xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 352780b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78 
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83 
84 #define emul_to_vcpu(ctxt) \
85 	((struct kvm_vcpu *)(ctxt)->vcpu)
86 
87 /* EFER defaults:
88  * - enable syscall per default because its emulated by KVM
89  * - enable LME and LMA per default on 64 bit KVM
90  */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97 
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99 
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 #define KVM_NR_SHARED_MSRS 16
166 
167 struct kvm_shared_msrs_global {
168 	int nr;
169 	u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171 
172 struct kvm_shared_msrs {
173 	struct user_return_notifier urn;
174 	bool registered;
175 	struct kvm_shared_msr_values {
176 		u64 host;
177 		u64 curr;
178 	} values[KVM_NR_SHARED_MSRS];
179 };
180 
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183 
184 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187 				| XFEATURE_MASK_PKRU)
188 
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191 
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195 
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
198 	{ "pf_guest", VCPU_STAT(pf_guest) },
199 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
200 	{ "invlpg", VCPU_STAT(invlpg) },
201 	{ "exits", VCPU_STAT(exits) },
202 	{ "io_exits", VCPU_STAT(io_exits) },
203 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
204 	{ "signal_exits", VCPU_STAT(signal_exits) },
205 	{ "irq_window", VCPU_STAT(irq_window_exits) },
206 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
207 	{ "halt_exits", VCPU_STAT(halt_exits) },
208 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
212 	{ "hypercalls", VCPU_STAT(hypercalls) },
213 	{ "request_irq", VCPU_STAT(request_irq_exits) },
214 	{ "irq_exits", VCPU_STAT(irq_exits) },
215 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
216 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
217 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
218 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219 	{ "irq_injections", VCPU_STAT(irq_injections) },
220 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
221 	{ "req_event", VCPU_STAT(req_event) },
222 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
223 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
225 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
228 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
229 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
231 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
233 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234 	{ "max_mmu_page_hash_collisions",
235 		VM_STAT(max_mmu_page_hash_collisions) },
236 	{ NULL }
237 };
238 
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242 
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245 
246 static struct kmem_cache *x86_emulator_cache;
247 
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251 	unsigned int size = sizeof(struct x86_emulate_ctxt);
252 
253 	return kmem_cache_create_usercopy("x86_emulator", size,
254 					  __alignof__(struct x86_emulate_ctxt),
255 					  SLAB_ACCOUNT, useroffset,
256 					  size - useroffset, NULL);
257 }
258 
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260 
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263 	int i;
264 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265 		vcpu->arch.apf.gfns[i] = ~0;
266 }
267 
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270 	unsigned slot;
271 	struct kvm_shared_msrs *locals
272 		= container_of(urn, struct kvm_shared_msrs, urn);
273 	struct kvm_shared_msr_values *values;
274 	unsigned long flags;
275 
276 	/*
277 	 * Disabling irqs at this point since the following code could be
278 	 * interrupted and executed through kvm_arch_hardware_disable()
279 	 */
280 	local_irq_save(flags);
281 	if (locals->registered) {
282 		locals->registered = false;
283 		user_return_notifier_unregister(urn);
284 	}
285 	local_irq_restore(flags);
286 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287 		values = &locals->values[slot];
288 		if (values->host != values->curr) {
289 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
290 			values->curr = values->host;
291 		}
292 	}
293 }
294 
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298 	shared_msrs_global.msrs[slot] = msr;
299 	if (slot >= shared_msrs_global.nr)
300 		shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303 
304 static void kvm_shared_msr_cpu_online(void)
305 {
306 	unsigned int cpu = smp_processor_id();
307 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308 	u64 value;
309 	int i;
310 
311 	for (i = 0; i < shared_msrs_global.nr; ++i) {
312 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313 		smsr->values[i].host = value;
314 		smsr->values[i].curr = value;
315 	}
316 }
317 
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 	int err;
323 
324 	value = (value & mask) | (smsr->values[slot].host & ~mask);
325 	if (value == smsr->values[slot].curr)
326 		return 0;
327 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328 	if (err)
329 		return 1;
330 
331 	smsr->values[slot].curr = value;
332 	if (!smsr->registered) {
333 		smsr->urn.on_user_return = kvm_on_user_return;
334 		user_return_notifier_register(&smsr->urn);
335 		smsr->registered = true;
336 	}
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340 
341 static void drop_user_return_notifiers(void)
342 {
343 	unsigned int cpu = smp_processor_id();
344 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345 
346 	if (smsr->registered)
347 		kvm_on_user_return(&smsr->urn);
348 }
349 
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352 	return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355 
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361 
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368 
369 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370 		return 1;
371 	if (!msr_info->host_initiated) {
372 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373 			return 1;
374 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375 			return 1;
376 	}
377 
378 	kvm_lapic_set_base(vcpu, msr_info->data);
379 	kvm_recalculate_apic_map(vcpu->kvm);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383 
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386 	/* Fault while not rebooting.  We want the trace. */
387 	BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390 
391 #define EXCPT_BENIGN		0
392 #define EXCPT_CONTRIBUTORY	1
393 #define EXCPT_PF		2
394 
395 static int exception_class(int vector)
396 {
397 	switch (vector) {
398 	case PF_VECTOR:
399 		return EXCPT_PF;
400 	case DE_VECTOR:
401 	case TS_VECTOR:
402 	case NP_VECTOR:
403 	case SS_VECTOR:
404 	case GP_VECTOR:
405 		return EXCPT_CONTRIBUTORY;
406 	default:
407 		break;
408 	}
409 	return EXCPT_BENIGN;
410 }
411 
412 #define EXCPT_FAULT		0
413 #define EXCPT_TRAP		1
414 #define EXCPT_ABORT		2
415 #define EXCPT_INTERRUPT		3
416 
417 static int exception_type(int vector)
418 {
419 	unsigned int mask;
420 
421 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422 		return EXCPT_INTERRUPT;
423 
424 	mask = 1 << vector;
425 
426 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
427 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428 		return EXCPT_TRAP;
429 
430 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431 		return EXCPT_ABORT;
432 
433 	/* Reserved exceptions will result in fault */
434 	return EXCPT_FAULT;
435 }
436 
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439 	unsigned nr = vcpu->arch.exception.nr;
440 	bool has_payload = vcpu->arch.exception.has_payload;
441 	unsigned long payload = vcpu->arch.exception.payload;
442 
443 	if (!has_payload)
444 		return;
445 
446 	switch (nr) {
447 	case DB_VECTOR:
448 		/*
449 		 * "Certain debug exceptions may clear bit 0-3.  The
450 		 * remaining contents of the DR6 register are never
451 		 * cleared by the processor".
452 		 */
453 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454 		/*
455 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
456 		 */
457 		vcpu->arch.dr6 |= DR6_RTM;
458 		vcpu->arch.dr6 |= payload;
459 		/*
460 		 * Bit 16 should be set in the payload whenever the #DB
461 		 * exception should clear DR6.RTM. This makes the payload
462 		 * compatible with the pending debug exceptions under VMX.
463 		 * Though not currently documented in the SDM, this also
464 		 * makes the payload compatible with the exit qualification
465 		 * for #DB exceptions under VMX.
466 		 */
467 		vcpu->arch.dr6 ^= payload & DR6_RTM;
468 
469 		/*
470 		 * The #DB payload is defined as compatible with the 'pending
471 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
472 		 * defined in the 'pending debug exceptions' field (enabled
473 		 * breakpoint), it is reserved and must be zero in DR6.
474 		 */
475 		vcpu->arch.dr6 &= ~BIT(12);
476 		break;
477 	case PF_VECTOR:
478 		vcpu->arch.cr2 = payload;
479 		break;
480 	}
481 
482 	vcpu->arch.exception.has_payload = false;
483 	vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486 
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488 		unsigned nr, bool has_error, u32 error_code,
489 	        bool has_payload, unsigned long payload, bool reinject)
490 {
491 	u32 prev_nr;
492 	int class1, class2;
493 
494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
495 
496 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497 	queue:
498 		if (has_error && !is_protmode(vcpu))
499 			has_error = false;
500 		if (reinject) {
501 			/*
502 			 * On vmentry, vcpu->arch.exception.pending is only
503 			 * true if an event injection was blocked by
504 			 * nested_run_pending.  In that case, however,
505 			 * vcpu_enter_guest requests an immediate exit,
506 			 * and the guest shouldn't proceed far enough to
507 			 * need reinjection.
508 			 */
509 			WARN_ON_ONCE(vcpu->arch.exception.pending);
510 			vcpu->arch.exception.injected = true;
511 			if (WARN_ON_ONCE(has_payload)) {
512 				/*
513 				 * A reinjected event has already
514 				 * delivered its payload.
515 				 */
516 				has_payload = false;
517 				payload = 0;
518 			}
519 		} else {
520 			vcpu->arch.exception.pending = true;
521 			vcpu->arch.exception.injected = false;
522 		}
523 		vcpu->arch.exception.has_error_code = has_error;
524 		vcpu->arch.exception.nr = nr;
525 		vcpu->arch.exception.error_code = error_code;
526 		vcpu->arch.exception.has_payload = has_payload;
527 		vcpu->arch.exception.payload = payload;
528 		if (!is_guest_mode(vcpu))
529 			kvm_deliver_exception_payload(vcpu);
530 		return;
531 	}
532 
533 	/* to check exception */
534 	prev_nr = vcpu->arch.exception.nr;
535 	if (prev_nr == DF_VECTOR) {
536 		/* triple fault -> shutdown */
537 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538 		return;
539 	}
540 	class1 = exception_class(prev_nr);
541 	class2 = exception_class(nr);
542 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544 		/*
545 		 * Generate double fault per SDM Table 5-5.  Set
546 		 * exception.pending = true so that the double fault
547 		 * can trigger a nested vmexit.
548 		 */
549 		vcpu->arch.exception.pending = true;
550 		vcpu->arch.exception.injected = false;
551 		vcpu->arch.exception.has_error_code = true;
552 		vcpu->arch.exception.nr = DF_VECTOR;
553 		vcpu->arch.exception.error_code = 0;
554 		vcpu->arch.exception.has_payload = false;
555 		vcpu->arch.exception.payload = 0;
556 	} else
557 		/* replace previous exception with a new one in a hope
558 		   that instruction re-execution will regenerate lost
559 		   exception */
560 		goto queue;
561 }
562 
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568 
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574 
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576 				  unsigned long payload)
577 {
578 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580 
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582 				    u32 error_code, unsigned long payload)
583 {
584 	kvm_multiple_exception(vcpu, nr, true, error_code,
585 			       true, payload, false);
586 }
587 
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590 	if (err)
591 		kvm_inject_gp(vcpu, 0);
592 	else
593 		return kvm_skip_emulated_instruction(vcpu);
594 
595 	return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598 
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601 	++vcpu->stat.pf_guest;
602 	vcpu->arch.exception.nested_apf =
603 		is_guest_mode(vcpu) && fault->async_page_fault;
604 	if (vcpu->arch.exception.nested_apf) {
605 		vcpu->arch.apf.nested_apf_token = fault->address;
606 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607 	} else {
608 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609 					fault->address);
610 	}
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613 
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618 	else
619 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620 
621 	return fault->nested_page_fault;
622 }
623 
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626 	atomic_inc(&vcpu->arch.nmi_queued);
627 	kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630 
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636 
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642 
643 /*
644  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
645  * a #GP and return false.
646  */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
650 		return true;
651 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652 	return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655 
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659 		return true;
660 
661 	kvm_queue_exception(vcpu, UD_VECTOR);
662 	return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665 
666 /*
667  * This function will be used to read from the physical memory of the currently
668  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669  * can read from guest physical or from the guest's guest physical memory.
670  */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672 			    gfn_t ngfn, void *data, int offset, int len,
673 			    u32 access)
674 {
675 	struct x86_exception exception;
676 	gfn_t real_gfn;
677 	gpa_t ngpa;
678 
679 	ngpa     = gfn_to_gpa(ngfn);
680 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681 	if (real_gfn == UNMAPPED_GVA)
682 		return -EFAULT;
683 
684 	real_gfn = gpa_to_gfn(real_gfn);
685 
686 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689 
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691 			       void *data, int offset, int len, u32 access)
692 {
693 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694 				       data, offset, len, access);
695 }
696 
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700 	       rsvd_bits(1, 2);
701 }
702 
703 /*
704  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
705  */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710 	int i;
711 	int ret;
712 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713 
714 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715 				      offset * sizeof(u64), sizeof(pdpte),
716 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
717 	if (ret < 0) {
718 		ret = 0;
719 		goto out;
720 	}
721 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722 		if ((pdpte[i] & PT_PRESENT_MASK) &&
723 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724 			ret = 0;
725 			goto out;
726 		}
727 	}
728 	ret = 1;
729 
730 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732 
733 out:
734 
735 	return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738 
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742 	int offset;
743 	gfn_t gfn;
744 	int r;
745 
746 	if (!is_pae_paging(vcpu))
747 		return false;
748 
749 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750 		return true;
751 
752 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
756 	if (r < 0)
757 		return true;
758 
759 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762 
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
766 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767 
768 	cr0 |= X86_CR0_ET;
769 
770 #ifdef CONFIG_X86_64
771 	if (cr0 & 0xffffffff00000000UL)
772 		return 1;
773 #endif
774 
775 	cr0 &= ~CR0_RESERVED_BITS;
776 
777 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778 		return 1;
779 
780 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781 		return 1;
782 
783 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785 		if ((vcpu->arch.efer & EFER_LME)) {
786 			int cs_db, cs_l;
787 
788 			if (!is_pae(vcpu))
789 				return 1;
790 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791 			if (cs_l)
792 				return 1;
793 		} else
794 #endif
795 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796 						 kvm_read_cr3(vcpu)))
797 			return 1;
798 	}
799 
800 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801 		return 1;
802 
803 	kvm_x86_ops.set_cr0(vcpu, cr0);
804 
805 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806 		kvm_clear_async_pf_completion_queue(vcpu);
807 		kvm_async_pf_hash_reset(vcpu);
808 	}
809 
810 	if ((cr0 ^ old_cr0) & update_bits)
811 		kvm_mmu_reset_context(vcpu);
812 
813 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817 
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821 
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827 
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831 
832 		if (vcpu->arch.xcr0 != host_xcr0)
833 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834 
835 		if (vcpu->arch.xsaves_enabled &&
836 		    vcpu->arch.ia32_xss != host_xss)
837 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838 	}
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841 
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845 
846 		if (vcpu->arch.xcr0 != host_xcr0)
847 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848 
849 		if (vcpu->arch.xsaves_enabled &&
850 		    vcpu->arch.ia32_xss != host_xss)
851 			wrmsrl(MSR_IA32_XSS, host_xss);
852 	}
853 
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856 
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859 	u64 xcr0 = xcr;
860 	u64 old_xcr0 = vcpu->arch.xcr0;
861 	u64 valid_bits;
862 
863 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
864 	if (index != XCR_XFEATURE_ENABLED_MASK)
865 		return 1;
866 	if (!(xcr0 & XFEATURE_MASK_FP))
867 		return 1;
868 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869 		return 1;
870 
871 	/*
872 	 * Do not allow the guest to set bits that we do not support
873 	 * saving.  However, xcr0 bit 0 is always set, even if the
874 	 * emulated CPU does not support XSAVE (see fx_init).
875 	 */
876 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877 	if (xcr0 & ~valid_bits)
878 		return 1;
879 
880 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882 		return 1;
883 
884 	if (xcr0 & XFEATURE_MASK_AVX512) {
885 		if (!(xcr0 & XFEATURE_MASK_YMM))
886 			return 1;
887 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888 			return 1;
889 	}
890 	vcpu->arch.xcr0 = xcr0;
891 
892 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893 		kvm_update_cpuid(vcpu);
894 	return 0;
895 }
896 
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
900 	    __kvm_set_xcr(vcpu, index, xcr)) {
901 		kvm_inject_gp(vcpu, 0);
902 		return 1;
903 	}
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907 
908 #define __cr4_reserved_bits(__cpu_has, __c)		\
909 ({							\
910 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
911 							\
912 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
913 		__reserved_bits |= X86_CR4_OSXSAVE;	\
914 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
915 		__reserved_bits |= X86_CR4_SMEP;	\
916 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
917 		__reserved_bits |= X86_CR4_SMAP;	\
918 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
919 		__reserved_bits |= X86_CR4_FSGSBASE;	\
920 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
921 		__reserved_bits |= X86_CR4_PKE;		\
922 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
923 		__reserved_bits |= X86_CR4_LA57;	\
924 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
925 		__reserved_bits |= X86_CR4_UMIP;	\
926 	__reserved_bits;				\
927 })
928 
929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
930 {
931 	u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
932 
933 	if (kvm_cpu_cap_has(X86_FEATURE_LA57))
934 		reserved_bits &= ~X86_CR4_LA57;
935 
936 	if (kvm_cpu_cap_has(X86_FEATURE_UMIP))
937 		reserved_bits &= ~X86_CR4_UMIP;
938 
939 	return reserved_bits;
940 }
941 
942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
943 {
944 	if (cr4 & cr4_reserved_bits)
945 		return -EINVAL;
946 
947 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
948 		return -EINVAL;
949 
950 	return 0;
951 }
952 
953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
954 {
955 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
956 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
957 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
958 
959 	if (kvm_valid_cr4(vcpu, cr4))
960 		return 1;
961 
962 	if (is_long_mode(vcpu)) {
963 		if (!(cr4 & X86_CR4_PAE))
964 			return 1;
965 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
966 		   && ((cr4 ^ old_cr4) & pdptr_bits)
967 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
968 				   kvm_read_cr3(vcpu)))
969 		return 1;
970 
971 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
972 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
973 			return 1;
974 
975 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
976 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
977 			return 1;
978 	}
979 
980 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
981 		return 1;
982 
983 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
984 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
985 		kvm_mmu_reset_context(vcpu);
986 
987 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
988 		kvm_update_cpuid(vcpu);
989 
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(kvm_set_cr4);
993 
994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
995 {
996 	bool skip_tlb_flush = false;
997 #ifdef CONFIG_X86_64
998 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
999 
1000 	if (pcid_enabled) {
1001 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1002 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1003 	}
1004 #endif
1005 
1006 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1007 		if (!skip_tlb_flush) {
1008 			kvm_mmu_sync_roots(vcpu);
1009 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1010 		}
1011 		return 0;
1012 	}
1013 
1014 	if (is_long_mode(vcpu) &&
1015 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1016 		return 1;
1017 	else if (is_pae_paging(vcpu) &&
1018 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1019 		return 1;
1020 
1021 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1022 	vcpu->arch.cr3 = cr3;
1023 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1028 
1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1030 {
1031 	if (cr8 & CR8_RESERVED_BITS)
1032 		return 1;
1033 	if (lapic_in_kernel(vcpu))
1034 		kvm_lapic_set_tpr(vcpu, cr8);
1035 	else
1036 		vcpu->arch.cr8 = cr8;
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1040 
1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1042 {
1043 	if (lapic_in_kernel(vcpu))
1044 		return kvm_lapic_get_cr8(vcpu);
1045 	else
1046 		return vcpu->arch.cr8;
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1049 
1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1051 {
1052 	int i;
1053 
1054 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1055 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1056 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1057 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1058 	}
1059 }
1060 
1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1062 {
1063 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1064 		kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6);
1065 }
1066 
1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1068 {
1069 	unsigned long dr7;
1070 
1071 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1072 		dr7 = vcpu->arch.guest_debug_dr7;
1073 	else
1074 		dr7 = vcpu->arch.dr7;
1075 	kvm_x86_ops.set_dr7(vcpu, dr7);
1076 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1077 	if (dr7 & DR7_BP_EN_MASK)
1078 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1079 }
1080 
1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1082 {
1083 	u64 fixed = DR6_FIXED_1;
1084 
1085 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1086 		fixed |= DR6_RTM;
1087 	return fixed;
1088 }
1089 
1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1091 {
1092 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1093 
1094 	switch (dr) {
1095 	case 0 ... 3:
1096 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1097 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1098 			vcpu->arch.eff_db[dr] = val;
1099 		break;
1100 	case 4:
1101 		/* fall through */
1102 	case 6:
1103 		if (val & 0xffffffff00000000ULL)
1104 			return -1; /* #GP */
1105 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1106 		kvm_update_dr6(vcpu);
1107 		break;
1108 	case 5:
1109 		/* fall through */
1110 	default: /* 7 */
1111 		if (!kvm_dr7_valid(val))
1112 			return -1; /* #GP */
1113 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1114 		kvm_update_dr7(vcpu);
1115 		break;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1122 {
1123 	if (__kvm_set_dr(vcpu, dr, val)) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_set_dr);
1130 
1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1132 {
1133 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1134 
1135 	switch (dr) {
1136 	case 0 ... 3:
1137 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1138 		break;
1139 	case 4:
1140 		/* fall through */
1141 	case 6:
1142 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1143 			*val = vcpu->arch.dr6;
1144 		else
1145 			*val = kvm_x86_ops.get_dr6(vcpu);
1146 		break;
1147 	case 5:
1148 		/* fall through */
1149 	default: /* 7 */
1150 		*val = vcpu->arch.dr7;
1151 		break;
1152 	}
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_get_dr);
1156 
1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1158 {
1159 	u32 ecx = kvm_rcx_read(vcpu);
1160 	u64 data;
1161 	int err;
1162 
1163 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1164 	if (err)
1165 		return err;
1166 	kvm_rax_write(vcpu, (u32)data);
1167 	kvm_rdx_write(vcpu, data >> 32);
1168 	return err;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1171 
1172 /*
1173  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1174  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1175  *
1176  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1177  * extract the supported MSRs from the related const lists.
1178  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1179  * capabilities of the host cpu. This capabilities test skips MSRs that are
1180  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1181  * may depend on host virtualization features rather than host cpu features.
1182  */
1183 
1184 static const u32 msrs_to_save_all[] = {
1185 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1186 	MSR_STAR,
1187 #ifdef CONFIG_X86_64
1188 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1189 #endif
1190 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1191 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1192 	MSR_IA32_SPEC_CTRL,
1193 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1194 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1195 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1196 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1197 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1198 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1199 	MSR_IA32_UMWAIT_CONTROL,
1200 
1201 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1202 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1203 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1204 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1205 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1206 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1207 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1208 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1209 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1210 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1211 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1212 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1213 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1214 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1215 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1216 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1217 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1218 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1219 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1220 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1221 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1222 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1223 };
1224 
1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1226 static unsigned num_msrs_to_save;
1227 
1228 static const u32 emulated_msrs_all[] = {
1229 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1230 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1231 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1232 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1233 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1234 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1235 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1236 	HV_X64_MSR_RESET,
1237 	HV_X64_MSR_VP_INDEX,
1238 	HV_X64_MSR_VP_RUNTIME,
1239 	HV_X64_MSR_SCONTROL,
1240 	HV_X64_MSR_STIMER0_CONFIG,
1241 	HV_X64_MSR_VP_ASSIST_PAGE,
1242 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1243 	HV_X64_MSR_TSC_EMULATION_STATUS,
1244 
1245 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1246 	MSR_KVM_PV_EOI_EN,
1247 
1248 	MSR_IA32_TSC_ADJUST,
1249 	MSR_IA32_TSCDEADLINE,
1250 	MSR_IA32_ARCH_CAPABILITIES,
1251 	MSR_IA32_MISC_ENABLE,
1252 	MSR_IA32_MCG_STATUS,
1253 	MSR_IA32_MCG_CTL,
1254 	MSR_IA32_MCG_EXT_CTL,
1255 	MSR_IA32_SMBASE,
1256 	MSR_SMI_COUNT,
1257 	MSR_PLATFORM_INFO,
1258 	MSR_MISC_FEATURES_ENABLES,
1259 	MSR_AMD64_VIRT_SPEC_CTRL,
1260 	MSR_IA32_POWER_CTL,
1261 	MSR_IA32_UCODE_REV,
1262 
1263 	/*
1264 	 * The following list leaves out MSRs whose values are determined
1265 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1266 	 * We always support the "true" VMX control MSRs, even if the host
1267 	 * processor does not, so I am putting these registers here rather
1268 	 * than in msrs_to_save_all.
1269 	 */
1270 	MSR_IA32_VMX_BASIC,
1271 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1272 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1273 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1274 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1275 	MSR_IA32_VMX_MISC,
1276 	MSR_IA32_VMX_CR0_FIXED0,
1277 	MSR_IA32_VMX_CR4_FIXED0,
1278 	MSR_IA32_VMX_VMCS_ENUM,
1279 	MSR_IA32_VMX_PROCBASED_CTLS2,
1280 	MSR_IA32_VMX_EPT_VPID_CAP,
1281 	MSR_IA32_VMX_VMFUNC,
1282 
1283 	MSR_K7_HWCR,
1284 	MSR_KVM_POLL_CONTROL,
1285 };
1286 
1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1288 static unsigned num_emulated_msrs;
1289 
1290 /*
1291  * List of msr numbers which are used to expose MSR-based features that
1292  * can be used by a hypervisor to validate requested CPU features.
1293  */
1294 static const u32 msr_based_features_all[] = {
1295 	MSR_IA32_VMX_BASIC,
1296 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1297 	MSR_IA32_VMX_PINBASED_CTLS,
1298 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1299 	MSR_IA32_VMX_PROCBASED_CTLS,
1300 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1301 	MSR_IA32_VMX_EXIT_CTLS,
1302 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1303 	MSR_IA32_VMX_ENTRY_CTLS,
1304 	MSR_IA32_VMX_MISC,
1305 	MSR_IA32_VMX_CR0_FIXED0,
1306 	MSR_IA32_VMX_CR0_FIXED1,
1307 	MSR_IA32_VMX_CR4_FIXED0,
1308 	MSR_IA32_VMX_CR4_FIXED1,
1309 	MSR_IA32_VMX_VMCS_ENUM,
1310 	MSR_IA32_VMX_PROCBASED_CTLS2,
1311 	MSR_IA32_VMX_EPT_VPID_CAP,
1312 	MSR_IA32_VMX_VMFUNC,
1313 
1314 	MSR_F10H_DECFG,
1315 	MSR_IA32_UCODE_REV,
1316 	MSR_IA32_ARCH_CAPABILITIES,
1317 };
1318 
1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1320 static unsigned int num_msr_based_features;
1321 
1322 static u64 kvm_get_arch_capabilities(void)
1323 {
1324 	u64 data = 0;
1325 
1326 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1327 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1328 
1329 	/*
1330 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1331 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1332 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1333 	 * L1 guests, so it need not worry about its own (L2) guests.
1334 	 */
1335 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1336 
1337 	/*
1338 	 * If we're doing cache flushes (either "always" or "cond")
1339 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1340 	 * If an outer hypervisor is doing the cache flush for us
1341 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1342 	 * capability to the guest too, and if EPT is disabled we're not
1343 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1344 	 * require a nested hypervisor to do a flush of its own.
1345 	 */
1346 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1347 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1348 
1349 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1350 		data |= ARCH_CAP_RDCL_NO;
1351 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1352 		data |= ARCH_CAP_SSB_NO;
1353 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1354 		data |= ARCH_CAP_MDS_NO;
1355 
1356 	/*
1357 	 * On TAA affected systems:
1358 	 *      - nothing to do if TSX is disabled on the host.
1359 	 *      - we emulate TSX_CTRL if present on the host.
1360 	 *	  This lets the guest use VERW to clear CPU buffers.
1361 	 */
1362 	if (!boot_cpu_has(X86_FEATURE_RTM))
1363 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1364 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1365 		data |= ARCH_CAP_TAA_NO;
1366 
1367 	return data;
1368 }
1369 
1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1371 {
1372 	switch (msr->index) {
1373 	case MSR_IA32_ARCH_CAPABILITIES:
1374 		msr->data = kvm_get_arch_capabilities();
1375 		break;
1376 	case MSR_IA32_UCODE_REV:
1377 		rdmsrl_safe(msr->index, &msr->data);
1378 		break;
1379 	default:
1380 		if (kvm_x86_ops.get_msr_feature(msr))
1381 			return 1;
1382 	}
1383 	return 0;
1384 }
1385 
1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1387 {
1388 	struct kvm_msr_entry msr;
1389 	int r;
1390 
1391 	msr.index = index;
1392 	r = kvm_get_msr_feature(&msr);
1393 	if (r)
1394 		return r;
1395 
1396 	*data = msr.data;
1397 
1398 	return 0;
1399 }
1400 
1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1402 {
1403 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1404 		return false;
1405 
1406 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1407 		return false;
1408 
1409 	if (efer & (EFER_LME | EFER_LMA) &&
1410 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1411 		return false;
1412 
1413 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1414 		return false;
1415 
1416 	return true;
1417 
1418 }
1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1420 {
1421 	if (efer & efer_reserved_bits)
1422 		return false;
1423 
1424 	return __kvm_valid_efer(vcpu, efer);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1427 
1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1429 {
1430 	u64 old_efer = vcpu->arch.efer;
1431 	u64 efer = msr_info->data;
1432 
1433 	if (efer & efer_reserved_bits)
1434 		return 1;
1435 
1436 	if (!msr_info->host_initiated) {
1437 		if (!__kvm_valid_efer(vcpu, efer))
1438 			return 1;
1439 
1440 		if (is_paging(vcpu) &&
1441 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1442 			return 1;
1443 	}
1444 
1445 	efer &= ~EFER_LMA;
1446 	efer |= vcpu->arch.efer & EFER_LMA;
1447 
1448 	kvm_x86_ops.set_efer(vcpu, efer);
1449 
1450 	/* Update reserved bits */
1451 	if ((efer ^ old_efer) & EFER_NX)
1452 		kvm_mmu_reset_context(vcpu);
1453 
1454 	return 0;
1455 }
1456 
1457 void kvm_enable_efer_bits(u64 mask)
1458 {
1459        efer_reserved_bits &= ~mask;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1462 
1463 /*
1464  * Write @data into the MSR specified by @index.  Select MSR specific fault
1465  * checks are bypassed if @host_initiated is %true.
1466  * Returns 0 on success, non-0 otherwise.
1467  * Assumes vcpu_load() was already called.
1468  */
1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1470 			 bool host_initiated)
1471 {
1472 	struct msr_data msr;
1473 
1474 	switch (index) {
1475 	case MSR_FS_BASE:
1476 	case MSR_GS_BASE:
1477 	case MSR_KERNEL_GS_BASE:
1478 	case MSR_CSTAR:
1479 	case MSR_LSTAR:
1480 		if (is_noncanonical_address(data, vcpu))
1481 			return 1;
1482 		break;
1483 	case MSR_IA32_SYSENTER_EIP:
1484 	case MSR_IA32_SYSENTER_ESP:
1485 		/*
1486 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1487 		 * non-canonical address is written on Intel but not on
1488 		 * AMD (which ignores the top 32-bits, because it does
1489 		 * not implement 64-bit SYSENTER).
1490 		 *
1491 		 * 64-bit code should hence be able to write a non-canonical
1492 		 * value on AMD.  Making the address canonical ensures that
1493 		 * vmentry does not fail on Intel after writing a non-canonical
1494 		 * value, and that something deterministic happens if the guest
1495 		 * invokes 64-bit SYSENTER.
1496 		 */
1497 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1498 	}
1499 
1500 	msr.data = data;
1501 	msr.index = index;
1502 	msr.host_initiated = host_initiated;
1503 
1504 	return kvm_x86_ops.set_msr(vcpu, &msr);
1505 }
1506 
1507 /*
1508  * Read the MSR specified by @index into @data.  Select MSR specific fault
1509  * checks are bypassed if @host_initiated is %true.
1510  * Returns 0 on success, non-0 otherwise.
1511  * Assumes vcpu_load() was already called.
1512  */
1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1514 		  bool host_initiated)
1515 {
1516 	struct msr_data msr;
1517 	int ret;
1518 
1519 	msr.index = index;
1520 	msr.host_initiated = host_initiated;
1521 
1522 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1523 	if (!ret)
1524 		*data = msr.data;
1525 	return ret;
1526 }
1527 
1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1529 {
1530 	return __kvm_get_msr(vcpu, index, data, false);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_msr);
1533 
1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1535 {
1536 	return __kvm_set_msr(vcpu, index, data, false);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_set_msr);
1539 
1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1541 {
1542 	u32 ecx = kvm_rcx_read(vcpu);
1543 	u64 data;
1544 
1545 	if (kvm_get_msr(vcpu, ecx, &data)) {
1546 		trace_kvm_msr_read_ex(ecx);
1547 		kvm_inject_gp(vcpu, 0);
1548 		return 1;
1549 	}
1550 
1551 	trace_kvm_msr_read(ecx, data);
1552 
1553 	kvm_rax_write(vcpu, data & -1u);
1554 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1555 	return kvm_skip_emulated_instruction(vcpu);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1558 
1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1560 {
1561 	u32 ecx = kvm_rcx_read(vcpu);
1562 	u64 data = kvm_read_edx_eax(vcpu);
1563 
1564 	if (kvm_set_msr(vcpu, ecx, data)) {
1565 		trace_kvm_msr_write_ex(ecx, data);
1566 		kvm_inject_gp(vcpu, 0);
1567 		return 1;
1568 	}
1569 
1570 	trace_kvm_msr_write(ecx, data);
1571 	return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1574 
1575 /*
1576  * The fast path for frequent and performance sensitive wrmsr emulation,
1577  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1578  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1579  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1580  * other cases which must be called after interrupts are enabled on the host.
1581  */
1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1583 {
1584 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1585 		return 1;
1586 
1587 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1588 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1589 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1590 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1591 
1592 		data &= ~(1 << 12);
1593 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1594 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1595 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1596 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1597 		return 0;
1598 	}
1599 
1600 	return 1;
1601 }
1602 
1603 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1604 {
1605 	u32 msr = kvm_rcx_read(vcpu);
1606 	u64 data;
1607 	int ret = 0;
1608 
1609 	switch (msr) {
1610 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1611 		data = kvm_read_edx_eax(vcpu);
1612 		ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1613 		break;
1614 	default:
1615 		return EXIT_FASTPATH_NONE;
1616 	}
1617 
1618 	if (!ret) {
1619 		trace_kvm_msr_write(msr, data);
1620 		return EXIT_FASTPATH_SKIP_EMUL_INS;
1621 	}
1622 
1623 	return EXIT_FASTPATH_NONE;
1624 }
1625 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1626 
1627 /*
1628  * Adapt set_msr() to msr_io()'s calling convention
1629  */
1630 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1631 {
1632 	return __kvm_get_msr(vcpu, index, data, true);
1633 }
1634 
1635 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1636 {
1637 	return __kvm_set_msr(vcpu, index, *data, true);
1638 }
1639 
1640 #ifdef CONFIG_X86_64
1641 struct pvclock_clock {
1642 	int vclock_mode;
1643 	u64 cycle_last;
1644 	u64 mask;
1645 	u32 mult;
1646 	u32 shift;
1647 	u64 base_cycles;
1648 	u64 offset;
1649 };
1650 
1651 struct pvclock_gtod_data {
1652 	seqcount_t	seq;
1653 
1654 	struct pvclock_clock clock; /* extract of a clocksource struct */
1655 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1656 
1657 	ktime_t		offs_boot;
1658 	u64		wall_time_sec;
1659 };
1660 
1661 static struct pvclock_gtod_data pvclock_gtod_data;
1662 
1663 static void update_pvclock_gtod(struct timekeeper *tk)
1664 {
1665 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1666 
1667 	write_seqcount_begin(&vdata->seq);
1668 
1669 	/* copy pvclock gtod data */
1670 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1671 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1672 	vdata->clock.mask		= tk->tkr_mono.mask;
1673 	vdata->clock.mult		= tk->tkr_mono.mult;
1674 	vdata->clock.shift		= tk->tkr_mono.shift;
1675 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1676 	vdata->clock.offset		= tk->tkr_mono.base;
1677 
1678 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1679 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1680 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1681 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1682 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1683 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1684 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1685 
1686 	vdata->wall_time_sec            = tk->xtime_sec;
1687 
1688 	vdata->offs_boot		= tk->offs_boot;
1689 
1690 	write_seqcount_end(&vdata->seq);
1691 }
1692 
1693 static s64 get_kvmclock_base_ns(void)
1694 {
1695 	/* Count up from boot time, but with the frequency of the raw clock.  */
1696 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1697 }
1698 #else
1699 static s64 get_kvmclock_base_ns(void)
1700 {
1701 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1702 	return ktime_get_boottime_ns();
1703 }
1704 #endif
1705 
1706 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1707 {
1708 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1709 	kvm_vcpu_kick(vcpu);
1710 }
1711 
1712 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1713 {
1714 	int version;
1715 	int r;
1716 	struct pvclock_wall_clock wc;
1717 	u64 wall_nsec;
1718 
1719 	if (!wall_clock)
1720 		return;
1721 
1722 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1723 	if (r)
1724 		return;
1725 
1726 	if (version & 1)
1727 		++version;  /* first time write, random junk */
1728 
1729 	++version;
1730 
1731 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1732 		return;
1733 
1734 	/*
1735 	 * The guest calculates current wall clock time by adding
1736 	 * system time (updated by kvm_guest_time_update below) to the
1737 	 * wall clock specified here.  We do the reverse here.
