; 1578 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1579 1580 *cycle_now = read_tsc(); 1581 1582 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1583 return v * gtod->clock.mult; 1584 } 1585 1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now) 1587 { 1588 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1589 unsigned long seq; 1590 int mode; 1591 u64 ns; 1592 1593 do { 1594 seq = read_seqcount_begin(>od->seq); 1595 mode = gtod->clock.vclock_mode; 1596 ns = gtod->nsec_base; 1597 ns += vgettsc(cycle_now); 1598 ns >>= gtod->clock.shift; 1599 ns += gtod->boot_ns; 1600 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1601 *t = ns; 1602 1603 return mode; 1604 } 1605 1606 /* returns true if host is using tsc clocksource */ 1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1608 { 1609 /* checked again under seqlock below */ 1610 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1611 return false; 1612 1613 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1614 } 1615 #endif 1616 1617 /* 1618 * 1619 * Assuming a stable TSC across physical CPUS, and a stable TSC 1620 * across virtual CPUs, the following condition is possible. 1621 * Each numbered line represents an event visible to both 1622 * CPUs at the next numbered event. 1623 * 1624 * "timespecX" represents host monotonic time. "tscX" represents 1625 * RDTSC value. 1626 * 1627 * VCPU0 on CPU0 | VCPU1 on CPU1 1628 * 1629 * 1. read timespec0,tsc0 1630 * 2. | timespec1 = timespec0 + N 1631 * | tsc1 = tsc0 + M 1632 * 3. transition to guest | transition to guest 1633 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1634 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1635 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1636 * 1637 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1638 * 1639 * - ret0 < ret1 1640 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1641 * ... 1642 * - 0 < N - M => M < N 1643 * 1644 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1645 * always the case (the difference between two distinct xtime instances 1646 * might be smaller then the difference between corresponding TSC reads, 1647 * when updating guest vcpus pvclock areas). 1648 * 1649 * To avoid that problem, do not allow visibility of distinct 1650 * system_timestamp/tsc_timestamp values simultaneously: use a master 1651 * copy of host monotonic time values. Update that master copy 1652 * in lockstep. 1653 * 1654 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1655 * 1656 */ 1657 1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1659 { 1660 #ifdef CONFIG_X86_64 1661 struct kvm_arch *ka = &kvm->arch; 1662 int vclock_mode; 1663 bool host_tsc_clocksource, vcpus_matched; 1664 1665 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1666 atomic_read(&kvm->online_vcpus)); 1667 1668 /* 1669 * If the host uses TSC clock, then passthrough TSC as stable 1670 * to the guest. 1671 */ 1672 host_tsc_clocksource = kvm_get_time_and_clockread( 1673 &ka->master_kernel_ns, 1674 &ka->master_cycle_now); 1675 1676 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1677 && !backwards_tsc_observed 1678 && !ka->boot_vcpu_runs_old_kvmclock; 1679 1680 if (ka->use_master_clock) 1681 atomic_set(&kvm_guest_has_master_clock, 1); 1682 1683 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1684 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1685 vcpus_matched); 1686 #endif 1687 } 1688 1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1690 { 1691 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1692 } 1693 1694 static void kvm_gen_update_masterclock(struct kvm *kvm) 1695 { 1696 #ifdef CONFIG_X86_64 1697 int i; 1698 struct kvm_vcpu *vcpu; 1699 struct kvm_arch *ka = &kvm->arch; 1700 1701 spin_lock(&ka->pvclock_gtod_sync_lock); 1702 kvm_make_mclock_inprogress_request(kvm); 1703 /* no guest entries from this point */ 1704 pvclock_update_vm_gtod_copy(kvm); 1705 1706 kvm_for_each_vcpu(i, vcpu, kvm) 1707 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1708 1709 /* guest entries allowed */ 1710 kvm_for_each_vcpu(i, vcpu, kvm) 1711 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1712 1713 spin_unlock(&ka->pvclock_gtod_sync_lock); 1714 #endif 1715 } 1716 1717 static int kvm_guest_time_update(struct kvm_vcpu *v) 1718 { 1719 unsigned long flags, tgt_tsc_khz; 1720 struct kvm_vcpu_arch *vcpu = &v->arch; 1721 struct kvm_arch *ka = &v->kvm->arch; 1722 s64 kernel_ns; 1723 u64 tsc_timestamp, host_tsc; 1724 struct pvclock_vcpu_time_info guest_hv_clock; 1725 u8 pvclock_flags; 1726 bool use_master_clock; 1727 1728 kernel_ns = 0; 1729 host_tsc = 0; 1730 1731 /* 1732 * If the host uses TSC clock, then passthrough TSC as stable 1733 * to the guest. 1734 */ 1735 spin_lock(&ka->pvclock_gtod_sync_lock); 1736 use_master_clock = ka->use_master_clock; 1737 if (use_master_clock) { 1738 host_tsc = ka->master_cycle_now; 1739 kernel_ns = ka->master_kernel_ns; 1740 } 1741 spin_unlock(&ka->pvclock_gtod_sync_lock); 1742 1743 /* Keep irq disabled to prevent changes to the clock */ 1744 local_irq_save(flags); 1745 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1746 if (unlikely(tgt_tsc_khz == 0)) { 1747 local_irq_restore(flags); 1748 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1749 return 1; 1750 } 1751 if (!use_master_clock) { 1752 host_tsc = rdtsc(); 1753 kernel_ns = get_kernel_ns(); 1754 } 1755 1756 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1757 1758 /* 1759 * We may have to catch up the TSC to match elapsed wall clock 1760 * time for two reasons, even if kvmclock is used. 1761 * 1) CPU could have been running below the maximum TSC rate 1762 * 2) Broken TSC compensation resets the base at each VCPU 1763 * entry to avoid unknown leaps of TSC even when running 1764 * again on the same CPU. This may cause apparent elapsed 1765 * time to disappear, and the guest to stand still or run 1766 * very slowly. 1767 */ 1768 if (vcpu->tsc_catchup) { 1769 u64 tsc = compute_guest_tsc(v, kernel_ns); 1770 if (tsc > tsc_timestamp) { 1771 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1772 tsc_timestamp = tsc; 1773 } 1774 } 1775 1776 local_irq_restore(flags); 1777 1778 if (!vcpu->pv_time_enabled) 1779 return 0; 1780 1781 if (kvm_has_tsc_control) 1782 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1783 1784 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1785 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1786 &vcpu->hv_clock.tsc_shift, 1787 &vcpu->hv_clock.tsc_to_system_mul); 1788 vcpu->hw_tsc_khz = tgt_tsc_khz; 1789 } 1790 1791 /* With all the info we got, fill in the values */ 1792 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1793 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1794 vcpu->last_guest_tsc = tsc_timestamp; 1795 1796 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1797 &guest_hv_clock, sizeof(guest_hv_clock)))) 1798 return 0; 1799 1800 /* This VCPU is paused, but it's legal for a guest to read another 1801 * VCPU's kvmclock, so we really have to follow the specification where 1802 * it says that version is odd if data is being modified, and even after 1803 * it is consistent. 1804 * 1805 * Version field updates must be kept separate. This is because 1806 * kvm_write_guest_cached might use a "rep movs" instruction, and 1807 * writes within a string instruction are weakly ordered. So there 1808 * are three writes overall. 1809 * 1810 * As a small optimization, only write the version field in the first 1811 * and third write. The vcpu->pv_time cache is still valid, because the 1812 * version field is the first in the struct. 1813 */ 1814 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1815 1816 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1817 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1818 &vcpu->hv_clock, 1819 sizeof(vcpu->hv_clock.version)); 1820 1821 smp_wmb(); 1822 1823 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1824 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1825 1826 if (vcpu->pvclock_set_guest_stopped_request) { 1827 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1828 vcpu->pvclock_set_guest_stopped_request = false; 1829 } 1830 1831 /* If the host uses TSC clocksource, then it is stable */ 1832 if (use_master_clock) 1833 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1834 1835 vcpu->hv_clock.flags = pvclock_flags; 1836 1837 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1838 1839 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1840 &vcpu->hv_clock, 1841 sizeof(vcpu->hv_clock)); 1842 1843 smp_wmb(); 1844 1845 vcpu->hv_clock.version++; 1846 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1847 &vcpu->hv_clock, 1848 sizeof(vcpu->hv_clock.version)); 1849 return 0; 1850 } 1851 1852 /* 1853 * kvmclock updates which are isolated to a given vcpu, such as 1854 * vcpu->cpu migration, should not allow system_timestamp from 1855 * the rest of the vcpus to remain static. Otherwise ntp frequency 1856 * correction applies to one vcpu's system_timestamp but not 1857 * the others. 1858 * 1859 * So in those cases, request a kvmclock update for all vcpus. 1860 * We need to rate-limit these requests though, as they can 1861 * considerably slow guests that have a large number of vcpus. 1862 * The time for a remote vcpu to update its kvmclock is bound 1863 * by the delay we use to rate-limit the updates. 1864 */ 1865 1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1867 1868 static void kvmclock_update_fn(struct work_struct *work) 1869 { 1870 int i; 1871 struct delayed_work *dwork = to_delayed_work(work); 1872 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1873 kvmclock_update_work); 1874 struct kvm *kvm = container_of(ka, struct kvm, arch); 1875 struct kvm_vcpu *vcpu; 1876 1877 kvm_for_each_vcpu(i, vcpu, kvm) { 1878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1879 kvm_vcpu_kick(vcpu); 1880 } 1881 } 1882 1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1884 { 1885 struct kvm *kvm = v->kvm; 1886 1887 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1888 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1889 KVMCLOCK_UPDATE_DELAY); 1890 } 1891 1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1893 1894 static void kvmclock_sync_fn(struct work_struct *work) 1895 { 1896 struct delayed_work *dwork = to_delayed_work(work); 1897 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1898 kvmclock_sync_work); 1899 struct kvm *kvm = container_of(ka, struct kvm, arch); 1900 1901 if (!kvmclock_periodic_sync) 1902 return; 1903 1904 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1905 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1906 KVMCLOCK_SYNC_PERIOD); 1907 } 1908 1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1910 { 1911 u64 mcg_cap = vcpu->arch.mcg_cap; 1912 unsigned bank_num = mcg_cap & 0xff; 1913 1914 switch (msr) { 1915 case MSR_IA32_MCG_STATUS: 1916 vcpu->arch.mcg_status = data; 1917 break; 1918 case MSR_IA32_MCG_CTL: 1919 if (!(mcg_cap & MCG_CTL_P)) 1920 return 1; 1921 if (data != 0 && data != ~(u64)0) 1922 return -1; 1923 vcpu->arch.mcg_ctl = data; 1924 break; 1925 default: 1926 if (msr >= MSR_IA32_MC0_CTL && 1927 msr < MSR_IA32_MCx_CTL(bank_num)) { 1928 u32 offset = msr - MSR_IA32_MC0_CTL; 1929 /* only 0 or all 1s can be written to IA32_MCi_CTL 1930 * some Linux kernels though clear bit 10 in bank 4 to 1931 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1932 * this to avoid an uncatched #GP in the guest 1933 */ 1934 if ((offset & 0x3) == 0 && 1935 data != 0 && (data | (1 << 10)) != ~(u64)0) 1936 return -1; 1937 vcpu->arch.mce_banks[offset] = data; 1938 break; 1939 } 1940 return 1; 1941 } 1942 return 0; 1943 } 1944 1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1946 { 1947 struct kvm *kvm = vcpu->kvm; 1948 int lm = is_long_mode(vcpu); 1949 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1950 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1951 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1952 : kvm->arch.xen_hvm_config.blob_size_32; 1953 u32 page_num = data & ~PAGE_MASK; 1954 u64 page_addr = data & PAGE_MASK; 1955 u8 *page; 1956 int r; 1957 1958 r = -E2BIG; 1959 if (page_num >= blob_size) 1960 goto out; 1961 r = -ENOMEM; 1962 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1963 if (IS_ERR(page)) { 1964 r = PTR_ERR(page); 1965 goto out; 1966 } 1967 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 1968 goto out_free; 1969 r = 0; 1970 out_free: 1971 kfree(page); 1972 out: 1973 return r; 1974 } 1975 1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1977 { 1978 gpa_t gpa = data & ~0x3f; 1979 1980 /* Bits 2:5 are reserved, Should be zero */ 1981 if (data & 0x3c) 1982 return 1; 1983 1984 vcpu->arch.apf.msr_val = data; 1985 1986 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1987 kvm_clear_async_pf_completion_queue(vcpu); 1988 kvm_async_pf_hash_reset(vcpu); 1989 return 0; 1990 } 1991 1992 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1993 sizeof(u32))) 1994 return 1; 1995 1996 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1997 kvm_async_pf_wakeup_all(vcpu); 1998 return 0; 1999 } 2000 2001 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2002 { 2003 vcpu->arch.pv_time_enabled = false; 2004 } 2005 2006 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 2007 { 2008 u64 delta; 2009 2010 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2011 return; 2012 2013 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 2014 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2015 vcpu->arch.st.accum_steal = delta; 2016 } 2017 2018 static void record_steal_time(struct kvm_vcpu *vcpu) 2019 { 2020 accumulate_steal_time(vcpu); 2021 2022 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2023 return; 2024 2025 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2026 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2027 return; 2028 2029 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 2030 vcpu->arch.st.steal.version += 2; 2031 vcpu->arch.st.accum_steal = 0; 2032 2033 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2034 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2035 } 2036 2037 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2038 { 2039 bool pr = false; 2040 u32 msr = msr_info->index; 2041 u64 data = msr_info->data; 2042 2043 switch (msr) { 2044 case MSR_AMD64_NB_CFG: 2045 case MSR_IA32_UCODE_REV: 2046 case MSR_IA32_UCODE_WRITE: 2047 case MSR_VM_HSAVE_PA: 2048 case MSR_AMD64_PATCH_LOADER: 2049 case MSR_AMD64_BU_CFG2: 2050 break; 2051 2052 case MSR_EFER: 2053 return set_efer(vcpu, data); 2054 case MSR_K7_HWCR: 2055 data &= ~(u64)0x40; /* ignore flush filter disable */ 2056 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2057 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2058 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2059 if (data != 0) { 2060 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2061 data); 2062 return 1; 2063 } 2064 break; 2065 case MSR_FAM10H_MMIO_CONF_BASE: 2066 if (data != 0) { 2067 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2068 "0x%llx\n", data); 2069 return 1; 2070 } 2071 break; 2072 case MSR_IA32_DEBUGCTLMSR: 2073 if (!data) { 2074 /* We support the non-activated case already */ 2075 break; 2076 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2077 /* Values other than LBR and BTF are vendor-specific, 2078 thus reserved and should throw a #GP */ 2079 return 1; 2080 } 2081 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2082 __func__, data); 2083 break; 2084 case 0x200 ... 0x2ff: 2085 return kvm_mtrr_set_msr(vcpu, msr, data); 2086 case MSR_IA32_APICBASE: 2087 return kvm_set_apic_base(vcpu, msr_info); 2088 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2089 return kvm_x2apic_msr_write(vcpu, msr, data); 2090 case MSR_IA32_TSCDEADLINE: 2091 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2092 break; 2093 case MSR_IA32_TSC_ADJUST: 2094 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2095 if (!msr_info->host_initiated) { 2096 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2097 adjust_tsc_offset_guest(vcpu, adj); 2098 } 2099 vcpu->arch.ia32_tsc_adjust_msr = data; 2100 } 2101 break; 2102 case MSR_IA32_MISC_ENABLE: 2103 vcpu->arch.ia32_misc_enable_msr = data; 2104 break; 2105 case MSR_IA32_SMBASE: 2106 if (!msr_info->host_initiated) 2107 return 1; 2108 vcpu->arch.smbase = data; 2109 break; 2110 case MSR_KVM_WALL_CLOCK_NEW: 2111 case MSR_KVM_WALL_CLOCK: 2112 vcpu->kvm->arch.wall_clock = data; 2113 kvm_write_wall_clock(vcpu->kvm, data); 2114 break; 2115 case MSR_KVM_SYSTEM_TIME_NEW: 2116 case MSR_KVM_SYSTEM_TIME: { 2117 u64 gpa_offset; 2118 struct kvm_arch *ka = &vcpu->kvm->arch; 2119 2120 kvmclock_reset(vcpu); 2121 2122 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2123 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2124 2125 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2126 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 2127 &vcpu->requests); 2128 2129 ka->boot_vcpu_runs_old_kvmclock = tmp; 2130 } 2131 2132 vcpu->arch.time = data; 2133 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2134 2135 /* we verify if the enable bit is set... */ 2136 if (!(data & 1)) 2137 break; 2138 2139 gpa_offset = data & ~(PAGE_MASK | 1); 2140 2141 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2142 &vcpu->arch.pv_time, data & ~1ULL, 2143 sizeof(struct pvclock_vcpu_time_info))) 2144 vcpu->arch.pv_time_enabled = false; 2145 else 2146 vcpu->arch.pv_time_enabled = true; 2147 2148 break; 2149 } 2150 case MSR_KVM_ASYNC_PF_EN: 2151 if (kvm_pv_enable_async_pf(vcpu, data)) 2152 return 1; 2153 break; 2154 case MSR_KVM_STEAL_TIME: 2155 2156 if (unlikely(!sched_info_on())) 2157 return 1; 2158 2159 if (data & KVM_STEAL_RESERVED_MASK) 2160 return 1; 2161 2162 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2163 data & KVM_STEAL_VALID_BITS, 2164 sizeof(struct kvm_steal_time))) 2165 return 1; 2166 2167 vcpu->arch.st.msr_val = data; 2168 2169 if (!(data & KVM_MSR_ENABLED)) 2170 break; 2171 2172 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2173 2174 break; 2175 case MSR_KVM_PV_EOI_EN: 2176 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2177 return 1; 2178 break; 2179 2180 case MSR_IA32_MCG_CTL: 2181 case MSR_IA32_MCG_STATUS: 2182 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2183 return set_msr_mce(vcpu, msr, data); 2184 2185 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2186 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2187 pr = true; /* fall through */ 2188 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2189 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2190 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2191 return kvm_pmu_set_msr(vcpu, msr_info); 2192 2193 if (pr || data != 0) 2194 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2195 "0x%x data 0x%llx\n", msr, data); 2196 break; 2197 case MSR_K7_CLK_CTL: 2198 /* 2199 * Ignore all writes to this no longer documented MSR. 2200 * Writes are only relevant for old K7 processors, 2201 * all pre-dating SVM, but a recommended workaround from 2202 * AMD for these chips. It is possible to specify the 2203 * affected processor models on the command line, hence 2204 * the need to ignore the workaround. 2205 */ 2206 break; 2207 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2208 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2209 case HV_X64_MSR_CRASH_CTL: 2210 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2211 return kvm_hv_set_msr_common(vcpu, msr, data, 2212 msr_info->host_initiated); 2213 case MSR_IA32_BBL_CR_CTL3: 2214 /* Drop writes to this legacy MSR -- see rdmsr 2215 * counterpart for further detail. 2216 */ 2217 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2218 break; 2219 case MSR_AMD64_OSVW_ID_LENGTH: 2220 if (!guest_cpuid_has_osvw(vcpu)) 2221 return 1; 2222 vcpu->arch.osvw.length = data; 2223 break; 2224 case MSR_AMD64_OSVW_STATUS: 2225 if (!guest_cpuid_has_osvw(vcpu)) 2226 return 1; 2227 vcpu->arch.osvw.status = data; 2228 break; 2229 default: 2230 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2231 return xen_hvm_config(vcpu, data); 2232 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2233 return kvm_pmu_set_msr(vcpu, msr_info); 2234 if (!ignore_msrs) { 2235 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2236 msr, data); 2237 return 1; 2238 } else { 2239 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2240 msr, data); 2241 break; 2242 } 2243 } 2244 return 0; 2245 } 2246 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2247 2248 2249 /* 2250 * Reads an msr value (of 'msr_index') into 'pdata'. 2251 * Returns 0 on success, non-0 otherwise. 2252 * Assumes vcpu_load() was already called. 2253 */ 2254 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2255 { 2256 return kvm_x86_ops->get_msr(vcpu, msr); 2257 } 2258 EXPORT_SYMBOL_GPL(kvm_get_msr); 2259 2260 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2261 { 2262 u64 data; 2263 u64 mcg_cap = vcpu->arch.mcg_cap; 2264 unsigned bank_num = mcg_cap & 0xff; 2265 2266 switch (msr) { 2267 case MSR_IA32_P5_MC_ADDR: 2268 case MSR_IA32_P5_MC_TYPE: 2269 data = 0; 2270 break; 2271 case MSR_IA32_MCG_CAP: 2272 data = vcpu->arch.mcg_cap; 2273 break; 2274 case MSR_IA32_MCG_CTL: 2275 if (!(mcg_cap & MCG_CTL_P)) 2276 return 1; 2277 data = vcpu->arch.mcg_ctl; 2278 break; 2279 case MSR_IA32_MCG_STATUS: 2280 data = vcpu->arch.mcg_status; 2281 break; 2282 default: 2283 if (msr >= MSR_IA32_MC0_CTL && 2284 msr < MSR_IA32_MCx_CTL(bank_num)) { 2285 u32 offset = msr - MSR_IA32_MC0_CTL; 2286 data = vcpu->arch.mce_banks[offset]; 2287 break; 2288 } 2289 return 1; 2290 } 2291 *pdata = data; 2292 return 0; 2293 } 2294 2295 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2296 { 2297 switch (msr_info->index) { 2298 case MSR_IA32_PLATFORM_ID: 2299 case MSR_IA32_EBL_CR_POWERON: 2300 case MSR_IA32_DEBUGCTLMSR: 2301 case MSR_IA32_LASTBRANCHFROMIP: 2302 case MSR_IA32_LASTBRANCHTOIP: 2303 case MSR_IA32_LASTINTFROMIP: 2304 case MSR_IA32_LASTINTTOIP: 2305 case MSR_K8_SYSCFG: 2306 case MSR_K8_TSEG_ADDR: 2307 case MSR_K8_TSEG_MASK: 2308 case MSR_K7_HWCR: 2309 case MSR_VM_HSAVE_PA: 2310 case MSR_K8_INT_PENDING_MSG: 2311 case MSR_AMD64_NB_CFG: 2312 case MSR_FAM10H_MMIO_CONF_BASE: 2313 case MSR_AMD64_BU_CFG2: 2314 msr_info->data = 0; 2315 break; 2316 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2317 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2318 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2319 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2320 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2321 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2322 msr_info->data = 0; 2323 break; 2324 case MSR_IA32_UCODE_REV: 2325 msr_info->data = 0x100000000ULL; 2326 break; 2327 case MSR_MTRRcap: 2328 case 0x200 ... 0x2ff: 2329 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2330 case 0xcd: /* fsb frequency */ 2331 msr_info->data = 3; 2332 break; 2333 /* 2334 * MSR_EBC_FREQUENCY_ID 2335 * Conservative value valid for even the basic CPU models. 2336 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2337 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2338 * and 266MHz for model 3, or 4. Set Core Clock 2339 * Frequency to System Bus Frequency Ratio to 1 (bits 2340 * 31:24) even though these are only valid for CPU 2341 * models > 2, however guests may end up dividing or 2342 * multiplying by zero otherwise. 2343 */ 2344 case MSR_EBC_FREQUENCY_ID: 2345 msr_info->data = 1 << 24; 2346 break; 2347 case MSR_IA32_APICBASE: 2348 msr_info->data = kvm_get_apic_base(vcpu); 2349 break; 2350 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2351 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2352 break; 2353 case MSR_IA32_TSCDEADLINE: 2354 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2355 break; 2356 case MSR_IA32_TSC_ADJUST: 2357 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2358 break; 2359 case MSR_IA32_MISC_ENABLE: 2360 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2361 break; 2362 case MSR_IA32_SMBASE: 2363 if (!msr_info->host_initiated) 2364 return 1; 2365 msr_info->data = vcpu->arch.smbase; 2366 break; 2367 case MSR_IA32_PERF_STATUS: 2368 /* TSC increment by tick */ 2369 msr_info->data = 1000ULL; 2370 /* CPU multiplier */ 2371 msr_info->data |= (((uint64_t)4ULL) << 40); 2372 break; 2373 case MSR_EFER: 2374 msr_info->data = vcpu->arch.efer; 2375 break; 2376 case MSR_KVM_WALL_CLOCK: 2377 case MSR_KVM_WALL_CLOCK_NEW: 2378 msr_info->data = vcpu->kvm->arch.wall_clock; 2379 break; 2380 case MSR_KVM_SYSTEM_TIME: 2381 case MSR_KVM_SYSTEM_TIME_NEW: 2382 msr_info->data = vcpu->arch.time; 2383 break; 2384 case MSR_KVM_ASYNC_PF_EN: 2385 msr_info->data = vcpu->arch.apf.msr_val; 2386 break; 2387 case MSR_KVM_STEAL_TIME: 2388 msr_info->data = vcpu->arch.st.msr_val; 2389 break; 2390 case MSR_KVM_PV_EOI_EN: 2391 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2392 break; 2393 case MSR_IA32_P5_MC_ADDR: 2394 case MSR_IA32_P5_MC_TYPE: 2395 case MSR_IA32_MCG_CAP: 2396 case MSR_IA32_MCG_CTL: 2397 case MSR_IA32_MCG_STATUS: 2398 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2399 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2400 case MSR_K7_CLK_CTL: 2401 /* 2402 * Provide expected ramp-up count for K7. All other 2403 * are set to zero, indicating minimum divisors for 2404 * every field. 