xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149 
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153 
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156 
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159 
160 #define KVM_NR_SHARED_MSRS 16
161 
162 struct kvm_shared_msrs_global {
163 	int nr;
164 	u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166 
167 struct kvm_shared_msrs {
168 	struct user_return_notifier urn;
169 	bool registered;
170 	struct kvm_shared_msr_values {
171 		u64 host;
172 		u64 curr;
173 	} values[KVM_NR_SHARED_MSRS];
174 };
175 
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178 
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
181 	{ "pf_guest", VCPU_STAT(pf_guest) },
182 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
183 	{ "invlpg", VCPU_STAT(invlpg) },
184 	{ "exits", VCPU_STAT(exits) },
185 	{ "io_exits", VCPU_STAT(io_exits) },
186 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
187 	{ "signal_exits", VCPU_STAT(signal_exits) },
188 	{ "irq_window", VCPU_STAT(irq_window_exits) },
189 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
190 	{ "halt_exits", VCPU_STAT(halt_exits) },
191 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
195 	{ "hypercalls", VCPU_STAT(hypercalls) },
196 	{ "request_irq", VCPU_STAT(request_irq_exits) },
197 	{ "irq_exits", VCPU_STAT(irq_exits) },
198 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
199 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
200 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
201 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202 	{ "irq_injections", VCPU_STAT(irq_injections) },
203 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
204 	{ "req_event", VCPU_STAT(req_event) },
205 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
206 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
208 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
211 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
212 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
214 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215 	{ "largepages", VM_STAT(lpages) },
216 	{ "max_mmu_page_hash_collisions",
217 		VM_STAT(max_mmu_page_hash_collisions) },
218 	{ NULL }
219 };
220 
221 u64 __read_mostly host_xcr0;
222 
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225 
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227 
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230 	int i;
231 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232 		vcpu->arch.apf.gfns[i] = ~0;
233 }
234 
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237 	unsigned slot;
238 	struct kvm_shared_msrs *locals
239 		= container_of(urn, struct kvm_shared_msrs, urn);
240 	struct kvm_shared_msr_values *values;
241 	unsigned long flags;
242 
243 	/*
244 	 * Disabling irqs at this point since the following code could be
245 	 * interrupted and executed through kvm_arch_hardware_disable()
246 	 */
247 	local_irq_save(flags);
248 	if (locals->registered) {
249 		locals->registered = false;
250 		user_return_notifier_unregister(urn);
251 	}
252 	local_irq_restore(flags);
253 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254 		values = &locals->values[slot];
255 		if (values->host != values->curr) {
256 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
257 			values->curr = values->host;
258 		}
259 	}
260 }
261 
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264 	u64 value;
265 	unsigned int cpu = smp_processor_id();
266 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267 
268 	/* only read, and nobody should modify it at this time,
269 	 * so don't need lock */
270 	if (slot >= shared_msrs_global.nr) {
271 		printk(KERN_ERR "kvm: invalid MSR slot!");
272 		return;
273 	}
274 	rdmsrl_safe(msr, &value);
275 	smsr->values[slot].host = value;
276 	smsr->values[slot].curr = value;
277 }
278 
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282 	shared_msrs_global.msrs[slot] = msr;
283 	if (slot >= shared_msrs_global.nr)
284 		shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287 
288 static void kvm_shared_msr_cpu_online(void)
289 {
290 	unsigned i;
291 
292 	for (i = 0; i < shared_msrs_global.nr; ++i)
293 		shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295 
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 	int err;
301 
302 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
303 		return 0;
304 	smsr->values[slot].curr = value;
305 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306 	if (err)
307 		return 1;
308 
309 	if (!smsr->registered) {
310 		smsr->urn.on_user_return = kvm_on_user_return;
311 		user_return_notifier_register(&smsr->urn);
312 		smsr->registered = true;
313 	}
314 	return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317 
318 static void drop_user_return_notifiers(void)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 
323 	if (smsr->registered)
324 		kvm_on_user_return(&smsr->urn);
325 }
326 
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329 	return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332 
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338 
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345 
346 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347 		return 1;
348 	if (!msr_info->host_initiated) {
349 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350 			return 1;
351 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352 			return 1;
353 	}
354 
355 	kvm_lapic_set_base(vcpu, msr_info->data);
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359 
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362 	/* Fault while not rebooting.  We want the trace. */
363 	if (!kvm_rebooting)
364 		BUG();
365 }
366 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
367 
368 #define EXCPT_BENIGN		0
369 #define EXCPT_CONTRIBUTORY	1
370 #define EXCPT_PF		2
371 
372 static int exception_class(int vector)
373 {
374 	switch (vector) {
375 	case PF_VECTOR:
376 		return EXCPT_PF;
377 	case DE_VECTOR:
378 	case TS_VECTOR:
379 	case NP_VECTOR:
380 	case SS_VECTOR:
381 	case GP_VECTOR:
382 		return EXCPT_CONTRIBUTORY;
383 	default:
384 		break;
385 	}
386 	return EXCPT_BENIGN;
387 }
388 
389 #define EXCPT_FAULT		0
390 #define EXCPT_TRAP		1
391 #define EXCPT_ABORT		2
392 #define EXCPT_INTERRUPT		3
393 
394 static int exception_type(int vector)
395 {
396 	unsigned int mask;
397 
398 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
399 		return EXCPT_INTERRUPT;
400 
401 	mask = 1 << vector;
402 
403 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
404 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
405 		return EXCPT_TRAP;
406 
407 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
408 		return EXCPT_ABORT;
409 
410 	/* Reserved exceptions will result in fault */
411 	return EXCPT_FAULT;
412 }
413 
414 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
415 {
416 	unsigned nr = vcpu->arch.exception.nr;
417 	bool has_payload = vcpu->arch.exception.has_payload;
418 	unsigned long payload = vcpu->arch.exception.payload;
419 
420 	if (!has_payload)
421 		return;
422 
423 	switch (nr) {
424 	case DB_VECTOR:
425 		/*
426 		 * "Certain debug exceptions may clear bit 0-3.  The
427 		 * remaining contents of the DR6 register are never
428 		 * cleared by the processor".
429 		 */
430 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
431 		/*
432 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
433 		 */
434 		vcpu->arch.dr6 |= DR6_RTM;
435 		vcpu->arch.dr6 |= payload;
436 		/*
437 		 * Bit 16 should be set in the payload whenever the #DB
438 		 * exception should clear DR6.RTM. This makes the payload
439 		 * compatible with the pending debug exceptions under VMX.
440 		 * Though not currently documented in the SDM, this also
441 		 * makes the payload compatible with the exit qualification
442 		 * for #DB exceptions under VMX.
443 		 */
444 		vcpu->arch.dr6 ^= payload & DR6_RTM;
445 		break;
446 	case PF_VECTOR:
447 		vcpu->arch.cr2 = payload;
448 		break;
449 	}
450 
451 	vcpu->arch.exception.has_payload = false;
452 	vcpu->arch.exception.payload = 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
455 
456 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
457 		unsigned nr, bool has_error, u32 error_code,
458 	        bool has_payload, unsigned long payload, bool reinject)
459 {
460 	u32 prev_nr;
461 	int class1, class2;
462 
463 	kvm_make_request(KVM_REQ_EVENT, vcpu);
464 
465 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
466 	queue:
467 		if (has_error && !is_protmode(vcpu))
468 			has_error = false;
469 		if (reinject) {
470 			/*
471 			 * On vmentry, vcpu->arch.exception.pending is only
472 			 * true if an event injection was blocked by
473 			 * nested_run_pending.  In that case, however,
474 			 * vcpu_enter_guest requests an immediate exit,
475 			 * and the guest shouldn't proceed far enough to
476 			 * need reinjection.
477 			 */
478 			WARN_ON_ONCE(vcpu->arch.exception.pending);
479 			vcpu->arch.exception.injected = true;
480 			if (WARN_ON_ONCE(has_payload)) {
481 				/*
482 				 * A reinjected event has already
483 				 * delivered its payload.
484 				 */
485 				has_payload = false;
486 				payload = 0;
487 			}
488 		} else {
489 			vcpu->arch.exception.pending = true;
490 			vcpu->arch.exception.injected = false;
491 		}
492 		vcpu->arch.exception.has_error_code = has_error;
493 		vcpu->arch.exception.nr = nr;
494 		vcpu->arch.exception.error_code = error_code;
495 		vcpu->arch.exception.has_payload = has_payload;
496 		vcpu->arch.exception.payload = payload;
497 		/*
498 		 * In guest mode, payload delivery should be deferred,
499 		 * so that the L1 hypervisor can intercept #PF before
500 		 * CR2 is modified (or intercept #DB before DR6 is
501 		 * modified under nVMX).  However, for ABI
502 		 * compatibility with KVM_GET_VCPU_EVENTS and
503 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
504 		 * delivery unless userspace has enabled this
505 		 * functionality via the per-VM capability,
506 		 * KVM_CAP_EXCEPTION_PAYLOAD.
507 		 */
508 		if (!vcpu->kvm->arch.exception_payload_enabled ||
509 		    !is_guest_mode(vcpu))
510 			kvm_deliver_exception_payload(vcpu);
511 		return;
512 	}
513 
514 	/* to check exception */
515 	prev_nr = vcpu->arch.exception.nr;
516 	if (prev_nr == DF_VECTOR) {
517 		/* triple fault -> shutdown */
518 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
519 		return;
520 	}
521 	class1 = exception_class(prev_nr);
522 	class2 = exception_class(nr);
523 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
524 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
525 		/*
526 		 * Generate double fault per SDM Table 5-5.  Set
527 		 * exception.pending = true so that the double fault
528 		 * can trigger a nested vmexit.
529 		 */
530 		vcpu->arch.exception.pending = true;
531 		vcpu->arch.exception.injected = false;
532 		vcpu->arch.exception.has_error_code = true;
533 		vcpu->arch.exception.nr = DF_VECTOR;
534 		vcpu->arch.exception.error_code = 0;
535 		vcpu->arch.exception.has_payload = false;
536 		vcpu->arch.exception.payload = 0;
537 	} else
538 		/* replace previous exception with a new one in a hope
539 		   that instruction re-execution will regenerate lost
540 		   exception */
541 		goto queue;
542 }
543 
544 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
545 {
546 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
547 }
548 EXPORT_SYMBOL_GPL(kvm_queue_exception);
549 
550 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
551 {
552 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
553 }
554 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
555 
556 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
557 				  unsigned long payload)
558 {
559 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
560 }
561 
562 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
563 				    u32 error_code, unsigned long payload)
564 {
565 	kvm_multiple_exception(vcpu, nr, true, error_code,
566 			       true, payload, false);
567 }
568 
569 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
570 {
571 	if (err)
572 		kvm_inject_gp(vcpu, 0);
573 	else
574 		return kvm_skip_emulated_instruction(vcpu);
575 
576 	return 1;
577 }
578 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
579 
580 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
581 {
582 	++vcpu->stat.pf_guest;
583 	vcpu->arch.exception.nested_apf =
584 		is_guest_mode(vcpu) && fault->async_page_fault;
585 	if (vcpu->arch.exception.nested_apf) {
586 		vcpu->arch.apf.nested_apf_token = fault->address;
587 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
588 	} else {
589 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
590 					fault->address);
591 	}
592 }
593 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
594 
595 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
596 {
597 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
598 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
599 	else
600 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
601 
602 	return fault->nested_page_fault;
603 }
604 
605 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
606 {
607 	atomic_inc(&vcpu->arch.nmi_queued);
608 	kvm_make_request(KVM_REQ_NMI, vcpu);
609 }
610 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
611 
612 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
613 {
614 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
617 
618 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
619 {
620 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
623 
624 /*
625  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
626  * a #GP and return false.
627  */
628 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
629 {
630 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
631 		return true;
632 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
633 	return false;
634 }
635 EXPORT_SYMBOL_GPL(kvm_require_cpl);
636 
637 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
638 {
639 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
640 		return true;
641 
642 	kvm_queue_exception(vcpu, UD_VECTOR);
643 	return false;
644 }
645 EXPORT_SYMBOL_GPL(kvm_require_dr);
646 
647 /*
648  * This function will be used to read from the physical memory of the currently
649  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
650  * can read from guest physical or from the guest's guest physical memory.
651  */
652 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
653 			    gfn_t ngfn, void *data, int offset, int len,
654 			    u32 access)
655 {
656 	struct x86_exception exception;
657 	gfn_t real_gfn;
658 	gpa_t ngpa;
659 
660 	ngpa     = gfn_to_gpa(ngfn);
661 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
662 	if (real_gfn == UNMAPPED_GVA)
663 		return -EFAULT;
664 
665 	real_gfn = gpa_to_gfn(real_gfn);
666 
667 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
668 }
669 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
670 
671 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
672 			       void *data, int offset, int len, u32 access)
673 {
674 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
675 				       data, offset, len, access);
676 }
677 
678 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
679 {
680 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
681 	       rsvd_bits(1, 2);
682 }
683 
684 /*
685  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
686  */
687 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
688 {
689 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
690 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
691 	int i;
692 	int ret;
693 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
694 
695 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
696 				      offset * sizeof(u64), sizeof(pdpte),
697 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
698 	if (ret < 0) {
699 		ret = 0;
700 		goto out;
701 	}
702 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
703 		if ((pdpte[i] & PT_PRESENT_MASK) &&
704 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
705 			ret = 0;
706 			goto out;
707 		}
708 	}
709 	ret = 1;
710 
711 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
712 	__set_bit(VCPU_EXREG_PDPTR,
713 		  (unsigned long *)&vcpu->arch.regs_avail);
714 	__set_bit(VCPU_EXREG_PDPTR,
715 		  (unsigned long *)&vcpu->arch.regs_dirty);
716 out:
717 
718 	return ret;
719 }
720 EXPORT_SYMBOL_GPL(load_pdptrs);
721 
722 bool pdptrs_changed(struct kvm_vcpu *vcpu)
723 {
724 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
725 	bool changed = true;
726 	int offset;
727 	gfn_t gfn;
728 	int r;
729 
730 	if (!is_pae_paging(vcpu))
731 		return false;
732 
733 	if (!test_bit(VCPU_EXREG_PDPTR,
734 		      (unsigned long *)&vcpu->arch.regs_avail))
735 		return true;
736 
737 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
738 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
739 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
740 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
741 	if (r < 0)
742 		goto out;
743 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
744 out:
745 
746 	return changed;
747 }
748 EXPORT_SYMBOL_GPL(pdptrs_changed);
749 
750 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
751 {
752 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
753 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
754 
755 	cr0 |= X86_CR0_ET;
756 
757 #ifdef CONFIG_X86_64
758 	if (cr0 & 0xffffffff00000000UL)
759 		return 1;
760 #endif
761 
762 	cr0 &= ~CR0_RESERVED_BITS;
763 
764 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
765 		return 1;
766 
767 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
768 		return 1;
769 
770 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
771 #ifdef CONFIG_X86_64
772 		if ((vcpu->arch.efer & EFER_LME)) {
773 			int cs_db, cs_l;
774 
775 			if (!is_pae(vcpu))
776 				return 1;
777 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
778 			if (cs_l)
779 				return 1;
780 		} else
781 #endif
782 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
783 						 kvm_read_cr3(vcpu)))
784 			return 1;
785 	}
786 
787 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
788 		return 1;
789 
790 	kvm_x86_ops->set_cr0(vcpu, cr0);
791 
792 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
793 		kvm_clear_async_pf_completion_queue(vcpu);
794 		kvm_async_pf_hash_reset(vcpu);
795 	}
796 
797 	if ((cr0 ^ old_cr0) & update_bits)
798 		kvm_mmu_reset_context(vcpu);
799 
800 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
801 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
802 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
803 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
804 
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(kvm_set_cr0);
808 
809 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
810 {
811 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
812 }
813 EXPORT_SYMBOL_GPL(kvm_lmsw);
814 
815 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
816 {
817 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
818 			!vcpu->guest_xcr0_loaded) {
819 		/* kvm_set_xcr() also depends on this */
820 		if (vcpu->arch.xcr0 != host_xcr0)
821 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
822 		vcpu->guest_xcr0_loaded = 1;
823 	}
824 }
825 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
826 
827 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
828 {
829 	if (vcpu->guest_xcr0_loaded) {
830 		if (vcpu->arch.xcr0 != host_xcr0)
831 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
832 		vcpu->guest_xcr0_loaded = 0;
833 	}
834 }
835 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
836 
837 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
838 {
839 	u64 xcr0 = xcr;
840 	u64 old_xcr0 = vcpu->arch.xcr0;
841 	u64 valid_bits;
842 
843 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
844 	if (index != XCR_XFEATURE_ENABLED_MASK)
845 		return 1;
846 	if (!(xcr0 & XFEATURE_MASK_FP))
847 		return 1;
848 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
849 		return 1;
850 
851 	/*
852 	 * Do not allow the guest to set bits that we do not support
853 	 * saving.  However, xcr0 bit 0 is always set, even if the
854 	 * emulated CPU does not support XSAVE (see fx_init).
855 	 */
856 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
857 	if (xcr0 & ~valid_bits)
858 		return 1;
859 
860 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
861 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
862 		return 1;
863 
864 	if (xcr0 & XFEATURE_MASK_AVX512) {
865 		if (!(xcr0 & XFEATURE_MASK_YMM))
866 			return 1;
867 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
868 			return 1;
869 	}
870 	vcpu->arch.xcr0 = xcr0;
871 
872 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
873 		kvm_update_cpuid(vcpu);
874 	return 0;
875 }
876 
877 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
878 {
879 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
880 	    __kvm_set_xcr(vcpu, index, xcr)) {
881 		kvm_inject_gp(vcpu, 0);
882 		return 1;
883 	}
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(kvm_set_xcr);
887 
888 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
889 {
890 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
891 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
892 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
893 
894 	if (cr4 & CR4_RESERVED_BITS)
895 		return 1;
896 
897 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
898 		return 1;
899 
900 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
901 		return 1;
902 
903 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
904 		return 1;
905 
906 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
907 		return 1;
908 
909 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
910 		return 1;
911 
912 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
913 		return 1;
914 
915 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
916 		return 1;
917 
918 	if (is_long_mode(vcpu)) {
919 		if (!(cr4 & X86_CR4_PAE))
920 			return 1;
921 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
922 		   && ((cr4 ^ old_cr4) & pdptr_bits)
923 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
924 				   kvm_read_cr3(vcpu)))
925 		return 1;
926 
927 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
928 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
929 			return 1;
930 
931 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
932 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
933 			return 1;
934 	}
935 
936 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
937 		return 1;
938 
939 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
940 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
941 		kvm_mmu_reset_context(vcpu);
942 
943 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
944 		kvm_update_cpuid(vcpu);
945 
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_set_cr4);
949 
950 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
951 {
952 	bool skip_tlb_flush = false;
953 #ifdef CONFIG_X86_64
954 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
955 
956 	if (pcid_enabled) {
957 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
958 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
959 	}
960 #endif
961 
962 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
963 		if (!skip_tlb_flush) {
964 			kvm_mmu_sync_roots(vcpu);
965 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
966 		}
967 		return 0;
968 	}
969 
970 	if (is_long_mode(vcpu) &&
971 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
972 		return 1;
973 	else if (is_pae_paging(vcpu) &&
974 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
975 		return 1;
976 
977 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
978 	vcpu->arch.cr3 = cr3;
979 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
980 
981 	return 0;
982 }
983 EXPORT_SYMBOL_GPL(kvm_set_cr3);
984 
985 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
986 {
987 	if (cr8 & CR8_RESERVED_BITS)
988 		return 1;
989 	if (lapic_in_kernel(vcpu))
990 		kvm_lapic_set_tpr(vcpu, cr8);
991 	else
992 		vcpu->arch.cr8 = cr8;
993 	return 0;
994 }
995 EXPORT_SYMBOL_GPL(kvm_set_cr8);
996 
997 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
998 {
999 	if (lapic_in_kernel(vcpu))
1000 		return kvm_lapic_get_cr8(vcpu);
1001 	else
1002 		return vcpu->arch.cr8;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1005 
1006 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1007 {
1008 	int i;
1009 
1010 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1011 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1012 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1013 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1014 	}
1015 }
1016 
1017 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1018 {
1019 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1020 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1021 }
1022 
1023 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1024 {
1025 	unsigned long dr7;
1026 
1027 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1028 		dr7 = vcpu->arch.guest_debug_dr7;
1029 	else
1030 		dr7 = vcpu->arch.dr7;
1031 	kvm_x86_ops->set_dr7(vcpu, dr7);
1032 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1033 	if (dr7 & DR7_BP_EN_MASK)
1034 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1035 }
1036 
1037 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1038 {
1039 	u64 fixed = DR6_FIXED_1;
1040 
1041 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1042 		fixed |= DR6_RTM;
1043 	return fixed;
1044 }
1045 
1046 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1047 {
1048 	switch (dr) {
1049 	case 0 ... 3:
1050 		vcpu->arch.db[dr] = val;
1051 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1052 			vcpu->arch.eff_db[dr] = val;
1053 		break;
1054 	case 4:
1055 		/* fall through */
1056 	case 6:
1057 		if (val & 0xffffffff00000000ULL)
1058 			return -1; /* #GP */
1059 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1060 		kvm_update_dr6(vcpu);
1061 		break;
1062 	case 5:
1063 		/* fall through */
1064 	default: /* 7 */
1065 		if (val & 0xffffffff00000000ULL)
1066 			return -1; /* #GP */
1067 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1068 		kvm_update_dr7(vcpu);
1069 		break;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1076 {
1077 	if (__kvm_set_dr(vcpu, dr, val)) {
1078 		kvm_inject_gp(vcpu, 0);
1079 		return 1;
1080 	}
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(kvm_set_dr);
1084 
1085 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1086 {
1087 	switch (dr) {
1088 	case 0 ... 3:
1089 		*val = vcpu->arch.db[dr];
1090 		break;
1091 	case 4:
1092 		/* fall through */
1093 	case 6:
1094 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1095 			*val = vcpu->arch.dr6;
1096 		else
1097 			*val = kvm_x86_ops->get_dr6(vcpu);
1098 		break;
1099 	case 5:
1100 		/* fall through */
1101 	default: /* 7 */
1102 		*val = vcpu->arch.dr7;
1103 		break;
1104 	}
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_get_dr);
1108 
1109 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1110 {
1111 	u32 ecx = kvm_rcx_read(vcpu);
1112 	u64 data;
1113 	int err;
1114 
1115 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1116 	if (err)
1117 		return err;
1118 	kvm_rax_write(vcpu, (u32)data);
1119 	kvm_rdx_write(vcpu, data >> 32);
1120 	return err;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1123 
1124 /*
1125  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1126  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1127  *
1128  * This list is modified at module load time to reflect the
1129  * capabilities of the host cpu. This capabilities test skips MSRs that are
1130  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1131  * may depend on host virtualization features rather than host cpu features.
1132  */
1133 
1134 static u32 msrs_to_save[] = {
1135 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1136 	MSR_STAR,
1137 #ifdef CONFIG_X86_64
1138 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1139 #endif
1140 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1141 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1142 	MSR_IA32_SPEC_CTRL,
1143 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1144 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1145 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1146 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1147 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1148 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1149 	MSR_IA32_UMWAIT_CONTROL,
1150 
1151 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1152 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1153 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1154 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1155 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1156 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1157 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1158 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1159 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1160 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1161 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1162 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1163 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1164 	MSR_ARCH_PERFMON_PERFCTR0 + 18, MSR_ARCH_PERFMON_PERFCTR0 + 19,
1165 	MSR_ARCH_PERFMON_PERFCTR0 + 20, MSR_ARCH_PERFMON_PERFCTR0 + 21,
1166 	MSR_ARCH_PERFMON_PERFCTR0 + 22, MSR_ARCH_PERFMON_PERFCTR0 + 23,
1167 	MSR_ARCH_PERFMON_PERFCTR0 + 24, MSR_ARCH_PERFMON_PERFCTR0 + 25,
1168 	MSR_ARCH_PERFMON_PERFCTR0 + 26, MSR_ARCH_PERFMON_PERFCTR0 + 27,
1169 	MSR_ARCH_PERFMON_PERFCTR0 + 28, MSR_ARCH_PERFMON_PERFCTR0 + 29,
1170 	MSR_ARCH_PERFMON_PERFCTR0 + 30, MSR_ARCH_PERFMON_PERFCTR0 + 31,
1171 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1172 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1173 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1174 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1175 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1176 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1177 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1178 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1179 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1180 	MSR_ARCH_PERFMON_EVENTSEL0 + 18, MSR_ARCH_PERFMON_EVENTSEL0 + 19,
1181 	MSR_ARCH_PERFMON_EVENTSEL0 + 20, MSR_ARCH_PERFMON_EVENTSEL0 + 21,
1182 	MSR_ARCH_PERFMON_EVENTSEL0 + 22, MSR_ARCH_PERFMON_EVENTSEL0 + 23,
1183 	MSR_ARCH_PERFMON_EVENTSEL0 + 24, MSR_ARCH_PERFMON_EVENTSEL0 + 25,
1184 	MSR_ARCH_PERFMON_EVENTSEL0 + 26, MSR_ARCH_PERFMON_EVENTSEL0 + 27,
1185 	MSR_ARCH_PERFMON_EVENTSEL0 + 28, MSR_ARCH_PERFMON_EVENTSEL0 + 29,
1186 	MSR_ARCH_PERFMON_EVENTSEL0 + 30, MSR_ARCH_PERFMON_EVENTSEL0 + 31,
1187 };
1188 
1189 static unsigned num_msrs_to_save;
1190 
1191 static u32 emulated_msrs[] = {
1192 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1193 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1194 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1195 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1196 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1197 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1198 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1199 	HV_X64_MSR_RESET,
1200 	HV_X64_MSR_VP_INDEX,
1201 	HV_X64_MSR_VP_RUNTIME,
1202 	HV_X64_MSR_SCONTROL,
1203 	HV_X64_MSR_STIMER0_CONFIG,
1204 	HV_X64_MSR_VP_ASSIST_PAGE,
1205 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1206 	HV_X64_MSR_TSC_EMULATION_STATUS,
1207 
1208 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1209 	MSR_KVM_PV_EOI_EN,
1210 
1211 	MSR_IA32_TSC_ADJUST,
1212 	MSR_IA32_TSCDEADLINE,
1213 	MSR_IA32_ARCH_CAPABILITIES,
1214 	MSR_IA32_MISC_ENABLE,
1215 	MSR_IA32_MCG_STATUS,
1216 	MSR_IA32_MCG_CTL,
1217 	MSR_IA32_MCG_EXT_CTL,
1218 	MSR_IA32_SMBASE,
1219 	MSR_SMI_COUNT,
1220 	MSR_PLATFORM_INFO,
1221 	MSR_MISC_FEATURES_ENABLES,
1222 	MSR_AMD64_VIRT_SPEC_CTRL,
1223 	MSR_IA32_POWER_CTL,
1224 
1225 	/*
1226 	 * The following list leaves out MSRs whose values are determined
1227 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1228 	 * We always support the "true" VMX control MSRs, even if the host
1229 	 * processor does not, so I am putting these registers here rather
1230 	 * than in msrs_to_save.
1231 	 */
1232 	MSR_IA32_VMX_BASIC,
1233 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1234 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1235 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1236 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1237 	MSR_IA32_VMX_MISC,
1238 	MSR_IA32_VMX_CR0_FIXED0,
1239 	MSR_IA32_VMX_CR4_FIXED0,
1240 	MSR_IA32_VMX_VMCS_ENUM,
1241 	MSR_IA32_VMX_PROCBASED_CTLS2,
1242 	MSR_IA32_VMX_EPT_VPID_CAP,
1243 	MSR_IA32_VMX_VMFUNC,
1244 
1245 	MSR_K7_HWCR,
1246 	MSR_KVM_POLL_CONTROL,
1247 };
1248 
1249 static unsigned num_emulated_msrs;
1250 
1251 /*
1252  * List of msr numbers which are used to expose MSR-based features that
1253  * can be used by a hypervisor to validate requested CPU features.
1254  */
1255 static u32 msr_based_features[] = {
1256 	MSR_IA32_VMX_BASIC,
1257 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1258 	MSR_IA32_VMX_PINBASED_CTLS,
1259 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1260 	MSR_IA32_VMX_PROCBASED_CTLS,
1261 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1262 	MSR_IA32_VMX_EXIT_CTLS,
1263 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1264 	MSR_IA32_VMX_ENTRY_CTLS,
1265 	MSR_IA32_VMX_MISC,
1266 	MSR_IA32_VMX_CR0_FIXED0,
1267 	MSR_IA32_VMX_CR0_FIXED1,
1268 	MSR_IA32_VMX_CR4_FIXED0,
1269 	MSR_IA32_VMX_CR4_FIXED1,
1270 	MSR_IA32_VMX_VMCS_ENUM,
1271 	MSR_IA32_VMX_PROCBASED_CTLS2,
1272 	MSR_IA32_VMX_EPT_VPID_CAP,
1273 	MSR_IA32_VMX_VMFUNC,
1274 
1275 	MSR_F10H_DECFG,
1276 	MSR_IA32_UCODE_REV,
1277 	MSR_IA32_ARCH_CAPABILITIES,
1278 };
1279 
1280 static unsigned int num_msr_based_features;
1281 
1282 static u64 kvm_get_arch_capabilities(void)
1283 {
1284 	u64 data = 0;
1285 
1286 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1287 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1288 
1289 	/*
1290 	 * If we're doing cache flushes (either "always" or "cond")
1291 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1292 	 * If an outer hypervisor is doing the cache flush for us
1293 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1294 	 * capability to the guest too, and if EPT is disabled we're not
1295 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1296 	 * require a nested hypervisor to do a flush of its own.
1297 	 */
1298 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1299 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1300 
1301 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1302 		data |= ARCH_CAP_RDCL_NO;
1303 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1304 		data |= ARCH_CAP_SSB_NO;
1305 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1306 		data |= ARCH_CAP_MDS_NO;
1307 
1308 	return data;
1309 }
1310 
1311 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1312 {
1313 	switch (msr->index) {
1314 	case MSR_IA32_ARCH_CAPABILITIES:
1315 		msr->data = kvm_get_arch_capabilities();
1316 		break;
1317 	case MSR_IA32_UCODE_REV:
1318 		rdmsrl_safe(msr->index, &msr->data);
1319 		break;
1320 	default:
1321 		if (kvm_x86_ops->get_msr_feature(msr))
1322 			return 1;
1323 	}
1324 	return 0;
1325 }
1326 
1327 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1328 {
1329 	struct kvm_msr_entry msr;
1330 	int r;
1331 
1332 	msr.index = index;
1333 	r = kvm_get_msr_feature(&msr);
1334 	if (r)
1335 		return r;
1336 
1337 	*data = msr.data;
1338 
1339 	return 0;
1340 }
1341 
1342 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1343 {
1344 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1345 		return false;
1346 
1347 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1348 		return false;
1349 
1350 	if (efer & (EFER_LME | EFER_LMA) &&
1351 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1352 		return false;
1353 
1354 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1355 		return false;
1356 
1357 	return true;
1358 
1359 }
1360 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1361 {
1362 	if (efer & efer_reserved_bits)
1363 		return false;
1364 
1365 	return __kvm_valid_efer(vcpu, efer);
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1368 
1369 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1370 {
1371 	u64 old_efer = vcpu->arch.efer;
1372 	u64 efer = msr_info->data;
1373 
1374 	if (efer & efer_reserved_bits)
1375 		return 1;
1376 
1377 	if (!msr_info->host_initiated) {
1378 		if (!__kvm_valid_efer(vcpu, efer))
1379 			return 1;
1380 
1381 		if (is_paging(vcpu) &&
1382 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1383 			return 1;
1384 	}
1385 
1386 	efer &= ~EFER_LMA;
1387 	efer |= vcpu->arch.efer & EFER_LMA;
1388 
1389 	kvm_x86_ops->set_efer(vcpu, efer);
1390 
1391 	/* Update reserved bits */
1392 	if ((efer ^ old_efer) & EFER_NX)
1393 		kvm_mmu_reset_context(vcpu);
1394 
1395 	return 0;
1396 }
1397 
1398 void kvm_enable_efer_bits(u64 mask)
1399 {
1400        efer_reserved_bits &= ~mask;
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1403 
1404 /*
1405  * Write @data into the MSR specified by @index.  Select MSR specific fault
1406  * checks are bypassed if @host_initiated is %true.
1407  * Returns 0 on success, non-0 otherwise.
1408  * Assumes vcpu_load() was already called.
1409  */
1410 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1411 			 bool host_initiated)
1412 {
1413 	struct msr_data msr;
1414 
1415 	switch (index) {
1416 	case MSR_FS_BASE:
1417 	case MSR_GS_BASE:
1418 	case MSR_KERNEL_GS_BASE:
1419 	case MSR_CSTAR:
1420 	case MSR_LSTAR:
1421 		if (is_noncanonical_address(data, vcpu))
1422 			return 1;
1423 		break;
1424 	case MSR_IA32_SYSENTER_EIP:
1425 	case MSR_IA32_SYSENTER_ESP:
1426 		/*
1427 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1428 		 * non-canonical address is written on Intel but not on
1429 		 * AMD (which ignores the top 32-bits, because it does
1430 		 * not implement 64-bit SYSENTER).
1431 		 *
1432 		 * 64-bit code should hence be able to write a non-canonical
1433 		 * value on AMD.  Making the address canonical ensures that
1434 		 * vmentry does not fail on Intel after writing a non-canonical
1435 		 * value, and that something deterministic happens if the guest
1436 		 * invokes 64-bit SYSENTER.
1437 		 */
1438 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1439 	}
1440 
1441 	msr.data = data;
1442 	msr.index = index;
1443 	msr.host_initiated = host_initiated;
1444 
1445 	return kvm_x86_ops->set_msr(vcpu, &msr);
1446 }
1447 
1448 /*
1449  * Read the MSR specified by @index into @data.  Select MSR specific fault
1450  * checks are bypassed if @host_initiated is %true.
1451  * Returns 0 on success, non-0 otherwise.
1452  * Assumes vcpu_load() was already called.