1738 	 */
1739 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1740 
1741 	wc.nsec = do_div(wall_nsec, 1000000000);
1742 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1743 	wc.version = version;
1744 
1745 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1746 
1747 	version++;
1748 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1749 }
1750 
1751 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1752 {
1753 	do_shl32_div32(dividend, divisor);
1754 	return dividend;
1755 }
1756 
1757 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1758 			       s8 *pshift, u32 *pmultiplier)
1759 {
1760 	uint64_t scaled64;
1761 	int32_t  shift = 0;
1762 	uint64_t tps64;
1763 	uint32_t tps32;
1764 
1765 	tps64 = base_hz;
1766 	scaled64 = scaled_hz;
1767 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1768 		tps64 >>= 1;
1769 		shift--;
1770 	}
1771 
1772 	tps32 = (uint32_t)tps64;
1773 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1774 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1775 			scaled64 >>= 1;
1776 		else
1777 			tps32 <<= 1;
1778 		shift++;
1779 	}
1780 
1781 	*pshift = shift;
1782 	*pmultiplier = div_frac(scaled64, tps32);
1783 }
1784 
1785 #ifdef CONFIG_X86_64
1786 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1787 #endif
1788 
1789 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1790 static unsigned long max_tsc_khz;
1791 
1792 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1793 {
1794 	u64 v = (u64)khz * (1000000 + ppm);
1795 	do_div(v, 1000000);
1796 	return v;
1797 }
1798 
1799 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1800 {
1801 	u64 ratio;
1802 
1803 	/* Guest TSC same frequency as host TSC? */
1804 	if (!scale) {
1805 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1806 		return 0;
1807 	}
1808 
1809 	/* TSC scaling supported? */
1810 	if (!kvm_has_tsc_control) {
1811 		if (user_tsc_khz > tsc_khz) {
1812 			vcpu->arch.tsc_catchup = 1;
1813 			vcpu->arch.tsc_always_catchup = 1;
1814 			return 0;
1815 		} else {
1816 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1817 			return -1;
1818 		}
1819 	}
1820 
1821 	/* TSC scaling required  - calculate ratio */
1822 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1823 				user_tsc_khz, tsc_khz);
1824 
1825 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1826 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1827 			            user_tsc_khz);
1828 		return -1;
1829 	}
1830 
1831 	vcpu->arch.tsc_scaling_ratio = ratio;
1832 	return 0;
1833 }
1834 
1835 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1836 {
1837 	u32 thresh_lo, thresh_hi;
1838 	int use_scaling = 0;
1839 
1840 	/* tsc_khz can be zero if TSC calibration fails */
1841 	if (user_tsc_khz == 0) {
1842 		/* set tsc_scaling_ratio to a safe value */
1843 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1844 		return -1;
1845 	}
1846 
1847 	/* Compute a scale to convert nanoseconds in TSC cycles */
1848 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1849 			   &vcpu->arch.virtual_tsc_shift,
1850 			   &vcpu->arch.virtual_tsc_mult);
1851 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1852 
1853 	/*
1854 	 * Compute the variation in TSC rate which is acceptable
1855 	 * within the range of tolerance and decide if the
1856 	 * rate being applied is within that bounds of the hardware
1857 	 * rate.  If so, no scaling or compensation need be done.
1858 	 */
1859 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1860 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1861 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1862 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1863 		use_scaling = 1;
1864 	}
1865 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1866 }
1867 
1868 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1869 {
1870 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1871 				      vcpu->arch.virtual_tsc_mult,
1872 				      vcpu->arch.virtual_tsc_shift);
1873 	tsc += vcpu->arch.this_tsc_write;
1874 	return tsc;
1875 }
1876 
1877 static inline int gtod_is_based_on_tsc(int mode)
1878 {
1879 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1880 }
1881 
1882 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1883 {
1884 #ifdef CONFIG_X86_64
1885 	bool vcpus_matched;
1886 	struct kvm_arch *ka = &vcpu->kvm->arch;
1887 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888 
1889 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1890 			 atomic_read(&vcpu->kvm->online_vcpus));
1891 
1892 	/*
1893 	 * Once the masterclock is enabled, always perform request in
1894 	 * order to update it.
1895 	 *
1896 	 * In order to enable masterclock, the host clocksource must be TSC
1897 	 * and the vcpus need to have matched TSCs.  When that happens,
1898 	 * perform request to enable masterclock.
1899 	 */
1900 	if (ka->use_master_clock ||
1901 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1902 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1903 
1904 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1905 			    atomic_read(&vcpu->kvm->online_vcpus),
1906 		            ka->use_master_clock, gtod->clock.vclock_mode);
1907 #endif
1908 }
1909 
1910 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1911 {
1912 	u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1913 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1914 }
1915 
1916 /*
1917  * Multiply tsc by a fixed point number represented by ratio.
1918  *
1919  * The most significant 64-N bits (mult) of ratio represent the
1920  * integral part of the fixed point number; the remaining N bits
1921  * (frac) represent the fractional part, ie. ratio represents a fixed
1922  * point number (mult + frac * 2^(-N)).
1923  *
1924  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1925  */
1926 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1927 {
1928 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1929 }
1930 
1931 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1932 {
1933 	u64 _tsc = tsc;
1934 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1935 
1936 	if (ratio != kvm_default_tsc_scaling_ratio)
1937 		_tsc = __scale_tsc(ratio, tsc);
1938 
1939 	return _tsc;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1942 
1943 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1944 {
1945 	u64 tsc;
1946 
1947 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1948 
1949 	return target_tsc - tsc;
1950 }
1951 
1952 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1953 {
1954 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1955 
1956 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1959 
1960 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1961 {
1962 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1963 }
1964 
1965 static inline bool kvm_check_tsc_unstable(void)
1966 {
1967 #ifdef CONFIG_X86_64
1968 	/*
1969 	 * TSC is marked unstable when we're running on Hyper-V,
1970 	 * 'TSC page' clocksource is good.
1971 	 */
1972 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
1973 		return false;
1974 #endif
1975 	return check_tsc_unstable();
1976 }
1977 
1978 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1979 {
1980 	struct kvm *kvm = vcpu->kvm;
1981 	u64 offset, ns, elapsed;
1982 	unsigned long flags;
1983 	bool matched;
1984 	bool already_matched;
1985 	u64 data = msr->data;
1986 	bool synchronizing = false;
1987 
1988 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1989 	offset = kvm_compute_tsc_offset(vcpu, data);
1990 	ns = get_kvmclock_base_ns();
1991 	elapsed = ns - kvm->arch.last_tsc_nsec;
1992 
1993 	if (vcpu->arch.virtual_tsc_khz) {
1994 		if (data == 0 && msr->host_initiated) {
1995 			/*
1996 			 * detection of vcpu initialization -- need to sync
1997 			 * with other vCPUs. This particularly helps to keep
1998 			 * kvm_clock stable after CPU hotplug
1999 			 */
2000 			synchronizing = true;
2001 		} else {
2002 			u64 tsc_exp = kvm->arch.last_tsc_write +
2003 						nsec_to_cycles(vcpu, elapsed);
2004 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2005 			/*
2006 			 * Special case: TSC write with a small delta (1 second)
2007 			 * of virtual cycle time against real time is
2008 			 * interpreted as an attempt to synchronize the CPU.
2009 			 */
2010 			synchronizing = data < tsc_exp + tsc_hz &&
2011 					data + tsc_hz > tsc_exp;
2012 		}
2013 	}
2014 
2015 	/*
2016 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2017 	 * TSC, we add elapsed time in this computation.  We could let the
2018 	 * compensation code attempt to catch up if we fall behind, but
2019 	 * it's better to try to match offsets from the beginning.
2020          */
2021 	if (synchronizing &&
2022 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2023 		if (!kvm_check_tsc_unstable()) {
2024 			offset = kvm->arch.cur_tsc_offset;
2025 		} else {
2026 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2027 			data += delta;
2028 			offset = kvm_compute_tsc_offset(vcpu, data);
2029 		}
2030 		matched = true;
2031 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2032 	} else {
2033 		/*
2034 		 * We split periods of matched TSC writes into generations.
2035 		 * For each generation, we track the original measured
2036 		 * nanosecond time, offset, and write, so if TSCs are in
2037 		 * sync, we can match exact offset, and if not, we can match
2038 		 * exact software computation in compute_guest_tsc()
2039 		 *
2040 		 * These values are tracked in kvm->arch.cur_xxx variables.
2041 		 */
2042 		kvm->arch.cur_tsc_generation++;
2043 		kvm->arch.cur_tsc_nsec = ns;
2044 		kvm->arch.cur_tsc_write = data;
2045 		kvm->arch.cur_tsc_offset = offset;
2046 		matched = false;
2047 	}
2048 
2049 	/*
2050 	 * We also track th most recent recorded KHZ, write and time to
2051 	 * allow the matching interval to be extended at each write.
2052 	 */
2053 	kvm->arch.last_tsc_nsec = ns;
2054 	kvm->arch.last_tsc_write = data;
2055 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2056 
2057 	vcpu->arch.last_guest_tsc = data;
2058 
2059 	/* Keep track of which generation this VCPU has synchronized to */
2060 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2061 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2062 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2063 
2064 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2065 		update_ia32_tsc_adjust_msr(vcpu, offset);
2066 
2067 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2068 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2069 
2070 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2071 	if (!matched) {
2072 		kvm->arch.nr_vcpus_matched_tsc = 0;
2073 	} else if (!already_matched) {
2074 		kvm->arch.nr_vcpus_matched_tsc++;
2075 	}
2076 
2077 	kvm_track_tsc_matching(vcpu);
2078 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2079 }
2080 
2081 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2082 
2083 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2084 					   s64 adjustment)
2085 {
2086 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
2087 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2088 }
2089 
2090 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2091 {
2092 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2093 		WARN_ON(adjustment < 0);
2094 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2095 	adjust_tsc_offset_guest(vcpu, adjustment);
2096 }
2097 
2098 #ifdef CONFIG_X86_64
2099 
2100 static u64 read_tsc(void)
2101 {
2102 	u64 ret = (u64)rdtsc_ordered();
2103 	u64 last = pvclock_gtod_data.clock.cycle_last;
2104 
2105 	if (likely(ret >= last))
2106 		return ret;
2107 
2108 	/*
2109 	 * GCC likes to generate cmov here, but this branch is extremely
2110 	 * predictable (it's just a function of time and the likely is
2111 	 * very likely) and there's a data dependence, so force GCC
2112 	 * to generate a branch instead.  I don't barrier() because
2113 	 * we don't actually need a barrier, and if this function
2114 	 * ever gets inlined it will generate worse code.
2115 	 */
2116 	asm volatile ("");
2117 	return last;
2118 }
2119 
2120 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2121 			  int *mode)
2122 {
2123 	long v;
2124 	u64 tsc_pg_val;
2125 
2126 	switch (clock->vclock_mode) {
2127 	case VDSO_CLOCKMODE_HVCLOCK:
2128 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2129 						  tsc_timestamp);
2130 		if (tsc_pg_val != U64_MAX) {
2131 			/* TSC page valid */
2132 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2133 			v = (tsc_pg_val - clock->cycle_last) &
2134 				clock->mask;
2135 		} else {
2136 			/* TSC page invalid */
2137 			*mode = VDSO_CLOCKMODE_NONE;
2138 		}
2139 		break;
2140 	case VDSO_CLOCKMODE_TSC:
2141 		*mode = VDSO_CLOCKMODE_TSC;
2142 		*tsc_timestamp = read_tsc();
2143 		v = (*tsc_timestamp - clock->cycle_last) &
2144 			clock->mask;
2145 		break;
2146 	default:
2147 		*mode = VDSO_CLOCKMODE_NONE;
2148 	}
2149 
2150 	if (*mode == VDSO_CLOCKMODE_NONE)
2151 		*tsc_timestamp = v = 0;
2152 
2153 	return v * clock->mult;
2154 }
2155 
2156 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2157 {
2158 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2159 	unsigned long seq;
2160 	int mode;
2161 	u64 ns;
2162 
2163 	do {
2164 		seq = read_seqcount_begin(&gtod->seq);
2165 		ns = gtod->raw_clock.base_cycles;
2166 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2167 		ns >>= gtod->raw_clock.shift;
2168 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2169 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2170 	*t = ns;
2171 
2172 	return mode;
2173 }
2174 
2175 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2176 {
2177 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2178 	unsigned long seq;
2179 	int mode;
2180 	u64 ns;
2181 
2182 	do {
2183 		seq = read_seqcount_begin(&gtod->seq);
2184 		ts->tv_sec = gtod->wall_time_sec;
2185 		ns = gtod->clock.base_cycles;
2186 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2187 		ns >>= gtod->clock.shift;
2188 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2189 
2190 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2191 	ts->tv_nsec = ns;
2192 
2193 	return mode;
2194 }
2195 
2196 /* returns true if host is using TSC based clocksource */
2197 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2198 {
2199 	/* checked again under seqlock below */
2200 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2201 		return false;
2202 
2203 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2204 						      tsc_timestamp));
2205 }
2206 
2207 /* returns true if host is using TSC based clocksource */
2208 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2209 					   u64 *tsc_timestamp)
2210 {
2211 	/* checked again under seqlock below */
2212 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2213 		return false;
2214 
2215 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2216 }
2217 #endif
2218 
2219 /*
2220  *
2221  * Assuming a stable TSC across physical CPUS, and a stable TSC
2222  * across virtual CPUs, the following condition is possible.
2223  * Each numbered line represents an event visible to both
2224  * CPUs at the next numbered event.
2225  *
2226  * "timespecX" represents host monotonic time. "tscX" represents
2227  * RDTSC value.
2228  *
2229  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2230  *
2231  * 1.  read timespec0,tsc0
2232  * 2.					| timespec1 = timespec0 + N
2233  * 					| tsc1 = tsc0 + M
2234  * 3. transition to guest		| transition to guest
2235  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2236  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2237  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2238  *
2239  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2240  *
2241  * 	- ret0 < ret1
2242  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2243  *		...
2244  *	- 0 < N - M => M < N
2245  *
2246  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2247  * always the case (the difference between two distinct xtime instances
2248  * might be smaller then the difference between corresponding TSC reads,
2249  * when updating guest vcpus pvclock areas).
2250  *
2251  * To avoid that problem, do not allow visibility of distinct
2252  * system_timestamp/tsc_timestamp values simultaneously: use a master
2253  * copy of host monotonic time values. Update that master copy
2254  * in lockstep.
2255  *
2256  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2257  *
2258  */
2259 
2260 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2261 {
2262 #ifdef CONFIG_X86_64
2263 	struct kvm_arch *ka = &kvm->arch;
2264 	int vclock_mode;
2265 	bool host_tsc_clocksource, vcpus_matched;
2266 
2267 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2268 			atomic_read(&kvm->online_vcpus));
2269 
2270 	/*
2271 	 * If the host uses TSC clock, then passthrough TSC as stable
2272 	 * to the guest.
2273 	 */
2274 	host_tsc_clocksource = kvm_get_time_and_clockread(
2275 					&ka->master_kernel_ns,
2276 					&ka->master_cycle_now);
2277 
2278 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2279 				&& !ka->backwards_tsc_observed
2280 				&& !ka->boot_vcpu_runs_old_kvmclock;
2281 
2282 	if (ka->use_master_clock)
2283 		atomic_set(&kvm_guest_has_master_clock, 1);
2284 
2285 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2286 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2287 					vcpus_matched);
2288 #endif
2289 }
2290 
2291 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2292 {
2293 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2294 }
2295 
2296 static void kvm_gen_update_masterclock(struct kvm *kvm)
2297 {
2298 #ifdef CONFIG_X86_64
2299 	int i;
2300 	struct kvm_vcpu *vcpu;
2301 	struct kvm_arch *ka = &kvm->arch;
2302 
2303 	spin_lock(&ka->pvclock_gtod_sync_lock);
2304 	kvm_make_mclock_inprogress_request(kvm);
2305 	/* no guest entries from this point */
2306 	pvclock_update_vm_gtod_copy(kvm);
2307 
2308 	kvm_for_each_vcpu(i, vcpu, kvm)
2309 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2310 
2311 	/* guest entries allowed */
2312 	kvm_for_each_vcpu(i, vcpu, kvm)
2313 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2314 
2315 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2316 #endif
2317 }
2318 
2319 u64 get_kvmclock_ns(struct kvm *kvm)
2320 {
2321 	struct kvm_arch *ka = &kvm->arch;
2322 	struct pvclock_vcpu_time_info hv_clock;
2323 	u64 ret;
2324 
2325 	spin_lock(&ka->pvclock_gtod_sync_lock);
2326 	if (!ka->use_master_clock) {
2327 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2328 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2329 	}
2330 
2331 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2332 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2333 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2334 
2335 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2336 	get_cpu();
2337 
2338 	if (__this_cpu_read(cpu_tsc_khz)) {
2339 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2340 				   &hv_clock.tsc_shift,
2341 				   &hv_clock.tsc_to_system_mul);
2342 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2343 	} else
2344 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2345 
2346 	put_cpu();
2347 
2348 	return ret;
2349 }
2350 
2351 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2352 {
2353 	struct kvm_vcpu_arch *vcpu = &v->arch;
2354 	struct pvclock_vcpu_time_info guest_hv_clock;
2355 
2356 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2357 		&guest_hv_clock, sizeof(guest_hv_clock))))
2358 		return;
2359 
2360 	/* This VCPU is paused, but it's legal for a guest to read another
2361 	 * VCPU's kvmclock, so we really have to follow the specification where
2362 	 * it says that version is odd if data is being modified, and even after
2363 	 * it is consistent.
2364 	 *
2365 	 * Version field updates must be kept separate.  This is because
2366 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2367 	 * writes within a string instruction are weakly ordered.  So there
2368 	 * are three writes overall.
2369 	 *
2370 	 * As a small optimization, only write the version field in the first
2371 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2372 	 * version field is the first in the struct.
2373 	 */
2374 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2375 
2376 	if (guest_hv_clock.version & 1)
2377 		++guest_hv_clock.version;  /* first time write, random junk */
2378 
2379 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2380 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2381 				&vcpu->hv_clock,
2382 				sizeof(vcpu->hv_clock.version));
2383 
2384 	smp_wmb();
2385 
2386 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2387 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2388 
2389 	if (vcpu->pvclock_set_guest_stopped_request) {
2390 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2391 		vcpu->pvclock_set_guest_stopped_request = false;
2392 	}
2393 
2394 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2395 
2396 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2397 				&vcpu->hv_clock,
2398 				sizeof(vcpu->hv_clock));
2399 
2400 	smp_wmb();
2401 
2402 	vcpu->hv_clock.version++;
2403 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2404 				&vcpu->hv_clock,
2405 				sizeof(vcpu->hv_clock.version));
2406 }
2407 
2408 static int kvm_guest_time_update(struct kvm_vcpu *v)
2409 {
2410 	unsigned long flags, tgt_tsc_khz;
2411 	struct kvm_vcpu_arch *vcpu = &v->arch;
2412 	struct kvm_arch *ka = &v->kvm->arch;
2413 	s64 kernel_ns;
2414 	u64 tsc_timestamp, host_tsc;
2415 	u8 pvclock_flags;
2416 	bool use_master_clock;
2417 
2418 	kernel_ns = 0;
2419 	host_tsc = 0;
2420 
2421 	/*
2422 	 * If the host uses TSC clock, then passthrough TSC as stable
2423 	 * to the guest.
2424 	 */
2425 	spin_lock(&ka->pvclock_gtod_sync_lock);
2426 	use_master_clock = ka->use_master_clock;
2427 	if (use_master_clock) {
2428 		host_tsc = ka->master_cycle_now;
2429 		kernel_ns = ka->master_kernel_ns;
2430 	}
2431 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2432 
2433 	/* Keep irq disabled to prevent changes to the clock */
2434 	local_irq_save(flags);
2435 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2436 	if (unlikely(tgt_tsc_khz == 0)) {
2437 		local_irq_restore(flags);
2438 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2439 		return 1;
2440 	}
2441 	if (!use_master_clock) {
2442 		host_tsc = rdtsc();
2443 		kernel_ns = get_kvmclock_base_ns();
2444 	}
2445 
2446 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2447 
2448 	/*
2449 	 * We may have to catch up the TSC to match elapsed wall clock
2450 	 * time for two reasons, even if kvmclock is used.
2451 	 *   1) CPU could have been running below the maximum TSC rate
2452 	 *   2) Broken TSC compensation resets the base at each VCPU
2453 	 *      entry to avoid unknown leaps of TSC even when running
2454 	 *      again on the same CPU.  This may cause apparent elapsed
2455 	 *      time to disappear, and the guest to stand still or run
2456 	 *	very slowly.
2457 	 */
2458 	if (vcpu->tsc_catchup) {
2459 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2460 		if (tsc > tsc_timestamp) {
2461 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2462 			tsc_timestamp = tsc;
2463 		}
2464 	}
2465 
2466 	local_irq_restore(flags);
2467 
2468 	/* With all the info we got, fill in the values */
2469 
2470 	if (kvm_has_tsc_control)
2471 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2472 
2473 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2474 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2475 				   &vcpu->hv_clock.tsc_shift,
2476 				   &vcpu->hv_clock.tsc_to_system_mul);
2477 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2478 	}
2479 
2480 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2481 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2482 	vcpu->last_guest_tsc = tsc_timestamp;
2483 
2484 	/* If the host uses TSC clocksource, then it is stable */
2485 	pvclock_flags = 0;
2486 	if (use_master_clock)
2487 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2488 
2489 	vcpu->hv_clock.flags = pvclock_flags;
2490 
2491 	if (vcpu->pv_time_enabled)
2492 		kvm_setup_pvclock_page(v);
2493 	if (v == kvm_get_vcpu(v->kvm, 0))
2494 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2495 	return 0;
2496 }
2497 
2498 /*
2499  * kvmclock updates which are isolated to a given vcpu, such as
2500  * vcpu->cpu migration, should not allow system_timestamp from
2501  * the rest of the vcpus to remain static. Otherwise ntp frequency
2502  * correction applies to one vcpu's system_timestamp but not
2503  * the others.
2504  *
2505  * So in those cases, request a kvmclock update for all vcpus.
2506  * We need to rate-limit these requests though, as they can
2507  * considerably slow guests that have a large number of vcpus.
2508  * The time for a remote vcpu to update its kvmclock is bound
2509  * by the delay we use to rate-limit the updates.
2510  */
2511 
2512 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2513 
2514 static void kvmclock_update_fn(struct work_struct *work)
2515 {
2516 	int i;
2517 	struct delayed_work *dwork = to_delayed_work(work);
2518 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2519 					   kvmclock_update_work);
2520 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2521 	struct kvm_vcpu *vcpu;
2522 
2523 	kvm_for_each_vcpu(i, vcpu, kvm) {
2524 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2525 		kvm_vcpu_kick(vcpu);
2526 	}
2527 }
2528 
2529 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2530 {
2531 	struct kvm *kvm = v->kvm;
2532 
2533 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2534 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2535 					KVMCLOCK_UPDATE_DELAY);
2536 }
2537 
2538 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2539 
2540 static void kvmclock_sync_fn(struct work_struct *work)
2541 {
2542 	struct delayed_work *dwork = to_delayed_work(work);
2543 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2544 					   kvmclock_sync_work);
2545 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2546 
2547 	if (!kvmclock_periodic_sync)
2548 		return;
2549 
2550 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2551 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2552 					KVMCLOCK_SYNC_PERIOD);
2553 }
2554 
2555 /*
2556  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2557  */
2558 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2559 {
2560 	/* McStatusWrEn enabled? */
2561 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2562 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2563 
2564 	return false;
2565 }
2566 
2567 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2568 {
2569 	u64 mcg_cap = vcpu->arch.mcg_cap;
2570 	unsigned bank_num = mcg_cap & 0xff;
2571 	u32 msr = msr_info->index;
2572 	u64 data = msr_info->data;
2573 
2574 	switch (msr) {
2575 	case MSR_IA32_MCG_STATUS:
2576 		vcpu->arch.mcg_status = data;
2577 		break;
2578 	case MSR_IA32_MCG_CTL:
2579 		if (!(mcg_cap & MCG_CTL_P) &&
2580 		    (data || !msr_info->host_initiated))
2581 			return 1;
2582 		if (data != 0 && data != ~(u64)0)
2583 			return 1;
2584 		vcpu->arch.mcg_ctl = data;
2585 		break;
2586 	default:
2587 		if (msr >= MSR_IA32_MC0_CTL &&
2588 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2589 			u32 offset = array_index_nospec(
2590 				msr - MSR_IA32_MC0_CTL,
2591 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2592 
2593 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2594 			 * some Linux kernels though clear bit 10 in bank 4 to
2595 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2596 			 * this to avoid an uncatched #GP in the guest
2597 			 */
2598 			if ((offset & 0x3) == 0 &&
2599 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2600 				return -1;
2601 
2602 			/* MCi_STATUS */
2603 			if (!msr_info->host_initiated &&
2604 			    (offset & 0x3) == 1 && data != 0) {
2605 				if (!can_set_mci_status(vcpu))
2606 					return -1;
2607 			}
2608 
2609 			vcpu->arch.mce_banks[offset] = data;
2610 			break;
2611 		}
2612 		return 1;
2613 	}
2614 	return 0;
2615 }
2616 
2617 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2618 {
2619 	struct kvm *kvm = vcpu->kvm;
2620 	int lm = is_long_mode(vcpu);
2621 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2622 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2623 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2624 		: kvm->arch.xen_hvm_config.blob_size_32;
2625 	u32 page_num = data & ~PAGE_MASK;
2626 	u64 page_addr = data & PAGE_MASK;
2627 	u8 *page;
2628 	int r;
2629 
2630 	r = -E2BIG;
2631 	if (page_num >= blob_size)
2632 		goto out;
2633 	r = -ENOMEM;
2634 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2635 	if (IS_ERR(page)) {
2636 		r = PTR_ERR(page);
2637 		goto out;
2638 	}
2639 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2640 		goto out_free;
2641 	r = 0;
2642 out_free:
2643 	kfree(page);
2644 out:
2645 	return r;
2646 }
2647 
2648 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2649 {
2650 	gpa_t gpa = data & ~0x3f;
2651 
2652 	/* Bits 3:5 are reserved, Should be zero */
2653 	if (data & 0x38)
2654 		return 1;
2655 
2656 	vcpu->arch.apf.msr_val = data;
2657 
2658 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2659 		kvm_clear_async_pf_completion_queue(vcpu);
2660 		kvm_async_pf_hash_reset(vcpu);
2661 		return 0;
2662 	}
2663 
2664 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2665 					sizeof(u32)))
2666 		return 1;
2667 
2668 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2669 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2670 	kvm_async_pf_wakeup_all(vcpu);
2671 	return 0;
2672 }
2673 
2674 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2675 {
2676 	vcpu->arch.pv_time_enabled = false;
2677 	vcpu->arch.time = 0;
2678 }
2679 
2680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2681 {
2682 	++vcpu->stat.tlb_flush;
2683 	kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
2684 }
2685 
2686 static void record_steal_time(struct kvm_vcpu *vcpu)
2687 {
2688 	struct kvm_host_map map;
2689 	struct kvm_steal_time *st;
2690 
2691 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2692 		return;
2693 
2694 	/* -EAGAIN is returned in atomic context so we can just return. */
2695 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2696 			&map, &vcpu->arch.st.cache, false))
2697 		return;
2698 
2699 	st = map.hva +
2700 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2701 
2702 	/*
2703 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2704 	 * expensive IPIs.
2705 	 */
2706 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2707 		st->preempted & KVM_VCPU_FLUSH_TLB);
2708 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2709 		kvm_vcpu_flush_tlb(vcpu, false);
2710 
2711 	vcpu->arch.st.preempted = 0;
2712 
2713 	if (st->version & 1)
2714 		st->version += 1;  /* first time write, random junk */
2715 
2716 	st->version += 1;
2717 
2718 	smp_wmb();
2719 
2720 	st->steal += current->sched_info.run_delay -
2721 		vcpu->arch.st.last_steal;
2722 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2723 
2724 	smp_wmb();
2725 
2726 	st->version += 1;
2727 
2728 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2729 }
2730 
2731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2732 {
2733 	bool pr = false;
2734 	u32 msr = msr_info->index;
2735 	u64 data = msr_info->data;
2736 
2737 	switch (msr) {
2738 	case MSR_AMD64_NB_CFG:
2739 	case MSR_IA32_UCODE_WRITE:
2740 	case MSR_VM_HSAVE_PA:
2741 	case MSR_AMD64_PATCH_LOADER:
2742 	case MSR_AMD64_BU_CFG2:
2743 	case MSR_AMD64_DC_CFG:
2744 	case MSR_F15H_EX_CFG:
2745 		break;
2746 
2747 	case MSR_IA32_UCODE_REV:
2748 		if (msr_info->host_initiated)
2749 			vcpu->arch.microcode_version = data;
2750 		break;
2751 	case MSR_IA32_ARCH_CAPABILITIES:
2752 		if (!msr_info->host_initiated)
2753 			return 1;
2754 		vcpu->arch.arch_capabilities = data;
2755 		break;
2756 	case MSR_EFER:
2757 		return set_efer(vcpu, msr_info);
2758 	case MSR_K7_HWCR:
2759 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2760 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2761 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2762 
2763 		/* Handle McStatusWrEn */
2764 		if (data == BIT_ULL(18)) {
2765 			vcpu->arch.msr_hwcr = data;
2766 		} else if (data != 0) {
2767 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2768 				    data);
2769 			return 1;
2770 		}
2771 		break;
2772 	case MSR_FAM10H_MMIO_CONF_BASE:
2773 		if (data != 0) {
2774 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2775 				    "0x%llx\n", data);
2776 			return 1;
2777 		}
2778 		break;
2779 	case MSR_IA32_DEBUGCTLMSR:
2780 		if (!data) {
2781 			/* We support the non-activated case already */
2782 			break;
2783 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2784 			/* Values other than LBR and BTF are vendor-specific,
2785 			   thus reserved and should throw a #GP */
2786 			return 1;
2787 		}
2788 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2789 			    __func__, data);
2790 		break;
2791 	case 0x200 ... 0x2ff:
2792 		return kvm_mtrr_set_msr(vcpu, msr, data);
2793 	case MSR_IA32_APICBASE:
2794 		return kvm_set_apic_base(vcpu, msr_info);
2795 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2796 		return kvm_x2apic_msr_write(vcpu, msr, data);
2797 	case MSR_IA32_TSCDEADLINE:
2798 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2799 		break;
2800 	case MSR_IA32_TSC_ADJUST:
2801 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2802 			if (!msr_info->host_initiated) {
2803 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2804 				adjust_tsc_offset_guest(vcpu, adj);
2805 			}
2806 			vcpu->arch.ia32_tsc_adjust_msr = data;
2807 		}
2808 		break;
2809 	case MSR_IA32_MISC_ENABLE:
2810 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2811 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2812 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2813 				return 1;
2814 			vcpu->arch.ia32_misc_enable_msr = data;
2815 			kvm_update_cpuid(vcpu);
2816 		} else {
2817 			vcpu->arch.ia32_misc_enable_msr = data;
2818 		}
2819 		break;
2820 	case MSR_IA32_SMBASE:
2821 		if (!msr_info->host_initiated)
2822 			return 1;
2823 		vcpu->arch.smbase = data;
2824 		break;
2825 	case MSR_IA32_POWER_CTL:
2826 		vcpu->arch.msr_ia32_power_ctl = data;
2827 		break;
2828 	case MSR_IA32_TSC:
2829 		kvm_write_tsc(vcpu, msr_info);
2830 		break;
2831 	case MSR_IA32_XSS:
2832 		if (!msr_info->host_initiated &&
2833 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2834 			return 1;
2835 		/*
2836 		 * KVM supports exposing PT to the guest, but does not support
2837 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2838 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2839 		 */
2840 		if (data & ~supported_xss)
2841 			return 1;
2842 		vcpu->arch.ia32_xss = data;
2843 		break;
2844 	case MSR_SMI_COUNT:
2845 		if (!msr_info->host_initiated)
2846 			return 1;
2847 		vcpu->arch.smi_count = data;
2848 		break;
2849 	case MSR_KVM_WALL_CLOCK_NEW:
2850 	case MSR_KVM_WALL_CLOCK:
2851 		vcpu->kvm->arch.wall_clock = data;
2852 		kvm_write_wall_clock(vcpu->kvm, data);
2853 		break;
2854 	case MSR_KVM_SYSTEM_TIME_NEW:
2855 	case MSR_KVM_SYSTEM_TIME: {
2856 		struct kvm_arch *ka = &vcpu->kvm->arch;
2857 
2858 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2859 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2860 
2861 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2862 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2863 
2864 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2865 		}
2866 
2867 		vcpu->arch.time = data;
2868 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2869 
2870 		/* we verify if the enable bit is set... */
2871 		vcpu->arch.pv_time_enabled = false;
2872 		if (!(data & 1))
2873 			break;
2874 
2875 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2876 		     &vcpu->arch.pv_time, data & ~1ULL,
2877 		     sizeof(struct pvclock_vcpu_time_info)))
2878 			vcpu->arch.pv_time_enabled = true;
2879 
2880 		break;
2881 	}
2882 	case MSR_KVM_ASYNC_PF_EN:
2883 		if (kvm_pv_enable_async_pf(vcpu, data))
2884 			return 1;
2885 		break;
2886 	case MSR_KVM_STEAL_TIME:
2887 
2888 		if (unlikely(!sched_info_on()))
2889 			return 1;
2890 
2891 		if (data & KVM_STEAL_RESERVED_MASK)
2892 			return 1;
2893 
2894 		vcpu->arch.st.msr_val = data;
2895 
2896 		if (!(data & KVM_MSR_ENABLED))
2897 			break;
2898 
2899 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2900 
2901 		break;
2902 	case MSR_KVM_PV_EOI_EN:
2903 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2904 			return 1;
2905 		break;
2906 
2907 	case MSR_KVM_POLL_CONTROL:
2908 		/* only enable bit supported */
2909 		if (data & (-1ULL << 1))
2910 			return 1;
2911 
2912 		vcpu->arch.msr_kvm_poll_control = data;
2913 		break;
2914 
2915 	case MSR_IA32_MCG_CTL:
2916 	case MSR_IA32_MCG_STATUS:
2917 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2918 		return set_msr_mce(vcpu, msr_info);
2919 
2920 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2921 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2922 		pr = true; /* fall through */
2923 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2924 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2925 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2926 			return kvm_pmu_set_msr(vcpu, msr_info);
2927 
2928 		if (pr || data != 0)
2929 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2930 				    "0x%x data 0x%llx\n", msr, data);
2931 		break;
2932 	case MSR_K7_CLK_CTL:
2933 		/*
2934 		 * Ignore all writes to this no longer documented MSR.
2935 		 * Writes are only relevant for old K7 processors,
2936 		 * all pre-dating SVM, but a recommended workaround from
2937 		 * AMD for these chips. It is possible to specify the
2938 		 * affected processor models on the command line, hence
2939 		 * the need to ignore the workaround.