2405 * 2406 * This prevents guest kernels on AMD host with CPU 2407 * type 6, model 8 and higher from exploding due to 2408 * the rdmsr failing. 2409 */ 2410 msr_info->data = 0x20000000; 2411 break; 2412 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2413 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2414 case HV_X64_MSR_CRASH_CTL: 2415 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2416 return kvm_hv_get_msr_common(vcpu, 2417 msr_info->index, &msr_info->data); 2418 break; 2419 case MSR_IA32_BBL_CR_CTL3: 2420 /* This legacy MSR exists but isn't fully documented in current 2421 * silicon. It is however accessed by winxp in very narrow 2422 * scenarios where it sets bit #19, itself documented as 2423 * a "reserved" bit. Best effort attempt to source coherent 2424 * read data here should the balance of the register be 2425 * interpreted by the guest: 2426 * 2427 * L2 cache control register 3: 64GB range, 256KB size, 2428 * enabled, latency 0x1, configured 2429 */ 2430 msr_info->data = 0xbe702111; 2431 break; 2432 case MSR_AMD64_OSVW_ID_LENGTH: 2433 if (!guest_cpuid_has_osvw(vcpu)) 2434 return 1; 2435 msr_info->data = vcpu->arch.osvw.length; 2436 break; 2437 case MSR_AMD64_OSVW_STATUS: 2438 if (!guest_cpuid_has_osvw(vcpu)) 2439 return 1; 2440 msr_info->data = vcpu->arch.osvw.status; 2441 break; 2442 default: 2443 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2444 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2445 if (!ignore_msrs) { 2446 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index); 2447 return 1; 2448 } else { 2449 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2450 msr_info->data = 0; 2451 } 2452 break; 2453 } 2454 return 0; 2455 } 2456 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2457 2458 /* 2459 * Read or write a bunch of msrs. All parameters are kernel addresses. 2460 * 2461 * @return number of msrs set successfully. 2462 */ 2463 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2464 struct kvm_msr_entry *entries, 2465 int (*do_msr)(struct kvm_vcpu *vcpu, 2466 unsigned index, u64 *data)) 2467 { 2468 int i, idx; 2469 2470 idx = srcu_read_lock(&vcpu->kvm->srcu); 2471 for (i = 0; i < msrs->nmsrs; ++i) 2472 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2473 break; 2474 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2475 2476 return i; 2477 } 2478 2479 /* 2480 * Read or write a bunch of msrs. Parameters are user addresses. 2481 * 2482 * @return number of msrs set successfully. 2483 */ 2484 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2485 int (*do_msr)(struct kvm_vcpu *vcpu, 2486 unsigned index, u64 *data), 2487 int writeback) 2488 { 2489 struct kvm_msrs msrs; 2490 struct kvm_msr_entry *entries; 2491 int r, n; 2492 unsigned size; 2493 2494 r = -EFAULT; 2495 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2496 goto out; 2497 2498 r = -E2BIG; 2499 if (msrs.nmsrs >= MAX_IO_MSRS) 2500 goto out; 2501 2502 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2503 entries = memdup_user(user_msrs->entries, size); 2504 if (IS_ERR(entries)) { 2505 r = PTR_ERR(entries); 2506 goto out; 2507 } 2508 2509 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2510 if (r < 0) 2511 goto out_free; 2512 2513 r = -EFAULT; 2514 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2515 goto out_free; 2516 2517 r = n; 2518 2519 out_free: 2520 kfree(entries); 2521 out: 2522 return r; 2523 } 2524 2525 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2526 { 2527 int r; 2528 2529 switch (ext) { 2530 case KVM_CAP_IRQCHIP: 2531 case KVM_CAP_HLT: 2532 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2533 case KVM_CAP_SET_TSS_ADDR: 2534 case KVM_CAP_EXT_CPUID: 2535 case KVM_CAP_EXT_EMUL_CPUID: 2536 case KVM_CAP_CLOCKSOURCE: 2537 case KVM_CAP_PIT: 2538 case KVM_CAP_NOP_IO_DELAY: 2539 case KVM_CAP_MP_STATE: 2540 case KVM_CAP_SYNC_MMU: 2541 case KVM_CAP_USER_NMI: 2542 case KVM_CAP_REINJECT_CONTROL: 2543 case KVM_CAP_IRQ_INJECT_STATUS: 2544 case KVM_CAP_IOEVENTFD: 2545 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2546 case KVM_CAP_PIT2: 2547 case KVM_CAP_PIT_STATE2: 2548 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2549 case KVM_CAP_XEN_HVM: 2550 case KVM_CAP_ADJUST_CLOCK: 2551 case KVM_CAP_VCPU_EVENTS: 2552 case KVM_CAP_HYPERV: 2553 case KVM_CAP_HYPERV_VAPIC: 2554 case KVM_CAP_HYPERV_SPIN: 2555 case KVM_CAP_HYPERV_SYNIC: 2556 case KVM_CAP_PCI_SEGMENT: 2557 case KVM_CAP_DEBUGREGS: 2558 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2559 case KVM_CAP_XSAVE: 2560 case KVM_CAP_ASYNC_PF: 2561 case KVM_CAP_GET_TSC_KHZ: 2562 case KVM_CAP_KVMCLOCK_CTRL: 2563 case KVM_CAP_READONLY_MEM: 2564 case KVM_CAP_HYPERV_TIME: 2565 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2566 case KVM_CAP_TSC_DEADLINE_TIMER: 2567 case KVM_CAP_ENABLE_CAP_VM: 2568 case KVM_CAP_DISABLE_QUIRKS: 2569 case KVM_CAP_SET_BOOT_CPU_ID: 2570 case KVM_CAP_SPLIT_IRQCHIP: 2571 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2572 case KVM_CAP_ASSIGN_DEV_IRQ: 2573 case KVM_CAP_PCI_2_3: 2574 #endif 2575 r = 1; 2576 break; 2577 case KVM_CAP_X86_SMM: 2578 /* SMBASE is usually relocated above 1M on modern chipsets, 2579 * and SMM handlers might indeed rely on 4G segment limits, 2580 * so do not report SMM to be available if real mode is 2581 * emulated via vm86 mode. Still, do not go to great lengths 2582 * to avoid userspace's usage of the feature, because it is a 2583 * fringe case that is not enabled except via specific settings 2584 * of the module parameters. 2585 */ 2586 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2587 break; 2588 case KVM_CAP_COALESCED_MMIO: 2589 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2590 break; 2591 case KVM_CAP_VAPIC: 2592 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2593 break; 2594 case KVM_CAP_NR_VCPUS: 2595 r = KVM_SOFT_MAX_VCPUS; 2596 break; 2597 case KVM_CAP_MAX_VCPUS: 2598 r = KVM_MAX_VCPUS; 2599 break; 2600 case KVM_CAP_NR_MEMSLOTS: 2601 r = KVM_USER_MEM_SLOTS; 2602 break; 2603 case KVM_CAP_PV_MMU: /* obsolete */ 2604 r = 0; 2605 break; 2606 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2607 case KVM_CAP_IOMMU: 2608 r = iommu_present(&pci_bus_type); 2609 break; 2610 #endif 2611 case KVM_CAP_MCE: 2612 r = KVM_MAX_MCE_BANKS; 2613 break; 2614 case KVM_CAP_XCRS: 2615 r = cpu_has_xsave; 2616 break; 2617 case KVM_CAP_TSC_CONTROL: 2618 r = kvm_has_tsc_control; 2619 break; 2620 default: 2621 r = 0; 2622 break; 2623 } 2624 return r; 2625 2626 } 2627 2628 long kvm_arch_dev_ioctl(struct file *filp, 2629 unsigned int ioctl, unsigned long arg) 2630 { 2631 void __user *argp = (void __user *)arg; 2632 long r; 2633 2634 switch (ioctl) { 2635 case KVM_GET_MSR_INDEX_LIST: { 2636 struct kvm_msr_list __user *user_msr_list = argp; 2637 struct kvm_msr_list msr_list; 2638 unsigned n; 2639 2640 r = -EFAULT; 2641 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2642 goto out; 2643 n = msr_list.nmsrs; 2644 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2645 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2646 goto out; 2647 r = -E2BIG; 2648 if (n < msr_list.nmsrs) 2649 goto out; 2650 r = -EFAULT; 2651 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2652 num_msrs_to_save * sizeof(u32))) 2653 goto out; 2654 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2655 &emulated_msrs, 2656 num_emulated_msrs * sizeof(u32))) 2657 goto out; 2658 r = 0; 2659 break; 2660 } 2661 case KVM_GET_SUPPORTED_CPUID: 2662 case KVM_GET_EMULATED_CPUID: { 2663 struct kvm_cpuid2 __user *cpuid_arg = argp; 2664 struct kvm_cpuid2 cpuid; 2665 2666 r = -EFAULT; 2667 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2668 goto out; 2669 2670 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2671 ioctl); 2672 if (r) 2673 goto out; 2674 2675 r = -EFAULT; 2676 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2677 goto out; 2678 r = 0; 2679 break; 2680 } 2681 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2682 u64 mce_cap; 2683 2684 mce_cap = KVM_MCE_CAP_SUPPORTED; 2685 r = -EFAULT; 2686 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2687 goto out; 2688 r = 0; 2689 break; 2690 } 2691 default: 2692 r = -EINVAL; 2693 } 2694 out: 2695 return r; 2696 } 2697 2698 static void wbinvd_ipi(void *garbage) 2699 { 2700 wbinvd(); 2701 } 2702 2703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2704 { 2705 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2706 } 2707 2708 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) 2709 { 2710 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); 2711 } 2712 2713 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2714 { 2715 /* Address WBINVD may be executed by guest */ 2716 if (need_emulate_wbinvd(vcpu)) { 2717 if (kvm_x86_ops->has_wbinvd_exit()) 2718 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2719 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2720 smp_call_function_single(vcpu->cpu, 2721 wbinvd_ipi, NULL, 1); 2722 } 2723 2724 kvm_x86_ops->vcpu_load(vcpu, cpu); 2725 2726 /* Apply any externally detected TSC adjustments (due to suspend) */ 2727 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2728 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2729 vcpu->arch.tsc_offset_adjustment = 0; 2730 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2731 } 2732 2733 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2734 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2735 rdtsc() - vcpu->arch.last_host_tsc; 2736 if (tsc_delta < 0) 2737 mark_tsc_unstable("KVM discovered backwards TSC"); 2738 if (check_tsc_unstable()) { 2739 u64 offset = kvm_compute_tsc_offset(vcpu, 2740 vcpu->arch.last_guest_tsc); 2741 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2742 vcpu->arch.tsc_catchup = 1; 2743 } 2744 /* 2745 * On a host with synchronized TSC, there is no need to update 2746 * kvmclock on vcpu->cpu migration 2747 */ 2748 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2749 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2750 if (vcpu->cpu != cpu) 2751 kvm_migrate_timers(vcpu); 2752 vcpu->cpu = cpu; 2753 } 2754 2755 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2756 } 2757 2758 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2759 { 2760 kvm_x86_ops->vcpu_put(vcpu); 2761 kvm_put_guest_fpu(vcpu); 2762 vcpu->arch.last_host_tsc = rdtsc(); 2763 } 2764 2765 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2766 struct kvm_lapic_state *s) 2767 { 2768 if (vcpu->arch.apicv_active) 2769 kvm_x86_ops->sync_pir_to_irr(vcpu); 2770 2771 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2772 2773 return 0; 2774 } 2775 2776 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2777 struct kvm_lapic_state *s) 2778 { 2779 kvm_apic_post_state_restore(vcpu, s); 2780 update_cr8_intercept(vcpu); 2781 2782 return 0; 2783 } 2784 2785 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2786 { 2787 return (!lapic_in_kernel(vcpu) || 2788 kvm_apic_accept_pic_intr(vcpu)); 2789 } 2790 2791 /* 2792 * if userspace requested an interrupt window, check that the 2793 * interrupt window is open. 2794 * 2795 * No need to exit to userspace if we already have an interrupt queued. 2796 */ 2797 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2798 { 2799 return kvm_arch_interrupt_allowed(vcpu) && 2800 !kvm_cpu_has_interrupt(vcpu) && 2801 !kvm_event_needs_reinjection(vcpu) && 2802 kvm_cpu_accept_dm_intr(vcpu); 2803 } 2804 2805 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2806 struct kvm_interrupt *irq) 2807 { 2808 if (irq->irq >= KVM_NR_INTERRUPTS) 2809 return -EINVAL; 2810 2811 if (!irqchip_in_kernel(vcpu->kvm)) { 2812 kvm_queue_interrupt(vcpu, irq->irq, false); 2813 kvm_make_request(KVM_REQ_EVENT, vcpu); 2814 return 0; 2815 } 2816 2817 /* 2818 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2819 * fail for in-kernel 8259. 2820 */ 2821 if (pic_in_kernel(vcpu->kvm)) 2822 return -ENXIO; 2823 2824 if (vcpu->arch.pending_external_vector != -1) 2825 return -EEXIST; 2826 2827 vcpu->arch.pending_external_vector = irq->irq; 2828 kvm_make_request(KVM_REQ_EVENT, vcpu); 2829 return 0; 2830 } 2831 2832 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2833 { 2834 kvm_inject_nmi(vcpu); 2835 2836 return 0; 2837 } 2838 2839 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2840 { 2841 kvm_make_request(KVM_REQ_SMI, vcpu); 2842 2843 return 0; 2844 } 2845 2846 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2847 struct kvm_tpr_access_ctl *tac) 2848 { 2849 if (tac->flags) 2850 return -EINVAL; 2851 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2852 return 0; 2853 } 2854 2855 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2856 u64 mcg_cap) 2857 { 2858 int r; 2859 unsigned bank_num = mcg_cap & 0xff, bank; 2860 2861 r = -EINVAL; 2862 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2863 goto out; 2864 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2865 goto out; 2866 r = 0; 2867 vcpu->arch.mcg_cap = mcg_cap; 2868 /* Init IA32_MCG_CTL to all 1s */ 2869 if (mcg_cap & MCG_CTL_P) 2870 vcpu->arch.mcg_ctl = ~(u64)0; 2871 /* Init IA32_MCi_CTL to all 1s */ 2872 for (bank = 0; bank < bank_num; bank++) 2873 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2874 out: 2875 return r; 2876 } 2877 2878 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2879 struct kvm_x86_mce *mce) 2880 { 2881 u64 mcg_cap = vcpu->arch.mcg_cap; 2882 unsigned bank_num = mcg_cap & 0xff; 2883 u64 *banks = vcpu->arch.mce_banks; 2884 2885 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2886 return -EINVAL; 2887 /* 2888 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2889 * reporting is disabled 2890 */ 2891 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2892 vcpu->arch.mcg_ctl != ~(u64)0) 2893 return 0; 2894 banks += 4 * mce->bank; 2895 /* 2896 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2897 * reporting is disabled for the bank 2898 */ 2899 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2900 return 0; 2901 if (mce->status & MCI_STATUS_UC) { 2902 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2903 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2904 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2905 return 0; 2906 } 2907 if (banks[1] & MCI_STATUS_VAL) 2908 mce->status |= MCI_STATUS_OVER; 2909 banks[2] = mce->addr; 2910 banks[3] = mce->misc; 2911 vcpu->arch.mcg_status = mce->mcg_status; 2912 banks[1] = mce->status; 2913 kvm_queue_exception(vcpu, MC_VECTOR); 2914 } else if (!(banks[1] & MCI_STATUS_VAL) 2915 || !(banks[1] & MCI_STATUS_UC)) { 2916 if (banks[1] & MCI_STATUS_VAL) 2917 mce->status |= MCI_STATUS_OVER; 2918 banks[2] = mce->addr; 2919 banks[3] = mce->misc; 2920 banks[1] = mce->status; 2921 } else 2922 banks[1] |= MCI_STATUS_OVER; 2923 return 0; 2924 } 2925 2926 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2927 struct kvm_vcpu_events *events) 2928 { 2929 process_nmi(vcpu); 2930 events->exception.injected = 2931 vcpu->arch.exception.pending && 2932 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2933 events->exception.nr = vcpu->arch.exception.nr; 2934 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2935 events->exception.pad = 0; 2936 events->exception.error_code = vcpu->arch.exception.error_code; 2937 2938 events->interrupt.injected = 2939 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2940 events->interrupt.nr = vcpu->arch.interrupt.nr; 2941 events->interrupt.soft = 0; 2942 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 2943 2944 events->nmi.injected = vcpu->arch.nmi_injected; 2945 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2946 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2947 events->nmi.pad = 0; 2948 2949 events->sipi_vector = 0; /* never valid when reporting to user space */ 2950 2951 events->smi.smm = is_smm(vcpu); 2952 events->smi.pending = vcpu->arch.smi_pending; 2953 events->smi.smm_inside_nmi = 2954 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 2955 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 2956 2957 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2958 | KVM_VCPUEVENT_VALID_SHADOW 2959 | KVM_VCPUEVENT_VALID_SMM); 2960 memset(&events->reserved, 0, sizeof(events->reserved)); 2961 } 2962 2963 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2964 struct kvm_vcpu_events *events) 2965 { 2966 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2967 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2968 | KVM_VCPUEVENT_VALID_SHADOW 2969 | KVM_VCPUEVENT_VALID_SMM)) 2970 return -EINVAL; 2971 2972 process_nmi(vcpu); 2973 vcpu->arch.exception.pending = events->exception.injected; 2974 vcpu->arch.exception.nr = events->exception.nr; 2975 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2976 vcpu->arch.exception.error_code = events->exception.error_code; 2977 2978 vcpu->arch.interrupt.pending = events->interrupt.injected; 2979 vcpu->arch.interrupt.nr = events->interrupt.nr; 2980 vcpu->arch.interrupt.soft = events->interrupt.soft; 2981 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2982 kvm_x86_ops->set_interrupt_shadow(vcpu, 2983 events->interrupt.shadow); 2984 2985 vcpu->arch.nmi_injected = events->nmi.injected; 2986 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2987 vcpu->arch.nmi_pending = events->nmi.pending; 2988 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2989 2990 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 2991 lapic_in_kernel(vcpu)) 2992 vcpu->arch.apic->sipi_vector = events->sipi_vector; 2993 2994 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 2995 if (events->smi.smm) 2996 vcpu->arch.hflags |= HF_SMM_MASK; 2997 else 2998 vcpu->arch.hflags &= ~HF_SMM_MASK; 2999 vcpu->arch.smi_pending = events->smi.pending; 3000 if (events->smi.smm_inside_nmi) 3001 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3002 else 3003 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3004 if (lapic_in_kernel(vcpu)) { 3005 if (events->smi.latched_init) 3006 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3007 else 3008 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3009 } 3010 } 3011 3012 kvm_make_request(KVM_REQ_EVENT, vcpu); 3013 3014 return 0; 3015 } 3016 3017 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3018 struct kvm_debugregs *dbgregs) 3019 { 3020 unsigned long val; 3021 3022 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3023 kvm_get_dr(vcpu, 6, &val); 3024 dbgregs->dr6 = val; 3025 dbgregs->dr7 = vcpu->arch.dr7; 3026 dbgregs->flags = 0; 3027 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3028 } 3029 3030 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3031 struct kvm_debugregs *dbgregs) 3032 { 3033 if (dbgregs->flags) 3034 return -EINVAL; 3035 3036 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3037 kvm_update_dr0123(vcpu); 3038 vcpu->arch.dr6 = dbgregs->dr6; 3039 kvm_update_dr6(vcpu); 3040 vcpu->arch.dr7 = dbgregs->dr7; 3041 kvm_update_dr7(vcpu); 3042 3043 return 0; 3044 } 3045 3046 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3047 3048 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3049 { 3050 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3051 u64 xstate_bv = xsave->header.xfeatures; 3052 u64 valid; 3053 3054 /* 3055 * Copy legacy XSAVE area, to avoid complications with CPUID 3056 * leaves 0 and 1 in the loop below. 3057 */ 3058 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3059 3060 /* Set XSTATE_BV */ 3061 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3062 3063 /* 3064 * Copy each region from the possibly compacted offset to the 3065 * non-compacted offset. 3066 */ 3067 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3068 while (valid) { 3069 u64 feature = valid & -valid; 3070 int index = fls64(feature) - 1; 3071 void *src = get_xsave_addr(xsave, feature); 3072 3073 if (src) { 3074 u32 size, offset, ecx, edx; 3075 cpuid_count(XSTATE_CPUID, index, 3076 &size, &offset, &ecx, &edx); 3077 memcpy(dest + offset, src, size); 3078 } 3079 3080 valid -= feature; 3081 } 3082 } 3083 3084 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3085 { 3086 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3087 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3088 u64 valid; 3089 3090 /* 3091 * Copy legacy XSAVE area, to avoid complications with CPUID 3092 * leaves 0 and 1 in the loop below. 3093 */ 3094 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3095 3096 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3097 xsave->header.xfeatures = xstate_bv; 3098 if (cpu_has_xsaves) 3099 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3100 3101 /* 3102 * Copy each region from the non-compacted offset to the 3103 * possibly compacted offset. 3104 */ 3105 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3106 while (valid) { 3107 u64 feature = valid & -valid; 3108 int index = fls64(feature) - 1; 3109 void *dest = get_xsave_addr(xsave, feature); 3110 3111 if (dest) { 3112 u32 size, offset, ecx, edx; 3113 cpuid_count(XSTATE_CPUID, index, 3114 &size, &offset, &ecx, &edx); 3115 memcpy(dest, src + offset, size); 3116 } 3117 3118 valid -= feature; 3119 } 3120 } 3121 3122 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3123 struct kvm_xsave *guest_xsave) 3124 { 3125 if (cpu_has_xsave) { 3126 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3127 fill_xsave((u8 *) guest_xsave->region, vcpu); 3128 } else { 3129 memcpy(guest_xsave->region, 3130 &vcpu->arch.guest_fpu.state.fxsave, 3131 sizeof(struct fxregs_state)); 3132 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3133 XFEATURE_MASK_FPSSE; 3134 } 3135 } 3136 3137 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3138 struct kvm_xsave *guest_xsave) 3139 { 3140 u64 xstate_bv = 3141 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3142 3143 if (cpu_has_xsave) { 3144 /* 3145 * Here we allow setting states that are not present in 3146 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3147 * with old userspace. 3148 */ 3149 if (xstate_bv & ~kvm_supported_xcr0()) 3150 return -EINVAL; 3151 load_xsave(vcpu, (u8 *)guest_xsave->region); 3152 } else { 3153 if (xstate_bv & ~XFEATURE_MASK_FPSSE) 3154 return -EINVAL; 3155 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3156 guest_xsave->region, sizeof(struct fxregs_state)); 3157 } 3158 return 0; 3159 } 3160 3161 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3162 struct kvm_xcrs *guest_xcrs) 3163 { 3164 if (!cpu_has_xsave) { 3165 guest_xcrs->nr_xcrs = 0; 3166 return; 3167 } 3168 3169 guest_xcrs->nr_xcrs = 1; 3170 guest_xcrs->flags = 0; 3171 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3172 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3173 } 3174 3175 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3176 struct kvm_xcrs *guest_xcrs) 3177 { 3178 int i, r = 0; 3179 3180 if (!cpu_has_xsave) 3181 return -EINVAL; 3182 3183 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3184 return -EINVAL; 3185 3186 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3187 /* Only support XCR0 currently */ 3188 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3189 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3190 guest_xcrs->xcrs[i].value); 3191 break; 3192 } 3193 if (r) 3194 r = -EINVAL; 3195 return r; 3196 } 3197 3198 /* 3199 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3200 * stopped by the hypervisor. This function will be called from the host only. 3201 * EINVAL is returned when the host attempts to set the flag for a guest that 3202 * does not support pv clocks. 