1453  */
1454 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1455 			 bool host_initiated)
1456 {
1457 	struct msr_data msr;
1458 	int ret;
1459 
1460 	msr.index = index;
1461 	msr.host_initiated = host_initiated;
1462 
1463 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1464 	if (!ret)
1465 		*data = msr.data;
1466 	return ret;
1467 }
1468 
1469 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1470 {
1471 	return __kvm_get_msr(vcpu, index, data, false);
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_get_msr);
1474 
1475 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1476 {
1477 	return __kvm_set_msr(vcpu, index, data, false);
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_set_msr);
1480 
1481 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1482 {
1483 	u32 ecx = kvm_rcx_read(vcpu);
1484 	u64 data;
1485 
1486 	if (kvm_get_msr(vcpu, ecx, &data)) {
1487 		trace_kvm_msr_read_ex(ecx);
1488 		kvm_inject_gp(vcpu, 0);
1489 		return 1;
1490 	}
1491 
1492 	trace_kvm_msr_read(ecx, data);
1493 
1494 	kvm_rax_write(vcpu, data & -1u);
1495 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1496 	return kvm_skip_emulated_instruction(vcpu);
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1499 
1500 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1501 {
1502 	u32 ecx = kvm_rcx_read(vcpu);
1503 	u64 data = kvm_read_edx_eax(vcpu);
1504 
1505 	if (kvm_set_msr(vcpu, ecx, data)) {
1506 		trace_kvm_msr_write_ex(ecx, data);
1507 		kvm_inject_gp(vcpu, 0);
1508 		return 1;
1509 	}
1510 
1511 	trace_kvm_msr_write(ecx, data);
1512 	return kvm_skip_emulated_instruction(vcpu);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1515 
1516 /*
1517  * Adapt set_msr() to msr_io()'s calling convention
1518  */
1519 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1520 {
1521 	return __kvm_get_msr(vcpu, index, data, true);
1522 }
1523 
1524 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1525 {
1526 	return __kvm_set_msr(vcpu, index, *data, true);
1527 }
1528 
1529 #ifdef CONFIG_X86_64
1530 struct pvclock_gtod_data {
1531 	seqcount_t	seq;
1532 
1533 	struct { /* extract of a clocksource struct */
1534 		int vclock_mode;
1535 		u64	cycle_last;
1536 		u64	mask;
1537 		u32	mult;
1538 		u32	shift;
1539 	} clock;
1540 
1541 	u64		boot_ns;
1542 	u64		nsec_base;
1543 	u64		wall_time_sec;
1544 };
1545 
1546 static struct pvclock_gtod_data pvclock_gtod_data;
1547 
1548 static void update_pvclock_gtod(struct timekeeper *tk)
1549 {
1550 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1551 	u64 boot_ns;
1552 
1553 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1554 
1555 	write_seqcount_begin(&vdata->seq);
1556 
1557 	/* copy pvclock gtod data */
1558 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1559 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1560 	vdata->clock.mask		= tk->tkr_mono.mask;
1561 	vdata->clock.mult		= tk->tkr_mono.mult;
1562 	vdata->clock.shift		= tk->tkr_mono.shift;
1563 
1564 	vdata->boot_ns			= boot_ns;
1565 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1566 
1567 	vdata->wall_time_sec            = tk->xtime_sec;
1568 
1569 	write_seqcount_end(&vdata->seq);
1570 }
1571 #endif
1572 
1573 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1574 {
1575 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1576 	kvm_vcpu_kick(vcpu);
1577 }
1578 
1579 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1580 {
1581 	int version;
1582 	int r;
1583 	struct pvclock_wall_clock wc;
1584 	struct timespec64 boot;
1585 
1586 	if (!wall_clock)
1587 		return;
1588 
1589 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1590 	if (r)
1591 		return;
1592 
1593 	if (version & 1)
1594 		++version;  /* first time write, random junk */
1595 
1596 	++version;
1597 
1598 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1599 		return;
1600 
1601 	/*
1602 	 * The guest calculates current wall clock time by adding
1603 	 * system time (updated by kvm_guest_time_update below) to the
1604 	 * wall clock specified here.  guest system time equals host
1605 	 * system time for us, thus we must fill in host boot time here.
1606 	 */
1607 	getboottime64(&boot);
1608 
1609 	if (kvm->arch.kvmclock_offset) {
1610 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1611 		boot = timespec64_sub(boot, ts);
1612 	}
1613 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1614 	wc.nsec = boot.tv_nsec;
1615 	wc.version = version;
1616 
1617 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1618 
1619 	version++;
1620 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1621 }
1622 
1623 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1624 {
1625 	do_shl32_div32(dividend, divisor);
1626 	return dividend;
1627 }
1628 
1629 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1630 			       s8 *pshift, u32 *pmultiplier)
1631 {
1632 	uint64_t scaled64;
1633 	int32_t  shift = 0;
1634 	uint64_t tps64;
1635 	uint32_t tps32;
1636 
1637 	tps64 = base_hz;
1638 	scaled64 = scaled_hz;
1639 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1640 		tps64 >>= 1;
1641 		shift--;
1642 	}
1643 
1644 	tps32 = (uint32_t)tps64;
1645 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1646 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1647 			scaled64 >>= 1;
1648 		else
1649 			tps32 <<= 1;
1650 		shift++;
1651 	}
1652 
1653 	*pshift = shift;
1654 	*pmultiplier = div_frac(scaled64, tps32);
1655 }
1656 
1657 #ifdef CONFIG_X86_64
1658 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1659 #endif
1660 
1661 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1662 static unsigned long max_tsc_khz;
1663 
1664 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1665 {
1666 	u64 v = (u64)khz * (1000000 + ppm);
1667 	do_div(v, 1000000);
1668 	return v;
1669 }
1670 
1671 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1672 {
1673 	u64 ratio;
1674 
1675 	/* Guest TSC same frequency as host TSC? */
1676 	if (!scale) {
1677 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1678 		return 0;
1679 	}
1680 
1681 	/* TSC scaling supported? */
1682 	if (!kvm_has_tsc_control) {
1683 		if (user_tsc_khz > tsc_khz) {
1684 			vcpu->arch.tsc_catchup = 1;
1685 			vcpu->arch.tsc_always_catchup = 1;
1686 			return 0;
1687 		} else {
1688 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1689 			return -1;
1690 		}
1691 	}
1692 
1693 	/* TSC scaling required  - calculate ratio */
1694 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1695 				user_tsc_khz, tsc_khz);
1696 
1697 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1698 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1699 			            user_tsc_khz);
1700 		return -1;
1701 	}
1702 
1703 	vcpu->arch.tsc_scaling_ratio = ratio;
1704 	return 0;
1705 }
1706 
1707 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1708 {
1709 	u32 thresh_lo, thresh_hi;
1710 	int use_scaling = 0;
1711 
1712 	/* tsc_khz can be zero if TSC calibration fails */
1713 	if (user_tsc_khz == 0) {
1714 		/* set tsc_scaling_ratio to a safe value */
1715 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1716 		return -1;
1717 	}
1718 
1719 	/* Compute a scale to convert nanoseconds in TSC cycles */
1720 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1721 			   &vcpu->arch.virtual_tsc_shift,
1722 			   &vcpu->arch.virtual_tsc_mult);
1723 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1724 
1725 	/*
1726 	 * Compute the variation in TSC rate which is acceptable
1727 	 * within the range of tolerance and decide if the
1728 	 * rate being applied is within that bounds of the hardware
1729 	 * rate.  If so, no scaling or compensation need be done.
1730 	 */
1731 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1732 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1733 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1734 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1735 		use_scaling = 1;
1736 	}
1737 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1738 }
1739 
1740 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1741 {
1742 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1743 				      vcpu->arch.virtual_tsc_mult,
1744 				      vcpu->arch.virtual_tsc_shift);
1745 	tsc += vcpu->arch.this_tsc_write;
1746 	return tsc;
1747 }
1748 
1749 static inline int gtod_is_based_on_tsc(int mode)
1750 {
1751 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1752 }
1753 
1754 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1755 {
1756 #ifdef CONFIG_X86_64
1757 	bool vcpus_matched;
1758 	struct kvm_arch *ka = &vcpu->kvm->arch;
1759 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1760 
1761 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1762 			 atomic_read(&vcpu->kvm->online_vcpus));
1763 
1764 	/*
1765 	 * Once the masterclock is enabled, always perform request in
1766 	 * order to update it.
1767 	 *
1768 	 * In order to enable masterclock, the host clocksource must be TSC
1769 	 * and the vcpus need to have matched TSCs.  When that happens,
1770 	 * perform request to enable masterclock.
1771 	 */
1772 	if (ka->use_master_clock ||
1773 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1774 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1775 
1776 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1777 			    atomic_read(&vcpu->kvm->online_vcpus),
1778 		            ka->use_master_clock, gtod->clock.vclock_mode);
1779 #endif
1780 }
1781 
1782 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1783 {
1784 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1785 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1786 }
1787 
1788 /*
1789  * Multiply tsc by a fixed point number represented by ratio.
1790  *
1791  * The most significant 64-N bits (mult) of ratio represent the
1792  * integral part of the fixed point number; the remaining N bits
1793  * (frac) represent the fractional part, ie. ratio represents a fixed
1794  * point number (mult + frac * 2^(-N)).
1795  *
1796  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1797  */
1798 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1799 {
1800 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1801 }
1802 
1803 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1804 {
1805 	u64 _tsc = tsc;
1806 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1807 
1808 	if (ratio != kvm_default_tsc_scaling_ratio)
1809 		_tsc = __scale_tsc(ratio, tsc);
1810 
1811 	return _tsc;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1814 
1815 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1816 {
1817 	u64 tsc;
1818 
1819 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1820 
1821 	return target_tsc - tsc;
1822 }
1823 
1824 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1825 {
1826 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1827 
1828 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1831 
1832 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1833 {
1834 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1835 }
1836 
1837 static inline bool kvm_check_tsc_unstable(void)
1838 {
1839 #ifdef CONFIG_X86_64
1840 	/*
1841 	 * TSC is marked unstable when we're running on Hyper-V,
1842 	 * 'TSC page' clocksource is good.
1843 	 */
1844 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1845 		return false;
1846 #endif
1847 	return check_tsc_unstable();
1848 }
1849 
1850 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1851 {
1852 	struct kvm *kvm = vcpu->kvm;
1853 	u64 offset, ns, elapsed;
1854 	unsigned long flags;
1855 	bool matched;
1856 	bool already_matched;
1857 	u64 data = msr->data;
1858 	bool synchronizing = false;
1859 
1860 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1861 	offset = kvm_compute_tsc_offset(vcpu, data);
1862 	ns = ktime_get_boottime_ns();
1863 	elapsed = ns - kvm->arch.last_tsc_nsec;
1864 
1865 	if (vcpu->arch.virtual_tsc_khz) {
1866 		if (data == 0 && msr->host_initiated) {
1867 			/*
1868 			 * detection of vcpu initialization -- need to sync
1869 			 * with other vCPUs. This particularly helps to keep
1870 			 * kvm_clock stable after CPU hotplug
1871 			 */
1872 			synchronizing = true;
1873 		} else {
1874 			u64 tsc_exp = kvm->arch.last_tsc_write +
1875 						nsec_to_cycles(vcpu, elapsed);
1876 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1877 			/*
1878 			 * Special case: TSC write with a small delta (1 second)
1879 			 * of virtual cycle time against real time is
1880 			 * interpreted as an attempt to synchronize the CPU.
1881 			 */
1882 			synchronizing = data < tsc_exp + tsc_hz &&
1883 					data + tsc_hz > tsc_exp;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1889 	 * TSC, we add elapsed time in this computation.  We could let the
1890 	 * compensation code attempt to catch up if we fall behind, but
1891 	 * it's better to try to match offsets from the beginning.
1892          */
1893 	if (synchronizing &&
1894 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1895 		if (!kvm_check_tsc_unstable()) {
1896 			offset = kvm->arch.cur_tsc_offset;
1897 		} else {
1898 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1899 			data += delta;
1900 			offset = kvm_compute_tsc_offset(vcpu, data);
1901 		}
1902 		matched = true;
1903 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1904 	} else {
1905 		/*
1906 		 * We split periods of matched TSC writes into generations.
1907 		 * For each generation, we track the original measured
1908 		 * nanosecond time, offset, and write, so if TSCs are in
1909 		 * sync, we can match exact offset, and if not, we can match
1910 		 * exact software computation in compute_guest_tsc()
1911 		 *
1912 		 * These values are tracked in kvm->arch.cur_xxx variables.
1913 		 */
1914 		kvm->arch.cur_tsc_generation++;
1915 		kvm->arch.cur_tsc_nsec = ns;
1916 		kvm->arch.cur_tsc_write = data;
1917 		kvm->arch.cur_tsc_offset = offset;
1918 		matched = false;
1919 	}
1920 
1921 	/*
1922 	 * We also track th most recent recorded KHZ, write and time to
1923 	 * allow the matching interval to be extended at each write.
1924 	 */
1925 	kvm->arch.last_tsc_nsec = ns;
1926 	kvm->arch.last_tsc_write = data;
1927 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1928 
1929 	vcpu->arch.last_guest_tsc = data;
1930 
1931 	/* Keep track of which generation this VCPU has synchronized to */
1932 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1933 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1934 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1935 
1936 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1937 		update_ia32_tsc_adjust_msr(vcpu, offset);
1938 
1939 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1940 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1941 
1942 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1943 	if (!matched) {
1944 		kvm->arch.nr_vcpus_matched_tsc = 0;
1945 	} else if (!already_matched) {
1946 		kvm->arch.nr_vcpus_matched_tsc++;
1947 	}
1948 
1949 	kvm_track_tsc_matching(vcpu);
1950 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1951 }
1952 
1953 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1954 
1955 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1956 					   s64 adjustment)
1957 {
1958 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1959 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1960 }
1961 
1962 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1963 {
1964 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1965 		WARN_ON(adjustment < 0);
1966 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1967 	adjust_tsc_offset_guest(vcpu, adjustment);
1968 }
1969 
1970 #ifdef CONFIG_X86_64
1971 
1972 static u64 read_tsc(void)
1973 {
1974 	u64 ret = (u64)rdtsc_ordered();
1975 	u64 last = pvclock_gtod_data.clock.cycle_last;
1976 
1977 	if (likely(ret >= last))
1978 		return ret;
1979 
1980 	/*
1981 	 * GCC likes to generate cmov here, but this branch is extremely
1982 	 * predictable (it's just a function of time and the likely is
1983 	 * very likely) and there's a data dependence, so force GCC
1984 	 * to generate a branch instead.  I don't barrier() because
1985 	 * we don't actually need a barrier, and if this function
1986 	 * ever gets inlined it will generate worse code.
1987 	 */
1988 	asm volatile ("");
1989 	return last;
1990 }
1991 
1992 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1993 {
1994 	long v;
1995 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1996 	u64 tsc_pg_val;
1997 
1998 	switch (gtod->clock.vclock_mode) {
1999 	case VCLOCK_HVCLOCK:
2000 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2001 						  tsc_timestamp);
2002 		if (tsc_pg_val != U64_MAX) {
2003 			/* TSC page valid */
2004 			*mode = VCLOCK_HVCLOCK;
2005 			v = (tsc_pg_val - gtod->clock.cycle_last) &
2006 				gtod->clock.mask;
2007 		} else {
2008 			/* TSC page invalid */
2009 			*mode = VCLOCK_NONE;
2010 		}
2011 		break;
2012 	case VCLOCK_TSC:
2013 		*mode = VCLOCK_TSC;
2014 		*tsc_timestamp = read_tsc();
2015 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
2016 			gtod->clock.mask;
2017 		break;
2018 	default:
2019 		*mode = VCLOCK_NONE;
2020 	}
2021 
2022 	if (*mode == VCLOCK_NONE)
2023 		*tsc_timestamp = v = 0;
2024 
2025 	return v * gtod->clock.mult;
2026 }
2027 
2028 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2029 {
2030 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2031 	unsigned long seq;
2032 	int mode;
2033 	u64 ns;
2034 
2035 	do {
2036 		seq = read_seqcount_begin(&gtod->seq);
2037 		ns = gtod->nsec_base;
2038 		ns += vgettsc(tsc_timestamp, &mode);
2039 		ns >>= gtod->clock.shift;
2040 		ns += gtod->boot_ns;
2041 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2042 	*t = ns;
2043 
2044 	return mode;
2045 }
2046 
2047 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2048 {
2049 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2050 	unsigned long seq;
2051 	int mode;
2052 	u64 ns;
2053 
2054 	do {
2055 		seq = read_seqcount_begin(&gtod->seq);
2056 		ts->tv_sec = gtod->wall_time_sec;
2057 		ns = gtod->nsec_base;
2058 		ns += vgettsc(tsc_timestamp, &mode);
2059 		ns >>= gtod->clock.shift;
2060 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2061 
2062 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2063 	ts->tv_nsec = ns;
2064 
2065 	return mode;
2066 }
2067 
2068 /* returns true if host is using TSC based clocksource */
2069 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2070 {
2071 	/* checked again under seqlock below */
2072 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2073 		return false;
2074 
2075 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2076 						      tsc_timestamp));
2077 }
2078 
2079 /* returns true if host is using TSC based clocksource */
2080 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2081 					   u64 *tsc_timestamp)
2082 {
2083 	/* checked again under seqlock below */
2084 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2085 		return false;
2086 
2087 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2088 }
2089 #endif
2090 
2091 /*
2092  *
2093  * Assuming a stable TSC across physical CPUS, and a stable TSC
2094  * across virtual CPUs, the following condition is possible.
2095  * Each numbered line represents an event visible to both
2096  * CPUs at the next numbered event.
2097  *
2098  * "timespecX" represents host monotonic time. "tscX" represents
2099  * RDTSC value.
2100  *
2101  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2102  *
2103  * 1.  read timespec0,tsc0
2104  * 2.					| timespec1 = timespec0 + N
2105  * 					| tsc1 = tsc0 + M
2106  * 3. transition to guest		| transition to guest
2107  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2108  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2109  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2110  *
2111  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2112  *
2113  * 	- ret0 < ret1
2114  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2115  *		...
2116  *	- 0 < N - M => M < N
2117  *
2118  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2119  * always the case (the difference between two distinct xtime instances
2120  * might be smaller then the difference between corresponding TSC reads,
2121  * when updating guest vcpus pvclock areas).
2122  *
2123  * To avoid that problem, do not allow visibility of distinct
2124  * system_timestamp/tsc_timestamp values simultaneously: use a master
2125  * copy of host monotonic time values. Update that master copy
2126  * in lockstep.
2127  *
2128  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2129  *
2130  */
2131 
2132 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2133 {
2134 #ifdef CONFIG_X86_64
2135 	struct kvm_arch *ka = &kvm->arch;
2136 	int vclock_mode;
2137 	bool host_tsc_clocksource, vcpus_matched;
2138 
2139 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2140 			atomic_read(&kvm->online_vcpus));
2141 
2142 	/*
2143 	 * If the host uses TSC clock, then passthrough TSC as stable
2144 	 * to the guest.
2145 	 */
2146 	host_tsc_clocksource = kvm_get_time_and_clockread(
2147 					&ka->master_kernel_ns,
2148 					&ka->master_cycle_now);
2149 
2150 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2151 				&& !ka->backwards_tsc_observed
2152 				&& !ka->boot_vcpu_runs_old_kvmclock;
2153 
2154 	if (ka->use_master_clock)
2155 		atomic_set(&kvm_guest_has_master_clock, 1);
2156 
2157 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2158 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2159 					vcpus_matched);
2160 #endif
2161 }
2162 
2163 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2164 {
2165 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2166 }
2167 
2168 static void kvm_gen_update_masterclock(struct kvm *kvm)
2169 {
2170 #ifdef CONFIG_X86_64
2171 	int i;
2172 	struct kvm_vcpu *vcpu;
2173 	struct kvm_arch *ka = &kvm->arch;
2174 
2175 	spin_lock(&ka->pvclock_gtod_sync_lock);
2176 	kvm_make_mclock_inprogress_request(kvm);
2177 	/* no guest entries from this point */
2178 	pvclock_update_vm_gtod_copy(kvm);
2179 
2180 	kvm_for_each_vcpu(i, vcpu, kvm)
2181 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2182 
2183 	/* guest entries allowed */
2184 	kvm_for_each_vcpu(i, vcpu, kvm)
2185 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2186 
2187 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2188 #endif
2189 }
2190 
2191 u64 get_kvmclock_ns(struct kvm *kvm)
2192 {
2193 	struct kvm_arch *ka = &kvm->arch;
2194 	struct pvclock_vcpu_time_info hv_clock;
2195 	u64 ret;
2196 
2197 	spin_lock(&ka->pvclock_gtod_sync_lock);
2198 	if (!ka->use_master_clock) {
2199 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2200 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2201 	}
2202 
2203 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2204 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2205 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2206 
2207 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2208 	get_cpu();
2209 
2210 	if (__this_cpu_read(cpu_tsc_khz)) {
2211 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2212 				   &hv_clock.tsc_shift,
2213 				   &hv_clock.tsc_to_system_mul);
2214 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2215 	} else
2216 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2217 
2218 	put_cpu();
2219 
2220 	return ret;
2221 }
2222 
2223 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2224 {
2225 	struct kvm_vcpu_arch *vcpu = &v->arch;
2226 	struct pvclock_vcpu_time_info guest_hv_clock;
2227 
2228 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2229 		&guest_hv_clock, sizeof(guest_hv_clock))))
2230 		return;
2231 
2232 	/* This VCPU is paused, but it's legal for a guest to read another
2233 	 * VCPU's kvmclock, so we really have to follow the specification where
2234 	 * it says that version is odd if data is being modified, and even after
2235 	 * it is consistent.
2236 	 *
2237 	 * Version field updates must be kept separate.  This is because
2238 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2239 	 * writes within a string instruction are weakly ordered.  So there
2240 	 * are three writes overall.
2241 	 *
2242 	 * As a small optimization, only write the version field in the first
2243 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2244 	 * version field is the first in the struct.
2245 	 */
2246 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2247 
2248 	if (guest_hv_clock.version & 1)
2249 		++guest_hv_clock.version;  /* first time write, random junk */
2250 
2251 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2252 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2253 				&vcpu->hv_clock,
2254 				sizeof(vcpu->hv_clock.version));
2255 
2256 	smp_wmb();
2257 
2258 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2259 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2260 
2261 	if (vcpu->pvclock_set_guest_stopped_request) {
2262 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2263 		vcpu->pvclock_set_guest_stopped_request = false;
2264 	}
2265 
2266 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2267 
2268 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2269 				&vcpu->hv_clock,
2270 				sizeof(vcpu->hv_clock));
2271 
2272 	smp_wmb();
2273 
2274 	vcpu->hv_clock.version++;
2275 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2276 				&vcpu->hv_clock,
2277 				sizeof(vcpu->hv_clock.version));
2278 }
2279 
2280 static int kvm_guest_time_update(struct kvm_vcpu *v)
2281 {
2282 	unsigned long flags, tgt_tsc_khz;
2283 	struct kvm_vcpu_arch *vcpu = &v->arch;
2284 	struct kvm_arch *ka = &v->kvm->arch;
2285 	s64 kernel_ns;
2286 	u64 tsc_timestamp, host_tsc;
2287 	u8 pvclock_flags;
2288 	bool use_master_clock;
2289 
2290 	kernel_ns = 0;
2291 	host_tsc = 0;
2292 
2293 	/*
2294 	 * If the host uses TSC clock, then passthrough TSC as stable
2295 	 * to the guest.
2296 	 */
2297 	spin_lock(&ka->pvclock_gtod_sync_lock);
2298 	use_master_clock = ka->use_master_clock;
2299 	if (use_master_clock) {
2300 		host_tsc = ka->master_cycle_now;
2301 		kernel_ns = ka->master_kernel_ns;
2302 	}
2303 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2304 
2305 	/* Keep irq disabled to prevent changes to the clock */
2306 	local_irq_save(flags);
2307 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2308 	if (unlikely(tgt_tsc_khz == 0)) {
2309 		local_irq_restore(flags);
2310 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2311 		return 1;
2312 	}
2313 	if (!use_master_clock) {
2314 		host_tsc = rdtsc();
2315 		kernel_ns = ktime_get_boottime_ns();
2316 	}
2317 
2318 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2319 
2320 	/*
2321 	 * We may have to catch up the TSC to match elapsed wall clock
2322 	 * time for two reasons, even if kvmclock is used.
2323 	 *   1) CPU could have been running below the maximum TSC rate
2324 	 *   2) Broken TSC compensation resets the base at each VCPU
2325 	 *      entry to avoid unknown leaps of TSC even when running
2326 	 *      again on the same CPU.  This may cause apparent elapsed
2327 	 *      time to disappear, and the guest to stand still or run
2328 	 *	very slowly.
2329 	 */
2330 	if (vcpu->tsc_catchup) {
2331 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2332 		if (tsc > tsc_timestamp) {
2333 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2334 			tsc_timestamp = tsc;
2335 		}
2336 	}
2337 
2338 	local_irq_restore(flags);
2339 
2340 	/* With all the info we got, fill in the values */
2341 
2342 	if (kvm_has_tsc_control)
2343 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2344 
2345 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2346 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2347 				   &vcpu->hv_clock.tsc_shift,
2348 				   &vcpu->hv_clock.tsc_to_system_mul);
2349 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2350 	}
2351 
2352 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2353 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2354 	vcpu->last_guest_tsc = tsc_timestamp;
2355 
2356 	/* If the host uses TSC clocksource, then it is stable */
2357 	pvclock_flags = 0;
2358 	if (use_master_clock)
2359 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2360 
2361 	vcpu->hv_clock.flags = pvclock_flags;
2362 
2363 	if (vcpu->pv_time_enabled)
2364 		kvm_setup_pvclock_page(v);
2365 	if (v == kvm_get_vcpu(v->kvm, 0))
2366 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2367 	return 0;
2368 }
2369 
2370 /*
2371  * kvmclock updates which are isolated to a given vcpu, such as
2372  * vcpu->cpu migration, should not allow system_timestamp from
2373  * the rest of the vcpus to remain static. Otherwise ntp frequency
2374  * correction applies to one vcpu's system_timestamp but not
2375  * the others.
2376  *
2377  * So in those cases, request a kvmclock update for all vcpus.
2378  * We need to rate-limit these requests though, as they can
2379  * considerably slow guests that have a large number of vcpus.
2380  * The time for a remote vcpu to update its kvmclock is bound
2381  * by the delay we use to rate-limit the updates.
2382  */
2383 
2384 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2385 
2386 static void kvmclock_update_fn(struct work_struct *work)
2387 {
2388 	int i;
2389 	struct delayed_work *dwork = to_delayed_work(work);
2390 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2391 					   kvmclock_update_work);
2392 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2393 	struct kvm_vcpu *vcpu;
2394 
2395 	kvm_for_each_vcpu(i, vcpu, kvm) {
2396 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2397 		kvm_vcpu_kick(vcpu);
2398 	}
2399 }
2400 
2401 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2402 {
2403 	struct kvm *kvm = v->kvm;
2404 
2405 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2406 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2407 					KVMCLOCK_UPDATE_DELAY);
2408 }
2409 
2410 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2411 
2412 static void kvmclock_sync_fn(struct work_struct *work)
2413 {
2414 	struct delayed_work *dwork = to_delayed_work(work);
2415 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2416 					   kvmclock_sync_work);
2417 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2418 
2419 	if (!kvmclock_periodic_sync)
2420 		return;
2421 
2422 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2423 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2424 					KVMCLOCK_SYNC_PERIOD);
2425 }
2426 
2427 /*
2428  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2429  */
2430 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2431 {
2432 	/* McStatusWrEn enabled? */
2433 	if (guest_cpuid_is_amd(vcpu))
2434 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2435 
2436 	return false;
2437 }
2438 
2439 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2440 {
2441 	u64 mcg_cap = vcpu->arch.mcg_cap;
2442 	unsigned bank_num = mcg_cap & 0xff;
2443 	u32 msr = msr_info->index;
2444 	u64 data = msr_info->data;
2445 
2446 	switch (msr) {
2447 	case MSR_IA32_MCG_STATUS:
2448 		vcpu->arch.mcg_status = data;
2449 		break;
2450 	case MSR_IA32_MCG_CTL:
2451 		if (!(mcg_cap & MCG_CTL_P) &&
2452 		    (data || !msr_info->host_initiated))
2453 			return 1;
2454 		if (data != 0 && data != ~(u64)0)
2455 			return 1;
2456 		vcpu->arch.mcg_ctl = data;
2457 		break;
2458 	default:
2459 		if (msr >= MSR_IA32_MC0_CTL &&
2460 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2461 			u32 offset = msr - MSR_IA32_MC0_CTL;
2462 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2463 			 * some Linux kernels though clear bit 10 in bank 4 to
2464 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2465 			 * this to avoid an uncatched #GP in the guest
2466 			 */
2467 			if ((offset & 0x3) == 0 &&
2468 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2469 				return -1;
2470 
2471 			/* MCi_STATUS */
2472 			if (!msr_info->host_initiated &&
2473 			    (offset & 0x3) == 1 && data != 0) {
2474 				if (!can_set_mci_status(vcpu))
2475 					return -1;
2476 			}
2477 
2478 			vcpu->arch.mce_banks[offset] = data;
2479 			break;
2480 		}
2481 		return 1;
2482 	}
2483 	return 0;
2484 }
2485 
2486 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2487 {
2488 	struct kvm *kvm = vcpu->kvm;
2489 	int lm = is_long_mode(vcpu);
2490 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2491 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2492 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2493 		: kvm->arch.xen_hvm_config.blob_size_32;
2494 	u32 page_num = data & ~PAGE_MASK;
2495 	u64 page_addr = data & PAGE_MASK;
2496 	u8 *page;
2497 	int r;
2498 
2499 	r = -E2BIG;
2500 	if (page_num >= blob_size)
2501 		goto out;
2502 	r = -ENOMEM;
2503 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2504 	if (IS_ERR(page)) {
2505 		r = PTR_ERR(page);
2506 		goto out;
2507 	}
2508 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2509 		goto out_free;
2510 	r = 0;
2511 out_free:
2512 	kfree(page);
2513 out:
2514 	return r;
2515 }
2516 
2517 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2518 {
2519 	gpa_t gpa = data & ~0x3f;
2520 
2521 	/* Bits 3:5 are reserved, Should be zero */
2522 	if (data & 0x38)
2523 		return 1;
2524 
2525 	vcpu->arch.apf.msr_val = data;
2526 
2527 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2528 		kvm_clear_async_pf_completion_queue(vcpu);
2529 		kvm_async_pf_hash_reset(vcpu);
2530 		return 0;
2531 	}
2532 
2533 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2534 					sizeof(u32)))
2535 		return 1;
2536 
2537 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2538 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2539 	kvm_async_pf_wakeup_all(vcpu);
2540 	return 0;
2541 }
2542 
2543 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2544 {
2545 	vcpu->arch.pv_time_enabled = false;
2546 }
2547 
2548 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2549 {
2550 	++vcpu->stat.tlb_flush;
2551 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2552 }
2553 
2554 static void record_steal_time(struct kvm_vcpu *vcpu)
2555 {
2556 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2557 		return;
2558 
2559 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2560 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2561 		return;
2562 
2563 	/*
2564 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2565 	 * expensive IPIs.
2566 	 */
2567 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2568 		vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2569 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2570 		kvm_vcpu_flush_tlb(vcpu, false);
2571 
2572 	if (vcpu->arch.st.steal.version & 1)
2573 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2574 
2575 	vcpu->arch.st.steal.version += 1;
2576 
2577 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2578 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2579 
2580 	smp_wmb();
2581 
2582 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2583 		vcpu->arch.st.last_steal;
2584 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2585 
2586 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2587 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2588 
2589 	smp_wmb();
2590 
2591 	vcpu->arch.st.steal.version += 1;
2592 
2593 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2594 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2595 }
2596 
2597 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2598 {
2599 	bool pr = false;
2600 	u32 msr = msr_info->index;
2601 	u64 data = msr_info->data;
2602 
2603 	switch (msr) {
2604 	case MSR_AMD64_NB_CFG:
2605 	case MSR_IA32_UCODE_WRITE:
2606 	case MSR_VM_HSAVE_PA:
2607 	case MSR_AMD64_PATCH_LOADER:
2608 	case MSR_AMD64_BU_CFG2:
2609 	case MSR_AMD64_DC_CFG:
2610 	case MSR_F15H_EX_CFG:
2611 		break;
2612 
2613 	case MSR_IA32_UCODE_REV:
2614 		if (msr_info->host_initiated)
2615 			vcpu->arch.microcode_version = data;
2616 		break;
2617 	case MSR_IA32_ARCH_CAPABILITIES:
2618 		if (!msr_info->host_initiated)
2619 			return 1;
2620 		vcpu->arch.arch_capabilities = data;
2621 		break;
2622 	case MSR_EFER:
2623 		return set_efer(vcpu, msr_info);
2624 	case MSR_K7_HWCR:
2625 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2626 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2627 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2628 
2629 		/* Handle McStatusWrEn */
2630 		if (data == BIT_ULL(18)) {
2631 			vcpu->arch.msr_hwcr = data;
2632 		} else if (data != 0) {
2633 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2634 				    data);
2635 			return 1;
2636 		}
2637 		break;
2638 	case MSR_FAM10H_MMIO_CONF_BASE:
2639 		if (data != 0) {
2640 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2641 				    "0x%llx\n", data);
2642 			return 1;
2643 		}
2644 		break;
2645 	case MSR_IA32_DEBUGCTLMSR:
2646 		if (!data) {
2647 			/* We support the non-activated case already */
2648 			break;
2649 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2650 			/* Values other than LBR and BTF are vendor-specific,
2651 			   thus reserved and should throw a #GP */
2652 			return 1;
2653 		}
2654 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2655 			    __func__, data);
2656 		break;
2657 	case 0x200 ... 0x2ff:
2658 		return kvm_mtrr_set_msr(vcpu, msr, data);
2659 	case MSR_IA32_APICBASE:
2660 		return kvm_set_apic_base(vcpu, msr_info);
2661 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2662 		return kvm_x2apic_msr_write(vcpu, msr, data);
2663 	case MSR_IA32_TSCDEADLINE:
2664 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2665 		break;
2666 	case MSR_IA32_TSC_ADJUST:
2667 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2668 			if (!msr_info->host_initiated) {
2669 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2670 				adjust_tsc_offset_guest(vcpu, adj);
2671 			}
2672 			vcpu->arch.ia32_tsc_adjust_msr = data;
2673 		}
2674 		break;
2675 	case MSR_IA32_MISC_ENABLE:
2676 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2677 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2678 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2679 				return 1;
2680 			vcpu->arch.ia32_misc_enable_msr = data;
2681 			kvm_update_cpuid(vcpu);
2682 		} else {
2683 			vcpu->arch.ia32_misc_enable_msr = data;
2684 		}
2685 		break;
2686 	case MSR_IA32_SMBASE:
2687 		if (!msr_info->host_initiated)
2688 			return 1;
2689 		vcpu->arch.smbase = data;
2690 		break;
2691 	case MSR_IA32_POWER_CTL:
2692 		vcpu->arch.msr_ia32_power_ctl = data;
2693 		break;
2694 	case MSR_IA32_TSC:
2695 		kvm_write_tsc(vcpu, msr_info);
2696 		break;
2697 	case MSR_SMI_COUNT:
2698 		if (!msr_info->host_initiated)
2699 			return 1;
2700 		vcpu->arch.smi_count = data;
2701 		break;
2702 	case MSR_KVM_WALL_CLOCK_NEW:
2703 	case MSR_KVM_WALL_CLOCK:
2704 		vcpu->kvm->arch.wall_clock = data;
2705 		kvm_write_wall_clock(vcpu->kvm, data);
2706 		break;
2707 	case MSR_KVM_SYSTEM_TIME_NEW:
2708 	case MSR_KVM_SYSTEM_TIME: {
2709 		struct kvm_arch *ka = &vcpu->kvm->arch;
2710 
2711 		kvmclock_reset(vcpu);
2712 
2713 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2714 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2715 
2716 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2717 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2718 
2719 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2720 		}
2721 
2722 		vcpu->arch.time = data;
2723 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2724 
2725 		/* we verify if the enable bit is set... */
2726 		if (!(data & 1))
2727 			break;
2728 
2729 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2730 		     &vcpu->arch.pv_time, data & ~1ULL,
2731 		     sizeof(struct pvclock_vcpu_time_info)))
2732 			vcpu->arch.pv_time_enabled = false;
2733 		else
2734 			vcpu->arch.pv_time_enabled = true;
2735 
2736 		break;
2737 	}
2738 	case MSR_KVM_ASYNC_PF_EN:
2739 		if (kvm_pv_enable_async_pf(vcpu, data))
2740 			return 1;
2741 		break;
2742 	case MSR_KVM_STEAL_TIME:
2743 
2744 		if (unlikely(!sched_info_on()))
2745 			return 1;
2746 
2747 		if (data & KVM_STEAL_RESERVED_MASK)
2748 			return 1;
2749 
2750 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2751 						data & KVM_STEAL_VALID_BITS,
2752 						sizeof(struct kvm_steal_time)))
2753 			return 1;
2754 
2755 		vcpu->arch.st.msr_val = data;
2756 
2757 		if (!(data & KVM_MSR_ENABLED))
2758 			break;
2759 
2760 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2761 
2762 		break;
2763 	case MSR_KVM_PV_EOI_EN:
2764 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2765 			return 1;
2766 		break;
2767 
2768 	case MSR_KVM_POLL_CONTROL:
2769 		/* only enable bit supported */
2770 		if (data & (-1ULL << 1))
2771 			return 1;
2772 
2773 		vcpu->arch.msr_kvm_poll_control = data;
2774 		break;
2775 
2776 	case MSR_IA32_MCG_CTL:
2777 	case MSR_IA32_MCG_STATUS:
2778 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2779 		return set_msr_mce(vcpu, msr_info);
2780 
2781 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2782 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2783 		pr = true; /* fall through */
2784 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2785 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2786 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2787 			return kvm_pmu_set_msr(vcpu, msr_info);
2788 
2789 		if (pr || data != 0)
2790 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2791 				    "0x%x data 0x%llx\n", msr, data);
2792 		break;
2793 	case MSR_K7_CLK_CTL:
2794 		/*
2795 		 * Ignore all writes to this no longer documented MSR.