2940 		 */
2941 		break;
2942 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2943 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2944 	case HV_X64_MSR_CRASH_CTL:
2945 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2946 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2947 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2948 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2949 		return kvm_hv_set_msr_common(vcpu, msr, data,
2950 					     msr_info->host_initiated);
2951 	case MSR_IA32_BBL_CR_CTL3:
2952 		/* Drop writes to this legacy MSR -- see rdmsr
2953 		 * counterpart for further detail.
2954 		 */
2955 		if (report_ignored_msrs)
2956 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2957 				msr, data);
2958 		break;
2959 	case MSR_AMD64_OSVW_ID_LENGTH:
2960 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2961 			return 1;
2962 		vcpu->arch.osvw.length = data;
2963 		break;
2964 	case MSR_AMD64_OSVW_STATUS:
2965 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2966 			return 1;
2967 		vcpu->arch.osvw.status = data;
2968 		break;
2969 	case MSR_PLATFORM_INFO:
2970 		if (!msr_info->host_initiated ||
2971 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2972 		     cpuid_fault_enabled(vcpu)))
2973 			return 1;
2974 		vcpu->arch.msr_platform_info = data;
2975 		break;
2976 	case MSR_MISC_FEATURES_ENABLES:
2977 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2978 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2979 		     !supports_cpuid_fault(vcpu)))
2980 			return 1;
2981 		vcpu->arch.msr_misc_features_enables = data;
2982 		break;
2983 	default:
2984 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2985 			return xen_hvm_config(vcpu, data);
2986 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2987 			return kvm_pmu_set_msr(vcpu, msr_info);
2988 		if (!ignore_msrs) {
2989 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2990 				    msr, data);
2991 			return 1;
2992 		} else {
2993 			if (report_ignored_msrs)
2994 				vcpu_unimpl(vcpu,
2995 					"ignored wrmsr: 0x%x data 0x%llx\n",
2996 					msr, data);
2997 			break;
2998 		}
2999 	}
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3003 
3004 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3005 {
3006 	u64 data;
3007 	u64 mcg_cap = vcpu->arch.mcg_cap;
3008 	unsigned bank_num = mcg_cap & 0xff;
3009 
3010 	switch (msr) {
3011 	case MSR_IA32_P5_MC_ADDR:
3012 	case MSR_IA32_P5_MC_TYPE:
3013 		data = 0;
3014 		break;
3015 	case MSR_IA32_MCG_CAP:
3016 		data = vcpu->arch.mcg_cap;
3017 		break;
3018 	case MSR_IA32_MCG_CTL:
3019 		if (!(mcg_cap & MCG_CTL_P) && !host)
3020 			return 1;
3021 		data = vcpu->arch.mcg_ctl;
3022 		break;
3023 	case MSR_IA32_MCG_STATUS:
3024 		data = vcpu->arch.mcg_status;
3025 		break;
3026 	default:
3027 		if (msr >= MSR_IA32_MC0_CTL &&
3028 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3029 			u32 offset = array_index_nospec(
3030 				msr - MSR_IA32_MC0_CTL,
3031 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3032 
3033 			data = vcpu->arch.mce_banks[offset];
3034 			break;
3035 		}
3036 		return 1;
3037 	}
3038 	*pdata = data;
3039 	return 0;
3040 }
3041 
3042 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3043 {
3044 	switch (msr_info->index) {
3045 	case MSR_IA32_PLATFORM_ID:
3046 	case MSR_IA32_EBL_CR_POWERON:
3047 	case MSR_IA32_DEBUGCTLMSR:
3048 	case MSR_IA32_LASTBRANCHFROMIP:
3049 	case MSR_IA32_LASTBRANCHTOIP:
3050 	case MSR_IA32_LASTINTFROMIP:
3051 	case MSR_IA32_LASTINTTOIP:
3052 	case MSR_K8_SYSCFG:
3053 	case MSR_K8_TSEG_ADDR:
3054 	case MSR_K8_TSEG_MASK:
3055 	case MSR_VM_HSAVE_PA:
3056 	case MSR_K8_INT_PENDING_MSG:
3057 	case MSR_AMD64_NB_CFG:
3058 	case MSR_FAM10H_MMIO_CONF_BASE:
3059 	case MSR_AMD64_BU_CFG2:
3060 	case MSR_IA32_PERF_CTL:
3061 	case MSR_AMD64_DC_CFG:
3062 	case MSR_F15H_EX_CFG:
3063 	/*
3064 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3065 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3066 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3067 	 * so for existing CPU-specific MSRs.
3068 	 */
3069 	case MSR_RAPL_POWER_UNIT:
3070 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3071 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3072 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3073 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3074 		msr_info->data = 0;
3075 		break;
3076 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3077 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3078 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3079 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3080 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3081 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3082 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3083 		msr_info->data = 0;
3084 		break;
3085 	case MSR_IA32_UCODE_REV:
3086 		msr_info->data = vcpu->arch.microcode_version;
3087 		break;
3088 	case MSR_IA32_ARCH_CAPABILITIES:
3089 		if (!msr_info->host_initiated &&
3090 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3091 			return 1;
3092 		msr_info->data = vcpu->arch.arch_capabilities;
3093 		break;
3094 	case MSR_IA32_POWER_CTL:
3095 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3096 		break;
3097 	case MSR_IA32_TSC:
3098 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3099 		break;
3100 	case MSR_MTRRcap:
3101 	case 0x200 ... 0x2ff:
3102 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3103 	case 0xcd: /* fsb frequency */
3104 		msr_info->data = 3;
3105 		break;
3106 		/*
3107 		 * MSR_EBC_FREQUENCY_ID
3108 		 * Conservative value valid for even the basic CPU models.
3109 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3110 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3111 		 * and 266MHz for model 3, or 4. Set Core Clock
3112 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3113 		 * 31:24) even though these are only valid for CPU
3114 		 * models > 2, however guests may end up dividing or
3115 		 * multiplying by zero otherwise.
3116 		 */
3117 	case MSR_EBC_FREQUENCY_ID:
3118 		msr_info->data = 1 << 24;
3119 		break;
3120 	case MSR_IA32_APICBASE:
3121 		msr_info->data = kvm_get_apic_base(vcpu);
3122 		break;
3123 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3124 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3125 	case MSR_IA32_TSCDEADLINE:
3126 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3127 		break;
3128 	case MSR_IA32_TSC_ADJUST:
3129 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3130 		break;
3131 	case MSR_IA32_MISC_ENABLE:
3132 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3133 		break;
3134 	case MSR_IA32_SMBASE:
3135 		if (!msr_info->host_initiated)
3136 			return 1;
3137 		msr_info->data = vcpu->arch.smbase;
3138 		break;
3139 	case MSR_SMI_COUNT:
3140 		msr_info->data = vcpu->arch.smi_count;
3141 		break;
3142 	case MSR_IA32_PERF_STATUS:
3143 		/* TSC increment by tick */
3144 		msr_info->data = 1000ULL;
3145 		/* CPU multiplier */
3146 		msr_info->data |= (((uint64_t)4ULL) << 40);
3147 		break;
3148 	case MSR_EFER:
3149 		msr_info->data = vcpu->arch.efer;
3150 		break;
3151 	case MSR_KVM_WALL_CLOCK:
3152 	case MSR_KVM_WALL_CLOCK_NEW:
3153 		msr_info->data = vcpu->kvm->arch.wall_clock;
3154 		break;
3155 	case MSR_KVM_SYSTEM_TIME:
3156 	case MSR_KVM_SYSTEM_TIME_NEW:
3157 		msr_info->data = vcpu->arch.time;
3158 		break;
3159 	case MSR_KVM_ASYNC_PF_EN:
3160 		msr_info->data = vcpu->arch.apf.msr_val;
3161 		break;
3162 	case MSR_KVM_STEAL_TIME:
3163 		msr_info->data = vcpu->arch.st.msr_val;
3164 		break;
3165 	case MSR_KVM_PV_EOI_EN:
3166 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3167 		break;
3168 	case MSR_KVM_POLL_CONTROL:
3169 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3170 		break;
3171 	case MSR_IA32_P5_MC_ADDR:
3172 	case MSR_IA32_P5_MC_TYPE:
3173 	case MSR_IA32_MCG_CAP:
3174 	case MSR_IA32_MCG_CTL:
3175 	case MSR_IA32_MCG_STATUS:
3176 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3177 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3178 				   msr_info->host_initiated);
3179 	case MSR_IA32_XSS:
3180 		if (!msr_info->host_initiated &&
3181 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3182 			return 1;
3183 		msr_info->data = vcpu->arch.ia32_xss;
3184 		break;
3185 	case MSR_K7_CLK_CTL:
3186 		/*
3187 		 * Provide expected ramp-up count for K7. All other
3188 		 * are set to zero, indicating minimum divisors for
3189 		 * every field.
3190 		 *
3191 		 * This prevents guest kernels on AMD host with CPU
3192 		 * type 6, model 8 and higher from exploding due to
3193 		 * the rdmsr failing.
3194 		 */
3195 		msr_info->data = 0x20000000;
3196 		break;
3197 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3198 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3199 	case HV_X64_MSR_CRASH_CTL:
3200 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3201 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3202 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3203 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3204 		return kvm_hv_get_msr_common(vcpu,
3205 					     msr_info->index, &msr_info->data,
3206 					     msr_info->host_initiated);
3207 	case MSR_IA32_BBL_CR_CTL3:
3208 		/* This legacy MSR exists but isn't fully documented in current
3209 		 * silicon.  It is however accessed by winxp in very narrow
3210 		 * scenarios where it sets bit #19, itself documented as
3211 		 * a "reserved" bit.  Best effort attempt to source coherent
3212 		 * read data here should the balance of the register be
3213 		 * interpreted by the guest:
3214 		 *
3215 		 * L2 cache control register 3: 64GB range, 256KB size,
3216 		 * enabled, latency 0x1, configured
3217 		 */
3218 		msr_info->data = 0xbe702111;
3219 		break;
3220 	case MSR_AMD64_OSVW_ID_LENGTH:
3221 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3222 			return 1;
3223 		msr_info->data = vcpu->arch.osvw.length;
3224 		break;
3225 	case MSR_AMD64_OSVW_STATUS:
3226 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3227 			return 1;
3228 		msr_info->data = vcpu->arch.osvw.status;
3229 		break;
3230 	case MSR_PLATFORM_INFO:
3231 		if (!msr_info->host_initiated &&
3232 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3233 			return 1;
3234 		msr_info->data = vcpu->arch.msr_platform_info;
3235 		break;
3236 	case MSR_MISC_FEATURES_ENABLES:
3237 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3238 		break;
3239 	case MSR_K7_HWCR:
3240 		msr_info->data = vcpu->arch.msr_hwcr;
3241 		break;
3242 	default:
3243 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3244 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3245 		if (!ignore_msrs) {
3246 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3247 					       msr_info->index);
3248 			return 1;
3249 		} else {
3250 			if (report_ignored_msrs)
3251 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3252 					msr_info->index);
3253 			msr_info->data = 0;
3254 		}
3255 		break;
3256 	}
3257 	return 0;
3258 }
3259 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3260 
3261 /*
3262  * Read or write a bunch of msrs. All parameters are kernel addresses.
3263  *
3264  * @return number of msrs set successfully.
3265  */
3266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3267 		    struct kvm_msr_entry *entries,
3268 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3269 				  unsigned index, u64 *data))
3270 {
3271 	int i;
3272 
3273 	for (i = 0; i < msrs->nmsrs; ++i)
3274 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3275 			break;
3276 
3277 	return i;
3278 }
3279 
3280 /*
3281  * Read or write a bunch of msrs. Parameters are user addresses.
3282  *
3283  * @return number of msrs set successfully.
3284  */
3285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3286 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3287 				unsigned index, u64 *data),
3288 		  int writeback)
3289 {
3290 	struct kvm_msrs msrs;
3291 	struct kvm_msr_entry *entries;
3292 	int r, n;
3293 	unsigned size;
3294 
3295 	r = -EFAULT;
3296 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3297 		goto out;
3298 
3299 	r = -E2BIG;
3300 	if (msrs.nmsrs >= MAX_IO_MSRS)
3301 		goto out;
3302 
3303 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3304 	entries = memdup_user(user_msrs->entries, size);
3305 	if (IS_ERR(entries)) {
3306 		r = PTR_ERR(entries);
3307 		goto out;
3308 	}
3309 
3310 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3311 	if (r < 0)
3312 		goto out_free;
3313 
3314 	r = -EFAULT;
3315 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3316 		goto out_free;
3317 
3318 	r = n;
3319 
3320 out_free:
3321 	kfree(entries);
3322 out:
3323 	return r;
3324 }
3325 
3326 static inline bool kvm_can_mwait_in_guest(void)
3327 {
3328 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3329 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3330 		boot_cpu_has(X86_FEATURE_ARAT);
3331 }
3332 
3333 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3334 {
3335 	int r = 0;
3336 
3337 	switch (ext) {
3338 	case KVM_CAP_IRQCHIP:
3339 	case KVM_CAP_HLT:
3340 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3341 	case KVM_CAP_SET_TSS_ADDR:
3342 	case KVM_CAP_EXT_CPUID:
3343 	case KVM_CAP_EXT_EMUL_CPUID:
3344 	case KVM_CAP_CLOCKSOURCE:
3345 	case KVM_CAP_PIT:
3346 	case KVM_CAP_NOP_IO_DELAY:
3347 	case KVM_CAP_MP_STATE:
3348 	case KVM_CAP_SYNC_MMU:
3349 	case KVM_CAP_USER_NMI:
3350 	case KVM_CAP_REINJECT_CONTROL:
3351 	case KVM_CAP_IRQ_INJECT_STATUS:
3352 	case KVM_CAP_IOEVENTFD:
3353 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3354 	case KVM_CAP_PIT2:
3355 	case KVM_CAP_PIT_STATE2:
3356 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3357 	case KVM_CAP_XEN_HVM:
3358 	case KVM_CAP_VCPU_EVENTS:
3359 	case KVM_CAP_HYPERV:
3360 	case KVM_CAP_HYPERV_VAPIC:
3361 	case KVM_CAP_HYPERV_SPIN:
3362 	case KVM_CAP_HYPERV_SYNIC:
3363 	case KVM_CAP_HYPERV_SYNIC2:
3364 	case KVM_CAP_HYPERV_VP_INDEX:
3365 	case KVM_CAP_HYPERV_EVENTFD:
3366 	case KVM_CAP_HYPERV_TLBFLUSH:
3367 	case KVM_CAP_HYPERV_SEND_IPI:
3368 	case KVM_CAP_HYPERV_CPUID:
3369 	case KVM_CAP_PCI_SEGMENT:
3370 	case KVM_CAP_DEBUGREGS:
3371 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3372 	case KVM_CAP_XSAVE:
3373 	case KVM_CAP_ASYNC_PF:
3374 	case KVM_CAP_GET_TSC_KHZ:
3375 	case KVM_CAP_KVMCLOCK_CTRL:
3376 	case KVM_CAP_READONLY_MEM:
3377 	case KVM_CAP_HYPERV_TIME:
3378 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3379 	case KVM_CAP_TSC_DEADLINE_TIMER:
3380 	case KVM_CAP_DISABLE_QUIRKS:
3381 	case KVM_CAP_SET_BOOT_CPU_ID:
3382  	case KVM_CAP_SPLIT_IRQCHIP:
3383 	case KVM_CAP_IMMEDIATE_EXIT:
3384 	case KVM_CAP_PMU_EVENT_FILTER:
3385 	case KVM_CAP_GET_MSR_FEATURES:
3386 	case KVM_CAP_MSR_PLATFORM_INFO:
3387 	case KVM_CAP_EXCEPTION_PAYLOAD:
3388 		r = 1;
3389 		break;
3390 	case KVM_CAP_SYNC_REGS:
3391 		r = KVM_SYNC_X86_VALID_FIELDS;
3392 		break;
3393 	case KVM_CAP_ADJUST_CLOCK:
3394 		r = KVM_CLOCK_TSC_STABLE;
3395 		break;
3396 	case KVM_CAP_X86_DISABLE_EXITS:
3397 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3398 		      KVM_X86_DISABLE_EXITS_CSTATE;
3399 		if(kvm_can_mwait_in_guest())
3400 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3401 		break;
3402 	case KVM_CAP_X86_SMM:
3403 		/* SMBASE is usually relocated above 1M on modern chipsets,
3404 		 * and SMM handlers might indeed rely on 4G segment limits,
3405 		 * so do not report SMM to be available if real mode is
3406 		 * emulated via vm86 mode.  Still, do not go to great lengths
3407 		 * to avoid userspace's usage of the feature, because it is a
3408 		 * fringe case that is not enabled except via specific settings
3409 		 * of the module parameters.
3410 		 */
3411 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3412 		break;
3413 	case KVM_CAP_VAPIC:
3414 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3415 		break;
3416 	case KVM_CAP_NR_VCPUS:
3417 		r = KVM_SOFT_MAX_VCPUS;
3418 		break;
3419 	case KVM_CAP_MAX_VCPUS:
3420 		r = KVM_MAX_VCPUS;
3421 		break;
3422 	case KVM_CAP_MAX_VCPU_ID:
3423 		r = KVM_MAX_VCPU_ID;
3424 		break;
3425 	case KVM_CAP_PV_MMU:	/* obsolete */
3426 		r = 0;
3427 		break;
3428 	case KVM_CAP_MCE:
3429 		r = KVM_MAX_MCE_BANKS;
3430 		break;
3431 	case KVM_CAP_XCRS:
3432 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3433 		break;
3434 	case KVM_CAP_TSC_CONTROL:
3435 		r = kvm_has_tsc_control;
3436 		break;
3437 	case KVM_CAP_X2APIC_API:
3438 		r = KVM_X2APIC_API_VALID_FLAGS;
3439 		break;
3440 	case KVM_CAP_NESTED_STATE:
3441 		r = kvm_x86_ops.get_nested_state ?
3442 			kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
3443 		break;
3444 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3445 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3446 		break;
3447 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3448 		r = kvm_x86_ops.nested_enable_evmcs != NULL;
3449 		break;
3450 	default:
3451 		break;
3452 	}
3453 	return r;
3454 
3455 }
3456 
3457 long kvm_arch_dev_ioctl(struct file *filp,
3458 			unsigned int ioctl, unsigned long arg)
3459 {
3460 	void __user *argp = (void __user *)arg;
3461 	long r;
3462 
3463 	switch (ioctl) {
3464 	case KVM_GET_MSR_INDEX_LIST: {
3465 		struct kvm_msr_list __user *user_msr_list = argp;
3466 		struct kvm_msr_list msr_list;
3467 		unsigned n;
3468 
3469 		r = -EFAULT;
3470 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3471 			goto out;
3472 		n = msr_list.nmsrs;
3473 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3474 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3475 			goto out;
3476 		r = -E2BIG;
3477 		if (n < msr_list.nmsrs)
3478 			goto out;
3479 		r = -EFAULT;
3480 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3481 				 num_msrs_to_save * sizeof(u32)))
3482 			goto out;
3483 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3484 				 &emulated_msrs,
3485 				 num_emulated_msrs * sizeof(u32)))
3486 			goto out;
3487 		r = 0;
3488 		break;
3489 	}
3490 	case KVM_GET_SUPPORTED_CPUID:
3491 	case KVM_GET_EMULATED_CPUID: {
3492 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3493 		struct kvm_cpuid2 cpuid;
3494 
3495 		r = -EFAULT;
3496 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3497 			goto out;
3498 
3499 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3500 					    ioctl);
3501 		if (r)
3502 			goto out;
3503 
3504 		r = -EFAULT;
3505 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3506 			goto out;
3507 		r = 0;
3508 		break;
3509 	}
3510 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3511 		r = -EFAULT;
3512 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3513 				 sizeof(kvm_mce_cap_supported)))
3514 			goto out;
3515 		r = 0;
3516 		break;
3517 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3518 		struct kvm_msr_list __user *user_msr_list = argp;
3519 		struct kvm_msr_list msr_list;
3520 		unsigned int n;
3521 
3522 		r = -EFAULT;
3523 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3524 			goto out;
3525 		n = msr_list.nmsrs;
3526 		msr_list.nmsrs = num_msr_based_features;
3527 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3528 			goto out;
3529 		r = -E2BIG;
3530 		if (n < msr_list.nmsrs)
3531 			goto out;
3532 		r = -EFAULT;
3533 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3534 				 num_msr_based_features * sizeof(u32)))
3535 			goto out;
3536 		r = 0;
3537 		break;
3538 	}
3539 	case KVM_GET_MSRS:
3540 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3541 		break;
3542 	default:
3543 		r = -EINVAL;
3544 		break;
3545 	}
3546 out:
3547 	return r;
3548 }
3549 
3550 static void wbinvd_ipi(void *garbage)
3551 {
3552 	wbinvd();
3553 }
3554 
3555 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3556 {
3557 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3558 }
3559 
3560 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3561 {
3562 	/* Address WBINVD may be executed by guest */
3563 	if (need_emulate_wbinvd(vcpu)) {
3564 		if (kvm_x86_ops.has_wbinvd_exit())
3565 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3566 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3567 			smp_call_function_single(vcpu->cpu,
3568 					wbinvd_ipi, NULL, 1);
3569 	}
3570 
3571 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3572 
3573 	/* Apply any externally detected TSC adjustments (due to suspend) */
3574 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3575 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3576 		vcpu->arch.tsc_offset_adjustment = 0;
3577 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3578 	}
3579 
3580 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3581 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3582 				rdtsc() - vcpu->arch.last_host_tsc;
3583 		if (tsc_delta < 0)
3584 			mark_tsc_unstable("KVM discovered backwards TSC");
3585 
3586 		if (kvm_check_tsc_unstable()) {
3587 			u64 offset = kvm_compute_tsc_offset(vcpu,
3588 						vcpu->arch.last_guest_tsc);
3589 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3590 			vcpu->arch.tsc_catchup = 1;
3591 		}
3592 
3593 		if (kvm_lapic_hv_timer_in_use(vcpu))
3594 			kvm_lapic_restart_hv_timer(vcpu);
3595 
3596 		/*
3597 		 * On a host with synchronized TSC, there is no need to update
3598 		 * kvmclock on vcpu->cpu migration
3599 		 */
3600 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3601 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3602 		if (vcpu->cpu != cpu)
3603 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3604 		vcpu->cpu = cpu;
3605 	}
3606 
3607 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3608 }
3609 
3610 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3611 {
3612 	struct kvm_host_map map;
3613 	struct kvm_steal_time *st;
3614 
3615 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3616 		return;
3617 
3618 	if (vcpu->arch.st.preempted)
3619 		return;
3620 
3621 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3622 			&vcpu->arch.st.cache, true))
3623 		return;
3624 
3625 	st = map.hva +
3626 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3627 
3628 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3629 
3630 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3631 }
3632 
3633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3634 {
3635 	int idx;
3636 
3637 	if (vcpu->preempted)
3638 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3639 
3640 	/*
3641 	 * Disable page faults because we're in atomic context here.
3642 	 * kvm_write_guest_offset_cached() would call might_fault()
3643 	 * that relies on pagefault_disable() to tell if there's a
3644 	 * bug. NOTE: the write to guest memory may not go through if
3645 	 * during postcopy live migration or if there's heavy guest
3646 	 * paging.
3647 	 */
3648 	pagefault_disable();
3649 	/*
3650 	 * kvm_memslots() will be called by
3651 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3652 	 */
3653 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3654 	kvm_steal_time_set_preempted(vcpu);
3655 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3656 	pagefault_enable();
3657 	kvm_x86_ops.vcpu_put(vcpu);
3658 	vcpu->arch.last_host_tsc = rdtsc();
3659 	/*
3660 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3661 	 * on every vmexit, but if not, we might have a stale dr6 from the
3662 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3663 	 */
3664 	set_debugreg(0, 6);
3665 }
3666 
3667 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3668 				    struct kvm_lapic_state *s)
3669 {
3670 	if (vcpu->arch.apicv_active)
3671 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3672 
3673 	return kvm_apic_get_state(vcpu, s);
3674 }
3675 
3676 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3677 				    struct kvm_lapic_state *s)
3678 {
3679 	int r;
3680 
3681 	r = kvm_apic_set_state(vcpu, s);
3682 	if (r)
3683 		return r;
3684 	update_cr8_intercept(vcpu);
3685 
3686 	return 0;
3687 }
3688 
3689 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3690 {
3691 	return (!lapic_in_kernel(vcpu) ||
3692 		kvm_apic_accept_pic_intr(vcpu));
3693 }
3694 
3695 /*
3696  * if userspace requested an interrupt window, check that the
3697  * interrupt window is open.
3698  *
3699  * No need to exit to userspace if we already have an interrupt queued.
3700  */
3701 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3702 {
3703 	return kvm_arch_interrupt_allowed(vcpu) &&
3704 		!kvm_cpu_has_interrupt(vcpu) &&
3705 		!kvm_event_needs_reinjection(vcpu) &&
3706 		kvm_cpu_accept_dm_intr(vcpu);
3707 }
3708 
3709 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3710 				    struct kvm_interrupt *irq)
3711 {
3712 	if (irq->irq >= KVM_NR_INTERRUPTS)
3713 		return -EINVAL;
3714 
3715 	if (!irqchip_in_kernel(vcpu->kvm)) {
3716 		kvm_queue_interrupt(vcpu, irq->irq, false);
3717 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3718 		return 0;
3719 	}
3720 
3721 	/*
3722 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3723 	 * fail for in-kernel 8259.
3724 	 */
3725 	if (pic_in_kernel(vcpu->kvm))
3726 		return -ENXIO;
3727 
3728 	if (vcpu->arch.pending_external_vector != -1)
3729 		return -EEXIST;
3730 
3731 	vcpu->arch.pending_external_vector = irq->irq;
3732 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3733 	return 0;
3734 }
3735 
3736 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3737 {
3738 	kvm_inject_nmi(vcpu);
3739 
3740 	return 0;
3741 }
3742 
3743 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3744 {
3745 	kvm_make_request(KVM_REQ_SMI, vcpu);
3746 
3747 	return 0;
3748 }
3749 
3750 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3751 					   struct kvm_tpr_access_ctl *tac)
3752 {
3753 	if (tac->flags)
3754 		return -EINVAL;
3755 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3756 	return 0;
3757 }
3758 
3759 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3760 					u64 mcg_cap)
3761 {
3762 	int r;
3763 	unsigned bank_num = mcg_cap & 0xff, bank;
3764 
3765 	r = -EINVAL;
3766 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3767 		goto out;
3768 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3769 		goto out;
3770 	r = 0;
3771 	vcpu->arch.mcg_cap = mcg_cap;
3772 	/* Init IA32_MCG_CTL to all 1s */
3773 	if (mcg_cap & MCG_CTL_P)
3774 		vcpu->arch.mcg_ctl = ~(u64)0;
3775 	/* Init IA32_MCi_CTL to all 1s */
3776 	for (bank = 0; bank < bank_num; bank++)
3777 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3778 
3779 	kvm_x86_ops.setup_mce(vcpu);
3780 out:
3781 	return r;
3782 }
3783 
3784 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3785 				      struct kvm_x86_mce *mce)
3786 {
3787 	u64 mcg_cap = vcpu->arch.mcg_cap;
3788 	unsigned bank_num = mcg_cap & 0xff;
3789 	u64 *banks = vcpu->arch.mce_banks;
3790 
3791 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3792 		return -EINVAL;
3793 	/*
3794 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3795 	 * reporting is disabled
3796 	 */
3797 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3798 	    vcpu->arch.mcg_ctl != ~(u64)0)
3799 		return 0;
3800 	banks += 4 * mce->bank;
3801 	/*
3802 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3803 	 * reporting is disabled for the bank
3804 	 */
3805 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3806 		return 0;
3807 	if (mce->status & MCI_STATUS_UC) {
3808 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3809 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3810 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3811 			return 0;
3812 		}
3813 		if (banks[1] & MCI_STATUS_VAL)
3814 			mce->status |= MCI_STATUS_OVER;
3815 		banks[2] = mce->addr;
3816 		banks[3] = mce->misc;
3817 		vcpu->arch.mcg_status = mce->mcg_status;
3818 		banks[1] = mce->status;
3819 		kvm_queue_exception(vcpu, MC_VECTOR);
3820 	} else if (!(banks[1] & MCI_STATUS_VAL)
3821 		   || !(banks[1] & MCI_STATUS_UC)) {
3822 		if (banks[1] & MCI_STATUS_VAL)
3823 			mce->status |= MCI_STATUS_OVER;
3824 		banks[2] = mce->addr;
3825 		banks[3] = mce->misc;
3826 		banks[1] = mce->status;
3827 	} else
3828 		banks[1] |= MCI_STATUS_OVER;
3829 	return 0;
3830 }
3831 
3832 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3833 					       struct kvm_vcpu_events *events)
3834 {
3835 	process_nmi(vcpu);
3836 
3837 	/*
3838 	 * In guest mode, payload delivery should be deferred,
3839 	 * so that the L1 hypervisor can intercept #PF before
3840 	 * CR2 is modified (or intercept #DB before DR6 is
3841 	 * modified under nVMX). Unless the per-VM capability,
3842 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3843 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3844 	 * opportunistically defer the exception payload, deliver it if the
3845 	 * capability hasn't been requested before processing a
3846 	 * KVM_GET_VCPU_EVENTS.
3847 	 */
3848 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3849 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3850 		kvm_deliver_exception_payload(vcpu);
3851 
3852 	/*
3853 	 * The API doesn't provide the instruction length for software
3854 	 * exceptions, so don't report them. As long as the guest RIP
3855 	 * isn't advanced, we should expect to encounter the exception
3856 	 * again.
3857 	 */
3858 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3859 		events->exception.injected = 0;
3860 		events->exception.pending = 0;
3861 	} else {
3862 		events->exception.injected = vcpu->arch.exception.injected;
3863 		events->exception.pending = vcpu->arch.exception.pending;
3864 		/*
3865 		 * For ABI compatibility, deliberately conflate
3866 		 * pending and injected exceptions when
3867 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3868 		 */
3869 		if (!vcpu->kvm->arch.exception_payload_enabled)
3870 			events->exception.injected |=
3871 				vcpu->arch.exception.pending;
3872 	}
3873 	events->exception.nr = vcpu->arch.exception.nr;
3874 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3875 	events->exception.error_code = vcpu->arch.exception.error_code;
3876 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3877 	events->exception_payload = vcpu->arch.exception.payload;
3878 
3879 	events->interrupt.injected =
3880 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3881 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3882 	events->interrupt.soft = 0;
3883 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3884 
3885 	events->nmi.injected = vcpu->arch.nmi_injected;
3886 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3887 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3888 	events->nmi.pad = 0;
3889 
3890 	events->sipi_vector = 0; /* never valid when reporting to user space */
3891 
3892 	events->smi.smm = is_smm(vcpu);
3893 	events->smi.pending = vcpu->arch.smi_pending;
3894 	events->smi.smm_inside_nmi =
3895 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3896 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3897 
3898 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3899 			 | KVM_VCPUEVENT_VALID_SHADOW
3900 			 | KVM_VCPUEVENT_VALID_SMM);
3901 	if (vcpu->kvm->arch.exception_payload_enabled)
3902 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3903 
3904 	memset(&events->reserved, 0, sizeof(events->reserved));
3905 }
3906 
3907 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3908 
3909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3910 					      struct kvm_vcpu_events *events)
3911 {
3912 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3913 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3914 			      | KVM_VCPUEVENT_VALID_SHADOW
3915 			      | KVM_VCPUEVENT_VALID_SMM
3916 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3917 		return -EINVAL;
3918 
3919 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3920 		if (!vcpu->kvm->arch.exception_payload_enabled)
3921 			return -EINVAL;
3922 		if (events->exception.pending)
3923 			events->exception.injected = 0;
3924 		else
3925 			events->exception_has_payload = 0;
3926 	} else {
3927 		events->exception.pending = 0;
3928 		events->exception_has_payload = 0;
3929 	}
3930 
3931 	if ((events->exception.injected || events->exception.pending) &&
3932 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3933 		return -EINVAL;
3934 
3935 	/* INITs are latched while in SMM */
3936 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3937 	    (events->smi.smm || events->smi.pending) &&
3938 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3939 		return -EINVAL;
3940 
3941 	process_nmi(vcpu);
3942 	vcpu->arch.exception.injected = events->exception.injected;
3943 	vcpu->arch.exception.pending = events->exception.pending;
3944 	vcpu->arch.exception.nr = events->exception.nr;
3945 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3946 	vcpu->arch.exception.error_code = events->exception.error_code;
3947 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3948 	vcpu->arch.exception.payload = events->exception_payload;
3949 
3950 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3951 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3952 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3953 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3954 		kvm_x86_ops.set_interrupt_shadow(vcpu,
3955 						  events->interrupt.shadow);
3956 
3957 	vcpu->arch.nmi_injected = events->nmi.injected;
3958 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3959 		vcpu->arch.nmi_pending = events->nmi.pending;
3960 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3961 
3962 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3963 	    lapic_in_kernel(vcpu))
3964 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3965 
3966 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3967 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3968 			if (events->smi.smm)
3969 				vcpu->arch.hflags |= HF_SMM_MASK;
3970 			else
3971 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3972 			kvm_smm_changed(vcpu);
3973 		}
3974 
3975 		vcpu->arch.smi_pending = events->smi.pending;
3976 
3977 		if (events->smi.smm) {
3978 			if (events->smi.smm_inside_nmi)
3979 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3980 			else
3981 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3982 		}
3983 
3984 		if (lapic_in_kernel(vcpu)) {
3985 			if (events->smi.latched_init)
3986 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3987 			else
3988 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3989 		}
3990 	}
3991 
3992 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3993 
3994 	return 0;
3995 }
3996 
3997 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3998 					     struct kvm_debugregs *dbgregs)
3999 {
4000 	unsigned long val;
4001 
4002 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4003 	kvm_get_dr(vcpu, 6, &val);
4004 	dbgregs->dr6 = val;
4005 	dbgregs->dr7 = vcpu->arch.dr7;
4006 	dbgregs->flags = 0;
4007 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4008 }
4009 
4010 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4011 					    struct kvm_debugregs *dbgregs)
4012 {
4013 	if (dbgregs->flags)
4014 		return -EINVAL;
4015 
4016 	if (dbgregs->dr6 & ~0xffffffffull)
4017 		return -EINVAL;
4018 	if (dbgregs->dr7 & ~0xffffffffull)
4019 		return -EINVAL;
4020 
4021 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4022 	kvm_update_dr0123(vcpu);
4023 	vcpu->arch.dr6 = dbgregs->dr6;
4024 	kvm_update_dr6(vcpu);
4025 	vcpu->arch.dr7 = dbgregs->dr7;
4026 	kvm_update_dr7(vcpu);
4027 
4028 	return 0;
4029 }
4030 
4031 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4032 
4033 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4034 {
4035 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4036 	u64 xstate_bv = xsave->header.xfeatures;
4037 	u64 valid;
4038 
4039 	/*
4040 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4041 	 * leaves 0 and 1 in the loop below.
4042 	 */
4043 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4044 
4045 	/* Set XSTATE_BV */
4046 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4047 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4048 
4049 	/*
4050 	 * Copy each region from the possibly compacted offset to the
4051 	 * non-compacted offset.
4052 	 */
4053 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4054 	while (valid) {
4055 		u64 xfeature_mask = valid & -valid;
4056 		int xfeature_nr = fls64(xfeature_mask) - 1;
4057 		void *src = get_xsave_addr(xsave, xfeature_nr);
4058 
4059 		if (src) {
4060 			u32 size, offset, ecx, edx;
4061 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4062 				    &size, &offset, &ecx, &edx);
4063 			if (xfeature_nr == XFEATURE_PKRU)
4064 				memcpy(dest + offset, &vcpu->arch.pkru,
4065 				       sizeof(vcpu->arch.pkru));
4066 			else
4067 				memcpy(dest + offset, src, size);
4068 
4069 		}
4070 
4071 		valid -= xfeature_mask;
4072 	}
4073 }
4074 
4075 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4076 {
4077 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4078 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4079 	u64 valid;
4080 
4081 	/*
4082 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4083 	 * leaves 0 and 1 in the loop below.