3203 */ 3204 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3205 { 3206 if (!vcpu->arch.pv_time_enabled) 3207 return -EINVAL; 3208 vcpu->arch.pvclock_set_guest_stopped_request = true; 3209 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3210 return 0; 3211 } 3212 3213 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3214 struct kvm_enable_cap *cap) 3215 { 3216 if (cap->flags) 3217 return -EINVAL; 3218 3219 switch (cap->cap) { 3220 case KVM_CAP_HYPERV_SYNIC: 3221 return kvm_hv_activate_synic(vcpu); 3222 default: 3223 return -EINVAL; 3224 } 3225 } 3226 3227 long kvm_arch_vcpu_ioctl(struct file *filp, 3228 unsigned int ioctl, unsigned long arg) 3229 { 3230 struct kvm_vcpu *vcpu = filp->private_data; 3231 void __user *argp = (void __user *)arg; 3232 int r; 3233 union { 3234 struct kvm_lapic_state *lapic; 3235 struct kvm_xsave *xsave; 3236 struct kvm_xcrs *xcrs; 3237 void *buffer; 3238 } u; 3239 3240 u.buffer = NULL; 3241 switch (ioctl) { 3242 case KVM_GET_LAPIC: { 3243 r = -EINVAL; 3244 if (!lapic_in_kernel(vcpu)) 3245 goto out; 3246 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3247 3248 r = -ENOMEM; 3249 if (!u.lapic) 3250 goto out; 3251 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3252 if (r) 3253 goto out; 3254 r = -EFAULT; 3255 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3256 goto out; 3257 r = 0; 3258 break; 3259 } 3260 case KVM_SET_LAPIC: { 3261 r = -EINVAL; 3262 if (!lapic_in_kernel(vcpu)) 3263 goto out; 3264 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3265 if (IS_ERR(u.lapic)) 3266 return PTR_ERR(u.lapic); 3267 3268 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3269 break; 3270 } 3271 case KVM_INTERRUPT: { 3272 struct kvm_interrupt irq; 3273 3274 r = -EFAULT; 3275 if (copy_from_user(&irq, argp, sizeof irq)) 3276 goto out; 3277 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3278 break; 3279 } 3280 case KVM_NMI: { 3281 r = kvm_vcpu_ioctl_nmi(vcpu); 3282 break; 3283 } 3284 case KVM_SMI: { 3285 r = kvm_vcpu_ioctl_smi(vcpu); 3286 break; 3287 } 3288 case KVM_SET_CPUID: { 3289 struct kvm_cpuid __user *cpuid_arg = argp; 3290 struct kvm_cpuid cpuid; 3291 3292 r = -EFAULT; 3293 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3294 goto out; 3295 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3296 break; 3297 } 3298 case KVM_SET_CPUID2: { 3299 struct kvm_cpuid2 __user *cpuid_arg = argp; 3300 struct kvm_cpuid2 cpuid; 3301 3302 r = -EFAULT; 3303 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3304 goto out; 3305 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3306 cpuid_arg->entries); 3307 break; 3308 } 3309 case KVM_GET_CPUID2: { 3310 struct kvm_cpuid2 __user *cpuid_arg = argp; 3311 struct kvm_cpuid2 cpuid; 3312 3313 r = -EFAULT; 3314 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3315 goto out; 3316 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3317 cpuid_arg->entries); 3318 if (r) 3319 goto out; 3320 r = -EFAULT; 3321 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3322 goto out; 3323 r = 0; 3324 break; 3325 } 3326 case KVM_GET_MSRS: 3327 r = msr_io(vcpu, argp, do_get_msr, 1); 3328 break; 3329 case KVM_SET_MSRS: 3330 r = msr_io(vcpu, argp, do_set_msr, 0); 3331 break; 3332 case KVM_TPR_ACCESS_REPORTING: { 3333 struct kvm_tpr_access_ctl tac; 3334 3335 r = -EFAULT; 3336 if (copy_from_user(&tac, argp, sizeof tac)) 3337 goto out; 3338 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3339 if (r) 3340 goto out; 3341 r = -EFAULT; 3342 if (copy_to_user(argp, &tac, sizeof tac)) 3343 goto out; 3344 r = 0; 3345 break; 3346 }; 3347 case KVM_SET_VAPIC_ADDR: { 3348 struct kvm_vapic_addr va; 3349 3350 r = -EINVAL; 3351 if (!lapic_in_kernel(vcpu)) 3352 goto out; 3353 r = -EFAULT; 3354 if (copy_from_user(&va, argp, sizeof va)) 3355 goto out; 3356 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3357 break; 3358 } 3359 case KVM_X86_SETUP_MCE: { 3360 u64 mcg_cap; 3361 3362 r = -EFAULT; 3363 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3364 goto out; 3365 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3366 break; 3367 } 3368 case KVM_X86_SET_MCE: { 3369 struct kvm_x86_mce mce; 3370 3371 r = -EFAULT; 3372 if (copy_from_user(&mce, argp, sizeof mce)) 3373 goto out; 3374 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3375 break; 3376 } 3377 case KVM_GET_VCPU_EVENTS: { 3378 struct kvm_vcpu_events events; 3379 3380 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3381 3382 r = -EFAULT; 3383 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3384 break; 3385 r = 0; 3386 break; 3387 } 3388 case KVM_SET_VCPU_EVENTS: { 3389 struct kvm_vcpu_events events; 3390 3391 r = -EFAULT; 3392 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3393 break; 3394 3395 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3396 break; 3397 } 3398 case KVM_GET_DEBUGREGS: { 3399 struct kvm_debugregs dbgregs; 3400 3401 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3402 3403 r = -EFAULT; 3404 if (copy_to_user(argp, &dbgregs, 3405 sizeof(struct kvm_debugregs))) 3406 break; 3407 r = 0; 3408 break; 3409 } 3410 case KVM_SET_DEBUGREGS: { 3411 struct kvm_debugregs dbgregs; 3412 3413 r = -EFAULT; 3414 if (copy_from_user(&dbgregs, argp, 3415 sizeof(struct kvm_debugregs))) 3416 break; 3417 3418 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3419 break; 3420 } 3421 case KVM_GET_XSAVE: { 3422 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3423 r = -ENOMEM; 3424 if (!u.xsave) 3425 break; 3426 3427 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3428 3429 r = -EFAULT; 3430 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3431 break; 3432 r = 0; 3433 break; 3434 } 3435 case KVM_SET_XSAVE: { 3436 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3437 if (IS_ERR(u.xsave)) 3438 return PTR_ERR(u.xsave); 3439 3440 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3441 break; 3442 } 3443 case KVM_GET_XCRS: { 3444 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3445 r = -ENOMEM; 3446 if (!u.xcrs) 3447 break; 3448 3449 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3450 3451 r = -EFAULT; 3452 if (copy_to_user(argp, u.xcrs, 3453 sizeof(struct kvm_xcrs))) 3454 break; 3455 r = 0; 3456 break; 3457 } 3458 case KVM_SET_XCRS: { 3459 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3460 if (IS_ERR(u.xcrs)) 3461 return PTR_ERR(u.xcrs); 3462 3463 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3464 break; 3465 } 3466 case KVM_SET_TSC_KHZ: { 3467 u32 user_tsc_khz; 3468 3469 r = -EINVAL; 3470 user_tsc_khz = (u32)arg; 3471 3472 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3473 goto out; 3474 3475 if (user_tsc_khz == 0) 3476 user_tsc_khz = tsc_khz; 3477 3478 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3479 r = 0; 3480 3481 goto out; 3482 } 3483 case KVM_GET_TSC_KHZ: { 3484 r = vcpu->arch.virtual_tsc_khz; 3485 goto out; 3486 } 3487 case KVM_KVMCLOCK_CTRL: { 3488 r = kvm_set_guest_paused(vcpu); 3489 goto out; 3490 } 3491 case KVM_ENABLE_CAP: { 3492 struct kvm_enable_cap cap; 3493 3494 r = -EFAULT; 3495 if (copy_from_user(&cap, argp, sizeof(cap))) 3496 goto out; 3497 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3498 break; 3499 } 3500 default: 3501 r = -EINVAL; 3502 } 3503 out: 3504 kfree(u.buffer); 3505 return r; 3506 } 3507 3508 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3509 { 3510 return VM_FAULT_SIGBUS; 3511 } 3512 3513 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3514 { 3515 int ret; 3516 3517 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3518 return -EINVAL; 3519 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3520 return ret; 3521 } 3522 3523 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3524 u64 ident_addr) 3525 { 3526 kvm->arch.ept_identity_map_addr = ident_addr; 3527 return 0; 3528 } 3529 3530 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3531 u32 kvm_nr_mmu_pages) 3532 { 3533 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3534 return -EINVAL; 3535 3536 mutex_lock(&kvm->slots_lock); 3537 3538 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3539 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3540 3541 mutex_unlock(&kvm->slots_lock); 3542 return 0; 3543 } 3544 3545 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3546 { 3547 return kvm->arch.n_max_mmu_pages; 3548 } 3549 3550 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3551 { 3552 int r; 3553 3554 r = 0; 3555 switch (chip->chip_id) { 3556 case KVM_IRQCHIP_PIC_MASTER: 3557 memcpy(&chip->chip.pic, 3558 &pic_irqchip(kvm)->pics[0], 3559 sizeof(struct kvm_pic_state)); 3560 break; 3561 case KVM_IRQCHIP_PIC_SLAVE: 3562 memcpy(&chip->chip.pic, 3563 &pic_irqchip(kvm)->pics[1], 3564 sizeof(struct kvm_pic_state)); 3565 break; 3566 case KVM_IRQCHIP_IOAPIC: 3567 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3568 break; 3569 default: 3570 r = -EINVAL; 3571 break; 3572 } 3573 return r; 3574 } 3575 3576 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3577 { 3578 int r; 3579 3580 r = 0; 3581 switch (chip->chip_id) { 3582 case KVM_IRQCHIP_PIC_MASTER: 3583 spin_lock(&pic_irqchip(kvm)->lock); 3584 memcpy(&pic_irqchip(kvm)->pics[0], 3585 &chip->chip.pic, 3586 sizeof(struct kvm_pic_state)); 3587 spin_unlock(&pic_irqchip(kvm)->lock); 3588 break; 3589 case KVM_IRQCHIP_PIC_SLAVE: 3590 spin_lock(&pic_irqchip(kvm)->lock); 3591 memcpy(&pic_irqchip(kvm)->pics[1], 3592 &chip->chip.pic, 3593 sizeof(struct kvm_pic_state)); 3594 spin_unlock(&pic_irqchip(kvm)->lock); 3595 break; 3596 case KVM_IRQCHIP_IOAPIC: 3597 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3598 break; 3599 default: 3600 r = -EINVAL; 3601 break; 3602 } 3603 kvm_pic_update_irq(pic_irqchip(kvm)); 3604 return r; 3605 } 3606 3607 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3608 { 3609 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3610 3611 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3612 3613 mutex_lock(&kps->lock); 3614 memcpy(ps, &kps->channels, sizeof(*ps)); 3615 mutex_unlock(&kps->lock); 3616 return 0; 3617 } 3618 3619 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3620 { 3621 int i; 3622 struct kvm_pit *pit = kvm->arch.vpit; 3623 3624 mutex_lock(&pit->pit_state.lock); 3625 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3626 for (i = 0; i < 3; i++) 3627 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3628 mutex_unlock(&pit->pit_state.lock); 3629 return 0; 3630 } 3631 3632 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3633 { 3634 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3635 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3636 sizeof(ps->channels)); 3637 ps->flags = kvm->arch.vpit->pit_state.flags; 3638 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3639 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3640 return 0; 3641 } 3642 3643 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3644 { 3645 int start = 0; 3646 int i; 3647 u32 prev_legacy, cur_legacy; 3648 struct kvm_pit *pit = kvm->arch.vpit; 3649 3650 mutex_lock(&pit->pit_state.lock); 3651 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3652 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3653 if (!prev_legacy && cur_legacy) 3654 start = 1; 3655 memcpy(&pit->pit_state.channels, &ps->channels, 3656 sizeof(pit->pit_state.channels)); 3657 pit->pit_state.flags = ps->flags; 3658 for (i = 0; i < 3; i++) 3659 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3660 start && i == 0); 3661 mutex_unlock(&pit->pit_state.lock); 3662 return 0; 3663 } 3664 3665 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3666 struct kvm_reinject_control *control) 3667 { 3668 struct kvm_pit *pit = kvm->arch.vpit; 3669 3670 if (!pit) 3671 return -ENXIO; 3672 3673 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3674 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3675 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3676 */ 3677 mutex_lock(&pit->pit_state.lock); 3678 kvm_pit_set_reinject(pit, control->pit_reinject); 3679 mutex_unlock(&pit->pit_state.lock); 3680 3681 return 0; 3682 } 3683 3684 /** 3685 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3686 * @kvm: kvm instance 3687 * @log: slot id and address to which we copy the log 3688 * 3689 * Steps 1-4 below provide general overview of dirty page logging. See 3690 * kvm_get_dirty_log_protect() function description for additional details. 3691 * 3692 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3693 * always flush the TLB (step 4) even if previous step failed and the dirty 3694 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3695 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3696 * writes will be marked dirty for next log read. 3697 * 3698 * 1. Take a snapshot of the bit and clear it if needed. 3699 * 2. Write protect the corresponding page. 3700 * 3. Copy the snapshot to the userspace. 3701 * 4. Flush TLB's if needed. 3702 */ 3703 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3704 { 3705 bool is_dirty = false; 3706 int r; 3707 3708 mutex_lock(&kvm->slots_lock); 3709 3710 /* 3711 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3712 */ 3713 if (kvm_x86_ops->flush_log_dirty) 3714 kvm_x86_ops->flush_log_dirty(kvm); 3715 3716 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3717 3718 /* 3719 * All the TLBs can be flushed out of mmu lock, see the comments in 3720 * kvm_mmu_slot_remove_write_access(). 3721 */ 3722 lockdep_assert_held(&kvm->slots_lock); 3723 if (is_dirty) 3724 kvm_flush_remote_tlbs(kvm); 3725 3726 mutex_unlock(&kvm->slots_lock); 3727 return r; 3728 } 3729 3730 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3731 bool line_status) 3732 { 3733 if (!irqchip_in_kernel(kvm)) 3734 return -ENXIO; 3735 3736 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3737 irq_event->irq, irq_event->level, 3738 line_status); 3739 return 0; 3740 } 3741 3742 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3743 struct kvm_enable_cap *cap) 3744 { 3745 int r; 3746 3747 if (cap->flags) 3748 return -EINVAL; 3749 3750 switch (cap->cap) { 3751 case KVM_CAP_DISABLE_QUIRKS: 3752 kvm->arch.disabled_quirks = cap->args[0]; 3753 r = 0; 3754 break; 3755 case KVM_CAP_SPLIT_IRQCHIP: { 3756 mutex_lock(&kvm->lock); 3757 r = -EINVAL; 3758 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3759 goto split_irqchip_unlock; 3760 r = -EEXIST; 3761 if (irqchip_in_kernel(kvm)) 3762 goto split_irqchip_unlock; 3763 if (atomic_read(&kvm->online_vcpus)) 3764 goto split_irqchip_unlock; 3765 r = kvm_setup_empty_irq_routing(kvm); 3766 if (r) 3767 goto split_irqchip_unlock; 3768 /* Pairs with irqchip_in_kernel. */ 3769 smp_wmb(); 3770 kvm->arch.irqchip_split = true; 3771 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3772 r = 0; 3773 split_irqchip_unlock: 3774 mutex_unlock(&kvm->lock); 3775 break; 3776 } 3777 default: 3778 r = -EINVAL; 3779 break; 3780 } 3781 return r; 3782 } 3783 3784 long kvm_arch_vm_ioctl(struct file *filp, 3785 unsigned int ioctl, unsigned long arg) 3786 { 3787 struct kvm *kvm = filp->private_data; 3788 void __user *argp = (void __user *)arg; 3789 int r = -ENOTTY; 3790 /* 3791 * This union makes it completely explicit to gcc-3.x 3792 * that these two variables' stack usage should be 3793 * combined, not added together. 3794 */ 3795 union { 3796 struct kvm_pit_state ps; 3797 struct kvm_pit_state2 ps2; 3798 struct kvm_pit_config pit_config; 3799 } u; 3800 3801 switch (ioctl) { 3802 case KVM_SET_TSS_ADDR: 3803 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3804 break; 3805 case KVM_SET_IDENTITY_MAP_ADDR: { 3806 u64 ident_addr; 3807 3808 r = -EFAULT; 3809 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3810 goto out; 3811 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3812 break; 3813 } 3814 case KVM_SET_NR_MMU_PAGES: 3815 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3816 break; 3817 case KVM_GET_NR_MMU_PAGES: 3818 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3819 break; 3820 case KVM_CREATE_IRQCHIP: { 3821 struct kvm_pic *vpic; 3822 3823 mutex_lock(&kvm->lock); 3824 r = -EEXIST; 3825 if (kvm->arch.vpic) 3826 goto create_irqchip_unlock; 3827 r = -EINVAL; 3828 if (atomic_read(&kvm->online_vcpus)) 3829 goto create_irqchip_unlock; 3830 r = -ENOMEM; 3831 vpic = kvm_create_pic(kvm); 3832 if (vpic) { 3833 r = kvm_ioapic_init(kvm); 3834 if (r) { 3835 mutex_lock(&kvm->slots_lock); 3836 kvm_destroy_pic(vpic); 3837 mutex_unlock(&kvm->slots_lock); 3838 goto create_irqchip_unlock; 3839 } 3840 } else 3841 goto create_irqchip_unlock; 3842 r = kvm_setup_default_irq_routing(kvm); 3843 if (r) { 3844 mutex_lock(&kvm->slots_lock); 3845 mutex_lock(&kvm->irq_lock); 3846 kvm_ioapic_destroy(kvm); 3847 kvm_destroy_pic(vpic); 3848 mutex_unlock(&kvm->irq_lock); 3849 mutex_unlock(&kvm->slots_lock); 3850 goto create_irqchip_unlock; 3851 } 3852 /* Write kvm->irq_routing before kvm->arch.vpic. */ 3853 smp_wmb(); 3854 kvm->arch.vpic = vpic; 3855 create_irqchip_unlock: 3856 mutex_unlock(&kvm->lock); 3857 break; 3858 } 3859 case KVM_CREATE_PIT: 3860 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3861 goto create_pit; 3862 case KVM_CREATE_PIT2: 3863 r = -EFAULT; 3864 if (copy_from_user(&u.pit_config, argp, 3865 sizeof(struct kvm_pit_config))) 3866 goto out; 3867 create_pit: 3868 mutex_lock(&kvm->slots_lock); 3869 r = -EEXIST; 3870 if (kvm->arch.vpit) 3871 goto create_pit_unlock; 3872 r = -ENOMEM; 3873 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3874 if (kvm->arch.vpit) 3875 r = 0; 3876 create_pit_unlock: 3877 mutex_unlock(&kvm->slots_lock); 3878 break; 3879 case KVM_GET_IRQCHIP: { 3880 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3881 struct kvm_irqchip *chip; 3882 3883 chip = memdup_user(argp, sizeof(*chip)); 3884 if (IS_ERR(chip)) { 3885 r = PTR_ERR(chip); 3886 goto out; 3887 } 3888 3889 r = -ENXIO; 3890 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) 3891 goto get_irqchip_out; 3892 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3893 if (r) 3894 goto get_irqchip_out; 3895 r = -EFAULT; 3896 if (copy_to_user(argp, chip, sizeof *chip)) 3897 goto get_irqchip_out; 3898 r = 0; 3899 get_irqchip_out: 3900 kfree(chip); 3901 break; 3902 } 3903 case KVM_SET_IRQCHIP: { 3904 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3905 struct kvm_irqchip *chip; 3906 3907 chip = memdup_user(argp, sizeof(*chip)); 3908 if (IS_ERR(chip)) { 3909 r = PTR_ERR(chip); 3910 goto out; 3911 } 3912 3913 r = -ENXIO; 3914 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) 3915 goto set_irqchip_out; 3916 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3917 if (r) 3918 goto set_irqchip_out; 3919 r = 0; 3920 set_irqchip_out: 3921 kfree(chip); 3922 break; 3923 } 3924 case KVM_GET_PIT: { 3925 r = -EFAULT; 3926 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3927 goto out; 3928 r = -ENXIO; 3929 if (!kvm->arch.vpit) 3930 goto out; 3931 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3932 if (r) 3933 goto out; 3934 r = -EFAULT; 3935 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3936 goto out; 3937 r = 0; 3938 break; 3939 } 3940 case KVM_SET_PIT: { 3941 r = -EFAULT; 3942 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3943 goto out; 3944 r = -ENXIO; 3945 if (!kvm->arch.vpit) 3946 goto out; 3947 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3948 break; 3949 } 3950 case KVM_GET_PIT2: { 3951 r = -ENXIO; 3952 if (!kvm->arch.vpit) 3953 goto out; 3954 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3955 if (r) 3956 goto out; 3957 r = -EFAULT; 3958 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3959 goto out; 3960 r = 0; 3961 break; 3962 } 3963 case KVM_SET_PIT2: { 3964 r = -EFAULT; 3965 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3966 goto out; 3967 r = -ENXIO; 3968 if (!kvm->arch.vpit) 3969 goto out; 3970 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3971 break; 3972 } 3973 case KVM_REINJECT_CONTROL: { 3974 struct kvm_reinject_control control; 3975 r = -EFAULT; 3976 if (copy_from_user(&control, argp, sizeof(control))) 3977 goto out; 3978 r = kvm_vm_ioctl_reinject(kvm, &control); 3979 break; 3980 } 3981 case KVM_SET_BOOT_CPU_ID: 3982 r = 0; 3983 mutex_lock(&kvm->lock); 3984 if (atomic_read(&kvm->online_vcpus) != 0) 3985 r = -EBUSY; 3986 else 3987 kvm->arch.bsp_vcpu_id = arg; 3988 mutex_unlock(&kvm->lock); 3989 break; 3990 case KVM_XEN_HVM_CONFIG: { 3991 r = -EFAULT; 3992 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3993 sizeof(struct kvm_xen_hvm_config))) 3994 goto out; 3995 r = -EINVAL; 3996 if (kvm->arch.xen_hvm_config.flags) 3997 goto out; 3998 r = 0; 3999 break; 4000 } 4001 case KVM_SET_CLOCK: { 4002 struct kvm_clock_data user_ns; 4003 u64 now_ns; 4004 s64 delta; 4005 4006 r = -EFAULT; 4007 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4008 goto out; 4009 4010 r = -EINVAL; 4011 if (user_ns.flags) 4012 goto out; 4013 4014 r = 0; 4015 local_irq_disable(); 4016 now_ns = get_kernel_ns(); 4017 delta = user_ns.clock - now_ns; 4018 local_irq_enable(); 4019 kvm->arch.kvmclock_offset = delta; 4020 kvm_gen_update_masterclock(kvm); 4021 break; 4022 } 4023 case KVM_GET_CLOCK: { 4024 struct kvm_clock_data user_ns; 4025 u64 now_ns; 4026 4027 local_irq_disable(); 4028 now_ns = get_kernel_ns(); 4029 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 4030 local_irq_enable(); 4031 user_ns.flags = 0; 4032 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4033 4034 r = -EFAULT; 4035 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4036 goto out; 4037 r = 0; 4038 break; 4039 } 4040 case KVM_ENABLE_CAP: { 4041 struct kvm_enable_cap cap; 4042 4043 r = -EFAULT; 4044 if (copy_from_user(&cap, argp, sizeof(cap))) 4045 goto out; 4046 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4047 break; 4048 } 4049 default: 4050 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 4051 } 4052 out: 4053 return r; 4054 } 4055 4056 static void kvm_init_msr_list(void) 4057 { 4058 u32 dummy[2]; 4059 unsigned i, j; 4060 4061 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4062 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4063 continue; 4064 4065 /* 4066 * Even MSRs that are valid in the host may not be exposed 4067 * to the guests in some cases. 4068 */ 4069 switch (msrs_to_save[i]) { 4070 case MSR_IA32_BNDCFGS: 4071 if (!kvm_x86_ops->mpx_supported()) 4072 continue; 4073 break; 4074 case MSR_TSC_AUX: 4075 if (!kvm_x86_ops->rdtscp_supported()) 4076 continue; 4077 break; 4078 default: 4079 break; 4080 } 4081 4082 if (j < i) 4083 msrs_to_save[j] = msrs_to_save[i]; 4084 j++; 4085 } 4086 num_msrs_to_save = j; 4087 4088 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4089 switch (emulated_msrs[i]) { 4090 case MSR_IA32_SMBASE: 4091 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4092 continue; 4093 break; 4094 default: 4095 break; 4096 } 4097 4098 if (j < i) 4099 emulated_msrs[j] = emulated_msrs[i]; 4100 j++; 4101 } 4102 num_emulated_msrs = j; 4103 } 4104 4105 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4106 const void *v) 4107 { 4108 int handled = 0; 4109 int n; 4110 4111 do { 4112 n = min(len, 8); 4113 if (!(lapic_in_kernel(vcpu) && 4114 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4115 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4116 break; 4117 handled += n; 4118 addr += n; 4119 len -= n; 4120 v += n; 4121 } while (len); 4122 4123 return handled; 4124 } 4125 4126 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4127 { 4128 int handled = 0; 4129 int n; 4130 4131 do { 4132 n = min(len, 8); 4133 if (!