2796 		 * Writes are only relevant for old K7 processors,
2797 		 * all pre-dating SVM, but a recommended workaround from
2798 		 * AMD for these chips. It is possible to specify the
2799 		 * affected processor models on the command line, hence
2800 		 * the need to ignore the workaround.
2801 		 */
2802 		break;
2803 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2804 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2805 	case HV_X64_MSR_CRASH_CTL:
2806 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2807 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2808 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2809 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2810 		return kvm_hv_set_msr_common(vcpu, msr, data,
2811 					     msr_info->host_initiated);
2812 	case MSR_IA32_BBL_CR_CTL3:
2813 		/* Drop writes to this legacy MSR -- see rdmsr
2814 		 * counterpart for further detail.
2815 		 */
2816 		if (report_ignored_msrs)
2817 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2818 				msr, data);
2819 		break;
2820 	case MSR_AMD64_OSVW_ID_LENGTH:
2821 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2822 			return 1;
2823 		vcpu->arch.osvw.length = data;
2824 		break;
2825 	case MSR_AMD64_OSVW_STATUS:
2826 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2827 			return 1;
2828 		vcpu->arch.osvw.status = data;
2829 		break;
2830 	case MSR_PLATFORM_INFO:
2831 		if (!msr_info->host_initiated ||
2832 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2833 		     cpuid_fault_enabled(vcpu)))
2834 			return 1;
2835 		vcpu->arch.msr_platform_info = data;
2836 		break;
2837 	case MSR_MISC_FEATURES_ENABLES:
2838 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2839 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2840 		     !supports_cpuid_fault(vcpu)))
2841 			return 1;
2842 		vcpu->arch.msr_misc_features_enables = data;
2843 		break;
2844 	default:
2845 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2846 			return xen_hvm_config(vcpu, data);
2847 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2848 			return kvm_pmu_set_msr(vcpu, msr_info);
2849 		if (!ignore_msrs) {
2850 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2851 				    msr, data);
2852 			return 1;
2853 		} else {
2854 			if (report_ignored_msrs)
2855 				vcpu_unimpl(vcpu,
2856 					"ignored wrmsr: 0x%x data 0x%llx\n",
2857 					msr, data);
2858 			break;
2859 		}
2860 	}
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2864 
2865 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2866 {
2867 	u64 data;
2868 	u64 mcg_cap = vcpu->arch.mcg_cap;
2869 	unsigned bank_num = mcg_cap & 0xff;
2870 
2871 	switch (msr) {
2872 	case MSR_IA32_P5_MC_ADDR:
2873 	case MSR_IA32_P5_MC_TYPE:
2874 		data = 0;
2875 		break;
2876 	case MSR_IA32_MCG_CAP:
2877 		data = vcpu->arch.mcg_cap;
2878 		break;
2879 	case MSR_IA32_MCG_CTL:
2880 		if (!(mcg_cap & MCG_CTL_P) && !host)
2881 			return 1;
2882 		data = vcpu->arch.mcg_ctl;
2883 		break;
2884 	case MSR_IA32_MCG_STATUS:
2885 		data = vcpu->arch.mcg_status;
2886 		break;
2887 	default:
2888 		if (msr >= MSR_IA32_MC0_CTL &&
2889 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2890 			u32 offset = msr - MSR_IA32_MC0_CTL;
2891 			data = vcpu->arch.mce_banks[offset];
2892 			break;
2893 		}
2894 		return 1;
2895 	}
2896 	*pdata = data;
2897 	return 0;
2898 }
2899 
2900 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2901 {
2902 	switch (msr_info->index) {
2903 	case MSR_IA32_PLATFORM_ID:
2904 	case MSR_IA32_EBL_CR_POWERON:
2905 	case MSR_IA32_DEBUGCTLMSR:
2906 	case MSR_IA32_LASTBRANCHFROMIP:
2907 	case MSR_IA32_LASTBRANCHTOIP:
2908 	case MSR_IA32_LASTINTFROMIP:
2909 	case MSR_IA32_LASTINTTOIP:
2910 	case MSR_K8_SYSCFG:
2911 	case MSR_K8_TSEG_ADDR:
2912 	case MSR_K8_TSEG_MASK:
2913 	case MSR_VM_HSAVE_PA:
2914 	case MSR_K8_INT_PENDING_MSG:
2915 	case MSR_AMD64_NB_CFG:
2916 	case MSR_FAM10H_MMIO_CONF_BASE:
2917 	case MSR_AMD64_BU_CFG2:
2918 	case MSR_IA32_PERF_CTL:
2919 	case MSR_AMD64_DC_CFG:
2920 	case MSR_F15H_EX_CFG:
2921 		msr_info->data = 0;
2922 		break;
2923 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2924 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2925 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2926 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2927 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2928 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2929 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2930 		msr_info->data = 0;
2931 		break;
2932 	case MSR_IA32_UCODE_REV:
2933 		msr_info->data = vcpu->arch.microcode_version;
2934 		break;
2935 	case MSR_IA32_ARCH_CAPABILITIES:
2936 		if (!msr_info->host_initiated &&
2937 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2938 			return 1;
2939 		msr_info->data = vcpu->arch.arch_capabilities;
2940 		break;
2941 	case MSR_IA32_POWER_CTL:
2942 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2943 		break;
2944 	case MSR_IA32_TSC:
2945 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2946 		break;
2947 	case MSR_MTRRcap:
2948 	case 0x200 ... 0x2ff:
2949 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2950 	case 0xcd: /* fsb frequency */
2951 		msr_info->data = 3;
2952 		break;
2953 		/*
2954 		 * MSR_EBC_FREQUENCY_ID
2955 		 * Conservative value valid for even the basic CPU models.
2956 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2957 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2958 		 * and 266MHz for model 3, or 4. Set Core Clock
2959 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2960 		 * 31:24) even though these are only valid for CPU
2961 		 * models > 2, however guests may end up dividing or
2962 		 * multiplying by zero otherwise.
2963 		 */
2964 	case MSR_EBC_FREQUENCY_ID:
2965 		msr_info->data = 1 << 24;
2966 		break;
2967 	case MSR_IA32_APICBASE:
2968 		msr_info->data = kvm_get_apic_base(vcpu);
2969 		break;
2970 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2971 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2972 		break;
2973 	case MSR_IA32_TSCDEADLINE:
2974 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2975 		break;
2976 	case MSR_IA32_TSC_ADJUST:
2977 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2978 		break;
2979 	case MSR_IA32_MISC_ENABLE:
2980 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2981 		break;
2982 	case MSR_IA32_SMBASE:
2983 		if (!msr_info->host_initiated)
2984 			return 1;
2985 		msr_info->data = vcpu->arch.smbase;
2986 		break;
2987 	case MSR_SMI_COUNT:
2988 		msr_info->data = vcpu->arch.smi_count;
2989 		break;
2990 	case MSR_IA32_PERF_STATUS:
2991 		/* TSC increment by tick */
2992 		msr_info->data = 1000ULL;
2993 		/* CPU multiplier */
2994 		msr_info->data |= (((uint64_t)4ULL) << 40);
2995 		break;
2996 	case MSR_EFER:
2997 		msr_info->data = vcpu->arch.efer;
2998 		break;
2999 	case MSR_KVM_WALL_CLOCK:
3000 	case MSR_KVM_WALL_CLOCK_NEW:
3001 		msr_info->data = vcpu->kvm->arch.wall_clock;
3002 		break;
3003 	case MSR_KVM_SYSTEM_TIME:
3004 	case MSR_KVM_SYSTEM_TIME_NEW:
3005 		msr_info->data = vcpu->arch.time;
3006 		break;
3007 	case MSR_KVM_ASYNC_PF_EN:
3008 		msr_info->data = vcpu->arch.apf.msr_val;
3009 		break;
3010 	case MSR_KVM_STEAL_TIME:
3011 		msr_info->data = vcpu->arch.st.msr_val;
3012 		break;
3013 	case MSR_KVM_PV_EOI_EN:
3014 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3015 		break;
3016 	case MSR_KVM_POLL_CONTROL:
3017 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3018 		break;
3019 	case MSR_IA32_P5_MC_ADDR:
3020 	case MSR_IA32_P5_MC_TYPE:
3021 	case MSR_IA32_MCG_CAP:
3022 	case MSR_IA32_MCG_CTL:
3023 	case MSR_IA32_MCG_STATUS:
3024 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3025 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3026 				   msr_info->host_initiated);
3027 	case MSR_K7_CLK_CTL:
3028 		/*
3029 		 * Provide expected ramp-up count for K7. All other
3030 		 * are set to zero, indicating minimum divisors for
3031 		 * every field.
3032 		 *
3033 		 * This prevents guest kernels on AMD host with CPU
3034 		 * type 6, model 8 and higher from exploding due to
3035 		 * the rdmsr failing.
3036 		 */
3037 		msr_info->data = 0x20000000;
3038 		break;
3039 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3040 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3041 	case HV_X64_MSR_CRASH_CTL:
3042 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3043 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3044 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3045 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3046 		return kvm_hv_get_msr_common(vcpu,
3047 					     msr_info->index, &msr_info->data,
3048 					     msr_info->host_initiated);
3049 		break;
3050 	case MSR_IA32_BBL_CR_CTL3:
3051 		/* This legacy MSR exists but isn't fully documented in current
3052 		 * silicon.  It is however accessed by winxp in very narrow
3053 		 * scenarios where it sets bit #19, itself documented as
3054 		 * a "reserved" bit.  Best effort attempt to source coherent
3055 		 * read data here should the balance of the register be
3056 		 * interpreted by the guest:
3057 		 *
3058 		 * L2 cache control register 3: 64GB range, 256KB size,
3059 		 * enabled, latency 0x1, configured
3060 		 */
3061 		msr_info->data = 0xbe702111;
3062 		break;
3063 	case MSR_AMD64_OSVW_ID_LENGTH:
3064 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3065 			return 1;
3066 		msr_info->data = vcpu->arch.osvw.length;
3067 		break;
3068 	case MSR_AMD64_OSVW_STATUS:
3069 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3070 			return 1;
3071 		msr_info->data = vcpu->arch.osvw.status;
3072 		break;
3073 	case MSR_PLATFORM_INFO:
3074 		if (!msr_info->host_initiated &&
3075 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3076 			return 1;
3077 		msr_info->data = vcpu->arch.msr_platform_info;
3078 		break;
3079 	case MSR_MISC_FEATURES_ENABLES:
3080 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3081 		break;
3082 	case MSR_K7_HWCR:
3083 		msr_info->data = vcpu->arch.msr_hwcr;
3084 		break;
3085 	default:
3086 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3087 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3088 		if (!ignore_msrs) {
3089 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3090 					       msr_info->index);
3091 			return 1;
3092 		} else {
3093 			if (report_ignored_msrs)
3094 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3095 					msr_info->index);
3096 			msr_info->data = 0;
3097 		}
3098 		break;
3099 	}
3100 	return 0;
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3103 
3104 /*
3105  * Read or write a bunch of msrs. All parameters are kernel addresses.
3106  *
3107  * @return number of msrs set successfully.
3108  */
3109 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3110 		    struct kvm_msr_entry *entries,
3111 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3112 				  unsigned index, u64 *data))
3113 {
3114 	int i;
3115 
3116 	for (i = 0; i < msrs->nmsrs; ++i)
3117 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3118 			break;
3119 
3120 	return i;
3121 }
3122 
3123 /*
3124  * Read or write a bunch of msrs. Parameters are user addresses.
3125  *
3126  * @return number of msrs set successfully.
3127  */
3128 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3129 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3130 				unsigned index, u64 *data),
3131 		  int writeback)
3132 {
3133 	struct kvm_msrs msrs;
3134 	struct kvm_msr_entry *entries;
3135 	int r, n;
3136 	unsigned size;
3137 
3138 	r = -EFAULT;
3139 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3140 		goto out;
3141 
3142 	r = -E2BIG;
3143 	if (msrs.nmsrs >= MAX_IO_MSRS)
3144 		goto out;
3145 
3146 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3147 	entries = memdup_user(user_msrs->entries, size);
3148 	if (IS_ERR(entries)) {
3149 		r = PTR_ERR(entries);
3150 		goto out;
3151 	}
3152 
3153 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3154 	if (r < 0)
3155 		goto out_free;
3156 
3157 	r = -EFAULT;
3158 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3159 		goto out_free;
3160 
3161 	r = n;
3162 
3163 out_free:
3164 	kfree(entries);
3165 out:
3166 	return r;
3167 }
3168 
3169 static inline bool kvm_can_mwait_in_guest(void)
3170 {
3171 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3172 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3173 		boot_cpu_has(X86_FEATURE_ARAT);
3174 }
3175 
3176 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3177 {
3178 	int r = 0;
3179 
3180 	switch (ext) {
3181 	case KVM_CAP_IRQCHIP:
3182 	case KVM_CAP_HLT:
3183 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3184 	case KVM_CAP_SET_TSS_ADDR:
3185 	case KVM_CAP_EXT_CPUID:
3186 	case KVM_CAP_EXT_EMUL_CPUID:
3187 	case KVM_CAP_CLOCKSOURCE:
3188 	case KVM_CAP_PIT:
3189 	case KVM_CAP_NOP_IO_DELAY:
3190 	case KVM_CAP_MP_STATE:
3191 	case KVM_CAP_SYNC_MMU:
3192 	case KVM_CAP_USER_NMI:
3193 	case KVM_CAP_REINJECT_CONTROL:
3194 	case KVM_CAP_IRQ_INJECT_STATUS:
3195 	case KVM_CAP_IOEVENTFD:
3196 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3197 	case KVM_CAP_PIT2:
3198 	case KVM_CAP_PIT_STATE2:
3199 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3200 	case KVM_CAP_XEN_HVM:
3201 	case KVM_CAP_VCPU_EVENTS:
3202 	case KVM_CAP_HYPERV:
3203 	case KVM_CAP_HYPERV_VAPIC:
3204 	case KVM_CAP_HYPERV_SPIN:
3205 	case KVM_CAP_HYPERV_SYNIC:
3206 	case KVM_CAP_HYPERV_SYNIC2:
3207 	case KVM_CAP_HYPERV_VP_INDEX:
3208 	case KVM_CAP_HYPERV_EVENTFD:
3209 	case KVM_CAP_HYPERV_TLBFLUSH:
3210 	case KVM_CAP_HYPERV_SEND_IPI:
3211 	case KVM_CAP_HYPERV_CPUID:
3212 	case KVM_CAP_PCI_SEGMENT:
3213 	case KVM_CAP_DEBUGREGS:
3214 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3215 	case KVM_CAP_XSAVE:
3216 	case KVM_CAP_ASYNC_PF:
3217 	case KVM_CAP_GET_TSC_KHZ:
3218 	case KVM_CAP_KVMCLOCK_CTRL:
3219 	case KVM_CAP_READONLY_MEM:
3220 	case KVM_CAP_HYPERV_TIME:
3221 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3222 	case KVM_CAP_TSC_DEADLINE_TIMER:
3223 	case KVM_CAP_DISABLE_QUIRKS:
3224 	case KVM_CAP_SET_BOOT_CPU_ID:
3225  	case KVM_CAP_SPLIT_IRQCHIP:
3226 	case KVM_CAP_IMMEDIATE_EXIT:
3227 	case KVM_CAP_PMU_EVENT_FILTER:
3228 	case KVM_CAP_GET_MSR_FEATURES:
3229 	case KVM_CAP_MSR_PLATFORM_INFO:
3230 	case KVM_CAP_EXCEPTION_PAYLOAD:
3231 		r = 1;
3232 		break;
3233 	case KVM_CAP_SYNC_REGS:
3234 		r = KVM_SYNC_X86_VALID_FIELDS;
3235 		break;
3236 	case KVM_CAP_ADJUST_CLOCK:
3237 		r = KVM_CLOCK_TSC_STABLE;
3238 		break;
3239 	case KVM_CAP_X86_DISABLE_EXITS:
3240 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3241 		      KVM_X86_DISABLE_EXITS_CSTATE;
3242 		if(kvm_can_mwait_in_guest())
3243 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3244 		break;
3245 	case KVM_CAP_X86_SMM:
3246 		/* SMBASE is usually relocated above 1M on modern chipsets,
3247 		 * and SMM handlers might indeed rely on 4G segment limits,
3248 		 * so do not report SMM to be available if real mode is
3249 		 * emulated via vm86 mode.  Still, do not go to great lengths
3250 		 * to avoid userspace's usage of the feature, because it is a
3251 		 * fringe case that is not enabled except via specific settings
3252 		 * of the module parameters.
3253 		 */
3254 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3255 		break;
3256 	case KVM_CAP_VAPIC:
3257 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3258 		break;
3259 	case KVM_CAP_NR_VCPUS:
3260 		r = KVM_SOFT_MAX_VCPUS;
3261 		break;
3262 	case KVM_CAP_MAX_VCPUS:
3263 		r = KVM_MAX_VCPUS;
3264 		break;
3265 	case KVM_CAP_MAX_VCPU_ID:
3266 		r = KVM_MAX_VCPU_ID;
3267 		break;
3268 	case KVM_CAP_PV_MMU:	/* obsolete */
3269 		r = 0;
3270 		break;
3271 	case KVM_CAP_MCE:
3272 		r = KVM_MAX_MCE_BANKS;
3273 		break;
3274 	case KVM_CAP_XCRS:
3275 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3276 		break;
3277 	case KVM_CAP_TSC_CONTROL:
3278 		r = kvm_has_tsc_control;
3279 		break;
3280 	case KVM_CAP_X2APIC_API:
3281 		r = KVM_X2APIC_API_VALID_FLAGS;
3282 		break;
3283 	case KVM_CAP_NESTED_STATE:
3284 		r = kvm_x86_ops->get_nested_state ?
3285 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3286 		break;
3287 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3288 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3289 		break;
3290 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3291 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3292 		break;
3293 	default:
3294 		break;
3295 	}
3296 	return r;
3297 
3298 }
3299 
3300 long kvm_arch_dev_ioctl(struct file *filp,
3301 			unsigned int ioctl, unsigned long arg)
3302 {
3303 	void __user *argp = (void __user *)arg;
3304 	long r;
3305 
3306 	switch (ioctl) {
3307 	case KVM_GET_MSR_INDEX_LIST: {
3308 		struct kvm_msr_list __user *user_msr_list = argp;
3309 		struct kvm_msr_list msr_list;
3310 		unsigned n;
3311 
3312 		r = -EFAULT;
3313 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3314 			goto out;
3315 		n = msr_list.nmsrs;
3316 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3317 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3318 			goto out;
3319 		r = -E2BIG;
3320 		if (n < msr_list.nmsrs)
3321 			goto out;
3322 		r = -EFAULT;
3323 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3324 				 num_msrs_to_save * sizeof(u32)))
3325 			goto out;
3326 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3327 				 &emulated_msrs,
3328 				 num_emulated_msrs * sizeof(u32)))
3329 			goto out;
3330 		r = 0;
3331 		break;
3332 	}
3333 	case KVM_GET_SUPPORTED_CPUID:
3334 	case KVM_GET_EMULATED_CPUID: {
3335 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3336 		struct kvm_cpuid2 cpuid;
3337 
3338 		r = -EFAULT;
3339 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3340 			goto out;
3341 
3342 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3343 					    ioctl);
3344 		if (r)
3345 			goto out;
3346 
3347 		r = -EFAULT;
3348 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3349 			goto out;
3350 		r = 0;
3351 		break;
3352 	}
3353 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3354 		r = -EFAULT;
3355 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3356 				 sizeof(kvm_mce_cap_supported)))
3357 			goto out;
3358 		r = 0;
3359 		break;
3360 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3361 		struct kvm_msr_list __user *user_msr_list = argp;
3362 		struct kvm_msr_list msr_list;
3363 		unsigned int n;
3364 
3365 		r = -EFAULT;
3366 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3367 			goto out;
3368 		n = msr_list.nmsrs;
3369 		msr_list.nmsrs = num_msr_based_features;
3370 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3371 			goto out;
3372 		r = -E2BIG;
3373 		if (n < msr_list.nmsrs)
3374 			goto out;
3375 		r = -EFAULT;
3376 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3377 				 num_msr_based_features * sizeof(u32)))
3378 			goto out;
3379 		r = 0;
3380 		break;
3381 	}
3382 	case KVM_GET_MSRS:
3383 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3384 		break;
3385 	}
3386 	default:
3387 		r = -EINVAL;
3388 	}
3389 out:
3390 	return r;
3391 }
3392 
3393 static void wbinvd_ipi(void *garbage)
3394 {
3395 	wbinvd();
3396 }
3397 
3398 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3399 {
3400 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3401 }
3402 
3403 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3404 {
3405 	/* Address WBINVD may be executed by guest */
3406 	if (need_emulate_wbinvd(vcpu)) {
3407 		if (kvm_x86_ops->has_wbinvd_exit())
3408 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3409 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3410 			smp_call_function_single(vcpu->cpu,
3411 					wbinvd_ipi, NULL, 1);
3412 	}
3413 
3414 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3415 
3416 	fpregs_assert_state_consistent();
3417 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
3418 		switch_fpu_return();
3419 
3420 	/* Apply any externally detected TSC adjustments (due to suspend) */
3421 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3422 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3423 		vcpu->arch.tsc_offset_adjustment = 0;
3424 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3425 	}
3426 
3427 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3428 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3429 				rdtsc() - vcpu->arch.last_host_tsc;
3430 		if (tsc_delta < 0)
3431 			mark_tsc_unstable("KVM discovered backwards TSC");
3432 
3433 		if (kvm_check_tsc_unstable()) {
3434 			u64 offset = kvm_compute_tsc_offset(vcpu,
3435 						vcpu->arch.last_guest_tsc);
3436 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3437 			vcpu->arch.tsc_catchup = 1;
3438 		}
3439 
3440 		if (kvm_lapic_hv_timer_in_use(vcpu))
3441 			kvm_lapic_restart_hv_timer(vcpu);
3442 
3443 		/*
3444 		 * On a host with synchronized TSC, there is no need to update
3445 		 * kvmclock on vcpu->cpu migration
3446 		 */
3447 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3448 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3449 		if (vcpu->cpu != cpu)
3450 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3451 		vcpu->cpu = cpu;
3452 	}
3453 
3454 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3455 }
3456 
3457 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3458 {
3459 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3460 		return;
3461 
3462 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3463 
3464 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3465 			&vcpu->arch.st.steal.preempted,
3466 			offsetof(struct kvm_steal_time, preempted),
3467 			sizeof(vcpu->arch.st.steal.preempted));
3468 }
3469 
3470 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3471 {
3472 	int idx;
3473 
3474 	if (vcpu->preempted)
3475 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3476 
3477 	/*
3478 	 * Disable page faults because we're in atomic context here.
3479 	 * kvm_write_guest_offset_cached() would call might_fault()
3480 	 * that relies on pagefault_disable() to tell if there's a
3481 	 * bug. NOTE: the write to guest memory may not go through if
3482 	 * during postcopy live migration or if there's heavy guest
3483 	 * paging.
3484 	 */
3485 	pagefault_disable();
3486 	/*
3487 	 * kvm_memslots() will be called by
3488 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3489 	 */
3490 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3491 	kvm_steal_time_set_preempted(vcpu);
3492 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3493 	pagefault_enable();
3494 	kvm_x86_ops->vcpu_put(vcpu);
3495 	vcpu->arch.last_host_tsc = rdtsc();
3496 	/*
3497 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3498 	 * on every vmexit, but if not, we might have a stale dr6 from the
3499 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3500 	 */
3501 	set_debugreg(0, 6);
3502 }
3503 
3504 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3505 				    struct kvm_lapic_state *s)
3506 {
3507 	if (vcpu->arch.apicv_active)
3508 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3509 
3510 	return kvm_apic_get_state(vcpu, s);
3511 }
3512 
3513 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3514 				    struct kvm_lapic_state *s)
3515 {
3516 	int r;
3517 
3518 	r = kvm_apic_set_state(vcpu, s);
3519 	if (r)
3520 		return r;
3521 	update_cr8_intercept(vcpu);
3522 
3523 	return 0;
3524 }
3525 
3526 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3527 {
3528 	return (!lapic_in_kernel(vcpu) ||
3529 		kvm_apic_accept_pic_intr(vcpu));
3530 }
3531 
3532 /*
3533  * if userspace requested an interrupt window, check that the
3534  * interrupt window is open.
3535  *
3536  * No need to exit to userspace if we already have an interrupt queued.
3537  */
3538 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3539 {
3540 	return kvm_arch_interrupt_allowed(vcpu) &&
3541 		!kvm_cpu_has_interrupt(vcpu) &&
3542 		!kvm_event_needs_reinjection(vcpu) &&
3543 		kvm_cpu_accept_dm_intr(vcpu);
3544 }
3545 
3546 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3547 				    struct kvm_interrupt *irq)
3548 {
3549 	if (irq->irq >= KVM_NR_INTERRUPTS)
3550 		return -EINVAL;
3551 
3552 	if (!irqchip_in_kernel(vcpu->kvm)) {
3553 		kvm_queue_interrupt(vcpu, irq->irq, false);
3554 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3555 		return 0;
3556 	}
3557 
3558 	/*
3559 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3560 	 * fail for in-kernel 8259.
3561 	 */
3562 	if (pic_in_kernel(vcpu->kvm))
3563 		return -ENXIO;
3564 
3565 	if (vcpu->arch.pending_external_vector != -1)
3566 		return -EEXIST;
3567 
3568 	vcpu->arch.pending_external_vector = irq->irq;
3569 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3570 	return 0;
3571 }
3572 
3573 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3574 {
3575 	kvm_inject_nmi(vcpu);
3576 
3577 	return 0;
3578 }
3579 
3580 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3581 {
3582 	kvm_make_request(KVM_REQ_SMI, vcpu);
3583 
3584 	return 0;
3585 }
3586 
3587 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3588 					   struct kvm_tpr_access_ctl *tac)
3589 {
3590 	if (tac->flags)
3591 		return -EINVAL;
3592 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3593 	return 0;
3594 }
3595 
3596 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3597 					u64 mcg_cap)
3598 {
3599 	int r;
3600 	unsigned bank_num = mcg_cap & 0xff, bank;
3601 
3602 	r = -EINVAL;
3603 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3604 		goto out;
3605 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3606 		goto out;
3607 	r = 0;
3608 	vcpu->arch.mcg_cap = mcg_cap;
3609 	/* Init IA32_MCG_CTL to all 1s */
3610 	if (mcg_cap & MCG_CTL_P)
3611 		vcpu->arch.mcg_ctl = ~(u64)0;
3612 	/* Init IA32_MCi_CTL to all 1s */
3613 	for (bank = 0; bank < bank_num; bank++)
3614 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3615 
3616 	kvm_x86_ops->setup_mce(vcpu);
3617 out:
3618 	return r;
3619 }
3620 
3621 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3622 				      struct kvm_x86_mce *mce)
3623 {
3624 	u64 mcg_cap = vcpu->arch.mcg_cap;
3625 	unsigned bank_num = mcg_cap & 0xff;
3626 	u64 *banks = vcpu->arch.mce_banks;
3627 
3628 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3629 		return -EINVAL;
3630 	/*
3631 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3632 	 * reporting is disabled
3633 	 */
3634 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3635 	    vcpu->arch.mcg_ctl != ~(u64)0)
3636 		return 0;
3637 	banks += 4 * mce->bank;
3638 	/*
3639 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3640 	 * reporting is disabled for the bank
3641 	 */
3642 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3643 		return 0;
3644 	if (mce->status & MCI_STATUS_UC) {
3645 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3646 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3647 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3648 			return 0;
3649 		}
3650 		if (banks[1] & MCI_STATUS_VAL)
3651 			mce->status |= MCI_STATUS_OVER;
3652 		banks[2] = mce->addr;
3653 		banks[3] = mce->misc;
3654 		vcpu->arch.mcg_status = mce->mcg_status;
3655 		banks[1] = mce->status;
3656 		kvm_queue_exception(vcpu, MC_VECTOR);
3657 	} else if (!(banks[1] & MCI_STATUS_VAL)
3658 		   || !(banks[1] & MCI_STATUS_UC)) {
3659 		if (banks[1] & MCI_STATUS_VAL)
3660 			mce->status |= MCI_STATUS_OVER;
3661 		banks[2] = mce->addr;
3662 		banks[3] = mce->misc;
3663 		banks[1] = mce->status;
3664 	} else
3665 		banks[1] |= MCI_STATUS_OVER;
3666 	return 0;
3667 }
3668 
3669 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3670 					       struct kvm_vcpu_events *events)
3671 {
3672 	process_nmi(vcpu);
3673 
3674 	/*
3675 	 * The API doesn't provide the instruction length for software
3676 	 * exceptions, so don't report them. As long as the guest RIP
3677 	 * isn't advanced, we should expect to encounter the exception
3678 	 * again.
3679 	 */
3680 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3681 		events->exception.injected = 0;
3682 		events->exception.pending = 0;
3683 	} else {
3684 		events->exception.injected = vcpu->arch.exception.injected;
3685 		events->exception.pending = vcpu->arch.exception.pending;
3686 		/*
3687 		 * For ABI compatibility, deliberately conflate
3688 		 * pending and injected exceptions when
3689 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3690 		 */
3691 		if (!vcpu->kvm->arch.exception_payload_enabled)
3692 			events->exception.injected |=
3693 				vcpu->arch.exception.pending;
3694 	}
3695 	events->exception.nr = vcpu->arch.exception.nr;
3696 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3697 	events->exception.error_code = vcpu->arch.exception.error_code;
3698 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3699 	events->exception_payload = vcpu->arch.exception.payload;
3700 
3701 	events->interrupt.injected =
3702 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3703 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3704 	events->interrupt.soft = 0;
3705 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3706 
3707 	events->nmi.injected = vcpu->arch.nmi_injected;
3708 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3709 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3710 	events->nmi.pad = 0;
3711 
3712 	events->sipi_vector = 0; /* never valid when reporting to user space */
3713 
3714 	events->smi.smm = is_smm(vcpu);
3715 	events->smi.pending = vcpu->arch.smi_pending;
3716 	events->smi.smm_inside_nmi =
3717 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3718 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3719 
3720 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3721 			 | KVM_VCPUEVENT_VALID_SHADOW
3722 			 | KVM_VCPUEVENT_VALID_SMM);
3723 	if (vcpu->kvm->arch.exception_payload_enabled)
3724 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3725 
3726 	memset(&events->reserved, 0, sizeof(events->reserved));
3727 }
3728 
3729 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3730 
3731 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3732 					      struct kvm_vcpu_events *events)
3733 {
3734 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3735 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3736 			      | KVM_VCPUEVENT_VALID_SHADOW
3737 			      | KVM_VCPUEVENT_VALID_SMM
3738 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3739 		return -EINVAL;
3740 
3741 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3742 		if (!vcpu->kvm->arch.exception_payload_enabled)
3743 			return -EINVAL;
3744 		if (events->exception.pending)
3745 			events->exception.injected = 0;
3746 		else
3747 			events->exception_has_payload = 0;
3748 	} else {
3749 		events->exception.pending = 0;
3750 		events->exception_has_payload = 0;
3751 	}
3752 
3753 	if ((events->exception.injected || events->exception.pending) &&
3754 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3755 		return -EINVAL;
3756 
3757 	/* INITs are latched while in SMM */
3758 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3759 	    (events->smi.smm || events->smi.pending) &&
3760 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3761 		return -EINVAL;
3762 
3763 	process_nmi(vcpu);
3764 	vcpu->arch.exception.injected = events->exception.injected;
3765 	vcpu->arch.exception.pending = events->exception.pending;
3766 	vcpu->arch.exception.nr = events->exception.nr;
3767 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3768 	vcpu->arch.exception.error_code = events->exception.error_code;
3769 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3770 	vcpu->arch.exception.payload = events->exception_payload;
3771 
3772 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3773 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3774 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3775 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3776 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3777 						  events->interrupt.shadow);
3778 
3779 	vcpu->arch.nmi_injected = events->nmi.injected;
3780 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3781 		vcpu->arch.nmi_pending = events->nmi.pending;
3782 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3783 
3784 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3785 	    lapic_in_kernel(vcpu))
3786 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3787 
3788 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3789 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3790 			if (events->smi.smm)
3791 				vcpu->arch.hflags |= HF_SMM_MASK;
3792 			else
3793 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3794 			kvm_smm_changed(vcpu);
3795 		}
3796 
3797 		vcpu->arch.smi_pending = events->smi.pending;
3798 
3799 		if (events->smi.smm) {
3800 			if (events->smi.smm_inside_nmi)
3801 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3802 			else
3803 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3804 			if (lapic_in_kernel(vcpu)) {
3805 				if (events->smi.latched_init)
3806 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3807 				else
3808 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3809 			}
3810 		}
3811 	}
3812 
3813 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3814 
3815 	return 0;
3816 }
3817 
3818 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3819 					     struct kvm_debugregs *dbgregs)
3820 {
3821 	unsigned long val;
3822 
3823 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3824 	kvm_get_dr(vcpu, 6, &val);
3825 	dbgregs->dr6 = val;
3826 	dbgregs->dr7 = vcpu->arch.dr7;
3827 	dbgregs->flags = 0;
3828 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3829 }
3830 
3831 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3832 					    struct kvm_debugregs *dbgregs)
3833 {
3834 	if (dbgregs->flags)
3835 		return -EINVAL;
3836 
3837 	if (dbgregs->dr6 & ~0xffffffffull)
3838 		return -EINVAL;
3839 	if (dbgregs->dr7 & ~0xffffffffull)
3840 		return -EINVAL;
3841 
3842 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3843 	kvm_update_dr0123(vcpu);
3844 	vcpu->arch.dr6 = dbgregs->dr6;
3845 	kvm_update_dr6(vcpu);
3846 	vcpu->arch.dr7 = dbgregs->dr7;
3847 	kvm_update_dr7(vcpu);
3848 
3849 	return 0;
3850 }
3851 
3852 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3853 
3854 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3855 {
3856 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3857 	u64 xstate_bv = xsave->header.xfeatures;
3858 	u64 valid;
3859 
3860 	/*
3861 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3862 	 * leaves 0 and 1 in the loop below.