4084 	 */
4085 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4086 
4087 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4088 	xsave->header.xfeatures = xstate_bv;
4089 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4090 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4091 
4092 	/*
4093 	 * Copy each region from the non-compacted offset to the
4094 	 * possibly compacted offset.
4095 	 */
4096 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4097 	while (valid) {
4098 		u64 xfeature_mask = valid & -valid;
4099 		int xfeature_nr = fls64(xfeature_mask) - 1;
4100 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4101 
4102 		if (dest) {
4103 			u32 size, offset, ecx, edx;
4104 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4105 				    &size, &offset, &ecx, &edx);
4106 			if (xfeature_nr == XFEATURE_PKRU)
4107 				memcpy(&vcpu->arch.pkru, src + offset,
4108 				       sizeof(vcpu->arch.pkru));
4109 			else
4110 				memcpy(dest, src + offset, size);
4111 		}
4112 
4113 		valid -= xfeature_mask;
4114 	}
4115 }
4116 
4117 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4118 					 struct kvm_xsave *guest_xsave)
4119 {
4120 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4121 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4122 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4123 	} else {
4124 		memcpy(guest_xsave->region,
4125 			&vcpu->arch.guest_fpu->state.fxsave,
4126 			sizeof(struct fxregs_state));
4127 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4128 			XFEATURE_MASK_FPSSE;
4129 	}
4130 }
4131 
4132 #define XSAVE_MXCSR_OFFSET 24
4133 
4134 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4135 					struct kvm_xsave *guest_xsave)
4136 {
4137 	u64 xstate_bv =
4138 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4139 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4140 
4141 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4142 		/*
4143 		 * Here we allow setting states that are not present in
4144 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4145 		 * with old userspace.
4146 		 */
4147 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4148 			return -EINVAL;
4149 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4150 	} else {
4151 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4152 			mxcsr & ~mxcsr_feature_mask)
4153 			return -EINVAL;
4154 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4155 			guest_xsave->region, sizeof(struct fxregs_state));
4156 	}
4157 	return 0;
4158 }
4159 
4160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4161 					struct kvm_xcrs *guest_xcrs)
4162 {
4163 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4164 		guest_xcrs->nr_xcrs = 0;
4165 		return;
4166 	}
4167 
4168 	guest_xcrs->nr_xcrs = 1;
4169 	guest_xcrs->flags = 0;
4170 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4171 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4172 }
4173 
4174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4175 				       struct kvm_xcrs *guest_xcrs)
4176 {
4177 	int i, r = 0;
4178 
4179 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4180 		return -EINVAL;
4181 
4182 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4183 		return -EINVAL;
4184 
4185 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4186 		/* Only support XCR0 currently */
4187 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4188 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4189 				guest_xcrs->xcrs[i].value);
4190 			break;
4191 		}
4192 	if (r)
4193 		r = -EINVAL;
4194 	return r;
4195 }
4196 
4197 /*
4198  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4199  * stopped by the hypervisor.  This function will be called from the host only.
4200  * EINVAL is returned when the host attempts to set the flag for a guest that
4201  * does not support pv clocks.
4202  */
4203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4204 {
4205 	if (!vcpu->arch.pv_time_enabled)
4206 		return -EINVAL;
4207 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4208 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4209 	return 0;
4210 }
4211 
4212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4213 				     struct kvm_enable_cap *cap)
4214 {
4215 	int r;
4216 	uint16_t vmcs_version;
4217 	void __user *user_ptr;
4218 
4219 	if (cap->flags)
4220 		return -EINVAL;
4221 
4222 	switch (cap->cap) {
4223 	case KVM_CAP_HYPERV_SYNIC2:
4224 		if (cap->args[0])
4225 			return -EINVAL;
4226 		/* fall through */
4227 
4228 	case KVM_CAP_HYPERV_SYNIC:
4229 		if (!irqchip_in_kernel(vcpu->kvm))
4230 			return -EINVAL;
4231 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4232 					     KVM_CAP_HYPERV_SYNIC2);
4233 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4234 		if (!kvm_x86_ops.nested_enable_evmcs)
4235 			return -ENOTTY;
4236 		r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
4237 		if (!r) {
4238 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4239 			if (copy_to_user(user_ptr, &vmcs_version,
4240 					 sizeof(vmcs_version)))
4241 				r = -EFAULT;
4242 		}
4243 		return r;
4244 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4245 		if (!kvm_x86_ops.enable_direct_tlbflush)
4246 			return -ENOTTY;
4247 
4248 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4249 
4250 	default:
4251 		return -EINVAL;
4252 	}
4253 }
4254 
4255 long kvm_arch_vcpu_ioctl(struct file *filp,
4256 			 unsigned int ioctl, unsigned long arg)
4257 {
4258 	struct kvm_vcpu *vcpu = filp->private_data;
4259 	void __user *argp = (void __user *)arg;
4260 	int r;
4261 	union {
4262 		struct kvm_lapic_state *lapic;
4263 		struct kvm_xsave *xsave;
4264 		struct kvm_xcrs *xcrs;
4265 		void *buffer;
4266 	} u;
4267 
4268 	vcpu_load(vcpu);
4269 
4270 	u.buffer = NULL;
4271 	switch (ioctl) {
4272 	case KVM_GET_LAPIC: {
4273 		r = -EINVAL;
4274 		if (!lapic_in_kernel(vcpu))
4275 			goto out;
4276 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4277 				GFP_KERNEL_ACCOUNT);
4278 
4279 		r = -ENOMEM;
4280 		if (!u.lapic)
4281 			goto out;
4282 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4283 		if (r)
4284 			goto out;
4285 		r = -EFAULT;
4286 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4287 			goto out;
4288 		r = 0;
4289 		break;
4290 	}
4291 	case KVM_SET_LAPIC: {
4292 		r = -EINVAL;
4293 		if (!lapic_in_kernel(vcpu))
4294 			goto out;
4295 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4296 		if (IS_ERR(u.lapic)) {
4297 			r = PTR_ERR(u.lapic);
4298 			goto out_nofree;
4299 		}
4300 
4301 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4302 		break;
4303 	}
4304 	case KVM_INTERRUPT: {
4305 		struct kvm_interrupt irq;
4306 
4307 		r = -EFAULT;
4308 		if (copy_from_user(&irq, argp, sizeof(irq)))
4309 			goto out;
4310 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4311 		break;
4312 	}
4313 	case KVM_NMI: {
4314 		r = kvm_vcpu_ioctl_nmi(vcpu);
4315 		break;
4316 	}
4317 	case KVM_SMI: {
4318 		r = kvm_vcpu_ioctl_smi(vcpu);
4319 		break;
4320 	}
4321 	case KVM_SET_CPUID: {
4322 		struct kvm_cpuid __user *cpuid_arg = argp;
4323 		struct kvm_cpuid cpuid;
4324 
4325 		r = -EFAULT;
4326 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4327 			goto out;
4328 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4329 		break;
4330 	}
4331 	case KVM_SET_CPUID2: {
4332 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4333 		struct kvm_cpuid2 cpuid;
4334 
4335 		r = -EFAULT;
4336 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4337 			goto out;
4338 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4339 					      cpuid_arg->entries);
4340 		break;
4341 	}
4342 	case KVM_GET_CPUID2: {
4343 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4344 		struct kvm_cpuid2 cpuid;
4345 
4346 		r = -EFAULT;
4347 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4348 			goto out;
4349 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4350 					      cpuid_arg->entries);
4351 		if (r)
4352 			goto out;
4353 		r = -EFAULT;
4354 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4355 			goto out;
4356 		r = 0;
4357 		break;
4358 	}
4359 	case KVM_GET_MSRS: {
4360 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4361 		r = msr_io(vcpu, argp, do_get_msr, 1);
4362 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4363 		break;
4364 	}
4365 	case KVM_SET_MSRS: {
4366 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4367 		r = msr_io(vcpu, argp, do_set_msr, 0);
4368 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4369 		break;
4370 	}
4371 	case KVM_TPR_ACCESS_REPORTING: {
4372 		struct kvm_tpr_access_ctl tac;
4373 
4374 		r = -EFAULT;
4375 		if (copy_from_user(&tac, argp, sizeof(tac)))
4376 			goto out;
4377 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4378 		if (r)
4379 			goto out;
4380 		r = -EFAULT;
4381 		if (copy_to_user(argp, &tac, sizeof(tac)))
4382 			goto out;
4383 		r = 0;
4384 		break;
4385 	};
4386 	case KVM_SET_VAPIC_ADDR: {
4387 		struct kvm_vapic_addr va;
4388 		int idx;
4389 
4390 		r = -EINVAL;
4391 		if (!lapic_in_kernel(vcpu))
4392 			goto out;
4393 		r = -EFAULT;
4394 		if (copy_from_user(&va, argp, sizeof(va)))
4395 			goto out;
4396 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4397 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4398 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4399 		break;
4400 	}
4401 	case KVM_X86_SETUP_MCE: {
4402 		u64 mcg_cap;
4403 
4404 		r = -EFAULT;
4405 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4406 			goto out;
4407 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4408 		break;
4409 	}
4410 	case KVM_X86_SET_MCE: {
4411 		struct kvm_x86_mce mce;
4412 
4413 		r = -EFAULT;
4414 		if (copy_from_user(&mce, argp, sizeof(mce)))
4415 			goto out;
4416 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4417 		break;
4418 	}
4419 	case KVM_GET_VCPU_EVENTS: {
4420 		struct kvm_vcpu_events events;
4421 
4422 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4423 
4424 		r = -EFAULT;
4425 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4426 			break;
4427 		r = 0;
4428 		break;
4429 	}
4430 	case KVM_SET_VCPU_EVENTS: {
4431 		struct kvm_vcpu_events events;
4432 
4433 		r = -EFAULT;
4434 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4435 			break;
4436 
4437 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4438 		break;
4439 	}
4440 	case KVM_GET_DEBUGREGS: {
4441 		struct kvm_debugregs dbgregs;
4442 
4443 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4444 
4445 		r = -EFAULT;
4446 		if (copy_to_user(argp, &dbgregs,
4447 				 sizeof(struct kvm_debugregs)))
4448 			break;
4449 		r = 0;
4450 		break;
4451 	}
4452 	case KVM_SET_DEBUGREGS: {
4453 		struct kvm_debugregs dbgregs;
4454 
4455 		r = -EFAULT;
4456 		if (copy_from_user(&dbgregs, argp,
4457 				   sizeof(struct kvm_debugregs)))
4458 			break;
4459 
4460 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4461 		break;
4462 	}
4463 	case KVM_GET_XSAVE: {
4464 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4465 		r = -ENOMEM;
4466 		if (!u.xsave)
4467 			break;
4468 
4469 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4470 
4471 		r = -EFAULT;
4472 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4473 			break;
4474 		r = 0;
4475 		break;
4476 	}
4477 	case KVM_SET_XSAVE: {
4478 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4479 		if (IS_ERR(u.xsave)) {
4480 			r = PTR_ERR(u.xsave);
4481 			goto out_nofree;
4482 		}
4483 
4484 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4485 		break;
4486 	}
4487 	case KVM_GET_XCRS: {
4488 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4489 		r = -ENOMEM;
4490 		if (!u.xcrs)
4491 			break;
4492 
4493 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4494 
4495 		r = -EFAULT;
4496 		if (copy_to_user(argp, u.xcrs,
4497 				 sizeof(struct kvm_xcrs)))
4498 			break;
4499 		r = 0;
4500 		break;
4501 	}
4502 	case KVM_SET_XCRS: {
4503 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4504 		if (IS_ERR(u.xcrs)) {
4505 			r = PTR_ERR(u.xcrs);
4506 			goto out_nofree;
4507 		}
4508 
4509 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4510 		break;
4511 	}
4512 	case KVM_SET_TSC_KHZ: {
4513 		u32 user_tsc_khz;
4514 
4515 		r = -EINVAL;
4516 		user_tsc_khz = (u32)arg;
4517 
4518 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4519 			goto out;
4520 
4521 		if (user_tsc_khz == 0)
4522 			user_tsc_khz = tsc_khz;
4523 
4524 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4525 			r = 0;
4526 
4527 		goto out;
4528 	}
4529 	case KVM_GET_TSC_KHZ: {
4530 		r = vcpu->arch.virtual_tsc_khz;
4531 		goto out;
4532 	}
4533 	case KVM_KVMCLOCK_CTRL: {
4534 		r = kvm_set_guest_paused(vcpu);
4535 		goto out;
4536 	}
4537 	case KVM_ENABLE_CAP: {
4538 		struct kvm_enable_cap cap;
4539 
4540 		r = -EFAULT;
4541 		if (copy_from_user(&cap, argp, sizeof(cap)))
4542 			goto out;
4543 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4544 		break;
4545 	}
4546 	case KVM_GET_NESTED_STATE: {
4547 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4548 		u32 user_data_size;
4549 
4550 		r = -EINVAL;
4551 		if (!kvm_x86_ops.get_nested_state)
4552 			break;
4553 
4554 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4555 		r = -EFAULT;
4556 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4557 			break;
4558 
4559 		r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
4560 						  user_data_size);
4561 		if (r < 0)
4562 			break;
4563 
4564 		if (r > user_data_size) {
4565 			if (put_user(r, &user_kvm_nested_state->size))
4566 				r = -EFAULT;
4567 			else
4568 				r = -E2BIG;
4569 			break;
4570 		}
4571 
4572 		r = 0;
4573 		break;
4574 	}
4575 	case KVM_SET_NESTED_STATE: {
4576 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4577 		struct kvm_nested_state kvm_state;
4578 		int idx;
4579 
4580 		r = -EINVAL;
4581 		if (!kvm_x86_ops.set_nested_state)
4582 			break;
4583 
4584 		r = -EFAULT;
4585 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4586 			break;
4587 
4588 		r = -EINVAL;
4589 		if (kvm_state.size < sizeof(kvm_state))
4590 			break;
4591 
4592 		if (kvm_state.flags &
4593 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4594 		      | KVM_STATE_NESTED_EVMCS))
4595 			break;
4596 
4597 		/* nested_run_pending implies guest_mode.  */
4598 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4599 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4600 			break;
4601 
4602 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4603 		r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4604 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4605 		break;
4606 	}
4607 	case KVM_GET_SUPPORTED_HV_CPUID: {
4608 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4609 		struct kvm_cpuid2 cpuid;
4610 
4611 		r = -EFAULT;
4612 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4613 			goto out;
4614 
4615 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4616 						cpuid_arg->entries);
4617 		if (r)
4618 			goto out;
4619 
4620 		r = -EFAULT;
4621 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4622 			goto out;
4623 		r = 0;
4624 		break;
4625 	}
4626 	default:
4627 		r = -EINVAL;
4628 	}
4629 out:
4630 	kfree(u.buffer);
4631 out_nofree:
4632 	vcpu_put(vcpu);
4633 	return r;
4634 }
4635 
4636 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4637 {
4638 	return VM_FAULT_SIGBUS;
4639 }
4640 
4641 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4642 {
4643 	int ret;
4644 
4645 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4646 		return -EINVAL;
4647 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4648 	return ret;
4649 }
4650 
4651 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4652 					      u64 ident_addr)
4653 {
4654 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4655 }
4656 
4657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4658 					 unsigned long kvm_nr_mmu_pages)
4659 {
4660 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4661 		return -EINVAL;
4662 
4663 	mutex_lock(&kvm->slots_lock);
4664 
4665 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4666 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4667 
4668 	mutex_unlock(&kvm->slots_lock);
4669 	return 0;
4670 }
4671 
4672 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4673 {
4674 	return kvm->arch.n_max_mmu_pages;
4675 }
4676 
4677 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4678 {
4679 	struct kvm_pic *pic = kvm->arch.vpic;
4680 	int r;
4681 
4682 	r = 0;
4683 	switch (chip->chip_id) {
4684 	case KVM_IRQCHIP_PIC_MASTER:
4685 		memcpy(&chip->chip.pic, &pic->pics[0],
4686 			sizeof(struct kvm_pic_state));
4687 		break;
4688 	case KVM_IRQCHIP_PIC_SLAVE:
4689 		memcpy(&chip->chip.pic, &pic->pics[1],
4690 			sizeof(struct kvm_pic_state));
4691 		break;
4692 	case KVM_IRQCHIP_IOAPIC:
4693 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4694 		break;
4695 	default:
4696 		r = -EINVAL;
4697 		break;
4698 	}
4699 	return r;
4700 }
4701 
4702 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4703 {
4704 	struct kvm_pic *pic = kvm->arch.vpic;
4705 	int r;
4706 
4707 	r = 0;
4708 	switch (chip->chip_id) {
4709 	case KVM_IRQCHIP_PIC_MASTER:
4710 		spin_lock(&pic->lock);
4711 		memcpy(&pic->pics[0], &chip->chip.pic,
4712 			sizeof(struct kvm_pic_state));
4713 		spin_unlock(&pic->lock);
4714 		break;
4715 	case KVM_IRQCHIP_PIC_SLAVE:
4716 		spin_lock(&pic->lock);
4717 		memcpy(&pic->pics[1], &chip->chip.pic,
4718 			sizeof(struct kvm_pic_state));
4719 		spin_unlock(&pic->lock);
4720 		break;
4721 	case KVM_IRQCHIP_IOAPIC:
4722 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4723 		break;
4724 	default:
4725 		r = -EINVAL;
4726 		break;
4727 	}
4728 	kvm_pic_update_irq(pic);
4729 	return r;
4730 }
4731 
4732 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4733 {
4734 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4735 
4736 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4737 
4738 	mutex_lock(&kps->lock);
4739 	memcpy(ps, &kps->channels, sizeof(*ps));
4740 	mutex_unlock(&kps->lock);
4741 	return 0;
4742 }
4743 
4744 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4745 {
4746 	int i;
4747 	struct kvm_pit *pit = kvm->arch.vpit;
4748 
4749 	mutex_lock(&pit->pit_state.lock);
4750 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4751 	for (i = 0; i < 3; i++)
4752 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4753 	mutex_unlock(&pit->pit_state.lock);
4754 	return 0;
4755 }
4756 
4757 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4758 {
4759 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4760 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4761 		sizeof(ps->channels));
4762 	ps->flags = kvm->arch.vpit->pit_state.flags;
4763 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4764 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4765 	return 0;
4766 }
4767 
4768 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4769 {
4770 	int start = 0;
4771 	int i;
4772 	u32 prev_legacy, cur_legacy;
4773 	struct kvm_pit *pit = kvm->arch.vpit;
4774 
4775 	mutex_lock(&pit->pit_state.lock);
4776 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4777 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4778 	if (!prev_legacy && cur_legacy)
4779 		start = 1;
4780 	memcpy(&pit->pit_state.channels, &ps->channels,
4781 	       sizeof(pit->pit_state.channels));
4782 	pit->pit_state.flags = ps->flags;
4783 	for (i = 0; i < 3; i++)
4784 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4785 				   start && i == 0);
4786 	mutex_unlock(&pit->pit_state.lock);
4787 	return 0;
4788 }
4789 
4790 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4791 				 struct kvm_reinject_control *control)
4792 {
4793 	struct kvm_pit *pit = kvm->arch.vpit;
4794 
4795 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4796 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4797 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4798 	 */
4799 	mutex_lock(&pit->pit_state.lock);
4800 	kvm_pit_set_reinject(pit, control->pit_reinject);
4801 	mutex_unlock(&pit->pit_state.lock);
4802 
4803 	return 0;
4804 }
4805 
4806 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4807 {
4808 	/*
4809 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4810 	 */
4811 	if (kvm_x86_ops.flush_log_dirty)
4812 		kvm_x86_ops.flush_log_dirty(kvm);
4813 }
4814 
4815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4816 			bool line_status)
4817 {
4818 	if (!irqchip_in_kernel(kvm))
4819 		return -ENXIO;
4820 
4821 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4822 					irq_event->irq, irq_event->level,
4823 					line_status);
4824 	return 0;
4825 }
4826 
4827 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4828 			    struct kvm_enable_cap *cap)
4829 {
4830 	int r;
4831 
4832 	if (cap->flags)
4833 		return -EINVAL;
4834 
4835 	switch (cap->cap) {
4836 	case KVM_CAP_DISABLE_QUIRKS:
4837 		kvm->arch.disabled_quirks = cap->args[0];
4838 		r = 0;
4839 		break;
4840 	case KVM_CAP_SPLIT_IRQCHIP: {
4841 		mutex_lock(&kvm->lock);
4842 		r = -EINVAL;
4843 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4844 			goto split_irqchip_unlock;
4845 		r = -EEXIST;
4846 		if (irqchip_in_kernel(kvm))
4847 			goto split_irqchip_unlock;
4848 		if (kvm->created_vcpus)
4849 			goto split_irqchip_unlock;
4850 		r = kvm_setup_empty_irq_routing(kvm);
4851 		if (r)
4852 			goto split_irqchip_unlock;
4853 		/* Pairs with irqchip_in_kernel. */
4854 		smp_wmb();
4855 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4856 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4857 		r = 0;
4858 split_irqchip_unlock:
4859 		mutex_unlock(&kvm->lock);
4860 		break;
4861 	}
4862 	case KVM_CAP_X2APIC_API:
4863 		r = -EINVAL;
4864 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4865 			break;
4866 
4867 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4868 			kvm->arch.x2apic_format = true;
4869 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4870 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4871 
4872 		r = 0;
4873 		break;
4874 	case KVM_CAP_X86_DISABLE_EXITS:
4875 		r = -EINVAL;
4876 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4877 			break;
4878 
4879 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4880 			kvm_can_mwait_in_guest())
4881 			kvm->arch.mwait_in_guest = true;
4882 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4883 			kvm->arch.hlt_in_guest = true;
4884 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4885 			kvm->arch.pause_in_guest = true;
4886 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4887 			kvm->arch.cstate_in_guest = true;
4888 		r = 0;
4889 		break;
4890 	case KVM_CAP_MSR_PLATFORM_INFO:
4891 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4892 		r = 0;
4893 		break;
4894 	case KVM_CAP_EXCEPTION_PAYLOAD:
4895 		kvm->arch.exception_payload_enabled = cap->args[0];
4896 		r = 0;
4897 		break;
4898 	default:
4899 		r = -EINVAL;
4900 		break;
4901 	}
4902 	return r;
4903 }
4904 
4905 long kvm_arch_vm_ioctl(struct file *filp,
4906 		       unsigned int ioctl, unsigned long arg)
4907 {
4908 	struct kvm *kvm = filp->private_data;
4909 	void __user *argp = (void __user *)arg;
4910 	int r = -ENOTTY;
4911 	/*
4912 	 * This union makes it completely explicit to gcc-3.x
4913 	 * that these two variables' stack usage should be
4914 	 * combined, not added together.
4915 	 */
4916 	union {
4917 		struct kvm_pit_state ps;
4918 		struct kvm_pit_state2 ps2;
4919 		struct kvm_pit_config pit_config;
4920 	} u;
4921 
4922 	switch (ioctl) {
4923 	case KVM_SET_TSS_ADDR:
4924 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4925 		break;
4926 	case KVM_SET_IDENTITY_MAP_ADDR: {
4927 		u64 ident_addr;
4928 
4929 		mutex_lock(&kvm->lock);
4930 		r = -EINVAL;
4931 		if (kvm->created_vcpus)
4932 			goto set_identity_unlock;
4933 		r = -EFAULT;
4934 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4935 			goto set_identity_unlock;
4936 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4937 set_identity_unlock:
4938 		mutex_unlock(&kvm->lock);
4939 		break;
4940 	}
4941 	case KVM_SET_NR_MMU_PAGES:
4942 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4943 		break;
4944 	case KVM_GET_NR_MMU_PAGES:
4945 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4946 		break;
4947 	case KVM_CREATE_IRQCHIP: {
4948 		mutex_lock(&kvm->lock);
4949 
4950 		r = -EEXIST;
4951 		if (irqchip_in_kernel(kvm))
4952 			goto create_irqchip_unlock;
4953 
4954 		r = -EINVAL;
4955 		if (kvm->created_vcpus)
4956 			goto create_irqchip_unlock;
4957 
4958 		r = kvm_pic_init(kvm);
4959 		if (r)
4960 			goto create_irqchip_unlock;
4961 
4962 		r = kvm_ioapic_init(kvm);
4963 		if (r) {
4964 			kvm_pic_destroy(kvm);
4965 			goto create_irqchip_unlock;
4966 		}
4967 
4968 		r = kvm_setup_default_irq_routing(kvm);
4969 		if (r) {
4970 			kvm_ioapic_destroy(kvm);
4971 			kvm_pic_destroy(kvm);
4972 			goto create_irqchip_unlock;
4973 		}
4974 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4975 		smp_wmb();
4976 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4977 	create_irqchip_unlock:
4978 		mutex_unlock(&kvm->lock);
4979 		break;
4980 	}
4981 	case KVM_CREATE_PIT:
4982 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4983 		goto create_pit;
4984 	case KVM_CREATE_PIT2:
4985 		r = -EFAULT;
4986 		if (copy_from_user(&u.pit_config, argp,
4987 				   sizeof(struct kvm_pit_config)))
4988 			goto out;
4989 	create_pit:
4990 		mutex_lock(&kvm->lock);
4991 		r = -EEXIST;
4992 		if (kvm->arch.vpit)
4993 			goto create_pit_unlock;
4994 		r = -ENOMEM;
4995 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4996 		if (kvm->arch.vpit)
4997 			r = 0;
4998 	create_pit_unlock:
4999 		mutex_unlock(&kvm->lock);
5000 		break;
5001 	case KVM_GET_IRQCHIP: {
5002 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5003 		struct kvm_irqchip *chip;
5004 
5005 		chip = memdup_user(argp, sizeof(*chip));
5006 		if (IS_ERR(chip)) {
5007 			r = PTR_ERR(chip);
5008 			goto out;
5009 		}
5010 
5011 		r = -ENXIO;
5012 		if (!irqchip_kernel(kvm))
5013 			goto get_irqchip_out;
5014 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5015 		if (r)
5016 			goto get_irqchip_out;
5017 		r = -EFAULT;
5018 		if (copy_to_user(argp, chip, sizeof(*chip)))
5019 			goto get_irqchip_out;
5020 		r = 0;
5021 	get_irqchip_out:
5022 		kfree(chip);
5023 		break;
5024 	}
5025 	case KVM_SET_IRQCHIP: {
5026 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5027 		struct kvm_irqchip *chip;
5028 
5029 		chip = memdup_user(argp, sizeof(*chip));
5030 		if (IS_ERR(chip)) {
5031 			r = PTR_ERR(chip);
5032 			goto out;
5033 		}
5034 
5035 		r = -ENXIO;
5036 		if (!irqchip_kernel(kvm))
5037 			goto set_irqchip_out;
5038 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5039 	set_irqchip_out:
5040 		kfree(chip);
5041 		break;
5042 	}
5043 	case KVM_GET_PIT: {
5044 		r = -EFAULT;
5045 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5046 			goto out;
5047 		r = -ENXIO;
5048 		if (!kvm->arch.vpit)
5049 			goto out;
5050 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5051 		if (r)
5052 			goto out;
5053 		r = -EFAULT;
5054 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5055 			goto out;
5056 		r = 0;
5057 		break;
5058 	}
5059 	case KVM_SET_PIT: {
5060 		r = -EFAULT;
5061 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5062 			goto out;
5063 		mutex_lock(&kvm->lock);
5064 		r = -ENXIO;
5065 		if (!kvm->arch.vpit)
5066 			goto set_pit_out;
5067 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5068 set_pit_out:
5069 		mutex_unlock(&kvm->lock);
5070 		break;
5071 	}
5072 	case KVM_GET_PIT2: {
5073 		r = -ENXIO;
5074 		if (!kvm->arch.vpit)
5075 			goto out;
5076 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5077 		if (r)
5078 			goto out;
5079 		r = -EFAULT;
5080 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5081 			goto out;
5082 		r = 0;
5083 		break;
5084 	}
5085 	case KVM_SET_PIT2: {
5086 		r = -EFAULT;
5087 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5088 			goto out;
5089 		mutex_lock(&kvm->lock);
5090 		r = -ENXIO;
5091 		if (!kvm->arch.vpit)
5092 			goto set_pit2_out;
5093 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5094 set_pit2_out:
5095 		mutex_unlock(&kvm->lock);
5096 		break;
5097 	}
5098 	case KVM_REINJECT_CONTROL: {
5099 		struct kvm_reinject_control control;
5100 		r =  -EFAULT;
5101 		if (copy_from_user(&control, argp, sizeof(control)))
5102 			goto out;
5103 		r = -ENXIO;
5104 		if (!kvm->arch.vpit)
5105 			goto out;
5106 		r = kvm_vm_ioctl_reinject(kvm, &control);
5107 		break;
5108 	}
5109 	case KVM_SET_BOOT_CPU_ID:
5110 		r = 0;
5111 		mutex_lock(&kvm->lock);
5112 		if (kvm->created_vcpus)
5113 			r = -EBUSY;
5114 		else
5115 			kvm->arch.bsp_vcpu_id = arg;
5116 		mutex_unlock(&kvm->lock);
5117 		break;
5118 	case KVM_XEN_HVM_CONFIG: {
5119 		struct kvm_xen_hvm_config xhc;
5120 		r = -EFAULT;
5121 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5122 			goto out;
5123 		r = -EINVAL;
5124 		if (xhc.flags)
5125 			goto out;
5126 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5127 		r = 0;
5128 		break;
5129 	}
5130 	case KVM_SET_CLOCK: {
5131 		struct kvm_clock_data user_ns;
5132 		u64 now_ns;
5133 
5134 		r = -EFAULT;
5135 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5136 			goto out;
5137 
5138 		r = -EINVAL;
5139 		if (user_ns.flags)
5140 			goto out;
5141 
5142 		r = 0;
5143 		/*
5144 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5145 		 * kvm_gen_update_masterclock() can be cut down to locked
5146 		 * pvclock_update_vm_gtod_copy().
5147 		 */
5148 		kvm_gen_update_masterclock(kvm);
5149 		now_ns = get_kvmclock_ns(kvm);
5150 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5151 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5152 		break;
5153 	}
5154 	case KVM_GET_CLOCK: {
5155 		struct kvm_clock_data user_ns;
5156 		u64 now_ns;
5157 
5158 		now_ns = get_kvmclock_ns(kvm);
5159 		user_ns.clock = now_ns;
5160 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5161 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5162 
5163 		r = -EFAULT;
5164 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5165 			goto out;
5166 		r = 0;
5167 		break;
5168 	}
5169 	case KVM_MEMORY_ENCRYPT_OP: {
5170 		r = -ENOTTY;
5171 		if (kvm_x86_ops.mem_enc_op)
5172 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5173 		break;
5174 	}
5175 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5176 		struct kvm_enc_region region;
5177 
5178 		r = -EFAULT;
5179 		if (copy_from_user(&region, argp, sizeof(region)))
5180 			goto out;
5181 
5182 		r = -ENOTTY;
5183 		if (kvm_x86_ops.mem_enc_reg_region)
5184 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5185 		break;
5186 	}
5187 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5188 		struct kvm_enc_region region;
5189 
5190 		r = -EFAULT;
5191 		if (copy_from_user(&region, argp, sizeof(region)))
5192 			goto out;
5193 
5194 		r = -ENOTTY;
5195 		if (kvm_x86_ops.mem_enc_unreg_region)
5196 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5197 		break;
5198 	}
5199 	case KVM_HYPERV_EVENTFD: {
5200 		struct kvm_hyperv_eventfd hvevfd;
5201 
5202 		r = -EFAULT;
5203 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5204 			goto out;
5205 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5206 		break;
5207 	}
5208 	case KVM_SET_PMU_EVENT_FILTER:
5209 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5210 		break;
5211 	default:
5212 		r = -ENOTTY;
5213 	}
5214 out:
5215 	return r;
5216 }
5217 
5218 static void kvm_init_msr_list(void)
5219 {
5220 	struct x86_pmu_capability x86_pmu;
5221 	u32 dummy[2];
5222 	unsigned i;
5223 
5224 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5225 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5226 
5227 	perf_get_x86_pmu_capability(&x86_pmu);
5228 
5229 	num_msrs_to_save = 0;
5230 	num_emulated_msrs = 0;
5231 	num_msr_based_features = 0;
5232 
5233 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5234 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5235 			continue;
5236 
5237 		/*
5238 		 * Even MSRs that are valid in the host may not be exposed
5239 		 * to the guests in some cases.
5240 		 */
5241 		switch (msrs_to_save_all[i]) {
5242 		case MSR_IA32_BNDCFGS:
5243 			if (!kvm_mpx_supported())
5244 				continue;
5245 			break;
5246 		case MSR_TSC_AUX:
5247 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5248 				continue;
5249 			break;
5250 		case MSR_IA32_RTIT_CTL:
5251 		case MSR_IA32_RTIT_STATUS:
5252 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5253 				continue;
5254 			break;
5255 		case MSR_IA32_RTIT_CR3_MATCH:
5256 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5257 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5258 				continue;
5259 			break;
5260 		case MSR_IA32_RTIT_OUTPUT_BASE:
5261 		case MSR_IA32_RTIT_OUTPUT_MASK:
5262 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5263 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5264 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5265 				continue;
5266 			break;
5267 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5268 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5269 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5270 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5271 				continue;
5272 			break;
5273 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5274 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5275 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5276 				continue;
5277 			break;
5278 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5279 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5280 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5281 				continue;
5282 		}
5283 		default:
5284 			break;
5285 		}
5286 
5287 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5288 	}
5289 
5290 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5291 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5292 			continue;
5293 
5294 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5295 	}
5296 
5297 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5298 		struct kvm_msr_entry msr;
5299 
5300 		msr.index = msr_based_features_all[i];
5301 		if (kvm_get_msr_feature(&msr))
5302 			continue;
5303 
5304 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5305 	}
5306 }
5307 
5308 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5309 			   const void *v)
5310 {
5311 	int handled = 0;
5312 	int n;
5313 
5314 	do {
5315 		n = min(len, 8);
5316 		if (!(lapic_in_kernel(vcpu) &&
5317 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5318 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5319 			break;
5320 		handled += n;
5321 		addr += n;
5322 		len -= n;
5323 		v += n;
5324 	} while (len);
5325 
5326 	return handled;
5327 }
5328 
5329 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5330 {
5331 	int handled = 0;
5332 	int n;
5333 
5334 	do {
5335 		n = min(len, 8);
5336 		if (!(lapic_in_kernel(vcpu) &&
5337 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5338 					 addr, n, v))
5339 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5340 			break;
5341 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5342 		handled += n;
5343 		addr += n;
5344 		len -= n;
5345 		v += n;
5346 	} while (len);
5347 
5348 	return handled;
5349 }
5350 
5351 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5352 			struct kvm_segment *var, int seg)
5353 {
5354 	kvm_x86_ops.set_segment(vcpu, var, seg);
5355 }
5356 
5357 void kvm_get_segment(struct kvm_vcpu *vcpu,
5358 		     struct kvm_segment *var, int seg)
5359 {
5360 	kvm_x86_ops.get_segment(vcpu, var, seg);
5361 }
5362 
5363 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5364 			   struct x86_exception *exception)
5365 {
5366 	gpa_t t_gpa;
5367 
5368 	BUG_ON(!mmu_is_nested(vcpu));
5369 
5370 	/* NPT walks are always user-walks */
5371 	access |= PFERR_USER_MASK;
5372 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5373 
5374 	return t_gpa;
5375 }
5376 
5377 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5378 			      struct x86_exception *exception)
5379 {
5380 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5381 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5382 }
5383 
5384  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5385 				struct x86_exception *exception)
5386 {
5387 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5388 	access |= PFERR_FETCH_MASK;
5389 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5390 }
5391 
5392 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5393 			       struct x86_exception *exception)
5394 {
5395 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5396 	access |= PFERR_WRITE_MASK;
5397 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5398 }
5399 
5400 /* uses this to access any guest's mapped memory without checking CPL */
5401 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5402 				struct x86_exception *exception)
5403 {
5404 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5405 }
5406 
5407 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5408 				      struct kvm_vcpu *vcpu, u32 access,
5409 				      struct x86_exception *exception)
5410 {
5411 	void *data = val;
5412 	int r = X86EMUL_CONTINUE;
5413 
5414 	while (bytes) {
5415 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5416 							    exception);
5417 		unsigned offset = addr & (PAGE_SIZE-1);
5418 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5419 		int ret;
5420 
5421 		if (gpa == UNMAPPED_GVA)
5422 			return X86EMUL_PROPAGATE_FAULT;
5423 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5424 					       offset, toread);
5425 		if (ret < 0) {
5426 			r = X86EMUL_IO_NEEDED;
5427 			goto out;
5428 		}
5429 
5430 		bytes -= toread;
5431 		data += toread;
5432 		addr += toread;
5433 	}
5434 out:
5435 	return r;
5436 }
5437 
5438 /* used for instruction fetching */
5439 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5440 				gva_t addr, void *val, unsigned int bytes,
5441 				struct x86_exception *exception)
5442 {
5443 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5444 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5445 	unsigned offset;
5446 	int ret;
5447 
5448 	/* Inline kvm_read_guest_virt_helper for speed.  */
5449 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5450 						    exception);
5451 	if (unlikely(gpa == UNMAPPED_GVA))
5452 		return X86EMUL_PROPAGATE_FAULT;
5453 
5454 	offset = addr & (PAGE_SIZE-1);
5455 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5456 		bytes = (unsigned)PAGE_SIZE - offset;
5457 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5458 				       offset, bytes);
5459 	if (unlikely(ret < 0))
5460 		return X86EMUL_IO_NEEDED;
5461 
5462 	return X86EMUL_CONTINUE;
5463 }
5464 
5465 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5466 			       gva_t addr, void *val, unsigned int bytes,
5467 			       struct x86_exception *exception)
5468 {
5469 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5470 
5471 	/*
5472 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5473 	 * is returned, but our callers are not ready for that and they blindly
5474 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5475 	 * uninitialized kernel stack memory into cr2 and error code.