(lapic_in_kernel(vcpu) && 4134 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4135 addr, n, v)) 4136 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4137 break; 4138 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4139 handled += n; 4140 addr += n; 4141 len -= n; 4142 v += n; 4143 } while (len); 4144 4145 return handled; 4146 } 4147 4148 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4149 struct kvm_segment *var, int seg) 4150 { 4151 kvm_x86_ops->set_segment(vcpu, var, seg); 4152 } 4153 4154 void kvm_get_segment(struct kvm_vcpu *vcpu, 4155 struct kvm_segment *var, int seg) 4156 { 4157 kvm_x86_ops->get_segment(vcpu, var, seg); 4158 } 4159 4160 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4161 struct x86_exception *exception) 4162 { 4163 gpa_t t_gpa; 4164 4165 BUG_ON(!mmu_is_nested(vcpu)); 4166 4167 /* NPT walks are always user-walks */ 4168 access |= PFERR_USER_MASK; 4169 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4170 4171 return t_gpa; 4172 } 4173 4174 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4175 struct x86_exception *exception) 4176 { 4177 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4178 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4179 } 4180 4181 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4182 struct x86_exception *exception) 4183 { 4184 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4185 access |= PFERR_FETCH_MASK; 4186 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4187 } 4188 4189 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4190 struct x86_exception *exception) 4191 { 4192 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4193 access |= PFERR_WRITE_MASK; 4194 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4195 } 4196 4197 /* uses this to access any guest's mapped memory without checking CPL */ 4198 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4199 struct x86_exception *exception) 4200 { 4201 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4202 } 4203 4204 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4205 struct kvm_vcpu *vcpu, u32 access, 4206 struct x86_exception *exception) 4207 { 4208 void *data = val; 4209 int r = X86EMUL_CONTINUE; 4210 4211 while (bytes) { 4212 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4213 exception); 4214 unsigned offset = addr & (PAGE_SIZE-1); 4215 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4216 int ret; 4217 4218 if (gpa == UNMAPPED_GVA) 4219 return X86EMUL_PROPAGATE_FAULT; 4220 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4221 offset, toread); 4222 if (ret < 0) { 4223 r = X86EMUL_IO_NEEDED; 4224 goto out; 4225 } 4226 4227 bytes -= toread; 4228 data += toread; 4229 addr += toread; 4230 } 4231 out: 4232 return r; 4233 } 4234 4235 /* used for instruction fetching */ 4236 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4237 gva_t addr, void *val, unsigned int bytes, 4238 struct x86_exception *exception) 4239 { 4240 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4241 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4242 unsigned offset; 4243 int ret; 4244 4245 /* Inline kvm_read_guest_virt_helper for speed. */ 4246 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4247 exception); 4248 if (unlikely(gpa == UNMAPPED_GVA)) 4249 return X86EMUL_PROPAGATE_FAULT; 4250 4251 offset = addr & (PAGE_SIZE-1); 4252 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4253 bytes = (unsigned)PAGE_SIZE - offset; 4254 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4255 offset, bytes); 4256 if (unlikely(ret < 0)) 4257 return X86EMUL_IO_NEEDED; 4258 4259 return X86EMUL_CONTINUE; 4260 } 4261 4262 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4263 gva_t addr, void *val, unsigned int bytes, 4264 struct x86_exception *exception) 4265 { 4266 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4267 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4268 4269 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4270 exception); 4271 } 4272 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4273 4274 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4275 gva_t addr, void *val, unsigned int bytes, 4276 struct x86_exception *exception) 4277 { 4278 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4279 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4280 } 4281 4282 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4283 unsigned long addr, void *val, unsigned int bytes) 4284 { 4285 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4286 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4287 4288 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4289 } 4290 4291 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4292 gva_t addr, void *val, 4293 unsigned int bytes, 4294 struct x86_exception *exception) 4295 { 4296 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4297 void *data = val; 4298 int r = X86EMUL_CONTINUE; 4299 4300 while (bytes) { 4301 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4302 PFERR_WRITE_MASK, 4303 exception); 4304 unsigned offset = addr & (PAGE_SIZE-1); 4305 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4306 int ret; 4307 4308 if (gpa == UNMAPPED_GVA) 4309 return X86EMUL_PROPAGATE_FAULT; 4310 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4311 if (ret < 0) { 4312 r = X86EMUL_IO_NEEDED; 4313 goto out; 4314 } 4315 4316 bytes -= towrite; 4317 data += towrite; 4318 addr += towrite; 4319 } 4320 out: 4321 return r; 4322 } 4323 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4324 4325 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4326 gpa_t *gpa, struct x86_exception *exception, 4327 bool write) 4328 { 4329 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4330 | (write ? PFERR_WRITE_MASK : 0); 4331 4332 /* 4333 * currently PKRU is only applied to ept enabled guest so 4334 * there is no pkey in EPT page table for L1 guest or EPT 4335 * shadow page table for L2 guest. 4336 */ 4337 if (vcpu_match_mmio_gva(vcpu, gva) 4338 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4339 vcpu->arch.access, 0, access)) { 4340 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4341 (gva & (PAGE_SIZE - 1)); 4342 trace_vcpu_match_mmio(gva, *gpa, write, false); 4343 return 1; 4344 } 4345 4346 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4347 4348 if (*gpa == UNMAPPED_GVA) 4349 return -1; 4350 4351 /* For APIC access vmexit */ 4352 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4353 return 1; 4354 4355 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4356 trace_vcpu_match_mmio(gva, *gpa, write, true); 4357 return 1; 4358 } 4359 4360 return 0; 4361 } 4362 4363 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4364 const void *val, int bytes) 4365 { 4366 int ret; 4367 4368 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4369 if (ret < 0) 4370 return 0; 4371 kvm_page_track_write(vcpu, gpa, val, bytes); 4372 return 1; 4373 } 4374 4375 struct read_write_emulator_ops { 4376 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4377 int bytes); 4378 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4379 void *val, int bytes); 4380 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4381 int bytes, void *val); 4382 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4383 void *val, int bytes); 4384 bool write; 4385 }; 4386 4387 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4388 { 4389 if (vcpu->mmio_read_completed) { 4390 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4391 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4392 vcpu->mmio_read_completed = 0; 4393 return 1; 4394 } 4395 4396 return 0; 4397 } 4398 4399 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4400 void *val, int bytes) 4401 { 4402 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4403 } 4404 4405 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4406 void *val, int bytes) 4407 { 4408 return emulator_write_phys(vcpu, gpa, val, bytes); 4409 } 4410 4411 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4412 { 4413 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4414 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4415 } 4416 4417 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4418 void *val, int bytes) 4419 { 4420 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4421 return X86EMUL_IO_NEEDED; 4422 } 4423 4424 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4425 void *val, int bytes) 4426 { 4427 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4428 4429 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4430 return X86EMUL_CONTINUE; 4431 } 4432 4433 static const struct read_write_emulator_ops read_emultor = { 4434 .read_write_prepare = read_prepare, 4435 .read_write_emulate = read_emulate, 4436 .read_write_mmio = vcpu_mmio_read, 4437 .read_write_exit_mmio = read_exit_mmio, 4438 }; 4439 4440 static const struct read_write_emulator_ops write_emultor = { 4441 .read_write_emulate = write_emulate, 4442 .read_write_mmio = write_mmio, 4443 .read_write_exit_mmio = write_exit_mmio, 4444 .write = true, 4445 }; 4446 4447 static int emulator_read_write_onepage(unsigned long addr, void *val, 4448 unsigned int bytes, 4449 struct x86_exception *exception, 4450 struct kvm_vcpu *vcpu, 4451 const struct read_write_emulator_ops *ops) 4452 { 4453 gpa_t gpa; 4454 int handled, ret; 4455 bool write = ops->write; 4456 struct kvm_mmio_fragment *frag; 4457 4458 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4459 4460 if (ret < 0) 4461 return X86EMUL_PROPAGATE_FAULT; 4462 4463 /* For APIC access vmexit */ 4464 if (ret) 4465 goto mmio; 4466 4467 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4468 return X86EMUL_CONTINUE; 4469 4470 mmio: 4471 /* 4472 * Is this MMIO handled locally? 4473 */ 4474 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4475 if (handled == bytes) 4476 return X86EMUL_CONTINUE; 4477 4478 gpa += handled; 4479 bytes -= handled; 4480 val += handled; 4481 4482 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4483 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4484 frag->gpa = gpa; 4485 frag->data = val; 4486 frag->len = bytes; 4487 return X86EMUL_CONTINUE; 4488 } 4489 4490 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4491 unsigned long addr, 4492 void *val, unsigned int bytes, 4493 struct x86_exception *exception, 4494 const struct read_write_emulator_ops *ops) 4495 { 4496 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4497 gpa_t gpa; 4498 int rc; 4499 4500 if (ops->read_write_prepare && 4501 ops->read_write_prepare(vcpu, val, bytes)) 4502 return X86EMUL_CONTINUE; 4503 4504 vcpu->mmio_nr_fragments = 0; 4505 4506 /* Crossing a page boundary? */ 4507 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4508 int now; 4509 4510 now = -addr & ~PAGE_MASK; 4511 rc = emulator_read_write_onepage(addr, val, now, exception, 4512 vcpu, ops); 4513 4514 if (rc != X86EMUL_CONTINUE) 4515 return rc; 4516 addr += now; 4517 if (ctxt->mode != X86EMUL_MODE_PROT64) 4518 addr = (u32)addr; 4519 val += now; 4520 bytes -= now; 4521 } 4522 4523 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4524 vcpu, ops); 4525 if (rc != X86EMUL_CONTINUE) 4526 return rc; 4527 4528 if (!vcpu->mmio_nr_fragments) 4529 return rc; 4530 4531 gpa = vcpu->mmio_fragments[0].gpa; 4532 4533 vcpu->mmio_needed = 1; 4534 vcpu->mmio_cur_fragment = 0; 4535 4536 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4537 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4538 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4539 vcpu->run->mmio.phys_addr = gpa; 4540 4541 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4542 } 4543 4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4545 unsigned long addr, 4546 void *val, 4547 unsigned int bytes, 4548 struct x86_exception *exception) 4549 { 4550 return emulator_read_write(ctxt, addr, val, bytes, 4551 exception, &read_emultor); 4552 } 4553 4554 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4555 unsigned long addr, 4556 const void *val, 4557 unsigned int bytes, 4558 struct x86_exception *exception) 4559 { 4560 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4561 exception, &write_emultor); 4562 } 4563 4564 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4565 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4566 4567 #ifdef CONFIG_X86_64 4568 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4569 #else 4570 # define CMPXCHG64(ptr, old, new) \ 4571 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4572 #endif 4573 4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4575 unsigned long addr, 4576 const void *old, 4577 const void *new, 4578 unsigned int bytes, 4579 struct x86_exception *exception) 4580 { 4581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4582 gpa_t gpa; 4583 struct page *page; 4584 char *kaddr; 4585 bool exchanged; 4586 4587 /* guests cmpxchg8b have to be emulated atomically */ 4588 if (bytes > 8 || (bytes & (bytes - 1))) 4589 goto emul_write; 4590 4591 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4592 4593 if (gpa == UNMAPPED_GVA || 4594 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4595 goto emul_write; 4596 4597 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4598 goto emul_write; 4599 4600 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4601 if (is_error_page(page)) 4602 goto emul_write; 4603 4604 kaddr = kmap_atomic(page); 4605 kaddr += offset_in_page(gpa); 4606 switch (bytes) { 4607 case 1: 4608 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4609 break; 4610 case 2: 4611 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4612 break; 4613 case 4: 4614 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4615 break; 4616 case 8: 4617 exchanged = CMPXCHG64(kaddr, old, new); 4618 break; 4619 default: 4620 BUG(); 4621 } 4622 kunmap_atomic(kaddr); 4623 kvm_release_page_dirty(page); 4624 4625 if (!exchanged) 4626 return X86EMUL_CMPXCHG_FAILED; 4627 4628 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4629 kvm_page_track_write(vcpu, gpa, new, bytes); 4630 4631 return X86EMUL_CONTINUE; 4632 4633 emul_write: 4634 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4635 4636 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4637 } 4638 4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4640 { 4641 /* TODO: String I/O for in kernel device */ 4642 int r; 4643 4644 if (vcpu->arch.pio.in) 4645 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4646 vcpu->arch.pio.size, pd); 4647 else 4648 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4649 vcpu->arch.pio.port, vcpu->arch.pio.size, 4650 pd); 4651 return r; 4652 } 4653 4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4655 unsigned short port, void *val, 4656 unsigned int count, bool in) 4657 { 4658 vcpu->arch.pio.port = port; 4659 vcpu->arch.pio.in = in; 4660 vcpu->arch.pio.count = count; 4661 vcpu->arch.pio.size = size; 4662 4663 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4664 vcpu->arch.pio.count = 0; 4665 return 1; 4666 } 4667 4668 vcpu->run->exit_reason = KVM_EXIT_IO; 4669 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4670 vcpu->run->io.size = size; 4671 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4672 vcpu->run->io.count = count; 4673 vcpu->run->io.port = port; 4674 4675 return 0; 4676 } 4677 4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4679 int size, unsigned short port, void *val, 4680 unsigned int count) 4681 { 4682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4683 int ret; 4684 4685 if (vcpu->arch.pio.count) 4686 goto data_avail; 4687 4688 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4689 if (ret) { 4690 data_avail: 4691 memcpy(val, vcpu->arch.pio_data, size * count); 4692 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4693 vcpu->arch.pio.count = 0; 4694 return 1; 4695 } 4696 4697 return 0; 4698 } 4699 4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4701 int size, unsigned short port, 4702 const void *val, unsigned int count) 4703 { 4704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4705 4706 memcpy(vcpu->arch.pio_data, val, size * count); 4707 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4708 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4709 } 4710 4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4712 { 4713 return kvm_x86_ops->get_segment_base(vcpu, seg); 4714 } 4715 4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4717 { 4718 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4719 } 4720 4721 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4722 { 4723 if (!need_emulate_wbinvd(vcpu)) 4724 return X86EMUL_CONTINUE; 4725 4726 if (kvm_x86_ops->has_wbinvd_exit()) { 4727 int cpu = get_cpu(); 4728 4729 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4730 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4731 wbinvd_ipi, NULL, 1); 4732 put_cpu(); 4733 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4734 } else 4735 wbinvd(); 4736 return X86EMUL_CONTINUE; 4737 } 4738 4739 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4740 { 4741 kvm_x86_ops->skip_emulated_instruction(vcpu); 4742 return kvm_emulate_wbinvd_noskip(vcpu); 4743 } 4744 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4745 4746 4747 4748 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4749 { 4750 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4751 } 4752 4753 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4754 unsigned long *dest) 4755 { 4756 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4757 } 4758 4759 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4760 unsigned long value) 4761 { 4762 4763 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4764 } 4765 4766 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4767 { 4768 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4769 } 4770 4771 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4772 { 4773 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4774 unsigned long value; 4775 4776 switch (cr) { 4777 case 0: 4778 value = kvm_read_cr0(vcpu); 4779 break; 4780 case 2: 4781 value = vcpu->arch.cr2; 4782 break; 4783 case 3: 4784 value = kvm_read_cr3(vcpu); 4785 break; 4786 case 4: 4787 value = kvm_read_cr4(vcpu); 4788 break; 4789 case 8: 4790 value = kvm_get_cr8(vcpu); 4791 break; 4792 default: 4793 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4794 return 0; 4795 } 4796 4797 return value; 4798 } 4799 4800 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4801 { 4802 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4803 int res = 0; 4804 4805 switch (cr) { 4806 case 0: 4807 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4808 break; 4809 case 2: 4810 vcpu->arch.cr2 = val; 4811 break; 4812 case 3: 4813 res = kvm_set_cr3(vcpu, val); 4814 break; 4815 case 4: 4816 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4817 break; 4818 case 8: 4819 res = kvm_set_cr8(vcpu, val); 4820 break; 4821 default: 4822 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4823 res = -1; 4824 } 4825 4826 return res; 4827 } 4828 4829 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4830 { 4831 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4832 } 4833 4834 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4835 { 4836 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4837 } 4838 4839 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4840 { 4841 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4842 } 4843 4844 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4845 { 4846 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4847 } 4848 4849 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4850 { 4851 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4852 } 4853 4854 static unsigned long emulator_get_cached_segment_base( 4855 struct x86_emulate_ctxt *ctxt, int seg) 4856 { 4857 return get_segment_base(emul_to_vcpu(ctxt), seg); 4858 } 4859 4860 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4861 struct desc_struct *desc, u32 *base3, 4862 int seg) 4863 { 4864 struct kvm_segment var; 4865 4866 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4867 *selector = var.selector; 4868 4869 if (var.unusable) { 4870 memset(desc, 0, sizeof(*desc)); 4871 return false; 4872 } 4873 4874 if (var.g) 4875 var.limit >>= 12; 4876 set_desc_limit(desc, var.limit); 4877 set_desc_base(desc, (unsigned long)var.base); 4878 #ifdef CONFIG_X86_64 4879 if (base3) 4880 *base3 = var.base >> 32; 4881 #endif 4882 desc->type = var.type; 4883 desc->s = var.s; 4884 desc->dpl = var.dpl; 4885 desc->p = var.present; 4886 desc->avl = var.avl; 4887 desc->l = var.l; 4888 desc->d = var.db; 4889 desc->g = var.g; 4890 4891 return true; 4892 } 4893 4894 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4895 struct desc_struct *desc, u32 base3, 4896 int seg) 4897 { 4898 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4899 struct kvm_segment var; 4900 4901 var.selector = selector; 4902 var.base = get_desc_base(desc); 4903 #ifdef CONFIG_X86_64 4904 var.base |= ((u64)base3) << 32; 4905 #endif 4906 var.limit = get_desc_limit(desc); 4907 if (desc->g) 4908 var.limit = (var.limit << 12) | 0xfff; 4909 var.type = desc->type; 4910 var.dpl = desc->dpl; 4911 var.db = desc->d; 4912 var.s = desc->s; 4913 var.l = desc->l; 4914 var.g = desc->g; 4915 var.avl = desc->avl; 4916 var.present = desc->p; 4917 var.unusable = !var.present; 4918 var.padding = 0; 4919 4920 kvm_set_segment(vcpu, &var, seg); 4921 return; 4922 } 4923 4924 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4925 u32 msr_index, u64 *pdata) 4926 { 4927 struct msr_data msr; 4928 int r; 4929 4930 msr.index = msr_index; 4931 msr.host_initiated = false; 4932 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 4933 if (r) 4934 return r; 4935 4936 *pdata = msr.data; 4937 return 0; 4938 } 4939 4940 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4941 u32 msr_index, u64 data) 4942 { 4943 struct msr_data msr; 4944 4945 msr.data = data; 4946 msr.index = msr_index; 4947 msr.host_initiated = false; 4948 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4949 } 4950 4951 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 4952 { 4953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4954 4955 return vcpu->arch.smbase; 4956 } 4957 4958 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 4959 { 4960 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4961 4962 vcpu->arch.smbase = smbase; 4963 } 4964 4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 4966 u32 pmc) 4967 { 4968 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 4969 } 4970 4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4972 u32 pmc, u64 *pdata) 4973 { 4974 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 4975 } 4976 4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4978 { 4979 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4980 } 4981 4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4983 { 4984 preempt_disable(); 4985 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4986 /* 4987 * CR0.TS may reference the host fpu state, not the guest fpu state, 4988 * so it may be clear at this point. 4989 */ 4990 clts(); 4991 } 4992 4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4994 { 4995 preempt_enable(); 4996 } 4997 4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4999 struct x86_instruction_info *info, 5000 enum x86_intercept_stage stage) 5001 { 5002 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5003 } 5004 5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5006 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5007 { 5008 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5009 } 5010 5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5012 { 5013 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5014 } 5015 5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5017 { 5018 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5019 } 5020 5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5022 { 5023 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5024 } 5025 5026 static const struct x86_emulate_ops emulate_ops = { 5027 .read_gpr = emulator_read_gpr, 5028 .write_gpr = emulator_write_gpr, 5029 .read_std = kvm_read_guest_virt_system, 5030 .write_std = kvm_write_guest_virt_system, 5031 .read_phys = kvm_read_guest_phys_system, 5032 .fetch = kvm_fetch_guest_virt, 5033 .read_emulated = emulator_read_emulated, 5034 .write_emulated = emulator_write_emulated, 5035 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5036 .invlpg = emulator_invlpg, 5037 .pio_in_emulated = emulator_pio_in_emulated, 5038 .pio_out_emulated = emulator_pio_out_emulated, 5039 .get_segment = emulator_get_segment, 5040 .set_segment = emulator_set_segment, 5041 .get_cached_segment_base = emulator_get_cached_segment_base, 5042 .get_gdt = emulator_get_gdt, 5043 .get_idt = emulator_get_idt, 5044 .set_gdt = emulator_set_gdt, 5045 .set_idt = emulator_set_idt, 5046 .get_cr = emulator_get_cr, 5047 .set_cr = emulator_set_cr, 5048 .cpl = emulator_get_cpl, 5049 .get_dr = emulator_get_dr, 5050 .set_dr = emulator_set_dr, 5051 .get_smbase = emulator_get_smbase, 5052 .set_smbase = emulator_set_smbase, 5053 .set_msr = emulator_set_msr, 5054 .get_msr = emulator_get_msr, 5055 .check_pmc = emulator_check_pmc, 5056 .read_pmc = emulator_read_pmc, 5057 .halt = emulator_halt, 5058 .wbinvd = emulator_wbinvd, 5059 .fix_hypercall = emulator_fix_hypercall, 5060 .get_fpu = emulator_get_fpu, 5061 .put_fpu = emulator_put_fpu, 5062 .intercept = emulator_intercept, 5063 .get_cpuid = emulator_get_cpuid, 5064 .set_nmi_mask = emulator_set_nmi_mask, 5065 }; 5066 5067 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5068 { 5069 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5070 /* 5071 * an sti; sti; sequence only disable interrupts for the first 5072 * instruction. So, if the last instruction, be it emulated or 5073 * not, left the system with the INT_STI flag enabled, it 5074 * means that the last instruction is an sti. We should not 5075 * leave the flag on in this case. The same goes for mov ss 5076 */ 5077 if (int_shadow & mask) 5078 mask = 0; 5079 if (unlikely(int_shadow || mask)) { 5080 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5081 if (!mask) 5082 kvm_make_request(KVM_REQ_EVENT, vcpu); 5083 } 5084 } 5085 5086 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5087 { 5088 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5089 if (ctxt->exception.vector == PF_VECTOR) 5090 return kvm_propagate_fault(vcpu, &ctxt->exception); 5091 5092 if (ctxt->exception.error_code_valid) 5093 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5094 ctxt->exception.error_code); 5095 else 5096 kvm_queue_exception(vcpu, ctxt->exception.vector); 5097 return false; 5098 } 5099 5100 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5101 { 5102 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5103 int cs_db, cs_l; 5104 5105 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5106 5107 ctxt->eflags = kvm_get_rflags(vcpu); 5108 ctxt->eip = kvm_rip_read(vcpu); 5109 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5110 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5111 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5112 cs_db ? X86EMUL_MODE_PROT32 : 5113 X86EMUL_MODE_PROT16; 5114 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5115 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5116 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5117 ctxt->emul_flags = vcpu->arch.hflags; 5118 5119 init_decode_cache(ctxt); 5120 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5121 } 5122 5123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5124 { 5125 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5126 int ret; 5127 5128 init_emulate_ctxt(vcpu); 5129 5130 ctxt->op_bytes = 2; 5131 ctxt->ad_bytes = 2; 5132 ctxt->_eip = ctxt->eip + inc_eip; 5133 ret = emulate_int_real(ctxt, irq); 5134 5135 if (ret != X86EMUL_CONTINUE) 5136 return EMULATE_FAIL; 5137 5138 ctxt->eip = ctxt->_eip; 5139 kvm_rip_write(vcpu, ctxt->eip); 5140 kvm_set_rflags(vcpu, ctxt->eflags); 5141 5142 if (irq == NMI_VECTOR) 5143 vcpu->arch.nmi_pending = 0; 5144 else 5145 vcpu->arch.interrupt.pending = false; 5146 5147 return EMULATE_DONE; 5148 } 5149 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5150 5151 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5152 { 5153 int r = EMULATE_DONE; 5154 5155 ++vcpu->stat.insn_emulation_fail; 5156 trace_kvm_emulate_insn_failed(vcpu); 5157 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5158 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5159 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5160 vcpu->run->internal.ndata = 0; 5161 r = EMULATE_FAIL; 5162 } 5163 kvm_queue_exception(vcpu, UD_VECTOR); 5164 5165 return r; 5166 } 5167 5168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5169 bool write_fault_to_shadow_pgtable, 5170 int emulation_type) 5171 { 5172 gpa_t gpa = cr2; 5173 kvm_pfn_t pfn; 5174 5175 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5176 return false; 5177 5178 if (!vcpu->arch.mmu.direct_map) { 5179 /* 5180 * Write permission should be allowed since only 5181 * write access need to be emulated. 