3863 	 */
3864 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3865 
3866 	/* Set XSTATE_BV */
3867 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3868 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3869 
3870 	/*
3871 	 * Copy each region from the possibly compacted offset to the
3872 	 * non-compacted offset.
3873 	 */
3874 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3875 	while (valid) {
3876 		u64 xfeature_mask = valid & -valid;
3877 		int xfeature_nr = fls64(xfeature_mask) - 1;
3878 		void *src = get_xsave_addr(xsave, xfeature_nr);
3879 
3880 		if (src) {
3881 			u32 size, offset, ecx, edx;
3882 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3883 				    &size, &offset, &ecx, &edx);
3884 			if (xfeature_nr == XFEATURE_PKRU)
3885 				memcpy(dest + offset, &vcpu->arch.pkru,
3886 				       sizeof(vcpu->arch.pkru));
3887 			else
3888 				memcpy(dest + offset, src, size);
3889 
3890 		}
3891 
3892 		valid -= xfeature_mask;
3893 	}
3894 }
3895 
3896 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3897 {
3898 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3899 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3900 	u64 valid;
3901 
3902 	/*
3903 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3904 	 * leaves 0 and 1 in the loop below.
3905 	 */
3906 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3907 
3908 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3909 	xsave->header.xfeatures = xstate_bv;
3910 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3911 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3912 
3913 	/*
3914 	 * Copy each region from the non-compacted offset to the
3915 	 * possibly compacted offset.
3916 	 */
3917 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3918 	while (valid) {
3919 		u64 xfeature_mask = valid & -valid;
3920 		int xfeature_nr = fls64(xfeature_mask) - 1;
3921 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3922 
3923 		if (dest) {
3924 			u32 size, offset, ecx, edx;
3925 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3926 				    &size, &offset, &ecx, &edx);
3927 			if (xfeature_nr == XFEATURE_PKRU)
3928 				memcpy(&vcpu->arch.pkru, src + offset,
3929 				       sizeof(vcpu->arch.pkru));
3930 			else
3931 				memcpy(dest, src + offset, size);
3932 		}
3933 
3934 		valid -= xfeature_mask;
3935 	}
3936 }
3937 
3938 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3939 					 struct kvm_xsave *guest_xsave)
3940 {
3941 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3942 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3943 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3944 	} else {
3945 		memcpy(guest_xsave->region,
3946 			&vcpu->arch.guest_fpu->state.fxsave,
3947 			sizeof(struct fxregs_state));
3948 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3949 			XFEATURE_MASK_FPSSE;
3950 	}
3951 }
3952 
3953 #define XSAVE_MXCSR_OFFSET 24
3954 
3955 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3956 					struct kvm_xsave *guest_xsave)
3957 {
3958 	u64 xstate_bv =
3959 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3960 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3961 
3962 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3963 		/*
3964 		 * Here we allow setting states that are not present in
3965 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3966 		 * with old userspace.
3967 		 */
3968 		if (xstate_bv & ~kvm_supported_xcr0() ||
3969 			mxcsr & ~mxcsr_feature_mask)
3970 			return -EINVAL;
3971 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3972 	} else {
3973 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3974 			mxcsr & ~mxcsr_feature_mask)
3975 			return -EINVAL;
3976 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3977 			guest_xsave->region, sizeof(struct fxregs_state));
3978 	}
3979 	return 0;
3980 }
3981 
3982 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3983 					struct kvm_xcrs *guest_xcrs)
3984 {
3985 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3986 		guest_xcrs->nr_xcrs = 0;
3987 		return;
3988 	}
3989 
3990 	guest_xcrs->nr_xcrs = 1;
3991 	guest_xcrs->flags = 0;
3992 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3993 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3994 }
3995 
3996 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3997 				       struct kvm_xcrs *guest_xcrs)
3998 {
3999 	int i, r = 0;
4000 
4001 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4002 		return -EINVAL;
4003 
4004 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4005 		return -EINVAL;
4006 
4007 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4008 		/* Only support XCR0 currently */
4009 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4010 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4011 				guest_xcrs->xcrs[i].value);
4012 			break;
4013 		}
4014 	if (r)
4015 		r = -EINVAL;
4016 	return r;
4017 }
4018 
4019 /*
4020  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4021  * stopped by the hypervisor.  This function will be called from the host only.
4022  * EINVAL is returned when the host attempts to set the flag for a guest that
4023  * does not support pv clocks.
4024  */
4025 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4026 {
4027 	if (!vcpu->arch.pv_time_enabled)
4028 		return -EINVAL;
4029 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4030 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4031 	return 0;
4032 }
4033 
4034 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4035 				     struct kvm_enable_cap *cap)
4036 {
4037 	int r;
4038 	uint16_t vmcs_version;
4039 	void __user *user_ptr;
4040 
4041 	if (cap->flags)
4042 		return -EINVAL;
4043 
4044 	switch (cap->cap) {
4045 	case KVM_CAP_HYPERV_SYNIC2:
4046 		if (cap->args[0])
4047 			return -EINVAL;
4048 		/* fall through */
4049 
4050 	case KVM_CAP_HYPERV_SYNIC:
4051 		if (!irqchip_in_kernel(vcpu->kvm))
4052 			return -EINVAL;
4053 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4054 					     KVM_CAP_HYPERV_SYNIC2);
4055 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4056 		if (!kvm_x86_ops->nested_enable_evmcs)
4057 			return -ENOTTY;
4058 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4059 		if (!r) {
4060 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4061 			if (copy_to_user(user_ptr, &vmcs_version,
4062 					 sizeof(vmcs_version)))
4063 				r = -EFAULT;
4064 		}
4065 		return r;
4066 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4067 		if (!kvm_x86_ops->enable_direct_tlbflush)
4068 			return -ENOTTY;
4069 
4070 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4071 
4072 	default:
4073 		return -EINVAL;
4074 	}
4075 }
4076 
4077 long kvm_arch_vcpu_ioctl(struct file *filp,
4078 			 unsigned int ioctl, unsigned long arg)
4079 {
4080 	struct kvm_vcpu *vcpu = filp->private_data;
4081 	void __user *argp = (void __user *)arg;
4082 	int r;
4083 	union {
4084 		struct kvm_lapic_state *lapic;
4085 		struct kvm_xsave *xsave;
4086 		struct kvm_xcrs *xcrs;
4087 		void *buffer;
4088 	} u;
4089 
4090 	vcpu_load(vcpu);
4091 
4092 	u.buffer = NULL;
4093 	switch (ioctl) {
4094 	case KVM_GET_LAPIC: {
4095 		r = -EINVAL;
4096 		if (!lapic_in_kernel(vcpu))
4097 			goto out;
4098 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4099 				GFP_KERNEL_ACCOUNT);
4100 
4101 		r = -ENOMEM;
4102 		if (!u.lapic)
4103 			goto out;
4104 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4105 		if (r)
4106 			goto out;
4107 		r = -EFAULT;
4108 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4109 			goto out;
4110 		r = 0;
4111 		break;
4112 	}
4113 	case KVM_SET_LAPIC: {
4114 		r = -EINVAL;
4115 		if (!lapic_in_kernel(vcpu))
4116 			goto out;
4117 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4118 		if (IS_ERR(u.lapic)) {
4119 			r = PTR_ERR(u.lapic);
4120 			goto out_nofree;
4121 		}
4122 
4123 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4124 		break;
4125 	}
4126 	case KVM_INTERRUPT: {
4127 		struct kvm_interrupt irq;
4128 
4129 		r = -EFAULT;
4130 		if (copy_from_user(&irq, argp, sizeof(irq)))
4131 			goto out;
4132 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4133 		break;
4134 	}
4135 	case KVM_NMI: {
4136 		r = kvm_vcpu_ioctl_nmi(vcpu);
4137 		break;
4138 	}
4139 	case KVM_SMI: {
4140 		r = kvm_vcpu_ioctl_smi(vcpu);
4141 		break;
4142 	}
4143 	case KVM_SET_CPUID: {
4144 		struct kvm_cpuid __user *cpuid_arg = argp;
4145 		struct kvm_cpuid cpuid;
4146 
4147 		r = -EFAULT;
4148 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4149 			goto out;
4150 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4151 		break;
4152 	}
4153 	case KVM_SET_CPUID2: {
4154 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4155 		struct kvm_cpuid2 cpuid;
4156 
4157 		r = -EFAULT;
4158 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4159 			goto out;
4160 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4161 					      cpuid_arg->entries);
4162 		break;
4163 	}
4164 	case KVM_GET_CPUID2: {
4165 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4166 		struct kvm_cpuid2 cpuid;
4167 
4168 		r = -EFAULT;
4169 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4170 			goto out;
4171 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4172 					      cpuid_arg->entries);
4173 		if (r)
4174 			goto out;
4175 		r = -EFAULT;
4176 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4177 			goto out;
4178 		r = 0;
4179 		break;
4180 	}
4181 	case KVM_GET_MSRS: {
4182 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4183 		r = msr_io(vcpu, argp, do_get_msr, 1);
4184 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4185 		break;
4186 	}
4187 	case KVM_SET_MSRS: {
4188 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4189 		r = msr_io(vcpu, argp, do_set_msr, 0);
4190 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4191 		break;
4192 	}
4193 	case KVM_TPR_ACCESS_REPORTING: {
4194 		struct kvm_tpr_access_ctl tac;
4195 
4196 		r = -EFAULT;
4197 		if (copy_from_user(&tac, argp, sizeof(tac)))
4198 			goto out;
4199 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4200 		if (r)
4201 			goto out;
4202 		r = -EFAULT;
4203 		if (copy_to_user(argp, &tac, sizeof(tac)))
4204 			goto out;
4205 		r = 0;
4206 		break;
4207 	};
4208 	case KVM_SET_VAPIC_ADDR: {
4209 		struct kvm_vapic_addr va;
4210 		int idx;
4211 
4212 		r = -EINVAL;
4213 		if (!lapic_in_kernel(vcpu))
4214 			goto out;
4215 		r = -EFAULT;
4216 		if (copy_from_user(&va, argp, sizeof(va)))
4217 			goto out;
4218 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4219 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4220 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4221 		break;
4222 	}
4223 	case KVM_X86_SETUP_MCE: {
4224 		u64 mcg_cap;
4225 
4226 		r = -EFAULT;
4227 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4228 			goto out;
4229 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4230 		break;
4231 	}
4232 	case KVM_X86_SET_MCE: {
4233 		struct kvm_x86_mce mce;
4234 
4235 		r = -EFAULT;
4236 		if (copy_from_user(&mce, argp, sizeof(mce)))
4237 			goto out;
4238 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4239 		break;
4240 	}
4241 	case KVM_GET_VCPU_EVENTS: {
4242 		struct kvm_vcpu_events events;
4243 
4244 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4245 
4246 		r = -EFAULT;
4247 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4248 			break;
4249 		r = 0;
4250 		break;
4251 	}
4252 	case KVM_SET_VCPU_EVENTS: {
4253 		struct kvm_vcpu_events events;
4254 
4255 		r = -EFAULT;
4256 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4257 			break;
4258 
4259 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4260 		break;
4261 	}
4262 	case KVM_GET_DEBUGREGS: {
4263 		struct kvm_debugregs dbgregs;
4264 
4265 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4266 
4267 		r = -EFAULT;
4268 		if (copy_to_user(argp, &dbgregs,
4269 				 sizeof(struct kvm_debugregs)))
4270 			break;
4271 		r = 0;
4272 		break;
4273 	}
4274 	case KVM_SET_DEBUGREGS: {
4275 		struct kvm_debugregs dbgregs;
4276 
4277 		r = -EFAULT;
4278 		if (copy_from_user(&dbgregs, argp,
4279 				   sizeof(struct kvm_debugregs)))
4280 			break;
4281 
4282 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4283 		break;
4284 	}
4285 	case KVM_GET_XSAVE: {
4286 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4287 		r = -ENOMEM;
4288 		if (!u.xsave)
4289 			break;
4290 
4291 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4292 
4293 		r = -EFAULT;
4294 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4295 			break;
4296 		r = 0;
4297 		break;
4298 	}
4299 	case KVM_SET_XSAVE: {
4300 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4301 		if (IS_ERR(u.xsave)) {
4302 			r = PTR_ERR(u.xsave);
4303 			goto out_nofree;
4304 		}
4305 
4306 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4307 		break;
4308 	}
4309 	case KVM_GET_XCRS: {
4310 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4311 		r = -ENOMEM;
4312 		if (!u.xcrs)
4313 			break;
4314 
4315 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4316 
4317 		r = -EFAULT;
4318 		if (copy_to_user(argp, u.xcrs,
4319 				 sizeof(struct kvm_xcrs)))
4320 			break;
4321 		r = 0;
4322 		break;
4323 	}
4324 	case KVM_SET_XCRS: {
4325 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4326 		if (IS_ERR(u.xcrs)) {
4327 			r = PTR_ERR(u.xcrs);
4328 			goto out_nofree;
4329 		}
4330 
4331 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4332 		break;
4333 	}
4334 	case KVM_SET_TSC_KHZ: {
4335 		u32 user_tsc_khz;
4336 
4337 		r = -EINVAL;
4338 		user_tsc_khz = (u32)arg;
4339 
4340 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4341 			goto out;
4342 
4343 		if (user_tsc_khz == 0)
4344 			user_tsc_khz = tsc_khz;
4345 
4346 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4347 			r = 0;
4348 
4349 		goto out;
4350 	}
4351 	case KVM_GET_TSC_KHZ: {
4352 		r = vcpu->arch.virtual_tsc_khz;
4353 		goto out;
4354 	}
4355 	case KVM_KVMCLOCK_CTRL: {
4356 		r = kvm_set_guest_paused(vcpu);
4357 		goto out;
4358 	}
4359 	case KVM_ENABLE_CAP: {
4360 		struct kvm_enable_cap cap;
4361 
4362 		r = -EFAULT;
4363 		if (copy_from_user(&cap, argp, sizeof(cap)))
4364 			goto out;
4365 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4366 		break;
4367 	}
4368 	case KVM_GET_NESTED_STATE: {
4369 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4370 		u32 user_data_size;
4371 
4372 		r = -EINVAL;
4373 		if (!kvm_x86_ops->get_nested_state)
4374 			break;
4375 
4376 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4377 		r = -EFAULT;
4378 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4379 			break;
4380 
4381 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4382 						  user_data_size);
4383 		if (r < 0)
4384 			break;
4385 
4386 		if (r > user_data_size) {
4387 			if (put_user(r, &user_kvm_nested_state->size))
4388 				r = -EFAULT;
4389 			else
4390 				r = -E2BIG;
4391 			break;
4392 		}
4393 
4394 		r = 0;
4395 		break;
4396 	}
4397 	case KVM_SET_NESTED_STATE: {
4398 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4399 		struct kvm_nested_state kvm_state;
4400 
4401 		r = -EINVAL;
4402 		if (!kvm_x86_ops->set_nested_state)
4403 			break;
4404 
4405 		r = -EFAULT;
4406 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4407 			break;
4408 
4409 		r = -EINVAL;
4410 		if (kvm_state.size < sizeof(kvm_state))
4411 			break;
4412 
4413 		if (kvm_state.flags &
4414 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4415 		      | KVM_STATE_NESTED_EVMCS))
4416 			break;
4417 
4418 		/* nested_run_pending implies guest_mode.  */
4419 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4420 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4421 			break;
4422 
4423 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4424 		break;
4425 	}
4426 	case KVM_GET_SUPPORTED_HV_CPUID: {
4427 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4428 		struct kvm_cpuid2 cpuid;
4429 
4430 		r = -EFAULT;
4431 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4432 			goto out;
4433 
4434 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4435 						cpuid_arg->entries);
4436 		if (r)
4437 			goto out;
4438 
4439 		r = -EFAULT;
4440 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441 			goto out;
4442 		r = 0;
4443 		break;
4444 	}
4445 	default:
4446 		r = -EINVAL;
4447 	}
4448 out:
4449 	kfree(u.buffer);
4450 out_nofree:
4451 	vcpu_put(vcpu);
4452 	return r;
4453 }
4454 
4455 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4456 {
4457 	return VM_FAULT_SIGBUS;
4458 }
4459 
4460 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4461 {
4462 	int ret;
4463 
4464 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4465 		return -EINVAL;
4466 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4467 	return ret;
4468 }
4469 
4470 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4471 					      u64 ident_addr)
4472 {
4473 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4474 }
4475 
4476 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4477 					 unsigned long kvm_nr_mmu_pages)
4478 {
4479 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4480 		return -EINVAL;
4481 
4482 	mutex_lock(&kvm->slots_lock);
4483 
4484 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4485 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4486 
4487 	mutex_unlock(&kvm->slots_lock);
4488 	return 0;
4489 }
4490 
4491 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4492 {
4493 	return kvm->arch.n_max_mmu_pages;
4494 }
4495 
4496 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4497 {
4498 	struct kvm_pic *pic = kvm->arch.vpic;
4499 	int r;
4500 
4501 	r = 0;
4502 	switch (chip->chip_id) {
4503 	case KVM_IRQCHIP_PIC_MASTER:
4504 		memcpy(&chip->chip.pic, &pic->pics[0],
4505 			sizeof(struct kvm_pic_state));
4506 		break;
4507 	case KVM_IRQCHIP_PIC_SLAVE:
4508 		memcpy(&chip->chip.pic, &pic->pics[1],
4509 			sizeof(struct kvm_pic_state));
4510 		break;
4511 	case KVM_IRQCHIP_IOAPIC:
4512 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4513 		break;
4514 	default:
4515 		r = -EINVAL;
4516 		break;
4517 	}
4518 	return r;
4519 }
4520 
4521 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4522 {
4523 	struct kvm_pic *pic = kvm->arch.vpic;
4524 	int r;
4525 
4526 	r = 0;
4527 	switch (chip->chip_id) {
4528 	case KVM_IRQCHIP_PIC_MASTER:
4529 		spin_lock(&pic->lock);
4530 		memcpy(&pic->pics[0], &chip->chip.pic,
4531 			sizeof(struct kvm_pic_state));
4532 		spin_unlock(&pic->lock);
4533 		break;
4534 	case KVM_IRQCHIP_PIC_SLAVE:
4535 		spin_lock(&pic->lock);
4536 		memcpy(&pic->pics[1], &chip->chip.pic,
4537 			sizeof(struct kvm_pic_state));
4538 		spin_unlock(&pic->lock);
4539 		break;
4540 	case KVM_IRQCHIP_IOAPIC:
4541 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4542 		break;
4543 	default:
4544 		r = -EINVAL;
4545 		break;
4546 	}
4547 	kvm_pic_update_irq(pic);
4548 	return r;
4549 }
4550 
4551 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4552 {
4553 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4554 
4555 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4556 
4557 	mutex_lock(&kps->lock);
4558 	memcpy(ps, &kps->channels, sizeof(*ps));
4559 	mutex_unlock(&kps->lock);
4560 	return 0;
4561 }
4562 
4563 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4564 {
4565 	int i;
4566 	struct kvm_pit *pit = kvm->arch.vpit;
4567 
4568 	mutex_lock(&pit->pit_state.lock);
4569 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4570 	for (i = 0; i < 3; i++)
4571 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4572 	mutex_unlock(&pit->pit_state.lock);
4573 	return 0;
4574 }
4575 
4576 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4577 {
4578 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4579 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4580 		sizeof(ps->channels));
4581 	ps->flags = kvm->arch.vpit->pit_state.flags;
4582 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4583 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4584 	return 0;
4585 }
4586 
4587 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4588 {
4589 	int start = 0;
4590 	int i;
4591 	u32 prev_legacy, cur_legacy;
4592 	struct kvm_pit *pit = kvm->arch.vpit;
4593 
4594 	mutex_lock(&pit->pit_state.lock);
4595 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4596 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4597 	if (!prev_legacy && cur_legacy)
4598 		start = 1;
4599 	memcpy(&pit->pit_state.channels, &ps->channels,
4600 	       sizeof(pit->pit_state.channels));
4601 	pit->pit_state.flags = ps->flags;
4602 	for (i = 0; i < 3; i++)
4603 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4604 				   start && i == 0);
4605 	mutex_unlock(&pit->pit_state.lock);
4606 	return 0;
4607 }
4608 
4609 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4610 				 struct kvm_reinject_control *control)
4611 {
4612 	struct kvm_pit *pit = kvm->arch.vpit;
4613 
4614 	if (!pit)
4615 		return -ENXIO;
4616 
4617 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4618 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4619 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4620 	 */
4621 	mutex_lock(&pit->pit_state.lock);
4622 	kvm_pit_set_reinject(pit, control->pit_reinject);
4623 	mutex_unlock(&pit->pit_state.lock);
4624 
4625 	return 0;
4626 }
4627 
4628 /**
4629  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4630  * @kvm: kvm instance
4631  * @log: slot id and address to which we copy the log
4632  *
4633  * Steps 1-4 below provide general overview of dirty page logging. See
4634  * kvm_get_dirty_log_protect() function description for additional details.
4635  *
4636  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4637  * always flush the TLB (step 4) even if previous step failed  and the dirty
4638  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4639  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4640  * writes will be marked dirty for next log read.
4641  *
4642  *   1. Take a snapshot of the bit and clear it if needed.
4643  *   2. Write protect the corresponding page.
4644  *   3. Copy the snapshot to the userspace.
4645  *   4. Flush TLB's if needed.
4646  */
4647 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4648 {
4649 	bool flush = false;
4650 	int r;
4651 
4652 	mutex_lock(&kvm->slots_lock);
4653 
4654 	/*
4655 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4656 	 */
4657 	if (kvm_x86_ops->flush_log_dirty)
4658 		kvm_x86_ops->flush_log_dirty(kvm);
4659 
4660 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4661 
4662 	/*
4663 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4664 	 * kvm_mmu_slot_remove_write_access().
4665 	 */
4666 	lockdep_assert_held(&kvm->slots_lock);
4667 	if (flush)
4668 		kvm_flush_remote_tlbs(kvm);
4669 
4670 	mutex_unlock(&kvm->slots_lock);
4671 	return r;
4672 }
4673 
4674 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4675 {
4676 	bool flush = false;
4677 	int r;
4678 
4679 	mutex_lock(&kvm->slots_lock);
4680 
4681 	/*
4682 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4683 	 */
4684 	if (kvm_x86_ops->flush_log_dirty)
4685 		kvm_x86_ops->flush_log_dirty(kvm);
4686 
4687 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4688 
4689 	/*
4690 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4691 	 * kvm_mmu_slot_remove_write_access().
4692 	 */
4693 	lockdep_assert_held(&kvm->slots_lock);
4694 	if (flush)
4695 		kvm_flush_remote_tlbs(kvm);
4696 
4697 	mutex_unlock(&kvm->slots_lock);
4698 	return r;
4699 }
4700 
4701 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4702 			bool line_status)
4703 {
4704 	if (!irqchip_in_kernel(kvm))
4705 		return -ENXIO;
4706 
4707 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4708 					irq_event->irq, irq_event->level,
4709 					line_status);
4710 	return 0;
4711 }
4712 
4713 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4714 			    struct kvm_enable_cap *cap)
4715 {
4716 	int r;
4717 
4718 	if (cap->flags)
4719 		return -EINVAL;
4720 
4721 	switch (cap->cap) {
4722 	case KVM_CAP_DISABLE_QUIRKS:
4723 		kvm->arch.disabled_quirks = cap->args[0];
4724 		r = 0;
4725 		break;
4726 	case KVM_CAP_SPLIT_IRQCHIP: {
4727 		mutex_lock(&kvm->lock);
4728 		r = -EINVAL;
4729 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4730 			goto split_irqchip_unlock;
4731 		r = -EEXIST;
4732 		if (irqchip_in_kernel(kvm))
4733 			goto split_irqchip_unlock;
4734 		if (kvm->created_vcpus)
4735 			goto split_irqchip_unlock;
4736 		r = kvm_setup_empty_irq_routing(kvm);
4737 		if (r)
4738 			goto split_irqchip_unlock;
4739 		/* Pairs with irqchip_in_kernel. */
4740 		smp_wmb();
4741 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4742 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4743 		r = 0;
4744 split_irqchip_unlock:
4745 		mutex_unlock(&kvm->lock);
4746 		break;
4747 	}
4748 	case KVM_CAP_X2APIC_API:
4749 		r = -EINVAL;
4750 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4751 			break;
4752 
4753 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4754 			kvm->arch.x2apic_format = true;
4755 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4756 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4757 
4758 		r = 0;
4759 		break;
4760 	case KVM_CAP_X86_DISABLE_EXITS:
4761 		r = -EINVAL;
4762 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4763 			break;
4764 
4765 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4766 			kvm_can_mwait_in_guest())
4767 			kvm->arch.mwait_in_guest = true;
4768 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4769 			kvm->arch.hlt_in_guest = true;
4770 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4771 			kvm->arch.pause_in_guest = true;
4772 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4773 			kvm->arch.cstate_in_guest = true;
4774 		r = 0;
4775 		break;
4776 	case KVM_CAP_MSR_PLATFORM_INFO:
4777 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4778 		r = 0;
4779 		break;
4780 	case KVM_CAP_EXCEPTION_PAYLOAD:
4781 		kvm->arch.exception_payload_enabled = cap->args[0];
4782 		r = 0;
4783 		break;
4784 	default:
4785 		r = -EINVAL;
4786 		break;
4787 	}
4788 	return r;
4789 }
4790 
4791 long kvm_arch_vm_ioctl(struct file *filp,
4792 		       unsigned int ioctl, unsigned long arg)
4793 {
4794 	struct kvm *kvm = filp->private_data;
4795 	void __user *argp = (void __user *)arg;
4796 	int r = -ENOTTY;
4797 	/*
4798 	 * This union makes it completely explicit to gcc-3.x
4799 	 * that these two variables' stack usage should be
4800 	 * combined, not added together.
4801 	 */
4802 	union {
4803 		struct kvm_pit_state ps;
4804 		struct kvm_pit_state2 ps2;
4805 		struct kvm_pit_config pit_config;
4806 	} u;
4807 
4808 	switch (ioctl) {
4809 	case KVM_SET_TSS_ADDR:
4810 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4811 		break;
4812 	case KVM_SET_IDENTITY_MAP_ADDR: {
4813 		u64 ident_addr;
4814 
4815 		mutex_lock(&kvm->lock);
4816 		r = -EINVAL;
4817 		if (kvm->created_vcpus)
4818 			goto set_identity_unlock;
4819 		r = -EFAULT;
4820 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4821 			goto set_identity_unlock;
4822 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4823 set_identity_unlock:
4824 		mutex_unlock(&kvm->lock);
4825 		break;
4826 	}
4827 	case KVM_SET_NR_MMU_PAGES:
4828 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4829 		break;
4830 	case KVM_GET_NR_MMU_PAGES:
4831 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4832 		break;
4833 	case KVM_CREATE_IRQCHIP: {
4834 		mutex_lock(&kvm->lock);
4835 
4836 		r = -EEXIST;
4837 		if (irqchip_in_kernel(kvm))
4838 			goto create_irqchip_unlock;
4839 
4840 		r = -EINVAL;
4841 		if (kvm->created_vcpus)
4842 			goto create_irqchip_unlock;
4843 
4844 		r = kvm_pic_init(kvm);
4845 		if (r)
4846 			goto create_irqchip_unlock;
4847 
4848 		r = kvm_ioapic_init(kvm);
4849 		if (r) {
4850 			kvm_pic_destroy(kvm);
4851 			goto create_irqchip_unlock;
4852 		}
4853 
4854 		r = kvm_setup_default_irq_routing(kvm);
4855 		if (r) {
4856 			kvm_ioapic_destroy(kvm);
4857 			kvm_pic_destroy(kvm);
4858 			goto create_irqchip_unlock;
4859 		}
4860 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4861 		smp_wmb();
4862 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4863 	create_irqchip_unlock:
4864 		mutex_unlock(&kvm->lock);
4865 		break;
4866 	}
4867 	case KVM_CREATE_PIT:
4868 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4869 		goto create_pit;
4870 	case KVM_CREATE_PIT2:
4871 		r = -EFAULT;
4872 		if (copy_from_user(&u.pit_config, argp,
4873 				   sizeof(struct kvm_pit_config)))
4874 			goto out;
4875 	create_pit:
4876 		mutex_lock(&kvm->lock);
4877 		r = -EEXIST;
4878 		if (kvm->arch.vpit)
4879 			goto create_pit_unlock;
4880 		r = -ENOMEM;
4881 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4882 		if (kvm->arch.vpit)
4883 			r = 0;
4884 	create_pit_unlock:
4885 		mutex_unlock(&kvm->lock);
4886 		break;
4887 	case KVM_GET_IRQCHIP: {
4888 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4889 		struct kvm_irqchip *chip;
4890 
4891 		chip = memdup_user(argp, sizeof(*chip));
4892 		if (IS_ERR(chip)) {
4893 			r = PTR_ERR(chip);
4894 			goto out;
4895 		}
4896 
4897 		r = -ENXIO;
4898 		if (!irqchip_kernel(kvm))
4899 			goto get_irqchip_out;
4900 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4901 		if (r)
4902 			goto get_irqchip_out;
4903 		r = -EFAULT;
4904 		if (copy_to_user(argp, chip, sizeof(*chip)))
4905 			goto get_irqchip_out;
4906 		r = 0;
4907 	get_irqchip_out:
4908 		kfree(chip);
4909 		break;
4910 	}
4911 	case KVM_SET_IRQCHIP: {
4912 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4913 		struct kvm_irqchip *chip;
4914 
4915 		chip = memdup_user(argp, sizeof(*chip));
4916 		if (IS_ERR(chip)) {
4917 			r = PTR_ERR(chip);
4918 			goto out;
4919 		}
4920 
4921 		r = -ENXIO;
4922 		if (!irqchip_kernel(kvm))
4923 			goto set_irqchip_out;
4924 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4925 		if (r)
4926 			goto set_irqchip_out;
4927 		r = 0;
4928 	set_irqchip_out:
4929 		kfree(chip);
4930 		break;
4931 	}
4932 	case KVM_GET_PIT: {
4933 		r = -EFAULT;
4934 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4935 			goto out;
4936 		r = -ENXIO;
4937 		if (!kvm->arch.vpit)
4938 			goto out;
4939 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4940 		if (r)
4941 			goto out;
4942 		r = -EFAULT;
4943 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4944 			goto out;
4945 		r = 0;
4946 		break;
4947 	}
4948 	case KVM_SET_PIT: {
4949 		r = -EFAULT;
4950 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4951 			goto out;
4952 		r = -ENXIO;
4953 		if (!kvm->arch.vpit)
4954 			goto out;
4955 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4956 		break;
4957 	}
4958 	case KVM_GET_PIT2: {
4959 		r = -ENXIO;
4960 		if (!kvm->arch.vpit)
4961 			goto out;
4962 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4963 		if (r)
4964 			goto out;
4965 		r = -EFAULT;
4966 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4967 			goto out;
4968 		r = 0;
4969 		break;
4970 	}
4971 	case KVM_SET_PIT2: {
4972 		r = -EFAULT;
4973 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4974 			goto out;
4975 		r = -ENXIO;
4976 		if (!kvm->arch.vpit)
4977 			goto out;
4978 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4979 		break;
4980 	}
4981 	case KVM_REINJECT_CONTROL: {
4982 		struct kvm_reinject_control control;
4983 		r =  -EFAULT;
4984 		if (copy_from_user(&control, argp, sizeof(control)))
4985 			goto out;
4986 		r = kvm_vm_ioctl_reinject(kvm, &control);
4987 		break;
4988 	}
4989 	case KVM_SET_BOOT_CPU_ID:
4990 		r = 0;
4991 		mutex_lock(&kvm->lock);
4992 		if (kvm->created_vcpus)
4993 			r = -EBUSY;
4994 		else
4995 			kvm->arch.bsp_vcpu_id = arg;
4996 		mutex_unlock(&kvm->lock);
4997 		break;
4998 	case KVM_XEN_HVM_CONFIG: {
4999 		struct kvm_xen_hvm_config xhc;
5000 		r = -EFAULT;
5001 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5002 			goto out;
5003 		r = -EINVAL;
5004 		if (xhc.flags)
5005 			goto out;
5006 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5007 		r = 0;
5008 		break;
5009 	}
5010 	case KVM_SET_CLOCK: {
5011 		struct kvm_clock_data user_ns;
5012 		u64 now_ns;
5013 
5014 		r = -EFAULT;
5015 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5016 			goto out;
5017 
5018 		r = -EINVAL;
5019 		if (user_ns.flags)
5020 			goto out;
5021 
5022 		r = 0;
5023 		/*
5024 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5025 		 * kvm_gen_update_masterclock() can be cut down to locked
5026 		 * pvclock_update_vm_gtod_copy().
5027 		 */
5028 		kvm_gen_update_masterclock(kvm);
5029 		now_ns = get_kvmclock_ns(kvm);
5030 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5031 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5032 		break;
5033 	}
5034 	case KVM_GET_CLOCK: {
5035 		struct kvm_clock_data user_ns;
5036 		u64 now_ns;
5037 
5038 		now_ns = get_kvmclock_ns(kvm);
5039 		user_ns.clock = now_ns;
5040 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5041 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5042 
5043 		r = -EFAULT;
5044 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5045 			goto out;
5046 		r = 0;
5047 		break;
5048 	}
5049 	case KVM_MEMORY_ENCRYPT_OP: {
5050 		r = -ENOTTY;
5051 		if (kvm_x86_ops->mem_enc_op)
5052 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5053 		break;
5054 	}
5055 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5056 		struct kvm_enc_region region;
5057 
5058 		r = -EFAULT;
5059 		if (copy_from_user(&region, argp, sizeof(region)))
5060 			goto out;
5061 
5062 		r = -ENOTTY;
5063 		if (kvm_x86_ops->mem_enc_reg_region)
5064 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5065 		break;
5066 	}
5067 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5068 		struct kvm_enc_region region;
5069 
5070 		r = -EFAULT;
5071 		if (copy_from_user(&region, argp, sizeof(region)))
5072 			goto out;
5073 
5074 		r = -ENOTTY;
5075 		if (kvm_x86_ops->mem_enc_unreg_region)
5076 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5077 		break;
5078 	}
5079 	case KVM_HYPERV_EVENTFD: {
5080 		struct kvm_hyperv_eventfd hvevfd;
5081 
5082 		r = -EFAULT;
5083 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5084 			goto out;
5085 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5086 		break;
5087 	}
5088 	case KVM_SET_PMU_EVENT_FILTER:
5089 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5090 		break;
5091 	default:
5092 		r = -ENOTTY;
5093 	}
5094 out:
5095 	return r;
5096 }
5097 
5098 static void kvm_init_msr_list(void)
5099 {
5100 	u32 dummy[2];
5101 	unsigned i, j;
5102 
5103 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5104 			 "Please update the fixed PMCs in msrs_to_save[]");
5105 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_GENERIC != 32,
5106 			 "Please update the generic perfctr/eventsel MSRs in msrs_to_save[]");
5107 
5108 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
5109 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
5110 			continue;
5111 
5112 		/*
5113 		 * Even MSRs that are valid in the host may not be exposed
5114 		 * to the guests in some cases.