5476 	 */
5477 	memset(exception, 0, sizeof(*exception));
5478 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5479 					  exception);
5480 }
5481 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5482 
5483 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5484 			     gva_t addr, void *val, unsigned int bytes,
5485 			     struct x86_exception *exception, bool system)
5486 {
5487 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5488 	u32 access = 0;
5489 
5490 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5491 		access |= PFERR_USER_MASK;
5492 
5493 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5494 }
5495 
5496 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5497 		unsigned long addr, void *val, unsigned int bytes)
5498 {
5499 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5500 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5501 
5502 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5503 }
5504 
5505 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5506 				      struct kvm_vcpu *vcpu, u32 access,
5507 				      struct x86_exception *exception)
5508 {
5509 	void *data = val;
5510 	int r = X86EMUL_CONTINUE;
5511 
5512 	while (bytes) {
5513 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5514 							     access,
5515 							     exception);
5516 		unsigned offset = addr & (PAGE_SIZE-1);
5517 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5518 		int ret;
5519 
5520 		if (gpa == UNMAPPED_GVA)
5521 			return X86EMUL_PROPAGATE_FAULT;
5522 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5523 		if (ret < 0) {
5524 			r = X86EMUL_IO_NEEDED;
5525 			goto out;
5526 		}
5527 
5528 		bytes -= towrite;
5529 		data += towrite;
5530 		addr += towrite;
5531 	}
5532 out:
5533 	return r;
5534 }
5535 
5536 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5537 			      unsigned int bytes, struct x86_exception *exception,
5538 			      bool system)
5539 {
5540 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5541 	u32 access = PFERR_WRITE_MASK;
5542 
5543 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5544 		access |= PFERR_USER_MASK;
5545 
5546 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5547 					   access, exception);
5548 }
5549 
5550 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5551 				unsigned int bytes, struct x86_exception *exception)
5552 {
5553 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5554 	vcpu->arch.l1tf_flush_l1d = true;
5555 
5556 	/*
5557 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5558 	 * is returned, but our callers are not ready for that and they blindly
5559 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5560 	 * uninitialized kernel stack memory into cr2 and error code.
5561 	 */
5562 	memset(exception, 0, sizeof(*exception));
5563 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5564 					   PFERR_WRITE_MASK, exception);
5565 }
5566 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5567 
5568 int handle_ud(struct kvm_vcpu *vcpu)
5569 {
5570 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5571 	int emul_type = EMULTYPE_TRAP_UD;
5572 	char sig[5]; /* ud2; .ascii "kvm" */
5573 	struct x86_exception e;
5574 
5575 	if (force_emulation_prefix &&
5576 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5577 				sig, sizeof(sig), &e) == 0 &&
5578 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5579 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5580 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5581 	}
5582 
5583 	return kvm_emulate_instruction(vcpu, emul_type);
5584 }
5585 EXPORT_SYMBOL_GPL(handle_ud);
5586 
5587 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5588 			    gpa_t gpa, bool write)
5589 {
5590 	/* For APIC access vmexit */
5591 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5592 		return 1;
5593 
5594 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5595 		trace_vcpu_match_mmio(gva, gpa, write, true);
5596 		return 1;
5597 	}
5598 
5599 	return 0;
5600 }
5601 
5602 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5603 				gpa_t *gpa, struct x86_exception *exception,
5604 				bool write)
5605 {
5606 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5607 		| (write ? PFERR_WRITE_MASK : 0);
5608 
5609 	/*
5610 	 * currently PKRU is only applied to ept enabled guest so
5611 	 * there is no pkey in EPT page table for L1 guest or EPT
5612 	 * shadow page table for L2 guest.
5613 	 */
5614 	if (vcpu_match_mmio_gva(vcpu, gva)
5615 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5616 				 vcpu->arch.mmio_access, 0, access)) {
5617 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5618 					(gva & (PAGE_SIZE - 1));
5619 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5620 		return 1;
5621 	}
5622 
5623 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5624 
5625 	if (*gpa == UNMAPPED_GVA)
5626 		return -1;
5627 
5628 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5629 }
5630 
5631 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5632 			const void *val, int bytes)
5633 {
5634 	int ret;
5635 
5636 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5637 	if (ret < 0)
5638 		return 0;
5639 	kvm_page_track_write(vcpu, gpa, val, bytes);
5640 	return 1;
5641 }
5642 
5643 struct read_write_emulator_ops {
5644 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5645 				  int bytes);
5646 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5647 				  void *val, int bytes);
5648 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5649 			       int bytes, void *val);
5650 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5651 				    void *val, int bytes);
5652 	bool write;
5653 };
5654 
5655 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5656 {
5657 	if (vcpu->mmio_read_completed) {
5658 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5659 			       vcpu->mmio_fragments[0].gpa, val);
5660 		vcpu->mmio_read_completed = 0;
5661 		return 1;
5662 	}
5663 
5664 	return 0;
5665 }
5666 
5667 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5668 			void *val, int bytes)
5669 {
5670 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5671 }
5672 
5673 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5674 			 void *val, int bytes)
5675 {
5676 	return emulator_write_phys(vcpu, gpa, val, bytes);
5677 }
5678 
5679 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5680 {
5681 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5682 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5683 }
5684 
5685 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5686 			  void *val, int bytes)
5687 {
5688 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5689 	return X86EMUL_IO_NEEDED;
5690 }
5691 
5692 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5693 			   void *val, int bytes)
5694 {
5695 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5696 
5697 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5698 	return X86EMUL_CONTINUE;
5699 }
5700 
5701 static const struct read_write_emulator_ops read_emultor = {
5702 	.read_write_prepare = read_prepare,
5703 	.read_write_emulate = read_emulate,
5704 	.read_write_mmio = vcpu_mmio_read,
5705 	.read_write_exit_mmio = read_exit_mmio,
5706 };
5707 
5708 static const struct read_write_emulator_ops write_emultor = {
5709 	.read_write_emulate = write_emulate,
5710 	.read_write_mmio = write_mmio,
5711 	.read_write_exit_mmio = write_exit_mmio,
5712 	.write = true,
5713 };
5714 
5715 static int emulator_read_write_onepage(unsigned long addr, void *val,
5716 				       unsigned int bytes,
5717 				       struct x86_exception *exception,
5718 				       struct kvm_vcpu *vcpu,
5719 				       const struct read_write_emulator_ops *ops)
5720 {
5721 	gpa_t gpa;
5722 	int handled, ret;
5723 	bool write = ops->write;
5724 	struct kvm_mmio_fragment *frag;
5725 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5726 
5727 	/*
5728 	 * If the exit was due to a NPF we may already have a GPA.
5729 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5730 	 * Note, this cannot be used on string operations since string
5731 	 * operation using rep will only have the initial GPA from the NPF
5732 	 * occurred.
5733 	 */
5734 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5735 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5736 		gpa = ctxt->gpa_val;
5737 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5738 	} else {
5739 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5740 		if (ret < 0)
5741 			return X86EMUL_PROPAGATE_FAULT;
5742 	}
5743 
5744 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5745 		return X86EMUL_CONTINUE;
5746 
5747 	/*
5748 	 * Is this MMIO handled locally?
5749 	 */
5750 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5751 	if (handled == bytes)
5752 		return X86EMUL_CONTINUE;
5753 
5754 	gpa += handled;
5755 	bytes -= handled;
5756 	val += handled;
5757 
5758 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5759 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5760 	frag->gpa = gpa;
5761 	frag->data = val;
5762 	frag->len = bytes;
5763 	return X86EMUL_CONTINUE;
5764 }
5765 
5766 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5767 			unsigned long addr,
5768 			void *val, unsigned int bytes,
5769 			struct x86_exception *exception,
5770 			const struct read_write_emulator_ops *ops)
5771 {
5772 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5773 	gpa_t gpa;
5774 	int rc;
5775 
5776 	if (ops->read_write_prepare &&
5777 		  ops->read_write_prepare(vcpu, val, bytes))
5778 		return X86EMUL_CONTINUE;
5779 
5780 	vcpu->mmio_nr_fragments = 0;
5781 
5782 	/* Crossing a page boundary? */
5783 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5784 		int now;
5785 
5786 		now = -addr & ~PAGE_MASK;
5787 		rc = emulator_read_write_onepage(addr, val, now, exception,
5788 						 vcpu, ops);
5789 
5790 		if (rc != X86EMUL_CONTINUE)
5791 			return rc;
5792 		addr += now;
5793 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5794 			addr = (u32)addr;
5795 		val += now;
5796 		bytes -= now;
5797 	}
5798 
5799 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5800 					 vcpu, ops);
5801 	if (rc != X86EMUL_CONTINUE)
5802 		return rc;
5803 
5804 	if (!vcpu->mmio_nr_fragments)
5805 		return rc;
5806 
5807 	gpa = vcpu->mmio_fragments[0].gpa;
5808 
5809 	vcpu->mmio_needed = 1;
5810 	vcpu->mmio_cur_fragment = 0;
5811 
5812 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5813 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5814 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5815 	vcpu->run->mmio.phys_addr = gpa;
5816 
5817 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5818 }
5819 
5820 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5821 				  unsigned long addr,
5822 				  void *val,
5823 				  unsigned int bytes,
5824 				  struct x86_exception *exception)
5825 {
5826 	return emulator_read_write(ctxt, addr, val, bytes,
5827 				   exception, &read_emultor);
5828 }
5829 
5830 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5831 			    unsigned long addr,
5832 			    const void *val,
5833 			    unsigned int bytes,
5834 			    struct x86_exception *exception)
5835 {
5836 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5837 				   exception, &write_emultor);
5838 }
5839 
5840 #define CMPXCHG_TYPE(t, ptr, old, new) \
5841 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5842 
5843 #ifdef CONFIG_X86_64
5844 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5845 #else
5846 #  define CMPXCHG64(ptr, old, new) \
5847 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5848 #endif
5849 
5850 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5851 				     unsigned long addr,
5852 				     const void *old,
5853 				     const void *new,
5854 				     unsigned int bytes,
5855 				     struct x86_exception *exception)
5856 {
5857 	struct kvm_host_map map;
5858 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5859 	u64 page_line_mask;
5860 	gpa_t gpa;
5861 	char *kaddr;
5862 	bool exchanged;
5863 
5864 	/* guests cmpxchg8b have to be emulated atomically */
5865 	if (bytes > 8 || (bytes & (bytes - 1)))
5866 		goto emul_write;
5867 
5868 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5869 
5870 	if (gpa == UNMAPPED_GVA ||
5871 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5872 		goto emul_write;
5873 
5874 	/*
5875 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
5876 	 * enabled in the host and the access splits a cache line.
5877 	 */
5878 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5879 		page_line_mask = ~(cache_line_size() - 1);
5880 	else
5881 		page_line_mask = PAGE_MASK;
5882 
5883 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5884 		goto emul_write;
5885 
5886 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5887 		goto emul_write;
5888 
5889 	kaddr = map.hva + offset_in_page(gpa);
5890 
5891 	switch (bytes) {
5892 	case 1:
5893 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5894 		break;
5895 	case 2:
5896 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5897 		break;
5898 	case 4:
5899 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5900 		break;
5901 	case 8:
5902 		exchanged = CMPXCHG64(kaddr, old, new);
5903 		break;
5904 	default:
5905 		BUG();
5906 	}
5907 
5908 	kvm_vcpu_unmap(vcpu, &map, true);
5909 
5910 	if (!exchanged)
5911 		return X86EMUL_CMPXCHG_FAILED;
5912 
5913 	kvm_page_track_write(vcpu, gpa, new, bytes);
5914 
5915 	return X86EMUL_CONTINUE;
5916 
5917 emul_write:
5918 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5919 
5920 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5921 }
5922 
5923 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5924 {
5925 	int r = 0, i;
5926 
5927 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5928 		if (vcpu->arch.pio.in)
5929 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5930 					    vcpu->arch.pio.size, pd);
5931 		else
5932 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5933 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5934 					     pd);
5935 		if (r)
5936 			break;
5937 		pd += vcpu->arch.pio.size;
5938 	}
5939 	return r;
5940 }
5941 
5942 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5943 			       unsigned short port, void *val,
5944 			       unsigned int count, bool in)
5945 {
5946 	vcpu->arch.pio.port = port;
5947 	vcpu->arch.pio.in = in;
5948 	vcpu->arch.pio.count  = count;
5949 	vcpu->arch.pio.size = size;
5950 
5951 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5952 		vcpu->arch.pio.count = 0;
5953 		return 1;
5954 	}
5955 
5956 	vcpu->run->exit_reason = KVM_EXIT_IO;
5957 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5958 	vcpu->run->io.size = size;
5959 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5960 	vcpu->run->io.count = count;
5961 	vcpu->run->io.port = port;
5962 
5963 	return 0;
5964 }
5965 
5966 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5967 			   unsigned short port, void *val, unsigned int count)
5968 {
5969 	int ret;
5970 
5971 	if (vcpu->arch.pio.count)
5972 		goto data_avail;
5973 
5974 	memset(vcpu->arch.pio_data, 0, size * count);
5975 
5976 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5977 	if (ret) {
5978 data_avail:
5979 		memcpy(val, vcpu->arch.pio_data, size * count);
5980 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5981 		vcpu->arch.pio.count = 0;
5982 		return 1;
5983 	}
5984 
5985 	return 0;
5986 }
5987 
5988 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5989 				    int size, unsigned short port, void *val,
5990 				    unsigned int count)
5991 {
5992 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5993 
5994 }
5995 
5996 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5997 			    unsigned short port, const void *val,
5998 			    unsigned int count)
5999 {
6000 	memcpy(vcpu->arch.pio_data, val, size * count);
6001 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6002 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6003 }
6004 
6005 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6006 				     int size, unsigned short port,
6007 				     const void *val, unsigned int count)
6008 {
6009 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6010 }
6011 
6012 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6013 {
6014 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6015 }
6016 
6017 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6018 {
6019 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6020 }
6021 
6022 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6023 {
6024 	if (!need_emulate_wbinvd(vcpu))
6025 		return X86EMUL_CONTINUE;
6026 
6027 	if (kvm_x86_ops.has_wbinvd_exit()) {
6028 		int cpu = get_cpu();
6029 
6030 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6031 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6032 				wbinvd_ipi, NULL, 1);
6033 		put_cpu();
6034 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6035 	} else
6036 		wbinvd();
6037 	return X86EMUL_CONTINUE;
6038 }
6039 
6040 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6041 {
6042 	kvm_emulate_wbinvd_noskip(vcpu);
6043 	return kvm_skip_emulated_instruction(vcpu);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6046 
6047 
6048 
6049 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6050 {
6051 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6052 }
6053 
6054 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6055 			   unsigned long *dest)
6056 {
6057 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6058 }
6059 
6060 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6061 			   unsigned long value)
6062 {
6063 
6064 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6065 }
6066 
6067 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6068 {
6069 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6070 }
6071 
6072 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6073 {
6074 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6075 	unsigned long value;
6076 
6077 	switch (cr) {
6078 	case 0:
6079 		value = kvm_read_cr0(vcpu);
6080 		break;
6081 	case 2:
6082 		value = vcpu->arch.cr2;
6083 		break;
6084 	case 3:
6085 		value = kvm_read_cr3(vcpu);
6086 		break;
6087 	case 4:
6088 		value = kvm_read_cr4(vcpu);
6089 		break;
6090 	case 8:
6091 		value = kvm_get_cr8(vcpu);
6092 		break;
6093 	default:
6094 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6095 		return 0;
6096 	}
6097 
6098 	return value;
6099 }
6100 
6101 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6102 {
6103 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6104 	int res = 0;
6105 
6106 	switch (cr) {
6107 	case 0:
6108 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6109 		break;
6110 	case 2:
6111 		vcpu->arch.cr2 = val;
6112 		break;
6113 	case 3:
6114 		res = kvm_set_cr3(vcpu, val);
6115 		break;
6116 	case 4:
6117 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6118 		break;
6119 	case 8:
6120 		res = kvm_set_cr8(vcpu, val);
6121 		break;
6122 	default:
6123 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6124 		res = -1;
6125 	}
6126 
6127 	return res;
6128 }
6129 
6130 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6131 {
6132 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6133 }
6134 
6135 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6136 {
6137 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6138 }
6139 
6140 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6141 {
6142 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6143 }
6144 
6145 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6146 {
6147 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6148 }
6149 
6150 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6151 {
6152 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6153 }
6154 
6155 static unsigned long emulator_get_cached_segment_base(
6156 	struct x86_emulate_ctxt *ctxt, int seg)
6157 {
6158 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6159 }
6160 
6161 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6162 				 struct desc_struct *desc, u32 *base3,
6163 				 int seg)
6164 {
6165 	struct kvm_segment var;
6166 
6167 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6168 	*selector = var.selector;
6169 
6170 	if (var.unusable) {
6171 		memset(desc, 0, sizeof(*desc));
6172 		if (base3)
6173 			*base3 = 0;
6174 		return false;
6175 	}
6176 
6177 	if (var.g)
6178 		var.limit >>= 12;
6179 	set_desc_limit(desc, var.limit);
6180 	set_desc_base(desc, (unsigned long)var.base);
6181 #ifdef CONFIG_X86_64
6182 	if (base3)
6183 		*base3 = var.base >> 32;
6184 #endif
6185 	desc->type = var.type;
6186 	desc->s = var.s;
6187 	desc->dpl = var.dpl;
6188 	desc->p = var.present;
6189 	desc->avl = var.avl;
6190 	desc->l = var.l;
6191 	desc->d = var.db;
6192 	desc->g = var.g;
6193 
6194 	return true;
6195 }
6196 
6197 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6198 				 struct desc_struct *desc, u32 base3,
6199 				 int seg)
6200 {
6201 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6202 	struct kvm_segment var;
6203 
6204 	var.selector = selector;
6205 	var.base = get_desc_base(desc);
6206 #ifdef CONFIG_X86_64
6207 	var.base |= ((u64)base3) << 32;
6208 #endif
6209 	var.limit = get_desc_limit(desc);
6210 	if (desc->g)
6211 		var.limit = (var.limit << 12) | 0xfff;
6212 	var.type = desc->type;
6213 	var.dpl = desc->dpl;
6214 	var.db = desc->d;
6215 	var.s = desc->s;
6216 	var.l = desc->l;
6217 	var.g = desc->g;
6218 	var.avl = desc->avl;
6219 	var.present = desc->p;
6220 	var.unusable = !var.present;
6221 	var.padding = 0;
6222 
6223 	kvm_set_segment(vcpu, &var, seg);
6224 	return;
6225 }
6226 
6227 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6228 			    u32 msr_index, u64 *pdata)
6229 {
6230 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6231 }
6232 
6233 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6234 			    u32 msr_index, u64 data)
6235 {
6236 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6237 }
6238 
6239 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6240 {
6241 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6242 
6243 	return vcpu->arch.smbase;
6244 }
6245 
6246 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6247 {
6248 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6249 
6250 	vcpu->arch.smbase = smbase;
6251 }
6252 
6253 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6254 			      u32 pmc)
6255 {
6256 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6257 }
6258 
6259 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6260 			     u32 pmc, u64 *pdata)
6261 {
6262 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6263 }
6264 
6265 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6266 {
6267 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6268 }
6269 
6270 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6271 			      struct x86_instruction_info *info,
6272 			      enum x86_intercept_stage stage)
6273 {
6274 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6275 					    &ctxt->exception);
6276 }
6277 
6278 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6279 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6280 			      bool exact_only)
6281 {
6282 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6283 }
6284 
6285 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6286 {
6287 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6288 }
6289 
6290 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6291 {
6292 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6293 }
6294 
6295 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6296 {
6297 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6298 }
6299 
6300 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6301 {
6302 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6303 }
6304 
6305 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6306 {
6307 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6308 }
6309 
6310 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6311 {
6312 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6313 }
6314 
6315 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6316 {
6317 	return emul_to_vcpu(ctxt)->arch.hflags;
6318 }
6319 
6320 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6321 {
6322 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6323 }
6324 
6325 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6326 				  const char *smstate)
6327 {
6328 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6329 }
6330 
6331 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6332 {
6333 	kvm_smm_changed(emul_to_vcpu(ctxt));
6334 }
6335 
6336 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6337 {
6338 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6339 }
6340 
6341 static const struct x86_emulate_ops emulate_ops = {
6342 	.read_gpr            = emulator_read_gpr,
6343 	.write_gpr           = emulator_write_gpr,
6344 	.read_std            = emulator_read_std,
6345 	.write_std           = emulator_write_std,
6346 	.read_phys           = kvm_read_guest_phys_system,
6347 	.fetch               = kvm_fetch_guest_virt,
6348 	.read_emulated       = emulator_read_emulated,
6349 	.write_emulated      = emulator_write_emulated,
6350 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6351 	.invlpg              = emulator_invlpg,
6352 	.pio_in_emulated     = emulator_pio_in_emulated,
6353 	.pio_out_emulated    = emulator_pio_out_emulated,
6354 	.get_segment         = emulator_get_segment,
6355 	.set_segment         = emulator_set_segment,
6356 	.get_cached_segment_base = emulator_get_cached_segment_base,
6357 	.get_gdt             = emulator_get_gdt,
6358 	.get_idt	     = emulator_get_idt,
6359 	.set_gdt             = emulator_set_gdt,
6360 	.set_idt	     = emulator_set_idt,
6361 	.get_cr              = emulator_get_cr,
6362 	.set_cr              = emulator_set_cr,
6363 	.cpl                 = emulator_get_cpl,
6364 	.get_dr              = emulator_get_dr,
6365 	.set_dr              = emulator_set_dr,
6366 	.get_smbase          = emulator_get_smbase,
6367 	.set_smbase          = emulator_set_smbase,
6368 	.set_msr             = emulator_set_msr,
6369 	.get_msr             = emulator_get_msr,
6370 	.check_pmc	     = emulator_check_pmc,
6371 	.read_pmc            = emulator_read_pmc,
6372 	.halt                = emulator_halt,
6373 	.wbinvd              = emulator_wbinvd,
6374 	.fix_hypercall       = emulator_fix_hypercall,
6375 	.intercept           = emulator_intercept,
6376 	.get_cpuid           = emulator_get_cpuid,
6377 	.guest_has_long_mode = emulator_guest_has_long_mode,
6378 	.guest_has_movbe     = emulator_guest_has_movbe,
6379 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6380 	.set_nmi_mask        = emulator_set_nmi_mask,
6381 	.get_hflags          = emulator_get_hflags,
6382 	.set_hflags          = emulator_set_hflags,
6383 	.pre_leave_smm       = emulator_pre_leave_smm,
6384 	.post_leave_smm      = emulator_post_leave_smm,
6385 	.set_xcr             = emulator_set_xcr,
6386 };
6387 
6388 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6389 {
6390 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6391 	/*
6392 	 * an sti; sti; sequence only disable interrupts for the first
6393 	 * instruction. So, if the last instruction, be it emulated or
6394 	 * not, left the system with the INT_STI flag enabled, it
6395 	 * means that the last instruction is an sti. We should not
6396 	 * leave the flag on in this case. The same goes for mov ss
6397 	 */
6398 	if (int_shadow & mask)
6399 		mask = 0;
6400 	if (unlikely(int_shadow || mask)) {
6401 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6402 		if (!mask)
6403 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6404 	}
6405 }
6406 
6407 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6408 {
6409 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6410 	if (ctxt->exception.vector == PF_VECTOR)
6411 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6412 
6413 	if (ctxt->exception.error_code_valid)
6414 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6415 				      ctxt->exception.error_code);
6416 	else
6417 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6418 	return false;
6419 }
6420 
6421 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6422 {
6423 	struct x86_emulate_ctxt *ctxt;
6424 
6425 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6426 	if (!ctxt) {
6427 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6428 		return NULL;
6429 	}
6430 
6431 	ctxt->vcpu = vcpu;
6432 	ctxt->ops = &emulate_ops;
6433 	vcpu->arch.emulate_ctxt = ctxt;
6434 
6435 	return ctxt;
6436 }
6437 
6438 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6439 {
6440 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6441 	int cs_db, cs_l;
6442 
6443 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6444 
6445 	ctxt->gpa_available = false;
6446 	ctxt->eflags = kvm_get_rflags(vcpu);
6447 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6448 
6449 	ctxt->eip = kvm_rip_read(vcpu);
6450 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6451 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6452 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6453 		     cs_db				? X86EMUL_MODE_PROT32 :
6454 							  X86EMUL_MODE_PROT16;
6455 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6456 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6457 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6458 
6459 	init_decode_cache(ctxt);
6460 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6461 }
6462 
6463 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6464 {
6465 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6466 	int ret;
6467 
6468 	init_emulate_ctxt(vcpu);
6469 
6470 	ctxt->op_bytes = 2;
6471 	ctxt->ad_bytes = 2;
6472 	ctxt->_eip = ctxt->eip + inc_eip;
6473 	ret = emulate_int_real(ctxt, irq);
6474 
6475 	if (ret != X86EMUL_CONTINUE) {
6476 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6477 	} else {
6478 		ctxt->eip = ctxt->_eip;
6479 		kvm_rip_write(vcpu, ctxt->eip);
6480 		kvm_set_rflags(vcpu, ctxt->eflags);
6481 	}
6482 }
6483 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6484 
6485 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6486 {
6487 	++vcpu->stat.insn_emulation_fail;
6488 	trace_kvm_emulate_insn_failed(vcpu);
6489 
6490 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6491 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6492 		return 1;
6493 	}
6494 
6495 	if (emulation_type & EMULTYPE_SKIP) {
6496 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6497 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6498 		vcpu->run->internal.ndata = 0;
6499 		return 0;
6500 	}
6501 
6502 	kvm_queue_exception(vcpu, UD_VECTOR);
6503 
6504 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6505 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6506 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6507 		vcpu->run->internal.ndata = 0;
6508 		return 0;
6509 	}
6510 
6511 	return 1;
6512 }
6513 
6514 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6515 				  bool write_fault_to_shadow_pgtable,
6516 				  int emulation_type)
6517 {
6518 	gpa_t gpa = cr2_or_gpa;
6519 	kvm_pfn_t pfn;
6520 
6521 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6522 		return false;
6523 
6524 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6525 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6526 		return false;
6527 
6528 	if (!vcpu->arch.mmu->direct_map) {
6529 		/*
6530 		 * Write permission should be allowed since only
6531 		 * write access need to be emulated.
6532 		 */
6533 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6534 
6535 		/*
6536 		 * If the mapping is invalid in guest, let cpu retry
6537 		 * it to generate fault.
6538 		 */
6539 		if (gpa == UNMAPPED_GVA)
6540 			return true;
6541 	}
6542 
6543 	/*
6544 	 * Do not retry the unhandleable instruction if it faults on the
6545 	 * readonly host memory, otherwise it will goto a infinite loop:
6546 	 * retry instruction -> write #PF -> emulation fail -> retry
6547 	 * instruction -> ...
6548 	 */
6549 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6550 
6551 	/*
6552 	 * If the instruction failed on the error pfn, it can not be fixed,
6553 	 * report the error to userspace.
6554 	 */
6555 	if (is_error_noslot_pfn(pfn))
6556 		return false;
6557 
6558 	kvm_release_pfn_clean(pfn);
6559 
6560 	/* The instructions are well-emulated on direct mmu. */
6561 	if (vcpu->arch.mmu->direct_map) {
6562 		unsigned int indirect_shadow_pages;
6563 
6564 		spin_lock(&vcpu->kvm->mmu_lock);
6565 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6566 		spin_unlock(&vcpu->kvm->mmu_lock);
6567 
6568 		if (indirect_shadow_pages)
6569 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6570 
6571 		return true;
6572 	}
6573 
6574 	/*
6575 	 * if emulation was due to access to shadowed page table
6576 	 * and it failed try to unshadow page and re-enter the
6577 	 * guest to let CPU execute the instruction.
6578 	 */
6579 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6580 
6581 	/*
6582 	 * If the access faults on its page table, it can not
6583 	 * be fixed by unprotecting shadow page and it should
6584 	 * be reported to userspace.
6585 	 */
6586 	return !write_fault_to_shadow_pgtable;
6587 }
6588 
6589 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6590 			      gpa_t cr2_or_gpa,  int emulation_type)
6591 {
6592 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6593 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6594 
6595 	last_retry_eip = vcpu->arch.last_retry_eip;
6596 	last_retry_addr = vcpu->arch.last_retry_addr;
6597 
6598 	/*
6599 	 * If the emulation is caused by #PF and it is non-page_table
6600 	 * writing instruction, it means the VM-EXIT is caused by shadow
6601 	 * page protected, we can zap the shadow page and retry this
6602 	 * instruction directly.
6603 	 *
6604 	 * Note: if the guest uses a non-page-table modifying instruction
6605 	 * on the PDE that points to the instruction, then we will unmap
6606 	 * the instruction and go to an infinite loop. So, we cache the
6607 	 * last retried eip and the last fault address, if we meet the eip
6608 	 * and the address again, we can break out of the potential infinite
6609 	 * loop.
6610 	 */
6611 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6612 
6613 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6614 		return false;
6615 
6616 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6617 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6618 		return false;
6619 
6620 	if (x86_page_table_writing_insn(ctxt))
6621 		return false;
6622 
6623 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6624 		return false;
6625 
6626 	vcpu->arch.last_retry_eip = ctxt->eip;
6627 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6628 
6629 	if (!vcpu->arch.mmu->direct_map)
6630 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6631 
6632 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6633 
6634 	return true;
6635 }
6636 
6637 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6638 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6639 
6640 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6641 {
6642 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6643 		/* This is a good place to trace that we are exiting SMM.  */
6644 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6645 
6646 		/* Process a latched INIT or SMI, if any.  */
6647 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6648 	}
6649 
6650 	kvm_mmu_reset_context(vcpu);
6651 }
6652 
6653 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6654 				unsigned long *db)
6655 {
6656 	u32 dr6 = 0;
6657 	int i;
6658 	u32 enable, rwlen;
6659 
6660 	enable = dr7;
6661 	rwlen = dr7 >> 16;
6662 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6663 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6664 			dr6 |= (1 << i);
6665 	return dr6;
6666 }
6667 
6668 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6669 {
6670 	struct kvm_run *kvm_run = vcpu->run;
6671 
6672 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6673 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6674 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6675 		kvm_run->debug.arch.exception = DB_VECTOR;
6676 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6677 		return 0;
6678 	}
6679 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6680 	return 1;
6681 }
6682 
6683 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6684 {
6685 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6686 	int r;
6687 
6688 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6689 	if (unlikely(!r))
6690 		return 0;
6691 
6692 	/*
6693 	 * rflags is the old, "raw" value of the flags.  The new value has
6694 	 * not been saved yet.
6695 	 *
6696 	 * This is correct even for TF set by the guest, because "the
6697 	 * processor will not generate this exception after the instruction
6698 	 * that sets the TF flag".
6699 	 */
6700 	if (unlikely(rflags & X86_EFLAGS_TF))
6701 		r = kvm_vcpu_do_singlestep(vcpu);
6702 	return r;
6703 }
6704 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6705 
6706 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6707 {
6708 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6709 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6710 		struct kvm_run *kvm_run = vcpu->run;
6711 		unsigned long eip = kvm_get_linear_rip(vcpu);
6712 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6713 					   vcpu->arch.guest_debug_dr7,
6714 					   vcpu->arch.eff_db);
6715 
6716 		if (dr6 != 0) {
6717 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6718 			kvm_run->debug.arch.pc = eip;
6719 			kvm_run->debug.arch.exception = DB_VECTOR;
6720 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6721 			*r = 0;
6722 			return true;
6723 		}
6724 	}
6725 
6726 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6727 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6728 		unsigned long eip = kvm_get_linear_rip(vcpu);
6729 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6730 					   vcpu->arch.dr7,
6731 					   vcpu->arch.db);
6732 
6733 		if (dr6 != 0) {
6734 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6735 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6736 			kvm_queue_exception(vcpu, DB_VECTOR);
6737 			*r = 1;
6738 			return true;
6739 		}
6740 	}
6741 
6742 	return false;
6743 }
6744 
6745 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6746 {
6747 	switch (ctxt->opcode_len) {
6748 	case 1:
6749 		switch (ctxt->b) {
6750 		case 0xe4:	/* IN */
6751 		case 0xe5:
6752 		case 0xec:
6753 		case 0xed:
6754 		case 0xe6:	/* OUT */
6755 		case 0xe7:
6756 		case 0xee:
6757 		case 0xef:
6758 		case 0x6c:	/* INS */
6759 		case 0x6d:
6760 		case 0x6e:	/* OUTS */
6761 		case 0x6f:
6762 			return true;
6763 		}
6764 		break;
6765 	case 2:
6766 		switch (ctxt->b) {
6767 		case 0x33:	/* RDPMC */
6768 			return true;
6769 		}
6770 		break;
6771 	}
6772 
6773 	return false;
6774 }
6775 
6776 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6777 			    int emulation_type, void *insn, int insn_len)
6778 {
6779 	int r;
6780 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6781 	bool writeback = true;
6782 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6783 
6784 	vcpu->arch.l1tf_flush_l1d = true;
6785 
6786 	/*
6787 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6788 	 * never reused.
6789 	 */
6790 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6791 	kvm_clear_exception_queue(vcpu);
6792 
6793 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6794 		init_emulate_ctxt(vcpu);
6795 
6796 		/*
6797 		 * We will reenter on the same instruction since
6798 		 * we do not set complete_userspace_io.  This does not
6799 		 * handle watchpoints yet, those would be handled in
6800 		 * the emulate_ops.
6801 		 */
6802 		if (!(emulation_type & EMULTYPE_SKIP) &&
6803 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6804 			return r;
6805 
6806 		ctxt->interruptibility = 0;
6807 		ctxt->have_exception = false;
6808 		ctxt->exception.vector = -1;
6809 		ctxt->perm_ok = false;
6810 
6811 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6812 
6813 		r = x86_decode_insn(ctxt, insn, insn_len);
6814 
6815 		trace_kvm_emulate_insn_start(vcpu);
6816 		++vcpu->stat.insn_emulation;
6817 		if (r != EMULATION_OK)  {
6818 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6819 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6820 				kvm_queue_exception(vcpu, UD_VECTOR);
6821 				return 1;
6822 			}
6823 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6824 						  write_fault_to_spt,
6825 						  emulation_type))
6826 				return 1;
6827 			if (ctxt->have_exception) {
6828 				/*
6829 				 * #UD should result in just EMULATION_FAILED, and trap-like
6830 				 * exception should not be encountered during decode.