5182 */ 5183 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5184 5185 /* 5186 * If the mapping is invalid in guest, let cpu retry 5187 * it to generate fault. 5188 */ 5189 if (gpa == UNMAPPED_GVA) 5190 return true; 5191 } 5192 5193 /* 5194 * Do not retry the unhandleable instruction if it faults on the 5195 * readonly host memory, otherwise it will goto a infinite loop: 5196 * retry instruction -> write #PF -> emulation fail -> retry 5197 * instruction -> ... 5198 */ 5199 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5200 5201 /* 5202 * If the instruction failed on the error pfn, it can not be fixed, 5203 * report the error to userspace. 5204 */ 5205 if (is_error_noslot_pfn(pfn)) 5206 return false; 5207 5208 kvm_release_pfn_clean(pfn); 5209 5210 /* The instructions are well-emulated on direct mmu. */ 5211 if (vcpu->arch.mmu.direct_map) { 5212 unsigned int indirect_shadow_pages; 5213 5214 spin_lock(&vcpu->kvm->mmu_lock); 5215 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5216 spin_unlock(&vcpu->kvm->mmu_lock); 5217 5218 if (indirect_shadow_pages) 5219 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5220 5221 return true; 5222 } 5223 5224 /* 5225 * if emulation was due to access to shadowed page table 5226 * and it failed try to unshadow page and re-enter the 5227 * guest to let CPU execute the instruction. 5228 */ 5229 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5230 5231 /* 5232 * If the access faults on its page table, it can not 5233 * be fixed by unprotecting shadow page and it should 5234 * be reported to userspace. 5235 */ 5236 return !write_fault_to_shadow_pgtable; 5237 } 5238 5239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5240 unsigned long cr2, int emulation_type) 5241 { 5242 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5243 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5244 5245 last_retry_eip = vcpu->arch.last_retry_eip; 5246 last_retry_addr = vcpu->arch.last_retry_addr; 5247 5248 /* 5249 * If the emulation is caused by #PF and it is non-page_table 5250 * writing instruction, it means the VM-EXIT is caused by shadow 5251 * page protected, we can zap the shadow page and retry this 5252 * instruction directly. 5253 * 5254 * Note: if the guest uses a non-page-table modifying instruction 5255 * on the PDE that points to the instruction, then we will unmap 5256 * the instruction and go to an infinite loop. So, we cache the 5257 * last retried eip and the last fault address, if we meet the eip 5258 * and the address again, we can break out of the potential infinite 5259 * loop. 5260 */ 5261 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5262 5263 if (!(emulation_type & EMULTYPE_RETRY)) 5264 return false; 5265 5266 if (x86_page_table_writing_insn(ctxt)) 5267 return false; 5268 5269 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5270 return false; 5271 5272 vcpu->arch.last_retry_eip = ctxt->eip; 5273 vcpu->arch.last_retry_addr = cr2; 5274 5275 if (!vcpu->arch.mmu.direct_map) 5276 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5277 5278 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5279 5280 return true; 5281 } 5282 5283 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5284 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5285 5286 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5287 { 5288 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5289 /* This is a good place to trace that we are exiting SMM. */ 5290 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5291 5292 if (unlikely(vcpu->arch.smi_pending)) { 5293 kvm_make_request(KVM_REQ_SMI, vcpu); 5294 vcpu->arch.smi_pending = 0; 5295 } else { 5296 /* Process a latched INIT, if any. */ 5297 kvm_make_request(KVM_REQ_EVENT, vcpu); 5298 } 5299 } 5300 5301 kvm_mmu_reset_context(vcpu); 5302 } 5303 5304 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5305 { 5306 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5307 5308 vcpu->arch.hflags = emul_flags; 5309 5310 if (changed & HF_SMM_MASK) 5311 kvm_smm_changed(vcpu); 5312 } 5313 5314 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5315 unsigned long *db) 5316 { 5317 u32 dr6 = 0; 5318 int i; 5319 u32 enable, rwlen; 5320 5321 enable = dr7; 5322 rwlen = dr7 >> 16; 5323 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5324 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5325 dr6 |= (1 << i); 5326 return dr6; 5327 } 5328 5329 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5330 { 5331 struct kvm_run *kvm_run = vcpu->run; 5332 5333 /* 5334 * rflags is the old, "raw" value of the flags. The new value has 5335 * not been saved yet. 5336 * 5337 * This is correct even for TF set by the guest, because "the 5338 * processor will not generate this exception after the instruction 5339 * that sets the TF flag". 5340 */ 5341 if (unlikely(rflags & X86_EFLAGS_TF)) { 5342 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5343 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5344 DR6_RTM; 5345 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5346 kvm_run->debug.arch.exception = DB_VECTOR; 5347 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5348 *r = EMULATE_USER_EXIT; 5349 } else { 5350 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5351 /* 5352 * "Certain debug exceptions may clear bit 0-3. The 5353 * remaining contents of the DR6 register are never 5354 * cleared by the processor". 5355 */ 5356 vcpu->arch.dr6 &= ~15; 5357 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5358 kvm_queue_exception(vcpu, DB_VECTOR); 5359 } 5360 } 5361 } 5362 5363 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5364 { 5365 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5366 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5367 struct kvm_run *kvm_run = vcpu->run; 5368 unsigned long eip = kvm_get_linear_rip(vcpu); 5369 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5370 vcpu->arch.guest_debug_dr7, 5371 vcpu->arch.eff_db); 5372 5373 if (dr6 != 0) { 5374 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5375 kvm_run->debug.arch.pc = eip; 5376 kvm_run->debug.arch.exception = DB_VECTOR; 5377 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5378 *r = EMULATE_USER_EXIT; 5379 return true; 5380 } 5381 } 5382 5383 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5384 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5385 unsigned long eip = kvm_get_linear_rip(vcpu); 5386 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5387 vcpu->arch.dr7, 5388 vcpu->arch.db); 5389 5390 if (dr6 != 0) { 5391 vcpu->arch.dr6 &= ~15; 5392 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5393 kvm_queue_exception(vcpu, DB_VECTOR); 5394 *r = EMULATE_DONE; 5395 return true; 5396 } 5397 } 5398 5399 return false; 5400 } 5401 5402 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5403 unsigned long cr2, 5404 int emulation_type, 5405 void *insn, 5406 int insn_len) 5407 { 5408 int r; 5409 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5410 bool writeback = true; 5411 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5412 5413 /* 5414 * Clear write_fault_to_shadow_pgtable here to ensure it is 5415 * never reused. 5416 */ 5417 vcpu->arch.write_fault_to_shadow_pgtable = false; 5418 kvm_clear_exception_queue(vcpu); 5419 5420 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5421 init_emulate_ctxt(vcpu); 5422 5423 /* 5424 * We will reenter on the same instruction since 5425 * we do not set complete_userspace_io. This does not 5426 * handle watchpoints yet, those would be handled in 5427 * the emulate_ops. 5428 */ 5429 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5430 return r; 5431 5432 ctxt->interruptibility = 0; 5433 ctxt->have_exception = false; 5434 ctxt->exception.vector = -1; 5435 ctxt->perm_ok = false; 5436 5437 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5438 5439 r = x86_decode_insn(ctxt, insn, insn_len); 5440 5441 trace_kvm_emulate_insn_start(vcpu); 5442 ++vcpu->stat.insn_emulation; 5443 if (r != EMULATION_OK) { 5444 if (emulation_type & EMULTYPE_TRAP_UD) 5445 return EMULATE_FAIL; 5446 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5447 emulation_type)) 5448 return EMULATE_DONE; 5449 if (emulation_type & EMULTYPE_SKIP) 5450 return EMULATE_FAIL; 5451 return handle_emulation_failure(vcpu); 5452 } 5453 } 5454 5455 if (emulation_type & EMULTYPE_SKIP) { 5456 kvm_rip_write(vcpu, ctxt->_eip); 5457 if (ctxt->eflags & X86_EFLAGS_RF) 5458 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5459 return EMULATE_DONE; 5460 } 5461 5462 if (retry_instruction(ctxt, cr2, emulation_type)) 5463 return EMULATE_DONE; 5464 5465 /* this is needed for vmware backdoor interface to work since it 5466 changes registers values during IO operation */ 5467 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5468 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5469 emulator_invalidate_register_cache(ctxt); 5470 } 5471 5472 restart: 5473 r = x86_emulate_insn(ctxt); 5474 5475 if (r == EMULATION_INTERCEPTED) 5476 return EMULATE_DONE; 5477 5478 if (r == EMULATION_FAILED) { 5479 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5480 emulation_type)) 5481 return EMULATE_DONE; 5482 5483 return handle_emulation_failure(vcpu); 5484 } 5485 5486 if (ctxt->have_exception) { 5487 r = EMULATE_DONE; 5488 if (inject_emulated_exception(vcpu)) 5489 return r; 5490 } else if (vcpu->arch.pio.count) { 5491 if (!vcpu->arch.pio.in) { 5492 /* FIXME: return into emulator if single-stepping. */ 5493 vcpu->arch.pio.count = 0; 5494 } else { 5495 writeback = false; 5496 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5497 } 5498 r = EMULATE_USER_EXIT; 5499 } else if (vcpu->mmio_needed) { 5500 if (!vcpu->mmio_is_write) 5501 writeback = false; 5502 r = EMULATE_USER_EXIT; 5503 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5504 } else if (r == EMULATION_RESTART) 5505 goto restart; 5506 else 5507 r = EMULATE_DONE; 5508 5509 if (writeback) { 5510 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5511 toggle_interruptibility(vcpu, ctxt->interruptibility); 5512 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5513 if (vcpu->arch.hflags != ctxt->emul_flags) 5514 kvm_set_hflags(vcpu, ctxt->emul_flags); 5515 kvm_rip_write(vcpu, ctxt->eip); 5516 if (r == EMULATE_DONE) 5517 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5518 if (!ctxt->have_exception || 5519 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5520 __kvm_set_rflags(vcpu, ctxt->eflags); 5521 5522 /* 5523 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5524 * do nothing, and it will be requested again as soon as 5525 * the shadow expires. But we still need to check here, 5526 * because POPF has no interrupt shadow. 5527 */ 5528 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5529 kvm_make_request(KVM_REQ_EVENT, vcpu); 5530 } else 5531 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5532 5533 return r; 5534 } 5535 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5536 5537 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5538 { 5539 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5540 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5541 size, port, &val, 1); 5542 /* do not return to emulator after return from userspace */ 5543 vcpu->arch.pio.count = 0; 5544 return ret; 5545 } 5546 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5547 5548 static void tsc_bad(void *info) 5549 { 5550 __this_cpu_write(cpu_tsc_khz, 0); 5551 } 5552 5553 static void tsc_khz_changed(void *data) 5554 { 5555 struct cpufreq_freqs *freq = data; 5556 unsigned long khz = 0; 5557 5558 if (data) 5559 khz = freq->new; 5560 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5561 khz = cpufreq_quick_get(raw_smp_processor_id()); 5562 if (!khz) 5563 khz = tsc_khz; 5564 __this_cpu_write(cpu_tsc_khz, khz); 5565 } 5566 5567 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5568 void *data) 5569 { 5570 struct cpufreq_freqs *freq = data; 5571 struct kvm *kvm; 5572 struct kvm_vcpu *vcpu; 5573 int i, send_ipi = 0; 5574 5575 /* 5576 * We allow guests to temporarily run on slowing clocks, 5577 * provided we notify them after, or to run on accelerating 5578 * clocks, provided we notify them before. Thus time never 5579 * goes backwards. 5580 * 5581 * However, we have a problem. We can't atomically update 5582 * the frequency of a given CPU from this function; it is 5583 * merely a notifier, which can be called from any CPU. 5584 * Changing the TSC frequency at arbitrary points in time 5585 * requires a recomputation of local variables related to 5586 * the TSC for each VCPU. We must flag these local variables 5587 * to be updated and be sure the update takes place with the 5588 * new frequency before any guests proceed. 5589 * 5590 * Unfortunately, the combination of hotplug CPU and frequency 5591 * change creates an intractable locking scenario; the order 5592 * of when these callouts happen is undefined with respect to 5593 * CPU hotplug, and they can race with each other. As such, 5594 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5595 * undefined; you can actually have a CPU frequency change take 5596 * place in between the computation of X and the setting of the 5597 * variable. To protect against this problem, all updates of 5598 * the per_cpu tsc_khz variable are done in an interrupt 5599 * protected IPI, and all callers wishing to update the value 5600 * must wait for a synchronous IPI to complete (which is trivial 5601 * if the caller is on the CPU already). This establishes the 5602 * necessary total order on variable updates. 5603 * 5604 * Note that because a guest time update may take place 5605 * anytime after the setting of the VCPU's request bit, the 5606 * correct TSC value must be set before the request. However, 5607 * to ensure the update actually makes it to any guest which 5608 * starts running in hardware virtualization between the set 5609 * and the acquisition of the spinlock, we must also ping the 5610 * CPU after setting the request bit. 5611 * 5612 */ 5613 5614 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5615 return 0; 5616 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5617 return 0; 5618 5619 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5620 5621 spin_lock(&kvm_lock); 5622 list_for_each_entry(kvm, &vm_list, vm_list) { 5623 kvm_for_each_vcpu(i, vcpu, kvm) { 5624 if (vcpu->cpu != freq->cpu) 5625 continue; 5626 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5627 if (vcpu->cpu != smp_processor_id()) 5628 send_ipi = 1; 5629 } 5630 } 5631 spin_unlock(&kvm_lock); 5632 5633 if (freq->old < freq->new && send_ipi) { 5634 /* 5635 * We upscale the frequency. Must make the guest 5636 * doesn't see old kvmclock values while running with 5637 * the new frequency, otherwise we risk the guest sees 5638 * time go backwards. 5639 * 5640 * In case we update the frequency for another cpu 5641 * (which might be in guest context) send an interrupt 5642 * to kick the cpu out of guest context. Next time 5643 * guest context is entered kvmclock will be updated, 5644 * so the guest will not see stale values. 5645 */ 5646 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5647 } 5648 return 0; 5649 } 5650 5651 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5652 .notifier_call = kvmclock_cpufreq_notifier 5653 }; 5654 5655 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5656 unsigned long action, void *hcpu) 5657 { 5658 unsigned int cpu = (unsigned long)hcpu; 5659 5660 switch (action) { 5661 case CPU_ONLINE: 5662 case CPU_DOWN_FAILED: 5663 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5664 break; 5665 case CPU_DOWN_PREPARE: 5666 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5667 break; 5668 } 5669 return NOTIFY_OK; 5670 } 5671 5672 static struct notifier_block kvmclock_cpu_notifier_block = { 5673 .notifier_call = kvmclock_cpu_notifier, 5674 .priority = -INT_MAX 5675 }; 5676 5677 static void kvm_timer_init(void) 5678 { 5679 int cpu; 5680 5681 max_tsc_khz = tsc_khz; 5682 5683 cpu_notifier_register_begin(); 5684 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5685 #ifdef CONFIG_CPU_FREQ 5686 struct cpufreq_policy policy; 5687 memset(&policy, 0, sizeof(policy)); 5688 cpu = get_cpu(); 5689 cpufreq_get_policy(&policy, cpu); 5690 if (policy.cpuinfo.max_freq) 5691 max_tsc_khz = policy.cpuinfo.max_freq; 5692 put_cpu(); 5693 #endif 5694 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5695 CPUFREQ_TRANSITION_NOTIFIER); 5696 } 5697 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5698 for_each_online_cpu(cpu) 5699 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5700 5701 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5702 cpu_notifier_register_done(); 5703 5704 } 5705 5706 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5707 5708 int kvm_is_in_guest(void) 5709 { 5710 return __this_cpu_read(current_vcpu) != NULL; 5711 } 5712 5713 static int kvm_is_user_mode(void) 5714 { 5715 int user_mode = 3; 5716 5717 if (__this_cpu_read(current_vcpu)) 5718 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5719 5720 return user_mode != 0; 5721 } 5722 5723 static unsigned long kvm_get_guest_ip(void) 5724 { 5725 unsigned long ip = 0; 5726 5727 if (__this_cpu_read(current_vcpu)) 5728 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5729 5730 return ip; 5731 } 5732 5733 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5734 .is_in_guest = kvm_is_in_guest, 5735 .is_user_mode = kvm_is_user_mode, 5736 .get_guest_ip = kvm_get_guest_ip, 5737 }; 5738 5739 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5740 { 5741 __this_cpu_write(current_vcpu, vcpu); 5742 } 5743 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5744 5745 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5746 { 5747 __this_cpu_write(current_vcpu, NULL); 5748 } 5749 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5750 5751 static void kvm_set_mmio_spte_mask(void) 5752 { 5753 u64 mask; 5754 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5755 5756 /* 5757 * Set the reserved bits and the present bit of an paging-structure 5758 * entry to generate page fault with PFER.RSV = 1. 5759 */ 5760 /* Mask the reserved physical address bits. */ 5761 mask = rsvd_bits(maxphyaddr, 51); 5762 5763 /* Bit 62 is always reserved for 32bit host. */ 5764 mask |= 0x3ull << 62; 5765 5766 /* Set the present bit. */ 5767 mask |= 1ull; 5768 5769 #ifdef CONFIG_X86_64 5770 /* 5771 * If reserved bit is not supported, clear the present bit to disable 5772 * mmio page fault. 5773 */ 5774 if (maxphyaddr == 52) 5775 mask &= ~1ull; 5776 #endif 5777 5778 kvm_mmu_set_mmio_spte_mask(mask); 5779 } 5780 5781 #ifdef CONFIG_X86_64 5782 static void pvclock_gtod_update_fn(struct work_struct *work) 5783 { 5784 struct kvm *kvm; 5785 5786 struct kvm_vcpu *vcpu; 5787 int i; 5788 5789 spin_lock(&kvm_lock); 5790 list_for_each_entry(kvm, &vm_list, vm_list) 5791 kvm_for_each_vcpu(i, vcpu, kvm) 5792 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 5793 atomic_set(&kvm_guest_has_master_clock, 0); 5794 spin_unlock(&kvm_lock); 5795 } 5796 5797 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5798 5799 /* 5800 * Notification about pvclock gtod data update. 5801 */ 5802 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5803 void *priv) 5804 { 5805 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5806 struct timekeeper *tk = priv; 5807 5808 update_pvclock_gtod(tk); 5809 5810 /* disable master clock if host does not trust, or does not 5811 * use, TSC clocksource 5812 */ 5813 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5814 atomic_read(&kvm_guest_has_master_clock) != 0) 5815 queue_work(system_long_wq, &pvclock_gtod_work); 5816 5817 return 0; 5818 } 5819 5820 static struct notifier_block pvclock_gtod_notifier = { 5821 .notifier_call = pvclock_gtod_notify, 5822 }; 5823 #endif 5824 5825 int kvm_arch_init(void *opaque) 5826 { 5827 int r; 5828 struct kvm_x86_ops *ops = opaque; 5829 5830 if (kvm_x86_ops) { 5831 printk(KERN_ERR "kvm: already loaded the other module\n"); 5832 r = -EEXIST; 5833 goto out; 5834 } 5835 5836 if (!ops->cpu_has_kvm_support()) { 5837 printk(KERN_ERR "kvm: no hardware support\n"); 5838 r = -EOPNOTSUPP; 5839 goto out; 5840 } 5841 if (ops->disabled_by_bios()) { 5842 printk(KERN_ERR "kvm: disabled by bios\n"); 5843 r = -EOPNOTSUPP; 5844 goto out; 5845 } 5846 5847 r = -ENOMEM; 5848 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5849 if (!shared_msrs) { 5850 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5851 goto out; 5852 } 5853 5854 r = kvm_mmu_module_init(); 5855 if (r) 5856 goto out_free_percpu; 5857 5858 kvm_set_mmio_spte_mask(); 5859 5860 kvm_x86_ops = ops; 5861 5862 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5863 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5864 5865 kvm_timer_init(); 5866 5867 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5868 5869 if (cpu_has_xsave) 5870 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5871 5872 kvm_lapic_init(); 5873 #ifdef CONFIG_X86_64 5874 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5875 #endif 5876 5877 return 0; 5878 5879 out_free_percpu: 5880 free_percpu(shared_msrs); 5881 out: 5882 return r; 5883 } 5884 5885 void kvm_arch_exit(void) 5886 { 5887 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5888 5889 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5890 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5891 CPUFREQ_TRANSITION_NOTIFIER); 5892 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5893 #ifdef CONFIG_X86_64 5894 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5895 #endif 5896 kvm_x86_ops = NULL; 5897 kvm_mmu_module_exit(); 5898 free_percpu(shared_msrs); 5899 } 5900 5901 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 5902 { 5903 ++vcpu->stat.halt_exits; 5904 if (lapic_in_kernel(vcpu)) { 5905 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5906 return 1; 5907 } else { 5908 vcpu->run->exit_reason = KVM_EXIT_HLT; 5909 return 0; 5910 } 5911 } 5912 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 5913 5914 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5915 { 5916 kvm_x86_ops->skip_emulated_instruction(vcpu); 5917 return kvm_vcpu_halt(vcpu); 5918 } 5919 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5920 5921 /* 5922 * kvm_pv_kick_cpu_op: Kick a vcpu. 5923 * 5924 * @apicid - apicid of vcpu to be kicked. 