5115 		 */
5116 		switch (msrs_to_save[i]) {
5117 		case MSR_IA32_BNDCFGS:
5118 			if (!kvm_mpx_supported())
5119 				continue;
5120 			break;
5121 		case MSR_TSC_AUX:
5122 			if (!kvm_x86_ops->rdtscp_supported())
5123 				continue;
5124 			break;
5125 		case MSR_IA32_RTIT_CTL:
5126 		case MSR_IA32_RTIT_STATUS:
5127 			if (!kvm_x86_ops->pt_supported())
5128 				continue;
5129 			break;
5130 		case MSR_IA32_RTIT_CR3_MATCH:
5131 			if (!kvm_x86_ops->pt_supported() ||
5132 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5133 				continue;
5134 			break;
5135 		case MSR_IA32_RTIT_OUTPUT_BASE:
5136 		case MSR_IA32_RTIT_OUTPUT_MASK:
5137 			if (!kvm_x86_ops->pt_supported() ||
5138 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5139 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5140 				continue;
5141 			break;
5142 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5143 			if (!kvm_x86_ops->pt_supported() ||
5144 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5145 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5146 				continue;
5147 			break;
5148 		}
5149 		default:
5150 			break;
5151 		}
5152 
5153 		if (j < i)
5154 			msrs_to_save[j] = msrs_to_save[i];
5155 		j++;
5156 	}
5157 	num_msrs_to_save = j;
5158 
5159 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5160 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5161 			continue;
5162 
5163 		if (j < i)
5164 			emulated_msrs[j] = emulated_msrs[i];
5165 		j++;
5166 	}
5167 	num_emulated_msrs = j;
5168 
5169 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5170 		struct kvm_msr_entry msr;
5171 
5172 		msr.index = msr_based_features[i];
5173 		if (kvm_get_msr_feature(&msr))
5174 			continue;
5175 
5176 		if (j < i)
5177 			msr_based_features[j] = msr_based_features[i];
5178 		j++;
5179 	}
5180 	num_msr_based_features = j;
5181 }
5182 
5183 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5184 			   const void *v)
5185 {
5186 	int handled = 0;
5187 	int n;
5188 
5189 	do {
5190 		n = min(len, 8);
5191 		if (!(lapic_in_kernel(vcpu) &&
5192 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5193 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5194 			break;
5195 		handled += n;
5196 		addr += n;
5197 		len -= n;
5198 		v += n;
5199 	} while (len);
5200 
5201 	return handled;
5202 }
5203 
5204 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5205 {
5206 	int handled = 0;
5207 	int n;
5208 
5209 	do {
5210 		n = min(len, 8);
5211 		if (!(lapic_in_kernel(vcpu) &&
5212 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5213 					 addr, n, v))
5214 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5215 			break;
5216 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5217 		handled += n;
5218 		addr += n;
5219 		len -= n;
5220 		v += n;
5221 	} while (len);
5222 
5223 	return handled;
5224 }
5225 
5226 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5227 			struct kvm_segment *var, int seg)
5228 {
5229 	kvm_x86_ops->set_segment(vcpu, var, seg);
5230 }
5231 
5232 void kvm_get_segment(struct kvm_vcpu *vcpu,
5233 		     struct kvm_segment *var, int seg)
5234 {
5235 	kvm_x86_ops->get_segment(vcpu, var, seg);
5236 }
5237 
5238 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5239 			   struct x86_exception *exception)
5240 {
5241 	gpa_t t_gpa;
5242 
5243 	BUG_ON(!mmu_is_nested(vcpu));
5244 
5245 	/* NPT walks are always user-walks */
5246 	access |= PFERR_USER_MASK;
5247 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5248 
5249 	return t_gpa;
5250 }
5251 
5252 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5253 			      struct x86_exception *exception)
5254 {
5255 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5256 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5257 }
5258 
5259  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5260 				struct x86_exception *exception)
5261 {
5262 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5263 	access |= PFERR_FETCH_MASK;
5264 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5265 }
5266 
5267 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5268 			       struct x86_exception *exception)
5269 {
5270 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5271 	access |= PFERR_WRITE_MASK;
5272 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5273 }
5274 
5275 /* uses this to access any guest's mapped memory without checking CPL */
5276 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5277 				struct x86_exception *exception)
5278 {
5279 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5280 }
5281 
5282 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5283 				      struct kvm_vcpu *vcpu, u32 access,
5284 				      struct x86_exception *exception)
5285 {
5286 	void *data = val;
5287 	int r = X86EMUL_CONTINUE;
5288 
5289 	while (bytes) {
5290 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5291 							    exception);
5292 		unsigned offset = addr & (PAGE_SIZE-1);
5293 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5294 		int ret;
5295 
5296 		if (gpa == UNMAPPED_GVA)
5297 			return X86EMUL_PROPAGATE_FAULT;
5298 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5299 					       offset, toread);
5300 		if (ret < 0) {
5301 			r = X86EMUL_IO_NEEDED;
5302 			goto out;
5303 		}
5304 
5305 		bytes -= toread;
5306 		data += toread;
5307 		addr += toread;
5308 	}
5309 out:
5310 	return r;
5311 }
5312 
5313 /* used for instruction fetching */
5314 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5315 				gva_t addr, void *val, unsigned int bytes,
5316 				struct x86_exception *exception)
5317 {
5318 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5319 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5320 	unsigned offset;
5321 	int ret;
5322 
5323 	/* Inline kvm_read_guest_virt_helper for speed.  */
5324 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5325 						    exception);
5326 	if (unlikely(gpa == UNMAPPED_GVA))
5327 		return X86EMUL_PROPAGATE_FAULT;
5328 
5329 	offset = addr & (PAGE_SIZE-1);
5330 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5331 		bytes = (unsigned)PAGE_SIZE - offset;
5332 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5333 				       offset, bytes);
5334 	if (unlikely(ret < 0))
5335 		return X86EMUL_IO_NEEDED;
5336 
5337 	return X86EMUL_CONTINUE;
5338 }
5339 
5340 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5341 			       gva_t addr, void *val, unsigned int bytes,
5342 			       struct x86_exception *exception)
5343 {
5344 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5345 
5346 	/*
5347 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5348 	 * is returned, but our callers are not ready for that and they blindly
5349 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5350 	 * uninitialized kernel stack memory into cr2 and error code.
5351 	 */
5352 	memset(exception, 0, sizeof(*exception));
5353 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5354 					  exception);
5355 }
5356 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5357 
5358 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5359 			     gva_t addr, void *val, unsigned int bytes,
5360 			     struct x86_exception *exception, bool system)
5361 {
5362 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5363 	u32 access = 0;
5364 
5365 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5366 		access |= PFERR_USER_MASK;
5367 
5368 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5369 }
5370 
5371 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5372 		unsigned long addr, void *val, unsigned int bytes)
5373 {
5374 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5375 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5376 
5377 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5378 }
5379 
5380 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5381 				      struct kvm_vcpu *vcpu, u32 access,
5382 				      struct x86_exception *exception)
5383 {
5384 	void *data = val;
5385 	int r = X86EMUL_CONTINUE;
5386 
5387 	while (bytes) {
5388 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5389 							     access,
5390 							     exception);
5391 		unsigned offset = addr & (PAGE_SIZE-1);
5392 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5393 		int ret;
5394 
5395 		if (gpa == UNMAPPED_GVA)
5396 			return X86EMUL_PROPAGATE_FAULT;
5397 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5398 		if (ret < 0) {
5399 			r = X86EMUL_IO_NEEDED;
5400 			goto out;
5401 		}
5402 
5403 		bytes -= towrite;
5404 		data += towrite;
5405 		addr += towrite;
5406 	}
5407 out:
5408 	return r;
5409 }
5410 
5411 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5412 			      unsigned int bytes, struct x86_exception *exception,
5413 			      bool system)
5414 {
5415 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5416 	u32 access = PFERR_WRITE_MASK;
5417 
5418 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5419 		access |= PFERR_USER_MASK;
5420 
5421 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5422 					   access, exception);
5423 }
5424 
5425 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5426 				unsigned int bytes, struct x86_exception *exception)
5427 {
5428 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5429 	vcpu->arch.l1tf_flush_l1d = true;
5430 
5431 	/*
5432 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5433 	 * is returned, but our callers are not ready for that and they blindly
5434 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5435 	 * uninitialized kernel stack memory into cr2 and error code.
5436 	 */
5437 	memset(exception, 0, sizeof(*exception));
5438 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5439 					   PFERR_WRITE_MASK, exception);
5440 }
5441 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5442 
5443 int handle_ud(struct kvm_vcpu *vcpu)
5444 {
5445 	int emul_type = EMULTYPE_TRAP_UD;
5446 	char sig[5]; /* ud2; .ascii "kvm" */
5447 	struct x86_exception e;
5448 
5449 	if (force_emulation_prefix &&
5450 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5451 				sig, sizeof(sig), &e) == 0 &&
5452 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5453 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5454 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5455 	}
5456 
5457 	return kvm_emulate_instruction(vcpu, emul_type);
5458 }
5459 EXPORT_SYMBOL_GPL(handle_ud);
5460 
5461 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5462 			    gpa_t gpa, bool write)
5463 {
5464 	/* For APIC access vmexit */
5465 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5466 		return 1;
5467 
5468 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5469 		trace_vcpu_match_mmio(gva, gpa, write, true);
5470 		return 1;
5471 	}
5472 
5473 	return 0;
5474 }
5475 
5476 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5477 				gpa_t *gpa, struct x86_exception *exception,
5478 				bool write)
5479 {
5480 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5481 		| (write ? PFERR_WRITE_MASK : 0);
5482 
5483 	/*
5484 	 * currently PKRU is only applied to ept enabled guest so
5485 	 * there is no pkey in EPT page table for L1 guest or EPT
5486 	 * shadow page table for L2 guest.
5487 	 */
5488 	if (vcpu_match_mmio_gva(vcpu, gva)
5489 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5490 				 vcpu->arch.mmio_access, 0, access)) {
5491 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5492 					(gva & (PAGE_SIZE - 1));
5493 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5494 		return 1;
5495 	}
5496 
5497 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5498 
5499 	if (*gpa == UNMAPPED_GVA)
5500 		return -1;
5501 
5502 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5503 }
5504 
5505 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5506 			const void *val, int bytes)
5507 {
5508 	int ret;
5509 
5510 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5511 	if (ret < 0)
5512 		return 0;
5513 	kvm_page_track_write(vcpu, gpa, val, bytes);
5514 	return 1;
5515 }
5516 
5517 struct read_write_emulator_ops {
5518 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5519 				  int bytes);
5520 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5521 				  void *val, int bytes);
5522 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5523 			       int bytes, void *val);
5524 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5525 				    void *val, int bytes);
5526 	bool write;
5527 };
5528 
5529 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5530 {
5531 	if (vcpu->mmio_read_completed) {
5532 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5533 			       vcpu->mmio_fragments[0].gpa, val);
5534 		vcpu->mmio_read_completed = 0;
5535 		return 1;
5536 	}
5537 
5538 	return 0;
5539 }
5540 
5541 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5542 			void *val, int bytes)
5543 {
5544 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5545 }
5546 
5547 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5548 			 void *val, int bytes)
5549 {
5550 	return emulator_write_phys(vcpu, gpa, val, bytes);
5551 }
5552 
5553 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5554 {
5555 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5556 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5557 }
5558 
5559 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5560 			  void *val, int bytes)
5561 {
5562 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5563 	return X86EMUL_IO_NEEDED;
5564 }
5565 
5566 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5567 			   void *val, int bytes)
5568 {
5569 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5570 
5571 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5572 	return X86EMUL_CONTINUE;
5573 }
5574 
5575 static const struct read_write_emulator_ops read_emultor = {
5576 	.read_write_prepare = read_prepare,
5577 	.read_write_emulate = read_emulate,
5578 	.read_write_mmio = vcpu_mmio_read,
5579 	.read_write_exit_mmio = read_exit_mmio,
5580 };
5581 
5582 static const struct read_write_emulator_ops write_emultor = {
5583 	.read_write_emulate = write_emulate,
5584 	.read_write_mmio = write_mmio,
5585 	.read_write_exit_mmio = write_exit_mmio,
5586 	.write = true,
5587 };
5588 
5589 static int emulator_read_write_onepage(unsigned long addr, void *val,
5590 				       unsigned int bytes,
5591 				       struct x86_exception *exception,
5592 				       struct kvm_vcpu *vcpu,
5593 				       const struct read_write_emulator_ops *ops)
5594 {
5595 	gpa_t gpa;
5596 	int handled, ret;
5597 	bool write = ops->write;
5598 	struct kvm_mmio_fragment *frag;
5599 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5600 
5601 	/*
5602 	 * If the exit was due to a NPF we may already have a GPA.
5603 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5604 	 * Note, this cannot be used on string operations since string
5605 	 * operation using rep will only have the initial GPA from the NPF
5606 	 * occurred.
5607 	 */
5608 	if (vcpu->arch.gpa_available &&
5609 	    emulator_can_use_gpa(ctxt) &&
5610 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5611 		gpa = vcpu->arch.gpa_val;
5612 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5613 	} else {
5614 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5615 		if (ret < 0)
5616 			return X86EMUL_PROPAGATE_FAULT;
5617 	}
5618 
5619 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5620 		return X86EMUL_CONTINUE;
5621 
5622 	/*
5623 	 * Is this MMIO handled locally?
5624 	 */
5625 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5626 	if (handled == bytes)
5627 		return X86EMUL_CONTINUE;
5628 
5629 	gpa += handled;
5630 	bytes -= handled;
5631 	val += handled;
5632 
5633 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5634 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5635 	frag->gpa = gpa;
5636 	frag->data = val;
5637 	frag->len = bytes;
5638 	return X86EMUL_CONTINUE;
5639 }
5640 
5641 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5642 			unsigned long addr,
5643 			void *val, unsigned int bytes,
5644 			struct x86_exception *exception,
5645 			const struct read_write_emulator_ops *ops)
5646 {
5647 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5648 	gpa_t gpa;
5649 	int rc;
5650 
5651 	if (ops->read_write_prepare &&
5652 		  ops->read_write_prepare(vcpu, val, bytes))
5653 		return X86EMUL_CONTINUE;
5654 
5655 	vcpu->mmio_nr_fragments = 0;
5656 
5657 	/* Crossing a page boundary? */
5658 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5659 		int now;
5660 
5661 		now = -addr & ~PAGE_MASK;
5662 		rc = emulator_read_write_onepage(addr, val, now, exception,
5663 						 vcpu, ops);
5664 
5665 		if (rc != X86EMUL_CONTINUE)
5666 			return rc;
5667 		addr += now;
5668 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5669 			addr = (u32)addr;
5670 		val += now;
5671 		bytes -= now;
5672 	}
5673 
5674 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5675 					 vcpu, ops);
5676 	if (rc != X86EMUL_CONTINUE)
5677 		return rc;
5678 
5679 	if (!vcpu->mmio_nr_fragments)
5680 		return rc;
5681 
5682 	gpa = vcpu->mmio_fragments[0].gpa;
5683 
5684 	vcpu->mmio_needed = 1;
5685 	vcpu->mmio_cur_fragment = 0;
5686 
5687 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5688 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5689 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5690 	vcpu->run->mmio.phys_addr = gpa;
5691 
5692 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5693 }
5694 
5695 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5696 				  unsigned long addr,
5697 				  void *val,
5698 				  unsigned int bytes,
5699 				  struct x86_exception *exception)
5700 {
5701 	return emulator_read_write(ctxt, addr, val, bytes,
5702 				   exception, &read_emultor);
5703 }
5704 
5705 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5706 			    unsigned long addr,
5707 			    const void *val,
5708 			    unsigned int bytes,
5709 			    struct x86_exception *exception)
5710 {
5711 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5712 				   exception, &write_emultor);
5713 }
5714 
5715 #define CMPXCHG_TYPE(t, ptr, old, new) \
5716 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5717 
5718 #ifdef CONFIG_X86_64
5719 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5720 #else
5721 #  define CMPXCHG64(ptr, old, new) \
5722 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5723 #endif
5724 
5725 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5726 				     unsigned long addr,
5727 				     const void *old,
5728 				     const void *new,
5729 				     unsigned int bytes,
5730 				     struct x86_exception *exception)
5731 {
5732 	struct kvm_host_map map;
5733 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5734 	gpa_t gpa;
5735 	char *kaddr;
5736 	bool exchanged;
5737 
5738 	/* guests cmpxchg8b have to be emulated atomically */
5739 	if (bytes > 8 || (bytes & (bytes - 1)))
5740 		goto emul_write;
5741 
5742 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5743 
5744 	if (gpa == UNMAPPED_GVA ||
5745 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5746 		goto emul_write;
5747 
5748 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5749 		goto emul_write;
5750 
5751 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5752 		goto emul_write;
5753 
5754 	kaddr = map.hva + offset_in_page(gpa);
5755 
5756 	switch (bytes) {
5757 	case 1:
5758 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5759 		break;
5760 	case 2:
5761 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5762 		break;
5763 	case 4:
5764 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5765 		break;
5766 	case 8:
5767 		exchanged = CMPXCHG64(kaddr, old, new);
5768 		break;
5769 	default:
5770 		BUG();
5771 	}
5772 
5773 	kvm_vcpu_unmap(vcpu, &map, true);
5774 
5775 	if (!exchanged)
5776 		return X86EMUL_CMPXCHG_FAILED;
5777 
5778 	kvm_page_track_write(vcpu, gpa, new, bytes);
5779 
5780 	return X86EMUL_CONTINUE;
5781 
5782 emul_write:
5783 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5784 
5785 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5786 }
5787 
5788 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5789 {
5790 	int r = 0, i;
5791 
5792 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5793 		if (vcpu->arch.pio.in)
5794 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5795 					    vcpu->arch.pio.size, pd);
5796 		else
5797 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5798 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5799 					     pd);
5800 		if (r)
5801 			break;
5802 		pd += vcpu->arch.pio.size;
5803 	}
5804 	return r;
5805 }
5806 
5807 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5808 			       unsigned short port, void *val,
5809 			       unsigned int count, bool in)
5810 {
5811 	vcpu->arch.pio.port = port;
5812 	vcpu->arch.pio.in = in;
5813 	vcpu->arch.pio.count  = count;
5814 	vcpu->arch.pio.size = size;
5815 
5816 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5817 		vcpu->arch.pio.count = 0;
5818 		return 1;
5819 	}
5820 
5821 	vcpu->run->exit_reason = KVM_EXIT_IO;
5822 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5823 	vcpu->run->io.size = size;
5824 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5825 	vcpu->run->io.count = count;
5826 	vcpu->run->io.port = port;
5827 
5828 	return 0;
5829 }
5830 
5831 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5832 				    int size, unsigned short port, void *val,
5833 				    unsigned int count)
5834 {
5835 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5836 	int ret;
5837 
5838 	if (vcpu->arch.pio.count)
5839 		goto data_avail;
5840 
5841 	memset(vcpu->arch.pio_data, 0, size * count);
5842 
5843 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5844 	if (ret) {
5845 data_avail:
5846 		memcpy(val, vcpu->arch.pio_data, size * count);
5847 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5848 		vcpu->arch.pio.count = 0;
5849 		return 1;
5850 	}
5851 
5852 	return 0;
5853 }
5854 
5855 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5856 				     int size, unsigned short port,
5857 				     const void *val, unsigned int count)
5858 {
5859 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5860 
5861 	memcpy(vcpu->arch.pio_data, val, size * count);
5862 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5863 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5864 }
5865 
5866 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5867 {
5868 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5869 }
5870 
5871 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5872 {
5873 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5874 }
5875 
5876 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5877 {
5878 	if (!need_emulate_wbinvd(vcpu))
5879 		return X86EMUL_CONTINUE;
5880 
5881 	if (kvm_x86_ops->has_wbinvd_exit()) {
5882 		int cpu = get_cpu();
5883 
5884 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5885 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5886 				wbinvd_ipi, NULL, 1);
5887 		put_cpu();
5888 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5889 	} else
5890 		wbinvd();
5891 	return X86EMUL_CONTINUE;
5892 }
5893 
5894 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5895 {
5896 	kvm_emulate_wbinvd_noskip(vcpu);
5897 	return kvm_skip_emulated_instruction(vcpu);
5898 }
5899 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5900 
5901 
5902 
5903 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5904 {
5905 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5906 }
5907 
5908 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5909 			   unsigned long *dest)
5910 {
5911 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5912 }
5913 
5914 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5915 			   unsigned long value)
5916 {
5917 
5918 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5919 }
5920 
5921 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5922 {
5923 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5924 }
5925 
5926 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5927 {
5928 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5929 	unsigned long value;
5930 
5931 	switch (cr) {
5932 	case 0:
5933 		value = kvm_read_cr0(vcpu);
5934 		break;
5935 	case 2:
5936 		value = vcpu->arch.cr2;
5937 		break;
5938 	case 3:
5939 		value = kvm_read_cr3(vcpu);
5940 		break;
5941 	case 4:
5942 		value = kvm_read_cr4(vcpu);
5943 		break;
5944 	case 8:
5945 		value = kvm_get_cr8(vcpu);
5946 		break;
5947 	default:
5948 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5949 		return 0;
5950 	}
5951 
5952 	return value;
5953 }
5954 
5955 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5956 {
5957 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5958 	int res = 0;
5959 
5960 	switch (cr) {
5961 	case 0:
5962 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5963 		break;
5964 	case 2:
5965 		vcpu->arch.cr2 = val;
5966 		break;
5967 	case 3:
5968 		res = kvm_set_cr3(vcpu, val);
5969 		break;
5970 	case 4:
5971 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5972 		break;
5973 	case 8:
5974 		res = kvm_set_cr8(vcpu, val);
5975 		break;
5976 	default:
5977 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5978 		res = -1;
5979 	}
5980 
5981 	return res;
5982 }
5983 
5984 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5985 {
5986 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5987 }
5988 
5989 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5990 {
5991 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5992 }
5993 
5994 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5995 {
5996 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5997 }
5998 
5999 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6000 {
6001 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6002 }
6003 
6004 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6005 {
6006 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6007 }
6008 
6009 static unsigned long emulator_get_cached_segment_base(
6010 	struct x86_emulate_ctxt *ctxt, int seg)
6011 {
6012 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6013 }
6014 
6015 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6016 				 struct desc_struct *desc, u32 *base3,
6017 				 int seg)
6018 {
6019 	struct kvm_segment var;
6020 
6021 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6022 	*selector = var.selector;
6023 
6024 	if (var.unusable) {
6025 		memset(desc, 0, sizeof(*desc));
6026 		if (base3)
6027 			*base3 = 0;
6028 		return false;
6029 	}
6030 
6031 	if (var.g)
6032 		var.limit >>= 12;
6033 	set_desc_limit(desc, var.limit);
6034 	set_desc_base(desc, (unsigned long)var.base);
6035 #ifdef CONFIG_X86_64
6036 	if (base3)
6037 		*base3 = var.base >> 32;
6038 #endif
6039 	desc->type = var.type;
6040 	desc->s = var.s;
6041 	desc->dpl = var.dpl;
6042 	desc->p = var.present;
6043 	desc->avl = var.avl;
6044 	desc->l = var.l;
6045 	desc->d = var.db;
6046 	desc->g = var.g;
6047 
6048 	return true;
6049 }
6050 
6051 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6052 				 struct desc_struct *desc, u32 base3,
6053 				 int seg)
6054 {
6055 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6056 	struct kvm_segment var;
6057 
6058 	var.selector = selector;
6059 	var.base = get_desc_base(desc);
6060 #ifdef CONFIG_X86_64
6061 	var.base |= ((u64)base3) << 32;
6062 #endif
6063 	var.limit = get_desc_limit(desc);
6064 	if (desc->g)
6065 		var.limit = (var.limit << 12) | 0xfff;
6066 	var.type = desc->type;
6067 	var.dpl = desc->dpl;
6068 	var.db = desc->d;
6069 	var.s = desc->s;
6070 	var.l = desc->l;
6071 	var.g = desc->g;
6072 	var.avl = desc->avl;
6073 	var.present = desc->p;
6074 	var.unusable = !var.present;
6075 	var.padding = 0;
6076 
6077 	kvm_set_segment(vcpu, &var, seg);
6078 	return;
6079 }
6080 
6081 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6082 			    u32 msr_index, u64 *pdata)
6083 {
6084 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6085 }
6086 
6087 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6088 			    u32 msr_index, u64 data)
6089 {
6090 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6091 }
6092 
6093 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6094 {
6095 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6096 
6097 	return vcpu->arch.smbase;
6098 }
6099 
6100 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6101 {
6102 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6103 
6104 	vcpu->arch.smbase = smbase;
6105 }
6106 
6107 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6108 			      u32 pmc)
6109 {
6110 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6111 }
6112 
6113 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6114 			     u32 pmc, u64 *pdata)
6115 {
6116 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6117 }
6118 
6119 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6120 {
6121 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6122 }
6123 
6124 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6125 			      struct x86_instruction_info *info,
6126 			      enum x86_intercept_stage stage)
6127 {
6128 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6129 }
6130 
6131 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6132 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6133 {
6134 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6135 }
6136 
6137 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6138 {
6139 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6140 }
6141 
6142 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6143 {
6144 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6145 }
6146 
6147 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6148 {
6149 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6150 }
6151 
6152 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6153 {
6154 	return emul_to_vcpu(ctxt)->arch.hflags;
6155 }
6156 
6157 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6158 {
6159 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6160 }
6161 
6162 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6163 				  const char *smstate)
6164 {
6165 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6166 }
6167 
6168 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6169 {
6170 	kvm_smm_changed(emul_to_vcpu(ctxt));
6171 }
6172 
6173 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6174 {
6175 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6176 }
6177 
6178 static const struct x86_emulate_ops emulate_ops = {
6179 	.read_gpr            = emulator_read_gpr,
6180 	.write_gpr           = emulator_write_gpr,
6181 	.read_std            = emulator_read_std,
6182 	.write_std           = emulator_write_std,
6183 	.read_phys           = kvm_read_guest_phys_system,
6184 	.fetch               = kvm_fetch_guest_virt,
6185 	.read_emulated       = emulator_read_emulated,
6186 	.write_emulated      = emulator_write_emulated,
6187 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6188 	.invlpg              = emulator_invlpg,
6189 	.pio_in_emulated     = emulator_pio_in_emulated,
6190 	.pio_out_emulated    = emulator_pio_out_emulated,
6191 	.get_segment         = emulator_get_segment,
6192 	.set_segment         = emulator_set_segment,
6193 	.get_cached_segment_base = emulator_get_cached_segment_base,
6194 	.get_gdt             = emulator_get_gdt,
6195 	.get_idt	     = emulator_get_idt,
6196 	.set_gdt             = emulator_set_gdt,
6197 	.set_idt	     = emulator_set_idt,
6198 	.get_cr              = emulator_get_cr,
6199 	.set_cr              = emulator_set_cr,
6200 	.cpl                 = emulator_get_cpl,
6201 	.get_dr              = emulator_get_dr,
6202 	.set_dr              = emulator_set_dr,
6203 	.get_smbase          = emulator_get_smbase,
6204 	.set_smbase          = emulator_set_smbase,
6205 	.set_msr             = emulator_set_msr,
6206 	.get_msr             = emulator_get_msr,
6207 	.check_pmc	     = emulator_check_pmc,
6208 	.read_pmc            = emulator_read_pmc,
6209 	.halt                = emulator_halt,
6210 	.wbinvd              = emulator_wbinvd,
6211 	.fix_hypercall       = emulator_fix_hypercall,
6212 	.intercept           = emulator_intercept,
6213 	.get_cpuid           = emulator_get_cpuid,
6214 	.set_nmi_mask        = emulator_set_nmi_mask,
6215 	.get_hflags          = emulator_get_hflags,
6216 	.set_hflags          = emulator_set_hflags,
6217 	.pre_leave_smm       = emulator_pre_leave_smm,
6218 	.post_leave_smm      = emulator_post_leave_smm,
6219 	.set_xcr             = emulator_set_xcr,
6220 };
6221 
6222 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6223 {
6224 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6225 	/*
6226 	 * an sti; sti; sequence only disable interrupts for the first
6227 	 * instruction. So, if the last instruction, be it emulated or
6228 	 * not, left the system with the INT_STI flag enabled, it
6229 	 * means that the last instruction is an sti. We should not
6230 	 * leave the flag on in this case. The same goes for mov ss
6231 	 */
6232 	if (int_shadow & mask)
6233 		mask = 0;
6234 	if (unlikely(int_shadow || mask)) {
6235 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6236 		if (!mask)
6237 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6238 	}
6239 }
6240 
6241 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6242 {
6243 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6244 	if (ctxt->exception.vector == PF_VECTOR)
6245 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6246 
6247 	if (ctxt->exception.error_code_valid)
6248 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6249 				      ctxt->exception.error_code);
6250 	else
6251 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6252 	return false;
6253 }
6254 
6255 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6256 {
6257 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6258 	int cs_db, cs_l;
6259 
6260 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6261 
6262 	ctxt->eflags = kvm_get_rflags(vcpu);
6263 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6264 
6265 	ctxt->eip = kvm_rip_read(vcpu);
6266 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6267 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6268 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6269 		     cs_db				? X86EMUL_MODE_PROT32 :
6270 							  X86EMUL_MODE_PROT16;
6271 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6272 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6273 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6274 
6275 	init_decode_cache(ctxt);
6276 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6277 }
6278 
6279 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6280 {
6281 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6282 	int ret;
6283 
6284 	init_emulate_ctxt(vcpu);
6285 
6286 	ctxt->op_bytes = 2;
6287 	ctxt->ad_bytes = 2;
6288 	ctxt->_eip = ctxt->eip + inc_eip;
6289 	ret = emulate_int_real(ctxt, irq);
6290 
6291 	if (ret != X86EMUL_CONTINUE) {
6292 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6293 	} else {
6294 		ctxt->eip = ctxt->_eip;
6295 		kvm_rip_write(vcpu, ctxt->eip);
6296 		kvm_set_rflags(vcpu, ctxt->eflags);
6297 	}
6298 }
6299 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6300 
6301 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6302 {
6303 	++vcpu->stat.insn_emulation_fail;
6304 	trace_kvm_emulate_insn_failed(vcpu);
6305 
6306 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6307 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6308 		return 1;
6309 	}
6310 
6311 	if (emulation_type & EMULTYPE_SKIP) {
6312 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6313 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6314 		vcpu->run->internal.ndata = 0;
6315 		return 0;
6316 	}
6317 
6318 	kvm_queue_exception(vcpu, UD_VECTOR);
6319 
6320 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6321 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6322 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6323 		vcpu->run->internal.ndata = 0;
6324 		return 0;
6325 	}
6326 
6327 	return 1;
6328 }
6329 
6330 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6331 				  bool write_fault_to_shadow_pgtable,
6332 				  int emulation_type)
6333 {
6334 	gpa_t gpa = cr2;
6335 	kvm_pfn_t pfn;
6336 
6337 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6338 		return false;
6339 
6340 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6341 		return false;
6342 
6343 	if (!vcpu->arch.mmu->direct_map) {
6344 		/*
6345 		 * Write permission should be allowed since only
6346 		 * write access need to be emulated.
6347 		 */
6348 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6349 
6350 		/*
6351 		 * If the mapping is invalid in guest, let cpu retry
6352 		 * it to generate fault.
6353 		 */
6354 		if (gpa == UNMAPPED_GVA)
6355 			return true;
6356 	}
6357 
6358 	/*
6359 	 * Do not retry the unhandleable instruction if it faults on the
6360 	 * readonly host memory, otherwise it will goto a infinite loop:
6361 	 * retry instruction -> write #PF -> emulation fail -> retry
6362 	 * instruction -> ...
6363 	 */
6364 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6365 
6366 	/*
6367 	 * If the instruction failed on the error pfn, it can not be fixed,
6368 	 * report the error to userspace.
6369 	 */
6370 	if (is_error_noslot_pfn(pfn))
6371 		return false;
6372 
6373 	kvm_release_pfn_clean(pfn);
6374 
6375 	/* The instructions are well-emulated on direct mmu. */
6376 	if (vcpu->arch.mmu->direct_map) {
6377 		unsigned int indirect_shadow_pages;
6378 
6379 		spin_lock(&vcpu->kvm->mmu_lock);
6380 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6381 		spin_unlock(&vcpu->kvm->mmu_lock);
6382 
6383 		if (indirect_shadow_pages)
6384 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6385 
6386 		return true;
6387 	}
6388 
6389 	/*
6390 	 * if emulation was due to access to shadowed page table
6391 	 * and it failed try to unshadow page and re-enter the
6392 	 * guest to let CPU execute the instruction.
6393 	 */
6394 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6395 
6396 	/*
6397 	 * If the access faults on its page table, it can not
6398 	 * be fixed by unprotecting shadow page and it should
6399 	 * be reported to userspace.
6400 	 */
6401 	return !write_fault_to_shadow_pgtable;
6402 }
6403 
6404 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6405 			      unsigned long cr2,  int emulation_type)
6406 {
6407 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6408 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6409 
6410 	last_retry_eip = vcpu->arch.last_retry_eip;
6411 	last_retry_addr = vcpu->arch.last_retry_addr;
6412 
6413 	/*
6414 	 * If the emulation is caused by #PF and it is non-page_table
6415 	 * writing instruction, it means the VM-EXIT is caused by shadow
6416 	 * page protected, we can zap the shadow page and retry this
6417 	 * instruction directly.
6418 	 *
6419 	 * Note: if the guest uses a non-page-table modifying instruction
6420 	 * on the PDE that points to the instruction, then we will unmap
6421 	 * the instruction and go to an infinite loop. So, we cache the
6422 	 * last retried eip and the last fault address, if we meet the eip
6423 	 * and the address again, we can break out of the potential infinite
6424 	 * loop.
6425 	 */
6426 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6427 
6428 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6429 		return false;
6430 
6431 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6432 		return false;
6433 
6434 	if (x86_page_table_writing_insn(ctxt))
6435 		return false;
6436 
6437 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6438 		return false;
6439 
6440 	vcpu->arch.last_retry_eip = ctxt->eip;
6441 	vcpu->arch.last_retry_addr = cr2;
6442 
6443 	if (!vcpu->arch.mmu->direct_map)
6444 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6445 
6446 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6447 
6448 	return true;
6449 }
6450 
6451 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6452 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6453 
6454 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6455 {
6456 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6457 		/* This is a good place to trace that we are exiting SMM.  */
6458 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6459 
6460 		/* Process a latched INIT or SMI, if any.  */
6461 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6462 	}
6463 
6464 	kvm_mmu_reset_context(vcpu);
6465 }
6466 
6467 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6468 				unsigned long *db)
6469 {
6470 	u32 dr6 = 0;
6471 	int i;
6472 	u32 enable, rwlen;
6473 
6474 	enable = dr7;
6475 	rwlen = dr7 >> 16;
6476 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6477 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6478 			dr6 |= (1 << i);
6479 	return dr6;
6480 }
6481 
6482 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6483 {
6484 	struct kvm_run *kvm_run = vcpu->run;
6485 
6486 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6487 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6488 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6489 		kvm_run->debug.arch.exception = DB_VECTOR;
6490 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6491 		return 0;
6492 	}
6493 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6494 	return 1;
6495 }
6496 
6497 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6498 {
6499 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6500 	int r;
6501 
6502 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6503 	if (unlikely(!r))
6504 		return 0;
6505 
6506 	/*
6507 	 * rflags is the old, "raw" value of the flags.  The new value has
6508 	 * not been saved yet.