6831 				 */
6832 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6833 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6834 				inject_emulated_exception(vcpu);
6835 				return 1;
6836 			}
6837 			return handle_emulation_failure(vcpu, emulation_type);
6838 		}
6839 	}
6840 
6841 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6842 	    !is_vmware_backdoor_opcode(ctxt)) {
6843 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6844 		return 1;
6845 	}
6846 
6847 	/*
6848 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6849 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6850 	 * updating interruptibility state and injecting single-step #DBs.
6851 	 */
6852 	if (emulation_type & EMULTYPE_SKIP) {
6853 		kvm_rip_write(vcpu, ctxt->_eip);
6854 		if (ctxt->eflags & X86_EFLAGS_RF)
6855 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6856 		return 1;
6857 	}
6858 
6859 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6860 		return 1;
6861 
6862 	/* this is needed for vmware backdoor interface to work since it
6863 	   changes registers values  during IO operation */
6864 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6865 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6866 		emulator_invalidate_register_cache(ctxt);
6867 	}
6868 
6869 restart:
6870 	if (emulation_type & EMULTYPE_PF) {
6871 		/* Save the faulting GPA (cr2) in the address field */
6872 		ctxt->exception.address = cr2_or_gpa;
6873 
6874 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6875 		if (vcpu->arch.mmu->direct_map) {
6876 			ctxt->gpa_available = true;
6877 			ctxt->gpa_val = cr2_or_gpa;
6878 		}
6879 	} else {
6880 		/* Sanitize the address out of an abundance of paranoia. */
6881 		ctxt->exception.address = 0;
6882 	}
6883 
6884 	r = x86_emulate_insn(ctxt);
6885 
6886 	if (r == EMULATION_INTERCEPTED)
6887 		return 1;
6888 
6889 	if (r == EMULATION_FAILED) {
6890 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6891 					emulation_type))
6892 			return 1;
6893 
6894 		return handle_emulation_failure(vcpu, emulation_type);
6895 	}
6896 
6897 	if (ctxt->have_exception) {
6898 		r = 1;
6899 		if (inject_emulated_exception(vcpu))
6900 			return r;
6901 	} else if (vcpu->arch.pio.count) {
6902 		if (!vcpu->arch.pio.in) {
6903 			/* FIXME: return into emulator if single-stepping.  */
6904 			vcpu->arch.pio.count = 0;
6905 		} else {
6906 			writeback = false;
6907 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6908 		}
6909 		r = 0;
6910 	} else if (vcpu->mmio_needed) {
6911 		++vcpu->stat.mmio_exits;
6912 
6913 		if (!vcpu->mmio_is_write)
6914 			writeback = false;
6915 		r = 0;
6916 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6917 	} else if (r == EMULATION_RESTART)
6918 		goto restart;
6919 	else
6920 		r = 1;
6921 
6922 	if (writeback) {
6923 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6924 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6925 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6926 		if (!ctxt->have_exception ||
6927 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6928 			kvm_rip_write(vcpu, ctxt->eip);
6929 			if (r && ctxt->tf)
6930 				r = kvm_vcpu_do_singlestep(vcpu);
6931 			if (kvm_x86_ops.update_emulated_instruction)
6932 				kvm_x86_ops.update_emulated_instruction(vcpu);
6933 			__kvm_set_rflags(vcpu, ctxt->eflags);
6934 		}
6935 
6936 		/*
6937 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6938 		 * do nothing, and it will be requested again as soon as
6939 		 * the shadow expires.  But we still need to check here,
6940 		 * because POPF has no interrupt shadow.
6941 		 */
6942 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6943 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6944 	} else
6945 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6946 
6947 	return r;
6948 }
6949 
6950 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6951 {
6952 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6953 }
6954 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6955 
6956 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6957 					void *insn, int insn_len)
6958 {
6959 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6960 }
6961 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6962 
6963 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6964 {
6965 	vcpu->arch.pio.count = 0;
6966 	return 1;
6967 }
6968 
6969 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6970 {
6971 	vcpu->arch.pio.count = 0;
6972 
6973 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6974 		return 1;
6975 
6976 	return kvm_skip_emulated_instruction(vcpu);
6977 }
6978 
6979 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6980 			    unsigned short port)
6981 {
6982 	unsigned long val = kvm_rax_read(vcpu);
6983 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6984 
6985 	if (ret)
6986 		return ret;
6987 
6988 	/*
6989 	 * Workaround userspace that relies on old KVM behavior of %rip being
6990 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6991 	 */
6992 	if (port == 0x7e &&
6993 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6994 		vcpu->arch.complete_userspace_io =
6995 			complete_fast_pio_out_port_0x7e;
6996 		kvm_skip_emulated_instruction(vcpu);
6997 	} else {
6998 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6999 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7000 	}
7001 	return 0;
7002 }
7003 
7004 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7005 {
7006 	unsigned long val;
7007 
7008 	/* We should only ever be called with arch.pio.count equal to 1 */
7009 	BUG_ON(vcpu->arch.pio.count != 1);
7010 
7011 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7012 		vcpu->arch.pio.count = 0;
7013 		return 1;
7014 	}
7015 
7016 	/* For size less than 4 we merge, else we zero extend */
7017 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7018 
7019 	/*
7020 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7021 	 * the copy and tracing
7022 	 */
7023 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7024 	kvm_rax_write(vcpu, val);
7025 
7026 	return kvm_skip_emulated_instruction(vcpu);
7027 }
7028 
7029 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7030 			   unsigned short port)
7031 {
7032 	unsigned long val;
7033 	int ret;
7034 
7035 	/* For size less than 4 we merge, else we zero extend */
7036 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7037 
7038 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7039 	if (ret) {
7040 		kvm_rax_write(vcpu, val);
7041 		return ret;
7042 	}
7043 
7044 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7045 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7046 
7047 	return 0;
7048 }
7049 
7050 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7051 {
7052 	int ret;
7053 
7054 	if (in)
7055 		ret = kvm_fast_pio_in(vcpu, size, port);
7056 	else
7057 		ret = kvm_fast_pio_out(vcpu, size, port);
7058 	return ret && kvm_skip_emulated_instruction(vcpu);
7059 }
7060 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7061 
7062 static int kvmclock_cpu_down_prep(unsigned int cpu)
7063 {
7064 	__this_cpu_write(cpu_tsc_khz, 0);
7065 	return 0;
7066 }
7067 
7068 static void tsc_khz_changed(void *data)
7069 {
7070 	struct cpufreq_freqs *freq = data;
7071 	unsigned long khz = 0;
7072 
7073 	if (data)
7074 		khz = freq->new;
7075 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7076 		khz = cpufreq_quick_get(raw_smp_processor_id());
7077 	if (!khz)
7078 		khz = tsc_khz;
7079 	__this_cpu_write(cpu_tsc_khz, khz);
7080 }
7081 
7082 #ifdef CONFIG_X86_64
7083 static void kvm_hyperv_tsc_notifier(void)
7084 {
7085 	struct kvm *kvm;
7086 	struct kvm_vcpu *vcpu;
7087 	int cpu;
7088 
7089 	mutex_lock(&kvm_lock);
7090 	list_for_each_entry(kvm, &vm_list, vm_list)
7091 		kvm_make_mclock_inprogress_request(kvm);
7092 
7093 	hyperv_stop_tsc_emulation();
7094 
7095 	/* TSC frequency always matches when on Hyper-V */
7096 	for_each_present_cpu(cpu)
7097 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7098 	kvm_max_guest_tsc_khz = tsc_khz;
7099 
7100 	list_for_each_entry(kvm, &vm_list, vm_list) {
7101 		struct kvm_arch *ka = &kvm->arch;
7102 
7103 		spin_lock(&ka->pvclock_gtod_sync_lock);
7104 
7105 		pvclock_update_vm_gtod_copy(kvm);
7106 
7107 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7108 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7109 
7110 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7111 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7112 
7113 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7114 	}
7115 	mutex_unlock(&kvm_lock);
7116 }
7117 #endif
7118 
7119 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7120 {
7121 	struct kvm *kvm;
7122 	struct kvm_vcpu *vcpu;
7123 	int i, send_ipi = 0;
7124 
7125 	/*
7126 	 * We allow guests to temporarily run on slowing clocks,
7127 	 * provided we notify them after, or to run on accelerating
7128 	 * clocks, provided we notify them before.  Thus time never
7129 	 * goes backwards.
7130 	 *
7131 	 * However, we have a problem.  We can't atomically update
7132 	 * the frequency of a given CPU from this function; it is
7133 	 * merely a notifier, which can be called from any CPU.
7134 	 * Changing the TSC frequency at arbitrary points in time
7135 	 * requires a recomputation of local variables related to
7136 	 * the TSC for each VCPU.  We must flag these local variables
7137 	 * to be updated and be sure the update takes place with the
7138 	 * new frequency before any guests proceed.
7139 	 *
7140 	 * Unfortunately, the combination of hotplug CPU and frequency
7141 	 * change creates an intractable locking scenario; the order
7142 	 * of when these callouts happen is undefined with respect to
7143 	 * CPU hotplug, and they can race with each other.  As such,
7144 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7145 	 * undefined; you can actually have a CPU frequency change take
7146 	 * place in between the computation of X and the setting of the
7147 	 * variable.  To protect against this problem, all updates of
7148 	 * the per_cpu tsc_khz variable are done in an interrupt
7149 	 * protected IPI, and all callers wishing to update the value
7150 	 * must wait for a synchronous IPI to complete (which is trivial
7151 	 * if the caller is on the CPU already).  This establishes the
7152 	 * necessary total order on variable updates.
7153 	 *
7154 	 * Note that because a guest time update may take place
7155 	 * anytime after the setting of the VCPU's request bit, the
7156 	 * correct TSC value must be set before the request.  However,
7157 	 * to ensure the update actually makes it to any guest which
7158 	 * starts running in hardware virtualization between the set
7159 	 * and the acquisition of the spinlock, we must also ping the
7160 	 * CPU after setting the request bit.
7161 	 *
7162 	 */
7163 
7164 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7165 
7166 	mutex_lock(&kvm_lock);
7167 	list_for_each_entry(kvm, &vm_list, vm_list) {
7168 		kvm_for_each_vcpu(i, vcpu, kvm) {
7169 			if (vcpu->cpu != cpu)
7170 				continue;
7171 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7172 			if (vcpu->cpu != raw_smp_processor_id())
7173 				send_ipi = 1;
7174 		}
7175 	}
7176 	mutex_unlock(&kvm_lock);
7177 
7178 	if (freq->old < freq->new && send_ipi) {
7179 		/*
7180 		 * We upscale the frequency.  Must make the guest
7181 		 * doesn't see old kvmclock values while running with
7182 		 * the new frequency, otherwise we risk the guest sees
7183 		 * time go backwards.
7184 		 *
7185 		 * In case we update the frequency for another cpu
7186 		 * (which might be in guest context) send an interrupt
7187 		 * to kick the cpu out of guest context.  Next time
7188 		 * guest context is entered kvmclock will be updated,
7189 		 * so the guest will not see stale values.
7190 		 */
7191 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7192 	}
7193 }
7194 
7195 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7196 				     void *data)
7197 {
7198 	struct cpufreq_freqs *freq = data;
7199 	int cpu;
7200 
7201 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7202 		return 0;
7203 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7204 		return 0;
7205 
7206 	for_each_cpu(cpu, freq->policy->cpus)
7207 		__kvmclock_cpufreq_notifier(freq, cpu);
7208 
7209 	return 0;
7210 }
7211 
7212 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7213 	.notifier_call  = kvmclock_cpufreq_notifier
7214 };
7215 
7216 static int kvmclock_cpu_online(unsigned int cpu)
7217 {
7218 	tsc_khz_changed(NULL);
7219 	return 0;
7220 }
7221 
7222 static void kvm_timer_init(void)
7223 {
7224 	max_tsc_khz = tsc_khz;
7225 
7226 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7227 #ifdef CONFIG_CPU_FREQ
7228 		struct cpufreq_policy *policy;
7229 		int cpu;
7230 
7231 		cpu = get_cpu();
7232 		policy = cpufreq_cpu_get(cpu);
7233 		if (policy) {
7234 			if (policy->cpuinfo.max_freq)
7235 				max_tsc_khz = policy->cpuinfo.max_freq;
7236 			cpufreq_cpu_put(policy);
7237 		}
7238 		put_cpu();
7239 #endif
7240 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7241 					  CPUFREQ_TRANSITION_NOTIFIER);
7242 	}
7243 
7244 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7245 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7246 }
7247 
7248 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7249 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7250 
7251 int kvm_is_in_guest(void)
7252 {
7253 	return __this_cpu_read(current_vcpu) != NULL;
7254 }
7255 
7256 static int kvm_is_user_mode(void)
7257 {
7258 	int user_mode = 3;
7259 
7260 	if (__this_cpu_read(current_vcpu))
7261 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7262 
7263 	return user_mode != 0;
7264 }
7265 
7266 static unsigned long kvm_get_guest_ip(void)
7267 {
7268 	unsigned long ip = 0;
7269 
7270 	if (__this_cpu_read(current_vcpu))
7271 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7272 
7273 	return ip;
7274 }
7275 
7276 static void kvm_handle_intel_pt_intr(void)
7277 {
7278 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7279 
7280 	kvm_make_request(KVM_REQ_PMI, vcpu);
7281 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7282 			(unsigned long *)&vcpu->arch.pmu.global_status);
7283 }
7284 
7285 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7286 	.is_in_guest		= kvm_is_in_guest,
7287 	.is_user_mode		= kvm_is_user_mode,
7288 	.get_guest_ip		= kvm_get_guest_ip,
7289 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7290 };
7291 
7292 #ifdef CONFIG_X86_64
7293 static void pvclock_gtod_update_fn(struct work_struct *work)
7294 {
7295 	struct kvm *kvm;
7296 
7297 	struct kvm_vcpu *vcpu;
7298 	int i;
7299 
7300 	mutex_lock(&kvm_lock);
7301 	list_for_each_entry(kvm, &vm_list, vm_list)
7302 		kvm_for_each_vcpu(i, vcpu, kvm)
7303 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7304 	atomic_set(&kvm_guest_has_master_clock, 0);
7305 	mutex_unlock(&kvm_lock);
7306 }
7307 
7308 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7309 
7310 /*
7311  * Notification about pvclock gtod data update.
7312  */
7313 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7314 			       void *priv)
7315 {
7316 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7317 	struct timekeeper *tk = priv;
7318 
7319 	update_pvclock_gtod(tk);
7320 
7321 	/* disable master clock if host does not trust, or does not
7322 	 * use, TSC based clocksource.
7323 	 */
7324 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7325 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7326 		queue_work(system_long_wq, &pvclock_gtod_work);
7327 
7328 	return 0;
7329 }
7330 
7331 static struct notifier_block pvclock_gtod_notifier = {
7332 	.notifier_call = pvclock_gtod_notify,
7333 };
7334 #endif
7335 
7336 int kvm_arch_init(void *opaque)
7337 {
7338 	struct kvm_x86_init_ops *ops = opaque;
7339 	int r;
7340 
7341 	if (kvm_x86_ops.hardware_enable) {
7342 		printk(KERN_ERR "kvm: already loaded the other module\n");
7343 		r = -EEXIST;
7344 		goto out;
7345 	}
7346 
7347 	if (!ops->cpu_has_kvm_support()) {
7348 		pr_err_ratelimited("kvm: no hardware support\n");
7349 		r = -EOPNOTSUPP;
7350 		goto out;
7351 	}
7352 	if (ops->disabled_by_bios()) {
7353 		pr_err_ratelimited("kvm: disabled by bios\n");
7354 		r = -EOPNOTSUPP;
7355 		goto out;
7356 	}
7357 
7358 	/*
7359 	 * KVM explicitly assumes that the guest has an FPU and
7360 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7361 	 * vCPU's FPU state as a fxregs_state struct.
7362 	 */
7363 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7364 		printk(KERN_ERR "kvm: inadequate fpu\n");
7365 		r = -EOPNOTSUPP;
7366 		goto out;
7367 	}
7368 
7369 	r = -ENOMEM;
7370 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7371 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7372 					  NULL);
7373 	if (!x86_fpu_cache) {
7374 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7375 		goto out;
7376 	}
7377 
7378 	x86_emulator_cache = kvm_alloc_emulator_cache();
7379 	if (!x86_emulator_cache) {
7380 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7381 		goto out_free_x86_fpu_cache;
7382 	}
7383 
7384 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7385 	if (!shared_msrs) {
7386 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7387 		goto out_free_x86_emulator_cache;
7388 	}
7389 
7390 	r = kvm_mmu_module_init();
7391 	if (r)
7392 		goto out_free_percpu;
7393 
7394 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7395 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7396 			PT_PRESENT_MASK, 0, sme_me_mask);
7397 	kvm_timer_init();
7398 
7399 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7400 
7401 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7402 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7403 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7404 	}
7405 
7406 	kvm_lapic_init();
7407 	if (pi_inject_timer == -1)
7408 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7409 #ifdef CONFIG_X86_64
7410 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7411 
7412 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7413 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7414 #endif
7415 
7416 	return 0;
7417 
7418 out_free_percpu:
7419 	free_percpu(shared_msrs);
7420 out_free_x86_emulator_cache:
7421 	kmem_cache_destroy(x86_emulator_cache);
7422 out_free_x86_fpu_cache:
7423 	kmem_cache_destroy(x86_fpu_cache);
7424 out:
7425 	return r;
7426 }
7427 
7428 void kvm_arch_exit(void)
7429 {
7430 #ifdef CONFIG_X86_64
7431 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7432 		clear_hv_tscchange_cb();
7433 #endif
7434 	kvm_lapic_exit();
7435 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7436 
7437 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7438 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7439 					    CPUFREQ_TRANSITION_NOTIFIER);
7440 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7441 #ifdef CONFIG_X86_64
7442 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7443 #endif
7444 	kvm_x86_ops.hardware_enable = NULL;
7445 	kvm_mmu_module_exit();
7446 	free_percpu(shared_msrs);
7447 	kmem_cache_destroy(x86_fpu_cache);
7448 }
7449 
7450 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7451 {
7452 	++vcpu->stat.halt_exits;
7453 	if (lapic_in_kernel(vcpu)) {
7454 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7455 		return 1;
7456 	} else {
7457 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7458 		return 0;
7459 	}
7460 }
7461 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7462 
7463 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7464 {
7465 	int ret = kvm_skip_emulated_instruction(vcpu);
7466 	/*
7467 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7468 	 * KVM_EXIT_DEBUG here.
7469 	 */
7470 	return kvm_vcpu_halt(vcpu) && ret;
7471 }
7472 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7473 
7474 #ifdef CONFIG_X86_64
7475 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7476 			        unsigned long clock_type)
7477 {
7478 	struct kvm_clock_pairing clock_pairing;
7479 	struct timespec64 ts;
7480 	u64 cycle;
7481 	int ret;
7482 
7483 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7484 		return -KVM_EOPNOTSUPP;
7485 
7486 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7487 		return -KVM_EOPNOTSUPP;
7488 
7489 	clock_pairing.sec = ts.tv_sec;
7490 	clock_pairing.nsec = ts.tv_nsec;
7491 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7492 	clock_pairing.flags = 0;
7493 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7494 
7495 	ret = 0;
7496 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7497 			    sizeof(struct kvm_clock_pairing)))
7498 		ret = -KVM_EFAULT;
7499 
7500 	return ret;
7501 }
7502 #endif
7503 
7504 /*
7505  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7506  *
7507  * @apicid - apicid of vcpu to be kicked.
7508  */
7509 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7510 {
7511 	struct kvm_lapic_irq lapic_irq;
7512 
7513 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7514 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7515 	lapic_irq.level = 0;
7516 	lapic_irq.dest_id = apicid;
7517 	lapic_irq.msi_redir_hint = false;
7518 
7519 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7520 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7521 }
7522 
7523 bool kvm_apicv_activated(struct kvm *kvm)
7524 {
7525 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7526 }
7527 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7528 
7529 void kvm_apicv_init(struct kvm *kvm, bool enable)
7530 {
7531 	if (enable)
7532 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7533 			  &kvm->arch.apicv_inhibit_reasons);
7534 	else
7535 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7536 			&kvm->arch.apicv_inhibit_reasons);
7537 }
7538 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7539 
7540 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7541 {
7542 	struct kvm_vcpu *target = NULL;
7543 	struct kvm_apic_map *map;
7544 
7545 	rcu_read_lock();
7546 	map = rcu_dereference(kvm->arch.apic_map);
7547 
7548 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7549 		target = map->phys_map[dest_id]->vcpu;
7550 
7551 	rcu_read_unlock();
7552 
7553 	if (target && READ_ONCE(target->ready))
7554 		kvm_vcpu_yield_to(target);
7555 }
7556 
7557 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7558 {
7559 	unsigned long nr, a0, a1, a2, a3, ret;
7560 	int op_64_bit;
7561 
7562 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7563 		return kvm_hv_hypercall(vcpu);
7564 
7565 	nr = kvm_rax_read(vcpu);
7566 	a0 = kvm_rbx_read(vcpu);
7567 	a1 = kvm_rcx_read(vcpu);
7568 	a2 = kvm_rdx_read(vcpu);
7569 	a3 = kvm_rsi_read(vcpu);
7570 
7571 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7572 
7573 	op_64_bit = is_64_bit_mode(vcpu);
7574 	if (!op_64_bit) {
7575 		nr &= 0xFFFFFFFF;
7576 		a0 &= 0xFFFFFFFF;
7577 		a1 &= 0xFFFFFFFF;
7578 		a2 &= 0xFFFFFFFF;
7579 		a3 &= 0xFFFFFFFF;
7580 	}
7581 
7582 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7583 		ret = -KVM_EPERM;
7584 		goto out;
7585 	}
7586 
7587 	switch (nr) {
7588 	case KVM_HC_VAPIC_POLL_IRQ:
7589 		ret = 0;
7590 		break;
7591 	case KVM_HC_KICK_CPU:
7592 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7593 		kvm_sched_yield(vcpu->kvm, a1);
7594 		ret = 0;
7595 		break;
7596 #ifdef CONFIG_X86_64
7597 	case KVM_HC_CLOCK_PAIRING:
7598 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7599 		break;
7600 #endif
7601 	case KVM_HC_SEND_IPI:
7602 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7603 		break;
7604 	case KVM_HC_SCHED_YIELD:
7605 		kvm_sched_yield(vcpu->kvm, a0);
7606 		ret = 0;
7607 		break;
7608 	default:
7609 		ret = -KVM_ENOSYS;
7610 		break;
7611 	}
7612 out:
7613 	if (!op_64_bit)
7614 		ret = (u32)ret;
7615 	kvm_rax_write(vcpu, ret);
7616 
7617 	++vcpu->stat.hypercalls;
7618 	return kvm_skip_emulated_instruction(vcpu);
7619 }
7620 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7621 
7622 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7623 {
7624 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7625 	char instruction[3];
7626 	unsigned long rip = kvm_rip_read(vcpu);
7627 
7628 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7629 
7630 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7631 		&ctxt->exception);
7632 }
7633 
7634 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7635 {
7636 	return vcpu->run->request_interrupt_window &&
7637 		likely(!pic_in_kernel(vcpu->kvm));
7638 }
7639 
7640 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7641 {
7642 	struct kvm_run *kvm_run = vcpu->run;
7643 
7644 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7645 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7646 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7647 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7648 	kvm_run->ready_for_interrupt_injection =
7649 		pic_in_kernel(vcpu->kvm) ||
7650 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7651 }
7652 
7653 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7654 {
7655 	int max_irr, tpr;
7656 
7657 	if (!kvm_x86_ops.update_cr8_intercept)
7658 		return;
7659 
7660 	if (!lapic_in_kernel(vcpu))
7661 		return;
7662 
7663 	if (vcpu->arch.apicv_active)
7664 		return;
7665 
7666 	if (!vcpu->arch.apic->vapic_addr)
7667 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7668 	else
7669 		max_irr = -1;
7670 
7671 	if (max_irr != -1)
7672 		max_irr >>= 4;
7673 
7674 	tpr = kvm_lapic_get_cr8(vcpu);
7675 
7676 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7677 }
7678 
7679 static int inject_pending_event(struct kvm_vcpu *vcpu)
7680 {
7681 	int r;
7682 
7683 	/* try to reinject previous events if any */
7684 
7685 	if (vcpu->arch.exception.injected)
7686 		kvm_x86_ops.queue_exception(vcpu);
7687 	/*
7688 	 * Do not inject an NMI or interrupt if there is a pending
7689 	 * exception.  Exceptions and interrupts are recognized at
7690 	 * instruction boundaries, i.e. the start of an instruction.
7691 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7692 	 * NMIs and interrupts, i.e. traps are recognized before an
7693 	 * NMI/interrupt that's pending on the same instruction.
7694 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7695 	 * priority, but are only generated (pended) during instruction
7696 	 * execution, i.e. a pending fault-like exception means the
7697 	 * fault occurred on the *previous* instruction and must be
7698 	 * serviced prior to recognizing any new events in order to
7699 	 * fully complete the previous instruction.
7700 	 */
7701 	else if (!vcpu->arch.exception.pending) {
7702 		if (vcpu->arch.nmi_injected)
7703 			kvm_x86_ops.set_nmi(vcpu);
7704 		else if (vcpu->arch.interrupt.injected)
7705 			kvm_x86_ops.set_irq(vcpu);
7706 	}
7707 
7708 	/*
7709 	 * Call check_nested_events() even if we reinjected a previous event
7710 	 * in order for caller to determine if it should require immediate-exit
7711 	 * from L2 to L1 due to pending L1 events which require exit
7712 	 * from L2 to L1.
7713 	 */
7714 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7715 		r = kvm_x86_ops.check_nested_events(vcpu);
7716 		if (r != 0)
7717 			return r;
7718 	}
7719 
7720 	/* try to inject new event if pending */
7721 	if (vcpu->arch.exception.pending) {
7722 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7723 					vcpu->arch.exception.has_error_code,
7724 					vcpu->arch.exception.error_code);
7725 
7726 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7727 		vcpu->arch.exception.pending = false;
7728 		vcpu->arch.exception.injected = true;
7729 
7730 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7731 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7732 					     X86_EFLAGS_RF);
7733 
7734 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7735 			/*
7736 			 * This code assumes that nSVM doesn't use
7737 			 * check_nested_events(). If it does, the
7738 			 * DR6/DR7 changes should happen before L1
7739 			 * gets a #VMEXIT for an intercepted #DB in
7740 			 * L2.  (Under VMX, on the other hand, the
7741 			 * DR6/DR7 changes should not happen in the
7742 			 * event of a VM-exit to L1 for an intercepted
7743 			 * #DB in L2.)
7744 			 */
7745 			kvm_deliver_exception_payload(vcpu);
7746 			if (vcpu->arch.dr7 & DR7_GD) {
7747 				vcpu->arch.dr7 &= ~DR7_GD;
7748 				kvm_update_dr7(vcpu);
7749 			}
7750 		}
7751 
7752 		kvm_x86_ops.queue_exception(vcpu);
7753 	}
7754 
7755 	/* Don't consider new event if we re-injected an event */
7756 	if (kvm_event_needs_reinjection(vcpu))
7757 		return 0;
7758 
7759 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7760 	    kvm_x86_ops.smi_allowed(vcpu)) {
7761 		vcpu->arch.smi_pending = false;
7762 		++vcpu->arch.smi_count;
7763 		enter_smm(vcpu);
7764 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
7765 		--vcpu->arch.nmi_pending;
7766 		vcpu->arch.nmi_injected = true;
7767 		kvm_x86_ops.set_nmi(vcpu);
7768 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7769 		/*
7770 		 * Because interrupts can be injected asynchronously, we are
7771 		 * calling check_nested_events again here to avoid a race condition.
7772 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7773 		 * proposal and current concerns.  Perhaps we should be setting
7774 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7775 		 */
7776 		if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7777 			r = kvm_x86_ops.check_nested_events(vcpu);
7778 			if (r != 0)
7779 				return r;
7780 		}
7781 		if (kvm_x86_ops.interrupt_allowed(vcpu)) {
7782 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7783 					    false);
7784 			kvm_x86_ops.set_irq(vcpu);
7785 		}
7786 	}
7787 
7788 	return 0;
7789 }
7790 
7791 static void process_nmi(struct kvm_vcpu *vcpu)
7792 {
7793 	unsigned limit = 2;
7794 
7795 	/*
7796 	 * x86 is limited to one NMI running, and one NMI pending after it.
7797 	 * If an NMI is already in progress, limit further NMIs to just one.
7798 	 * Otherwise, allow two (and we'll inject the first one immediately).
7799 	 */
7800 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7801 		limit = 1;
7802 
7803 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7804 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7805 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7806 }
7807 
7808 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7809 {
7810 	u32 flags = 0;
7811 	flags |= seg->g       << 23;
7812 	flags |= seg->db      << 22;
7813 	flags |= seg->l       << 21;
7814 	flags |= seg->avl     << 20;
7815 	flags |= seg->present << 15;
7816 	flags |= seg->dpl     << 13;
7817 	flags |= seg->s       << 12;
7818 	flags |= seg->type    << 8;
7819 	return flags;
7820 }
7821 
7822 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7823 {
7824 	struct kvm_segment seg;
7825 	int offset;
7826 
7827 	kvm_get_segment(vcpu, &seg, n);
7828 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7829 
7830 	if (n < 3)
7831 		offset = 0x7f84 + n * 12;
7832 	else
7833 		offset = 0x7f2c + (n - 3) * 12;
7834 
7835 	put_smstate(u32, buf, offset + 8, seg.base);
7836 	put_smstate(u32, buf, offset + 4, seg.limit);
7837 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7838 }
7839 
7840 #ifdef CONFIG_X86_64
7841 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7842 {
7843 	struct kvm_segment seg;
7844 	int offset;
7845 	u16 flags;
7846 
7847 	kvm_get_segment(vcpu, &seg, n);
7848 	offset = 0x7e00 + n * 16;
7849 
7850 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7851 	put_smstate(u16, buf, offset, seg.selector);
7852 	put_smstate(u16, buf, offset + 2, flags);
7853 	put_smstate(u32, buf, offset + 4, seg.limit);
7854 	put_smstate(u64, buf, offset + 8, seg.base);
7855 }
7856 #endif
7857 
7858 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7859 {
7860 	struct desc_ptr dt;
7861 	struct kvm_segment seg;
7862 	unsigned long val;
7863 	int i;
7864 
7865 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7866 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7867 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7868 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7869 
7870 	for (i = 0; i < 8; i++)
7871 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7872 
7873 	kvm_get_dr(vcpu, 6, &val);
7874 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7875 	kvm_get_dr(vcpu, 7, &val);
7876 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7877 
7878 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7879 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7880 	put_smstate(u32, buf, 0x7f64, seg.base);
7881 	put_smstate(u32, buf, 0x7f60, seg.limit);
7882 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7883 
7884 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7885 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7886 	put_smstate(u32, buf, 0x7f80, seg.base);
7887 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7888 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7889 
7890 	kvm_x86_ops.get_gdt(vcpu, &dt);
7891 	put_smstate(u32, buf, 0x7f74, dt.address);
7892 	put_smstate(u32, buf, 0x7f70, dt.size);
7893 
7894 	kvm_x86_ops.get_idt(vcpu, &dt);
7895 	put_smstate(u32, buf, 0x7f58, dt.address);
7896 	put_smstate(u32, buf, 0x7f54, dt.size);
7897 
7898 	for (i = 0; i < 6; i++)
7899 		enter_smm_save_seg_32(vcpu, buf, i);
7900 
7901 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7902 
7903 	/* revision id */
7904 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7905 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7906 }
7907 
7908 #ifdef CONFIG_X86_64
7909 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7910 {
7911 	struct desc_ptr dt;
7912 	struct kvm_segment seg;
7913 	unsigned long val;
7914 	int i;
7915 
7916 	for (i = 0; i < 16; i++)
7917 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7918 
7919 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7920 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7921 
7922 	kvm_get_dr(vcpu, 6, &val);
7923 	put_smstate(u64, buf, 0x7f68, val);
7924 	kvm_get_dr(vcpu, 7, &val);
7925 	put_smstate(u64, buf, 0x7f60, val);
7926 
7927 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7928 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7929 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7930 
7931 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7932 
7933 	/* revision id */
7934 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7935 
7936 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7937 
7938 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7939 	put_smstate(u16, buf, 0x7e90, seg.selector);
7940 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7941 	put_smstate(u32, buf, 0x7e94, seg.limit);
7942 	put_smstate(u64, buf, 0x7e98, seg.base);
7943 
7944 	kvm_x86_ops.get_idt(vcpu, &dt);
7945 	put_smstate(u32, buf, 0x7e84, dt.size);
7946 	put_smstate(u64, buf, 0x7e88, dt.address);
7947 
7948 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7949 	put_smstate(u16, buf, 0x7e70, seg.selector);
7950 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7951 	put_smstate(u32, buf, 0x7e74, seg.limit);
7952 	put_smstate(u64, buf, 0x7e78, seg.base);
7953 
7954 	kvm_x86_ops.get_gdt(vcpu, &dt);
7955 	put_smstate(u32, buf, 0x7e64, dt.size);
7956 	put_smstate(u64, buf, 0x7e68, dt.address);
7957 
7958 	for (i = 0; i < 6; i++)
7959 		enter_smm_save_seg_64(vcpu, buf, i);
7960 }
7961 #endif
7962 
7963 static void enter_smm(struct kvm_vcpu *vcpu)
7964 {
7965 	struct kvm_segment cs, ds;
7966 	struct desc_ptr dt;
7967 	char buf[512];
7968 	u32 cr0;
7969 
7970 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7971 	memset(buf, 0, 512);
7972 #ifdef CONFIG_X86_64
7973 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7974 		enter_smm_save_state_64(vcpu, buf);
7975 	else
7976 #endif
7977 		enter_smm_save_state_32(vcpu, buf);
7978 
7979 	/*
7980 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7981 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7982 	 * the SMM state-save area.
7983 	 */
7984 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
7985 
7986 	vcpu->arch.hflags |= HF_SMM_MASK;
7987 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7988 
7989 	if (kvm_x86_ops.get_nmi_mask(vcpu))
7990 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7991 	else
7992 		kvm_x86_ops.set_nmi_mask(vcpu, true);
7993 
7994 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7995 	kvm_rip_write(vcpu, 0x8000);
7996 
7997 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7998 	kvm_x86_ops.set_cr0(vcpu, cr0);
7999 	vcpu->arch.cr0 = cr0;
8000 
8001 	kvm_x86_ops.set_cr4(vcpu, 0);
8002 
8003 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8004 	dt.address = dt.size = 0;
8005 	kvm_x86_ops.set_idt(vcpu, &dt);
8006 
8007 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8008 
8009 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8010 	cs.base = vcpu->arch.smbase;
8011 
8012 	ds.selector = 0;
8013 	ds.base = 0;
8014 
8015 	cs.limit    = ds.limit = 0xffffffff;
8016 	cs.type     = ds.type = 0x3;
8017 	cs.dpl      = ds.dpl = 0;
8018 	cs.db       = ds.db = 0;
8019 	cs.s        = ds.s = 1;
8020 	cs.l        = ds.l = 0;
8021 	cs.g        = ds.g = 1;
8022 	cs.avl      = ds.avl = 0;
8023 	cs.present  = ds.present = 1;
8024 	cs.unusable = ds.unusable = 0;
8025 	cs.padding  = ds.padding = 0;
8026 
8027 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8028 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8029 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8030 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8031 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8032 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8033 
8034 #ifdef CONFIG_X86_64
8035 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8036 		kvm_x86_ops.set_efer(vcpu, 0);
8037 #endif
8038 
8039 	kvm_update_cpuid(vcpu);
8040 	kvm_mmu_reset_context(vcpu);
8041 }
8042 
8043 static void process_smi(struct kvm_vcpu *vcpu)
8044 {
8045 	vcpu->arch.smi_pending = true;
8046 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8047 }
8048 
8049 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8050 				       unsigned long *vcpu_bitmap)
8051 {
8052 	cpumask_var_t cpus;
8053 
8054 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8055 
8056 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8057 				    vcpu_bitmap, cpus);
8058 
8059 	free_cpumask_var(cpus);
8060 }
8061 
8062 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8063 {
8064 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8065 }
8066 
8067 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8068 {
8069 	if (!lapic_in_kernel(vcpu))
8070 		return;
8071 
8072 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8073 	kvm_apic_update_apicv(vcpu);
8074 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8075 }
8076 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8077 
8078 /*
8079  * NOTE: Do not hold any lock prior to calling this.