5925 */ 5926 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5927 { 5928 struct kvm_lapic_irq lapic_irq; 5929 5930 lapic_irq.shorthand = 0; 5931 lapic_irq.dest_mode = 0; 5932 lapic_irq.dest_id = apicid; 5933 lapic_irq.msi_redir_hint = false; 5934 5935 lapic_irq.delivery_mode = APIC_DM_REMRD; 5936 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 5937 } 5938 5939 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 5940 { 5941 vcpu->arch.apicv_active = false; 5942 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 5943 } 5944 5945 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5946 { 5947 unsigned long nr, a0, a1, a2, a3, ret; 5948 int op_64_bit, r = 1; 5949 5950 kvm_x86_ops->skip_emulated_instruction(vcpu); 5951 5952 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5953 return kvm_hv_hypercall(vcpu); 5954 5955 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5956 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5957 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5958 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5959 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5960 5961 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5962 5963 op_64_bit = is_64_bit_mode(vcpu); 5964 if (!op_64_bit) { 5965 nr &= 0xFFFFFFFF; 5966 a0 &= 0xFFFFFFFF; 5967 a1 &= 0xFFFFFFFF; 5968 a2 &= 0xFFFFFFFF; 5969 a3 &= 0xFFFFFFFF; 5970 } 5971 5972 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5973 ret = -KVM_EPERM; 5974 goto out; 5975 } 5976 5977 switch (nr) { 5978 case KVM_HC_VAPIC_POLL_IRQ: 5979 ret = 0; 5980 break; 5981 case KVM_HC_KICK_CPU: 5982 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5983 ret = 0; 5984 break; 5985 default: 5986 ret = -KVM_ENOSYS; 5987 break; 5988 } 5989 out: 5990 if (!op_64_bit) 5991 ret = (u32)ret; 5992 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5993 ++vcpu->stat.hypercalls; 5994 return r; 5995 } 5996 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5997 5998 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5999 { 6000 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6001 char instruction[3]; 6002 unsigned long rip = kvm_rip_read(vcpu); 6003 6004 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6005 6006 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 6007 } 6008 6009 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6010 { 6011 return vcpu->run->request_interrupt_window && 6012 likely(!pic_in_kernel(vcpu->kvm)); 6013 } 6014 6015 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6016 { 6017 struct kvm_run *kvm_run = vcpu->run; 6018 6019 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6020 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6021 kvm_run->cr8 = kvm_get_cr8(vcpu); 6022 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6023 kvm_run->ready_for_interrupt_injection = 6024 pic_in_kernel(vcpu->kvm) || 6025 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6026 } 6027 6028 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6029 { 6030 int max_irr, tpr; 6031 6032 if (!kvm_x86_ops->update_cr8_intercept) 6033 return; 6034 6035 if (!lapic_in_kernel(vcpu)) 6036 return; 6037 6038 if (vcpu->arch.apicv_active) 6039 return; 6040 6041 if (!vcpu->arch.apic->vapic_addr) 6042 max_irr = kvm_lapic_find_highest_irr(vcpu); 6043 else 6044 max_irr = -1; 6045 6046 if (max_irr != -1) 6047 max_irr >>= 4; 6048 6049 tpr = kvm_lapic_get_cr8(vcpu); 6050 6051 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6052 } 6053 6054 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6055 { 6056 int r; 6057 6058 /* try to reinject previous events if any */ 6059 if (vcpu->arch.exception.pending) { 6060 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6061 vcpu->arch.exception.has_error_code, 6062 vcpu->arch.exception.error_code); 6063 6064 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6065 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6066 X86_EFLAGS_RF); 6067 6068 if (vcpu->arch.exception.nr == DB_VECTOR && 6069 (vcpu->arch.dr7 & DR7_GD)) { 6070 vcpu->arch.dr7 &= ~DR7_GD; 6071 kvm_update_dr7(vcpu); 6072 } 6073 6074 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 6075 vcpu->arch.exception.has_error_code, 6076 vcpu->arch.exception.error_code, 6077 vcpu->arch.exception.reinject); 6078 return 0; 6079 } 6080 6081 if (vcpu->arch.nmi_injected) { 6082 kvm_x86_ops->set_nmi(vcpu); 6083 return 0; 6084 } 6085 6086 if (vcpu->arch.interrupt.pending) { 6087 kvm_x86_ops->set_irq(vcpu); 6088 return 0; 6089 } 6090 6091 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6092 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6093 if (r != 0) 6094 return r; 6095 } 6096 6097 /* try to inject new event if pending */ 6098 if (vcpu->arch.nmi_pending) { 6099 if (kvm_x86_ops->nmi_allowed(vcpu)) { 6100 --vcpu->arch.nmi_pending; 6101 vcpu->arch.nmi_injected = true; 6102 kvm_x86_ops->set_nmi(vcpu); 6103 } 6104 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6105 /* 6106 * Because interrupts can be injected asynchronously, we are 6107 * calling check_nested_events again here to avoid a race condition. 6108 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6109 * proposal and current concerns. Perhaps we should be setting 6110 * KVM_REQ_EVENT only on certain events and not unconditionally? 6111 */ 6112 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6113 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6114 if (r != 0) 6115 return r; 6116 } 6117 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6118 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6119 false); 6120 kvm_x86_ops->set_irq(vcpu); 6121 } 6122 } 6123 return 0; 6124 } 6125 6126 static void process_nmi(struct kvm_vcpu *vcpu) 6127 { 6128 unsigned limit = 2; 6129 6130 /* 6131 * x86 is limited to one NMI running, and one NMI pending after it. 6132 * If an NMI is already in progress, limit further NMIs to just one. 6133 * Otherwise, allow two (and we'll inject the first one immediately). 6134 */ 6135 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6136 limit = 1; 6137 6138 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6139 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6140 kvm_make_request(KVM_REQ_EVENT, vcpu); 6141 } 6142 6143 #define put_smstate(type, buf, offset, val) \ 6144 *(type *)((buf) + (offset) - 0x7e00) = val 6145 6146 static u32 process_smi_get_segment_flags(struct kvm_segment *seg) 6147 { 6148 u32 flags = 0; 6149 flags |= seg->g << 23; 6150 flags |= seg->db << 22; 6151 flags |= seg->l << 21; 6152 flags |= seg->avl << 20; 6153 flags |= seg->present << 15; 6154 flags |= seg->dpl << 13; 6155 flags |= seg->s << 12; 6156 flags |= seg->type << 8; 6157 return flags; 6158 } 6159 6160 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6161 { 6162 struct kvm_segment seg; 6163 int offset; 6164 6165 kvm_get_segment(vcpu, &seg, n); 6166 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6167 6168 if (n < 3) 6169 offset = 0x7f84 + n * 12; 6170 else 6171 offset = 0x7f2c + (n - 3) * 12; 6172 6173 put_smstate(u32, buf, offset + 8, seg.base); 6174 put_smstate(u32, buf, offset + 4, seg.limit); 6175 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg)); 6176 } 6177 6178 #ifdef CONFIG_X86_64 6179 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6180 { 6181 struct kvm_segment seg; 6182 int offset; 6183 u16 flags; 6184 6185 kvm_get_segment(vcpu, &seg, n); 6186 offset = 0x7e00 + n * 16; 6187 6188 flags = process_smi_get_segment_flags(&seg) >> 8; 6189 put_smstate(u16, buf, offset, seg.selector); 6190 put_smstate(u16, buf, offset + 2, flags); 6191 put_smstate(u32, buf, offset + 4, seg.limit); 6192 put_smstate(u64, buf, offset + 8, seg.base); 6193 } 6194 #endif 6195 6196 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6197 { 6198 struct desc_ptr dt; 6199 struct kvm_segment seg; 6200 unsigned long val; 6201 int i; 6202 6203 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6204 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6205 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6206 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6207 6208 for (i = 0; i < 8; i++) 6209 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6210 6211 kvm_get_dr(vcpu, 6, &val); 6212 put_smstate(u32, buf, 0x7fcc, (u32)val); 6213 kvm_get_dr(vcpu, 7, &val); 6214 put_smstate(u32, buf, 0x7fc8, (u32)val); 6215 6216 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6217 put_smstate(u32, buf, 0x7fc4, seg.selector); 6218 put_smstate(u32, buf, 0x7f64, seg.base); 6219 put_smstate(u32, buf, 0x7f60, seg.limit); 6220 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg)); 6221 6222 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6223 put_smstate(u32, buf, 0x7fc0, seg.selector); 6224 put_smstate(u32, buf, 0x7f80, seg.base); 6225 put_smstate(u32, buf, 0x7f7c, seg.limit); 6226 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg)); 6227 6228 kvm_x86_ops->get_gdt(vcpu, &dt); 6229 put_smstate(u32, buf, 0x7f74, dt.address); 6230 put_smstate(u32, buf, 0x7f70, dt.size); 6231 6232 kvm_x86_ops->get_idt(vcpu, &dt); 6233 put_smstate(u32, buf, 0x7f58, dt.address); 6234 put_smstate(u32, buf, 0x7f54, dt.size); 6235 6236 for (i = 0; i < 6; i++) 6237 process_smi_save_seg_32(vcpu, buf, i); 6238 6239 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6240 6241 /* revision id */ 6242 put_smstate(u32, buf, 0x7efc, 0x00020000); 6243 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6244 } 6245 6246 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6247 { 6248 #ifdef CONFIG_X86_64 6249 struct desc_ptr dt; 6250 struct kvm_segment seg; 6251 unsigned long val; 6252 int i; 6253 6254 for (i = 0; i < 16; i++) 6255 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6256 6257 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6258 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6259 6260 kvm_get_dr(vcpu, 6, &val); 6261 put_smstate(u64, buf, 0x7f68, val); 6262 kvm_get_dr(vcpu, 7, &val); 6263 put_smstate(u64, buf, 0x7f60, val); 6264 6265 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6266 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6267 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6268 6269 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6270 6271 /* revision id */ 6272 put_smstate(u32, buf, 0x7efc, 0x00020064); 6273 6274 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6275 6276 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6277 put_smstate(u16, buf, 0x7e90, seg.selector); 6278 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8); 6279 put_smstate(u32, buf, 0x7e94, seg.limit); 6280 put_smstate(u64, buf, 0x7e98, seg.base); 6281 6282 kvm_x86_ops->get_idt(vcpu, &dt); 6283 put_smstate(u32, buf, 0x7e84, dt.size); 6284 put_smstate(u64, buf, 0x7e88, dt.address); 6285 6286 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6287 put_smstate(u16, buf, 0x7e70, seg.selector); 6288 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8); 6289 put_smstate(u32, buf, 0x7e74, seg.limit); 6290 put_smstate(u64, buf, 0x7e78, seg.base); 6291 6292 kvm_x86_ops->get_gdt(vcpu, &dt); 6293 put_smstate(u32, buf, 0x7e64, dt.size); 6294 put_smstate(u64, buf, 0x7e68, dt.address); 6295 6296 for (i = 0; i < 6; i++) 6297 process_smi_save_seg_64(vcpu, buf, i); 6298 #else 6299 WARN_ON_ONCE(1); 6300 #endif 6301 } 6302 6303 static void process_smi(struct kvm_vcpu *vcpu) 6304 { 6305 struct kvm_segment cs, ds; 6306 struct desc_ptr dt; 6307 char buf[512]; 6308 u32 cr0; 6309 6310 if (is_smm(vcpu)) { 6311 vcpu->arch.smi_pending = true; 6312 return; 6313 } 6314 6315 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6316 vcpu->arch.hflags |= HF_SMM_MASK; 6317 memset(buf, 0, 512); 6318 if (guest_cpuid_has_longmode(vcpu)) 6319 process_smi_save_state_64(vcpu, buf); 6320 else 6321 process_smi_save_state_32(vcpu, buf); 6322 6323 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6324 6325 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6326 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6327 else 6328 kvm_x86_ops->set_nmi_mask(vcpu, true); 6329 6330 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6331 kvm_rip_write(vcpu, 0x8000); 6332 6333 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6334 kvm_x86_ops->set_cr0(vcpu, cr0); 6335 vcpu->arch.cr0 = cr0; 6336 6337 kvm_x86_ops->set_cr4(vcpu, 0); 6338 6339 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6340 dt.address = dt.size = 0; 6341 kvm_x86_ops->set_idt(vcpu, &dt); 6342 6343 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6344 6345 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6346 cs.base = vcpu->arch.smbase; 6347 6348 ds.selector = 0; 6349 ds.base = 0; 6350 6351 cs.limit = ds.limit = 0xffffffff; 6352 cs.type = ds.type = 0x3; 6353 cs.dpl = ds.dpl = 0; 6354 cs.db = ds.db = 0; 6355 cs.s = ds.s = 1; 6356 cs.l = ds.l = 0; 6357 cs.g = ds.g = 1; 6358 cs.avl = ds.avl = 0; 6359 cs.present = ds.present = 1; 6360 cs.unusable = ds.unusable = 0; 6361 cs.padding = ds.padding = 0; 6362 6363 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6364 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6365 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6366 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6367 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6368 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6369 6370 if (guest_cpuid_has_longmode(vcpu)) 6371 kvm_x86_ops->set_efer(vcpu, 0); 6372 6373 kvm_update_cpuid(vcpu); 6374 kvm_mmu_reset_context(vcpu); 6375 } 6376 6377 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6378 { 6379 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6380 } 6381 6382 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6383 { 6384 u64 eoi_exit_bitmap[4]; 6385 6386 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6387 return; 6388 6389 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6390 6391 if (irqchip_split(vcpu->kvm)) 6392 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6393 else { 6394 if (vcpu->arch.apicv_active) 6395 kvm_x86_ops->sync_pir_to_irr(vcpu); 6396 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6397 } 6398 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6399 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6400 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6401 } 6402 6403 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6404 { 6405 ++vcpu->stat.tlb_flush; 6406 kvm_x86_ops->tlb_flush(vcpu); 6407 } 6408 6409 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6410 { 6411 struct page *page = NULL; 6412 6413 if (!lapic_in_kernel(vcpu)) 6414 return; 6415 6416 if (!kvm_x86_ops->set_apic_access_page_addr) 6417 return; 6418 6419 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6420 if (is_error_page(page)) 6421 return; 6422 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6423 6424 /* 6425 * Do not pin apic access page in memory, the MMU notifier 6426 * will call us again if it is migrated or swapped out. 6427 */ 6428 put_page(page); 6429 } 6430 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6431 6432 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6433 unsigned long address) 6434 { 6435 /* 6436 * The physical address of apic access page is stored in the VMCS. 6437 * Update it when it becomes invalid. 6438 */ 6439 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6440 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6441 } 6442 6443 /* 6444 * Returns 1 to let vcpu_run() continue the guest execution loop without 6445 * exiting to the userspace. Otherwise, the value will be returned to the 6446 * userspace. 6447 */ 6448 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6449 { 6450 int r; 6451 bool req_int_win = 6452 dm_request_for_irq_injection(vcpu) && 6453 kvm_cpu_accept_dm_intr(vcpu); 6454 6455 bool req_immediate_exit = false; 6456 6457 if (vcpu->requests) { 6458 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6459 kvm_mmu_unload(vcpu); 6460 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6461 __kvm_migrate_timers(vcpu); 6462 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6463 kvm_gen_update_masterclock(vcpu->kvm); 6464 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6465 kvm_gen_kvmclock_update(vcpu); 6466 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6467 r = kvm_guest_time_update(vcpu); 6468 if (unlikely(r)) 6469 goto out; 6470 } 6471 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6472 kvm_mmu_sync_roots(vcpu); 6473 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6474 kvm_vcpu_flush_tlb(vcpu); 6475 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6476 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6477 r = 0; 6478 goto out; 6479 } 6480 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6481 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6482 r = 0; 6483 goto out; 6484 } 6485 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 6486 vcpu->fpu_active = 0; 6487 kvm_x86_ops->fpu_deactivate(vcpu); 6488 } 6489 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6490 /* Page is swapped out. Do synthetic halt */ 6491 vcpu->arch.apf.halted = true; 6492 r = 1; 6493 goto out; 6494 } 6495 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6496 record_steal_time(vcpu); 6497 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6498 process_smi(vcpu); 6499 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6500 process_nmi(vcpu); 6501 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6502 kvm_pmu_handle_event(vcpu); 6503 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6504 kvm_pmu_deliver_pmi(vcpu); 6505 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6506 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6507 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6508 vcpu->arch.ioapic_handled_vectors)) { 6509 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6510 vcpu->run->eoi.vector = 6511 vcpu->arch.pending_ioapic_eoi; 6512 r = 0; 6513 goto out; 6514 } 6515 } 6516 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6517 vcpu_scan_ioapic(vcpu); 6518 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6519 kvm_vcpu_reload_apic_access_page(vcpu); 6520 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6521 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6522 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6523 r = 0; 6524 goto out; 6525 } 6526 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6527 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6528 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6529 r = 0; 6530 goto out; 6531 } 6532 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6533 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6534 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6535 r = 0; 6536 goto out; 6537 } 6538 6539 /* 6540 * KVM_REQ_HV_STIMER has to be processed after 6541 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6542 * depend on the guest clock being up-to-date 6543 */ 6544 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6545 kvm_hv_process_stimers(vcpu); 6546 } 6547 6548 /* 6549 * KVM_REQ_EVENT is not set when posted interrupts are set by 6550 * VT-d hardware, so we have to update RVI unconditionally. 6551 */ 6552 if (kvm_lapic_enabled(vcpu)) { 6553 /* 6554 * Update architecture specific hints for APIC 6555 * virtual interrupt delivery. 6556 */ 6557 if (vcpu->arch.apicv_active) 6558 kvm_x86_ops->hwapic_irr_update(vcpu, 6559 kvm_lapic_find_highest_irr(vcpu)); 6560 } 6561 6562 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6563 kvm_apic_accept_events(vcpu); 6564 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6565 r = 1; 6566 goto out; 6567 } 6568 6569 if (inject_pending_event(vcpu, req_int_win) != 0) 6570 req_immediate_exit = true; 6571 /* enable NMI/IRQ window open exits if needed */ 6572 else if (vcpu->arch.nmi_pending) 6573 kvm_x86_ops->enable_nmi_window(vcpu); 6574 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6575 kvm_x86_ops->enable_irq_window(vcpu); 6576 6577 if (kvm_lapic_enabled(vcpu)) { 6578 update_cr8_intercept(vcpu); 6579 kvm_lapic_sync_to_vapic(vcpu); 6580 } 6581 } 6582 6583 r = kvm_mmu_reload(vcpu); 6584 if (unlikely(r)) { 6585 goto cancel_injection; 6586 } 6587 6588 preempt_disable(); 6589 6590 kvm_x86_ops->prepare_guest_switch(vcpu); 6591 if (vcpu->fpu_active) 6592 kvm_load_guest_fpu(vcpu); 6593 kvm_load_guest_xcr0(vcpu); 6594 6595 vcpu->mode = IN_GUEST_MODE; 6596 6597 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6598 6599 /* 6600 * We should set ->mode before check ->requests, 6601 * Please see the comment in kvm_make_all_cpus_request. 6602 * This also orders the write to mode from any reads 6603 * to the page tables done while the VCPU is running. 6604 * Please see the comment in kvm_flush_remote_tlbs. 6605 */ 6606 smp_mb__after_srcu_read_unlock(); 6607 6608 local_irq_disable(); 6609 6610 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6611 || need_resched() || signal_pending(current)) { 6612 vcpu->mode = OUTSIDE_GUEST_MODE; 6613 smp_wmb(); 6614 local_irq_enable(); 6615 preempt_enable(); 6616 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6617 r = 1; 6618 goto cancel_injection; 6619 } 6620 6621 if (req_immediate_exit) 6622 smp_send_reschedule(vcpu->cpu); 6623 6624 trace_kvm_entry(vcpu->vcpu_id); 6625 wait_lapic_expire(vcpu); 6626 __kvm_guest_enter(); 6627 6628 if (unlikely(vcpu->arch.switch_db_regs)) { 6629 set_debugreg(0, 7); 6630 set_debugreg(vcpu->arch.eff_db[0], 0); 6631 set_debugreg(vcpu->arch.eff_db[1], 1); 6632 set_debugreg(vcpu->arch.eff_db[2], 2); 6633 set_debugreg(vcpu->arch.eff_db[3], 3); 6634 set_debugreg(vcpu->arch.dr6, 6); 6635 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6636 } 6637 6638 kvm_x86_ops->run(vcpu); 6639 6640 /* 6641 * Do this here before restoring debug registers on the host. And 6642 * since we do this before handling the vmexit, a DR access vmexit 6643 * can (a) read the correct value of the debug registers, (b) set 6644 * KVM_DEBUGREG_WONT_EXIT again. 6645 */ 6646 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6647 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6648 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6649 kvm_update_dr0123(vcpu); 6650 kvm_update_dr6(vcpu); 6651 kvm_update_dr7(vcpu); 6652 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6653 } 6654 6655 /* 6656 * If the guest has used debug registers, at least dr7 6657 * will be disabled while returning to the host. 6658 * If we don't have active breakpoints in the host, we don't 6659 * care about the messed up debug address registers. But if 6660 * we have some of them active, restore the old state. 6661 */ 6662 if (hw_breakpoint_active()) 6663 hw_breakpoint_restore(); 6664 6665 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6666 6667 vcpu->mode = OUTSIDE_GUEST_MODE; 6668 smp_wmb(); 6669 6670 /* Interrupt is enabled by handle_external_intr() */ 6671 kvm_x86_ops->handle_external_intr(vcpu); 6672 6673 ++vcpu->stat.exits; 6674 6675 /* 6676 * We must have an instruction between local_irq_enable() and 6677 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6678 * the interrupt shadow. The stat.exits increment will do nicely. 