6509 	 *
6510 	 * This is correct even for TF set by the guest, because "the
6511 	 * processor will not generate this exception after the instruction
6512 	 * that sets the TF flag".
6513 	 */
6514 	if (unlikely(rflags & X86_EFLAGS_TF))
6515 		r = kvm_vcpu_do_singlestep(vcpu);
6516 	return r;
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6519 
6520 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6521 {
6522 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6523 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6524 		struct kvm_run *kvm_run = vcpu->run;
6525 		unsigned long eip = kvm_get_linear_rip(vcpu);
6526 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6527 					   vcpu->arch.guest_debug_dr7,
6528 					   vcpu->arch.eff_db);
6529 
6530 		if (dr6 != 0) {
6531 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6532 			kvm_run->debug.arch.pc = eip;
6533 			kvm_run->debug.arch.exception = DB_VECTOR;
6534 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6535 			*r = 0;
6536 			return true;
6537 		}
6538 	}
6539 
6540 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6541 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6542 		unsigned long eip = kvm_get_linear_rip(vcpu);
6543 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6544 					   vcpu->arch.dr7,
6545 					   vcpu->arch.db);
6546 
6547 		if (dr6 != 0) {
6548 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6549 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6550 			kvm_queue_exception(vcpu, DB_VECTOR);
6551 			*r = 1;
6552 			return true;
6553 		}
6554 	}
6555 
6556 	return false;
6557 }
6558 
6559 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6560 {
6561 	switch (ctxt->opcode_len) {
6562 	case 1:
6563 		switch (ctxt->b) {
6564 		case 0xe4:	/* IN */
6565 		case 0xe5:
6566 		case 0xec:
6567 		case 0xed:
6568 		case 0xe6:	/* OUT */
6569 		case 0xe7:
6570 		case 0xee:
6571 		case 0xef:
6572 		case 0x6c:	/* INS */
6573 		case 0x6d:
6574 		case 0x6e:	/* OUTS */
6575 		case 0x6f:
6576 			return true;
6577 		}
6578 		break;
6579 	case 2:
6580 		switch (ctxt->b) {
6581 		case 0x33:	/* RDPMC */
6582 			return true;
6583 		}
6584 		break;
6585 	}
6586 
6587 	return false;
6588 }
6589 
6590 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6591 			    unsigned long cr2,
6592 			    int emulation_type,
6593 			    void *insn,
6594 			    int insn_len)
6595 {
6596 	int r;
6597 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6598 	bool writeback = true;
6599 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6600 
6601 	vcpu->arch.l1tf_flush_l1d = true;
6602 
6603 	/*
6604 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6605 	 * never reused.
6606 	 */
6607 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6608 	kvm_clear_exception_queue(vcpu);
6609 
6610 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6611 		init_emulate_ctxt(vcpu);
6612 
6613 		/*
6614 		 * We will reenter on the same instruction since
6615 		 * we do not set complete_userspace_io.  This does not
6616 		 * handle watchpoints yet, those would be handled in
6617 		 * the emulate_ops.
6618 		 */
6619 		if (!(emulation_type & EMULTYPE_SKIP) &&
6620 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6621 			return r;
6622 
6623 		ctxt->interruptibility = 0;
6624 		ctxt->have_exception = false;
6625 		ctxt->exception.vector = -1;
6626 		ctxt->perm_ok = false;
6627 
6628 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6629 
6630 		r = x86_decode_insn(ctxt, insn, insn_len);
6631 
6632 		trace_kvm_emulate_insn_start(vcpu);
6633 		++vcpu->stat.insn_emulation;
6634 		if (r != EMULATION_OK)  {
6635 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6636 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6637 				kvm_queue_exception(vcpu, UD_VECTOR);
6638 				return 1;
6639 			}
6640 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6641 						emulation_type))
6642 				return 1;
6643 			if (ctxt->have_exception) {
6644 				/*
6645 				 * #UD should result in just EMULATION_FAILED, and trap-like
6646 				 * exception should not be encountered during decode.
6647 				 */
6648 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6649 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6650 				inject_emulated_exception(vcpu);
6651 				return 1;
6652 			}
6653 			return handle_emulation_failure(vcpu, emulation_type);
6654 		}
6655 	}
6656 
6657 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6658 	    !is_vmware_backdoor_opcode(ctxt)) {
6659 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6660 		return 1;
6661 	}
6662 
6663 	/*
6664 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6665 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6666 	 * updating interruptibility state and injecting single-step #DBs.
6667 	 */
6668 	if (emulation_type & EMULTYPE_SKIP) {
6669 		kvm_rip_write(vcpu, ctxt->_eip);
6670 		if (ctxt->eflags & X86_EFLAGS_RF)
6671 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6672 		return 1;
6673 	}
6674 
6675 	if (retry_instruction(ctxt, cr2, emulation_type))
6676 		return 1;
6677 
6678 	/* this is needed for vmware backdoor interface to work since it
6679 	   changes registers values  during IO operation */
6680 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6681 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6682 		emulator_invalidate_register_cache(ctxt);
6683 	}
6684 
6685 restart:
6686 	/* Save the faulting GPA (cr2) in the address field */
6687 	ctxt->exception.address = cr2;
6688 
6689 	r = x86_emulate_insn(ctxt);
6690 
6691 	if (r == EMULATION_INTERCEPTED)
6692 		return 1;
6693 
6694 	if (r == EMULATION_FAILED) {
6695 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6696 					emulation_type))
6697 			return 1;
6698 
6699 		return handle_emulation_failure(vcpu, emulation_type);
6700 	}
6701 
6702 	if (ctxt->have_exception) {
6703 		r = 1;
6704 		if (inject_emulated_exception(vcpu))
6705 			return r;
6706 	} else if (vcpu->arch.pio.count) {
6707 		if (!vcpu->arch.pio.in) {
6708 			/* FIXME: return into emulator if single-stepping.  */
6709 			vcpu->arch.pio.count = 0;
6710 		} else {
6711 			writeback = false;
6712 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6713 		}
6714 		r = 0;
6715 	} else if (vcpu->mmio_needed) {
6716 		++vcpu->stat.mmio_exits;
6717 
6718 		if (!vcpu->mmio_is_write)
6719 			writeback = false;
6720 		r = 0;
6721 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6722 	} else if (r == EMULATION_RESTART)
6723 		goto restart;
6724 	else
6725 		r = 1;
6726 
6727 	if (writeback) {
6728 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6729 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6730 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6731 		if (!ctxt->have_exception ||
6732 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6733 			kvm_rip_write(vcpu, ctxt->eip);
6734 			if (r && ctxt->tf)
6735 				r = kvm_vcpu_do_singlestep(vcpu);
6736 			__kvm_set_rflags(vcpu, ctxt->eflags);
6737 		}
6738 
6739 		/*
6740 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6741 		 * do nothing, and it will be requested again as soon as
6742 		 * the shadow expires.  But we still need to check here,
6743 		 * because POPF has no interrupt shadow.
6744 		 */
6745 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6746 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6747 	} else
6748 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6749 
6750 	return r;
6751 }
6752 
6753 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6754 {
6755 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6756 }
6757 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6758 
6759 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6760 					void *insn, int insn_len)
6761 {
6762 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6763 }
6764 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6765 
6766 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6767 {
6768 	vcpu->arch.pio.count = 0;
6769 	return 1;
6770 }
6771 
6772 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6773 {
6774 	vcpu->arch.pio.count = 0;
6775 
6776 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6777 		return 1;
6778 
6779 	return kvm_skip_emulated_instruction(vcpu);
6780 }
6781 
6782 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6783 			    unsigned short port)
6784 {
6785 	unsigned long val = kvm_rax_read(vcpu);
6786 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6787 					    size, port, &val, 1);
6788 	if (ret)
6789 		return ret;
6790 
6791 	/*
6792 	 * Workaround userspace that relies on old KVM behavior of %rip being
6793 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6794 	 */
6795 	if (port == 0x7e &&
6796 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6797 		vcpu->arch.complete_userspace_io =
6798 			complete_fast_pio_out_port_0x7e;
6799 		kvm_skip_emulated_instruction(vcpu);
6800 	} else {
6801 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6802 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6803 	}
6804 	return 0;
6805 }
6806 
6807 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6808 {
6809 	unsigned long val;
6810 
6811 	/* We should only ever be called with arch.pio.count equal to 1 */
6812 	BUG_ON(vcpu->arch.pio.count != 1);
6813 
6814 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6815 		vcpu->arch.pio.count = 0;
6816 		return 1;
6817 	}
6818 
6819 	/* For size less than 4 we merge, else we zero extend */
6820 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6821 
6822 	/*
6823 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6824 	 * the copy and tracing
6825 	 */
6826 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6827 				 vcpu->arch.pio.port, &val, 1);
6828 	kvm_rax_write(vcpu, val);
6829 
6830 	return kvm_skip_emulated_instruction(vcpu);
6831 }
6832 
6833 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6834 			   unsigned short port)
6835 {
6836 	unsigned long val;
6837 	int ret;
6838 
6839 	/* For size less than 4 we merge, else we zero extend */
6840 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6841 
6842 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6843 				       &val, 1);
6844 	if (ret) {
6845 		kvm_rax_write(vcpu, val);
6846 		return ret;
6847 	}
6848 
6849 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6850 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6851 
6852 	return 0;
6853 }
6854 
6855 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6856 {
6857 	int ret;
6858 
6859 	if (in)
6860 		ret = kvm_fast_pio_in(vcpu, size, port);
6861 	else
6862 		ret = kvm_fast_pio_out(vcpu, size, port);
6863 	return ret && kvm_skip_emulated_instruction(vcpu);
6864 }
6865 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6866 
6867 static int kvmclock_cpu_down_prep(unsigned int cpu)
6868 {
6869 	__this_cpu_write(cpu_tsc_khz, 0);
6870 	return 0;
6871 }
6872 
6873 static void tsc_khz_changed(void *data)
6874 {
6875 	struct cpufreq_freqs *freq = data;
6876 	unsigned long khz = 0;
6877 
6878 	if (data)
6879 		khz = freq->new;
6880 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6881 		khz = cpufreq_quick_get(raw_smp_processor_id());
6882 	if (!khz)
6883 		khz = tsc_khz;
6884 	__this_cpu_write(cpu_tsc_khz, khz);
6885 }
6886 
6887 #ifdef CONFIG_X86_64
6888 static void kvm_hyperv_tsc_notifier(void)
6889 {
6890 	struct kvm *kvm;
6891 	struct kvm_vcpu *vcpu;
6892 	int cpu;
6893 
6894 	mutex_lock(&kvm_lock);
6895 	list_for_each_entry(kvm, &vm_list, vm_list)
6896 		kvm_make_mclock_inprogress_request(kvm);
6897 
6898 	hyperv_stop_tsc_emulation();
6899 
6900 	/* TSC frequency always matches when on Hyper-V */
6901 	for_each_present_cpu(cpu)
6902 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6903 	kvm_max_guest_tsc_khz = tsc_khz;
6904 
6905 	list_for_each_entry(kvm, &vm_list, vm_list) {
6906 		struct kvm_arch *ka = &kvm->arch;
6907 
6908 		spin_lock(&ka->pvclock_gtod_sync_lock);
6909 
6910 		pvclock_update_vm_gtod_copy(kvm);
6911 
6912 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6913 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6914 
6915 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6916 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6917 
6918 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6919 	}
6920 	mutex_unlock(&kvm_lock);
6921 }
6922 #endif
6923 
6924 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6925 {
6926 	struct kvm *kvm;
6927 	struct kvm_vcpu *vcpu;
6928 	int i, send_ipi = 0;
6929 
6930 	/*
6931 	 * We allow guests to temporarily run on slowing clocks,
6932 	 * provided we notify them after, or to run on accelerating
6933 	 * clocks, provided we notify them before.  Thus time never
6934 	 * goes backwards.
6935 	 *
6936 	 * However, we have a problem.  We can't atomically update
6937 	 * the frequency of a given CPU from this function; it is
6938 	 * merely a notifier, which can be called from any CPU.
6939 	 * Changing the TSC frequency at arbitrary points in time
6940 	 * requires a recomputation of local variables related to
6941 	 * the TSC for each VCPU.  We must flag these local variables
6942 	 * to be updated and be sure the update takes place with the
6943 	 * new frequency before any guests proceed.
6944 	 *
6945 	 * Unfortunately, the combination of hotplug CPU and frequency
6946 	 * change creates an intractable locking scenario; the order
6947 	 * of when these callouts happen is undefined with respect to
6948 	 * CPU hotplug, and they can race with each other.  As such,
6949 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6950 	 * undefined; you can actually have a CPU frequency change take
6951 	 * place in between the computation of X and the setting of the
6952 	 * variable.  To protect against this problem, all updates of
6953 	 * the per_cpu tsc_khz variable are done in an interrupt
6954 	 * protected IPI, and all callers wishing to update the value
6955 	 * must wait for a synchronous IPI to complete (which is trivial
6956 	 * if the caller is on the CPU already).  This establishes the
6957 	 * necessary total order on variable updates.
6958 	 *
6959 	 * Note that because a guest time update may take place
6960 	 * anytime after the setting of the VCPU's request bit, the
6961 	 * correct TSC value must be set before the request.  However,
6962 	 * to ensure the update actually makes it to any guest which
6963 	 * starts running in hardware virtualization between the set
6964 	 * and the acquisition of the spinlock, we must also ping the
6965 	 * CPU after setting the request bit.
6966 	 *
6967 	 */
6968 
6969 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6970 
6971 	mutex_lock(&kvm_lock);
6972 	list_for_each_entry(kvm, &vm_list, vm_list) {
6973 		kvm_for_each_vcpu(i, vcpu, kvm) {
6974 			if (vcpu->cpu != cpu)
6975 				continue;
6976 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6977 			if (vcpu->cpu != raw_smp_processor_id())
6978 				send_ipi = 1;
6979 		}
6980 	}
6981 	mutex_unlock(&kvm_lock);
6982 
6983 	if (freq->old < freq->new && send_ipi) {
6984 		/*
6985 		 * We upscale the frequency.  Must make the guest
6986 		 * doesn't see old kvmclock values while running with
6987 		 * the new frequency, otherwise we risk the guest sees
6988 		 * time go backwards.
6989 		 *
6990 		 * In case we update the frequency for another cpu
6991 		 * (which might be in guest context) send an interrupt
6992 		 * to kick the cpu out of guest context.  Next time
6993 		 * guest context is entered kvmclock will be updated,
6994 		 * so the guest will not see stale values.
6995 		 */
6996 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6997 	}
6998 }
6999 
7000 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7001 				     void *data)
7002 {
7003 	struct cpufreq_freqs *freq = data;
7004 	int cpu;
7005 
7006 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7007 		return 0;
7008 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7009 		return 0;
7010 
7011 	for_each_cpu(cpu, freq->policy->cpus)
7012 		__kvmclock_cpufreq_notifier(freq, cpu);
7013 
7014 	return 0;
7015 }
7016 
7017 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7018 	.notifier_call  = kvmclock_cpufreq_notifier
7019 };
7020 
7021 static int kvmclock_cpu_online(unsigned int cpu)
7022 {
7023 	tsc_khz_changed(NULL);
7024 	return 0;
7025 }
7026 
7027 static void kvm_timer_init(void)
7028 {
7029 	max_tsc_khz = tsc_khz;
7030 
7031 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7032 #ifdef CONFIG_CPU_FREQ
7033 		struct cpufreq_policy policy;
7034 		int cpu;
7035 
7036 		memset(&policy, 0, sizeof(policy));
7037 		cpu = get_cpu();
7038 		cpufreq_get_policy(&policy, cpu);
7039 		if (policy.cpuinfo.max_freq)
7040 			max_tsc_khz = policy.cpuinfo.max_freq;
7041 		put_cpu();
7042 #endif
7043 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7044 					  CPUFREQ_TRANSITION_NOTIFIER);
7045 	}
7046 
7047 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7048 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7049 }
7050 
7051 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7052 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7053 
7054 int kvm_is_in_guest(void)
7055 {
7056 	return __this_cpu_read(current_vcpu) != NULL;
7057 }
7058 
7059 static int kvm_is_user_mode(void)
7060 {
7061 	int user_mode = 3;
7062 
7063 	if (__this_cpu_read(current_vcpu))
7064 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7065 
7066 	return user_mode != 0;
7067 }
7068 
7069 static unsigned long kvm_get_guest_ip(void)
7070 {
7071 	unsigned long ip = 0;
7072 
7073 	if (__this_cpu_read(current_vcpu))
7074 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7075 
7076 	return ip;
7077 }
7078 
7079 static void kvm_handle_intel_pt_intr(void)
7080 {
7081 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7082 
7083 	kvm_make_request(KVM_REQ_PMI, vcpu);
7084 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7085 			(unsigned long *)&vcpu->arch.pmu.global_status);
7086 }
7087 
7088 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7089 	.is_in_guest		= kvm_is_in_guest,
7090 	.is_user_mode		= kvm_is_user_mode,
7091 	.get_guest_ip		= kvm_get_guest_ip,
7092 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7093 };
7094 
7095 #ifdef CONFIG_X86_64
7096 static void pvclock_gtod_update_fn(struct work_struct *work)
7097 {
7098 	struct kvm *kvm;
7099 
7100 	struct kvm_vcpu *vcpu;
7101 	int i;
7102 
7103 	mutex_lock(&kvm_lock);
7104 	list_for_each_entry(kvm, &vm_list, vm_list)
7105 		kvm_for_each_vcpu(i, vcpu, kvm)
7106 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7107 	atomic_set(&kvm_guest_has_master_clock, 0);
7108 	mutex_unlock(&kvm_lock);
7109 }
7110 
7111 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7112 
7113 /*
7114  * Notification about pvclock gtod data update.
7115  */
7116 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7117 			       void *priv)
7118 {
7119 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7120 	struct timekeeper *tk = priv;
7121 
7122 	update_pvclock_gtod(tk);
7123 
7124 	/* disable master clock if host does not trust, or does not
7125 	 * use, TSC based clocksource.
7126 	 */
7127 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7128 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7129 		queue_work(system_long_wq, &pvclock_gtod_work);
7130 
7131 	return 0;
7132 }
7133 
7134 static struct notifier_block pvclock_gtod_notifier = {
7135 	.notifier_call = pvclock_gtod_notify,
7136 };
7137 #endif
7138 
7139 int kvm_arch_init(void *opaque)
7140 {
7141 	int r;
7142 	struct kvm_x86_ops *ops = opaque;
7143 
7144 	if (kvm_x86_ops) {
7145 		printk(KERN_ERR "kvm: already loaded the other module\n");
7146 		r = -EEXIST;
7147 		goto out;
7148 	}
7149 
7150 	if (!ops->cpu_has_kvm_support()) {
7151 		printk(KERN_ERR "kvm: no hardware support\n");
7152 		r = -EOPNOTSUPP;
7153 		goto out;
7154 	}
7155 	if (ops->disabled_by_bios()) {
7156 		printk(KERN_ERR "kvm: disabled by bios\n");
7157 		r = -EOPNOTSUPP;
7158 		goto out;
7159 	}
7160 
7161 	/*
7162 	 * KVM explicitly assumes that the guest has an FPU and
7163 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7164 	 * vCPU's FPU state as a fxregs_state struct.
7165 	 */
7166 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7167 		printk(KERN_ERR "kvm: inadequate fpu\n");
7168 		r = -EOPNOTSUPP;
7169 		goto out;
7170 	}
7171 
7172 	r = -ENOMEM;
7173 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7174 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7175 					  NULL);
7176 	if (!x86_fpu_cache) {
7177 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7178 		goto out;
7179 	}
7180 
7181 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7182 	if (!shared_msrs) {
7183 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7184 		goto out_free_x86_fpu_cache;
7185 	}
7186 
7187 	r = kvm_mmu_module_init();
7188 	if (r)
7189 		goto out_free_percpu;
7190 
7191 	kvm_x86_ops = ops;
7192 
7193 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7194 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7195 			PT_PRESENT_MASK, 0, sme_me_mask);
7196 	kvm_timer_init();
7197 
7198 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7199 
7200 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7201 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7202 
7203 	kvm_lapic_init();
7204 	if (pi_inject_timer == -1)
7205 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7206 #ifdef CONFIG_X86_64
7207 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7208 
7209 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7210 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7211 #endif
7212 
7213 	return 0;
7214 
7215 out_free_percpu:
7216 	free_percpu(shared_msrs);
7217 out_free_x86_fpu_cache:
7218 	kmem_cache_destroy(x86_fpu_cache);
7219 out:
7220 	return r;
7221 }
7222 
7223 void kvm_arch_exit(void)
7224 {
7225 #ifdef CONFIG_X86_64
7226 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7227 		clear_hv_tscchange_cb();
7228 #endif
7229 	kvm_lapic_exit();
7230 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7231 
7232 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7233 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7234 					    CPUFREQ_TRANSITION_NOTIFIER);
7235 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7236 #ifdef CONFIG_X86_64
7237 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7238 #endif
7239 	kvm_x86_ops = NULL;
7240 	kvm_mmu_module_exit();
7241 	free_percpu(shared_msrs);
7242 	kmem_cache_destroy(x86_fpu_cache);
7243 }
7244 
7245 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7246 {
7247 	++vcpu->stat.halt_exits;
7248 	if (lapic_in_kernel(vcpu)) {
7249 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7250 		return 1;
7251 	} else {
7252 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7253 		return 0;
7254 	}
7255 }
7256 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7257 
7258 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7259 {
7260 	int ret = kvm_skip_emulated_instruction(vcpu);
7261 	/*
7262 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7263 	 * KVM_EXIT_DEBUG here.
7264 	 */
7265 	return kvm_vcpu_halt(vcpu) && ret;
7266 }
7267 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7268 
7269 #ifdef CONFIG_X86_64
7270 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7271 			        unsigned long clock_type)
7272 {
7273 	struct kvm_clock_pairing clock_pairing;
7274 	struct timespec64 ts;
7275 	u64 cycle;
7276 	int ret;
7277 
7278 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7279 		return -KVM_EOPNOTSUPP;
7280 
7281 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7282 		return -KVM_EOPNOTSUPP;
7283 
7284 	clock_pairing.sec = ts.tv_sec;
7285 	clock_pairing.nsec = ts.tv_nsec;
7286 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7287 	clock_pairing.flags = 0;
7288 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7289 
7290 	ret = 0;
7291 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7292 			    sizeof(struct kvm_clock_pairing)))
7293 		ret = -KVM_EFAULT;
7294 
7295 	return ret;
7296 }
7297 #endif
7298 
7299 /*
7300  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7301  *
7302  * @apicid - apicid of vcpu to be kicked.
7303  */
7304 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7305 {
7306 	struct kvm_lapic_irq lapic_irq;
7307 
7308 	lapic_irq.shorthand = 0;
7309 	lapic_irq.dest_mode = 0;
7310 	lapic_irq.level = 0;
7311 	lapic_irq.dest_id = apicid;
7312 	lapic_irq.msi_redir_hint = false;
7313 
7314 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7315 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7316 }
7317 
7318 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7319 {
7320 	if (!lapic_in_kernel(vcpu)) {
7321 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7322 		return;
7323 	}
7324 	if (!vcpu->arch.apicv_active)
7325 		return;
7326 
7327 	vcpu->arch.apicv_active = false;
7328 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7329 }
7330 
7331 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7332 {
7333 	struct kvm_vcpu *target = NULL;
7334 	struct kvm_apic_map *map;
7335 
7336 	rcu_read_lock();
7337 	map = rcu_dereference(kvm->arch.apic_map);
7338 
7339 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7340 		target = map->phys_map[dest_id]->vcpu;
7341 
7342 	rcu_read_unlock();
7343 
7344 	if (target && READ_ONCE(target->ready))
7345 		kvm_vcpu_yield_to(target);
7346 }
7347 
7348 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7349 {
7350 	unsigned long nr, a0, a1, a2, a3, ret;
7351 	int op_64_bit;
7352 
7353 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7354 		return kvm_hv_hypercall(vcpu);
7355 
7356 	nr = kvm_rax_read(vcpu);
7357 	a0 = kvm_rbx_read(vcpu);
7358 	a1 = kvm_rcx_read(vcpu);
7359 	a2 = kvm_rdx_read(vcpu);
7360 	a3 = kvm_rsi_read(vcpu);
7361 
7362 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7363 
7364 	op_64_bit = is_64_bit_mode(vcpu);
7365 	if (!op_64_bit) {
7366 		nr &= 0xFFFFFFFF;
7367 		a0 &= 0xFFFFFFFF;
7368 		a1 &= 0xFFFFFFFF;
7369 		a2 &= 0xFFFFFFFF;
7370 		a3 &= 0xFFFFFFFF;
7371 	}
7372 
7373 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7374 		ret = -KVM_EPERM;
7375 		goto out;
7376 	}
7377 
7378 	switch (nr) {
7379 	case KVM_HC_VAPIC_POLL_IRQ:
7380 		ret = 0;
7381 		break;
7382 	case KVM_HC_KICK_CPU:
7383 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7384 		kvm_sched_yield(vcpu->kvm, a1);
7385 		ret = 0;
7386 		break;
7387 #ifdef CONFIG_X86_64
7388 	case KVM_HC_CLOCK_PAIRING:
7389 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7390 		break;
7391 #endif
7392 	case KVM_HC_SEND_IPI:
7393 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7394 		break;
7395 	case KVM_HC_SCHED_YIELD:
7396 		kvm_sched_yield(vcpu->kvm, a0);
7397 		ret = 0;
7398 		break;
7399 	default:
7400 		ret = -KVM_ENOSYS;
7401 		break;
7402 	}
7403 out:
7404 	if (!op_64_bit)
7405 		ret = (u32)ret;
7406 	kvm_rax_write(vcpu, ret);
7407 
7408 	++vcpu->stat.hypercalls;
7409 	return kvm_skip_emulated_instruction(vcpu);
7410 }
7411 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7412 
7413 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7414 {
7415 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7416 	char instruction[3];
7417 	unsigned long rip = kvm_rip_read(vcpu);
7418 
7419 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7420 
7421 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7422 		&ctxt->exception);
7423 }
7424 
7425 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7426 {
7427 	return vcpu->run->request_interrupt_window &&
7428 		likely(!pic_in_kernel(vcpu->kvm));
7429 }
7430 
7431 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7432 {
7433 	struct kvm_run *kvm_run = vcpu->run;
7434 
7435 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7436 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7437 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7438 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7439 	kvm_run->ready_for_interrupt_injection =
7440 		pic_in_kernel(vcpu->kvm) ||
7441 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7442 }
7443 
7444 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7445 {
7446 	int max_irr, tpr;
7447 
7448 	if (!kvm_x86_ops->update_cr8_intercept)
7449 		return;
7450 
7451 	if (!lapic_in_kernel(vcpu))
7452 		return;
7453 
7454 	if (vcpu->arch.apicv_active)
7455 		return;
7456 
7457 	if (!vcpu->arch.apic->vapic_addr)
7458 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7459 	else
7460 		max_irr = -1;
7461 
7462 	if (max_irr != -1)
7463 		max_irr >>= 4;
7464 
7465 	tpr = kvm_lapic_get_cr8(vcpu);
7466 
7467 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7468 }
7469 
7470 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7471 {
7472 	int r;
7473 
7474 	/* try to reinject previous events if any */
7475 
7476 	if (vcpu->arch.exception.injected)
7477 		kvm_x86_ops->queue_exception(vcpu);
7478 	/*
7479 	 * Do not inject an NMI or interrupt if there is a pending
7480 	 * exception.  Exceptions and interrupts are recognized at
7481 	 * instruction boundaries, i.e. the start of an instruction.
7482 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7483 	 * NMIs and interrupts, i.e. traps are recognized before an
7484 	 * NMI/interrupt that's pending on the same instruction.
7485 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7486 	 * priority, but are only generated (pended) during instruction
7487 	 * execution, i.e. a pending fault-like exception means the
7488 	 * fault occurred on the *previous* instruction and must be
7489 	 * serviced prior to recognizing any new events in order to
7490 	 * fully complete the previous instruction.
7491 	 */
7492 	else if (!vcpu->arch.exception.pending) {
7493 		if (vcpu->arch.nmi_injected)
7494 			kvm_x86_ops->set_nmi(vcpu);
7495 		else if (vcpu->arch.interrupt.injected)
7496 			kvm_x86_ops->set_irq(vcpu);
7497 	}
7498 
7499 	/*
7500 	 * Call check_nested_events() even if we reinjected a previous event
7501 	 * in order for caller to determine if it should require immediate-exit
7502 	 * from L2 to L1 due to pending L1 events which require exit
7503 	 * from L2 to L1.
7504 	 */
7505 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7506 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7507 		if (r != 0)
7508 			return r;
7509 	}
7510 
7511 	/* try to inject new event if pending */
7512 	if (vcpu->arch.exception.pending) {
7513 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7514 					vcpu->arch.exception.has_error_code,
7515 					vcpu->arch.exception.error_code);
7516 
7517 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7518 		vcpu->arch.exception.pending = false;
7519 		vcpu->arch.exception.injected = true;
7520 
7521 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7522 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7523 					     X86_EFLAGS_RF);
7524 
7525 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7526 			/*
7527 			 * This code assumes that nSVM doesn't use
7528 			 * check_nested_events(). If it does, the
7529 			 * DR6/DR7 changes should happen before L1
7530 			 * gets a #VMEXIT for an intercepted #DB in
7531 			 * L2.  (Under VMX, on the other hand, the
7532 			 * DR6/DR7 changes should not happen in the
7533 			 * event of a VM-exit to L1 for an intercepted
7534 			 * #DB in L2.)
7535 			 */
7536 			kvm_deliver_exception_payload(vcpu);
7537 			if (vcpu->arch.dr7 & DR7_GD) {
7538 				vcpu->arch.dr7 &= ~DR7_GD;
7539 				kvm_update_dr7(vcpu);
7540 			}
7541 		}
7542 
7543 		kvm_x86_ops->queue_exception(vcpu);
7544 	}
7545 
7546 	/* Don't consider new event if we re-injected an event */
7547 	if (kvm_event_needs_reinjection(vcpu))
7548 		return 0;
7549 
7550 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7551 	    kvm_x86_ops->smi_allowed(vcpu)) {
7552 		vcpu->arch.smi_pending = false;
7553 		++vcpu->arch.smi_count;
7554 		enter_smm(vcpu);
7555 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7556 		--vcpu->arch.nmi_pending;
7557 		vcpu->arch.nmi_injected = true;
7558 		kvm_x86_ops->set_nmi(vcpu);
7559 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7560 		/*
7561 		 * Because interrupts can be injected asynchronously, we are
7562 		 * calling check_nested_events again here to avoid a race condition.
7563 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7564 		 * proposal and current concerns.  Perhaps we should be setting
7565 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7566 		 */
7567 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7568 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7569 			if (r != 0)
7570 				return r;
7571 		}
7572 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7573 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7574 					    false);
7575 			kvm_x86_ops->set_irq(vcpu);
7576 		}
7577 	}
7578 
7579 	return 0;
7580 }
7581 
7582 static void process_nmi(struct kvm_vcpu *vcpu)
7583 {
7584 	unsigned limit = 2;
7585 
7586 	/*
7587 	 * x86 is limited to one NMI running, and one NMI pending after it.
7588 	 * If an NMI is already in progress, limit further NMIs to just one.
7589 	 * Otherwise, allow two (and we'll inject the first one immediately).
7590 	 */
7591 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7592 		limit = 1;
7593 
7594 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7595 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7596 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7597 }
7598 
7599 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7600 {
7601 	u32 flags = 0;
7602 	flags |= seg->g       << 23;
7603 	flags |= seg->db      << 22;
7604 	flags |= seg->l       << 21;
7605 	flags |= seg->avl     << 20;
7606 	flags |= seg->present << 15;
7607 	flags |= seg->dpl     << 13;
7608 	flags |= seg->s       << 12;
7609 	flags |= seg->type    << 8;
7610 	return flags;
7611 }
7612 
7613 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7614 {
7615 	struct kvm_segment seg;
7616 	int offset;
7617 
7618 	kvm_get_segment(vcpu, &seg, n);
7619 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7620 
7621 	if (n < 3)
7622 		offset = 0x7f84 + n * 12;
7623 	else
7624 		offset = 0x7f2c + (n - 3) * 12;
7625 
7626 	put_smstate(u32, buf, offset + 8, seg.base);
7627 	put_smstate(u32, buf, offset + 4, seg.limit);
7628 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7629 }
7630 
7631 #ifdef CONFIG_X86_64
7632 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7633 {
7634 	struct kvm_segment seg;
7635 	int offset;
7636 	u16 flags;
7637 
7638 	kvm_get_segment(vcpu, &seg, n);
7639 	offset = 0x7e00 + n * 16;
7640 
7641 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7642 	put_smstate(u16, buf, offset, seg.selector);
7643 	put_smstate(u16, buf, offset + 2, flags);
7644 	put_smstate(u32, buf, offset + 4, seg.limit);
7645 	put_smstate(u64, buf, offset + 8, seg.base);
7646 }
7647 #endif
7648 
7649 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7650 {
7651 	struct desc_ptr dt;
7652 	struct kvm_segment seg;
7653 	unsigned long val;
7654 	int i;
7655 
7656 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7657 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7658 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7659 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7660 
7661 	for (i = 0; i < 8; i++)
7662 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7663 
7664 	kvm_get_dr(vcpu, 6, &val);
7665 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7666 	kvm_get_dr(vcpu, 7, &val);
7667 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7668 
7669 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7670 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7671 	put_smstate(u32, buf, 0x7f64, seg.base);
7672 	put_smstate(u32, buf, 0x7f60, seg.limit);
7673 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7674 
7675 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7676 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7677 	put_smstate(u32, buf, 0x7f80, seg.base);
7678 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7679 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7680 
7681 	kvm_x86_ops->get_gdt(vcpu, &dt);
7682 	put_smstate(u32, buf, 0x7f74, dt.address);
7683 	put_smstate(u32, buf, 0x7f70, dt.size);
7684 
7685 	kvm_x86_ops->get_idt(vcpu, &dt);
7686 	put_smstate(u32, buf, 0x7f58, dt.address);
7687 	put_smstate(u32, buf, 0x7f54, dt.size);
7688 
7689 	for (i = 0; i < 6; i++)
7690 		enter_smm_save_seg_32(vcpu, buf, i);
7691 
7692 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7693 
7694 	/* revision id */
7695 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7696 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7697 }
7698 
7699 #ifdef CONFIG_X86_64
7700 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7701 {
7702 	struct desc_ptr dt;
7703 	struct kvm_segment seg;
7704 	unsigned long val;
7705 	int i;
7706 
7707 	for (i = 0; i < 16; i++)
7708 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7709 
7710 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7711 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7712 
7713 	kvm_get_dr(vcpu, 6, &val);
7714 	put_smstate(u64, buf, 0x7f68, val);
7715 	kvm_get_dr(vcpu, 7, &val);
7716 	put_smstate(u64, buf, 0x7f60, val);
7717 
7718 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7719 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7720 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7721 
7722 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7723 
7724 	/* revision id */
7725 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7726 
7727 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7728 
7729 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7730 	put_smstate(u16, buf, 0x7e90, seg.selector);
7731 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7732 	put_smstate(u32, buf, 0x7e94, seg.limit);
7733 	put_smstate(u64, buf, 0x7e98, seg.base);
7734 
7735 	kvm_x86_ops->get_idt(vcpu, &dt);
7736 	put_smstate(u32, buf, 0x7e84, dt.size);
7737 	put_smstate(u64, buf, 0x7e88, dt.address);
7738 
7739 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7740 	put_smstate(u16, buf, 0x7e70, seg.selector);
7741 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7742 	put_smstate(u32, buf, 0x7e74, seg.limit);
7743 	put_smstate(u64, buf, 0x7e78, seg.base);
7744 
7745 	kvm_x86_ops->get_gdt(vcpu, &dt);
7746 	put_smstate(u32, buf, 0x7e64, dt.size);
7747 	put_smstate(u64, buf, 0x7e68, dt.address);
7748 
7749 	for (i = 0; i < 6; i++)
7750 		enter_smm_save_seg_64(vcpu, buf, i);
7751 }
7752 #endif
7753 
7754 static void enter_smm(struct kvm_vcpu *vcpu)
7755 {
7756 	struct kvm_segment cs, ds;
7757 	struct desc_ptr dt;
7758 	char buf[512];
7759 	u32 cr0;
7760 
7761 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7762 	memset(buf, 0, 512);
7763 #ifdef CONFIG_X86_64
7764 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7765 		enter_smm_save_state_64(vcpu, buf);
7766 	else
7767 #endif
7768 		enter_smm_save_state_32(vcpu, buf);
7769 
7770 	/*
7771 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7772 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7773 	 * the SMM state-save area.