8080  *
8081  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8082  * locked, because it calls __x86_set_memory_region() which does
8083  * synchronize_srcu(&kvm->srcu).
8084  */
8085 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8086 {
8087 	unsigned long old, new, expected;
8088 
8089 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8090 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8091 		return;
8092 
8093 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8094 	do {
8095 		expected = new = old;
8096 		if (activate)
8097 			__clear_bit(bit, &new);
8098 		else
8099 			__set_bit(bit, &new);
8100 		if (new == old)
8101 			break;
8102 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8103 	} while (old != expected);
8104 
8105 	if (!!old == !!new)
8106 		return;
8107 
8108 	trace_kvm_apicv_update_request(activate, bit);
8109 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8110 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8111 	kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8112 }
8113 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8114 
8115 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8116 {
8117 	if (!kvm_apic_present(vcpu))
8118 		return;
8119 
8120 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8121 
8122 	if (irqchip_split(vcpu->kvm))
8123 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8124 	else {
8125 		if (vcpu->arch.apicv_active)
8126 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8127 		if (ioapic_in_kernel(vcpu->kvm))
8128 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8129 	}
8130 
8131 	if (is_guest_mode(vcpu))
8132 		vcpu->arch.load_eoi_exitmap_pending = true;
8133 	else
8134 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8135 }
8136 
8137 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8138 {
8139 	u64 eoi_exit_bitmap[4];
8140 
8141 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8142 		return;
8143 
8144 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8145 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8146 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8147 }
8148 
8149 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8150 		unsigned long start, unsigned long end,
8151 		bool blockable)
8152 {
8153 	unsigned long apic_address;
8154 
8155 	/*
8156 	 * The physical address of apic access page is stored in the VMCS.
8157 	 * Update it when it becomes invalid.
8158 	 */
8159 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8160 	if (start <= apic_address && apic_address < end)
8161 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8162 
8163 	return 0;
8164 }
8165 
8166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8167 {
8168 	struct page *page = NULL;
8169 
8170 	if (!lapic_in_kernel(vcpu))
8171 		return;
8172 
8173 	if (!kvm_x86_ops.set_apic_access_page_addr)
8174 		return;
8175 
8176 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8177 	if (is_error_page(page))
8178 		return;
8179 	kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
8180 
8181 	/*
8182 	 * Do not pin apic access page in memory, the MMU notifier
8183 	 * will call us again if it is migrated or swapped out.
8184 	 */
8185 	put_page(page);
8186 }
8187 
8188 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8189 {
8190 	smp_send_reschedule(vcpu->cpu);
8191 }
8192 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8193 
8194 /*
8195  * Returns 1 to let vcpu_run() continue the guest execution loop without
8196  * exiting to the userspace.  Otherwise, the value will be returned to the
8197  * userspace.
8198  */
8199 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8200 {
8201 	int r;
8202 	bool req_int_win =
8203 		dm_request_for_irq_injection(vcpu) &&
8204 		kvm_cpu_accept_dm_intr(vcpu);
8205 	enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8206 
8207 	bool req_immediate_exit = false;
8208 
8209 	if (kvm_request_pending(vcpu)) {
8210 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8211 			if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
8212 				r = 0;
8213 				goto out;
8214 			}
8215 		}
8216 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8217 			kvm_mmu_unload(vcpu);
8218 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8219 			__kvm_migrate_timers(vcpu);
8220 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8221 			kvm_gen_update_masterclock(vcpu->kvm);
8222 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8223 			kvm_gen_kvmclock_update(vcpu);
8224 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8225 			r = kvm_guest_time_update(vcpu);
8226 			if (unlikely(r))
8227 				goto out;
8228 		}
8229 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8230 			kvm_mmu_sync_roots(vcpu);
8231 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8232 			kvm_mmu_load_pgd(vcpu);
8233 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8234 			kvm_vcpu_flush_tlb(vcpu, true);
8235 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8236 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8237 			r = 0;
8238 			goto out;
8239 		}
8240 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8241 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8242 			vcpu->mmio_needed = 0;
8243 			r = 0;
8244 			goto out;
8245 		}
8246 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8247 			/* Page is swapped out. Do synthetic halt */
8248 			vcpu->arch.apf.halted = true;
8249 			r = 1;
8250 			goto out;
8251 		}
8252 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8253 			record_steal_time(vcpu);
8254 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8255 			process_smi(vcpu);
8256 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8257 			process_nmi(vcpu);
8258 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8259 			kvm_pmu_handle_event(vcpu);
8260 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8261 			kvm_pmu_deliver_pmi(vcpu);
8262 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8263 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8264 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8265 				     vcpu->arch.ioapic_handled_vectors)) {
8266 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8267 				vcpu->run->eoi.vector =
8268 						vcpu->arch.pending_ioapic_eoi;
8269 				r = 0;
8270 				goto out;
8271 			}
8272 		}
8273 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8274 			vcpu_scan_ioapic(vcpu);
8275 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8276 			vcpu_load_eoi_exitmap(vcpu);
8277 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8278 			kvm_vcpu_reload_apic_access_page(vcpu);
8279 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8280 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8281 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8282 			r = 0;
8283 			goto out;
8284 		}
8285 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8286 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8287 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8288 			r = 0;
8289 			goto out;
8290 		}
8291 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8292 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8293 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8294 			r = 0;
8295 			goto out;
8296 		}
8297 
8298 		/*
8299 		 * KVM_REQ_HV_STIMER has to be processed after
8300 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8301 		 * depend on the guest clock being up-to-date
8302 		 */
8303 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8304 			kvm_hv_process_stimers(vcpu);
8305 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8306 			kvm_vcpu_update_apicv(vcpu);
8307 	}
8308 
8309 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8310 		++vcpu->stat.req_event;
8311 		kvm_apic_accept_events(vcpu);
8312 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8313 			r = 1;
8314 			goto out;
8315 		}
8316 
8317 		if (inject_pending_event(vcpu) != 0)
8318 			req_immediate_exit = true;
8319 		else {
8320 			/* Enable SMI/NMI/IRQ window open exits if needed.
8321 			 *
8322 			 * SMIs have three cases:
8323 			 * 1) They can be nested, and then there is nothing to
8324 			 *    do here because RSM will cause a vmexit anyway.
8325 			 * 2) There is an ISA-specific reason why SMI cannot be
8326 			 *    injected, and the moment when this changes can be
8327 			 *    intercepted.
8328 			 * 3) Or the SMI can be pending because
8329 			 *    inject_pending_event has completed the injection
8330 			 *    of an IRQ or NMI from the previous vmexit, and
8331 			 *    then we request an immediate exit to inject the
8332 			 *    SMI.
8333 			 */
8334 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8335 				if (!kvm_x86_ops.enable_smi_window(vcpu))
8336 					req_immediate_exit = true;
8337 			if (vcpu->arch.nmi_pending)
8338 				kvm_x86_ops.enable_nmi_window(vcpu);
8339 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8340 				kvm_x86_ops.enable_irq_window(vcpu);
8341 			WARN_ON(vcpu->arch.exception.pending);
8342 		}
8343 
8344 		if (kvm_lapic_enabled(vcpu)) {
8345 			update_cr8_intercept(vcpu);
8346 			kvm_lapic_sync_to_vapic(vcpu);
8347 		}
8348 	}
8349 
8350 	r = kvm_mmu_reload(vcpu);
8351 	if (unlikely(r)) {
8352 		goto cancel_injection;
8353 	}
8354 
8355 	preempt_disable();
8356 
8357 	kvm_x86_ops.prepare_guest_switch(vcpu);
8358 
8359 	/*
8360 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8361 	 * IPI are then delayed after guest entry, which ensures that they
8362 	 * result in virtual interrupt delivery.
8363 	 */
8364 	local_irq_disable();
8365 	vcpu->mode = IN_GUEST_MODE;
8366 
8367 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8368 
8369 	/*
8370 	 * 1) We should set ->mode before checking ->requests.  Please see
8371 	 * the comment in kvm_vcpu_exiting_guest_mode().
8372 	 *
8373 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8374 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8375 	 * (see vmx_deliver_posted_interrupt).
8376 	 *
8377 	 * 3) This also orders the write to mode from any reads to the page
8378 	 * tables done while the VCPU is running.  Please see the comment
8379 	 * in kvm_flush_remote_tlbs.
8380 	 */
8381 	smp_mb__after_srcu_read_unlock();
8382 
8383 	/*
8384 	 * This handles the case where a posted interrupt was
8385 	 * notified with kvm_vcpu_kick.
8386 	 */
8387 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8388 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8389 
8390 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8391 	    || need_resched() || signal_pending(current)) {
8392 		vcpu->mode = OUTSIDE_GUEST_MODE;
8393 		smp_wmb();
8394 		local_irq_enable();
8395 		preempt_enable();
8396 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8397 		r = 1;
8398 		goto cancel_injection;
8399 	}
8400 
8401 	if (req_immediate_exit) {
8402 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8403 		kvm_x86_ops.request_immediate_exit(vcpu);
8404 	}
8405 
8406 	trace_kvm_entry(vcpu->vcpu_id);
8407 	guest_enter_irqoff();
8408 
8409 	fpregs_assert_state_consistent();
8410 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8411 		switch_fpu_return();
8412 
8413 	if (unlikely(vcpu->arch.switch_db_regs)) {
8414 		set_debugreg(0, 7);
8415 		set_debugreg(vcpu->arch.eff_db[0], 0);
8416 		set_debugreg(vcpu->arch.eff_db[1], 1);
8417 		set_debugreg(vcpu->arch.eff_db[2], 2);
8418 		set_debugreg(vcpu->arch.eff_db[3], 3);
8419 		set_debugreg(vcpu->arch.dr6, 6);
8420 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8421 	}
8422 
8423 	kvm_x86_ops.run(vcpu);
8424 
8425 	/*
8426 	 * Do this here before restoring debug registers on the host.  And
8427 	 * since we do this before handling the vmexit, a DR access vmexit
8428 	 * can (a) read the correct value of the debug registers, (b) set
8429 	 * KVM_DEBUGREG_WONT_EXIT again.
8430 	 */
8431 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8432 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8433 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8434 		kvm_update_dr0123(vcpu);
8435 		kvm_update_dr6(vcpu);
8436 		kvm_update_dr7(vcpu);
8437 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8438 	}
8439 
8440 	/*
8441 	 * If the guest has used debug registers, at least dr7
8442 	 * will be disabled while returning to the host.
8443 	 * If we don't have active breakpoints in the host, we don't
8444 	 * care about the messed up debug address registers. But if
8445 	 * we have some of them active, restore the old state.
8446 	 */
8447 	if (hw_breakpoint_active())
8448 		hw_breakpoint_restore();
8449 
8450 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8451 
8452 	vcpu->mode = OUTSIDE_GUEST_MODE;
8453 	smp_wmb();
8454 
8455 	kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
8456 
8457 	/*
8458 	 * Consume any pending interrupts, including the possible source of
8459 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8460 	 * An instruction is required after local_irq_enable() to fully unblock
8461 	 * interrupts on processors that implement an interrupt shadow, the
8462 	 * stat.exits increment will do nicely.
8463 	 */
8464 	kvm_before_interrupt(vcpu);
8465 	local_irq_enable();
8466 	++vcpu->stat.exits;
8467 	local_irq_disable();
8468 	kvm_after_interrupt(vcpu);
8469 
8470 	guest_exit_irqoff();
8471 	if (lapic_in_kernel(vcpu)) {
8472 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8473 		if (delta != S64_MIN) {
8474 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8475 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8476 		}
8477 	}
8478 
8479 	local_irq_enable();
8480 	preempt_enable();
8481 
8482 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8483 
8484 	/*
8485 	 * Profile KVM exit RIPs:
8486 	 */
8487 	if (unlikely(prof_on == KVM_PROFILING)) {
8488 		unsigned long rip = kvm_rip_read(vcpu);
8489 		profile_hit(KVM_PROFILING, (void *)rip);
8490 	}
8491 
8492 	if (unlikely(vcpu->arch.tsc_always_catchup))
8493 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8494 
8495 	if (vcpu->arch.apic_attention)
8496 		kvm_lapic_sync_from_vapic(vcpu);
8497 
8498 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8499 	return r;
8500 
8501 cancel_injection:
8502 	kvm_x86_ops.cancel_injection(vcpu);
8503 	if (unlikely(vcpu->arch.apic_attention))
8504 		kvm_lapic_sync_from_vapic(vcpu);
8505 out:
8506 	return r;
8507 }
8508 
8509 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8510 {
8511 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8512 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8513 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8514 		kvm_vcpu_block(vcpu);
8515 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8516 
8517 		if (kvm_x86_ops.post_block)
8518 			kvm_x86_ops.post_block(vcpu);
8519 
8520 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8521 			return 1;
8522 	}
8523 
8524 	kvm_apic_accept_events(vcpu);
8525 	switch(vcpu->arch.mp_state) {
8526 	case KVM_MP_STATE_HALTED:
8527 		vcpu->arch.pv.pv_unhalted = false;
8528 		vcpu->arch.mp_state =
8529 			KVM_MP_STATE_RUNNABLE;
8530 		/* fall through */
8531 	case KVM_MP_STATE_RUNNABLE:
8532 		vcpu->arch.apf.halted = false;
8533 		break;
8534 	case KVM_MP_STATE_INIT_RECEIVED:
8535 		break;
8536 	default:
8537 		return -EINTR;
8538 	}
8539 	return 1;
8540 }
8541 
8542 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8543 {
8544 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8545 		kvm_x86_ops.check_nested_events(vcpu);
8546 
8547 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8548 		!vcpu->arch.apf.halted);
8549 }
8550 
8551 static int vcpu_run(struct kvm_vcpu *vcpu)
8552 {
8553 	int r;
8554 	struct kvm *kvm = vcpu->kvm;
8555 
8556 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8557 	vcpu->arch.l1tf_flush_l1d = true;
8558 
8559 	for (;;) {
8560 		if (kvm_vcpu_running(vcpu)) {
8561 			r = vcpu_enter_guest(vcpu);
8562 		} else {
8563 			r = vcpu_block(kvm, vcpu);
8564 		}
8565 
8566 		if (r <= 0)
8567 			break;
8568 
8569 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8570 		if (kvm_cpu_has_pending_timer(vcpu))
8571 			kvm_inject_pending_timer_irqs(vcpu);
8572 
8573 		if (dm_request_for_irq_injection(vcpu) &&
8574 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8575 			r = 0;
8576 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8577 			++vcpu->stat.request_irq_exits;
8578 			break;
8579 		}
8580 
8581 		kvm_check_async_pf_completion(vcpu);
8582 
8583 		if (signal_pending(current)) {
8584 			r = -EINTR;
8585 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8586 			++vcpu->stat.signal_exits;
8587 			break;
8588 		}
8589 		if (need_resched()) {
8590 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8591 			cond_resched();
8592 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8593 		}
8594 	}
8595 
8596 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8597 
8598 	return r;
8599 }
8600 
8601 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8602 {
8603 	int r;
8604 
8605 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8606 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8607 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8608 	return r;
8609 }
8610 
8611 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8612 {
8613 	BUG_ON(!vcpu->arch.pio.count);
8614 
8615 	return complete_emulated_io(vcpu);
8616 }
8617 
8618 /*
8619  * Implements the following, as a state machine:
8620  *
8621  * read:
8622  *   for each fragment
8623  *     for each mmio piece in the fragment
8624  *       write gpa, len
8625  *       exit
8626  *       copy data
8627  *   execute insn
8628  *
8629  * write:
8630  *   for each fragment
8631  *     for each mmio piece in the fragment
8632  *       write gpa, len
8633  *       copy data
8634  *       exit
8635  */
8636 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8637 {
8638 	struct kvm_run *run = vcpu->run;
8639 	struct kvm_mmio_fragment *frag;
8640 	unsigned len;
8641 
8642 	BUG_ON(!vcpu->mmio_needed);
8643 
8644 	/* Complete previous fragment */
8645 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8646 	len = min(8u, frag->len);
8647 	if (!vcpu->mmio_is_write)
8648 		memcpy(frag->data, run->mmio.data, len);
8649 
8650 	if (frag->len <= 8) {
8651 		/* Switch to the next fragment. */
8652 		frag++;
8653 		vcpu->mmio_cur_fragment++;
8654 	} else {
8655 		/* Go forward to the next mmio piece. */
8656 		frag->data += len;
8657 		frag->gpa += len;
8658 		frag->len -= len;
8659 	}
8660 
8661 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8662 		vcpu->mmio_needed = 0;
8663 
8664 		/* FIXME: return into emulator if single-stepping.  */
8665 		if (vcpu->mmio_is_write)
8666 			return 1;
8667 		vcpu->mmio_read_completed = 1;
8668 		return complete_emulated_io(vcpu);
8669 	}
8670 
8671 	run->exit_reason = KVM_EXIT_MMIO;
8672 	run->mmio.phys_addr = frag->gpa;
8673 	if (vcpu->mmio_is_write)
8674 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8675 	run->mmio.len = min(8u, frag->len);
8676 	run->mmio.is_write = vcpu->mmio_is_write;
8677 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8678 	return 0;
8679 }
8680 
8681 static void kvm_save_current_fpu(struct fpu *fpu)
8682 {
8683 	/*
8684 	 * If the target FPU state is not resident in the CPU registers, just
8685 	 * memcpy() from current, else save CPU state directly to the target.
8686 	 */
8687 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8688 		memcpy(&fpu->state, &current->thread.fpu.state,
8689 		       fpu_kernel_xstate_size);
8690 	else
8691 		copy_fpregs_to_fpstate(fpu);
8692 }
8693 
8694 /* Swap (qemu) user FPU context for the guest FPU context. */
8695 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8696 {
8697 	fpregs_lock();
8698 
8699 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8700 
8701 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8702 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8703 				~XFEATURE_MASK_PKRU);
8704 
8705 	fpregs_mark_activate();
8706 	fpregs_unlock();
8707 
8708 	trace_kvm_fpu(1);
8709 }
8710 
8711 /* When vcpu_run ends, restore user space FPU context. */
8712 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8713 {
8714 	fpregs_lock();
8715 
8716 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8717 
8718 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8719 
8720 	fpregs_mark_activate();
8721 	fpregs_unlock();
8722 
8723 	++vcpu->stat.fpu_reload;
8724 	trace_kvm_fpu(0);
8725 }
8726 
8727 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8728 {
8729 	int r;
8730 
8731 	vcpu_load(vcpu);
8732 	kvm_sigset_activate(vcpu);
8733 	kvm_load_guest_fpu(vcpu);
8734 
8735 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8736 		if (kvm_run->immediate_exit) {
8737 			r = -EINTR;
8738 			goto out;
8739 		}
8740 		kvm_vcpu_block(vcpu);
8741 		kvm_apic_accept_events(vcpu);
8742 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8743 		r = -EAGAIN;
8744 		if (signal_pending(current)) {
8745 			r = -EINTR;
8746 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8747 			++vcpu->stat.signal_exits;
8748 		}
8749 		goto out;
8750 	}
8751 
8752 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8753 		r = -EINVAL;
8754 		goto out;
8755 	}
8756 
8757 	if (vcpu->run->kvm_dirty_regs) {
8758 		r = sync_regs(vcpu);
8759 		if (r != 0)
8760 			goto out;
8761 	}
8762 
8763 	/* re-sync apic's tpr */
8764 	if (!lapic_in_kernel(vcpu)) {
8765 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8766 			r = -EINVAL;
8767 			goto out;
8768 		}
8769 	}
8770 
8771 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8772 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8773 		vcpu->arch.complete_userspace_io = NULL;
8774 		r = cui(vcpu);
8775 		if (r <= 0)
8776 			goto out;
8777 	} else
8778 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8779 
8780 	if (kvm_run->immediate_exit)
8781 		r = -EINTR;
8782 	else
8783 		r = vcpu_run(vcpu);
8784 
8785 out:
8786 	kvm_put_guest_fpu(vcpu);
8787 	if (vcpu->run->kvm_valid_regs)
8788 		store_regs(vcpu);
8789 	post_kvm_run_save(vcpu);
8790 	kvm_sigset_deactivate(vcpu);
8791 
8792 	vcpu_put(vcpu);
8793 	return r;
8794 }
8795 
8796 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8797 {
8798 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8799 		/*
8800 		 * We are here if userspace calls get_regs() in the middle of
8801 		 * instruction emulation. Registers state needs to be copied
8802 		 * back from emulation context to vcpu. Userspace shouldn't do
8803 		 * that usually, but some bad designed PV devices (vmware
8804 		 * backdoor interface) need this to work
8805 		 */
8806 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8807 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8808 	}
8809 	regs->rax = kvm_rax_read(vcpu);
8810 	regs->rbx = kvm_rbx_read(vcpu);
8811 	regs->rcx = kvm_rcx_read(vcpu);
8812 	regs->rdx = kvm_rdx_read(vcpu);
8813 	regs->rsi = kvm_rsi_read(vcpu);
8814 	regs->rdi = kvm_rdi_read(vcpu);
8815 	regs->rsp = kvm_rsp_read(vcpu);
8816 	regs->rbp = kvm_rbp_read(vcpu);
8817 #ifdef CONFIG_X86_64
8818 	regs->r8 = kvm_r8_read(vcpu);
8819 	regs->r9 = kvm_r9_read(vcpu);
8820 	regs->r10 = kvm_r10_read(vcpu);
8821 	regs->r11 = kvm_r11_read(vcpu);
8822 	regs->r12 = kvm_r12_read(vcpu);
8823 	regs->r13 = kvm_r13_read(vcpu);
8824 	regs->r14 = kvm_r14_read(vcpu);
8825 	regs->r15 = kvm_r15_read(vcpu);
8826 #endif
8827 
8828 	regs->rip = kvm_rip_read(vcpu);
8829 	regs->rflags = kvm_get_rflags(vcpu);
8830 }
8831 
8832 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8833 {
8834 	vcpu_load(vcpu);
8835 	__get_regs(vcpu, regs);
8836 	vcpu_put(vcpu);
8837 	return 0;
8838 }
8839 
8840 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8841 {
8842 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8843 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8844 
8845 	kvm_rax_write(vcpu, regs->rax);
8846 	kvm_rbx_write(vcpu, regs->rbx);
8847 	kvm_rcx_write(vcpu, regs->rcx);
8848 	kvm_rdx_write(vcpu, regs->rdx);
8849 	kvm_rsi_write(vcpu, regs->rsi);
8850 	kvm_rdi_write(vcpu, regs->rdi);
8851 	kvm_rsp_write(vcpu, regs->rsp);
8852 	kvm_rbp_write(vcpu, regs->rbp);
8853 #ifdef CONFIG_X86_64
8854 	kvm_r8_write(vcpu, regs->r8);
8855 	kvm_r9_write(vcpu, regs->r9);
8856 	kvm_r10_write(vcpu, regs->r10);
8857 	kvm_r11_write(vcpu, regs->r11);
8858 	kvm_r12_write(vcpu, regs->r12);
8859 	kvm_r13_write(vcpu, regs->r13);
8860 	kvm_r14_write(vcpu, regs->r14);
8861 	kvm_r15_write(vcpu, regs->r15);
8862 #endif
8863 
8864 	kvm_rip_write(vcpu, regs->rip);
8865 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8866 
8867 	vcpu->arch.exception.pending = false;
8868 
8869 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8870 }
8871 
8872 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8873 {
8874 	vcpu_load(vcpu);
8875 	__set_regs(vcpu, regs);
8876 	vcpu_put(vcpu);
8877 	return 0;
8878 }
8879 
8880 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8881 {
8882 	struct kvm_segment cs;
8883 
8884 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8885 	*db = cs.db;
8886 	*l = cs.l;
8887 }
8888 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8889 
8890 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8891 {
8892 	struct desc_ptr dt;
8893 
8894 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8895 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8896 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8897 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8898 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8899 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8900 
8901 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8902 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8903 
8904 	kvm_x86_ops.get_idt(vcpu, &dt);
8905 	sregs->idt.limit = dt.size;
8906 	sregs->idt.base = dt.address;
8907 	kvm_x86_ops.get_gdt(vcpu, &dt);
8908 	sregs->gdt.limit = dt.size;
8909 	sregs->gdt.base = dt.address;
8910 
8911 	sregs->cr0 = kvm_read_cr0(vcpu);
8912 	sregs->cr2 = vcpu->arch.cr2;
8913 	sregs->cr3 = kvm_read_cr3(vcpu);
8914 	sregs->cr4 = kvm_read_cr4(vcpu);
8915 	sregs->cr8 = kvm_get_cr8(vcpu);
8916 	sregs->efer = vcpu->arch.efer;
8917 	sregs->apic_base = kvm_get_apic_base(vcpu);
8918 
8919 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8920 
8921 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8922 		set_bit(vcpu->arch.interrupt.nr,
8923 			(unsigned long *)sregs->interrupt_bitmap);
8924 }
8925 
8926 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8927 				  struct kvm_sregs *sregs)
8928 {
8929 	vcpu_load(vcpu);
8930 	__get_sregs(vcpu, sregs);
8931 	vcpu_put(vcpu);
8932 	return 0;
8933 }
8934 
8935 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8936 				    struct kvm_mp_state *mp_state)
8937 {
8938 	vcpu_load(vcpu);
8939 	if (kvm_mpx_supported())
8940 		kvm_load_guest_fpu(vcpu);
8941 
8942 	kvm_apic_accept_events(vcpu);
8943 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8944 					vcpu->arch.pv.pv_unhalted)
8945 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8946 	else
8947 		mp_state->mp_state = vcpu->arch.mp_state;
8948 
8949 	if (kvm_mpx_supported())
8950 		kvm_put_guest_fpu(vcpu);
8951 	vcpu_put(vcpu);
8952 	return 0;
8953 }
8954 
8955 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8956 				    struct kvm_mp_state *mp_state)
8957 {
8958 	int ret = -EINVAL;
8959 
8960 	vcpu_load(vcpu);
8961 
8962 	if (!lapic_in_kernel(vcpu) &&
8963 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8964 		goto out;
8965 
8966 	/*
8967 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8968 	 * INIT state; latched init should be reported using
8969 	 * KVM_SET_VCPU_EVENTS, so reject it here.
8970 	 */
8971 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8972 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8973 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8974 		goto out;
8975 
8976 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8977 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8978 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8979 	} else
8980 		vcpu->arch.mp_state = mp_state->mp_state;
8981 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8982 
8983 	ret = 0;
8984 out:
8985 	vcpu_put(vcpu);
8986 	return ret;
8987 }
8988 
8989 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8990 		    int reason, bool has_error_code, u32 error_code)
8991 {
8992 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8993 	int ret;
8994 
8995 	init_emulate_ctxt(vcpu);
8996 
8997 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8998 				   has_error_code, error_code);
8999 	if (ret) {
9000 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9001 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9002 		vcpu->run->internal.ndata = 0;
9003 		return 0;
9004 	}
9005 
9006 	kvm_rip_write(vcpu, ctxt->eip);
9007 	kvm_set_rflags(vcpu, ctxt->eflags);
9008 	return 1;
9009 }
9010 EXPORT_SYMBOL_GPL(kvm_task_switch);
9011 
9012 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9013 {
9014 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9015 		/*
9016 		 * When EFER.LME and CR0.PG are set, the processor is in
9017 		 * 64-bit mode (though maybe in a 32-bit code segment).
9018 		 * CR4.PAE and EFER.LMA must be set.
9019 		 */
9020 		if (!(sregs->cr4 & X86_CR4_PAE)
9021 		    || !(sregs->efer & EFER_LMA))
9022 			return -EINVAL;
9023 	} else {
9024 		/*
9025 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9026 		 * segment cannot be 64-bit.
9027 		 */
9028 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9029 			return -EINVAL;
9030 	}
9031 
9032 	return kvm_valid_cr4(vcpu, sregs->cr4);
9033 }
9034 
9035 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9036 {
9037 	struct msr_data apic_base_msr;
9038 	int mmu_reset_needed = 0;
9039 	int cpuid_update_needed = 0;
9040 	int pending_vec, max_bits, idx;
9041 	struct desc_ptr dt;
9042 	int ret = -EINVAL;
9043 
9044 	if (kvm_valid_sregs(vcpu, sregs))
9045 		goto out;
9046 
9047 	apic_base_msr.data = sregs->apic_base;
9048 	apic_base_msr.host_initiated = true;
9049 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9050 		goto out;
9051 
9052 	dt.size = sregs->idt.limit;
9053 	dt.address = sregs->idt.base;
9054 	kvm_x86_ops.set_idt(vcpu, &dt);
9055 	dt.size = sregs->gdt.limit;
9056 	dt.address = sregs->gdt.base;
9057 	kvm_x86_ops.set_gdt(vcpu, &dt);
9058 
9059 	vcpu->arch.cr2 = sregs->cr2;
9060 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9061 	vcpu->arch.cr3 = sregs->cr3;
9062 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9063 
9064 	kvm_set_cr8(vcpu, sregs->cr8);
9065 
9066 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9067 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9068 
9069 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9070 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9071 	vcpu->arch.cr0 = sregs->cr0;
9072 
9073 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9074 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9075 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9076 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9077 	if (cpuid_update_needed)
9078 		kvm_update_cpuid(vcpu);
9079 
9080 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9081 	if (is_pae_paging(vcpu)) {
9082 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9083 		mmu_reset_needed = 1;
9084 	}
9085 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9086 
9087 	if (mmu_reset_needed)
9088 		kvm_mmu_reset_context(vcpu);
9089 
9090 	max_bits = KVM_NR_INTERRUPTS;
9091 	pending_vec = find_first_bit(
9092 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9093 	if (pending_vec < max_bits) {
9094 		kvm_queue_interrupt(vcpu, pending_vec, false);
9095 		pr_debug("Set back pending irq %d\n", pending_vec);
9096 	}
9097 
9098 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9099 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9100 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9101 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9102 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9103 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9104 
9105 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9106 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9107 
9108 	update_cr8_intercept(vcpu);
9109 
9110 	/* Older userspace won't unhalt the vcpu on reset. */
9111 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9112 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9113 	    !is_protmode(vcpu))
9114 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9115 
9116 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9117 
9118 	ret = 0;
9119 out:
9120 	return ret;
9121 }
9122 
9123 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9124 				  struct kvm_sregs *sregs)
9125 {
9126 	int ret;
9127 
9128 	vcpu_load(vcpu);
9129 	ret = __set_sregs(vcpu, sregs);
9130 	vcpu_put(vcpu);
9131 	return ret;
9132 }
9133 
9134 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9135 					struct kvm_guest_debug *dbg)
9136 {
9137 	unsigned long rflags;
9138 	int i, r;
9139 
9140 	vcpu_load(vcpu);
9141 
9142 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9143 		r = -EBUSY;
9144 		if (vcpu->arch.exception.pending)
9145 			goto out;
9146 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9147 			kvm_queue_exception(vcpu, DB_VECTOR);
9148 		else
9149 			kvm_queue_exception(vcpu, BP_VECTOR);
9150 	}
9151 
9152 	/*
9153 	 * Read rflags as long as potentially injected trace flags are still
9154 	 * filtered out.
9155 	 */
9156 	rflags = kvm_get_rflags(vcpu);
9157 
9158 	vcpu->guest_debug = dbg->control;
9159 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9160 		vcpu->guest_debug = 0;
9161 
9162 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9163 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9164 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9165 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9166 	} else {
9167 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9168 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9169 	}
9170 	kvm_update_dr7(vcpu);
9171 
9172 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9173 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9174 			get_segment_base(vcpu, VCPU_SREG_CS);
9175 
9176 	/*
9177 	 * Trigger an rflags update that will inject or remove the trace
9178 	 * flags.
9179 	 */
9180 	kvm_set_rflags(vcpu, rflags);
9181 
9182 	kvm_x86_ops.update_bp_intercept(vcpu);
9183 
9184 	r = 0;
9185 
9186 out:
9187 	vcpu_put(vcpu);
9188 	return r;
9189 }
9190 
9191 /*
9192  * Translate a guest virtual address to a guest physical address.