6679 * But we need to prevent reordering, hence this barrier(): 6680 */ 6681 barrier(); 6682 6683 kvm_guest_exit(); 6684 6685 preempt_enable(); 6686 6687 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6688 6689 /* 6690 * Profile KVM exit RIPs: 6691 */ 6692 if (unlikely(prof_on == KVM_PROFILING)) { 6693 unsigned long rip = kvm_rip_read(vcpu); 6694 profile_hit(KVM_PROFILING, (void *)rip); 6695 } 6696 6697 if (unlikely(vcpu->arch.tsc_always_catchup)) 6698 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6699 6700 if (vcpu->arch.apic_attention) 6701 kvm_lapic_sync_from_vapic(vcpu); 6702 6703 r = kvm_x86_ops->handle_exit(vcpu); 6704 return r; 6705 6706 cancel_injection: 6707 kvm_x86_ops->cancel_injection(vcpu); 6708 if (unlikely(vcpu->arch.apic_attention)) 6709 kvm_lapic_sync_from_vapic(vcpu); 6710 out: 6711 return r; 6712 } 6713 6714 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 6715 { 6716 if (!kvm_arch_vcpu_runnable(vcpu) && 6717 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 6718 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6719 kvm_vcpu_block(vcpu); 6720 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6721 6722 if (kvm_x86_ops->post_block) 6723 kvm_x86_ops->post_block(vcpu); 6724 6725 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 6726 return 1; 6727 } 6728 6729 kvm_apic_accept_events(vcpu); 6730 switch(vcpu->arch.mp_state) { 6731 case KVM_MP_STATE_HALTED: 6732 vcpu->arch.pv.pv_unhalted = false; 6733 vcpu->arch.mp_state = 6734 KVM_MP_STATE_RUNNABLE; 6735 case KVM_MP_STATE_RUNNABLE: 6736 vcpu->arch.apf.halted = false; 6737 break; 6738 case KVM_MP_STATE_INIT_RECEIVED: 6739 break; 6740 default: 6741 return -EINTR; 6742 break; 6743 } 6744 return 1; 6745 } 6746 6747 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 6748 { 6749 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6750 !vcpu->arch.apf.halted); 6751 } 6752 6753 static int vcpu_run(struct kvm_vcpu *vcpu) 6754 { 6755 int r; 6756 struct kvm *kvm = vcpu->kvm; 6757 6758 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6759 6760 for (;;) { 6761 if (kvm_vcpu_running(vcpu)) { 6762 r = vcpu_enter_guest(vcpu); 6763 } else { 6764 r = vcpu_block(kvm, vcpu); 6765 } 6766 6767 if (r <= 0) 6768 break; 6769 6770 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6771 if (kvm_cpu_has_pending_timer(vcpu)) 6772 kvm_inject_pending_timer_irqs(vcpu); 6773 6774 if (dm_request_for_irq_injection(vcpu) && 6775 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 6776 r = 0; 6777 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 6778 ++vcpu->stat.request_irq_exits; 6779 break; 6780 } 6781 6782 kvm_check_async_pf_completion(vcpu); 6783 6784 if (signal_pending(current)) { 6785 r = -EINTR; 6786 vcpu->run->exit_reason = KVM_EXIT_INTR; 6787 ++vcpu->stat.signal_exits; 6788 break; 6789 } 6790 if (need_resched()) { 6791 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6792 cond_resched(); 6793 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6794 } 6795 } 6796 6797 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6798 6799 return r; 6800 } 6801 6802 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6803 { 6804 int r; 6805 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6806 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6807 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6808 if (r != EMULATE_DONE) 6809 return 0; 6810 return 1; 6811 } 6812 6813 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6814 { 6815 BUG_ON(!vcpu->arch.pio.count); 6816 6817 return complete_emulated_io(vcpu); 6818 } 6819 6820 /* 6821 * Implements the following, as a state machine: 6822 * 6823 * read: 6824 * for each fragment 6825 * for each mmio piece in the fragment 6826 * write gpa, len 6827 * exit 6828 * copy data 6829 * execute insn 6830 * 6831 * write: 6832 * for each fragment 6833 * for each mmio piece in the fragment 6834 * write gpa, len 6835 * copy data 6836 * exit 6837 */ 6838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6839 { 6840 struct kvm_run *run = vcpu->run; 6841 struct kvm_mmio_fragment *frag; 6842 unsigned len; 6843 6844 BUG_ON(!vcpu->mmio_needed); 6845 6846 /* Complete previous fragment */ 6847 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6848 len = min(8u, frag->len); 6849 if (!vcpu->mmio_is_write) 6850 memcpy(frag->data, run->mmio.data, len); 6851 6852 if (frag->len <= 8) { 6853 /* Switch to the next fragment. */ 6854 frag++; 6855 vcpu->mmio_cur_fragment++; 6856 } else { 6857 /* Go forward to the next mmio piece. */ 6858 frag->data += len; 6859 frag->gpa += len; 6860 frag->len -= len; 6861 } 6862 6863 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6864 vcpu->mmio_needed = 0; 6865 6866 /* FIXME: return into emulator if single-stepping. */ 6867 if (vcpu->mmio_is_write) 6868 return 1; 6869 vcpu->mmio_read_completed = 1; 6870 return complete_emulated_io(vcpu); 6871 } 6872 6873 run->exit_reason = KVM_EXIT_MMIO; 6874 run->mmio.phys_addr = frag->gpa; 6875 if (vcpu->mmio_is_write) 6876 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6877 run->mmio.len = min(8u, frag->len); 6878 run->mmio.is_write = vcpu->mmio_is_write; 6879 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6880 return 0; 6881 } 6882 6883 6884 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6885 { 6886 struct fpu *fpu = ¤t->thread.fpu; 6887 int r; 6888 sigset_t sigsaved; 6889 6890 fpu__activate_curr(fpu); 6891 6892 if (vcpu->sigset_active) 6893 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6894 6895 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6896 kvm_vcpu_block(vcpu); 6897 kvm_apic_accept_events(vcpu); 6898 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6899 r = -EAGAIN; 6900 goto out; 6901 } 6902 6903 /* re-sync apic's tpr */ 6904 if (!lapic_in_kernel(vcpu)) { 6905 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6906 r = -EINVAL; 6907 goto out; 6908 } 6909 } 6910 6911 if (unlikely(vcpu->arch.complete_userspace_io)) { 6912 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6913 vcpu->arch.complete_userspace_io = NULL; 6914 r = cui(vcpu); 6915 if (r <= 0) 6916 goto out; 6917 } else 6918 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6919 6920 r = vcpu_run(vcpu); 6921 6922 out: 6923 post_kvm_run_save(vcpu); 6924 if (vcpu->sigset_active) 6925 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6926 6927 return r; 6928 } 6929 6930 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6931 { 6932 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6933 /* 6934 * We are here if userspace calls get_regs() in the middle of 6935 * instruction emulation. Registers state needs to be copied 6936 * back from emulation context to vcpu. Userspace shouldn't do 6937 * that usually, but some bad designed PV devices (vmware 6938 * backdoor interface) need this to work 6939 */ 6940 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6941 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6942 } 6943 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6944 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6945 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6946 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6947 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6948 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6949 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6950 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6951 #ifdef CONFIG_X86_64 6952 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6953 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6954 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6955 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6956 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6957 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6958 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6959 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6960 #endif 6961 6962 regs->rip = kvm_rip_read(vcpu); 6963 regs->rflags = kvm_get_rflags(vcpu); 6964 6965 return 0; 6966 } 6967 6968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6969 { 6970 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6971 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6972 6973 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6974 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6975 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6976 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6977 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6978 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6979 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6980 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6981 #ifdef CONFIG_X86_64 6982 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6983 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6984 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6985 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6986 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6987 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6988 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6989 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6990 #endif 6991 6992 kvm_rip_write(vcpu, regs->rip); 6993 kvm_set_rflags(vcpu, regs->rflags); 6994 6995 vcpu->arch.exception.pending = false; 6996 6997 kvm_make_request(KVM_REQ_EVENT, vcpu); 6998 6999 return 0; 7000 } 7001 7002 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7003 { 7004 struct kvm_segment cs; 7005 7006 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7007 *db = cs.db; 7008 *l = cs.l; 7009 } 7010 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7011 7012 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7013 struct kvm_sregs *sregs) 7014 { 7015 struct desc_ptr dt; 7016 7017 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7018 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7019 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7020 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7021 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7022 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7023 7024 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7025 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7026 7027 kvm_x86_ops->get_idt(vcpu, &dt); 7028 sregs->idt.limit = dt.size; 7029 sregs->idt.base = dt.address; 7030 kvm_x86_ops->get_gdt(vcpu, &dt); 7031 sregs->gdt.limit = dt.size; 7032 sregs->gdt.base = dt.address; 7033 7034 sregs->cr0 = kvm_read_cr0(vcpu); 7035 sregs->cr2 = vcpu->arch.cr2; 7036 sregs->cr3 = kvm_read_cr3(vcpu); 7037 sregs->cr4 = kvm_read_cr4(vcpu); 7038 sregs->cr8 = kvm_get_cr8(vcpu); 7039 sregs->efer = vcpu->arch.efer; 7040 sregs->apic_base = kvm_get_apic_base(vcpu); 7041 7042 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7043 7044 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7045 set_bit(vcpu->arch.interrupt.nr, 7046 (unsigned long *)sregs->interrupt_bitmap); 7047 7048 return 0; 7049 } 7050 7051 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7052 struct kvm_mp_state *mp_state) 7053 { 7054 kvm_apic_accept_events(vcpu); 7055 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7056 vcpu->arch.pv.pv_unhalted) 7057 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7058 else 7059 mp_state->mp_state = vcpu->arch.mp_state; 7060 7061 return 0; 7062 } 7063 7064 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7065 struct kvm_mp_state *mp_state) 7066 { 7067 if (!lapic_in_kernel(vcpu) && 7068 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7069 return -EINVAL; 7070 7071 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7072 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7073 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7074 } else 7075 vcpu->arch.mp_state = mp_state->mp_state; 7076 kvm_make_request(KVM_REQ_EVENT, vcpu); 7077 return 0; 7078 } 7079 7080 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7081 int reason, bool has_error_code, u32 error_code) 7082 { 7083 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7084 int ret; 7085 7086 init_emulate_ctxt(vcpu); 7087 7088 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7089 has_error_code, error_code); 7090 7091 if (ret) 7092 return EMULATE_FAIL; 7093 7094 kvm_rip_write(vcpu, ctxt->eip); 7095 kvm_set_rflags(vcpu, ctxt->eflags); 7096 kvm_make_request(KVM_REQ_EVENT, vcpu); 7097 return EMULATE_DONE; 7098 } 7099 EXPORT_SYMBOL_GPL(kvm_task_switch); 7100 7101 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7102 struct kvm_sregs *sregs) 7103 { 7104 struct msr_data apic_base_msr; 7105 int mmu_reset_needed = 0; 7106 int pending_vec, max_bits, idx; 7107 struct desc_ptr dt; 7108 7109 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7110 return -EINVAL; 7111 7112 dt.size = sregs->idt.limit; 7113 dt.address = sregs->idt.base; 7114 kvm_x86_ops->set_idt(vcpu, &dt); 7115 dt.size = sregs->gdt.limit; 7116 dt.address = sregs->gdt.base; 7117 kvm_x86_ops->set_gdt(vcpu, &dt); 7118 7119 vcpu->arch.cr2 = sregs->cr2; 7120 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7121 vcpu->arch.cr3 = sregs->cr3; 7122 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7123 7124 kvm_set_cr8(vcpu, sregs->cr8); 7125 7126 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7127 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7128 apic_base_msr.data = sregs->apic_base; 7129 apic_base_msr.host_initiated = true; 7130 kvm_set_apic_base(vcpu, &apic_base_msr); 7131 7132 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7133 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7134 vcpu->arch.cr0 = sregs->cr0; 7135 7136 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7137 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7138 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7139 kvm_update_cpuid(vcpu); 7140 7141 idx = srcu_read_lock(&vcpu->kvm->srcu); 7142 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7143 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7144 mmu_reset_needed = 1; 7145 } 7146 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7147 7148 if (mmu_reset_needed) 7149 kvm_mmu_reset_context(vcpu); 7150 7151 max_bits = KVM_NR_INTERRUPTS; 7152 pending_vec = find_first_bit( 7153 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7154 if (pending_vec < max_bits) { 7155 kvm_queue_interrupt(vcpu, pending_vec, false); 7156 pr_debug("Set back pending irq %d\n", pending_vec); 7157 } 7158 7159 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7160 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7161 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7162 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7163 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7164 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7165 7166 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7167 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7168 7169 update_cr8_intercept(vcpu); 7170 7171 /* Older userspace won't unhalt the vcpu on reset. */ 7172 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7173 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7174 !is_protmode(vcpu)) 7175 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7176 7177 kvm_make_request(KVM_REQ_EVENT, vcpu); 7178 7179 return 0; 7180 } 7181 7182 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7183 struct kvm_guest_debug *dbg) 7184 { 7185 unsigned long rflags; 7186 int i, r; 7187 7188 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7189 r = -EBUSY; 7190 if (vcpu->arch.exception.pending) 7191 goto out; 7192 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7193 kvm_queue_exception(vcpu, DB_VECTOR); 7194 else 7195 kvm_queue_exception(vcpu, BP_VECTOR); 7196 } 7197 7198 /* 7199 * Read rflags as long as potentially injected trace flags are still 7200 * filtered out. 7201 */ 7202 rflags = kvm_get_rflags(vcpu); 7203 7204 vcpu->guest_debug = dbg->control; 7205 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7206 vcpu->guest_debug = 0; 7207 7208 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7209 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7210 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7211 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7212 } else { 7213 for (i = 0; i < KVM_NR_DB_REGS; i++) 7214 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7215 } 7216 kvm_update_dr7(vcpu); 7217 7218 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7219 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7220 get_segment_base(vcpu, VCPU_SREG_CS); 7221 7222 /* 7223 * Trigger an rflags update that will inject or remove the trace 7224 * flags. 7225 */ 7226 kvm_set_rflags(vcpu, rflags); 7227 7228 kvm_x86_ops->update_bp_intercept(vcpu); 7229 7230 r = 0; 7231 7232 out: 7233 7234 return r; 7235 } 7236 7237 /* 7238 * Translate a guest virtual address to a guest physical address. 7239 */ 7240 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7241 struct kvm_translation *tr) 7242 { 7243 unsigned long vaddr = tr->linear_address; 7244 gpa_t gpa; 7245 int idx; 7246 7247 idx = srcu_read_lock(&vcpu->kvm->srcu); 7248 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7249 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7250 tr->physical_address = gpa; 7251 tr->valid = gpa != UNMAPPED_GVA; 7252 tr->writeable = 1; 7253 tr->usermode = 0; 7254 7255 return 0; 7256 } 7257 7258 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7259 { 7260 struct fxregs_state *fxsave = 7261 &vcpu->arch.guest_fpu.state.fxsave; 7262 7263 memcpy(fpu->fpr, fxsave->st_space, 128); 7264 fpu->fcw = fxsave->cwd; 7265 fpu->fsw = fxsave->swd; 7266 fpu->ftwx = fxsave->twd; 7267 fpu->last_opcode = fxsave->fop; 7268 fpu->last_ip = fxsave->rip; 7269 fpu->last_dp = fxsave->rdp; 7270 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7271 7272 return 0; 7273 } 7274 7275 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7276 { 7277 struct fxregs_state *fxsave = 7278 &vcpu->arch.guest_fpu.state.fxsave; 7279 7280 memcpy(fxsave->st_space, fpu->fpr, 128); 7281 fxsave->cwd = fpu->fcw; 7282 fxsave->swd = fpu->fsw; 7283 fxsave->twd = fpu->ftwx; 7284 fxsave->fop = fpu->last_opcode; 7285 fxsave->rip = fpu->last_ip; 7286 fxsave->rdp = fpu->last_dp; 7287 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7288 7289 return 0; 7290 } 7291 7292 static void fx_init(struct kvm_vcpu *vcpu) 7293 { 7294 fpstate_init(&vcpu->arch.guest_fpu.state); 7295 if (cpu_has_xsaves) 7296 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7297 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7298 7299 /* 7300 * Ensure guest xcr0 is valid for loading 7301 */ 7302 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7303 7304 vcpu->arch.cr0 |= X86_CR0_ET; 7305 } 7306 7307 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7308 { 7309 if (vcpu->guest_fpu_loaded) 7310 return; 7311 7312 /* 7313 * Restore all possible states in the guest, 7314 * and assume host would use all available bits. 7315 * Guest xcr0 would be loaded later. 7316 */ 7317 kvm_put_guest_xcr0(vcpu); 7318 vcpu->guest_fpu_loaded = 1; 7319 __kernel_fpu_begin(); 7320 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); 7321 trace_kvm_fpu(1); 7322 } 7323 7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7325 { 7326 kvm_put_guest_xcr0(vcpu); 7327 7328 if (!vcpu->guest_fpu_loaded) { 7329 vcpu->fpu_counter = 0; 7330 return; 7331 } 7332 7333 vcpu->guest_fpu_loaded = 0; 7334 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7335 __kernel_fpu_end(); 7336 ++vcpu->stat.fpu_reload; 7337 /* 7338 * If using eager FPU mode, or if the guest is a frequent user 7339 * of the FPU, just leave the FPU active for next time. 7340 * Every 255 times fpu_counter rolls over to 0; a guest that uses 7341 * the FPU in bursts will revert to loading it on demand. 7342 */ 7343 if (!use_eager_fpu()) { 7344 if (++vcpu->fpu_counter < 5) 7345 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 7346 } 7347 trace_kvm_fpu(0); 7348 } 7349 7350 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7351 { 7352 kvmclock_reset(vcpu); 7353 7354 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7355 kvm_x86_ops->vcpu_free(vcpu); 7356 } 7357 7358 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7359 unsigned int id) 7360 { 7361 struct kvm_vcpu *vcpu; 7362 7363 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7364 printk_once(KERN_WARNING 7365 "kvm: SMP vm created on host with unstable TSC; " 7366 "guest TSC will not be reliable\n"); 7367 7368 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7369 7370 return vcpu; 7371 } 7372 7373 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7374 { 7375 int r; 7376 7377 kvm_vcpu_mtrr_init(vcpu); 7378 r = vcpu_load(vcpu); 7379 if (r) 7380 return r; 7381 kvm_vcpu_reset(vcpu, false); 7382 kvm_mmu_setup(vcpu); 7383 vcpu_put(vcpu); 7384 return r; 7385 } 7386 7387 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7388 { 7389 struct msr_data msr; 7390 struct kvm *kvm = vcpu->kvm; 7391 7392 if (vcpu_load(vcpu)) 7393 return; 7394 msr.data = 0x0; 7395 msr.index = MSR_IA32_TSC; 7396 msr.host_initiated = true; 7397 kvm_write_tsc(vcpu, &msr); 7398 vcpu_put(vcpu); 7399 7400 if (!kvmclock_periodic_sync) 7401 return; 7402 7403 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7404 KVMCLOCK_SYNC_PERIOD); 7405 } 7406 7407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7408 { 7409 int r; 7410 vcpu->arch.apf.msr_val = 0; 7411 7412 r = vcpu_load(vcpu); 7413 BUG_ON(r); 7414 kvm_mmu_unload(vcpu); 7415 vcpu_put(vcpu); 7416 7417 kvm_x86_ops->vcpu_free(vcpu); 7418 } 7419 7420 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7421 { 7422 vcpu->arch.hflags = 0; 7423 7424 atomic_set(&vcpu->arch.nmi_queued, 0); 7425 vcpu->arch.nmi_pending = 0; 7426 vcpu->arch.nmi_injected = false; 7427 kvm_clear_interrupt_queue(vcpu); 7428 kvm_clear_exception_queue(vcpu); 7429 7430 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7431 kvm_update_dr0123(vcpu); 7432 vcpu->arch.dr6 = DR6_INIT; 7433 kvm_update_dr6(vcpu); 7434 vcpu->arch.dr7 = DR7_FIXED_1; 7435 kvm_update_dr7(vcpu); 7436 7437 vcpu->arch.cr2 = 0; 7438 7439 kvm_make_request(KVM_REQ_EVENT, vcpu); 7440 vcpu->arch.apf.msr_val = 0; 7441 vcpu->arch.st.msr_val = 0; 7442 7443 kvmclock_reset(vcpu); 7444 7445 kvm_clear_async_pf_completion_queue(vcpu); 7446 kvm_async_pf_hash_reset(vcpu); 7447 vcpu->arch.apf.halted = false; 7448 7449 if (!init_event) { 7450 kvm_pmu_reset(vcpu); 7451 vcpu->arch.smbase = 0x30000; 7452 } 7453 7454 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7455 vcpu->arch.regs_avail = ~0; 7456 vcpu->arch.regs_dirty = ~0; 7457 7458 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7459 } 7460 7461 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7462 { 7463 struct kvm_segment cs; 7464 7465 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7466 cs.selector = vector << 8; 7467 cs.base = vector << 12; 7468 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7469 kvm_rip_write(vcpu, 0); 7470 } 7471 7472 int kvm_arch_hardware_enable(void) 7473 { 7474 struct kvm *kvm; 7475 struct kvm_vcpu *vcpu; 7476 int i; 7477 int ret; 7478 u64 local_tsc; 7479 u64 max_tsc = 0; 7480 bool stable, backwards_tsc = false; 7481 7482 kvm_shared_msr_cpu_online(); 7483 ret = kvm_x86_ops->hardware_enable(); 7484 if (ret != 0) 7485 return ret; 7486 7487 local_tsc = rdtsc(); 7488 stable = !check_tsc_unstable(); 7489 list_for_each_entry(kvm, &vm_list, vm_list) { 7490 kvm_for_each_vcpu(i, vcpu, kvm) { 7491 if (!stable && vcpu->cpu == smp_processor_id()) 7492 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7493 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7494 backwards_tsc = true; 7495 if (vcpu->arch.last_host_tsc > max_tsc) 7496 max_tsc = vcpu->arch.last_host_tsc; 7497 } 7498 } 7499 } 7500 7501 /* 7502 * Sometimes, even reliable TSCs go backwards. This happens on 7503 * platforms that reset TSC during suspend or hibernate actions, but 7504 * maintain synchronization. We must compensate. Fortunately, we can 7505 * detect that condition here, which happens early in CPU bringup, 7506 * before any KVM threads can be running. Unfortunately, we can't 7507 * bring the TSCs fully up to date with real time, as we aren't yet far 7508 * enough into CPU bringup that we know how much real time has actually 7509 * elapsed; our helper function, get_kernel_ns() will be using boot 7510 * variables that haven't been updated yet. 7511 * 7512 * So we simply find the maximum observed TSC above, then record the 7513 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7514 * the adjustment will be applied. Note that we accumulate 7515 * adjustments, in case multiple suspend cycles happen before some VCPU 7516 * gets a chance to run again. In the event that no KVM threads get a 7517 * chance to run, we will miss the entire elapsed period, as we'll have 7518 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7519 * loose cycle time. This isn't too big a deal, since the loss will be 7520 * uniform across all VCPUs (not to mention the scenario is extremely 7521 * unlikely). It is possible that a second hibernate recovery happens 7522 * much faster than a first, causing the observed TSC here to be 7523 * smaller; this would require additional padding adjustment, which is 7524 * why we set last_host_tsc to the local tsc observed here. 7525 * 7526 * N.B. - this code below runs only on platforms with reliable TSC, 7527 * as that is the only way backwards_tsc is set above. Also note 7528 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7529 * have the same delta_cyc adjustment applied if backwards_tsc 7530 * is detected. Note further, this adjustment is only done once, 7531 * as we reset last_host_tsc on all VCPUs to stop this from being 7532 * called multiple times (one for each physical CPU bringup). 7533 * 7534 * Platforms with unreliable TSCs don't have to deal with this, they 7535 * will be compensated by the logic in vcpu_load, which sets the TSC to 7536 * catchup mode. This will catchup all VCPUs to real time, but cannot 7537 * guarantee that they stay in perfect synchronization. 7538 */ 7539 if (backwards_tsc) { 7540 u64 delta_cyc = max_tsc - local_tsc; 7541 backwards_tsc_observed = true; 7542 list_for_each_entry(kvm, &vm_list, vm_list) { 7543 kvm_for_each_vcpu(i, vcpu, kvm) { 7544 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7545 vcpu->arch.last_host_tsc = local_tsc; 7546 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7547 } 7548 7549 /* 7550 * We have to disable TSC offset matching.. if you were 7551 * booting a VM while issuing an S4 host suspend.... 