7774 	 */
7775 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7776 
7777 	vcpu->arch.hflags |= HF_SMM_MASK;
7778 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7779 
7780 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7781 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7782 	else
7783 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7784 
7785 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7786 	kvm_rip_write(vcpu, 0x8000);
7787 
7788 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7789 	kvm_x86_ops->set_cr0(vcpu, cr0);
7790 	vcpu->arch.cr0 = cr0;
7791 
7792 	kvm_x86_ops->set_cr4(vcpu, 0);
7793 
7794 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7795 	dt.address = dt.size = 0;
7796 	kvm_x86_ops->set_idt(vcpu, &dt);
7797 
7798 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7799 
7800 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7801 	cs.base = vcpu->arch.smbase;
7802 
7803 	ds.selector = 0;
7804 	ds.base = 0;
7805 
7806 	cs.limit    = ds.limit = 0xffffffff;
7807 	cs.type     = ds.type = 0x3;
7808 	cs.dpl      = ds.dpl = 0;
7809 	cs.db       = ds.db = 0;
7810 	cs.s        = ds.s = 1;
7811 	cs.l        = ds.l = 0;
7812 	cs.g        = ds.g = 1;
7813 	cs.avl      = ds.avl = 0;
7814 	cs.present  = ds.present = 1;
7815 	cs.unusable = ds.unusable = 0;
7816 	cs.padding  = ds.padding = 0;
7817 
7818 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7819 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7820 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7821 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7822 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7823 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7824 
7825 #ifdef CONFIG_X86_64
7826 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7827 		kvm_x86_ops->set_efer(vcpu, 0);
7828 #endif
7829 
7830 	kvm_update_cpuid(vcpu);
7831 	kvm_mmu_reset_context(vcpu);
7832 }
7833 
7834 static void process_smi(struct kvm_vcpu *vcpu)
7835 {
7836 	vcpu->arch.smi_pending = true;
7837 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7838 }
7839 
7840 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7841 {
7842 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7843 }
7844 
7845 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7846 {
7847 	if (!kvm_apic_present(vcpu))
7848 		return;
7849 
7850 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7851 
7852 	if (irqchip_split(vcpu->kvm))
7853 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7854 	else {
7855 		if (vcpu->arch.apicv_active)
7856 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7857 		if (ioapic_in_kernel(vcpu->kvm))
7858 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7859 	}
7860 
7861 	if (is_guest_mode(vcpu))
7862 		vcpu->arch.load_eoi_exitmap_pending = true;
7863 	else
7864 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7865 }
7866 
7867 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7868 {
7869 	u64 eoi_exit_bitmap[4];
7870 
7871 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7872 		return;
7873 
7874 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7875 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7876 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7877 }
7878 
7879 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7880 		unsigned long start, unsigned long end,
7881 		bool blockable)
7882 {
7883 	unsigned long apic_address;
7884 
7885 	/*
7886 	 * The physical address of apic access page is stored in the VMCS.
7887 	 * Update it when it becomes invalid.
7888 	 */
7889 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7890 	if (start <= apic_address && apic_address < end)
7891 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7892 
7893 	return 0;
7894 }
7895 
7896 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7897 {
7898 	struct page *page = NULL;
7899 
7900 	if (!lapic_in_kernel(vcpu))
7901 		return;
7902 
7903 	if (!kvm_x86_ops->set_apic_access_page_addr)
7904 		return;
7905 
7906 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7907 	if (is_error_page(page))
7908 		return;
7909 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7910 
7911 	/*
7912 	 * Do not pin apic access page in memory, the MMU notifier
7913 	 * will call us again if it is migrated or swapped out.
7914 	 */
7915 	put_page(page);
7916 }
7917 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7918 
7919 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7920 {
7921 	smp_send_reschedule(vcpu->cpu);
7922 }
7923 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7924 
7925 /*
7926  * Returns 1 to let vcpu_run() continue the guest execution loop without
7927  * exiting to the userspace.  Otherwise, the value will be returned to the
7928  * userspace.
7929  */
7930 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7931 {
7932 	int r;
7933 	bool req_int_win =
7934 		dm_request_for_irq_injection(vcpu) &&
7935 		kvm_cpu_accept_dm_intr(vcpu);
7936 
7937 	bool req_immediate_exit = false;
7938 
7939 	if (kvm_request_pending(vcpu)) {
7940 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7941 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7942 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7943 			kvm_mmu_unload(vcpu);
7944 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7945 			__kvm_migrate_timers(vcpu);
7946 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7947 			kvm_gen_update_masterclock(vcpu->kvm);
7948 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7949 			kvm_gen_kvmclock_update(vcpu);
7950 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7951 			r = kvm_guest_time_update(vcpu);
7952 			if (unlikely(r))
7953 				goto out;
7954 		}
7955 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7956 			kvm_mmu_sync_roots(vcpu);
7957 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7958 			kvm_mmu_load_cr3(vcpu);
7959 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7960 			kvm_vcpu_flush_tlb(vcpu, true);
7961 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7962 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7963 			r = 0;
7964 			goto out;
7965 		}
7966 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7967 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7968 			vcpu->mmio_needed = 0;
7969 			r = 0;
7970 			goto out;
7971 		}
7972 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7973 			/* Page is swapped out. Do synthetic halt */
7974 			vcpu->arch.apf.halted = true;
7975 			r = 1;
7976 			goto out;
7977 		}
7978 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7979 			record_steal_time(vcpu);
7980 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7981 			process_smi(vcpu);
7982 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7983 			process_nmi(vcpu);
7984 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7985 			kvm_pmu_handle_event(vcpu);
7986 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7987 			kvm_pmu_deliver_pmi(vcpu);
7988 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7989 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7990 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7991 				     vcpu->arch.ioapic_handled_vectors)) {
7992 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7993 				vcpu->run->eoi.vector =
7994 						vcpu->arch.pending_ioapic_eoi;
7995 				r = 0;
7996 				goto out;
7997 			}
7998 		}
7999 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8000 			vcpu_scan_ioapic(vcpu);
8001 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8002 			vcpu_load_eoi_exitmap(vcpu);
8003 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8004 			kvm_vcpu_reload_apic_access_page(vcpu);
8005 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8006 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8007 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8008 			r = 0;
8009 			goto out;
8010 		}
8011 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8012 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8013 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8014 			r = 0;
8015 			goto out;
8016 		}
8017 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8018 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8019 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8020 			r = 0;
8021 			goto out;
8022 		}
8023 
8024 		/*
8025 		 * KVM_REQ_HV_STIMER has to be processed after
8026 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8027 		 * depend on the guest clock being up-to-date
8028 		 */
8029 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8030 			kvm_hv_process_stimers(vcpu);
8031 	}
8032 
8033 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8034 		++vcpu->stat.req_event;
8035 		kvm_apic_accept_events(vcpu);
8036 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8037 			r = 1;
8038 			goto out;
8039 		}
8040 
8041 		if (inject_pending_event(vcpu, req_int_win) != 0)
8042 			req_immediate_exit = true;
8043 		else {
8044 			/* Enable SMI/NMI/IRQ window open exits if needed.
8045 			 *
8046 			 * SMIs have three cases:
8047 			 * 1) They can be nested, and then there is nothing to
8048 			 *    do here because RSM will cause a vmexit anyway.
8049 			 * 2) There is an ISA-specific reason why SMI cannot be
8050 			 *    injected, and the moment when this changes can be
8051 			 *    intercepted.
8052 			 * 3) Or the SMI can be pending because
8053 			 *    inject_pending_event has completed the injection
8054 			 *    of an IRQ or NMI from the previous vmexit, and
8055 			 *    then we request an immediate exit to inject the
8056 			 *    SMI.
8057 			 */
8058 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8059 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8060 					req_immediate_exit = true;
8061 			if (vcpu->arch.nmi_pending)
8062 				kvm_x86_ops->enable_nmi_window(vcpu);
8063 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8064 				kvm_x86_ops->enable_irq_window(vcpu);
8065 			WARN_ON(vcpu->arch.exception.pending);
8066 		}
8067 
8068 		if (kvm_lapic_enabled(vcpu)) {
8069 			update_cr8_intercept(vcpu);
8070 			kvm_lapic_sync_to_vapic(vcpu);
8071 		}
8072 	}
8073 
8074 	r = kvm_mmu_reload(vcpu);
8075 	if (unlikely(r)) {
8076 		goto cancel_injection;
8077 	}
8078 
8079 	preempt_disable();
8080 
8081 	kvm_x86_ops->prepare_guest_switch(vcpu);
8082 
8083 	/*
8084 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8085 	 * IPI are then delayed after guest entry, which ensures that they
8086 	 * result in virtual interrupt delivery.
8087 	 */
8088 	local_irq_disable();
8089 	vcpu->mode = IN_GUEST_MODE;
8090 
8091 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8092 
8093 	/*
8094 	 * 1) We should set ->mode before checking ->requests.  Please see
8095 	 * the comment in kvm_vcpu_exiting_guest_mode().
8096 	 *
8097 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8098 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8099 	 * (see vmx_deliver_posted_interrupt).
8100 	 *
8101 	 * 3) This also orders the write to mode from any reads to the page
8102 	 * tables done while the VCPU is running.  Please see the comment
8103 	 * in kvm_flush_remote_tlbs.
8104 	 */
8105 	smp_mb__after_srcu_read_unlock();
8106 
8107 	/*
8108 	 * This handles the case where a posted interrupt was
8109 	 * notified with kvm_vcpu_kick.
8110 	 */
8111 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8112 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8113 
8114 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8115 	    || need_resched() || signal_pending(current)) {
8116 		vcpu->mode = OUTSIDE_GUEST_MODE;
8117 		smp_wmb();
8118 		local_irq_enable();
8119 		preempt_enable();
8120 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8121 		r = 1;
8122 		goto cancel_injection;
8123 	}
8124 
8125 	if (req_immediate_exit) {
8126 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8127 		kvm_x86_ops->request_immediate_exit(vcpu);
8128 	}
8129 
8130 	trace_kvm_entry(vcpu->vcpu_id);
8131 	guest_enter_irqoff();
8132 
8133 	/* The preempt notifier should have taken care of the FPU already.  */
8134 	WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8135 
8136 	if (unlikely(vcpu->arch.switch_db_regs)) {
8137 		set_debugreg(0, 7);
8138 		set_debugreg(vcpu->arch.eff_db[0], 0);
8139 		set_debugreg(vcpu->arch.eff_db[1], 1);
8140 		set_debugreg(vcpu->arch.eff_db[2], 2);
8141 		set_debugreg(vcpu->arch.eff_db[3], 3);
8142 		set_debugreg(vcpu->arch.dr6, 6);
8143 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8144 	}
8145 
8146 	kvm_x86_ops->run(vcpu);
8147 
8148 	/*
8149 	 * Do this here before restoring debug registers on the host.  And
8150 	 * since we do this before handling the vmexit, a DR access vmexit
8151 	 * can (a) read the correct value of the debug registers, (b) set
8152 	 * KVM_DEBUGREG_WONT_EXIT again.
8153 	 */
8154 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8155 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8156 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8157 		kvm_update_dr0123(vcpu);
8158 		kvm_update_dr6(vcpu);
8159 		kvm_update_dr7(vcpu);
8160 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8161 	}
8162 
8163 	/*
8164 	 * If the guest has used debug registers, at least dr7
8165 	 * will be disabled while returning to the host.
8166 	 * If we don't have active breakpoints in the host, we don't
8167 	 * care about the messed up debug address registers. But if
8168 	 * we have some of them active, restore the old state.
8169 	 */
8170 	if (hw_breakpoint_active())
8171 		hw_breakpoint_restore();
8172 
8173 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8174 
8175 	vcpu->mode = OUTSIDE_GUEST_MODE;
8176 	smp_wmb();
8177 
8178 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8179 
8180 	/*
8181 	 * Consume any pending interrupts, including the possible source of
8182 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8183 	 * An instruction is required after local_irq_enable() to fully unblock
8184 	 * interrupts on processors that implement an interrupt shadow, the
8185 	 * stat.exits increment will do nicely.
8186 	 */
8187 	kvm_before_interrupt(vcpu);
8188 	local_irq_enable();
8189 	++vcpu->stat.exits;
8190 	local_irq_disable();
8191 	kvm_after_interrupt(vcpu);
8192 
8193 	guest_exit_irqoff();
8194 	if (lapic_in_kernel(vcpu)) {
8195 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8196 		if (delta != S64_MIN) {
8197 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8198 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8199 		}
8200 	}
8201 
8202 	local_irq_enable();
8203 	preempt_enable();
8204 
8205 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8206 
8207 	/*
8208 	 * Profile KVM exit RIPs:
8209 	 */
8210 	if (unlikely(prof_on == KVM_PROFILING)) {
8211 		unsigned long rip = kvm_rip_read(vcpu);
8212 		profile_hit(KVM_PROFILING, (void *)rip);
8213 	}
8214 
8215 	if (unlikely(vcpu->arch.tsc_always_catchup))
8216 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8217 
8218 	if (vcpu->arch.apic_attention)
8219 		kvm_lapic_sync_from_vapic(vcpu);
8220 
8221 	vcpu->arch.gpa_available = false;
8222 	r = kvm_x86_ops->handle_exit(vcpu);
8223 	return r;
8224 
8225 cancel_injection:
8226 	kvm_x86_ops->cancel_injection(vcpu);
8227 	if (unlikely(vcpu->arch.apic_attention))
8228 		kvm_lapic_sync_from_vapic(vcpu);
8229 out:
8230 	return r;
8231 }
8232 
8233 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8234 {
8235 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8236 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8237 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8238 		kvm_vcpu_block(vcpu);
8239 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8240 
8241 		if (kvm_x86_ops->post_block)
8242 			kvm_x86_ops->post_block(vcpu);
8243 
8244 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8245 			return 1;
8246 	}
8247 
8248 	kvm_apic_accept_events(vcpu);
8249 	switch(vcpu->arch.mp_state) {
8250 	case KVM_MP_STATE_HALTED:
8251 		vcpu->arch.pv.pv_unhalted = false;
8252 		vcpu->arch.mp_state =
8253 			KVM_MP_STATE_RUNNABLE;
8254 		/* fall through */
8255 	case KVM_MP_STATE_RUNNABLE:
8256 		vcpu->arch.apf.halted = false;
8257 		break;
8258 	case KVM_MP_STATE_INIT_RECEIVED:
8259 		break;
8260 	default:
8261 		return -EINTR;
8262 		break;
8263 	}
8264 	return 1;
8265 }
8266 
8267 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8268 {
8269 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8270 		kvm_x86_ops->check_nested_events(vcpu, false);
8271 
8272 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8273 		!vcpu->arch.apf.halted);
8274 }
8275 
8276 static int vcpu_run(struct kvm_vcpu *vcpu)
8277 {
8278 	int r;
8279 	struct kvm *kvm = vcpu->kvm;
8280 
8281 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8282 	vcpu->arch.l1tf_flush_l1d = true;
8283 
8284 	for (;;) {
8285 		if (kvm_vcpu_running(vcpu)) {
8286 			r = vcpu_enter_guest(vcpu);
8287 		} else {
8288 			r = vcpu_block(kvm, vcpu);
8289 		}
8290 
8291 		if (r <= 0)
8292 			break;
8293 
8294 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8295 		if (kvm_cpu_has_pending_timer(vcpu))
8296 			kvm_inject_pending_timer_irqs(vcpu);
8297 
8298 		if (dm_request_for_irq_injection(vcpu) &&
8299 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8300 			r = 0;
8301 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8302 			++vcpu->stat.request_irq_exits;
8303 			break;
8304 		}
8305 
8306 		kvm_check_async_pf_completion(vcpu);
8307 
8308 		if (signal_pending(current)) {
8309 			r = -EINTR;
8310 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8311 			++vcpu->stat.signal_exits;
8312 			break;
8313 		}
8314 		if (need_resched()) {
8315 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8316 			cond_resched();
8317 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8318 		}
8319 	}
8320 
8321 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8322 
8323 	return r;
8324 }
8325 
8326 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8327 {
8328 	int r;
8329 
8330 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8331 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8332 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8333 	return r;
8334 }
8335 
8336 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8337 {
8338 	BUG_ON(!vcpu->arch.pio.count);
8339 
8340 	return complete_emulated_io(vcpu);
8341 }
8342 
8343 /*
8344  * Implements the following, as a state machine:
8345  *
8346  * read:
8347  *   for each fragment
8348  *     for each mmio piece in the fragment
8349  *       write gpa, len
8350  *       exit
8351  *       copy data
8352  *   execute insn
8353  *
8354  * write:
8355  *   for each fragment
8356  *     for each mmio piece in the fragment
8357  *       write gpa, len
8358  *       copy data
8359  *       exit
8360  */
8361 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8362 {
8363 	struct kvm_run *run = vcpu->run;
8364 	struct kvm_mmio_fragment *frag;
8365 	unsigned len;
8366 
8367 	BUG_ON(!vcpu->mmio_needed);
8368 
8369 	/* Complete previous fragment */
8370 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8371 	len = min(8u, frag->len);
8372 	if (!vcpu->mmio_is_write)
8373 		memcpy(frag->data, run->mmio.data, len);
8374 
8375 	if (frag->len <= 8) {
8376 		/* Switch to the next fragment. */
8377 		frag++;
8378 		vcpu->mmio_cur_fragment++;
8379 	} else {
8380 		/* Go forward to the next mmio piece. */
8381 		frag->data += len;
8382 		frag->gpa += len;
8383 		frag->len -= len;
8384 	}
8385 
8386 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8387 		vcpu->mmio_needed = 0;
8388 
8389 		/* FIXME: return into emulator if single-stepping.  */
8390 		if (vcpu->mmio_is_write)
8391 			return 1;
8392 		vcpu->mmio_read_completed = 1;
8393 		return complete_emulated_io(vcpu);
8394 	}
8395 
8396 	run->exit_reason = KVM_EXIT_MMIO;
8397 	run->mmio.phys_addr = frag->gpa;
8398 	if (vcpu->mmio_is_write)
8399 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8400 	run->mmio.len = min(8u, frag->len);
8401 	run->mmio.is_write = vcpu->mmio_is_write;
8402 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8403 	return 0;
8404 }
8405 
8406 /* Swap (qemu) user FPU context for the guest FPU context. */
8407 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8408 {
8409 	fpregs_lock();
8410 
8411 	copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8412 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8413 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8414 				~XFEATURE_MASK_PKRU);
8415 
8416 	fpregs_mark_activate();
8417 	fpregs_unlock();
8418 
8419 	trace_kvm_fpu(1);
8420 }
8421 
8422 /* When vcpu_run ends, restore user space FPU context. */
8423 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8424 {
8425 	fpregs_lock();
8426 
8427 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8428 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8429 
8430 	fpregs_mark_activate();
8431 	fpregs_unlock();
8432 
8433 	++vcpu->stat.fpu_reload;
8434 	trace_kvm_fpu(0);
8435 }
8436 
8437 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8438 {
8439 	int r;
8440 
8441 	vcpu_load(vcpu);
8442 	kvm_sigset_activate(vcpu);
8443 	kvm_load_guest_fpu(vcpu);
8444 
8445 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8446 		if (kvm_run->immediate_exit) {
8447 			r = -EINTR;
8448 			goto out;
8449 		}
8450 		kvm_vcpu_block(vcpu);
8451 		kvm_apic_accept_events(vcpu);
8452 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8453 		r = -EAGAIN;
8454 		if (signal_pending(current)) {
8455 			r = -EINTR;
8456 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8457 			++vcpu->stat.signal_exits;
8458 		}
8459 		goto out;
8460 	}
8461 
8462 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8463 		r = -EINVAL;
8464 		goto out;
8465 	}
8466 
8467 	if (vcpu->run->kvm_dirty_regs) {
8468 		r = sync_regs(vcpu);
8469 		if (r != 0)
8470 			goto out;
8471 	}
8472 
8473 	/* re-sync apic's tpr */
8474 	if (!lapic_in_kernel(vcpu)) {
8475 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8476 			r = -EINVAL;
8477 			goto out;
8478 		}
8479 	}
8480 
8481 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8482 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8483 		vcpu->arch.complete_userspace_io = NULL;
8484 		r = cui(vcpu);
8485 		if (r <= 0)
8486 			goto out;
8487 	} else
8488 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8489 
8490 	if (kvm_run->immediate_exit)
8491 		r = -EINTR;
8492 	else
8493 		r = vcpu_run(vcpu);
8494 
8495 out:
8496 	kvm_put_guest_fpu(vcpu);
8497 	if (vcpu->run->kvm_valid_regs)
8498 		store_regs(vcpu);
8499 	post_kvm_run_save(vcpu);
8500 	kvm_sigset_deactivate(vcpu);
8501 
8502 	vcpu_put(vcpu);
8503 	return r;
8504 }
8505 
8506 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8507 {
8508 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8509 		/*
8510 		 * We are here if userspace calls get_regs() in the middle of
8511 		 * instruction emulation. Registers state needs to be copied
8512 		 * back from emulation context to vcpu. Userspace shouldn't do
8513 		 * that usually, but some bad designed PV devices (vmware
8514 		 * backdoor interface) need this to work
8515 		 */
8516 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8517 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8518 	}
8519 	regs->rax = kvm_rax_read(vcpu);
8520 	regs->rbx = kvm_rbx_read(vcpu);
8521 	regs->rcx = kvm_rcx_read(vcpu);
8522 	regs->rdx = kvm_rdx_read(vcpu);
8523 	regs->rsi = kvm_rsi_read(vcpu);
8524 	regs->rdi = kvm_rdi_read(vcpu);
8525 	regs->rsp = kvm_rsp_read(vcpu);
8526 	regs->rbp = kvm_rbp_read(vcpu);
8527 #ifdef CONFIG_X86_64
8528 	regs->r8 = kvm_r8_read(vcpu);
8529 	regs->r9 = kvm_r9_read(vcpu);
8530 	regs->r10 = kvm_r10_read(vcpu);
8531 	regs->r11 = kvm_r11_read(vcpu);
8532 	regs->r12 = kvm_r12_read(vcpu);
8533 	regs->r13 = kvm_r13_read(vcpu);
8534 	regs->r14 = kvm_r14_read(vcpu);
8535 	regs->r15 = kvm_r15_read(vcpu);
8536 #endif
8537 
8538 	regs->rip = kvm_rip_read(vcpu);
8539 	regs->rflags = kvm_get_rflags(vcpu);
8540 }
8541 
8542 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8543 {
8544 	vcpu_load(vcpu);
8545 	__get_regs(vcpu, regs);
8546 	vcpu_put(vcpu);
8547 	return 0;
8548 }
8549 
8550 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8551 {
8552 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8553 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8554 
8555 	kvm_rax_write(vcpu, regs->rax);
8556 	kvm_rbx_write(vcpu, regs->rbx);
8557 	kvm_rcx_write(vcpu, regs->rcx);
8558 	kvm_rdx_write(vcpu, regs->rdx);
8559 	kvm_rsi_write(vcpu, regs->rsi);
8560 	kvm_rdi_write(vcpu, regs->rdi);
8561 	kvm_rsp_write(vcpu, regs->rsp);
8562 	kvm_rbp_write(vcpu, regs->rbp);
8563 #ifdef CONFIG_X86_64
8564 	kvm_r8_write(vcpu, regs->r8);
8565 	kvm_r9_write(vcpu, regs->r9);
8566 	kvm_r10_write(vcpu, regs->r10);
8567 	kvm_r11_write(vcpu, regs->r11);
8568 	kvm_r12_write(vcpu, regs->r12);
8569 	kvm_r13_write(vcpu, regs->r13);
8570 	kvm_r14_write(vcpu, regs->r14);
8571 	kvm_r15_write(vcpu, regs->r15);
8572 #endif
8573 
8574 	kvm_rip_write(vcpu, regs->rip);
8575 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8576 
8577 	vcpu->arch.exception.pending = false;
8578 
8579 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8580 }
8581 
8582 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8583 {
8584 	vcpu_load(vcpu);
8585 	__set_regs(vcpu, regs);
8586 	vcpu_put(vcpu);
8587 	return 0;
8588 }
8589 
8590 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8591 {
8592 	struct kvm_segment cs;
8593 
8594 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8595 	*db = cs.db;
8596 	*l = cs.l;
8597 }
8598 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8599 
8600 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8601 {
8602 	struct desc_ptr dt;
8603 
8604 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8605 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8606 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8607 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8608 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8609 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8610 
8611 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8612 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8613 
8614 	kvm_x86_ops->get_idt(vcpu, &dt);
8615 	sregs->idt.limit = dt.size;
8616 	sregs->idt.base = dt.address;
8617 	kvm_x86_ops->get_gdt(vcpu, &dt);
8618 	sregs->gdt.limit = dt.size;
8619 	sregs->gdt.base = dt.address;
8620 
8621 	sregs->cr0 = kvm_read_cr0(vcpu);
8622 	sregs->cr2 = vcpu->arch.cr2;
8623 	sregs->cr3 = kvm_read_cr3(vcpu);
8624 	sregs->cr4 = kvm_read_cr4(vcpu);
8625 	sregs->cr8 = kvm_get_cr8(vcpu);
8626 	sregs->efer = vcpu->arch.efer;
8627 	sregs->apic_base = kvm_get_apic_base(vcpu);
8628 
8629 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8630 
8631 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8632 		set_bit(vcpu->arch.interrupt.nr,
8633 			(unsigned long *)sregs->interrupt_bitmap);
8634 }
8635 
8636 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8637 				  struct kvm_sregs *sregs)
8638 {
8639 	vcpu_load(vcpu);
8640 	__get_sregs(vcpu, sregs);
8641 	vcpu_put(vcpu);
8642 	return 0;
8643 }
8644 
8645 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8646 				    struct kvm_mp_state *mp_state)
8647 {
8648 	vcpu_load(vcpu);
8649 
8650 	kvm_apic_accept_events(vcpu);
8651 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8652 					vcpu->arch.pv.pv_unhalted)
8653 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8654 	else
8655 		mp_state->mp_state = vcpu->arch.mp_state;
8656 
8657 	vcpu_put(vcpu);
8658 	return 0;
8659 }
8660 
8661 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8662 				    struct kvm_mp_state *mp_state)
8663 {
8664 	int ret = -EINVAL;
8665 
8666 	vcpu_load(vcpu);
8667 
8668 	if (!lapic_in_kernel(vcpu) &&
8669 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8670 		goto out;
8671 
8672 	/* INITs are latched while in SMM */
8673 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8674 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8675 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8676 		goto out;
8677 
8678 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8679 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8680 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8681 	} else
8682 		vcpu->arch.mp_state = mp_state->mp_state;
8683 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8684 
8685 	ret = 0;
8686 out:
8687 	vcpu_put(vcpu);
8688 	return ret;
8689 }
8690 
8691 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8692 		    int reason, bool has_error_code, u32 error_code)
8693 {
8694 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8695 	int ret;
8696 
8697 	init_emulate_ctxt(vcpu);
8698 
8699 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8700 				   has_error_code, error_code);
8701 	if (ret) {
8702 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8703 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8704 		vcpu->run->internal.ndata = 0;
8705 		return 0;
8706 	}
8707 
8708 	kvm_rip_write(vcpu, ctxt->eip);
8709 	kvm_set_rflags(vcpu, ctxt->eflags);
8710 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8711 	return 1;
8712 }
8713 EXPORT_SYMBOL_GPL(kvm_task_switch);
8714 
8715 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8716 {
8717 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8718 			(sregs->cr4 & X86_CR4_OSXSAVE))
8719 		return  -EINVAL;
8720 
8721 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8722 		/*
8723 		 * When EFER.LME and CR0.PG are set, the processor is in
8724 		 * 64-bit mode (though maybe in a 32-bit code segment).
8725 		 * CR4.PAE and EFER.LMA must be set.
8726 		 */
8727 		if (!(sregs->cr4 & X86_CR4_PAE)
8728 		    || !(sregs->efer & EFER_LMA))
8729 			return -EINVAL;
8730 	} else {
8731 		/*
8732 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8733 		 * segment cannot be 64-bit.
8734 		 */
8735 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8736 			return -EINVAL;
8737 	}
8738 
8739 	return 0;
8740 }
8741 
8742 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8743 {
8744 	struct msr_data apic_base_msr;
8745 	int mmu_reset_needed = 0;
8746 	int cpuid_update_needed = 0;
8747 	int pending_vec, max_bits, idx;
8748 	struct desc_ptr dt;
8749 	int ret = -EINVAL;
8750 
8751 	if (kvm_valid_sregs(vcpu, sregs))
8752 		goto out;
8753 
8754 	apic_base_msr.data = sregs->apic_base;
8755 	apic_base_msr.host_initiated = true;
8756 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8757 		goto out;
8758 
8759 	dt.size = sregs->idt.limit;
8760 	dt.address = sregs->idt.base;
8761 	kvm_x86_ops->set_idt(vcpu, &dt);
8762 	dt.size = sregs->gdt.limit;
8763 	dt.address = sregs->gdt.base;
8764 	kvm_x86_ops->set_gdt(vcpu, &dt);
8765 
8766 	vcpu->arch.cr2 = sregs->cr2;
8767 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8768 	vcpu->arch.cr3 = sregs->cr3;
8769 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8770 
8771 	kvm_set_cr8(vcpu, sregs->cr8);
8772 
8773 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8774 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8775 
8776 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8777 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8778 	vcpu->arch.cr0 = sregs->cr0;
8779 
8780 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8781 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8782 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8783 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8784 	if (cpuid_update_needed)
8785 		kvm_update_cpuid(vcpu);
8786 
8787 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8788 	if (is_pae_paging(vcpu)) {
8789 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8790 		mmu_reset_needed = 1;
8791 	}
8792 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8793 
8794 	if (mmu_reset_needed)
8795 		kvm_mmu_reset_context(vcpu);
8796 
8797 	max_bits = KVM_NR_INTERRUPTS;
8798 	pending_vec = find_first_bit(
8799 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8800 	if (pending_vec < max_bits) {
8801 		kvm_queue_interrupt(vcpu, pending_vec, false);
8802 		pr_debug("Set back pending irq %d\n", pending_vec);
8803 	}
8804 
8805 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8806 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8807 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8808 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8809 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8810 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8811 
8812 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8813 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8814 
8815 	update_cr8_intercept(vcpu);
8816 
8817 	/* Older userspace won't unhalt the vcpu on reset. */
8818 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8819 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8820 	    !is_protmode(vcpu))
8821 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8822 
8823 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8824 
8825 	ret = 0;
8826 out:
8827 	return ret;
8828 }
8829 
8830 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8831 				  struct kvm_sregs *sregs)
8832 {
8833 	int ret;
8834 
8835 	vcpu_load(vcpu);
8836 	ret = __set_sregs(vcpu, sregs);
8837 	vcpu_put(vcpu);
8838 	return ret;
8839 }
8840 
8841 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8842 					struct kvm_guest_debug *dbg)
8843 {
8844 	unsigned long rflags;
8845 	int i, r;
8846 
8847 	vcpu_load(vcpu);
8848 
8849 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8850 		r = -EBUSY;
8851 		if (vcpu->arch.exception.pending)
8852 			goto out;
8853 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8854 			kvm_queue_exception(vcpu, DB_VECTOR);
8855 		else
8856 			kvm_queue_exception(vcpu, BP_VECTOR);
8857 	}
8858 
8859 	/*
8860 	 * Read rflags as long as potentially injected trace flags are still
8861 	 * filtered out.
8862 	 */
8863 	rflags = kvm_get_rflags(vcpu);
8864 
8865 	vcpu->guest_debug = dbg->control;
8866 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8867 		vcpu->guest_debug = 0;
8868 
8869 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8870 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8871 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8872 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8873 	} else {
8874 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8875 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8876 	}
8877 	kvm_update_dr7(vcpu);
8878 
8879 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8880 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8881 			get_segment_base(vcpu, VCPU_SREG_CS);
8882 
8883 	/*
8884 	 * Trigger an rflags update that will inject or remove the trace
8885 	 * flags.
8886 	 */
8887 	kvm_set_rflags(vcpu, rflags);
8888 
8889 	kvm_x86_ops->update_bp_intercept(vcpu);
8890 
8891 	r = 0;
8892 
8893 out:
8894 	vcpu_put(vcpu);
8895 	return r;
8896 }
8897 
8898 /*
8899  * Translate a guest virtual address to a guest physical address.