9193  */
9194 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9195 				    struct kvm_translation *tr)
9196 {
9197 	unsigned long vaddr = tr->linear_address;
9198 	gpa_t gpa;
9199 	int idx;
9200 
9201 	vcpu_load(vcpu);
9202 
9203 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9204 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9205 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9206 	tr->physical_address = gpa;
9207 	tr->valid = gpa != UNMAPPED_GVA;
9208 	tr->writeable = 1;
9209 	tr->usermode = 0;
9210 
9211 	vcpu_put(vcpu);
9212 	return 0;
9213 }
9214 
9215 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9216 {
9217 	struct fxregs_state *fxsave;
9218 
9219 	vcpu_load(vcpu);
9220 
9221 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9222 	memcpy(fpu->fpr, fxsave->st_space, 128);
9223 	fpu->fcw = fxsave->cwd;
9224 	fpu->fsw = fxsave->swd;
9225 	fpu->ftwx = fxsave->twd;
9226 	fpu->last_opcode = fxsave->fop;
9227 	fpu->last_ip = fxsave->rip;
9228 	fpu->last_dp = fxsave->rdp;
9229 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9230 
9231 	vcpu_put(vcpu);
9232 	return 0;
9233 }
9234 
9235 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9236 {
9237 	struct fxregs_state *fxsave;
9238 
9239 	vcpu_load(vcpu);
9240 
9241 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9242 
9243 	memcpy(fxsave->st_space, fpu->fpr, 128);
9244 	fxsave->cwd = fpu->fcw;
9245 	fxsave->swd = fpu->fsw;
9246 	fxsave->twd = fpu->ftwx;
9247 	fxsave->fop = fpu->last_opcode;
9248 	fxsave->rip = fpu->last_ip;
9249 	fxsave->rdp = fpu->last_dp;
9250 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9251 
9252 	vcpu_put(vcpu);
9253 	return 0;
9254 }
9255 
9256 static void store_regs(struct kvm_vcpu *vcpu)
9257 {
9258 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9259 
9260 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9261 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9262 
9263 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9264 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9265 
9266 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9267 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9268 				vcpu, &vcpu->run->s.regs.events);
9269 }
9270 
9271 static int sync_regs(struct kvm_vcpu *vcpu)
9272 {
9273 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9274 		return -EINVAL;
9275 
9276 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9277 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9278 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9279 	}
9280 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9281 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9282 			return -EINVAL;
9283 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9284 	}
9285 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9286 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9287 				vcpu, &vcpu->run->s.regs.events))
9288 			return -EINVAL;
9289 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9290 	}
9291 
9292 	return 0;
9293 }
9294 
9295 static void fx_init(struct kvm_vcpu *vcpu)
9296 {
9297 	fpstate_init(&vcpu->arch.guest_fpu->state);
9298 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9299 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9300 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9301 
9302 	/*
9303 	 * Ensure guest xcr0 is valid for loading
9304 	 */
9305 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9306 
9307 	vcpu->arch.cr0 |= X86_CR0_ET;
9308 }
9309 
9310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9311 {
9312 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9313 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9314 			     "guest TSC will not be reliable\n");
9315 
9316 	return 0;
9317 }
9318 
9319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9320 {
9321 	struct page *page;
9322 	int r;
9323 
9324 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9325 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9326 	else
9327 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9328 
9329 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9330 
9331 	r = kvm_mmu_create(vcpu);
9332 	if (r < 0)
9333 		return r;
9334 
9335 	if (irqchip_in_kernel(vcpu->kvm)) {
9336 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9337 		if (r < 0)
9338 			goto fail_mmu_destroy;
9339 		if (kvm_apicv_activated(vcpu->kvm))
9340 			vcpu->arch.apicv_active = true;
9341 	} else
9342 		static_key_slow_inc(&kvm_no_apic_vcpu);
9343 
9344 	r = -ENOMEM;
9345 
9346 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9347 	if (!page)
9348 		goto fail_free_lapic;
9349 	vcpu->arch.pio_data = page_address(page);
9350 
9351 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9352 				       GFP_KERNEL_ACCOUNT);
9353 	if (!vcpu->arch.mce_banks)
9354 		goto fail_free_pio_data;
9355 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9356 
9357 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9358 				GFP_KERNEL_ACCOUNT))
9359 		goto fail_free_mce_banks;
9360 
9361 	if (!alloc_emulate_ctxt(vcpu))
9362 		goto free_wbinvd_dirty_mask;
9363 
9364 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9365 						GFP_KERNEL_ACCOUNT);
9366 	if (!vcpu->arch.user_fpu) {
9367 		pr_err("kvm: failed to allocate userspace's fpu\n");
9368 		goto free_emulate_ctxt;
9369 	}
9370 
9371 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9372 						 GFP_KERNEL_ACCOUNT);
9373 	if (!vcpu->arch.guest_fpu) {
9374 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9375 		goto free_user_fpu;
9376 	}
9377 	fx_init(vcpu);
9378 
9379 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9380 
9381 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9382 
9383 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9384 
9385 	kvm_async_pf_hash_reset(vcpu);
9386 	kvm_pmu_init(vcpu);
9387 
9388 	vcpu->arch.pending_external_vector = -1;
9389 	vcpu->arch.preempted_in_kernel = false;
9390 
9391 	kvm_hv_vcpu_init(vcpu);
9392 
9393 	r = kvm_x86_ops.vcpu_create(vcpu);
9394 	if (r)
9395 		goto free_guest_fpu;
9396 
9397 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9398 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9399 	kvm_vcpu_mtrr_init(vcpu);
9400 	vcpu_load(vcpu);
9401 	kvm_vcpu_reset(vcpu, false);
9402 	kvm_init_mmu(vcpu, false);
9403 	vcpu_put(vcpu);
9404 	return 0;
9405 
9406 free_guest_fpu:
9407 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9408 free_user_fpu:
9409 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9410 free_emulate_ctxt:
9411 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9412 free_wbinvd_dirty_mask:
9413 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9414 fail_free_mce_banks:
9415 	kfree(vcpu->arch.mce_banks);
9416 fail_free_pio_data:
9417 	free_page((unsigned long)vcpu->arch.pio_data);
9418 fail_free_lapic:
9419 	kvm_free_lapic(vcpu);
9420 fail_mmu_destroy:
9421 	kvm_mmu_destroy(vcpu);
9422 	return r;
9423 }
9424 
9425 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9426 {
9427 	struct msr_data msr;
9428 	struct kvm *kvm = vcpu->kvm;
9429 
9430 	kvm_hv_vcpu_postcreate(vcpu);
9431 
9432 	if (mutex_lock_killable(&vcpu->mutex))
9433 		return;
9434 	vcpu_load(vcpu);
9435 	msr.data = 0x0;
9436 	msr.index = MSR_IA32_TSC;
9437 	msr.host_initiated = true;
9438 	kvm_write_tsc(vcpu, &msr);
9439 	vcpu_put(vcpu);
9440 
9441 	/* poll control enabled by default */
9442 	vcpu->arch.msr_kvm_poll_control = 1;
9443 
9444 	mutex_unlock(&vcpu->mutex);
9445 
9446 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9447 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9448 						KVMCLOCK_SYNC_PERIOD);
9449 }
9450 
9451 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9452 {
9453 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9454 	int idx;
9455 
9456 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9457 
9458 	kvmclock_reset(vcpu);
9459 
9460 	kvm_x86_ops.vcpu_free(vcpu);
9461 
9462 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9463 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9464 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9465 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9466 
9467 	kvm_hv_vcpu_uninit(vcpu);
9468 	kvm_pmu_destroy(vcpu);
9469 	kfree(vcpu->arch.mce_banks);
9470 	kvm_free_lapic(vcpu);
9471 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9472 	kvm_mmu_destroy(vcpu);
9473 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9474 	free_page((unsigned long)vcpu->arch.pio_data);
9475 	if (!lapic_in_kernel(vcpu))
9476 		static_key_slow_dec(&kvm_no_apic_vcpu);
9477 }
9478 
9479 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9480 {
9481 	kvm_lapic_reset(vcpu, init_event);
9482 
9483 	vcpu->arch.hflags = 0;
9484 
9485 	vcpu->arch.smi_pending = 0;
9486 	vcpu->arch.smi_count = 0;
9487 	atomic_set(&vcpu->arch.nmi_queued, 0);
9488 	vcpu->arch.nmi_pending = 0;
9489 	vcpu->arch.nmi_injected = false;
9490 	kvm_clear_interrupt_queue(vcpu);
9491 	kvm_clear_exception_queue(vcpu);
9492 
9493 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9494 	kvm_update_dr0123(vcpu);
9495 	vcpu->arch.dr6 = DR6_INIT;
9496 	kvm_update_dr6(vcpu);
9497 	vcpu->arch.dr7 = DR7_FIXED_1;
9498 	kvm_update_dr7(vcpu);
9499 
9500 	vcpu->arch.cr2 = 0;
9501 
9502 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9503 	vcpu->arch.apf.msr_val = 0;
9504 	vcpu->arch.st.msr_val = 0;
9505 
9506 	kvmclock_reset(vcpu);
9507 
9508 	kvm_clear_async_pf_completion_queue(vcpu);
9509 	kvm_async_pf_hash_reset(vcpu);
9510 	vcpu->arch.apf.halted = false;
9511 
9512 	if (kvm_mpx_supported()) {
9513 		void *mpx_state_buffer;
9514 
9515 		/*
9516 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9517 		 * called with loaded FPU and does not let userspace fix the state.
9518 		 */
9519 		if (init_event)
9520 			kvm_put_guest_fpu(vcpu);
9521 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9522 					XFEATURE_BNDREGS);
9523 		if (mpx_state_buffer)
9524 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9525 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9526 					XFEATURE_BNDCSR);
9527 		if (mpx_state_buffer)
9528 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9529 		if (init_event)
9530 			kvm_load_guest_fpu(vcpu);
9531 	}
9532 
9533 	if (!init_event) {
9534 		kvm_pmu_reset(vcpu);
9535 		vcpu->arch.smbase = 0x30000;
9536 
9537 		vcpu->arch.msr_misc_features_enables = 0;
9538 
9539 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9540 	}
9541 
9542 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9543 	vcpu->arch.regs_avail = ~0;
9544 	vcpu->arch.regs_dirty = ~0;
9545 
9546 	vcpu->arch.ia32_xss = 0;
9547 
9548 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9549 }
9550 
9551 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9552 {
9553 	struct kvm_segment cs;
9554 
9555 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9556 	cs.selector = vector << 8;
9557 	cs.base = vector << 12;
9558 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9559 	kvm_rip_write(vcpu, 0);
9560 }
9561 
9562 int kvm_arch_hardware_enable(void)
9563 {
9564 	struct kvm *kvm;
9565 	struct kvm_vcpu *vcpu;
9566 	int i;
9567 	int ret;
9568 	u64 local_tsc;
9569 	u64 max_tsc = 0;
9570 	bool stable, backwards_tsc = false;
9571 
9572 	kvm_shared_msr_cpu_online();
9573 	ret = kvm_x86_ops.hardware_enable();
9574 	if (ret != 0)
9575 		return ret;
9576 
9577 	local_tsc = rdtsc();
9578 	stable = !kvm_check_tsc_unstable();
9579 	list_for_each_entry(kvm, &vm_list, vm_list) {
9580 		kvm_for_each_vcpu(i, vcpu, kvm) {
9581 			if (!stable && vcpu->cpu == smp_processor_id())
9582 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9583 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9584 				backwards_tsc = true;
9585 				if (vcpu->arch.last_host_tsc > max_tsc)
9586 					max_tsc = vcpu->arch.last_host_tsc;
9587 			}
9588 		}
9589 	}
9590 
9591 	/*
9592 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9593 	 * platforms that reset TSC during suspend or hibernate actions, but
9594 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9595 	 * detect that condition here, which happens early in CPU bringup,
9596 	 * before any KVM threads can be running.  Unfortunately, we can't
9597 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9598 	 * enough into CPU bringup that we know how much real time has actually
9599 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9600 	 * variables that haven't been updated yet.
9601 	 *
9602 	 * So we simply find the maximum observed TSC above, then record the
9603 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9604 	 * the adjustment will be applied.  Note that we accumulate
9605 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9606 	 * gets a chance to run again.  In the event that no KVM threads get a
9607 	 * chance to run, we will miss the entire elapsed period, as we'll have
9608 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9609 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9610 	 * uniform across all VCPUs (not to mention the scenario is extremely
9611 	 * unlikely). It is possible that a second hibernate recovery happens
9612 	 * much faster than a first, causing the observed TSC here to be
9613 	 * smaller; this would require additional padding adjustment, which is
9614 	 * why we set last_host_tsc to the local tsc observed here.
9615 	 *
9616 	 * N.B. - this code below runs only on platforms with reliable TSC,
9617 	 * as that is the only way backwards_tsc is set above.  Also note
9618 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9619 	 * have the same delta_cyc adjustment applied if backwards_tsc
9620 	 * is detected.  Note further, this adjustment is only done once,
9621 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9622 	 * called multiple times (one for each physical CPU bringup).
9623 	 *
9624 	 * Platforms with unreliable TSCs don't have to deal with this, they
9625 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9626 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9627 	 * guarantee that they stay in perfect synchronization.
9628 	 */
9629 	if (backwards_tsc) {
9630 		u64 delta_cyc = max_tsc - local_tsc;
9631 		list_for_each_entry(kvm, &vm_list, vm_list) {
9632 			kvm->arch.backwards_tsc_observed = true;
9633 			kvm_for_each_vcpu(i, vcpu, kvm) {
9634 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9635 				vcpu->arch.last_host_tsc = local_tsc;
9636 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9637 			}
9638 
9639 			/*
9640 			 * We have to disable TSC offset matching.. if you were
9641 			 * booting a VM while issuing an S4 host suspend....
9642 			 * you may have some problem.  Solving this issue is
9643 			 * left as an exercise to the reader.
9644 			 */
9645 			kvm->arch.last_tsc_nsec = 0;
9646 			kvm->arch.last_tsc_write = 0;
9647 		}
9648 
9649 	}
9650 	return 0;
9651 }
9652 
9653 void kvm_arch_hardware_disable(void)
9654 {
9655 	kvm_x86_ops.hardware_disable();
9656 	drop_user_return_notifiers();
9657 }
9658 
9659 int kvm_arch_hardware_setup(void *opaque)
9660 {
9661 	struct kvm_x86_init_ops *ops = opaque;
9662 	int r;
9663 
9664 	rdmsrl_safe(MSR_EFER, &host_efer);
9665 
9666 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9667 		rdmsrl(MSR_IA32_XSS, host_xss);
9668 
9669 	r = ops->hardware_setup();
9670 	if (r != 0)
9671 		return r;
9672 
9673 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9674 
9675 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9676 		supported_xss = 0;
9677 
9678 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9679 
9680 	if (kvm_has_tsc_control) {
9681 		/*
9682 		 * Make sure the user can only configure tsc_khz values that
9683 		 * fit into a signed integer.
9684 		 * A min value is not calculated because it will always
9685 		 * be 1 on all machines.
9686 		 */
9687 		u64 max = min(0x7fffffffULL,
9688 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9689 		kvm_max_guest_tsc_khz = max;
9690 
9691 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9692 	}
9693 
9694 	kvm_init_msr_list();
9695 	return 0;
9696 }
9697 
9698 void kvm_arch_hardware_unsetup(void)
9699 {
9700 	kvm_x86_ops.hardware_unsetup();
9701 }
9702 
9703 int kvm_arch_check_processor_compat(void *opaque)
9704 {
9705 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9706 	struct kvm_x86_init_ops *ops = opaque;
9707 
9708 	WARN_ON(!irqs_disabled());
9709 
9710 	if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9711 		return -EIO;
9712 
9713 	return ops->check_processor_compatibility();
9714 }
9715 
9716 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9717 {
9718 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9719 }
9720 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9721 
9722 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9723 {
9724 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9725 }
9726 
9727 struct static_key kvm_no_apic_vcpu __read_mostly;
9728 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9729 
9730 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9731 {
9732 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9733 
9734 	vcpu->arch.l1tf_flush_l1d = true;
9735 	if (pmu->version && unlikely(pmu->event_count)) {
9736 		pmu->need_cleanup = true;
9737 		kvm_make_request(KVM_REQ_PMU, vcpu);
9738 	}
9739 	kvm_x86_ops.sched_in(vcpu, cpu);
9740 }
9741 
9742 void kvm_arch_free_vm(struct kvm *kvm)
9743 {
9744 	kfree(kvm->arch.hyperv.hv_pa_pg);
9745 	vfree(kvm);
9746 }
9747 
9748 
9749 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9750 {
9751 	if (type)
9752 		return -EINVAL;
9753 
9754 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9755 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9756 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9757 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9758 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9759 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9760 
9761 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9762 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9763 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9764 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9765 		&kvm->arch.irq_sources_bitmap);
9766 
9767 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9768 	mutex_init(&kvm->arch.apic_map_lock);
9769 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9770 
9771 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9772 	pvclock_update_vm_gtod_copy(kvm);
9773 
9774 	kvm->arch.guest_can_read_msr_platform_info = true;
9775 
9776 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9777 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9778 
9779 	kvm_hv_init_vm(kvm);
9780 	kvm_page_track_init(kvm);
9781 	kvm_mmu_init_vm(kvm);
9782 
9783 	return kvm_x86_ops.vm_init(kvm);
9784 }
9785 
9786 int kvm_arch_post_init_vm(struct kvm *kvm)
9787 {
9788 	return kvm_mmu_post_init_vm(kvm);
9789 }
9790 
9791 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9792 {
9793 	vcpu_load(vcpu);
9794 	kvm_mmu_unload(vcpu);
9795 	vcpu_put(vcpu);
9796 }
9797 
9798 static void kvm_free_vcpus(struct kvm *kvm)
9799 {
9800 	unsigned int i;
9801 	struct kvm_vcpu *vcpu;
9802 
9803 	/*
9804 	 * Unpin any mmu pages first.
9805 	 */
9806 	kvm_for_each_vcpu(i, vcpu, kvm) {
9807 		kvm_clear_async_pf_completion_queue(vcpu);
9808 		kvm_unload_vcpu_mmu(vcpu);
9809 	}
9810 	kvm_for_each_vcpu(i, vcpu, kvm)
9811 		kvm_vcpu_destroy(vcpu);
9812 
9813 	mutex_lock(&kvm->lock);
9814 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9815 		kvm->vcpus[i] = NULL;
9816 
9817 	atomic_set(&kvm->online_vcpus, 0);
9818 	mutex_unlock(&kvm->lock);
9819 }
9820 
9821 void kvm_arch_sync_events(struct kvm *kvm)
9822 {
9823 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9824 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9825 	kvm_free_pit(kvm);
9826 }
9827 
9828 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9829 {
9830 	int i, r;
9831 	unsigned long hva, uninitialized_var(old_npages);
9832 	struct kvm_memslots *slots = kvm_memslots(kvm);
9833 	struct kvm_memory_slot *slot;
9834 
9835 	/* Called with kvm->slots_lock held.  */
9836 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9837 		return -EINVAL;
9838 
9839 	slot = id_to_memslot(slots, id);
9840 	if (size) {
9841 		if (slot && slot->npages)
9842 			return -EEXIST;
9843 
9844 		/*
9845 		 * MAP_SHARED to prevent internal slot pages from being moved
9846 		 * by fork()/COW.
9847 		 */
9848 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9849 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9850 		if (IS_ERR((void *)hva))
9851 			return PTR_ERR((void *)hva);
9852 	} else {
9853 		if (!slot || !slot->npages)
9854 			return 0;
9855 
9856 		/*
9857 		 * Stuff a non-canonical value to catch use-after-delete.  This
9858 		 * ends up being 0 on 32-bit KVM, but there's no better
9859 		 * alternative.
9860 		 */
9861 		hva = (unsigned long)(0xdeadull << 48);
9862 		old_npages = slot->npages;
9863 	}
9864 
9865 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9866 		struct kvm_userspace_memory_region m;
9867 
9868 		m.slot = id | (i << 16);
9869 		m.flags = 0;
9870 		m.guest_phys_addr = gpa;
9871 		m.userspace_addr = hva;
9872 		m.memory_size = size;
9873 		r = __kvm_set_memory_region(kvm, &m);
9874 		if (r < 0)
9875 			return r;
9876 	}
9877 
9878 	if (!size)
9879 		vm_munmap(hva, old_npages * PAGE_SIZE);
9880 
9881 	return 0;
9882 }
9883 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9884 
9885 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9886 {
9887 	kvm_mmu_pre_destroy_vm(kvm);
9888 }
9889 
9890 void kvm_arch_destroy_vm(struct kvm *kvm)
9891 {
9892 	if (current->mm == kvm->mm) {
9893 		/*
9894 		 * Free memory regions allocated on behalf of userspace,
9895 		 * unless the the memory map has changed due to process exit
9896 		 * or fd copying.
9897 		 */
9898 		mutex_lock(&kvm->slots_lock);
9899 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9900 					0, 0);
9901 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9902 					0, 0);
9903 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9904 		mutex_unlock(&kvm->slots_lock);
9905 	}
9906 	if (kvm_x86_ops.vm_destroy)
9907 		kvm_x86_ops.vm_destroy(kvm);
9908 	kvm_pic_destroy(kvm);
9909 	kvm_ioapic_destroy(kvm);
9910 	kvm_free_vcpus(kvm);
9911 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9912 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9913 	kvm_mmu_uninit_vm(kvm);
9914 	kvm_page_track_cleanup(kvm);
9915 	kvm_hv_destroy_vm(kvm);
9916 }
9917 
9918 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9919 {
9920 	int i;
9921 
9922 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9923 		kvfree(slot->arch.rmap[i]);
9924 		slot->arch.rmap[i] = NULL;
9925 
9926 		if (i == 0)
9927 			continue;
9928 
9929 		kvfree(slot->arch.lpage_info[i - 1]);
9930 		slot->arch.lpage_info[i - 1] = NULL;
9931 	}
9932 
9933 	kvm_page_track_free_memslot(slot);
9934 }
9935 
9936 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9937 				      unsigned long npages)
9938 {
9939 	int i;
9940 
9941 	/*
9942 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9943 	 * old arrays will be freed by __kvm_set_memory_region() if installing
9944 	 * the new memslot is successful.
9945 	 */
9946 	memset(&slot->arch, 0, sizeof(slot->arch));
9947 
9948 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9949 		struct kvm_lpage_info *linfo;
9950 		unsigned long ugfn;
9951 		int lpages;
9952 		int level = i + 1;
9953 
9954 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9955 				      slot->base_gfn, level) + 1;
9956 
9957 		slot->arch.rmap[i] =
9958 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9959 				 GFP_KERNEL_ACCOUNT);
9960 		if (!slot->arch.rmap[i])
9961 			goto out_free;
9962 		if (i == 0)
9963 			continue;
9964 
9965 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9966 		if (!linfo)
9967 			goto out_free;
9968 
9969 		slot->arch.lpage_info[i - 1] = linfo;
9970 
9971 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9972 			linfo[0].disallow_lpage = 1;
9973 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9974 			linfo[lpages - 1].disallow_lpage = 1;
9975 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9976 		/*
9977 		 * If the gfn and userspace address are not aligned wrt each
9978 		 * other, disable large page support for this slot.
9979 		 */
9980 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9981 			unsigned long j;
9982 
9983 			for (j = 0; j < lpages; ++j)
9984 				linfo[j].disallow_lpage = 1;
9985 		}
9986 	}
9987 
9988 	if (kvm_page_track_create_memslot(slot, npages))
9989 		goto out_free;
9990 
9991 	return 0;
9992 
9993 out_free:
9994 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9995 		kvfree(slot->arch.rmap[i]);
9996 		slot->arch.rmap[i] = NULL;
9997 		if (i == 0)
9998 			continue;
9999 
10000 		kvfree(slot->arch.lpage_info[i - 1]);
10001 		slot->arch.lpage_info[i - 1] = NULL;
10002 	}
10003 	return -ENOMEM;
10004 }
10005 
10006 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10007 {
10008 	struct kvm_vcpu *vcpu;
10009 	int i;
10010 
10011 	/*
10012 	 * memslots->generation has been incremented.
10013 	 * mmio generation may have reached its maximum value.
10014 	 */
10015 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10016 
10017 	/* Force re-initialization of steal_time cache */
10018 	kvm_for_each_vcpu(i, vcpu, kvm)
10019 		kvm_vcpu_kick(vcpu);
10020 }
10021 
10022 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10023 				struct kvm_memory_slot *memslot,
10024 				const struct kvm_userspace_memory_region *mem,
10025 				enum kvm_mr_change change)
10026 {
10027 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10028 		return kvm_alloc_memslot_metadata(memslot,
10029 						  mem->memory_size >> PAGE_SHIFT);
10030 	return 0;
10031 }
10032 
10033 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10034 				     struct kvm_memory_slot *new)
10035 {
10036 	/* Still write protect RO slot */
10037 	if (new->flags & KVM_MEM_READONLY) {
10038 		kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10039 		return;
10040 	}
10041 
10042 	/*
10043 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
10044 	 *
10045 	 * kvm_x86_ops.slot_disable_log_dirty is called when:
10046 	 *
10047 	 *  - KVM_MR_CREATE with dirty logging is disabled
10048 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10049 	 *
10050 	 * The reason is, in case of PML, we need to set D-bit for any slots
10051 	 * with dirty logging disabled in order to eliminate unnecessary GPA
10052 	 * logging in PML buffer (and potential PML buffer full VMEXIT). This
10053 	 * guarantees leaving PML enabled during guest's lifetime won't have
10054 	 * any additional overhead from PML when guest is running with dirty
10055 	 * logging disabled for memory slots.
10056 	 *
10057 	 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
10058 	 * to dirty logging mode.
10059 	 *
10060 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10061 	 *
10062 	 * In case of write protect:
10063 	 *
10064 	 * Write protect all pages for dirty logging.
10065 	 *
10066 	 * All the sptes including the large sptes which point to this
10067 	 * slot are set to readonly. We can not create any new large
10068 	 * spte on this slot until the end of the logging.
10069 	 *
10070 	 * See the comments in fast_page_fault().
10071 	 */
10072 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10073 		if (kvm_x86_ops.slot_enable_log_dirty) {
10074 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10075 		} else {
10076 			int level =
10077 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10078 				PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10079 
10080 			/*
10081 			 * If we're with initial-all-set, we don't need
10082 			 * to write protect any small page because
10083 			 * they're reported as dirty already.  However
10084 			 * we still need to write-protect huge pages
10085 			 * so that the page split can happen lazily on
10086 			 * the first write to the huge page.
10087 			 */
10088 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10089 		}
10090 	} else {
10091 		if (kvm_x86_ops.slot_disable_log_dirty)
10092 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10093 	}
10094 }
10095 
10096 void kvm_arch_commit_memory_region(struct kvm *kvm,
10097 				const struct kvm_userspace_memory_region *mem,
10098 				struct kvm_memory_slot *old,
10099 				const struct kvm_memory_slot *new,
10100 				enum kvm_mr_change change)
10101 {
10102 	if (!kvm->arch.n_requested_mmu_pages)
10103 		kvm_mmu_change_mmu_pages(kvm,
10104 				kvm_mmu_calculate_default_mmu_pages(kvm));
10105 
10106 	/*
10107 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10108 	 * sptes have to be split.  If live migration is successful, the guest
10109 	 * in the source machine will be destroyed and large sptes will be
10110 	 * created in the destination. However, if the guest continues to run
10111 	 * in the source machine (for example if live migration fails), small
10112 	 * sptes will remain around and cause bad performance.
10113 	 *
10114 	 * Scan sptes if dirty logging has been stopped, dropping those
10115 	 * which can be collapsed into a single large-page spte.  Later
10116 	 * page faults will create the large-page sptes.
10117 	 *
10118 	 * There is no need to do this in any of the following cases:
10119 	 * CREATE:	No dirty mappings will already exist.
10120 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
10121 	 *		kvm_arch_flush_shadow_memslot()
10122 	 */
10123 	if (change == KVM_MR_FLAGS_ONLY &&
10124 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10125 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10126 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10127 
10128 	/*
10129 	 * Set up write protection and/or dirty logging for the new slot.
10130 	 *
10131 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10132 	 * been zapped so no dirty logging staff is needed for old slot. For
10133 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10134 	 * new and it's also covered when dealing with the new slot.
10135 	 *
10136 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10137 	 */
10138 	if (change != KVM_MR_DELETE)
10139 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10140 
10141 	/* Free the arrays associated with the old memslot. */
10142 	if (change == KVM_MR_MOVE)
10143 		kvm_arch_free_memslot(kvm, old);
10144 }
10145 
10146 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10147 {
10148 	kvm_mmu_zap_all(kvm);
10149 }
10150 
10151 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10152 				   struct kvm_memory_slot *slot)
10153 {
10154 	kvm_page_track_flush_slot(kvm, slot);
10155 }
10156 
10157 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10158 {
10159 	return (is_guest_mode(vcpu) &&
10160 			kvm_x86_ops.guest_apic_has_interrupt &&
10161 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10162 }
10163 
10164 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10165 {
10166 	if (!list_empty_careful(&vcpu->async_pf.done))
10167 		return true;
10168 
10169 	if (kvm_apic_has_events(vcpu))
10170 		return true;
10171 
10172 	if (vcpu->arch.pv.pv_unhalted)
10173 		return true;
10174 
10175 	if (vcpu->arch.exception.pending)
10176 		return true;
10177 
10178 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10179 	    (vcpu->arch.nmi_pending &&
10180 	     kvm_x86_ops.nmi_allowed(vcpu)))
10181 		return true;
10182 
10183 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10184 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10185 		return true;
10186 
10187 	if (kvm_arch_interrupt_allowed(vcpu) &&
10188 	    (kvm_cpu_has_interrupt(vcpu) ||
10189 	    kvm_guest_apic_has_interrupt(vcpu)))
10190 		return true;
10191 
10192 	if (kvm_hv_has_stimer_pending(vcpu))
10193 		return true;
10194 
10195 	return false;
10196 }
10197 
10198 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10199 {
10200 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10201 }
10202 
10203 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10204 {
10205 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10206 		return true;
10207 
10208 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10209 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10210 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10211 		return true;
10212 
10213 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10214 		return true;
10215 
10216 	return false;
10217 }
10218 
10219 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10220 {
10221 	return vcpu->arch.preempted_in_kernel;
10222 }
10223 
10224 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10225 {
10226 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10227 }
10228 
10229 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10230 {
10231 	return kvm_x86_ops.interrupt_allowed(vcpu);
10232 }
10233 
10234 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10235 {
10236 	if (is_64_bit_mode(vcpu))
10237 		return kvm_rip_read(vcpu);
10238 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10239 		     kvm_rip_read(vcpu));
10240 }
10241 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10242 
10243 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10244 {
10245 	return kvm_get_linear_rip(vcpu) == linear_rip;
10246 }
10247 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10248 
10249 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10250 {
10251 	unsigned long rflags;
10252 
10253 	rflags = kvm_x86_ops.get_rflags(vcpu);
10254 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10255 		rflags &= ~X86_EFLAGS_TF;
10256 	return rflags;
10257 }
10258 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10259 
10260 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10261 {
10262 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10263 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10264 		rflags |= X86_EFLAGS_TF;
10265 	kvm_x86_ops.set_rflags(vcpu, rflags);
10266 }
10267 
10268 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10269 {
10270 	__kvm_set_rflags(vcpu, rflags);
10271 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10272 }
10273 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10274 
10275 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10276 {
10277 	int r;
10278 
10279 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10280 	      work->wakeup_all)
10281 		return;
10282 
10283 	r = kvm_mmu_reload(vcpu);
10284 	if (unlikely(r))
10285 		return;
10286 
10287 	if (!vcpu->arch.mmu->direct_map &&
10288 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10289 		return;
10290 
10291 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10292 }
10293 
10294 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10295 {
10296 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10297 }
10298 
10299 static inline u32 kvm_async_pf_next_probe(u32 key)
10300 {
10301 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10302 }
10303 
10304 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10305 {
10306 	u32 key = kvm_async_pf_hash_fn(gfn);
10307 
10308 	while (vcpu->arch.apf.gfns[key] != ~0)
10309 		key = kvm_async_pf_next_probe(key);
10310 
10311 	vcpu->arch.apf.gfns[key] = gfn;
10312 }
10313 
10314 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10315 {
10316 	int i;
10317 	u32 key = kvm_async_pf_hash_fn(gfn);
10318 
10319 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10320 		     (vcpu->arch.apf.gfns[key] != gfn &&
10321 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10322 		key = kvm_async_pf_next_probe(key);
10323 
10324 	return key;
10325 }
10326 
10327 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10328 {
10329 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10330 }
10331 
10332 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10333 {
10334 	u32 i, j, k;
10335 
10336 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10337 	while (true) {
10338 		vcpu->arch.apf.gfns[i] = ~0;
10339 		do {
10340 			j = kvm_async_pf_next_probe(j);
10341 			if (vcpu->arch.apf.gfns[j] == ~0)
10342 				return;
10343 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10344 			/*
10345 			 * k lies cyclically in ]i,j]
10346 			 * |    i.k.j |
10347 			 * |....j i.k.| or  |.k..j i...|
10348 			 */
10349 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10350 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10351 		i = j;
10352 	}
10353 }
10354 
10355 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10356 {
10357 
10358 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10359 				      sizeof(val));
10360 }
10361 
10362 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10363 {
10364 
10365 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10366 				      sizeof(u32));
10367 }
10368 
10369 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10370 {
10371 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10372 		return false;
10373 
10374 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10375 	    (vcpu->arch.apf.send_user_only &&
10376 	     kvm_x86_ops.get_cpl(vcpu) == 0))
10377 		return false;
10378 
10379 	return true;
10380 }
10381 
10382 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10383 {
10384 	if (unlikely(!lapic_in_kernel(vcpu) ||
10385 		     kvm_event_needs_reinjection(vcpu) ||
10386 		     vcpu->arch.exception.pending))
10387 		return false;
10388 
10389 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10390 		return false;
10391 
10392 	/*
10393 	 * If interrupts are off we cannot even use an artificial
10394 	 * halt state.
10395 	 */
10396 	return kvm_x86_ops.interrupt_allowed(vcpu);
10397 }
10398 
10399 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10400 				     struct kvm_async_pf *work)
10401 {
10402 	struct x86_exception fault;
10403 
10404 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10405 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10406 
10407 	if (kvm_can_deliver_async_pf(vcpu) &&
10408 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10409 		fault.vector = PF_VECTOR;
10410 		fault.error_code_valid = true;
10411 		fault.error_code = 0;
10412 		fault.nested_page_fault = false;
10413 		fault.address = work->arch.token;
10414 		fault.async_page_fault = true;
10415 		kvm_inject_page_fault(vcpu, &fault);
10416 	} else {
10417 		/*
10418 		 * It is not possible to deliver a paravirtualized asynchronous
10419 		 * page fault, but putting the guest in an artificial halt state
10420 		 * can be beneficial nevertheless: if an interrupt arrives, we
10421 		 * can deliver it timely and perhaps the guest will schedule
10422 		 * another process.  When the instruction that triggered a page
10423 		 * fault is retried, hopefully the page will be ready in the host.
10424 		 */
10425 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10426 	}
10427 }
10428 
10429 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10430 				 struct kvm_async_pf *work)
10431 {
10432 	struct x86_exception fault;
10433 	u32 val;
10434 
10435 	if (work->wakeup_all)
10436 		work->arch.token = ~0; /* broadcast wakeup */
10437 	else
10438 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10439 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10440 
10441 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10442 	    !apf_get_user(vcpu, &val)) {
10443 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10444 		    vcpu->arch.exception.pending &&
10445 		    vcpu->arch.exception.nr == PF_VECTOR &&
10446 		    !apf_put_user(vcpu, 0)) {
10447 			vcpu->arch.exception.injected = false;
10448 			vcpu->arch.exception.pending = false;
10449 			vcpu->arch.exception.nr = 0;
10450 			vcpu->arch.exception.has_error_code = false;
10451 			vcpu->arch.exception.error_code = 0;
10452 			vcpu->arch.exception.has_payload = false;
10453 			vcpu->arch.exception.payload = 0;
10454 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10455 			fault.vector = PF_VECTOR;
10456 			fault.error_code_valid = true;
10457 			fault.error_code = 0;
10458 			fault.nested_page_fault = false;
10459 			fault.address = work->arch.token;
10460 			fault.async_page_fault = true;
10461 			kvm_inject_page_fault(vcpu, &fault);
10462 		}
10463 	}
10464 	vcpu->arch.apf.halted = false;
10465 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10466 }
10467 
10468 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10469 {
10470 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10471 		return true;
10472 	else
10473 		return kvm_can_do_async_pf(vcpu);
10474 }
10475 
10476 void kvm_arch_start_assignment(struct kvm *kvm)
10477 {
10478 	atomic_inc(&kvm->arch.assigned_device_count);
10479 }
10480 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10481 
10482 void kvm_arch_end_assignment(struct kvm *kvm)
10483 {
10484 	atomic_dec(&kvm->arch.assigned_device_count);
10485 }
10486 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10487 
10488 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10489 {
10490 	return atomic_read(&kvm->arch.assigned_device_count);
10491 }
10492 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10493 
10494 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10495 {
10496 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10497 }
10498 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10499 
10500 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10501 {
10502 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10503 }
10504 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10505 
10506 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10507 {
10508 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10509 }
10510 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10511 
10512 bool kvm_arch_has_irq_bypass(void)
10513 {
10514 	return true;
10515 }
10516 
10517 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10518 				      struct irq_bypass_producer *prod)
10519 {
10520 	struct kvm_kernel_irqfd *irqfd =
10521 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10522 
10523 	irqfd->producer = prod;
10524 
10525 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10526 					   prod->irq, irqfd->gsi, 1);
10527 }
10528 
10529 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10530 				      struct irq_bypass_producer *prod)
10531 {
10532 	int ret;
10533 	struct kvm_kernel_irqfd *irqfd =
10534 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10535 
10536 	WARN_ON(irqfd->producer != prod);
10537 	irqfd->producer = NULL;
10538 
10539 	/*
10540 	 * When producer of consumer is unregistered, we change back to
10541 	 * remapped mode, so we can re-use the current implementation
10542 	 * when the irq is masked/disabled or the consumer side (KVM
10543 	 * int this case doesn't want to receive the interrupts.
10544 	*/
10545 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10546 	if (ret)
10547 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10548 		       " fails: %d\n", irqfd->consumer.token, ret);
10549 }
10550 
10551 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10552 				   uint32_t guest_irq, bool set)
10553 {
10554 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10555 }
10556 
10557 bool kvm_vector_hashing_enabled(void)
10558 {
10559 	return vector_hashing;
10560 }
10561 
10562 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10563 {
10564 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10565 }
10566 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10567 
10568 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10569 {
10570 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10571 
10572 	/* The STIBP bit doesn't fault even if it's not advertised */
10573 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10574 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10575 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10576 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10577 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10578 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10579 
10580 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10581 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10582 		bits &= ~SPEC_CTRL_SSBD;
10583 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10584 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10585 		bits &= ~SPEC_CTRL_SSBD;
10586 
10587 	return bits;
10588 }
10589 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10590 
10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10608 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10613