7552 * you may have some problem. Solving this issue is 7553 * left as an exercise to the reader. 7554 */ 7555 kvm->arch.last_tsc_nsec = 0; 7556 kvm->arch.last_tsc_write = 0; 7557 } 7558 7559 } 7560 return 0; 7561 } 7562 7563 void kvm_arch_hardware_disable(void) 7564 { 7565 kvm_x86_ops->hardware_disable(); 7566 drop_user_return_notifiers(); 7567 } 7568 7569 int kvm_arch_hardware_setup(void) 7570 { 7571 int r; 7572 7573 r = kvm_x86_ops->hardware_setup(); 7574 if (r != 0) 7575 return r; 7576 7577 if (kvm_has_tsc_control) { 7578 /* 7579 * Make sure the user can only configure tsc_khz values that 7580 * fit into a signed integer. 7581 * A min value is not calculated needed because it will always 7582 * be 1 on all machines. 7583 */ 7584 u64 max = min(0x7fffffffULL, 7585 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7586 kvm_max_guest_tsc_khz = max; 7587 7588 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7589 } 7590 7591 kvm_init_msr_list(); 7592 return 0; 7593 } 7594 7595 void kvm_arch_hardware_unsetup(void) 7596 { 7597 kvm_x86_ops->hardware_unsetup(); 7598 } 7599 7600 void kvm_arch_check_processor_compat(void *rtn) 7601 { 7602 kvm_x86_ops->check_processor_compatibility(rtn); 7603 } 7604 7605 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7606 { 7607 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7608 } 7609 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7610 7611 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7612 { 7613 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7614 } 7615 7616 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 7617 { 7618 return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu); 7619 } 7620 7621 struct static_key kvm_no_apic_vcpu __read_mostly; 7622 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7623 7624 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7625 { 7626 struct page *page; 7627 struct kvm *kvm; 7628 int r; 7629 7630 BUG_ON(vcpu->kvm == NULL); 7631 kvm = vcpu->kvm; 7632 7633 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7634 vcpu->arch.pv.pv_unhalted = false; 7635 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7636 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7637 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7638 else 7639 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7640 7641 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7642 if (!page) { 7643 r = -ENOMEM; 7644 goto fail; 7645 } 7646 vcpu->arch.pio_data = page_address(page); 7647 7648 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7649 7650 r = kvm_mmu_create(vcpu); 7651 if (r < 0) 7652 goto fail_free_pio_data; 7653 7654 if (irqchip_in_kernel(kvm)) { 7655 r = kvm_create_lapic(vcpu); 7656 if (r < 0) 7657 goto fail_mmu_destroy; 7658 } else 7659 static_key_slow_inc(&kvm_no_apic_vcpu); 7660 7661 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7662 GFP_KERNEL); 7663 if (!vcpu->arch.mce_banks) { 7664 r = -ENOMEM; 7665 goto fail_free_lapic; 7666 } 7667 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7668 7669 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7670 r = -ENOMEM; 7671 goto fail_free_mce_banks; 7672 } 7673 7674 fx_init(vcpu); 7675 7676 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7677 vcpu->arch.pv_time_enabled = false; 7678 7679 vcpu->arch.guest_supported_xcr0 = 0; 7680 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7681 7682 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7683 7684 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7685 7686 kvm_async_pf_hash_reset(vcpu); 7687 kvm_pmu_init(vcpu); 7688 7689 vcpu->arch.pending_external_vector = -1; 7690 7691 kvm_hv_vcpu_init(vcpu); 7692 7693 return 0; 7694 7695 fail_free_mce_banks: 7696 kfree(vcpu->arch.mce_banks); 7697 fail_free_lapic: 7698 kvm_free_lapic(vcpu); 7699 fail_mmu_destroy: 7700 kvm_mmu_destroy(vcpu); 7701 fail_free_pio_data: 7702 free_page((unsigned long)vcpu->arch.pio_data); 7703 fail: 7704 return r; 7705 } 7706 7707 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7708 { 7709 int idx; 7710 7711 kvm_hv_vcpu_uninit(vcpu); 7712 kvm_pmu_destroy(vcpu); 7713 kfree(vcpu->arch.mce_banks); 7714 kvm_free_lapic(vcpu); 7715 idx = srcu_read_lock(&vcpu->kvm->srcu); 7716 kvm_mmu_destroy(vcpu); 7717 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7718 free_page((unsigned long)vcpu->arch.pio_data); 7719 if (!lapic_in_kernel(vcpu)) 7720 static_key_slow_dec(&kvm_no_apic_vcpu); 7721 } 7722 7723 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 7724 { 7725 kvm_x86_ops->sched_in(vcpu, cpu); 7726 } 7727 7728 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7729 { 7730 if (type) 7731 return -EINVAL; 7732 7733 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 7734 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7735 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7736 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7737 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7738 7739 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7740 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7741 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7742 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7743 &kvm->arch.irq_sources_bitmap); 7744 7745 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7746 mutex_init(&kvm->arch.apic_map_lock); 7747 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7748 7749 pvclock_update_vm_gtod_copy(kvm); 7750 7751 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7752 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7753 7754 kvm_page_track_init(kvm); 7755 kvm_mmu_init_vm(kvm); 7756 7757 return 0; 7758 } 7759 7760 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7761 { 7762 int r; 7763 r = vcpu_load(vcpu); 7764 BUG_ON(r); 7765 kvm_mmu_unload(vcpu); 7766 vcpu_put(vcpu); 7767 } 7768 7769 static void kvm_free_vcpus(struct kvm *kvm) 7770 { 7771 unsigned int i; 7772 struct kvm_vcpu *vcpu; 7773 7774 /* 7775 * Unpin any mmu pages first. 7776 */ 7777 kvm_for_each_vcpu(i, vcpu, kvm) { 7778 kvm_clear_async_pf_completion_queue(vcpu); 7779 kvm_unload_vcpu_mmu(vcpu); 7780 } 7781 kvm_for_each_vcpu(i, vcpu, kvm) 7782 kvm_arch_vcpu_free(vcpu); 7783 7784 mutex_lock(&kvm->lock); 7785 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7786 kvm->vcpus[i] = NULL; 7787 7788 atomic_set(&kvm->online_vcpus, 0); 7789 mutex_unlock(&kvm->lock); 7790 } 7791 7792 void kvm_arch_sync_events(struct kvm *kvm) 7793 { 7794 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7795 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7796 kvm_free_all_assigned_devices(kvm); 7797 kvm_free_pit(kvm); 7798 } 7799 7800 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 7801 { 7802 int i, r; 7803 unsigned long hva; 7804 struct kvm_memslots *slots = kvm_memslots(kvm); 7805 struct kvm_memory_slot *slot, old; 7806 7807 /* Called with kvm->slots_lock held. */ 7808 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 7809 return -EINVAL; 7810 7811 slot = id_to_memslot(slots, id); 7812 if (size) { 7813 if (WARN_ON(slot->npages)) 7814 return -EEXIST; 7815 7816 /* 7817 * MAP_SHARED to prevent internal slot pages from being moved 7818 * by fork()/COW. 7819 */ 7820 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 7821 MAP_SHARED | MAP_ANONYMOUS, 0); 7822 if (IS_ERR((void *)hva)) 7823 return PTR_ERR((void *)hva); 7824 } else { 7825 if (!slot->npages) 7826 return 0; 7827 7828 hva = 0; 7829 } 7830 7831 old = *slot; 7832 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 7833 struct kvm_userspace_memory_region m; 7834 7835 m.slot = id | (i << 16); 7836 m.flags = 0; 7837 m.guest_phys_addr = gpa; 7838 m.userspace_addr = hva; 7839 m.memory_size = size; 7840 r = __kvm_set_memory_region(kvm, &m); 7841 if (r < 0) 7842 return r; 7843 } 7844 7845 if (!size) { 7846 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 7847 WARN_ON(r < 0); 7848 } 7849 7850 return 0; 7851 } 7852 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 7853 7854 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 7855 { 7856 int r; 7857 7858 mutex_lock(&kvm->slots_lock); 7859 r = __x86_set_memory_region(kvm, id, gpa, size); 7860 mutex_unlock(&kvm->slots_lock); 7861 7862 return r; 7863 } 7864 EXPORT_SYMBOL_GPL(x86_set_memory_region); 7865 7866 void kvm_arch_destroy_vm(struct kvm *kvm) 7867 { 7868 if (current->mm == kvm->mm) { 7869 /* 7870 * Free memory regions allocated on behalf of userspace, 7871 * unless the the memory map has changed due to process exit 7872 * or fd copying. 7873 */ 7874 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 7875 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 7876 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 7877 } 7878 kvm_iommu_unmap_guest(kvm); 7879 kfree(kvm->arch.vpic); 7880 kfree(kvm->arch.vioapic); 7881 kvm_free_vcpus(kvm); 7882 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7883 kvm_mmu_uninit_vm(kvm); 7884 } 7885 7886 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7887 struct kvm_memory_slot *dont) 7888 { 7889 int i; 7890 7891 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7892 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7893 kvfree(free->arch.rmap[i]); 7894 free->arch.rmap[i] = NULL; 7895 } 7896 if (i == 0) 7897 continue; 7898 7899 if (!dont || free->arch.lpage_info[i - 1] != 7900 dont->arch.lpage_info[i - 1]) { 7901 kvfree(free->arch.lpage_info[i - 1]); 7902 free->arch.lpage_info[i - 1] = NULL; 7903 } 7904 } 7905 7906 kvm_page_track_free_memslot(free, dont); 7907 } 7908 7909 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7910 unsigned long npages) 7911 { 7912 int i; 7913 7914 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7915 struct kvm_lpage_info *linfo; 7916 unsigned long ugfn; 7917 int lpages; 7918 int level = i + 1; 7919 7920 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7921 slot->base_gfn, level) + 1; 7922 7923 slot->arch.rmap[i] = 7924 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7925 if (!slot->arch.rmap[i]) 7926 goto out_free; 7927 if (i == 0) 7928 continue; 7929 7930 linfo = kvm_kvzalloc(lpages * sizeof(*linfo)); 7931 if (!linfo) 7932 goto out_free; 7933 7934 slot->arch.lpage_info[i - 1] = linfo; 7935 7936 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7937 linfo[0].disallow_lpage = 1; 7938 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7939 linfo[lpages - 1].disallow_lpage = 1; 7940 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7941 /* 7942 * If the gfn and userspace address are not aligned wrt each 7943 * other, or if explicitly asked to, disable large page 7944 * support for this slot 7945 */ 7946 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7947 !kvm_largepages_enabled()) { 7948 unsigned long j; 7949 7950 for (j = 0; j < lpages; ++j) 7951 linfo[j].disallow_lpage = 1; 7952 } 7953 } 7954 7955 if (kvm_page_track_create_memslot(slot, npages)) 7956 goto out_free; 7957 7958 return 0; 7959 7960 out_free: 7961 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7962 kvfree(slot->arch.rmap[i]); 7963 slot->arch.rmap[i] = NULL; 7964 if (i == 0) 7965 continue; 7966 7967 kvfree(slot->arch.lpage_info[i - 1]); 7968 slot->arch.lpage_info[i - 1] = NULL; 7969 } 7970 return -ENOMEM; 7971 } 7972 7973 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 7974 { 7975 /* 7976 * memslots->generation has been incremented. 7977 * mmio generation may have reached its maximum value. 7978 */ 7979 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 7980 } 7981 7982 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7983 struct kvm_memory_slot *memslot, 7984 const struct kvm_userspace_memory_region *mem, 7985 enum kvm_mr_change change) 7986 { 7987 return 0; 7988 } 7989 7990 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 7991 struct kvm_memory_slot *new) 7992 { 7993 /* Still write protect RO slot */ 7994 if (new->flags & KVM_MEM_READONLY) { 7995 kvm_mmu_slot_remove_write_access(kvm, new); 7996 return; 7997 } 7998 7999 /* 8000 * Call kvm_x86_ops dirty logging hooks when they are valid. 8001 * 8002 * kvm_x86_ops->slot_disable_log_dirty is called when: 8003 * 8004 * - KVM_MR_CREATE with dirty logging is disabled 8005 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8006 * 8007 * The reason is, in case of PML, we need to set D-bit for any slots 8008 * with dirty logging disabled in order to eliminate unnecessary GPA 8009 * logging in PML buffer (and potential PML buffer full VMEXT). This 8010 * guarantees leaving PML enabled during guest's lifetime won't have 8011 * any additonal overhead from PML when guest is running with dirty 8012 * logging disabled for memory slots. 8013 * 8014 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8015 * to dirty logging mode. 8016 * 8017 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8018 * 8019 * In case of write protect: 8020 * 8021 * Write protect all pages for dirty logging. 8022 * 8023 * All the sptes including the large sptes which point to this 8024 * slot are set to readonly. We can not create any new large 8025 * spte on this slot until the end of the logging. 8026 * 8027 * See the comments in fast_page_fault(). 8028 */ 8029 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8030 if (kvm_x86_ops->slot_enable_log_dirty) 8031 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8032 else 8033 kvm_mmu_slot_remove_write_access(kvm, new); 8034 } else { 8035 if (kvm_x86_ops->slot_disable_log_dirty) 8036 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8037 } 8038 } 8039 8040 void kvm_arch_commit_memory_region(struct kvm *kvm, 8041 const struct kvm_userspace_memory_region *mem, 8042 const struct kvm_memory_slot *old, 8043 const struct kvm_memory_slot *new, 8044 enum kvm_mr_change change) 8045 { 8046 int nr_mmu_pages = 0; 8047 8048 if (!kvm->arch.n_requested_mmu_pages) 8049 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8050 8051 if (nr_mmu_pages) 8052 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8053 8054 /* 8055 * Dirty logging tracks sptes in 4k granularity, meaning that large 8056 * sptes have to be split. If live migration is successful, the guest 8057 * in the source machine will be destroyed and large sptes will be 8058 * created in the destination. However, if the guest continues to run 8059 * in the source machine (for example if live migration fails), small 8060 * sptes will remain around and cause bad performance. 8061 * 8062 * Scan sptes if dirty logging has been stopped, dropping those 8063 * which can be collapsed into a single large-page spte. Later 8064 * page faults will create the large-page sptes. 8065 */ 8066 if ((change != KVM_MR_DELETE) && 8067 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8068 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8069 kvm_mmu_zap_collapsible_sptes(kvm, new); 8070 8071 /* 8072 * Set up write protection and/or dirty logging for the new slot. 8073 * 8074 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8075 * been zapped so no dirty logging staff is needed for old slot. For 8076 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8077 * new and it's also covered when dealing with the new slot. 8078 * 8079 * FIXME: const-ify all uses of struct kvm_memory_slot. 8080 */ 8081 if (change != KVM_MR_DELETE) 8082 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8083 } 8084 8085 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8086 { 8087 kvm_mmu_invalidate_zap_all_pages(kvm); 8088 } 8089 8090 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8091 struct kvm_memory_slot *slot) 8092 { 8093 kvm_mmu_invalidate_zap_all_pages(kvm); 8094 } 8095 8096 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8097 { 8098 if (!list_empty_careful(&vcpu->async_pf.done)) 8099 return true; 8100 8101 if (kvm_apic_has_events(vcpu)) 8102 return true; 8103 8104 if (vcpu->arch.pv.pv_unhalted) 8105 return true; 8106 8107 if (atomic_read(&vcpu->arch.nmi_queued)) 8108 return true; 8109 8110 if (test_bit(KVM_REQ_SMI, &vcpu->requests)) 8111 return true; 8112 8113 if (kvm_arch_interrupt_allowed(vcpu) && 8114 kvm_cpu_has_interrupt(vcpu)) 8115 return true; 8116 8117 if (kvm_hv_has_stimer_pending(vcpu)) 8118 return true; 8119 8120 return false; 8121 } 8122 8123 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8124 { 8125 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8126 kvm_x86_ops->check_nested_events(vcpu, false); 8127 8128 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8129 } 8130 8131 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8132 { 8133 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8134 } 8135 8136 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8137 { 8138 return kvm_x86_ops->interrupt_allowed(vcpu); 8139 } 8140 8141 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8142 { 8143 if (is_64_bit_mode(vcpu)) 8144 return kvm_rip_read(vcpu); 8145 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8146 kvm_rip_read(vcpu)); 8147 } 8148 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8149 8150 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8151 { 8152 return kvm_get_linear_rip(vcpu) == linear_rip; 8153 } 8154 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8155 8156 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8157 { 8158 unsigned long rflags; 8159 8160 rflags = kvm_x86_ops->get_rflags(vcpu); 8161 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8162 rflags &= ~X86_EFLAGS_TF; 8163 return rflags; 8164 } 8165 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8166 8167 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8168 { 8169 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8170 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8171 rflags |= X86_EFLAGS_TF; 8172 kvm_x86_ops->set_rflags(vcpu, rflags); 8173 } 8174 8175 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8176 { 8177 __kvm_set_rflags(vcpu, rflags); 8178 kvm_make_request(KVM_REQ_EVENT, vcpu); 8179 } 8180 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8181 8182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8183 { 8184 int r; 8185 8186 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8187 work->wakeup_all) 8188 return; 8189 8190 r = kvm_mmu_reload(vcpu); 8191 if (unlikely(r)) 8192 return; 8193 8194 if (!vcpu->arch.mmu.direct_map && 8195 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8196 return; 8197 8198 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8199 } 8200 8201 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8202 { 8203 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8204 } 8205 8206 static inline u32 kvm_async_pf_next_probe(u32 key) 8207 { 8208 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8209 } 8210 8211 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8212 { 8213 u32 key = kvm_async_pf_hash_fn(gfn); 8214 8215 while (vcpu->arch.apf.gfns[key] != ~0) 8216 key = kvm_async_pf_next_probe(key); 8217 8218 vcpu->arch.apf.gfns[key] = gfn; 8219 } 8220 8221 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8222 { 8223 int i; 8224 u32 key = kvm_async_pf_hash_fn(gfn); 8225 8226 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8227 (vcpu->arch.apf.gfns[key] != gfn && 8228 vcpu->arch.apf.gfns[key] != ~0); i++) 8229 key = kvm_async_pf_next_probe(key); 8230 8231 return key; 8232 } 8233 8234 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8235 { 8236 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8237 } 8238 8239 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8240 { 8241 u32 i, j, k; 8242 8243 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8244 while (true) { 8245 vcpu->arch.apf.gfns[i] = ~0; 8246 do { 8247 j = kvm_async_pf_next_probe(j); 8248 if (vcpu->arch.apf.gfns[j] == ~0) 8249 return; 8250 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8251 /* 8252 * k lies cyclically in ]i,j] 8253 * | i.k.j | 8254 * |....j i.k.| or |.k..j i...| 8255 */ 8256 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8257 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8258 i = j; 8259 } 8260 } 8261 8262 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8263 { 8264 8265 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 8266 sizeof(val)); 8267 } 8268 8269 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8270 struct kvm_async_pf *work) 8271 { 8272 struct x86_exception fault; 8273 8274 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8275 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8276 8277 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8278 (vcpu->arch.apf.send_user_only && 8279 kvm_x86_ops->get_cpl(vcpu) == 0)) 8280 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8281 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8282 fault.vector = PF_VECTOR; 8283 fault.error_code_valid = true; 8284 fault.error_code = 0; 8285 fault.nested_page_fault = false; 8286 fault.address = work->arch.token; 8287 kvm_inject_page_fault(vcpu, &fault); 8288 } 8289 } 8290 8291 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8292 struct kvm_async_pf *work) 8293 { 8294 struct x86_exception fault; 8295 8296 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8297 if (work->wakeup_all) 8298 work->arch.token = ~0; /* broadcast wakeup */ 8299 else 8300 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8301 8302 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8303 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8304 fault.vector = PF_VECTOR; 8305 fault.error_code_valid = true; 8306 fault.error_code = 0; 8307 fault.nested_page_fault = false; 8308 fault.address = work->arch.token; 8309 kvm_inject_page_fault(vcpu, &fault); 8310 } 8311 vcpu->arch.apf.halted = false; 8312 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8313 } 8314 8315 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8316 { 8317 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8318 return true; 8319 else 8320 return !kvm_event_needs_reinjection(vcpu) && 8321 kvm_x86_ops->interrupt_allowed(vcpu); 8322 } 8323 8324 void kvm_arch_start_assignment(struct kvm *kvm) 8325 { 8326 atomic_inc(&kvm->arch.assigned_device_count); 8327 } 8328 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8329 8330 void kvm_arch_end_assignment(struct kvm *kvm) 8331 { 8332 atomic_dec(&kvm->arch.assigned_device_count); 8333 } 8334 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8335 8336 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8337 { 8338 return atomic_read(&kvm->arch.assigned_device_count); 8339 } 8340 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8341 8342 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8343 { 8344 atomic_inc(&kvm->arch.noncoherent_dma_count); 8345 } 8346 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8347 8348 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8349 { 8350 atomic_dec(&kvm->arch.noncoherent_dma_count); 8351 } 8352 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8353 8354 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8355 { 8356 return atomic_read(&kvm->arch.noncoherent_dma_count); 8357 } 8358 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8359 8360 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8361 struct irq_bypass_producer *prod) 8362 { 8363 struct kvm_kernel_irqfd *irqfd = 8364 container_of(cons, struct kvm_kernel_irqfd, consumer); 8365 8366 if (kvm_x86_ops->update_pi_irte) { 8367 irqfd->producer = prod; 8368 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8369 prod->irq, irqfd->gsi, 1); 8370 } 8371 8372 return -EINVAL; 8373 } 8374 8375 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8376 struct irq_bypass_producer *prod) 8377 { 8378 int ret; 8379 struct kvm_kernel_irqfd *irqfd = 8380 container_of(cons, struct kvm_kernel_irqfd, consumer); 8381 8382 if (!kvm_x86_ops->update_pi_irte) { 8383 WARN_ON(irqfd->producer != NULL); 8384 return; 8385 } 8386 8387 WARN_ON(irqfd->producer != prod); 8388 irqfd->producer = NULL; 8389 8390 /* 8391 * When producer of consumer is unregistered, we change back to 8392 * remapped mode, so we can re-use the current implementation 8393 * when the irq is masked/disabed or the consumer side (KVM 8394 * int this case doesn't want to receive the interrupts. 8395 */ 8396 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8397 if (ret) 8398 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8399 " fails: %d\n", irqfd->consumer.token, ret); 8400 } 8401 8402 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8403 uint32_t guest_irq, bool set) 8404 { 8405 if (!kvm_x86_ops->update_pi_irte) 8406 return -EINVAL; 8407 8408 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8409 } 8410 8411 bool kvm_vector_hashing_enabled(void) 8412 { 8413 return vector_hashing; 8414 } 8415 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8416 8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8434