8900  */
8901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8902 				    struct kvm_translation *tr)
8903 {
8904 	unsigned long vaddr = tr->linear_address;
8905 	gpa_t gpa;
8906 	int idx;
8907 
8908 	vcpu_load(vcpu);
8909 
8910 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8911 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8912 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8913 	tr->physical_address = gpa;
8914 	tr->valid = gpa != UNMAPPED_GVA;
8915 	tr->writeable = 1;
8916 	tr->usermode = 0;
8917 
8918 	vcpu_put(vcpu);
8919 	return 0;
8920 }
8921 
8922 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8923 {
8924 	struct fxregs_state *fxsave;
8925 
8926 	vcpu_load(vcpu);
8927 
8928 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8929 	memcpy(fpu->fpr, fxsave->st_space, 128);
8930 	fpu->fcw = fxsave->cwd;
8931 	fpu->fsw = fxsave->swd;
8932 	fpu->ftwx = fxsave->twd;
8933 	fpu->last_opcode = fxsave->fop;
8934 	fpu->last_ip = fxsave->rip;
8935 	fpu->last_dp = fxsave->rdp;
8936 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8937 
8938 	vcpu_put(vcpu);
8939 	return 0;
8940 }
8941 
8942 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8943 {
8944 	struct fxregs_state *fxsave;
8945 
8946 	vcpu_load(vcpu);
8947 
8948 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8949 
8950 	memcpy(fxsave->st_space, fpu->fpr, 128);
8951 	fxsave->cwd = fpu->fcw;
8952 	fxsave->swd = fpu->fsw;
8953 	fxsave->twd = fpu->ftwx;
8954 	fxsave->fop = fpu->last_opcode;
8955 	fxsave->rip = fpu->last_ip;
8956 	fxsave->rdp = fpu->last_dp;
8957 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8958 
8959 	vcpu_put(vcpu);
8960 	return 0;
8961 }
8962 
8963 static void store_regs(struct kvm_vcpu *vcpu)
8964 {
8965 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8966 
8967 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8968 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8969 
8970 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8971 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8972 
8973 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8974 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8975 				vcpu, &vcpu->run->s.regs.events);
8976 }
8977 
8978 static int sync_regs(struct kvm_vcpu *vcpu)
8979 {
8980 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8981 		return -EINVAL;
8982 
8983 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8984 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8985 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8986 	}
8987 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8988 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8989 			return -EINVAL;
8990 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8991 	}
8992 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8993 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8994 				vcpu, &vcpu->run->s.regs.events))
8995 			return -EINVAL;
8996 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8997 	}
8998 
8999 	return 0;
9000 }
9001 
9002 static void fx_init(struct kvm_vcpu *vcpu)
9003 {
9004 	fpstate_init(&vcpu->arch.guest_fpu->state);
9005 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9006 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9007 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9008 
9009 	/*
9010 	 * Ensure guest xcr0 is valid for loading
9011 	 */
9012 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9013 
9014 	vcpu->arch.cr0 |= X86_CR0_ET;
9015 }
9016 
9017 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9018 {
9019 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9020 
9021 	kvmclock_reset(vcpu);
9022 
9023 	kvm_x86_ops->vcpu_free(vcpu);
9024 	free_cpumask_var(wbinvd_dirty_mask);
9025 }
9026 
9027 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9028 						unsigned int id)
9029 {
9030 	struct kvm_vcpu *vcpu;
9031 
9032 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9033 		printk_once(KERN_WARNING
9034 		"kvm: SMP vm created on host with unstable TSC; "
9035 		"guest TSC will not be reliable\n");
9036 
9037 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9038 
9039 	return vcpu;
9040 }
9041 
9042 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9043 {
9044 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9045 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9046 	kvm_vcpu_mtrr_init(vcpu);
9047 	vcpu_load(vcpu);
9048 	kvm_vcpu_reset(vcpu, false);
9049 	kvm_init_mmu(vcpu, false);
9050 	vcpu_put(vcpu);
9051 	return 0;
9052 }
9053 
9054 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9055 {
9056 	struct msr_data msr;
9057 	struct kvm *kvm = vcpu->kvm;
9058 
9059 	kvm_hv_vcpu_postcreate(vcpu);
9060 
9061 	if (mutex_lock_killable(&vcpu->mutex))
9062 		return;
9063 	vcpu_load(vcpu);
9064 	msr.data = 0x0;
9065 	msr.index = MSR_IA32_TSC;
9066 	msr.host_initiated = true;
9067 	kvm_write_tsc(vcpu, &msr);
9068 	vcpu_put(vcpu);
9069 
9070 	/* poll control enabled by default */
9071 	vcpu->arch.msr_kvm_poll_control = 1;
9072 
9073 	mutex_unlock(&vcpu->mutex);
9074 
9075 	if (!kvmclock_periodic_sync)
9076 		return;
9077 
9078 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9079 					KVMCLOCK_SYNC_PERIOD);
9080 }
9081 
9082 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9083 {
9084 	vcpu->arch.apf.msr_val = 0;
9085 
9086 	vcpu_load(vcpu);
9087 	kvm_mmu_unload(vcpu);
9088 	vcpu_put(vcpu);
9089 
9090 	kvm_x86_ops->vcpu_free(vcpu);
9091 }
9092 
9093 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9094 {
9095 	kvm_lapic_reset(vcpu, init_event);
9096 
9097 	vcpu->arch.hflags = 0;
9098 
9099 	vcpu->arch.smi_pending = 0;
9100 	vcpu->arch.smi_count = 0;
9101 	atomic_set(&vcpu->arch.nmi_queued, 0);
9102 	vcpu->arch.nmi_pending = 0;
9103 	vcpu->arch.nmi_injected = false;
9104 	kvm_clear_interrupt_queue(vcpu);
9105 	kvm_clear_exception_queue(vcpu);
9106 	vcpu->arch.exception.pending = false;
9107 
9108 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9109 	kvm_update_dr0123(vcpu);
9110 	vcpu->arch.dr6 = DR6_INIT;
9111 	kvm_update_dr6(vcpu);
9112 	vcpu->arch.dr7 = DR7_FIXED_1;
9113 	kvm_update_dr7(vcpu);
9114 
9115 	vcpu->arch.cr2 = 0;
9116 
9117 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9118 	vcpu->arch.apf.msr_val = 0;
9119 	vcpu->arch.st.msr_val = 0;
9120 
9121 	kvmclock_reset(vcpu);
9122 
9123 	kvm_clear_async_pf_completion_queue(vcpu);
9124 	kvm_async_pf_hash_reset(vcpu);
9125 	vcpu->arch.apf.halted = false;
9126 
9127 	if (kvm_mpx_supported()) {
9128 		void *mpx_state_buffer;
9129 
9130 		/*
9131 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9132 		 * called with loaded FPU and does not let userspace fix the state.
9133 		 */
9134 		if (init_event)
9135 			kvm_put_guest_fpu(vcpu);
9136 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9137 					XFEATURE_BNDREGS);
9138 		if (mpx_state_buffer)
9139 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9140 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9141 					XFEATURE_BNDCSR);
9142 		if (mpx_state_buffer)
9143 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9144 		if (init_event)
9145 			kvm_load_guest_fpu(vcpu);
9146 	}
9147 
9148 	if (!init_event) {
9149 		kvm_pmu_reset(vcpu);
9150 		vcpu->arch.smbase = 0x30000;
9151 
9152 		vcpu->arch.msr_misc_features_enables = 0;
9153 
9154 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9155 	}
9156 
9157 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9158 	vcpu->arch.regs_avail = ~0;
9159 	vcpu->arch.regs_dirty = ~0;
9160 
9161 	vcpu->arch.ia32_xss = 0;
9162 
9163 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9164 }
9165 
9166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9167 {
9168 	struct kvm_segment cs;
9169 
9170 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9171 	cs.selector = vector << 8;
9172 	cs.base = vector << 12;
9173 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9174 	kvm_rip_write(vcpu, 0);
9175 }
9176 
9177 int kvm_arch_hardware_enable(void)
9178 {
9179 	struct kvm *kvm;
9180 	struct kvm_vcpu *vcpu;
9181 	int i;
9182 	int ret;
9183 	u64 local_tsc;
9184 	u64 max_tsc = 0;
9185 	bool stable, backwards_tsc = false;
9186 
9187 	kvm_shared_msr_cpu_online();
9188 	ret = kvm_x86_ops->hardware_enable();
9189 	if (ret != 0)
9190 		return ret;
9191 
9192 	local_tsc = rdtsc();
9193 	stable = !kvm_check_tsc_unstable();
9194 	list_for_each_entry(kvm, &vm_list, vm_list) {
9195 		kvm_for_each_vcpu(i, vcpu, kvm) {
9196 			if (!stable && vcpu->cpu == smp_processor_id())
9197 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9198 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9199 				backwards_tsc = true;
9200 				if (vcpu->arch.last_host_tsc > max_tsc)
9201 					max_tsc = vcpu->arch.last_host_tsc;
9202 			}
9203 		}
9204 	}
9205 
9206 	/*
9207 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9208 	 * platforms that reset TSC during suspend or hibernate actions, but
9209 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9210 	 * detect that condition here, which happens early in CPU bringup,
9211 	 * before any KVM threads can be running.  Unfortunately, we can't
9212 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9213 	 * enough into CPU bringup that we know how much real time has actually
9214 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9215 	 * variables that haven't been updated yet.
9216 	 *
9217 	 * So we simply find the maximum observed TSC above, then record the
9218 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9219 	 * the adjustment will be applied.  Note that we accumulate
9220 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9221 	 * gets a chance to run again.  In the event that no KVM threads get a
9222 	 * chance to run, we will miss the entire elapsed period, as we'll have
9223 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9224 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9225 	 * uniform across all VCPUs (not to mention the scenario is extremely
9226 	 * unlikely). It is possible that a second hibernate recovery happens
9227 	 * much faster than a first, causing the observed TSC here to be
9228 	 * smaller; this would require additional padding adjustment, which is
9229 	 * why we set last_host_tsc to the local tsc observed here.
9230 	 *
9231 	 * N.B. - this code below runs only on platforms with reliable TSC,
9232 	 * as that is the only way backwards_tsc is set above.  Also note
9233 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9234 	 * have the same delta_cyc adjustment applied if backwards_tsc
9235 	 * is detected.  Note further, this adjustment is only done once,
9236 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9237 	 * called multiple times (one for each physical CPU bringup).
9238 	 *
9239 	 * Platforms with unreliable TSCs don't have to deal with this, they
9240 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9241 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9242 	 * guarantee that they stay in perfect synchronization.
9243 	 */
9244 	if (backwards_tsc) {
9245 		u64 delta_cyc = max_tsc - local_tsc;
9246 		list_for_each_entry(kvm, &vm_list, vm_list) {
9247 			kvm->arch.backwards_tsc_observed = true;
9248 			kvm_for_each_vcpu(i, vcpu, kvm) {
9249 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9250 				vcpu->arch.last_host_tsc = local_tsc;
9251 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9252 			}
9253 
9254 			/*
9255 			 * We have to disable TSC offset matching.. if you were
9256 			 * booting a VM while issuing an S4 host suspend....
9257 			 * you may have some problem.  Solving this issue is
9258 			 * left as an exercise to the reader.
9259 			 */
9260 			kvm->arch.last_tsc_nsec = 0;
9261 			kvm->arch.last_tsc_write = 0;
9262 		}
9263 
9264 	}
9265 	return 0;
9266 }
9267 
9268 void kvm_arch_hardware_disable(void)
9269 {
9270 	kvm_x86_ops->hardware_disable();
9271 	drop_user_return_notifiers();
9272 }
9273 
9274 int kvm_arch_hardware_setup(void)
9275 {
9276 	int r;
9277 
9278 	r = kvm_x86_ops->hardware_setup();
9279 	if (r != 0)
9280 		return r;
9281 
9282 	if (kvm_has_tsc_control) {
9283 		/*
9284 		 * Make sure the user can only configure tsc_khz values that
9285 		 * fit into a signed integer.
9286 		 * A min value is not calculated because it will always
9287 		 * be 1 on all machines.
9288 		 */
9289 		u64 max = min(0x7fffffffULL,
9290 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9291 		kvm_max_guest_tsc_khz = max;
9292 
9293 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9294 	}
9295 
9296 	kvm_init_msr_list();
9297 	return 0;
9298 }
9299 
9300 void kvm_arch_hardware_unsetup(void)
9301 {
9302 	kvm_x86_ops->hardware_unsetup();
9303 }
9304 
9305 int kvm_arch_check_processor_compat(void)
9306 {
9307 	return kvm_x86_ops->check_processor_compatibility();
9308 }
9309 
9310 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9311 {
9312 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9313 }
9314 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9315 
9316 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9317 {
9318 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9319 }
9320 
9321 struct static_key kvm_no_apic_vcpu __read_mostly;
9322 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9323 
9324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9325 {
9326 	struct page *page;
9327 	int r;
9328 
9329 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9330 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9331 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9332 	else
9333 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9334 
9335 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9336 	if (!page) {
9337 		r = -ENOMEM;
9338 		goto fail;
9339 	}
9340 	vcpu->arch.pio_data = page_address(page);
9341 
9342 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9343 
9344 	r = kvm_mmu_create(vcpu);
9345 	if (r < 0)
9346 		goto fail_free_pio_data;
9347 
9348 	if (irqchip_in_kernel(vcpu->kvm)) {
9349 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9350 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9351 		if (r < 0)
9352 			goto fail_mmu_destroy;
9353 	} else
9354 		static_key_slow_inc(&kvm_no_apic_vcpu);
9355 
9356 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9357 				       GFP_KERNEL_ACCOUNT);
9358 	if (!vcpu->arch.mce_banks) {
9359 		r = -ENOMEM;
9360 		goto fail_free_lapic;
9361 	}
9362 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9363 
9364 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9365 				GFP_KERNEL_ACCOUNT)) {
9366 		r = -ENOMEM;
9367 		goto fail_free_mce_banks;
9368 	}
9369 
9370 	fx_init(vcpu);
9371 
9372 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9373 
9374 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9375 
9376 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9377 
9378 	kvm_async_pf_hash_reset(vcpu);
9379 	kvm_pmu_init(vcpu);
9380 
9381 	vcpu->arch.pending_external_vector = -1;
9382 	vcpu->arch.preempted_in_kernel = false;
9383 
9384 	kvm_hv_vcpu_init(vcpu);
9385 
9386 	return 0;
9387 
9388 fail_free_mce_banks:
9389 	kfree(vcpu->arch.mce_banks);
9390 fail_free_lapic:
9391 	kvm_free_lapic(vcpu);
9392 fail_mmu_destroy:
9393 	kvm_mmu_destroy(vcpu);
9394 fail_free_pio_data:
9395 	free_page((unsigned long)vcpu->arch.pio_data);
9396 fail:
9397 	return r;
9398 }
9399 
9400 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9401 {
9402 	int idx;
9403 
9404 	kvm_hv_vcpu_uninit(vcpu);
9405 	kvm_pmu_destroy(vcpu);
9406 	kfree(vcpu->arch.mce_banks);
9407 	kvm_free_lapic(vcpu);
9408 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9409 	kvm_mmu_destroy(vcpu);
9410 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9411 	free_page((unsigned long)vcpu->arch.pio_data);
9412 	if (!lapic_in_kernel(vcpu))
9413 		static_key_slow_dec(&kvm_no_apic_vcpu);
9414 }
9415 
9416 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9417 {
9418 	vcpu->arch.l1tf_flush_l1d = true;
9419 	kvm_x86_ops->sched_in(vcpu, cpu);
9420 }
9421 
9422 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9423 {
9424 	if (type)
9425 		return -EINVAL;
9426 
9427 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9428 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9429 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9430 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9431 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9432 
9433 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9434 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9435 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9436 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9437 		&kvm->arch.irq_sources_bitmap);
9438 
9439 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9440 	mutex_init(&kvm->arch.apic_map_lock);
9441 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9442 
9443 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9444 	pvclock_update_vm_gtod_copy(kvm);
9445 
9446 	kvm->arch.guest_can_read_msr_platform_info = true;
9447 
9448 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9449 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9450 
9451 	kvm_hv_init_vm(kvm);
9452 	kvm_page_track_init(kvm);
9453 	kvm_mmu_init_vm(kvm);
9454 
9455 	return kvm_x86_ops->vm_init(kvm);
9456 }
9457 
9458 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9459 {
9460 	vcpu_load(vcpu);
9461 	kvm_mmu_unload(vcpu);
9462 	vcpu_put(vcpu);
9463 }
9464 
9465 static void kvm_free_vcpus(struct kvm *kvm)
9466 {
9467 	unsigned int i;
9468 	struct kvm_vcpu *vcpu;
9469 
9470 	/*
9471 	 * Unpin any mmu pages first.
9472 	 */
9473 	kvm_for_each_vcpu(i, vcpu, kvm) {
9474 		kvm_clear_async_pf_completion_queue(vcpu);
9475 		kvm_unload_vcpu_mmu(vcpu);
9476 	}
9477 	kvm_for_each_vcpu(i, vcpu, kvm)
9478 		kvm_arch_vcpu_free(vcpu);
9479 
9480 	mutex_lock(&kvm->lock);
9481 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9482 		kvm->vcpus[i] = NULL;
9483 
9484 	atomic_set(&kvm->online_vcpus, 0);
9485 	mutex_unlock(&kvm->lock);
9486 }
9487 
9488 void kvm_arch_sync_events(struct kvm *kvm)
9489 {
9490 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9491 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9492 	kvm_free_pit(kvm);
9493 }
9494 
9495 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9496 {
9497 	int i, r;
9498 	unsigned long hva;
9499 	struct kvm_memslots *slots = kvm_memslots(kvm);
9500 	struct kvm_memory_slot *slot, old;
9501 
9502 	/* Called with kvm->slots_lock held.  */
9503 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9504 		return -EINVAL;
9505 
9506 	slot = id_to_memslot(slots, id);
9507 	if (size) {
9508 		if (slot->npages)
9509 			return -EEXIST;
9510 
9511 		/*
9512 		 * MAP_SHARED to prevent internal slot pages from being moved
9513 		 * by fork()/COW.
9514 		 */
9515 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9516 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9517 		if (IS_ERR((void *)hva))
9518 			return PTR_ERR((void *)hva);
9519 	} else {
9520 		if (!slot->npages)
9521 			return 0;
9522 
9523 		hva = 0;
9524 	}
9525 
9526 	old = *slot;
9527 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9528 		struct kvm_userspace_memory_region m;
9529 
9530 		m.slot = id | (i << 16);
9531 		m.flags = 0;
9532 		m.guest_phys_addr = gpa;
9533 		m.userspace_addr = hva;
9534 		m.memory_size = size;
9535 		r = __kvm_set_memory_region(kvm, &m);
9536 		if (r < 0)
9537 			return r;
9538 	}
9539 
9540 	if (!size)
9541 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9542 
9543 	return 0;
9544 }
9545 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9546 
9547 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9548 {
9549 	int r;
9550 
9551 	mutex_lock(&kvm->slots_lock);
9552 	r = __x86_set_memory_region(kvm, id, gpa, size);
9553 	mutex_unlock(&kvm->slots_lock);
9554 
9555 	return r;
9556 }
9557 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9558 
9559 void kvm_arch_destroy_vm(struct kvm *kvm)
9560 {
9561 	if (current->mm == kvm->mm) {
9562 		/*
9563 		 * Free memory regions allocated on behalf of userspace,
9564 		 * unless the the memory map has changed due to process exit
9565 		 * or fd copying.
9566 		 */
9567 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9568 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9569 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9570 	}
9571 	if (kvm_x86_ops->vm_destroy)
9572 		kvm_x86_ops->vm_destroy(kvm);
9573 	kvm_pic_destroy(kvm);
9574 	kvm_ioapic_destroy(kvm);
9575 	kvm_free_vcpus(kvm);
9576 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9577 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9578 	kvm_mmu_uninit_vm(kvm);
9579 	kvm_page_track_cleanup(kvm);
9580 	kvm_hv_destroy_vm(kvm);
9581 }
9582 
9583 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9584 			   struct kvm_memory_slot *dont)
9585 {
9586 	int i;
9587 
9588 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9589 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9590 			kvfree(free->arch.rmap[i]);
9591 			free->arch.rmap[i] = NULL;
9592 		}
9593 		if (i == 0)
9594 			continue;
9595 
9596 		if (!dont || free->arch.lpage_info[i - 1] !=
9597 			     dont->arch.lpage_info[i - 1]) {
9598 			kvfree(free->arch.lpage_info[i - 1]);
9599 			free->arch.lpage_info[i - 1] = NULL;
9600 		}
9601 	}
9602 
9603 	kvm_page_track_free_memslot(free, dont);
9604 }
9605 
9606 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9607 			    unsigned long npages)
9608 {
9609 	int i;
9610 
9611 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9612 		struct kvm_lpage_info *linfo;
9613 		unsigned long ugfn;
9614 		int lpages;
9615 		int level = i + 1;
9616 
9617 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9618 				      slot->base_gfn, level) + 1;
9619 
9620 		slot->arch.rmap[i] =
9621 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9622 				 GFP_KERNEL_ACCOUNT);
9623 		if (!slot->arch.rmap[i])
9624 			goto out_free;
9625 		if (i == 0)
9626 			continue;
9627 
9628 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9629 		if (!linfo)
9630 			goto out_free;
9631 
9632 		slot->arch.lpage_info[i - 1] = linfo;
9633 
9634 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9635 			linfo[0].disallow_lpage = 1;
9636 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9637 			linfo[lpages - 1].disallow_lpage = 1;
9638 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9639 		/*
9640 		 * If the gfn and userspace address are not aligned wrt each
9641 		 * other, or if explicitly asked to, disable large page
9642 		 * support for this slot
9643 		 */
9644 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9645 		    !kvm_largepages_enabled()) {
9646 			unsigned long j;
9647 
9648 			for (j = 0; j < lpages; ++j)
9649 				linfo[j].disallow_lpage = 1;
9650 		}
9651 	}
9652 
9653 	if (kvm_page_track_create_memslot(slot, npages))
9654 		goto out_free;
9655 
9656 	return 0;
9657 
9658 out_free:
9659 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9660 		kvfree(slot->arch.rmap[i]);
9661 		slot->arch.rmap[i] = NULL;
9662 		if (i == 0)
9663 			continue;
9664 
9665 		kvfree(slot->arch.lpage_info[i - 1]);
9666 		slot->arch.lpage_info[i - 1] = NULL;
9667 	}
9668 	return -ENOMEM;
9669 }
9670 
9671 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9672 {
9673 	/*
9674 	 * memslots->generation has been incremented.
9675 	 * mmio generation may have reached its maximum value.
9676 	 */
9677 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9678 }
9679 
9680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9681 				struct kvm_memory_slot *memslot,
9682 				const struct kvm_userspace_memory_region *mem,
9683 				enum kvm_mr_change change)
9684 {
9685 	return 0;
9686 }
9687 
9688 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9689 				     struct kvm_memory_slot *new)
9690 {
9691 	/* Still write protect RO slot */
9692 	if (new->flags & KVM_MEM_READONLY) {
9693 		kvm_mmu_slot_remove_write_access(kvm, new);
9694 		return;
9695 	}
9696 
9697 	/*
9698 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9699 	 *
9700 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9701 	 *
9702 	 *  - KVM_MR_CREATE with dirty logging is disabled
9703 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9704 	 *
9705 	 * The reason is, in case of PML, we need to set D-bit for any slots
9706 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9707 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9708 	 * guarantees leaving PML enabled during guest's lifetime won't have
9709 	 * any additional overhead from PML when guest is running with dirty
9710 	 * logging disabled for memory slots.
9711 	 *
9712 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9713 	 * to dirty logging mode.
9714 	 *
9715 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9716 	 *
9717 	 * In case of write protect:
9718 	 *
9719 	 * Write protect all pages for dirty logging.
9720 	 *
9721 	 * All the sptes including the large sptes which point to this
9722 	 * slot are set to readonly. We can not create any new large
9723 	 * spte on this slot until the end of the logging.
9724 	 *
9725 	 * See the comments in fast_page_fault().
9726 	 */
9727 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9728 		if (kvm_x86_ops->slot_enable_log_dirty)
9729 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9730 		else
9731 			kvm_mmu_slot_remove_write_access(kvm, new);
9732 	} else {
9733 		if (kvm_x86_ops->slot_disable_log_dirty)
9734 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9735 	}
9736 }
9737 
9738 void kvm_arch_commit_memory_region(struct kvm *kvm,
9739 				const struct kvm_userspace_memory_region *mem,
9740 				const struct kvm_memory_slot *old,
9741 				const struct kvm_memory_slot *new,
9742 				enum kvm_mr_change change)
9743 {
9744 	if (!kvm->arch.n_requested_mmu_pages)
9745 		kvm_mmu_change_mmu_pages(kvm,
9746 				kvm_mmu_calculate_default_mmu_pages(kvm));
9747 
9748 	/*
9749 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9750 	 * sptes have to be split.  If live migration is successful, the guest
9751 	 * in the source machine will be destroyed and large sptes will be
9752 	 * created in the destination. However, if the guest continues to run
9753 	 * in the source machine (for example if live migration fails), small
9754 	 * sptes will remain around and cause bad performance.
9755 	 *
9756 	 * Scan sptes if dirty logging has been stopped, dropping those
9757 	 * which can be collapsed into a single large-page spte.  Later
9758 	 * page faults will create the large-page sptes.
9759 	 *
9760 	 * There is no need to do this in any of the following cases:
9761 	 * CREATE:	No dirty mappings will already exist.
9762 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
9763 	 *		kvm_arch_flush_shadow_memslot()
9764 	 */
9765 	if (change == KVM_MR_FLAGS_ONLY &&
9766 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9767 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9768 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9769 
9770 	/*
9771 	 * Set up write protection and/or dirty logging for the new slot.
9772 	 *
9773 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9774 	 * been zapped so no dirty logging staff is needed for old slot. For
9775 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9776 	 * new and it's also covered when dealing with the new slot.
9777 	 *
9778 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9779 	 */
9780 	if (change != KVM_MR_DELETE)
9781 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9782 }
9783 
9784 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9785 {
9786 	kvm_mmu_zap_all(kvm);
9787 }
9788 
9789 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9790 				   struct kvm_memory_slot *slot)
9791 {
9792 	kvm_page_track_flush_slot(kvm, slot);
9793 }
9794 
9795 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9796 {
9797 	return (is_guest_mode(vcpu) &&
9798 			kvm_x86_ops->guest_apic_has_interrupt &&
9799 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9800 }
9801 
9802 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9803 {
9804 	if (!list_empty_careful(&vcpu->async_pf.done))
9805 		return true;
9806 
9807 	if (kvm_apic_has_events(vcpu))
9808 		return true;
9809 
9810 	if (vcpu->arch.pv.pv_unhalted)
9811 		return true;
9812 
9813 	if (vcpu->arch.exception.pending)
9814 		return true;
9815 
9816 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9817 	    (vcpu->arch.nmi_pending &&
9818 	     kvm_x86_ops->nmi_allowed(vcpu)))
9819 		return true;
9820 
9821 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9822 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9823 		return true;
9824 
9825 	if (kvm_arch_interrupt_allowed(vcpu) &&
9826 	    (kvm_cpu_has_interrupt(vcpu) ||
9827 	    kvm_guest_apic_has_interrupt(vcpu)))
9828 		return true;
9829 
9830 	if (kvm_hv_has_stimer_pending(vcpu))
9831 		return true;
9832 
9833 	return false;
9834 }
9835 
9836 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9837 {
9838 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9839 }
9840 
9841 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9842 {
9843 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9844 		return true;
9845 
9846 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9847 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9848 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9849 		return true;
9850 
9851 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9852 		return true;
9853 
9854 	return false;
9855 }
9856 
9857 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9858 {
9859 	return vcpu->arch.preempted_in_kernel;
9860 }
9861 
9862 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9863 {
9864 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9865 }
9866 
9867 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9868 {
9869 	return kvm_x86_ops->interrupt_allowed(vcpu);
9870 }
9871 
9872 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9873 {
9874 	if (is_64_bit_mode(vcpu))
9875 		return kvm_rip_read(vcpu);
9876 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9877 		     kvm_rip_read(vcpu));
9878 }
9879 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9880 
9881 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9882 {
9883 	return kvm_get_linear_rip(vcpu) == linear_rip;
9884 }
9885 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9886 
9887 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9888 {
9889 	unsigned long rflags;
9890 
9891 	rflags = kvm_x86_ops->get_rflags(vcpu);
9892 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9893 		rflags &= ~X86_EFLAGS_TF;
9894 	return rflags;
9895 }
9896 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9897 
9898 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9899 {
9900 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9901 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9902 		rflags |= X86_EFLAGS_TF;
9903 	kvm_x86_ops->set_rflags(vcpu, rflags);
9904 }
9905 
9906 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9907 {
9908 	__kvm_set_rflags(vcpu, rflags);
9909 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9910 }
9911 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9912 
9913 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9914 {
9915 	int r;
9916 
9917 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9918 	      work->wakeup_all)
9919 		return;
9920 
9921 	r = kvm_mmu_reload(vcpu);
9922 	if (unlikely(r))
9923 		return;
9924 
9925 	if (!vcpu->arch.mmu->direct_map &&
9926 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9927 		return;
9928 
9929 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9930 }
9931 
9932 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9933 {
9934 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9935 }
9936 
9937 static inline u32 kvm_async_pf_next_probe(u32 key)
9938 {
9939 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9940 }
9941 
9942 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9943 {
9944 	u32 key = kvm_async_pf_hash_fn(gfn);
9945 
9946 	while (vcpu->arch.apf.gfns[key] != ~0)
9947 		key = kvm_async_pf_next_probe(key);
9948 
9949 	vcpu->arch.apf.gfns[key] = gfn;
9950 }
9951 
9952 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9953 {
9954 	int i;
9955 	u32 key = kvm_async_pf_hash_fn(gfn);
9956 
9957 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9958 		     (vcpu->arch.apf.gfns[key] != gfn &&
9959 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9960 		key = kvm_async_pf_next_probe(key);
9961 
9962 	return key;
9963 }
9964 
9965 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9966 {
9967 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9968 }
9969 
9970 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9971 {
9972 	u32 i, j, k;
9973 
9974 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9975 	while (true) {
9976 		vcpu->arch.apf.gfns[i] = ~0;
9977 		do {
9978 			j = kvm_async_pf_next_probe(j);
9979 			if (vcpu->arch.apf.gfns[j] == ~0)
9980 				return;
9981 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9982 			/*
9983 			 * k lies cyclically in ]i,j]
9984 			 * |    i.k.j |
9985 			 * |....j i.k.| or  |.k..j i...|
9986 			 */
9987 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9988 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9989 		i = j;
9990 	}
9991 }
9992 
9993 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9994 {
9995 
9996 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9997 				      sizeof(val));
9998 }
9999 
10000 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10001 {
10002 
10003 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10004 				      sizeof(u32));
10005 }
10006 
10007 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10008 {
10009 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10010 		return false;
10011 
10012 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10013 	    (vcpu->arch.apf.send_user_only &&
10014 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10015 		return false;
10016 
10017 	return true;
10018 }
10019 
10020 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10021 {
10022 	if (unlikely(!lapic_in_kernel(vcpu) ||
10023 		     kvm_event_needs_reinjection(vcpu) ||
10024 		     vcpu->arch.exception.pending))
10025 		return false;
10026 
10027 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10028 		return false;
10029 
10030 	/*
10031 	 * If interrupts are off we cannot even use an artificial
10032 	 * halt state.
10033 	 */
10034 	return kvm_x86_ops->interrupt_allowed(vcpu);
10035 }
10036 
10037 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10038 				     struct kvm_async_pf *work)
10039 {
10040 	struct x86_exception fault;
10041 
10042 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10043 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10044 
10045 	if (kvm_can_deliver_async_pf(vcpu) &&
10046 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10047 		fault.vector = PF_VECTOR;
10048 		fault.error_code_valid = true;
10049 		fault.error_code = 0;
10050 		fault.nested_page_fault = false;
10051 		fault.address = work->arch.token;
10052 		fault.async_page_fault = true;
10053 		kvm_inject_page_fault(vcpu, &fault);
10054 	} else {
10055 		/*
10056 		 * It is not possible to deliver a paravirtualized asynchronous
10057 		 * page fault, but putting the guest in an artificial halt state
10058 		 * can be beneficial nevertheless: if an interrupt arrives, we
10059 		 * can deliver it timely and perhaps the guest will schedule
10060 		 * another process.  When the instruction that triggered a page
10061 		 * fault is retried, hopefully the page will be ready in the host.
10062 		 */
10063 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10064 	}
10065 }
10066 
10067 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10068 				 struct kvm_async_pf *work)
10069 {
10070 	struct x86_exception fault;
10071 	u32 val;
10072 
10073 	if (work->wakeup_all)
10074 		work->arch.token = ~0; /* broadcast wakeup */
10075 	else
10076 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10077 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
10078 
10079 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10080 	    !apf_get_user(vcpu, &val)) {
10081 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10082 		    vcpu->arch.exception.pending &&
10083 		    vcpu->arch.exception.nr == PF_VECTOR &&
10084 		    !apf_put_user(vcpu, 0)) {
10085 			vcpu->arch.exception.injected = false;
10086 			vcpu->arch.exception.pending = false;
10087 			vcpu->arch.exception.nr = 0;
10088 			vcpu->arch.exception.has_error_code = false;
10089 			vcpu->arch.exception.error_code = 0;
10090 			vcpu->arch.exception.has_payload = false;
10091 			vcpu->arch.exception.payload = 0;
10092 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10093 			fault.vector = PF_VECTOR;
10094 			fault.error_code_valid = true;
10095 			fault.error_code = 0;
10096 			fault.nested_page_fault = false;
10097 			fault.address = work->arch.token;
10098 			fault.async_page_fault = true;
10099 			kvm_inject_page_fault(vcpu, &fault);
10100 		}
10101 	}
10102 	vcpu->arch.apf.halted = false;
10103 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10104 }
10105 
10106 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10107 {
10108 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10109 		return true;
10110 	else
10111 		return kvm_can_do_async_pf(vcpu);
10112 }
10113 
10114 void kvm_arch_start_assignment(struct kvm *kvm)
10115 {
10116 	atomic_inc(&kvm->arch.assigned_device_count);
10117 }
10118 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10119 
10120 void kvm_arch_end_assignment(struct kvm *kvm)
10121 {
10122 	atomic_dec(&kvm->arch.assigned_device_count);
10123 }
10124 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10125 
10126 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10127 {
10128 	return atomic_read(&kvm->arch.assigned_device_count);
10129 }
10130 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10131 
10132 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10133 {
10134 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10135 }
10136 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10137 
10138 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10139 {
10140 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10141 }
10142 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10143 
10144 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10145 {
10146 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10147 }
10148 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10149 
10150 bool kvm_arch_has_irq_bypass(void)
10151 {
10152 	return true;
10153 }
10154 
10155 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10156 				      struct irq_bypass_producer *prod)
10157 {
10158 	struct kvm_kernel_irqfd *irqfd =
10159 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10160 
10161 	irqfd->producer = prod;
10162 
10163 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10164 					   prod->irq, irqfd->gsi, 1);
10165 }
10166 
10167 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10168 				      struct irq_bypass_producer *prod)
10169 {
10170 	int ret;
10171 	struct kvm_kernel_irqfd *irqfd =
10172 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10173 
10174 	WARN_ON(irqfd->producer != prod);
10175 	irqfd->producer = NULL;
10176 
10177 	/*
10178 	 * When producer of consumer is unregistered, we change back to
10179 	 * remapped mode, so we can re-use the current implementation
10180 	 * when the irq is masked/disabled or the consumer side (KVM
10181 	 * int this case doesn't want to receive the interrupts.
10182 	*/
10183 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10184 	if (ret)
10185 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10186 		       " fails: %d\n", irqfd->consumer.token, ret);
10187 }
10188 
10189 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10190 				   uint32_t guest_irq, bool set)
10191 {
10192 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10193 }
10194 
10195 bool kvm_vector_hashing_enabled(void)
10196 {
10197 	return vector_hashing;
10198 }
10199 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10200 
10201 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10202 {
10203 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10204 }
10205 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10206 
10207 
10208 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10209 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10210 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10211 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10212 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10213 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10215 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10228